
UNIVERSITAT POLITÈCNICA DE CATALUNYA 

DEPARTAMENT D’ENGINYERIA ELECTRÒNICA 

 

TESIS DOCTORAL 

  

 

Design and Analysis of a Novel Multilevel Active-Clamped 

Power-Converter 

 

 

Tesis doctoral presentada para acceder al grado de Doctor por la Universitat Politècnica de 

Catalunya, dentro del Programa de Doctorado en Ingeniería Electrónica 

 

 

Joan Nicolás Apruzzese 

 

 

Directores: 

Dr. Sergio Busquets Monge 

Dr. Josep Bordonau Farrerons 

 
 
 
 
 

Barcelona, España, Septiembre 2013 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mi familia y a Laura 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

Un millón de gracias a todos 

En primer lugar, quiero darles las gracias a mi mamá y a mi papá. Quiero agradeceros el esfuerzo 

que habéis hecho siempre para que a mí nunca me haya faltado absolutamente nada, inculcándome unos 

valores y una educación que son las que me han formado como persona. Los 10.000 kilómetros que nos 

separan no han sido un impedimento para sentir vuestro gran apoyo. Vuestras llamadas, vuestro cariño y 

vuestros consejos han sido durante estos años muy importantes para mí en este camino hacia ser doctor. 

Quiero darle un agradecimiento especial a “la yaya”, que ha sido una segunda madre para mí desde 

que llegué a España. Si hubiese tenido que dedicar tiempo de la tesis a hacer todo lo que tú me hacías, igual 

hubiese necesitado de otros tres años más para acabarla. Iaia, moltes gràcies per alimentar-me cada dia i 

per preocupar-te per mi d’aquesta manera tan especial. 

No me quiero olvidar de mis demás familiares y amigos. Nonna, tíos, primos, familiares de Laura y 

muchos amigos, gracias de verdad por vuestro apoyo y por vuestros ánimos durante todo este tiempo. I also 

want to thank “my teacher” Jacky for her English lessons and for her support during the last four years. 

Capítulo aparte le quiero dedicar a mi novia Laura. Quiero en especial agradecerte todo el cariño 

que me has entregado y el apoyo incondicional que me has brindado desde que juntos caminamos. Gracias 

también por tu comprensión en determinados ocasiones en las que el trabajo de la tesis no me permitía 

compartir contigo todo lo que hubiésemos querido. Por último, agradecerte esas “currimeriendas” que me 

traías cada tarde que me servían para recuperar fuerzas y seguir trabajando. Estos últimos meses han sido 

los más duros de la tesis, pero sin duda todo ha sido más fácil estando a tu lado. 

Me gustaría dar gracias también a todos mis compañeros de la sección del Campus Sud del 

departament d’Enginyeria Electrònica por el ánimo recibido de su parte y por el interés mostrado a lo largo 

de este tiempo. Dentro de este grupo, mención aparte merecen mis compañeros del GREP, los cuales además 

de apoyo moral, también me han brindado soporte técnico. Àlber Filbà, Àlex Calle y Salvador Alepuz, es un 

placer enorme trabajar con vosotros. Muchas gracias. 

Ya por último agradecer a mis dos directores, Josep Bordonau y Sergio Busquets. Sin la ayuda de 

ellos, y estoy absolutamente convencido de ello, esta tesis no hubiese sido una realidad. A Josep Bordonau 

quiero agradecerle en primer lugar ser la persona que me adentró en este maravilloso mundo de la 

electrónica de potencia, y en segundo lugar, la gran oportunidad que me ha brindado de poder estar 

vinculado a esta universidad y a este gran grupo de investigación llamado GREP. Y por supuesto sin 

olvidarme de tus apreciables consejos durante el desarrollo de la tesis. Moltes mercès, Josep. A Sergio 

Busquets le quiero dar las gracias principalmente por el incalculable aprendizaje que me ha proporcionado 

a lo largo de estos años. Y es que cada conversación mantenida contigo ha representado para mí una fuente 

continua de enseñanza. Gracias también por esa predisposición a resolver cualquier duda y esa dedicación 

para revisar con detalle todo mi trabajo (especialmente mis redactados). Gracias, en definitiva, por una 

dirección inmejorable. Todo es mucho más fácil trabajando contigo, Sergi. 

Y los que me he dejado, también un millón de gracias. 





CONTENTS 

ABSTRACT ......................................................................................................................................... 1 

NOMENCLATURE ............................................................................................................................... 3 

 

CHAPTER 1. INTRODUCTION .......................................................................................................... 11 

1.1. Multilevel conversion concept ............................................................................................... 11 

1.2. Multilevel converter topologies ............................................................................................. 12 

1.2.1. Cascaded H-bridge converter .......................................................................................... 13 

1.2.2. Diode-clamped converter ................................................................................................ 14 

1.2.3. Capacitor-clamped converter .......................................................................................... 14 

1.2.4. Variations of the three main multilevel topologies and hybrid configurations ............... 15 

1.2.5. Active neutral-point-clamped converters ........................................................................ 18 

1.2.6. Generalized multilevel topology ..................................................................................... 19 

1.3. Thesis objective ..................................................................................................................... 22 

1.4. Thesis outline ......................................................................................................................... 22 

 

CHAPTER 2. MULTILEVEL ACTIVE-CLAMPED TOPOLOGY ......................................................... 25 

2.1. Introduction ........................................................................................................................... 25 

2.2. Topology ................................................................................................................................ 25 

2.2.1. Operating principle ......................................................................................................... 27 

2.3. Discussion .............................................................................................................................. 29 

2.4. Simulation results .................................................................................................................. 32 

2.5. Experimental results .............................................................................................................. 35 

2.6. Conclusion ............................................................................................................................. 37 

 

 



viii 

CHAPTER 3. EFFICIENCY ASSESSMENT OF THE MULTILEVEL ACTIVE-CLAMPED TOPOLOGY 39 

3.1. Introduction............................................................................................................................ 39 

3.2. Fundamental factors of loss reduction in multilevel conversion ........................................... 40 

3.2.1. Conduction losses ............................................................................................................ 40 

3.2.2. Switching losses .............................................................................................................. 41 

3.3. Loss analysis of the MAC topology ...................................................................................... 43 

3.3.1. Conduction losses............................................................................................................ 44 

3.3.1.1. Distribution of output current among the devices and equivalent ON-resistance ..... 44 

3.3.1.2. Conduction losses in a general m-level MAC leg .................................................... 47 

3.3.1.2.1. Constant output current ...................................................................................... 47 

3.3.1.2.2. Variable output current ...................................................................................... 48 

3.3.1.3. Conduction losses per device in a general m-level MAC leg ................................... 49 

3.3.1.3.1. Constant output current ...................................................................................... 49 

3.3.1.3.2. Variable output current ...................................................................................... 50 

3.3.1.4. Conduction losses in a three-phase MAC inverter under the V2PWM ..................... 50 

3.3.2. Switching losses .............................................................................................................. 53 

3.3.2.1. Switching losses in a four-level leg .......................................................................... 54 

3.4. Experimental efficiency comparison between a four-level MAC leg and a conventional two-

level leg under a basic operating mode ......................................................................................... 57 

3.4.1. Efficiency comparison scenario ...................................................................................... 57 

3.4.2. Loss models ..................................................................................................................... 58 

3.4.2.1. Device conduction losses ......................................................................................... 58 

3.4.2.1.1. Two-level leg ..................................................................................................... 58 

3.4.2.1.2. Four-level MAC leg ........................................................................................... 59 

3.4.2.2. Device switching losses ............................................................................................ 59 

3.4.2.2.1. Two-level leg ..................................................................................................... 63 

3.4.2.2.2. Four-level MAC leg ........................................................................................... 63 



ix 

3.4.2.3. Other losses .............................................................................................................. 64 

3.4.2.3.1. Gate-driver-circuit losses ................................................................................... 64 

3.4.2.3.2. Losses of the capacitor-discharging resistors .................................................... 65 

3.4.3. Experimental and analytical results ................................................................................ 65 

3.5. Efficiency comparison between a four-level three-phase MAC dc-ac converter and a 

conventional two-level three-phase dc-ac converter .................................................................... 67 

3.5.1. Efficiency comparison scenario ...................................................................................... 67 

3.5.2. Loss modeling implementation ....................................................................................... 68 

3.5.3. Comparison results .......................................................................................................... 69 

3.6. Chip-area-based comparison between a four-level MAC leg and a conventional two-level  

leg ................................................................................................................................................. 71 

3.6.1. Description of the methodology ...................................................................................... 71 

3.6.2. Chip-area comparison scenario ....................................................................................... 72 

3.6.3. Algorithm implementation. Thermal and loss modeling ................................................ 73 

3.6.3.1. Resistances calculation (Block 2) ............................................................................. 73 

3.6.3.2. Power loss calculation (Block 3) .............................................................................. 74 

3.6.3.3. Temperature calculation (Block 4) ........................................................................... 74 

3.6.4. Chip-area optimization results ........................................................................................ 74 

3.7. Conclusion ............................................................................................................................. 75 

 

CHAPTER 4. FAULT-TOLERANCE CAPACITY OF THE MULTILEVEL ACTIVE-CLAMPED 

CONVERTER .................................................................................................................................... 77 

4.1. Introduction ........................................................................................................................... 77 

4.2. Fault-tolerance analysis assumptions .................................................................................... 78 

4.3. Fault-tolerance analysis under short-circuit faults ................................................................. 79 

4.3.1. Switching scheme I (SSI): Prioritization of number of levels ........................................ 82 

4.3.1.1. Observations in a general m-level leg using SSI ...................................................... 85 

4.3.2. Switching scheme II (SSII): Prioritization of the blocking voltage ................................ 88 



x 

4.3.2.1. Observations in a general m-level leg using SSII ..................................................... 88 

4.4. Fault-tolerance analysis under open-circuit faults ................................................................. 89 

4.4.1. Observations in a general m-level leg ............................................................................. 92 

4.5. Experimental results .............................................................................................................. 95 

4.6. Hardware modifications to improve the fault-tolerance ability ............................................. 97 

4.6.1. Solution I: Parallelization of open-circuit critical diagonals ........................................... 97 

4.6.2. Solution II: Inclusion of two additional devices at input terminals i2 and im–1 ................ 98 

4.6.2.1. Switching scheme under short-circuit faults............................................................. 98 

4.6.2.2. Switching scheme under open-circuit faults ............................................................. 99 

4.6.3. Solution III: Inclusion of one additional device at every input terminal ......................... 99 

4.6.3.1. Switching scheme under short-circuit faults........................................................... 101 

4.6.3.2. Switching scheme under open-circuit faults ........................................................... 101 

4.7. Conclusion ........................................................................................................................... 102 

 

CHAPTER 5. CONCLUSION ............................................................................................................ 103 

5.1. Contributions and conclusions ............................................................................................. 103 

5.2. Future research work ........................................................................................................... 105 

 

APPENDIX A. DESIGN ISSUES OF THE MULTILEVEL ACTIVE-CLAMPED TOPOLOGY .............. 107 

A.1. OFF-state balancing resistor network .................................................................................. 107 

A.2. Shut-down sequence ........................................................................................................... 108 

A.3. Self-powered gate-driver power-supply network ............................................................... 109 

A.3.1. Self-powered gate-driver power-supply network under the V2PWM .......................... 110 

A.4. Singular current spikes during switching-state transitions ................................................. 112 

A.4.1. Current spikes owing to diode reverse-recovery .......................................................... 112 

A.4.2. Current spikes owing to the discharging of the device output parasitic            

capacitance ܥoss ...................................................................................................................... 113 



xi 

A.4.3. Experimental tests ........................................................................................................ 115 

A.5. Conclusion .......................................................................................................................... 117 

 

APPENDIX B. EXPERIMENTAL EQUIPMENT................................................................................. 119 

B.1. Converter prototypes ........................................................................................................... 119 

B.1.1. Four-level MAC prototypes ......................................................................................... 119 

B.1.2. Two-level prototype ..................................................................................................... 119 

B.2. dSPACE system .................................................................................................................. 120 

B.3. Dc-power-sources ............................................................................................................... 121 

B.4. Loads ................................................................................................................................... 122 

B.4.1. Resistive load ............................................................................................................... 122 

B.4.2. Inductive load ............................................................................................................... 123 

B.5. Scopes ................................................................................................................................. 124 

B.6. Double pulse board ............................................................................................................. 125 

B.7. General overview ................................................................................................................ 125 

 

APPENDIX C. THERMAL RESISTANCE VERSUS DEVICE SILICON AREA .................................... 127 

C.1. Correlation analysis ............................................................................................................ 127 

 

REFERENCES ................................................................................................................................. 129 

 





ABSTRACT 

Multilevel converter technology has been receiving increasing attention during the last years 

due to its important advantages compared to conventional two-level conversion. Multilevel 

converters reduce the voltage across each semiconductor. These converters also synthesize 

waveforms with better harmonic spectrum, and in most cases, increasing the efficiency of the 

power conversion system. However, a larger quantity of semiconductors is needed and the 

modulation strategy to control them becomes more complex. There are three basic multilevel 

converter topologies: diode clamped, flying capacitor, and cascaded H-bridge with separate dc 

sources. Numerous hybrid configurations combining them and other multilevel topologies have 

also been presented in the literature. 

A novel multilevel active-clamped (MAC) topology is the subject of study of the present 

thesis. This topology is derived from the generalized multilevel topology by simply removing all 

flying capacitors. The topology can also be seen as an extension into an arbitrary number of levels 

of the three-level active neutral-point-clamped (ANPC) topology. The novel converter is controlled 

using a proper set of switching states and a switching state transition strategy, which permits to 

obtain the maximum benefits from the converter. 

In this thesis, the performance and operating capabilities of the MAC topology are studied 

through comprehensive efficiency and fault-tolerance analyses. 

The efficiency analysis comprises a study of power-device conduction and switching losses 

in the topology, followed by analytical and experimental efficiency comparisons between the MAC 

converter and conventional two-level converters. 

In the analysis of the fault-tolerance capacity of the MAC topology both open- and short-

circuit faults are considered and the analysis is carried out under single-device and two-

simultaneous-device faults. Switching strategies to overcome the limitations caused by faults and 

topology variations to increment the fault-tolerance ability of the MAC converter are proposed. 

The thesis also proposes guidelines to guarantee a proper MAC converter design and 

improve its performance. 





NOMENCLATURE 

Acronyms and Abbreviations 

ANPC Active neutral-point-clamped 

IGBT Insulated-gate bipolar transistor 

FPGA Field-programmable gate array 

GDPS Gate-driver power-supply 

IC Integrated circuit 

MAC Multilevel active-clamped 

MOSFET Metal-oxide-semiconductor field-effect transistor 

NPC Neutral-point-clamped 

PWM Pulse-width modulation 

RMS Root mean square 

SSI Switching scheme I 

SSII Switching scheme II 

SVD Space-vector diagram 

SVPWM Space-vector pulse-width modulation 

THD Total harmonic distortion 

V2PWM Virtual-space-vector pulse-width modulation 

Symbols 

Topology parameters 

m Number of levels of the topology 

i௞	; ݇	߳	ሼ1, 2, … ,݉ሽ  Input terminal k of the topology 

ܿ௞	; ݇	߳	ሼ1, 2, … ,݉ െ 1ሽ  Control variables for controlling the MAC converter 

ܿୗೣ,୧ೖ	; 	݇	߳	ሼ1, 2, … ,݉ሽ Per-unit value of leg output current ݅୭ flowing through device S௫ 
when the output terminal is connected to the input terminal i௞ 
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Time and Frequency 

 Time ݐ

 ௞ Instant in which output terminal is connected to the inputݐ

terminal i௞ 

ୱܶ Switching (or modulation) period 

f Frequency 

ୱ݂ Switching frequency 

 Output fundamental angular frequency of inverter 

୴ܶ Period of time in which voltage ୢݒୱ changes from 0 V to ܸୢ ୱ, or 

vice versa 

୧ܶ Period of time in which voltage ݅ୢ changes from 0 A to ୢܫ , or vice 

versa 

 Dead time. Time between the turn off and the turn on of devices in ݐ

a switching-state transition 

 

Devices 

S௫௞௝	; ,ሼp	߳	ݔ nሽ	; 

݇	߳	ሼ1, 2, … ,݉ െ 1ሽ	; 
	݆	߳	ሼ1, 2, … ,݉ െ 1ሽ 

MAC-leg devices (device ݆ belonging to diagonal ݇ݔ in a MAC 
leg) 

S௫	; ,ሼp݆݇	߳	ݔ n݆݇ሽ ; 
݇	߳	ሼ1, 2, … ,݉ െ 1ሽ	; 
	݆	߳	ሼ1, 2, … ,݉ െ 1ሽ 

MAC-leg devices 

S௫	; ,ሼp	߳	ݔ nሽ Two-level-leg devices 

S୮௞௝	; 

݇	߳	ሼ1, 2, … ,݉ െ 1ሽ	; 
	݆	߳	ሼ1, 2, … ,݉ െ 1ሽ 

Upper devices of the basic cells of the MAC leg 

S୬௞௝	; 

݇	߳	ሼ1, 2, … ,݉ െ 1ሽ	; 
	݆	߳	ሼ1, 2, … ,݉ െ 1ሽ 

Lower devices of the basic cells of the MAC leg 

S୮ Upper device of a two-level leg 
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S୬ Lower device of a two-level leg 

Sୟ௞	; ݇	߳	ሼ2,݉ െ 1ሽ Additional devices included in solution II of hardware variations 

to increase the MAC fault-tolerance ability 

Sୟୠ௞	; ݇	߳	ሼ1,2, … ,݉ሽ Additional bidirectional switches included in solution III of 

hardware variations to increase the MAC fault-tolerance ability 

Sୟ௫௞௝	; ,ሼp	߳	ݔ nሽ ; 

݇	߳	ሼ1, 2, … ,݉ െ 1ሽ	; 
	݆	߳	ሼ1, 2, … ,݉ െ 1ሽ 

Auxiliary MOSFET of the GDPS of power device S௫௞௝ 

S୲ୣୱ୲ Device under test for measuring its switching losses 

Dୗ౪౛౩౪ Additional antiparallel diode of device S୲ୣୱ୲ 

D୸௫௞௝ Zener diode of the GDPS of device S௫௞௝ 

Dୠ௫௞௝  Blocking diode of the GDPS of device S௫௞௝ 

 

Passives components 

C௫௞௝  Output capacitor of the GDPS of device S௫௞௝ 

Rୟ௫௞௝  Auxiliary resistor of the GDPS of device S௫௞௝ 

C Dc-link capacitor 

 

Passives values 

ܴ Resistance 

 Inductance  ܮ

 Capacitance ܥ

ܼ Impedance 

ܴ୐ Load resistance 

 ୐ Load capacitanceܥ

ܼ୐ Load impedance 
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;	௫ܮ ,ሼܽ		ݔ	 ܾ, ܿሽ  Inductance filter (load) of phase leg x 

ܴୢୱሺ୭୬ሻ ON-state drain-to-source resistance 

ݎୢ ୱሺ୭୬ሻ ON-state drain-to-source resistivity (per-unit-area resistance)  

ܴୢୱሺ୭୬ሻ,ଶ଴଴  or  

ܴୢୱሺ୭୬ሻ,ୗ୘୔ଶ଴୒୊ଶ଴   

ON-state drain-to-source resistance of 200 V MOSFET 

STP20NF20 

ܴୢୱሺ୭୬ሻ,଺଴଴  or  

ܴୢୱሺ୭୬ሻ,ୗ୘୔ଵଷ୒୑଺଴୒  

ON-state drain-to-source resistance of 600 V MOSFET 

STP13NM60N 

ܴୢୱሺ୭୬ሻ,ୗೣ,ଶ୐ ON-state drain-to-source resistance of any device S௫ belonging to 

the two-level leg 

ܴୢୱሺ୭୬ሻ,ୗೣ,ସ୐ ON-state drain-to-source resistance of any device S௫ belonging to 

the four-level leg 

ܴୣ୯,୧ೖ	; 

݇	߳	ሼ1, 2, … ,݉ሽ 

Equivalent ON-resistance between the leg output terminal and the 

corresponding input terminal i௞ 

ܴୣ୯,୧ೖ,୬୭୰୫	;	 

݇	߳	ሼ1, 2, … ,݉ሽ 

Normalized equivalent ON-resistance between the leg output 

terminal and the corresponding input terminal i௞ 

ܴୣ୯ Equivalent resistance 

௫௞௝ܥ  Capacitance of capacitor C௫௞௝ of the GDPS of device S௫௞௝ 

  ୭ୱୱ Output parasitic capacitance of a MOSFET deviceܥ

 

Voltages 

ܸ  Voltage value between adjacent input terminals of the MAC leg 

ܸୢ ୡ  Voltage value of a dc source 

ܸୢ ୡି୪୧୬୩  Dc-link voltage value 

 ୭ Instantaneous leg output voltageݒ

;	௫ݒ ,ሼܽ		ݔ	 ܾ, ܿሽ  Instantaneous leg x output voltage 

୪ܸି୪,୮୩	  Peak value of fundamental component of the line-to-line voltage 

;	௫௬ݒ ,ሼܽ		ݔ	 ܾ, ܿሽ  
,ሼܽ	߳	ݕ ܾ, ܿሽ  

Instantaneous line-to-line converter output voltage 
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 ;	ୡ௞ݒ
݇	߳	ሼ1, 2, … ,݉ െ 1ሽ 

Instantaneous dc-link capacitor voltages between input terminals k 
and k+1 

 ୱ Instantaneous drain-to-source voltage of a MOSFET deviceୢݒ

 ୱሺୗೣሻ Instantaneous drain-to-source voltage of MOSFET device S௫ୢݒ

ܸୢ ୱ Drain-to-source voltage value of a MOSFET device when it is in 
OFF-state 

 ୟ୩ Instantaneous anode-to-cathode voltage of a diodeݒ

 ୥ୱ Instantaneous gate-to-source voltage of a MOSFET deviceݒ

୲ܸୣୱ୲  Voltage value used for performing the tests to measure switching 

losses 

୥ܸୱ Gate-to-source voltage value of a MOSFET device when it is in 
ON-state 

 ୡ௫௞௝ Instantaneous voltage of capacitor C௫௞௝ of the GDPSݒ

ୢܸܤ ୱ	  MOSFET blocking voltage  

 

Currents 

݅௢ Instantaneous leg output current 

݅௫	; ,ሼܽ		ݔ	 ܾ, ܿሽ  Instantaneous leg x output current 

݅ୢ Instantaneous drain current flowing through a MOSFET device 

݅ୢሺୗೣሻ Instantaneous drain current flowing through MOSFET S௫  

ܫୢ  MOSFET drain current value when it is in ON-state 

  ୭ Dc leg output current valueܫ

 ୭,୮୩ Peak value of output current ݅୭ܫ

݅௥௥ Instantaneous reverse-recovery current 

 ሺୖ୑ୗሻ RMS value of device drain current ݅ௗୢܫ

݅ୟ୩ Instantaneous diode current from anode to cathode 

-ୟ୩ Value of diode current from anode to cathode when it is in ONܫ
state 
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݅ୢ୧ୱ Instantaneous discharging current of the device output parasitic 
capacitance ܥ୭ୱୱ 

 

Energy 

 ୡ୭୬ୢ,୪ୣ୥,்౏ Conduction energy loss in the converter leg during ୗܶܧ

 ୡ୭୬ୢ,୪ୣ୥,ௗ௧ Conduction energy loss in the converter leg during anܧ
infinitesimal differential of time ݀ݐ 

 ୡ୭୬ୢ,ୗೣ,்౏ Conduction energy loss in device S௫ during a switching period ୗܶܧ

 ୡ୭୬ୢ,ୗೣ,ௗ௧ Conduction energy loss in device S௫ during an infinitesimalܧ
differential of time ݀ݐ 

 ୭୬ Turn-on energy lossܧ

 ୭୤୤ Turn-off energy lossܧ

 ୰୰ Reverse-recovery energy lossܧ

;	୭୬_௞ୈܧ 	݇	߳	ሼ1, 2, 3ሽ Turn-on energy loss with k diodes connected in parallel presenting 
reverse-recovery processes. 

;	୰୰_௞ୈܧ 	݇	߳	ሼ1, 2, 3ሽ Reverse-recovery energy lost by k diodes connected in parallel. 

 ୱ୵,୪ୣ୥,்౏ Switching energy loss in the converter leg during a switchingܧ
period ୗܶ 

;	୭୬_௞ୈ,ଶ଴଴ܧ 	݇	߳	ሼ1, 2, 3ሽ Turn-on energy loss of 200 V MOSFET STP20NF20 with k 
diodes connected in parallel presenting reverse-recovery processes 

 ୭୬_ଵୈ,଺଴଴ Turn-on energy loss of 600 V MOSFET STP13NM60N with oneܧ
diode connected in parallel presenting reverse-recovery processes 

 ୭୤୤,ଶ଴଴ Turn-off energy loss of 200 V MOSFET STP20NF20ܧ

 ୭୤୤,଺଴଴ Turn-off energy loss of 600 V MOSFET STP13NM60Nܧ

;		୰୰_௞ୈ,ଶ଴଴ܧ 	݇	߳	ሼ1, 2, 3ሽ Reverse-recovery energy lost by k antiparallel diodes of 200 V 
MOSFET STP20NF20 connected in parallel. 

 ୰୰_ଵୈ,଺଴଴ Reverse-recovery energy lost by the antiparallel diode of 600 Vܧ
MOSFET STP13NM60N connected in parallel. 

 

Power 

ܲୡ୭୬ୢ	 Conduction power loss 
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ܲୡ୭୬ୢ,୪ୣ୥ Conduction power loss in the converter leg 

ܲୡ୭୬ୢ,ୗೣ Conduction power loss in device S௫ 

ୱܲ୵ Switching power loss 

୰ܲ୥	 Power loss in the gate resistor 

ܲୢ୰୴	 Power loss in the gate-driver integrated circuit 

୰ܲୡ Power loss in the resistors connected in parallel with the dc-link 
capacitors to facilitate their charging/discharging 

௧ܲ,௠୐	;  	,ሼcond		ݐ	
sw, rg, drv, rcሽ ; 
݉	߳	ሼ2, 4ሽ 

Power loss of type t in the m-level leg 

୭ܲ୳୲	 Converter output power 

୧ܲ୬	 Converter input power 

ܲ୪୭ୱୱ Converter power loss 

ୗܲೣ Total power loss in device S௫ 

 ୪୭ୱୱି୭୬ Instantaneous power loss in the turn-on transition݌

 ୪୭ୱୱି୭୤୤ Instantaneous power loss in the turn-off transition݌

 ୪୭ୱୱି୰୰ Instantaneous power loss in the reverse-recovery transition݌

 ୭ Instantaneous leg output power݌

 

Temperatures 

ୱܶ Heat-sink temperature 

୨ܶ,ୗೣ Junction temperature of device S௫ 

୨ܶ,ୗೣ,୫ୟ୶ Predefined maximum value of ୨ܶ,ୗೣ 

 

Angles 

 Line-cycle angle 



10            DESIGN AND ANALYSIS OF A NOVEL MULTILEVEL ACTIVE-CLAMPED POWER CONVERTER 

 

 

 Load line-to-neutral impedance angle 

 

Modulation Parameters 

mi Modulation index ( ୪ܸି୪,୮୩ ܸୢ ୡି୪୧୬୩⁄ ). 

݀௞	; 	݇		ሼ1,2, … ,݉ሽ Duty ratio of connection of the leg output terminal to the input 
terminal i௞ 

݀୭୤୤ୱୣ୲ Added offset to original duty ratios ݀௬௞ 

 

Device parameters 

ܳ୥ MOSFET gate charge 

ܳ୰୰ MOSFET reverse-recovery charge 

ܴ୲୦,୨ୱ Junction-to-heat-sink thermal resistance 

ܴ୲୦,୨ୡ Junction-to-case thermal resistance 

ܴ୲୦,ୡୱ Case-to-heat-sink thermal resistance 

 ୗೣ Chip area of device S௫ܣ

 ୗ Chip area of device Sܣ

 

Other parameters 

 ୱ in a switching transitionୢݒ ୴ Slope of voltageݏ

 ୧ Slope of current ݅ୢ in a switching transitionݏ

 



CHAPTER 1 

INTRODUCTION 

Abstract  This opening chapter presents a review of the multilevel conversion concept and the 

different multilevel converter topologies. Then, the thesis objective is defined, and finally, the outline of the 

thesis is presented. 

1.1. Multilevel conversion concept 

The essence of the multilevel concept consists of using multiple voltage levels in the process 

of power conversion. Fig. 1.1 presents a functional schematic of a converter leg having different 

number of levels. Fig. 1.1(a) corresponds to the conventional two-level leg, Fig. 1.1(b) corresponds 

to the three-level case, and Fig. 1.1(c) to an m-level leg. The converters are classified according to 

the number of dc-link voltage levels available to synthesize the output phase voltage ݒ୭. 
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Fig. 1.1.  Functional schematic of a converter leg having different number of levels. (a) Two levels. (b) Three 

levels. (c) m levels. 

Multilevel power conversion [1]-[4] has been receiving special attention during the last two 

decades due to their significant advantages compared to conventional two-level topologies. Thanks 

to their advantages, multilevel converters have opened a door for advances in the electrical energy 

conversion technology. 

These converters are typically considered for high power applications because they allow 

operating at higher dc-link voltage levels with the current available semiconductor technology. But 
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they can also be attractive for medium or even low power/voltage applications, since they allow 

operating with lower voltage-rated devices, with potentially better performance/economical 

features. 

The advantages of multilevel converters compared to the conventional two-level converters 

could be summarized as follows: 

 The voltage across each semiconductor is reduced. For converter power ratings where 

only a single device for position is needed in the two-level topology, multilevel 

converters allow using devices with a lower voltage rating (by a factor of m–1) having 

higher performance characteristics. Similarly, for a given semiconductor technology, 

an m-level multilevel converter allows increasing the dc-bus voltage by a factor m–1, 

increasing the converter power rating by m–1, without the problems associated to the 

series connection of devices.  

 The total harmonic distortion (THD) of the output ac-voltage is significantly reduced 

(for the same dc-link voltage), allowing to reduce the output filter cost and size, which 

also leads to improve the dynamic response of the controlled converter. 

 They generate smaller common-mode (CM) voltage, thus reducing the stress in the 

motor bearings. In addition, using sophisticated modulation methods, CM voltages can 

be eliminated. 

 They can generate output voltages with lower dv/dt. 

 They draw input current with very low distortion. 

 They produce lower switching losses for a given current THD. 

However, using multilevel converters, the control and modulation strategies become more 

complex. Moreover, they require a bigger quantity of semiconductors and its corresponding gate 

drive circuits, which increases the cost. 

1.2. Multilevel converter topologies 

Multilevel conversion technology has probably its origin in 1962 [5], in which multiple 

levels are achieved by adding the outputs of several inverters operating in parallel through phase 

shifting transformers. This technique is no longer attractive for most applications due to the large 

reactive elements used. A closer concept to the nowadays multilevel topologies is proposed in [6] 

and [7], in which some configurations are proposed based on proper connections of transistors, 

thyristors and capacitors that permit to synthesize multilevel voltage waveforms. 
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Topologies commonly used today for implementing multilevel converters include an array of 

power semiconductors. There are three basic multilevel converter topologies: diode clamped, flying 

capacitor, and cascaded H-bridge with separate dc-sources. A number of variations and 

combinations of these topologies, and new topologies, have been proposed and analyzed in the 

literature. In the following, a review of the main multilevel topologies proposed along the last 

decades is presented. 

1.2.1. Cascaded H-bridge converter 

The first one in appear of the three main multilevel topologies was the cascaded H-bridge 

topology, introduced by Baker in [8]. This topology is based on a very simple idea to generate 

multilevel voltages, which consists of the series connection of single phase H-bridge inverters with 

separate dc-sources. Fig. 1.2 presents the cascaded H-bridge topology. Fig. 1.2(a) corresponds to 

the topology using two H-bridge inverters, which permits to generate five output different levels, 

and Fig. 1.2(b) corresponds to the arbitrary case of m H-bridge inverters, which permits to generate 

2m+1 levels. An important inconvenient of the cascaded H-bridge multilevel converter is the 

necessity of using independent and isolated dc-sources (dc-power supplies). 

 

Fig. 1.2.  Cascaded H-bridge converter. (a) Two-H-bridges leg topology. (b) m-H-bridges leg topology. 
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1.2.2. Diode-clamped converter 

The three-level diode-clamped topology, also called neutral-point-clamped (NPC) topology, 

was introduced by Nabae in [9]. In this circuit, the dc-bus voltage is split into three levels by means 

of the series connection of two capacitors. The middle point of the dc-link bus is called the neutral 

point. Diode-clamped topology was generalized into m levels in [10], [11]. Fig. 1.3 shows the diode 

clamped topology. Fig. 1.3(a) corresponds to the three-level case and Fig. 1.3(b) corresponds to the 

five-level case. 

 

Fig. 1.3.  Diode-clamped multilevel converter. (a) Three-level leg topology. (b) Five-level leg topology. 

The neutral-point-clamped converter has become the most used multilevel topology in 

industry applications, thanks to its implementation simplicity and its better performance, compared 

to other topologies. 

However, capacitor voltage balancing has long been an important problem of diode-clamped 

topologies [12]. Correct operation of the diode-clamped converters requires that the voltage across 

dc-link capacitors be the same. With the utilization of conventional modulation strategies, voltage 

balancing can not be guaranteed for certain operating conditions. 

Some authors have been proposing different solutions modifying the control and modulation 

strategies [13]-[23] and today it could be said that this problem has been solved. 

1.2.3. Capacitor-clamped converter 

The flying-capacitor converter, also called capacitor clamped, was introduced in [24]. In Fig. 

1.4, it is depicted the flying capacitor multilevel topology. Fig. 1.4(a) corresponds to the three-level 
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case and Fig. 1.4(b) corresponds to the five-level case. The circuit presents independent capacitors 

clamping the device voltage to one capacitor voltage level. An important inconvenient of this 

topology is the high current spikes that can be produced when capacitors with different voltages are 

connected in parallel. 
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Fig. 1.4.  Flying capacitor multilevel converter. (a) Three-level leg topology. (b) Five-level leg topology. 

1.2.4. Variations of the three main multilevel topologies and hybrid configurations 

A big number of different multilevel topologies have been created based on the three main 

multilevel topologies: diode clamped, flying capacitor, and cascaded H-bridge. Singular variations 

of them and numerous hybrid configurations combining them have been proposed in the literature. 

References [25]-[31] propose different singular variation concepts of the cascaded H-bridge 

multilevel converter. Asymmetric configurations as binary [25], [28], quasi-linear [26]-[27] or 

trinary [27]-[28] configuration propose a change of the values of the adjacent dc-link voltage 

sources with the aim of incrementing the number of available levels for the output voltage using the 

same number of dc sources. In the original H-bridge cascaded topology, each dc-source presents 

the same voltage value and the number of levels that could be generated is equal to 2m+1. 

Fig. 1.5 presents the three mentioned configurations. Fig. 1.5(a) corresponds to the binary 

configuration, Fig. 1.5(b) corresponds to the quasi-linear configuration, and Fig. 1.5(c) to the 

trinary configuration. In the binary configuration, the values of each dc-link voltage source are 

equal to Vdc·2
k–1 (Vdc, 2·Vdc, 4·Vdc, 8·Vdc,…, 2m–1·Vdc), and it is possible to generate 2m+1–1 levels. In 
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the quasi-linear configuration, the values of each dc-link voltage source are equal to Vdc·2·3k–2 (Vdc, 

2·Vdc, 6·Vdc, 18·Vdc,…, 2·3m–2·Vdc), and it is possible to generate 2·3m–1+1 levels. Finally, in the 

trinary configuration, the values of each dc-link voltage source are equal to Vdc·3
k–1 (Vdc, 3·Vdc, 

9·Vdc, 27·Vdc,…, 3m–1·Vdc), and it is possible to generate 3m levels. The need of using devices with 

different blocking voltages is an important inconvenient of these topologies. Reference [29] 

presents a survey of cascaded multilevel topologies. 

vo 
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(b)

Vdc

(c)

Vdc

2m-1·Vdc 2·3m-2·Vdc

2·Vdc

3m-1·Vdc

3·Vdc2·Vdc
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Fig. 1.5.  Three singular variations of the cascaded H-bridge topology. (a) Binary configuration leg. (b) 

Quasi-linear configuration leg. (c) Trinary configuration leg. 

 Regarding the capacitor-clamped converter, some singular variations of this topology are 

proposed in [32]-[35]. Reference [32] proposes a single-phase flying-capacitor-half-bridge 5-level 

inverter in which a traditional half-bridge inverter is connected in parallel with the capacitor-

clamped converter. A very similar concept is presented in [33], where it is proposed a topology 

which also presents two legs in parallel, and one of them is the capacitor clamped leg. The other leg 

is similar to a conventional half-bridge leg, but in this case there are four transistors instead of two, 

which permits to control the charge and discharge of the clamping capacitor. As in the previous 

case, five voltage levels are generated on the ac terminal of the proposed inverter. In [34], it is 

proposed a multilevel modular capacitor-clamped dc-dc converter (MMCCC), which presents an 

inherent modular structure and can be designed to achieve any conversion ratio. Each modular 
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block has one capacitor and three transistors leading to three terminal points. Finally, reference [35] 

proposes a zero-voltage switching (ZVS) scheme for a three-level capacitor clamping inverter 

based on a true pulse-width modulation (PWM) pole. 

 Regarding the diode-clamped converter, some singular variations of this topology are 

proposed in [36]-[40]. References [36]-[37] propose a single-phase five-level asymmetric inverter 

in which a traditional half-bridge inverter is connected in parallel with the diode-clamped 

converter, but each reference proposes a different control strategy. In [38], a novel multi output dc-

dc converter connected to a diode-clamped topology is proposed. This converter, in certain cases, is 

able to regulate the capacitor voltage to provide an appropriate input voltage for NPC regardless of 

load changes, which can avoid the neutral-point balancing problem in such converters. References 

[39]-[40] present the active neutral-point-clamped (ANPC) converter, in which the two clamping 

diodes of the neutral point clamped converter are replaced by two transistors. This topology is 

explained in more detail in the following section. 

 As mentioned above, a lot of hybrid topologies combining the three main multilevel 

topologies have also been proposed. References [41]-[47] are some examples. Reference [41] 

presents a mixed topology that combines clamping capacitors and clamping diodes introducing 

capacitors in parallel with the clamping diodes. This topology is depicted in Fig. 1.6(a). Reference 

[42] presents the same concept, but in this case it is used an ANPC instead of a diode clamped 

converter. Reference [43] presents a different concept of mixed multilevel converter which 

combines diode clamped or flying capacitor converters with two-level bridge legs. Fig. 1.6(b) 

shows a combined diode clamped multilevel converter. General cascaded hybrid topologies, which 

are summarized in [44], use diode-clamped or flying-capacitor legs to replace the H-bridge as the 

basic module of the cascaded H-bridge converter in order to reduce the number of the isolated dc-

link voltage sources. Fig. 1.6(c) presents a hybrid cascaded topology built upon a diode-clamped 

and a capacitor-clamped converter. Other cascaded hybrid topologies are presented in [45]-[47].  
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Fig. 1.6.  Some hybrid multilevel leg topologies. (a) Topology that combines clamping capacitors and 

clamping diodes (m-level). (b) Combined diode-clamped multilevel inverter with two-level bridge legs. (c) 

Hybrid cascaded topology built upon a diode-clamped and a capacitor-clamped converter 

1.2.5. Active neutral-point-clamped converters 

 The ANPC topology [39]-[40] is a variation of the three-level diode-clamped topology, in 

which the two clamped diodes are replaced by two transistors. This converter is introduced to 

balance the loss distribution of semiconductor devices in the conventional NPC converter, and 

consequently increase its output power rating or switching frequency. Fig. 1.7 shows the ANPC 

topology. 

 

Fig. 1.7.  ANPC topology. 

 Other active neutral-point-clamped topologies with more than three levels have also been 

proposed in the literature [48]-[50]. Reference [48] proposes a five-level and a seven-level active 
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neutral-point-clamped converter (ANPC5L and ANPC7L) and the concept of how to increment the 

topology into an arbitrary odd number of levels. The configuration proposed in [48] is shown in the 

Fig. 1.8. Fig. 1.8(a) presents the five-level case and Fig. 1.8(b) presents the seven-level case.  

 

Fig. 1.8.   Multilevel ANPC converters. (a) Five-level leg topology. (b) Seven-level leg topology. 

 As it can be seen, the converter is a combination of the ANPC with flying capacitor cells. 

In general, an m-level converter can be obtained by adding capacitor cells, according to Fig. 1.8. 

 Reference [49] introduces a common cross connected stage (C3S) for the ANPC5L 

topology. Reference [50] shows the ANPC9L and proposes other different 9-level active neutral-

point-clamped topologies based on a very similar concept. 

1.2.6. Generalized multilevel topology 

The generalized multilevel topology is introduced by Peng in [51]. Fig. 1.9 shows one leg of 

the generalized multilevel converter topology. The topology is formed by a pyramidal connection 

of ݉ ൉ ሺ݉–1ሻ/2 instances of the basic cell defined in the inset of Fig. 1.9. The leg presents one 

output terminal (o) and ݉ input terminals i௞	ሺ݇ ∈ ሼ1, 2, … ,݉ሽሻ, where ݉ is the number of 

converter levels. A capacitor or a voltage source is connected across every two adjacent input 

terminals, being the dc voltage of each of these components typically the same 

ሺܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄ ሻ. In this case, and if the converter is properly operated under the principle 

presented in [51], each device of the basic cell (capacitor, switch, and diode) has to withstand a 

voltage equal to ܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄ . 
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Fig. 1.9.  Generalized multilevel leg topology. 

The topology is general, in the sense that several topologies can be derived from this one. 

For instance, as discussed in [51], removing the clamping switches and diodes of Fig. 1.9 yields the 

capacitor-clamped multilevel topology. Diode-clamped multilevel converter can be obtained by 

eliminating all clamping switches and capacitors. Besides, another diode-clamped multilevel 

topology can be obtained by swapping diode clamping paths [51]. 

 Other different topologies derived from the generalized multilevel converter have also been 

proposed in the literature [52]-[54].  

 In [52], another multilevel topology with fault tolerant ability derived from the generalized 

multilevel converter is proposed. This topology, shown in Fig. 1.10, only keeps the flying 

capacitors nearest to the dc-side, and removes all other flying capacitors. Besides, two additional 

devices to increase the fault-tolerance capacity of the topology are added, as it can be seen in Fig. 

1.10. 



CHAPTER 1. INTRODUCTION                                                                               21 

 

 

o

+

–

Vdc-link

i1

i2

i3

im−2

im

im−1

 

Fig. 1.10.  Multilevel leg topology with fault tolerant ability derived from the generalized multilevel topology. 

 This topology, developed through the analysis of different power device-failure modes, 

improves the fault-tolerance capacity of the generalized multilevel topology. The power conversion 

can be maintained even under a failure scenario. Its fault-tolerant ability results from the redundant 

nature of the multi-switching-state topology and from control signal modification. 

Reference [53] proposes a multilevel topology, clamped by active and passive devices 

(diodes). This topology keeps the clamping capacitors nearest to the dc-side, and removes other 

flying capacitors, just as the one proposed in [52]. In [54], a new topology is generated by keeping 

the outer basic cells of the generalized multilevel topology and eliminating the inner ones. This 

topology is very similar to the modular multilevel converter (M2LC) proposed in [55]. The 

difference between them is that topology presented in [54] employs a middle basic cell in the leg 

with three terminals (two input terminals, one connected to the upper cells and the other one 

connected to the lower cells, and one output terminal, which represents the leg output terminal), 

which is not used in the original M2LC. 
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Reference [56] introduces a novel multilevel active-clamped (MAC) topology derived from 

the generalized multilevel topology by simply removing all flying capacitors. The topology can 

also be seen as an extension of the three-level ANPC topology into an arbitrary number of levels. 

This topology will be the subject of study of the present thesis. 

1.3. Thesis objective 

The general objective of the proposed thesis is the study of the performance and operating 

capabilities of the MAC topology proposed in [56], through comprehensive efficiency and fault-

tolerance analyses. 

More specifically, the goals can be listed as follows: 

 Definition of the MAC topology and operating principle. 

 Definition of design guidelines for the MAC converter. 

 Experimental verification of the MAC converter functionality. 

 Exhaustive analysis of the MAC converter losses, comparing its efficiency with a two-

level baseline design. 

 Comprehensive study of the fault-tolerance capacity of the MAC converter, with 

proposals to improve it. 

1.4. Thesis outline 

The thesis is organized as follows. 

Chapter 2 comprises the definition of the MAC topology together with the operating 

principle. Its functionality is verified through simulation and experimental tests. 

In Chapter 3, an assessment of the MAC converter efficiency is carried out. First, a study of 

power-device conduction and switching losses is performed and analytical models to calculate 

them are presented. Then, efficiencies of MAC converter and a conventional two-level converter 

are compared analytically and experimentally, operating under a basic control scheme intended to 

infer general conclusions and to validate the analytical loss models. The analytical models are then 

used to compare the efficiency between the MAC and a two-level converter operating as three-

phase inverters. Finally, a study to compare the minimum silicon chip area of the MAC topology 

versus the two-level topology is also presented. 
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Chapter 4 contains an analysis of the fault-tolerance capacity of the MAC topology. Both 

open- and short-circuit faults are considered and the analysis is carried out under single-device and 

two-simultaneous-device faults. Switching strategies to overcome the limitations caused by faults 

are proposed. Furthermore, some hardware-topology variations to increment the fault-tolerance 

ability of MAC converter are suggested. 

The thesis is concluded in Chapter 5, where possible future extensions of the work 

accomplished are also proposed. 

Appendix A presents design issues of the MAC topology. Guidelines are proposed to 

guarantee a proper MAC converter design and improve its performance. 

Appendix B presents the experimental equipment used to perform the experimental tests. 

Appendix C analyses the correlation between the device junction-to-sink thermal resistance 

ܴ୲୦	୨,ୱ and the device silicon area. This correlation is used in Chapter 3. 





CHAPTER 2 

MULTILEVEL ACTIVE-CLAMPED TOPOLOGY 

Abstract  This chapter presents a the multilevel active-clamped converter topology, which is an 

extension to m levels of the three-level active neutral-point-clamped topology. The operating principle is 

established through the definition of a proper set of switching states and a transition strategy between 

adjacent switching states. The benefits of the proposed converter topology and control in comparison to 

alternative multilevel converter topologies are discussed. Simulation and experimental results of a simple 

four-level dc-dc converter configuration are presented to illustrate the converter performance features. 

Experimental results of a four-level three-phase dc-ac converter are also presented to further validate the 

proposed topology and operating principle. 

2.1. Introduction 

This chapter presents a multilevel topology built upon a single semiconductor device.  This 

topology is based on the generalized multilevel topology introduced by Peng in [51], and represents 

an extension into an arbitrary number of levels of the popular three-level ANPC topology [39]. A 

proper set of switching states and a switching state transition strategy are defined to obtain the 

maximum benefits from the proposed topology. 

This chapter is organized as follows. Section 2.2 presents the converter leg topology and 

defines the operating principle. Section 2.3 discusses the features of the proposed topology 

compared to alternative topologies and the possible converter configurations built upon the 

converter leg presented in Section 2.2. Section 2.4 presents simulation results in a four-level dc-dc 

converter configuration to illustrate the operation features. Section 2.5 presents experimental 

results of a four-level converter prototype, and Section 2.6 outlines the conclusions. 

2.2. Topology 

Fig. 1.9 presents one leg of the generalized multilevel converter proposed in [51]. As 

commented in the previous chapter, several multilevel topologies can be derived by removing some 

elements of that topology. Another option to simplify the topology is to remove all the flying 

capacitors. This leads to the active-clamped topology presented in Fig. 2.1. The topology is formed 

by a pyramidal connection of m·(m–1)/2 instances of the basic cell defined in the inset of Fig. 2.1. 

The leg presents one output terminal (o) and m input terminals ሺi௞, ݇ ∈ ሼ1, 2, … ,݉ሽሻ, where m is 

the number of converter levels. A  capacitor  or  a  voltage  source  is  connected  across  every  two 
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Fig. 2.1.  Multilevel active-clamped converter leg topology (m-level leg). 

adjacent input terminals, being the dc voltage of each of these components typically the same 

ሺܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄ ሻ. 

Removing all the flying capacitors allows generating the topology from a single device (e.g., 

metal-oxide semiconductor field-effect transistor (MOSFET), where the diodes in the topology of 

Fig. 2.1 can be implemented through the MOSFET body diode) and opens new operational 

possibilities that are explored in next sections. 

The topology proposed in [52] and presented in Fig. 1.10 is similar to the one presented here. 

However, in that topology the pole of flying capacitors closer to the input terminals is preserved. 

Besides preserving these flying capacitors, the operating principle proposed in [52] differs 

significantly from the one presented here. 
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2.2.1. Operating principle 

The functional model of the converter leg in Fig. 2.1 is equivalent to the functional model of 

a diode-clamped converter, where a single-pole m-throw switch allows the connection of the output 

terminal (o) to each of the m possible input terminals (i௞). A set of m switching states are defined to 

implement these m possible connections. The switching states are defined with the aid of m–1 

independent control variables (ܿ௞	; ݇	߳	ሼ1, 2, … ,݉ െ 1ሽ) and their complementary values (ܿ௞̅), 

representing the state (ON: 1, OFF: 0) of the switches in Fig. 2.1. Each switch has an associated 

control variable, indicated within brackets in Fig. 2.1. 

To connect the output terminal (o) to the input terminal (i௞), the control variable values are 

௝ܿ ൌ 0 ሺ݆ ൏ ݇ሻ 

௝ܿ ൌ 1 ሺ݆ ൒ ݇ሻ . 
(2.1)

Table 2.1 presents a summary of the m possible switching states, defined according to (2.1). 

Switching 
State 

Connection 
of ‘o’ to ࢉ૚ ࢉ૛ ࢉ૜ … ି࢓ࢉ … ࢑ࢉ૚ 

1 i1 1 1 1 … 1 … 1 

2 i2 0 1 1 … 1 … 1 

3 i3 0 0 1 … 1 … 1 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

k i݇ 0 0 0 … 1 … 1 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

m i݉ 0 0 0 … 0 … 0 

Table 2.1.  Control variables to define the switching states. 

Fig. 2.2 presents these switching states in the particular case of a five-level converter leg. 

The uncircled switches are OFF-state devices. The circled switches are ON-state devices. The solid-

line circled switches connect the output terminal to the desired input terminal and conduct the 

output terminal current (݅୭), highlighted in red in Fig. 2.2. The arrows indicate the direction of the 

current flow through these switches if output current ݅୭ is positive. The dotted-line circled switches 

do not conduct any significant current and simply clamp the blocking voltage of the OFF-state 

devices to the voltage across adjacent input terminals (i௞ and i௞ାଵ), which is usually equal to 

ሺܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄ ሻ. 
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Fig. 2.2.  Five-level converter-leg switching states. (a) Connection to node i1. (b) Connection to node i2. (c) 

Connection to node i3. (d) Connection to node i4. (e) Connection to node i5. 

It can be observed that the connection of the output terminal to the inner input terminals 

i௞	൫݇ ∈ ൛2, … ,݉– 1ൟ൯ presents more than one path of m–1 series-connected ON-state switches to 

conduct the output current. The distribution of the output current ݅୭ through the different current 

paths will depend upon the switch characteristics, state, and parasitics. If MOSFETs are used, in 

which the ON resistance presents a positive temperature coefficient, current will be properly 

distributed through the solid-line circled devices. 

In the five-level example of Fig. 2.2, the transition from switching state 1 (Fig. 2.2(a)) to 

switching state 2 (Fig. 2.2(b)) requires changing the state of five switches: Sn11 has to be turned off 

and Sp11, Sp12, Sp13, Sp14 have to be turned on. Note that Sn22, Sn32, and Sn42 do not need to change 

their control state because they were already ON in Fig. 2.2(a). As can be observed in Fig. 2.2, the 

transition between any two other switching states also requires changing the state of only five 

switches. 

In a general m level converter leg, the transition between two adjacent switching states (k 

and k+1) requires changing the state of m switches. The transition from switching state k to 

switching state k+1 requires turning off k diagonal switches (Snkj, j = 1, 2, …, k) and turning on  m–

k diagonal switches (Spkj, j = 1, 2, …, m–k). Obviously, the transition from switching state k+1 to 
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switching state k requires turning off m–k switches (Spkj, j = 1, 2, …, m–k) and turning on k 

diagonal switches (Snkj, j = 1, 2, …, k). 

In the transition between adjacent switching states, it is required to first turn off the devices 

to be turned off. Then, after a proper dead time, we can proceed to turn on the devices to be turned 

on. Although m devices change their state, the switching losses (turn-on and turn-off losses) are 

basically concentrated in one device. 

If (kf–ki)·io<0, where ki and kf are the initial and final switching states, respectively; then, the 

switching losses concentrate on the last switch being turned off. All the remaining switches 

produce negligible switching losses since the voltage across them when they turn on or off is nearly 

zero. 

If (kf–ki)·io>0; then, the switching losses concentrate on the first switch being turned on. As 

before, all the remaining switches produce negligible switching losses since the voltage across 

them when they turn on or off is nearly zero. 

2.3. Discussion 

The converter leg in Fig. 2.1 can be employed to implement the same converter 

configurations as with a diode-clamped topology. Fig. 2.3(a) and Fig. 2.3(c) show two possible 

configurations connecting capacitors between adjacent input terminals to form a dc-link. Fig. 2.3(a) 

represents a five-level boost-buck dc-dc converter with common grounding for the source and load 

systems [57]. Fig. 2.3(c) represents a multiphase dc-ac conversion system (it can also be used for 

dc-dc conversion applications not requiring a common grounding for the load and source). In a 

single phase configuration, two converter legs are needed. In a multiphase system with p phases, p 

converter legs are needed. The balancing of the dc-link capacitor voltages can be guaranteed in 

every switching cycle through using appropriate PWM strategies ([21]-[22]) and controls [23], 

without the need of introducing additional hardware. The balance is achieved by extracting, in 

every switching cycle, a zero average current from the inner dc-link points. Alternatively, other 

solutions can be employed [58]. 

If the dc-link capacitors can be replaced by dc-voltage sources, the operational capabilities of 

the converter significantly improve (higher efficiency, lower output-voltage distortion, …), because 

the capacitor voltage balance is no longer a problem and more degrees of freedom are available to 

design the PWM strategies. Fig. 2.3(b) shows an example of a possible dc-dc or dc-ac converter 

configuration using a single converter leg. 
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Fig. 2.3.  Converter configurations (five-level example). (a) Boost-buck dc-dc converter with dc-link 

capacitors. (b) Dc-dc or dc-ac single-phase converter with dc-link voltage sources. (c) Multiphase dc-ac 

converter with dc-link capacitors. 

The converter leg topology of Fig. 2.1 presents a total of m·(m–1) controlled switching 

devices. The number of switches is clearly higher than in alternative topologies. However, these 

extra switches provide some advantages. 

Compared to diode-clamped topologies, the proposed topology clamps the blocking voltage 

of all devices to ܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄  (this is not the case in diode-clamped topologies under certain 

operating conditions [39]), may present lower conduction losses (due to the availability of several 

paths for the current to flow, while there is only one possible path in diode-clamped topologies), 

and allows distributing the switching losses among all the devices (see Chapter 3) while in a diode-

clamped topology, switching losses arise in the available switches. 

Compared to topologies with flying capacitors, the proposed topology avoids dealing with 

the precharge of the flying capacitors or the losses and high spike currents that occur when flying 
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capacitors with different voltages are connected in parallel [51]. The cost and reliability of these 

capacitors can also be a problem. 

In cases where separate dc-voltage sources are available (e.g. Fig. 2.3(b)), the comparison 

with cascaded H-bridge topologies is also meaningful. Despite using a significantly higher number 

of devices, the proposed topology allows operating with a common dc-link for all legs and dc-link 

node voltages that are constant with respect to ground. In a cascaded H-bridge topology, these dc-

link node voltages may oscillate at high frequency, requiring galvanic isolation of the dc voltage 

source terminals and producing common mode currents through parasitic elements that could be a 

problem in the design. 

Against conventional two-level converter configurations, efficiency is expected to be higher 

since both conduction losses and switching losses should be lower if proper devices are selected. 

With regard to reliability, it might be seen as an important drawback of the presented topology 

because of the use of a high number of components. However, while in a two-level converter the 

failure of one switch usually leads to a full system shut down, here the converter may continue 

operating, with obviously some reduction of the converter performance capabilities. 

In Chapters 3 and 4, the efficiency and the fault-tolerance ability of the proposed MAC 

converter are analyzed in depth, respectively. 

In principle, the proposed topology could be used to replace diode-clamped topologies in any 

application where these topologies are of interest, because both topologies are functionally 

equivalent. It is the understanding of the author that the proposed topology can be competitive in 

applications with a reasonable number of levels and requiring devices with voltage ratings lower 

than 600 V (due to a major feasibility of integrating the controlled device auxiliary circuits: gate 

driver, gate driver power supply, etc.). In particular, medium and low power/voltage motor drives 

could be an interesting application, where the advantage of using multilevel diode-clamped 

converters has already been proven [59], [60]. For instance, the proposed topology could be of 

interest for the traction inverter of electric vehicles. Typically, the voltage of the battery powering 

the conventional two-level inverter is limited (e.g., to 300 V) due to the difficulties in balancing the 

charge of a high number of battery cells in series. This leads to high motor currents or to the need 

to include a boost converter to raise the dc-link voltage level of the inverter. The proposed topology 

would allow connecting in series several batteries to raise the dc-link voltage and, with a proper 

modulation strategy and control, guarantee the charge balance among these batteries. 
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2.4. Simulation results 

This section presents simulation results to illustrate the performance of the proposed 

topology and control strategy. A simple four-level boost-buck dc-dc converter configuration, 

shown in Fig. 2.4, is selected to facilitate the presentation and discussion of results. The modulation 

strategy applied is described in [57]. Modulation Scheme 2 and a value of the modulation 

parameter  = 0.25 are chosen to produce an output voltage equal to the input voltage (VA=VB) [57]. 

The simulations are performed using SPICE-based software. 

 

Fig. 2.4.  Four-level boost-buck dc-dc converter implemented with MOSFETs. 

Fig. 2.5 presents relevant waveforms over two switching cycles. In Fig. 2.5(a), note that the 

dc-link capacitor voltages (ݒୡଵ, ݒୡଶ, and ݒୡଷ) are balanced at the end of every switching cycle 

because a zero switching-cycle-averaged current is injected into the inner dc-link points. Note also 

that the output leg currents (݅ୟ and ݅ୠ) present an almost sinusoidal shape. This implies that the 

output leg currents present essentially only one harmonic at the switching frequency (see Fig. 2.6), 

as opposed to a conventional two-level converter, where the output leg currents, presenting a 

triangular shape, include additional harmonics at multiples of the switching frequency. 

Fig. 2.5(b) presents the current and voltage of each switch in the bottom half of the input 

converter leg. As can be observed, in each switching state, the output current is conducted through 

all ON-state devices that connect the corresponding input terminal to the output terminal. The 

output current is shared by all possible current paths. The average conduction losses are in general 

different for each device. 
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Fig. 2.5.  Simulation results over two switching cycles in the following conditions: VA = 100 V, CL = 100 F, 

La = Lb = 5 mH, RL = 22 , C = 470 F, switching frequency fs = 5 kHz, FDPF3860T (100 V, 20 A 

MOSFETs), gate resistance Rg = 10 , gate supply voltage Vg = 10 V, dead time td = 500 ns, and no output 

voltage regulation (open-loop control). (a) Input and output dc voltages (vA, vB), dc-link capacitor voltages 

(vC1, vC2, vC3), leg-output voltages (va, vb), leg-output currents (ia, ib). (b) Voltages and currents of the 

switches from the bottom half of the input converter leg. 
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Fig. 2.6.  Per unit harmonic spectrum of the leg-output currents (ia, ib). 

The gating signals of the last six-switch pole (Sn11, Sp13, Sn22, Sp22, Sn33, and Sp31) have been 

adjusted so that these devices are the first to be turned-on and the last to be turned-off in a 

switching state transition and, therefore, they concentrate the switching losses. Fig. 2.7 presents the 

relevant switch current and voltage waveforms under a transition from switching state 2 to 3 (Fig. 

2.7(a)) and a transition from switching state 3 to 2 (Fig. 2.7(b)). In Fig. 2.7(a), Sn21 is initially 

turned off at time = 249.75 s. Sn22 is turned off 50 ns later. At time = 250.2 s, Sp22 is turned on. 

Sp21 is turned on 50 ns later. In Fig. 2.7(b), Sp21 is initially turned off at time = 349.75 s. Sp22 is 

turned off 50 ns later. At time = 350.2 s, Sn22 is turned on. Sn21 is turned on 50 ns later. In both 

cases, as desired, switch Sn22 concentrates the switching losses. The other devices change their state 

at zero voltage with no significant losses. 
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Fig. 2.7.  Simulation results over switching state transitions in the same conditions of Fig. 2.5. (a) Transition 

from switching state 2 to switching state 3. (b) Transition from switching state 3 to switching state 2. 

2.5. Experimental results 

A four-level three-leg converter prototype with small dc-link capacitors has been designed 

and built using FDPF3860T (100 V, 20 A) MOSFETs (see Fig. 2.8). The converter consists in three 

identical legs. Each leg contains twelve MOSFETs and their corresponding drivers. Each gate 

driver is powered through a simple and small circuit connected across the controlled device, as it is 

explained in Appendix A. This circuit recycles part of the switching losses to power the gate driver. 

As a result, no external gate driver power supplies are required [61]. 

Fig. 2.9 presents experimental results with the converter configuration of Fig. 2.4 (dc-dc 

converter with two legs) and conditions of Fig. 2.5. The converter control, PWM strategy, and the 

generation of the switch control signals are implemented using dSpace DS1103 and an Altera 

EPF10K70 programmable logic device. Fig. 2.9(a) and Fig. 2.9(b) show the leg output voltages, the 

leg output currents, and the voltage and current through device Sn21 over 2.5 switching cycles. Fig. 

2.9(c) shows the detail of the soft turn-off of Sn21 during the transition from switching state 2 to 

switching state 3. The experimental results fairly agree with the simulations. 

Fig. 2.10 presents experimental results of a four-level three-phase dc-ac converter with a 

single dc-voltage source (ܸୢ ୡି୪୧୬୩) connected across the dc-link and a three-phase wye-connected 

series resistive-inductive load. In this case, the virtual-space-vector pulse-width-modulation 

(V2PWM)  proposed  in [22]  is  applied.  Clean  sinusoidal output current waveforms are generated  
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Fig. 2.8.  Four-level three-leg converter prototype with dc-link capacitors. (a) Full converter built upon three 

legs. (b) Top view of one leg (1: Input terminal i1; 2: Input terminal i4; 3: Output terminal; 4: middle dc-link 

capacitors; 5: Six bottom switches; 6: Six upper switches; 7: Internal gate-driver power-supply circuit). 
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Fig. 2.9.  Experimental results in the same conditions of Fig. 2.5. (a) Leg-output voltages and currents. (b) 

Voltage and current of switch Sn21 with the corresponding leg output voltage and current as a reference. (c) 

Detail of the soft turn-off of Sn21 during the transition from switching state 2 to switching state 3. 
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Fig. 2.10.  Experimental results in a four-level three-phase dc-ac converter under the V2PWM for the output 

line-to-line voltage (vab), phase currents (ia, ib, and ic), and dc-link capacitor voltages (ݒ௖ଵ, ݒ௖ଶ, and ݒ௖ଷ), in 

the following conditions: Vdc-link = 150 V, mi = 0.75, C  = 155 F, fs = 5 kHz, and a balanced load with per-

phase impedance ZL = 17.2  16º (series R-L load). 

with balanced dc-link capacitor voltages under a fairly high modulation index 

(݉݅ ൌ ୪ܸି୪,୮୩ ܸୢ ୡି୪୧୬୩⁄ , where ୪ܸି୪,୮୩ is the peak value of the fundamental component of the line-

to-line voltage) and under the absence of any additional hardware. 

On the other hand, this modulation produces a higher number of switching transitions per leg 

and switching cycle than alternative modulations, which implies higher degrees of freedom to 

balance the losses among the devices (thanks to the possibility of concentrating the switching 

losses in selected devices). In addition, since this modulation extends the portion of the line cycle 

where individual devices turn on and off at the carrier frequency (better switch utilization), it 

produces lower junction temperature variations than conventional modulation strategies [62]. 

2.6. Conclusion 

The multilevel active-clamped topology and its operating principle have been defined. The 

topology is an extension of the three-level active neutral-point-clamped converter. Switching states 

are defined so that all possible current paths connect the corresponding input terminal to the output 

terminal and blocking voltages are clamped to the desired level. 

If a particular device (e.g., MOSFET) at specific voltage and current ratings is available with 

good performance, low cost, and ideally integrated auxiliary circuitry (gate driver, gate driver 

power supply [61], ...); then, this topology and control could be applied to implement a universal 

and easily scalable converter to be used in a number of applications. 

 





CHAPTER 3 

EFFICIENCY ASSESSMENT OF THE MULTILEVEL ACTIVE-

CLAMPED TOPOLOGY  

Abstract  One of the key features to evaluate in the MAC converter is its efficiency. This chapter 

presents an in-depth analysis of losses and efficiency of the MAC topology. Initially, power-device 

conduction and switching losses are analyzed, providing the models to calculate them in the MAC topology. 

Then, the efficiency of the novel topology is assessed comparing it with conventional two-level converters 

under a particular selection of MOSFETs. Comparisons are performed under different scenarios and by 

means of analytical studies and experimental tests. The efficiency of the MAC topology is higher in all the 

switching-frequency range. Finally, an additional study comparing the minimum chip area needed for the 

MAC topology and for a conventional two-level topology is presented. 

3.1. Introduction 

The necessity of conceiving highly-efficient power-conversion systems has always been an 

important challenge for power-converter designers. Nowadays, applications such as photovoltaic 

grid inverters, rectifiers, or automotive motor drive systems, among others, demand for an 

outstanding efficiency at low cost, size and weight. In order to have small passive components and 

a light-weight system, the switching frequency has to be increased, which leads to higher switching 

losses and lower system efficiency. 

According to several analyses reported in the literature [57], [60], [62]-[68], multilevel 

converters present a higher efficiency than conventional two-level converters for high switching 

frequencies, since the converter losses present a flatter dependency on the switching frequency. 

References [57], [60], [63]-[65] present analytical comparisons between different multilevel 

converter structures and conventional two-level topologies for different low-, medium-, and high-

voltage applications. In general, these studies conclude that multilevel converters present a higher 

efficiency than two-level converters, mainly when switching frequency is above 5-10 kHz. 

Reference [66] verifies experimentally the higher efficiency of five- and nine-level diode-clamped 

topologies compared to a conventional two-level one, operating as inverters. Reference [67] 

compares analytically the efficiency of the NPC topology with the ANPC topology. The efficiency 

is similar in both cases but the ANPC presents better loss distribution. In reference [68], a loss and 

efficiency analysis of a three-level capacitor-clamped dc-dc converter is presented. Losses and 

efficiency are first estimated and then are measured experimentally. Finally, both results are 

compared. 
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This chapter presents an analysis of losses and efficiency of the MAC topology. The chapter 

is organized as follows. 

Section 3.2 discusses the fundamental benefits of multilevel conversion in power-device 

conduction and switching losses. Section 3.3 studies the conduction and switching losses in the 

MAC topology and provides analytical loss models to calculate them. In Section 3.4, an efficiency 

comparison between a four-level MAC leg and a conventional two-level leg operating at low 

voltage under a simple control scheme is carried out. The losses and efficiency are first estimated 

according to the loss models presented in Section 3.3. Then, experimental tests are performed to 

measure the overall losses and efficiency of both topologies. Finally, the estimated and 

experimental results are compared to validate the analytical loss models. Using the validated loss 

models, Section 3.5 presents an efficiency comparison between the MAC converter and a two-level 

converter operating as three-phase inverters. In Section 3.6, a theoretical approach to calculate the 

minimum chip area of a topology is presented. Using the method, the chip areas of a four-level 

MAC leg and a conventional two-level leg operating under the control scheme defined in Section 

3.4 are calculated and compared. Finally, Section 3.7 outlines the conclusions. 

3.2. Fundamental factors of loss reduction in multilevel conversion 

The objective of this section is to highlight the fundamental benefits of multilevel converters 

in conduction and switching losses. For the different analyses, let us assume that MOSFETs are 

used. Some of the deductions presented, however, are also applicable for other controlled power 

switches, e.g., IGBTs. 

3.2.1. Conduction losses 

One important particularity of MOSFET devices is that their per-unit-area ON-state drain-to-

source resistance ୢݎ ୱሺ୭୬ሻ increases rapidly with the device blocking voltage. Traditionally, this fact 

has discarded MOSFET devices for being used in high-voltage two-level converters. Trying to 

reduce this dependence has always been a big challenge for power-device designers. In the past, 

according to [69], [70], the resistivity ୢݎ ୱሺ୭୬ሻ as a function of the device blocking voltage ୢܸܤ ୱ 

could be expressed as 

ݎୢ ୱሺ୭୬ሻ ൌ ݇ ሺୢܸܤ ୱሻଶ.ହ~ଶ.଻ , (3.1)

where k represents a constant that depends on the device geometry. Nevertheless, with nowadays 

developed technology for MOSFET devices based on the compensation principle [70], the 
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dependence of the resistivity ୢݎ ୱሺ୭୬ሻ on ୢܸܤ ୱ has been drastically reduced. According to [70], the 

correlation can be now expressed as 

ݎୢ ୱሺ୭୬ሻ ൌ ݇ ሺୢܸܤ ୱሻଵ.ଷ . (3.2)

Although the resistivity ୢݎ ୱሺ୭୬ሻ has been decreased significantly, it still presents an 

appreciable exponential dependency with respect to the device blocking voltage. 

In an arbitrary multilevel converter of m levels, in most topologies, a total of m–1 devices 

connected in series conduct the total output current. This means that multilevel converters may 

present lower conduction losses than conventional two-level converters if MOSFET devices are 

properly selected, according to (3.2). The conduction losses become lower as the number of 

converter levels is increased. 

In the MAC topology, besides, there are several available paths in parallel for the current to 

flow when the output terminal is connected to the inner input terminals i௞	൫݇ ∈ ൛2, … ,݉– 1ൟ൯ 

which further decreases the equivalent ON resistance. This represents an additional advantage of the 

MAC topology compared to two-level topologies and other multilevel topologies. 

3.2.2. Switching losses 

Let us analyze how the switching losses vary depending on the number of levels of a 

converter leg. The study is based on an analysis done in [57]. 

To simplify the study, it is initially assumed that diodes are ideal (lossless) and therefore 

they do not suffer reverse-recovery processes. Fig. 3.1 shows the switching patterns of ideal hard-

switching turn-on and turn-off transitions under inductive load, where ୢݒୱሺݐሻ and ݅ୢሺݐሻ are the 

voltage across the switch and the current through the switch, respectively. 

The energy lost in each one of the switching transitions is 

୭୬ܧ ൌ ୭୤୤ܧ ൌ
ܸୢ ୱ ∙ ܫୢ ∙ ሺ ୴ܶ ൅ ୧ܶሻ

2
. (3.3)

The voltage ܸୢ ୱ is equal to ܸୢ ୡି୪୧୬୩ ሺ݉ െ 1ሻ⁄ ,  being m the number of levels of the leg (it is 

also valid in a two-level leg). Let us assume that the absolute values of the voltage slope during 

transitions  ݏ୴ ൌ ୱୢݒ ୴ܶ⁄   and  the  current slope ݏ୧ ൌ ܫୢ ୧ܶ⁄  are constant regardless of the number of  
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Fig. 3.1.  Voltage and current waveforms during switching transitions in the controlled devices concentrating 

the switching losses. 

levels m; i.e., independent of the value of ܸୢ ୱ. This assumption is based on the fact that these slopes 

can be adjusted properly through the gate-driver design parameters, and their value is typically 

limited by electromagnetic interferences and other specifications. With this assumption, the energy 

lost in a device in a turn-on or a turn-off transition is 

୭୬ܧ ൌ ୭୤୤ܧ ൌ
ܸୢ ୡି୪୧୬୩

ଶ ∙ ܫୢ
2 ∙ ୴ݏ ∙ ሺ݉ െ 1ሻଶ

൅
ܸୢ ୡି୪୧୬୩ ∙ ܫୢ

ଶ

2 ∙ ୧ݏ ∙ ሺ݉ െ 1ሻ
. (3.4)

Assuming a modulation scheme as the one presented in Fig. 3.2 in which the output terminal 

is connected to all the input levels, there are a total of 2 ∙ ሺ݉ െ 1ሻ switching-state transitions within 

the modulation period. 

 

Fig. 3.2.  Switching pattern within a modulation period of a m-level leg. 
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In each one of these transitions, one single device concentrates the switching losses (turn-on 

or turn-off losses depending on the current polarity and the initial and the final switching state). 

Thus the total switching energy loss in the m-level leg in a modulation period could be expressed as 

ୱ୵,୪ୣ୥,்౏ܧ ൌ 2 ∙ ሺ݉ െ 1ሻ ∙ ቈ
ܸୢ ୡି୪୧୬୩

ଶ ∙ ܫୢ
2 ∙ ୴ݏ ∙ ሺ݉ െ 1ሻଶ

൅
ܸୢ ୡି୪୧୬୩ ∙ ܫୢ

ଶ

2 ∙ ୧ݏ ∙ ሺ݉ െ 1ሻ
቉ ൌ

ܸୢ ୡି୪୧୬୩
ଶ ∙ ܫୢ

୴ݏ ∙ ሺ݉ െ 1ሻ
൅
ܸୢ ୡି୪୧୬୩ ∙ ܫୢ

ଶ

୧ݏ
	. (3.5)

As it can be seen in the expression (3.5), the energy loss becomes lower as the number of 

levels increases. This also can be deduced from Fig. 3.1. The dashed blue line would correspond to 

a device withstanding the half of voltage ܸୢ ୱ with the same slope ݏ୴. It can be deduced that two 

times the energy loss of this device is less than one time the energy loss of a device withstanding 

the total voltage ܸୢ ୱ. The energy lost during ୧ܶ remains equal independently of the number of 

levels, but the energy lost during ୴ܶ decreases as the number of level increases. This means that the 

total reduction in switching losses will depend on the ratio between these two times. 

Please also note that the modulation scheme of Fig. 3.2 represents the worst scenario for a 

multilevel leg since the output terminal is connected to all the input terminals, which implies the 

highest possible number of transitions within the switching cycle. 

3.3. Loss analysis of the MAC topology 

The conduction losses are analyzed first in Section 3.3.1 and the switching losses are 

analyzed later in Section 3.3.2. 

The analysis of conduction losses is organized as follows. First, the distribution of the output 

current among the devices and the values of equivalent ON resistances for three-to-seven-level 

MAC legs are presented. Then, the expressions to calculate the conduction losses in an arbitrary m-

level leg and individually for each device of the topology are deduced. Finally, the expressions 

obtained for calculating the conduction losses are applied to the case in which the MAC converter 

operates as a three-phase inverter under the V2PWM. 

The analysis of switching losses is organized as follows. First, the switching state transitions 

and the corresponding switching losses in a general m-level MAC leg are analyzed. Then, the 

switching losses for the particular case of a four-level leg are defined more accurately. 
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3.3.1. Conduction losses 

3.3.1.1. Distribution of output current among the devices and equivalent ON-

resistance 

Fig. 3.3-Fig. 3.7 present the distribution of the output current among the devices for a three-, 

four-, five-, six-, and seven-level MAC leg. The coefficients	ܿୗೣ,୧ೖ, presented in red color within 

brackets, represent the per-unit value of the total leg output current ݅୭ that flows through the 

device	S௫ when the output terminal is connected to the input terminal	i௞. Only the half of total 

connections to the leg input terminals are shown in due to the symmetry. Please also note the 

equivalent ON-resistances ܴୣ୯,୧ೖ between the output terminal and the corresponding input terminal 

i௞ in the insets of Fig. 3.3-Fig. 3.7. The values of coefficients	ܿୗೣ,୧ೖ and resistances ܴୣ୯,୧ೖ have been 

calculated assuming that all devices present the same ON resistance ܴୢୱሺ୭୬ሻ. 

 

 
 (a) (b) 

Fig. 3.3.  Distribution of output current in a three-level MAC leg. (a) Connection to input terminal i1. (b) 

Connection to input terminal i2. 

 
 (a) (b) 

Fig. 3.4.  Distribution of output current in a four-level MAC leg. (a) Connection to input terminal i1. (b) 

Connection to input terminal i2. 
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 (a) (b) (c) 

Fig. 3.5.  Distribution of output current in a five-level MAC leg. (a) Connection to input terminal i1. (b) 

Connection to input terminal i2. (c) Connection to input terminal i3. 

 

 
 (a) (b) (c) 

Fig. 3.6.  Distribution of output current in a six-level MAC leg. (a) Connection to input terminal i1. (b) 

Connection to input terminal i2. (c) Connection to input terminal i3. 

 
 (a) (b)  
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 (c) (d) 

Fig. 3.7.  Distribution of output current in a seven-level MAC leg. (a) Connection to input terminal i1. (b) 

Connection to input terminal i2. (c) Connection to input terminal i3. (d) Connection to input terminal i4. 

It is important to have in mind that the values of coefficients	ܿୗೣ,୧ೖ are valid independently of 

the current direction. In case of using MOSFETs, for example, the value of the drain-to-source ON 

resistance ܴୢୱሺ୭୬ሻ of each device is almost identical when the drain current flows in negative 

polarity as long as the MOSFET is in ON-state; i.e., most charges flow through the MOSFET 

channel instead of flowing through the antiparallel body diode. If IGBTs were used, for example, 

the distribution of current presented in Fig. 3.3-Fig. 3.7 would not be valid since IGBTs present 

different behavior depending on the current polarity. 

Please note that for a certain switching state, the addition of coefficients	ܿୗೣ,୧ೖ that 

correspond to the same switch pole is always equal to 1. As an example, in a seven-leg, ܿୗ౤ఱర,୧ర ൅

	ܿୗ౦యయ,୧ర ൅ ܿୗ౦రయ,୧ర ൅ ܿୗ౦మర,୧ర ൌ 0.286 ൅ 0.214 ൅ 0.214 ൅ 0.286 ൌ 1, see Fig. 3.7(d). This fact is 

logical since the total output current flows through each one of the leg switch poles. Coefficients 

	ܿୗೣ,୧ೖ are used to calculate the power-device conduction losses, as it is explained in the following 

sections. 

Table 3.1 presents the normalized equivalent resistances ܴୣ୯,୧ೖ,୬୭୰୫ for a three-, four-, five-, 

six-, and seven-level MAC leg. These values correspond to the ܴୣ୯,୧ೖ presented in Fig. 3.3-Fig. 3.7, 

divided by ܴୢୱሺ୭୬ሻ ∙ ሺ݉ െ 1ሻ. 
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Switching 
state 

3-level leg 4-level leg 5-level leg 6-level leg 7-level leg 

1 1	 1 1 1 1	

2 0.5	 0.4666 0.46875 0.4736 0.47766	

3 1	 0.4666 0.375 0.35072 0.34283	

4 -	 1 0.46875 0.35072 0.3095	

5 -	 - 1 0.4736 0.34283	

6 -	 - - 1 0.47766	

7 -	 - - - 1	

Table 3.1.  Normalized equivalent ON-resistances ܴ௘௤,௜ೖ,௡௢௥௠ of a three-, four-, five-, six-, and seven-level 

MAC leg. 

From the analysis of Table 3.1, it can be better appreciated how much the conduction losses 

are reduced if the number of levels is increased. Regardless of the applied modulation scheme, the 

weight of all duty ratios of connection to the inner levels should increase as the number of levels 

increases; i.e., the weight of duty ratios of connection to the outer levels 1 and m should be lower. 

Consequently, overall conduction losses become lower as the number of levels increases. 

Please also consider that in order to further reduce conduction losses, the devices of the outer 

diagonals could be parallelized with another equal device, reducing to one half the equivalent 

resistance of connection to the outer levels. 

3.3.1.2. Conduction losses in a general m-level MAC leg 

The conduction energy loss in a ݉-level leg during a switching period ୗܶ	can be calculated 

as 

ୡ୭୬ୢ,୪ୣ୥,்౏ܧ ൌ ෍ ቈ න ܴୣ୯,୧ೖ ∙ ݅୭
ଶ ∙ ݐ݀

௧ೖା ௗೖ∙்౏

௧ೖ

቉

௠

௞ୀଵ

, (3.6)

where ݀௞ represents the duty ratio of connection of the output terminal to the input terminal i௞, and 

 .௞ the instant of initial connection to i௞ݐ

3.3.1.2.1. Constant output current 

In case that output current ݅୭ is constant, then the expression to calculate the leg conduction 

energy loss can be simplified as 
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ୡ୭୬ୢ,୪ୣ୥,்౏ܧ ൌ ୭ܫ
ଶ ∙ ୗܶ ∙ ෍ ݀௞ ∙ ܴୣ୯,୧ೖ

௠

௞ୀଵ

. (3.7)

Thus, the total conduction power loss of a leg if the output current is constant can be 

expressed as 

ܲୡ୭୬ୢ,୪ୣ୥ ൌ ୭ܫ
ଶ ∙ ෍݀௞ ∙ ܴୣ୯,୧ೖ

௠

௞ୀଵ

. (3.8)

It is assumed that duty ratios ݀௞ are also constant. 

3.3.1.2.2. Variable output current 

As the switching period ୗܶ is a very short time, the output current practically does not vary 

its magnitude within the switching period. Therefore, it can be assumed that the output current is 

constant within a switching cycle. As a result, (3.7) is also valid for a variable output current. If the 

switching period ୗܶ is considered to be a differential of time ݀ݐ, then the energy lost in a ݉-level 

leg during a differential of time ݀ݐ	can be expressed as 

ୡ୭୬ୢ,୪ୣ୥,ௗ௧ܧ ൌ ݅୭
ଶ ∙ ݐ݀ ∙ ෍ ݀௞ ∙ ܴୣ୯,୧ೖ

௠

௞ୀଵ

. (3.9)

The total leg conduction-power-losses can be calculated as 

ܲୡ୭୬ୢ,୪ୣ୥ ൌ
1

୭ܶ
න ,		ୡ୭୬ୢ,୪ୣ୥,ௗ௧ܧ

౥்

଴
 (3.10)

where the time ୭ܶ is the period of the output current ݅୭. Combining (3.9) and (3.10), the leg 

conduction-power-losses can be calculated as 

ܲୡ୭୬ୢ,୪ୣ୥ ൌ
1

୭ܶ
∙ ෍ ቈ ܴୣ୯,୧ೖ ∙ න ൫݀௞ ∙ ݅୭

ଶ ∙ ݐ݀ ൯
౥்

଴
቉ .

௠

௞ୀଵ

 (3.11)

If the leg operates as an inverter, the fundamental component of current ݅୭ can be expressed 

as  

݅୭ ൌ ୭,୮୩ܫ ∙ cosሺ߱ݐ െ ߮ሻ, (3.12)
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where ܫ୭,୮୩ is the peak value of the output current ݅୭, ߱ is the output current angular frequency in 

rad/s, and ߮ is the load line-to-neutral impedance angle. Substituting the output current ݅୭ in (3.11) 

and applying the variable change ߠ ൌ  the final expression to calculate the leg conduction losses ,ݐ߱

can be expressed as 

ܲୡ୭୬ୢ,୪ୣ୥ ൌ
୭,୮୩ܫ

ଶ

2π
∙ ෍ 	ቈ ܴୣ୯,୧ೖ ∙ න ሺ݀௞ ∙ cosଶሺߠ െ ߮ሻ ∙ ߠ݀ ሻ

ଶ஠

଴
቉ ,

௠

௞ୀଵ

 (3.13)

where angle ߠ corresponds to the line-cycle angle. Equation (3.13) is valid for a general m-level 

MAC leg under any modulation scheme.  

3.3.1.3. Conduction losses per device in a general m-level MAC leg 

The conduction energy lost in a device S௫ during a switching period ୗܶ can be calculated as 

ୡ୭୬ୢ,ୗೣ,்౏ܧ ൌ න ܴୢୱሺ୭୬ሻ ∙ ݅ୢሺୗೣሻ
ଶ ∙ ݐ݀

்౏

଴
. (3.14)

The device current ݅ୢሺୗೣሻ depends on the connection to the input terminal i௞	and the output 

current ݅୭, according to the coefficients	ܿୗೣ,୧ೖ defined above. Then, the device energy lost can be 

defined as 

ୡ୭୬ୢ,ୗೣ,்౏ܧ ൌ ܴୢୱሺ୭୬ሻ ∙ ෍ ቈ න ൫ ܿୗೣ,୧ೖ ∙ ݅୭൯
ଶ
∙ ݐ݀

௧ೖା ௗೖ∙்౏

௧ೖ

቉

௠

௞ୀଵ

. (3.15)

3.3.1.3.1. Constant output current 

In case that output current ݅୭ is constant, then the expression to calculate the energy loss can 

be simplified as 

ୡ୭୬ୢ,ୗೣ,்౏ܧ ൌ ܴୢୱሺ୭୬ሻ ∙ ୭ܫ
ଶ ∙ ୗܶ ∙ ෍ ൣ݀௞ ∙ ܿୗೣ,୧ೖ

ଶ൧ .

௠

௞ୀଵ

 (3.16)

Thus, if the output current is constant, the device conduction power loss can be expressed as 

ܲୡ୭୬ୢ,ୗೣ ൌ ܴୢୱሺ୭୬ሻ ∙ ୭ܫ
ଶ ∙ ෍ ൣ݀௞ ∙ ܿୗೣ,୧ೖ

ଶ൧ .

௠

௞ୀଵ

 (3.17)

As before, it is assumed that duty ratios ݀௞ are constant. 
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3.3.1.3.2. Variable output current 

As before, the output current is approximately constant over a switching cycle. Thereby, 

(3.16) is also valid for variable output current. As before, if the switching period ୗܶ is considered to 

be a differential of time ݀ݐ, then the energy lost in a ݉-level leg during a differential of time ݀ݐ	can 

be expressed as 

ୡ୭୬ୢ,ୗೣ,ௗ௧ܧ ൌ ܴୢୱሺ୭୬ሻ ∙ ݅୭
ଶ ∙ ݐ݀ ∙ ෍ ൣ݀௞ ∙ ܿୗೣ,୧ೖ

ଶ൧ .

௠

௞ୀଵ

 (3.18)

The expression above is valid for any device of an m-level MAC leg under any modulation 

scheme. The device conduction-power-losses can be calculated as 

ܲୡ୭୬ୢ,ୗೣ ൌ
1

୭ܶ
න .		ୡ୭୬ୢ,ୗೣ,ௗ௧ܧ

౥்

଴
 (3.19)

Combining (3.18) and (3.19), the device conduction-power-losses can be calculated as 

ܲୡ୭୬ୢ,ୗೣ ൌ
ܴୢୱሺ୭୬ሻ

୭ܶ
∙ ෍ ቈ ܿୗೣ,୧ೖ

ଶ ∙ න ൫݀௞ ∙ ݅୭
ଶ ∙ ݐ݀ ൯

౥்

଴
቉ .

௠

௞ୀଵ

 (3.20)

If the leg operates as an inverter, the final expression to calculate the device conduction 

losses can be expressed as 

ܲୡ୭୬ୢ,ୗೣ ൌ
ܴୢୱሺ୭୬ሻ ∙ ୭,୮୩ܫ

ଶ

2π
∙ ෍ ቈ ܿୗೣ,୧ೖ

ଶ ∙ න ሺ݀௞ ∙ cosଶሺߠ െ ߮ሻ ∙ ߠ݀ ሻ	
ଶ஠

଴
቉

௠

௞ୀଵ

	. (3.21)

Obviously, the overall conduction losses in a m-level MAC leg can also be calculated as the 

addition of the conduction losses of all the devices of the leg: 

ܲୡ୭୬ୢ,୪ୣ୥ ൌ ෍ ܲୡ୭୬ୢ,ୗೣ
∀ ୗೣ ఢ ௅௘௚

. 
(3.22)

3.3.1.4. Conduction losses in a three-phase MAC inverter under the V2PWM 

The modulation scheme V2PWM proposed in [22] is suitable for the MAC topology when it 

operates as a three-phase inverter. This control scheme, which can be implemented for any number 

of levels, presents the benefit of guaranteeing the dc-link capacitor voltage balance in every 

switching cycle provided that the addition of the three output leg currents equals zero (in case that 
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the configuration consists in one dc-link voltage-supply and capacitors connected across every two 

adjacent input terminals). 

Table 3.2 presents the mathematical expressions of duty ratios along the line period for a m-

level leg. These expressions correspond to the duty ratios of one of the phases, e.g., phase a; the 

expressions of the duty ratios for the other two phases are the same, but phase-shifted 120º and 

240º. Modulation index mi ϵ [0,1] is defined as ୪ܸି୪,୮୩ ܸୢ ୡି୪୧୬୩⁄ , where ୪ܸି୪,୮୩ is the peak value of 

the fundamental component of the line-to-line voltage. 
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Table 3.2.  Duty ratio expressions according to the V2PWM [22]. 

Fig. 3.8 shows the pattern of these duty ratios. As well as the duty ratios, Fig. 3.8 depicts the 

waveform of the expression	cosଶሺߠ െ ߮ሻ, with ߮ ൌ 90°, which is equal to ൫݅୭ ⁄୭,୮୩ܫ ൯
ଶ
 and 

corresponds to the expression that appears in the integrals of (3.13) and (3.21). 
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Fig. 3.8. Duty-ratio waveforms according to the V2PWM (mi=0,7) in a line cycle together with waveform of 

expression ܿݏ݋ଶሺߠ െ ߮ሻ. 
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Using the duty-ratio expressions presented in Table 3.2, the integrals of (3.13) and (3.21) can 

be solved. The solutions are 
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݉݅
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଴
. 

(3.23)

As it can be observed in (3.23), the solutions of the integrals are very simple expressions 

independent from the value of the load angle	߮, which apparently is not obvious. Thereby, the final 

expressions to calculate both the total conduction losses of a m-level MAC leg and the individual 

conduction losses of a device S௫, operating under the V2PWM, are 
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ቍ (3.24)
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As examples, in a four-level MAC leg, the total conduction losses ܲୡ୭୬ୢ,୪ୣ୥ and the 

individual losses ܲୡ୭୬ୢ,ୗ౤యభ of device S୬ଷଵ are calculated as 
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(3.26)
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where ܫ୭,୮୩ is calculated as 

୭,୮୩ܫ ൌ
݉݅ ∙ ܸୢ ୡି୪୧୬୩

ܼ ∙ √3
, (3.28)

where ܼ is the phase impedance. 

Fig. 3.9 presents the normalized leg conduction losses operating under the V2PWM. These 

waveforms are obtained from (3.24), dividing ܲୡ୭୬ୢ,୪ୣ୥ by ܴୢୱ	ሺ୭୬ሻ ∙ ሺ݉ െ 1ሻ ∙ ୭,୮୩ܫ
ଶ. It can be 

appreciated that conduction losses are lower as the number of levels increases, and mainly for 

lower modulation indexes. This is due to the fact that duty ratios of inner levels increase as the 

modulation index decreases. Please note that ON resistances ܴୢୱ	ሺ୭୬ሻ should vary according to (3.2). 

Then, the reduction of losses will be higher as the number of levels increases. 
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Fig. 3.9. Normalized total MAC leg conduction losses as a function of the modulation index for different     

numbers of levels operating under the V2PWM. 

3.3.2. Switching losses 

Some important aspects regarding switching losses that have already been introduced in 

Chapter 2 are here repeated at the beginning. Then, the analysis goes further. 

In a general m-level converter leg, the transition between two adjacent switching states (k 

and k + 1) requires changing the state of m switches. However, the switching losses (turn-on and 

turn-off losses) are basically concentrated in one device. In the transition between adjacent 
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switching states, it is required to first turn off the devices to be turned off. Then, after a proper dead 

time, we can proceed to turn on the devices to be turned on. 

If (kf–ki)·io<0, where ki and kf are the initial and final switching states, respectively; then, the 

switching losses concentrate on the last switch being turned off. All the remaining switches 

produce negligible switching losses since the voltage across them when they turn on or off is nearly 

zero. 

If (kf–ki)·io>0; then, the switching losses concentrate on the first switch being turned on. As 

before, all the remaining switches produce negligible switching losses since the voltage across 

them when they turn on or off is nearly zero. Besides, in these cases, ki diode reverse-recovery 

processes take place in the transition if io>0, and kf reverse-recovery processes take place if io<0. 

An interesting strategy to distribute the switching losses among the devices is to alternate the 

first device being turned-on and to alternate the last device being turned-off in every transition 

between adjacent switching states. Alternatively, those devices experiencing lower conduction 

losses could be selected to concentrate the switching losses so that all devices present similar 

overall losses, and ultimately similar junction temperatures. If a measurement or estimation of the 

device temperature is available, the devices with lower temperature can be selected to concentrate 

the switching losses. A possible solution to distribute the switching losses among the devices 

consists of selecting the switches that belong to the (2m–2)-switch pole (see Fig. 2.1) to concentrate 

the switching losses. It is simple to implement and these devices present low conduction losses. 

3.3.2.1. Switching losses in a four-level leg 

As an example to illustrate the switching losses, let us consider the particular case of a four-

level MAC leg. The extension into a higher number of levels can be easily deduced. 

As it can be deduced from Fig. 3.10, in a four-level leg, a total of four switches change their 

state in a transition between two adjacent switching states. 

Fig. 3.11 presents the switching state transition from connection to node i3 to connection to 

node i4 with positive output current ݅୭ in a four-level MAC leg to illustrate the process. Fig. 3.11(a) 

shows the switching state in which the output terminal is connected to node i3. In the first step of 

the transition, devices Sn31, Sn32, and Sn33 are turned off. Since the load current flows through the 

diodes of these three devices, the output terminal continues connected to node i3, as it is depicted in 

Fig. 3.11(b). Then, after a proper dead time, device Sp31 is turned on and the current starts flowing 

through this device connecting the output terminal to node i4, see Fig. 3.11(c). At this point of the 
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(a) (b) 
 

(c) (d) 
 

Fig. 3.10.  Switching states in a four-level MAC leg. (a) Connection to node i1. (b) Connection to node i2. (c) 

Connection to node i3. (d) Connection to node i4. 

transition, the diodes of devices Sn31, Sn32, and Sn33 suffer a reverse-recovery process and the 

reverse-recovery currents flow through Sp31 at turn on, increasing the switching losses. Finally, 

after a short transient, the steady-state connection of the output terminal to node i4 is reached, as 

shown in Fig. 3.11(d). 

Table 3.3 summarizes the switching losses of a four-level leg that take place in each one of 

the switching state transitions, and taking into account the current polarity. In Table 3.3, it has been 

assumed that the 6-switch-pole devices are selected to concentrate the switching losses (the symbol 
(*) indicates those cases in which it could be possible to choose another device to concentrate the 

switching losses). 
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(a) (b) 
 

(c) (d)  

Fig. 3.11.  Transition between switching state 3 to switching state 4 with positive output current io. (a) 

Connection to node i3. (b) First transient state. (c) Second transient state (three diode-reverse-recovery 

processes). (d) Connection to node i4. 

 

Current 
polarity 

Switching state 
transition 

Devices that concentrate   
the switching losses 
(turn on/turn off) 

Devices whose  
diodes present 

reverse recovery 

Total losses in the 
transition 

ሺ݅୭ ൐ 0ሻ 

1  2 Sp13 (on) (*) Sn11 Eon_1D + Err_1D 

2  3 Sp22 (on) (*) Sn21, Sn22 Eon_2D + Err_2D 

3  4 Sp31 (on) Sn31, Sn32, Sn33 Eon_3D + Err_3D 

4  3 Sp31 (off)  - Eoff 

3  2 Sp22 (off) (*) - Eoff 

2  1 Sp13 (off) (*) - Eoff 

ሺ݅୭ ൏ 0ሻ 

1  2 Sn11 (off) - Eoff 

2  3 Sn22 (off) (*) - Eoff 

3  4 Sn33 (off) (*) - Eoff 

4  3 Sn33 (on) (*)  Sp31 Eon_1D + Err_1D 

3  2 Sn22 (on) (*) Sp21, Sp22 Eon_2D + Err_2D 

2  1 Sn11 (on) Sp11, Sp12, Sp13 Eon_3D + Err_3D 

Table 3.3.  Switching losses in each switching state transition of the four-level MAC leg. 



CHAPTER 3. EFFICIENCY ASSESSMENT OF THE MULTILEVEL ACTIVE-CLAMPED TOPOLOGY                 57 

 

 

3.4. Experimental efficiency comparison between a four-level MAC leg and a 

conventional two-level leg under a basic operating mode 

In this section, an efficiency comparison between a four-level MAC leg and a conventional 

two-level leg operating at low voltage is carried out. Section 3.4.1 details the conditions in which 

the efficiency comparison is performed; i.e., the circuit configuration and control scheme. In 

Section 3.4.2, the different loss models of both topologies are presented. Aside from calculating the 

conduction and switching losses using the models presented in Section 3.3, other significant losses 

such as gate-driving-related losses are also estimated. To estimate the switching losses, 

experimental tests are conducted to measure the device energy lost in one switching transition. 

Finally, Section 3.4.3 presents experimental tests to measure the overall losses and the efficiency of 

both converter legs. The obtained results are compared with the estimations to validate the loss 

models. 

3.4.1. Efficiency comparison scenario 

To perform the efficiency comparison between the MAC converter and a conventional two-

level converter, many different circuit configurations and control schemes can be used. In order to 

achieve a simple and balanced comparison that allow us to infer general conclusions, and also to 

validate the analytical loss models, a simple configuration and operating mode have been used. 

The circuit configuration consists of a single leg of each topology, a four-level leg of the 

MAC topology and a two-level leg, using a series resistive-inductive load, as it is depicted in Fig. 

3.12. Dc-voltage sources are connected across every two adjacent input terminals in the MAC leg. 

 

 (a) (b) 

Fig. 3.12.  Circuit configurations used to perform the efficiency comparison. (a) Two-level leg. (b) Four-level 

MAC leg. 
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To simplify the estimation of losses, it is interesting to keep the output current constant. In 

order to achieve this, a modulation pattern that defines the same average output voltage in every 

switching cycle together with a large output inductance are used. For simplicity and to apply the 

same weight to all switching states, the switching pattern consists in equally-distributed duty ratios 

to connect the output terminal to each one of the input terminals; i.e., duty ratios equal to 0.25 for 

each one of the levels in the four-level leg, and duty ratios of 0.5 in the two-level leg. The 

distribution of duty ratios within the switching period is shown in Fig. 3.13. 

 
 (a) (b) 

Fig. 3.13.  Switching pattern within a modulation period used for the efficiency comparison. (a) Two-level 

leg. (b) Four-level MAC leg. 

As the analysis is performed at low voltage, MOSFETs are used as power devices. 200 V 

MOSFETs STP20NF20 are used in the MAC leg, and 600 V MOSFETs STP13NM60N are used in 

the two-level leg. These devices have been selected so that the ON-resistance of 600 V MOSFETs   

൫ܴୢୱሺ୭୬ሻ,଺଴଴൯ is three times the one of 200 V MOSFETs ൫ܴୢୱሺ୭୬ሻ,ଶ଴଴൯, being both from the same 

manufacturer. 

3.4.2. Loss models 

This section presents the expressions to estimate the different losses of both converters as a 

function of the electrical parameters and variables. They are classified as device conduction losses, 

device switching losses and other losses. 

3.4.2.1. Device conduction losses 

3.4.2.1.1. Two-level leg 

Conduction losses of devices Sp and Sn can be estimated as 

ܲୡ୭୬ୢ,ୗ౦	 ൌ ܲୡ୭୬ୢ,ୗ౤ ൌ ܴୢୱሺ୭୬ሻ,଺଴଴ ∙ ሺୖ୑ୗሻୢܫ
ଶ . (3.29)

 

As the output current ݅୭	is approximately constant, the RMS current of each device is 
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ܫୢ 	ሺୖ୑ୗሻ ൌ
୭ܫ
√2

. (3.30)

Combining (3.29) and (3.30), the final expression to estimate the overall conduction losses in 

the two-level leg is 

ܲୡ୭୬ୢ,ଶ୐ ൌ ܲୡ୭୬ୢ,ୗ౦ ൅ ܲୡ୭୬ୢ,ୗ౤ ൌ ܴୢୱሺ୭୬ሻ,଺଴଴ ∙ ୭ܫ
ଶ . (3.31)

3.4.2.1.2. Four-level MAC leg 

Applying (3.8), the total conduction losses can be calculated as 

ܲୡ୭୬ୢ,ସ୐ ൌ ୭ܫ
ଶ ∙ 0.25 ∙ ሺ3 ൅ 3 ൅ 1.4 ൅ 1.4ሻ ∙ ܴୢୱሺ୭୬ሻ,ଶ଴଴ ൌ 2.2 ∙ ܴୢୱሺ୭୬ሻ,ଶ଴଴ ∙ ୭ܫ

ଶ. (3.32)

Considering that ܴୢୱሺ୭୬ሻ,ଶ଴଴ is the third of ܴୢୱሺ୭୬ሻ,଺଴଴, it can be deduced that total 

conduction losses will be lower in the four-level leg: 

ܲୡ୭୬ୢ,ସ୐ ൌ 2.2 ∙
ܴୢୱሺ୭୬ሻ,଺଴଴

3
∙ ୭ܫ

ଶ ൌ 0.73 ∙ ܲୡ୭୬ୢ,ଶ୐ 

3.4.2.2. Device switching losses 

To estimate the overall switching losses in both topologies, experimental tests to measure 

turn-off, turn-on, and diode reverse-recovery losses of the used MOSFETs have been carried out. 

Fig. 3.14 presents the circuit used to do the tests (in Appendix B, a picture of the board is 

presented). This circuit allows measuring the switching losses of device S୲ୣୱ୲ under a desired 

voltage and current level. The gate-pulse amplitude defines the desired current level. 

 

Fig. 3.14.  Circuit used to measure power-device switching losses. 

An additional antiparallel diode of device S୲ୣୱ୲ is used as diode Dୗ౪౛౩౪. In order to emulate 

the switching transitions that take place in the four-level MAC leg in which two and three diodes 
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present a reverse-recovery process, tests using one, two, and three diodes connected in parallel 

have been done, see Fig. 3.14. Both turn-on losses that take place in device S୲ୣୱ୲ and reverse-

recovery losses that take place in the diode are measured using one, two, and three diodes. 

Fig. 3.15-Fig. 3.19 present some experimental waveforms of different switching transitions. 

Fig. 3.15 shows turn-off transitions of both 200 V and 600 V MOSFETs at 6 A of current. The area 

between cursors of signal ploss-off represents the energy Eoff lost in the transition (10.179 µJ for the 

200 V MOSFET and 19.89 µJ for the 600 V MOSFET). Fig. 3.16 and Fig. 3.17 show turn-on 

transitions of both 200 V and 600 V MOSFETs at 6 A of current. Fig. 3.16 shows the voltage and 

current waveforms of MOSFET under test Stest, while the reverse-recovery waveforms of diode 

Dୗ౪౛౩౪ are shown in Fig. 3.17. Please note in Fig. 3.16 the significant difference in the turn-on 

energy lost Eon_1D between both MOSFETs. The effect of the multiple reverse recoveries taking 

place at the same transition can be appreciated in Fig. 3.18 and Fig. 3.19 for the 200 V MOSFET. 

Fig. 3.18 shows the voltage and current waveforms of MOSFET under test Stest, while the reverse-

recovery waveforms of diodes Dୗ౪౛౩౪ are shown in Fig. 3.19. In Fig. 3.18(a) and Fig. 3.19(a), two 

diodes are connected in parallel, while in Fig. 3.18(b) and Fig. 3.19(b), three diodes are connected 

in parallel. 

 

     
                  (a)                      (b)  

id [10 A/div] 
vds 

vgs 

–ploss-off 

–Eoff,200

=

id [10 A/div]

vds 

vgs

–ploss-off 

–Eoff,600 

=

IdId 

 

Fig. 3.15.  Experimental turn-off switching waveforms at Id=6 A with Rg=56 Ω. (a) 200 V MOSFET under 

Vtest = 50 V (ploss-off = vds·id ). (b) 600 V MOSFET under Vtest = 150 V. 
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Fig. 3.16.  Experimental turn-on switching waveforms at Id=6 A with Rg=56 Ω. (a) 200 V MOSFET under 

Vtest = 50 V (ploss-on = vds·id). (b) 600 V MOSFET under Vtest = 150 V. 
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Fig. 3.17.  Experimental turn-on switching waveforms at Iak=6 A with Rg=56 Ω. (a) Reverse-recovery of 200 

V MOSFET under Vtest = 50 V (ploss-rr = va·iak). (b) Reverse-recovery of 600 V MOSFET under Vtest = 150 V. 
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Id Id 

–Eon_3D,200 =

 –Eon_2D,200 

 

Fig. 3.18.  Experimental turn-on switching waveforms of 200 V MOSFET with Id=6 A, Rg=56 Ω, and Vtest = 

50 V, under multiple reverse recoveries. (a) Two diodes presenting reverse-recovery. (b) Three diodes 

presenting reverse-recovery. 
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Fig. 3.19.  Experimental turn-on reverse-recovery switching waveforms of 200 V MOSFET with Id=6 A, 

Rg=56 Ω, and Vtest = 50 V, under multiple reverse recoveries. (a) Two diodes presenting reverse-recovery. 

(b) Three diodes presenting reverse-recovery. 

The tests presented above have been done under different values of current in order to obtain 

a linear or quadratic expression of the device energy loss as a function of current. Fig. 3.20 and Fig. 

3.21 present the results and the obtained expressions for both MOSFETs. These expressions are 

used to estimate the switching losses. 
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Fig. 3.20.  Switching losses of 200 V MOSFET as a function of current, with Rg=56 Ω and Vtest = 50 V. (a) 

Device turn-on and turn-off energy loss. (b) Diode reverse-recovery losses. 
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Fig. 3.21.  Switching losses of 600 V MOSFET as a function of current, with Rg=56 Ω and Vtest = 150 V. (a) 

Device turn-on and turn-off energy loss. (b) Diode reverse-recovery losses. 

Please note in Fig. 3.21 that the turn-on energy-loss in the 600 V MOSFET is much higher 

than three times the one in 200 V MOSFETs. There is also a large difference in diode reverse-

recovery losses. 

3.4.2.2.1. Two-level leg 

According to the control scheme presented in Section 3.4.1 and shown in Fig. 3.13(a), there 

are two transitions in the modulation period. In the first transition, from connection to terminal i1 to 

connection to i2, device Sp concentrates the losses at the instant that it is turned on since the output 

current ݅୭ is positive. Besides, the antiparallel diode of device Sn presents a reverse-recovery 

process. In the second switching transition, from connection to i2 to connection to i1, again device 

Sp concentrates the losses when it is turned off. Thus, the overall switching losses can be estimated 

as 

ୱܲ୵,ଶ୐ ൌ ୱ݂ ∙ ൫ܧ୭୬_ଵୈ,଺଴଴ ൅ ୰୰_ଵୈ,଺଴଴ܧ ൅ ୭୤୤,଺଴଴൯, (3.33)ܧ

where ୱ݂ is the switching frequency, ܧ୭୬_ଵୈ,଺଴଴ and ܧ୰୰_ଵୈ,଺଴଴ represent the turn-on and reverse-

recovery losses in the transition from i1 to i2, respectively; and ܧ୭୤୤,଺଴଴, represents the turn-off 

losses in the transition from i2 to i1. The values of these energies are taken from the equations of 

Fig. 3.21(a) and Fig. 3.21(b), according to the current level. 

3.4.2.2.2. Four-level MAC leg 

According to Table 3.3 and taking into account the control scheme presented in Section 3.4.1 

and shown in Fig. 3.13(b), the overall switching losses can be estimated as 
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ୱܲ୵,ସ୐	 ൌ ௦݂ ∙ ൫ܧ୭୬_ଵୈ,ଶ଴଴ ൅ ୭୬_ଶୈ,ଶ଴଴ܧ ൅ ୭୬_ଷୈ,ଶ଴଴ܧ ൅ ୰୰_ଵୈ,ଶ଴଴ܧ ൅ ୰୰_ଶୈ,ଶ଴଴ܧ

൅ ୰୰_ଷୈ,ଶ଴଴ܧ ൅ 3 ∙ ୭୤୤,ଶ଴଴൯ܧ . 
(3.34)

The values of the energies in (3.34) are taken from the equations of Fig. 3.20(a) and Fig. 

3.20(b), according to the current level. 

3.4.2.3. Other losses 

3.4.2.3.1. Gate-driver-circuit losses 

a) Gate-resistor losses 

The loss dissipated in a gate resistor can be estimated as 

୰ܲ୥	 ൌ ୱ݂ ∙ ୥ܸୱ ∙ ܳ୥ , (3.35)

where ୥ܸୱ is the gate-to-source voltage in ON-state; and ܳ୥ is the MOSFET gate charge, which is 

equal for both selected MOSFETs. Considering that the two-level leg presents two drivers, and the 

four-level leg presents twelve drivers, the expressions for each one of the legs are 

୰ܲ୥,ଶ୐	ሾWሿ ൌ 1.56 ∙ 10ି଺ ∙ ୱ݂ ሾݖܪሿ (3.36)

୰ܲ୥,ସ୐	ሾWሿ ൌ 9.36 ∙ 10ି଺ ∙ ୱ݂ ሾHzሿ . (3.37)

b) Gate-driver integrated-circuit (IC) losses 

The driver used in both converter prototypes is the HCPL-316J. According to the driver’s 

datasheet, the IC losses can be calculated as 

ܲୢ୰୴ ൌ ܲୢ୰୴_ୠ୧ୟୱ	 ൅ ܲୢ୰୴_ୱ୵ ൌ ୡୡଶܫ ∙ ୡܸୡଶ ൅ ୱ୵ܧ ∙ ୱ݂ , (3.38)

where ܲୢ୰୴_ୠ୧ୟୱ is the steady-state power dissipation in the driver due to biasing the device, and it 

is equal to the product of 	ܫୡୡଶ, the average bias output supply current, by ୡܸୡଶ, the average output 

supply voltage. ܲୢ୰୴_ୱ୵ is the transient power dissipation in the driver due to charging and 

discharging of the power-device gate, and it is equal to ܧୱ୵, the average energy dissipated in the 

integrated circuit due to switching of the power device over one switching cycle, multiplied by ୱ݂. 

The energy ܧୱ୵ depends on the used device (mainly on the device gate-charge ܳ୥), and the used 
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gate resistance; This energy has been estimated as 3.5 μJ for both MOSFETs. Thus, the expressions 

for each one of the converters are 

ܲୢ୰୴,ଶ୐	ሾWሿ ൌ 0.22 ൅ 7 ∙ 10ିଽ J ∙ ୱ݂ ሾkHzሿ  (3.39)

ܲୢ୰୴,ସ୐	ሾWሿ ൌ 1.32 ൅ 42 ∙ 10ିଽ J ∙ ୱ݂ ሾkHzሿ , (3.40)

In both converters, each one of the gate drivers is powered through a simple and small circuit 

connected across the controlled device, as explained in Section A.3 of Appendix A. Part of the 

energy to power the gate-driver comes from the dc-bus and part of the energy comes from a 

recycling of the device switching losses. As a result, no external gate-driver power-supplies are 

required and therefore the gate driver IC losses have to be calculated to estimate the overall 

efficiency of the converters. 

3.4.2.3.2. Losses of the capacitor-discharging resistors 

In order to facilitate the discharging of dc-link capacitors when the converter is shut down, 

some resistors are connected in parallel with them. These resistors produce the following losses: 

୰ܲୡ,ଶ୐ ൌ 0.227 W (3.41)

୰ܲୡ,ସ୐ ൌ 0.227 W . (3.42)

3.4.3. Experimental and analytical results 

Experimental tests have been done in order to directly measure the overall losses and the 

efficiency of both topologies, and then compare these results with the estimation from the loss 

models. Fig. 3.22 depicts the output voltage, the output current, and the output power for both 

topologies in a particular condition (in Fig. 3.22(a), red signal po is located just behind the blue 

signal vo and for this reason is not well appreciated). 

As there is a certain variation in the measured losses of experimental tests, repeated tests 

with the same conditions have been carried out in order to obtain averaged values of losses and 

efficiency of converters. Fig. 3.23 and Fig. 3.24 present the final estimated and experimental results 

for different switching frequencies using two different load conditions. It can be seen that the 

results obtained through the experiments are close to the estimations. The four-level MAC 

converter presents a higher efficiency than the two-level converter for all switching frequencies. 

The difference increases with the switching frequency, just as expected, since switching losses are 

significantly higher in the two-level converter. 
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Fig. 3.22.  Experimental results for vo , io , and po = vo·io  with the setup presented in Section 3.4.1 and the 

following conditions: Vdc = 150 V, L = 60 mH, R = 8 Ω, and fs = 5 kHz. (a) Two-level leg. (b) Four-level leg. 
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Fig. 3.23.  Final estimated and experimental results with the following conditions: Vdc = 150 V, L = 60 mH, 

and R = 8 Ω. (a) Total losses vs. switching frequency. (b) Efficiency vs. switching frequency. 
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Fig. 3.24.  Final estimated and experimental results with the following conditions: Vdc = 150 V, L = 60 mH, 

and R = 16 Ω. (a) Total losses vs. switching frequency. (b) Efficiency vs. switching frequency. 
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Assuming that switching losses are linearly dependent on the switching frequency (it can be 

assumed since quadratic dependence is very small), linear regressions have been obtained for both 

estimated and experimental losses, see Fig. 3.23(a) and Fig. 3.24(a). The y-intercept of linear 

regressions basically represents the MOSFETs conduction-losses, plus other losses that do not 

depend on the switching frequency (ܲୡ୭୬ୢ	 ൅ ܲୢ୰୴_ୠ୧ୟୱ	 ൅ ୰ܲୡሻ, while the slope basically represents 

the MOSFET switching-losses, plus other losses that depend on the switching frequency ( ୱܲ୵	 ൅

୰ܲ୥	 ൅ ܲୢ୰୴_ୱ୵ሻ, at 1 kHz. The slopes of MAC topology are significantly lower (around half) than 

the ones from the two-level topology. Besides, it can be seen that slopes from the estimated losses 

are lower than the ones from experimental tests (around 20% for the MAC and around 10-15% for 

the half bridge). It is possibly due to the fact that some switching-frequency-dependent losses have 

not been taken into account in the loss models. 

It is relevant to consider that the MAC prototype has not been optimized in order to obtain 

the highest efficiency. Some adjustments could be done in order to increase it, like for example 

reducing the gate resistance to decrease the MOSFETs switching-losses, selecting other more 

suitable MOSFETs that present lower conduction-losses and/or lower switching-losses, etc. 

Furthermore, it is important to bear in mind that the measured efficiency takes into account the 

gate-driver circuit losses. In spite of all this, the efficiency of the MAC converter is around 98% at 

switching frequencies around 5-10 kHz and above 95% at a frequency of 50 kHz. 

The close proximity between the estimation and experimental results validates the obtained 

results from both approaches, and supports the conclusions presented above. 

3.5. Efficiency comparison between a four-level three-phase MAC dc-ac 

converter and a conventional two-level three-phase dc-ac converter 

In this section, an analytical efficiency comparison is performed using the validated loss 

models in Section 3.4. 

3.5.1. Efficiency comparison scenario 

The converter configurations consist of a four-level three-phase MAC inverter and a 

conventional three-phase voltage source inverter (VSI), using a three-phase wye-connected 

inductive-resistive load impedance, as it is depicted in Fig. 3.25. Dc-voltage sources connected 

across every two adjacent input terminals are considered in the MAC inverter to perform the study. 
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Fig. 3.25.  Circuit configurations used to perform the efficiency comparison. (a) Three-phase two-level 

inverter. (b) Three-phase four-level MAC inverter. 

The implemented modulation scheme for the four-level inverter is the V2PWM, whose duty-

ratio expressions appear in Table 3.2. The modulation applied for the two-level inverter is the 

SVPWM with centered active pulses in which the two zero vectors are alternately used with the 

same weight [71]. The same MOSFETs used in Section 3.4 are considered here (200 V MOSFETs 

STP20NF20 in the four-level inverter, and 600 V MOSFETs STP13NM60N in the two-level 

inverter). 

3.5.2. Loss modeling implementation 

The losses of both converters are estimated using the previously validated loss models. Only 

the power-device conduction losses and power-device switching losses are estimated (the losses 

associated to the gate drivers and other losses are not considered). 

In order to estimate the device conduction losses of the four-level MAC inverter, (3.24) is 

used. To estimate the conduction losses of the two-level inverter, the device energy lost in a line 
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cycle is calculated as the addition of the energy lost in each one of the switching periods. Then, the 

conduction power loss is obtained multiplying this value by the line frequency (50 Hz). 

In order to estimate the switching losses of the four-level inverter, the obtained expressions 

from Fig. 3.20 are used (in the range 0 A to 2 A, a linear expression is used so as to produce 0 

energy loss at 0 A and the measured loss at 2 A). The switching energy loss is calculated for each 

switching period within a line period according to Table 3.3, considering the instantaneous level of 

current ݅୭. The addition of these switching-period energies represents the energy loss in the line 

period, which is finally multiplied by the line frequency to obtain the overall switching power loss. 

Please note from Table 3.3 that for switching periods whose line angle is within the range 
ଶ஠

ଷ
൏

ߠ ൏
ସ஠

ଷ
, the duty ratio ݀ସ equals 0 and therefore transitions 3  4 and 4  3 do not take place. The 

same thing happens when the angle is within the range 
ି஠

ଷ
൏ ߠ ൏

஠

ଷ
, where the duty ratio ݀ଵ equals 

0 and transitions 1  2 and 2  1 do not occur. The switching losses of the two-level converter are 

estimated with the same procedure of the four-level converter, using the obtained expressions from 

Fig. 3.21 (as before, the expressions have been approximated linearly within the range 0 A to 2 A). 

3.5.3. Comparison results 

Efficiency comparison results are shown in Fig. 3.26 for different combinations of values of 

the switching frequency ୱ݂, the modulation index ݉݅, the load phase angle ߮, and the phase 

impedance ܼ. The efficiency is calculated as 

ߟ ൌ ୭ܲ୳୲

୧ܲ୬
ൌ ୭ܲ୳୲

୭ܲ୳୲ ൅ ܲ୪୭ୱୱ
ൌ ୭ܲ୳୲

୭ܲ୳୲ ൅ ୱܲ୵ ൅ ܲୡ୭୬ୢ
. (3.43)

As it can be seen in Fig. 3.26, the efficiency of the MAC inverter is always higher than the 

efficiency of the two-level inverter. It can be observed in Fig. 3.26(a), Fig. 3.26(b), and Fig. 3.26(c) 

that the efficiency of both converters decreases as the frequency increases, and the difference 

between the efficiency of the two converters becomes higher too, just as expected. 

Fig. 3.26(a) and Fig. 3.26(d) show that the efficiency difference between the two converters 

becomes lower as the modulation index increases. The impact of the modulation index for the 

MAC leg also depends on the switching frequency, as it can be observed in Fig. 3.26(a). For low 

switching frequencies, the efficiency is higher as the modulation index is lower, but for high 

switching frequencies, the efficiency becomes higher for high modulation indexes. 
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Fig. 3.26.  Comparison results of three-phase two-level and four-level MAC inverter with Vdc = 50 V.  (a) 

Efficiency vs. fs with φ=0º and Z=10 Ω. (b) Efficiency vs. fs with mi=0.7 and Z=10 Ω. (c) Efficiency vs. fs  

with mi=0.7 and φ=0º. (d) Efficiency vs. mi with fs=10 kHz and Z=10 Ω. 

Regarding the effect of the load angle ߮, the efficiency decreases slightly when the angle 

increases, see Fig. 3.26(b) and Fig. 3.26(d). It is basically due to the fact that ୭ܲ୳୲ decreases while 

ܲ୪୭ୱୱ remains practically equal. Therefore, according to (3.43), the efficiency becomes lower. 

Finally, the influence of the impedance ܼ	can be appreciated Fig. 3.26(c). The efficiency is 

lower as the impedance decreases. This happens because the output current ݅୭ becomes higher, and 

the conduction losses are proportional to the square of the peak value of output current ܫ୭,୮୩, while 

the output power is only linearly proportional to ܫ୭,୮୩. 

It is important to remember that in these results, only the power-device conduction and 

switching losses are considered. This means that if losses associated to the gate-drivers and other 

losses had been taken into account, the real efficiencies would be a little lower. The difference 

between the efficiencies of the two inverters would also be reduced, since the MAC leg presents 

thirty six gate drivers, while the two-level converter presents only six. 
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3.6. Chip-area-based comparison between a four-level MAC leg and a 

conventional two-level leg 

The switch cost, which usually represents around 25-30% of the total converter cost [72], is 

directly dependent on the semiconductor chip area [65]. The MAC topology presents a higher 

number of switches than conventional two-level topologies, and the difference is larger as the 

number of levels increases. This fact may give the impression that the total silicon area in a MAC 

converter can be much higher than in a two-level topology. However, the minimum total silicon 

area needed can be surprisingly lower in a MAC converter compared to a conventional two-level 

topology for certain operating conditions. A theoretical study is carried out in this section in order 

to compare the minimum total chip area of a four-level MAC converter versus a conventional two-

level leg. 

3.6.1. Description of the methodology 

The methodology used to compare the required total semiconductor chip area of both 

topologies is based on the approach introduced in [72] and also used in [65]. The basic concept of 

the method relies on the fact that junction-to-heat-sink thermal resistance ܴ୲୦,୨ୱ and switch losses 

ୗܲೣ (conduction losses ܲୡ୭୬ୢ,ୗೣ + switching losses ୱܲ୵,ୗೣ) are dependent on the semiconductor 

chip area	ܣୗೣ. For a certain chip area ܣୗೣ and device operating conditions (switch voltage and 

current, and switching frequency), the total switch power-loss ୗܲೣ and the ܴ୲୦,୨ୱ can be estimated 

(to calculate ୗܲೣ, a real device with a particular area is taken as a reference). Thereby, for a given 

heat sink temperature	 ୱܶ, the resulting device junction temperature ୨ܶ,ୗೣ can be calculated as 

୨ܶ,ୗೣ ൌ ୱܶ ൅ ܴ୲୦,୨ୱ൫ܣୗೣ൯ ∙ ୗܲೣ൫ܣୗೣ൯ . (3.44)

The implemented algorithm, presented in Fig. 3.27, determines the minimum required 

semiconductor chip area ܣୗೣ for an individual switch such that its maximum average junction 

temperature ୨ܶ,ୗೣ is equal to a predefined maximum value ୨ܶ,ୗೣ,୫ୟ୶ ൌ 125	Ԩ. 
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Fig. 3.27.  Diagram of chip area optimization algorithm (based on Fig. 6 from [65]). 

Initially, the chip area ܣୗೣ is significantly small and the temperature ୨ܶ,ୗೣ is higher than 

125ºC. Then, the area is slightly increased. As thermal resistance ܴ୲୦,୨ୱ and device conduction 

losses ܲୡ୭୬ୢ,ୗೣ vary inversely with the chip area		ܣୗೣ variation, the resistance ܴ୲୦,୨ୱ and 

semiconductor losses ୗܲೣ decrease, and consequently the device junction temperature ୨ܶ,ୗೣ also 

decreases, as it can be deduced from (3.44). This process is repeated until the temperature ୨ܶ,ୗೣ 

reaches the value of 125ºC. Please note that the dependence of switching losses on the chip area 

has been assumed negligible. 

The algorithm is performed to each one of the devices of the topology and then the total chip 

area of the topology is obtained adding up all the individual switch chip areas		ܣୗೣ. 

3.6.2. Chip-area comparison scenario 

The comparison is done using the same circuit configuration, operating mode and operating 

point (voltage and current rates) used in Section 3.4 to perform the efficiency comparison (see Fig. 
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3.12 and Fig. 3.13), since it represents simple and balanced conditions that allows inferring general 

conclusions. 

The MOSFETs used in the previous section are taken as references to perform the chip-area 

comparison (200 V STP20NF20 in the four-level MAC leg and 600 V STF13NM60N in the two-

level leg). In MOSFETs, the antiparallel body diode is inherently built with the transistor. As a 

result, the semiconductor chip area ܣୗೣ includes both the transistor and the antiparallel diode, and 

total loss ୗܲೣ comprises both the transistor and diode losses. This is an important difference 

compared to the studies presented in [72] and [65], where IGBTs are used as power switches, and 

diode and transistor chip areas are optimized independently, since in IGBTs, the diode and the 

transistor are implemented in separate silicon dies. 

3.6.3. Algorithm implementation. Thermal and loss modeling  

3.6.3.1. Resistances calculation (Block 2) 

In order to obtain the value of the thermal resistance ܴ୲୦,୨ୱ as a function of the chip area ܣୗೣ, 

some discrete MOSFETs have been opened to measure their chip areas and see their correlation 

with their datasheet values of		ܴ୲୦,୨ୱ. The complete results are presented in Appendix C. The 

obtained correlation is the following one: 

ܴ୲୦,୨ୱ	൫ܣୗೣ൯ ൌ 8.5
Ԩ

W ∙ mmଶ ∙ ୗೣܣ
ି଴.଺ . (3.45)

This equation gives us a good estimation of the value of ܴ୲୦,୨ୱ since the value of ܴ୲୦,୨ୱ is 

essentially dependent on geometrical aspects, e.g., the chip area (it does not depend on the chip 

technology, e.g., the pn-doping distribution). 

The strategy used to determine the correlation between ܴ୲୦,୨ୱ and ܣୗೣ can not be used to 

determine the correlation between ܴୢୱሺ୭୬ሻ and ܣୗೣ since the value of ܴୢୱሺ୭୬ሻ of a MOSFET does 

not only depend on the geometry (area), but also depends significantly on other factors like the 

voltage rating or the pn-doping distribution. As an example, for two devices with the same area, a 

thicker and more lightly doped epi layer allows it withstanding higher voltage but the on-resistance 

is increased. 

Considering two MOSFETs (MOSFET 1 and MOSFET 2) with the same voltage rating and 

using the same pn-doping distribution, they should verify 
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ܴୢୱሺ୭୬ሻ,୑୓ୗ୊୉୘	ଵ ∙ ୗೣ,୑୓ୗ୊୉୘ܣ ଵ ൌ ܴୢୱሺ୭୬ሻ,୑୓ୗ୊୉୘ ଶ ∙ ୗೣ,୑୓ୗ୊୉୘ܣ ଶ . (3.46)

Taking (3.46) into account, the value of ܴୢୱሺ୭୬ሻ as a function of the area ܣୗೣ can be obtained 

independently for the two topologies taking their respective MOSFETs as references: 

ܴୢୱሺ୭୬ሻ,ୗೣ,ସ୐	൫ܣୗೣ൯ ൌ ܴୢୱሺ୭୬ሻ,ୗ୘୔ଶ଴୒୊ଶ଴	 ∙
ୗೣ,ୗ୘୔ଶ଴୒୊ଶ଴ܣ

ୗೣܣ
ൌ
0.097 Ω ∙ 9.88 mmଶ

ୗೣܣ
 

(3.47)

ܴୢୱሺ୭୬ሻ,ୗೣ,ଶ୐	൫ܣୗೣ൯ ൌ ܴୢୱሺ୭୬ሻ,ୗ୘୔ଵଷ୒୑଺଴୒	 ∙
ୗೣ,ୗ୘୔ଵଷ୒୑଺଴୒ܣ

ୗೣܣ
ൌ
0.28 Ω ∙ 11.20	mmଶ

ୗೣܣ
	. 

(3.48)

3.6.3.2. Power loss calculation (Block 3) 

In order to calculate the device losses, the equations presented in Section 3.4.2.1 for device 

conduction losses and Section 3.4.2.2 for device switching losses are used. The switching losses of 

devices are exactly the same since they are not dependent on the chip area. The conduction losses, 

however, are calculated using the ܴୢୱሺ୭୬ሻ as a function of ܣୗೣ ((3.47) and (3.48)). 

3.6.3.3. Temperature calculation (Block 4) 

Equation (3.44) represents the thermal model to obtain the temperature	 ୨ܶ,ୗೣ. The 

temperature of the heat sink ୱܶ is assumed to be	80Ԩ. 

3.6.4. Chip-area optimization results 

Fig. 3.28 presents the ratio between the total required chip areas for both topologies under 

different switching frequencies. It can be seen that for frequencies above 25-30 kHz, the total chip 

area of the four-level MAC leg is lower than the two-level leg despite having a higher number of 

devices (twelve devices against two). 

It is important to note that these results have been obtained in the particular case of devices 

STP20NF20 and STP13NM60N, since they have been taken as references to calculate the losses 

and subsequently the resulting chip area. Device STP13NM60N presents a particularly low on-

resistance for a 600 V MOSFET, which makes it specially suitable for low switching frequencies. 

This fact possibly causes that for low switching frequencies, the two-level leg requires less area 

than the four-level leg. If other devices were chosen, it would be possible that the total area 

required by the four-level leg be lower than the required by the two-level leg for all the frequency 

range. 
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Fig. 3.28.  Leg-chip-area ratio with the setup presented in Section 3.4.1. (a) Conditions: Vdc = 150 V, L = 60 

mH, and R = 8 Ω. (b) Vdc = 150 V, L = 60 mH, and R = 16 Ω. 

3.7. Conclusion 

An assessment of the MAC converter efficiency has been performed in this chapter. First, 

device conduction and switching losses have been analyzed in depth. Then, the efficiency of the 

MAC topology has been assessed through analytical and experimental comparisons with to 

conventional two-level converters. 

According to the analysis of conduction and switching losses it can be concluded that, if 

devices are properly selected for a certain operating point, both conduction losses and switching 

losses should be lower in the MAC topology than in a two-level topology. Regarding the 

conduction losses, on one hand, the fact that ୢݎ ୱሺ୭୬ሻ varies exponentially with the device blocking 

voltage, as shown in (3.2), and on the other hand, the reduced equivalent ON resistance thanks to 

the parallel conduction of current, lead to a reduction of overall conduction losses. In regard to 

switching losses, they should be lower not only because low-voltage-rated devices can be used with 

better relative performance features, but also because all switching transitions occur at lower 

blocking voltage levels, which in principle should produce lower switching losses for the same 

switching frequency and switching characteristics, as deduced from (3.5). 

Compared to other multilevel converters, conduction losses should be lower in the MAC 

topology thanks to the parallel conduction of current. With regard to switching losses, they should 

be similar to other multilevel topologies. Nevertheless, in the MAC topology there is certain degree 

of freedom to distribute the switching losses among the devices. 

The efficiency of a four-level MAC leg has been compared analytically and experimentally 

with a two-level leg, under a simple and balanced control pattern that allow us inferring general 
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conclusions. The efficiency of the MAC leg is higher in all the frequency-range. Losses that 

depend on the switching frequency (mainly power-device switching-losses) are significantly lower 

in the four-level MAC leg. This is an important advantage of the MAC topology since it permits to 

increase the switching frequency, which allows reducing the size, the weight, and the cost of 

passive components. The close proximity between analytical and experimental results supports the 

obtained conclusions of the study and validates the analytical loss models. 

The efficiency of the MAC converter has also been compared analytically with a two-level 

converter operating as three-phase inverters. The comparison has been performed for several 

combinations of values of the switching frequency, the modulation index, the phase load angle, and 

the phase load impedance. The efficiency of the four-level MAC inverter is higher under all 

conditions. The advantage is also more significant as the switching frequency increases. 

Finally, a theoretical study to determine the minimum chip area needed for both topologies 

has also been carried out. The minimum area is lower in the MAC leg for switching frequencies 

above 20-30 kHz despite presenting twelve devices instead of two. 

It is important to note that all these comparisons have been carried out for a particular 

selection of MOSFETs. The results would vary if other devices had been selected. 

 



CHAPTER 4 

FAULT-TOLERANCE CAPACITY OF THE MULTILEVEL ACTIVE-

CLAMPED CONVERTER  

Abstract  Thanks to the inherent redundancy to generate the different output voltage levels, the 

MAC topology presents an important fault-tolerance ability which makes it interesting for several 

applications. This chapter presents an analysis of the fault-tolerance capacity of the MAC converter. Both 

open-circuit and short-circuit faults are considered and the analysis is carried out under single-device and 

two-simultaneous-device faults. Switching strategies and different hardware modifications to overcome the 

limitations caused by faults are proposed. Experimental tests with a four-level MAC prototype are presented 

to validate the analysis. 

4.1. Introduction 

In a recent industry-based survey of reliability in power electronic converters [73], 

semiconductor power devices are largely considered the most fragile components, and appear to be 

one of the main concerns regarding power-converters reliability. This confirms that device-fault-

tolerance requirements in power converters are of extreme importance at present time, especially 

for those safety-critical applications in which the consequences of stopping the process would be 

very serious or expensive. 

At a first glance, multilevel topologies may appear to have a lower reliability than 

conventional two-level topologies because they present a large number of devices. Nevertheless, 

the lower voltage and current ratings of switches in multilevel converters, together with the usage 

of higher voltage and current margins, lead to a reduced device electrical and thermal stress, which 

may decrease their probability of failure. In addition, multilevel converters present a better fault-

tolerance capacity thanks to their inherent redundancy. As a consequence of these facts, multilevel 

converters may present a higher reliability than conventional two level converters. However, it is 

important to realize that in most multilevel topologies some switches may experience higher 

voltages or currents under fault-handling management. This usually implies the need of selecting 

devices with higher voltage and current ratings to take advantage of the multilevel-converter fault-

tolerance capacity. 

Several fault-tolerance analyses and solutions to improve the fault-tolerance capacity of 

multilevel converters under open-circuit and short-circuit faults have been reported in the literature 

[52], [74]-[80]. Reference [74] presents a comprehensive review of the numerous proposals to 
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detect faults and to operate under faulty conditions for the three basic multilevel topologies. In 

[75], an analysis of the fault-tolerance capacity of the ANPC topology [40] is presented. 

Furthermore, switching states different to the ones presented in [40] are proposed to be used under 

single-device short-circuit and open-circuit faults. Reference [52] proposes the topology presented 

in Fig. 1.10 in which two additional switches are included and some flying capacitors are removed 

from the generalized multilevel topology in order to improve the fault-tolerance ability against 

short-circuit and open-circuit faults. 

This chapter analyzes the fault-tolerance capacity of the MAC topology. The chapter is 

divided as follows. Section 4.2 details the assumptions of the fault-tolerance analysis of the MAC 

topology. Section 4.3 presents the analysis and switching strategy under short-circuit faults, and 

Section 4.4 under open-circuit faults. Section 4.5 presents experimental results to validate the 

previous analyses. In Section 4.6, three hardware modifications to improve the fault-tolerance 

ability of the MAC topology are presented, and Section 4.7 outlines the conclusions. 

4.2. Fault-tolerance analysis assumptions 

To carry out the analysis, the following assumptions are made: 

1) Fault types: Since a single device may fail in open or short-circuit depending on the fault 

characteristics, both open-circuit and short-circuit faults are considered for the analysis. Typically, 

a single device fails in open-circuit when drain current is exceeded, which causes the bond wires to 

break creating an open-circuit. A fault in the gate-driver circuit is another cause of open-circuit 

conditions (if normally-off devices are used). For the analysis, it is considered that an open-circuit 

fault implies an open-circuit condition in the whole device (switch + antiparallel diode). Short-

circuit faults typically occur when the maximum junction temperature or the maximum blocking 

voltage is exceeded. 

2) Fault diagnosis: It is assumed that the fault detection system is capable of identifying 

device short-circuit and open-circuit faults, and it is able to transmit this information (failed device 

and fault type) fast enough to change the switching control scheme immediately, if necessary. This 

fault detection system could be integrated into the gate-driver circuitry. In fact, most gate-driver 

circuits already incorporate detection and protection functions [74]. A possibility to implement the 

fault diagnosis system into the gate-driver circuitry has been presented in [81], where the delay 

time of the fault detection system is less than 3 μs. The switching control scheme could be 

implemented for example in a FPGA, including the whole programming to be able to change 

instantaneously the switching strategy in case of a fault detection. 



CHAPTER 4. FAULT-TOLERANCE CAPACITY OF THE MULTILEVEL ACTIVE-CLAMPED CONVERTER       79 

 

 

3) Converter configuration: Dc-voltage sources connected across every two adjacent input 

terminals are considered, see Fig. 4.1(left). The analysis would also be valid if batteries across 

adjacent input terminals were considered. Fig. 4.1(right) presents the four-level case of a proposed 

converter leg representation to facilitate the analysis of the converter operation under device faults. 

Note the representation of the four possible device states in the inset of Fig. 4.1. 
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Fig. 4.1.  Four-level MAC converter leg representation. 

4.3. Fault-tolerance analysis under short-circuit faults 

Using original switching states presented in Section 2.2.1, if one device fails in short circuit, 

it would not be possible to connect the output terminal to some input terminals, because a dc-

voltage source would be short circuited. Fig. 4.2 shows some examples for a four-level leg. In Fig. 

4.2(a) it can be seen that the connection to level 4 under a short-circuit fault in device Sn31 would 

produce a short-circuit path in the dc-voltage source connected across input terminals i3 and i4. 

Similar examples can be observed in Fig. 4.2(b), Fig. 4.2(c), and Fig. 4.2(d) when a short-circuit 

fault occurs in devices Sp12 and Sn21. 

Table 4.1 presents a summary of available levels for a four-level leg when one device fails in 

short-circuit and original switching states are used. Table 4.1 only shows the bottom half devices 

due to symmetry. If two devices fail simultaneously, the overall lost levels would be the addition of 

lost levels caused by a fault of each one of the failed devices, according to Table 4.1. Thus, for 

example, if Sn31 and Sp12 fail simultaneously, levels 1 and 4 would be lost. 

The fault-tolerance ability can be improved by properly modifying some of the original 

switching states, as it is explained below. 
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(a) (b) 

 
(c) (d) 

Fig. 4.2.  Some examples of single-device short-circuit faults using original switching states. (a) Connection 

to level 4 under a short-circuit fault in device Sn31. (b) Connection to level 1 under a short-circuit fault in 

device Sp12. (c) Connection to level 3 under a short-circuit fault in device Sn21. (d) Connection to level 4 under 

a short-circuit fault in device Sn21. 

 

Failed device 
Levels 

1 2 3 4 

Sn31 
Sp12 
Sn21 
Sn22 
Sp13 
Sn11 

Table 4.1.  Available levels under a short-circuit fault using original switching states in a four-level leg. 

There are some critical devices in which a short-circuit fault necessarily implies the loss of 

one level. For example, a short-circuit fault in devices Sp11, Sp12, or Sp13 implies the loss of level 1. 

Similarly, a short-circuit fault in symmetrical devices Sn31, Sn32, or Sn33 implies the loss of level 4. 

This is due to the fact that the connection of the output terminal to lower level 1 and upper level 4 

do not present redundant paths for the load current to flow. This fact can be appreciated in the two 

examples of Fig. 4.3. In Fig. 4.3(a), it can be seen that if it is desired to connect the output to level 

4 under a fault in device Sn31, a short-circuit path would be formed through the antiparallel diodes 

of devices Sp12 and Sp22. A similar scenario is presented in Fig. 4.3(b). 
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(a) (b) 

Fig. 4.3.  Two examples in which a short-circuit fault necessarily implies the loss of one level. (a) Loss of 

level 4 due to a short-circuit fault in device Sn31. (b) Loss of level 1 due to a short-circuit fault in device Sp12. 

Nevertheless, if one of the remaining devices (Sn11, Sn21, Sn22, Sp31, Sp21, and Sp22) fails in 

short-circuit, it will be possible to connect the output to all four input terminals through the 

definition of new switching states, thanks to the inherent redundancy of the MAC topology. 

However, in some cases, it will produce an increase of the blocking voltage in certain devices. As 

an example, Fig. 4.4 presents two new switching states to connect the output to levels 3 and 4 

under a short-circuit fault of device Sn21. Note that the blocking voltage of device Sn31 increases to 

2V in the connection to node i4. 

 
Fig. 4.4.  Modified switching states under a short-circuit fault in device Sn21. 

Now let us consider a case in which two devices fail simultaneously. For example, Fig. 4.5 

presents the four new switching states to connect the output to all the input terminals when devices 

Sp22 and Sn21 fail at the same time. In this interesting case, no levels are lost despite of the failure of 

two devices. 
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Fig. 4.5.  Modified switching states under simultaneous short-circuit faults in devices Sn21 and Sp22. 

The following rules are applied to define the new switching states: 

i) Do not leave floating points; i.e., all open devices have to withstand an integer 

multiple of V. 

ii) Minimize the maximum blocking voltage of devices. 

iii) In order to reduce the conduction losses, maximize the number of parallel current 

paths, provided that it does not imply an increase of the maximum blocking voltage 

of devices. 

As explained above, in some device faults, new switching states can be defined to avoid the 

short-circuit paths that are produced with the original switching states. However, the blocking 

voltage of some devices is increased in some cases. According to this, two different switching 

schemes are proposed. The first of them prioritizes the number of available levels. In the second 

one, the highest priority is to maintain the original device blocking voltage. 

4.3.1. Switching scheme I (SSI): Prioritization of number of levels 

SSI consists in using, whenever possible, new switching states in order to maximize the 

number of available levels, although in some cases it implies an unavoidable increase of the 

blocking voltage of some devices. The rules presented above are used to define the new switching 

states. 
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Table 4.2 presents a summary of the four-level MAC converter leg operating features under 

one and two short-circuit faults applying the proposed SSI. Table 4.2 only shows relevant cases due 

to symmetry. Note the large short-circuit fault-tolerance capacity of the MAC topology. The four-

level MAC converter can always continue operating under a single-device short-circuit fault 

maintaining at least three of the four levels. Regarding two simultaneous device faults, the 

converter generally can continue operating with at least two levels, and in most cases, with three or 

even four levels. 

Fault 
case 

Failed devices
Levels Devices under 

overvoltage 1 2 3 4 
1 Sn31 

a b None 
2 Sp12 None 
3 Sn21 

c Sn31 (2V) 
4 Sn22 Sn31, Sn32 (2V) 
5 Sp13 None 
6 Sn11 Sn21 (2V) 
7 Sn31, Sp12 None 
8 Sn31, Sn21 None 
9 Sn31, Sn22 None 
10 Sn31, Sp13 None 
11 Sn31, Sn11 Sn21 (2V) 
12 Sn31, Sn32 None 
13 Sn31, Sp21 Sp11 (2V) 
14 Sn31, Sp22 Sp11, Sp12 (2V) 
15 Sn31, Sn33 None 
16 Sn31, Sp31 Sp21 (2V) 
17 Sp12, Sn21 Sn31, Sn32 (2V) 
18 Sp12, Sn22 Sn31, Sn32 (2V) 
19 Sp12, Sp13 None 
20 Sp12, Sn11 Sn21 (2V) 
21 Sp12, Sp21 None 
22 Sp12, Sp22 None 
23 Sp12, Sn33 None 
24 Sp12, Sp31 Sp21 (2V) 
25 Sn21, Sn22 Sn31, Sn32 (2V) 
26 Sn21, Sp13 Sp11 (2V) 
27 Sn21, Sn11 Sn31 (3V), Sp12 (2V) 
28 Sn21, Sp22 Sn31, Sp12, Sp11 (2V) 
29 Sn21, Sn33 None 
30 Sn21, Sp31 Sp21 (2V) 
31 Sn22, Sp13 Sn31, Sn32 (2V) 
32 Sn22, Sn11 Sn31, Sn32 (2V) 
33 Sn22, Sn33 Sn31, Sn32 (2V) 
34 Sn22, Sp31 Sn31, Sn32, Sp21 (2V) 
35 Sp13, Sn11 - - - - - 
36 Sp13, Sp31 None 
37 Sn31, Sp11 None 
38 Sp12, Sn32 None 
39 Sn21, Sp21 Sn31, Sp11 (2V) 
40 Sn22, Sp22 - - - - - 
41 Sp13, Sn33 None 
42 Sn11, Sp31 Sn21, Sp21 (2V) 

(a) The level is achievable using the original switching state. 

(b) The level is lost. 

(c) The level is achievable using a new defined switching state. 

Table 4.2.  Four-level leg operating features under one or two short-circuit faults applying SSI. 
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The failure of one device may also require changes in the converter control (in particular, the 

modulation strategy). As an example, let us analyze a four-level three-phase MAC inverter. Fig. 4.6 

presents the space vector diagram (SVD) for the four-level three-phase MAC inverter [82]. 

 

Fig. 4.6.  SVD for the four-level three-phase MAC inverter. 

In failure cases in which no levels are lost, the SVD remains identical; i.e., all the original 

vectors can be synthesized by properly modifying the original switching states in any of the three 

phases. 

In cases in which a level is lost, the resultant SVD is different to the original one. Let us 

consider a failure case in phase a in which level 4 is lost. In this case, the red switching states of 

Fig. 4.6 are lost, so the resultant SVD would be the same one of Fig. 4.6, but removing the vectors 

corresponding with switching states 441, 431, 421, 411, 412, 413, and 414. As a result, reference 

vector Vref could not be synthesized in the red zone of Fig. 4.6. Therefore, the applicable SVD 

region would be the medium green hexagon. This resultant applicable SVD would be the same if 

either level 1 or level 4 is lost in one, two, or the three phases of the inverter. Similarly, it can be 

deduced that in cases in which level 1 and 2 or level 3 and 4 are lost in one, two or the three phases, 

the resultant applicable SVD would be the small brown hexagon. In cases in which just an inner 

level (level 2 or 3) is lost, some vectors are removed from the SVD, but it is always possible to 

synthesize the reference vector within the large blue hexagon (increasing the total harmonic 

distortion). 
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4.3.1.1. Observations in a general m-level leg using SSI 

In the following, the lost levels are specified as a function of the failed devices in a general 

m-level leg, considering one- and two-failed-device cases. 

a) One-failed-device cases 

i) If the failed device is one of the devices Sp1j (for j = 1, 2, …, m–1), level 1 is lost. 

Fig. 4.7 presents these devices circled with a blue solid line. As they form a 

diagonal, it will be referred as the “short-circuit level-1 critical diagonal”. 

ii) If the failed device is one of the devices Sn(m–1)j (for j = 1, 2, …, m–1), level m is lost. 

Fig. 4.7 presents these devices circled with a red dotted line. It will be referred as the 

“short-circuit level-m critical diagonal”. This diagonal and the previous one form the 

two “short-circuit critical diagonals”. 

iii) If the failed device does not belong to any of the two short-circuit critical diagonals, 

all levels are preserved. 

b) Two-failed-device cases 

i) If both failed devices belong to the short-circuit level-1 critical diagonal, only level 1 

is lost. If both failed devices belong to the short-circuit level-m critical diagonal, 

only level m is lost. 

ii) If one of the two failed devices belongs to the short-circuit level-1 critical diagonal, 

and the other one belongs to the short-circuit level-m critical diagonal, both level 1 

and m are lost. 

iii) If neither of both failed devices belongs to any of the two short-circuit critical 

diagonals, no levels are lost, except if the fault case is a “short-circuit fatal special 

case” or a “short-circuit inner special case” (special cases are explained below). 

iv) If one of the two failed devices belongs to the short-circuit level-1 critical diagonal, 

and the other one does not belong to any of the two short-circuit critical diagonals, 

only level 1 is lost, except if the fault case is a “short-circuit fatal special case,” a 

“short-circuit stair special case,” or a “short-circuit chain special case”. The 

reasoning is analogous for level m. 
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Fig. 4.7.  Short-circuit critical diagonals in a general m-level leg. 

The two-failed-device short-circuit special cases are the following: 

 Short-circuit fatal (scf) special case: the m–1 scf special cases occur when the two 

failed devices are Snkk and Spk(m–k) (for k = 1, 2, …, m–1).  These two devices are 

connected across one of the dc-voltage sources. Therefore, short-circuit faults in these 

devices would cause an unavoidable short-circuit of the associated dc-voltage source, 

see Fig. 4.8(a). 

 Short-circuit inner (sci) special case: the m–2 sci special cases occur when the two 

failed devices are Snkk and Sp(k+1)(m–k–1) (for k = 1, 2, …, m–2). In this special case, one 

of the inner levels is lost, see Fig. 4.8(b). 

 Short-circuit stair (scs) special case: the 2·(m–2) scs special cases occur when the two 

failed devices are Sp1j and Sp2j (for j = 1, 2, …, m–2), or Sn(m–1)j and Sn(m–2)j (for j = 1, 2, 

…, m–2). In this special case, both level 1 and level 2 are lost if Spkj devices fail, see 

Fig. 4.8(c), and both level m and level m–1 are lost if Snkj devices fail. 

 Short-circuit chain (scc) special case: the 2·(m–3) scc special cases occur when the two 

failed devices are Sp1j and Sp2(j+1) (for j = 1, 2, …, m–3), or Sn(m–1)j and Sn(m–2)j (for j = 1, 

2, …, m–3). As in the previous case, both level 1 and level 2 are lost if Spkj devices fail, 

see Fig. 4.8(d), and both level m and level m–1 are lost if Snkj devices fail. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.8.  Short-circuit special cases in a five-level MAC converter. (a) Two examples of scf special case. (b) 

Two examples of sci special case. (c) Two examples of scs special case. (d) Two examples of scc special case. 
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From the analysis above, we can conclude that a m-level MAC converter leg under an 

arbitrary two-failed-device fault only loses a maximum of two levels regardless of the number of 

levels of the converter (except in the short-circuit fatal special cases). 

It is also possible to establish a general rule for an m-level MAC converter in order to 

determine which switching states have to be redefined as a function of the failed devices. The 

following rule is valid for one- and two-failed device cases. 

i) If one of the failed devices corresponds to a device Snkj, switching states for 

connecting the output to levels k+1, k+2, …, and m, have to be redefined. 

ii) If one of the failed devices corresponds to a device Spkj, switching states for 

connecting the output to levels 1, 2…, and k, have to be redefined. 

4.3.2. Switching scheme II (SSII): Prioritization of the blocking voltage 

As it can be seen in Table 4.2, using SSI, the blocking voltage of some devices increases in 

some cases. This implies the need to select devices with high breakdown voltage. To avoid this, a 

new switching scheme is proposed equal to SSI but removing all switching states that produce a 

blocking voltage higher than V. Table 4.3 summarizes the operating features of a four-level leg 

operated with SSII. 

4.3.2.1. Observations in a general m-level leg using SSII 

The particular analysis for SSII regarding the lost levels as a function of the failed devices is 

detailed in the following. 

a) One-failed-device cases 

i) If the failed device is Spkj (for any value of k and j), level 1 is lost.  

ii) If the failed device is Snkj (for any value of k and j), level m is lost.  

b) Two-failed-device cases 

i) If one failed device is Sp(k1)(j1) (for any value of k1 and j1) and the other failed device 

is Sn(k2)(j2) (for any value of k2 and j2), levels 1 and m are lost. 

ii) If the two failed devices are Sn(k1)(j1) and Sn(k2)(j2), level m is lost. If k1 > k2 and (k1–

j1) > (k2–j2), level m–1 is also lost. The cases in which the failed devices are Spkj 

correspond to symmetrical cases. Thus, the conclusions are the same, but for levels 1 

and 2 instead of levels m and m–1. 
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Fault 
case 

Failed 
devices 

Levels Devices under 
overvoltage 1 2 3 4 

1 Sn31 None 
2 Sp12 None 
3 Sn21 None 
4 Sn22 None 
5 Sp13 None 
6 Sn11 None 
7 Sn31, Sp12 None 
8 Sn31, Sn21 None 
9 Sn31, Sn22 None 
10 Sn31, Sp13 None 
11 Sn31, Sn11 None 
12 Sn31, Sn32 None 
13 Sn31, Sp21 None 
14 Sn31, Sp22 None 
15 Sn31, Sn33 None 
16 Sn31, Sp31 None 
17 Sp12, Sn21 None 
18 Sp12, Sn22 None 
19 Sp12, Sp13 None 
20 Sp12, Sn11 None 
21 Sp12, Sp21 None 
22 Sp12, Sp22 None 
23 Sp12, Sn33 None 
24 Sp12, Sp31 None 
25 Sn21, Sn22 None 
26 Sn21, Sp13 None 
27 Sn21, Sn11 None 
28 Sn21, Sp22 None 
29 Sn21, Sn33 None 
30 Sn21, Sp31 None 
31 Sn22, Sp13 None 
32 Sn22, Sn11 None 
33 Sn22, Sn33 None 
34 Sn22, Sp31 - - - - - 
35 Sp13, Sn11 - - - - - 
36 Sp13, Sp31 None 
37 Sn31, Sp11 None 
38 Sp12, Sn32 None 
39 Sn21, Sp21 None 
40 Sn22, Sp22 - - - - - 
41 Sp13, Sn33 None 
42 Sn11, Sp31 None 

Table 4.3.  Four-level leg operating features under one or two short-circuit faults applying SSII. 

Using SSII, as using SSI, an m-level MAC converter leg under an arbitrary two-failed-device 

fault only loses a maximum of two levels regardless of the number of converter levels except in the 

scf or sci special cases. If a sci special case takes place, it is not possible to define a new switching 

state without increasing the blocking voltage of some devices. 

4.4. Fault-tolerance analysis under open-circuit faults 

Using original switching states under open-circuit faults represents a good solution since it 

maximizes the number of available levels and the maximum device blocking voltage only increases 

slightly; all this without the necessity of defining new switching states. However, if any level is 



90            DESIGN AND ANALYSIS OF A NOVEL MULTILEVEL ACTIVE-CLAMPED POWER CONVERTER 

 

 

lost, it is necessary to adjust the modulation strategy to the new set of available levels, according to 

the discussion previously presented in Section 4.3. 

As in short-circuit cases, there are some critical devices in which an open-circuit fault 

implies a level to be lost. For example, in a four-level leg, an open-circuit fault in devices Sn11, Sn21, 

or Sn31 implies the loss of level 1. Similarly, a fault in their symmetrical devices implies the loss of 

level 4. As an example, Fig. 4.9 presents the case in which Sn31 fails in open circuit. 

 

 

Fig. 4.9.  Open-circuit fault of device Sn31 in a four-level leg. 

Fig. 4.10 shows the case of an open-circuit fault of Sp12 in which the connection to all four 

levels is achievable. As it can be observed in the case of connection to level 4, a floating point 

appears. In order to eliminate this floating point, one possibility may be to turn on Sn31 or Sn21, but 

the maximum blocking voltage would increase to 2V. Using the original switching state, the 

blocking voltage of devices Sn31 and Sn21 is in principle undetermined. However, these blocking 

voltage values can be determined if OFF-state balancing-resistors are embedded in the converter 

hardware. 
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Fig. 4.10.  Open-circuit fault of device Sp12 in a four-level leg. 

OFF-state balancing-resistors are high-value resistors used to balance the blocking voltage of 

all devices when they are all in OFF state, see Appendix A. Fig. 4.11(a) shows the relative values of 

these resistors in a four-level leg. Fig. 4.11(b) shows the relevant relative values in the case of 

connection to level 4 under a fault in Sp12. The resulting blocking voltage of Sn31 is equal to 1.25V. 

 
(a) (b) 

Fig. 4.11.  OFF-state balancing resistors. (a) Relative values in a four-level leg. (b) Relevant relative values 

under an open-circuit fault of device Sp12. 

Table 4.4 presents a summary of the four-level leg operating features under one and two 

open-circuit faults. As it can be observed, the fault-tolerance capacity of the MAC topology against 

open-circuit faults is also very high, since the converter can always continue operating under a 

single-device fault maintaining at least three of the four levels. In two-failed-device cases, the 

converter can continue operating in almost all cases with at least two levels, and in most cases, with 

three or even four levels.  
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Fault 
case 

Failed 
devices 

Levels Devices under 
overvoltage 1 2 3 4 

1 Sn31 None 
2 Sp12 Sn31 (1.25V) 
3 Sn21 None 
4 Sn22 Sp11. Sp12 (1.25V) 
5 Sp13 Sn21 (1.25V) 
6 Sn11 None 
7 Sn31, Sp12 None 
8 Sn31, Sn21 None 
9 Sn31, Sn22 None 
10 Sn31, Sp13 Sn21 (1.25V) 
11 Sn31, Sn11 None 
12 Sn31, Sn32 None 
13 Sn31, Sp21 None 
14 Sn31, Sp22 Sn32 (1.25V) 
15 Sn31, Sn33 Sp21 (1.25V) 
16 Sn31, Sp31 None 
17 Sp12, Sn21 Sn31 (1.25V) 
18 Sp12, Sn22 Sn31 (1.25V) 
19 Sp12, Sp13 Sn31 (1.43V) 
20 Sp12, Sn11 Sn31 (1.25V) 
21 Sp12, Sp21 None 
22 Sp12, Sp22 Sn31 (1.3V). Sn32 (1.22V) 
23 Sp12, Sn33 Sn31. Sp21 (1.25V) 
24 Sp12, Sp31 None 
25 Sn21, Sn22 None 
26 Sn21, Sp13 None 
27 Sn21, Sn11 None 
28 Sn21, Sp22 Sn31. Sn32 (1.25V) 
29 Sn21, Sn33 None 
30 Sn21, Sp31 None 
31 Sn22, Sp13 Sn21. Sp11. Sp12 (1.25V) 
32 Sn22, Sn11 None 
33 Sn22, Sn33 Sn33. Sp11. Sp12 (1.33V) 
34 Sn22, Sp31 Sp11. Sp12 (1.25V) 
35 Sp13, Sn11 Sn21 (1.25V) 
36 Sp13, Sp31 Sn21 (1.25V) 
37 Sn31, Sp11 - - - - - 
38 Sp12, Sn32 Sn31. Sp11 (1.25V) 
39 Sn21, Sp21 None 
40 Sn22, Sp22 Sn31, Sn32, Sp11, Sp12 

41 Sp13, Sn33 Sn21, Sp21 (1.25V) 
42 Sn11, Sp31 None 

Table 4.4.  Four-level leg operating features under one or two open-circuit faults. 

4.4.1. Observations in a general m-level leg 

Under open-circuit faults, it is also possible to define the lost levels as a function of the 

failed devices. 

a) One-failed-device cases 

i) If the failed device belongs to the open-circuit level-1 critical diagonal (Snk1, for k = 

1, 2, …, m–1), level 1 is lost. Fig. 4.12 presents these devices circled with a blue-

solid-line. 
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ii) If the failed device belongs to the open-circuit level-m critical diagonal (Spk1 for k = 

1, 2, …, m–1), level m is lost. Fig. 4.12 presents these devices circled with a red-

dotted-line. 

iii) If the failed device does not belong to any of the two open-circuit critical diagonals, 

no levels are lost. 

b) Two-failed-device cases 

i) If both failed devices belong to the open-circuit level-1 critical diagonal, level 1 is 

lost. Similarly, if both failed devices belong to the open-circuit level-m critical 

diagonal, level m is lost. 

ii) If one of the two failed devices belongs to the open-circuit level-1 critical diagonal, 

and the other one belongs to the open-circuit level-m critical diagonal, both level 1 

and level m are lost. 

iii) If none of the failed devices belongs to any of the two open-circuit critical diagonals, 

no levels are lost, except in an “open-circuit inner special case,” (special cases are 

explained below). 

iv) If one of the two failed devices belongs to the open-circuit level-1 critical diagonal, 

and the other one does not belong to any of the two open-circuit critical diagonals, 

only level 1 is lost, except in an “open-circuit stair special case”. The reasoning is 

analogous for level m. 

The two-failed-device open-circuit special cases are the following: 

 Open-circuit fatal (ocf) special case: It occurs when the two failed devices are Sn(m–1)1 

and Sp11, which are the ones directly connected to the output terminal, see Fig. 4.13(a). 

 Open-circuit inner (oci) special case: the m–2 oci special cases occur when the two 

failed devices are Snkk and Sp(k–1)(m–k+1) (for k = 2, 3, …, m–1). In this case, the inner 

level k is lost, as it can be seen in Fig. 4.13(b). 

 Open-circuit stair (ocs) special case: the 2·(m–2) ocs special cases occur when the two 

failed devices are Snk1 and Snk2 (for k = 2, 3, …, m–1), or devices Spk1 and Spk2 (for k = 

1, 2, …, m–2). In this special case, levels 1 and 2 are lost if Snk1 and Snk2 devices fail, 

see Fig. 4.13(c), and levels m and m–1 are lost if Spk1 and Spk2 devices fail, see Fig. 

4.13(d). 
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Fig. 4.12.  Open-circuit critical diagonals in an m-level leg. 

 
(a) (b) 

 
(c) (d) 

Fig. 4.13.  Open-circuit special cases in a four-level leg. (a) The “ocf” special case. (b) The “oci” special 

case in which level 2 is lost. (c) An example of “ocs” special case in which levels 1 and 2 are lost. (d) An 

example of “ocs” special case in which levels 3 and 4 are lost. 
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As in short-circuit cases, a general m-level leg under an arbitrary single open-circuit fault 

only loses one level regardless of the number of levels (except in the ocf special case). Under an 

arbitrary case with two failed devices, the general m-level leg only losses a maximum of two levels. 

4.5. Experimental results 

The four-level MAC leg prototype with small dc-link capacitors shown in Fig. 2.8 has been 

used for the experimental tests. The leg prototype contains twelve MOSFETs (FDPF3860T - 100 

V) and their corresponding gate-driver circuits. The generation of the switch control signals is 

implemented through MATLAB-Simulink using dSPACE processor board DS1106 and dSPACE 

digital waveform output board DS5101, see Appendix B. 

Fig. 4.14 illustrates the circuit used for experimental tests. The applied modulation strategy 

consists of constant and equally-distributed duty ratios of connection of the converter output 

terminal to each one of the levels; i.e., each duty ratio equals 0.25, see Fig. 3.13(b). 

 

Fig. 4.14. Circuit used for experimental tests. 

Fig.  4.15(a) presents relevant waveforms under a transition to an emulated open-circuit fault 

in device Sp22. Device Sp22 is turned off all along to emulate an open-circuit fault. The original 

switching states are used all the time without losing any level, since this device does not belong to 

the open-circuit critical diagonals. Fig.  4.15(b) shows another example, in which devices Sn21 and 

Sp22 are turned on all along to emulate a short-circuit fault in these two devices. In this case, the 

original switching states are replaced by the new ones presented in Fig. 4.5 (SSI is used). As it can 

be seen in Fig.  4.15(b), the output terminal can continue being connected to any input terminal 

after the emulated short-circuit fault. Lastly, Fig.  4.15(c) shows another example in which it is 

emulated a short-circuit fault in device Sp12. In this case, level 1 is lost after the emulated fault since 
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device Sp12 belongs to the short-circuit level-1 critical diagonal. Consequently, the modulation 

strategy has to be readjusted to work with the three available levels. In this example, the duty ratio 

of connection to level 2 becomes 0.5. Original switching states are used for connecting the output 

terminal to levels 2, 3, and 4 after the emulated fault. 

vds (Sp22)
vo 

io 

vgs (Sp22)

(a) 

vgs (Sp22)

vo 

io 

vgs (Sn21)

(b) 

vds (Sp12)

vo 

io 

vgs (Sp12)

(c) 

Fig.  4.15. Experimental results under the following conditions: V=50 V, L=5 mH, R=33 Ω, fS=20 kHz. (a) 

Emulation of a open-circuit fault in device Sp22. (b) Emulation of a short-circuit fault in devices Sn21 and Sp22. 

(c) Emulation of a short-circuit fault in device Sp12. 
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4.6. Hardware modifications to improve the fault-tolerance ability 

4.6.1. Solution I: Parallelization of open-circuit critical diagonals 

This proposal consists of the implementation of two devices connected in parallel instead of 

just one device in the open-circuit critical diagonals. Fig.  4.16 presents this modification in a five-

level leg. With the proposed modification, if an open-circuit fault occurs in one of these devices, 

the corresponding level (level 1 or level m) would not be lost because the parallel device would 

provide a path for the output current to flow. 

 

Fig.  4.16. Five-level hardware modified proposal (solution I). 

Using one gate-driver circuit for each one of the parallel switches represents a good solution 

from the point of view of fault-tolerance, since it would permit to continue working with the 

parallel device in case that one of the two driver circuits fails. Using the same driver circuit for 

both parallel devices represents a simpler and economical solution. 

It is interesting to note that the devices that belong to the open-circuit critical diagonals are 

the ones that concentrate the highest conduction losses since they conduct all the output current in 

connections to levels 1 and m. Consequently, by forcing the simultaneous conduction of the parallel 

devices, this hardware modification allows reducing the overall conduction losses and achieving a 

better distribution of losses among the devices. 
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4.6.2. Solution II: Inclusion of two additional devices at input terminals i2 and im–1 

This hardware modification is based on the same concept used in the topology proposed in 

[52]. Fig.  4.17 presents the particular five-level case of the modified topology. Two auxiliary 

devices are included at input terminals i2 and im–1. These devices are permanently ON under normal 

operation and have no impact on the circuit fundamental behavior. However, they introduce 

additional conduction losses. In some short-circuit and open-circuit fault cases, they are switched 

off to disconnect the corresponding branches, as explained next in the proposed switching schemes. 

 

Fig.  4.17. Five-level hardware modified proposal (solution II). 

4.6.2.1. Switching scheme under short-circuit faults 

The inclusion of the additional devices permits the connection of the output to levels 1 and m 

when the failed device belongs to any of the two short-circuit critical diagonals. This is achieved by 

just turning off the corresponding auxiliary switch (Sa2 for connecting the output to level 1, or   

Sa(m–1) for level m), and then using the corresponding original switching state. Fig. 4.18(a) presents 

an example of a five-level leg in which Sa2 is turned off to connect the output terminal to level 1 

under a fault in the device Sp13. 

Please note that the blocking voltage of some devices is unavoidably increased to 2V. 

Specifically, devices Sp2j, for j = 1, 2, … , m–2, when the output is connected to level 1, and 

devices Sn(m–2)j, for j = 1, 2, …, m–2, when the output is connected to level m. 

If the failed device does not belong to any of the short-circuit critical diagonals, switching 

schemes proposed in Section 4.3 can be used maintaining the auxiliary devices in ON state. 
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4.6.2.2. Switching scheme under open-circuit faults 

As under short-circuit faults, the inclusion of the additional devices permits the connection 

of the output to levels 1 and m when the failed device belongs to any of the two open-circuit critical 

diagonals (except for devices Sn11 or Sp(m–1)1).  

In this occasion, however, it is necessary to properly modify the switching state, aside from 

turning off the corresponding auxiliary device. A simple solution is illustrated in the example of 

Fig. 4.18(b). The used switching state is the original one to connect the output to level m–1, but 

with the device Sp(m–1)1 in ON state. Besides, the auxiliary device Sa(m–1) is turned off to avoid a short-

circuit. If the failed device belongs to the level-1 open-circuit critical-diagonal, an analogous 

solution can be used; i.e., apply the switching state to connect the output to level 2, but with device 

Sn11 in ON-state and the auxiliary device Sa2 in OFF-state. 

As under short-circuit faults, the blocking voltage of some devices is unavoidably increased 

to 2V. If the proposed switching states are used, the devices that increase their blocking voltage are 

the same as under short-circuit faults.  

If the failed device does not belong to any of the open-circuit critical diagonals, the original 

switching states could be used, maintaining the auxiliary devices in ON state. 

 
(a) (b) 

Fig. 4.18.  Two examples of operation under faults in  Solution II. (a) Short-circuit fault in device Sp13. (b) 

Open-circuit fault in device Sp31. 

4.6.3. Solution III: Inclusion of one additional device at every input terminal 

This hardware modification represents an extension of the previous solution. Fig. 4.19 shows 

the particular five-level case of the modified topology. A new switching device Sabk is included at 

each one of the converter input terminals. As in the previous case, these devices are permanently 

ON under normal operating conditions and are switched off in some fault cases to disconnect the 

corresponding branches. 
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Fig. 4.19.  Five-level hardware modified proposal (solution III). 

The additional devices have to be bidirectional (capable of conducting currents and blocking 

voltages in both polarities). At the present time, bidirectional switches are usually realized from 

different configurations based on single unidirectional switches. Two switches connected in anti-

series, two switches with reverse blocking capability connected in anti-parallel, or a diode bridge 

with a single switch are commonly used configurations, see the inset of Fig. 4.19. These 

arrangements are available in modular form in the power electronics market. Nevertheless, the 

research activity on the design and fabrication of monolithically integrated bidirectional switches is 

active and intense. Recently, these type of bidirectional switches have been fabricated [83], [84], 

and it is expected that new ones with better performance are going to be available in the market in 

the near future [85]. 

It is important to bear in mind that the additional devices would introduce new conduction 

losses in the converter. If bidirectional switches are built from the different configurations that 

appear in Fig. 4.19, the losses would be considerable. Nevertheless, in the near future, 

monolithically integrated bidirectional switches may present significant lower conduction losses. 

4.6.3.1. Switching scheme under short-circuit faults 

Thanks to the inclusion of the auxiliary devices and to the fact that they are bidirectional, 

original switching states can be used permanently to connect the output to all the available levels 

under any number of simultaneous short-circuit faults in the topology switches, assuming that all 

auxiliary devices are working well. It is only necessary to turn off the proper auxiliary switches to 
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disconnect the related branches. As an example, in the case of Fig. 4.20, under a fault in Sn31, the 

device Sab3 is turned off in the switching states for connecting the output terminal to levels 5 and 4.  

In a general m-level leg, the proposed switching scheme can be defined as follows: 

i) Original switching states are used under any single fault case.  

ii) For every failed device Snkj, it is necessary to turn off the auxiliary device Sabk in the 

switching states for the connection of the output terminal to levels k+1, k+2, …, m. 

iii) For every failed device Spkj, it is necessary to turn off the auxiliary device Sab(k+1) in 

the switching states for the connection of the output terminal to levels 1, 2, …, k. 

Under any single-device fault, the blocking voltage of some topology devices is increased to 

2V, while the blocking voltage of the auxiliary device which is turned off is equal to V. Regarding 

two-simultaneous-device faults, the worst cases occur when auxiliary devices of two consecutive 

input terminals are required to switch off simultaneously. In these cases, the blocking voltage of 

some topology switches increases to 3V, while the blocking voltages of the two OFF-state auxiliary 

devices are 2V and V. 

4.6.3.2. Switching scheme under open-circuit faults 

Regarding single open-circuit faults, this solution does not incorporate any additional 

advantage compared to solution II, and the switching strategy could be exactly the same (Sab2 is 

equivalent to Sa2 and Sab(m–1) is equivalent to Sa(m–1)). Regarding cases with two or more 

simultaneous device-faults, this structure permits to operate with all levels in all cases, except when 

the failed devices eliminate any possible path for the output current to flow. 

 
(a) (b) 

Fig. 4.20.  An example of operation under a short-circuit fault in device Sn31 in Solution III. (a) Connection to 

level 5. (b) Connection to level 4 
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4.7. Conclusion 

The MAC topology presents the ability to continue operating after a fault condition, which 

cannot be achieved with conventional two-level converters. This fact makes the MAC topology 

especially interesting for applications where it is very important to avoid sudden system shut-

downs. An m-level converter leg with m–1 dc-voltage sources is capable to continue operating after 

a single open- or short-circuit fault with at least m–1 levels. For two-simultaneous faults, the 

converter can continue operating in almost all cases with at least m–2 levels. 

Open-circuit faults are less detrimental than short-circuit faults because original switching 

states can be used permanently, and the possibility that a short-circuit path is formed is completely 

avoided. In this sense, it would be good to somehow ensure that all faults are in open-circuit. 

Three different hardware modifications have been proposed to increase the MAC fault-

tolerance ability. Solution III appears to be very attractive from the point of view of fault tolerance, 

since the fault-tolerance capacity is significantly improved under open-circuit faults and especially 

under short-circuit faults, where the converter can continue operating using original switching 

states under any number of simultaneous faults. However, the increase of the overall losses in the 

converter produced by the added bidirectional switches may discard this solution in practice, at 

least with the current technology. 

On the other hand, solution I appears to be very practical since the new additional devices 

allow reducing the overall conduction losses, and achieving a better distribution of losses among 

the devices, as well as improving the fault-tolerance capacity against open-circuit faults. Finally, 

solution II also represents an interesting solution since the fault tolerance against open- and short-

circuit faults is significantly improved, while losses are not highly increased. 



CHAPTER 5 

CONCLUSION 

Abstract  This chapter summarizes the thesis contributions and conclusions, and proposes the 

possible future research work. 

5.1. Contributions and conclusions 

The main contributions and conclusions can be summarized as follows: 

 The thesis focuses on the study of the recently proposed multilevel-active clamped 

topology and its innovative operating principle. In this converter, switching states are 

defined so that all possible current paths connect the output terminal to the corresponding 

input terminal. In addition, blocking voltages are clamped to the desired level. The good 

performance of the novel topology and the operating principle have been verified through 

simulation and experiments on a first design and assembly of a four-level three-leg MAC 

converter prototype. 

 An analysis of the MAC converter losses has been performed. Device conduction and 

switching losses have been carefully analyzed. 

 If devices are properly selected for a certain operating point, both conduction and 

switching losses should be lower in the MAC topology than in a two-level topology. 

Regarding conduction losses, the fact that  varies exponentially with the 

device blocking voltage, and the reduced equivalent ON resistance thanks to the 

parallel current paths, should result in a decrease of overall conduction losses. 

Regarding switching losses, they should be lower not only because low voltage-rated 

devices can be used with better relative performance features, but also because all 

switching transitions occur at lower blocking voltage levels, which in principle 

should produce lower switching losses. Compared to other multilevel converters 

using the same modulation pattern, conduction losses should be lower in the MAC 

topology thanks to the parallel current paths. With regard to switching losses, they 

should be similar to other multilevel topologies. Nevertheless, in the MAC topology 

there is a degree of freedom to distribute the switching losses among the devices. 

 Expressions to calculate conduction losses in the total leg and in each single device, 

operating under different scenarios, have been derived. The expressions to determine 

the conduction losses operating as a three-phase inverter under the V2PWM are very 
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simple since they are independent from the load impedance angle. The distribution 

of current among the devices for each switching state has been defined up to the 

seven-level MAC leg. 

 Switching losses have been studied through the analysis of the transitions between 

adjacent switching states, including the effect of the diode reverse-recovery 

processes. The particular case of a four-level leg has been analyzed in detail. The 

extrapolation into a higher number of levels can be directly deduced. An important 

advantage of the MAC topology is that transitions between switching states can be 

performed selecting the device that concentrates the switching losses. 

 The efficiency of the four-level MAC converter has been compared to a 

conventional two-level converter under a particular selection of MOSFETs. The 

efficiency of the MAC converter is higher in all the frequency-range. The close 

agreement between analytical and experimental results supports the comparison 

conclusions and validates the analytical loss models. A study to determine the 

minimum chip area needed for both topologies under specific conditions has 

concluded that the minimum total area is lower in the MAC topology for switching 

frequencies above 20-30 kHz despite presenting twelve devices instead of two. It is 

important to note that all these comparisons have been carried out using a particular 

selection of MOSFETs. The results could vary if other devices had been selected. 

 An analysis of the fault-tolerance capacity of the MAC converter has been performed. The 

MAC topology can continue operating after a fault condition, which is not possible in 

conventional two-level converters. This is an important advantage of the MAC topology, 

especially for those applications in which sudden system shut-downs lead to catastrophic 

consequences. Open-circuit faults are less detrimental than short-circuit faults. In this 

sense, it would be useful to somehow ensure that all faults be in open circuit. New 

switching strategies and different topology modifications have been proposed to overcome 

the limitations caused by faults, and therefore, increase the fault-tolerance ability. The 

hardware modification consisting in parallelizing the outer-diagonal devices appears to be 

very practical since the new additional switches allow reducing the overall conduction 

losses, achieving a better distribution of losses among the devices, as well as improving the 

fault-tolerance capacity against open-circuit faults. 

 Several basic design guidelines for the MAC converter have also been presented. A 

network of self-powered gate-driver power-supply circuits is proposed to avoid the need of 

using isolated external gate-driver circuit power-supplies. Furthermore, it is recommended 
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to use switches with low output parasitic capacitance and low reverse-recovery current 

diodes to minimize the device current spikes, and consequently the switching losses. 

 If a particular device (e.g., MOSFET) at specific voltage and current ratings is available 

with good performance, low cost, and ideally integrated auxiliary circuitry (gate driver, 

gate driver power supply, ...); then, this topology and control could be applied to 

implement a universal and easily scalable converter to be used in a number of applications. 

 It is the understanding of the author that the proposed topology can be competitive in 

applications requiring devices with voltage ratings lower than 600 V. This is basically due 

to two reasons. First, there is a major feasibility of integrating the self-powered gate-driver 

power-supply circuits. And secondly, MOSFETs appear to be more suitable than IGBTs 

for the MAC topology since they present better performance conducting in parallel. 

Medium and low power/voltage motor drives, wind power systems, or photovoltaic 

systems could be interesting applications for the MAC topology, where the advantage of 

using multilevel diode-clamped converters has already been proven. 

 The main disadvantage of the MAC converter compared to other commercial converters is 

its large number of power devices with their corresponding gate-drive circuits. 

These research contributions have already led to the publication of two journal papers [87] 

and [88] and four conference papers [89]-[92]. Besides, another paper proposal covering the 

contributions in Chapter 3 is currently being prepared for publication in the IEEE Transactions on 

Industrial Electronics. 

5.2. Future research work 

Among the many possible future extensions of the research reported here, we would like to 

highlight the following: 

 Extend the efficiency analysis. i) Perform the experimental comparison between the 

efficiency of the MAC topology and a two-level converter operating as three-phase 

inverters. ii) Perform the comparison under different sets of power devices and operating 

conditions. iii) Compare the efficiency of MAC topology with other multilevel topologies. 

 Further investigate the switching strategies (selection of the suitable device to concentrate 

the switching losses in each switching transition) to optimize the distribution of losses 

among all the semiconductors. 
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 Analyze the fault-tolerance capacity with a single dc-voltage source and capacitors 

connected across every two adjacent input terminals, instead of multiple dc-voltage 

sources. 

 Design a fault-tolerant MAC converter including the system to detect the faults and 

implementing the control scheme capable of instantaneously changing the switching 

strategy in case of a fault. The fault-detection system could be implemented in the gate-

driver circuit and the control scheme could be implemented in a FPGA. 

 Explore and quantify the advantages/disadvantages in converter cost, reliability, and 

performance that we can obtain using the hardware variation consisting in parallelizing the 

outer-diagonal devices. 



APPENDIX A 

DESIGN ISSUES OF THE MULTILEVEL ACTIVE-CLAMPED 

TOPOLOGY 

Abstract  This appendix studies design issues of the MAC topology. Several guidelines are proposed 

to guarantee a proper MAC converter design and improve its performance. The inclusion of a resistor 

network to balance the blocking voltage of devices when the converter is in OFF state, the use of self-powered 

gate-driver power-supplies, or the definition of a shut-down sequence to avoid possible device failures are 

some of the proposals. This appendix also studies the singular device current spikes that appear in the MAC 

topology during switching state transitions. These spikes occur owing to diode reverse recovery and to the 

discharging of the device output parasitic capacitances. A proper device selection reduces these current 

peaks, decreasing the switching losses and the converter electromagnetic interference. Experimental tests are 

carried out with a four-level MAC prototype to validate the analysis. 

A.1. OFF-state balancing resistor network 

When the converter is in OFF state (all devices OFF) and assuming the same equivalent 

resistance per device, the blocking voltage of devices is unbalanced. Sn11 and Sp(m–1)1 are the devices 

that withstand the largest blocking voltage, which for example is equal to 2.11·V/2 for m = 6 and 

equal to 2.34·V/2 for m = 7. The relative blocking voltage of these two devices increases with the 

number of levels. Consequently, if the number of levels is high, the use of an auxiliary circuit to 

balance the device blocking voltages could be necessary. 

This balancing circuit can consist of simply including additional high-value resistors 

connected across each device, as shown in Fig. A.1. The value of these resistors should be selected 

so that the equivalent resistance (Req) of the parallel connection of the switch, the resistor, and any 

other additional circuitry, presents the relative values shown in Fig. A.1. If these resistors are 

embedded in the converter hardware, the system becomes completely balanced and the blocking 

voltage of all devices (when the converter is in OFF state) is equal to V/2=Vdc-link/(2·(m–1)). The 

value of the resistors should be high enough so that they introduce negligible losses. 
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Fig. A.1.  OFF-state balancing resistor network. 

A.2. Shut-down sequence 

In a MAC converter, a non-safe situation could take place during the converter shut-down 

due to different delays among the turn off of the devices. Consider for example a four-level leg 

with the state shown in Fig. A.2(a) at the instant previous to shut-down. If the turn-off command is 

sent to all the switches at the same time, devices Sp11 and Sp12 could be the first turning off due to 

asymmetries. If this situation happens under an inductive load, the output current would flow 

through the device Sp13 and through the antiparallel diodes of devices Sn21 and Sn31, as it is shown in 

Fig. A.2(b). Then, Sp11 would have to withstand a voltage equal to 2V. This is a particular case, but 

other undesirable situations could occur if the shut-down sequence is not properly managed. In the 

worst case, one single device would have to withstand the full dc-link voltage. For instance, in the 

state of Fig. A.2(a), if Sp11, Sp12, and Sp13 are the first turning off, then device Sp11 would have to 

block the entire dc-bus. 

To ensure a safe shut-down of the MAC converter in any condition, there are different 

options. One effective and simple choice consists on the following shut-down sequence, with 

reference to Fig. 2.1: First, a command is sent to turn off all devices of the (2m–2)-switch pole. 

After a proper blanking time, a command is sent to turn off all devices of the next (2m–4)-switch 

pole. After a proper blanking time, a command is sent to turn off all devices of the next (2m–6)-

switch pole. This process is repeated until the devices of the last 2-switch pole are turned off. The 

opposite sequence can be applied to ensure a safe turn on of the MAC converter. 
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(a) (b) 

Fig. A.2.  Possible failure mechanism in a shut-down process. (a) State of the leg at the instant previous to 

shut-down. (b) Resulting transient state if devices Sp11 and Sp12 are the first in turning off. 

A.3. Self-powered gate-driver power-supply network 

The MAC topology presents a high number of devices and their corresponding gate drivers. 

A simple solution to simplify the implementation of the converter hardware consists in using 

simple self-powered gate-driver power-supplies (GDPS) circuits connected across the devices, 

which avoids the need of using multiple external isolated gate-driver power-supplies. 

One possibility to implement such circuit is the topology presented in Fig. A.3, originally 

proposed in [86] and applied to a diode-clamped topology in [61]. In this circuit, the energy to 

drive the device is obtained from the energy that is otherwise lost during the main switch S௫௞௝ turn-

off transition and, eventually, from the corresponding dc-link capacitor or dc-power supply 

connected across the switch during its OFF state. This energy is stored in the GDPS capacitor C௫௞௝. 

The current charging GDPS capacitor C௫௞௝ flows through the auxiliary MOSFET Sୟ௫௞௝. The zener 

diode D୸௫௞௝, polarized by resistor Rୟ௫௞௝, limits the value of ݒୡ௫௞௝ , and the blocking diode Dୠ௫௞௝  

prevents the discharging of C௫௞௝ when the main power device S௫௞௝ is in ON state. 

 

Fig. A.3.  Proposed GDPS circuit (x{n, p}, k{1, 2, .., m–1}, and j{1, 2, .., m–1}). 
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A.3.1. Self-powered gate-driver power-supply network under the V2PWM  

To operate the converter as a three-phase inverter, the modulation scheme V2PWM presented 

in Section 3.3 can be selected. Fig. A.4(a) presents the corresponding leg duty-ratio patterns. 
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Fig. A.4.  Leg duty-ratio pattern for a five-level three-leg converter (mi = 0.75). (a) Original PWM scheme. 

(b) Modified PWM scheme with ݀௢௙௙௦௘௧ = 0.02. 

Under this modulation scheme, diagonal devices Sn(m–1)j (j = 1, 2, …, m–1) and diagonal 

devices Sp1j remain in ON state during 120º intervals every line cycle, which prevents their 

corresponding GDPS capacitors ܥ௫௞௝  from being charged during this period. For example, in a five-

level leg, devices Sn41, Sn42, Sn43, and Sn44 remain conducting while d5 equals 0 (from =120º to 

=240º in Fig. A.4(a)). These are the dotted-line circled devices in Fig. A.5. Similarly, devices Sp11, 

Sp12, Sp13, and Sp14 remain conducting while d1 equals 0 (from =0º to =60º, and from =300º to 

=360º). These are the solid-line circled devices in Fig. A.5. 

In order to prevent the discharging of these GDPS capacitors below the minimum voltage 

value for correct operation of the gate driver, three possible solutions are proposed: 

i) The use of higher capacitance ܥ௫௞௝: A simple possibility to solve the problem is to 

use a large enough capacitance value ܥ௫௞௝, so that this capacitor stores enough 

energy to supply the gate driver during the 120º in which the device is in ON-state. 

The required value of ܥ௫௞௝ will depend upon the ac-side line-cycle frequency. The 

lower the frequency is, the higher the required capacitance value will be. If the line-

cycle frequency is considerably lower than the switching or carrier frequency, the 

size of GDPS capacitors would have to be significantly higher than the required size 

for  GDPS  capacitors  that  does  not  present  the  discharging  problem.  This  fact  
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Fig. A.5.  Addition of extra circuitry to deal with the discharge of GDPS capacitors ܥ௫௞௝. 

represents an important inconvenient of this solution. Furthermore, the recharging 

efficiency worsens as the capacitances are larger. 

ii) Modifying the converter control: Another possibility proposed in [61] to overcome 

the problem without the need of increasing the size of the GDPS capacitors consists 

in modifying the original PWM strategy adding a small offset ݀୭୤୤ୱୣ୲ in the duty 

ratios d1 and d5. Since all duty ratios are higher than zero, all devices in the converter 

leg turn on and off in every switching cycle, causing a recharge of all GDPS 

capacitors in every switching cycle. Fig. A.4(b) presents the modified duty ratio 

patterns. This solution, however, produces an increase of the switching losses and 

also a slight increase of the ac-side voltage harmonic distortion. 

iii) Adding extra circuitry: A third option is to add additional circuitry to the topology in 

order to feed those GDPS capacitors which experience the discharging problem from 

other GDPS capacitors. This can be done through the introduction of bootstrap 

diodes or through the parallel connection of GDPS capacitors with the same 

reference terminal. Fig. A.5 proposes the simplest configuration to solve the problem 

in a five-level leg. Connections between capacitors with the same reference terminal 
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are used whenever possible (represented with blue dotted lines in Fig. A.5) and 

bootstrap diodes are used in the remaining cases (represented with red dotted lines in 

Fig. A.5). 

A.4. Singular current spikes during switching-state transitions 

During transitions between switching states, some singular current spikes appear in some 

power devices of the topology. These current spikes can be produced owing to two different 

reasons: the reverse-recovery of diodes and the discharge of the device output parasitic capacitance. 

A.4.1. Current spikes owing to diode reverse-recovery 

This phenomenon has already been introduced in section 3.3.2. In switching state transitions 

where one or more diodes go through a hard-switching reverse-recovery process, a current spike 

flows through the reverse-recovered diode and other devices. In particular, this current spike flows 

through the first device being turned on during the switching transition, producing extra switching 

losses.  

Fig. A.6 presents the switching state transition from connection to node i2 to connection to 

node i1 with negative output current io in a four-level MAC leg to illustrate the phenomenon. Fig. 

A.6(a) shows the switching state in which the output terminal is connected to the node i2. In the 

first step of the transition, devices Sp11, Sp12, and Sp13 are turned off. Since the output current flows 

through the diodes of these three devices, the output terminal continues connected to the node i2, as 

it is depicted in Fig. A.6(b). Then, after the dead time, device Sn11 is turned on and the current starts 

flowing through this device connecting the output terminal to node i1 (see Fig. A.6(c)). At this 

point of the transition, the diodes of devices Sp11, Sp12, and Sp13 suffer a reverse-recovery process, 

and the reverse-recovery currents flow through Sn11 at turn on, increasing the switching losses. 

Finally, after a short transient, the steady-state connection of the output terminal to the node i1 is 

reached, as shown in Fig. A.6(d). 

Table A.1 presents the transitions of a four-level leg in which a reverse-recovery process of 

one or more diodes occurs. Table A.1 indicates the diodes presenting reverse recovery and the 

switch that concentrates the associated switching losses, with an indication of the total reverse-

recovery current. In Table A.1, it has been assumed that the 6-switch pole devices are selected to 

concentrate the switching losses (the symbol (*) indicates those cases in which it could be possible 

to choose another device to concentrate the switching losses). 

Using low reverse-recovery current diodes (e.g.; Schottky) will reduce these current peaks. 
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 (a) (b) 

 
 (c) (d) 

Fig. A.6.  Transition between switching state of connection to node i2 to switching state of connection to node 

i1 with negative output current io. (a) Connection to node i2. (b) First transient state of the transition. (c) 

Second transient state of the transition. (d) Connection to node i1. 

Switching state 
transition     

(current polarity) 

Devices whose 
diodes present 

reverse recovery 

Devices that concentrate the 
associated switching losses  

(Total reverse-recovery current) 

1  2 (io>0) Sn11 Sp13 (irr) 
(*) 

2  3 (io>0) Sn21, Sn22 Sp22 (2·irr) 
(*) 

3  4 (io>0) Sn31, Sn32, Sn33 Sp31 (3·irr) 

4  3 (io<0) Sp31 Sn33 (irr) 
(*) 

3  2 (io<0) Sp21, Sp22 Sn22 (2·irr) 
(*) 

2  1 (io<0) Sp11, Sp12, Sp13 Sn11 (3·irr) 

Table A.1.  Switching state transitions that produce reverse-recovery current-spike in a four-level leg. 

A.4.2. Current spikes owing to the discharging of the device output parasitic 

capacitance ܛܛܗ࡯ 

In some transitions between switching states, current spikes (݅ୢ୧ୱ) will flow through several 

devices owing to the discharging of the device output parasitic capacitance ܥ୭ୱୱ. 

Fig. A.7 shows the switching state transition from connection to node i3 to connection to 

node i2 with negative output current ݅୭ in a four-level MAC leg to illustrate the phenomenon. Fig. 

A.7(a) shows the switching state in which the output terminal is connected to node i3. In the first 



114            DESIGN AND ANALYSIS OF A NOVEL MULTILEVEL ACTIVE-CLAMPED POWER CONVERTER 

 

 

step of the transition, devices Sp22 and Sp21 are turned off. Since the output current flows through 

the diodes of these two devices, the output terminal continues connected to node i3, as it is depicted 

in Fig. A.7(b). Then, after the dead time, device Sn22 is turned on (device Sn22 have been selected to 

concentrate the switching losses of this transition, and therefore it is turned on a short instant before 

Sn21) and the output current starts flowing through this device connecting the output terminal to 

node i2 (see Fig. A.7(c)). At this point of the transition, the blocking voltage of device Sn21 reduces 

to 0V through the discharging of its output parasitic capacitance (ܥ୭ୱୱ). The parasitic-capacitance 

discharging current starts flowing once the device Sn22 is completely ON, hence the switching losses 

are not increased. The energy stored in the parasitic capacitance is first transferred to the Sp12-Sn22-

Sp13-Sn21 loop inductance and then dissipated through the devices’ ON resistances. Finally, after the 

short transient, device Sn21 is turned on and a new path for the output current is available, as it can 

be seen in Fig. A.7(d). 

 
 (a) (b) 

 
 (c) (d) 

Fig. A.7.  Transition between switching state of connection to node i3 to switching state of connection to node 

i2 with negative output current io. (a) Connection to node i3. (b) First transient state of the transition. (c) 

Second transient state of the transition. (d) Connection to node i2. 

Table A.2 presents all the switching transitions of a four-level leg in which a current spike 

due to the discharging of a parasitic capacitance ܥ୭ୱୱ occurs. In Table A.2, it is also assumed that   

the 6-switch pole devices concentrate the switching losses. 
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The current peak depends on the parasitic capacitance value and the loop impedance 

(resistance and inductance). Choosing devices with a small parasitic capacitance will reduce the 

magnitude of these spikes. 

Switching state transition  
(current polarity) 

Devices whose parasitic 
capacitance is discharged

i1  i2 (io>0) Sp11, Sp12

i2  i3 (io>0) Sp22 

i4  i3 (io<0) Sn31, Sn32

i3  i2 (io<0) Sn21 

Table A.2.  Switching state transitions that produce capacitor-discharging current-spike in a four-level leg. 

A.4.3. Experimental tests 

A four-level MAC prototype with small dc-link capacitors has been used for the 

experimental tests. Fig. A.8 illustrates the experimental setup. The applied modulation strategy is 

the one proposed in [57] (PWM scheme 2), which allows maintaining the dc-link capacitor 

voltages balanced. Fig. A.9 and Fig. A.10 present relevant experimental waveforms using two 

different MOSFET devices for comparison. It can be seen that the negative current peak owing to 

the discharging of the Sn21 parasitic capacitance is significantly reduced when a MOSFET with a 

low parasitic capacitance is used (see Fig. A.9(b) and Fig. A.10(b)). Similarly, the current peak in 

device Sn11 owing to diode reverse recovery is smaller when devices with a lower reverse-recovery 

charge ܳ୰୰ are used. Furthermore, it can be seen that the switching losses of device Sn11 are also 

reduced significantly. 

 

Fig. A.8.  Four-level boost-buck dc-dc converter implemented with MOSFETs. 
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Fig. A.9.  Experimental results using MOSFETs IRF3415 (Qrr = 2.2 C, Coss = 640 pF)  in the following 

conditions: VA = 75 V, C  = 100 F, La = Lb = 5 mH, RL = 33 , CL = 470 F,  fs = 5 kHz, Rg = 20 , td = 

500 ns. (a) Two-and-a-half-switching-cycle view. (b) Zoom view of the current spike in device Sn21 due to the 

discharge of its capacitance Coss. (c) Zoom view of the current spike in device Sn11 due to the reverse recovery 

of antiparallel diodes of devices Sp11, Sp12, and Sp13. 
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Fig. A.10.  Experimental results using MOSFETs FDPF3860T (Qrr = 56 nC, Coss = 145 pF) in the same 

conditions of Fig. A.9. (a) Two-and-a-half-switching-cycle view. (b) Zoom view of the current spike in device 

Sn21 due to the discharge of its capacitance Coss. (c) Zoom view of the current spike in device Sn11 due to the 

reverse recovery of antiparallel diodes of devices Sp11, Sp12, and Sp13. 

A.5. Conclusion 

In this appendix, several design issues of the multilevel active-clamped topology have been 

discussed. The study identifies the convenience of including a resistance network to balance the 

blocking voltage of all devices when the converter is in OFF state. A proper and simple shut-down 

sequence is proposed to avoid device failures due to an excessive blocking voltage. A network of 

self-powered gate-driver power-supply circuits, with convenient interconnections among them, is 

also proposed to simplify the integration of those circuits in the topology. Finally, the singular 

current spikes that occur in switching-state transitions have been analyzed. To minimize these 

current spikes, it is recommended to use devices with low output parasitic capacitance and low 

reverse-recovery current diodes. 





APPENDIX B 

EXPERIMENTAL EQUIPMENT 

Abstract  This appendix contains a description of the experimental equipment employed. 

B.1. Converter prototypes 

B.1.1. Four-level MAC prototypes 

Fig. B.1 presents the two MAC converter prototypes assembled for performing the different 

experimental tests. 

  
(a) (b) 

Fig. B.1.  Four-level three-leg MAC prototypes. (a) MAC prototype 1. (b) MAC prototype 2. 

B.1.2. Two-level prototype 

Fig. B.2 shows the two-level prototype built to carry out the efficiency comparison in 

Section 3.4. As it can be seen in Fig. B.2, the same printed circuit board (PCB) used for the MAC 

prototypes have been used for the two-level converter. 
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Fig. B.2.  Two-level prototype. 

B.2. dSPACE system 

In most experiments performed, the converter control, PWM strategy, and the generation of 

the switch control signals have been implemented using a dSPACE system based on processor 

board DS1006. Fig. B.3 presents a picture of the dSPACE expansion box inside which the different 

dSPACE boards are placed. The dSPACE expansion box contains the following used boards: 

 1 DS1006 processor board. 

 3 DS5101 digital waveform output (DWO) boards (one for each leg). 

 1 DS2004 A/D board. 

 

Fig. B.3.  dSPACE system. 
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Tests shown in Chapter 2 have been the only ones in which the system previously shown 

have not been used. These tests have been performed using dSPACE DS1103 and an Altera 

EPF10K70 programmable logic device. 

B.3. Dc-power-sources 

Fig. B.4 presents a picture of the three dc power sources used to supply the different levels of 

the MAC converters. Power supply 1 corresponds to the model 6030A from HP, power supply 2 

corresponds to the model SPS80-82 from Amrel, and power supply 3 corresponds to the model 

5001-I from California Instruments. Other power sources with lower power rating have also been 

used to supply auxiliary circuits like, for example, sensors. 

1

2

3

 

Fig. B.4.  DC power supplies. 

Table B.1, Table B.2, and Table B.3 show the main specifications of the three power 

supplies. 

Maximum dc voltage 200 V 

Maximum dc current 17 A 

Maximum power 1 kW 

Table B.1. Dc power supply HP 6030A specifications. 
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Maximum dc voltage 80 V 

Maximum dc current 82 A 

Maximum power 6.6 kW 

Table B.2. Dc power supply Amrel SPS80-82 specifications. 

Maximum dc voltage 300 V 

Maximum dc current 16.6 A 

Maximum power 5 kW 

Table B.3. Dc power supply California Instruments 5001-I specifications. 

B.4. Loads 

B.4.1. Resistive load 

The three-phase resistive loads are shown in Fig. B.5. 

 
(a) (b) 

Fig. B.5.  Three-phase resistive loads. (a) Resistive load 1. (b) Resistive load 2. 

Table B.4 and Table B.5 show the main specifications of them. 
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Maximum input line-to-line voltage 400 Vrms 

Selectable resistance per phase [66, 33, 22, 16.5]  

Maximum power 9.6 kW 

Table B.4. Resistive load 1 specifications. 

Maximum input line-to-line voltage 400 Vrms 

Selectable resistance per phase [1587,…, 36]  

Maximum power 4.4 kW 

Table B.5. Resistive load 2 specifications. 

B.4.2. Inductive load 

The inductive load sets are depicted in Fig. B.6. 

  
(a) (b) 

Fig. B.6.  Three-phase inductor sets. (a) Inductive load 1. (b) Inductive load 2. 

 

Table B.6 shows the main specifications of a single toroidal inductor. 
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Core material Micrometals Iron Powder Mix No. 26 

Maximum current 10 A 

Average Inductance ([0, 10] A) 2.5 mH 

Inductance @ 10 A 1 mH 

Table B.6. Single toroidal inductor specifications. 

B.5. Scopes 

Fig. B.7 and Fig. B.8 show the pictures of the two scopes used. 

 

Fig. B.7.  Tektronix MSO 3054 scope. 

 

Fig. B.8.  Tektronix TDS 714L scope. 
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B.6. Double pulse board 

In order to measure the turn-on, turn-off, and reverse-recovery switching losses (Section 

3.4), the double-pulse board (DPB) shown in Fig. B.9 has been used. 

 

Fig. B.9.  Double-pulse board used to measure device switching losses. 

B.7. General overview 

Most of equipment presented above can be distinguished in the general test bed overview 

depicted in Fig. B.10. 

 

Fig. B.10.  General test bed overview. 





APPENDIX C 

THERMAL RESISTANCE VERSUS DEVICE SILICON AREA 

Abstract  This appendix contains an analysis carried out to obtain a correlation between the 

junction-to-sink thermal resistance ܴ௧௛,௝௦ and the device silicon area. This correlation is used in Section 3.6. 

C.1. Correlation analysis 

In order to obtain the correlation between the junction-to-sink thermal resistance 	

ܴ୲୦,୨ୱ and the device silicon area ܣୗ, some devices have been opened to measure their chip areas. 

Fig. C.1 presents the pictures of two of them. 

 
(a) (b) 

Fig. C.1.  Pictures of two opened MOSFETs. (a) MOSFET FDA24N40F. (b) MOSFET FDPF3860T. 

Table C.1 shows the measured areas and thermal resistances of all devices analyzed. The 

values of junction-to-case thermal resistances ܴ୲୦,୨ୡ have been taken from their corresponding 

datasheets, the values of case-to-sink thermal resistances ܴ୲୦,ୡୱ have been estimated depending on 

the package, and resistances ܴ୲୦,୨ୱ can be equaled from the addition of the previous two resistances. 

 Device 
    ܁࡭

[mm2] 
      ܋ܒ,ܐܜࡾ

ሾԨ/܅ሿ 
    ܛ܋,ܐܜࡾ
ሾԨ/܅ሿ 

   	ܛܒ,ܐܜࡾ
ሾԨ/܅ሿ 

FDPF3860T 3.45 3.7 0.5 3.95 

IRF3415 22.55 0.75 0.5 1.00 

20NF20 10.26 1.38 0.5 1.63 

13NM60N 10.64 1.39 0.5 1.64 

FDA24N40F 28.8 0.45 0.5 0.95 

12N60B3D 16.1 1.2 0.5 1.7 

12N60B3D (diode) 7.02 1.9 0.5 2.4 

Table C.1.  Relevant parameters of devices analyzed. 
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Fig. C.2 presents the obtained correlation between the junction-to-sink thermal resistance 

ܴ୲୦,୨ୱ and device chip area ܣୗ. 
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Fig. C.2.  Junction-to-sink thermal resistance ܴ௧௛,௝௦ as a function of device chip area. 

Rounding the obtained correlation, the final expression can be expressed as 

ܴ୲୦,୨ୱ	ሺܣୗሻ ൌ 8.5
Ԩ

W ∙ mmଶ ∙ ୗܣ
ି଴.଺ (C.1)
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