Electronic structure and optical properties of III-N nanowires

dc.contributor
Universitat de València. Departament de Física Aplicada
dc.contributor.author
Molina Sánchez, Alejandro
dc.date.accessioned
2012-02-02T13:03:42Z
dc.date.available
2012-02-02T13:03:42Z
dc.date.issued
2011-01-18
dc.identifier.isbn
9788437080727
cat
dc.identifier.uri
http://hdl.handle.net/10803/58722
dc.description.abstract
The term III-N nanowire (NW) will refer throughout this work to the free-standing nanowires made of group-III-nitrides semiconductors, namely InN, GaN and AlN. These nanostructures have a large length/diameter ratio, of the order of 100 (sev- eral micrometers versus tenths of nanometers). The term free-standing highlights the fact that the NWs are not embedded in another material. The improvement of the epitaxial techniques, and in particular, those based on III-N semiconductors, has lead an important part of the Solid State Physics community to concentrate the attention in the last years towards a better understanding of the physical properties of those NWs. Nanowires present several di erences with respect to the still widely investi- gated two-dimensional layers and the zero-dimensional nanostructures (quantum dots). We would like to highlight the following: (i) Nanowires grow strain-free (except maybe at their base), and thus with a minimal presence of dislocations or defects along the main structure. This fact opens the possibility of growing high- quality materials with an important lattice mismatch with the substrate, contrary to the situation found in quantum dots or superlattices. (ii) Depending on the NW lateral dimensions, two types of NWs can be distinguished. When the diameter is larger than 20 nm, the electronic properties of the NWs can be considered as that of a bulk material, thus making them a suitable platform to study the bulk optical and transport properties, which can be hardly investigated in bulk samples (thin lms), that grow with a high density of defects, when there is a high lattice mismatch with the substrate. (iii) For NWs of smaller diameters (. 20 nm), on the other hand, the e ects of quantum con nement can lead to important changes in the optical and transport properties, which can open the possibility of tuning the NW properties by controlling their size. One can roughly classify the investigations on nanowires into three main re- search lines. The rst one concerns the fabrication, being the molecular beam epitaxy or/and the metal organic chemical vapor deposition (MOCVD) the two techniques that allow the growth of higher quality NWs. This research area is in 2 constant development, and is not limited only to the growth of pure compound NWs, but also alloy-based NWs, which extend the possibilities of allowing beyond those possible in standard bulk growth, or axially and radially structured NWs. New physical phenomena arise which must be tacked by the physical community, in particular the e ect of the surface in the optical and transport properties of the NWs. Another focus of research is based on applications to optoelectronics devices and photovoltaic cells. In particular, III-N NWs, as InN, GaN and AlN, have attracted a special interest of the scienti c community, due to the band gap engineering. InN has a band gap of 0.67 eV (1852 nm), in the infrared, whereas GaN and AlN have a band gap of 3.5 eV (355 nm) and 6.2 eV (200 nm), respec- tively, in the ultraviolet. This opens the possibility of covering the whole solar spectrum by an appropriate alloying. In this context, the theory and numerical simulations play a crucial role in the explanation of NWs properties and a better understanding of the observed phenomena. The predictions o ered by the theory can also drive the fabrication of new heterostructures and the design of devices. In this work, we have studied theoretically by using several models, the fundamental aspects of the electronic structure and optical properties of the III-N bulk semiconductors in the rst place, and have applied afterwards such models to the investigation of the III-N nanowires physical properties.
eng
dc.description.abstract
En esta tesis hemos estudiado las propiedades electrónicas y ópticas de los nanohilos de semiconductores III-V, es decir, de InN, GaN y AlN, referidos comúnmente en la literatura como nanohilos III-N o nanohilos de nitruros del grupo III. Estas estructuras se caracterizan por un longitud mucho más larga (en el orden de micrómetros) que su sección (en el orden de nanómetros). La alta calidad cristalina de estos nanohilos, alcanzada gracias al desarrollo de las técnicas de crecimiento como la epitaxia de haces moleculares, ha dado lugar a un interés creciente en la investigación de sus propiedades físicas, debido a su potencial uso en aplicaciones de optoelectrónica, como los diodos de emisión de luz (LED), diodos láser (LD), células solares, y el diseño de nuevos transistores. En concreto, los nanohilos de materiales InN, GaN y AlN revisten especial interés por sus variados gaps, del infrarrojo lejano (0.67 eV para el InN), pasando por el ultavioleta cercano (3.5 eV para el GaN), hasta el ultravioleta lejano (6.2 eV para el AlN), que combinados aproapiadamente pueden, por ejemplo, cubrir totalmente el espectro de energía del sol. En este contexto, el desarrollo de modelos teóricos que permitan la realización de simulaciones de las propiedades de nanohilos y que expliquen las propiedades físicas de dichas nanoestructuras, está más que justi cada. En este trabajo hemos empleado diferentes modelos teóricos con el n de estudiar las propiedades electr ónicas y ópticas de los nanohilos III-N, estudiando detalladamente los efectos del con namiento cuántico en sus propiedades, cuando las dimensiones de los nanohilos varían.
spa
dc.format.extent
216 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat de València
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Facultat de Físiques
cat
dc.title
Electronic structure and optical properties of III-N nanowires
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
53
cat
dc.contributor.director
García Cristóbal, Alberto
dc.contributor.director
Cantarero Sáez, Andrés
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
V-4121-2011
cat


Documents

molina.pdf

9.632Mb PDF

This item appears in the following Collection(s)