
Distributed Constraint Optimization
Related with Soft Arc Consistency

Patricia Gutiérrez Faxas
Departament de Ciències de la Computació

Universitat Autònoma de Barcelona

Director: Pedro Meseguer González
Tutor: Josep Puyol-Gruart

A thesis submitted for the degree of
PhD in Computer Science

Work done at
Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cientı́ficas

September, 2012

ii

Abstract

Distributed Constraint Optimization Problems (DCOPs) can be used for model-

ing many multi-agent coordination problems. DCOPs involve a finite number of

agents, variables and cost functions. The goal is to find a complete variable assign-

ment with minimum global cost. This is achieved among several agents handling

the variables and exchanging information about their cost evaluation until an op-

timal solution is found. Recently, researchers have proposed several distributed

algorithms to optimally solve DCOPs. In the centralized case, techniques have

been developed to speed up constraint optimization solving. In particular, search

can be improved by enforcing soft arc consistency, which identifies inconsistent

values that can be removed from the problem. Some soft consistency levels pro-

posed are AC, FDAC and EDAC.

The goal of this thesis is to include soft arc consistency techniques in DCOP res-

olution. We show that this combination causes substantial improvements in per-

formance. Soft arc consistencies are conceptually equal in the centralized and

distributed cases. However, maintaining soft arc consistencies in the distributed

case requires a different approach. While in the centralize case all problem ele-

ments are available in the single agent performing the search, in the distributed

case agents only knows some part of the problem and they must exchange infor-

mation to achieve the desired consistency level. In this process, the operations that

modify the problem structures should be done in such a way that partial informa-

tion of the global problem remains coherent on every agent.

In this thesis we present three main contributions to optimal DCOP solving. First,

we have studied and experimented with the complete solving algorithm BnB-

ADOPT. As result of this work, we have improved it to a large extent. We show

that some of BnB-ADOPT messages are redundant and can be removed without

compromising optimality and termination. Also, when dealing with cost functions

of arity higher than two, some issues appear in this algorithm. We propose a simple

way to overcome them obtaining a new version for the n-ary case. In addition, we

present the new algorithm ADOPT(k), which generalizes the algoritms ADOPT

and BnB-ADOPT. ADOPT (k) can perform a search strategy either like ADOPT,

like BnB-ADOPT or like a hybrid of both depending on the k parameter.

Second, we have introduced soft arc consistency techniques in DCOPs, taking

BnB-ADOPT+ as our base solving algorithm. During the search process, we en-

force the soft arc consistency levels AC and FDAC, under the limitation that only

unconditional deletions are propagated, obtaining important benefits in communi-

cation and computation. We enforce FDAC considering multiple orderings of the

variables obtaining savings in communication. Also, we propose DAC by token

passing, a new way to propagate deletions during distributed search. Experimen-

tally, this strategy turned out to be competitive when compared to FDAC.

Third, we explore the inclusion of soft global constraints in DCOPs. We believe

that soft global constraints enhance DCOP expressivity. We propose three different

ways to include soft global constraints in DCOPs and extend the solving algorithm

BnB-ADOPT+ to support them. In addition, we explore the impact of soft arc

consistency maintenance in problems with soft global constrains.

Experimentally, we measure the efficiency of the proposed algorithms in several

benchmarks commonly used in the DCOP community.

Acknowledgements

First of all, I would like to thank my advisor Pedro Meseguer for counting on me

at the beginning of this project, for his persevering guidance and his very much

helpful experience. He has transmitted me calmness and confidence in several

occasions and has crucially contributed to my growth as a scientist and as a pro-

fessional.

I want to thank the members of the jury Christian Bessiere, Javier Larrosa and

William Yeoh for their precious time. Christian Bessiere was kind enough to re-

ceive me at the LIRMM Institute in Montpellier two years ago. I appreciate very

much our joint work and collaboration. It has been a real treat working with him,

his smile and quick mind makes everything look easy. Javier Larrosa is one of

the main references of this thesis and his valuable work has been fundamental in a

great portion of it. William Yeoh has been an excellent feedback for me, I want to

thank him for our stimulating and fruitful work, for all his helpful comments and

suggestions.

I want to thank Thomas Schiex for receiving me at the INRA Institute in Toulouse

last year, for being patient and generous with all my questions and for our collab-

orations.

I want to thank all the IIIA people for these great four years and for making me

feel at home. I feel very lucky and grateful to have had the chance to meet great

researches, PhD students and human beings. These years in the IIIA have exceeded

all my expectations. I want to thank the administrative staff. I want to thank Carles

Sierra for his fabulous costelladas! And specially to Ramón Lopez de Mántaras,

for helping me in more than one crucial moment.

Finally, I want to thank my family for being confident and supportive with every

decision in my life. Specially I want to thank my husband Yanko, because I am

certain that without his help this thesis would have not been possible. He helped

me to concentrate in every deadline, encouraged me whenever I felt down, and

cheered with me every little accomplishment.

Thank you all!

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Thesis Goal . 2

1.3 Contributions . 3

1.4 Thesis Structure . 5

2 Background 9

2.1 Constraint Optimization Problems . 10

2.1.1 COP Representations . 10

2.1.2 Solving Algorithms . 11

2.1.2.1 Systematic Search: Branch and Bound 11

2.1.2.2 Complete Inference: Bucket Elimination 12

2.1.3 Soft Local Consistency . 14

2.1.3.1 AC� . 15

2.1.3.2 FDAC� . 18

2.1.3.3 EDAC� . 19

2.1.4 Soft Global Constraints . 20

2.1.4.1 Properties . 21

2.1.4.2 Soft Arc Consistency . 23

2.2 Distributed Constraint Optimization Problems 23

2.2.1 DCOP Representations . 24

2.2.2 Solving Algorithms . 25

2.2.2.1 DPOP . 26

2.2.2.2 SBB . 27

2.2.2.3 AFB . 28

iii

CONTENTS

2.2.2.4 ADOPT . 29

2.2.2.5 BnB-ADOPT . 31

2.2.3 Experimental Evaluation . 34

3 Distributed Search 37

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT 38

3.1.1 Removing Redundant Messages in BnB-ADOPT 38

3.1.1.1 Example of Redundant VALUE messages 42

3.1.1.2 Example of Redundant COST messages 43

3.1.1.3 Correctness and Completeness 46

3.1.1.4 Efficient Threshold Management 46

3.1.2 N-ary Cost Functions in BnB-ADOPT 47

3.1.2.1 Termination . 49

3.1.2.2 Efficient Threshold Management 49

3.1.2.3 Correctness and Completeness 51

3.1.3 Experimental Results . 52

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search 59

3.2.1 Search Strategy . 61

3.2.2 Pseudocode . 62

3.2.3 Correctness and Completeness . 65

3.2.4 Tie-breaking in BnB-ADOPT+ . 68

3.2.5 Experimental Results . 68

3.3 Conclusions . 71

4 Distributed Soft Arc Consistency 73

4.1 Including Soft Local Consistencies in Distributed Problems 74

4.2 Unconditional Deletions in BnB-ADOPT+ 77

4.3 BnB-ADOPT+ Combined with AC and FDAC 78

4.3.1 BnB-ADOPT+-AC . 79

4.3.2 BnB-ADOPT+-FDAC . 84

4.3.3 Example . 87

4.3.4 Simultaneous Deletions . 92

4.3.5 Experimental Results . 96

4.4 GAC in N-ary Constraints . 99

iv

CONTENTS

4.5 Higher Consistency Levels . 100

4.6 FDAC in Multiple Representations . 101

4.6.1 Experimental Results . 103

4.7 DAC by Token Passing . 106

4.7.1 Experimental Results . 108

4.8 Conclusions . 110

5 Distributed Soft Global Constraints 113

5.1 Soft Global Constraints in Distributed Constraint Optimization 114

5.1.1 Binary Decomposable Soft Global Constraints 115

5.1.2 Decomposition with Extra Variables 115

5.1.3 Contractible Soft Global Constraints 117

5.1.4 Including Soft Global Constraints in Distributed Problems 118

5.2 Including Soft Global Constraints in BnB-ADOPT+ 119

5.2.1 Searching with BnB-ADOPT+ . 119

5.2.2 Propagation with BnB-ADOPT+ . 122

5.2.3 Experimental Results . 125

5.3 Conclusions . 129

6 Conclusions 131

6.1 Conclusions . 131

6.2 Future Work . 134

A Saving Messages in the ADOPT Algorithm 137

A.1 Reengineering ADOPT . 137

A.2 Communication Structure . 139

A.3 Redundant Messages . 140

A.4 New Version . 141

A.5 Experimental Results . 142

A.6 Conclusions . 143

B Global Constraints in Distributed Constraint Satisfaction 145

B.1 Adding Global Constraints . 146

B.2 Searching with Global Constraints . 148

B.3 Propagating Global Constraints . 148

v

CONTENTS

B.4 Experimental Results . 149

B.5 Conclusions . 153

Bibliography 155

vi

1

Introduction

1.1 Problem Statement

A classical problem in computer science is to optimize an aggregation of cost functions in-

volving several variables and domain values. These problems are widely used in a variety of

decision making applications. Many real life problems can be modeled as a collection of cost

functions over a set of variables –representing constraints or penalty relations– that define a

cost for every variable assignment or combination of variable assignments. Such problems

are called Constraint Optimization Problems (COP). A constraint optimization algorithm is a

solver able to find the optimal assignment for every variable in a COP such that the resulting

cost is minimal.

Recently, there is an increasing interest in solving constraint optimization problems in a

distributed way. When the variables and cost functions of the problem are not centralized in a

single hardware but information is distributed among several independent and automated agents

this is called a Distributed Constraint Optimization Problem (DCOP) (Modi et al., 2005). There

are several cases where information requires to be distributed, for example consider problems

where data is naturally distributed in different devices and the cost of translation is high, or

problems where some information of the decision variables is desired to keep private. Then,

this kind of problems commonly require a distributed resolution rather than a centralized solv-

ing. In these cases, variables, domain values and cost functions are distributed among several

agents. These agents explore the search space assigning variables and exchanging messages

about their cost evaluation in order to cooperate towards a global optimal solution.

DCOPs provide a framework for modeling many multi-agent coordination tasks used in

1

1. INTRODUCTION

many practical applications. Some of them are meeting scheduling (Maheswaran et al., 2004),

sensor networks (Jain et al., 2009; Stranders et al., 2009), traffic control (Junges and Bazzan,

2008), allocating tasks in a teamwork model (Schurr et al., 2005), power networks (Miller

et al., 2012; Petcu and Faltings, 2008), among others.

Several distributed search algorithms have been proposed to optimally solve DCOPs. Some

of them are: Synchronous Branch and Bound (SBB) (Hirayama and Yokoo, 1997), Asyn-

chronous Distributed Constraint Optimization with Quality Guarantees (ADOPT) (Modi et al.,

2005), Dynamic Programming Optimization (DPOP) (Petcu and Faltings, 2005), Asynchronous

Partial Overlay (OptAPO) (Mailler and Lesser, 2006), No Commitment Branch and Bound

(NCBB) (Chechetka and Sycara, 2006), Asynchronous Forward Bounding (AFB) (Gershman

et al., 2009), Branch-and-Bound ADOPT (BnB-ADOPT) (Yeoh et al., 2010), among others.

Distributed algorithms can be either complete (they assure to find the optimal solution) or

incomplete (they sacrifice optimality to obtain fast solutions). Also, they can be partially cen-

tralized (some distributed information is centralized) or decentralized. In this thesis, we focus

on complete decentralized algorithms, which may have different levels of synchronization. In

completely synchronous algorithms, only one agent is active at any time so agents wait for

other agents execution to become active. In completely asynchronous algorithms, every agent

is active at any time. Asynchronous algorithms have a degree of parallelism which can be an

advantage in a distributed setting. In addition, they are robust because if some agent is dis-

connected the algorithm is still able to provide a solution for the connected part. On the other

hand, they are usually more complex and they need to exchange a large number of messages to

maintain coordination, also they have to deal with obsolete information.

In this thesis we consider BnB-ADOPT (Yeoh et al., 2010) as our base solving algorithm

for DCOPs. Our interest for this algorithm comes from the fact that it is complete, requires only

polynomial memory, it is asynchronous and communication is limited to neighboring agents.

1.2 Thesis Goal

DCOPs are NP-hard, so an exponential time is needed in the worst case to find the optimal

solution. This severely limits the application of existing solving approaches. In the centralized

case, several techniques have been developed to speed up constraint optimization solving. In

particular, search can be improved by enforcing soft arc consistency, which identifies incon-

sistent values that can be removed from the problem. Several soft arc consistency levels have

2

1.3 Contributions

been proposed in centralized (Cooper et al., 2008; de Givry et al., 2005; Larrosa and Schiex,

2003). By enforcing them it is possible to detect sub-optimal values that can be removed. As

result, the domain of variables is reduced and the search space becomes smaller although more

computational work must be done to maintain consistency. Globally, the overall effect has been

very beneficial for efficiency, specially considering the first levels of soft arc consistency.

The goal of this thesis is to include soft arc consistency techniques in DCOP resolution.

Such as it happens in the centralized case, we expect that this combination would cause perfor-

mance improvements.

Soft arc consistencies are conceptually equal in the centralized and distributed cases. How-

ever, maintaining soft arc consistencies during distributed search requires a different approach.

While in the centralize case all problem elements are available in the solver, in the distributed

case agents only know some part of the problem and must exchange information in order to

achieve the desired consistency level. In this process, the operations that modify the problem

structures should be done in such a way that partial information of the global problem remains

coherent on every agent. Maintaining soft arc consistencies during search must not compro-

mise optimality and termination of the solving algorithm.

1.3 Contributions

In this thesis we present three main contributions to optimal DCOP solving, which are:

� Contributions to Distributed Search: We have studied and experimented with the com-

plete solving algorithm BnB-ADOPT. As result of this work, we have improved it to a

large extent, as explained in the following. On its execution BnB-ADOPT exchanges a

large number of messages, which is a major drawback for its practical use. Aiming at

increasing BnB-ADOPT efficiency, we show that some of these messages are redundant

and can be removed without compromising optimality and termination. Removing most

of those redundant messages we obtain the new version BnB-ADOPT+. When tested

on commonly used benchmarks, BnB-ADOPT+ obtains large reductions in the number

of messages sent by the agents –which is divided by a number often larger than 3– and

moderate reductions in computation. A comparison with other state-of-the-art DCOP

algorithms is also presented, showing the competitiveness of BnB-ADOPT+.

3

1. INTRODUCTION

BnB-ADOPT was initially defined for binary cost functions (involving only two vari-

ables). When dealing with cost functions of arity higher than two, some issues appear

considering termination and efficiency. We propose a simple way to avoid these issues

obtaining the new version n-ary BnB-ADOPT+. Experimental results show the benefits

of the proposed approach with respect to the original algorithm.

In addition, we present the new algorithm ADOPT(k), which generalizes ADOPT and

BnB-ADOPT. These two algorithms share similar data and message structures, but differ

on their search strategies: the former uses best-first search and the latter uses depth-

first branch-and-bound search. ADOPT(k) generalizes ADOPT and BnB-ADOPT in the

following way. Its behavior depends on the k parameter. It behaves like ADOPT when

k = 1, like BnB-ADOPT when k = 1 and like a hybrid of ADOPT and BnB-ADOPT

when 1 < k < 1. We prove that ADOPT(k) is a correct and complete algorithm and

experimentally show that ADOPT(k) outperforms ADOPT and BnB-ADOPT in terms

of computation and communication on several benchmarks. Additionally, ADOPT(k)

provides a good mechanism for balancing the trade-off between runtime and network

load.

� Connection with Soft Arc Consistency: We have introduced soft arc consistency tech-

niques in DCOPs, taking BnB-ADOPT+ as our base solving algorithm. During the

search process, we enforce the soft arc consistency levels AC and FDAC, under the

limitation that only unconditional deletions are propagated. As result, agents are able

to detect and unconditionally delete sub-optimal values. Unconditional deletions are

propagated to neighbor agents, this propagation may generate new deletions on neigh-

bors, that will also be propagated, reducing the search space. We present the new algo-

rithms BnB-ADOPT+- AC and BnB-ADOPT+-FDAC. Experiments on several bench-

marks show that maintaining AC level (BnB-ADOPT+-AC) obtains a decrement in the

number of messages exchanged and also in computation. Maintaining FDAC level (BnB-

ADOPT+-FDAC) enhances this reduction. Although agents need to perform more local

computation to maintain consistency and some new messages are introduced to propa-

gate deletions, this is largely compensated by a decrement in the number of messages

used to solve the problem and as result, the computational effort shows important reduc-

tions as well.

4

1.4 Thesis Structure

Moving to higher consistency levels, agents need to have a wider knowledge about the

global problem. Stronger consistency levels require agents to know more information

about other agents. This may compromise privacy, which is an issue to resolve. As alter-

native, we propose the following two approaches, combined with the solving algorithm

BnB-ADOPT+. The first one is to enforce FDAC consistency level on multiple repre-

sentations following different orderings. Inconsistent values can be detected in any of

the ordering causing more deletion opportunities. Experimental results show significant

savings in communication and a higher effort in computation, since more work must be

done to maintain FDAC in every ordering. Our second approach proposes a heuristic

form of propagation which we call DAC by token passing. This strategy does not main-

tain any soft local consistency property, so theoretically it can not be compared to AC

or FDAC. However experimentally it turned out to be competitive when compared with

FDAC considering communication and computational effort.

� Including Global Constraints in DCOPs: We explore the inclusion of soft global con-

straints in DCOPs, which have associated a specific semantic. A global constraints is a

class of constraint defined on an unbounded number of variables. In centralized prob-

lems, they have been largely studied. However, to the best of our knowledge, no con-

nection between DCOPs and soft global constraints have been established so far. We

propose three different ways to include soft global constraints in DCOPs and extend the

solving algorithm BnB-ADOPT+ to support them. In addition, we explore the impact

of soft arc consistency maintenance in problems with global constrains. In this case,

performance can be improved, since often soft arc consistency can be achieved more

efficiently when global constraints are involved than when working with an equivalent

decomposition in smaller, fixed arity constraints.

1.4 Thesis Structure

This thesis is organized as follows.

Chapter 1: This Chapter introduces Distributed Constraint Optimization Problems, which are

the target problems of this thesis. It also describes the main goal of this thesis and its contribu-

tions.

5

1. INTRODUCTION

Chapter 2: This Chapter provides a background for the reader where we specify the main

definitions and notation used in the following Chapters and summarize related work made by

other authors.

Chapter 3: This Chapter details our contributions to the distributed search algorithm BnB-

ADOPT for optimal DCOP solving. An important part of its content has been published in:

� Patricia Gutierrez, Pedro Meseguer ”Removing Redundant Messages in N-ary BnB-

ADOPT”, Journal of Artificial Intelligence Research (JAIR), in press, 2012

� Patricia Gutierrez, Pedro Meseguer, William Yeoh ”Generalizing ADOPT and BnB-

ADOPT”, Proc. of 22nd International Joint Conference on Artificial Intelligence (IJCAI-

2011), pp. 554-559, 2011

� Patricia Gutierrez, Pedro Meseguer ”Saving Redundant Messages in BnB-ADOPT”,

Proc. of 24th American Conference on Artificial Intelligence (AAAI-2010), AAAI

Press, pp. 1259-1260, 2010

Chapter 4: This Chapter details our contributions connecting soft arc consistency with DCOPs.

An important part of its content has been published in:

� Patricia Gutierrez, Pedro Meseguer ”A Novel Way to Connect BnB-ADOPT+ with Soft

AC”, Proc. of 20th European Conference on Artificial Intelligence (ECAI-2012), pp.

903-904, 2012

� Patricia Gutierrez, Pedro Meseguer ”Improving BnB-ADOPT+-AC”, Proc. of 11th Inter-

national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-

2012), pp. 273-280, 2012

� P. Gutierrez, P. Meseguer Connecting BnB-ADOPT with Soft Arc Consistency: Initial

Results. Recent Advances in Constraints. Lecture Notes in Artificial Intelligence 6384,

19-37, ed. J. Larrosa, B. O'Sullivan, 2011.

� Patricia Gutierrez, Pedro Meseguer ”Enforcing Soft Local Consistency on Multiple Rep-

resentations for DCOP Solving”, Proc. of CP 2010 workshop: Preferences and Soft

Constraints, pp. 98-113, 2010.

6

1.4 Thesis Structure

� Patricia Gutierrez, Pedro Meseguer ”BnB-ADOPT+ with Several Soft AC Levels”, Proc.

of 19th European Conference on Artificial Intelligence (ECAI-2010), pp. 67-72, 2010.

Chapter 5: This Chapter details our contributions including soft global constraints in DCOPs.

An important part of its content has been published in:

� Christian Bessiere, Patricia Gutierrez, Pedro Meseguer ”Including Soft Global Con-

straints in DCOPs”, 18th International Conference on Principles and Practice of Con-

straint Programming (CP-2012), in press, 2012

� Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer ”Soft Global Con-

straints in Distributed Constraint Optimization”, AAMAS 2012 workshop: International

Workshop on Optimization in Multi-Agent Systems, pp. 43–50, 2012

Chapter 6: This Chapter provides conclusions and future work.

Appendix A: This Appendix presents results for saving redundant messages in the ADOPT

algorithm. An important part of its content has been published in:

� Patricia Gutierrez, Pedro Meseguer ”Saving Messages in ADOPT-based Algorithms”,

Proc. of AAMAS 2010 workshop: Distributed Constraint Reasoning, pp. 53-64, 2010.

Appendix B: This Appendix presents results for introducing global constraints in Distributed

Constraint Satisfaction Problems. An important part of its content has been published in:

� Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer ”Global Constraints

in Distributed Constraint Satisfaction”, Proc. of 11th International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-2012), pp. 1263-1264, 2012

Since the work contained in the above publications also appears in this document (in some

cases with more detail), these publications are not cited in the following Chapters.

7

1. INTRODUCTION

8

2

Background

In this Chapter we summarize the main concepts and algorithms that will be used as reference

in the rest of this thesis. We do not aim at covering the basis of constraint reasoning, topics that

can be found in books containing most of constraint aspects, as in (Dechter, 2003; Rossi et al.,

2006).

Here, we focus on constraint optimization. First, we consider constraint optimization in

the centralized case, where all the information of the problem instance is contained in a single

agent. After describing the basic methods for solving these problems, we present several soft

local consistencies. These soft local consistencies, when maintained inside a branch and bound

search, allow to detect and remove inconsistent values, leading to efficiency gains. Second,

we present distributed constraint optimization, describing some of the most relevant solving

algorithms. We also discuss some issues regarding the experimental evaluation of distributed

algorithms.

9

2. BACKGROUND

2.1 Constraint Optimization Problems

A Constraint Optimization Problem (COP) involves a finite set of variables with finite domain

and a set of cost functions (Dechter, 2003). Variables are related by cost functions, which

are also called soft constraints. 1 Cost functions are defined over a subset of variables and

they specify the cost of value assignments in this subset. Costs are positive natural numbers

(including 0 and1). Formally, a COP is a tuple (X, D, C) where:

� X = fx1; :::; xng is a set of n variables.

� D = fD1; :::; Dng is a collection of finite domains such that variable xi takes values in

Di.

� C is a set of cost functions; f 2 C specifies the cost of every combination of values on

the ordered set of variables var(f) = (x1; : : : ; xr), that is:

f :
∏r
j=1D(xj) 7! N [f0;1g. The arity of f is jvar(f)j.

A cost function f evaluated on a particular value tuple t gives the cost of assigning the

values of t in the variables var(f). The cost of a complete assignment (involving all variables)

is the sum of all cost functions evaluated on that assignment. A solution is a complete tuple

with acceptable cost, and it is optimal if its cost is minimal.

COP generalizes the Constraint Satisfaction Problem framework (CSP) in which complete

value assignments (involving all problem variables) are characterized as satisfactory or unsat-

isfactory. In CSPs, all constraints must be satisfied in the final solution so it does not model

problems where solutions have degrees of quality cost. In COPs, satisfactory tuples have 0 cost

while unsatisfactory tuples (completely forbidden tuples) have1 cost. Intermediate costs are

associated to tuples which are neither completely satisfactory nor completely forbidden.

2.1.1 COP Representations

A COP instance can be represented by a constraint graph, where nodes in the graph correspond

to variables and edges connect pairs of variables appearing in the same cost function. This

corresponds with the primal graph in (Dechter, 2003). Variables connected by the same cost

functions (connected by the same edge in the constraint graph) are called neighbor variables.

1Strictly speaking, we are considering the weighted model (Meseguer et al., 2006)

10

2.1 Constraint Optimization Problems

The search space of a COP can be represented in a tree structure called search tree, where

each level of the tree corresponds to a variable and each node to a variable assignment. A COP

solution is a complete assignment of variables represented as a branch from the root to a leaf

node in the search tree. The search space can be explored in different ways, in particular with

a best-first search strategy or with a depth-first search strategy, following a best-first traversal

or a depth-first traversal of the search tree. In Figure 2.1, a COP with variables x1, x2 and

x3, domains fa; b; cg and cost functions between every pair of variables is represented by its

constraint graph, along with the search tree generated by exploring its search space.

X1

X2

X3

(a) Constraint Graph

a b c

a b c a b c

b c

…

a

x1

X2

X3
…

(b) Search Tree

Figure 2.1: COP Constraint Graph and Search Tree

2.1.2 Solving Algorithms

Several methods have been proposed to optimally solve COPs (Meseguer et al., 2006). In the

following we describe two of the most known: Depth-First Branch and Bound, a search method

with exponential complexity in time but linear in space, and Bucket Elimination, a complete

inference method with exponential complexity, both in time and space, in the induced width of

the constraint graph.

2.1.2.1 Systematic Search: Branch and Bound

Depth-First Branch and Bound (DFBB) performs a depth-first traversal of the search tree. This

algorithm keeps two bounds, lb and ub, for each node of the tree which corresponds to a

particular assignment. The lower bound at node t, lb(t), is an underestimation of the cost of

any complete assignment below t. The upper bound ub is the highest acceptable cost. When

11

2. BACKGROUND

lb(t) � ub, the subtree rooted at t can be pruned because it contains no solution with cost lower

than ub. If a complete assignment is founded with cost lower than ub, this cost becomes the

new ub. After exhausting the tree, DFBB returns the current ub, which is the optimum cost.

DFBB has an exponential temporal complexity. Since it performs depth-first search, its spatial

complexity is linear.

The efficiency of DFBB depends largely on its pruning capacity and the quality of its

bounds: the higher lb and the lower ub, the better DFBB performs, since it can perform more

pruning, exploring a smaller part of the search tree.

In the last 20 years many efforts have been made to improve (that is, to increase) the lower

bound. The simplest lower bound one can think of is the sum of costs of the cost functions

which have their variables assigned. These cost functions can be evaluated and their costs

added. More sophisticated lower bounds also evaluate the impact of assigned variables on

cost functions which contain unassigned variables. This was often implemented using counters

(Freuder and Wallace, 1992; Larrosa et al., 1999).

An alternative lower bound was developed in the Russian Doll Search approach (Verfaillie

et al., 1996). Assuming a static variable ordering, let us consider when the variables assigned

are from x1 to xi�1. Sub-problem i is defined by variables xi; : : : ; xn and cost functions among

them. Then, a lower bound can be defined that includes the optimum cost of sub-problem i.

The solving method replaces one search by n searches on nested sub-problems, each solving

optimally sub-problems n; n�1; : : : ; 1. The optimal cost of sub-problem j is stored and reused

when solving sub-problem i < j.

After the development of soft arc consistency (Cooper and Schiex, 2004; Schiex, 2000),

lower bounds have been based on the maintenance of some soft local consistency. These

bounds have shown to be superior to previous approaches. Then, we mention the levels AC,

FDAC (Larrosa and Schiex, 2003), EDAC (de Givry et al., 2005), VAC (Cooper et al., 2008)

and OSAC (Cooper et al., 2007). For a comprehensive summary of all these approaches see

(Larrosa and Schiex, 2004) and (Cooper et al., 2010).

2.1.2.2 Complete Inference: Bucket Elimination

Bucket Elimination (BE) (Dechter, 1999, 2003) is a complete inference algorithm for optimally

solving COPs. In contrast with search strategies, whose basic operation is assigning a variable,

complete inference methods are based on operations on cost functions. As consequence, BE is

able to compute all optimal solutions, while search methods usually compute a single solution.

12

2.1 Constraint Optimization Problems

This brief description of BE requires to previously define two operations: the sum of two

cost functions and projecting out a variable from a cost function. The sum of two cost functions

is a new cost function defined over the union of variables of the two cost functions; the cost of

a value tuple of this sum is the sum of costs of the two cost functions evaluated on that tuple

(under the assumption that variables not appearing in the scope of a cost function are ignored).

Projecting out a variable from a cost function produces another cost function in which values of

that variable have been eliminated, keeping the cost of value tuples. As result of this process,

some value tuples may be repeated; among those repeated value tuples, only the one with

minimum cost is maintained in the new cost function (all the other tuples are eliminated).

BE requires a static variable ordering x1; :::; xn. It processes variables from last to first, as

follows. Let us consider that it processes variable xi. First, it computes the bucket of xi as the

set of cost functions that have xi in their scope (xi is the last variable of the ordering in that

scope). Second, it adds the cost functions of the bucket producing a single cost function. And

third, it projects out variable xi from this single cost function. The resulting cost function, that

does not mention xi, is located in the bucket of the last variable (according to the ordering)

that appear in its scope. These three consecutive steps are also called ”variable elimination”,

because they perform the necessary process to compute a problem with one less variable that

the original one, keeping the same optimum cost. When all variables have been processed in

that way, the resulting cost function has arity zero (it does not mention any variable); it is a

single number, which is the optimum cost of the problem.

This phase of BE computes the optimum cost. To recover an optimal assignment, some

extra work is needed. BE constructs an optimal solution by assigning variables from the first

to the last in the ordering and by reusing the intermediate cost functions built to replace buck-

ets. Variable xi assigns the value that has the best extension of the current partial solution

x1; : : : ; xi�1 with respect to that cost function.

The complexity of BE is exponential, both in time and space, in the induced width of the

constraint graph. This parameter basically measures graph cyclicity. Although exponential

time complexity is not a surprise (the problem to solve is NP-hard), exponential memory rep-

resents a real drawback of this method. It comes from the requirement of storing intermediate

cost functions in memory.

13

2. BACKGROUND

2.1.3 Soft Local Consistency

Constraint optimization problems are NP-hard, so an exponential time is needed in the worst

case to find an optimal solution. This severely limits the application of existing solving ap-

proaches. Several techniques have been developed to speed up the solving of constraint opti-

mization problems. In particular, search can be improved by enforcing soft local consistency

(also called propagation or incomplete inference techniques). Soft local consistency techniques

allows to discover inconsistent values (this is, values that will never appear in an optimal so-

lution). Since we are interested in optimal solutions, sub-optimal values can be removed from

the problem. In practical terms, the effect is that the search tree is reduced and there are fewer

nodes to explore, but on the other hand more computational work must be done per node. Glob-

ally, the overall effect has been very beneficial in terms of CPU time, specially considering the

initial levels of soft arc consistency.

Typical solving techniques in constraint programming involve search in the space of all

possible solutions. During this search, constraints may not only be used to calculate costs

but they can play an active role helping to discover parts of the search space without optimal

solutions. Removing such parts from the problem makes the search shorter.

Generally the exploration of a search tree in a COP performs a repetitive exploration of

sub-optimal subtrees. In many cases, the search in different parts of the search tree keeps

failing for the same reason. For example, repeated failures might be due to a particularly

bad value assignment in one variable, differing only in the assignments of other variables that

are irrelevant to the sub-optimality of the subtree. This repeated test of irrelevant variable

assignments over and over in the search tree is called thrashing behavior (Mackworth, 1991).

Because there is typically an exponential number of such irrelevant assignments, thrashing is

often one of the most significant factors in the runtime of backtracking.

The idea behind consistency algorithms is that some thrashing behavior can be identified

and eliminated by performing some reasoning over the cost functions. As result, a value (or

combination of values) is explicitly forbidden because a given subset of its constraint costs

becomes unaffordable, making this value unacceptable to participate in any solution.

Applying such consistency techniques on a problem P generates a problem P 0 presumably

easier to solve than P , since it reduces the domain of the variables also modifying its cost

functions. Operations are done in such a way that it is assured that P 0 maintains the optimum

14

2.1 Constraint Optimization Problems

solution and the same cost for the remaining solutions. Because of that, these operations are

called equivalence-preserving transformations (Cooper et al., 2010).

Recently, some soft arc consistency levels have been proposed (Cooper et al., 2008; de Givry

et al., 2005; Larrosa and Schiex, 2003). In the following we introduce some local consistency

definitions for COPs, independently of the solving strategy used.

2.1.3.1 AC�

Here we present the simplest level of soft arc consistency. First, we consider the binary case,

and later we generalize to the n-ary case.

Consider a binary COP: (i; a) means variable xi taking value a, > is the lowest unaccept-

able cost, Cij is the binary cost function between xi and xj , Ci is the unary cost function on

xi values, C� is a zero-ary cost function that represents a necessary global cost of any com-

plete assignment. As in (Larrosa, 2002; Larrosa and Schiex, 2003), we consider the following

definition:

� Node Consistency*: (i; a) is node consistent* (NC�) if C� + Ci(a) < >; xi is NC� if

all its values are NC� and there is a value a 2 Di s.t. Ci(a) = 0; a COP is NC� if every

variable is NC�.

� Arc consistency*: (i; a) is arc consistent (AC) wrt. cost function Cij if there is a value

b 2 Dj s.t. Cij(a; b) = 0; b is called a support of a; xi is AC if all its values are AC wrt.

every binary cost function involving xi; a COP is AC� if every variable is AC and NC�.

The AC� property can be assured on every variable applying two operations until the AC�

condition is satisfied: forcing supports to NC� values and deleting values not NC�. The sys-

tematic application of these operations does not change the optimum cost and maintains the

optimal solution as proved in (Larrosa and Schiex, 2003).

Support can be forced by sending (projecting) costs from binary cost functions to unary

cost functions. The projection from the binary cost function Cij to the unary cost function Ci

for value a is a �ow of costs defined as follows.

Let �a be the minimum cost of value a with respect toCij (namely �a = minb2DjCij(a,b)).

The projection consists in adding �a to Ci(a) (namely, Ci(a) = Ci(a) + �a; 8a 2 Di) and

subtracting �a from Cij(a; b) (namely, Cij(a; b) = Cij(a; b) � �a;8b 2 Dj ; 8a 2 Di). This

15

2. BACKGROUND

operation can be seen as if we were assuring that, no matter which value variable xj takes, xi

has to pay at least �a when value a is assigned.

In the same way, NC� values are assured projecting from unary cost functions to C�. The

projection from unary costs Ci to C� consists in decrementing the minimum cost from Ci and

increment it in C�. In this way the minimum cost of all unary constraints (of any variable)

can be projected to C�, producing a necessary cost for any complete assignment. So C� is

calculated as a global lower bound of any solution.

A unary constraint Ci(a) can be seen as the minimum cost that variable xi has to pay if

it chooses value a, no matter which are the values of the other variables. So Ci(a) is a lower

bound of value a and C� is a lower bound of any solution. If Ci(a) + C� � > then a can

be removed from the problem, since any assignment containing value a for variable xi costs at

least >, which is an unacceptable cost.

When a value a is removed in xi supports may be lost in neighbors (if a is a support in some

neighbors), so the AC� property needs to be rechecked on every variable that xi is constrained

with. As result of this, new projections may be performed from xi to neighbors and new

inconsistent values may appear on neighbors. In this way, a deleted value in one variable might

cause further deletions in other variables. This AC� check must be performed until no further

values are deleted.

A simple example of AC� enforcement is presented in Figure 2.2. Consider two variables

xi and xj with domain fa; b; cg and > = 10 (Figure 2.2(a)). Binary costs with costs different

from zero are represented with lines and unary costs are represented in parenthesis (initially all

unary costs are 0). First, projections are performed from Cij to Ci for all values in Di (Figure

2.2(b)). As result, Ci(a) = 1, Ci(b) = 5, Ci(c) = 11 and binary costs in Cij are decremented.

With the remaining costs in Cij , projections are performed from Cij to Cj for all values in Dj

(Figure 2.2(c)). At this point, every value in Di and Dj have a support. Then, projections are

performed from unary costs Ci and Cj to C� and C� is incremented in 1 (Figure 2.2(d)). Value

c in variable xi is found inconsistent because it does not satisfy the condition Ci(c) +C� < >
(1 + 10 < 10) so it is deleted from xi (Figure 2.2(d)). Observe that the deleted value (i; c) is a

support in xj . Therefore, AC� needs to be rechecked in xj so projections are performed from

Cij to Cj (Figure 2.2(e)). As result, Cj(c) is incremented and value c is deleted in xj , since

Cj(c) + C� < > (11 + 1 < 10) (Figure 2.2(f)). So the deletion of an inconsistent value in xi

produced a new deletion in xj .

16

2.1 Constraint Optimization Problems

11
12

13

13

16
7
5

3
a

b

c

a

b

c

1
i j

Cφ = 0

(a)

c

b

(11)

1

2

12

11
2(5)

2
a a

b

c

(1)

i j

Cφ = 0

0

0

0

(b)

0
0
0

1
0

1

c

b

c

b

(11) (2)

10

9
(5) (1)

a a(1)

i j

Cφ = 0

0

(c)

0
0

0

0

1

c

b

c

b

(10) (2)

10

9
(4) (1)

a a(0)

i j

Cφ = 1

1

0

(d)

0
1

0

c

bb

(11)

1

(4) (1)

a a(0)

i j

Cφ = 1

1
0

(e)

1
0

0
bb(4) (1)

a a(0)

i j

Cφ = 1

1

(f)

Figure 2.2: AC� example. Lines represent binary costs. Values in parenthesis represent unary
costs.

For COPs with cost functions CS of arity higher than two, where S is the set of variables

involved in the constraint, we consider the following definition as in (Lee and Leung, 2009):

� Generalized Arc Consistency*: (i; a) is generalized arc consistent (GAC) wrt. a non-

unary cost function CS if: there exists values vj 2 Dj for all xj 2 S and j 6= i so that

they form a tuple t with CS(t) = 0. fvjg is a simple support of a with respect to CS . xi

is GAC if all its values are GAC wrt. every cost function involving xi. A COP is GAC*

if every variable is AC and NC�.

Notice that GAC* collapses to AC* for binary constraints.

17

2. BACKGROUND

2.1.3.2 FDAC�

Consider a binary COP: (i; a) means variable xi taking value a, > is the lowest unacceptable

cost, Cij is the binary cost function between xi and xj , Ci is the unary cost function on xi
values, C� is a zero-ary cost function that represents a necessary global cost of any complete

assignment and variables are totally ordered. As in (Larrosa and Schiex, 2003), we consider

the following definition:

� Directional arc consistency*: (i; a) is directional arc consistent (DAC) wrt. cost function

Cij , j > i, if there is a value b 2 Dj s.t. Cij(a; b) + Cj(b) = 0; b is called a full support

of a; xi is DAC if all its values are DAC wrt. every Cij , j > i; a COP is DAC� if every

variable is DAC and NC�.

� Full DAC*: a COP is FDAC� if it is DAC� and AC�.

Full supports can be enforced by first sending costs from a unary constraint Cj to Cij

(extension) and then sending the cost from Cij to Ci (projection). Specifically, full supports

are enforced in a variable xi extending costs from unary cost functions of each neighbor xn,

n > i, to the binary cost functions and after projecting costs from the binary cost functions to

the unary cost functions of xi.

Extensions from a unary cost Ci(a) to the binary cost Cij consist in decrementing a cost

�a from Ci(a) and increment it in Cij(a; b) 8b 2 Dj . In the case of full supports, the �a cost

extended is the the maximum cost that can be projected in the next step into xj (Larrosa and

Schiex, 2003). Projections are performed as explained in the previous Section: a projection

into value b of xj consist in decrementing the minimum cost �b from binary Cij(a; b) 8a 2 Di

and incrementing this minimum cost in Cj(b).

In FDAC� costs can be passed from one variable to another in the constraint graph. This

allows to aggregate costs in one variable originally coming from other variables in the problem,

which may lead to more pruning opportunities. For example, consider variables xi; xj and xk
in Figure 2.3(a) with domain fa; bg where k < j < i and > = 5. Binary costs different from

zero are represented with lines and unary costs are represented between parenthesis. To enforce

FDAC�, first unary costs Ci are extended to binary costs Cij (Figure 2.3(b)). The cost extended

is the minimum cost that can be projected to xj after extension: for Ci(a) this cost is 4 and

for Ci(b) is 0. Then, a projection is done from Cij to Cj and as result Cj(a) is incremented

in 4 (Figure 2.3(c)). Now agent j has a full support for every value. To assure full supports

18

2.1 Constraint Optimization Problems

4
9

a

b

a

b

i j

a

b

k

(4) (2)

(a)

4
9

a

b

a

b

i j

a

b

k

4

4
(2)

(b)

4
5

a

b

a

b

i j

a

b

k

(4)
4

(2)

(c)

4
5

a

b

a

b

i j

a

b

k

4

4 4
(2)

(d)

5

a

b

a

b

i j

a

b

k

4 4
(6)

(e)

Figure 2.3: FDAC� example. Lines represent binary costs different from zero. Values in parenthe-
sis represent unary costs. > = 5. After enforcing FDAC�, value a of variable xk can be removed.

in agent k, an extension must be done from unary costs Cj to binary costs Cjk (Figure 2.3(d))

and afterwards a projection from Cjk to Ck (Figure 2.3(e)). As result, Ck(a) is incremented

in 4 and value (k; a) is detected inconsistent since Ck(a) + C� > > (6 + 0 > 5) so it can be

deleted from the problem. Observe that a cost of 4, initially on unary cost Ci(a), has passed

from agent i to agent k performing cost extensions and projections, finally reaching Ck(a). By

this, it was possible to delete a value that could not be deleted enforcing AC�.

2.1.3.3 EDAC�

Consider a binary COP: (i; a) means variable xi taking value a, > is the lowest unacceptable

cost, Cij is the binary cost function between xi and xj , Ci is the unary cost function on xi

19

2. BACKGROUND

values, C� is a zero-ary cost function that represents a necessary global cost of any complete

assignment and variables are totally ordered. As in (de Givry et al., 2005), we consider the

following definitions:

� Existential Arc Consistency*: Variable xi is existential arc consistent if there is at least

one value a 2 Di such that Ci(a) = 0 and it has a full support in every constraint Cij .

A problem is existential arc consistent (EAC�) if every variable is NC� and EAC�.

� Existential Directional Arc Consistency*: A problem is EDAC� if it is FDAC� and EAC�.

EDAC� requires that every value is fully supported in one direction and simply supported

in the other direction (to satisfy FDAC�). Additionally, at least one value per variable must

be fully supported in both directions (to satisfy EAC*). This special value is called the fully

supported value.

EDAC� can be enforced by performing projections and extensions following the established

order to satisfy FDAC� and also performing projections and extensions against the established

order if as result an increment in C� occurs. So in EDAC� full supports can be enforced in both

directions if their enforcement produces an increment in C�, observe that this is an increment

that would not be achieved with FDAC�.

NC� has become standard in the soft local consistency community, to the point that higher

local consistencies using it are named without asterisk (Cooper et al., 2010). Following this

trend, in the rest of this thesis we refer to AC� , FDAC� , EDAC� as AC, FDAC, EDAC

respectively.

2.1.4 Soft Global Constraints

Global constrains have been essential for the advancement of constraint reasoning. Global

constraints are classes of constraints that naturally appear in many practical scenarios involving

several problem variables. They capture a relation between a non-fixed number of variables and

this relation has associated a clear semantic. For example consider the set of variables T , the

well-known alldifferent(T) global constraint means that all the variables in the set T must assign

a different value (independently of the cardinality of T). Constraints with different arity can be

defined by the same class. For instance, alldifferent(x1; x2; x3) and alldifferent(x1; x4; x5; x6)

are two instances of the alldifferent global constraint class.

20

2.1 Constraint Optimization Problems

For COPs, soft global constraints have been defined. In soft global constraints the cost

of value assignments is evaluated using a violation measure �. This violation measure may

vary for each soft global constraint (we assume that a soft constraint instance can be expressed

and evaluated by a cost function, so we use the terms soft global constraints and global cost

functions interchangeably). For example, consider the following soft global constraints:

� soft-alldifferent(T). This global constraint expresses that all variable values in T should

be different. Costs are defined by violation measures �var and �dec (Petit et al., 2001):

�var is the number of variables in T that have to change their values to satisfy that all

values are different, while �dec is the number of pairs of variables with the same value.

� soft-at-most[k,v](T). This global constraint expresses that at most k variables in T

should take value v. Costs are defined by violation measure �var, which is the num-

ber of variables in T that have to change to satisfy this condition.

2.1.4.1 Properties

A soft global constraint C with violation measure � is contractible iff � is a non-decreasing

function (Maher, 2009a) 1. The intuition behind is as follows: C with � is contractible when

�(a; b; c) � �(a; b; c; d) � �(a; b; c; d; e)::::, so shortening by the right the sequence of vari-

ables on which C is defined gives a valid lower bound to the cost of C.

A soft global constraint C with violation measure � admits a binary decomposition without

extra variables iff for any instance C(x1; : : : ; xp) of C, there exists a set S of binary soft

constraints involving only variables x1; : : : ; xp such that for any value tuple t on x1; : : : ; xp,∑
Cxi,xj2S

Cxi;xj (t[xi; xj])= �(t). We also say that C is semantically decomposable in S.

For example, the soft-alldifferent constraint is binary decomposable with violation measure

�dec (Petit et al., 2001). It is easy to see that this constraint can be decomposed in a clique of

binary constraints using this violation measure, as shown in the example of Figure 2.4.

Not every global constraint can be decomposed into an equivalent set of binary constraints.

For example, the soft-alldifferent constraint is not binary decomposable with violation measure

�var. Consider the example of Figure 2.5 where a soft-alldifferent constraint defined over

variables x1; x2; x3 with violation measure �var is represented (Figure 2.5, up) along with its

binary decomposition with violation measure �var ((Figure 2.5, down). Observe that the tuple

1Function f on a sequence is non-decreasing if f(a) ≤ f(b), for every sequence a and b such that a is a prefix
of b (Maher, 2009a).

21

2. BACKGROUND

x1 x3 μdec

a a 1
x1 x2 μdec

a a 1

x1 x1
a a 1
a b 0
b a 0

a a 1
a b 0
b 0 b a 0

b b 1
b a 0
b b 1

x2 x3
x x x μ

x2 x3

x2 x3 μdec

a a 1

x1 x2 x3 μdec

a a a 3
b 1

min cost = 0 min cost = 0

a a 1
a b 0
b 0

a a b 1
a b a 1

b a 0
b b 1

a b b 1
b a a 1
b a b 1
b b a 1

min cost = 0

b b b 3
min cost = 1

Figure 2.4: (Left) soft-alldifferent(x1; x2; x3) with �dec violation measure; (right) its binary de-
composition

(x1 = a; x2 = a; x3 = a) has a different cost in the global formulation (up) and in the binary

decomposition (down). Hence, this soft constraint is not binary decomposable with violation

measure �var.

Dx1 = fag Dx2 = fa; bg Dx3 = fa; bg
x1 x2 x3 �var

a a a 2

a a b 1

a b a 1

a b b 1

soft-alldifferentx1,x2,x3(a; a; a) = 2

x1 x2 �var

a a 1

a b 0

x1 x3 �var

a a 1

a b 0

x2 x3 �var

a a 1

a b 0

b a 0

b b 1

soft-alldifferentx1,x2 (a; a)+ soft-alldifferentx1,x3 (a; a)+ soft-alldifferentx2,x3 (a; a) = 3

Figure 2.5: (up) soft-alldifferent global constraint with �var violation measure; (down) a decom-
position in binary constraints. However, soft-alldifferent is not binary decomposable with �var

Finally, a soft global constraint admits a decomposition with extra variables if it can be

decomposed in a finite number of fixed-arity constraints using extra variables (this is, variables

which are not originally present in the problem but are introduced to allow the decomposition).

Summarizing, considering the soft global constraints soft-alldifferent and soft-at-most[k,v]:

22

2.2 Distributed Constraint Optimization Problems

� soft-alldifferent(T) with �dec. It is contractible and binary decomposable

� soft-alldifferent(T) with �var It is contractible but not binary decomposable.

� soft-at-most[k,v](T) with �var. It is contractible but not binary decomposable. It allows

decomposition with extra variables in a finite amount of constraints of arity 3.

2.1.4.2 Soft Arc Consistency

It is known that when applying soft arc consistency to some global constraints, the quality of the

bounds obtained is better than when working with an equivalent decomposition. For example,

consider the global constraint soft-alldifferent(x1; x2; x3) with the domain set fa; bg for every

variable and violation measure �dec (Figure 2.4, left) and its binary decomposition (Figure 2.4,

right). If GAC is applied on the global formulation it can be inferred a lower bound of 1 for

the optimal solution. Since there are three variables and only two domain values, any ternary

tuple (with a combination of x1; x2; x3 values) will cost at least 1 (Figure 2.4, left). However in

its binary decomposition we can only infer a lower bound of 0, if looking independently every

binary tuple (Figure 2.4, right).

Enforcing GAC on soft global constraints can be expensive using generic propagators be-

cause all tuples of the domain must be revised. In the worst case, this is exponential in the

number of variables. Some efficient techniques have been proposed for some global constraints

that exploit constraint semantics, reaching the consistency level with lower complexity (usually

polynomial) than with generic propagators (Lee and Leung, 2009).

2.2 Distributed Constraint Optimization Problems

Moving into a distributed context, a Distributed Constraint Optimization Problem (DCOP), is

a COP where variables, domains and cost functions are distributed among automated agents.

Formally, a DCOP is a 5-tuple (X, D, C, A, �), where X, D, C define a COP and:

� A = f1, : : :, p g is a set of p agents

� �: X! A is a function that maps each variable to one agent

We make the usual assumption that each agent owns exactly one variable, so we use the

terms agents and variables interchangeably (for notation, we connect agents and variables by

23

2. BACKGROUND

subindexes, agent i owns variable xi). We also assume that a cost function f defined over

several variables is known by every agent that owns a variable of var(f) (Yokoo et al., 1998).

In a significant part of this thesis we assume unary and binary cost functions only, since most

of the DCOP solving algorithms make this assumption. In this case, a cost function is denoted

as C with the indexes of the variables involved, so Cij is the binary cost function between agent

i and j, and Ci is a unary cost function over agent i.

Agents communicate through messages in order to coordinate towards the optimal solution.

It is assumed that these messages can have a finite delay but are never lost. For any pair of

agents, messages are delivered in the same order that they were sent.

2.2.1 DCOP Representations

A DCOP –like a COP– can be represented by a constraint graph, where nodes in the graph cor-

respond to variables and edges connect pairs of variables appearing in the same cost function.

It can also be represented as a depth-�rst search (DFS) pseudo-tree arrangement with the

same nodes and edges as the constraint graph and the following conditions:

� There is a subset of edges, called tree-edges, that form a rooted tree. The remaining

edges are called back-edges.

� Variables involved in the same cost function appear in the same branch of that tree.

For example, Figure 2.6(a) represents a constraint graph and Figure 2.6(b) a DFS pseudo-

tree of this constraint graph (back-edges are represented with dotted lines).

Tree edges connect parent-child nodes in the pseudo-tree: every node in the pseudo-tree

has a single parent (except the root agent) and may have one or multiple children. Back-edges

connect a node with its pseudo-parents (ancestors in the pseudo-tree) and pseudo-children (de-

scendants in the pseudo-tree). In Figure 2.6(b), x2 is a child of x1; and x3 is a pseudo-child of

x1. We assume that agents that share a constraint are neighbors, so x2 and x3 are neighbors of

x1 and vice versa.

There are many possible DFS pseudo-trees for a given constraint graph (for example see

Figure 2.6(b) and (c)). They can be constructed starting at an arbitrary agent (the root) and

making a traversal of the graph in a depth-first search order until all vertices are visited. Every

edge visited will be an edge of the DFS pseudo-tree and every edge not visited will be a back-

edge. DFS pseudo-trees can be constructed using distributed algorithms (Petcu, 2007) where a

24

2.2 Distributed Constraint Optimization Problems

token is passed among agents following a depth-first traversal containing the identifiers of the

visited agents. From this token, the parent, pseudo-parents, children and pseudo-children can

be identified.

In this thesis we generate DFS pseudo-trees following a most-connected heuristic (starting

with the most connected agent in the constraint graph and performing the DFS tree traversal

selecting first the most connected neighbors).

DFS pseudo-trees are useful representation for some solving algorithm since every branch

of the pseudo-tree represents an independent sub-problem of the DCOP instance. Several dis-

tributed algorithms exploit this DFS pseudo-tree arrangement of their variables since it allows

agents positioned in different branches to perform search in parallel. In the following, we may

refer to a DFS pseudo-tree simply as a pseudo-tree, assuming a DFS order among its nodes

(variables).

X1

X2

X3

X4

(a) Constraint Graph

X4

X3

X1

X2

(b) DFS Pseudo-Tree

X4

X3

X1

X2

(c) Another DFS Pseudo-
Tree

Figure 2.6: DCOP Representations

2.2.2 Solving Algorithms

In this Section we describe some standard algorithms for DCOP solving. Several solving al-

gorithms has been developed to solve DCOPs, following different approaches: complete or in-

complete algorithms, partially centralized or fully decentralized algorithms, inference or search

algorithms with different levels of synchronous or asynchronous behaviour.

In the following, we explain some fully decentralized and complete algorithms for DCOP

solving. Particularly, we describe with special detail the algorithm BnB-ADOPT since it is the

25

2. BACKGROUND

solving algorithm that we use in the rest of this thesis. Therefore, we encourage the reader to

take a closer look at its description.

2.2.2.1 DPOP

DPOP is the acronym for Dynamic Programming Optimization Protocol. It was presented first

in (Petcu and Faltings, 2005) and it appears in full detail in (Petcu, 2007).

DPOP is a distributed inference algorithm (it can be seen as the distributed version of the

Bucket Elimination algorithm (Dechter, 1999)). It does not exchange individual values among

agents, as search algorithms do. DPOP exchanges complete cost functions among agents. It

uses the following two operations defined on cost functions (these are the same two operations

required for the Bucket Elimination algorithm, described in Section 2.1.2.2; we denote cost

functions by fV , where V is the set of variables on which the function fV is defined):

1. Projecting out a variable x 2 V from fV is a new function with scope V � fxg defined

as projecting fV on V � fxg, that is, first removing the values of x and then removing

duplicate tuples, while keeping the minimum cost of the original tuples in fV .

2. Summing two functions fV and gW is a new function f + g with scope V [W and

8t 2
∏
xi2V Di, 8t0 2

∏
xj2W Dj such that they can concatenate (the concatenation of t

and t0, written as t � t0 is a new tuple formed by the values appearing in t and t0, requiring

that on common variables they should have the same values), (f + g)V [W (t � t0) =

fV (t) + gW (t0).

DPOP works on a DFS-tree arrangement of the constraint graph and performs three phases

in sequence:

1. DFS phase. (DFS-tree generation). An agent is selected as root (for instance, by a leader

election process). From this agent starts a distributed DFS traversal of the constraint

graph. At the end of this traversal, each agent labels its neighbors as parent, pseudo-

parents, children or pseudo-children.

2. UTIL phase. (UTIL message exchange, bottom-up propagation). Each agent (starting

from leaves) sends a UTIL message to its parent, that contain an aggregated cost function

computed adding received UTIL messages from its children with its own cost functions

with parent and pseudo-parents. The sent cost function does not contain the agent's

26

2.2 Distributed Constraint Optimization Problems

variable, which is projected out. Observe that UTIL messages have exponential size,

since they exchange complete cost functions.

3. VALUE phase. (VALUE message exchange, top-down propagation). Each agent deter-

mines its optimal value using the cost function computed in phase 2 and the VALUE

message received from its parent. Then, it informs its children using VALUE messages.

The agent at the root starts this phase.

We identify each phase as DPOP(phase). DPOP(util) is a one-pass process from leaves

to root: it is the phase responsible for using exponentially large messages. DPOP(dfs) is a

preprocess to compute the DFS-tree arrangement, while DPOP(value) is a one-pass process

from root to leaves, with the best assignments for variables in early levels of the DFS-tree.

DPOP(dfs) and DPOP(value) both require a polynomial number of linear size messages.

Originally DPOP considers that agents have utilities associated with value tuples, so an

optimal solution is the tuple that maximizes the overall utility. Here, we consider that agents

have costs associated with value tuples, so an optimal solution is the tuple that minimizes the

overall cost.

It is worth mentioning that, when the DFS pseudo-tree has no back edges (that is, it is a real

tree), there is a version of this algorithm (called DTREE in (Petcu and Faltings, 2005)) which

uses UTIL messages of linear size.

2.2.2.2 SBB

Synchronous Branch and Bound (SBB) (Hirayama and Yokoo, 1997) is a distributed complete

search algorithm for DCOPs. It performs a branch-and-bound search in a synchronous way. In

this algorithm only one agent is active at every moment.

SBB uses a total ordering among agents. Agents exchange messages following this or-

dering to send a path, which contains the current partial assignment of variables and its cost.

This path is exchanged among agents and extended with new value assignments exploring the

search space until the optimal solution is found. Also, an upper bound UB is passed among

agents containing the cost of the best solution found so far.

SBB executes in the following way:

� The first agent in the ordering starts the search sending a path that constains only its

value assignment. This path is sent to the second agent in the ordering.

27

2. BACKGROUND

� When receiving a path from a previous agent in the agent ordering, the receiver agent

evaluates the cost of assigning its first value in the value ordering. If this cost is lower

than UB the receiver adds its own assignment to the path and sends it to the next agent.

Otherwise, it continues trying next domain values until the cost is lower than UB. If

values are exhausted, agent i it backtracks to the previous agent by returning the path.

� When receiving a path from the previous agent in the agent ordering, an agent changes

its assignment to the next value in its value ordering, calculates the cost of the new path,

and sends it to the next agent if its cost is less than the UB. Otherwise, it continues to

try next values. Another backtrack takes place if values are exhausted.

2.2.2.3 AFB

Asynchronous Forward-Bounding (AFB) (Gershman et al., 2009) is a complete and partially

asynchronous algorithm for DCOP solving also based on a branch-and-bound search strategy.

In the AFB algorithm agents are totally ordered and messages are exchanged between agents

containing a current partial assignment, called CPA, and a unique timestamp so the recency

of CPAs can be compared. Agents have an upper bound UB which is the cost of the best

solution found so far. Also, agents maintains lower bound estimations for every value assign-

ment considering a particular CPA. This lower bound estimations are calculated according to

information they receive from lower priority agents.

Agents try to extend the CPA with new value assignments until a complete solution is

found. If an agent succeeds in adding a new value assignment in the CPA, it sends copies

of the updated CPA to all unassigned agents, requesting to compute lower bound estimations

for that CPA. These estimations are computed and are sent back to the sender agent. In this

way, it is posible to discover that the lower bound of the current CPA is higher than the UB

and perform an earlier backtrack. In this algorithm more than one CPA may exist at any time

so the timestamps are introduced to discard obsolete CPA corresponding to abandoned partial

solutions.

Execution of AFB is as follows:

� The first agent starts adding its first value assignment to the CPA and sending a CPA

message to the next agent in the ordering. It also sends a FB CPA message (forward

bounding request) to all agents whose assignments are not yet in the CPA.

28

2.2 Distributed Constraint Optimization Problems

� When an agent receives a CPA message it makes sure that it is not obsolete comparing

timestamps. If the message is not discarded, the agent tries to assign a new value as-

signment to the CPA. The cost of the new value assignment in the CPA plus its lower

bound estimations can not exceed UB. If no such value is found the agent pass the CPA

to the previous agent (backtrack). Otherwise, the agent adds the assignment to the CPA,

sends a CPA message to the next agent and a FB CPA message to unassigned agents. If

a complete assignment has been reached (the agent is the last agent in the ordering) a

NEW SOLUTION message is broadcasted to all agents with the new UB. This is done

for every new complete solution until no further improvements to the UB can be made.

Then, the last agent performs backtrack sending the CPA to its previous agent.

� When an agent receives a FB CPA message it makes sure that it is not obsolete compar-

ing timestamps. If the message is not discarded, the agent computes an estimate lower

bound for the received CPA which is calculated considering the cost of its lowest cost

assignment considering this CPA. This estimation is sent back to the sender agent with

an FB ESTIMATE message.

� When an agent receives a FB ESTIMATE message it makes sure that it is not obsolete

comparing timestamps. If the message is not discarded, it saves the estimates and checks

if the aggregation of lower bound estimations received causes the current partial assign-

ment to exceed UB. In such a case, the agent tries to change its value assignment with

the next value or backtracks in case a valid assignment cannot be found.

2.2.2.4 ADOPT

ADOPT (Asynchronous Distributed Constraint Optimization with Quality Guarantees) (Modi

et al., 2005) is a reference algorithm for asynchronous distributed search. It can find the optimal

solution for a DCOP, or a solution within a user-specified distance from the optimal, using local

communication and polynomial space at each agent.

Unlike SBB and AFB, ADOPT uses a pseudo-tree arragenment of its variables that al-

low agents to work on independent sub-problems (branches of the pseudo-tree) concurrently.

According to ADOPT authors, a synchronous method were agents remain idle waiting for a

particular message to arrive is unacceptable because it is wasting time when agents coud be

doing potencially useful work.

29

2. BACKGROUND

ADOPT traverses the search space in a best-first search order. Each agent change its value

assignment whenever it detects there is a possibility that some other value may be better than

the one currently assigned. To make such decisions, agents use lower and upper bounds calcu-

lated and delivered by children in the pseudo-tree. These lower and upper bounds are initially

0 and 1 and are refined iteratively as search progresses. Agents change value whenever the

lower bound of a domain value is lower than the lower bound of its current value assignment.

In this way, agents perform a best-first search strategy where partial solutions may be aban-

doned to change to the most promising value considering the current information. This allows

a high degree of parallelism because agents do not wait to gather all the information of global

bounds needed to discard the current value as sub-optimal. However, since partial solutions are

abandoned before sub-optimality is proved they may need to be revisited.

ADOPT agents use four types of messages: VALUE, COST, THRESHOLD and TERMI-

NATE. Every parent agent sends a VALUE message to its children and pseudo-children to

inform of value assignments. As response, every child sends to its parent a COST message

informing the lower and upper bound the child is able to calculate considering the parent cur-

rent assignment, the assignment of ancestors and also the lower/upper bounds that the child

has received from its own children. These bounds can be iteratively refined with further COST

messages. THRESHOLD messages allow agents to reconstruct previously abandoned solu-

tions in an efficient way, which is a frequent action due to ADOPT search strategy since agents

only store information from the current partial solution. This technique requires only polyno-

mial space in the worst case, which is much better that the exponential space that would be

required to simply memorize all partial solutions in case they need to be revisited.

Finally, the algorithm provides a built-in mechanism for termination. For this it uses bound

intervals (a lower and upper bound of the optimal solution). When the size of this bound

interval shrinks to zero (the lower bound is equal to the upper bound), the cost of the optimal

solution has been determined. In the same way, when the bound interval shrinks to a user-

specified size, agents can terminate guaranteeing that the cost of the solution found is within the

given distance of the optimal solution. This means that agents can find an approximate solution

(sub-optimal solution) faster than the optimal one but they provide a theoretical guarantee on

the global solution quality.

30

2.2 Distributed Constraint Optimization Problems

2.2.2.5 BnB-ADOPT

Branch and Bound ADOPT (BnB-ADOPT) (Yeoh et al., 2010) is a distributed asynchronous

algorithm that optimally solves DCOPs using a depth-first branch-and-bound search strategy.

It is closely related to ADOPT (Modi et al., 2005), maintaining most of its data structures and

communication framework. BnB-ADOPT starts constructing a DFS pseudo-tree arrangement

of its agents. After this, each agent knows its parent, pseudo-parents, children and pseudo-

children.

Data Structure:

During execution an agent i maintains: its current value assignment d; a timestamp for

every value assignment (so their recency can be compared); a current context Xi, which is a

set of value assignment that represent its knowledge about the current value assignment of its

ancestors; for every value d 2 Di and contextXi, a lower and upper bound LBi(d) and UBi(d),

which are bounds on the optimal costOPTi(d) given that xi takes on the value d and its ances-

tors take on their respective values in Xi; and the lower and upper bounds LBi and UBi, which

are bounds on the optimal cost OPTi given that its ancestors take on their respective values in

Xi. Costs and bounds are calculated in the following way:

OPTi(d) = �i(d) +
∑

xc2Ci OPTc

OPTi = mind2Di OPTi(d)

�i(d) =
∑

(xj ;dj)2Xi Cij(d; dj)

LBi(d) = �i(d) +
∑

xc2Ci lbi;c(d)

UBi(d) = �i(d) +
∑

xc2Ci ubi;c(d)

LBi = mind2DifLBi(d)g
UBi = mind2DifUBi(d)g

where Ci is the set of children of agent i, �i(d) is the sum of costs of all cost functions between

i and its ancestors given that i assigns value d and ancestors assign their respective values in

Xi. Tables lbi;c(d) and ubi;c(d) store the agent i assumption on the bounds LBc and UBc of

31

2. BACKGROUND

children c, for all values d 2 Di and current context Xi [(xi; d). Due to memory limitations,

agent i can only store lower and upper bounds for one context. So agents reinitializes its

lower/upper bounds each time there is a context change.

To prune values during search, agents use a threshold value TH , initially1. Thresholds

represent an estimated upper bound for the current context, which may in some cases be more

strong than upper bound UB. In the root agent THroot remains always1. Threshold values

are sent from parent to children. A threshold th sent from agent i with value d to child c is

calculated as:

th = min(THi; UBi)� �i(d)�
∑

ch2Ci;ch6=c lbi;ch(d)

th is calculated on parent i based on information obtained exploring previous values (UBi)

and information from exploring the current value d (�i(d), lbi;ch(d)). When this information

arrives to child c its threshold THc, initially infinity, is updated with the th sent from parent i.

Communication:

Some communication is needed in BnB-ADOPT to calculate the global costs of agents

assignments and to coordinate search towards the optimal solution. BnB-ADOPT agents use

three types of messages: VALUE, COST and TERMINATE, defined as follows:

� VALUE(i; j; val; th): agent i informs child or pseudo-child j that it takes value val with

threshold th;

� COST(k; j; context; lb;ub): agent k informs parent j that with context its bounds LBk

and UBk are lb; ub;

� TERMINATE(i; j): agent i informs child j that i terminates.

As mentioned, BnB-ADOPT associates a timestamp to each value assignment (either trav-

elling in VALUE or COST messages). This permits VALUE and COST messages to update

the context of the receiver agent, if their values are more recent. Every time there is a context

change in agent i as result of a new value assignment on an ancestor p, the bounds of children

lbi;c, ubi;c might be reinitialized. This is the case if c is constrained with the ancestor p that

changed its value.

32

2.2 Distributed Constraint Optimization Problems

Upon reception of a VALUE message, value val is copied in the receiver context if its

timestamp is more recent, and threshold th is updated in the receiver if it the message comes

from the parent.

Upon reception of a COST message from child c, the more recent values in the context of

the COST message are copied in the receiver context. After this, if the receiver context is com-

patible with the COST message context, then the agent updates its lower and upper bounds

lbi;c(d) and ubi;c(d) with the lower and upper bounds in the COST message, respectively. Oth-

erwise, the bounds of the COST message are discarded. Contexts are compatible iff they agree

on common agent-value pairs.

Execution:

The goal of every agent i in BnB-ADOPT is to explore the search space and ultimately

chooses the value that minimizes LBi. BnB-ADOPT changes its value only when it is able to

determine that the optimal solution for that value is provably no better than the best solution

found so far for its current context. In other words, when LBi(d) � UBi for current value

d. Therefore, it performes a branch-and-bound search. Often, agents also prune values using

thresholds sent from their parents, so more precisely agent i changes its value dwhen LBi(d) �
minfTHi;UBig.

As search progresses, agent i explores values from its domain and calculates LBi(v) and

UBi(v) for every value v 2 Di. When all values has been explored or pruned, LBi = UBi,

which means that i reaches the optimal solution for context Xi. When LBi = UBi is reached

in the root agent then the optimal problem solution of the problem has been found and root

sends TERMINATE message to children. For a non root agent, the optimal problem solution

is found when LBi = UBi and a TERMINATE message has been received from its parent.

A BnB-ADOPT agent executes the following loop. It reads and processes all incoming

messages. After completely processing the message queue, it changes value if LBi(d) �
minfTHi;UBig (being d its current value). After this, the agent sends the following messages:

a VALUE message to every child, a VALUE message to every pseudo-child and a COST mes-

sage to its parent. This process repeats until the root agent r reaches the termination condition

LBr = UBr, which means that it has found the optimal cost. It then sends a TERMINATE

message to each of its children and terminate. After agent i receives a TERMINATE message,

i sends a TERMINATE message to its children and terminates when LBi = UBi.

33

2. BACKGROUND

In the following chapters, we assume that the reader has some familiarity with BnB-

ADOPT (for a deeper description, see the original source (Yeoh et al., 2010)).

In this thesis we have studied, implemented and used the BnB-ADOPT algorithm as a base

search algorithm because of the following reasons. Following a branch-and-bround strategy,

BnB-ADOPT has proved to be more efficient than ADOPT and as efficient as NCBB (Yeoh

et al., 2010). It is memory bounded since it uses polynomial memory –unlike DPOP, which

requires an exponential size in messages– and restricts communication to neighbors –unlike

AFB, which broadcast new solutions to every agent in the problem. These are desirable prop-

erties to maintain, for example consider a sensor network application where sensors have lim-

ited memory capacity or limited communication radius. BnB-ADOPT is also an asynchronous

algorithm –unlike SBB– which can be useful in distributed problems because agents perform

computation and exchange information in parallel instead of waiting idle for a particular mes-

sage to arrive. Another advantage of asynchronous algorithms is that they are more robust to

failures than synchronous ones. Finally, BnB-ADOPT offers quality guarantees and allows to

end the search process at a user-specified distance from the optimum cost when time is limited.

2.2.3 Experimental Evaluation

In this thesis we perform experimental evaluations of distributed solving algorithms in a dis-

crete event simulator. The simulator contains a list of all the agents involved in a particular

instance. Every agent has associated a message queue containing the messages sent to this

agent. The simulator performs several iterations, called cycles, until the optimal solution is

found. One cycle consist in every agent reading all incoming messages from its message queue,

performing local computation, and if needed sending messages to other agents.

Performance is evaluated in terms of the communication cost and computational effort

required to solve a problem. As a measure of the communication effort needed to solve a

problem we use the total number of messages exchanged during its resolution. We assume the

usual case where the communication time is higher than the computation time. Then the total

elapsed time is dominated by the communication time. In this case, reducing the number of

messages is very desirable, also the agents need to process less information.

As a measure of the computational effort needed to solve a problem we use the number

of non-concurrent constraint checks (NCCCs) (Meisels et al., 2002). To calculate the non-

concurrent constraint checks every agent has a counter that is incremented every time a con-

straint is evaluated. This counter is sent in every message. When a message is received the

34

2.2 Distributed Constraint Optimization Problems

counter of the receiver agent is updated with the higher value between its own counter and the

counter of the received message. When the algorithm terminates the number of non-concurrent

constraint checks is selected as the highest value among all agent counters. This value can be

seen as the longest sequent of constraint checks performed non-concurrently.

The total number of messages exchanged and NCCCs are standard measures widely used

in the DCOP community. As a complementary measure, we also provide in experimental

evaluations the number of cycles performed by the simulator.

Generally we perform evaluation using the following benchmarks:

� Random DCOPs. They are characterized by hn; d; p1i, where n is the number of vari-

ables, d is the domain size of variables and p1 is the network connectivity defined as the

ratio of existing cost functions. For example, binary instances contain p1 � n(n � 1)=2

binary cost functions, while ternary instances contain p1�n(n�1)(n�2)=6 ternary cost

functions. Constrained variables are selected randomly until the specified network con-

nectivity is reached. Costs are selected randomly from different sets. Random generation

assures connected problems, so all agents of the problem belong to the same constraint

graph.

� Meeting Scheduling Instances. Variables represent meetings, domains represent time

slots assigned for meetings, and there are cost functions between meetings that share par-

ticipants (Maheswaran et al., 2004). These instances are obtained from a public DCOP

repository (Yin, 2008) with four hierarchical scenarios among participants (cases A, B,

C and D).

� Sensor Network Instances. Variables represent areas that need to be observed, domains

represent time slots and there are cost functions between adjacent areas (Maheswaran

et al., 2004). These instances are obtained from a public DCOP repository (Yin, 2008),

with four available topologies (cases A, B, C and D).

Meeting scheduling and sensor network instances are structured problems since they are

generated considering specific rules in how variables are constrained (Maheswaran et al., 2004).

On the other hand, random DCOPs are non-structured instances since their variables are con-

strained randomly and costs are selected randomly from a uniform cost distribution.

35

2. BACKGROUND

36

3

Distributed Search

During this thesis we have studied, implemented and experimented with ADOPT and BnB-

ADOPT algorithms. As result of this work, we devised ways to improved them to a large

extent. In this Chapter we present our contributions to distributed search:

� We propose a new version of BnB-ADOPT which avoids sending redundant messages.

� We address the issue of handling efficiently n-ary constraints in BnB-ADOPT.

� We present a new algorithm called ADOPT(k) that generalizes ADOPT and BnB-ADOPT

search strategy.

37

3. DISTRIBUTED SEARCH

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

In the distributed context, agents performing complete search may send an exponential number

of messages (consider that each agent sends a message each time it takes a new value and, in

the worst case, the optimal solution is the rightmost leaf of the search tree). We realized that

ADOPT (Modi et al., 2005) and –to a lesser extent– BnB-ADOPT (Yeoh et al., 2010) exchange

a large number of messages. Often, this is a major drawback for their practical applicability.

Every time an agent in BnB-ADOPT processes completely its message queue, it checks if it

must change its value and sends a VALUE message to each children and pseudo-children and

a COST message to its parent. Even if the agent maintains its value assignment, or if the

lower and upper bounds of the current partial solution remain the same, the agent invariably

sends VALUE messages to children and pseudo-children and a COST message to its parent.

This strategy –sending information that in many cases has already been sent– is certainly safe.

However, it could be seen as ”sending more than needed” and offers room for improving the

communication protocol.

Aiming at decreasing the number of exchanged messages, we show that some of BnB-

ADOPT messages are redundant and can be removed from the search process without com-

promising its optimality and termination properties. As mentioned above, our intuition comes

from the fact that BnB-ADOPT agents often send repeated information, which can be avoided

under certain conditions. We present a new version, namely BnB-ADOPT+, which avoids

sending most of these redundant messages. Experimentally, we show that BnB-ADOPT+ sig-

nificantly decrements communication cost (the number of exchanged messages is divided by a

number often larger than 3) on several widely used DCOP benchmarks.

3.1.1 Removing Redundant Messages in BnB-ADOPT

Initially, we consider the binary DCOP definition, where agents share binary cost functions.

These results can be generalized to cost functions of any arity, as explained in Section 3.1.2.3.

Notation: i, j and k are agents executing BnB-ADOPT handling variables xi, xj and xk

respectively. (xi; v) means that agent i holding variable xi assigns value v. contexti is the

set of value assignments of agents located before i in its pseudo-tree branch (timestamps are

not considered part of the context). contexti[j] is the value assignment of agent j in contexti.

For each value d and children c in agent i, the lower and upper bounds informed by c are

38

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

lbi;c(d)/ubi;c(d). We recall that a message msg that arrives to j containing the assignment

(xi; v) with timestamp t updates contextj [i] which has timestamp t0 if and only if t > t0.

A message msg sent from i to j is redundant if at some future time t, the effect of other

messages arriving j between msg and t would cause the same effect, so msg could have been

avoided.

Lemma 1 In BnB-ADOPT, if agent i sends two consecutive VALUE messages to agent j with
timestamps t1 and t2 for xi assignment, there is no message containing an xi assignment with
timestamp t such that t1 < t < t2.

Proof. There is no VALUE message containing a timestamp between t1 and t2 for xi assign-

ment, since both VALUE messages are consecutive and sent from agent i. COST messages

build their contexts from the information in VALUE messages. Since no VALUE message

contains a timestamp between t1 and t2 for xi assignment, no COST message will contain it.

2

Theorem 1 In BnB-ADOPT, if agent i sends to agent j two consecutive VALUE messages with
the same val and th, the second message is redundant.

Proof. Let V1 and V2 be two consecutive VALUE messages sent from agent i to agent j with

the same value val and threshold th with timestamps t1 and t2, t1 � t2. Observe that between

V1 and V2 agent i may have processed messages and its value assignment may have been

reinitialized several times (by InitSelf procedure (Yeoh et al., 2010)), therefore even if V1

and V2 contain the same val and th values, their timestamps may be different. Observe also

that between V1 and V2 any messages may arrive to j (coming from other agents).

Considering th, when V1 reaches j:

1. If i is the parent of j, the th is copied in j.

2. If i is not the parent of j, the threshold th is ignored.

Assuming i is the parent of j and th is always copied, copying the same th value in j is

redundant. It might be the case that j has reinitialized its th to1 as result of a context change

in some higher neighbor. Observe that any higher neighbor connected with j is also an ancestor

of i in the pseudo-tree (because i and j are on the same branch), so i will eventually receive a

message as result of this context change and then it will send a new VALUE message to j with

an updated th and val. Notice that maintaining th = 1 in agent j during some time does not

39

3. DISTRIBUTED SEARCH

compromises termination or completeness of the algorithm. To see this, it is enough to realize

that thresholds are not used in (Yeoh et al., 2010) in any proof of Section 5 but in the proof of

Lemma 8. However, the proof of Lemma 8 remains valid replacing threshold by1. Generally

speaking, since th is an estimated upper bound of the current partial solution, when th = 1
this property holds so it does not affect optimality or termination, although it could affect the

pruning potentiality of the algorithm (thresholds are included to increase efficiency). For a

more detailed explanation of maintaining efficient threshold management see Section 3.1.2.2.

Considering val, when V1 reaches j the following cases are possible:

1. V1 does not update contextj [i]. When V2 arrives to j the following cases are possible:

(a) V2 does not update contextj [i]. Future messages will be processed as if V2 has not

been received, so V2 is redundant.

(b) V2 updates contextj [i] which has timestamp t. There are two options: (i) t2 >

t > t1 and (ii) t2 > t = t1. Option (i) is impossible according to Lemma 1.

Option (ii) is possible, but since t = t1 the value val contained in V2 is already

in contextj [i], so V2 updates timestamps only. In future messages, every message

accepted with timestamp t2 in contextj [i] would also be accepted with timestamp

t1 in contextj [i]. Therefore we conclude that V2 is redundant.

2. V1 updates contextj [i]. When V2 arrives to j the following cases are possible:

(a) V2 does not update contextj [i]: as case (1.a).

(b) V2 updates contextj [i]: since V1 updated contextj and Lemma 1, the timestamp

of contextj [i] must be t1. Updating with V2 does not change contextj [i] value but

updates the timestamp of contextj [i] from t1 to t2. Since there are no messages

with timestamp between t1 and t2 (Lemma 1), any future message that could update

contextj with t2 would also update it with t1. So V2 is redundant.

2

Lemma 2 In BnB-ADOPT, if agent k sends two consecutive COST messages C1 and C2 with
the same context and timestamps t1 and t2 respectively for the xi assignment, and k has not
detected a context change between C1 and C2, then there is no message with a timestamp t
between t1 and t2 for xi assignment incompatible with C1 and C2.

40

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

Proof. Each time agent i changes value it sends a VALUE message to all its children and

pseudo-children. This context change is eventually detected by k, either by a direct VALUE

message from i (in this case k is constrained with i) or by a COST message from a descendant.

Since there is no context change between C1 and C2, no message with timestamp between t1

and t2 can contain a xi assignment incompatible with C1 and C2; otherwise agent k would have

necessarily detected the context change. 2

Theorem 2 In BnB-ADOPT, if agent k sends to agent j two consecutive COST messages with
the same information (context, lower/upper bound) and k has not detected a context change,
the second message is redundant.

Proof. Let C1 and C2 be two consecutive COST messages sent from k to j with the same

context and lower/upper bounds, and contextk has not changed between sending them. Any

message may arrive to j between C1 and C2 (coming from other agents). Upon reception, the

more recent values of C1 (and later of C2) are copied in contextj (by PriorityMerge (Yeoh

et al., 2010)). If j detects a context change, tables lbj;c(d) and ubj;c(d) could be reinitialized.

If, after the priority merge, contextj is still compatible with the COST context, tables lbj;c(d)

and ubj;c(d) are updated with the information contained in the COST message.

Copying C2 more recent values in contextj is not essential. Let us assume that these

values are not copied. Since there is no context change between C1 and C2, any message

with a timestamp in between the timestamps of C1 and C2 will necessarily include a context

compatible with C2, according to Lemma 2. Therefore when C2 arrives it updates timestamps

only.

Since C2 do not cause a context change in j, because it updates timestamps only, it does not

cause a reinitialization of lbj;c(d), ubj;c(d). Because of that, our proof concentrates on bounds

update.

When C1 arrives, the following cases are possible:

1. After priority merge, C1 is not compatible with contextj , its bounds are discarded. When

C2 arrives the following cases are possible:

(a) After priority merge, C2 is not compatible with contextj , its bounds are discarded.

Bounds provided by C2 are based on outdated information. So C2 is redundant.

41

3. DISTRIBUTED SEARCH

(b) C2 is compatible with contextj , its bounds are included in j. Since C1 was not

compatible, there is at least one agent above j that changed its value. This value

change has been received by j between C1 and C2 but has not yet been received

by k (otherwise k would have detected a context change). Therefore there are one

or several VALUE messages on its/their way towards k or k descendants. Upon

reception, one or several COST messages will be generated. The last of them will

be sent from k to j with more updated information. C2 could have been avoided

because a more updated COST will arrive to j. So C2 is redundant.

2. After priority merge, C1 is compatible with contextj , its bounds are included. When C2

arrives to j the following cases are possible:

(a) After priority merge, C2 is not compatible with contextj , its bounds are discarded.

Bounds provided by C2 are based on outdated information. Since C1 was compat-

ible, there is at least one agent above j that changed its value. This information

reached j between C1 and C2 but is still not detected by k. In the future a more up-

dated COST will reach j (same reasons as previous case 1.b). So C2 is redundant.

(b) C2 is compatible with contextj , it bounds are included but this causes no change

in j bounds, unless bounds have been reinitialized. In the case of bounds reinitial-

ization there is at least one agent above j that changed its value. The situation is

the same as case (1.b). So C2 is redundant. 2

3.1.1.1 Example of Redundant VALUE messages

We present an example to illustrate some details of Theorem 1. Consider agents i and j, holding

variables xi and xj respectively. Agent i sends two consecutive VALUE messages V1 and V2

to j with the same value and threshold. As explained in the previous Section, if V2 does not

update contextj then V2 is redundant. Now, we will consider two possible scenarios in which

message V2 changes contextj .

Case V1 does not update contextj , and V2 updates contextj :

As proved in Theorem 1, this scenario is impossible. Consider i sending message V1 to

j informing of the assignment xi = b with timestamp t1 (Figure 3.1(a)). Agent j has in its

context the assignment xi = a with timestamp t > t1 (more updated) , so V1 is discarded.

Then, message V2 is sent to j with timestamp t2 (Figure 3.1(b)). If V2 is accepted, then

timestamp t2 has to be more updated that t (t2 > t). Then we get the case: t2 > t > t1 which

42

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

is impossible, because we know, from Lemma 1, that there can be no message with timestamp

between t1 and t2.

xi

xj

 V1: (xi = b, t1)

contextj : (xi = a, t)

t > t1

(discarded)

(a)

xi

xj

 V2: (xi = b, t2)

contextj : (xi = a, t)

t > t2

(discarded)

(b)

Figure 3.1: Case V1 does not update contextj , and V2 updates contextj

Case V1 and V2 update contextj :

Let us consider that i sends message V1 to j informing the assignment xi = b with times-

tamp t1, and is accepted (Figure 3.2(a)). Then contextj [i] is updated and its timestamp is

set to t1. Between V1 and V2 many messages may arrive to j with different timestamps, and

contextj might be updated. But if V2 is accepted, we can assure that timestamp in contextj [i]

must be t1 when message V2 arrives (otherwise V2 would not have been accepted). Upon V2

reception, contextj [i] remains the same (because V1 and V2 contains the same assignment)

and only timestamp t2 is updated (Figure 3.2(b)). Since there is no message with timestamp

between t1 and t2 (Lemma 1) is easy to see that any VALUE message V3 or COST message

C3 that would update contextj [i] having timestamp t2, will also update it if contextj [i] would

have timestamp t1 (Figure 3.2(c)). So updating t2 in contextj [i] makes no difference on future

message processing. Therefore, V2 is redundant.

3.1.1.2 Example of Redundant COST messages

In the following we present an example to illustrate some details of Theorem 2 when messages

are delayed during execution.

Consider agents k and j, holding variables xk and xj respectively. Agent k sends two

consecutive COST messages C1 and C2 to j. As explained in the previous Section, if after

43

3. DISTRIBUTED SEARCH

xixi
(accepted)

V1: (xi = b, t1)

xj
contextj : (xi = a, t)

(xi = b, t1)

(a)

xixi
(accepted)

V2: (xi = b, t2)

xj
contextj :(xi = b, t1)

(xi = b, t2)

(b)

x (accepted)xi
V3: (xi = b, t3)

(accepted)

xj
contextj :(xi = b, t2)

or (xi = b, t1)(i , 1)

(accepted)

C3:(xi=b, t3, LB, UB)

xk t3 > t2 > t1

(c)

Figure 3.2: Case V1 and V2 update contextj

priority merge C2 bounds are discarded then C2 is redundant since bounds LB and UB are not

updated and its reception has no effect in future message processing. Now, we will consider

two possible scenarios in which message C2 bounds are accepted.

Case C1 bounds are discarded, and C2 bounds are accepted:

Consider a higher agent i connected with j and k. Variable xi changes its value from a to b

and i sends the correspondent VALUE messages (informing xi = b) to j and k. Message sent

to j is received and contextj [i] is updated, but message sent to k is delayed (Figure 3.3 (a)).

Now, agent k sends a COST message C1 to j and this message is discarded because contexts

are incompatible on variable xi, since k has not received the last VALUE message from i yet

(Figure 3.3 (b)). Between messages C1 and C2 other messages may arrive, so let us assume

that i changes its value again to a and sends the correspondent VALUE messages to j and k,

but message to k is once again delayed (Figure 3.3 (c)). With these messages delayed, there is

no context change in k and message C2 is sent. Message C2 is accepted in j (since contexts

are now compatible) and j bounds are updated (Figure 3.3(d)). However, as there are still 2

delayed VALUE messages from i to k, we can assure that when they arrive to k there will be a

context change, so a new COST message C3 will be generated with more updated information

(Figure 3.3(e)). As we can see, message C2 can be ignored since a message C3 will eventually

arrive to j and update its bounds with more recent information.

Case C1 and C2 bounds accepted:

44

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

xi
V (b) V: (x = b t)V: (xi = b, t2)

(delayed)

V: (xi = b, t2)

(accepted)

xj context :(x = a t)

contextj :(xi = b, t2)

xj contextj :(xi a, t1)

xk contextj :(xi = a, t1)xk j (i 1)

(a)

xi
V (b)V: (xi = b, t2)

(delayed)

context :(x = b t)xj contextj :(xi b, t2)xj

(di d d)

C1:(xi=a, t1, LB, UB)

(discarded)

xkxk

(b)

xi
V: (x = a t)V: (x = a t)

V: (xi = b, t2)

V: (xi = a, t3)V: (xi = a, t3)

(accepted)

context :(x = b t)

(delayed)

xj contextj :(xi = b, t2)
(xi = a, t3)

xj

xk contextj :(xi = a, t1)xk j (i 1)

(c)

xi
V: (x = a t)

V: (xi = b, t2)

V: (xi = a, t3)

contextj : (xi = a, t3)
(delayed)

xj j (i 3)xj

C2:(xi=a, t1, LB, UB)

xkxk

(d)

xi
V: (x = a t)

V: (xi = b, t2)

V: (xi = a, t3)

contextj : (xi = a, t3)
(accepted)

xj j (i 3)xj

(…)

xk
C3:(xi=a, t3, LB, UB)

()

xk

(e)

Figure 3.3: Case C1 bounds are discarded, and C2 bounds are accepted

Consider that agent k sends message C1 to j and its bounds are accepted because contexts

are compatible. In this case bounds LB and UB are updated in j. If message C2 arrives right

after C1, it is easy to realize that is redundant, since it would copy the same information in

j. However, between C1 and C2 some messages may arrive, and as result of this the bounds

informed by C1 might be reinitialized. This could only happen if a higher agent i changes its

value. So if a higher agent i changes its value from a to b, when the corresponding VALUE

messages arrives to j its bounds are reinitialized. After this i must change again its value to a

if we want a scenario where C2 message is accepted. In this case, as there is no context change

in k, we can assure that there are delayed VALUE messages on their way to k (as in Figure

45

3. DISTRIBUTED SEARCH

3.3 (b) and (c)). When those delayed messages arrive to k there will be a context change,

generating a new COST message C3 with more updated information (same case as Figure 3.3

(e)). So message C2 can be ignored since a message C3 will eventually arrive to j and update

its bounds.

3.1.1.3 Correctness and Completeness

Temporarily, we define BnB-ADOPT+ as our version of BnB-ADOPT with the following

changes:

� The second of two consecutive VALUE messages with the same i, j, val and th is not

sent.

� The second of two consecutive COST messages with the same k, j, context, lb and ub

when k detects no context change is not sent.

These changes do not affect optimal solving, as proved next.

Theorem 3 BnB-ADOPT+ terminates with the cost of a cost-minimal solution.

Proof. By Theorem 1 and 2 messages not sent by BnB-ADOPT+ are redundant. At some fu-

ture time, the effect of other messages arriving to the receiver agents will cause the same effect,

so these messages can be removed. BnB-ADOPT terminates with the cost of a cost-minimal

solution (Yeoh et al., 2010), so BnB-ADOPT+, without redundant messages, also terminates

with the cost of a cost-minimal solution. 2

3.1.1.4 Ef�cient Threshold Management

Experimentally, BnB-ADOPT+ as described in 3.1.1.3 caused minor benefits. We realized that

we have ignored threshold management. Although a VALUE message is sent every time the

th value changes in the sender agent, we did not considered that this th may be reinitialized

to 1 in the receiver agent. Thresholds are reinitialized to 1 after a context change (caused

by VALUE or COST messages); this causes no special difficulty in the original BnB-ADOPT

algorithm because VALUE messages are sent invariably to children and pseudo-children every

time the message queue is processed, so thresholds are soon updated in children. Now, if some

46

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

of these VALUE messages are not sent, children may run the algorithm with an 1 threshold

during some periods (until its parent changes its val or th).

Having an1 threshold does not affect optimality and termination. Observe that thresholds

are used for pruning under the condition: LB(d) � minfTH;UBg. If threshold is 1 the

pruning condition simply reduces to: LB(d) � UB. But if agents do not use the tightest

bound for pruning, performance can decrease substantially.

To avoid this, children should have a way to ask for the threshold to their parents after

reinitialization. This is done using a �ag in COST messages, which are sent from children to

parents. Thus, we define BnB-ADOPT+ as our BnB-ADOPT version as follows:

1. Agents remember the last VALUE and COST messages sent to every neighbor.

2. COST messages include a boolean ThRequest set to true if the sender threshold has

been reinitialized.

3. If i has to send j a VALUE message equal to the last message sent (ignoring timestamps),

the new VALUE message is sent if and only if the last COST message that i received from

j had ThRequest = true and i threshold is not1.

4. If j has to send i a COST message equal to the last message sent (ignoring timestamps),

the new COST message is sent if and only if j has detected a context change between

them.

It is immediate to see that this version maintains the optimality and termination condition of

BnB-ADOPT+. Some messages are sent to update children thresholds more rapidly when they

have been reinitialized. Original BnB-ADOPT, that includes redundant messages, terminates

with the minimal solution cost (Yeoh et al., 2010); then, sending some of those redundant

messages the algorithm remains optimal and terminates.

The proposed changes to avoid redundant messages can also be applied to the ADOPT

algorithm, as we show in Appendix A, producing the new algorithm ADOPT+. However in

this thesis we work with BnB-ADOPT+ because it is more efficient in practice.

3.1.2 N-ary Cost Functions in BnB-ADOPT

In DCOPs, it is somehow natural to use binary cost functions. It is usually assumed that each

agent holds a single variable and that agents communicate through messages from a sender to

47

3. DISTRIBUTED SEARCH

a receiver agent, this naturally brings to a binary relation between agents and to binary cost

functions. However, in some cases an agent may have a cost function of higher arity with

a subset of agents. ADOPT and BnB-ADOPT can be extended to support cost functions of

any arity. The original ADOPT (Modi et al., 2005) proposes a way to deal with n-ary cost

functions (with arity higher than two), and BnB-ADOPT takes the exact same strategy (Yeoh

et al., 2010). The extension proposed for ADOPT to handle n-ary cost functions, described in

(Modi et al., 2005), is as follows 1 :

...a ternary constraint fijk ... defined over three variables xi; xj ; xk ... Suppose xi

and xj are ancestors of xk... With our ternary constraint, both xi and xj will send

VALUE messages to xk. xk then evaluates the ternary constraint and sends COST

messages back up the tree as normal ... Thus, we deal with an n-ary constraint

by assigning responsibility for its evaluation to the lowest agent involved in the

constraint. The only difference between evaluation of an n-ary constraint and a

binary one is that the lowest agent must wait to receive all ancestors' VALUE

messages before evaluating ...

In other words (replacing ”constraint” by ”cost function”), in the proposed extension agents

must send their VALUE messages to the lowest agent of the pseudo-tree involved in a cost

function. In the case of a binary cost function, the lower agent in the pseudo-tree (of the

two involved in the cost function) always receives VALUE messages. In the case of n-ary

cost functions (involving more than two agents), intermediate agents do not receive VALUE

messages from the rest of the agents involved in that function. The lowest agent k must receive

all VALUE messages before evaluating the cost function. Because of this, it is called the

evaluator agent. Upon reception of all these messages, xk evaluates the n-ary cost function

and sends a COST message to its parent, which receives and processes it as any other COST

message.

When applying this technique to BnB-ADOPT some issues appear. This strategy may

cause inefficiency and an incorrect final assignment on BnB-ADOPT agents. In the following

we details these issues and provide a simple way to correct them, which can be easily integrated

in BnB-ADOPT.
1It must be assured that all agents involved in an n-ary cost function lie on the same branch of the pseudo-tree.

This is guaranteed since agents sharing n-ary cost functions form a clique in the constraint graph. When performing
a depth first traversal to construct the pseudo-tree, agents of the clique will necessarily lie on the same branch.

48

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

3.1.2.1 Termination

In binary BnB-ADOPT, each time an agent changes its value assignment it sends VALUE

messages to its children and pseudo-children. A non-root agent terminates when it reaches

the termination condition LB = UB after receiving a TERMINATE message from its parent

(for the root agent no TERMINATE message is needed). As a side-effect, the last value taken

by all agents is the optimal value. This feature is very appreciated in distributed environments,

because optimal values are distributed among agents without requiring a central agent in charge

of the whole solution.

In n-ary BnB-ADOPT, although the root agent computes the optimum cost, a direct imple-

mentation may not terminate with an optimal value assigned to every agent. Let us consider a

ternary cost function among agents i; j and k (as in Figure 3.4); i is at the root of the pseudo-

tree, and k evaluates the cost function. Agent i may explore its last value, jump back to its best

value where it reaches termination condition LB = UB, sends a VALUE message to k and a

TERMINATE message to its child j. Upon reception of VALUE message, k will send a COST

message to j. This COST message contains the last assignment (optimal value) made by i. But

if j has processed before the TERMINATE message from i, it will end without processing that

COST message, which means that j will end with an outdated context: 1 this causes j to end

with an assigned value which may not be an optimal one, since it does not minimize the cost

of the global solution. 2

A simple way to correct this is to include in TERMINATE messages the last assignment

made by the sender agent. In this way, the receiver can update its context and terminate with

the value that minimizes the lower bound.

3.1.2.2 Ef�cient Threshold Management

If the ADOPT strategy for n-ary cost functions is applied literally to BnB-ADOPT, there are

scenarios which are inefficiently solved. For instance, consider Figure 3.4, where variables of

agents i; j; k share a ternary cost function. Agent i is the root of the pseudo-tree and k is the

lowest agent (therefore the evaluator) of the ternary cost function. Suppose j is constrained

with further agents of the problem, represented as a gray subtree. Since VALUE messages are

sent from i and j to k to inform value changes, but no VALUE messages are sent from i to

1This would not happen if agent i would have sent VALUE messages to any child j informing of value changes,
but this is not the original BnB-ADOPT strategy to deal with n-ary cost functions.

2Technically speaking, j might terminate with an incorrect context.

49

3. DISTRIBUTED SEARCH

xi
TH = 50xiVALUE

xj TH = ∞

th = min(∞, UB) –

xk
δ(v)-∑child ≠ xc lb(v,child)

nary constraint
xi, xj, xk

xc

i j k

Figure 3.4: Original BnB-ADOPT dealing with n-ary constrains, use of VALUE messages.

j, agent j will not have a threshold provided by its parent. Furthermore, j will not be able to

calculate for its children the tightest possible threshold since its own TH is1 and this effect

propagates to all its subtree. Thresholds were introduced in BnB-ADOPT to speed up problem

resolution and increase pruning opportunities, so not having the tightest threshold on agent j

–and on j subtree– is clearly a drawback for performance.

A simple way to avoid this issue is to send VALUE messages to all descendants (children

or pseudo-children). However, this is more than needed. We can avoid unnecessary messages

by only sending VALUE messages to the lowest agent in charge of evaluating the cost function

–to generate COST messages with updated LB and UB– and to children –to propagate the TH

value down in the pseudo-tree–. Any agent involved with i in a cost function which is neither

the evaluator of the cost function nor a child of i does not need to receive a VALUE message

from i. This is our proposed extension for BnB-ADOPT to deal with n-ary cost functions. We

define n-ary BnB-ADOPT as follows:

� As in (Yeoh et al., 2010), each agent sends VALUE messages to the evaluator agent of

the cost functions it is involved in.

� Each agent sends its VALUE messages to all its children in the pseudo tree.

50

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

Observe that in the binary case, this proposal collapses into the existing operation for both

algorithms. It is easy to show that our n-ary BnB-ADOPT terminates with the optimal solution,

as proved next.

3.1.2.3 Correctness and Completeness

First, we prove that if agents send VALUE messages to their children and pseudo-children, this

extended n-ary BnB-ADOPT terminates with the optimum cost. Second, we show that VALUE

messages send to pseudo-children are redundant (except if the pseudo-child is the evaluating

agent of a cost function that involved the sender). Third, we demonstrate that redundant mes-

sages in the binary case remain redundant in the n-ary case. Combining these results we obtain

the desired output: n-ary BnB-ADOPT+ terminates with the optimum cost.

Theorem 4 N-ary BnB-ADOPT terminates with the minimum solution cost.

Proof. Imagine an extended version of n-ary BnB-ADOPT where agents send VALUE mes-

sages to all their neighbors (children and pseudo-children) below the pseudo-tree. This ex-

tended version of n-ary BnB-ADOPT is working as in the binary case: each agent sends

VALUE messages to all its descendants (children or pseudo-children) and it sends a COST

message to its parent. In this case, it is easy to check that all results of Section 5 in (Yeoh et al.,

2010) apply here (observe that no result of Section 5 in (Yeoh et al., 2010) use the fact that

cost functions are binary). In particular, in (Yeoh et al., 2010) it is proved that binary BnB-

ADOPT terminates with the minimal solution cost. Therefore, this extended version of n-ary

BnB-ADOPT terminates with the minimal solution cost.

Now, we consider VALUE messages sent from agent i to pseudo-children, such that none

of these pseudo-children is the evaluator of a cost function involving agent i. We show that

these messages are redundant.

After receiving a VALUE message from i, agent j does the following:

1. Agent j updates its context.

2. If j detected a context change, j may reinitialize some lbj;c(d) and ubj;c(d) if c is a

pseudo-child of i.

3. If the message comes from its parent, j rewrites its own threshold with the message

threshold.

51

3. DISTRIBUTED SEARCH

We know that i is not the parent of j, so we consider point (1) and (2) only. Agent j is not

the evaluating agent of a cost function involving i; then, there is another agent k –in the same

branch and below i and j– in charge of such evaluation. This agent k will receive –for sure–

the VALUE messages coming from its ancestors, and then it will send COST messages up the

tree. When these COST messages reach j, they will update its context and perform the required

reinitialization in lb=ub exactly in the same way as after receiving j a VALUE message from

i. Original VALUE messages are redundant because the same effect can be obtained with the

COST messages arriving from k. Therefore, we can remove these VALUE messages from our

extended version of n-ary BnB-ADOPT, and the algorithm will terminate with the minimal

solution cost. This algorithm is the proposed n-ary BnB-ADOPT. 2

Next we prove that redundant messages in the binary case remain redundant in the n-ary

case.

Lemma 3 VALUE and COST messages found redundant for binary BnB-ADOPT, remain re-
dundant for n-ary BnB-ADOPT.

Proof. To proof this lemma, it is enough to realize that Theorems 1 and 2 remain valid for n-

ary BnB-ADOPT. Observe that in the proofs of Lemma 1, Theorems 1 and 2 it is not required

the use of binary cost functions. The proof of Lemma 2 can be easily generalized to the n-ary

case replacing ”to all its children and pseudo-children” by ”to all its children and evaluator

pseudo-children”. 2

We define n-ary BnB-ADOPT+ as n-ary BnB-ADOPT removing redundant VALUE and

COST messages, as in Section 3.1.1.

Corolary 1 N-ary BnB-ADOPT+ terminates with the minimal solution cost.

Proof. Combining Theorem 4 and Lemma 3 we prove that n-ary BnB-ADOPT not sending

redundant VALUE or COST messages terminates with the minimal solution cost.

As in Section 3.1.1.4, a child may ask its parent to resend the threshold in a VALUE mes-

sage to improve performance if its threshold has been reinitialized.

3.1.3 Experimental Results

We evaluated experimentally the performance of original BnB-ADOPT against our new version

BnB-ADOPT+ in the binary and n-ary case.

52

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

First, we evaluate the reduction caused by removing redundant messages in the binary case,

comparing original BnB-ADOPT against BnB-ADOPT+.

Second, we evaluate performance in n-ary instances, comparing:

1. N-ary BnB-ADOPT with the modification described in Section 3.1.2.1 to avoid an incor-

rect final assignment of agents.

2. Our proposal of n-ary BnB-ADOPT as described in Section 3.1.2.2 (efficient threshold

management).

3. N-ary BnB-ADOPT+ (correct final assignment of agents, efficient threshold manage-

ment and removing redundant messages).

Lastly, we compare in binary instances BnB-ADOPT+ against two other well-known algo-

rithms for DCOP solving: Synchronous Branch and Bound (SBB) (Hirayama and Yokoo, 1997)

and Asynchronous Forward Bounding (AFB) (Gershman et al., 2009). SBB is a completely

synchronous algorithm whereas AFB performs synchronous value assignments but computes

asynchronously bounds used for pruning. SBB and AFB maintain a total order of variables to

perform assignments while BnB-ADOPT+ uses a partial ordering following the pseudo-tree

structure. We present this last comparison to provide an overall picture of BnB-ADOPT+ and

how its asynchronous nature affects the number of messages exchanged and computation.

Experiments are performed in three different benchmarks: random DCOPs (binary and

ternary cases), meeting scheduling and sensor networks (both are binary, obtained from a public

DCOP repository (Yin, 2008)). Random DCOPs are characterized by hn; d; p1i, where n is the

number of variables, d is the domain size and p1 is the network connectivity. Binary instances

contain p1�n(n�1)=2 binary cost functions, while ternary instances contain p1�n(n�1)(n�
2)=6 ternary cost functions. Costs are selected randomly from the set f0,..., 100g.

Results of the first experiment comparing BnB-ADOPT and BnB-ADOPT+ appear in Ta-

ble 3.1 and 3.2. Table 3.1 shows results on binary random problems averaged over 50 instances.

Table 3.1(a) shows results varying network connectivity with hn = 10; d = 10; p1 = 0:2:::0:8i.
Table 3.1(b) shows results varying domain size with hn = 10; d = 6:::12; p1 = 0:5i. Table

3.1(c) shows results varying the number of variables with hn = 6:::12; d = 10; p1 = 0:5i.
Table 3.2 (a) shows meeting scheduling instances in 4 cases with different hierarchical scenar-

ios: case A (8 variables), B (10 variables), C (12 variables) and D (12 variables). Table 3.2 (b)

shows sensor network instances in 4 cases with different topologies: cases A (16 variables), B

53

3. DISTRIBUTED SEARCH

(16 variables), C (10 variables) and D (16 variables). In these two last benchmarks, results are

averaged over 30 instances.

Experiments with binary random DCOPs show that our algorithm BnB-ADOPT+ obtains

important savings in communication with respect to original BnB-ADOPT. Messages are re-

duced by a factor from 3 to 6 when connectivity and domain size increases, also showing a

consistent reduction, between a factor of 4 and 5, when increasing the number of variables.

For meeting scheduling instances, messages are reduced by a factor between 3 and 9, and for

sensor network by a factor between 5 and 8. The standard deviation of messages also decreases

in all problems considered.

Regarding NCCCs, the mean is moderately reduced in all instances (around 10%). In the

binary random benchmark, the standard deviation is also slightly reduced. In meeting schedul-

ing and sensor network instances, the standard deviation of NCCCs increases however if look-

ing at every problem separately, the number of NCCC of BnB-ADOPT+ is always smaller in

every instance. Cycles remain practically unchanged.

These results clearly indicate that, in the binary case, removing redundant messages is very

beneficial for enhancing communication, achieving also moderated gains in computation.

In addition, we took a particular random binary instance hn = 10; d = 10; p1 = 0:5i,
and solved it repeatedly by original BnB-ADOPT and BnB-ADOPT+, varying the order in

which agents are activated in the simulator (using the same DFS pseudo-tree in all executions).

Results were quite similar across executions. Regarding saved messages, BnB-ADOPT always

required between 4.3 and 4.4 times more messages than BnB-ADOPT+ (considering individual

executions). These results show that the activation order of agents in the simulator has no

impact in the message reduction caused by BnB-ADOPT+.

Results of the second experiment appear in Table 3.3, which contains results of ternary

random instances with hn = 8; d = 5; p1 = 0:4:::0:8i averaged over 50 instances. First

row contains results of original BnB-ADOPT (including the modification of Section 3.1.2.1)

to assure a correct termination. Second row contains results for our proposal for n-ary BnB-

ADOPT (Section 3.1.2), where thresholds are propagated to children to assure an efficient

threshold management. Third row contains n-ary BnB-ADOPT+ results, which enhances this

last version removing redundant messages.

54

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

(a) < n = 10, d = 10, p1 >

p1 Algorithm #Messages #NCCC #Cycles
BnB-ADOPT 1068 (274) 904 (23) 62 (15)

0.2 BnB-ADOPT+ 416 (74) 881 (23) 62 (15)
BnB-ADOPT 39,158 (36,578) 68,882 (62,180) 1,751 (1,625)

0.3 BnB-ADOPT+ 11,774 (10,105) 62,031 (53,085) 1,753 (1,629)
BnB-ADOPT 270,379 (432,782) 504,373 (796,625) 10,313 (16,478)

0.4 BnB-ADOPT+ 69,277 (92,291) 475,534 (776,820) 10,317 (16,483)
BnB-ADOPT 2,273,768 (2,149,369) 4,311,524 (3,923,577) 73,715 (69,676)

0.5 BnB-ADOPT+ 493,137 (422,360) 4,112,299 (3,760,583) 73,792 (69,808)
BnB-ADOPT 11,439,563 (10,231,971) 23,759,356 (22,468,476) 331,947 (299,259)

0.6 BnB-ADOPT+ 2,205,848 (1,802,655) 22,783,209 (21,040,893) 332,841 (300,784)
BnB-ADOPT 60,221,283 (34,121,853) 134,868,051 (90,469,274) 1,526,394 (862,540)

0.7 BnB-ADOPT+ 8,930,713 (5,092,602) 129,143,706 (89,328,458) 1,527,960 (865,974)
BnB-ADOPT 161,327,710 (94,398,879) 360,857,244 (212,464,295) 3,752,164 (2,210,488)

0.8 BnB-ADOPT+ 22,972,676 (13,464,530) 353,180,585 (209,726,371) 3,755,118 (2,213,631)

(b) < n = 10, d, p1 = 0.5 >

d Algorithm #Messages #NCCC #Cycles
BnB-ADOPT 618,005 (573,704) 701,352 (642,821) 20,305 (18,869)

6 BnB-ADOPT+ 119,841 (104,980) 657,276 (593,830) 20,342 (18,924)
BnB-ADOPT 1,362,586 (951,900) 2,090,231 (1,470,631) 44,507 (31,209)

8 BnB-ADOPT+ 288,422 (201,488) 1,986,430 (1,398,420) 44,562 (31,238)
BnB-ADOPT 2,711,719 (2,929,759) 5,092,387 (5,376,943) 88,224 (96,033)

10 BnB-ADOPT+ 597,325 (633,879) 4,842,265 (5,133,731) 88,329 (96,195)
BnB-ADOPT 4,871,563 (9,725,100) 10,969,641 (20,549,608) 157,856 (314,908)

12 BnB-ADOPT+ 1,015,541 (1,706,302) 10,342,414 (18,679,208) 157,994 (315,137)

(c) < n, d = 10, p1 = 0.5 >

n Algorithm #Messages #NCCC #Cycles
BnB-ADOPT 4,388 (3,272) 13,077 (13,214) 350 (259)

6 BnB-ADOPT+ 1,514 (1,020) 12,221 (12,439) 350 (259)
BnB-ADOPT 72,783 (54,772) 173,038 (126,743) 3,576 (2,679)

8 BnB-ADOPT+ 20,326 (12,971) 159,698 (113,801) 3,581 (2,689)
BnB-ADOPT 2,603,727 (3,358,285) 5,289,823 (6,844,174) 84706 (112,469)

10 BnB-ADOPT+ 547,079 (656,709) 5,005,774 (6,576,047) 84816 (112,774)
BnB-ADOPT 111,436,193 (133,362,317) 187,178,211(237,619,542) 2,633,456 (3,148,339)

12 BnB-ADOPT+ 20,169,771 (23,877,564) 179,110,208 (228,862,664) 2,636,675 (3,152,543)

Table 3.1: Results (mean and standard deviation between parenthesis) of random binary bench-
marks varying network connectivity, domain size and number of variables: BnB-ADOPT (first
row), BnB-ADOPT+ (second row).

55

3. DISTRIBUTED SEARCH

(a) Meeting Scheduling

Algorithm #Messages #NCCC #Cycles
BnB-ADOPT 178,899 (3,638) 446,670 (2,786) 8,202 (302)

A BnB-ADOPT+ 18,117 (627) 413,507 (13,446) 8,203 (302)
BnB-ADOPT 65,556 (912) 125,331 (1,963) 2,663 (43)

B BnB-ADOPT+ 15,373 (426) 120,900 (1,969) 2,665 (43)
BnB-ADOPT 62,707 (741) 80,369 (54) 2,353 (34)

C BnB-ADOPT+ 11,343 (347) 74,518 (407) 2,355 (35)
BnB-ADOPT 41,282 (862) 60,424 (460) 1,545 (48)

D BnB-ADOPT+ 13,354 (455) 49,878 (1692) 1,547 (48)

(b) Sensor Network

Algorithm #Messages #NCCC #Cycles
BnB-ADOPT 9,369 (99) 7,241 (52) 313 (3)

A BnB-ADOPT+ 1,103 (73) 450 (232) 307 (4)
BnB-ADOPT 12,917 (116) 11,054 (135) 414 (4)

B BnB-ADOPT+ 1,569 (77) 592 (879) 409(4)
BnB-ADOPT 6,429 (59) 8,786 (52) 340 (5)

C BnB-ADOPT+ 1,177 (51) 1,495 (2,490) 340 (6)
BnB-ADOPT 15,560 (145) 12,641 (57) 477 (2)

D BnB-ADOPT+ 2,155 (81) 2,137 (3,552) 477 (2)

Table 3.2: Results (mean and standard deviation between parenthesis) of meeting scheduling and
sensor network instances: BnB-ADOPT (first row), BnB-ADOPT+ (second row).

Experiments with ternary random DCOPs show that assuring the propagation of threshold

values to children produces clear benefits in performance (Table 3.3, second row). Agents send

some extra VALUE messages to children containing the threshold, but these extra messages

contribute to a better pruning. As a global effect, less communication is required in the overall

search, and significant reductions are obtained in all metrics (messages, NCCCs and cycles).

Maintaining this positive effect, we remove redundant messages (Table 3.3, third row). Re-

moving redundant messages causes savings up to one order of magnitude in the number of

messages exchanged. We consider this result very positive since execution time is often dom-

inated by communication time. Observe that the number of cycles have very little variation

between the second and third row. Also, there are slight savings in NCCCs, although they are

not very significant. From these results we conclude that, in the n-ary case, our proposal for

n-ary BnB-ADOPT causes clear benefits in communication and computation, and removing

redundant messages substantially reduces communication.

Finally, we present a third experiment comparing BnB-ADOPT+ with SBB and AFB

on Figure 3.5. These experiments were performed on random binary instances with hn =

10; d = 10; p1 = 0:2:::0:8i (up), meeting scheduling (center) and sensor network (down)

56

3.1 BnB-ADOPT+: A New Version of BnB-ADOPT

p1 Algorithm #Messages #NCCC #Cycles
n-ary BnB-ADOPT 257,238 (294,137) 1,522,580 (1,863,696) 10,880 (12,295)
our n-ary BnB-ADOPT 147,379 (139,646) 829,594 (852,754) 5,793 (5,357)

0.2 n-ary BnB-ADOPT+ 28,614 (23,822) 764,516 (783,253) 5,797 (5,360)
n-ary BnB-ADOPT 648,217 (413,580) 4,029,045 (2,807,389) 24,026 (15,085)
our n-ary BnB-ADOPT 401,306 (239,271) 2,414,946 (1,641,836) 13,938 (8,271)

0.3 n-ary BnB-ADOPT+ 63,778 (33,025) 2,237,786 (1,520,761) 13,943 (8,270)
n-ary BnB-ADOPT 1,642,247 (975,131) 12,585,339 (8,483,693) 55,156 (32,553)
our n-ary BnB-ADOPT 1,210,143 (523,825) 9,194,309 (4,938,582) 39,373 (17,188)

0.4 n-ary BnB-ADOPT+ 164,901 (68,876) 8,744,465 (4,813,577) 39,381 (17,197)
n-ary BnB-ADOPT 2,321,729 (1,106,146) 19,424,669 (10,248,817) 74,279 (36,150)
our n-ary BnB-ADOPT 1,771,256 (678,893) 14,775,187 (6,678,667) 55,101 (21,280)

0.5 n-ary BnB-ADOPT+ 225,836 (69,630) 14,337,952 (6,372,442) 55,103 (21,280)
n-ary BnB-ADOPT 3,666,514 (1,316,782) 35,743,718 (15,729,105) 115,523 (43,001)
our n-ary BnB-ADOPT 2,973,239 (1,406,400) 29,252,469 (16,146,978) 92,020 (45,010)

0.6 n-ary BnB-ADOPT+ 311,524 (93,062) 27,614,749 (14,316,979) 92,020 (45,010)
n-ary BnB-ADOPT 4,013,891 (897,046) 41,469,157 (11,804,005) 124,408 (29,353)
our n-ary BnB-ADOPT 3,537,027 (1,119,242) 36,966,889 (13,604,359) 108,858 (36,028)

0.7 n-ary BnB-ADOPT+ 348,199 (73,620) 35,314,718 (12,331,316) 108,858 (36,028)
n-ary BnB-ADOPT 4,892,733 (788,897) 55,151,742 (11,209,964) 150,077 (25,114)
our n-ary BnB-ADOPT 4,616,032 (1,135,830) 52,221,369 (14,948,424) 140,472 (35,672)

0.8 n-ary BnB-ADOPT+ 399,662 (70,572) 49,189,230 (13,197,765) 140,472 (35,672)

Table 3.3: Results (mean and standard deviation between parenthesis) on random ternary DCOPs:
original n-ary BnB-ADOPT with correct termination (first row), our proposal of n-ary BnB-
ADOPT for efficient threshold management (second row), and n-ary BnB-ADOPT+ (third row).

instances. SBB variables were statically ordered using the width heuristic described in (Hi-

rayama and Yokoo, 1997), AFB variables were ordered following this same heuristic and BnB-

ADOPT+ variables were partially ordered using a most-connected heuristic when constructing

the pseudo-tree. We restrict the solving time to one hour; in the case of SBB and AFB if a prob-

lem instance could not be solved in this amount of time, we present the amount of messages

exchanged and NCCCs performed until timeout.

We can observe from this results that, for random instances, BnB-ADOPT+ is significantly

more efficient in low connected problems, however in tightly connected problems it requires

more messages and computational effort than SBB and AFB. We explain this behavior given

that BnB-ADOPT+ is an asynchronous algorithm designed to benefit from a pseudo-tree struc-

ture, where non-connected agents lying on different branches of the pseudo-tree can explore the

search space in parallel. When connectivity increases, the wide of the pseudo-tree decreases

(in a fully connected problem the pseudo-tree has only one single branch where all agents are

totally ordered). This makes BnB-ADOPT+ asynchronous potential to decrease. At the same

time, a higher number of reinitialization (bounds and context) are performed, since agents have

57

3. DISTRIBUTED SEARCH

more links to ancestors, which reduces pruning effectiveness.

For the meeting scheduling and sensor network instances, we can see that BnB-ADOPT+

is several orders of magnitude more efficient than SBB and AFB. The structured nature of

these problems (with a different topology for every case A,B,C or D (Maheswaran et al., 2004)

suitable to build balanced pseudo-trees) allows BnB-ADOPT+ to benefit from asynchronous

0.2 0.3 0.4 0.5 0.6 0.7 0.8102

103

104

105

106

107

108

p1

m
es

sa
ge

s

BnB-ADOPT+
SBB
AFB

0.2 0.3 0.4 0.5 0.6 0.7 0.8102

104

106

108

1010

p1

N
C

C
C

BnB-ADOPT+
SBB
AFB

A B C D104

105

106

107

108

109

meeting scheduling problems

m
es

sa
ge

s

BnB-ADOPT+
SBB (timeouts)
AFB (timeouts)

A B C D104

106

108

1010

1012

meeting scheduling problems

N
C

C
C

BnB-ADOPT+
SBB (timeouts)
AFB (timeouts)

A B C D103

104

105

106

107

108

109

sensor network problems

m
es

sa
ge

s

BnB-ADOPT+
SBB (timeouts)
AFB (timeouts)

A B C D

104

106

108

1010

sensor network problems

N
C

C
C

BnB-ADOPT+
SBB (timeouts)
AFB (timeouts)

Figure 3.5: Comparison of algorithms BnB-ADOPT+, SBB, AFB. Up: binary random instances.
Center: meeting scheduling. Down: sensor networks.

58

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

search. In addition, we observed that in these instances the variability of costs is smaller than

in random problems: most costs are quite similar, while some others are clearly larger. In these

cases, an upper bound close to the optimum cost is reached early in the execution. However

to satisfy the pruning condition, lower bounds contributions from almost all cost functions are

needed. We observed that SBB and –to a lesser extent– AFB have to go deep in the search

tree to obtain such contributions (pruning is usually done in the last agents of the ordering)

and finally they are subject to thrashing. On the other hand, BnB-ADOPT+ computes local

bounds on every agent since all agents are assigned at every moment of the execution. By the

use of thresholds, specialized upper bounds are propagated to every node of the pseudo tree.

If the amount of bound reinitialization is not very high, this allows BnB-ADOPT+ to reduce

the search space faster than AFB and SBB. We have confirmed this fact empirically testing on

several instances with small or large costs but with very small variability (including artificial

cases where all tuples have the same cost) obtaining the same behavior.

In summary, we can see that the proposed BnB-ADOPT+ algorithm is clearly more effi-

cient than original BnB-ADOPT. In binary instances, BnB-ADOPT+ processes a third (or less)

of the total number of messages required by BnB-ADOPT (in some instances, messages are

reduced by a factor of 8 or 9), and still reaches an optimal solution in almost the same number

of cycles. In ternary instances, savings reach up to one order of magnitude in communication

for almost all cases. Regarding the comparison with SBB and AFB, the new BnB-ADOPT+

outperforms them (in number of messages and NCCCs) for low connected random instances,

while the contrary occurs for highly connected ones. Regarding meeting scheduling and sensor

network instances, BnB-ADOPT+ outperforms SBB and AFB by a large margin. These results

indicate that BnB-ADOPT+ is a competitive algorithm for optimal DCOP solving.

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

As explained in Chapter 2, ADOPT and BnB-ADOPT algorithms share most of its data struc-

tures and communication protocol. Both algorithms send VALUE and COST messages to

explore the search space, TERMINATE messages to end the execution and maintain lower and

upper bounds of the current solution in every agent. An agent i calculates LBi(d) and UBi(d)

as the lower and upper bounds of value d 2 Di in the current context, while LBi and UBi are

the minimum lower and upper bound for all values in Di for the current context.

59

3. DISTRIBUTED SEARCH

The main difference between these two algorithms lies on their search strategies. ADOPT

employs a best-�rst search strategy while BnB-ADOPT employs a depth-�rst branch-and-

bound search strategy. This difference in search strategies is re�ected by how the agents change

their values. While each agent i in ADOPT eagerly assigns the value that minimizes its lower

bound LBi(d), each agent i in BnB-ADOPT changes its value only when it is able to determine

that the optimal solution for that value is provably no better than the best solution found so far

for its current context. In other words, BnB-ADOPT agent i changes value when LBi(d) � UBi

for its current value d.

The role of thresholds in the two algorithms is also different. As described earlier, each

agent in ADOPT uses thresholds to store previously computed lower bounds for the current

context. These thresholds are sent from parent to children, so children can reconstruct the

partial solution found earlier more efficiently. This changes the condition for which an agent

changes its value in ADOPT. Each agent i changes its value d only when LBi(d) � THi. On

the other hand, each agent in BnB-ADOPT uses thresholds to store the cost of the best solution

found so far for all contexts and uses them to change value more efficiently. Therefore, each

agent i changes its value d only when LBi(d) � minfTHi;UBig.

BnB-ADOPT has several optimizations over ADOPT:

1. Agents in BnB-ADOPT process messages differently compared to agents in ADOPT.

Each agent in ADOPT assigns a new value, if necessary, after each received message.

On the other hand, each agent in BnB-ADOPT does so only after processing completely

the message queue.

2. BnB-ADOPT includes thresholds in VALUE messages such that THRESHOLD mes-

sages are no longer required.

3. BnB-ADOPT includes a timestamp for each value in contexts such that their recency can

be compared.1

In this Section we present a new algorithm, called ADOPT(k), that generalizes both ADOPT

and BnB-ADOPT.

1The first two optimizations were in the implementation of ADOPT (Yin, 2008) but not in the publication (Modi
et al., 2005).

60

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

3.2.1 Search Strategy

An agent in ADOPT always changes its value to the most promising value. This strategy causes

that agents change value quite often as local information is updated with the arrival of new

messages. As consequence of these frequent value changes, ADOPT agents have to repeatedly

reconstruct partial solutions that they previously abandoned, which can be computationally

inefficient. On the other hand, a BnB-ADOPT agent take values following a linear order. Once

a value is assigned, an agent changes this value only when its optimal solution is provably no

better than the best solution found so far, which can be computationally inefficient if the agent

takes on bad values before good values. Therefore, we believe that there should be a good trade

off between the two extremes, where an agent keeps its value longer than it otherwise would as

an ADOPT agent and shorter than it otherwise would as a BnB-ADOPT agent.

With this idea in mind, we developed ADOPT(k), a new algorithm that generalizes ADOPT

and BnB-ADOPT. Its behavior depends on parameter k. It behaves like ADOPT when k = 1,

like BnB-ADOPT when k = 1 and like a hybrid of ADOPT and BnB-ADOPT when 1 <

k < 1. ADOPT(k) uses mostly identical data structures and messages as ADOPT and BnB-

ADOPT. Each agent i in ADOPT(k) maintains two thresholds, THA
i and THB

i , which are the

thresholds in ADOPT and BnB-ADOPT, respectively. They are initialized and updated in the

same way as in ADOPT and BnB-ADOPT.

The main difference between ADOPT(k) and its predecessors is the condition by which an

agent changes its value. Each agent i in ADOPT(k) changes its value di when:

LBi(di) > THA
i + (k � 1) or LBi(di) � minfTHB

i ;UBig.

If k = 1, then the first condition reduces to LBi(di) > THA
i , which is the condition for

agents in ADOPT. The agents use the second condition, which remains unchanged, to deter-

mine if the optimal solution for their current value assignment is provably no better than the

best solution found so far.

If k =1, then the first condition is always false and the second condition, which remains

unchanged, is the condition for agents in BnB-ADOPT.

If 1 < k < 1, then each agent in ADOPT(k) keeps its current value assignment until the

lower bound of that value is at least k units larger than the lower bound of the most promising

value, at which point it takes on the most promising value.

61

3. DISTRIBUTED SEARCH

3.2.2 Pseudocode

In Figures 3.6 and 3.7 we present the pseudocode of ADOPT(k), where xi is a generic agent,

Ci is its set of children, PCi is its set of pseudo-children and SCPi is the set of agents that

are either ancestors of xi or parent and pseudo-parents of either xi or its descendants. The

pseudocode uses the predicate Compatible(X ,X 0) to determine if two contexts X and X 0

are compatible and the procedure PriorityMerge(X ,X 0) to replace the values of agents in

context X 0 with more recent values, if available, of the same agents in context X (see (Yeoh

et al., 2010) for more details). The pseudocode is similar to ADOPT's pseudocode with the

following changes:

� The pseudocode includes the optimizations described in Section 3.2 for BnB-ADOPT (mes-

sage queue processing, removing THRESHOLD messages and including timestamps) that

can also be applied to ADOPT [lines 03, 08-12, 35-36 and 40-41].

� In ADOPT, the MaintainThresholdInvariant, MaintainChildThreshold-

Invariant and MaintainAllocationInvariant procedures are called after each

message is processed. Here, they are called in the Backtrack procedure [lines 28 and 38-

39]. The invariants are maintained only after all incoming messages are processed.

� In addition to THA
i , each agent maintains THB

i . It is initialized, propagated and used in the

same way as in BnB-ADOPT (lines 21, 33-34, 40 and 59).

� The condition by which each agent i changes its value is now LBi(di) > THA
i + (k � 1) or

LBi(di) � minfTHB
i ;UBig (lines 31 and 33). Thus, the agent keeps its value until the lower

bound of that value is k units larger than the lower bound of the most promising value or the

optimal solution for that value is provably no better than the best solution found so far.

� In ADOPT, the MaintainAllocationInvariant procedure ensures that the invari-

ant THA
i =

∑
xc2Ci THA

c always hold. This procedure assumes that THA
i � LBi(di) for the

current value di of agent i, which is always true since the agent would change its value other-

wise. However, this assumption is no longer true in ADOPT(k). Therefore, the pseudocode

includes a new threshold THA
i (di), which is set to THA

i and updated such that it satisfies the

invariant LBi(di) � THA
i (di) � UBi(di) in the MaintainCurrentValueThreshold-

Invariant procedure (lines 84-89). This new threshold then replaces THA
i in the Maintain-

AllocationInvariant procedure (lines 91 and 93).

62

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

01 procedure Start()
02 Xi := f(xp; ValInit(xp); 0) j xp 2 SCPig;
03 IDi := 0;
04 for each xc 2 Ci and d 2 Di InitChild(xc, d);
05 InitSelf();
06 Backtrack();
07 loop forever
08 if message queue is not empty then
09 while message queue is not empty do
10 pop msg off message queue;
11 When Received(msg);
12 Backtrack();

13 procedure InitChild(xc; d)
14 lbci (d) := hci (d);
15 ubci (d) :=1;
16 thci (d) := lbci (d);

17 procedure InitSelf()
18 di := argmind∈Dif�i(d) +

∑
xc∈Ci lb

c
i (d)g;

19 IDi := IDi + 1;
20 THAi := mind∈Dif�i(d) +

∑
xc∈Ci lb

c
i (d)g;

21 THBi :=1;

22 procedure procedure Backtrack()
23 for each d 2 Di do
24 LBi(d) := �i(d) +

∑
xc∈Ci lb

c
i (d);

25 UBi(d) := �i(d) +
∑
xc∈Ci ub

c
i (d);

26 LBi := mind∈DifLBi(d)g;
27 UBi := mind∈DifUBi(d)g;
28 MaintainThresholdInvariant();
29 if (THAi = UBi) then
30 di := argmind∈DifUBi(d)g
31 else if (LBi(di) > THAi + (k � 1)) then
32 di := argmind∈Di|LBi(d)=LBifUBi(d)g
33 else if (LBi(di) � minfTHBi ;UBig) then
34 di := argmind∈Di|LBi(d)=LBifUBi(d)g
35 if (a new di has been chosen) then
36 IDi := IDi + 1;
37 MaintainCurrentValueThresholdInvariant();
38 MaintainChildThresholdInvariant();
39 MaintainAllocationInvariant();
40 Send(VALUE, xi, di, IDi, thci (di), min(THBi ;UBi)� �i(di)�

∑
xc′∈Ci|xc′ 6=xc

lbc
′
i (di)) to each xc 2 Ci;

41 Send(VALUE, xi, di, IDi,1,1) to each xc 2 PCi;
42 if (THAi = UBi) then
43 if (xi is root or termination message received) then
44 Send(TERMINATE) to each xc 2 Ci;
45 terminate execution;
46 Send(COST, xi, Xi, LBi, UBi) to parent;

47 procedure When Received(TERMINATE)
48 record termination message received;

Figure 3.6: Pseudocode of ADOPT(k) (1).
63

3. DISTRIBUTED SEARCH

49 procedure When Received(VALUE, xp, dp, IDp, THAp , THBp)
50 X′ := Xi;
51 PriorityMerge((xp; dp; IDp), Xi);
52 if (!Compatible(X′, Xi)) then
53 for each xc 2 Ci and d 2 Di then
54 if (xp 2 SCPc) then
55 InitChild(xc, d);
56 InitSelf();
57 if (xp is parent) then
58 THAi := THAp ;
59 THBi := THBp ;

60 procedure When Received(COST, xc, Xc, LBc, UBc)
61 X′ := Xi;
62 PriorityMerge(Xc, Xi);
63 if (!Compatible(X′, Xi)) then
64 for each xc 2 Ci and d 2 Di then
65 if (!Compatible(f(xp; dp; IDp) 2 X′ j xp 2 SCPcg,Xi)) then
66 InitChild(xc, d);
67 if (Compatible(Xc, Xi)) then
68 lbci (d) := maxflbci (d); LBcg for the unique (a′; d; ID) 2 Xc with a′ = a;
69 ubci (d) := minfubci (d);UBcg for the unique (a′; d; ID) 2 Xc with a′ = a;
70 if (!Compatible(X′, Xi)) then
71 InitSelf();

72 procedure MaintainChildThresholdInvariant()
73 for each xc 2 Ci and d 2 Di do
74 while (thci (d) < lbci (d)) do
75 thci (d) := thci (d) + �;
76 for each c 2 Ci and d 2 Di do
77 while (thci (d) > ubci (d)) do
78 thci (d) := thci (d)� �;

79 procedure MaintainThresholdInvariant()
80 if (THAi < LBi) then
81 THAi = LBi;
82 if (THAi > UBi) then
83 THAi = UBi;

84 procedure MaintainCurrentValueThresholdInvariant()
85 THAi (di) := THAi ;
86 if (THAi (di) < LBi(di)) then
87 THAi (di) = LBi(di);
88 if (THAi (di) > UBi(di)) then
89 THAi (di) = UBi(di);

90 procedure MaintainAllocationInvariant()
91 while (THAi (di) > �i(di) +

∑
xc∈Ci th

c
i (di)) do

92 thc
′
i (di) := thc

′
i (di) + � for any xc′ 2 Ci with ubc

′
i (di) > thc

′
i (di);

93 while (THAi (di) < �i(di) +
∑
xc∈Ci th

c
i (di)) do

94 thc
′
i (di) := thc

′
i (di)� � for any xc′ 2 Ci with lbc

′
i (di) < thc

′
i (di);

Figure 3.7: Pseudocode of ADOPT(k) (2).

64

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

3.2.3 Correctness and Completeness

The proofs for the following lemmata and theorem closely follow those in (Modi et al., 2005;

Yeoh et al., 2010). We relay in ADOPT(k) pseudocode lines and the optimum cost definitions:

OPTi(d) = �i(d) +
∑

xc2Ci OPTc (Eq. 1)

OPTi = mind2Di OPTi(d) (Eq. 2)

Lemma 4 For all agents xi and all values d 2 Di, LBi � OPTi � UBi and LBi(d) �
OPTi(d) � UBi(d) at all times.

Proof : We prove the lemma by induction on the depth of the agent in the pseudo-tree. It is clear

that for each leaf agent i, LBi(d) = OPTi(d) = UBi(d) for all values d 2 Di (Lines 24-25 and

Eq. 1). Furthermore,

LBi = min
d2Di
fLBi(d)g (Line 26)

= min
d2Di
fOPTi(d)g (see above)

= OPTi (Eq. 2)

UBi = min
d2Di
fUBi(d)g (Line 27)

= min
d2Di
fOPTi(d)g (see above)

= OPTi (Eq. 2)

So, the lemma holds for each leaf agent. Assume that it holds for all agents at depth q in the

pseudo-tree. For all agents xi at depth q � 1,

LBi(d) = �i(d) +
∑
xc2Ci

LBc (Lines 24 and 68)

� �i(d) +
∑
xc2Ci

OPTc (induction ass.)

= OPTi(d) (Eq. 1)

UBi(d) = �i(d) +
∑
xc2Ci

UBc (Line 25 and 69)

� �i(d) +
∑
xc2Ci

OPTc (induction ass.)

= OPTi(d) (Eq. 1)

65

3. DISTRIBUTED SEARCH

for all values d 2 Di. The proof for LBi � OPTi � UBi is similar to the proof for the base

case. Thus, the lemma holds.

Lemma 5 For all agents xi, if the current context of xi is �xed, then LBi = THA
i = UBi will

eventually occur.

Proof : We prove the lemma by induction on the depth of the agent in the pseudo-tree. The

lemma holds for leaf agents xi since LBi = UBi (see proof for the base case of Lemma 4) and

LBi � THA
i � UBi (lines 79-83). Assume that the lemma holds for all agents at depth q in the

pseudo-tree. For all agents xi at depth q � 1 with a fixed context,

LBi = min
d2Di
f�i(d) +

∑
xc2Ci

lbci (d)g (Lines 24 and 26)

= min
d2Di
f�i(d) +

∑
xc2Ci

LBcg (Line 68)

= min
d2Di
f�i(d) +

∑
xc2Ci

UBcg (induction ass.)

= min
d2Di
f�i(d) +

∑
xc2Ci

ubci (d)g (Line 69)

= UBi (Line 25 and 27)

Additionally, LBi � THA
i � UBi (Lines 79-83). Therefore, LBi = THA

i = UBi.

Lemma 6 For all agents xi, THA
i (d) = THA

i on termination.

Proof : Each agent i terminates when THA
i = UBi (Line 42). After THA

i (di) is set to THA
i for

the current value di of xi (Line 85) in the last execution of the MaintainCurrentValueThresh-

oldInvariant procedure,

THA
i = UBi (Line 42)

= UBi(di) (Lines 29-30)

� LBi(di) (Lemma 4)

Thus, LBi(di) � THA
i = UBi and THA

i (di) is not set to a different value later (Lines 86-89).

Then, THA
i (d) = THA

i on termination.

66

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

Theorem 5 For all agents xi, THA
i = OPTi on termination.

Proof : We prove the theorem by induction on the depth of the agent in the pseudo-tree. The

theorem holds for the root agent i since THA
i = UBi on termination (Lines 42-45), THA

i = LBi

at all times (Lines 20 and 28), and LBi � OPTi � UBi (Lemma 4). Assume that the theorem

holds for all agents at depth q in the pseudo-tree. We now prove that the theorem holds for all

agents at depth q + 1. Let xp be an arbitrary agent at depth q in the pseudo-tree and dp is its

current value assignment on termination. Then,

∑
xc2Cp

ubcp(dp) = UBp(dp)� �p(dp) (Line 25)

= UBp � �p(dp) (Lines 29-30)

= THA
p � �p(dp) (Lines 42-45)

= THA
p (dp)� �p(dp) (Lemma 6)

=
∑
xc2Cp

thcp(dp) (Lines 91-94)

Thus,
∑

xc2Cp ub
c
p(dp) =

∑
xc2Cp th

c
p(dp). Furthermore, for all agents xc 2 Cp, thcp(dp) �

ubcp(dp) (Lines 77-78). Combining the inequalities, we get thcp(dp) = ubcp(dp). Additionally,

THA
c = thcp(dp) (Lines 57-58) and UBc = ubcp(dp) (Line 69). Therefore, THA

c = UBc. Next,

∑
xc2Cp

OPTc = OPTp � �p(dp) (Eq. 1)

= THA
p � �p(dp) (induction ass.)

= THA
p (dp)� �p(dp) (Lemma 6)

=
∑
xc2Cp

thcp(dp) (Lines 91-94)

=
∑
xc2Cp

THA
c (Lines 57-58)

Thus,
∑

xc2Cp OPTc =
∑

xc2Cp THA
c =

∑
xc2Cp UBc (see above). Furthermore, for all agents

xc 2 Cp, OPTc � UBc (Lemma 4). Combining the inequalities, we get OPTc = UBc. There-

fore, THA
c = UBc = OPTc.

67

3. DISTRIBUTED SEARCH

3.2.4 Tie-breaking in BnB-ADOPT+

When comparing ADOPT and BnB-ADOPT search strategies we noticed that ADOPT pro-

vides a tie-breaking mechanism, that is not present in BnB-ADOPT, when more than one value

minimizes LB(v). In this case, ADOPT agents choose the value that minimizes UB(v). We

introduced this tie-breaking strategy in ADOPT(k) (Figure 3.6, line 34). In BnB-ADOPT on

the other hand, when more than one value minimizes LB(v) agents choose the previous value,

if possible (Yeoh et al., 2010).

Taking a closer look to ADOPT(k) behavior we noticed that, in case of having several

values that minimize the LB (a tie), choosing the value that minimizes the UB can provide

savings in search. Consider the following example: The root agent i is executing a BnB-

ADOPT search and has explored value a; b; c in that order and its current value assignment is

c. During its execution, agent i has calculated the following bounds:

LB(a) = 10; UB(a) = 10

LB(b) = 10; UB(b) =1
LB(c) = 10; UB(c) =1

In this case, a is an optimal solution with cost 10, since LB = UB and LB(a) = UB(a).

However, the BnB-ADOPT agent i might not jump directly to value a (the one that minimizes

the UB) but to value b (the previous value). Only when LB(b) > 10 or LB(b) = UB(b) = 10

the agent jumps to value a. This behavior creates unnecessary computation in agent i and in

other agents of the pseudo-tree. If we apply the tie-breaking mechanism, agent i would assign

directly value a because is the one that minimizes UB(v).

In the next Section we compare ADOPT(k) with BnB-ADOPT+ and to better assess the

impact of the type of search used, we also compare it with a version of BnB-ADOPT+ that

includes this tie-breaking strategy used in ADOPT and ADOPT(k).

3.2.5 Experimental Results

We compare ADOPT+(k) to ADOPT+ and BnB-ADOPT+. ADOPT+(k) is an optimized

version of ADOPT(k) with the message reduction techniques explained in Section 3.1. In

addition, we include a version of BnB-ADOPT+ including the tie-breaking strategy explained

in Section 3.2.4. All the algorithms use the DP2 heuristic values (Ali et al., 2005) calculated in a

preprocess step. We report also, as a reference measure, the trivial upper bound UB calculated

68

3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search

in every instance as the sum of the maximums over cost functions. Tables 3.4, 3.5 and 3.6

shows the results. We omit ADOPT+ in Tables 3.4 and 3.5 since BnB-ADOPT+ performs

better than ADOPT+ across all metrics.

Table 3.4 shows the results on random binary DCOP instances with 10 variables of domain

size 10. The costs are randomly chosen over the range h1000; : : : ; 2000i. We impose n(n �
1)=2�p1 cost functions, where n is the number of variables and p1 is the network connectivity.

We vary p1 from 0.5 to 0.8 in 0.1 increments and average our results over 50 instances for each

value of p1. The table shows that ADOPT+(k) requires a large number of messages, cycles and

NCCCs when k is small. These numbers decrease as k increases until a certain point where

they increase again. For the best value of k, ADOPT+(k) performs significantly better than

BnB-ADOPT+ across all metrics and is slightly better than BnB-ADOPT+ with tie-breaking

in NCCCs.

p1 Trivial UB Algorithm #Messages # Cycles # NCCC
0.5 45,766 BnB-ADOPT+ 262,812 23,646 5,353,423

BnB-ADOPT+ with tie-breaking 197,028 18,088 3,999,334
ADOPT+(k = 1,000) 413,711 34,402 8,491,909
ADOPT+(k = 4,000) 197,342 17,100 3,969,104
ADOPT+(k = 6,000) 197,486 17,117 3,972,960

0.6 53,722 BnB-ADOPT+ 1,017,939 99,969 26,191,249
BnB-ADOPT+ with tie-breaking 693,878 66,567 16,897,706
ADOPT+(k = 1,000) 1,864,165 160,365 45,101,673
ADOPT+(k = 4,500) 701,374 62,977 16,454,689
ADOPT+(k = 6,000) 701,529 62,994 16,459,453

0.7 63,654 BnB-ADOPT+ 3,716,766 387,744 116,050,941
BnB-ADOPT+ with tie-breaking 2,486,103 255,800 76,497,061
ADOPT+(k = 1,000) 6,846,289 591,271 187,172,366
ADOPT+(k = 6,000) 2,558,658 241,102 71,495,744
ADOPT+(k = 10,000) 2,559,603 241,169 71,503,823

0.8 71,624 BnB-ADOPT+ 9,493,156 1,032,767 324,271,538
BnB-ADOPT+ with tie-breaking 6,099,378 657,104 206,828,853
ADOPT+(k = 5,000) 10,911,176 1,056,531 339,276,384
ADOPT+(k = 10,000) 6,395,945 619,431 192,355,298
ADOPT+(k = 20,000) 6,484,296 628,362 195,216,439

Table 3.4: The number of messages, cycles and NCCCs of ADOPT+, BnB-ADOPT+ and
ADOPT+(k) on Random Binary DCOP Instances (10 variables).

Table 3.5 shows the results on sensor network instances from a publicly available repository

(Yin, 2008). We use instances from all four available topologies (cases A, B, C and D) and

average our results over 30 instances for each topology. In relation with the k parameter, we

observe the same trend as in Table 3.4 (large number of messages and cycles when k is small,

69

3. DISTRIBUTED SEARCH

starting to decrease as as k increases until a certain point where they increase again). We only

report the results for the best value of k, where ADOPT(k) is able to outperform BnB-ADOPT+

significantly in all metrics and shows a moderate advantage with respect to BnB-ADOPT+ with

tie-breaking.

Trivial UB Algorithm # Messages # Cycles # NCCC
A 15,234,868,488 BnB-ADOPT+ 5,090,410 228,784 43,595,024

BnB-ADOPT+ with tie-breaking 2,605,016 112,030 24,521,860
ADOPT+(k = 30,000,000) 2,005,732 88,556 24,068,428

B 15,355,044,866 BnB-ADOPT+ 23,911,475 1,024,435 249,771,051
BnB-ADOPT+ with tie-breaking 13,877,495 586,287 147,834,791
ADOPT+(k = 30,000,000) 9,869,280 459,540 166,542,715

C 3,997,096,838 BnB-ADOPT+ 311,738 17,571 3,386,651
BnB-ADOPT+ with tie-breaking 193,691 12,263 2,241,200
ADOPT+(k = 15,000,000) 178,301 10,815 2,625,136

D 15,595,397,524 BnB-ADOPT+ 10,722,499 575,613 156,019,351
BnB-ADOPT+ with tie-breaking 7,407,831 392,941 107,791,651
ADOPT+(k = 30,000,000) 3,812,541 196,424 66,347,439

Table 3.5: The number of messages, cycles and NCCCs of ADOPT+, BnB-ADOPT+ and
ADOPT+(k) on Sensor Network Instances (70, 70, 50 and 70 variables).

Lastly, Table 3.6 shows the results on sensor network instances of 100 variables arranged

into a chain following the (Maheswaran et al., 2004) formulation. All the variables have a

domain size of 10. The cost of hard constraints is 1,000,000. The cost of soft constraints is

randomly chosen over the range h0; : : : ; 200i. Additionally, we use discounted heuristic values,

which we obtain by dividing the DP2 heuristic values by two, to simulate problems where well

informed heuristics are not available due to privacy reasons. We average our results over 30

instances. The table shows that ADOPT+ terminates with less cycles and computational effort

than BnB-ADOPT+ but sends more messages. When k = 1, the results for ADOPT+(k)

and ADOPT+ are almost the same. Although performing the same search strategy, agents in

ADOPT+(k) sends more VALUE messages because they need to send VALUE messages when

THB changes even if THA remains unchanged. These additional messages then trigger the need

for more constraint checks. Agents in ADOPT+ do not need to send VALUE messages in such

cases. We observe that as k increases, the runtime of ADOPT+(k) increases but the number of

messages sent decreases. Therefore, ADOPT+(k) provides a good mechanism in this case for

balancing the trade-off between runtime and network load.

70

3.3 Conclusions

Trivial UB Algorithm # Messages # Cycles # NCCC
98,000,000 ADOPT+ 25,731 259 10,840

BnB-ADOPT+ 4,808 1,753 36,913
BnB-ADOPT with tie-breaking+ 3,764 827 38,704
ADOPT+(k = 1) 25,915 259 12,381
ADOPT+(k = 30) 22,092 449 20,591
ADOPT+(k = 50) 10,502 550 25,196
ADOPT+(k = 100) 6,290 550 25,196
ADOPT+(k = 1,000) 5,050 827 38,441

Table 3.6: The number of messages, cycles and NCCCs of ADOPT+, BnB-ADOPT+ and
ADOPT+(k) on Sensor Network Instances (100 variables).

3.3 Conclusions

In this Chapter we have presented two contributions to improve our reference algorithm for dis-

tributed search, namely BnB-ADOPT. First, we present theoretical results to detect redundant

messages. Second, we describe some difficulties when dealing with n-ary cost functions and

propose some modifications to overcome them. Combining these two contributions, we gener-

ate a new version of BnB-ADOPT. This new version, called BnB-ADOPT+, causes substantial

savings with respect to the original algorithm when tested on binary and n-ary benchmarks.

We also show experimentally that BnB-ADOPT+ is competitive with respect to other DCOP

solving algorithms.

Taking a closer look to BnB-ADOPT and ADOPT algorithms, we noticed that ADOPT

provides a tie-breaking strategy that when introduced in BnB-ADOPT+ produces a significant

boost in performance, so we include this modification in our version of BnB-ADOPT+ as well.

Also, we present the new algorithm ADOPT(k), which combines the search strategies

of ADOPT and BnB-ADOPT depending on the k parameter. Our experimental results show

that ADOPT(k) can provide a good mechanism for balancing the trade-off between runtime

and network load between ADOPT and BnB-ADOPT. Also, it was able to outperforms both

algorithm on commonly used benchmarks for a certain k. It is direct to see that the changes

indicated in Section 3.1.1 to remove redundant messages can also be applied to ADOPT(k).

The version of ADOPT(k) that includes these changes is called ADOPT+(k).

In order to combine distributed search with soft arc consistency –the main goal of this

thesis–, it would be ideal to work with an algorithm that provides lower and upper bounds of

the problem solution. These bounds and their quality during execution are crucial to discover

sub-optimal values. In the case of lower bounds, both ADOPT+(k) and BnB-ADOPT+ provide

71

3. DISTRIBUTED SEARCH

a mechanism to calculate lower bounds on every agent. In the case of upper bounds, the branch-

and-bound search strategy of BnB-ADOPT+ allows to refine a problem UB with every best

solution found in the root agent. In ADOPT+(k) when k 6=1 (this is, using a different search

strategy that BnB-ADOPT+), the root agent may jump from one domain value to another

before completely exploring its current value d, so it might take longer to calculate UB(d) or

in the worst case, if d is not the optimal value, UB(d) may remain always1. Then, no matter

how high the lower bound of a value can be enhanced, this value could never be pruned using

soft arc consistency. Also, the k parametrization of ADOPT+(k) makes complex its evaluation

if combining it with soft arc consistency, since we do not know how to decide automatically

the best k. For all these reasons, for the rest of this thesis we use the BnB-ADOPT+ algorithm

as the distributed search algorithm to combine with soft arc consistency techniques.

72

4

Distributed Soft Arc Consistency

In the centralized case several techniques have been developed to speed up constraint optimiza-

tion solving. In particular, search can be improved by enforcing soft arc consistency techniques.

Several soft arc consistency levels have been proposed for constraint optimization problems

(Cooper et al., 2008; de Givry et al., 2005; Larrosa and Schiex, 2003). By enforcing them it

is possible to detect inconsistent values (this is, suboptimal values) and remove them from the

problem, shrinking its search space. In practical terms, the effect is that the search tree is re-

duced and there are fewer nodes to explore. On the other hand, more computational work must

be done per node. Globally, the overall effect is very beneficial, causing substantial savings in

computational effort.

In this Chapter we include in distributed search for DCOP solving some techniques to

enforce soft arc consistency. To the best of our knowledge, this is the first time that soft arc

consistency is connected with distributed search. Such as it happens in the centralized case,

this combination causes a drastic improvement in communication cost with also a substantial

decrement in computation effort. Specifically, we we took as baseline the distributed search

algorithm BnB-ADOPT+ on top of which we maintain several consistency levels. Maintaining

local consistencies keeps the optimality and termination of asynchronous distributed search.

73

4. DISTRIBUTED SOFT ARC CONSISTENCY

4.1 Including Soft Local Consistencies in Distributed Problems

In Chapter 2 we have presented soft arc consistency techniques defined for constraint opti-

mization problems in the centralized case. Soft arc consistencies are conceptually equal in the

centralized and distributed cases. However, maintaining soft arc consistencies in a distributed

environment requires different techniques. While in the centralize case all problem elements

are available to the single agent performing the search, in the distributed case agents only know

some parts of the problem. For example agents know about cost functions in which they are

involved, but they do not know about costs functions that other agents share. This fact brings

some challenges in distributed, specially for those consistency levels that need to have a wider

scope of the global problem.

In the following, we summarize the main differences between the centralized and dis-

tributed cases regarding soft arc consistency techniques:

� Pruning condition. In the centralized case, a value a 2 Di can be removed if it is not

NC, that is, if Ci(a) + C� � >. However, in the distributed case a is removed only if

Ci(a) + C� > >, as explained in the following. In both cases, > is an upper bound (�)
of the optimum cost. In the distributed case, it is expected that agents terminate assign-

ing the optimal value. So the optimal solution is configured among the agents, when all

solutions have been explored, without any centralized control. If we prune a value when

its cost equals>, we might remove a value that belongs to an optimal solution, so agents

could not end execution with the optimal assignment. (An example appears in Figure

4.1) For this reason, we only prune when the value cost exceeds >. In the centralized

case, the only agent executing the solving procedure stores the complete ”best solution”

found as search progresses; so a value of the optimal solution can be pruned from its do-

main, because that solution was stored somewhere; when the algorithm terminates, that

solution will be recalled. However in distributed we do not have this centralized storage.

� Representation of cost functions. In the centralized case, all cost functions are known and

manipulated by a single agent, the one in charge of the problem solving. This agent keeps

a single copy of each cost function, where all modifications (extensions, projections)

are performed. In the distributed case, a cost function Cij between agents i and j is

known by both agents, and each one keeps a local copy of Cij . Initially, they share

74

4.1 Including Soft Local Consistencies in Distributed Problems

the same copy, but operations to maintain soft arc consistency modify Cij . Since each

agent performs these operations independently, after a while agents could end up with a

different representation of Cij . Therefore soft arc consistency operation must be done in

such a way that both agents maintain a legal representation of Cij , otherwise the same

cost can be counted twice when projecting unary costs to Cφ. This is depicted in Figure

4.2, where an illegal increment in Cφ is performed, causing Ci(a) + Cφ to become an

invalid lower bound for value a. To maintain a legal representation of cost functions,

agent i has to simulate the action of agent j on its Cij copy, and vice versa. In some

cases, i has also to send a message to j.

a

b

i
a

b

j
3
3

2
2

a

b

i
a

b

j
(3)

(2)

a

b(2)
Τ=2

33
22

a

b

i
a

b

j
(3)

(2)

Figure 4.1: Left: Simple example with two agents i and j and two values per variable. Lines
represent binary costs and values in parenthesis unary costs. The optimum cost is 2 and there are
two optimal solutions (i, b)(j, a) and (i, b)(j, b). Center: A projection is performed from binary
Cij to unary costs Ci. Right: if � = 2, pruning v with cost(v) = � causes to lose value (i, b)

which is part of the two optimal solutions. In fact, no value would remain for i.

In general, when information is distributed agents are required to exchange messages in

order to achieve the desired consistency level. In a naive approach, each time an agent needs

some information of other agent it would generate two messages (request and response) which

could cause a serious degradation in performance. In our approach, we try to keep the number

of exchanged messages as low as possible. Using messages to coordinate, agents perform

operations (projections, extensions) that modify cost functions. We perform these operations

in such a way that bounds are always computed in a legal way (no costs are counted twice and

no invalid lower bounds are produced).

Also, privacy issues must be taken into account. In many cases it is not desirable that agents

share their preferences (unary costs) with other agents. We tried to maintain this assumption

and only partial information about unary cost functions is revealed to other agents. In the

distributed case, it is usually assumed that each agent knows about (i) its variable and (ii) the

cost functions it has with other agents. Assumption (ii) implies that it also knows about the

75

4. DISTRIBUTED SOFT ARC CONSISTENCY

a

b

i
a

b

j
2

3
1

4

3
1

Cϕ=0

a

b

a

b

(2)
1

(1) 3

1

Cϕ=0

i j
a

b

a

b

(1)
1

(0) 3

1

Cϕ=1

i j

a

b

a

b (3)

1 (1)

1

Cϕ=1

i j
a

b

a

b (2)

1 (0)

1

Cϕ=2

i j

ag
en

t j

ag
en

t i

a

b

i
a

b

j
2

3
1

4

3
1

Cϕ=0

Figure 4.2: Simple example with two agents i and j and two values per variable. Lines represent
binary costs and values in parenthesis unary costs. First row (UP) contains agent i representation
of the problem. Second row (DOWN) contains agent j representation of the problem.
(UP and DOWN) Left: Initially, both representations are the same.
(UP) Center: i projects from Cij to its unary costs. Right: i projects its unary costs to Cφ.
(DOWN) Center: j projects from Cij to its unary costs, without considering previous projections
of i (this is incorrect). Right: j projects its unary costs to Cφ, causing an incorrect increment.

domain of neighbors. To enforce any soft arc consistency, we explicitly require that if agent i

is connected with agent j by Cij , i has to represent locally Dj . For privacy reasons, we assume

that the unary costs of the values of an agent are held by itself. So an agent neither can know

nor update unary costs of other agents.

One of the main goals of soft arc consistency is to construct strong lower bounds: Cφ is a

lower bound of the optimal solution; unary costCi(v)+Cφ is a lower bound of domain value v.

Lower bounds are useful to identify sub-optimal values whenCi(v)+Cφ > �. In addition, they

can provide a heuristic for value selection which may improve search efficiency. In (Ali et al.,

2005) authors propose a preprocessing technique for the ADOPT algorithm, and show that by

calculating lower bounds for every domain value they are able to speed up ADOPT search,

since these lower bounds provide a good heuristic for value selection during search. In (Matsui

et al., 2009) authors transform the original problem into an equivalent one projecting costs in

a preprocessing step, then ADOPT is executed in the equivalent problem with performance

improvements. In these two approaches authors compute lower bounds for values and use

them during ADOPT search, but no deletions are performed, so soft arc consistency is not fully

76

4.2 Unconditional Deletions in BnB-ADOPT+

enforced, since values in the problem may remain not NC.

In the following we present the combination of the distributed search algorithm BnB-

ADOPT+ with several soft arc consistency levels. We assure NC by deleting inconsistent

values. Deletions are a key point when enforcing soft arc consistency since they lead to refine-

ments in the lower bounds and further deletions. If a value deletion is propagated to neighbors

new inconsistent values may be discovered (which can also be propagated leading to further

deletions, etc). In our approach, inconsistent values are removed during preprocessing and also

during search.

4.2 Unconditional Deletions in BnB-ADOPT+

As explained in Chapter 2, when enforcing soft arc consistency on a DCOP problem we can

remove inconsistent values (if Ci(v) + C� > >). These values are removed unconditionally,

this means that they are never needed to be restored again. Such unconditional value deletions

can be done in a preprocessing step, before the search process begins.

During search, an agent may remove values conditionally to particular value assignments of

ancestors, in the following way. When an agent i assigns a value, the domain of i is reduced to

this single value. Then, if some value v is proved to be inconsistent in a neighbor j considering

this context it can be removed. However when i change its value assignment (this produces a

context change) the deleted value v must be restored in j. Propagation of conditionally deleted

values is expensive because it is not permanent and requires a high communication effort to

delete and restore values. This strategy has not paid off in Distributed Constraint Satisfaction

Problems (Brito and Meseguer, 2008). Because of this, for the distributed optimization case we

focus on unconditional deletions, where values do not depend on any particular assignments of

ancestors.

In addition to inconsistent values, during BnB-ADOPT+ search an agent may remove val-

ues unconditionally, assuring that they will not be used in the optimal solution, as explained

next. Let us consider a DCOP instance, where agents are arranged in a pseudo-tree and each

agent executes BnB-ADOPT+. The root agent updates and propagates to other agents the >
value (initially 1) with the best solution found so far. Let us consider a generic agent self

that takes value v. After sending VALUE messages, self receives COST messages from its

children. A COST message contains the lower bound computed by children given the context

contained in the COST message. We consider COST messages whose context is simply the

77

4. DISTRIBUTED SOFT ARC CONSISTENCY

assignment (self; v), the self agent with current value assignment v. Observe that for the root

agent such COST messages are always received. If the sum of the lower bounds of these COST

messages (sent with a context containing only the self agent) exceeds >, then v can be deleted

unconditionally. To see this, it is enough to realize that the lower bound is computed assuming

a context: if this context is simply (self ; v), the actual cost of v does not depend on the value

assignment of any ancestor, so if it exceeds > it can be deleted permanently. This reasoning is

valid for any agent of the pseudo-tree.

Unconditional deletions do not depend on values assignments of other agents and can be

propagated causing new deletions. Any deletion caused by propagation of unconditional dele-

tions is also unconditional. To effectively propagate deletions to other agents some kind of soft

arc consistency during search must be maintain, as explain next.

4.3 BnB-ADOPT+ Combined with AC and FDAC

We present in this Section the connection of BnB-ADOPT+ with AC and FDAC consistency

levels. Some soft arc consistencies require agents to be ordered. We assume this order as

the order of agents in each branch of the pseudo-tree used by BnB-ADOPT+. Observe that,

although it is not a total order, agents in separate branches do not share cost functions, so for

enforcing soft arc consistency it is enough with the partial ordering of agents in the pseudo-tree.

For simplicity, we assume that cost functions are unary and binary only. We also assume,

for the moment, that simultaneous deletions do not occur on neighboring agents. This specific

case is detailed in Section 4.3.4.

Soft arc consistency is maintained during distributed search in a preprocess step and also

during search every time soft arc consistency is broken. AC/FDAC levels are achieved im-

plementing the projection and extension operators for the distributed case, and pruning node

inconsistent values on every agent. These operations are performed asynchronously on every

agent and �ows of costs can be extended in parallel across all branches of the pseudo-tree.

The proposed combination of BnB-ADOPT+ with AC and FDAC keeps the optimality and

termination properties of BnB-ADOPT (Yeoh et al., 2010) as follows. While BnB-ADOPT+

search is performed using the cost functions to calculate costs, projections and extensions to

maintain AC/FDAC are performed on a copy of these cost functions. In this way, the search

process is not altered with any modification in the original cost functions. Modifications comes

from the fact that inconsistent values are removed from the domain of agents. If we only remove

78

4.3 BnB-ADOPT+ Combined with AC and FDAC

node inconsistent values (suboptimal values) –which is assured by the AC/FDAC properties–

then it is easy to see that the optimality and termination of the algorithms is guaranteed.

4.3.1 BnB-ADOPT+-AC

BnB-ADOPT+-AC algorithm combines distributed branch-and-bound search with AC consis-

tency level. Its search process is based on BnB-ADOPT+, maintaining the same data and

communication structure. The main difference is that agents are able to detect and delete sub-

optimal values. The inclusion of AC in BnB-ADOPT+ have caused a number of modifications

in the original algorithm, both in the structure of the exchanged messages and in the computa-

tion done.

Regarding memory, the domain of neighbors is represented in each agent. Each agent has

a local copy of C� and >. Also, two copies of the same cost functions are kept on every agent:

the first one to calculate costs during search (this copy remains unchanged) and the second one

to perform the projections needed for AC enforcement.

Regarding messages, new information needed to maintain AC are included in messages, as

shown in Figure 4.3:

BnB-ADOPT+ messages:
VALUE(sender , destination, value, threshold)
COST(sender , destination, context [], lb, ub)
STOP(sender , destination)

BnB-ADOPT+-AC messages:
VALUE(sender , destination, value, threshold ,>,Cφ)
COST(sender , destination, context [], lb, ub, projectionsToCφ)
STOP(sender , destination, emptydomain)

DEL(sender , destination, deletedValues)

Figure 4.3: Messages of BnB-ADOPT+ and BnB-ADOPT+-AC.

� A new DEL message is introduced to inform deletions to neighbors. With the new mes-

sage DEL(i; j; deletedV alues), i informs neighbor j that it has deleted the value(s) in

the list deletedV alues. When received, j updates its Di copy and recheck the AC prop-

erty on its values, which may lead to further deletions.

79

4. DISTRIBUTED SOFT ARC CONSISTENCY

� VALUE messages include > and C�. Both values are calculated at the root agent of the

pseudo-tree and propagated from root to leafs. > is initially1 or a user specified value

and is refined during search with the best solution found so far.

� COST messages include the variable projectionsToC� that aggregates the costs of

unary projections to C� made by agents of the pseudo-tree. Each agent adds its own

unary cost projections toC� with the projections of all its children. In this way, projectionsToC�
aggregates the projections of all the agents of the subtree rooted at the sender agent.

Regarding computation, domain values are tested for deletion and cost functions are pro-

jected (binary into unary, unary into C�). A value d is proved sub-optimal and can be deleted

unconditionally from the domain of xi if Ci(d) +C� > >. Only the agent owner of a variable

can delete values in its domain.

When performing projections in two constrained agents i and j, changes on Cij should be

done carefully since i and j operate asynchronously and after a while they might end up with

different copies of the cost functions. There is a pre-established ordering for projections. If

i < j in the pseudo-tree, AC is maintained in the following order: first projections are done

from j to i and then from i to j, as shown in Figure 4.4. This is done in both agents to avoid

counting twice the same cost, which may lead to delete optimal values. When an agent self

performs a projection from a neighbor to self, it updates its binary and unary costs. When an

agent self performs a projection from self to a neighbor agent, it updates its binary costs but

not the unary costs of neighbors.

When a deletion occurs the AC property may be broken (supports may be lost on neigh-

bors). Therefore when a deletion occurs on an agent i it sends DEL messages to neighbors

and projects binary costs over neighbors; when these DEL messages are received, neighbors

project binary costs over themselves.

During preprocess, projections are performed following the established order and if in-

consistent values are found they are deleted. During search, > and C� values are aggregated

and propagated and new deletions and projections might be performed. Pseudocode of the

preprocess phase appears in Figure 4.5 and 4.6, a quick description follows:

� Preprocess. It initializes the problem variables and performs AC. Then, it processes

DEL and STOP messages from the message queue until there are no more messages

(quiescence is true) or until an empty domain has been detected in some agent (end is

true). An empty domain means that the problem has no acceptable solution.

80

4.3 BnB-ADOPT+ Combined with AC and FDAC

i

j

k

AC

AC AC

AC ACACAC

AC
DEL(j,i,{b})

DEL(j,k,{b})

{a, b, c} a, b, c

Figure 4.4: Three agents i, j, k in the same branch of the pseudo-tree. Maintaining AC: Cost
functions are AC in both senses; deleting value b in Dj causes to send two DEL messages to i and
k to propagate deletions.

• AC. Binary projections are performed between self and each neighbor constrained with

self , following the established ordering: costs are first projected to the higher agent and

after to the lower agent. Notice that executing the procedure BinaryProjection(i , self)

does not change the unary costs of self but modifies its copy of Ci ,self .

• BinaryProjection(i, j). Binary projections are performed from i to j as follows:

binary cost function Cij is decremented with the minimum cost α (lines 19-22); unary

cost function Ci is incremented with the minimum cost α only if the projection is done

over the self agent (line 23).

• UnaryProjectionToCφ. Projects the minimum unary cost of self to the variable

myProjectionCφ, which accumulates all self projections to Cφ.

• CheckDomainForDeletions. Checks every domain value for deletion. A value v

is proved sub-optimal under certain conditions: when its unary cost plus Cφ exceeds �
(line 30) or when the sum of its lower bounds exceeds � and this bounds were sent with

a context that contains only the self agent (line 31, the bounds do not depend on any

higher agent, as explained in Section 4.2). After identifying sub-optimal values they are

deleted (line 33). Then, if the domain of self becomes empty, it means that no optimal

solution can be found (the problem has no acceptable solution) and self sends STOP

messages to all neighbors with emptydomain = true. If self domain is not empty,

it sends a DEL message to every neighbor j informing about its deleted value(s) and

81

4. DISTRIBUTED SOFT ARC CONSISTENCY

01 procedure Preprocess()
02 initialize >; Cφ; lb; ub; contexts; domains;
03 AC();
04 while :end ^ :quiescence do
05 msg getMessageFromQueue();
06 switch(msg:type)

07 DEL: ProcessDelete(msg); STOP : ProcessStop(msg);

08 procedure AC()
09 for each i 2 neigbors(self) do
10 if i < self then
11 BinaryProjection(self ; i);
12 BinaryProjection(i ; self);
13 else
14 BinaryProjection(i ; self);
15 BinaryProjection(self ; i);
16 CheckDomainForDeletions();

17 UnaryProjectionToCφ();

18 procedure BinaryProjection(i ; j)
19 for each a 2 Di do
20 � minb∈Dj

fCij (a; b)g;
21 for each b 2 Dj do
22 Cij(a; b) Cij(a; b)� �;
23 if i = self then Ci(a) Ci(a) + �;

24 procedure UnaryProjectionToCφ()
25 � mina∈Dself

fCself (a)g;
26 myProjectionCφ myProjectionCφ + �;
27 for each a 2 Dself do Cself (a) Cself (a)� �;

28 procedure CheckDomainForDeletions()
29 for each v 2 Dself do
30 if Cself (v) + Cφ > > then deleteV alues:add(v);
31 if

∑
c∈children st.contexts(c,v)={self } lb(c; v) > > then deleteV alues:add(v);

32 if deleteV alues:size > 0 then
33 for each v 2 deleteValues do Dself Dself � fvg;
34 if Dself = ; then
35 for each j 2 neighbors(self) do sendMsg(STOP ; self ; j ; true); end true;
36 else
37 for each j 2 neighbors(self) do
38 sendMsg(DEL; self ; j ; deleteValues);
39 BinaryProjection(j ; self);

Figure 4.5: Pseudocode of BnB-ADOPT+-AC Preprocess. (1)

82

4.3 BnB-ADOPT+ Combined with AC and FDAC

40 procedure ProcessDelete()
41 for each v 2 msg:deletedValues do
42 domains(sender) domains(sender)� fvg;
43 BinaryProjection(self ; sender);

44 procedure ProcessStop(msg)

45 end true;
46 if (msg:emptyDomain) then
47 for each j 2 neighbors(self); j 6= sender do
48 sendMsg(STOP ; self ; j ; true);

Figure 4.6: Pseudocode of BnB-ADOPT+-AC Preprocess. (2)

perform a binary projection from self to j, since a support may be lost in j. When the

DEL message arrives, a projection in the same direction is performed in neighbor j, as

explain next.

� ProcessDelete(msg). self received a DEL message, which means that sender has

deleted some value(s) from its domain. self registers these deletions in its Dsender copy

and performs a binary projection from sender to self.

� ProcessStop. self received a STOP message. If caused by an empty domain (no

acceptable solution exists), self resends STOP messages to all its neighbors, except

sender . In any case, self records its reception in end .

During the search phase, BnB-ADOPT+-AC includes the following actions to maintain

AC:

� When self receives a VALUE message, the local copies of > and C� are updated if the

values contained in the received message are better (lower for >, higher for C�).

� When self receives a COST message from a child c, self records c subtree projections

to C�. When a new COST message is sent, the subtree projections of all children are

added to self own projections to C� and this is sent to the parent agent.

� In the Backtrack procedure, after processing completely the message queue, self calls

the CheckDomainForDeletions and UnaryProjectionToC� procedures. Dur-

ing VALUE, COST and DEL message processing unary cost functions, > and C� may

83

4. DISTRIBUTED SOFT ARC CONSISTENCY

have been updated, so self tries to find new sub-optimal values to delete and new projec-

tions to C�.

Notice that agents could check their domain looking for sub-optimal values every time> or

C� are updated (during reception of VALUE or COST messages), since with every refinement

in > or C� a new opportunity for value deletion might appear. However during search we

check for deletions after the agent has completely processed the message queue. Such as

it happens when agents decide to change value, they will first gather all information from

incoming messages (all possible refinements to > and C�) before checking for sub-optimal

values. With this, computational effort is saved.

In the same way, unary projections to C� could be done every time there is a possibility to

increment the agents local contribution to C�. This can happen when a value is deleted in self

or when binary projections are performed over self leading to an increment in its unary costs.

However, we perform this operation after the agent has completely processed the message

queue. We do this for the following reason. Every time there is a unary projection in self its

unary costs are decremented. In the centralized case, this decrement is quickly compensated

with an increment in the global C�, but in a distributed environment this compensation is not

immediate, it takes some time. First self projection must travel in COST messages to the root

agent, where is aggregated with other projections. Afterwards the aggregated C� is informed

in VALUE messages to lower neighbors. This process can take some cycles, so we delay the

decrement of unary costs in agents until the next COST message is sent (in the Backtrack

procedure).

We have taken the strategy of delaying the projections from unary costs toC� and checking

for deletions until the agent reads completely the message queue. Experimentally, we have ob-

served that this strategy reduces considerably the computational effort made by the algorithm,

although in some cases it may cause a few extra messages since these operations are not done

as early as they could be.

4.3.2 BnB-ADOPT+-FDAC

BnB-ADOPT+-FDAC algorithm performs distributed search and maintains FDAC level of soft

arc consistency. Extensions and projections are performed following the following order: if i

and j are two neighbor agents, i < j in the pseudo-tree, DAC is maintained from j to i and AC

84

4.3 BnB-ADOPT+ Combined with AC and FDAC

from i to j. Therefore costs are extended always to higher agents in the pseudo-tree, as shown

in Figure 4.7.

i

j

k

AC

DAC

DAC ACACAC

DEL(j,i,{b})

DEL(j,k,{b})

{a, b, c} a, b, c{a, b, ca, b, ca, b, c}a, b, ca, b, c

DEL(DEL(DEL(j,i,{b}DEL(j,i,{b}DEL()

UCO(j,i,[.,.,.,.]) AC

Figure 4.7: Three agents i, j, k in the same branch of the pseudo-tree. Maintaining FDAC: Cost
functions are FDAC (DAC in one sense and AC in the other); deleting value b in Dj causes to send
two DEL messages to i and k, plus one UCO message to the higher agent i if costs can be extended
to i.

As in the BnB-ADOPT+-AC algorithm, two copies of the cost functions are kept on every

agent: one copy is modified with projections and extensions needed to achieve FDAC while

the other copy remains unchanged and is used to calculate costs during search. In addition to

the messages required for BnB-ADOPT+-AC, a new UCO (unary costs) message is added to

inform of cost extensions (Figure 4.8). When agent j extends costs to a higher agent i, j sends a

UCO message to i with the unary costs extended (extended costs are the maximum unary costs

in j that can be extended and after projected to i, following (Larrosa and Schiex, 2003)), as

depicted in Figure 4.7. Upon reception, agent i performs the extension of these unary costs into

its binary cost function Cij and the projection of binary costs in Cij to its unary cost function

Ci.

During preprocess, projections and extensions are performed following the established or-

der and if inconsistent values are found they are deleted. During search, � and Cφ values are

aggregated and propagated and new deletions and projections/extensions might be performed.

Pseudocode is depicted in Figure 4.9. The BnB-ADOPT+-FDAC process is the same as BnB-

ADOPT+-AC code, plus the reception and process of the new UCO message to inform cost

extensions. A summary description of this new procedures follows:

• Preprocess. Includes a call to the FDAC procedure and processes the new UCO

message.

85

4. DISTRIBUTED SOFT ARC CONSISTENCY

BnB-ADOPT+-AC messages:
VALUE(sender , destination, value, threshold ,>,Cφ)
COST(sender , destination, context [], lb, ub, projectionsToCφ)
STOP(sender , destination, emptydomain)

DEL(sender , destination, deletedValues)

BnB-ADOPT+-FDAC messages: those of BnB-ADOPT+-AC plus
UCO(sender , destination, vectorOfExtensions)

Figure 4.8: Messages of BnB-ADOPT+-AC and BnB-ADOPT+-FDAC.

01 procedure Preprocess()
02 initialize >; Cφ; lb; ub; contexts; domains;
03 FDAC();
04 while :end ^ :quiescence do
05 msg getMessageFromQueue();
06 switch(msg:type)

07 DEL: ProcessDelete(msg); UCO: ProcessUnaryCost(msg); STOP : ProcessStop(msg);

08 procedure FDAC()
09 AC();
10 for each i 2 neigbors(self) do
11 if i < self then ExtendCostsToNeighbor(i);

12 procedure ExtendCostsToNeighbor(i)
13 for each a 2 Di do P [a] minb∈Dself

fCi,self (a; b) + Cself (b)g;
14 for each b 2 Dself do E [b] maxa∈Di

fP [a]� Ci,self (a; b)g;
15 if E has some cost greater than 0 then
16 UnaryExtension(i ;E);
17 BinaryProjection(i ; self);
18 sendMsg(UCO ; self ; i ;E);

19 procedure UnaryExtension(i ;E)

20 for each b 2 Dself do
21 for each a 2 Di do Ci,self (a; b) Ci,self (a; b) + E [b];
22 Cself (b) Cself (b)� E [b];

23 procedure ProcessUnaryCosts(msg)

24 for each b 2 Dsender do
25 for each a 2 Dself do Cself ,sender (a; b) Cself ,sender (a; b) +msg:vectorOfExtensions(b);
26 FromBinaryToUnary(self ; sender);

Figure 4.9: Pseudocode of BnB-ADOPT+-FDAC Preprocess. Missing procedures appear in Fig-
ure 4.5 and 4.6 (AC Preprocess)

86

4.3 BnB-ADOPT+ Combined with AC and FDAC

� FDAC. After maintaining AC, costs are extended to every higher neighbor i calling the

procedure ExtendCostsToNeighbor(i).

� ExtendCostsToNeighbor(i). self extends costs to agent i. The vector of exten-

sions E is calculated, which contains the extensions for every domain value in Dself . If

at least some of these extensions is greater than zero, these costs are extended from Cself

to Cself;i (procedure UnaryExtension(i; E)). After this, binary costs are projected

from self to i and a UCO message is sent to agent i informing of the cost extensions.

The vector E is sent in this COST message (vectorOfExtensions).

� UnaryExtension(i; E) Costs in the vector of extensions E are extended from Cself

to Cself;i.

� ProcessUnaryCost. self has received a UCO message. Costs are extended from the

vector of extensions included in the UCO message to Cself;sender. After this, costs are

projected from binary costs Cself;sender to unary costs Cself .

In addition to these new procedures, the following changes must be done in the algorithm:

� CheckDomainForDeletions. If self deletes a value, a �ag extendCosts is set to

true.

� BinaryProjection(i; j). If unary costs are incremented in self, a �ag extendCosts

is set to true.

� Backtrack. After self checks its domain for deletions and projects unary costs to

C�, if the �ag extendCosts is set to true, the agent tries to extend costs to all higher

neighbors with the procedure ExtendCostsToNeighbor(i).

4.3.3 Example

In this Section we present an example to illustrate savings obtained as result of maintaining soft

arc consistency in distributed problems during search. Consider variables x0, x1 and x2 (x0 <

x1 < x2 in the pseudo-tree) with domain fa; bg and cost functions as represented in Figure 4.10

(Up). Enforcing AC on this problem (projecting binary costs into unary costs, projecting unary

costs overC� and deleting inconsistent values) we obtain the equivalent problem of Figure 4.10

(Down, Right). In this problem C� is 20 and inconsistent values x1 = a and x2 = b has been

87

4. DISTRIBUTED SOFT ARC CONSISTENCY

deleted. In the following we show how the AC consistency level is achieved in the distributed

problem.

During BnB-ADOPT+-AC execution, the unary projections to C� of all agents are aggre-

gated in the root of the pseudo-tree (agent x0) using COST messages and C� is propagated to

agents x1 and x2 using VALUE messages. We present the execution trace of BnB-ADOPT+

(Table 4.1, Left) and BnB-ADOPT+-AC (Table 4.1, Right). As shown, BnB-ADOPT+ needs

34 messages and 15 cycles to reach an optimal solution, while BnB-ADOPT+-AC needs only

20 messages and 7 cycles. In the following we explain brie�y this decrement in messages and

cycles. For a clearer explanation, we omit some messages of BnB-ADOPT+ execution that

makes explanation more complex and are not relevant to show the benefits of BnB-ADOPT+-

AC.

In BnB-ADOPT+ execution, all agents are initialized with value a and they send the cor-

respondent VALUE messages (Figure 4.11(a)). After receiving the VALUE message from x0,

agent x1 also receives the correspondent COST message from its child (Figure 4.11(b)). Then,

x1 tries value b, and receives the correspondent COST message from its child (Figure 4.11(c)

and (d)). Now, all values of x1 has been explored and x1 chooses value b as the best value for

the current context, and sends a COST message to its parent with UB=LB=20 (Figure 4.11(d)).

When x0 receives this COST message it changes to value b and sends VALUE messages to

x1 and x2 (Figure 4.11(e)). When x1 and x2 receive the VALUE message, they reinitialize

their information (because context has changed), and they start exploring their values under

the current context (lines 20-29 of BnB-ADOPT+ execution trace). Agents x2 and x1 ex-

change messages until all values are explored and x1 send a COST message to its parent with

UB=LB=25 (Figure 4.11(f)). When x0 receives this COST, as UB(b) > UB(a), and all values

has been explored, x0 changes its value to a and terminates (Figure 4.11(g)). With this new

context change, x1 and x2 reinitialize values and exchange messages until they also terminate

with the optimal solution (Figures 4.11(h) and (i)). Lines in the bottom of each subfigure in

Figure 4.11 indicate the line that they represent in the execution trace.

In BnB-ADOPT+-AC execution, a > of 30 is propagated in value messages. When >
arrives to agent x1 it is able to delete value a (line 6 of execution trace). Observe that at this

point C� has not been yet aggregated and is equal to zero, however C1(a) = 36 so C1(a) +

C� > > (36+0 > 30). When this deletion is propagated to agent x2 (line 8 of execution trace)

x2 reinforces AC, as result its unary cost C2(b) = 35. After this, x2 also receives the partially

aggregated C� = 15 and is able to delete value b since C2(b) + C� > > (36 + 15 > 30). In

88

4.3 BnB-ADOPT+ Combined with AC and FDAC

x0 {a,b}0

CC01

x1 {a,b}C02

C12

{ b}

12

x {a,b}x2

C01 :

x0 = a x0 = b

x1 = a 9 2
x1 = b 4 1

C02 :

x0 = a x0 = b

x2 = a 1 9
x2 = b 4 5

C12 :

x1 = a x1 = b

x2 = a 50 15
x2 = b 50 50

C0(a) = C1(a) = C2(a) = 0

C0(b) = C1(b) = C2(b) = 0

Cφ = 0;> = 30

C01 :

x0 = a x0 = b

x1 = a 4 0
x1 = b 0 0

C02 :

x0 = a x0 = b

x2 = a 0 4
x2 = b 3 0

C12 :

x1 = a x1 = b

x2 = a 0 0
x2 = b 0 35

C0(a) = 0; C0(b) = 1

C1(a) = 36; C1(b) = 0

C2(a) = 0; C2(b) = 0

Cφ = 20;> = 30

C01 :
x0 = a x0 = b

x1 = b 0 0

C02 :
x0 = a x0 = b

x2 = a 0 0

C12 :
x1 = b

x2 = a 0

C0(a) = 0; C0(b) = 5

C1(b) = 0

C2(a) = 0

Cφ = 20;> = 30

Figure 4.10: (Up) Simple example with three variables and its initial binary and unary cost func-
tions, C� = 0 and > = 30. (Down, Left) Cost functions after projections from binary to unary
costs functions and from unary cost functions to C�; (Down, Right): Cost functions after deletion
of inconsistent values x1 = a and x2 = b.

line 16 of execution trace, C� = 20 has been aggregated completely in x0. Also, x0 receives

a COST message with LB(a) = UB(a) = 20 so > is updated to 20 (the cost of the best

solution found so far). Then, x0 is able to delete value b since C0(b) +C� > > (5+ 20 > 25).

Since x0 = b has been deleted, x0 will not explore this value. Messages sent on Figure 4.11

89

4. DISTRIBUTED SOFT ARC CONSISTENCY

(e) and (f) are not sent on BnB-ADOPT+-AC execution. Instead, x0 sends a VALUE message

with x0 = a and terminates (Figure 4.11 (g)). Lines 20-30 and 33-38 of the execution trace

(g) (h) (i)

x0=a

x1=a

x2=a

 Lines 1, 2, 3, 4

 VALUE: x0=a

 VALUE: x1=a

 VALUE: x0=a

x0=a

x1=a

x2=a

 VALUE: x1=b COST: UB=51;LB=51

 Line 9

x0=a

x1=b

x2=a

 Line 10

x0=a

x1=b

x2=a

 Lines 15,16

x0=b

x1=b

x2=a

 VALUE: x0=b

 Lines 20, 21, 22

 VALUE: x0=b

x0=b

x1=b

x2=a

 Lines 23, 27, 28

 COST: UB=24;LB=24

 COST: UB=25;LB=25

x0=a

x1=b

x2=a

 VALUE: x0=a
 STOP

 Lines 30, 31, 32, 33

 VALUE: x0=a

x0=a

x1=a

x2=a

 VALUE: x1=a
 COST: UB=51; LB=51

 Lines 35, 36, 37

x0=a

x1=b

x2=a

 VALUE: x1=b
 STOP

 Lines 38, 39, 40

(a) (b) (c)

(d) (e) (f)

 COST: UB=16;LB=16

 COST: UB=20;LB=20

Figure 4.11: BnB-ADOPT+ execution example. Lines in the bottom of each sub-figure correspond
to a line in the execution trace (Figure 4.1). In BnB-ADOPT+-AC, messages represented in cases
(e), (f) and (h) are not sent.

90

4.3 BnB-ADOPT+ Combined with AC and FDAC

BnB-ADOPT+ BnB-ADOPT+-AC
(1) start: x0 = a; x1 = a, x2 = a start: x0 = a; x1 = a, x2 = a

(2) x1 received VALUE: x0 = a x1 received VALUE: x0 = a, TOP=30,Cφ = 0

(3) x2 received VALUE: x0 = a x2 received VALUE: x0 = a, TOP=30,Cφ = 0

(4) x2 received VALUE: x1 = a x2 received VALUE: x1 = a, TOP=30,Cφ = 0

(5) (backtrack: x1 = b) (backtrack: x1 = b)
(6) (x1 deletes value a)
(7) x0 received DEL: x1 = a

(8) x2 received DEL: x1 = a

(9) x1 received COST: sender =x2 , context={x1 = a, x2 = a}, LB=51, UB=51 x1 received COST: sender =x2 , context={x1 = a, x2 = a}, LB=51, UB=51
(10) x2 received VALUE: x1 = b x2 received VALUE: x1 = b, TOP=30,Cφ = 15

(11) (x2 deletes value b)
(12) x0 received DEL: x2 = b

(13) x1 received DEL: x2 = b

(14) x1 received VALUE: x0 = b, TOP=30,Cφ = 20

(15) x1 received COST: sender = x2 , context={x0 = a, x1 = b}, LB =16, UB=16 x1 received COST: sender = x2 , context={x0 = a, x1 = b}, LB =16, UB=16
(16) x0 received COST: sender = x1 ,context={x0 = a}, LB =20, UB=20 x1 received COST: sender = x1 , context={x0 = a}, LB =20, UB=20
(17) (x0 deletes value b)
(18) x1 received DEL: x0 = b

(19) x2 received DEL: x0 = b

(20) (backtrack: x0 = b)
(21) x1 received VALUE: x0 = b

(22) x2 received VALUE: x0 = b

(23) x1 received COST: sender = x2 , context={x0 = b, x1 = b}, LB=24, UB=24
(24) (backtrack: x1 = a)
(25) x2 received VALUE: x1 = a

(26) x1 received COST: sender = x2 , context={x0 = b, x1 = a},LB =55, UB=55
(27) (backtrack: x1 = b)
(28) x0 received COST: sender = x1 , context={x0 = b},LB =25, UB=25
(29) x2 received VALUE: x1 = b

(30) (backtrack: x0 = a)
(31) x1 received VALUE: x0 = a x1 received VALUE: x0 = a, TOP=20,Cφ = 20

(32) x1 received STOP x1 received STOP
(33) x2 received VALUE: x0 = a

(34) x1 received COST: sender = x2 , context={x0 = a, x1 = b}, LB=16, UB=16
(35) (backtrack: x1 = a)
(36) x2 received VALUE: x1 = a

(37) x1 received COST: sender = x2 , context={x0 = a, x1 = a}, LB=51, UB=51
(38) (backtrack: x1 = b)
(39) x2 received VALUE: x1 = b x2 received VALUE: x1 = b, TOP=20,Cφ = 20

(40) x2 received STOP x2 received STOP

No more messages... No more messages...
34 total messages 20 total messages
17 VALUE msg , 15 COST msg 8 VALUE msg, 4 COST msg, 6 DEL msg
15 cycles 7 cycles
TOTAL cost: 20 TOTAL cost: 20
OPT. SOLUTION: x0 = a; x1 = b; x2 = a OPT. SOLUTION: x0 = a; x1 = b; x2 = a

Table 4.1: Trace of BnB-ADOPT+ and BnB-ADOPT+-AC on the example of Figure 4.10. Some
messages have been omitted to simplify the explanation. Messages in bold are common to both
algorithms. Notice that from lines 20 to 38 BnB-ADOPT+ messages are saved in BnB-ADOPT+-
AC.

are not executed in BnB-ADOPT+-AC as result of value deletions. As we can see, removing

inconsistent values has been beneficial, the propagation of deletions and aggregation of the

global lower bound C� has produced a positive impact.

91

4. DISTRIBUTED SOFT ARC CONSISTENCY

4.3.4 Simultaneous Deletions

When a value is deleted in an agent self binary projections are perform from self to neigh-

bors, since neighbors may have lost their support. If deletions are non-simultaneous in BnB-

ADOPT+-AC/FDAC (that is, if deletions never occur at the same time on neighboring agents),

it is easy to see that projections are performed in the same order on both agent (self and neigh-

bor), so their cost functions eventually remain equivalent. However, in the case that deletions

occur at the same time on neighboring agents, something different happens.

Consider the example in Figure 4.12. First row correspond to actions taking place in agent

i and second row actions taking place in agent j. Every column show simultaneous operations,

occurring at the same time on i and j. Black domain values and costs are values and costs

stored in the agent. Gray domain values and costs are what the agent believes of its neighbor

(this information is not stored in the agent). Agents i and j only store the unary costs of their

own domain. Lines represent binary costs Cij with cost one and unary costs appear between

parenthesis. Initially, C� = 0, Ci(b) = 1, Cj(b) = 1 and the rest of unary costs are zero.

In the first column, two simultaneous deletions take place on agents i and j. In the second

column, both agents make a projection from self to the neighbor and send a DEL message.

When projecting over the neighbor, binary costs are reduced from Cij and the agent assumes

that an increment in the unary costs of the neighbor will eventually occur, when the DEL

a
i

a
j

a
i

a
j

a
i

a
j
(1) (1)a

b
a
b

a
b

a
b

a
b

a
b

(1)

ti

(1)

(1) (1) (1)b bb
c

b
c

b b
cA
ge

n

() () ()

Deletion on i Projection i → j
i receives DEL from j

A

Projection j → i
i receives DEL from j

i j i j i j
a
i

a
j

a
i

a
j

(1) a
i

a
j

(1)

b b b b b b

tj

(1) (1) (1)

c c
P j ti j i

c

A
ge

nt

P j i i jDeletion on j Projection j → i
j receives DEL from i

A Projection i → j

Figure 4.12: Agents i and j, and the process of two simultaneous deletions. Possible values for
each agent are a; b; c, unary costs appear between parenthesis. In black, what an agent knows of
itself. In gray, what an agent believes of the other agent. Lines indicate pairs of values with cost 1,
no lines indicate cost 0.

92

4.3 BnB-ADOPT+ Combined with AC and FDAC

message arrives to the neighbor. But notice that, because these operations occur at the same

time, the order of resulting projections is opposite on agent i and j. This would not be the case

if one deletion would have preceded the other. Then both agents would have kept the same

ordering in projections (for example, a projection first from i to j and after from j to i) and

they would have obtained C� = 1. Notice that in the example C� remains zero.

Both agents projected at the same time a binary cost of 1 from self to the unary cost of their

neighbor, but this operation was never performed in the neighbor (a cost of 1 is decremented

in the binary costs of self but is never incremented in the unary costs of neighbor). So this cost

is lost from the problem. Notice that costs are not counted twice and no illegal deletions are

produced, but loosing costs from the problem diminish deletion opportunities. In addition, on

the last column the resulting cost functions on i and j are not equivalent.

One may wonder then if the approach of Section 4.3.1 is correct and complete. The answer

is yes because soft arc consistency operations are done in a copy of the cost functions, while

search is performed using the original cost functions to calculate costs. As long as there is no

illegal deletion of values (which is not the case here, since costs are not counted twice), search

maintains its completeness.

However, we can avoid this behavior assuring synchronous deletions. It is impossible that

two agents know if they are performing deletions at the same time, but it is possible that they

communicate beforehand and agree on the order to follow. If one deletion always precedes

the other, projections on neighboring agents maintain the same order. This assures that cost

functions remain equivalent and no costs are lost from the problem.

Another option is to omit synchronization of deletions, knowing that there is a possibility

that some costs may be lost. This could be practical if simultaneous deletions are considered

rare in some problems. Observe that the lost of cost shown in Figure 4.12 happens because

both agents i and j deleted values that were a support on the neighbor agent and these supports

were deleted simultaneously, otherwise costs would not be lost even if performing the deletions

at the same time.

To maintain synchronous deletions, two main changes must be done in BnB-ADOPT+-AC:

� Two new messages are introduced to synchronize deletions: SYNC1 and SYNC2

� Agents have a locked property. While an agent is locked it is able to read and process

messages, but it will not change its value or send messages to neighbors, except for

synchronization messages SYNC1 and SYNC2. An agent is locked because it is waiting

93

4. DISTRIBUTED SOFT ARC CONSISTENCY

to delete a value, or because a deletion is occurring in one or several neighbors. A locked

agent changes to unlocked when it is no longer locked with any of its neighbors.

On Figure 4.13 and 4.14 a pseudocode of the synchronous deletion process for BnB-

ADOPT+-AC is shown. Modifications are described below:

� CheckDomainForDeletions. When agent i realizes that it can delete values from

its domain, instead of immediately erasing them, it marks them as pending to delete and

sends DEL messages to neighbors k1; k2; ::ki . Afterwards, i is locked with neighbors

k1; k2; ::ki, so i can process incoming messages but it can not change its value or send

VALUE, COST or DEL messages (lines 5-10).

� ProcessDelete. When neighbor k receives a DEL message from i it can be the

case that k is already locked with i, this means that simultaneous deletions are taking

place. In this case, the higher agent in the pseudo-tree is the one that processes the DEL

message first, otherwise the message remains as pending to process (lines 12-13) and

will be processed afterwards when the agent is unlocked (lines 29-31). To process the

DEL message, k deletes the values of i from its copy of Di, and performs a projection

from i to self. After this, it sends a message SYNC1 to i to inform that the deletion has

been processed, and change its status to locked with i (lines 15-20).

� ProcessSYNC1. Only after receiving SYNC1 message from all its neighbors i is un-

locked (line 23, lines 35-37). At this point, all neighbors k have done a projection from

i to k. Then, i deletes the values from its domain, makes projections from self to k for

every neighbor k, and send a SYNC2 messages to neighbors (lines 24-28).

� ProcessSYNC2. When neighbor k receives a SYNC2 message from i, it unlocks from

i (lines 33-34).

� ProcessStop. A special case should be consider on termination. When an agent

terminates execution it informs its lower neighbors (lines 40-43). Once an agent has

stopped, it will no longer be considered in the synchronizing process because it will not

be able to respond, causing other agents to freeze forever. Therefore, before sending

DEL messages to an agent or updating the locked status with an agent, it is first checked

that the agent has not stopped execution (line 7, line 18).

94

4.3 BnB-ADOPT+ Combined with AC and FDAC

01 procedure CheckDomainForDeletions()
02 for each v 2 Dself do
03 if Cself (v) + Cφ > > then deleteV alues:add(v);
04 if

∑
c∈children st.contexts(c,v)={self } lb(c; v) > > then deleteV alues:add(v);

05 if valuesToDelete:size > 0 then
06 for each k 2 neighbors(self) do
07 if :hasStopped(k) then
08 sendMsg:(DEL; self ; k ; valuesToDelete);
09 locked(k) = true;

10 UpdateLockStatus();

11 procedure ProcessDelete(msg)

12 if locked(msg:sender) and self < sender then
13 processPending(msg:sender) = msg;

14 else
15 Dsender Dsender � fmsg:valuesToDeleteg;
16 BinaryProjection(self ; sender);
17 sendMsg:(SYNC1 ; self ;msg:sender);
18 if :hasStopped(msg:sender) then
19 locked(msg:sender) = true;

20 UpdateLockStatus();

21 procedure ProcessSYNC1(msg)

22 locked(msg:sender) = false;

23 UpdateLockStatus();

24 if :locked then
25 Dself Dself � valuesToDelete;
26 valuesToDelete ;
27 for each k 2 neighbors do
28 BinaryProjection(k ; self); sendMsg:(SYNC2 ; self ; k);
29 for each msg 2 processPending do
30 ProcessDelete(msg);

31 processPending:remove(msg);

32 procedure ProcessSYNC2(msg)

33 locked(msg:sender) = false;

34 UpdateLockStatus();

35 procedure UpdateLockStatus()
36 locked = false;

37 for each k 2 neigbors(self) do if locked(k) then locked = true;

Figure 4.13: Pseudocode for Synchronizing Deletions.

� Backtrack. If the agent is locked, it will not change its value or send messages to

neighbors (except synchronization messages) (line 45, line 48).

95

4. DISTRIBUTED SOFT ARC CONSISTENCY

39 procedure ProcessStop(msg)

40 if msg:sender == parent then receivedTerminate true;
41 locked(msg:sender) = false;
42 UpdateLockStatus();

43 hasStopped(msg:seder) = true;

44 procedure Backtrack()
45 if locked then return;
46 UpdateLBUB();

47 CheckDomainForDeletions();

48 if locked then return;
49 if LB(value) � min(TH;UB) then
50 value argminv∈Dself fLB(v)g;
51 UnaryProjectionToCφ();

52 if value has changed then
53 SendValueToLowerNeighbors();
54 else
55 SendValueToChildrenToUpdateTH();
56 if (receivedTerminate or self == root) and LB == UB and
57 LB(value) == UB(value) then
58 SendStopMessageToLowerNeighbors();
59 SendCostToParent();

Figure 4.14: Pseudocode for Synchronizing Deletions.

4.3.5 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-AC/FDAC with synchronous deletions against

original BnB-ADOPT+. We present the number of messages exchanged (communication ef-

fort) and the number of non-concurrent constraint checks (computational effort). We also

present the numbers of cycles of the simulator, as a complementary measure. Experimental

evaluation is made on unstructured instances with binary random DCOPs, and on structured

distributed meeting scheduling datasets.

We generated random DCOP instances: hn = 10; d = 10; p1 = 0:3; 0:4; 0:5; 0:6; 0:7; 0:8i.

where costs are selected from an uniform cost distribution. Two types of binary cost functions

are used, small and large. Small cost functions extract costs from the set f0; : : : ; 10g while

large ones extract costs from the set f0; : : : ; 1000g. The proportion of large cost functions

is 1/4 of the total number of cost functions (this is done to introduce some variability among

tuple costs; using a unique type of cost function causes that all tuples look pretty similar from

an optimization view). Results appear in Table 4.2, averaged over 50 instances.

96

4.3 BnB-ADOPT+ Combined with AC and FDAC

p1 Algorithm #Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
BnB-ADOPT+ 28,873 15,007 13,857 0 0 5,930 318,309 0
BnB-ADOPT+-AC 3,076 1,473 1,267 98 0 714 43,724 64

0.3 BnB-ADOPT+-FDAC 2,062 917 767 108 18 436 34,226 78
BnB-ADOPT+ 97,816 47,762 50,045 0 0 21,574 1,392,129 0
BnB-ADOPT+-AC 31,325 14,759 16,092 145 0 7,950 491,241 63

0.4 BnB-ADOPT+-FDAC 15,765 7,427 7,781 162 54 3,923 262,279 80
BnB-ADOPT+ 243,220 114,828 128,382 0 0 62,780 5,233,455 0
BnB-ADOPT+-AC 78,572 37,323 40,630 192 0 20,329 1,704,705 64

0.5 BnB-ADOPT+-FDAC 38,393 17,657 19,999 215 48 11,267 953,622 80
BnB-ADOPT+ 613,794 301,717 312,067 0 0 108,937 10,914,925 0
BnB-ADOPT+-AC 286,963 140,688 145,594 211 0 59,102 6,003,448 57

0.6 BnB-ADOPT+-FDAC 174,660 85,652 88,141 254 57 37,037 3,863,055 76
BnB-ADOPT+ 2,106,960 1,047,228 1,059,723 0 0 390,674 53,654,134 0
BnB-ADOPT+ -AC 1,662,531 832,850 829,320 103 0 328,856 40,955,650 21

0.7 BnB-ADOPT+-FDAC 1,181,727 588,523 592,417 223 64 242,160 30,273,694 53
BnB-ADOPT+ 2,455,663 1,220,387 1,235,267 0 0 450,070 65,951,172 0
BnB-ADOPT+-AC 1,949,410 959,475 989,538 113 0 397,831 53,369,192 22

0.8 BnB-ADOPT+-FDAC 1,222,317 593,222 628,167 267 70 261,076 35,673,984 56

Table 4.2: Experimental results in random binary DCOPs. BnB-ADOPT+ (first row) compared to
BnB-ADOPT+-AC (second row) and BnB-ADOPT+-FDAC (third row)

On the meeting scheduling formulation, we present 4 cases obtained from the DCOP repos-

itory (Yin, 2008) with different hierarchical scenarios and domain 10: case A (8 variables), case

B (10 variables), case C (12 variables) and case D (12 variables). Results appear in Table 4.3,

averaged over 30 instances.

DFS pseudo-trees are built for every instance following a most-connected heuristic. For

each problem, we calculate an initial > to have higher pruning opportunities during AC and

FDAC preprocess. This initial > is calculated in the following way. Each leaf agent in the

pseudo-tree choose the best value (the one that minimizes LB(v)) with its local information,

and informs its parent of the selected value and its cost. Parents receive this information from

children and choose their own value (minimizing LB(v), observe that only lower agents as-

signments are taking into account) and also inform their parents accumulating the cost of the

partial solution. When all agents have chosen their value, the root agent can compute the cost

of a complete solution (likely not the optimal one) which is an upper bound of the optimum

problem cost. This cost is considered the initial > of the problem and is propagated to the rest

of the agents in the pseudo-tree. Only two messages per each agent are required: one from

child to parent informing the partial solution cost, and one from parent to children informing

of the initial >. These messages and computation are considered in BnB-ADOPT+-AC/FDAC

97

4. DISTRIBUTED SOFT ARC CONSISTENCY

#Msgs Algorithm #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
BnB-ADOPT+ 17,714 7,358 10,349 0 0 7,901 661,043 0
BnB-ADOPT+-AC 4,273 1,745 2,192 101 0 1,603 131,831 46

A BnB-ADOPT+-FDAC 3,756 1,513 1,892 104 6 1,383 116,462 49
BnB-ADOPT+ 15,187 7,595 7,583 0 0 2,628 181,443 0
BnB-ADOPT+-AC 5,379 2,489 2,556 99 0 1,177 81,701 46

B BnB-ADOPT+-FDAC 5,073 2,311 2,391 108 7 1,155 82,612 53
BnB-ADOPT+ 11,163 6,188 4,963 0 0 2,311 118,969 0
BnB-ADOPT+-AC 3,125 1,603 1,194 96 0 646 39,961 75

C BnB-ADOPT+-FDAC 2,912 1,466 1,102 99 6 628 39,772 82
BnB-ADOPT+ 13,237 7,086 6,140 0 0 1,530 77,080 0
BnB-ADOPT+-AC 2,472 1,222 926 94 0 305 21,182 79

D BnB-ADOPT+-FDAC 2,189 1,056 796 97 5 275 20,048 83

Table 4.3: Experimental results in Meeting Scheduling instances. BnB-ADOPT+ (first row) com-
pared to BnB-ADOPT+-AC (second row) and BnB-ADOPT+-FDAC (third row)

results.

On random DCOPs, BnB-ADOPT+-AC/FDAC showed clear benefits on communication

costs with respect to BnB-ADOPT+. Maintaining AC level (BnB-ADOPT+-AC) the num-

ber of exchanged messages is divided by a factor from 1.2 to 9. Notice that this reduction

is obtained generating only very few DEL messages. In addition, including the FDAC level

(BnB-ADOPT+-FDAC) enhances this reduction, dividing the number of BnB-ADOPT+ ex-

changed messages by a factor from 1.7 to 14. Notice that maintaining the higher FDAC level

increases the number of deletions, so it increases the number of DEL messages in addition to

the new UCO messages. However as result of these deletions, important savings are obtained

compared to AC. In general, including few DEL and UCO messages and performing extra local

computation to enforce soft arc consistency allows BnB-ADOPT+-AC/FDAC to obtain large

reductions in VALUE and COST messages. VALUE and COST messages are used to coor-

dinate the search process, since sub-optimal values are removed agents need to test for fewer

values and consequently they generate less VALUE and COST messages.

This reduction in messages is so important, that the number of NCCC also show clear

improvements. Although agents need to perform more local computation to maintain local

consistency, the number of NCCC is significantly reduced. This is the combination of two

opposite trends: agents are doing more work enforcing soft arc consistency and processing

new DEL and UCO messages, but less work processing less VALUE and COST messages.

This combination turns out to be very beneficial, saving computational effort in all cases tested.

For the meeting scheduling instances, we observe the same trend: benefits with AC, en-

98

4.4 GAC in N-ary Constraints

hanced by FDAC. For the stronger FDAC level (BnB-ADOPT+-FDAC) messages are divided

by a factor from 2.9 to 6 and there are significant savings in NCCCs. Few DEL and UCO

messages are needed, and the extra computational effort required to maintain AC or FDAC is

effectively balanced by a decrement on VALUE and COST messages.

4.4 GAC in N-ary Constraints

In this Section we explain how to maintain the GAC level (defined in Section 2.1.3.1 for the

centralized case) in distributed problems with n-ary constraints.

Such as it happens with AC enforcement when cost functions are binary, agents must per-

form projections following an established ordering (we maintain the pseudo-tree ordering) from

their n-ary cost functions to unary cost functions. Then projections are performed from unary

cost functions to C� and domains are checked for inconsistent values that can be removed from

the problem. Every time a value is deleted in one agent it is propagated to neighbors which

must reinforce GAC. As result, new deletions may appear on neighbors.

Agents maintain the same modification as in the binary case:

� The domain of neighboring agents are represented in self.

� Extra information needed to discover inconsistent values are propagated among the agents,

such as: >, the global C� and projections to C� from agents. Specifically in BnB-

ADOPT+, this information travels in VALUE and COST messages (see Figure 4.3).

� A new DEL message is added to notify value deletions to neighbors.

The main difference with the binary case lies in the projection from n-ary cost functions to

unary cost functions, which is performed in every agent in the following way.

The projection of costs from the n-ary cost function CS to the unary cost function Ci(a) of

variable xi, where S is the set of variables involved in the constraint, xi 2 S and a 2 Di is a

�ow of costs defined as follows:

Let �a be the minimum cost in the set of tuples of CS where xi = a (namely �a =

mint2tuples s:t: xi=aCS(t)). The projection consists in adding �a to Ci(a) (namely, Ci(a) =

Ci(a) + �a; 8a 2 Di) and subtracting �a from CS(t) (namely, CS(t) = CS(t) � �a;8t 2
tuples s:t: xi = a;8a 2 Di).

99

4. DISTRIBUTED SOFT ARC CONSISTENCY

In every agent self, projections are performed from their copy of the n-ary CS to the unary

costs of every agent in S, following the established order. As in the binary case, n-ary cost

functions in self are decremented and unary costs are only incremented if the projection is

performed over self. Unary cost of neighbors are not updated, since this information is not

known by self.

4.5 Higher Consistency Levels

Combining BnB-ADOPT+ with soft AC have caused substantial efficiency improvements,

drastically reducing the number of messages required to compute the optimal solution and

also reducing the computational effort required. Because of that, we aim at combining BnB-

ADOPT+ with higher consistency levels. The next level of soft arc consistency, in the central-

ized case, is EDAC (de Givry et al., 2005). However, when moving to the distributed case we

have not been able to achieve the EDAC level, because of the following reasons.

Maintaining AC and FDAC during distributed search requires each agent to know the bi-

nary cost functions in which it is involved and the unary costs of its values. This is in agreement

with usual privacy requirements not permitting an agent to know the unary costs of values of

other agents. However EDAC seems to be con�icting with this privacy requirement. EDAC

maintenance requires that at each variable there is a value with unary cost 0 which is fully

supported in both directions (cost functions linking ancestors with this variable, cost functions

linking this variable with descendants).

Let us consider two agents i; j, where i < j sharing a cost functionCij . To assure that j has

a value fully supported by i, i has to extend some of its unary costs into the binary ones, which

will be projected on the unary costs of j values. However, i will only extend its unary costs if it

is sure that from this operation C� will increase (otherwise termination is not guaranteed). The

most direct way to assure this condition is that i knows the unary costs of j or vice versa. This

can be seen in line 1 of function FindExistentialSupport in (de Givry et al., 2005).

The expression of � involves Ci(a) and Cj(b), the unary costs of values of xi and xj . While

this causes no difficulties in a centralized approach, it becomes an issue in a distributed setting,

since it breaks usual privacy requirements.

Even ignoring privacy, reaching EDAC in a distributed context could be expensive since

agents should inform their neighbors when their unary costs change, which requires more com-

100

4.6 FDAC in Multiple Representations

munication and computation. For higher consistency levels, even more information needs to

be shared and exchanged among agents.

As alternative, we have explored two new ways to perform propagation in DCOPs. These

two new approaches are explained next.

4.6 FDAC in Multiple Representations

Looking for an inference technique that allows more pruning than FDAC and maintaining

standard privacy assumptions, we observed the following fact. The first variable in a FDAC

ordering satisfies the EDAC property: since the variable is FDAC each value has a support

and there is at least one value with unary cost 0; since the variable considered is the first one

in the ordering, these supports have to be full supports. This suggests us an alternative way

for distributed problems: instead of having a single ordering of agents, we may have several

orderings. On each ordering we enforce FDAC, and the first variable on every ordering satisfies

EDAC. For every ordering, we will need a copy of the cost functions, on which projection and

extensions are performed. The key point is that an inconsistent value discovered in one copy

of the cost function can be erased from all copies in any ordering.

It is known that with different variable orderings FDAC maintenance may discover different

inconsistent values. This fact also motivates the present approach. It is very expensive to

determine the best ordering, in the sense of the ordering that prunes most. Instead of looking

for that ordering, we consider as alternative to keep multiple orderingsO1; :::; Or at each agent,

on which FDAC is separately enforced. Having different orders produces different �ows of

costs and as result, some values may be found inconsistent in some ordering. Maintaining

FDAC in Op may cause the deletion of value a in variable i: this deletion is propagated to all

other orderings O1; :::; Op�1; Op+1; Or.

Propagating value deletions among different orderings is legal and do not compromise

correctness and completeness. Let us assume that enforcing FDAC on the ordering O1 causes

to delete value (i; a), while enforcing FDAC on the ordering O2 causes to delete value (j; b).

Then, both values can be deleted without losing any optimal solution. If enforcing FDAC using

ordering O1 we delete value (i; a), this means that value a for variable i will not appear in any

optimal solution of the problem. This fact derives directly from soft arc consistency, and it

is independent of the ordering used. The same situation happens with ordering O2 and value

101

4. DISTRIBUTED SOFT ARC CONSISTENCY

(j; b). Therefore, it is legal to remove both values from their domains, independently of the

ordering used.

Since cost functions evolve depending on the ordering used, we prefer to talk about dif-

ferent representations of cost functions instead of different orderings (clearly, each ordering

defines a representation).

The idea of multiple representations can be included in BnB-ADOPT+, producing the

new BnB-ADOPT+-FDAC-MR (BnB-ADOPT+-FDAC with multiple representations) algo-

rithm. Implementing r representations requires each agent holding a set of r cost functions

fC1; C2:::Crg. On all r cost functions agents enforce FDAC. The direction of the arc consis-

tency enforcement will be defined by the set of partial orders among agents fO1; O2; ::Org.

Orders are generated in the following way: r different agents are selected, each of them

will be the first agent in each of the r orders. Each selected agent chooses randomly a neighbor

and sends a message containing the order. When this message arrives, if the receiver is not

already in the order it decides if it wants to be the next agent. After this, the receiver chooses

randomly another neighbor and sends the order. When the order is complete (all agents are

included), this process stops.

In BnB-ADOPT+-FDAC-MR, agents need to store:

1. One copy of the binary and unary cost functions for every representation r.

2. The order Or for projections/extensions in every representation r.

3. One C� value for every representation r. Since different projections and extensions are

performed on every representation, different C� values are obtained.

4. The projectionToC� of every child for every representation r. Since different projec-

tions and extensions are performed on every representation, agents will contribute to the

C� differently on every one of them.

The following changes in messages are needed to maintain the previous structures:

� VALUE: A vector C�[] is sent containing the C� values for every representation.

� COST: A vector projectionsToC�[] is sent containing the subtree projections to theC�

for every representation.

102

4.6 FDAC in Multiple Representations

� UCO: A vector vectorOfExtensions[][] is sent containing the extensions for every

representation.

Every time there is a deletion, the agent will need to reinforce FDAC over the r represen-

tations.

4.6.1 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-FDAC-MR (multiple representations) with re-

spect to BnB-ADOPT+-FDAC (single representation) on unstructured instances with binary

random DCOPs, and on structured distributed meeting scheduling.

We have generated random DCOP instances: hn = 10; d = 10; p1 = 0:3; 0:4; 0:5; 0:6i.
Two types of binary cost functions are used, small and large. Small cost functions extract

costs from the set f0; : : : ; 10g while large ones extract costs from the set f0; : : : ; 1000g. The

proportion of large cost functions is 1/4 of the total cost functions. On the meeting scheduling

formulation, we present 4 cases obtained from the DCOP repository (Yin, 2008) with different

hierarchical scenarios and domain 10: case A (8 variables), case B (10 variables), case C (12

variables) and case D (12 variables).

Figure 4.15 (a) and (b) shows experimental results for meeting scheduling and random

problems averaged over 30 and 50 instances respectively, with a number of representations

from 2 to 8. For an easy comparison, BnB-ADOPT+-FDAC results are drawn as an horizontal

line. On random DCOPs, BnB-ADOPT+-FDAC-MR showed clear benefits on communication

costs with respect to BnB-ADOPT+-FDAC. Maintaining from 4 to 6 representations, the num-

ber of exchanged messages is divided by a factor of at least 2. For meeting scheduling instances

we also observe a decrement in the number messages exchanged, although to a smaller extent.

In Figure 4.15 we observe that benefits in communication are unevenly distributed: the

#saved messages/#representations ratio is higher in the left-half of the plots. This suggests that

n=2 could be a good number of representations, although more work is needed to sustain this

conjecture.

Table 4.4 shows results in detail of the experiments maintaining 6 representations. Notice

that maintaining FDAC-MR produces only a few extra DEL and UCO messages. In the case

of DEL messages, this slight increment is because more deletions have been produced. In

the case of UCO messages, the increment is because UCO messages are only sent if their

costOfExtension vector is different from zero. As several representations are maintained

103

4. DISTRIBUTED SOFT ARC CONSISTENCY

1 2 4 6 80

2000

4000

6000

representations

m

es
sa

ge
s

0.3

1 2 4 6 80

5

10
x 104

representations

m

es
sa

ge
s

0.4

1 2 4 6 80

2

4

x 105

representations

m

es
sa

ge
s

0.5

1 2 4 6 80

5

10

x 105

representations

m

es
sa

ge
s

0.6

(a) Random Instances

1 2 4 6 80

1000

2000

representations

m

es
sa

ge
s

A

1 2 4 6 80

2000

4000

representations

m

es
sa

ge
s

B

1 2 4 6 80

500

1000

1500

representations

m

es
sa

ge
s

C

1 2 4 6 80

500

1000

representations

m

es
sa

ge
s

D

(b) Meeting Scheduling

1 2 4 6 80

500

1000

representations

cy

cl
es

0.3

1 2 4 6 80

5000

10000

15000

representations

cy

cl
es

0.4

1 2 4 6 80
2
4
6
8

x 104

representations

cy

cl
es

0.5

1 2 4 6 80

1

2
x 105

representations

cy

cl
es

0.6

(c) Random Instances

1 2 4 6 80

200

400

representations

cy

cl
es

A

1 2 4 6 80

500

1000

representations

cy
cl

es

B

1 2 4 6 80

50

100

representations

cy

cl
es

C

1 2 4 6 80

50

100

representations

cy

cl
es

D

(d) Meeting Scheduling

1 2 4 6 80

1

2

3
x 106

representations

nc

cc
s

0.3

1 2 4 6 80

1

2

3
x 107

representations

nc

cc
s

0.4

1 2 4 6 80

2

4
x 108

representations

nc

cc
s

0.5

1 2 4 6 80

1

2

3
x 109

representations

nc

cc
s

0.6

(e) Random Instances

1 2 4 6 80

1

2

3x 106

representations

nc

cc
s

A

1 2 4 6 80

2

4
x 106

representations

nc

cc
s

B

1 2 4 6 80

2

4

x 105

representations

nc

cc
s

C

1 2 4 6 80

2

4

x 105

representations

nc

cc
s

D

(f) Meeting Scheduling

Figure 4.15: Experimental results of BnB-ADOPT+-FDAC-MR. Number of messages, cycles
and NCCCs (y axis) when solving random instances (a,c,e) and meeting scheduling (b,d,f) with an
increasing number of representations (x axis).

104

4.6 FDAC in Multiple Representations

(a) Random DCOPs

p1 Algorithm #Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
BnB-ADOPT+-FDAC 6,128 2,795 3,047 230 28 1,039 519,112 80

0.3 BnB-ADOPT+-FDAC-MR 3,068 1,335 1,391 245 69 480 1,778,525 86
BnB-ADOPT+-FDAC 110,696 48,281 62046 288 53 17,937 9,910,897 78

0.4 BnB-ADOPT+-FDAC-MR 41,147 19,309 21,357 311 142 5,561 22,063,034 85
BnB-ADOPT+-FDAC 510,411 225,155 284,781 366 82 85,710 121,453,697 78

0.5 BnB-ADOPT+-FDAC-MR 198,474 91,506 106,299 397 244 30,659 318,565,730 85
BnB-ADOPT+-FDAC 1,196,935 475,416 720,975 408 108 199,971 470,462,443 74

0.6 BnB-ADOPT+-FDAC-MR 524,406 209,150 314,454 459 314 87,357 1,217,511,858 84

(b) Distributed Meeting Scheduling

#Msgs Algorithm #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
BnB-ADOPT+-FDAC 2,524 1,056 1,240 200 5 462 382,676 49

A BnB-ADOPT+-FDAC-MR 2,001 820 921 216 9 329 1,762,278 53
BnB-ADOPT+-FDAC 5,405 2,323 2,863 184 7 1,080 659,314 53

B BnB-ADOPT+-FDAC-MR 3,556 1,513 1,7821 210 23 650 2,487,359 61
BnB-ADOPT+-FDAC 1,467 697 505 225 6 125 71,439 80

C BnB-ADOPT+-FDAC-MR 1,156 509 353 238 21 83 352,795 85
BnB-ADOPT+-FDAC 1,251 526 448 234 8 132 56,447 83

D BnB-ADOPT+-FDAC-MR 1,067 423 345 241 24 98 327,749 85

Table 4.4: Experimental results of BnB-ADOPT+-FDAC (first row) compared to BnB-ADOPT+-
FDAC-MR (second row) maintaining 6 representations.

with different orders, is more probable that the extensions will be different from zero in any of

the 6 representations.

The number of NCCCs increases since more projection and extensions are needed to main-

tain FDAC-MR. This increment however is not linear with respect to the number of repre-

sentations maintained, it is smoothed by the fact that less messages are generated and more

deletions are performed. So there are messages on the BnB-ADOPT+-FDAC algorithm that

are not needed to process with multiple representations, and also there are values that will not

be needed to assign or to check for node consistency.

In general, BnB-ADOPT+-FDAC-MR is able to obtain important savings in communica-

tion, although suffers from an increment in NCCCs since more work is needed to enforce FDAC

in multiple representations. Inconsistent value deletions are increased in BnB-ADOPT+-FDAC-

MR. Flows of costs from one agent to another, implemented by UCO messages, allow an agent

to pass some of their unary costs to higher agents following different orders, causing more

pruning opportunities. In general, it is expected that the combination of multiple enforcements

will be able to extend the inference benefits. If we assume the usual case where communication

105

4. DISTRIBUTED SOFT ARC CONSISTENCY

time is higher than computation time, then the total elapsed time is dominated by communica-

tion time and savings in communication can be an important indicator of improvement.

4.7 DAC by Token Passing

In this Section, we propose an alternative way to perform inference and propagate deletions

during BnB-ADOPT+. Although this proposal is not the translation into the distributed context

of the EDAC approach, we believe it has the same motivation: calculate strong lower bounds

that allow to discover sub-optimal values.

When BnB-ADOPT+ is connected with FDAC, agents maintains DAC pointing up to the

pseudo-tree, and AC in the opposite direction. This means that unary costs are extended follow-

ing the pseudo-tree structure, from leaves to root, but never in any other direction (Figure4.16,

left). Observe that following this ordering, in an intermediate agent in the pseudo-tree there

are always lower neighbors from which extended costs are received and higher neighbors to

which costs are extended. However, it would be good if given an agent self, all its neighbors

could extend unary costs to self, expecting to achieve a higher pruning than the one obtained

by extending unary costs only from the agents below self in the pseudo-tree.

Our proposal considers that an agent self becomes privileged and asks its neighbors to

extend unary costs to it. Neighbors extend their unary costs on the binary constraints they share

with self and inform self with a message. In this way, self receives cost contributions from

all neighbors. We call this approach DAC by token passing, because agents become privileged

after receiving a token (Figure 4.16, center and right).

This approach does not maintain any local consistency property during search, such as

AC, FDAC or EDAC. Therefore theoretically we can not assure that it is stronger than these

consistency levels. However, empirically we have observed that combining this technique

with BnB-ADOPT+ search allows to find an optimal solution with less computational and

communication effort than using BnB-ADOPT+-FDAC.

This approach involves two parts that we will explain in detail: preprocess and search.

Preprocess. After building the pseudo-tree, there are three phases:

1. We try to increase unary costs and C�. In this phase only one token exists at any time.

When agent i has the token, it asks its neighbors to extend costs towards it using the

new message: ASK(i; j) – i asks j to extend unary costs–. After receiving an ASK

message, j performs the extension over i and answers with an UCO message containing

106

4.7 DAC by Token Passing

i i ii i i

Extensions
with DAC

j has
token

k has
token

j

with DAC

j

token

j

token

j j j

k l k l k lk l k l k l

Figure 4.16: Left: Cost extensions with DAC, following the order of the pseudo-tree. Center: Cost
extensions when j has the token. Right: Cost extensions when k has the token

the extended costs. When this message is received, unary costs of i may increase, and

perhaps C� increases. After receiving UCO messages from all neighbors, i passes the

token to the next agent k traversing the pseudo-tree in a depth-first order using the new

message: TOKEN(i; k) –i passes the token to k–. Starting at the root, which initially

has the token, this process ends when the token comes back to the root. This phase can

be iterated, since further iterations might cause extra increments in C�.

2. BnB-ADOPT+ is executed during a few cycles, to allow VALUE and COST messages

to disseminate > and C� between all agents.

3. Since agents have > and C� they can perform value deletions in their domains. For

every a 2 Di, the deletion condition is Ci(a) + C� > >. If i deletes some values, it

automatically has the token and, after deletion, i sends the token to all its neighbors. If k

receives the token, it sends ASK messages to all its neighbors. If an UCO message arrives

from i with 1 as the unary cost of value b, it means i has deleted b from its domain.

In this way, value deletions are notified between neighbors (so no DEL messages are

required). After k receives UCO messages from all its neighbors, if it is able to increment

C� or delete values, k sends the token to all its neighbors. In this phase, more than one

token can exist. However, this does not cause con�icts, since extensions are synchronized

with ASK and UCO messages, and when two neighboring agents send ASK messages

at the same time, priority is given to the one higher in the pseudo-tree. This phase ends

when the network becomes silent.

107

4. DISTRIBUTED SOFT ARC CONSISTENCY

Search. BnB-ADOPT+ execution starts after the preprocess.

BnB-ADOPT+ execution coexists with the token passing strategy. During search, some

values may be found suboptimal in i and deleted unconditionally, as explained in Section 4.2.

When this occurs, i automatically has the token and sends it to its neighbors as in phase 3 of

preprocess. As result of receiving UCO messages, C� may increment in i. When this occurs,

i also sends the token to their neighbors as in phase 3 of preprocess. Agent i having the token

may extinguish it if i does not perform any deletion or C� increment. The process ends when

BnB-ADOPT+ terminates.

It is easy to see that the BnB-ADOPT+ remains optimal since this process only removes

values that are proved sub-optimal because of propagation or search. Value removal does not

alter the normal execution of BnB-ADOPT+, it simply shrinks the search space causing effi-

ciency benefits. Also, observe that this mechanism can not lead to an infinite loop of operations

(sending the token, asking for extensions, etc) compromising termination. This is because to-

ken passing can occur only as result of deletions or C� increments, otherwise the token is

not passed to any neighbor. Since deletions and C� increments are finite, the token passing

mechanism is also finite.

4.7.1 Experimental Results

We evaluate the performance of BnB-ADOPT+ combined with DAC by token passing against

BnB-ADOPT+-FDAC (with synchronous deletions) on binary random DCOPs and meeting

scheduling instances. Binary random DCOPs have 10 variables with domain size 10 and con-

nectivity p1 = f0:3; 0:4; 0:5; 0:6; 0:7; 0:8g. Costs are selected from an uniform cost distribution

on small (costs from [0:::10]) and large (cost from [0:::1000]) cost functions. Large cost func-

tions are 1/4 of the total number of cost functions. Results appear in Table 4.5, averaged over 50

instances. Meeting scheduling instances are obtained from the public DCOP repository (Yin,

2008). We present cases A (8 variables), case B (10 variables), case C (12 variables) and case

D (12 variables). Results appear in Table 4.6, averaged over 30 instances. DFS pseudo-trees

are built for every instance following a most-connected heuristic.

We present the total number of exchanged messages (communication effort), the number

of non-concurrent constraint checks (computational effort) and the number of cycles as a com-

plementary measure.

The proposed DAC by token passing approach reduces the total number of messages ex-

changed in all cases. Although some extra messages are needed for token passing (asking and

108

4.7 DAC by Token Passing

p1 Algorithm #Msgs #Cycles NCCCs

BnB-ADOPT+-FDAC 2,062 436 34,226
0.3 BnB-ADOPT+ DAC-token 1,919 163 49,424

BnB-ADOPT+-FDAC 15,765 3,923 262,279
0.4 BnB-ADOPT+ DAC-token 12,567 1,544 260,964

BnB-ADOPT+-FDAC 38,393 11,267 953,622
0.5 BnB-ADOPT+ DAC-token 20,971 3,063 508,892

BnB-ADOPT+-FDAC 174,660 37,037 3,863,055
0.6 BnB-ADOPT+ DAC-token 125,575 16,453 3,862,508

BnB-ADOPT+-FDAC 1,181,727 242,160 30,273,694
0.7 BnB-ADOPT+ DAC-token 608,274 74,613 20,691,307

BnB-ADOPT+-FDAC 1,222,317 261,076 35,673,984
0.8 BnB-ADOPT+ DAC-token 827,615 106,307 32,854,873

Table 4.5: Experimental results of binary random DCOPs. BnB-ADOPT+-FDAC (first row) com-
pared to BnB-ADOPT+ combined with DAC by token passing (second row)

Algorithm #Msgs #Cycles NCCCs
BnB-ADOPT+-FDAC 3,756 1,383 116,462

A BnB-ADOPT+ DAC-token 2,559 383 75,419
BnB-ADOPT+-FDAC 5,073 1,155 82,612

B BnB-ADOPT+ DAC-token 3,286 350 58,583
BnB-ADOPT+-FDAC 2,912 628 39,772

C BnB-ADOPT+ DAC-token 1,946 159 37,874
BnB-ADOPT+-FDAC 2,189 275 20,048

D BnB-ADOPT+ DAC-token 1,441 74 30,320

Table 4.6: Experimental Results of Meeting Scheduling instances. BnB-ADOPT+-FDAC (first
row) compared to BnB-ADOPT+ combined with DAC by token passing (second row)

informing extensions, etc), this is effectively balanced with less messages needed for search.

Synchronous cycles decrement in correspondence with the amount of messages saved and non-

concurrent constraints checks (NCCCs) show moderate reductions in most instances.

In BnB-ADOPT+-FDAC (first row), when agents receive DEL or UCO messages they

check their domain for deletions and try to increment C�. However, DAC by token passing

(second row) does these operations only after UCO messages are received from all neighbors.

This has two benefits: first, agents perform less work since they wait for all unary cost contribu-

tion to be aggregated before performing further operations, and second, costs are not extended

to other agents until all possible cost contributions from neighbors are obtained and used for

deletions or C� increment.

In summary, the token passing approach does not have the eagerness of trying to delete val-

ues as soon as some condition has changed. It also waits for UCO messages from all neighbors

109

4. DISTRIBUTED SOFT ARC CONSISTENCY

before performing any further extension. This causes benefits in communication and compu-

tation. Instances are solved using less messages and generally using less computational effort

than with FDAC and preserving privacy requirements.

4.8 Conclusions

In this Chapter we have connected BnB-ADOPT+ with some forms of soft arc consistency

aiming at detecting and pruning values which are not part of the optimal solution, with the

final goal of improving search efficiency. These deletions are unconditional and do not rely on

any previous variable assignment. The transformations introduced (projections, extensions and

removal of inconsistent values) assure optimality and termination in the resulting algorithms.

According to experimental results, combining AC and FDAC levels of soft arc consis-

tency with the distributed search algorithm BnB-ADOPT+ (BnB-ADOPT+-AC/FDAC) pro-

vides substantial benefits in distributed search for the benchmarks tested. New messages DEL

and UCO have been introduced to inform deletions and cost extensions respectively. How-

ever, the increment in the number of messages due to the generation of new DEL and UCO

messages has been largely compensated by a decrement in the number of COST and VALUE

messages used to solve the problem. The propagation of deletions contribute to diminish the

search effort, decreasing the total number of messages exchanged. Also, the �ows of costs in

the constraint network, implemented by UCO messages, allows an agent to pass some of their

unary costs to other agents, increasing pruning opportunities. In general, maintaining AC and

FDAC reduces substantially the number of messages required to reach the optimal solution,

reducing also the number of cycles and the computational effort at each agent.

We have not been able to achieve the next soft arc consistency level EDAC because, in its

direct form, it enters in con�ict with usual privacy requirements. As alternative, we propose to

maintain FDAC in multiple representations and DAC by token passing.

In FDAC with multiple representations, agents maintain several orderings among variables

and enforce FDAC on every ordering. By doing this, inconsistent values can be detected in

any of the ordering causing more pruning opportunities. Experimental results show significant

savings in communication and a higher effort in computation, since more work must be done

to maintain FDAC in every ordering.

In DAC by token passing, agents receiving a token ask neighbors for cost extensions. After

receiving cost extensions from all neighbors, if a deletion occurs or a C� increment occurs in

110

4.8 Conclusions

an agent, the agent passes the token to its neighbors. With this strategy, an agent receives cost

extensions from all its neighbors –while in FDAC agents only receive extensions from lower

neighbors in the pseudo-tree. DAC by token passing, which does not maintain any soft local

consistency property, turned out to be competitive when compared with FDAC (combined with

the solving algorithm BnB-ADOPT+) in the benchmarks tested, considering communication

and computational effort.

111

4. DISTRIBUTED SOFT ARC CONSISTENCY

112

5

Distributed Soft Global Constraints

In centralized problems, global constraints have been essential for the advancement of con-

straint reasoning. In this Chapter we propose to include soft global constraints in distributed

constraint optimization problems. For this, we study possible decompositions of global con-

straints and their inclusion in DCOPs. We extend the distributed search algorithm BnB-ADOPT+

to support these representations of global constraints. In addition, we explore the relation of

global constraints with soft arc consistency in DCOPs, in particular for the generalized soft

arc consistency (GAC) level, including specific propagators for some well-known soft global

constraints.

113

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

5.1 Soft Global Constraints in Distributed Constraint Optimiza-
tion

In this Chapter we consider the inclusion of soft global constraints in DCOPs. To the best of

our knowledge, no relation between DCOPs and soft global constraints have been established

so far. For the distributed context, we proposed an initial work for including global constraints

in Distributed Constraint Satisfaction. This work can be consulted in Appendix B. However in

this thesis we focus in the optimization case.

In centralized, soft global constraints have been defined as a class of soft constraints with

non-fixed arity. For instance, soft-alldifferent(x1; x2; x3) and soft-alldifferent(x1; x4; x5; x6)

are two instances of the soft-alldifferent global constraint class. The cost of a value assignment

in a soft global constraint is evaluated using the violation measure � and this violation measure

may vary for each soft global constraint.

Interesting classes of soft global constraints are those which are contractible, binary decom-

posable or decomposable with extra variables (for details, see Chapter 2). A first motivation

to include soft global constraints in the distributed context is as follows. In DCOPs it is a

common assumption that cost functions are binary, that is, defined over two variables. Most

soft global constraints are not binary decomposable, so working with their original soft global

formulations is really needed if one wants to achieve full constraint expressivity.

Also, some soft global constraints can be semantically decomposed in a finite number of

fixed-arity constraints (binary decomposition in some cases, higher arity decomposition using

extra variables in others). Although these decompositions preserve the same set of solutions,

they might not preserve the same level of soft arc consistency. It is known that when applying

soft arc consistency to some global constraints, the quality of the bounds obtained is better than

when working with an equivalent decomposition. This is the case of the soft-alldifferent global

constraint (for example see Figure 2.4 in Chapter 2). Also, local consistencies can be enforced

much more efficiently using specific propagators that exploit the semantic of a particular global

constraint than using generic propagators. Thus, we also explore in this Chapter the relation of

soft global constraints with soft arc consistency in DCOPs.

In particular, we work with the solving algorithm BnB-ADOPT+ and with the general-

ized soft arc consistency (GAC) level. Regarding soft global constraints, we consider soft-

alldifferent and soft-at-most[k,v] global constraints. As explain in Chapter 2, they hold the

following properties:

114

5.1 Soft Global Constraints in Distributed Constraint Optimization

� soft-all-different(T) with �dec. It is contractible and binary decomposable

� soft-all-different(T) with �var It is contractible but not binary decomposable.

� soft-at-most[k,v](T) with �var. It is contractible but not binary decomposable. It allows

decomposition with extra variables in a polynomial number of constraints of arity 3.

In the following we analyze different ways to introduce soft global constraints in DCOP.

This depends heavily on the characteristic of the considered soft global constraint. Specifi-

cally, we consider whether the soft global constraint is binary decomposable, contractible or

decomposable with extra variables. For each case we propose a way to model this constraints

in DCOP. When the soft global constraint contains more than one property (for example if it

is contractible and is also binary decomposable) a user can decide which model to choose. In

Section 5.2.3, we provide empirical results comparing the different models on different bench-

marks.

5.1.1 Binary Decomposable Soft Global Constraints

As previously mentioned, some global constraints are decomposable in a set of binary con-

straints on the variables of the global constraint. For example, the soft-alldifferent(T) global

constraint with the violation measure �dec is semantically equivalent to a clique connecting all

variables in T where nodes are the variables and edges are binary cost functions. These binary

cost functions assign a cost of 0 if the involved variables take different values and a cost of 1 if

they take the same value.

Including the binary decomposition of a soft global constraint in a distributed problem does

not cause extra difficulties in most DCOP solving algorithms (some soft binary constraints are

simply added to the problem and are treated as any other soft constraint). Figure 5.1 shows the

decomposition of soft-alldifferent into a clique of soft binary constraints.

5.1.2 Decomposition with Extra Variables

In the satisfaction case, there are global constraints that are not binary decomposable but they

can be decomposed in a polynomial number of smaller, fixed arity constraints (Bessiere and

Hentenryck, 2003; Bessiere et al., 2008), if we allow a polynomial number of extra variables.

For example, the hard atmost[k; v](y1; :::; yp) global constraint establishes that value v cannot

115

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

soft-all-different(x1, x2, x3, x4), µdec

x1 x2 x3 x4

x1 x2

x3 x4

!s

!s

!s !s

!s

x1 x2

x3 x4

!s

!s

!s !s

!s

!s

x1 1 x2 2 2 s

xx3 x xx4 s x

!s

Figure 5.1: Left: The soft-alldifferent(x1, x2, x3, x4) global constraint with the µ dec violation
measure. Center: Its binary decomposition, �=s stands for soft binary constraints. Right: Binary
decomposition in DCOP; agents are represented with discontinuous lines.

appear more than k times in { y1, ..., yp } . Allowing p + 1 extra variables { z0, z1, ..., zp } with

domains Dzj = { 0, 1, ..., j } , p new ternary constraints:

if yi = v then zi = zi−1 + 1 else zi = zi−1 i : 1, ..., p

and one unary constraint:

zp ≤k

It is easy to see that the original constraint is semantically equivalent to this set of new con-

straints. Variables { z0, z1, ..., zp } are acting as counters: zi contains the number of times value

v appears in variables y1, ..., yi. Variables { z0, z1, ..., zp } are called extra variables because

they are not present in the original problem definition. However, they are treated as any other

problem variable.

Passing to the soft case, the soft-atmost[k, v](y1, ..., yp) has the following meaning: if value

v appears less than or k times in the set { y1, ..., yp } that assignment costs 0, otherwise it costs

the number of times v appears minus k. This soft constraint can be decomposed with extra vari-

ables as follows. We keep the same extra variables as in the hard decomposition { z0, z1, ..., zp }
with the same domains Dzj = { 0, 1, ..., j } . Previous p ternary constraints are defined as fol-

lows: tuples satisfying the condition have cost 0 and the remaining tuples have cost ∞. In

addition, the unary constraint becomes:

if zp ≤k then cost = 0 else cost = zp − k

In tabular form with µ as cost, ∀c ∈ Dz and ∀d ∈ Dy, each ternary constraint generates

a table similar to the following table on the left, while the unary constraint generates a table

similar to the following table on the right:

116

5.1 Soft Global Constraints in Distributed Constraint Optimization

zi− 1 yi zi µ

c d = v c+ 1 0
c d �= v c 0

otherwise ∞

zp µ

≤k 0
> k zp − k

The proposed decomposition appears in Figure 5.2.

Allowing extra variables in DCOP, a question naturally follows: which agent owns these

extra variables, which have no real existence? To solve this issue we propose to add a num-

ber of virtual agents that own these extra variables. While this approach allows to keep the

assumption that each agent owns a single variable, a new issue appears on the existence and

activity of virtual agents with respect to real agents. Previous approaches have used the idea of

virtual agents to accommodate modifications or extensions that deviate from original problem

structure (Modi et al., 2005). In this case, all variables are treated in the same way, one variable

per agent, so no preference is given to a particular subset of variables in front of others. DCOP

solving algorithms do not need to make a distinction between virtual and not virtual agents.

Virtual agents could also be simulated by real agents. If some real agents have substan-

tial computational/communication resources, they can host some virtual agents. The precise

allocation of virtual agents would depend on the nature of the particular application to solve.

y1 yp

y1 yp

z0

.

z1

y1 yp

zp-1 zp

…

z1 z0

y1 ypypy

. . .

soft-atmost[k,v](y1,…,yp)

z0 z

if yi=v then zi=zi-1+1 else zi=zi-1

. . .

1

. . .

zp-1 zp

if zp! k then cost = 0

else cost = k - zp

zpzpz -1
zzppzpzzpzzzpzpzz1 z zpzpz -1z

ypypyy1

Figure 5.2: Left: The soft-atmost[k, v](y1, ..., yp) soft global constraint. Center: Its decomposition
in p ternary and one unary constraint. Right: This decomposition in the distributed context; agents
are represented with discontinuous lines.

5.1.3 Contractible Soft Global Constraints

If a soft global constraint C is contractible, then C allows a nested representation. The nested

representation of C(T) with T = { xi1 , ..., xip } is the set of constraints { C(xi1 , ..., xij) with

j ∈ 2 ...p} . For instance, the nested representation of soft-alldifferent(x1, x2, x3, x4) is the set

S = { soft-alldifferent(x1, x2), soft-alldifferent(x1, x2, x3), soft-alldifferent (x1, x2, x3, x4)} .

117

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

The nested representation has the following benefit. Since x2, x3 and x4 are respectively

the last agent of a constraint in S, any of them is able to evaluate that particular constraint.

When assignments are made following the order x1; x2; x3; x4, every intermediate agent is

able to aggregate costs and calculate a lower bound of the current partial solution. Since C

is contractible, this bound increases monotonically on every agent. By this, it is possible to

calculate updated lower bounds during search and backtrack earlier if the current solution has

unacceptable cost.

5.1.4 Including Soft Global Constraints in Distributed Problems

We consider several ways to model the inclusion of a soft global constraint in DCOPs, looking

for the one that offers the best performance. The user chooses one of the following repre-

sentations and the solving is done on that representation. We assume that agents are ordered.

The evaluation of a global constraint C(T) by every agent depends on the selected model. We

analyze the three following representations:

� Direct representation. C is treated as a generic constraint of arity jT j. Only one agent

involved in the constraint evaluates it: the one that appears last in the ordering.

� Nested representation. IfC(T) is contractible, each agent self involved in T includes the

constraint in which self is the last evaluator. For example, for the soft-alldifferent(x1; x2; x3),

agent x2 evaluates soft-alldifferent(x1; x2) and agent x3 evaluates soft-alldifferent(x1; x2; x3).

Aggregation of costs from these evaluations must be done in such a way that costs are

not counted twice, since more than one agent might evaluate the constraint.

� Bounded arity representation. If C is binary decomposable without extra variables, each

agent self includes all constraints of the binary decomposition of C that involve xself in

their scope. Otherwise, if C is decomposable with extra variables, new virtual agents are

added to the problem (one per every extra variable required). Each agent self includes all

constraints of the decomposition of C that involve xself in their scope. Unlike previous

representations (direct and nested), in this case the constraints included by self are non-

global.

Since the nested representation allows to calculate updated bounds and performs efficient

backtracking, it is expected to be more efficient than the direct representation. However not all

global constraints are contractible, so the direct representation has to be analyzed.

118

5.2 Including Soft Global Constraints in BnB-ADOPT+

In a binary decomposable representation every agent is evaluator, as in the nested one. Bi-

nary decompositions may require more messages than the nested representation to accumulate

costs in an agent since an agent self only knows some constraints of the binary decomposition

(the ones in which self is involved), so calculating costs on one agent may require more than

one step.

5.2 Including Soft Global Constraints in BnB-ADOPT+

In this Section we modify the solving algorithm BnB-ADOPT+ to include soft global con-

straints. In this way, we illustrate how to include the three different representations of global

constraints (direct, nested and binary representation) in DCOPs. As a proof of concept, we

implemented the inclusion of two soft global constraints –soft-alldifferent and soft-atmost– in

connection with BnB-ADOPT+ including also GAC propagation as explained in 5.2.2.

5.2.1 Searching with BnB-ADOPT+

As detailed in Chapter 3, BnB-ADOPT+ can handle constraints of any arity. We assume that

our version of BnB-ADOPT+ includes this generalization and that it is able to handle fixed

arity constraints (from now on, we also call it non-global constraints).

In order to extend BnB-ADOPT+ to support global constraints the following modifications

are needed:

1. Every agent self keeps a set of global constraints, separated from the set of non-global

constraints it is involved. Agent self knows about a constraint C(T) iff self is in T . self

also knows about the other agents involved in T (neighbors of self). For some global

constraints, additional information can be stored. For example, for the soft-atmost[k; v]

constraint, parameters k (number of repetitions) and v (value) are stored.

2. During the search process, every time self needs to evaluate the cost of a given value v,

all local costs are aggregated. Non-global constraints are evaluated as usual, and global

constraints are evaluated according to their violation measure.

3. VALUE messages are sent to agents, depending on the constraint type:

� For a non-global constraint (this includes binary decompositions and decomposi-

tions with extra variables), VALUE messages are sent to all the children and the

119

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

last pseudo-child in the ordering (the deepest agent in the DFS tree involved in the

constraint evaluates it; VALUE messages to children are needed because they in-

clude a threshold required in BnB-ADOPT; observe that for binary constraints this

is the original BnB-ADOPT behavior).

� For a global constraint, there are two options:

– For the direct representation, VALUE messages are sent to all the children

and the last pseudo-child in the ordering (the deepest agent in the DFS tree

involved the constraint evaluates it; VALUE messages to children are needed

because they include a threshold required in BnB-ADOPT). 1

– For the nested representation, VALUE messages are sent to all children and all

pseudo-children (any child or pseudo-child is able to evaluate a constraint of

the nested representation).

4. COST messages include a list of all the agents that have evaluated a global constraint.

This is done to prevent duplication of costs when using the nested representation, as ex-

plained next. For example, consider a soft global constraint soft-alldifferent(x1; x2; x3)

with violation measure �var where all agents assign value a and send VALUE messages,

as in Figure 5.3, left. When VALUE messages arrive, in the nested representation both

agents x2 and x3 evaluate the constraint (x2 evaluates soft-alldifferent(x1; x2) while x3
evaluates soft-alldifferent(x1; x2; x3)) and send COST messages as in Figure 5.3, center.

When the COST messages arrive to x1 and x2 lower bounds are updated. Observe that,

after receiving the COST message, if x2 simply evaluates again the global constraint du-

plication of costs occur and x2 sends a COST message with LB = 3 (Figure 5.3, right, this

is incorrect) instead of LB =2, which is the correct evaluation. This is because x3 eval-

uation already contained the evaluation of x2. To prevent incorrect duplication of costs,

before evaluating a soft global constraint agents must first check if some descendant has

already evaluated it.

Figure 5.4 shows the pseudocode for cost aggregation in BnB-ADOPT+. Costs coming

from non-global constraints are calculated as usual and costs coming from global constraints

are calculated according to its violation measure. A short description follows:

1In distributed search, a global constraint in the direct representation has the same treatment as a non-global
one. However, when GAC is enforced, global and non-global constraints are treated differently (Section 5.2.2).

120

5.2 Including Soft Global Constraints in BnB-ADOPT+

x0=a

VALUE

VALUE

VALUE

COST (..,LB=1,..)

COST (..,LB=2,..)

COST (..,LB=1+2,..)

x1=a

x2=a

x0=a

x1=a

x2=a

x0=a

x1=a

x2=a

Figure 5.3: Left: The soft-aldifferent(x1; x2; x3) soft global constraint with violation measure �var
and all variables assigning value a. Center: Agent x2 and x3 evaluate the soft global constraint.
Right: Agent x2 evaluates incorrectly the soft global constraint and duplication of costs occur.

01 function CalculateCost(value)
02 cost = cost+ NonGlobalCostWithValue(value);
03 cost = cost+ GlobalCostWithValue(value);
04 return cost;

05 function CalculateNonGlobalCost(value)
06 cost = 0;
07 for each nonGlobal 2 nonGlobalConstraintSet do
08 assignments = new list(); assignments:add(self; value);
09 for each (xi ; di) 2 context do
10 if xi 2 nonGlobal :vars then assignmetns:add(xi; di);
11 if assignments:size == nonGlobal :vars:size then //self is the last evaluator
12 cost = cost+ nonGlobal:Evaluate(assignments);
13 return cost;

14 function CalculateGlobalCost(value)
15 cost = 0;
16 for each global 2 globalConstraintSet do
17 assignments = new list(); assignments:add(self; value);
18 for each (xi ; di) 2 context do
19 if xi 2 global :vars then asignments:add(xi; di);
20 if assignments:size == global :vars:size then //self is the last evaluator
21 cost = cost+ global:�:Evaluate(assignments);
22 else //self is an intermediate agent in the restriction
23 if NESTED representation then
24 for each xi 2 global :vars do
25 if lowerGlobalEvaluators:contain(xi) then cost = cost+ 0;

26 else cost = cost+ global:�:Evaluate(assignments);
27 return cost;

Figure 5.4: Pseudocode: Aggregating costs of binary and global cost functions.

121

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

� CalculateCost(value). Calculates the cost of self assigning value. It aggregates

non-global (line 2) and global (line 3) cost functions. Although there is no need to

separate non-global from global cost aggregation, we have presented them in separate

procedures for a better understanding of the new modifications.

� CalculateNonGlobalCost(value). Calculates the cost of self assigning value

aggregating only non-global cost functions. If self is the evaluator (lowest agent in the

pseudo-tree, line 11) it calculates the cost of assigning value given the current context

context. Otherwise the returned cost is zero.

� CalculateGlobalCost(value). Calculates the cost of self assigning value aggre-

gating only global cost functions. For every global constraint C(T) in which self is

involved it creates a tuple with the assignments of the agents in T in the current context

(lines 17-19). If self is the deepest agent in the DFS tree (taking into account the vari-

ables involved in the global constraint) then self evaluates the constraint (lines 20-21).

If self is an intermediate agent, it does the following. If representation is direct, self

cannot evaluate the global constraint: it does nothing and cost remains unchanged. If

representation is nested, it requires some care (lines 23-26). A nested global constraint

could be evaluated more than once by intermediate agents and if these costs were simply

aggregated duplication of costs may occur. To prevent this, COST messages include the

set of agents that have evaluated global constraints (lowerGlobalEvaluators). When a

COST message arrives, self knows which agents have evaluated their global constraints

and contributed to the lower bound. If some of them appear in the scope of C, then self

does not evaluate C (lines 25-26). By doing this, the deepest agent in the DFS tree eval-

uating the global constraint precludes any other agent in the same branch to evaluate the

constraint, avoiding cost duplication. Preference is given to the deepest agent because it

is the one that receives more value assignments and can perform a more informed eval-

uation. When bounds coming from a branch of the DFS are reinitialized (this happens

under certain conditions in BnB-ADOPT, for details see (Yeoh et al., 2010)), the agents

in the set lowerGlobalEvaluators lying on that branch are removed.

5.2.2 Propagation with BnB-ADOPT+

We maintain unconditional GAC (from now on, we call it simply GAC) combined with BnB-

ADOPT+ projecting costs from non-global/global cost functions to unary cost functions and

122

5.2 Including Soft Global Constraints in BnB-ADOPT+

projecting unary costs to C�. After projections are performed, agents check their domains

searching for inconsistent values. If values are deleted in an agent they are propagated and

GAC is reinforced on neighbors.

Following the same technique proposed in Section 4.4, we maintain GAC during search

performing only unconditional deletions. For this, some modifications are needed:

� The domain of neighboring agents are represented in self.

� Extra information needed to discover inconsistent values are propagated among the agents,

such as: >, the global C� and projections to C� from agents. Specifically in BnB-

ADOPT+, this information travels in VALUE and COST messages (see Figure 4.3).

� A new DEL message is added to notify value deletions to neighbors.

To reach the GAC level agents need to project costs not only from fixed arity cost functions,

but from global cost functions as well. Projections are expensive operations. They require to

find the minimum value among all combinations of domain values in a cost function and after-

wards to modify that cost function. The cost of performing such operations grows exponentially

when the number of variables involved in the constraint increase.

Specific propagators exploiting the semantics of global constraints have been proposed in

the centralized case (Lee and Leung, 2009). These propagators allow to achieve GAC in poly-

nomial time whereas a generic generic propagator is exponential in the number of variables in

the scope of the constraint. In the following, we describe how to project costs specifically from

the soft-alldifferent and soft-atmost global constraints using specific propagators.

Projecting costs with bounded arity constraints. The projection of costs from cost function

C(T) to the unary cost functionCxi(a), where T is a fixed set of variables, xi 2 T and a 2 Dxi

is a �ow of costs defined as follows.

Let �v be the minimum cost in the set of tuples of C(T) where xi = a (namely �a =

mint2tuples s:t: xi=aCT (t)). The projection consists in adding �a to Cxi(a) (namely, Cxi(a) =

Cxi(a) + �a; 8a 2 Dxi) and subtracting �a from CT (t) (namely, CT (t) = CT (t) � �a; 8t 2
tuples s:t: xi = a;8a 2 Dxi).

Projections are performed in every agent in T following a fixed order. Agents are ordered

according to their position in the pseudo-tree and projections are done in that order over every

agent in T . As in the binary case, cost functions of the self agent are updated, but unary cost

123

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

01 procedure ProjectFromAllDiffToUnary(global; v)
02 graph = graphsSet:get(global); //the graph associated with global is fetched
03 minCost = minCost+ getMinCostFlow(graph);

04 for each xi 2 global:vars do
05 minCost = minCost+ CostWithFlow(graph; xi ; v);

06 if minCost > 0 then
07 graph:getArc(xi; v):cost = cost�minCost;
08 if xi = self then Cself (v) = Cself (v) +minCost;

09 function getMinCostFlow(graph)
10 graph:SuccesiveShortestPath();
11 minCostF low = 0;

12 for each arc 2 graph:arcs do
13 minCostF low = minCostF low + (arc:flow � arc:cost);
14 return minCostF low;

15 function CostWithFlow(graph; xi; v)
16 if graph:arc(xi; v):f low = 0 mythen return 0;
17 path = graph:residualGraph:F indShortestPath(xi; v);//shortest path from v to xi in the residual graph
18 flow =1; cost = 0; //calculate �ow as the minimum capacity in this path
19 for each arc 2 path do
20 if arc:capacity < flow then flow = arc:capacity;
21 for each arc 2 path do
22 cost = flow � arc:cost;
23 return cost;

Figure 5.5: Pseudocode: Projection with soft-alldifferent global constraint.

functions of neighbors are not updated.

Projecting costs with soft-alldifferent. We follow the approach described in (Lee and Leung,

2009) for the centralized case, where GAC is enforced on the soft-alldifferent constraint in

polynomial time, whereas it is exponential when a generic algorithm is used.

A graph for every soft-alldifferent constraint is constructed following (van Hoeve et al.,

2006). This graph is stored by the agent and updated during execution. Every time a projection

operation is required, instead of exhaustively looking at all tuples of the global constraint, the

minimum cost that can be projected is computed as the �ow of minimum cost of the graph

associated with the constraint (Lee and Leung, 2009). Minimum �ow cost computation is

based on the successive shortest path algorithm, which searches shortest paths in the graph

until no more �ows can be added to the graph. Pseudocode appears in Figure 5.5.

Evaluation of these propagators in the distributed context is an extra issue because it is not

based on table look-ups. In the centralized case, they are usually evaluated by their CPU time.

124

5.2 Including Soft Global Constraints in BnB-ADOPT+

1 procedure ProjectFromAtMostToUnary(global; v)
2 if global:v = v and Dself :contains(v) then
3 singletonCounter = 0; cost = 0;

4 for each xi 2 global:vars do
5 if Dxi :contains(v) and Dxi :size() = 1 then
6 singletonCounter = singletonCounter + 1;

7 if singletonCounter > global:k then
8 cost = singletonCounter � global:k;
9 if cost > global:projectedCost then
10 temp = cost;

11 cost = cost� global:projectedCost;
12 global:projectedCost = temp;

13 if global:vars[0] = self then Cself (v) = Cself (v) + cost;

Figure 5.6: Pseudocode: Projection with soft-atmost[k; v] global constraint.

An evaluation proposal appears in Section 5.2.3.

Projecting costs with soft-atmost. For the soft-atmost global constraint we propose the fol-

lowing technique to project costs from the global constraint soft-atmost[k; v](T) to the unary

cost functions Cxi(v). Agent xi counts how many agents in T have a singleton domain fvg. If

the number of singleton domains fvg is greater than k, a minimum cost equal to the number

of singleton domains fvg minus k can be added to the unary cost Cxi(v) in one of the agents

of the global constraint. We always project on the first agent of the constraint (we choose the

first agent because in case of value deletion the search space reduction is larger). To main-

tain equivalence, the soft-atmost constraint stores this cost, that will be decremented from any

future projection performed. Pseudocode appears in Figure 5.6.

5.2.3 Experimental Results

To evaluate the impact of including soft global constraints, we tested on several random DCOPs

sets including soft-alldifferent and soft-atmost global constraints. Experiments considers binary

random DCOPs with 10 variables and domain size of 5. The number of binary cost functions

is n(n � 1)=2 � p1, where n is the number of variables and p1 varies in the range [0:2; 0:9] in

steps of 0.1. Binary costs are selected from an uniform cost distribution. Two types of binary

cost functions are used, cheap and expensive. Cheap cost functions extract costs from the

set f0; :::; 10g while expensive ones extract costs from the set f0; :::; 1000g. The proportion

of expensive cost functions is 1/4 of the total number of binary cost functions. In addition

125

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9102

103

104

105

106

p1

m
es

sa
ge

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9102

103

104

105

106

p1

m
es

sa
ge

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(with Extra Vars)
BnB-ADOPT+-UGAC(with Extra Vars)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9104

105

106

107

108

p1

N
C

C
C

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9104

105

106

107

108

p1

N
C

C
C

s

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(with Extra Vars)
BnB-ADOPT+-UGAC(with Extra Vars)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9102

103

104

105

106

p1

cy
cl

es

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9102

103

104

105

106

p1

cy
cl

es

BnB-ADOPT+(Direct)
BnB-ADOPT+-UGAC(Direct)
BnB-ADOPT+(Nested)
BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(with Extra Vars)
BnB-ADOPT+-UGAC(with Extra Vars)

Figure 5.7: Experimental results of random DCOPs including (left) soft-alldifferent global con-
straints with the violation measure �dec; (right) soft-atmost global constraints with the violation
measure �var.

to binary constraints, global constraints are included. The first set of experiments includes

2 soft-alldifferent(T) global constraints in every instance, where T is a set of 5 randomly

chosen variables. The violation measure is �dec. The second set of experiments includes 2

soft-atmost[k,v](T) global constraints in every instance, where T is a set of 5 randomly chosen

variables, k (number of repetitions) is randomly chose from the set f0; :::; 3g and v (value) is

126

5.2 Including Soft Global Constraints in BnB-ADOPT+

randomly selected from the variable domain. The violation measure used is �var. To balance

binary and global costs, the cost of the soft-alldifferent and soft-atmost constraints is calculated

as the amount of the violation measure multiplied by 1000.

We tested the extended versions of BnB-ADOPT+ and BnB-ADOPT+-GAC able to handle

global constraints on these benchmarks, results appear on Figure 5.7. Computational effort is

evaluated in terms of non-concurrent constraint checks (NCCCs) and communication effort

is evaluated in terms of the number of messages exchanged. We also present as a reference

measure the number of synchronous cycles. For soft-alldifferent with �dec we present results

of its direct representation, its nested representations and its binary decomposition. For soft-

atmost with �var we present results of its direct representation, its nested representation and its

decomposition with extra variables.

Specifically for GAC enforcement, computational effort is measured as follows. For the

sets including soft-alldifferent global constraints, we use the special propagator proposed in

(Lee and Leung, 2009). Every time a projection operation is required, instead of exhaustively

looking at all tuples of the global constraint (which would increment the NCCC counter for

every tuple), we compute the minimum �ow of this graph. Minimum �ow cost computation

is based on the successive shortest path algorithm (we can think of every shortest path com-

putation as a variable assignment of the global constraint). We assess the computational effort

of computing the shortest path algorithm as the number of nodes of the graph where this algo-

rithm is executed (looks reasonable for small graphs, which is the case here). Each time the

successive shortest path algorithm is executed, we add this number to the NCCC counter of the

agent.

For the sets including the soft-atmost global constraints, every time the cost of the violation

measure is computed as the number of singleton domains fvg minus k, the NCCC counter is

incremented.

From results in Figure 5.7, we observe the following facts. The nested representation is

better than the direct one in terms of messages, NCCCs and cycles, for both BnB-ADOPT+ and

BnB-ADOPT+-GAC. In the direct representation, VALUE messages are sent to all children

and the last pseudo-child in the global constraint, whereas in the nested representation VALUE

messages are sent to all children and all pseudo-children in the global constraint. However

the early detection of dead-ends in the nested representation compensates by far these extra

number of messages.

127

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

It is of special interest to observe the behavior of the bounded arity decompositions. We

observe that the nested representation is consistently better (in terms of messages and NCCCs)

than the binary decomposition (in soft-alldifferent) and than the decomposition with extra vari-

ables (in soft-atmost). If an agent changes value, it will send the same number of VALUE mes-

sages in the nested representation as in the clique of binary constraints of the soft-alldifferent

decomposition. However, in the nested representation receivers will evaluate larger constraints

(with arity greater than 2), so they are more effective and as global effect this representation

requires less messages than the binary decomposition. When GAC is maintained, the number

of value deletions using the nested representation is higher than using the binary decomposi-

tion (because pruning using global constraints is more powerful than when using the binary

decomposition); as consequence, the search space is slightly smaller when using the nested

representation, and due to this, less messages are required for its complete exploration. Con-

sidering the decomposition with extra variables in soft-atmost, this decomposition includes

new extra variables in the problem, causing many extra messages. These messages lead to

more computational effort (more NCCCs).

Considering GAC enforcement, we observe that it always pays off in terms of messages, for

all representations. For low and medium connectivities the reduction in messages is so drastic

that as result the number of NCCCs is importantly reduced. For higher connectivities, NCCCs

show smaller reductions and a slight increment in the soft-alldifferent case. GAC requires

to do more computational work at every agent, however this is balanced with a reduction in

the computational effort required to process less messages during search. This important fact

indicates the impact of this limited form of soft GAC maintenance in distributed constraint

optimization.

From these results, we conclude that the nested decomposition generally offers the best per-

formance in the benchmarks tested. Decomposition with extra variables using virtual agents

and the direct representation are models to avoid when representing contractible global con-

straints, since they require a higher communication effort which impacts also in computation.

Considering propagation, enforcing GAC in any of the proposed representation pays off, caus-

ing savings in communication and generally also in computation.

128

5.3 Conclusions

5.3 Conclusions

In this Chapter we have introduced the use of soft global constraints in distributed constraint

optimization. We proposed several ways to represent soft global constraints in a distributed

constraint network, depending on soft global constraint properties. We extended the distributed

search algorithm BnB-ADOPT+ to support the inclusion of global constraints and we evaluated

its performance with and without the GAC consistency level (generalized arc consistency with

unconditional deletions).

From this work, we can extract the following conclusions:

� The use of global constraints is necessary in distributed constraint optimization to extend

DCOP expressivity,

� Considering two global constraints (soft-at-most and soft-all-different) as a proof of con-

cept, we show:

– If the added soft global constraint is contractible, the nested representation is the

one that offers better performance both in terms of communication cost (number of

messages) and computational effort (NCCCs),

– GAC maintenance always pays off in terms of number of messages, causing also

less NCCCs in a very substantial portion of the experiments.

129

5. DISTRIBUTED SOFT GLOBAL CONSTRAINTS

130

6

Conclusions

From the work presented in this thesis, fruit of the research during 4 years on DCOPs, we

extract a number of conclusions, as well as lines for further research. They are detailed in the

following.

6.1 Conclusions

Considering distributed search, we have improved BnB-ADOPT, a state-of-the-art DCOP op-

timal solving algorithm, as follows:

� It is possible to detect redundant messages in the BnB-ADOPT algorithm and remove

them from its execution without compromising optimality and termination. Removing

redundant messages caused significant performance improvements in communication.

We show that our improved version BnB-ADOPT+ is competitive with respect to other

DCOP solving algorithms.

� We observed some problems at termination and an inefficient threshold management in

BnB-ADOPT when dealing with n-ary cost functions and propose some modifications

to overcome them. For n-ary problems, our proposed version n-ary BnB-ADOPT+ ob-

tained important savings in communication and computational effort.

� Taking a closer look to BnB-ADOPT and ADOPT algorithms, we noticed that ADOPT

provides a tie-breaking strategy that when introduced in BnB-ADOPT+ produces a sig-

nificant boost in performance, so we include this modification in our version of BnB-

ADOPT+.

131

6. CONCLUSIONS

� We present the new algorithm ADOPT(k), which combines the search strategies of

ADOPT and BnB-ADOPT depending on the k parameter. Our experimental results

show that ADOPT(k) can provide a good mechanism for balancing the trade-off be-

tween runtime and network load between ADOPT and BnB-ADOPT. Also, it was able

to outperforms both algorithms on commonly used benchmarks for a certain k.

Considering soft arc consistency in DCOPs, the combination of distributed search with

soft arc consistency has shown to be beneficial to improve search efficiency in several bench-

marks. We have done this combination using the BnB-ADOPT+ algorithm for distributed

search, keeping its optimality and termination properties. From this work, we can extract the

following conclusions:

� Maintaining soft arc consistency during distributed search requires a different approach

than in the centralized case. While in the centralize case all problem elements are avail-

able in the solver, in the distributed case agents only know some part of the problem and

must exchange information in order to achieve the desired consistency level. In this pro-

cess, the operations that modify the problem structures should be done in such a way that

partial information of the global problem remains coherent on every agent. Otherwise

optimality in search can be compromised.

� In order to combine distributed search with soft arc consistency it would be ideal to work

with an algorithm that provides lower and upper bounds of the problem solution. These

bounds and their quality during execution are crucial to discover sub-optimal values.

Distributed algorithms performing a branch-and-bound search strategy, such as BnB-

ADOPT+, are suitable to be combined with soft arc consistency since they calculate an

UB and refine it with every best solution found.

� We have connected BnB-ADOPT+ with some forms of soft arc consistency to detect

and unconditionally delete inconsistent values, with the final goal of improving search

efficiency. The transformations introduced (projections, extensions and removal of in-

consistent values) assure optimality and termination in the resulting algorithms.

� According to experimental results, combining AC and FDAC levels of soft arc consis-

tency with the distributed search algorithm BnB-ADOPT+ provides important savings in

distributed search in several benchmarks tested. New messages are included to exchange

132

6.1 Conclusions

new information needed to maintain soft arc consistency. However, this increment in the

number of messages is largely compensated by a decrement in the number of messages

used to solve the problem. Since the domain of agents is reduced, the messages needed

to explore the search space also decrement.

� FDAC can be enforced on multiple representations (multiple cost functions with different

orderings). As result, inconsistent values can be detected in any of the ordering causing

more pruning opportunities. Experimental results show significant savings in commu-

nication and a higher effort in computation, since more work must be done to maintain

FDAC in every ordering.

� Moving to higher consistency levels, agents need to have a wider knowledge about the

global problem. Stronger consistency levels require agents to know more information

about other agents in the problem. This may compromise privacy, which is an issue to

solve.

� We propose DAC by token passing, a new way to propagate deletions during distributed

search. This strategy does not maintain any soft local consistency property, so theoreti-

cally it can not be compared to AC or FDAC. However experimentally it turned out to be

competitive when compared with FDAC considering communication and computational

effort.

Considering soft global constraints in DCOPs, we sustain that they have to be incorpo-

rated in DCOP formulations. We propose several ways to include soft global constraints in

distributed search. We report the results of a number of experiments. Specifically:

� The use of global constraints is necessary in Distributed Constraint Optimization to ex-

tend DCOP expressivity. We proposed several ways to represent soft global constraints

in a distributed constraint network, depending on the soft global constraint properties.

� We extended the distributed search algorithm BnB-ADOPT+ to support the inclusion of

soft global constraints and we evaluated its performance with and without the uncondi-

tional GAC consistency level (generalized arc consistency with unconditional deletions).

133

6. CONCLUSIONS

� Considering two global constraints (soft-at-most and soft-all-different) as a proof of con-

cept, we show: (1) If the added soft global constraint is contractible, the nested represen-

tation is the one that offers better performance in terms of communication and compu-

tational cost (2) GAC maintenance always pays off in terms of communication, causing

also improvements in computation in a very substantial portion of the experiments.

6.2 Future Work

The work presented in this thesis can be extended in a number of dimensions. In general terms,

we identify the following points for further research:

� Other distributed search algorithms. The connection between distributed search and soft

arc consistency has been implemented using the BnB-ADOPT algorithm, but any other

distributed search algorithm can be used for the same purpose. Connecting another algo-

rithm with soft arc consistency would require to modify its messages in order to include

the elements needed to achieve the desired soft arc consistency level. Very probably, the

DEL and UCO messages should be implemented as described in this document.

� Propagating conditional deletions. Propagation has been limited to unconditional dele-

tions. This decision is based on previous work on distributed constraint satisfaction,

where propagating conditional deletions was often found counterproductive: the extra

overhead –specially in communication terms– often overcome the benefits caused by

full propagation. This conclusion was extracted from experiments on random distributed

problem instances. However, it remains to be analyzed whether this holds for any DCOP

instance, or on the contrary, there are DCOP applications for which propagating condi-

tional deletions pays off.

� Higher soft arc consistency levels. We have studied the connection of distributed search

with initial levels of soft arc consistency, but the connection with higher levels remains

to be analyzed. It is clear that this has an impact in the degree of privacy in the DCOP

resolution. In this sense, we have observed the following trend: the higher the target soft

arc consistency level, the more information –in some cases private– is required to share

among agents, so less private would be the solving process. Although pursuing higher

soft arc consistency levels may compromise privacy, this might not be a real issue for

some DCOP applications.

134

6.2 Future Work

� More soft global constraints. From our point of view, soft global constraints have to be

included in the DCOP context, and the benefits of that inclusion are clear. However, we

present experimental results on two soft global constraints only. These results are valid

as a proof of concept, but more work on this line is needed, considering other soft global

constraints (specially given the current size of the global constraint catalog).

Considering the specific work presented in this thesis, we foresee the following possible

extensions:

� Automatic adjustment of the k parameter in the ADOPT(k) algorithm. After the ADOPT(k)

algorithm, a straightforward question is to be able to adjust automatically the k value (or

a sequence of good k values). With this goal, several approaches come to mind. One

is to better understand the behavior of the algorithm, in order to select the k value most

suited for a particular DCOP instance. Another is to use machine learning techniques to

adjust automatically the k value.

� Connecting BnB-ADOPT+ with higher soft arc consistency levels. The connection of

BnB-ADOPT+ with EDAC, VAC and OSAC remains to be done. As discussed above,

this has consequences on the privacy of the solving process. Regarding efficiency, these

connections will increase the pruning opportunities, but at the extra cost of more com-

munication and computation. Therefore, it has to be assessed whether connecting BnB-

ADOPT+ with higher consistency levels really pays off.

� Alternative heuristics for the token passing approach. The efficiency of the token passing

approach strongly depends on the heuristic criterion used to pass the token among agents.

This is applicable to both the preprocess –which could be repeated one or several times–

and the solving process. Alternative heuristics may be devised, and their efficiency has

to be assessed.

� Soft global constraint decomposition with extra variables without virtual agents. When

decomposing soft global constraints with extra variables, we took the modeling deci-

sion of including these extra variables in virtual agents, backed on a number of reasons.

Alternatively, these extra variables could be included in the DCOP formulation without

using virtual agents. This alternative approach implies that the assumption ”one variable

per agent” does no longer holds, but it is possible that this would increase the efficiency

135

6. CONCLUSIONS

of the solving process (specially in communication terms). More experimental work is

needed to properly answer this question.

We believe that the work presented in this thesis is a step forward towards finding better

ways for optimally solving DCOP instances. A final test for this work would be its adaptation

for solving real-word applications in the context of distributed constraint optimization.

136

Appendix A

Saving Messages in the ADOPT
Algorithm

ADOPT is an algorithm for distributed constraint optimization solving. It exchange a large

number of messages, which is a major drawback for its practical application. Aiming at in-

creasing its efficiency, in this Appendix we present results showing that some of ADOPT mes-

sages are redundant so they can be removed without compromising its optimality and termi-

nation properties. Removing most of those redundant messages we obtain ADOPT+, which

in practice, causes substantial reductions in communication costs with respect to the original

algorithm.

A.1 Reengineering ADOPT

In this Section we introduce our ADOPT version. It has some differences with the original

ADOPT (Modi et al., 2005). We have included these changes for efficiency purposes, but they

do not compromise the optimality and termination of ADOPT. Specifically, our version differs

from the original ADOPT in the following points:

1. ADOPT sends THRESHOLD messages to children and VALUE messages to children

and pseudo-children. Since every time ADOPT sends a THRESHOLD message it also

sends a VALUE message, we include all the information in a single VALUE message.

The treatment of THRESHOLD and VALUE information is exactly the same, only that

it is not split in two separate messages. With this simple modification the number of

messages is reduced significantly. Obviously, these changes has no effect on optimality

137

A. SAVING MESSAGES IN THE ADOPT ALGORITHM

and termination of ADOPT. From now on, we consider VALUE and COST messages

only.

2. In ADOPT, each agent reads one message of the input queue, processes it and performs

backtrack. In the backtrack procedure the agent decides if it must change its value.

In any case, it sends the corresponding VALUE messages to its children and pseudo-

children and a COST message to its parent. This is done for each incoming message

until the message queue is empty. We modify the algorithm in the following way: on

each iteration, the agent reads and processes all messages from the input queue without

performing backtrack, and when the queue is empty, it performs backtrack sending the

corresponding VALUE and COST messages.

This modification does not affect optimality and termination. Since all messages are

processed, an agent self will update its data structures (context, lb, ub, th) in the same

way and order as before, but it will not assign its value or generate messages until the

queue is empty. So, there are messages that would have been sent by self in the original

ADOPT that will not be send with this modification. Let us assume an omitted message

msg1 and a final message msg2 of the same type as msg1 sent by self. It may happen:

(a) If the omitted msg1 is a VALUE, not sending it will cause no harm, because if this

VALUE message is processed, the receiver would updates in its context only self

assignment, which will be overwritten anyway when msg2 arrives.

(b) If the omitted msg1 is a COST message, the same thing happens: the last message

msg2 will overwrite the lb and ub tables that might have been updated by msg1.

Also, if the omitted msg1 would have cause that a new variable would be added to

the receiver context, we can assure that this variable will also be added with msg2,

since both messages have the same context variables.

However, when an agent receives VALUE or COST messages, information may be reini-

tialized if contexts are not compatible. It could be the case that the omitted msg1 would

have caused this effect on the original execution. If this is not caused also by msg2,

then the reinitialization was useless, since the considered obsolete information is now

required and will be recalculated. So we can avoid this useless reinitialization. There-

fore, these changes has no effect on optimality and termination of ADOPT. This way

138

A.2 Communication Structure

of processing the input queue reduces a great deal the number of exchanged messages,

which is very beneficial for executing this algorithm on difficult instances.

3. Finally, we include a timestamp for every assignment that travels in VALUE messages

and in COST messages contexts (one timestamp per value). This timestamp allows to

determine which of two assignments is more recent. We allow the receiver context to

be updated also by COST messages if they contain more recent assignments. As con-

sequence, an agent self is able to process more updated COST messages instead of dis-

carding them. On the original ADOPT, COST messages with more recent information

are discarded and self would need to wait for delayed VALUE messages until its context

is updated with the most recent information. Now, the accepted COST message con-

tains the same information as the ones being discarded, so we could have considered

them before. Observe also that if a COST message updates self context, then a VALUE

message will eventually arrive to self with that same context change, including an up-

dated threshold for this new context. Before receiving this VALUE message, the thresh-

old is maintained between LB and UB with the MaintainThresholdInvariant

method (Modi et al., 2005). Therefore, these changes has no effect on optimality and

termination of ADOPT.

In the following, we assume an ADOPT version that includes these changes with respect

to the original algorithm (Modi et al., 2005).

A.2 Communication Structure

In the following, we summarize the communication structure of our version of ADOPT. We

assume that the reader has some familiarity with ADOPT code (for a more complete descrip-

tion, see (Modi et al., 2005)). ADOPT arranges the agents in a DFS pseudo-tree. An agent self

knows about its parent, its pseudo-parents, its children and pseudo-children. Also, self holds

a context, which is the set of assignments involving self ancestors that will be updated with

message exchange.

Our ADOPT version uses the following messages:

� VALUE(i; j; val; th; context): i informs child or pseudo-child j that it has taken value

val with threshold th in context,

139

A. SAVING MESSAGES IN THE ADOPT ALGORITHM

� COST(k; j; context; lb; ub) : k informs parent j that with context its bound are lb and

ub,

� TERMINATE(i; j): i informs child j that terminates.

An agent of our ADOPT version executes the following loop: it reads and processes all

incoming messages, and changes value if the lower bound of the current value surpasses the

threshold. This strategy allows the agent to change its value whenever it detects a better local

assignment. Then, it sends the following messages: a VALUE message per child, a VALUE

message per pseudo-child and a COST message to its parent. Every time a VALUE or COST

message is sent the receiver context is updated with the more recent assignments. Every time

a COST message is sent the receiver lower bound and upper bound are updated if the COST

message context and the receiver context are compatible, otherwise this information is consid-

ered obsolete. Agents maintain a bounded interval consisting in a lower and upper bound that

will be refined during execution. When this interval shrinks to zero (lower bound equals the

upper bound) the cost of the optimal solution has been determined. ADOPT manages thresh-

old values calculated as estimated lower bounds for every agent subtree, that allow agents to

efficiently reconstruct partial solutions.

As explained earlier, our ADOPT version associates with each assignment (either travel-

ing in VALUE or COST messages) a timestamp. This permits COST messages to update the

context of receiver, if some value is more recent than the value in the receiver context. On this

respect, our ADOPT version and the BnB-ADOPT algorithm act in the same way (in BnB-

ADOPT timestamps are called counters, referred as ID in (Yeoh et al., 2010)).

A.3 Redundant Messages

In this Section we present the results on redundant messages in ADOPT.

The lemmas and proofs for redundant messages in ADOPT are the same as the one pre-

sented for BnB-ADOPT in Chapter 3, Section 3.1.1. Only one distinction has to be done in the

use of thresholds, since BnB-ADOPT and ADOPT manage thresholds in different ways. In the

case of thresholds, sent in VALUE messages, we consider the following case.

Two consecutive VALUE messages V1 and V2 are sent from agent i to agent j with the

same val and th. Let us consider the case where V1 is received in j and V2 is not sent. Con-

140

A.4 New Version

sidering th, since th was already copied in j at V1 reception, copying V2 threshold is not

crucial because it contains the same information. It might be the case that, between V1 and

V2, j changes its threshold as result of some context change. Notice that, because threshold

is always maintained between LB and UB, this does not compromises optimality and ter-

mination. Observe that any higher neighbor connected with j is also an ancestor of i in the

pseudo-tree (because i and j are on the same branch), so i will eventually receive a message

as result of this context change and then it will send a new VALUE message to j with an

updated th and val. Since threshold is always maintained between LB and UB (using the

MaintainThresoldInvariant method, Modi et al. (2005)), the termination condition

(threshold = UB) is assured when LB = UB.

A.4 New Version

Temporary, we define ADOPT+ as ADOPT with the following changes:

� Agents will send the THRESHOLD and VALUE information on a single VALUE mes-

sage.

� On every iteration, agents will read and process all messages from the input queue with-

out performing backtrack, and when the input queue is empty, they perform backtrack

sending the corresponding VALUE and COST messages.

� Timestamps are included on every assignment, and both VALUE and COST messages

may update the receiver context if the message contains a more recent assignment (with

higher timestamp).

� The second of two consecutive VALUE messages with the same i, j and val is not sent.

� The second of two consecutive COST messages with the same k, j, context, lb and ub

when k detects no context change is not sent.

Theorem 6 ADOPT+ terminates with the cost of a cost-minimal solution.

Proof. By similar results to the ones contained in Theorems 1 and 2 for BnB-ADOPT, messages

not sent by ADOPT+ are redundant so they can be eliminated. ADOPT terminates with the

cost of a cost-minimal solution (Modi et al., 2005), so ADOPT+ also terminates with the cost

of a cost-minimal solution. 2

141

A. SAVING MESSAGES IN THE ADOPT ALGORITHM

But the new algorithm is not efficient because we have not considered thresholds reinitial-

izations. Looking for an adequate threshold management, we define ADOPT+ as our ADOPT

version algorithm with the following changes:

1. Agent i remembers for each neighbor j the last message sent.

2. A COST message from j to i includes a boolean ThReq, set to true when j threshold

could not be copied –upon a VALUE message reception– because context are incompat-

ible, or when threshold is initialized.

3. If j has to send i a COST message equal to (ignoring timestamps) the last COST mes-

sage sent, the new COST message is sent if and only if j has detected a context change

between them.

4. If i has to send j a VALUE message equal to (ignoring timestamps) the last VALUE

message sent, the new VALUE message is sent if and only if the last COST message that

i received from j had ThReq = true; upon reception, this VALUE message will update

j threshold.

A.5 Experimental Results

We test ADOPT+ algorithm on binary random DCOPs. Performance is evaluated in terms of

communication cost (messages exchanged) and computation effort (non-concurrent constraint

checks (Meisels et al., 2002)). We consider also the cycles as the number of iteration the

simulator must perform until the solution is found.

Binary random DCOP are characterized by hn; d; p1i, where n is the number of variables,

d is the domain size and p1 is the network connectivity. We have generated random DCOP

instances: hn = 10; d = 10; p1 = 0:2; :::; 0:8i. Costs are selected randomly from the set f0,...,

100g. Results appear in Table A.1, averaged over 50 instances.

On random DCOPs, ADOPT+ showed clear benefits on communication costs with respect

to our ADOPT version. It divided the number of exchanged messages by a factor from 1.1 to

almost 3, maintaining the number of cycles practically constant and obtaining also moderate

reductions in NCCCs.

142

A.6 Conclusions

p1 Algorithm #Messages #NCCC #Cycles
ADOPT 524 2,877 29

0.2 ADOPT+ 468 2,827 29
ADOPT 1,898,519 39,870,169 82,565

0.3 ADOPT+ 1,003,300 36,330,792 82,604
ADOPT 39,456,612 1,032,565,939 1,461,551

0.4 ADOPT+ 16,810,366 891,171,565 1,461,910
ADOPT 410,414,194 12,187,384,497 12,826,157

0.5 ADOPT+ 145,182,982 10,259,021,210 12,811,734

Table A.1: Results of our ADOPT version (first row) compared to ADOPT+ (second row) on
random DCOPs

A.6 Conclusions

We have presented two contributions to increase the performance of the ADOPT algorithm.

First, we describe our version of ADOPT, which saves some messages with respect to the

original algorithm. Secondly, we present theoretical results to detect redundant messages in

our ADOPT version. Using these results we generate ADOPT+, which caused substantial

savings in communication and moderate savings in computation.

143

A. SAVING MESSAGES IN THE ADOPT ALGORITHM

144

Appendix B

Global Constraints in Distributed
Constraint Satisfaction

Global constraints have been crucial in the development of efficient constraint solvers (van

Hoeve and Katriel, 2006). They allow to capture global properties on an unbounded set of

variables. In many cases, the exploitation of the semantic associated with a particular global

constraint allows to codify propagators able to reach local consistency levels (typically general-

ized arc consistency, GAC) with polynomial complexity. This is a great advantage with respect

to GAC propagators for generic non-binary constraints, which have complexity exponential in

the constraint arity.

Often, it is implicitly assumed that distributed constraint reasoning precludes the use of

global constraints. With the usual assumption that each agent contains a single variable (so the

terms agents and variables can be used interchangeably), an agent knows the constraint with

each one of its neighbors, and nothing else (Yokoo et al., 1998). These constraints are obviously

binary. But this interpretation is too restrictive because there are distributed applications for

which it is natural to use global constraints.

When adding global constraints in distributed reasoning we obtain several benefits. First,

the expressivity of distributed constraint reasoning is enhanced since there are relations among

several variables that cannot be expressed as a conjunction of binary relations (most global

constraints are not binary decomposable).

Second, the solving process can be done more efficiently. Local consistency can be more

efficiently achieved when global constraints are involved (van Hoeve and Katriel, 2006). As-

suming a solving strategy maintaining some kind of local consistency, using global constraints

145

B. GLOBAL CONSTRAINTS IN DISTRIBUTED CONSTRAINT SATISFACTION

improves its efficiency.

Accepting the interest of global constraints in distributed constraint reasoning, another

question naturally follows: since some global constraints can be decomposed in simpler con-

straints, is it more efficient to leave the global constraint as it was initially posted or to de-

compose it? If several decompositions are possible, which offers the best performance? We

provide some answers to these questions, exploring two decompositions (binary (Bessiere and

Hentenryck, 2003) and nested for contractible constraints (Maher, 2009b)) against the global

constraint without decomposition, in two contexts: complete distributed search with and with-

out unconditional GAC maintenance (Brito and Meseguer, 2008).

We assume that readers are familiar with constraint reasoning, specially with distributed

constraint satisfaction problems (DisCSP) and the ABT algorithm (Yokoo et al., 1998).

B.1 Adding Global Constraints

A global constraint C is a class of constraints defined by a Boolean function fC whose arity

is not fixed. Constraints with different arity can be defined by the same Boolean function.

For instance, alldifferent(x1; x2; x3) and alldifferent (x1; x4; x5; x6) are two instances of the

alldifferent global constraint, where falldifferent(T) returns true iff xi 6= xj ; 8xi; xj 2 T . In the

following, we write C for a global constraint, while C(T) means a particular instance of that

global constraint on the set of variables T .

A global constraint C is contractible iff for any tuple t on xi1 ; : : : ; xip+1 , if t satisfies

C(xi1 ; : : : ; xip+1) then the projection t[xi1 ; : : : ; xip] of t on the first p variables satisfiesC(xi1 ;: : : ; xip)

(Maher, 2009b). A global constraint C is binary decomposable without extra variables iff for

any instance C(T) of C, there exists a set S of binary constraints involving only variables in T

such that the solutions of S are the solutions of C(T) (Bessiere and Hentenryck, 2003). In this

case, S is a binary decomposition of C(T).

In the following, we consider three different representations for a global constraint instance:

direct, nested and binary.

� In the direct representation, C(T) is posted in the DisCSP as a single constraint that

allows all tuples on T satisfying C. In this representation, each agent in T includes

C(T) in its constraint set. C(T) will be treated as any other constraint. That is, if agent

self is the last agent of T in the order, it evaluates C(T). If not, it puts the other agents

of T in its set of neighbors.

146

B.1 Adding Global Constraints

x
1

x
2

x
3

x
4

x
1

x
2

x
3

x
4

x
1

x
2

x
1

x
2

x
1

x
2

x
3

x
1

x
2

x
3

x

x
1

x
2

x
3

x
4

x
1

x
2

x
3

x
4

alldifferent

alldifferent

alldifferent

alldifferent

x
1

x
2

x
3

x
4

!

!

! !
! !

Figure B.1: Representations for alldifferent(x1, x2, x3, x4): (left) direct, (center) nested, (right)
binary.

• The nested representation is applicable to all contractible global constraints. The nested

representation of a global constraint C(T) with T = (xi1 , ..., xip) is the set of con-

straints { C(xi1 , ..., xij) | j ∈ 2 ...p} . For instance, the nested representation of

all-different (x1, x2, x3, x4) is the set S = { alldifferent(x1, x2), all-different (x1, x2, x3),

alldifferent(x1, x2, x3, x4)} . Since alldifferent is contractible, the set of solutions of S

is exactly the same as the set of solutions of the original constraint. The idea behind

this representation is to use some knowledge about the semantics of the global constraint

C(T) to provide a model where the handling of the constraint can be more distributed. In

this representation, each agent in T includes all constraints of the nested representation

of C(T) that involve its variable in its constraint set. Observe that any agent in T is the

last of an instance of C and it will be able to check it.

• The binary representation is applicable to all global constraints that are binary decom-

posable. The binary representation of C(T) is the set of constraints of its binary decom-

position. For instance, the binary representation of alldifferent(x1, x2, x3, x4) is the set

S = { x1 �= x2, x1 �= x3, x1 �= x4, x2 �= x3, x2 �= x4, x3 �= x4 } . Since alldifferent is

binary decomposable, the set of solutions of S is exactly the same as the set of solutions

of the original constraint. In this representation, each agent in T includes all constraints

of the binary decomposition of C(T) that involve its variable in its constraint set. In this

case, the problem is treated as a usual binay constraint satisfaction problem.

The three representations for the alldifferent(x1, x2, x3, x4) global constraint appear in Fig-

ure B.1.

147

B. GLOBAL CONSTRAINTS IN DISTRIBUTED CONSTRAINT SATISFACTION

B.2 Searching with Global Constraints

In this Section, we use ABT as the basic search algorithm for DisCSP solving. It is worth not-

ing that ABT –originally proposed for binary constraints– can be easily generalized to handle

constraints of any arity (Brito and Meseguer, 2006). For example, letC(xi; xj ; xk) be a ternary

constraint, where the order of agents is i; j; k. Then the last agent of the constraint –agent k–

is in charge of evaluating C(xi; xj ; xk) when it is totally instantiated, while the others –agents

i and j– have to send their values to k. In the following, we assume that our ABT version

contains such generalization.

In the direct representation, C(T) is posted in the DisCSP as a single constraint. Each

agent in T includes C(T) in its constraint set. The lowest priority agent of T in the ABT order

is in charge of evaluating it. Other agents in T put a link between themselves and that agent.

If self is the agent of T with lowest priority in the ABT order, it will be the one in charge of

evaluating C(T). If not, it puts a link between itself and each of the other agents of T .

In the nested representation, C(T), T = (xi1 ; : : : ; xip), is represented by the set of con-

straints fC(xi1 ; : : : ; xij) j j 2 2 : : : pg. Each agent in T includes all constraints of S that

involve its variable in its constraint set. Thanks to the extra constraints that are posted, the

checking of C(T) is not postponed to the last agent in T . Any agent in T that is the last of an

instance of C will be able to check it.

In the binary representation, the global constraint C(T) is represented by the set of con-

straints of its binary decomposition. Thus, each agent in T includes all constraints of the binary

decomposition of C that involve its variable in its constraint set.

These three representations of a global constraint instance are equivalent from the semantic

point of view (they produce the same solutions). But they cause different ABT executions, so

they can be seen as different models with dissimilar efficiency.

B.3 Propagating Global Constraints

Independently of the way a global constraint is included into ABT, this algorithm can be en-

hanced maintaining some form of local consistency during search. This was already investi-

gated in (Brito and Meseguer, 2008), where limited/full forms of arc consistency (AC) were

maintained during ABT execution for binary DisCSPs. While in (Brito and Meseguer, 2008) a

limited form of AC causing unconditional deletions and full AC causing conditional deletions

148

B.4 Experimental Results

were considered, here we only maintain the limited form of GAC that causes unconditional

deletions (we enforce GAC because constraints may have arity higher than 2). Clearly this

limited GAC, that from now on we call UGAC (unconditional GAC), is less powerful than full

GAC. Maintaining full GAC in the distributed context would cause a substantial load of extra

messages which could overcome the benefits of domain pruning. We enforce UGAC on each

considered global constraint by adapting the methods developed in the centralized case to this

distributed setting, making them work inside each agent.

Before search, a suitable preprocess makes the problem GAC (before search any value

deletion is unconditional, so GAC is equivalent to UGAC). During search, UGAC is enforced

as follows: in ABT execution, if agent self receives a nogood message justifying the removal

of its value v where the nogood has an empty left-hand side (see (Brito and Meseguer, 2008;

Yokoo et al., 1998) for details), v can be unconditionally deleted from its domain. A deletion in

the domain of xself is propagated maintaining UGAC on the constraints connecting xself with

other variables, which may cause further deletions. Since the initial deletion is unconditional,

deletions caused by the propagation are also unconditional.

To maintain UGAC during ABT search, some modifications are needed over the ABT

algorithm:

� The domain of variables constrained with self has to be represented in self.

� Only the agent owner of a variable can modify its domain; if agent i deduces that a value

could be deleted from the domain of xj , it does nothing because that deduction will be

done by agent j at some point.

� There is a new message DEL to notify of value deletions: DEL(self ; k; v) –informing

that self removes v from the domain of xself– is sent from self to every agent k con-

strained with it.

� A suitable preprocess makes all constraints GAC before ABT starts. These changes do

not modify ABT correctness and completeness.

B.4 Experimental Results

To evaluate the impact of the addition of global constraints, we compare ABT with and with-

out UGAC on random DisCSP instances created as follows. We first generate random binary

149

B. GLOBAL CONSTRAINTS IN DISTRIBUTED CONSTRAINT SATISFACTION

Figure B.2: Results in #messages and NCCCs for the alldifferent benchmark (top) and the atmost
benchmark (bottom) described in the text. In both cases p1 = 0:2.

instances and then add some global constraints. A random binary CSP class is characterized

by hn; d; p1; p2i, where n is the number of variables, d is the domain size of each variable, p1

is the problem connectivity defined as the ratio of existing constraints and p2 is the constraint

tightness expressed by the ratio of forbidden value pairs. Every instance contains p1n(n�1)=2

binary constraints and each of them has p2d2 forbidden value pairs. From a binary instance, we

can generate two types of benchmarks: the alldifferent benchmark and the atmost benchmark.

In the alldifferent benchmark, each binary instance includes 2 alldifferent constraints, each in-

volving 5 variables randomly chosen (we also performed this experiment with 10 –instead of

2– alldifferent constraints per instance, obtaining similar results). Direct, nested and binary

representations are used with these alldifferent. In the atmost benchmark, each binary instance

includes 10 atmost constraints, each involving from 3 to 10 variables randomly chosen, the

value also randomly chosen and the number of repetitions between 1 and 2. Only direct and

150

B.4 Experimental Results

nested representations are used on these atmost constraints because atmost is not binary de-

composable.

For the alldifferent benchmark, we have done two sets of experiments: h20; 5; 0:2; p2i and

h20; 5; 0:7; p2i, where p2 varies between 0.1 and 0.9 in steps of 0.1. For each, we evaluate per-

formance as the number of messages exchanged and the number of non-concurrent constraint

checks (NCCC) (Meisels et al., 2002), considering the three representations. UGAC enforcing

uses generic table lookups when testing binary constraints and it executes a special propagator

when testing the global all-different constraints (as described in (Regin, 1994)). This special

propagator increments the NCCC counter each time a maximum matching is computed.

Results in number of exchanged messages for sparse problems (p1 = 0:2) appear in Figure

B.2 (top left), averaged on 100 instances per each p2. For p2 < 0:5 we observe that the curve of

plain ABT with a particular global constraint representation follows closely the curve of ABT-

UGAC with the same representation. This shows that maintaining UGAC when constraints

are loose does not pay off and this is the type of representation that makes the difference in

efficiency. The most efficient representation is binary, followed by nested and finally direct

representation. The direct representation causes inefficient chronological backtracking (which

causes many useless messages), while nested representation implies sending several OK? mes-

sages to the agents of the global constraint. In this setting where not much pruning occurs,

the binary decomposition appears as the most efficient, because although it sends many OK?

messages, it performs backtracking directly to the culprit.

For p2 > 0:5 the situation changes and ABT curves are grouped according to UGAC

enforcement: maintaining UGAC is now the most discriminant element. The analysis of this

fact is simple: for medium to high tightnesses, UGAC maintenance really decreases the size of

the search space, so algorithms including UGAC terminate faster and thus require less messages

(much less, observe the logarithmic scale) to explore that space than plain ABT. On the relative

performance of the three representations for global constraints, the less efficient representation

is the binary, clearly dominated by the direct and nested ones, which practically use the same

number of messages. We explain this as the combined effect of two facts: a high number

of constraints (a single alldifferent becomes a quadratic number of constraints in binary; a

linear number of constraints in nested; one constraint in direct) and the fact that the problem

has no solution. In the absence of solutions, ABT necessarily generates nogoods to prove

inconsistency and agents the in binary representation will tend to send a higher number of NGD

151

B. GLOBAL CONSTRAINTS IN DISTRIBUTED CONSTRAINT SATISFACTION

messages because they belong to more constraints than in the other representations. Some of

these NGDs are useless and become obsolete.

Regarding NCCC, they appear in Figure B.2 (top right), showing a similar pattern to the

#messages. Differences with/without UGAC are smaller than in #messages since enforcing

UGAC causes more NCCCs. Nevertheless, for p2 > 0:5 this increment is clearly compensated

by the reduction of the search space, resulting in a clear decrement in the computation require-

ments for each agent. Differences among representations are due to the different number of

constraints existing in each representation.

Results on dense problems, p1 = 0:7, follow a similar pattern to the ones presented here

for sparse problem results.

Considering the atmost benchmark, we experimented with it because atmost is not binary

decomposable, so only the direct and nested representations are available. Evaluation was

similar to the one done on the alldifferent benchmark: two sets of experiments: h20; 5; 0:2; p2i
and h20; 5; 0:7; p2i, where p2 varies between 0.1 and 0.9 in steps of 0.1 counting the number

of messages exchanged and the number of non-concurrent constraint checks (NCCC) on the

available representations. We report results on sparse problems p1 = 0:2 averaged on 100

instances per p2.

The number of exchanged messages appears in Figure B.2 (bottom left), showing similar

pattern to the one observed in the alldifferent benchmark. For p2 < 0:5 we observe that UGAC

has no much effect and the dominant factor is the representation of the global constraint: as in

the alldifferent benchmark, the direct representation is much worse than the nested one. For

p2 > 0:5 the situation changes. As in the case of the alldifferent benchmark, maintaining

UGAC becomes the main reason for efficiency, more important than the type of representation

of the global constraints. Thus, ABT curves are closely related, while ABT-UGAC curves are

also closely joined. The explanation of this fact is the same as in the alldifferent benchmark: For

medium to high tightness, UGAC maintenance really decrements the size of the search space,

so algorithms including UGAC terminate faster and require much less messages to explore that

space than plain ABT.

Regarding NCCC, they appear in Figure B.2 (bottom right), showing a pattern similar to

the #messages. Differences with/without UGAC are smaller than in #messages since enforcing

UGAC causes more NCCCs. Again, for p2 > 0:5 this increment is clearly compensated by

the reduction of the search space. Differences among representations are due to the different

number of constraints existing in each representation.

152

B.5 Conclusions

B.5 Conclusions

We have introduced the use of global constraints in distributed constraint reasoning. We have

proposed three different ways to represent global constraints in a distributed constraint network,

depending on whether the constraint is contractible and/or binary decomposable. We have

evaluated the performance of ABT on DisCSPs both with or without unconditional GAC using

different representations for global constraints.

According to experimental results, maintaining some form of local consistency is never

harmful in terms of messages. It may require more effort in NCCCs, but for those instances

where it significantly reduces the search space (i.e., those where the number of messages sig-

nificantly decreases), the extra effort of local consistency maintenance pays off. Regarding

the different representations of global constraints, the direct representation is often the less

efficient one. For loose instances the binary representation wins, but for very tight instances

(instances without solution) it degrades quickly, generating too many NGD messages. The

nested representation seems to offer a good compromise: it is never worse than direct, and in

some cases it is better than binary. This is good news because there are many more constraints

that are contractible (the condition for nested representation) than constraints that are binary

decomposable.

153

B. GLOBAL CONSTRAINTS IN DISTRIBUTED CONSTRAINT SATISFACTION

154

Bibliography

S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for accelerating the DCOP algo-

rithm ADOPT. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2005), pages 1041–1048, 2005. 68, 76

C. Bessiere and P. Van Hentenryck. To be or not to be ... a global constraint. In International

Conference on Principles and Practice of Constraint Programming (CP 2003), pages 789–

794, 2003. 115, 146

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. SLIDE: A useful special case of

the CARDPATH constraint. In European Conference on Arti�cial Intelligence (ECAI 2008),

pages 475–479, 2008. 115

I. Brito and P. Meseguer. Asynchronous backtracking for non-binary DisCSP. In Distributed

Constraint Reasoning (DCR) workshop in ECAI 2006, 2006. 148

I. Brito and P. Meseguer. Connecting ABT with arc consistency. In International Conference

on Principles and Practice of Constraint Programming (CP 2008), pages 387–401, 2008.

77, 146, 148, 149

A. Chechetka and K. P. Sycara. No-commitment branch and bound search for distributed

constraint optimization. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2006), pages 1427–1429, 2006. 2

M. Cooper and T. Schiex. Arc consistency for soft constraints. Arti�cial Intelligence, 154:

199–227, 2004. 12

M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. In International Joint

Conference on Arti�cial Intelligence (IJCAI 2007), pages 68–73, 2007. 12

155

BIBLIOGRAPHY

M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for

weighted CSP. In AAAI Conference on Arti�cial Intelligence (AAAI 2008), pages 253–258,

2008. 3, 12, 15, 73

M. Cooper, S. de Givry, M. Sanchez, M. Zytnicki, and T. Werner. Soft arc consistency revisited.

Arti�cial Intelligence, 174:449–478, 2010. 12, 15, 20

S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting closer

to full arc consistency in weighted CSPs. In International Joint Conference on Arti�cial

Intelligence (IJCAI 2005), pages 84–89, 2005. 3, 12, 15, 20, 73, 100

R. Dechter. Bucket elimination: A unifying framework for reasoning. Arti�cial Intelligence,

113(1–2):41–85, 1999. 12, 26

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003. 9, 10, 12

E. Freuder and R. Wallace. Partial constraint satisfaction. Arti�cial Intelligence, 58:21–70,

1992. 12

A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward bounding for distributed COPs.

Journal of Arti�cial Intelligence Research, 34:61–88, 2009. 2, 28, 53

K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction problem. In Interna-

tional Conference on Principles and Practice of Constraint Programming (CP 1997), pages

222–236, 1997. 2, 27, 53, 57

M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs meet the realworld: Exploring un-

known reward matrices with applications to mobile sensor networks. In International Joint

Conference on Arti�cial Intelligence (IJCAI 2009), pages 181–186, 2009. 2

R. Junges and A. L. C. Bazzan. Evaluating the performance of DCOP algorithms in a real

world dynamic problem. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2008), pages 599–606, 2008. 2

J. Larrosa. Node and arc consistency in weighted CSP. In AAAI Conference on Arti�cial

Intelligence (AAAI 2002), pages 239–244, 2002. 15

156

BIBLIOGRAPHY

J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted CSP.

International Joint Conference on Arti�cial Intelligence (IJCAI 2003), pages 239–244, 2003.

3, 12, 15, 18, 73, 85

J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency. Arti�cial

Intelligence, 159:1–26, 2004. 12

J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP. Arti�cial

Intelligence, 107:149–163, 1999. 12

J. H. M. Lee and K. L. Leung. Towards efficient consistency enforcement for global con-

straints in weighted constraint satisfaction. In International Joint Conference on Arti�cial

Intelligence (IJCAI 2009), pages 559–565, 2009. 17, 23, 123, 124, 127

A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclopedia of Arti�cial

Intelligence, pages 285–293. J. Wiley and Sons, 1991. 14

M. J. Maher. Soggy constraints: Soft open global constraints. In International Conference on

Principles and Practice of Constraint Programming (CP 2009), pages 584–591, 2009a. 21

M.J. Maher. Open contractible global constraints. In International Joint Conference on Arti�-

cial Intelligence (IJCAI 2009), pages 578–583, 2009b. 146

R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and P. Varakantham. Taking DCOP to the

real world: Efficient complete solutions for distributed event scheduling. In International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 310–317,

2004. 2, 35, 58, 70

R. Mailler and V. Lesser. Asynchronous partial overlay: A new algorithm for solving dis-

tributed constraint satisfaction problems. Journal of Arti�cial Intelligence Research, 25:

529–576, 2006. 2

T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Matsuo. Directed soft arc consistency

in pseudo trees. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2009), pages 1065–1072, 2009. 76

A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed

constraints processing algorithms. In Distributed Constraint Reasoning (DCR) workshop in

AAMAS 2002, pages 86–93, 2002. 34, 142, 151

157

BIBLIOGRAPHY

P. Meseguer, F. Rossi, and T. Shiex. Soft Constraints, chapter 9 of Handbook of Constraint

Programming, pages 281–328. Elsevier, 2006. 10, 11

S. Miller, S. D. Ramchurn, and A. Rogers. Optimal decentralised dispatch of embedded gener-

ation in the smart grid. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2012), pages 281–288, 2012. 2

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed con-

straint optimization with quality guarantees. Arti�cial Intelligence, 161:149–180, 2005. 1,

2, 29, 31, 38, 48, 60, 65, 117, 137, 139, 141

A. Petcu. A class of algorithms for Distributed Constraint Optimization. PhD thesis, 2007. 24,

26

A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. In Inter-

national Joint Conference on Arti�cial Intelligence (IJCAI 2005), pages 266–271, 2005. 2,

26, 27

A. Petcu and B. Faltings. Distributed constraint optimization applications in power networks.

International Journal of Innovations in Energy Systems and Power, 3, 2008. 2

T. Petit, J. C. Regin, and C. Bessiere. Specific filtering algorithms for over-constrained prob-

lems. In International Conference on Principles and Practice of Constraint Programming

(CP 2001), pages 451–463, 2001. 21

J. C. Regin. A filtering algorithm for constraints of difference in CSPs. In AAAI Conference

on Arti�cial Intelligence (AAAI 1994), pages 362–367, 1994. 151

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006. 9

T. Schiex. Arc consistency for soft constraints. In International Conference on Principles and

Practice of Constraint Programming (CP 2000), pages 411–424, 2000. 12

N. Schurr, S. Okamoto, R. Maheswaran, P. Scerri, and M. Tambe. Evolution of a teamwork

model. In R. Sun, editor, Cognition and Multi-Agent Interaction: From Cognitive Modeling

to Social Simulation, pages 307–327. Cambridge University Press, 2005. 2

158

BIBLIOGRAPHY

R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised coordination of mo-

bile sensors using the Max-Sum algorithm. In International Joint Conference on Arti�cial

Intelligence (IJCAI 2009), pages 299–304, 2009. 2

W. J. van Hoeve and I. Katriel. Global Constraints, chapter 6 of Handbook of Constraint

Programming, pages 169–208. Elsevier, 2006. 145

W. J. van Hoeve, G. Pesant, and L. M. Rousseau. On global warming: �ow-based soft global

constraints. Journal of Heuristics, 12:347–373, 2006. 124

G. Verfaillie, M. Lemaitre, and T. Schiex. Russian doll search. In AAAI Conference on Arti�cial

Intelligence (AAAI 1996), pages 181–187, 1996. 12

W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-bound DCOP

algorithm. Journal of Arti�cial Intelligence Research, 38:85–133, 2010. 2, 31, 34, 38, 39,

40, 41, 46, 47, 48, 50, 51, 62, 65, 68, 78, 122, 140

Z. Yin. USC DCOP repository. 2008. 35, 53, 60, 69, 97, 103, 108

M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction

problem: Formalization and algorithms. IEEE Transactions on Knowledge and Data Engi-

neering, 10:673–685, 1998. 24, 145, 146, 149

159

	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Goal
	1.3 Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Constraint Optimization Problems
	2.1.1 COP Representations
	2.1.2 Solving Algorithms
	2.1.2.1 Systematic Search: Branch and Bound
	2.1.2.2 Complete Inference: Bucket Elimination

	2.1.3 Soft Local Consistency
	2.1.3.1 AC*
	2.1.3.2 FDAC*
	2.1.3.3 EDAC*

	2.1.4 Soft Global Constraints
	2.1.4.1 Properties
	2.1.4.2 Soft Arc Consistency

	2.2 Distributed Constraint Optimization Problems
	2.2.1 DCOP Representations
	2.2.2 Solving Algorithms
	2.2.2.1 DPOP
	2.2.2.2 SBB
	2.2.2.3 AFB
	2.2.2.4 ADOPT
	2.2.2.5 BnB-ADOPT

	2.2.3 Experimental Evaluation

	3 Distributed Search
	3.1 BnB-ADOPT+: A New Version of BnB-ADOPT
	3.1.1 Removing Redundant Messages in BnB-ADOPT
	3.1.1.1 Example of Redundant VALUE messages
	3.1.1.2 Example of Redundant COST messages
	3.1.1.3 Correctness and Completeness
	3.1.1.4 Efficient Threshold Management

	3.1.2 N-ary Cost Functions in BnB-ADOPT
	3.1.2.1 Termination
	3.1.2.2 Efficient Threshold Management
	3.1.2.3 Correctness and Completeness

	3.1.3 Experimental Results

	3.2 ADOPT(k): Generalizing ADOPT and BnB-ADOPT search
	3.2.1 Search Strategy
	3.2.2 Pseudocode
	3.2.3 Correctness and Completeness
	3.2.4 Tie-breaking in BnB-ADOPT+
	3.2.5 Experimental Results

	3.3 Conclusions

	4 Distributed Soft Arc Consistency
	4.1 Including Soft Local Consistencies in Distributed Problems
	4.2 Unconditional Deletions in BnB-ADOPT+
	4.3 BnB-ADOPT+ Combined with AC and FDAC
	4.3.1 BnB-ADOPT+-AC
	4.3.2 BnB-ADOPT+-FDAC
	4.3.3 Example
	4.3.4 Simultaneous Deletions
	4.3.5 Experimental Results

	4.4 GAC in N-ary Constraints
	4.5 Higher Consistency Levels
	4.6 FDAC in Multiple Representations
	4.6.1 Experimental Results

	4.7 DAC by Token Passing
	4.7.1 Experimental Results

	4.8 Conclusions

	5 Distributed Soft Global Constraints
	5.1 Soft Global Constraints in Distributed Constraint Optimization
	5.1.1 Binary Decomposable Soft Global Constraints
	5.1.2 Decomposition with Extra Variables
	5.1.3 Contractible Soft Global Constraints
	5.1.4 Including Soft Global Constraints in Distributed Problems

	5.2 Including Soft Global Constraints in BnB-ADOPT+
	5.2.1 Searching with BnB-ADOPT+
	5.2.2 Propagation with BnB-ADOPT+
	5.2.3 Experimental Results

	5.3 Conclusions

	6 Conclusions
	6.1 Conclusions
	6.2 Future Work

	A Saving Messages in the ADOPT Algorithm
	A.1 Reengineering ADOPT
	A.2 Communication Structure
	A.3 Redundant Messages
	A.4 New Version
	A.5 Experimental Results
	A.6 Conclusions

	B Global Constraints in Distributed Constraint Satisfaction
	B.1 Adding Global Constraints
	B.2 Searching with Global Constraints
	B.3 Propagating Global Constraints
	B.4 Experimental Results
	B.5 Conclusions

	Bibliography

