Intervertebral Disc Biology through Experiments and Knowledge: Network Modeling, Proteomics, and Machine Learning

dc.contributor.author
Tseranidou, Sofia
dc.date.accessioned
2025-10-31T10:44:26Z
dc.date.available
2025-10-31T10:44:26Z
dc.date.issued
2025-10-03
dc.identifier.uri
http://hdl.handle.net/10803/695645
dc.description.abstract
Low back pain is a leading cause of global disability and is strongly linked to intervertebral disc degeneration (IDD). IDD arises from changes in the disc microenvironment that impair structure and function. It is marked by extracellular matrix breakdown, altered cell phenotype, loss of active cells, increased senescence, and increased production of inflammatory mediators, which drive catabolism. Although numerous studies have investigated the molecular basis of IDD, the variability in disc cell behavior and the complexity of the intracellular signaling pathways that govern inflammatory and catabolic processes hinder a unified understanding of the underlying mechanisms of IDD. Systems modeling, including network-based models, provide scalable means to integrate these diverse data and clarify the interplay among cytokines, growth factors, and other soluble mediators. This thesis develops a literature-based regulatory network model (RNM) focused on protein–protein interactions among key soluble mediators regulating disc cell behavior. The developed network captures interactions among soluble proteins, accurately reflecting control values from proteomics analyses. To further elucidate the roles of specific ligands, and understand how they modulate other soluble mediators, the network was expanded to incorporate critical signaling pathways identified in initial cell network modeling, providing a more holistic view of signaling cascades. This expanded model has been validated using experimental data from human nucleus pulposus cells. Additionally, to address incomplete knowledge regarding interactions among these mediators, a machine learning-based link prediction approach was applied to uncover missing or poorly characterized connections. Identifying these gaps not only underscores where additional experimental evidence is needed to understand the role of factors and signaling pathways but also helps pinpoint novel therapeutic targets for IDD. Altogether, this framework advances our understanding of the complex signaling landscape underlying IDD and offers a roadmap for future research to address the remaining gaps in disc cell biology.
dc.format.extent
206 p.
dc.language.iso
eng
dc.publisher
Universitat Pompeu Fabra
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Disc intervertebral
dc.subject
Intervertebral disc
dc.subject
Disco intervertebral
dc.subject
Regulatory network model
dc.subject
Link prediction model
dc.subject
Signaling pathway model
dc.subject
Proteomics analysis
dc.subject
Nucelus pulposus
dc.subject
Systems Biology
dc.title
Intervertebral Disc Biology through Experiments and Knowledge: Network Modeling, Proteomics, and Machine Learning
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-31T10:44:25Z
dc.subject.udc
573
dc.contributor.director
Chorlton, Christine Lyn
dc.contributor.director
Piñero González, Janet
dc.contributor.director
Noailly, Jérôme
dc.contributor.tutor
Noailly, Jérôme
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Universitat Pompeu Fabra. Doctorat en Tecnologies de la Informació i les Comunicacions


Documents

PhD THESIS_SOFIA TSERANIDOU (2).pdf

13.67Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)