Algebraic integrability of foliations by extension to Hirzebruch surfaces. Applications to bounded negativity.

llistat de metadades

Director

Galindo Pastor, Carlos

Monserrat, Francisco ORCID

Tutor

Galindo Pastor, Carlos

Date of defense

2023-12-21

Pages

152 p.



Department/Institute

Universitat Jaume I. Escola de Doctorat

Doctorate programs

Programa de Doctorat en Ciències

Abstract

We make progress on two open mathematical problems: the problem of algebraic integrability of polynomial foliations on $\mathbb{C}^2$ and the bounded negativity conjecture. For the first one, we identify $\mathbb{C}^2$ with an open set of $\mathbb{P}^2$ or $\mathbb{F}_{\delta}$, $\delta\geq0$, and study foliations $\mathcal{F}$ on these surfaces whose local form is isomorphic to the affine foliation. We obtain necessary conditions for algebraic integrability by studying the sky of the dicritical configuration of $\mathcal{F}$. We propose algorithms that solve the first problem under some conditions. For the second one, we consider a rational surface $S$ and an integral curve $H$ on $S$. If $S$ is obtained from $\mathbb{F}_{\delta}$ (respectively, $\mathbb{P}^2$), we provide a bound on $\frac{H^2}{H\cdot (F^*+M^*)}$ (respectively, on $\frac{H^2}{(H\cdot L^*)^2}$ and on $\frac{H^2}{H\cdot L^*}$), where $F^*$, $M^*$ and $L^*$ are the total transforms of a general fiber, a section of self-intersection $\delta$ of $\mathbb{F}{\delta}$ and a general line of $\mathbb{P}^2$ respectively.

Subjects

51 - Mathematics; 512 - Algebra

Knowledge Area

Ciències

Note

Doctorat internacional.

Recommended citation

Documents

Llistat documents

2023_Tesis_Pérez Callejo_Elvira.pdf

1.230Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)