Planning the integration of the renewable energy sources on islands, under the National Electric System in Mexico

Author

Mendoza Vizcaino, Fco. Javier

Director

Sumper, Andreas

Codirector

Sudrià Andreu, Antoni

Date of defense

2019-01-29

Pages

280 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica

Abstract

The electric generation systems on islands are based generally on fossil fuel. This fact and its supply make the electricity cost higher than in systems used in the continent. In this thesis, as a first part, a review of the renewable energy generation systems on islands is elaborated. To do it, 77 islands from 45 different countries were analized. This analysis will allow to know how the implementation of renewable energy sources could help these islands in developing a renewable and sustainable energy sector, including a reduction of electricity generation cost. The de-carbonising in the electricity generation is necessary to reduce fossil fuel consumption, the pollution emitted and to meet the Energy Technology Perspectives 2ºC Scenario (2DS) targets. Small islands are not exempt from this target, so this the emphasis of this thesis is placed on a 50-50 target: to reduce the fossil fuel consumption through electricity generation from Renewable Energy Sources (RES) to cover 50% of all electric demand by 2050 on small islands. This analysis will be based on three factors: economical, technical, and land-use possibilities of integrating Renewable Energy Technologies (RETs) into the existing electrical grid. As second part of the thesis, this work shows the results from a study case of the application of renewable energy technology in Cozumel Island, Mexico. This island is located in the Riviera Maya, in the Occidental Caribbean Sea. The analysis developed was made through long- term statistical models. A deterministic methodology was used to perform time-series simulations. As a first integration approaching, the simulations show that for the year 2050 a feasible integration of a system based on wind/PV can be achieved on the Island, reducing the electricity price from 0.37 US$/kWh to 0.24 US$/kWh (2050 in the Base Scenario). This result had a renewable penetration of 22.3% and does not considered a battery system or changes in the existing electric grid. With this scenario, the government will achieve its targets in renewable energy and in the reduction of the emissions of CO2. This will allow reaching a sustainable electricity sector. In a second approach, and according to the results, all systems proposed are able to completely satisfy the renewable electricity needed by 2050 in all scenarios proposed. From the 12 system proposals that were compared, two systems, System 2 and System 7, were chosen as eligible systems to be installed. The Levelized Cost of Energy (LCOE) result for System 2 was 0.2401 US$/kWh and for System 7 was 0.2008 US$/kWh by 2050 in the Base Scenario. Meanwhile, the Internal Rate of Return (IRR) value fluctuated from 17.6% for System 2 to 31% for System 7, with a renewable fraction of penetration for System 2 of 56.1% and for System 7 of 56.9% by 2050 in the Base Scenario. The selection of the best system was made on the base of a Dimensional Statistical Variable (DSV) through primary and secondary category rankings. The presented proposal of three phases methodology determines the best systems for capturing the lower initial capital cost and the higher competitiveness of this new proposal compared with the current system of electricity generation on the Island, and can be applied on small islands as well. As third part of this thesis, the analysis presents an optimization of the energy planning, a grid assessment, and an economic analysis, considering three growing scenarios (Low, Base and High) in the electricity consumption, to supply the energy demand for a hybrid power system (Photovoltaics/Wind/Diesel/Battery) on a small island by 2050.


Los sistemas de generación en islas generalmente están basados en combustible fósil. Éste hecho y su suministro ocasionan que el costo de la electricidad sea mayor que en los sistemas continentales. En esta tesis y como primera parte, se elaboró una revisión de los sistemas de generación de electricidad en las islas. Para lograr esto, se analizaron 77 islas de 45 diferentes países. Éste análisis permitirá conocer cómo la implementación de las fuentes de energía renovable puede ayudar a éstas islas a desarrollar un sector sostenible y renovable, incluyendo la reducción del costo en la generación de electricidad. La des-carbonización en la generación de electricidad es necesaria para reducir el consumo de combustible fósil, para reducir la contaminación y para lograr los objetivos propuestos en el escenario de los 2 grados en la perspectiva de las tecnologías de la energía (2DS, por sus siglas en inglés). Las pequeñas islas no están exentas de éstos objetivos, por esto, el énfasis en ésta tesis está localizado en el objetivo 50-50: reducir el consumo de combustible fósil usado en la generación de electricidad a través de las fuentes de energía renovable (RES, por sus siglas en inglés), y así cubrir el 50% de la electricidad demandada por las pequeñas islas para el año 2050. Éste análisis estará basado en tres factores: en el económico, en el técnico y en las posibilidades del uso de la tierra para integrar las tecnologías de energía renovable (RETs, por sus siglas en inglés) en la red eléctrica existente. Como segunda parte de la tesis, en ésta se muestran los resultados de un caso de estudio en la aplicación de la tecnología de energía renovable en la isla de Cozumel, en México. Esta isla está localizada en la Riviera Maya, en el Mar Occidental del Caribe. El análisis desarrollado fue desarrollado a través de modelos estadísticos a largo plazo. Se ha usado una metodología determinística para realizar las simulaciones en las series de tiempo. Cómo un primer acercamiento para la integración, las simulaciones mostraron que se puede lograr para el 2050 una integración de un sistema basado en fuentes eólicas/fotovoltáicas en la isla, reduciendo el precio de la electricidad de 0.37 US$/kWh a 0.24 US$/kWh (en el escenario base para el año 2050). El resultado tuvo una penetración de la energía renovable de 22.3% sin considerar un sistema de baterías o cambios en la red eléctrica existente. En este escenario, el gobierno logrará sus objetivos en energía renovable y en la disminución de la emisión de CO2. Esto permitirá lograr un sector sostenible en la electricidad. En un segundo acercamiento y de acuerdo a los resultados, todos los sistemas propuestos pueden completamente satisfacer la electricidad renovable necesaria para el año 2050 en todos los escenarios propuestos. De los 12 sistemas propuestos que se compararon, dos sistemas, el Sistema 2 y el Sistema 7fueron elegidos como los sistemas para ser instalados. El resultado del costo nivelado de energía (LCOE, por sus siglas en inglés) para el Sistema 2 fue de 0.2401 US$/kWh y para el Sistema 7 fué de 0.2008 US$/kWh para el año 2050 en el escenario base. Mientras tanto, el valor de la tasa interna de retorno (IRR, por sus siglas en inglés) fluctuó del 17.6% para el Sistema 2 al 31% para el Sistema 7, con un factor de penetración en renovable para el Sistema 2 del 56.1% y para el Sistema 7 del 56.9% para el año 2050 en el escenario base. La selección del mejor sistema fue realizada sobre la base de una variable estadística dimensional (DSV, por sus siglas en inglés) a través de una clasificación de categorías primaria y secundaria. La presente propuesta de metodología de tres fases determina el mejor sistema para obtener el menor costo inicial de capital y la mayor competitividad de esta nueva propuesta, comparada con el actual sistema de generación de electricidad en la isla y que también pueda ser aplicada a las pequeñas islas. Como tercera parte de la tesis, el análisis presenta una optimización de la planeación energética, una evaluación de la red y un análisis económico, considerando tres escenarios de crecimiento (bajo, base y alto) para el consumo de electricidad y para suministrar la energía demandada por una isla pequeña para el año 2050. El principal objetivo de este estudio es, presentar una metodología de cuatro fases para optimizar y reducir el tiempo de respaldo del banco de baterías incluidas en el sistema híbrido de generación de energía seleccionado. También comparará cuatro diferentes tecnologías de baterías de manera simultánea, sin cambios en los objetivos planteados en 50% para el año 2050, y sin cambios en la operación segura y continua de la red. La metodología incluye un análisis de la red para obtener una segura, fuerte y confiable respuesta de operación basada en los parámetros indicados en el código de red, incluso en caso de disturbios eléctricos. En esta metodología de cuatro pasos, el análisis está desarrollado en base al uso de dos herramientas de modelos de simulación. La primera herramienta de modelos de simulación determina los valores óptimos de las variables controladas por el diseñador del sistema, tales como la mezcla de los componentes (fotovoltaico, eólico/diésel/baterías) que conformen el sistema, o la cantidad o tamaño de cada variable. Este modelo usa el análisis multi-año basado en corridas de simulación de tiempo-dominio a niveles de flujo de energía en paso de tiempo discretos de 1 hora. La segunda herramienta de simulación asume todas las variable y parámetros en la red como constantes durante el periodo de tiempo analizado. El flujo de potencia es analizado a través de un comando de función de conteo en un lenguaje de programación y refleja la respuesta del sistema en un tiempo específico, con unos parámetros y variables específicas dadas. La propuesta final técnica y su análisis financiero son obtenidos aplicando y validando esta metodología en una isla pequeña, así como también, la selección del sistema a ser instalado para la generación de electricidad renovable. Aquí se incluyen las modificaciones y refuerzos a la red eléctrica a través de los años hasta el año 2050, realizados de acuerdo con el código de red y con los objetivos en energía renovable indicados para el sistema eléctrico de potencia de la isla. De acuerdo a los resultados de esta optimización, el más bajo LCOE obtenido fue el del sistema que incluye las baterías de flujo Zinc-Bromine, en el cual las sensitividades fueron aplicadas y que fue de 0.2036 US$/kWh para el año 2050 en el Escenario Base. Mientras que el valor de la tasa interna de retorno para este sistema fue del 30.37%, con una fracción de penetración de las renovables del 59%. Los resultados de los análisis fueron sin considerar la tecnología eólica fuera de costa (Off-shore). Para el caso del PRE-análisis de cuando la energía renovable suple el 100% de la demanda de potencia, el menor LCOE obtenido incluyendo 8-3 MW turbinas eólicas Off-shore fué de 0.3006 US$/kWh para el año 2050 en el Escenario Base. Estos resultados son combinando el eólico Off-shore/eólico On-shore/fotovoltaico/baterías Zn-Br/diésel, con un factor de penetración de las renovables del 100%.

Subjects

620 - Materials testing. Commercial materials. Power stations. Economics of energy; 621.3 Electrical engineering

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria elèctrica

Documents

TFJM-V1de1.pdf

23.84Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)