Design and analysis of a novel multilevel active-clamped power-converter

dc.contributor
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.contributor.author
Nicolás Apruzzese, Joan
dc.date.accessioned
2014-05-27T11:34:42Z
dc.date.available
2014-05-27T11:34:42Z
dc.date.issued
2013-09-16
dc.identifier.uri
http://hdl.handle.net/10803/134933
dc.description.abstract
Multilevel converter technology has been receiving increasing attention during the last years due to its important advantages compared to conventional two-level conversion. Multilevel converters reduce the voltage across each semiconductor. These converters also synthesize waveforms with better harmonic spectrum, and in most cases, increasing the efficiency of the power conversion system. However, a larger quantity of semiconductors is needed and the modulation strategy to control them becomes more complex. There are three basic multilevel converter topologies: diode clamped, flying capacitor, and cascaded H-bridge with separate dc sources. Numerous hybrid configurations combining them and other multilevel topologies have also been presented in the literature. A novel multilevel active-clamped (MAC) topology is the subject of study of the present thesis. This topology is derived from the generalized multilevel topology by simply removing all flying capacitors. The topology can also be seen as an extension into an arbitrary number of levels of the three-level active neutral-point-clamped (ANPC) topology. The novel converter is controlled using a proper set of switching states and a switching state transition strategy, which permits to obtain the maximum benefits from the converter. In this thesis, the performance and operating capabilities of the MAC topology are studied through comprehensive efficiency and fault-tolerance analyses. The efficiency analysis comprises a study of power-device conduction and switching losses in the topology, followed by analytical and experimental efficiency comparisons between the MAC converter and conventional two-level converters. In the analysis of the fault-tolerance capacity of the MAC topology both open- and short-circuit faults are considered and the analysis is carried out under single-device and two-simultaneous-device faults. Switching strategies to overcome the limitations caused by faults and topology variations to increment the fault-tolerance ability of the MAC converter are proposed. The thesis also proposes guidelines to guarantee a proper MAC converter design and improve its performance.
eng
dc.format.extent
147 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.title
Design and analysis of a novel multilevel active-clamped power-converter
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
621.3
cat
dc.contributor.director
Busquets Monge, Sergio
dc.contributor.codirector
Bordonau Farrerons, Josep
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B 13729-2014


Documents

TJNA1de1.pdf

3.304Mb PDF

This item appears in the following Collection(s)