Shape Control and Functional Properties of Copper Chalcogenide Colloidal Nanocrystals

dc.contributor
Universitat de Barcelona. Departament d'Electrònica
dc.contributor.author
Li, Wenhua
dc.date.accessioned
2014-02-25T10:56:40Z
dc.date.available
2014-02-25T10:56:40Z
dc.date.issued
2013-10-01
dc.identifier.uri
http://hdl.handle.net/10803/131051
dc.description.abstract
The high quality CuxS nanocrystals were synthesized (Chapter 3) and the profound understanding and skills to prepare colloidal nanocrystals has been obtained and improved. It revealed a very simple synthetic route not only for the systematic investigation on the size control of the copper sulfide nanodisks but also for studying the influence of different stoichiometric ratios on the shape of copper sulfide nanocrystals. An increase of the precursor concentration in the growth solution resulted in the formation of tetradecahedral and dodecahedral nanocrystals. XRD results showed these nanodisks had a similar composition close to Cu1.78S as spherical nanocrystals, however, the tetradecahedral and dodecahedral nanocrystals were characterized with a composition close to Cu1.96S as deduced from their djurleite crystal phase. An oriented attachment was proposed as growth mechanism for polyhedrons growth and the slow nucleation rate allows an accurate control of the size and morphology of CuxS nanocrystals, from spheres and disks to tetradecahedrons and dodecahedrons by tuning the precursor concentration from 0.05 M to 1.0 M and reaction conditions. Dodecahedrons with different size can be easily prepared by elongating the reaction time. These nanocrystals can be used as cathodes in all-vanadium redox flow batteries and showed a significant improvement of the cathodic reaction reversibility, especially the dodecahedrons. The CuxSe nanocubes with mean edge length of 17 nm±0.9 nm were synthesized (Chapter 4). The role of various metal ions playing on shape of CuxSe nanocrystals was discussed during the synthesis. The underlying mechanism was illustrated by preparing copper selenide nanocubes in the presence of Al ions whereas there was no any Al detected on the surface or within the final cubes. The morphology control is proved to be thermodynamically directed during the ripening regime and it exemplified the shape-direction of semiconductor nanocrystals by metal ions for the first time. It is a platform to produce cubic nanoparticles with different composition by cation exchange such as Ag2Te nanocubes. The plasmonic properties of the obtained nanocubes were further characterized and it demonstrated the strong plasmonic absorption peak at 950 nm. A reproducible procedure to prepare highly monodisperse copper telluride nanocubes, nanoplates and nanorods was presented in Chapter 5. The procedure is based on the reaction of a copper salt with trioctylphosphine telluride (TOP-Te) in the presence of Lithium bis(trimethylsilyl) amide (LiN(SiMe3)2), trioctylphosphine (TOP), trioctylphosphine oxide (TOPO) and oleylamine (OLA). The high reaction temperature as 220 °C was found to be necessary to obtain cube-shaped NPs with narrow size distributions. By tuning the precursor ratio of Cu:Te, the size of these nanocubes could be controlled in the range between 10 and 20 nm. When decreasing the reaction temperature to 190 °C and the growth time to 15 min, highly homogeneous copper telluride nanoplates were produced. An increase of the TOP concentration from 0.125 ml to 0.75 ml resulted in the formation of nanorods. It was proposed the LiN(SiMe3)2 to activate the formation of a Cu-oleylamido complex and it is the actual species reacting with TOP-Te. The Cu-oleyamido complexes and/or lithium oleylamine may play a key role stabilizing the NP surface during growth. Copper telluride nanocubes and nanoplates display a strong near-infrared optical absorption at 900nm associated to localized surface plasmon resonances. This plasmon resonance can be exploited for the design of surface-enhanced Raman scattering (SERS) sensors for unconventional optical probes such as nile red containing oxygen based functional groups. This is the first time using Cu-chalcogenide as probes for SERS application and demonstrates its potential interest in future. Preliminary analysis of the use of copper telluride nanocubes as cytotoxic and photothermal agents is also discussed herein.
eng
dc.description.abstract
Inicialment vam establir les condicions per preparar Cu(x)S. Com a mecanisme de creixement es va proposar el que es coneix amb el nom d’oriented attachment, en el qual els nanocristalls s’uneixen en una determinada orientació per formar altres formes més complexes. Establint les condicions en les quals es donava aquest mecanisme podíem produir nanocristalls de Cu2-xS amb un acurat control sobre la seva composició i/o forma, des de partícules esfèriques fins a nanopartícules en forma de disc o bé acanat amb partícules amb forma tetradecaèdríca o dodecaèdríca. Aquest control es va aconseguir simplement variant la concentració del precursor i les condicions de reacció. El segon sistema que es va estudiar va ser la producció de nanocristalls de Cu(x)Se. En el nostre treball preteniem descobrir nous procediments per sintetitzar nanocristalls de Cu(x)Se controlant la seva morfologia. Es va descubrir que es podia controlar la forma final dels nanocristalls de Cu(x)Se simplement introduint ions metàl•lics a la solució. En particular, en presència d’ions d’alumini es van produir nanocubs amb una longitud lateral de 17 nm ± 0.9 nm. Addicionalment es van estudiar les propietats plasmòniques d’aquests nanocubs. També es van utilizar aquests cubs de seleniur de coure com a base per produir cubs d’altres semiconductors a travès de l’intercanvi catiònic. Com a exemple es van produir cubs de Ag(2)Te. Finalment, es va estudiar el calcogenur binari, Cu(x)Te. Es va desenvolupar un mètode de síntesi per produïr nanocubs, nanoplaques i nanorods altament monodispersos. Es va observar que els paràmetres clau per controlar la forma eren la temperatura i la quantitat de surfactants. En canvi, per controlar el tamany es va observar que el paràmetre més important era la proporció entre Cu i Te present a la solució. Aquests nanocristalls posseïen propietats plasmòniques amb un pic d’absorpció al voltant dels 900 nm.
cat
dc.format.extent
195 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Nanocristalls semiconductors
cat
dc.subject
Nanocristales semiconductores
cat
dc.subject
Semiconductor nanocrystals
cat
dc.subject.other
Ciències Experimentals i Matemàtiques
cat
dc.title
Shape Control and Functional Properties of Copper Chalcogenide Colloidal Nanocrystals
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
621.3
cat
dc.contributor.director
Cabot i Codina, Andreu
dc.contributor.tutor
Cabot i Codina, Andreu
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B 5814-2014
cat


Documents

WENHUA_LI_PhD_THESIS.pdf

6.480Mb PDF

This item appears in the following Collection(s)