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Abstract

The recent large amount of data needing to be processed represents one of the major chal-

lenges in the computational field. This fact led to the growth of specially designed applications

known as data-intensive applications. In general, to ease the parallel execution of data-intensive

applications input data is divided into smaller data chunks that can be processed separately.

However, in many cases, these applications show severe performance problems mainly due to

load imbalance, inefficient use of available resources, and improper data partition policies. In

addition, the impact of these performance problems can depend on the dynamic behavior of the

application.

This work proposes a methodology to dynamically improve the performance of data-intensive

applications based on: (i) adapting the size and the number of data partitions to reduce overall

execution time; and (ii) adapting the number of processing nodes to achieve an efficient execu-

tion. We propose to monitor the application behavior for each iteration (query) and use gathered

data to dynamically tune the performance of the application. The methodology assumes that a

single execution includes multiple related queries on the same partitioned workload.

The adaptation of the workload partition factor is addressed through the definition of the

initial size for the data chunks; the modification of the scheduling policy to send first data

chunks with large processing times; dividing of the data chunks with the biggest associated

computation times; and joining of data chunks with small computation times. The criteria

for dividing or gathering chunks are based on the chunks’ associated execution time (average

and standard deviation) and the number of processing elements being used. Additionally, the

resources utilization is addressed through the dynamic evaluation of the application performance

and the estimation and modification of the number of processing nodes that can be efficiently

used.

We have evaluated our strategy using a real and a synthetic data-intensive application.

Analytical expressions have been analyzed through simulation. Applying our methodology, we

have obtained encouraging results reducing total execution times and efficient use of resources.

Keywords: load balancing; dynamic performance analysis and tuning; Data-intensive

applications; arbitrarily divisible load.



Resumen

La gran cantidad de datos que recientemente necesitan ser procesados, representa uno de los

mayores retos en el campo de la computación. Esto ha conllevado al crecimiento de aplicaciones

con requerimientos especiales conocidas como aplicaciones intensivas en datos. En general, para

facilitar la ejecución en paralelo de aplicaciones intensivas en datos, los datos de entrada son

divididos en trozos más pequeños que pueden ser procesados individualmente. Sin embargo,

en muchos casos, estas aplicaciones muestran graves problemas de rendimiento debidos prin-

cipalmente a desbalances de carga, uso ineficiente de los recursos de cómputo disponibles, e

inapropiadas poĺıticas de partición y distribución de los datos. Además, el impacto de dichos

problemas de rendimiento puede depender del comportamiento dinámico de la aplicación.

Este trabajo propone una metodoloǵıa para mejorar, dinámicamente, el rendimiento de

aplicaciones intensivas en datos, en base a: (i) adaptar el tamaño y el número de las parti-

ciones de datos con el fin de reducir el tiempo de ejecución total; y (ii) adaptar el número de

nodos de cómputo para conseguir una ejecución eficiente. Proponemos monitorizar el compor-

tamiento de la aplicación para cada iteración (o consulta) y usar los datos recogidos para ajustar

dinámicamente el rendimiento de la aplicación. La metodoloǵıa asume que una sola ejecución

incluye múltiples consultas relacionadas sobre una misma carga de trabajo particionada.

El ajuste del factor de partición de la carga de trabajo es llevado a cabo a través de la

definición del tamaño inicial de los trozos de datos; la modificación de la poĺıtica de planificación,

para enviar primero los trozos de datos con los tiempos de procesamiento más largos; la división

de dichos trozos de datos; y el agrupamiento de trozos de datos con tiempos de cómputo muy

cortos. Los criterios para decidir dividir o agrupar trozos están basados en los tiempos de

ejecución asociados a cada pieza (tiempo medio y desviación estándar) y en el número de e-

lementos de cómputo que están siendo utilizados. Adicionalmente, lo inherente al uso de los

recursos se abordó mediante la evaluación dinámica del rendimiento de la aplicación, junto con

la estimación y consiguiente modificación del número de nodos de procesamiento que pueden ser

utilizados eficientemente.

Hemos evaluado nuestra propuesta usando aplicaciones intensivas en datos reales y sintéticas.

Aśı como también hemos analizado las expresiones anaĺıticas propuestas a través de simulación.

Luego de aplicar nuestra metodoloǵıa, hemos obtenido resultados prometedores en la reducción

del tiempo total de ejecución y el uso eficiente de los recursos.

Palabras clave: balanceo de carga; análisis y sintonización dinámico del rendimiento;

aplicaciones intensivas en datos; carga arbitrariamente divisible.
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Resum

L’augment de la quantitat de dades que necessiten ser processades actualment, representa

un dels majors reptes a l’àmbit de la computació. Això ha permès el creixement d’aplicacions

amb requeriments especials conegudes com aplicacions intensives en dades. En general, per

afavorir l’execució en paral·lel de aquest tipus d’aplicacions, les dades d’entrada son partits en

trossos més petits que poden ser processats individualment. No obstant això, en molts casos,

aquestes aplicacions mostren problemes graus de rendiment, deguts principalment a desequilibris

de càrrega, l’ús ineficient dels recursos de còmput disponibles, i inadequades poĺıtiques de partició

i distribució de les dades. A més, l’impacte d’aquests problemes de rendiment es pot veure

acrescut pel comportament dinàmic de l’aplicació.

Aquest treball proposa una metodologia per a millorar, dinàmicament, el rendiment d’aplica-

cions intensives en dades, basat en: (i) l’adaptació de la grandària i nombre de les particions de

dades amb la finalitat de reduir el temp d’execució total; i (ii) l’adaptació del nombre de nodes de

còmput per aconseguir una execució eficient. Proposem observar el comportament de l’aplicació

per cada iteració (o consulta) i utilitzar les dades recollides per a ajustar dinàmicament el seu

rendiment. La metodologia assumeix que cada execució inclou múltiples consultes relacionades

sobre una única càrrega de treball partida.

L’ajust del factor de partició de la càrrega de treball es fa mitjançant la definició de la

grandària inicial dels trossos de dades; la modificació de la poĺıtica de planificació (per a enviar

primerament els trossos amb major temps d’execució); la divisió dels trossos amb major temps

d’execució; i el agrupament de trossos de dades amb temps de còmput massa curts. Els criteris

per a decidir si el trossos es divideixen o es agrupen estan basats en els temps d’execució associats

a cada tros (com el temps mitjà i la desviació estàndard) aix́ı com també en el nombre de nodes

de còmputs que s’estan utilitzant. A més a més, el referent a l’ús de recursos de còmput es va

abordar mitjançant l’avaluació dinàmica del rendiment de l’aplicació, juntament amb l’estimació

i modificació del nombre de nodes de processament que es puguin utilitzar eficientment.

Hem avaluat la nostra proposta usant aplicacions intensives en dades reals i sintètiques. Aix́ı

com també hem analitzat les expressions anaĺıtiques propostes mitjançant simulació. Després

d’aplicar la nostra metodologia, hem obtingut resultats prometedors en la reducció del temps

total d’execució i l’ús eficient dels recursos.

Paraules claus: balanceig de càrrega; anàlisi i sintonització dinàmic del rendiment;

aplicacions intensives en dades; càrrega arbitràriament divisible.
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Chapter 1

Introduction

“Toutes les grandes personnes ont d’abord été des enfants.”

Antoine de Saint-Exupéry. Le Petit Prince.

In an interdisciplinary world, the interaction between different fields of study has

become a fact. Areas as physics, genetics, mechanics, and so on, have been positively af-

fected by the emergence of computational science. Computational systems have provided

specially developed scientific applications and high performance computing (HPC) envi-

ronments to solve problems of different nature. Among some of the greatest beneficiaries

of these computational systems, it is worth mentioning: accomplish weather simulations in

short and specific deadlines; interpret data coming continuously from sensors; or process

user-generated information. These processes, together with most scientific applications,

represent some of the greatest challenges for HPC. As the applications become more com-

plex and perform more sophisticated computations, the increasing demand for computing

power highlights the need for massively parallelization of systems and applications.

Parallel systems are computer environments composed of a set of processing units

that work in conjunction and simultaneously to solve a computational problem. Parallel

computers have high-potential characteristics, such as processing speed, memory or disk

capacity. Although such systems have their performance limits, they are more powerful

than the rest of the computers and hence are more suitable for solving scientific problems

demanding intensive computation. Architectures, operating systems and applications

have been developed to exploit the capacities of these systems to speedup computation.

In this chapter, we present a general overview of the applications performance problem

in current computational systems. In particular, our work is focused on data intensive

parallel applications. This chapter introduces the motivation inspiring this work, as well

as an overview of studies related to our proposal. In addition, it presents the goal and

1



contributions of this work and briefly describes the research method. Finally, we present

the organization of this document.

1.1 Parallel Processing of Large-Scale Data

In the last few years, HPC systems have been in continuous growth to satisfy the com-

puting power demand and to enable the parallel utilization of computational resources.

Nevertheless, the size of the computational problems has growth at almost the same rate.

Systems and algorithms are facing an endless data deluge coming from scientific applica-

tions such as genome sequencing, molecular dynamics simulations, weather forecasting,

and worldwide banking transactions, among others [20]. For instance, a single Google

search releases the power of thousands of processors looking for a query over data sets

of hundreds of terabytes. This data flow has surpassed the capacities of the systems and

algorithms designed a few years before, and has led to the growth of new applications

known as data intensive applications [16], or its lest trendy name: big-data computing

[17]. Data means “things given” in Latin –although we tend to use it as a mass noun in

English, as if it denotes a substance– and ultimately, almost all useful data is given to us

either by nature, as a reward for careful observation of physical processes, or by people,

usually inadvertently. As a result, in the real world, data is not just a big set of random

numbers; it tends to exhibit predictable characteristics. This predictable behavior will

help us to estimate the performance for subsequent iterations.

Data intensive computing is concerned with addressing the technical challenges gen-

erated by the ever-growing demands for processing large-scale data sets [61]. Moreover,

what makes most large-scale data large are repeated observations over time and/or space.

For example, the Web log records millions of visits a day to a handful of pages; the retailer

has thousands of stores, ten thousands of products, and millions of costumers but logs

billions and billions of individual transactions a year. Scientific measurements are often

made at high time resolutions and become unmanageable when they involve two or three

dimensions of space as well; e.g., the whole human genome sequencing problem involves

the computation of files of several gigabytes [87]. In recent years, experiments carried

out with the Large Hadron Collider (LHC) at CERN, such as ATLAS [39] and CMS [38],

generate data at a rate of 320 and 220 megabytes per second, respectively. Therefore,

in the era of data intensive applications, computational systems are not only intended to

compute but also to store and manage data. Simple tasks, such as making data available

to be processed in research centers have become a huge challenge given the size of data.

In general, if a scientific application is appropriately designed to take advantage of

2



systems parallelism, its executions would be usually carry out in a fast and efficient way.

Nevertheless, to process data efficiently is not only matter of having enough processing

units, but it also depends on specific characteristics of the workload of the application. In

many cases, these applications can be naturally implemented in parallel by partitioning

their data sets into smaller pieces and distributing them among the processing units of

the parallel system. However, each partition may have different processing times and this

situation may lead to significant imbalances in the execution time of the processing units

of the application.

When data intensive applications are executed for a large number of queries or iter-

ations, we may face additional variations in overall execution time from one execution

to the other. For this reason, any proposal for performance analysis strategies and load

balancing techniques must be adapted to the specific characteristics of the application.

In most cases, given the variability between (or within) executions, performance anal-

ysis must be carried out at run time, that is while the application is being executed.

Otherwise, the proposed solution may be obsolete from one iteration to the other.

The performance of data intensive applications is closely related to the capability of

overcoming performance degradation caused, in many cases, by load imbalance, ineffi-

cient use of available resources, and improper data partition and management policies.

Unfortunately, as explained above, the steady growth of data sets significantly increases

performance problems. The following questions arise from the analysis of this situation:

how do the size of workload partitions affects the total execution time? What kinds of

data-distribution strategies are best suited for data intensive applications? Are these ap-

plications able to be executed in a large number of processing units? If they are not, what

should be the solution to execute them? What are the best options to achieve an efficient

execution with shorter run times? Can variable behavior between executions be faced

statically or dynamically? The mere posing of these questions highlights the importance

of the performance analysis of data intensive applications, and the need to address this

problem in current high-performance computing systems.

This work is focused on answering these questions with the aim of improving per-

formance of parallel data intensive applications in the presence of variable behavior. To

provide completeness to the scope of the work presented along this chapter, we will give

now a short introduction into data management; performance issues and dynamic perfor-

mance analysis and tuning.
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1.1.1 Data Management

Data intensive computing represents not just an evolutionary change in computation

science but also a revolutionary change in the way scientifics gather and process infor-

mation, from the hardware and algorithms to the presentation of knowledge to the end

user. Applications in many disciplines are driving a shift in the emphasis of data intensive

computing. Applications are changing from focusing solely on large-scale data sets to the

broader realm of issues dealing with the time to reach a solution when data-handling

capacity is a significant factor, e.g., as in real-time processing of massive data streams.

According to Kouzes et al. [50], one of the first challenges to data intensive computation

is the amount of incoming data, obtained from multiple sources and locations, with varying

degrees of quality and reliability. As data size increases, the computational resources

needed to process data have to grow as well. In some cases, analysis may scale linearly

with data size, hence parallelization techniques are easy to implement. Nevertheless,

applications may have data-depending behaviors, that require a more complex processing.

These applications may scale super linearly with data size [40], [68]. Consequently, as data

size increases, applications might take longer to be executed, leading to the necessity of

high-performance computing systems.

With the aim of enabling efficient executions of data intensive applications over HPC

systems, there are many studies that have obtained good results in time reduction and

efficient use of resources; these studies range from the analysis of the effectiveness of I/O

system, to the design of appropriate strategies to define and access data structures [31].

In this work, we have focused on dividing the workload of the data intensive applications

into smaller chunks1 (according to the Divisible Load Theory, DLT [13]) to ensure that the

workload of the application can be manageable. By doing this, the size of the workload

is reduced and enables parallelism. However, once the workload has been divided, other

issues related to disk access or load balancing may appear. The partition of the initial data

set is translated into easily tractable data. Nevertheless, complexity in parallel systems

entails the design of smart data management policies to avoid performance loss.

1.1.2 Performance Issues

The performance of data intensive applications running in parallel systems is significantly

affected by the dynamic effects of factors arising from characteristics of the application,

the algorithm and the system. These factors typically induce load imbalance –a major

1A chunk refers to each independent data piece generated from dividing the initial workload. From
now on, the term data chunk will be used to refer these pieces.
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source of performance degradation in scientific applications [9]. Uneven distribution of

workload among processing units in a parallel algorithm often results in some processors

being idle and underutilized while others are heavily loaded. Many important problems

in science and engineering have dynamically changing workload distributions. N-body

simulations, adaptive meshes and discrete-event simulation are some examples. In these

situations, the workload distribution is typically irregular and changes during execution.

System factors as the variability in workload processing times; processors performance

at run time; and network latency, may induce load imbalance among processors. The ini-

tiation and removal of other applications that are concurrently running, and the variation

in processing times due to data characteristics also increase the potential of load imbal-

ance. In parallel systems, dynamic scheduling techniques attempt to maintain balanced

loads by assigning work to idle processors at run time. These techniques are used to

correct load imbalances that may result from undesirable and unexpected events, such as

intrusion of operating systems call or high network latency, among others. Additionally,

if there are time (or cost) restrictions when running the application, the intended goal is

to execute it in the shortest possible time without wasting resources. This goal can be

achieved by estimating the appropriate number of processing units according to current

(or previous) application performance.

In this work, we focus on the design of load balancing strategies based on two main

approaches: (i) the distribution of data chunks according to their expected processing

times; and (ii) the tuning of the used processing units according to application behavior.

We have chosen these approaches with the aim of providing an effective and wide-range so-

lution to the problem of load imbalance, by taking advantage of the processing variability

among the pieces (data chunks) of the workload.

1.1.3 Dynamic Performance Analysis/Tuning

Designers and developers of data intensive applications are responsible for providing the

best possible behavior of these applications in parallel systems (in most cases, without

considering the influence of data in the overall behavior of the application). Therefore,

any application will be useless and inappropriate when its performance is below an ac-

ceptable limit. Once the application has been implemented in parallel, developers must

systematically test its functionality to guarantee its correctness. Then, to provide the

highest performance, optimization process may be carried out to ensure that there is no

performance bottleneck during the execution of the application.

The optimization process –also known as tuning process– requires the analysis of the

performance of the application and the modification of critical application parameters.
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The tuning process implies then several phases. First, the performance measurements

must be taken to provide information about the application. This phase is known as the

monitoring phase. Here, the information related to the execution of the application is

collected. Second, this information is evaluated in the analysis phase. Performance anal-

ysis finds performance degradations, deducts their causes and determines the actions to

be taken to mitigate these bottlenecks. Finally, in the tuning phase, appropriate changes

must be applied to the application to overcome problems and improve its performance.

The most important and complex task of the tuning process is the performance analysis

[63]. The causes of performance degradations can be found at different levels, such as an

error in the initial design of the communication protocol in the application; underlying

hardware capabilities; or inappropriate management of the application workload, among

others. As a consequence, each parameter related to the execution of the application must

be evaluated. In many cases, the application performance also depends on the input data

set, implying potential performance variations between executions.

Application performance analysis and tuning can be difficult and costly. In this work,

given the variable behavior of data intensive applications, we consider a dynamic approach

for improving performance in such applications. We did not consider the post-mortem

analysis and tuning approach, because in applications with changing behavior, solutions

proposed after one execution may be obsolete for the next one.

1.2 Motivation

Data intensive computing has begun with the analysis and translation of massive amounts

of data into information. Nevertheless, the size (or complexity) of the incoming data has

subtle influence in how recent scientific studies are carried out. For example, by analyzing

raw data, it is possible to build (and limit the space of) models that make simulations

computationally tractable, or to derive insights through computationally driven experi-

ments (or hypothesis testing).

Currently, there are a variety of tools and strategies for the management of data

intensive problems. However, major gaps in performance improvement methodologies for

such applications are still a reality. The problems are exacerbated by the many data

intensive applications that require the computing power available from high-performance

computing systems or massively distributed clusters of commodity machines.

As data intensive applications are one of the most recent beneficiaries of the HPC

systems, running efficiently such applications may be a challenge. Several solutions has

been proposed in the last few years. These solutions range from the migration of data
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intensive applications to Infrastructure as a Service (IaaS) or Platforms as a Service

(PaaS) systems [3], to specially designed architectures to reduce system latencies, such as

I/O or communication latencies [23], [85]. In most cases, proposed solutions are tightly

coupled to the characteristics of the parallel system or to the application. Although

previous solutions have reported outstanding performance of the applications, they have

achieved it at the expense of migrating the application to a new parallel system or to a

different programming paradigm.

Methods based on partitioning workload of data intensive applications into smaller

(and independent) pieces often achieve far better performance results, since they enable

the parallel execution of the application. Nevertheless, an inefficient data distribution

may generate huge load imbalances at run time. Notwithstanding, any proposal capable

of reducing load imbalances and therefore, overall execution time, will have incredibly ben-

eficial implications for running such application in high-performance computing systems.

Consequently, all factors described above summarize the motivation of this work.

1.3 Objectives

The ultimate goal of this work is to design, implement and evaluate a performance im-

provement methodology for parallel data intensive applications with divisible workloads

and variable behavior. We address this problem by designing load balancing strategies

for data intensive applications that perform related queries or iterations over data sets

that can be arbitrarily partitioned into smaller pieces. We can enumerate the objectives

of this work as follows:

1. Conduct a study on the general characteristics of data intensive applications, to

identify those factors that influence their performance.

2. Identify the performance factors that can be tuned dynamically, taking into

account results obtained in the previous point, to identify possible solutions to

performance problems in data intensive applications.

3. Design and implement a dynamic performance analysis and tuning methodology

capable of improving performance of data intensive applications, in terms of

execution time and efficient use of available resources.

4. Conduct an analysis of the problems caused by performance factors, such as the

workload partition factor and the number or used processing nodes; and evaluate

the effectiveness of proposed solutions to the aforementioned problems.
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5. Analyze the proposed methodology to avoid possible performance degradations

and propose solutions (if necessary).

6. Evaluate the behavior of solutions proposed through the methodology by simu-

lation-based experimental study; and real execution of data intensive applica-

tions, designed and selected to confirm the proper functioning of the proposal.

1.4 Contributions

The contributions of the work are directly related to the achievement of the objectives

we have outlined in previous sections. To this end, we have designed and implemented

a methodology for improving performance of data intensive applications by dynamically

tuning performance factors as the number of used resources and the workload partition

factor.

Our proposal has been developed making the following assumptions about data inten-

sive applications:

• The applications process, explore and/or evaluate large-scale input data sets.

• The initial data set of the applications can be arbitrarily partitioned into inde-

pendent data chunks.

• The applications perform a set of related iterations or queries on the data set,

e.g., search for similarities between several related proteins in a large database,

or look for similar strings on the web.

• The performance of the applications varies significantly according to the input

data.

• The characteristics of the input data of the applications may be unknown.

In this work, we present the following contributions:

• The introduction of a method for reducing overall execution time of data inten-

sive applications by partitioning the initial data set into smaller data chunks [77].

The method is based on monitoring the computation time of data chunks to de-

termine the order in which they should be scheduled in future explorations. The

proposed distribution policy avoids load imbalances by processing data chunks

with large execution times first, and subsequently filling in the possible ineffi-

ciencies with data chunks with shortest associated execution times. This load
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balancing method is commonly applied in a dynamic scheduling approach called

factoring [42], [9], that delivers in each iteration, data chunks of decreasing sizes.

• A method to dynamically tuning the size of the workload data chunks [79]. We

have designed a method to change the size of the data chunks with the highest

and lowest associated computation time, making it possible to balance the ap-

plication workload. The method includes the dynamic division and gathering of

data chunks (when partitioning cost is low); and the possibility of dynamically

choosing among previously generated partitions (when the partition cost is too

high). In both cases, besides the computation time, the calculation of the parti-

tion factor will consider the communication cost, memory use, and the number

of available computing nodes.

• The definition of a method to dynamically estimate the maximum number of

processing nodes that can be used for a given data set partition factor [77], [78].

This estimation is based on monitoring performance metrics of the application,

such as the overall execution time, and the rate of utilization of each processing

node. The method enables to infer that the minimum execution time for an

exploration is limited by the data chunk with the maximum processing time.

Analytical expressions (described in chapter 3) are used to evaluate the collected

metrics to determine the behavior of the application, and the maximum number

of processing nodes that can be managed. If an execution presents a large number

of idle processing nodes, the method will use gathered data to determine a new

value for the processing nodes to reduce performance degradation.

Additionally, the method is able to estimate the application execution time for

an exploration using a certain number of processing nodes, to decide if this

parameter should be changed. The criteria for deciding the appropriated number

of workers has been defined as an index relating the estimated execution time and

the efficient use of the resources. Efficiency is defined as the relation between the

mean computation time for each data chunk –that is the time each node has been

doing useful work– and the total time the node has been available. Consequently,

the method pursues the lowest value for the number of workers that minimizes

both the exploration execution time and the efficiency loss.

We have designed the proposed methodology for homogeneous clusters with the aim of

being able to define a base model because they may provide steadiness in certain factors,

such as processing capacity and disk and network latency, and therefore, simplifying the

definition of the model.
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1.5 Research Method

The research in this work is oriented to the design, implementation and evaluation of a

performance improvement methodology for data intensive applications; and is framed in

the academic program of applied research of the Computer Architecture and Operating

System Department at the Universitat Autònoma de Barcelona. Throughout this work, we

have followed the (iterative) hypothetico-deductive method as the methodological frame

for performing the scientific analysis of data intensive applications [33]. The method is

based on five major stages:

1. Existent theories and observations. Pose the question in the context of

existing knowledge, theory and observations.

2. Hypothesis. Formulate a hypothesis as a tentative answer.

3. Predictions. Deduce consequences and make predictions.

4. Test and new observations. Test the hypothesis in a specific experiment/the-

ory field.

5. Old theory confirmed within a new context or new theory proposed.

When consistency is obtained, the hypothesis becomes a theory and provides

a coherent set of propositions that define a new class of phenomena or a new

theoretical concept.

The loop 2-3-4 is repeated with modifications of the hypothesis until the agreement

is obtained, which leads to 5. If major discrepancies are found, the process must start

from the beginning. The results of stage 5 have to be published. Theory at that stage is

subject of process of natural selection among competing theories. The process can start

from the beginning, but the state 1 has changed to include the new theory/improvements

of old theory.

This work shares theoretical basis with the method developed and discussed in depth

by Morajko [62], [63] for Dynamic Tuning of Parallel/Distributed Applications; and sub-

sequently extended by César Galobardes [26], [25]. These proposals, together with the

theory of performance analysis, constitute the first stage of the scientific research method

of this work. Throughout this stage, we have conducted the first study of performance

analysis for data intensive applications. Since dynamic tuning and performance improve-

ments for applications developed under a Master-Worker approach has been widely cov-

ered in two previous theses, we are focused on the application of their theories to design,
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implement and evaluate a novel and simple performance improvement methodology for

data intensive applications designed under the same paradigm. In fact, steps 2 and 3

comprise the proposal of the methodology. Then, in step 4 and 5, we have evaluated and

analyzed the effectiveness of the proposal. To this end, we have enhanced and extended

existing performance improving strategies by including the proposed methodology. This

has allowed us to develop the analytical simulator and the synthetic application used in

the experimentation of our proposals.

1.6 Thesis Outline

According to the objectives and research method described above, the outline of the

remaining chapters of the work is as follows.

Chapter 2: Thesis Background. Introduces some basic concepts of performance

analysis and tuning of data intensive applications. In addition, related work and

specific concepts about Divisible Load Theory, load balancing techniques and

dynamic tuning are also introduced.

Chapter 3: Methodology Description. In this chapter, we present the proposed

performance improvement methodology, specifically designed for data intensive

applications with divisible load.

Chapter 4: Evaluation of the methodology. This chapter describes the test scenar-

ios and provides the explanation of experimental results for our proposal, taking

into consideration adjustments on the workload partition factor and the number

of processing nodes being used.

Chapter 5: Conclusions. Concludes the work and presents the further work and open

lines for the performance improvement methodology for data intensive applica-

tions with divisible load.

The list of references completes the document of this work.
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Chapter 2

Thesis Background

“Ce qui embellit le désert c’est qu’il cache un puits quelque part.”

Antoine de Saint-Exupéry. Le Petit Prince.

The main goal of this work, is to design and implement a methodology capable of

improving performance in data intensive applications. This methodology takes advantage

of the divisibility property of the workload of the applications and enables load schedul-

ing through dynamically tuning performance parameters, such as the workload partition

factor and the number of resources being used. Consequently, before introducing the

developed methodology, we want to describe the theoretical basis that have framed this

thesis.

A data intensive application, is an application that can explore, analyze or, in gen-

eral, process large amount of data. Data may consists of results sent continuously by

sensors [44]; biological databases containing a large number of biological chains of nucleic

acid (DNA) or proteins [87]; or results coming from physical experiments that need to

be processed to extract knowledge [39], [38]. Examples given above, have two points in

common: (i) collected data does not have any sense for the researcher in its initial unpro-

cessed state; and (ii) all these data sets need to be computed, analyzed or transformed to

produce useful information, and of course, knowledge. This conversion from raw data to

knowledge has been named “Information-based computing” [61].

The transformation of data into knowledge (as shown in figure 2.1) may be an end-

less and resource consuming task. For instance, to process data streams coming from a

single experiment of the Large Hadron Collider in Geneva (tens of terabytes a day [24])

could take months. In addition, along the conception and design of new computational

systems, several factors related to generated data should be considered, e.g., the storage,

the distribution and the management of data. Therefore, parallel and distributed com-

putational systems have emerged as a solution to process large-scale data. These systems
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Figure 2.1: How does data becomes knowledge.

are composed of processing units working together to solve a computational problem in

a concurrent manner.

To run data intensive applications in parallel and distributed computational systems,

the parallel implementation of such applications is often performed by taking advantage

of data parallelism (data can be distributed among available processors to be processed

in parallel). Data parallelism leads to an additional challenge (besides the complex tasks

of designing and implementing the application): how to distribute the workload of the

application among the processing units to achieve a “good” performance? This “good”

performance (depending on the application) might be minimizing the total execution

time, minimizing the communication delays, and/or maximizing the resources utilization.

Hence, the distribution choice becomes a resource management problem and should be

considered as an important factor when running parallel data intensive applications.

Under resource management problems, scheduling techniques may be applied. These

techniques refer to strategies for distributing load among processors. In some cases,

scheduling is carried out by applying load balancing. Load balancing techniques refer

to migrating load from one processor to another [90]. In both cases, the goal is the

same: achieve a balanced execution, where all processing units are computing the same

amount of work, or during the same amount of time. Nevertheless, some authors insist

on using these terms interchangeably, e.g., by calling dynamic scheduling as dynamic load

balancing [81]. In this work, we consider as scheduling the distribution of workload among

processing units to achieve a balanced execution. Specifically, we base our methodology

(that will be discussed in the next chapter) on two scheduling strategies: (i) divisible load

scheduling [12]; and (ii) scheduling using factoring [42].
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On one hand, divisible load scheduling assumes that computation and communication

loads of computational problems can be arbitrarily partitioned among the processing units

[12]. This approach considers there are no precedence relations among the data, therefore

load can be easily assigned to processors in a system. On the other hand, factoring

derives from techniques of scheduling parallel loops. In factoring, iterations are executed

using decreasing size data chunks to assure that all processors finish their computation

before an estimated ideal time. From basic scheduling taxonomies defined by Casavant

and Kuhl [22], divisible load scheduling and factoring techniques can be considered as

dynamic scheduling techniques. Divisible load scheduling is a method that pursues an

optimal value along the execution of the application (at run time), while factoring adapts

the load distribution on the fly according to the performance of the system.

With the same aim of keeping applications balanced at run time, it is necessary to

monitor and evaluate the behavior of the application. To this end, the use of performance

analysis and tuning strategies is an important complement. The instant in which the

analysis is carried out depends on the characteristics of the application being evaluated.

If the application has a constant and predictable behavior a static performance analysis

can be performed previously to the application execution. However, if the behavior of the

application is random within (or between) executions –and therefore unpredictable– the

analysis should be perform at run time (dynamically), otherwise any estimation will be

obsolete.

In this chapter, are described the basic scheduling strategies available to balance exe-

cutions (section 2.1); selected scheduling techniques for this work, are based on approaches

as divisible load scheduling (described in section 2.2); and scheduling parallel iterations

throughout factoring (described in section 2.3). To conclude with the description of the

model for dynamic performance analysis and tuning used to perform adjustments and

modifications in data intensive applications (described in section 2.4).

2.1 Scheduling Strategies

In parallel computing, a programmer can define multiple processes that perform one or

more tasks at the same time. These tasks represent the smallest operation that can

be done concurrently; and the processes are an abstract software entity that executes

its assigned tasks on a processor (processing unit). In most cases, a parallel program

looks for, decomposing a computational problem into tasks that can be performed by the

processes. In the literature, the phases of decomposition and of distribution are often

called partitioning [32]. The aim of partitioning is to assign equal amounts of workload
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to the processing units [30]. However, the number of generated tasks and the number of

processes may often be not equal. If this happens, a process can be idle or overloaded

with multiple tasks [51] and hence load imbalances appear. Decisions of how to distribute

the task (scheduling) and where to allocate the load (mapping) are important phases in

the load management process. Consequently, the problem here is not only to decide how

to split the computational problem into tasks, but also how to distribute (or schedule)

and assign (or map) the generated tasks among processing units to achieve performance

goal(s), such as minimizing execution time, minimizing communication delays, and/or

maximizing resource utilization [22].

The decision of how to distribute tasks in a parallel application, i.e., to define the

scheduling policy, represents a resource management problem and needs to be considered

an important stage when designing parallel applications. As parallel and distributed

systems were gaining popularity, the performance issues related to tasks distribution were

increasing too. In this work, for data intensive applications, a task is considered as each

one of the obtained data chunks from partitioning the initial workload of the applications.

In this case, the aim of scheduling the workload will remain the same: distribute data

chunks among available processing units to ensure there are no idle processors while tasks

are waiting to be processed.

Scheduling methods are typically classified into several subcategories (as shown in

figure 2.2) [22]. According to Casavant and Kuhl [22], local scheduling is defined as a

process performed by the operating system to fill with tasks each time fraction available

in the processor. While global scheduling, refers to decide where to execute the tasks

in a parallel system (set of processing units) by taking into consideration characteristics

from the system or from the application. Global scheduling may be performed by a

single central process, or it may be distributed among the processing units. According to

the moment in which scheduling decisions are taken, global scheduling methods can be

static (described in section 2.1.1) or dynamic, often called dynamic load balancing [90]

(described in section 2.1.2).

Scheduling

Local Global

Static Dynamic

Figure 2.2: Main classification of scheduling methods 1.

1Adaptation from Casavant and Kuhl [22].
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2.1.1 Static Scheduling

In static scheduling the goal is to minimize the overall execution time of an application

while minimizing the communication delays. To this end, tasks are assigned to the pro-

cessing units before launching the application; and information about execution time of

tasks and available resources is assumed to be known a priori. Assignment of tasks is

often performed without considering characteristics of the processing units, consequently

a task is always executed on the processor in which it is assigned even if the processing

unit presents a poor performance.

The major advantage of static scheduling algorithms is that they will not cause any run

time overhead, because all the overhead of scheduling process is incurred previous to the

execution. Nevertheless, for random or unpredictable execution times these algorithms

will not perform well, because static scheduling algorithms rely on the estimated execution

times of computing processes. For this reason, static scheduling algorithms are attractive

for parallel programs that their computation times can be predicted. However, to find an

optimal solution following the static approach for a large number of processors may result

in an endless task [14].

The performance of a static scheduling algorithm in front of a dynamic and unpre-

dictable program behavior can be disappointing. For example, parallel applications such

as simulations of molecular dynamics have no benefits from static scheduling algorithms.

Mainly because this type of applications perform a large number of calculations that re-

quire a certain degree of synchronization during the execution of the application, i.e., as

atoms tends to move in the system, the computational requirements of each process may

change from step to step. Consequently, the workload assigned to each processor needs to

be redistributed periodically at run time and static scheduling is unable to perform this

task.

The prediction of the behavior of parallel applications based on static characteristics

or previous knowledge of the application, can be a long, tedious and exhausting task

when the application presents a variable behavior. Therefore, when facing hard-to-predict

applications a static scheduling approach may not be the most convenient to keep load

balanced.

2.1.2 Dynamic Scheduling

The goal of dynamic scheduling is to redistribute tasks from heavily loaded processing

units to lightly loaded processing units. In general, this process is known as dynamic load

balancing . The aim of dynamic load balancing algorithms is to equalize the workload
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among available processors while some communication costs are reduced. Nevertheless,

such algorithms may generate non-negligible run time overhead, because of the analysis

performed to decide the “best” processor to send the load [89].

A typical dynamic load balancing algorithm is defined by some inherent policies

(adapted from a taxonomy presented by Bubendorfer and Hine [19]): (i) information

policy, that specifies the amount of load information made available to task placement

decision-makers; (ii) transfer policy, that determines the conditions to decide if a task

should be transferred, that is, the current load of the host and the size of the task under

consideration; and (iii) placement policy, that identifies the processing element to which

a task should be transferred.

Dynamic load balancing algorithms may be carried out under centralized or distributed

approaches. The main difference between them, is given by who is responsible of the sched-

uling decisions: a single processor, under a centralized approach, or all the processors,

in a distributed approach. Additionally, a combination of both policies may exist, where

information policies are centralized while transfer and placement policies are distributed.

The decision of whether scheduling is centralized or distributed (or a combination of both)

depends on the overhead introduced by the scheduling process, or on characteristics of the

application, such as the communication pattern or the parallel paradigm. The advantage

of dynamic load balancing (dynamic scheduling) over static scheduling is that the system

do not need to be aware of the real behavior of the application before execution. Addi-

tionally, these strategies are more flexible to face unpredictable or random behaviors in

the applications. Rommel [75] says that, dynamic scheduling is particularly useful when

the primary performance goal is maximizing resources utilization instead of minimizing

the execution time of the applications, because of the overhead introduced in the total

execution time of the applications (in comparison with the static load balancing that does

not introduce overhead). Nevertheless, in practice, both performance goals (minimizing

total execution time and maximizing the use of computational resources) are pursued

equally. The only restriction is that not always it is reasonable to pursue a global bal-

anced state. Often, it is better relaxing the requirement of load balancing. In this way,

dynamic scheduling strategies that pursue a partial balanced state between two possible

extremes (completely imbalance and fully balanced) represent a certain tradeoff between

the quality of the balancing and run time overhead [51].

The success of dynamic load balancing strategies depends on the likelihood of the

phenomenon that an idle or lightly loaded processor and some overloaded processor coexist

during the execution of an application [30].

In this work, since data intensive applications may present variable behaviors accord-
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ing to data characteristics, we decide to use a dynamic scheduling scheme that can be

performed at run time. In our methodology, two main approaches to keep the application

balanced are considered. First, the possibility to split the workload of the applications

into smaller data chunks, as proposed by Divisible Load Theory presented in subsection

2.2 and second, the capability to dynamically adapt the size of the data chunks accord-

ing to the performance of the application, based on the characteristics of the scheduling

parallel iterations (or loops) strategies described in subsection 2.3.

2.2 Divisible Load Scheduling

Parallel and distributed systems offer higher computing capabilities to process large com-

putational problems. In these systems, one of the major challenges is to exploit its

parallelism. In most cases, programmers are focused on improving functional parallelism.

This means, to identify and to adapt the characteristics of serial programs to be properly

executed in parallel. However, in data intensive applications there is another parallelism

ready to be exploited namely, the data parallelism. Data parallelism means that large

computational loads can be distributed among available processing units to be computed

in parallel.

Parallel load distribution is mainly concerned to the partitioning of a single large load

that originates or arrives to a processing unit. If one tries to process the original load

as a whole, the resulting processing time may be unacceptable. To reduce the overall

execution time, the initial load may be partitioned and distributed among the available

processing nodes in the system. Nevertheless, it is important to combine knowledge from

data characteristics with system-dependent constraints (such as communication delays

and processor characteristics) to assure an appropriate data partitioning. The theory

that studies the problem of partitioning and sharing load in parallel systems is known

Divisible Load Theory (DLT) [12].

Divisible load theory is a mathematical model created to enable performance analysis

of parallel and distributed systems by including both communication and computation

issues [27]. The divisible load scheduling theory uses a system of linear equations to

define the distribution of the load. Among the advantages of these models are: the

ease of computation, the use of a schematic language, the equivalence to model network

elements, and the facility to be applied in different fields [82].

Nevertheless, how the partitioning (or load division) can be done depends on the

divisibility property of the load. The divisibility property refers to the characteristic that

determines whether a load can be decomposed into a set of smaller pieces or not [13]. The
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Figure 2.3: Classification of processing load 2.

divisibility property classifies load as shown in figure 2.3.

On the one hand, loads may be indivisible, in which case new pieces may be of

different sizes, and cannot be further subdivided. Therefore, these loads do not have

any precedence relations and they need to be assigned and processed entirely in a sin-

gle processor. On the other hand, loads may be modularly divisible or arbitrarily

divisible.

A modularly divisible load may be subdivided into smaller modules based on some

characteristics of the load or the system. The processing of this load is completed when

all its modules are processed, and the processing of these modules may be subject to

precedence relations. Usually such loads are represented as tasks of interaction graphs

whose vertices correspond to the modules, and whose edges represent interaction between

these modules and perhaps also the precedence relationships.

A load may be arbitrarily divisible when all the elements in the load can be pro-

cessed in the same way. These loads have the characteristic that they can be arbitrarily

split into any number of load fractions (or data chunks). These load fractions may or may

not have precedence relations, i.e., data can be arbitrarily partitioned but a precedence

relation among the generated data chunks may exists, or if the data chunks do not have

precedence relations, then each data chunk can be independently processed.

Some of the applications in which this divisibility property is satisfied, include pro-

cessing of massive experimental data, image processing applications as feature extraction,

edge detection, signal processing applications, and matrix computations. Additionally,

since divisible load scheduling considers that both communication and computation loads

can be arbitrarily partitioned among the parallel system [74], the theory is well suited

for modeling a large class of data intensive computational problems. Under this scheme

it is possible to model and schedule load distribution for parallel and distribution sys-

tems. These characteristics, along with the capability of arbitrarily splitting data inten-

sive applications into smaller pieces, are the main reasons why this approach to improve

2Bharadwaj et al. [13].
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performance in such applications is chosen.

In this work, this basic terminology of divisible load scheduling is followed:

Source: it is a processing unit (processor) that manages other processors and has all the

data that should be computed. The source node divides data and distributes it

among other processors (child or worker processors). At the end, this node will

be responsible for collecting the results.

Job (workload): a large data file that can be arbitrarily partitioned into smaller pieces.

Chunk (piece): unit in which initial load is partitioned by the source node. The number

of data chunks can be equal or greater than the number of processing units.

2.2.1 General Description of Divisible Load Scheduling

The aim of divisible load scheduling is to minimize the overall computation time while

applying efficient load distribution strategies. In some cases, data partitioning algorithm

is simple to implement. However, designing a strategy that efficiently utilizes the available

resources in terms of computational power is not a trivial task.

The Load Distribution Model

In general, divisible load scheduling goes through the following process. The load to be

processed arrives at a node, named the source or the root node. Since the architecture of

the system may have processors equipped with or without front-ends, data processing may

be different. For instance, in the with front-end case, in a system involving m processors,

the root node partitions the load into m data chunks, starts the computation on its own

chunk and simultaneously starts distributing the other data chunks to other processors

one at a time in a predetermined order. The computation and communication events

occur concurrently at the source node. On the contrary, in the without front-end case,

the source node first distributes the data chunks to the rest of the processors and then

it computes its own data chunk. The problem is then to choose the size of the load

fractions in such a way that the goal of minimum processing time is met. Some times,

when addressing the problem of load partitioning it is necessary to consider characteristics

of both the system and the application, because not always dividing the workload into

data chunks of equal size may result in a good performance.
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Nomenclature

Below is described the standard notations used in the divisible load scheduling literature

[27], [28], [13], [74]:

• α = (α1, . . . , αm): load distribution vector (size of the load to distribute);

• αi: load fraction allocated to processor pi.

• T (α): total finish time with load distribution α.

• ωi: ratio of the time taken by processor pi, to compute a given load.

• Tcp: time taken to process a unit load (αi) by the standard processor.

• zi: ratio of the time taken by link li, to communicate a given load.

• Tcm: time taken to communicate a unit load on a standard link.

Then, αiwiTcp is the time to process the fraction αi of the entire load on the ith

processor. Likewise, αiziTcm is the time to transmit the fraction αi of the entire load over

the ith link.

The standard processor or link mentioned above is any processor or link that is used

as a reference. It could be any processor or link in the network or a conveniently defined

fictitious processor or link.

2.2.2 Applicability of Divisible Load Scheduling

Since many parallel applications can be decomposed into smaller tasks [82], divisible load

theory (or divisible load scheduling) has been easily adopted and applied into different

fields, such as: managing large-scale data; image and video processing; biological and

network applications; or sensor networks; among others. In addition, besides the origins

of divisible load theory, its implementation has ranged from dedicated systems, such as

homogeneous and heterogeneous clusters, to distributed systems as Grid and Cloud. In

this section, we present an overview of some of these works.

At the very beginning, most of the studies were performed on homogeneous clusters.

For instance, Drozdowski and Wolniewicz [34] employed four different testbeds (such as

pattern-search, file compression, database join, and graph coloring and genetic search)

to validate the effectiveness of the divisible load strategy. They concluded that divisible

task model is capable of accurately describing the reality for each one of the test beds.

Nevertheless, they pointed out that for some data-dependent cases, such as genetic search,
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the predictions obtained trough the model were not satisfactory, because of references to

disk files or memory allocation procedures introduces great amount of uncertainty and

dependence on the behavior of other software using the computer. In such situations, the

assumption about linear dependence of the communication time on the volume of data

was not fulfilled, and communication speed decreased with data size.

The work presented by Kim [47] also considered homogeneous clusters. They proposed

an improvement over the initial work presented by Cheng and Robertazzi [27]. Their

proposal was based on reducing communication times by saving at each processing unit

only its specific load (instead of having a duplicated record of the whole load in each

processor).

Real-time scheduling algorithms and the influence of design parameters on such al-

gorithms were studied by the authors of [53]. They proposed to combine divisible load

theory with an approach that consider the earliest deadline to finish a task, to enhance

the quality of service in cluster computing. As a result, they pointed out that executing

partitioned sub-tasks in a homogenous cluster where processors have different available

times, leads to completion times lower or equal to the estimated.

Additionally, in the work presented by Lin et al. [54] were identified three important

design decisions regarding real-time divisible load scheduling. These decisions referred

to workload partitioning, node assignment, and task execution order. Therefore, they

proposed a scheduling framework able to configure different policies for each one of such

scheduling decisions. Moreover, in the work presented by Chuprat and Baruah [29], they

devised efficient algorithms to determine the smallest number of processors to complete

a job according to its deadline; and determined the earliest completion time of a job on

a specific number of processors.

In the work presented by Veeravalli and Ranganath [88], they used the divisible load

paradigm, to schedule processing of an image onto homogeneous and heterogeneous pro-

cessors. Their aim was to minimize the total processing time of the entire image that is

submitted to the bus network system. They considered edge detection as an example of

an image processing application, which qualifies to use a divide-and-process-like strategy,

where initial load can be partitioned into smaller independent data pieces and hence is

supported by divisible load theory model.

Later, Drozdowski and Wolniewicz [35][36], considered scheduling divisible loads on a

distributed computing system with physical restrictions, such as limited available mem-

ory. They took into account communication delays and heterogeneity of the system. The

problem they studied consists of finding a distribution of the load in which the com-

munication and computation time are the lowest possible. Their method was tested on
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systems connected by star network, and networks in which binomial trees can be em-

bedded (meshes, hypercubes, multistage interconnections), demonstrating that in many

cases memory limitations does not restrict efficiency of parallel processing as much as

computation and communication speeds does.

Brest and Žumer [15] studied the improvement in total execution time, for applications

developed under a Master-Worker pattern using divisible load scheduling. Their method

decomposes the program workload into computationally homogeneous sub-tasks, which

may be of different size according to the current load of each machine in the heterogeneous

computing system. They evaluated their proposal using the problem of continuous speech

recognition and the asymmetric traveling salesman problem with promising results on

improving total execution time of the applications. Their study reported the influence of

the initial size of data partitions in the overall execution time of the application.

An additional approach to schedule divisible workloads on heterogeneous systems was

proposed by authors of [10] and [11]. In their work, they proposed a multi-round method

for resources selection based on the speed of the processors and on communication links,

specifically they tackled situations where the communication-to-computation ratio was

not too high. Similarly, in the work presented by [91], they studied the distribution of

divisible loads in heterogeneous distributed systems using parallel applications designed

under a Master-Worker pattern. They used multi-round scheduling to sent load to each

worker, sending several data chunks rather than a single one. To solve this particular

divisible load scheduling problem, in their work they defined the subset of workers that

should be used, the sequence of communication to these workers, and the sizes of each

chunk of load.

The introduction of an equal-size allocation scheme for divisible load is introduced

first in the work presented by [49]. They have considered equal allocation scheduling as a

reasonable policy when prior knowledge about processor and link capacities is missed. At

the same time, they tried to identify how much the finish time is affected in comparison

to using optimal scheduling policies.

Recent studies, are focused on translating divisible scheduling policy to distributed

environments, such as Grid. In [69], a load distribution model was designed to achieve an

estimated performance level for large jobs –common in grid applications. They defined an

adaptive model that took into consideration both computation time and communication

time to estimate the optimal distribution. This work was followed by [70], where an

enhancement for the previous adaptive model was proposed. The aim of the new model

was to distribute loads over all grid sites to achieve an optimal makespan for large scale

jobs.
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Moreover, many data grid applications may be decomposed into multiple independent

tasks for parallel execution and analysis. This property has been successfully exploited

for scheduling divisible load on large scale data grids by using genetic algorithms. In

[1] an adaptive genetic algorithm was proposed to improve the representation of the data

partitions and the initial population, and hence reducing total execution time. In addition,

authors of [2] designed a load distribution model that considers both the communication

time and the computation time to minimize the total processing time. This time reduction

was achieved by an optimal estimation of the completion time and the optimal distribution

of the tasks among the available processors in the Grid.

Finally, the work presented by [92] introduced algorithms of divisible load scheduling

for data intensive applications. In their work, they identify the polynomial time algorithms

to partition the input data and generate optimal mappings to collection of autonomous

and heterogeneous computational systems.

In this work, since considered data sets may be arbitrarily divided, we propose to

partition large-scale data sets into smaller independent pieces. This division is performed

to enable parallelism in the applications and to facilitate the reduction of their total

execution time.

2.3 Factoring in Master-Worker Applications

One of the most popular application patterns is the Master-Worker. That consists of one

master process and several worker processes. The master sends data to workers, which

process these data in parallel and send their results back to the master. According to the

terminology defined by Massingill et al. [56], an application may be implemented under

the following paradigms: embarrassingly parallel, separable dependencies, or geometric

decomposition, among others. The difference between such paradigms depends on the

nature of the problem. In separable dependencies or geometric decomposition paradigms,

the master process may have to wait for an answer from all workers before sending them

new tasks (because there are data dependencies among tasks). Otherwise, in the embar-

rassingly parallel paradigm the master just has to wait for the answer from each individual

worker before sending a new task to that worker.

When there are data dependencies among tasks, the performance of the applications

mainly depends on two factors: (i) the load balancing among available workers; and (ii)

the number of workers being used. However, when tasks are mutually independent, the

performance of the application only depends on the number of workers, because load

balancing is achieved at run time (if there are enough tasks to be distributed). In both
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cases, the proper number of workers depends on tasks granularity, resource cost, and the

relation between computation and communication time [26].

In general, the purpose of any load balancing technique is to improve the efficiency

of the application. For example, the technique has to be able to minimize the overall

execution time, and to permit that all the processors involved in the computation complete

their tasks at the same time. Our main source of inspiration to undertake the load

imbalance problem has been the adaptation of factoring [42], [7] performed by Moreno

et al. [65]. They analyzed the separable dependencies type of Master-Worker pattern;

pointing out that such applications present performance problems that cannot be avoided

statically because the actual behavior depends on the dynamic conditions at run time

(computing power of the processors, communication features of the system, additional

load on the system, and so on). Their adaptation of the original factoring equations

for the Master-Worker pattern are described in subsection 2.3.1. This modification led to

performance improvements in Master-Worker applications when there is a high variability

of the computational load associated to the processes.

2.3.1 General Description of Factoring

In dynamic scheduling strategies load is balanced by assigning work to idle processors

at run time. As a result, dynamic strategies consider variations on the behavior of the

application. To overcome variable behaviors at run time, mainly caused by workload

variable processing times or by the performance of processing nodes performance, the

scheduling strategy has to be able to dynamically re-assign tasks. Consequently, dynamic

scheduling algorithms are a powerful tool towards performance improvement of parallel

applications via load balancing [7].

For dynamically load balancing parallel applications, algorithms that derive from the-

oretical advances in research on scheduling parallel loop iterations with variable running

times, has been widely studied [52], [71], [42]. In the last decade, some dynamic loop

scheduling algorithms based on factoring [42] were proposed.

Factoring-based studies derive from scheduling parallel loops with variable running

times, and accommodate load imbalances caused by predictable phenomena, such as ir-

regular data, as well as unpredictable phenomena, such as data-access latency and oper-

ating system interference. In these algorithms, loops can be executed in decreasing size

data chunks. In this way, earlier larger data chunks cause relatively little overhead, and

the unevenness produced can be smoothed by the smaller data chunks.

The factoring implementation for parallel-loops uses a decreasing chunk size and is

inspired by a probabilistic model where processor run times are modeled as identical in-
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dependent random variables. The main principle behind deciding the size of the chunks

is that every piece must be processed before the ideal execution time of the whole par-

allel loop. Therefore, the chunk sizes are dynamically calculated during execution of the

application.

The work presented by Moreno et al. [65] is focused on the parallel loop iteration

distribution problem. They proposed a strategy to achieve load balancing based on pieces

of variable sizes. In this approach based on parallel loops, the minimum work to be

assigned to a worker is the parallel loop iteration, and usually the application must wait

the end of the execution of a parallel loop iteration to continue its execution.

For an embarrassingly parallel pattern as Master-Worker, an iteration is considered

the total workload that should be processed by the workers. Iterations may have some

dependencies, and therefore to start the execution of a new iteration they need that the

previous one has already finished. Additionally, they defined a task as the minimum

amount of work that can be assigned to a worker. The set of tasks that a worker receives

from the master is named chunk, and the sum of P (the number of processors) data

chunks with the same number of tasks is named batch. Finally, the processing of the set

of continuous batches with no mutual dependence form an iteration.

In the Master-Worker pattern, Moreno et al. [65] considered that the execution time

of every task cannot be measured. In this sense, they proposed to measure the execution

time of a chunk and then, to infer the task processing time rate by dividing the data

chunk execution time by the number of tasks within the chunk. To this end, they defined

a random variable as the task processing time rate; based on the number of tasks to be

processed and represented as statistical parameters, such as mean and standard deviation.

Moreover, they explain that if the use of a homogeneous system is assumed, all processors

will have the same mean and standard deviation of task processing time rate.

2.3.2 Load Balancing Methods for Iterative Loops

In load balancing methods for iterative loops, the sizes of the data chunks are defined

with the aim of minimizing the overall loop execution time. According to Cariño and

Banicescu [21] these load balancing methods can be classified as non-adaptive, when the

chunk sizes are predictable from information that is available or assumed before loop run

time, or adaptive, when the chunk sizes depend on information available only during loop

execution.
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Non-Adaptive Methods

Non-adaptive load balancing methods for loops generate equal size data chunks or pre-

dictable decreasing size data chunks.

A Static Scheduling load balancing strategy consists of distributing all parallel loop

iterations among the processors in a single batch and then wait the results. This type

of strategy is inefficient because faster processors may be idle while the last processor

finishes its assigned parallel loop iterations.

An opposite approach is the Self Scheduling strategy. In this strategy, a minimum

chunk is distributed to each available processor following a multi round approach. Con-

sequently, the best theoretical load balancing is expected because the imbalances in the

execution times are compensated by faster processors. Nevertheless, this type of strategies

may introduce a high overhead in scheduling and communications.

Fixed Size Chunking [52] is a generalization of non-adaptive methods that uses a

constant chunk size. This technique searches for the optimal chunk size that minimizes the

total execution time. The chunk size is constant throughout the process, and it is limited

at one end by distributing only one parallel loop iteration at a time (Self Scheduling), and

at the other end, by distributing all the parallel loop iterations in a single batch (Static

Scheduling).

More sophisticated strategies are based on using decreasing data chunks sizes. In

methods that generate predictable decreasing chunk sizes, the underlying idea is to ini-

tially allocate large data chunks and later use the smaller data chunks to smooth the

unevenness of the execution times of the initial larger data chunks. It was first introduced

by Guided Self Scheduling [71], which uses a greater chunk size for the first batches and

then decreases according to the amount of remaining tasks to be distributed. The imbal-

ances are caused mainly by workers that waste too much time to process last chunks. If

the last data chunks have fewer tasks, the imbalance probability will be minimized. The

chunk size is determined by the relation between the total remaining tasks and the total

number of processors.

Factoring [42], schedules iterations in batches, where the size of a batch is a fixed ratio

of the unscheduled iterations and the batch division into P data chunks. In general, the

ratio depends on the mean and standard deviation of the iteration execution times (when

these statistics are not known, a fixed ratio is used). The next batch size is calculated

after all the data chunks in the current batch are scheduled or are calculated.

A combination of factoring and tiling, a technique for organizing data to maintain

locality, is known as fractiling [5]. Finally, Weighted factoring [43] is the first strategy that

incorporates information about processor speeds when determining chunk sizes. Thus, the
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faster processors get bigger data chunks than slower processors. The relative processor

speeds are assumed to be fixed throughout the execution of the loop, so the size of data

chunks executed by a given processor monotonically decreases in size.

Adaptive Methods

In time stepping applications containing parallel loops that have to be executed in every

step, the amount of computation in a loop may evolve as the application progresses.

Additionally, the loads of the processors running the application may also be changed by

the operating system. Under these evolving conditions, assigning chunk sizes to processors

based on the above non-adaptive load balancing methods for loops may not yield the

best possible performance. Adaptive Weighted Factoring [6], [8], attempts to incorporate

both loop characteristics and processor capacities when determining the data chunks

sizes. Within a time step, the iteration of a parallel loop is assigned to processors as in

Weighted factoring ; however, the processor weights are adjusted at the end of a step using

information collected during the current and previous steps.

Adaptive factoring [7] relaxes the assumptions in the original factoring method that

the mean and standard deviation of the iteration execution times are known before launch-

ing the application, and that these are the same on all processors. Adaptive factoring

dynamically estimates these statistics at run time. Initial estimates are obtained from

the execution times of data chunks from an arbitrary sized initial batch. Then, the sizes

of succeeding data chunks are calculated according to obtained mean and standard de-

viation of previous measurements. Therefore, new estimations are refined by using more

information from recently executed data chunks.

In this work, we incorporate the adaptation of the size of data chunks (based on

the concept of factoring) to avoid load imbalances caused by larger pieces. To this end,

generated data chunks may be adapted dynamically at run time to reduce long execution

times and increase resources utilization.

2.4 Performance Analysis and Tuning of Parallel

Applications

The aim of the methodology presented in this work is to improve performance of data

intensive applications by solving load imbalances when partitioning and distributing data.

Along this chapter, the presence of performance issues such as load imbalance in data

intensive applications has been discussed. Load imbalances are often solved throughout
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efficient scheduling strategies, such as divisible load theory and factoring.

Nevertheless, to tackle inefficient situations may not be possible without carrying out

an evaluation process. Consequently, one of the most important stages when improving

performance of parallel applications is the performance analysis . Through this evaluation

process, users may identify execution inefficiencies (such as the load imbalances mentioned

in previous sections) and correct them to achieve a better performance (e.g., balanced

executions). In literature, a performance analysis task may be generally described as

three major steps, shown in figure 2.4 [45]: monitoring, data collection; analysis, data

evaluation; and tuning, modification of the application.

In the monitoring step, knowledge about the behavior of the application is obtained.

In this step, applications are often instrumented and executed to collect performance

data, i.e., measurements of application performance. Gathered data is often translated

into a graphical representation (traces) to facilitate understanding to the users. If the

application processes a large amount of data or has long processing times, the size of

these traces data may grow significantly.

Next, in the analysis step, user or tool evaluates data collected in the previous step

to identify possible performance bottlenecks in the application. This process can be

performed during the execution of the application or once the execution has finalized

(dynamic or post-mortem). The decision of performing the analysis after or during run

time mainly depends on the applications characteristics and the level of expertise of the

analyst.

Finally, once the performance bottlenecks has been identified, in the tuning step, the

appropriate modifications to the application are introduced.

As in the previous step, this process can be performed automatically or not. The be-

havior of the application is a key factor to choose whether performing the tuning process
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statically or dynamically. A static tuning may be easy to perform, but if the application

presents a highly variable behavior, most of the introduced modifications may not be ap-

propriated for subsequent explorations. Nevertheless, besides of the flexibility of dynamic

tuning, this process may introduce greater overhead in the overall execution time of the

application.

2.4.1 Performance Analysis and Tuning Classification

Performance analysis can be classified into the two major groups shown in figure 2.5 [62],

[26], [46]. This classification is based on who performs the analysis (the user or a tool),

and when the performance analysis is carried out, that is if the analysis is performed along

the execution of the application or after the application has finished (post-mortem).

When a performance analysis is carried out manually, the analysis and subsequent

modifications are performed by the user. In most cases, after introducing the modifi-

cations, the application must be re-compiled, re-linked and restarted. While under an

automatic approach, performance analysis and modifications may be carried out by a

tool (dynamically or post-mortem), in some cases without needing to stop the applica-

tion. However, the application performance analysis requires performance data gathered

from the application executions or previous knowledge about the application. Therefore,

the application must be monitored or modeled to get such data.

For the performance analysis, a “measure and modify” approach may be followed. Un-

der this approach, the analysis involves a monitoring and a visualization step. Monitoring

must be performed to achieve a global view of the behavior of the application. Through

monitoring, performance data (measurements) are collected from the application execu-

tion. Visualization tools are used to present graphically gathered data. Under a manual

approach, users must analyze these graphics to identify problematic regions and adapt the

application source code, while under an automatic approach, the tool may perform (or

suggest) such modifications. This process can be carried out until a certain performance

is achieved.

On the contrary, a performance analysis based on a predictive approach looks for the

construction of a performance model able to describe the behavior of the applications.

This performance model eases the understanding of the performance issues and the predic-

tion of future executions. Nevertheless, users have to be able to process the performance

information to improve the application.
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Performance Monitoring

The performance monitoring process consists of two main phases: instrumentation and

measurement collection [62]. The application is executed under a monitoring tool that

helps to measure and collect performance data (this data is used to understand the ap-

plication behavior). Applications are instrumented (statically or dynamically) at every

point that must be evaluated. Once the application is instrumented, is compiled and

linked with the appropriate monitoring libraries. The instrumentation is used to measure

and collect performance data during the execution of the application.

The most used monitoring techniques, such as timing, profiling and tracing, are de-

scribed next.

• Timing: this technique is based on measuring execution times. To this end,

specific calls to timing libraries are introduced in the source code of the applica-

tion. Such calls collect the execution time of the whole application execution or

just from certain parts of the application, such as: functions, loops, basic blocks,

among others. This technique is considered a simple and fast method to get an

overview of the requested execution time for certain parts of the application.

• Profiling: this technique is based on getting accumulated values of a specific part

of the code. Profiling facilitates the collection of a reduced set of performance

data by measuring the number of times a part of the application (such as a loop,

function, etc.) is called during the execution. The report provided by profiling is

an overview of the execution of the application. It does not shows exactly where

a performance problem is, but indicates dominating functions in the execution.

Profiling may be carried out in two ways [62]:

– Counting : records the number of times an event has occurred.
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– Sampling : takes a “snapshot” of a system state in a period. The program

is sampled at fixed time intervals and collected data is saved.

• Tracing: this technique saves a sequence of some significant activities in the

application execution. Traces may contain information about actions that have

occurred: what was invoked (a function, etc.), which process call it (machine

name, process identifier, etc.), and where in the code it is (in which line is the

function, etc.). A generated global trace is representative of application behavior.

Nevertheless, if it is no controlled, it can be one of the most invasive techniques

because of the overhead introduced, and will generate a large amount of data.

After the application is instrumented and performance data is collected, generated

trace files (or log files) are transformed into graphical representation by visualization

tools. By doing this, users may observe illustrated information about the performance of

the application (usually presented in Gantt charts, bar charts or pie charts) and detect

performance problems.

Predictive Analysis

Predictive analysis of the performance of applications is based on the description of their

behavior through analytical models. The aim of such models is to predict how future

executions of the application will behave. The advantages of this type of modeling is that it

eases the comprehension of the performance of applications for different input parameters

(data or system parameters). Nevertheless, the construction of such performance models

requires a high level of expertise from the programmer and its definition may result a

complex process. Given this difficulty, some performance analysis tool facilitate this task

by abstracting the application behavior model in high level expressions that are useful for

the programmers [62].

Classical Performance Analysis and Tuning

In classical performance analysis, applications are instrumented by user/programmer to

collect performance measurements from their executions. This data collection, as shown

in figure 2.6 is performed by a monitoring tool and is often displayed to the user through

visualization tools to facilitate the analysis process (using Gantt charts, or bars charts,

among others). Understanding collected data is not always an easy task and requires a

high level of expertise from the programmers. Next step requires programmers to look

among the data log generated for the monitoring tool to identify possible performance
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Figure 2.6: Classical Performance Analysis (Adapted from Morajko [62]).

issues and their causes. Then, a programmer has to manually relate detected performance

issues to the source code. Finally, the application can be tuned (problems found in the

application are fixed by changing the source code). After this step, the program has to be

re-compiled, re-linked and restarted [62]. Therefore, the analysis of complex applications

may become a difficult task to perform.

Analysis and tuning steps are performed statically (i.e., off-line) in the classical per-

formance analysis. They may be performed previous to the execution of the application

(in some cases even previous the implementation of the application) or after executing the

application. A predictive performance analysis uses analytical models of the behavior of

the application to provide an early insight of the performance of the application. While

in the trace-based approach, the programmer analyzes trace files obtained from the mon-

itoring step to discover performance problems. In both cases (in the construction of the

model or in the analysis of large trace files), performing analysis and tuning tasks may be

too hard and time consuming for the programmer/user.

In this sense, although the classical performance analysis has been widely used for

many years it has some deficiencies:

• In most cases, the programmer needs a high level of expertise (and plenty of

time) to find and modify the performance issues in the source.

• Proposed solutions based on a single execution might not work well in other

executions when the behavior of the application is variable.

• If the application has long execution times, collected performance data (trace

files) may not be easy to handle and understand.
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Figure 2.7: Automatic Performance Analysis (Adapted from Morajko [62]).

Automatic Performance Analysis and Tuning

As analysis and tuning steps may result too complicated to the programmer to perform,

advances in the performance analysis process have propose to relieve the programmer

of such tasks. In this sense, an automatic analysis approach is defined. Under this

approach, parallel applications are instrumented previous to the execution and collected

performance data is processed by the analysis environment (as shown in figure 2.7). The

automatic performance analysis environment uses performance models (specifically design

to each type of application) to evaluate the trace files or profiling obtained from collected

measurements. This analysis looks for possible performance issues (bottlenecks) in the

execution of the application and proposes some possible modifications to each bottleneck

found.

This type of performance analysis process is commonly named post-mortem static

analysis, and the visualization of performance data is replaced by an automatic analysis.

Among all the advantages of using this type of performance analysis, it is worth mention-

ing: the significant reduction in the time invested in the identification of the performance

problems; collected performance data tends to be more precise; and obtained observations

may be useful to understand applications behavior.

Nevertheless, automatic performance analysis is also affected by some of the main

problems described for the classical performance analysis [26]:

• The generation and storage of large trace files may result difficult to handle.

• Since the analysis is carried out after executing the application, if the applica-

tion presents variable behavior the proposed modifications may be obsolete for

subsequent executions.
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Figure 2.8: Dynamic/Automatic Performance Analysis (Adapted from Morajko [62]).

• The overhead introduced by instrumentation (needed to gather the performance

data) is hard to predict and control.

• The modifications should be introduced manually, and the application must be

re-compiled, re-linked and restarted.

Dynamic Performance Analysis and Tuning

The automatic performance analysis can be advantageous in comparison to the classical

approach. Nevertheless, in both approaches the tuning step has to be performed manually

by the programmer. This means modifying the source code and restart the program

manually. To this end, programmers must have a high level of expertise and knowledge

about the performance of the analyzed application. Besides, most of the commented

approach need a trace file either to visualize a program execution or to make an automatic

analysis. Not mentioning that if the applications have variable behavior according to the

input data, the results of a post-mortem analysis may be useless or obsolete for subsequent

executions of the same application. Consequently, static analysis are not suitable when

there are dynamic conditions, such as variable behavior depending on the input data

and/or variable behavior throughout the application execution.

In the dynamic performance analysis/tuning all the optimization steps are done dur-

ing the execution of the application, as shown in figure 2.8. The search for performance

problems is not based on trace files, because measurements needed to analyze the perfor-

mance of the application are collected and introduced dynamically to the analysis step.

Additionally, tuning step does not require manual modification of the application because
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it can be supported at run time.

Dynamic performance analysis/tuning is an approach flexible enough to enable the

modification of certain performance parameters of the application along its execution.

This method bases performance modifications in previous and current behavior of the

application. To this end, dynamic performance analysis/tuning should handle the fol-

lowing situations: (i) dynamic instrumentation and monitoring of the execution of the

application; (ii) automatic performance analysis at run time; and (iii) automatic tuning

of the application at run time. Consequently, this type of performance analysis relieves

the programmer to modify the execution of the application manually, because the whole

process is carried out automatically by the analysis tool.

In this work, we choose the dynamic performance analysis and tuning approach to

evaluate the performance of data intensive applications. This decision is based on the

significant variability in the execution times of the application between (and within)

executions. Additionally, this approach facilitates the incorporation of our performance

improvement methodology to the execution of the applications.

2.4.2 Performance Model

To improve performance in any parallel application, a detailed analysis process must be

carried out. The analysis requires information of the application behavior to determine the

existence of performance issues during the execution. In some cases, monitoring, analysis

and tuning tools base their decisions in the observed application performance. One of

the main differences between existent tools is the way how performance tuning decisions

are made. For example, environments such as ActiveHarmony [86] determine good values

for tunable parameters by searching the parameter value space using heuristic algorithms

(in this case the Simplex Method). Although this heuristic approach may report good

estimations for the tunable parameters, they treat the application as a black box, user

does not know what is happening in the application.

In this work, an important factor is the identification of performance parameters and

tuning points in data intensive applications that facilitates the analysis and estimation

of adequate values for the tunable parameters. In this sense, a work developed in the

Computer Architecture and Operating System Department at the Universitat Autònoma

de Barcelona is the Monitoring, Analysis and Tuning Environment (MATE) [63]. This

dynamic tool enables the automatic and dynamic analysis and tuning of parallel applica-

tions. The tool is based on analytical performance models provided by the user/program-

mer that describe the functioning of the application. Such performance models enable

the estimation of minimal execution times for the applications and helps to predict the
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performance of the application at run time[62].

The performance model may contain formulas and/or conditions that facilitate the

estimation of the appropriate behavior for the application, by calculating the expected

value of some of the performance parameters. The formulas use as an input data some

previously defined information coming from the application –measurements to establish

corresponding modifications. Once the parameters are modified, the performance of the

application is improved.

In this work, the design of the performance analysis model for data intensive ap-

plications is based on the definition of performance models proposed by Morajko [62].

Therefore, a performance model for parallel applications should consider the following

parts:

• The measure points or applications parameters, that describe specific values

that should be monitored during the execution of the application. These values

are used to evaluate the performance expressions and/or strategies.

• The performance expressions and/or strategies, represent the essence of

the performance model. Designed expressions are used to identify possible per-

formance issues and to determine the corresponding modifications to the face

those situations. Therefore, selected expressions have to be able to describe the

behavior of the application.

• The tuning points and actions, represent the modifications (changes) that

should be introduced to the execution of the application to improve its per-

formance. These “modifiers” consider safety conditions [26] to avoid possible

inconsistencies in the execution of the application.

Based on the theoretical background presented in this chapter, the proposed methodol-

ogy is based on dividing the application workload into smaller data chunks and scheduling

those data chunks efficiently to achieve a balanced execution. Specifically, the method-

ology pursues the adjustment of: (i) the size of the data chunks; and (ii) the number of

processing nodes used to assure an efficient execution.

Additionally, in accordance to the dynamic performance analysis and tuning strategy,

the methodology follows four main steps: (i) the identification of the performance issues

that can be solved at run time; (ii) the definition of the performance parameters that

should be monitored; (iii) the definition of the parameters that had to be changed to

overcome the performance problems; and (iv) the designing of the performance expres-

sions or strategies that determine the appropriate tuning actions. The development and

description of these steps are presented in the following chapter.
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Chapter 3

Methodology for performance

improvement of data intensive

applications.

“Droit devant soi on ne peut pas aller bien loin.”

Antoine de Saint-Exupéry. Le Petit Prince.

The recent data deluge needing to be processed represents one of the major challenges

in the computational field. This fact led to the growth of specially designed applications

known as data intensive applications. In general, to facilitate the parallel execution of data

intensive applications input data is divided into smaller data chunks that can be processed

separately. However, in many cases, these applications show severe performance problems

mainly due to load imbalances, inefficient use of available resources, and improper data

partition policies. In addition, the impact of these performance problems can depend on

the dynamic behavior of the application.

In data intensive applications, load imbalances may be avoided by taking into con-

sideration the ability to determine and support an adequate distribution of data and

computational workloads. For example, to overcome load imbalances, it is important to

find expressions and/or strategies that can be broadly applied for an efficient distribution

of the workloads in the system [59]. In data intensive applications, this type of perfor-

mance improvement can be achieved by adjusting specific factors, such as: the scheduling

policy, the workload partition factor or some specific characteristics of both the system

and the application, such as the number of processing units (computational resources),

to name just a few.

The main goal of this work is to propose a methodology that enables performance

improvement for parallel data intensive applications. These performance improvements
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are closely related to: (i) the reduction of the execution time of the applications, i.e.,

to provide a fast processing of large-scale data without modifying the algorithm of the

applications; and (ii) the reduction of long periods of idleness in the processing nodes,

i.e., to efficiently execute the application. Consequently, the proposed methodology tunes

dynamically the execution of data intensive applications with the aim of processing large-

scale data as fast and efficiently as possible.

The methodology is based on: (i) adapting the size and the number of data partitions

to reduce overall execution time; and (ii) adapting the number of processing nodes to

achieve an efficient execution. These modifications are carried out under a dynamic

performance analysis and tuning approach. That means, the proposed tuning solutions

are based on the evaluation of the execution time of the applications during monitoring

process. From this evaluation are obtained the performance metrics that analytically

describe the overall behavior of the application, e.g., average execution time, or standard

deviation, among others. Once the application is monitored and evaluated, tuning process

can be carried out. Nevertheless, in this work, the tuning of the workload partition factor

and the number of processing units should be performed at run time because of the long

and variable execution time of applications.

The rest of the chapter is organized as follows. The overall description of the method-

ology and the definition of the initial assumptions are explained in section 3.1. Then, the

specific data management techniques designed in this work for data intensive applications

are defined in section 3.2. The strategy to adjust the number of processing nodes based

on the performance of the application is exposed in section 3.3. Finally, the performance

improvement methodology is summarized and discussed in section 3.4.

Before going further, it is necessary to introduce an overview of the methodology in

which all the management techniques are framed, as well as the initial assumptions about

data intensive applications and some basic notation.

3.1 Overview and Initial Assumptions

In this section, the main characteristics of the proposed performance improvement method-

ology for data intensive applications are described. Execution time of data intensive

applications varies depending on the characteristics of input data. Since input data char-

acteristics are difficult to predict and data intensive applications have long run times,

the methodology has to be able to monitor, analyze and tune the execution of the ap-

plication dynamically. Otherwise, solutions proposed to overcome specific performance

issues in one point of the execution might be obsolete at the moment they are applied.
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This variability and duration of executions demands efficient and dynamic adaptations of

performance factors.

Although it is difficult to predict the execution time of the application based on the

characteristics of its input data, the behavior of the application in different iterations

or queries over a specific data set may be considered analogous [18]. This assumption

is based on the inherent similarity between the iterations. For example, when looking

for a topic on the web, users may use as many correlative words as possible. In this

way, each search performed in a period can be handled as a query, and there will be

resemblance between them. When processing images of astronomic data, pictures taken

from a certain galaxy, planet, black hole, etc. are processed and filtered following a similar

pattern [20], [59]. Genome sequencing processes vast amounts of data closely related (from

similar organisms or species) [80], [87], [72]. Iterative algorithms [41], [37] of indexing,

data mining and machine learning that are applied in different fields of science, such as

understanding the brain behavior based on data coming from magnetic resonance imaging

(MRI) [73], present similar processing schemes that may be used to predict performance

of subsequent explorations.

Moreover, to facilitate managing the input data, in most cases (if data may be divided),

input data can be split into smaller and independent data chunks. These data chunks

may be of equal size or not. For the sake of clarity, initial partition of the application

workload is done in a fixed number of data chunks with the same size (as will be discussed

in section 3.2.1).

After the workload is partitioned, data chunks should be scheduled to balance the

load among available processing nodes. The methodology is based on the execution of

applications in homogeneous clusters of workstations, where the computation capacity

may be considered as constant and, in most cases, the disk and network latency are

stable. Moreover, to make easier the initial design we used a shared nothing [60] processing

approach. Under this approach, each node (consisting of processor, local memory, and

disk resources) shares nothing with other nodes in the cluster.

In this work, we considered applications developed under a Master-Worker pattern,

because of the following reasons: (i) it is one of the most popular patterns in parallel

applications; (ii) it facilitates the analysis of data distribution among the processing nodes;

(iii) the variation in the number of workers is a very influential performance parameter;

and (iv) it has a simple communication pattern if workers do not communicate between

them.

Therefore, the proposed methodology is focused on two performance parameters in

data intensive applications: the workload partition factor and the number of process-

41



Partitioning Phase

Data set 
Partitioning

Adjust 
tuning 

parameters

Divisible Load Monitoring Tuning
Update metrics

Change parameters

Partition factor modification

Measurement

Evaluation

Dynamic Analysis Phase

Figure 3.1: General description of the load balancing methodology.

ing units (computational resources) being used. In the design of the methodology, the

following assumptions about data intensive applications are considered:

1. The initial data set of the application can be arbitrary partitioned into indepen-

dent data chunks.

2. The application performs a set of related iterations or queries on the data set,

e.g., the application searches similarities for several related proteins on a large

database, or looks for similar strings on the web.

3. The performance of the application varies significantly (according to the input

data), justifying the use of a dynamic performance tuning tool.

4. The characteristics of the input data of the application may be unknown.

The methodology, represented on figure 3.1, includes a partitioning phase and a dy-

namic analysis phase. In the partitioning phase, the initial workload is divided into smaller

pieces named data chunks, and multiple alternative partitions are generated whether the

cost of generating new partitions during the application execution is too high. The aim

of this approach is to take advantage of the adaptation made in [64] to the factoring

[42][7] load balancing policy. The modification proposed by Moreno et al. [64] is based on

distributing the workload in chunks of decreasing size to keep execution balanced.

Along these lines, if the cost of dynamically generating new partitions is acceptable,

the generation of data chunks will be performed at run time. However, the cost of parti-

tioning the workload can be high for data intensive applications. If this happens, multiple

partitions before executing the application are generated and then, during the execution

the most appropriated one is chosen (as will be discussed in sections 3.2.3 and 3.2.4).
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The dynamic analysis phase of the methodology is summarized in the algorithm 1,

and notation used along this work (when referring the methodology) is described in Table

3.1. In this algorithm are shown the main processes that are executed in this phase: (i)

the measurement phase; and (ii) the evaluation of the model, and (iii) the tuning phase.

Algorithm 1 Dynamic phase of the Load Balancing Methodology.

Require: Nq, Nw

Ensure: tqi(n)
1: n← Nw

2: Nf ← max(Nf )
3: SP ← FCFS
4: i← 1
5: j ← 1
6: while i ≤ Nq do
7: if i 6= 1 then
8: SP ← HFF {Nf distributed by processing time in decreasing order}
9: end if

10: while j ≤ Nf do
11: master sends data chunk j to the worker
12: worker process query i in data chunk j
13: master receives computation time Cij from worker
14: Tsi ← Tsi + Cij

15: j ← j + 1
16: end while
17: update µCi

18: update Tmaxij
19: update tqi
20: sort data chunks {by processing time Cij in decreasing order}
21: Nwmax ← Tsi/Tmaxij {determines maximum number of workers}
22: n← min(tqi(n), ρ) {updates number of workers to be used}
23: Nf ← min(tqi(n), Efn) {updates partition factor to be used}
24: i← i+ 1
25: end while

In the dynamic analysis phase, performance monitoring and tuning are carried out.

Metrics such as data chunks processing time are collected, and the performance model

described along this chapter is evaluated.

Both tasks are carried out dynamically to determine which tuning parameters must

be adjusted for the next iteration. Specifically, to improve performance of the application

at run time the following three performance parameters are taken into consideration:

1. The workload partition factor: this factor is determined based on characteristics

of both the system and the application. The number of generated data chunks
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Notation Description

Nf number of data chunks.

Nq number of explorations (queries).

Nw maximum number of processing nodes available.

j data chunk identifier (0 < j < Nf ).

i exploration identifier (0 < i < Nq).

n number of active processing nodes (0 < n ≤ Nw).

size data chunk size (in MByte).

λ communication cost by MByte (BW−1).

Cij computation cost (in secs) for the ith exploration and the jth data chunk.

Ci total computation time (in secs) for the ith exploration.(
Ci =

∑Nf

j=1Cij

)
µi average computation time (in seconds) for the ith exploration.[

µi = (
∑Nf

j=1Cij)/(Nf )
]

σi standard deviation of computation time (in seconds).

ρn performance index for n number of workers.

Tsi total sequential computation time for the ith exploration.(
∀i ∈ Nq : Tsi =

∑Nf

j=1Cij

)
Tmaxi maximum computation time for ith exploration.

Tideal ideal computation time for a parallel execution.

y number of divisions for data chunks with

(Cij > Tideal)

Tgroupid computation time for the grouped data chunks.

Nwmax maximum number of workers(
Nwmax = Tsi

Tmaxij

)
SP scheduling policy.

Table 3.1: Summary of notation
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should be large enough to guarantee that all processing nodes (workers) receive

data to process.

2. The scheduling policy: to assure a load balance (all workers processing data the

same amount of time), data chunks must be delivered dynamically in accordance

to the behavior of the application.

3. The computational resources (processing nodes) to be used: to avoid long periods

of idleness for the processing nodes (and therefore, inefficient executions), the

tuning of this value is based on the total execution time of the application for a

certain input data.

The execution of the application starts with a set of default values for both the parti-

tion factor and the number of processing nodes. The selection of these values is based on

the criteria described in following sections. These values can be modified at run time and

hence, they may improve the overall performance of the application during the execution.

The measurement phase is used to collect data chunks associated computation times.

In the first exploration, a First Come First Serve (FCFS) scheduling policy is used because

there is no previous information about data chunks computation time. Starting from the

second exploration, once the computation times has been collected, the scheduling policy

is updated to a Heaviest Fragments First (HFF) approach, where data chunks are sent

according to their processing times in decreasing order, as described in section 3.2.2.

After this point, gathered data is evaluated in the model evaluation phase; and the cor-

responding modifications in the execution of the application are introduced in the tuning

phase (if necessary). Through this process, the workload partition factor and the number

of processing nodes can be adjusted. The tuning of such performance parameters is car-

ried out to minimize the total execution time while keeping an efficient use of resources.

The workload of the application might have been partitioned prior to execution, but the

tuning of these parameters will be done dynamically and continuously at run time.

3.2 Data Management

In this section, we present the adaptation of the workload partition factor. Tuning process

is performed trough the definition of the initial size of the data chunks; the modification

of the scheduling policy to send first data chunks with large processing times; the division

of the data chunks with the biggest associated computation times; and the join of data

chunks with small computation times. The criteria for dividing or gathering chunks are
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based on the chunks associated execution time (average and standard deviation) and in

how many processing nodes (workers) are being used.

Conceptually, in the adjustment and management of the workload of the application

(the modification of the size of the data chunks and the use of different scheduling policies)

it is important to characterize data that constitutes the workload [58]. Data character-

ization provides to the user a broader vision of what to expect when processing it and

facilitates management decisions. One main characteristic of data intensive applications

analyzed in this work is the divisibility property of their workload. Our methodology takes

advantage of this characteristic by arbitrarily dividing the workload into smaller indepen-

dent data chunks. Then, the scheduling of generated data chunks among the available

processing nodes is performed while the application is being executed. This process is

based on the data chunks associated computation time and follows the Heaviest Fragments

First approach that will be described later on this section. In this way, the application

behavior is monitored and data distribution is carried out based on current observations.

The rest of the section is organized as follows. The description of the selection of the

initial partition factor for the workload based on characteristics of both the system and

the application is explained in section 3.2.1. Then, the scheduling policies used to deliver

data chunks to the processing nodes (First Come First Serve and Heaviest Fragments

First) are defined in section 3.2.2. The strategy to partition data chunks dynamically to

reduce the total execution time of the application is explained in section 3.2.3. Finally,

the grouping technique to reduce the amount of data chunks with short execution times

that have to be sent to the processing nodes, is exposed in section 3.2.4.

3.2.1 Selection of the initial partition factor

In general, data intensive applications explore, analyze or process large data sets. This

computation, if done serially, may be too time consuming or, in some cases, given the

amount of data it may be even impossible to perform. To facilitate running this type

of applications in current computational systems, some parallelization techniques have

to be applied. In most cases, programmers take advantage of functional parallelisms

to implement parallel applications and achieve efficient executions. Nevertheless, if the

application does not allows for data parallelism, when processing large-scale data, the total

execution time will remain excessive. In this sense, if the workload of the data intensive

applications enables partitioning, input data can be split into smaller data chunks. By

doing this, the parallelism of the systems can be exploited and the size of the input data

can be manageable.

Notwithstanding, once the divisibility condition is fulfilled, questions about the num-

46



ber and size of data chunks may arise. Selecting how many data chunks should be gener-

ated, i.e., the workload partition factor, is a non-trivial task. On one hand, if considering

unlimited processing resources, as more data chunks are generated shorter application

execution times will be obtained. The main questions are: how small a data chunk should

be? or how good is the cost/benefit relation between data chunk size and total execution

time of the application? On the other hand, for limited number of resources, the following

questions arrives: how many data chunks should we have to guarantee the shorter total

execution time using efficiently all the available resources? Therefore, the difficulty resides

in how to choose a trade-off between a well balanced execution and low execution times.

If applications are executed using a large number of data chunks (i.e., a high partition

factor), it may be easier to avoid load imbalances. However, the replication of the serial

fraction of processing each chunk may introduce some overhead in the total execution

time.

To decide a specific number of data chunks (or an initial common partition factor

for all data chunks), we took into consideration some initial constraints, based on: (i)

hardware parameters, such as the available physical memory, the network bandwidth,

and the number of available resources (nodes); and (ii) application parameters, such as

the total size of the workload, the cost of partitioning the workload (time), and the

number of iterations or queries. Most of these parameters can be measured previously

to the execution of the application and will not change at run time. Here, the main

parameters of the system taken into consideration in the methodology are described:

• Available physical memory: the workload of a data intensive application can

easily surpass the memory capacities of the processing nodes. During the exe-

cution, the processors share the physical memory of the node among application

processes and operating system processes. Since data intensive applications have

long runtimes, the selected size for the data chunks has to be small enough to

avoid memory overflow, otherwise application performance could be degraded by

paging or virtual memory accesses.

• Network bandwidth: since data chunks are moved through the network to reach

each worker, the size of the data chunks should be small enough to avoid network

saturation, but large enough to guarantee maximum utilization of the link. The

identification of this value has to be done empirically by evaluating the behavior

of the network when sending data chunks of variable sizes.

• Available processing nodes: the number of data chunks is directly affected by

how many processors are available. A simple scheme is to set the number of
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data chunks to be equal to the number of worker nodes available. However, this

scheme may cause load imbalance as the processing time of each data chunk may

vary significantly. Therefore, the number of data chunks should be large enough

to assure all processing nodes to execute them in parallel.

In this work, the initial partition factor is chosen as an intermediate value that takes

into consideration the physical characteristics of the available cluster. Extensive studies

about data chunks size definition based on the physical characteristics of the cluster may

be carried out, but they are out of the scope of this work.

Additionally, the methodology has been designed based on the following applications

parameters:

• Total size of the workload: as the workload of data intensive applications has a

continuous growth, the number of generated data chunks should be proportional

to its total size. Thus, for a total workload size of around hundreds of Gigabytes,

the size of generated data chunks should not be of Kilobytes (that means having

a large number of small data chunks) because there will be too many pieces to

distribute, and therefore, a greater management overhead may be introduced.

At the same time, if the size of the workload is of a few tens of Gigabytes, the

number of partitions should be (at least) similar to the number of processing

nodes to assure all the processors will have work to compute.

• Partitioning cost: we consider partitioning cost as the amount of time invested in

generating the number of data chunks. This factor is important because there are

data intensive applications in which their workload must be preprocessed or for-

matted before being analyzed. Moreover, the frequency for updating input data

has also subtle influence in the partitioning process. In such cases, partitioning

the workload can be a long and tedious process and in consequence, data sets

with costly partitioning process (in comparison with the total execution time of

the application) that are updated too often, e.g., every day, represent workloads

that may not be take advantage of our methodology.

• Number of iterations or queries: the total execution time of data intensive appli-

cations greatly depends on how many iterations or queries the application must

perform. The number of times the application should be executed to complete

all its processing makes easier the decision of how partitioned the workload must

be. For instance, as more iterations the application performs, more partitioned

the initial workload should be, because distribution and allocation time is lower,

and therefore, (if possible) different iterations may be overlapped.
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In this way, once the number of data chunks is empirically estimated, workload par-

titioning can be performed at any time. Nevertheless, as commented above, depending

on the type of data intensive application, the partitioning cost determines whether all

partitions or only the initial ones, are going to be generated before the execution of the

application.

If the partitioning cost (time of creating data chunks from input data) is too high,

workload partitioning must be carried out off-line. In this case, the workload may be

replicated under different partition factors. Then, the proposed methodology will dynam-

ically choose the best partition factor among those partition factors available. On the

contrary, (if the partitioning process is fast enough to be carried out at run time), the

methodology will generate the best partition dynamically.

Once data chunks are generated using the defined size, the application can be exe-

cuted. After executing the application, and given the characteristics of data intensive

applications, it can be seen that even when all data chunks are of the same size, the

average computation time by data chunk may vary. We use this variation to determine

future modifications in the size of the data chunks.

We propose to start the computation using a relatively high partition factor (de-

termined by system and application characteristics described above) because there is no

initial information about the cost of processing each data chunk. In this way, the method-

ology initially tries to meet the load balancing goal by distributing smaller data chunks.

3.2.2 Changing Scheduling Policy

In some applications, the distribution of data chunks to the processing nodes (or schedul-

ing) is an influential parameter in the overall performance of the application. Scheduling

looks for balanced executions where all workers compute the same amount of time. Sched-

uling decisions may be based on the speed of the processing nodes (which processors are

faster), the cost of processing the computational load, or a combination of both. In this

part of the work, given the special characteristics of some data intensive applications, we

decided to fix the computational resources. Working with dedicated homogeneous clus-

ters may provide, in most of the cases, constant computation and communication times.

Therefore, this work is focused on the variability in computation times introduced by the

combination algorithm-input data.

The computation time of the data chunks is not known beforehand and this makes

the methodology impossible to establish the distribution order without executing the

application. For this reason, some knowledge from the behavior of the application is
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collected at the beginning of the execution. Since queries (or iterations 1) may present

some degree of similarity between them, the knowledge obtained from previous iterations

can be used for subsequent ones. In this case, the initial iteration serves to label data

chunks according to their associated computation times.

The methodology contemplates dynamic scheduling schemes, where, data chunks are

distributed while the application is running. The reason of doing this is to avoid workers

waiting too long for data chunks, e.g., as could happen with static scheduling schemes.

Initially, data chunks are distributed following two on-demand approaches. First, under

an approach named First Come First Serve (FCFS) that delivers data chunks of the

workload to the requesting worker without following any rule; and second, under an

approach named Heaviest Fragments First (HFF) [77] that delivers data chunks according

to their associated computation time. Specifically, data chunks with highest execution

times are distributed first. This way, possible load imbalances caused by the variability

in data chunks computation times are smoothed at the end sending faster data chunks.

Main characteristics and advantages of both policies are described next.

First Come First Serve (FCFS)

On-demand schemes are useful in applications with variable execution times because the

load is distributed when is required by the processing nodes. By following an on-demand

approach, the workers waiting time can be reduced. In this work, for initial executions

there is no knowledge about the behavior of the application hence, based on the charac-

teristics of the system and workload described in section 3.2.1, the application is launched

using default values for the tunable parameters: a high number of workers (limited by

the number of nodes available in the cluster) and a high workload partition factor. Data

distribution is carried out following a First Come First Serve approach that delivers one

data chunk at a time to every idle worker.

As previously mentioned, our methodology assumes that the iterations may be related

to each other and they are processed sequentially. Once an iteration is processed, the

execution time for each data chunk is stored and historical statistics updated. When

distributing data under the FCFS scheduling policy, there is no guarantee for a balanced

execution. For example, in figure 3.2, the workload is partitioned in ten data chunks of

equal size and the computation time of the chunks is unknown (as shown in figure 3.2(a)).

Data chunks are distributed to the available workers under the FCFS approach (figure

3.2(b)). Each chunk may have the associated computation times shown in figure 3.2(c).

1In this work, the terms query, exploration and iteration are used interchangeably
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Figure 3.2: Initial Execution using First Come First Serve Scheduling Policy

In many cases, data chunks with highest execution times may be the last to be de-

livered. When this happens, if there are no more data chunks to distribute, workers

without data to process will be idle until the last worker finishes processing. This situa-

tion may be improved by sending data chunks in accordance to their associated processing

times, more specifically distributing first (in following iterations) those with the highest

execution times.

Heaviest Fragments First (HFF)

In subsequent explorations, once the data chunks are labeled and after considering a cer-

tain degree of similarity between the executions, data chunks can be delivered according

to their processing time. Based on the collected metrics, data chunks are sorted in de-

creasing order before being sent to the workers. By doing this, it is possible to smooth
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possible load imbalances caused by the variability in the execution time of each data

chunk. Nevertheless, these imbalances may persist if there are large differences between

the computation time of the data chunks. For example, in figure 3.3(a), collected metrics

from the previous example are sorted in decreasing order. Then, these data chunks are

distributed among a fixed number of processing nodes. Unfortunately, load imbalances

still persist. This situation may be solved by adapting both the workload partition factor

or the number of processing nodes. Both strategies will be discussed later in this chapter.

T
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(a) Workload sorted in decreasing order
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(b) Heaviest Fragments First Policy

Figure 3.3: Subsequent Executions using Heaviest Fragments First Scheduling Policy

When collecting data chunks associated computation times using the initial workload

partition factor, two kinds of data chunks may be identified: (i) those whose computation

time Cij is above the average computation time of the exploration µi; and (ii) those

data chunks whose computation time Cij is below the average computation time of the

exploration µi. For example, here µi = 8.00, therefore maximum and minimum values are

represented by data chunks number 5 (Ci5 = 40.00) and 2 (Ci2 = 1.00). The data chunk

with the maximum computation time is labeled as Tmaxi
. In parallel executions using

a fixed number of processing nodes, any node that finishes before the worker processing

the data chunk labeled as Tmaxi
will be idle until that worker finishes. This waiting time

results in a processing node being idle, and therefore, in an inefficient execution. For
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example, in figure 3.3(b) it can be seen that total execution time may not be lower than

the time imposed by data chunk number 5.

Given this time restriction imposed by data chunks with highest execution times,

the proposed methodology also adapts dynamically the partition factor with the aim of

balancing the load among workers . Therefore, our previous scheduling technique based

on distributing data chunks according to their processing times in decreasing order (HFF

scheduling policy) is complemented with the modification of the size of data chunks at

run time to reduce total execution time. We named this strategy, HFF + factor. This

strategy considers: (i) to divide data chunk(s) with highest associated computation time

into smaller new pieces named sub-data chunks ; and (ii) to gather data chunks with low

associated computation times into bigger pieces named parent-data chunks.

The main criterion to decide when to partition, or when to group, is given by estimating

the best possible computation time. In this particular case, ideal time (Tideal, shown in

expression (3.1)), represents the relation between the serial computation time of the entire

workload, Tsi, and the total number of available processing nodes Nw.

Tideal =
Tsi
Nw

=
(
∑Nf

j=1Cij)

Nw

(3.1)

Consequently, monitoring the execution time of the data chunks Cij allows for cal-

culating the average computation time µi and standard deviation σi, which are used for

deciding the chunks that should be partitioned and the chunks that should be grouped.

In next two sections, we describe the main characteristics of the techniques to modify

data chunks sizes. First, partitioning is exposed in section 3.2.3, under this strategy, data

chunks with highest execution times are divided into smaller pieces. Second, data chunks

with short execution times are joined together under the grouping scheme explained in

section 3.2.4. This approach is used to reduce communication and scheduling overheads.

3.2.3 Partitioning

As seen in previous sections, load imbalances may persist when data chunks are too big.

In this case, if there is a time limit imposed for data chunks with highest execution times,

adding more computing resources may not reduce the application overall execution time.

On the contrary, if more workers are added and there is a big difference in execution time

between the first and the last worker finishing computing (for instance, several tens of

minutes), the efficiency of the execution drops almost completely.

The number of partitions impacts on the performance of the application[55]. In gen-
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eral, the number of data chunks should be large enough to assure all workers to process

them in parallel. A simple scheme is to set the number of data chunks to be equal to

the number of worker nodes available. However, this scheme may cause load imbalances

as the processing time of each data chunk may vary significantly. In this sense, when

executing a data intensive application in parallel, the total execution time Ci is given by

the time that last worker takes to finish processing. As seen in examples shown in pre-

vious sections, this delay may be caused by processing data chunks with long execution

times. In accordance to the available computational resources, the methodology considers

to divide this (or these) data chunk(s) into smaller pieces, and reallocate the generated

pieces among the nodes. By doing this, it may be possible to reduce total execution time

and improve load balancing.

Nevertheless, data chunks cannot have unlimited partitions, there is always a limit

in the size of the data chunk that defines if a new chunk division is possible or not.

In this work, we chose a conservative approach that prevents unnecessary divisions of

data chunks with short execution times. The methodology has a threshold, defined by

expression (3.2) that is used to determine whether a data chunk should be partitioned or

not. Expression (3.2) defines that every data chunk with an associated computation time

Cij greater than expected ideal time, should be partitioned to met this constraint, i.e., to

execute the application in Tideal.

We have observed that in some cases, after dividing a data chunk, its computation time

does not scale linearly; i.e., if the data chunk has a computation time T , and it is divided

into 2 new pieces, the computation time associated to the pieces does not necessarily is

going to be T/2. This behavior has been deduced through experimentation, and this

non-linearity characteristic depends on both the algorithm and the data.

Cij > Tideal (3.2)

Additionally, if the workload of the application enables an arbitrary number of par-

titions and the partitioning cost is not too high, new divisions can be generated during

the execution of the application. Otherwise, the number of data chunks that must be

generated from a specific data chunk should be chosen from pre-partitioned sets of the

workload. For instance, in a workload of the application whose partitioning cost is too

high, a single data chunk may be divided into predefined “sub”-data chunks (as shown in

figure 3.4). In this case, each level corresponds to a specific partition factor. Therefore, if

a data chunk has to be partitioned in 6 or 7 new data chunks, the methodology will select

and distribute the set of data chunks closer to the estimated value, e.g., the partition

54



i = 5

5.2

5.1

5.1.1

5.1.2

5.2.2

5.2.1

5.1.1.1

5.1.2.1

5.2.2.1

5.2.1.1

5.1.1.2

5.1.2.2

5.2.2.2

5.2.1.2

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

5..

Partition
Factor

1 2 4 8 16

Figure 3.4: Data chunks partitioning in workloads with high partitioning costs.

factor in which this data chunk has been partitioned in 8 smaller pieces.

When partitioning data chunks, to close the gap between the expected execution

time of an iteration (Tideal) and the time of the data chunks with the highest execution

time, there is a need to estimate the computation time for partitioned data chunks.

This estimation facilitates the decisions about the order in which data chunks should

be distributed. With this aim, a statistic of order Nw (ENw shown in expression (3.3))

estimates the upper bound for computation time of the new data chunks. This estimation

is based on the average computation time, the standard deviation of the data chunks

computation times, and the number of processing nodes used. By using these values in

expression (3.5), it has been possible to establish in how many pieces the data chunks

with highest execution times has to be partitioned.

ENw = µi + σi ∗
√
Nw

2
(3.3)

For statistical purposes and with the aim of enabling the estimation of the number

of new partitions, we have introduced to the statistic the corresponding modifications to

keep consistent expression (3.3), resulting on the expression (3.4). These modifications

are based on the characteristics of sampling distribution, where a certain probability

is assigned to each variable to estimate its possible values. Centrality and variability

qualities, such as mean and standard deviation are used to define those statistics.

ENw =

(
Cij

y

)
+

(
σi
y

)
∗
√
Nw

2
(3.4)
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In this expression, the average computation time of data chunks that meets the time

restriction (3.2) has been given by the relation between their associated computation

time Cij and the number of new data chunks generated y. Similarly, standard deviation

of new data chunks will be represented as the relation between the standard deviation

of processing the whole workload and the number of newly generated pieces. These

assumptions are sound because the mean value of the sampling distribution of means

is the same as the population mean; and the variance of the sampling distribution of

variances equals the population variance divided by the sample size.

(
Cij

y

)
+

(
σi
y

)
∗
√
Nw

2
≤ Tideal (3.5)

Finally, to define the number of new data chunks to be generated, y must be calcu-

lated from expression (3.5), leading to expression (3.6). This expression is called into the

methodology at the analysis phase for collected performance measurements (as shown in

algorithm 2). Obtained result for the expected number of new data chunks is approxi-

mated to its closer integer value. In this way, if the expression indicates that a data chunk

should be partitioned in 3.2 pieces, the methodology will approximate to 3 data chunks

(if partitioning can be performed dynamically) or to 4 data chunks (if the closest size of

data chunks is selected from previous partitions, as shown in figure 3.4).

y =
Nw ∗

(
Cij + σi ∗

√
Nw

2

)
(µi ∗Nf )

(3.6)

Algorithm 2 Partitioning data chunks with the highest execution times.

Require: Nf , Tideal
Ensure: y

1: j ← 1
2: for j = 1→ Nf do
3: if Ci > Tideal then
4: calculate y
5: divide i into y pieces
6: end if
7: end for
8: sort data chunks in decreasing order
9: continue the execution of the application
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For example, if an iteration is executed with the number of processing nodes Nw = 5

and partition factor Nf = 10, the resulting scheduling using the HFF policy may look as

on figure 3.5. In this case, there are data chunks with different associated computation

times, and the data chunk with the largest computation time (about 40 time units) can

be easily identified. In this example the corresponding values for the average computation

time, the standard deviation, and the expected ideal time are µi = 8.00, σi = 11.49, and

Tideal = 16.00.
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Figure 3.5: Initial execution under HFF scheduling policy.

After evaluating the restriction given by expression (3.2), and solving y from expression

(3.6), the resulting value (rounded) for the number of pieces in which data chunk j = 5

should be partitioned is y = 4 (as indicated in figure 3.6). In this example, the workload

can be arbitrarily partitioned at run time and new four data chunks (of equal size) are

obtained from the data chunk number five.
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Figure 3.6: Partitioning data chunk with the highest execution times.

However, the computation times for the new data chunks are unknown. As proposed

for the initial iterations, data chunks have to be sent to collect their associated compu-

tation times. Then, a subsequent exploration is used for labeling new data chunks with

their associated computation times. In addition, to avoid possible load imbalances, new
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data chunks are scheduled when their original data chunk was expected to be sent (figure

3.7(a)). The new chunks can be labeled (figure 3.7(b)) and rearranged in decreasing order

of computation time, for the next exploration, as shown in figure 3.7(c).
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(b) Computation Times
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Figure 3.7: Collecting the execution time of data chunks that have been obtained through
partitioning process.

By using the partitioning scheme, it is possible to break time restrictions imposed

by data chunks with highest execution time. Therefore, when having more data chunks

to distribute it is easier to smooth the load balancing among available processing nodes.

Consequently, the overall execution time of the application can be greatly reduced.

3.2.4 Grouping

In data intensive applications, partitioning the workload into small data chunks may im-

prove load balancing and hence reduce total execution time. Nevertheless, having too
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many data chunks can also produce time overheads caused by scheduling, communica-

tion or computing, as well as it may introduce greater variability in computation times

between all the pieces. To avoid these overheads, the performance of the application is

evaluated at run time and decisions of grouping or distributing bigger data chunks are

taken dynamically.

In this sense, every data chunk that its associated computation time is lower than the

expected ideal time, can be considered to be grouped. In grouping, according to the char-

acteristics of the workload, data chunks can be joined in bigger pieces at run time or they

can be chosen from previously partitioned data chunks. If the cost of gathering together

data chunks is too high (equal or greater than the total execution time of the application)

or the workload needs certain pre-processing, such as being formatted before being used,

the resulting data chunk is selected from sets of data chunks generated before executing

the application. In this case, to keep the grouping process simple, only consecutive pieces

are considered to be joined (as shown in figure 3.8). Otherwise, all data chunks that meet

the time restriction (of having associated computation times below the ideal time Tideal)

can be evaluated and grouped dynamically (at run time) in a bigger data chunk.
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Figure 3.8: Data chunks grouping in workloads with high partitioning costs.

For every data chunk that can be gathered with other data chunks, the grouping strat-

egy will stop when the sum of the associated computation times of the data chunks exceeds

Tideal, therefore generating too many data chunks with similar computation times. In this

work, as a first strategy, we are assuming that the execution time of bigger data chunks

may be at least equal to the sum of the smaller pieces that are gathered to generated

them (their times may be greater because of the replicated serial fractions of each data

chunk). Then, there should be enough data chunks with short execution times to fill the

gaps left by imbalances along the exploration. In this sense, the methodology includes
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a more precise approach to estimate the total time for the grouped data chunks. Under

this approach, every data chunks that could be added to a bigger data chunk is evaluated

using the threshold defined in expression (3.7), where the sum of the computation time of

each data chunk in the group should not exceed the ideal time. Thus, computation time

of new data chunks is kept way below ideal time enabling us to dispose of data chunks

small enough to fill gaps on execution time and facilitate a balanced execution.

Tgroup ≤ Tideal (3.7)

When applying the grouping strategy (described in algorithm 3), the execution of the

application may look as on figure 3.9. In this case, data chunks with short execution times

may be grouped with “larger” data chunks to create a lower number of pieces with similar

computation times. For the example shown in this section, that data chunks are grouped

without any additional restriction. In this case, the process of gathering data chunks may

involve any of them, as long as the total execution time of the new data chunks is kept

below the ideal time.

For the sake of clarity, in the example shown in this section, data chunks are left in the

same order as in previous execution (figure 3.9). Then, bigger data chunks are created by

grouping faster data chunks (those data chunks with the lowest execution times) while the

restriction defined in expression (3.7) is met. The computation time when grouping Tgroup

is evaluated by adding the computation time of the selected data chunks. If the sum is

lower than the threshold, we continue grouping the chunks. For this particular example,

the defined threshold is Tideal = 16.00 and data chunks 51 and 6 (T(51+6) = 16.00), 1 and

8 (T(1+8) = 14.00), 52 and 7 (T(52+7) = 14.00), and 3 and 53 (T(3+53) = 14.00) can be

grouped (as shown in figure 3.10).

As in the partitioning strategy, associated computation time for new data chunks is

unknown. To avoid load imbalances, the associated computation time for new data chunks

is considered the sum of the time of each piece that has been grouped. Therefore, new

data chunks are distributed and executed when the data chunk with the highest execution

time was expected to be distributed, i.e., grouped chunks will be delivered when chunk

51, 1, 52 and 3 were expected to be delivered (as represented in figure 3.11(a)). After this

iteration, it is possible to label the data chunks with their new associated computation

times. Collected measurements are used to sort the whole data set in decreasing order for

the following iterations.

The advantages of using grouping when the workload is partitioned under fine-grained

divisions are mainly related to one factor: the reduction of the number of data chunks.
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Algorithm 3 Grouping data chunks with the lowest execution times.

Require: Nf , Tideal
Ensure: grouped data chunks

1: j ← 1
2: a← 0
3: b← 1
4: create auxiliar vector[Nf ]
5: for j = 1→ Nf do
6: if Ci < Tideal then
7: saves i into vector[a]
8: a← a+ 1
9: end if

10: end for
11: while !vector[] do
12: aux vec[b] ← vector[a+1]
13: Tgroup ← Tgroup+ vector[a]
14: while Tgroup < Tideal do
15: Tgroup ← Tgroup+aux vec[b]
16: if Tgroup < Tideal then
17: vector[a] and aux vec[b] are grouped
18: else
19: b← b+ 1
20: end if
21: end while
22: a← a+ 1
23: end while

This reduction saves communication overheads that may be caused by sending too many

data chunks along the network, as well as scheduling overheads that may be given by

an inefficient distribution of data from the source (master) node. By sending less data

chunks (which times are below the ideal), the variability among the workload in terms of

computation times may be greatly reduced. In this way, data chunks with variable sizes

are executed during the same amount of time.

3.3 Resource Management

As commented at the beginning of this chapter, to improve performance of data intensive

applications both the workload partition factor, described in previous sections, and the

number of workers to be used can be adapted. In this section, the description of the

strategy for tuning the number of processing nodes to be used is exposed. In general,

in data intensive applications (or almost every parallel application) the number of ma-
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chines in which they are executed represents one of the most influential parameters in the

performance of the application.

Applications initially designed to be executed under a parallel approach are the most

benefited when running in large-scale parallel systems. This benefit is obtained after eval-

uating the application to enable its parallelism degree at almost every level (functionality,

data, structures, etc). Unfortunately, not all the applications are designed to consider

such parallelism, most of the applications have a serial version that after few modifica-

tions can be executed in parallel. Nevertheless, their performance is quickly degraded

when adding more processing nodes. This performance degradation may be caused by in-

efficient distributions of the load to the processing nodes or by time constraints established

by data.

Generally, data intensive applications have long execution times given by the amount

of data to process or by the behavior of the algorithm with different input data. The re-

duction of such times may be achieved by adding more computational resources. However,

this reduction can be conditioned by data characteristics. In this work, improvements in

overall execution time of data intensive applications are restricted by some specific data

chunks. Data chunks average computation time (and highest computation times) serve as

indicator of the maximum possible improvement when executing the application. For this

reason, after enabling a balanced execution by modifying the workload partition factor,

the methodology assesses the evaluation of the number of processing nodes that should be

active to achieve efficient executions, i.e., an execution where all processing nodes finish

at the same time.

3.3.1 Adjusting Number of Workers

The presented methodology focuses on data intensive applications implemented under

a Master-Worker pattern. First, the load is balanced by adjusting the size of the data

chunks so that the difference between their associated computation times gets reduced.

Then, if the workload partition factor is adapted, the number of processing nodes being

used has to be modified to reduce possible inefficiencies (workers with longer periods of

idleness).

The importance of these modifications is based on the idea of efficiently executing data

intensive applications in the lowest execution time possible using the available resources.

In an ideal scenario where there is no communication overhead or time constraints given

by data, adding more resources will scale well. However, this situation is not common in

this type of applications. In this work, these performance issues are assessed by adapting

the number of computational resources used to provide an efficient execution.
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In this section, the performance model used in the methodology to adjust the number

of workers for data intensive applications is described. In this description, some initial

constraints for the selection of the number of workers are explained first. Then, the

expressions to estimate the behavior of the application after modifying the performance

parameter are exposed. Finally, the definition of certain performance indexes to decide

whether it is necessary to adapt the number of workers or not is presented.

Initial restrictions

When tuning data intensive applications, some of their performance factors cannot be

adjusted without considering the influence that other factors have on them. In this sense,

after tuning the workload partition factor (described in the previous section), and once

the load is as balanced as possible, the number of computational resources (processing

units) that are going to be used can be assessed. As a first approximation, the processing

time for each data chunk is measured and collected to determine the maximum number

of processing nodes n that may be used. This data is evaluated using expressions (3.8)

and (3.9).

n ≤ Tsi
Tmaxij

(3.8)

n ≤
∑Nf

j=1Cij

λ ∗ size ∗Nf

(3.9)

Since the minimum execution time for an exploration is limited by data chunks with

the highest computation time, it is possible to infer from expression (3.8) that the best

execution time may be achieved when using the number of workers defined by this expres-

sion. In this case, this restriction is used to calculate the maximum number of workers

that would process all the workload efficiently (without long periods of idleness caused

by workers waiting for other workers to finish their tasks).

An important characteristic when evaluating performance in parallel applications im-

plemented under Master-Worker patterns is that the Master process may become a bottle-

neck. Therefore, it is necessary to estimate the maximum number of workers that can be

managed by this Master process. If this limit is exceeded, processing nodes may become

idle (long periods of waiting time shown in figure 3.12).

This estimation of the maximum number of workers is based on the cost of sending

data chunks (communication time) to the workers and the time invested by the workers
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Figure 3.12: Idleness caused by the saturation of the Master process.

to compute the received workload (computation time). Thus, expression (3.9) describes

this relation and estimates how many workers the Master process can handle. That is, a

number for each the Master is capable of managing all the queries without becoming a

bottleneck. Otherwise, if this restriction is not met, the Master process will be saturated

and the undesirable situation of workers becoming idle while waiting for data may appear.

Based on the similarity principle between iterations, the methodology evaluates the

expressions (3.8) and (3.9), and the minimum of these values is proposed as the number

of processing units (workers) that should be active for subsequent explorations. Once this

limit is found, it is possible to estimate the behavior of subsequent iterations or queries

for this new value of processing units, based on previous collected measurements.

Total execution time estimation

The estimation of certain parameters values plays an important role in dynamic perfor-

mance analysis. The estimation of future behavior of the application (or the possibility

to establish a range for the expected total execution time) is relevant when proposing

solutions to the performance problems. These values might be of great help to decide

whether some modifications are adequate or not. For instance, when predicting how long

will the application execution take in a certain parallel machine and estimating how many

resources should be available to perform an efficient execution. Estimation of such values

is closely related to specific parameters of the application. In this work, the estimation of

the total execution time for subsequent explorations depends (directly) on the number of

workers that are being used.

The estimation of the expected total execution time for an iteration is done through the

expression (3.10). Total execution time calculation considers the time needed for sending

the first data chunk to all workers (λ ∗ size ∗ (n− 1)). Thus, the cost of making available
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to each worker the initial data to process. In this work, sending step is done serially

and the worker starts processing after it has received all the data chunk (blocking and

synchronous sends). This type of communication facilitates the design of the methodology.

The consideration of different communication schemes has been left as an open line.

Furthermore, to estimate the total execution time for a specific number of workers, the

expression (3.10) relates two additional factors: (i) the computation time of each worker

((λ ∗ size) + µi); and (ii) the number of chunks it expects to receive
(

Nf

n

)
.

tqi(n) = [λ ∗ size ∗ (n− 1)] +

(
Nf

n

)
∗ [(λ ∗ size) + µi] (3.10)

This expression does not consider the presence of data chunks with long execution

times or the heterogeneity in the size of the data chunks. This absence is given by the

difficulty to generalize the expression if such scenarios were considered. Moreover, by

applying the restrictions discussed above (and the performance indexes described below),

it might be improved the estimation of how many workers should be used.

Efficient use of resources

Data-intensive applications may present additional inefficiencies when adding more com-

putational resources. In some cases, for this specific type of parallel applications it is

possible to reach performance barriers that cannot be avoided. For example, the restric-

tion imposed by data chunks with highest execution times represents one of the major

limitations for such applications. When adding more resources, there is a point where a

limit in total execution time may appear. In previous sections of this work, these per-

formance issues where tackled by adapting the size of some “problematic” data chunks

(those with the highest execution times). Nevertheless, inefficiency problems can be faced

from another side: tuning the number of processing nodes being used.

The methodology evaluates constraints related to the computational capacity of the

workers and the amount of data that needs to be processed. These values, together

with the total execution time estimation, provide an overview of the expected application

behavior when tuning the number of processing units (worker nodes).

Although values obtained from previous performance expressions are useful, it is nec-

essary to measure the efficiency degree achieved in the execution of the applications. The

criterion for deciding the appropriated number of workers has been defined as an index

that relates the estimated execution time (tqi(n)) to achieve efficient executions. Effi-

ciency is defined by expression (3.11), and is described as the relation between the mean

66



computation time for each chunk (µi), which is the time each node has been doing useful

work, and the total time the node has been available (tqi(n)).

Efn =
µi ∗Nf

n ∗ tqi(n)
(3.11)

In the efficiency index Efn, obtained results describe the utilization of the processing

nodes for a specific iteration. The greater the efficiency, the less workers idle, and there-

fore the greater the value of the index Efn. By applying expression (3.11), it is possible to

evaluate if the tuning proposed for the number of workers does not affect the performance

of the application, i.e., if this value does not cause future performance problems. For

example, when observing a specific scenario (expected total execution time for an esti-

mated partition factor and processing nodes) where Efn is evaluated, it may be possible

to estimate how idle will the workers be in comparison with the overall execution of the

application.

Under similar circumstances, the performance index shown in expression (3.12) enables

the selection of active workers for the current execution. This expression reflects the

maximum value of processing nodes that can be active without loosing efficiency in the

overall execution of the application. Result obtained from ρn indicates that beyond that

value, the total execution time may not be reduced and the worker nodes will become idle

at some point (as shown in figure 3.13), i.e., the relation between reducing total execution

time and having workers idle starts rising, and therefore no performance improvement is

obtained. In this work, this behavior is interpreted as an inefficient execution, and it is

one of the main situations our methodology tries to avoid.

ρn =
tqi(n)

Ef(n)
=
n ∗ tq2i (n)

µi ∗Nf

(3.12)

The methodology modifies the number of processing nodes that are being used based

on the minimum value between the performance index ρn and the constraints for the

number of workers described by expressions (3.8) and (3.9). To dynamically tune the

number of workers, the constraints, the performance index and the efficiency of the ap-

plication are calculated. In figure 3.13, are shown the expected execution time tqi(n) and

performance index ρn for the example presented in section 3.2. In this example, after par-

titioning and grouping the data chunks the partition factor obtained is Nf = 9. Figures

3.13(a) and 3.13(b) presents the estimated execution time and the performance index, for

workers ranging from 2 to 6. Here, it can be seen how the total execution time decreases
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Figure 3.13: Example of total execution time vs. performance Index.

when adding more processing units (workers). Nevertheless, the increasing in the number

of workers, if there are load imbalances, may cause efficiency loss, and hence a variable

behavior in the performance index. The analysis phase looks for the lowest value for both

tqi(n) and ρn. In this example this minimum is around 5, i.e., the number of workers

active should be Nw = 5 to provide an efficient execution.

During the analysis phase, to update λ and size values, the following parameters have

to be monitored: network parameters, such as bandwidth and setup overhead; communi-

cation parameters, such as message size; and computation parameters, such as processors

(CPU) utilization, as well as the average execution time estimated by expression (3.10).

Reported values from the performance analysis determine the corresponding modifications

to the number of workers for subsequent iterations. After doing this, every step in the

methodology is covered and a next iteration can begin.

Throughout this chapter, we have described the characteristics of our performance im-

provement methodology for data intensive applications with divisible load. The proposed

methodology takes advantage of the divisibility properties of the workload of certain ap-

plications. First, to reduce overall execution time of data intensive applications, their

workload is divided into smaller pieces named data chunks. Data chunks are distributed

on demand to available workers to collect their associated computation times. Once all

measurements have been gathered (and for subsequent iterations), the methodology sorts

and distributes data chunks according to their associated processing times in decreasing

order. Therefore, initial load imbalances caused by data chunks with the highest execu-

tions time are smoothed with faster data chunks. Second, our methodology considers the
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adaptation of the size of the data chunks at run time to reduce their associated compu-

tation time and to reduce communication and distribution overheads. This process has

been performed by dynamically partitioning data chunks with the highest computation

times (or selecting the appropriate size from pre-partitioned sets in the case of high par-

titioning costs); and by joining fast data chunks into bigger pieces, respectively. Finally,

the methodology assesses the estimation of how many processing nodes should be active

for efficiently processing an iteration.

3.4 Summary

Although the methodology covers different aspects for load balancing and could be com-

pared with any other method, we limit the comparison only to the most representative

features of method. For comparison purpose, our proposal is based on three major fields

of research: Divisible Load Theory (DLT) [13], Factoring adaptations [42], [6], [64] and

Dynamic Performance Analysis and Tuning [63], [25].

Divisible Load Theory and Factoring rely on strategies to adapt the size of the work-

load to enable applications parallelism and reduce load imbalances. Additionally, both

scheduling strategies (DLT and factoring) require previous information about processors

capacity to define the partition factor for the workload. On the contrary, the proposed

methodology uses application knowledge (recent and historical behavior of the applica-

tion) to improve the performance of the application, by dynamically deciding whether to

partition or not the workload. The size of the data chunks is chosen at run time, and

corresponding adaptations are based on partitioning or joining data chunks according to

their associated computation times.

On the side of dynamic performance analysis, our proposal uses gathered information

to adjust the size of the workload partitions for the next iteration (as in methods based

on DLT and factoring). In many cases, there is a root process (in our context a master

process) that controls the amount of data that has to be distributed to the worker nodes.

Root process takes scheduling decisions and evaluates the performance for subsequent

explorations. In addition, once the load is balanced, the proposed methodology evaluates

the efficient use of available processing nodes to avoid long periods of idleness in the

workers.

The design of the methodology has followed the characteristics of performance mon-

itoring, analyzing and tuning techniques described by Morajko et al. [63]. The purpose

of our design it to facilitate the implementation of the method into dynamic performance

analysis and tuning tools.
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Additionally, it has been observed that, in data intensive applications, the total ex-

ecution time may directly depend on the number of data chunks (and its sizes) and the

number of processing nodes that are available. Therefore, the methodology considers the

division of the initial workload into smaller pieces. These pieces are distributed on de-

mand to the available workers nodes, and their associated execution time is collected for

decision making. Decisions are taken in the Master process, and they are based on the

following assumptions: workload partitioning may show a linear behavior, and there is

certain similarity between iterations. Therefore, the methodology evaluates and adapts

for next iterations both the workload partition factor and the number of processing nodes

to be used. These analysis and tuning decisions are taken dynamically, i.e., while the

application is running.

The proposed methodology requires the collection of information about the behavior

of the application to make tuning decisions. This situation demands the execution of

an initial iteration to “label” generated data chunks. Once data chunks are labeled, it

is possible to determine the order in which they should be distributed to the available

worker nodes for subsequent iterations. At the same time, labeling process makes easier

the identification of data chunks with highest and lowest execution times. These data

chunks are the candidates to be modified to improve the performance of the application,

i.e., reduce total execution time or reduce overheads caused by distributing too much

smaller pieces. In next iterations, the number of workers will also be tuned based on the

current number of data chunks and their corresponding behavior.

To conclude, proposed performance improvement methodology allows the execution

of data intensive applications with arbitrarily divisible loads in parallel systems. This

suggest the use of our methodology as a feasible solution to the load imbalances problems

in current parallel data intensive applications (as shown in next chapter). In addition,

the structure of the methodology and parallel applications considered, may facilitate the

implementation of a similar technique in platforms such as Cloud, which have been gaining

popularity in the last few years.
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Chapter 4

Evaluation of the methodology

“-Il est bien plus difficile de se juger soi-même que de juger autrui. Si tu réussis à

bien te juger, c’est que tu es un véritable sage.”

Antoine de Saint-Exupéry. Le Petit Prince.

In this chapter, we present the evaluation of the data management techniques and the

resource management method explained in previous chapter. This evaluation is carried

out to show how the proposed methodology improves the performance of data intensive

applications. Performance improvement is achieved by dynamically adjusting the work-

load partition factor and tuning the number of processing nodes. It is worth noting that

the proposed methodology considers data intensive applications, which workload can be

arbitrarily partitioned into smaller pieces (data chunks), and that perform several related

queries or iterations in this data. In addition, the methodology may report good results

in presence of slightly differences between the iterations (as it can be seen later in section

4.1.3).

The purpose of the evaluation process is to confirm the benefits of using the proposed

methodology. To this end, we have defined a set of metrics to observe both functional

and performance features of the proposal. In this work, the most representative metrics

are the total execution time and efficiency. Since our methodology is developed consid-

ering applications implemented under a Master-Worker paradigm, total execution time is

determined by last worker finishing its processing. Additionally, we consider efficiency as

the relation between average execution time and total execution time for one iteration.

These metrics have been chosen with the aim of measuring several aspects related to

the behavior of the applications in the presence of data chunks with variable execution

time. In addition, some significant scenarios of data intensive applications, in which our

methodology can be applied, have been included in the evaluation of the proposal.
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In section 4.1, the selected test beds for the evaluation of the methodology are pre-

sented: a real data intensive application BLAST is explained in section 4.1.1; a distributed

merge sort is described in section 4.1.2; and section 4.1.3 presents the analytical simulator.

Then, we present the evaluation of the method and results of each strategy separately.

The evaluation method used for selecting and adapting the workload partition factor are

explained within section 4.2. Finally, evaluation of the method and results for tuning the

number of processing nodes are described in section 4.3.

4.1 Selected Test beds of Data Intensive Applications

to Evaluate the Methodology

The methodology is tested on homogeneous and dedicated clusters, where one single

process is executed on a single core. Additionally, analyzed data intensive applications

have been developed under a Master-Worker paradigm, where each worker is assigned

to a different processing node and they do not communicate between them. Under this

approach, a homogeneous cluster consists of a head node, connected via a switch to

N processing nodes. We assume that all processing nodes have the same computational

power and that all links from the switch to the processing nodes have the same bandwidth.

The methodology assumes a typical cluster environment in which the head node does not

participate in computation. The role of the head node is to divide the workload and

distribute data chunks to processing nodes.

The methodology is evaluated using: (i) a real data intensive application, BLAST

(subsection 4.1.1); (ii) a synthetic application based on the merge sort algorithm (subsec-

tion 4.1.2); and (iii) an analytical simulator (subsection 4.1.3). Each test bed has been

selected to analyze different stages of the methodology. First, BLAST is used to check

the overall behavior of real applications when applying our proposal. Then, the synthetic

application facilitated the analysis of the workload partition factor adaption at run time

(because the partitioning process is faster than for BLAST). Finally, the analytical sim-

ulator enabled the evaluation of the methodology for a wide range of scenarios of the

selected data intensive applications.

4.1.1 Basic Local Alignment Search Tool - BLAST

As a real application, we choose NCBI BLAST (Basic Local Alignment Sequence Tool) [4]

for assessing our proposal because it is one of the most widely used bioinformatics tools,

and it satisfies the assumptions presented in section 3.1 about data intensive applications:
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1. The initial data set of the application can be arbitrary partitioned into indepen-

dent data chunks;

2. The application performs a set of related iterations or queries on the data set;

3. The performance of the application varies significantly (according to the input

data);

4. The characteristics of the input data of the application may be unknown.

BLAST searches for regions of similarity in biological queries (nucleotides or proteins).

It calculates the statistical significance of matches comparing the entrance query with large

databases of sequences, such as GenBank 1 or Swiss Prot 2. Based on heuristics, BLAST

algorithm improves up to 10 times the exact match Smith-Waterman Algorithm [83].

BLAST is both a CPU and a data intensive application that can be executed in parallel

and distributed systems by: (i) partitioning the query (input sequences) so that each of

worker looks for similarities of a subset of queries (figure 4.1(a)), or (ii) partitioning not

only the input sequences but also the database (figure 4.1(b)). The second approach

allows the database to grow and still fit on the local disk or local memory of worker

nodes. In some cases, workers communicate among themselves to generate the final

combined comparison result. This application presents irregular processing times due to

data characteristics. It processes biological databases of hundreds of GB 3 –and growing–

that can be arbitrarily divided into non-dependent data chunks (in BLAST literature

these chunks are called fragments).

The first approach (i.e. partitioning only the input sequences) can be easily imple-

mented using a scripting language to identify the input sequences, execute BLAST, and

concatenate the result. However, according to Matsunaga et al. [57], in practice users still

face the following challenges: (i) finding the ideal number of workers to use; (ii) identifying

in how many partitions should the database be split; (iii) providing balanced executions;

and (iv) recovering from the potential failure of some workers to avoid obtaining only

partial results.

Most parallel BLAST versions, such as mpiBLAST [31], ScalaBLAST [68], Cloud-

BLAST [57], CloudBurst [80] and AzureBlast [55], have been developed for homogeneous

and heterogeneous clusters [31], Grid [68] and Cloud ([57], [80], [55]) platforms using the

Master-Worker paradigm and taking advantage of the parallelism of the systems using

1http://www.ncbi.nlm.nih.gov/genbank/
2http://web.expasy.org/groups/swissprot/
3The wgs database available at the FTP server of the National Center for Biotechnology Information

–NCBI– (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) is of approximately 360 GB.
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Figure 4.1: Approaches to implement BLAST in parallel.

database or query partitioning. In general, input data is partitioned and the generated da-

tabase fragments are distributed between all available workers. Next, each worker searches

for similarities between the input sequence and the database fragment. Finally, it returns

the obtained results to the master, which collects all the results and concatenates them

into one output file.

In the case of BLAST, the application may present load imbalances given by variations

in the computation time associated to the complexity of the query. In this application,

these variations are caused by the content of the data chunks because the more similarities

BLAST encounters in a data chunk, the more time is required for processing a fragment.

Moreover, BLAST represents a good candidate to benefit from our proposal.

In this work, BLAST has been used to evaluate the effectiveness of our methodology to

improve performance in real data intensive applications when dynamically adapting: (i)

the scheduling policy; (ii) the size of the data chunks; and (iii) the number of processing

nodes used.

Selected Workloads for BLAST

Along this chapter, all experiments performed with BLAST have been using the ncbi-

blast-2.2.23 [66] version of the application (available in the web page of the National Center

for Biotechnology Information 4). Since the performance of BLAST (total execution time)

is highly influenced by the characteristics of the biological queries and databases, we

choose one of the biggest database of nucleotides named nt (of approximately 50 GB) and

the scenarios described below to observe variability.

BLAST has been executed using three different workloads: a heavy workload (tagged

4Latest versions of BLAST are available in ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/
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Slow), using queries with many similarities with the database; a medium workload (tagged

Common), decreasing the number of similarities; and a light workload (tagged Fast),

reducing even more the number of similarities. All queries contain biological sequences of

the same size (1MB each):

• Slow : a 1,036,416 chars long sequence, literally chopped from the last part of the

nt database. This piece was selected due to its long associated execution time

(a couple of hours in our computing platform).

• Common: a 1,076,380 chars long sequence, created from randomly selected lines

from the nt database. This sequence has an associated execution time about

minutes.

• Fast : a sequence of 1,015,156 chars, taken from another database of nucleotides:

the yeast DNA database. This sequence has fast associated execution times of

only a few seconds.

The database has been previously partitioned and formatted into the following par-

tition factors: Nf = {8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}. These workloads

are available in the local disk of each worker node at run time.

4.1.2 Distributed Sorting Algorithm

Sorting algorithms have been widely used since the beginning of computer science. Knuth

[48] said: “Computers have historically spent more time sorting than doing anything else.

A quarter of all mainframe cycles were spent sorting data.” Although scientific appli-

cations are not commonly executed in mainframes, sorting algorithms are often used to

evaluate performance. The special behavior of such algorithms and the differences in com-

putation time when processing unsorted and sorted files have become sorting algorithms

as one of the most interesting in the computational field. The steadiness of certain sorting

algorithms makes easier the estimation of total execution time of such applications.

Additionally, many sorting algorithms, such as merge sort have included modifications

to facilitate sorting large input files in short time. Merge sort parallelizes well due to its

divide-and-conquer method. The variability in computation time and the capability of

processing large input files in parallel, together with the possibility of arbitrarily dividing

the file to be sorted into smaller pieces, have led us to develop a distributed version of

the algorithm.

This application was developed as a Master-Worker and its input data files (of un-

sorted items) were generated using the gensort program [67]. These files contain items
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represented as lines of 100 ASCII characters. This application can sort input files of

medium size (e.g. several tens of GB); the files can be split into smaller data chunks;

and the chunks are processed by worker nodes under a round-robin approach. The size

of generated files is of up to 32 GB, and each file was divided into 128 data chunks. This

number of pieces was selected because is large enough to guarantee that all workers of the

parallel system described at the end of this section will have data chunks to process.

The distributed version of the merge sort replicates the sorting engine at each worker

process. Workers receive their data chunks following the scheduling policies described in

section 3.2.2. Moreover, to introduce variability in the computation time associated to

some of the data chunks in the workload, unsorted and sorted data chunks have been

randomly combined in the workload. The workload has a variable percentage of sorted

data chunks (e.g. a 25%, 50% and 75% of the total workload) to generate the time

variation expected in the application.

As the stable version of merge sort algorithm has a computational complexity of

(n ∗ log(n)), once the workload is partitioned the total execution time is greatly reduced.

Nevertheless, for comparison purpose obtained results might not be comparable with

results from a serial version. Therefore, to keep integrity in the total execution time, after

each worker performs a distributed merge sort in the received data chunks, and once all

its data chunks have been sorted, the workers merge their processed data chunks into

a bigger file. In this way, the distributed sorting time and the final merge time can be

collected.

In this work, we have used this application to analyze the effect of dynamically mod-

ifying: (i) the scheduling policy; (ii) the size of the data chunks; and (iii) the number of

processing nodes used. Consequently, distributed merge sort facilitates the analysis of the

results of applying the proposed methodology, because it enables the modification of the

size of the data chunks at run time without introducing additional processing overhead.

Dynamic partitioning and grouping strategies (defined in previous chapter) have been

easily applied to this application.

4.1.3 Analytical Simulator

In the performance analysis process, one of the most useful tools is simulation. Simulation

enables the evaluation of scenarios that are difficult to observe and model. In many cases,

simulation techniques validate the results obtained from empirical analysis and modeling.

Nevertheless, implementing, debugging and executing a whole analysis environment to

evaluate its functioning may result a big challenge. In this work, some analytical ex-

pressions have beens defined to: (i) describe the behavior of data intensive applications;
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and (ii) choose the appropriate values for performance parameters, such as the workload

partition factor and the number of processing nodes used. Therefore, their functionality

have been evaluated through simulation.

In this sense, an analytical simulator has been implemented to evaluate the proposed

load balancing methodology described in chapter 3 in a wide range of scenarios for the

selected applications. The developed tool facilitates the observation and analysis of the

performance parameters influence in the execution of the application. For instance, the

simulator allows for the visualization of certain variations in data chunks processing time,

and the evaluation of how changes in the partition factor affect the performance of the

application. Thus, the simulator is able to reproduce such situations for a wide range of

situations.

As a first step, the simulator has been fed with different scenarios of input data.

Initial input data included the following parameters: the execution time of every data

chunk (in seconds); the size of the data chunks (in megabytes); the communication time

per megabyte and the number of processing nodes. The result from the simulation process

is the total execution time of the application (expressed in seconds) for each scenario.

The simulator has been designed to reproduce a Master-Worker paradigm. Addition-

ally, it presents a synchronous communication pattern between the master and workers;

i.e., a data chunk cannot be sent until the sending of the previous data chunk has finished.

In this way, communication time has been modeled as the product of the size of the data

chunk by the communication time per megabyte.

Additionally, the expression (3.10) (described in section 3.3.1) has been used to model

the total execution time of the application in the simulator. Since the response time in

most of the scenarios is almost negligible, this time (the time of sending the results once

the worker has finished processing its data chunks) has not been considered in the total

execution time. Moreover, the model assumes that the total execution time is determined

by the last worker to finish its computation.

Summarizing, the simulator has been developed to: (i) quickly assess the proposed

methodology using a greater number of processing nodes when varying scheduling tech-

niques, as well as introducing errors in the similarity between iterations; (ii) reproduce

the general behavior of data intensive applications with divisible load; and (iii) to ob-

serve and evaluate the performance improvement capability of the methodology in such

applications. These aspects will be fully evaluated in the rest of this chapter.
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Experimental Environment

The experiments explained in the following sections were carried out in a homogeneous

cluster with 32 processing nodes, and 12 GB of memory per node. Each node consists of

2 dual core Intel Xeon 5160 at 3 Gh with 4 MB of L2 Cache and memory at 667 Mhz

FSB.

4.2 Data Management

In this section, we describe the experiments performed with the aim of evaluating the

performance improvement methodology proposed in this work. Experiments shown in

the following sections are based on the evaluation of each phase of the methodology using

the applications (BLAST and distributed merge sort) and the evaluation environment

(analytical simulator) described in section 4.1. First, in section 4.2.1 the improvements

obtained when changing the scheduling policy are exposed. Then, in section 4.2.2 the

method and results of tuning the size of data chunks according to the performance of

each application are described.

4.2.1 Evaluation of the scheduling policy

As a first step, the behavior of the application when changing the scheduling policy is

analyzed. The applications are executed using the First Come First Serve (FCFS) and

the Heaviest Fragments First (HFF) scheduling policies (that have been described in

previous chapter in section 3.2.2). According to our methodology, the time spent on

processing each fragment should be recorded to be used for scheduling data chunks for

next iterations, explorations or queries. The experiments shown in this section are carried

out using a partition factor of Nf = 128, because: (i) it gives enough information about

data chunks processing times; (ii) it allows a higher load balancing; and (ii) it is not

difficult to graphically see the time associated to each fragment.

Here, we present experiments performed using the applications described in section

4.1. First, the method and results obtained for the evaluation using BLAST are exposed.

Then, the corresponding results for the merge sort application are shown. Finally, the

experiments performed using the analytical simulator are explained and discussed.

Evaluation of the scheduling policy through BLAST

Results shown in this section (in figure 4.2(a)) are obtained by using 16 workers, Nw = 16,

the partition factor Nf = 128, the Slow scenario for BLAST and applying the First Come
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First Serve (FCFS) scheduling policy. Here, load imbalances can be clearly observed. The

cause of such situation is given by data chunks with highest computation times that are

scheduled at the end of the execution. This situation can be initially solved by changing

the scheduling policy from FCFS to Heaviest Fragments First (HFF). Results obtained

when applying this latter scheduling policy are presented at the right side of the graphic

(figure 4.2(b)). The advantage of reordering data chunks according to their associated

computation times is clear because HFF softens possible load imbalances by sending the

heaviest fragments first (and filling the gaps with faster data chunks). A reduction of up

to 40% in total execution time can be observed for this specific scenario (in comparison

to not having a predefined distribution order).
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(a) Processing time for blastn, Slow query, Nw =
16, Nf = 128 and FCFS.
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(b) Processing time for blastn, Slow query, Nw =
16, Nf = 128 and FCFS & HFF.

Figure 4.2: BLAST: Comparison of application performance using Nw = 16, Nf = 128,
Slow scenario and, First Come First Serve (FCFS) and Heaviest Fragment First (HFF)
scheduling policies.

Evaluation of the scheduling policy through Distributed Merge Sort

For the distributed merge sort scenario, data chunks are distributed using the First Come

First Serve (FCFS) and the Heaviest Fragments First (HFF) approaches. Experiments

were performed using 32 workers, Nw = 32. Obtained results in terms of total execution

times are shown in figures 4.3(a) and 4.3(b). In figure 4.3(a) data chunks are distributed

without any pre-defined order; while in figure 4.3(b), data chunks with highest execution

times are delivered first.

From the reported results, it can be concluded that changing only the distribution
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(a) Execution with distributed merge sort, for
Nf = 128 and Nw = 32 using FCFS.
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Nf = 128 and Nw = 32 using HFF.

Figure 4.3: Distributed Merge Sort: Load imbalances using First Come First Serve
(FCFS) and Heaviest Fragment First (HFF) scheduling policies.

policy may not solve the load imbalance problem for this application. This situation

persists because there is a final merge time that is not considered when distributing data

chunks. The final merge is performed by each worker with the received data chunks and

it is influenced by the total number of pieces this worker has received. If a worker has

processed too many data chunks with low computation times, this performance improve-

ment may disappear when merging the final file causing unexpected and undesirable load

imbalances.

Evaluation of the scheduling policy when introducing error in data chunks

processing time predictions using the Analytical Simulator

The aim of this experiment is to evaluate the effectiveness of the proposed methodology

for the distribution policy, when introducing different degrees of error in the predictions

of the data chunks processing times. The proposed load balancing methodology is based

on sending first those data chunks with higher processing times. To accomplish this, the

history of the execution time measured for each data chunk is gathered and then this

information is used to decide the scheduling order. However, predictions are likely to fail

in some degree, and expected results might differ because the execution time of the same

data chunk may vary from iteration to iteration.

Here, we evaluate how the total execution time is being affected when a certain degree

of error is introduced to the prediction of the processing time associated to each data
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Figure 4.4: Analytical Simulator: Mean time differences when introducing errors in data
chunk prediction times using FCFS and HFF scheduling policies.

chunk. To this end, the simulation environment is set to consider a partition factor equal

to 128, Nf = 128, and 64 workers, Nw = 64.

The input data of the simulator is generated following a normal distribution from an

initial data set obtained from real measurements. Then, a certain degree of variation is

introduced in the computation times of each data chunk (the degree of error is ranged

from no variation –0%– up to 250% of variation of the measured time). The greater this

degree of variation, the greater the variability in the time associated to the data chunk.

Obtained data sets are evaluated using both scheduling policies: (i) Fist Come First

Serve (FCFS): the data chunks are distributed with not previous order; and (ii) Heaviest

Fragments First (HFF): the data chunks are distributed by processing time in decreasing

order. Reported results are the differences between the total execution time when applying

both scheduling policies.

From results shown in Figure 4.4, it is observed that introducing variability in the

processing times of each data chunk tends to degrade the performance of both scenarios.

Increasing the variability in the execution time of the data chunks leads to less accurate

predictions for the HFF scheduling policy. Consequently, as expected, it can be observed

how the differences between the total execution time of each scheduling policy is reduced.

However, it also can be seen that even for a 100% of variability, HFF policy is leading to

significant improvements over FCFS.

In some data intensive applications, performance improvement is achieved by reducing

total execution time. To this end, it is necessary to tackle time restrictions imposed

by data chunks with highest computation time. To achieve this goal, the methodology

considers the partitioning of such data chunks, and the grouping of data chunks with

short execution times. These strategies are evaluated in the following section.
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4.2.2 Adapting the size of data chunks

The objective of these experiments is to evaluate the performance of different data inten-

sive applications when tuning the workload partition factor. Results shown in this section

are represented by the total execution time of the applications when applying the strate-

gies described in sections 3.2.3 and 3.2.4. Both partitioning and grouping strategies are

applied at each experiment. Data chunks with highest execution times are partitioned into

smaller pieces, and bigger data chunks are created by joining pieces with short execution

times.

First, results obtained by adapting the workload partition factor in BLAST are shown.

Then, our method is applied to the distributed merge sort. To finalize, with the evaluation

of the adaptation in the size of the data chunks in larger scenarios through simulation.

Evaluation of adjusting the workload partition factor in BLAST

In BLAST executions, the modification of the partition factor is done as explained in

section 3.2.3 when the cost of partitioning at run time is too high. In this case, database

is previously partitioned into different number of data chunks (different partition factors)

and our methodology chooses the appropriate size of data chunks from these sets of data

chunks. From initial partitions, a partition factor equal to 128, Nf = 128 is selected. The

execution is carried out in Nw = 32 workers using the Slow type of query.

From this configuration the following results are obtained: a total execution time of

Ci = 5, 263.51 seconds; an average execution time of µi = 599.08 seconds; a standard

deviation of σi = 670.86; and an expected ideal time equal to 2, 396.33 seconds. These

results and the computation time of each data chunk are shown in figure 4.5(a). Under

the same scenario, figure 4.5(b) presents the results of a new partitioned workload after

gathering and dividing the data chunks. In this case, Nf is reduced from 128 to 64 and

the expected total execution time (time of the slower data chunk) is now equal to 2, 910.03

seconds (a reduction in the total execution time of up to 55%).

This time reduction is obtained by selecting from the previously partitioned data sets

the most adequate size of data chunks. For this specific experiment, we can observe 2 data

chunks with large execution times, each of them are divided in 4 (smaller) data chunks

coming from a partition factor equal to 512. Data chunks with short execution times

are grouped with their contiguous data chunks to create bigger pieces 5. This scheme of

partitioning and grouping is used to preserve the relations between different data chunks

in the workload.

5For a partition factor of Nf = 256 are obtained 2 data chunks with large execution. Each one of
these data chunks are divided into 2 smaller pieces that substitute their “parents” in next iterations.
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(b) Processing time by tuned data chunks

Figure 4.5: BLAST: Variations in the execution time of the data chunks when partitioning
and grouping the workload.

In addition, the behavior of BLAST when using the HFF scheduling policy with and

without adapting the size of the data chunks (workload partition factor modification) is

compared. The evaluation is performed ranging the number of workers, Nw, from 4 to

32. Obtained total execution times are contrasted with the expected ideal time for each

case; results are showed in figure 4.6. The difference between tuning or not the size of the

data chunks is clearly shown in this figure. Here, HFF presents a constant total execution

time from 16 workers because of data chunks with the highest execution time (these data

chunks impose a time restriction and applications total execution time cannot be lower

than this time). On the contrary, when applying partitioning and grouping strategies, the

total execution time of the application is greatly reduced. This time reduction is achieved

by breaking data chunks that impose time restrictions and by distributing them first.

Evaluation of adjusting the workload partition factor in Distributed Merge

Sort

In this experiment, the performance of the distributed merge sort when adapting the size

of the data chunks is evaluated. This functionality is introduced with the aim of: (i)

reducing the execution time of data chunks with high processing times; or (ii) reducing

the number of data chunks with low computation times by sending less pieces of greater

size. The experiment is performed using the scenario described in the section 4.1.2. This

experimentation is carried out to provide the comparisons between the results presented

in figure 4.3 (in section 4.2.1) and figure 4.7. Data chunks are partitioned and grouped at
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Figure 4.6: BLAST: Performance improvement in total processing time for Nf = 128 and
the Slow scenario for BLAST, using HFF scheduling policy + workload partition factor
adaptation (HFF + factor).

run time. The methodology evaluates collected execution times and establishes the data

chunks that should be partitioned and grouped for the subsequent exploration.

Results presented in figure 4.7 show a more balanced execution in comparison with

non-adapting the workload partition factor (as shown in figure 4.3(b)). This improvement

is obtained after grouping and generating data chunks of almost the same total execution

time for each worker. By doing this, the variability introduced by the final merge becomes

constant and the processing time of each one of the workers is almost the same.

Tuning the workload partition factor enabled a well balanced execution among avail-

able workers nodes (finishing time of all workers is about 200 seconds, in comparison with

previous FCFS and HFF distributions presented in section 4.2.1), as well as a reduction

of the total execution time of approximately a 32%, (from comparing 371.20 seconds of

HFF scheduling strategy to 279.63 seconds using the HFF + factor scheme).

Evaluation of adjusting the workload partition factor using the Analytical

Simulator

The simulator is used to evaluate the analytical expressions presented in chapter 3 to show

the performance improvement when the size of the data chunks is changed. Simulations

are performed under the following conditions:

• An initial partition factor Nf = 128.
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Figure 4.7: Distributed Merge Sort: Total execution time by worker for Nf = 128 and
Nw = 32 using HFF + factor.

• Nw values ranging from 10 to 80.

• Two different scenarios: Heaviest Fragments First with and without workload

partition factor modification (HFF + factor and HFF, respectively).

• Execution time of data chunks is generated following a normal distribution based

on measurements obtained from real executions of BLAST.

From the results shown in figure 4.8, it can be observed the difference between the

maximum execution time Tmaxij
obtained with and without applying the tuning strategy

for the workload partition factor. Here, the execution time limitation imposed by data

chunks with large computation times can be softened or diminished through dividing those

data chunks into smaller pieces. It is worth noticing that once this barrier is removed,

the total execution time of the application may be reduced by adding more workers.

As for all the experiments, the history of the computation time measured for each

data chunk is used to adapt the workload partition factor, when measurements vary from

one exploration to another predictions are likely to fail in some degree.

As previously done in section 4.2.1, the variation in total execution time is analyzed.

This variation is obtained when a certain degree of error is introduced in the data set,

e.g., changing the size of data chunks. The simulation environment is set to use Nf = 128

and Nw = 64, and a certain degree of variation in the time of each element of the set

is introduced. The greater this percentage of variation introduced in the computation
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Figure 4.8: Analytical Simulator: Performance improvement using HFF + factor sched-
uling strategy for variable numbers of workers.

time of each data chunk, the greater the variability obtained for each new data chunk.

The generated data set is evaluated for the HFF scheduling policy with and without

adapting the workload partition factor. The simulation process is repeated 500 times and

the results are the average values of computation time for both cases.

Introducing variability in the computation time of data chunks tends to degrade the

performance of the HFF strategy. In figure 4.9, it can observed that time degradation is

significantly reduced when adapting the size of the data chunks, i.e. using our HFF +

factor strategy.

In general, when data chunks with large computation times are divided into smaller

data chunks, their associated computation time is greatly reduced. Consequently, it is pos-

sible to reduce the total execution time of the application by adding more computational

resources. In addition, the methodology proved to be efficient enough to dynamically

improve the performance of data intensive applications. Obtained results are encouraging

in terms of applying our method to a wider range of data intensive applications with

divisible load. These improvements are achieved even in the presence of failures in the

estimation of the associated computation times of the data chunks, i.e., when subsequent

queries are not closely related.

Once the load balancing using the HFF scheduling policy and the workload partition

factor modification is achieved, the focus can be shifted to assess the resource utilization.
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Figure 4.9: Analytical Simulator: Performance improvement when introducing errors in
data chunk prediction times using FCFS and HFF scheduling policies.

4.3 Resource Management

In this section, the resource management scheme proposed in our methodology to improve

the performance of data intensive applications is evaluated. Experiments are carried out

using the applications and the simulator described in section 4.1. The evaluation of

adjusting the number of processing nodes being used is exposed in section 4.3.1.

4.3.1 Adjusting Number of Workers

By adapting the size of the workload, an important reduction of the execution time is

achieved. Nevertheless, in most cases, there is an instant in which there is no more possi-

bility to reduce total execution time. When this happens, the goal is shifted to efficiently

adapt the number of processing nodes. This adaptation is performed with the aim of

avoiding worker being idle during the execution of the application. It is worth mention-

ing that workers may be idle for both load imbalances and communication dependencies.

Nevertheless, in this work, the Master-Worker model observed and implemented does not

consider the aforementioned dependencies. To attain an efficient execution using a certain

number of processing nodes, and since total execution time is given by the last worker

that finishes its processing, collected metrics are evaluated to tune the number of workers

being used in parallel executions under a Master-Worker paradigm.

In this section, the proposed strategy for tuning the number workers nodes using the

previously defined data intensive applications is evaluated. First, the results obtained from
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BLAST are presented, followed by the evaluation of the distributed sorting algorithm.

Finally, for a wide range of scenarios for the applications, the method is analyzed and

evaluated through simulation.

Estimating the number of resources for BLAST

To show the advantages of tuning the number of workers used by the application, BLAST

is executed using five different partition factors Nf = {128, 256, 512, 1024, 2048}; and

five different numbers of workers Nw = {2, 4, 8, 16, 32}. The value of λ is measured

experimentally as the inverse of the network bandwidth (≈ 112.5MB/s, which is the

expected best-case data bandwidth measured between two nodes of the cluster for a

Gigabit Ethernet network). The average sizes of the data chunks for the selected partition

factors are shown in Table 4.1.

Nf 128 256 512 1024 2048

size [MB] 55.8 28.2 13.9 7.0 3.5

Table 4.1: BLAST: Data chunks and chunks sizes

Figure 4.10(a) shows the evaluation of expression tqi (3.10) for each value of Nw using

the Slow scenario, figure 4.10(b) shows the real execution time of BLAST, and figure

4.10(c) shows the real execution time after tuning the partition factor. It can be observed

that when the restrictions defined by expressions (3.8) and (3.9) are met 6, there is a small

difference (of up to a 8% for most cases, as shown in Table 4.2) between estimated total

execution time and real (measured) execution time for most of the partition factors and

numbers of workers.

Nw Expected Time [sec] Real Time [sec] Error (%)

2 38,375.81 38,410.30 0.09

4 19,136.69 19,261.70 0.65

8 9,584.92 9,620.99 0.37

16 4,798.99 5,242.65 8.46

32 2,409.03 5,264.33 54.23

Table 4.2: BLAST: Error calculation for Nf = 128 between expected and real execution
time when varying the number of workers.

Therefore, as expected, expression (3.10) facilitates the estimation of the total exe-

cution time of the application for subsequent iterations. Results shown in these figures

6Expression (3.8) represents the maximum number of workers that will finish the processing at the
same time. Expression (3.9) estimates the maximum number of workers that the master may handle
without causing idle time, i.e. before the master becomes a bottleneck.
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Figure 4.10: BLAST: Comparison between expected and real execution times.
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present a major improvement when tuning the number of workers. For almost all the cases,

when varying from 2 to 32 workers the reduction of the total execution time reaches a

93.7% (as shown in Table 4.3). These results will be compared later with obtained results

from the evaluation using the analytical simulator (where it is possible to simulate more

than 32 workers).

Expected Performance (HFF)

Nf tqi(2) [sec] tqi(32) [sec] Improvement (%)

128 38,375.81 2,409.03 93.72

256 44,966.65 2,814.81 93.74

512 53,686.05 3,359.47 93.74

1024 64,083.39 4,004.90 93.75

2048 73,537.14 4,595.66 93.75

Real Performance (HFF)

Nf tqi(2) [sec] tqi(32) [sec] Improvement (%)

128 38,410.30 5,264.33 86.29

256 44,994.70 3,843.83 91.46

512 53,722.10 3,362.27 93.74

1024 64,152.50 4,009.22 93.91

2048 73,643.00 4,609.62 93.74

Table 4.3: BLAST: Expected and real performance improvement

The cases where the estimated execution time greatly differs from the real execution

time (cases with Nw = 32 workers using the partition factors Nf = 128 and Nf = 265)

can be explained through the constraints indicated by expressions (3.8) and (3.9) (mini-

mum total execution time to finalize the execution and maximum capacity of the master,

respectively). In these cases, when using 128 data chunks, the associated computation

time of the chunk with the highest processing time is of about 5,245.61 seconds (Tmaxij,

in Table 4.4). Therefore, when the number of workers is changed from 16 to 32, there

is no improvement in total execution time because of it. Consequently, for similar cases,

increasing the number or processing nodes may not reduce the total execution time.

In this sense, for the same partition factor Nf = 128 and without adapting the size

of the data chunks, obtained result from evaluating the expression (3.8) is equal to:
Tsi

Tmaxij
= 76,598.19

5,245.61
= 15. This value (the maximum number of workers that should be

active) indicates that above 15 workers the total execution time will remain the same

(there is no improvement and the probability of having idle workers increases). Likewise,

for a partition factor equal to 256 data chunks, the maximum number of workers that can

be used is 23, as shown in Table 4.4. Figure 4.11 illustrates this discussion by showing for

Nf = 128 and Nf = 256 the best possible execution time (calculated by tqi(n)); and the
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real (measured) execution time (given by the maximum execution time Tmaxi). Since

adding more workers does not guarantee a reduction in total execution time, the best

decision is to adjust the number of workers being used (reducing the number of workers

that are active) to increase the efficient use of processing resources.

Nf µCi [sec] Tsi [sec] Tmaxi [sec] Nwmax

128 598.42 76,598.19 5,245.61 15

256 350.57 89,747.16 3,842.51 23

512 209.64 107,317.37 2,648.39 41

1024 125.06 128,061.95 1,417.55 90

2048 71.79 147,018.66 860.31 171

Table 4.4: BLAST: Maximum number of workers (Nwmax) for Slow queries.
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Figure 4.11: BLAST: comparison of the best possible execution time and real execution
time when adapting the number of workers, for Slow scenario using Nw = 15 for Nf = 128,
and Nw = 23 for Nf = 256.

In addition, the Slow scenario and a partition factor Nf = 128 are used to illustrate

the use of the performance index described in expression (3.12) when tuning the number

of workers. Performance index indicates the efficient use of resources during the execution

of the application. This index relates total execution time of the application and average

execution time to estimate the total time workers are idle, i.e. without processing data.

Figure 4.12 shows the results reported for the performance index ρn when using 2, 4, 8,

16 and 32 workers.

It can be seen that there is no efficiency loss (the curve does not start to climb) for

the selected application, and therefore, more workers may be added. However, if the

number of workers is increased, there will be no gain in total execution time (because of
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Figure 4.12: BLAST: performance index for Slow query and Nf = 128.

the data chunk with the highest computation time) and more workers will remain idle.

This idleness is translated as an efficiency loss and it must be avoided.

To conclude this section, an additional evaluation of the influence of adapting both

the number of processing nodes and the size of the data chunks in BLAST is presented.

Although partition factors can be modified, performance improvement for BLAST may

remain constant (as shown in figure 4.10). This stability may be improved by dynamically

adapting the size of the data chunks. In the following lines, the total execution time of

the application with and without changing the size of the data chunks for initial partition

factors equal to Nf = 128 and Nf = 256 is evaluated. Figure 4.13 shows the total

execution time for each partition factor without adapting data chunks sizes (left column

labeled HFF ) and when the tuning is applied (right column labeled HFF + factor).

Once the workload partition factor is adjusted, time limitations imposed by data

chunks with highest computation times are softened. Consequently, a larger number of

processing nodes can be used without losing efficiency. For 32 workers and a partition

factor Nf = 128, obtained results have reported up to 55% of reduction in the overall exe-

cution time when applying the proposed methodology (as shown in figure 4.13). Reported

results show the advantage of adapting the size of the data chunks dynamically. Neverthe-

less, there is an implicit overhead caused by the serial fraction of each data chunks. This

fraction penalized the total execution time when adding data chunks times. For example,

using a partition factor Nf = 256 it can be seen a slight increment in the total execution

time when adapting the size of the data chunks, because the serial fraction is replicated

when the computation times of the data chunks are summed. Therefore, as more data

chunks we have, the more overhead is introduced.
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Figure 4.13: Execution with Slow query, for Nw = 32 using HFF and HFF + factor.

Consequently, figure 4.14 shows the reported results when tuning both the partition

factor and the number of workers. Here, once the workload partition factor is adapted to

reduce total execution time, expressions (3.8) and (3.9) defined that the number of workers

must be reduced to Nw = 26 for next iterations to improve the efficient use of resources

(figure 4.14(b)). From this experiment, focusing on the partition factor Nf = 128, it can

be observed a time reduction between the first and last worker finishing processing of up

to 76.99% (from 3116.10 seconds to 717.06 seconds). Additionally, processing nodes are

used a 14.52% more (Ef32 = 1.8 and Ef26 = 2.1) and there is an overall improvement in

total execution time and efficient use of resources of approximately 45% (ρ32 = 2886.59

and ρ26 = 1593.97). Therefore, by applying our methodology it is possible to reduce total

execution time of BLAST application and increase the efficient use of available resources.

Estimating the number of resources for Distributed Merge Sort

The intent of this experiment is to analyze the behavior of the distributed sorting al-

gorithm when adding more processing nodes. This experiment is carried out using the

initial workload described in section 4.1.2, a unsorted file of 32 GB 7 divided into 128

data chunks. To introduce variability in the computation time associated to some of the

data chunks in the workload, unsorted and sorted data chunks are randomly combined

in the workload. Therefore, 25% of data chunks are previously sorted to generate the

expected time variation when executing the application. The total execution time when

7Input files have been generated using the gensort program [67].
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(b) Tuned BLAST execution

Figure 4.14: BLAST: Efficient use of resources when tuning the partition factor and the
number of workers (HFF + factor). Initial partition factor Nf = 128, initial number of
workers Nw = 32; tuned values Nf = 64 and Nw = 26.

changing the number of workers is the observed metric. For this experiment, the value of

Nw used is ranged from 16 to 56 workers (each workers is executed on one processor of

the node). The reason of using such limited values is to facilitate data interpretation and

results presentation. Figure 4.15 shows the reported results when applying the following

scheduling strategies: (i) First Come First Serve (FCFS); (ii) Heaviest Fragments First

(HFF); and (iii) Heaviest Fragments First adapting the partition factor (HFF + factor).

Here we can observe a steady reduction in the total execution time for the HFF

scheduling policy with modification of the data chunks sizes (HFF + factor) when adding

more processing resources. Consequently, it can be ascertain a constant reduction in

total execution times when applying all the stages of the proposed methodology: (i)

changing distribution policy, (ii) adapting the size of the data chunks, and (iii) adding

more processing resources. These results are encouraging for improving the performance

of data intensive applications in terms of total execution time reduction.

Estimating the number of resources using the Analytical Simulator

In this section, the analytical simulator is used to evaluate the performance of data inten-

sive applications under the aforementioned scheduling policies when: (i) adding a large

number of workers; and (ii) introducing variability in the execution time of the data

chunks. First, the scheduling techniques when increasing the number of workers are com-

pared. In figures 4.16 and 4.17 are shown the results of the simulations performed under

the following conditions:
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Figure 4.15: Distributed Merge Sort: Comparison between FCFS, HFF and HFF + factor,
when varying the number of processing nodes for Nf = 128.

• An initial partition factor Nf = 128.

• Nw values ranging from 10 to 64.

• Three different scenarios: First Come First Serve (FCFS) scheduling policy,

and using Heaviest Fragments First with and without workload partition factor

modification (HFF + factor and HFF, respectively).

• Execution time of data chunks were generated following a normal distribution

based on measurements obtained from real executions of BLAST.

In figure 4.16, it can be seen a reduction in total execution time when applying all

the scheduling policies. When comparing reported results from all the strategies, FCFS

reports the worst performance results in terms of total execution time. This strategy

presents the inherent overhead of the application without applying any scheduling policy.

In addition, HFF scheduling policy, as observed in previous sections, reaches a steady point

where the total execution time cannot be reduced by adding more workers. As commented

before, this barrier depends on data chunks with highest execution times. Consequently,

when data chunks sizes are modified dynamically and the number of processing nodes

is increased, HFF + factor reports the greater reduction in total execution time, and

therefore, the best results for performance improvement.

Consequently, the HFF scheduling policy with data chunks sizes modifications is more

flexible. Thus, this policy is more scalable than the other scheduling techniques presented
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Figure 4.16: Analytical Simulator: Total execution time when varying the number of
workers for the FCFS, HFF and HFF + factor scheduling policies.

in this work. The reason of this behavior is that data chunks with large computation

times are not a major restriction for the HFF + factor strategy, because their sizes are

tuned in accordance to the application behavior through partitioning or grouping.

Results reported from the evaluation of the performance index for the scheduling

policies (shown in figure 4.17) corroborate this conclusion. It can be seen how the FCFS

strategy reaches first the performance inflection point represented by the performance

index. For instance, if using FCFS or HFF (without modifying the size of the data

chunks) the performance may be quickly degraded by adding more workers, i.e., both

FCFS and HFF curves start to climb. This behavior indicates that the execution of the

application reached its best possible configuration of processing nodes, and from this point

it may become inefficient. From this experiment, an execution under the FCFS scheduling

policy gets its minimum execution time (and maximum efficiency) using between 12 and

16 workers. The same happens when the HFF scheduling policy is used, the “best”

performance for this configuration may be achieved using only 16 workers. These values

correspond with similar points in figure 4.16, and in consequence, after 16 workers there

is no significant improvement in the execution of the application.

Additionally, reported results for HFF + factor show that under this scheduling tech-

nique the maximum number of workers to achieve the minimum execution time (without

loosing efficiency) has not been found yet. Therefore, as more workers are added lower

execution times may be obtained.
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Figure 4.17: Analytical Simulator: Performance index when varying the number of work-
ers for the FCFS, HFF and HFF + factor scheduling policies.

4.4 Summary

Throughout this chapter, we have shown how certain data intensive applications have been

benefited by the proposed performance improvement methodology. Considered applica-

tions process large-scale workloads that may be arbitrarily divided into smaller pieces,

and perform several related iterations or queries in this data. Some of these applications

may be iterative algorithms, such as indexing, machine learning, data mining; web search

applications; astronomical image processing; or genome sequencing, among others. In

general, any data intensive application that match with the context described in previ-

ous chapter (that has a large-scale workload that can be arbitrarily divided into smaller

pieces, and that performs several related queries or iterations in this data) may easily

take advantage of our proposal.

This work has been focused on certain use cases of data intensive applications, such as

the life science application Basic Local Alignment Sequence Tool – BLAST and a stable

merge sort algorithm. In particular, BLAST has been selected because of its relevance

as computational/data intensive application and merge sort because of its versatility. In

addition, we have implemented an analytical simulator to facilitate the observation and

analysis of the behavior of our methodology. The simulator has enabled us to evaluate

the methodology in a larger number of processing nodes, as well as to analyze situations

that otherwise would be too time consuming, e.g., executions with variable performance

between iterations.
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The selected applications have been used to evaluate each one of the main charac-

teristics of the proposed methodology. In general, experimental results have shown an

encouraging performance improvement in total execution time reduction and efficient

use of resources in such applications. For example, the execution of BLAST, using our

performance improvement proposal, has shown great reductions in total execution time

and certain improvements in the use of available resources. This results in faster exe-

cutions with lower idleness periods for the workers. Distributed merge sort (a simple

parallel implementation of merge sort algorithm) has facilitated the analysis of perfor-

mance improvements when dynamically tuning (during the execution of the application)

the workload partition factor, showing load imbalances reduction when the size of the

data chunks is modified.

Additionally, using simulation it has been possible to observe the performance of se-

lected data intensive applications when: (i) a larger number of processing nodes is used;

or (ii) iterations or queries performed are loosely related. In the latter case, although

there is a certain performance degradation when having variable behaviors between iter-

ations, the proposed methodology reports acceptable performance improvements for the

executions of data intensive applications.

In general, by applying a simple strategy for performance analysis and tuning, it has

been possible to show the viability and effectiveness of our proposal. Reported results

have shown that the performance improvement methodology described in this work, has

been able to achieve efficient and faster executions in data intensive applications with

divisible load. Additionally, simulation results have indicated the viability of applying

our methodology in real and larger applications.
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Chapter 5

Conclusions

“On risque de pleurer un peu si l’on s’est laissé apprivoiser...”

Antoine de Saint-Exupéry. Le Petit Prince.

In previous chapters, we have presented the motivation, conception, design, imple-

mentation and evaluation of the contribution of this work: a methodology to improve

performance in parallel data intensive applications. The aim of the methodology is to

reduce the total execution time of data intensive applications, as well as augmenting the

efficient use of computational resources.

In the design of the methodology, we have considered that: (i) the workload of the

application can be arbitrarily partitioned into smaller pieces called data chunks; and (ii)

applications perform several related queries or iterations in the data. Each execution has

been monitored to collect the associated computation time by data chunk. Then, a set

of carefully selected performance metrics, such as the average and maximum execution

times, has been analyzed through our defined performance model. Based on obtained

results, the workload partition factor and the number of processing nodes used (tuning

points), have been tuned during the execution of the application.

The main contributions of this work are:

• Enabling parallel execution of data intensive applications by partitioning the

initial data set into smaller data chunks.

Data intensive applications process or analyze large-scale data. We have take

advantage of divisibility properties of their workloads to split them into smaller

pieces and distribute the generated data chunks among all available worker nodes.

In this way, applications may be easily executed in parallel, and total execution

times may be greatly reduced. In addition, we have faced existent variability
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among the associated processing time of the data chunks, by proposing a sched-

uling technique that delivers first data chunks with highest execution times.

Consequently, possible load imbalances are smoothed by filling with faster data

chunks resulting gaps in workers processing times. This scheduling policy has

been named Heaviest Fragments First and has been described in section 3.2.2.

• Reducing total execution time of the application by dynamically tuning the work-

load partition factor, i.e., changing the size of the data chunks with the highest

and lowest associated computation times.

The associated execution time of data chunks has been greatly reduced by adapt-

ing their sizes at run time. We have proposed to dynamically modify their sizes

by: (i) dividing into smaller pieces those data chunks with highest execution

times; and (ii) gathering fastest data chunks into bigger pieces to reduce distri-

bution overheads. These techniques are triggered in accordance to the processing

time of the data chunks, and have been named partitioning (presented in section

3.2.3) and grouping (introduced in section 3.2.4), respectively.

• Increasing the efficient use of computational resources (without periods of idle-

ness) by estimating the maximum number of processing nodes that can be used

for a given data set partition factor.

The total execution time of applications developed under a Master-Worker para-

digm is given by the last worker finishing computation. To avoid such situation,

we have applied our methodology to dynamically determine how many processing

nodes should be active. By doing this, the number of computational resources has

been adapted to provide an efficient execution. We have considered an execution

as efficient when all the workers are finishing their computation at the same time

and without being idle for a long period. This tuning is performed at run time,

and has been described in section 3.3.1.

Throughout this work, we have followed the steps of the scientific research method;

ranging from the planning and discussion of objectives and methods, up to the testing

and validation of proposals as described next. The definition and introduction of our

objectives, motivation and challenges in chapter 1, has been the first step in the devel-

opment of this work. Then, theoretical background (exposed in chapter 2) has served us

to complement the motivation of our work, and to justify decisions taken while design-

ing our performance improvement methodology. Taking such concepts and definitions as

starting point, we have been capable of performing the analysis of influent factors in the
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development of our proposal, putting special emphasis on the adaptation of the workload

partition factor and tuning the number of processing nodes. From this approach, we have

been able to provide solutions to the problem of load imbalances in chapter 3. Our pro-

posal has been implemented and widely evaluated in different scenarios for data intensive

applications: from real to synthetic applications, as well as analytical simulation, that

have been described in chapter 4. Having completed all the stages that comprise our

research, we are now able to present the final conclusions and further work of this study.

5.1 Final Conclusions

The continuous growth of data coming from sensors, biological and physical experiments,

and information generated by users, needing to be processed, has led to the design of new

methods to satisfy its processing requirements. Concepts as data intensive or big-data

computing have risen in the last few years and, along with these terms, approaches like

dividing the workload of the applications into smaller pieces (data chunks), have become

more common. With all this in mind, the number of performance problems related to

load balancing has also increased.

In our work, one of the main contributions is that we have provided a novel and satis-

factory solution to the problem of load imbalances in data intensive applications. In some

data intensive applications, partitioning its workloads into data chunks of equal size does

not guarantee similar execution times. From experimental observations, the computation

time associated to each data chunk is closely related to the characteristics of data and

the behavior of the algorithm as well. To this end, we have designed and implemented

a performance improvement methodology to be applied on a subset of data intensive ap-

plications. In particular, we have considered applications that perform multiple related

explorations (queries) on the same workload.

The structure of the methodology has been influenced by the characteristics of dy-

namic performance analysis and tuning process. First, this process presents a monitoring

phase where performance metrics are collected along the execution of the application.

Then, in the analysis phase, gathered data is used to determine the corresponding mod-

ifications in certain tuning points. In this work, tuning parameters included are: (i) the

workload partition factor; (ii) the distribution of generated data chunks among the appli-

cation processes; and (iii) the number of computational resources (processing nodes) to

be used by the application. Finally, the methodology has a tuning phase, in which these

parameters are changed at run time.

First, the methodology considers the dynamic adaptation of the partition factor or,
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for the case of high partitioning costs, the generation of multiple division of the workload

using different partition factors before executing the application; and then, the dynamic

selection of the most adequate one according to the behavior of the application. Then,

tuning the workload partition factor has been described as the modification of the size of

data chunks during the execution of the application. This modification has been achieved

by dividing or gathering specific data chunks according to application performance. Ad-

ditionally, data chunks have been distributed according to their associated computation

time. In this case, data chunks with highest processing times have been delivered first.

Once the execution of the application is as balanced as possible, it has been carried out

the adaptation of the processing nodes that should be used to assure efficient executions,

i.e. all workers finishing at the same time without large periods of idleness.

The methodology has been tested using the following applications: (i) the widely

known bioinformatics tool BLAST, that handles a broad number of queries over large-scale

biological databases; (ii) a distributed merge sort algorithm that process medium-scale

text files. In addition, the main aspects of the proposal have been analyzed and evaluated

through an analytical simulator. Using simulation, it has been possible to extrapolate

observed results from the real and synthetic applications to analyze the behavior of the

methodology on a wide range of scenarios. The results obtained have shown the capa-

bility of the methodology to improve the performance of data intensive applications with

divisible load.

In most cases, sending data chunks with highest computation times first (this factor

has been evaluated in section 4.2.1) and adapting the size of the data chunks at run time

(evaluated and discussed in section 4.2.2), have greatly reduced total execution time of the

applications (in comparison with obtained results when our methodology is not applied).

Additionally, the adjustments in the active number of processing nodes (described in sec-

tion 4.3.1) have permitted the maximum utilization of available computational resources,

i.e., worker nodes in a parallel application developed under a Master-Worker paradigm.

Summarizing, the performance improvement achieved in data intensive applications

when using our proposal, have been determined by three main reasons:

• Changing the scheduling policy, from a First Come First Serve (FCFS) to a

Heaviest Fragments First approach (HFF).

• Adapting the partition factor of the workload at run time to reduce the time

constraint imposed by data chunks with highest computation times.

• Tuning the number of workers doing computation to avoid inefficient executions,

i.e. workers idle for long time.
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Obtained results are promising in terms of reducing total execution time and efficient

use of processing resources for different scenarios of data intensive applications. Further-

more, these results have shown that the proposed methodology can be widely used to

improve performance in real data intensive applications.

5.2 Further Work and Open Lines

This work, as any work covering several aspects within a certain field of science, is intended

to be complete and entirely closed. However, this research also gives rise to a wide range

of affordable open lines and further work. These open lines are described below.

One of the points that can be further improved in the proposed methodology, in terms

of data management, is the use of knowledge-based techniques for deciding the initial

workload partition factor. To this end, it would be necessary to conduct a complete

study of the relation between several parameters of the scenario, including: (i) systems

parameters, such as network latency, memory and disk capacities of the processing nodes,

and communication patterns, among others; and (ii) application parameters, such as

data structures, complexity of the algorithm, dependance among data chunks, etc. In

addition, the results of the study to estimate the appropriate initial workload partition

factor could be used as inputs to improve our current performance model for partitioning

and grouping data chunks at run time. Therefore, the partitioning process will not only

assume linear divisions but also partitions suited to specific characteristics of the system

or of the application.

A second point that should be considered and treated in the future is to provide

estimations of data chunks executions times without having to execute the application.

The relevance of this issue is given by applications where the number of iterations is

too low to use the initial execution for labeling. In this case, estimations should be

based on the characterization of the relation between the features of both data chunks

and algorithms to approximate an expected execution time. Expected result might not

necessarily be the optimum, but it should be close enough to real execution time to decide

when the data chunk should be delivered in following iterations.

Finally, it would be interesting to incorporate to the methodology the capability to

reuse data chunks that have been already sent to the workers. To this end, the distribution

process would be not only based on the associated processing time of each data chunk,

but also in who has processed it before. Therefore, overheads caused by not having the

data chunk loaded in virtual memory would be reduced.
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Among others, the most important topics are:

• Incorporate the methodology on the dynamic performance analysis and tuning

tool MATE [63], to enable the execution of the application without participation

of the user.

MATE is a performance improvement environment for parallel applications that

is based on monitoring, analyzing and tuning the execution of the applications at

run time. Its tuning decisions are programmed into tunlets that the user intro-

duces to the environment. An interesting research line might be the adaptation

of the performance model of our methodology as a tunlet for MATE. In this

way, the environment would be able to analyze the behavior of data intensive

applications and tune them at run time.

Recent scalable versions of MATE (that are developed in our research group),

require the capability of taking local and global decisions about the performance

of the application. Consequently, one of the major inconveniences that might

appear is that our methodology has not considered other parallel paradigms

than Master-Worker. Under this paradigm, decisions are taken in the master,

and therefore, there is only a global view of the application.

• Improve the design of the performance model to enable considering heterogeneous

processing capacities, as well as non-stable communication times or non CPU-

bound applications. The relevance of this point is given by the characteristics of

high performance computing systems available at this time. Most of them are

mainly heterogeneous at both communication and computation levels.

This work is focused in homogeneous clusters and CPU-bound applications with

the aim of being able to define a base model. Nevertheless, our intention is to

extend it adding new considerations. On a heterogeneous cluster more work has

to be assigned to the faster nodes, otherwise they would be idle while the slower

nodes are still executing their tasks. Therefore, different processing speeds for

each worker, and different bandwidths of Master-Worker communication links

should be considered to enhance our proposal.

An initial and naive approach might be sending the heaviest data chunks (those

with highest execution times) to faster processors and links. Nevertheless, if there

is any fail in the distribution, it might result in unexpected load imbalances or

overloading fast elements (processor and link). Therefore, when data and com-

putations are not evenly distributed to processors, minimizing communication

overhead becomes a challenging task.
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On the other hand, if an application is not CPU-bound, we have considered that

it could be IO-bound or Communication-bound. In the first case, to avoid having

bottlenecks accessing to data, data chunks might be previously distributed to

the processing nodes (to its local disks). In this way, disk latency of a worker

might not affect the performance of other workers. In the second case, in which

applications may be communication bound, we have considered that the simplest

strategy would be to generate data chunks as small as possible to avoid possible

communication delays (or interference between the workers).

• Design scheduling and tuning techniques that consider a wider range of data in-

tensive applications. This point would supposed the inclusion of some algorithm

fed with the main characteristics of the applications and its workload, such as:

– Complexity of the algorithm (logarithmic; quadratic; linear; etc) that re-

quires a different strategy to group or divide data chunks based on the

resulting computation time.

Divisible Load Theory have proved to be appropriate for workloads that

have linear computational complexities. Nevertheless, an interesting open

line for this research, is to define the partition sizes of the workload in

accordance to the computational complexity of the application. Many algo-

rithms used in real-time modeling and simulation of complex systems (e.g.

signal and image processing, cryptography, and genetic algorithms) require

processing load of nonlinear complexity, i.e., the computational time of the

given data/load is a nonlinear function of the load size. In most of the algo-

rithms, which require nonlinear computational complexity, it is possible to

divide the loads arbitrarily and process them independently such that the

total processing time is less than the processing time on a single processor

[84].

We have considered that for evaluating the partition factor that suits better

for the application workload (based on the complexity of the algorithm), a

first portion of an iteration of the application can be analyzed using differ-

ent sizes of the data chunks. By doing this, it might be possible to improve

the total processing time or to avoid data chunks sizes that might generate

unexpected overheads. Nevertheless, one of the main issues we might face is

that sampling phase (the initial phase to determine which partition factor

suits better for a determine data intensive application) might become a bot-

tleneck or might result too time consuming. If this happens, computational
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complexity of the algorithm should be provided by the user, as well as the

information of how the workload should be partitioned.

– Non-arbitrarily divisible data that must be distributed and processed fol-

lowing a certain predefined order to assure a correct functioning of the

applications, e.g. image processing data that must be computed under

pipeline paradigms. Data dependences, in addition to communication costs

and control overhead, may lead to slow the whole load balancing process

down to the pace of the slowest processors.

Additionally, in the case of initial workloads that should be divided into

one or more dimensions, we have analyzed these cases and thought that

while the workload of the application enables division into smaller pieces,

our methodology might be applied. In this sense, for divisions in more than

one dimension, a record of the previous position of the data chunks (its

coordinates) might help us to identify the pieces and determine both their

distribution to the processing nodes, and the final order for generated data.

Note that there is no reason a priori to restrict to a uni-dimensional parti-

tioning of the data, more general data partitioning, such as two-dimensional,

recursive, or even arbitrary slicing into rectangles, could be considered. But

uni-dimensional partitioning is very natural for most applications, and, in

some cases, finding the appropriate partition is already a hard task. There-

fore, this situation together with the possibility of having data dependencies

between data chunks have been included as an interesting open line for this

work. Implementation details such as how to manage the different types of

data sets, depend on the application and should be externally provided.

• Design and implement a variant of the methodology that could be used in vir-

tualized environments (or non-dedicated clusters) specifically those as Cloud,

in which the MapReduce programming paradigm has similar features with the

Master-Worker scheme used in this work. In addition, the implementation of cost

functions would facilitate the estimation of the processing nodes that should be

contracted to met a certain budget.

Virtualized environments offer highly heterogeneous systems, as well as certain

economic restrictions that should be taken into consideration when launching

data intensive applications. On the one hand, platforms such as Hadoop and

Microsoft’s Windows Azure have shown an efficient and powerful system to cre-

ate highly scalable applications with many aspects of parallel computing auto-
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matically provided. In this sense, our method to avoid load imbalances and

inefficient use of resources could take advantage of the mechanisms for managing

node failures, data and jobs allocation provided by Cloud platforms.

Besides studying the problem of load balancing for data intensive applications

on virtualized platforms, an interesting open line might be to provide fast and

efficient executions (considering a fixed budget) in computational systems with

processing nodes of different capabilities and costs. Here, we might find hetero-

geneity and scalability issues that have not been considered in this work.
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5. C. Rosas, A. Sikora, J. Jorba, A. Moreno, E. César. Dynamic Tun-

ing of the Workload Partition Factor and the Resource Utilization

in Data-intensive Applications, In Future Generation Computer Sys-

tems, Unpublished, Sent: April 2012.

This work focuses on the evaluation of the methodology to dynamically improve

the performance of data intensive applications based on: (i) adapting the size
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and the number of data partitions to reduce overall execution time; and (ii)

adapting the number of processing nodes to achieve an efficient execution. Eval-

uation was performed using real and synthetic data intensive applications, as

well as analytical simulation. Reported results showed the viability of applying

the performance improvement methodology in a wide range of data intensive

applications.
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