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Otto Emiliano González Vázquez en el Departamento de Teor��a y simulaci�on de Materiales
del Instituto de Ciencia de Materiales de Barcelona y EMITE su conformidad para que
dicha memoria sea presentada y tenga lugar, posteriormente, su correspondiente defensa para
optar por el t��tulo de Doctor por la Universidad Autónoma de Barcelona. Para que as��
conste �rma la presente:

Dr. Jorge �I~niguez Gonz�alez
Director

De la misma manera, Javier Rodŕıguez Viejo, profesor titular de la Universidad Autónoma
de Barcelona, como tutor de la presente tesis, �rma el presente certi�cado:

Prof. Javier Rodr��guez Viejo
Tutor

El interesado,

Barcelona, 16 de Mayo del 2012.





Abstract

This work is about magnetoeltric multiferroics, a relatively new class of materials discovered
by the mid of the past century, which involve simultaneously ferroelectricity and magnetism.
Perovskite oxide BiFeO3 (BFO) is one of the few multiferroic materials at room temperature.
However, as its ferroelectric and anti-ferromagnetic transition temperatures are relatively high
(about 1100 K and 640 K, respectively), BFO's electromechanical and magnetoelectric re-
sponses are small at ambient conditions.

In this thesis we used ab-initio methods, based on density functional theory, to study the basic
properties of BFO and proposed possible strategies for enhancing its response. We used �rst-
principles methods to perform a systematic search for potentially stable phases of BFO. We
considered the distortions that are most common among perovskite oxides and found a large
number of local minima of the energy. We discussed the variety of low-symmetry structures
discovered, as well as the implications of these �ndings as regards current experimental work
on this compound.

We also carried out a study of the Bi1−xLaxFeO3 (BLFO) solid solution formed by multifer-
roic BFO and the paraelectric antiferromagnet LaFeO3 (LFO). We discussed the structural
transformations that BLFO undergoes as a function of La content and the connection of our
results with the existing crystallographic studies. We found that, in a wide range of inter-
mediate compositions, BLFO presents competitive phases that are essentially degenerate in
energy. Further, our results suggested that, within this unusual morphotropic region, an elec-
tric �eld might be used to induce various types of paraelectric-to-ferroelectric transitions in
the compound. We also discussed BLFO's response properties and showed that they can
be signi�cantly enhanced by partial substitution of Bi/La atoms in the pure BFO and LFO
materials. We analyzed the atomistic mechanisms responsible for such improved properties
and showed that the e�ects can be captured by simple phenomenological models that treat
explicitly the composition x in a Landau-like potential.

Furthermore, we performed a �rst-principles study of BFO at high pressures. Our work re-
vealed the main structural change in Bi's coordination and suppression of the ferroelectric
distortion, electronic spin crossover and metallization, and magnetic loss of order e�ects fa-
vored by compression and how they are connected. Our results are consistent with and explain
the striking manifold transitions observed experimentally

We conclude our thesis presenting the preliminary results of an ongoing project in which we
are modeling the energetics of the oxygen octahedra rotations in perovskite oxides. The model
is �tted to the �rst-principles results and a careful check of its validity is carried out.





Resumen

Esta tesis trata sobre los magnetoel�ectricos multiferroicos, una clase relativamente nueva de
materiales descubiertos a mediados del siglo pasado, que presentan simultaneamente ferro-
electricidad y magnetismo. El BiFeO3 (BFO) es un �oxido con estructura perovskita, el cual
es uno de los pocos materiales multiferroicos a temperatura ambiente. Sin embargo, como
sus temperaturas de ordenamiento ferroel�ectrico y anti-ferromagn�etico son relativamente altas
(alrededor de 1100 K y 640 K, respectivamente), las respuestas electromec�anica y magne-
toel�ectrica del BFO son relativamente peque~nas en condiciones ambientales.

En esta tesis se utilizamos m�etodos ab-initio, basados en la teor��a del funcional de la densidad
(DFT), para estudiar las propiedades del BFO, y proponemos una posible estrategia para la
mejora de su respuesta. Hemos utilizado m�etodos de primeros principios para llevar a cabo
una b�usqueda sistem�atica de las fases potencialmente estables de este compuesto. En la que
consideramos las distorsiones m�as comunes entre los �oxidos de tipo perovskita y encontrando
un gran n�umero de m��nimos locales de la energ��a. En este trabajo se discute la gran variedad
de estructuras de baja simetr��a descubiertas, as�� como las implicaciones de estos hallazgos en
cuanto a los trabajos experimentales mas recientes sobre este compuesto.

Tambi�en se llev�o acabo un estudio de la soluci�on s�olida Bi1−xLax FeO3 (BLFO) formada por
la BFO y la LaFeO3 (LFO)antiferromagnetica parael�ectrica. Se discuten las transformaciones
estructurales que sufre BLFO en funci�on del contenido de La, y la conexi�on de nuestros resul-
tados con los estudios cristalogr�a�cos existentes. Hemos encontrado que, en una amplia gama
de composiciones intermedias, la BLFO presenta fases que son esencialmente degeneradas en
energ��a. Adem�as, los resultados sugieren que para este compuesto, dentro de esta regi�on mor-
fotr�opica inusual, se puede utilizar un campo el�ectrico para inducir transiciones parael�ectrico
a ferroel�ectrico. Tambi�en se discuten las propiedades de respuesta de la BLFO y se demuestra
que se pueden mejorar signi�cativamente en los materiales puros BFO y LFO, mediante la
sustituci�on parcial de los �atomos Bi y La . Se analizaron los mecanismos at�omicos respons-
ables de esta mejora en las propiedades y se muestra que los efectos pueden ser capturados
por modelos fenomenol�ogicos sencillos, que incluyen de manera expl��cita la composici�on x en
un potencial de Landau.

Por otra parte, se presenta tambi�en un estudio de primeros principios de la BFO a altas
presiones. En el cual explicamos la naturaleza de las transiciones de fase del BFO, que si-
mult�aneamente involucran un colapso del volumen, un cambio en el estado de spin de High
spin a Low spin y una metalizaci�on producto del desorden magn�etico en la nueva fase. Nue-
stros resultados son consistentes con la transici�on m�ultiple observada experimentalmente.

Por �ultimo presentamos los resultados preliminares de un proyecto en marcha, en el cual
estamos modelando la energ�etica de las rotaciones de los octaedros de oxigeno en los �oxidos
de estructura perovskita. Para ello se ha expandido la energ��a en funci�on de los par�ametros de
orden que caracterizan dichas rotaciones hasta cuarto orden. Hemos �teado el modelo a los
resultados de nuestros c�alculos de primeros principios y realizado una comprobaci�on cuidadosa
de su valides, determinando que es necesario recurrir a ordenes mas altos en nuestra teor��a.
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Introduction

Nowadays we are surrounded by a variety of electronic devices that are integrated into our
daily lives. Behind the functioning of these are phenomena such as ferroelectricity, the giant
magnetoresistance and others. A new class of materials is currently under intense investi-
gation, these materials called multiferroics can simultaneously exhibit electric and magnetic
orders. Such coexistence of both orders and the possible occurrence of a coupling between
them (i.e., in the case when magnetoelectric e�ect is present) opens new possibilities for tech-
nological applications.

Since its discovery at the mid of the past century, the phenomenon of multiferroicity has at-
tracted great attention from the scienti�c community. However, due to the scarcity of such
materials and the di�culties in their experimental growth led to a decrease in the activity
around these compounds. It was not until the beginning of this century when the �eld has
been refuel by the combination of some factors; the appearance of a seminal paper by Spaldin
et al. in which they have discussed a hypothesis for the scarcity of magnetic ferroelectrics,
the state of the art experimental technology for the synthesis and characterization of such
materials was already mature, and the interest in novel materials with potential technological
applications (target technologies range from transducers and magnetic �eld sensors, to the
information storage industry).

Among the multiferroic materials, perovskite oxide bismuth ferrite (BiFeO3 or BFO) is the
best studied compound of this family. Despite its simple structure, it is one of the few simple
crystals that presents magnetoelectric coupling and multiferroic order at room temperature.
BFO was �rst studied by Smolensky's group in 1959, but their samples were too conductive
to be of use. The interest in this compound was dramatically increased after the paper by
Wang et al. [88] in which they have reported a unexpectedly large remnant polarization P,
�fteen times larger than the one previously observed in single crystals, together with very large
ferromagnetism of 1.0 Bohr magneton per unit cell. While some of these results were later
proved to be either wrong or misleading, nonetheless the paper has stimulated and inspired a
great number of experimental and theoretical works on this compound.

Despite being one of the most studied multiferroics, BFO continues to appear as one of the
most fascinating materials of the day. An example of this, is that BFO's phase diagram re-
mains unresolved, with newly reported phases as function of temperature T and/or pressure
p [38, 60]. Furthermore, recently it has been shown that it displays a variety of novel funda-
mental e�ects, like an increase in conductivity at speci�cs domain walls [81] or new structural
phases in thin �lms with potentially useful response properties. [94]
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Our work is framed in the theoretical and computational study of the properties of BFO and
related materials. The objective of the present thesis was the study of the properties of BiFeO3

and to explore possible ways to enhance its functional responses.

The present thesis is organized as follows. The �rst two chapters are devoted to introduce the
theoretical background as well as the state of the art of theoretical works in the subjet covered
by this thesis. In chapter 1 we will describe the basics theoretical details of the �rst-principles
methods used in our calculations, along with the general methodology followed in our DFT
simulations. Chapter 2 introduces the physical properties and phenomena of interest to our
study, like ferroelectricity and magnetism in perovskite oxides, as well as the formalism to
treat the magnetoelectric e�ect in such systems. We also comment on the state of the art for
theoretical works in the �eld, and our contributions to it. The following chapters from 3 to 6
are devoted to the discussion of our results. We present the results of our �rst principles search
for potentially stable phases of the multiferroic BiFeO3 in chapter 3, where we obtained plenty
of distinct low-energy phases of the compound and discussed the implications of our �ndings.
In chapter 4 we used �rst-principles methods to study the Bi1−xLaxFeO3 (BLFO) solid solution
formed by the multiferroic BiFeO3 (BFO) and the paraelectric antiferromagnet LaFeO3 (LFO).
We discuss BLFO's phase transitions as a function of the La content x, and show that the
chemical substitution of Bi/La atoms in the pure compounds leads to signi�cantly improved
response properties, which we were able to model with a simple Landau like potential. In
chapter 5 we deal with the main electronic, and magnetic e�ects that occur in BiFeO3 under
compression and elucidate how they are connected. Our last results are discussed in chapter
6, where we show the �rst step in constructing a general theory to capture the energetics
of the most common distortions present in perovskites. Finally the results of this work are
summarized in the conclusions.
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Chapter 1

Density Functional Theory and
Methods

1.1 Density Functional Theory

Introduction

Accurate description of chemical and physical properties of materials requires the quantum
mechanical treatment of the many-particle system of electrons and nuclei. Properties such
as bulk modulus, conductivity or material's response to an applied �eld can be understood
in terms of their microscopic origins. This usually would require solving the Schrodinger Eq.
(1.1) for a wavefunction of 3× (Number of particles) spatial variables {R, r},

Ĥ({R}, {r}) | 	({R}, {r})〉 = E | 	({R}, {r})〉 (1.1)

where:

Ĥ({R}, {r}) =−
∑
I=1

~2

2MI

∇2
RI
−
∑
i=1

~2

2m
∇2

ri

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i6=j

e2

|ri − rj|
−
∑
Ij

ZIe
2

|RI − rj|
(1.2)

is the hamiltonian of the many particle problem, MI is the mass of the nucleus I at the
position de�ned by vector RI , and m is the mass of the electron at the position ri. In Eq.
(1.2) the �rst two terms are the kinetic energies of the nuclei and the electrons, respectively,
and the remaining terms are the nuclei-nuclei, electron-electron and nuclei-electron Coulomb
interactions (with ZI the atomic number of the nucleus I). Solving these equations is a very
complex problem, and some approximations are needed in order to simplify it.

A useful approximation in this context is the Born-Oppenheimer approximation [12]. Within
this approximation the nuclei movement and the electronic problem can be treated indepen-
dently of each other, which can be done as a consequence of the large mass di�erence between
the nuclei and the electrons. The electrons move in a solid much faster than the nuclei, thus
the electronic con�guration can be considered as completely relaxed in its ground state at
each position the ions assume during their motion. Retaining only the kinetic energy term
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concerning the electrons we make use of the atomic positions just as parameters rather than
variables in the Hamiltonian (1.4).

Ĥ({R}, {r}) = ĤI({R}) + Ĥel({r}, {R}) (1.3)

with:

Ĥel({r}; {R}) = −
∑
i=1

~2

2mi

∇2
ri

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i6=j

e2

|ri − rj|
−
∑
Ij

ZIe
2

|RI − rj|
(1.4)

Usually the number N of electrons involved in a condensed matter system is very large, solving
the many-electron problem and �nding their wave function is an impractical task.

In the last decades density functional theory (DFT) has emerged as a powerful alternative to
solving N-body time independent Schrodinger equation. DFT formally reduces the problem
of �nding the multi-electron wave function to that of �nding the electron density distribution
n(r) as the elementary quantity. This idea goes back to Thomas and Fermi, who already
in 1927, shortly after the milestone publications of Schrodinger and Heisenberg, obtained a
heuristic description of the many-electron system completely in terms of the electronic den-
sity. [27,83] For this reason the Thomas-Fermi method is considered by many the conceptual
root of the density-functional theory.

1.1.1 The Hohenberg-Kohn theorems

Almost 40 years after the works by Thomas and Fermi, density functional theory was born
when Hohenberg and Kohn (HK) presented their famous theorem, [44] which states that the
ground state properties of the many-particle system are uniquely determined by the ground
state particle density n(r).

Hohenberg and Khon formulated an exact theory to describe the many body problem with
the density as the fundamental variable. Their theory contains two theorems on which density
functional theory is based. This theory it is applicable to any system of interacting particles
in presence of an external potential Vext(r).

The �rst theorem of the HK theory states:

• Theorem I: For any system of interacting particles in an external potential Vext(r),
the potential Vext(r) is determined uniquely, except for a constant, by the ground state
particle density n0(r).

The �rst theorem has a direct corollary: Since the Hamiltonian is fully determined by the
ground state density (except for a constant shift in the energy), all properties of the system
are completely determined once we know the ground state density n0(r).
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Table 1.1: Scheme of the HK theorem, compared to the usual relation of the quantities in quantum
mechanics (QM), where the external potential Vext(r) is used to determine the ground state of the
system 	0(r) that is used to construct the electronic density n0(r). In the HK theorem there is a
direct relation between the potential and the density

usual QM relation between quantities

Vext(r) → 	0(r) → n0(r)

HK theorem

Vext(r) ←→ n0(r)

A simple proof of the HK �rst theorem for non-degenerate ground states proceeds by reductio
ad absurdum. It is shown that a contradiction arises if one assumes that di�erent ground
states 	0 6= 	0

′ (resulting from two di�erent external potentials V 6= V ′ + const) lead to the
same ground state density n0(r).

The prof is based on the Rayleigh-Ritz principle [2] for the ground state energy, which is given
by E0 = 〈	0 | ĤV | 	0〉 with ĤV the Hamiltonian associated to the potential V , assuming
normalized wave functions as everywhere in this chapter.

E0 < 〈	′0 | ĤV | 	′0〉 = 〈	0
′ | ĤV ′ + V − V ′ | 	′0〉 = E ′0 +

∫
n0(r)[V (r)− V ′(r)]dr (1.5)

where the strict inequality is a consequence of the restriction to non-degenerate ground state.
Analogously one obtains

E ′0 < E0 +

∫
n0(r)[V ′(r)− V (r)]dr (1.6)

Summing the two inequalities leads to the cancellation of the integrals, which contain the same
density n0(r), resulting in the contradiction E0

′ + E0 < E0 + E0
′. In this way we see clearly

that two di�erent external potentials can not lead to the same ground state density, and thus
the ground state density uniquely determines the external potential.

The second of the Hohenberg-Kohn theorems, which is the minimum principle for the ground
state energy E0, is of particular importance. In this theorem the ground state energy is de�ned
as a functional of the ground state density n(r).

The second of the HK theorems states:

• Theorem II: An universal functional for the energy F [n(r)] in terms of the density n(r)
can be de�ned, valid for any external potential Vext(r). For any particular Vext(r), the
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exact ground state energy of the system is the global minimum of the functional (1.7),
and the density n(r) that minimizes the functional is the ground state density n0(r).

E[n(r)] = minΨ→n(〈	 | T̂ +U | 	〉+ 〈	 | Vext | 	〉) = F [n(r)] +

∫
n(r)Vext(r)dr (1.7)

Where T̂ stands for the kinetic energy operator, and U for the internal potential. Here F [n(r)]
is a universal functional of the charge density n(r) and not of Vext(r). For the functional E[n(r)]
a variational principle holds: the ground state energy is minimized by the ground state charge
density. In this way, DFT exactly reduces the problem of �nding the N particle wavefunction
to that of �nding a 3 dimensional function n(r) which minimizes the functional E[n(r)]. But
in practice the problem remains unsolved, all our ignorance and di�culties to solve the many
body Schrodinger Eq. (1.1) are now hidden in the unknown form of the universal functional
F [n(r)].

1.1.2 Kohn and Sham equations

The Hohenberg-Kohn theorems have transformed the many body problem of �nding the N
particle wavefunction to that of �nding the 3 dimensional electronic density that minimizes
E[n(r)], but unfortunately we do not know the exact form of the functional F [n(r)]. This was
overcome by Kohn and Sham (KS) one year later [55] when they proposed a way of solving this
problem, using an auxiliary system of non interacting electrons with the same charge density
n(r) of the real problem. This system would be under the action of an e�ective potential Veff
that is constructed in such a way that the corresponding charge density equals the one of the
system of the interacting electrons under study.

The scheme proposed by them has the form:

E[n(r)] = T ′[n(r)] +

∫
n(r)Veff (r)dr. (1.8)

where the T ′[n(r)] is the kinetic energy functional of the non-interacting electron. For a system
of non-interacting electrons the charge density can be expressed as the sum over the occupied
electron orbitals ψ(r) which will be called from now on the KS orbitals:

n(r) =
∑
i

fi | ψi(r) |2, (1.9)

here ωi is the occupation of the orbital i, for semiconductors and insulators it only can take
values 1 or 0 (occupied or unoccupied), while for metals may take values between 0 and 1
(partial occupation). The KS orbitals are related to the Veff as they are the solutions of the
Schrodinger like equation (KS equation):

ĤKSψi(r) = εiψi(r) (1.10)

with the KS Hamiltonian, (
− ~2

2m
∇2 + Veff (r)

)
ψi(r) = εiψi(r) (1.11)

where the KS orbitals obey the orthonormality conditions
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∫
ψ∗i (r)ψj (r)dr = δij . (1.12)

Now, if we know the form of the potential Veff , the problem of �nding the density is equivalent
to solving the Eq. (1.11), and with this obtain the complete description of the system. But
unfortunately it is not so easy, we don't know the actual form of the Veff . Let's examine
the variational property seen in the Hohenberg-Kohn theorem (1.7), and try to extract some
information about the form of the Veff . We can recast (1.7) as

E[n(r)] = F [n(r)] +

∫
n(r)Vext(r)dr

= T ′[n(r)] +
1

4πε0

e2

2

∫ ∫
n(r)n(r′)

| r− r′ |
drdr′ +

∫
n(r)Vext(r)dr + Exc[n(r)]

Here the second term is the Hartree term and the last term is the so called exchange and
correlation energy functional, all our “ignorance” is hidden here in this term. It is de�ned as
the di�erence between the exact energy functional (1.7) and the single electron kinetic energy
and the Hartree term proposed by Kohn and Sham,

Exc[n(r)] = F [n(r)]− (T ′[n(r)] +
1

4πε0

e2

2

∫ ∫
n(r)n(r′)

| r− r′ |
drdr′)

= T [n(r)]− T ′[n(r)] + U [n(r)]− 1

4πε0

e2

2

∫ ∫
n(r)n(r′)

| r− r′ |
drdr′. (1.13)

Now, to go ahead we just need the exact form for Exc[n(r)], where we collect the electron-
electron interaction missed by the Hartree term and the di�erence between the kinetic energy
terms. Since the ground state density n0(r) minimize the functional E[n(r)], variying Eq.
(1.13) in terms of the density we get,

δE[n(r)]

δn0(r)
=
δT ′[n(r)]

δn0(r)
+

1

4πε0

e2

2

∫
n(r′)

| r− r′ |
dr′ + Vext(r) +

δExc[n(r)]

δn0(r)
= 0 (1.14)

where we de�ne the exchange-correlation potential as,

vxc[n(r)] =
δE xc[n(r)]

δn0 (r)
(1.15)

We are ready to construct the KS potential Veff as

Veff (r) = Vext(r) +
1

4πε0

e2

2

∫
n(r′)

| r− r′ |
dr′ + vxc[n(r)] (1.16)
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Formally the KS equations look similar to the self-consistent Hartree-Fock equations, the only
di�erence being the inclusion of the exchange and correlation potential. Neither the ψi and
the εi have any physical meaning, except that the ψi yield the true ground state density and
the energy of the highest occupied KS orbital for �nite systems, which is minus the ionization
energy [59].

This formalism is in principle exact, but so far we do not know how the exchange-correlation
term depends on the density n(r). This is will be covered by the next section.

1.1.3 Approximations to the Exchange Correlation potential, LDA
and GGA

In order to solve the KS equations we need to know the form of the exchange-correlation
potential.Then we will be able to construct the KS e�ective potential and solve self-consistently
the system of equations. In the same work where they proposed their scheme, Khon and
Sham already proposed a form for this functional, the local density approximation (LDA).
They pointed out that many solids can be considered close to the limit of the homogeneous
electron gas (this is for instance the case of metals), and they proposed to treat the exchange-
correlation term in this limit (i.e. the e�ects of the exchange and correlations are local). The
form they proposed for the exchange-correlation term was the integral over all the space of the
exchange-correlation energy density assumed to be the same as in the homogeneous electron
gas with the local charge density n(r).

E LDA
xc [n(r)] =

∫
n(r)ξ(n(r))dr (1.17)

where ξ(n(r)) is the exchange correlation energy density of the uniform electron gas with
density n(r), parametrized by quantum Monte Carlo calculations. Several parameterizations
are available di�ering mainly in the treatment of the correlation part, with the Perdew and
Zunger being one of the most widely used [66].

The LDA has turned out to be a better approximation than was expected, describing with
enough accuracy a large number of systems (mostly solids). It provides atomic positions,
lattice constant, and phonon frequencies within an small percent of error. [50]

Despite the success of the LDA, its de�ciencies are also known, like the characteristic under-
estimation of lattice constant (∼ 2%) and consequently the volume (∼ 5%) underestimation.
The more the system behave close to the homogeneous gas the better the description obtained
within the LDA, but when dealing with molecules or systems that are highly inhomogeneous
the results start getting coarse. It is known that the LDA badly overestimates (∼ 20% and
more) cohesive energies and bond strengths in molecules. For such systems a correction to
the LDA was also proposed in the original work by Khon-Sham, which includes the density
gradient in the expression for the exchange correlation potential,

EGGA
xc [n(r)] =

∫
n(r)ξ(n(r), | ∇n(r) |, ...)dr. (1.18)
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This correction provides a better description of the system as it takes into account not only
the values of the density in a region of the space, but also the gradients of this density. The
generalized gradient correction (GGA) can be seen as the simplest and natural enhancement
of LDA to describe inhomogeneous systems. Within this level of approximation, better results
are obtained for binding energies and bond lengths of molecules. Several 
avors (PW91, PBE,
and others) [68,70] of the gradient correction exist nowadays, each of them devised to describe
accurately a desired property. A recent revised version of GGA was introduced for solids, the
PBEsol parametrization which improves the description of equilibrium properties of densely
packed solids [69].

With these results we already have the ingredients to solve the KS system of equations. Many
systems can be described by the approximations mentioned above. However, some interesting
cases are beyond their scope (for instance strongly correlated systems). How to extend the
theories just mentioned to treat these cases, it is covered by the next section.

1.1.4 Treating strongly correlated electrons within DFT

The approximations discussed so far often fail in describing systems with the presence of
strongly correlated electrons. In such systems, like for instance materials with transition
metal atoms or rare earths, the electrons of the d and f orbitals have an strongly localized
behavior deviating from the homogeneous electron gas model. These localized electrons feel
a stronger Coulomb interaction that is not covered by the local density approximation LDA
neither by the gradient correction GGA. In order to include this strong Coulomb interaction
of the localized electrons a modi�cation in the functional is necessary. A Hubbard-like term
including e�ective on-site interactions was introduced and developed by Anisimov and cowork-
ers to correct for the e�ect of strong correlations [1].

The local functional corrected to treat strongly correlated electrons is named LDA+U (or
GGA+U in the case of the gradient corrected). The basic idea behind LDA+U is to include in
the functional a term that account for the strong electron-electron interaction in the localized
orbitals. The theory can be illustrated brie
y by the formula:

ELDA+U [n(r)] = ELDA[n(r)] + EHub[nIσmm′ ]− Edc[nIσ] (1.19)

in this equation (1.19), nIσmm′ is the atomic orbital occupation matrix for the \Hubbard" atoms
(atoms with strong correlated electrons) at the site I with the spin σ,

nIσmm′ =
∑
k,n

fk,n〈ψσk,n | φIm〉〈φIm′ | ψσk,n〉 (1.20)

here fk,n is the occupation of the electronic state with wave vector k and band index n. The
φIm is the m-th atomic orbital of the atom sitting at site I and the ψσk,n is the electronic wave-
function corresponding to the state (k, n) with spin σ.

The �rst term in Eq. (1.19) is the LDA functional for the energy. The second, EHub[nIσmm′ ]
is the Hubbard term that quanti�es the correlation of the states populating the localized
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orbitals. The third term Edc[nIσ] is the correlation energy of these states as obtained from
the Hubbard term treated at a mean-�eld level, which has to be subtracted from the total
energy to avoid double counting. And the nIσ =

∑
m n

Iσ
mm is the trace of the atomic orbital

occupations matrix for the \Hubbard" atoms. We can rewrite Eq. (1.19) as,

ELDA+U [n(r)] = ELDA[n(r)] +
∑
I

[
U

2

∑
m,σ 6=m′,σ′

nIσm n
Iσ′

m′ −
U

2
nI(nI − 1)

]
(1.21)

with nIσm = nIσmm, and nI =
∑

m,σ n
Iσ
m . The U is the parameter (Hubbard U) that will account

for the onsite correlations. It can be seen that if we take the derivative of this Eq. (1.21) with
respect to the orbital occupancy, the respective orbital energy is obtained:

εIσm =
∂E

∂nIσm
= εIσ0

m + U(
1

2
− nIσm ) (1.22)

where εIσ0
m is the corresponding LDA orbital energy. If we compare the occupied (nIσm ∼ 1)

and unoccupied (nIσm ∼ 0) cases, a gap of the order of U opens between these states.

Another way of handling these correlations is the \hybrid" functional approach. Within
this approach the exchange-correlation is expressed as a parametrized combination of the
Hartree-Fock exchange and the exchange-correlation dependence of the LDA/GGA approxi-
mations. There exist several 
avors of hybrids functionals, di�ering in the parameterization
employed.These functionals are the most accurate available so far to treat the insulating mag-
netic materials of interest in this work. However, calculations based on them are still very
expensive from the computational point of view. [19]

1.2 Other Technicalities

1.2.1 Basis set, PAW, and Brillouin Zone sampling

Basis set

Density functional theory is a very powerful and general technique, which can be employed to
study a wide variety of systems like: isolated molecules, surfaces, and extended systems such
as crystals. For the purpose of this thesis we will be concerned with the last class of systems
(crystals). A crystal can be described by the repetition of an elementary unit cell de�ned by
the lattice vectors (a1, a2, a3) along the Bravais lattice (R = n1a1 + n2a2 + n3a3 where n1, n2,
and n3 are integers). This crystal periodicity is re
ected in the translational symmetry of the
one electron Hamiltonian of the system (e.g the KS Hamiltonian ĤKS):

ĤKS(r) = T̂ ′ + Veff (r) = T̂ ′ + Veff (r + R) = ĤKS(r + R) (1.23)

with T̂ ′ the kinetic energy of the electron and Veff (r) the periodic e�ective potential of the
crystal.
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The eigenstates of such Hamiltonian must satisfy the periodic conditions, and, thus according
to Bloch's theorem can be expressed as:

ψnk(r + R) = eıkRunk(r) (1.24)

where ψnk(r) are the KS orbitals and unk(r) is a lattice periodic function. Therefore each wave
function will have associated a wave-vector k, and a band index n that runs over occupied and
unoccupied states. Theses wave-vectors k are points in the reciprocal space de�ned within
the �rst Brillouin zone (BZ, which is the set of points closer to the origin in reciprocal space
than any other reciprocal lattice point),

k = k1G1 + k2G2 + k3G3

here ki are integers and the Gi are,

G1 = 2π
a2 × a3

a1 · (a2 × a3)
, G2 = 2π

a3 × a1

a1 · (a2 × a3)
, G3 = 2π

a1 × a2

a1 · (a2 × a3)

the reciprocal lattice vectors.

The KS orbitals used to compute the charge density in section 1.1.2 can be expanded in terms
of a basis set. While the choice of the basis to expand the KS orbitals is in principle arbitrary,
some bases are particularly convenient. The two most widely used bases are \atomic like or-
bitals" and \plane waves"; each of them have certain advantages. In our study we will employ
a code that is based on a plane wave basis set, which o�ers a number of bene�ts. They appear
as the natural choice for extended systems like the case of crystals, taking advantage of the
periodicity of the lattice.

Following from the Eq. (1.24) the function unk(r) can be expanded in a in�nite set of plane
waves with wave-vectors {G}:

unk(r) =
∑
G

cnk(G)eıG·r (1.25)

The cnk(G) are obtained from the Fourier transformation given by:

cnk(G) =
1




∫
Ω

unk(r)eıG·rdr (1.26)

where the integral is done over 
 (the primitive unit cell volume). We may see that the
electronic wave functions can be expressed as the sum of plane waves:

ψnk(r) =
∑
G

cnk(G)eı(k+G)·r (1.27)

However, for practical reasons it is not possible to expand the wave functions in an in�nite
basis of plane waves. Fortunately, if a su�ciently high number of plane waves is considered,
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the error from truncating the expansion can be as small as desired. The number of plane
waves included in the expansion can be controlled by a parameter, the cuto� for their kinetic
energy,

~2

2m
| k + G |2≤ Ecut (1.28)

with large enough Ecut the basis set is su�ciently complete to describe accurately the system.

Summarizing, the use of plane waves as basis set results in the following advantages:

• Due to Bloch's theorem, plane-waves are the natural choice for the representation of
electron bands in a periodic system.

• The kinetic energy operator is diagonal in a plane wave representation. Similarly the po-
tential operator is diagonal in real space. The use of fast Fourier transforms in changing
between these representations provides a large saving in computational e�ort.

• The quality of the basis is easily set by adjusting a single parameter until the desired
accuracy is reached.

The disadvantage of using plane-waves as basis set is the number of functions required to
describe the rapid oscillations of the electronic wave function close to the nucleus, like in the
case of the core electrons. There are several approaches to overcome this di�culty; one of
them is the introduction of the Projector Augmented Waves (PAW), which is the one will be
used in our calculations.

Projector Augmented Waves (PAW)

Core states are di�cult to expand in PWs due to the high number of waves needed to describe
their rapidly oscillating wave functions. However, they do not contribute in a signi�cant man-
ner to chemical bonding and solid-state properties. Only outer (valence) electrons do, while
core electrons can be considered frozen in their atomic state. This suggests that one can
safely ignore changes in core states (frozen core approximation) while solving explicitly for the
valence electrons.

The idea of replacing the full atom with a much simpler pseudoatom (by means of a pseudopo-
tential) with valence electrons only, was suggested for the �rst time in a 1934 paper by Fermi.
Pseudopotentials (PPs) have been widely used in solid state physics starting from the 1960s.
In earlier approaches PPs were designed to reproduce some known experimental solid-state
or atomic properties such as energy gaps or ionization potentials. Other types of PPs were
obtained from band structure calculations with the OPW (orthogonalized PW) basis set, by
separating the smooth (PW) part from the strongly oscillating part in the wave functions.
Nowadays, modern PPs are constructed to mimic the scattering properties of the true atom.

An alternative approach to PP's is the one introduced by Blochl in 1994 known as Projector
Augmented Waves (PAW), which is in a sense more general. [11] The idea behind the PAW
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method is to map the all-electron wave functions (ψ) into a set of auxiliary pseudo-wave func-
tions ( ~ψ) that are smoother ( ~ψ can be easily expandable in PWs).1 Such mapping between the
complete wave function and the pseudo-wave functions is carried out by means of a linear op-
erator T . This transformation provides a simple and consistent way to reconstruct all-electron
wave functions from the pseudo-wave functions that are used in the calculations. In the case
of a single atom in the system the mapping is de�ned as:

| ψ〉 = T | ~ψ〉 = (1 + TR) | ~ψ〉 (1.29)

where the functions ψ are solutions of the all-electron atomic KS equation; the functions ~ψ are
the corresponding pseudo-wave functions, which are much smoother in the region of the core
electrons, and join smoothly to ψ at the border of R. Outside R, the pseudo-wave functions
and the all-electron wave functions must coincide (i.e., TR = 0 outside R).

If we know the transformation T from the pseudo wave functions to the all-electrons wave
functions, we can obtain the physical quantities as the expectation value 〈A〉 of any operator
A from the pseudo-wave functions ~ψ. This can be done either directly as 〈ψ | A | ψ〉 after
transformation | ψ〉 = T | ~ψ〉 or as the expectation value 〈ψ | A | ψ〉 = 〈 ~ψ | ~A | ~ψ〉 of a
pseudo operator ~A = T †AT . Similarly, we can evaluate the total energy directly as a func-
tional of the pseudo-wave functions, with the ground state pseudo-wave function obtained from

δE[T | ~ψ〉]
δ〈 ~ψ |

= εT †T | ~ψ〉 (1.30)

It is important to mention that usually, while the valence electrons are considered explicitly
on the calculation, the core states are imported from an isolated atom con�guration (frozen
core approximation).

Brillouin zone Sampling

In order to compute the electronic density in a periodic system one has to integrate over the
Brillouin Zone (BZ):

n(r) =



(2π)3

∑
n

∫
fkn | ψk,n(r) |2 dk (1.31)

where the index n runs over the bands. This integral can be approximated as a sum over k,
and we need to select a �nite number of k-points to evaluate the wave functions and extract
the electronic structure in the most accurate way possible.

n(r) =



(2π)3

∑
n

∫
fkn | ψk,n(r) |2 dk ' 


(2π)3

∑
n

∑
k

fkn | ψk,n(r) |2 (1.32)

1Note that the de�nition all-electron, here and in the following, refers to a KS calculation that includes
core electrons, not to a many-electron wave function.
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Fortunately, the values of the electronic wavefunctions at k-points that are very close to each
other it is almost the same. This property allows for a reduction of the k-points to be sampled,
and if we take into account the symmetry of the BZ the number of k-points needed is even
lower [5, 16,61].

For the purpose of this thesis we used the Monkhorst-Pack method to sample the Brillouin
zone. This method consist of generating a uniform set of points de�ned by,

kn1,n2,n3 ≡
3∑
i

2ni − 1

2Ni

Gi (1.33)

here Ni the number of division along the lattice vector Gi, whith ni run over all the values
ni = 0, 1, 2, ..., Ni− 1. The quality of this sampling can be determined by a convergence tests.
For insulators and semiconductors the number of k-points to be accounted in the calculations
is lower than for the case of metals. In the case of metals it is important to sample carefully
the regions where the band cross the Fermi level as in this regions the bands are partially
occupied and the changes in the electronic structures are more drastic than in the case of
�lled bands.

1.2.2 Convergence tests and Example calculations for BiFeO3

In order to set the calculations conditions we have performed a convergence study. As ex-
plained before, the parameters \energy cuto�" and \density of the k-point grid" determine the
quality of the calculations. In order to describe appropriately the system we need to adjust
this two parameters to obtain an adequate description at a lower computational cost. For
materials where strong correlations play a fundamental role, the value of the Hubbard U en-
tering the LDA+U/GGA+U also need to be set. We want to illustrate how these calculation
conditions were determined for the case of BiFeO3 (BFO), a material that is relevant for the
purpose of our work.

BiFeO3 is a ferroelectric material, with a G-anitferromagnetic order (G-AFM, an antiferro-
magnetic coupling between all �rst nearest neighboring magnetic ions) in its ground state (see
Fig. 1.1). It has a rhombohedral symmetry with R3c space group and a polarization along
the [111] direction, expressed in the Cartesian setting de�ned in Fig. 1.1. We want to have
a proper description of the system; thus, to ensure we have reached the desired accuracy, we
checked how well described were: the equilibrium structure, the phonon spectra, and energy
di�erence between the most relevant magnetic orders [G-AFM and the ferromagnetic (FM)
orders] with respect to the parameters mentioned before.

For the convergence study we performed a relaxation of the structure starting from the atomic
positions reported by the previous work [63]. For these calculations the structure was spanned
to a pseudo-cubic 40 atom cell that will be the cell used in our calculations (see Fig. 1.1).
This cell is obtained by doubling the 5-atom cell of the ideal perovskite structure along the
three cartesian directions. As we are interested in the study of possible phase transitions in
BFO, the use of this 40 atom cell allows more degrees of freedom in the atomic relaxations
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and the possibility to explore more symmetries that are compatible with it.

Figure 1.1: The rhombohedral 10 atom unit cell of BiFeO3; G type Antiferromagnetism in a 40
atom pseudo-cubic unit cell

The correct description of the magnetic order is crucial in order to attain the correct ground-
state of the system. As explained before, the electrons responsible for the magnetic properties
are the strongly localized 3d electrons from the Fe atoms. In order to have an adequate de-
scription of these electrons, a correct value for the parameter U has to be chosen. For that
purpose we computed the energy differences between the ferromagnetic and the antiferromag-
netic orders for different values of U . These calculations were done at constant cell and atomic
positions (taken from a previous relaxation of the reported structure in [63]).We compare our
results with those obtained from calculations with B1-WC hybrid functional, (see Fig. 1.2)
which will be our reference for accuracy with respect to the relative stability of the magnetic
phases. [19] We obtained that U =4 eV reproduce accurately the results from hybrid calcula-
tions and thus is the one chosen by us to describe the d electrons interaction in Fe.

Figure 1.2: The value of the U that best fit the hybrid (B1-WC) results is the U = 4 eV, the same
conclusion was obtained for both GGA+U (shown here), and LDA+U
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When dealing with ferroelectric materials it is crucial to have an accurate description of the
structure. Ferroelectricity is strongly related to the structural distortions, specially those
breaking the inversion symmetry. For this purpose we did full relaxations (unit cell and
atomic positions) with several values for the energy cuto� and di�erent grids of k-points
(Gamma-centered), and compared the results. The relaxations were carried employing the
quasi-Newton algorithm to relax the ions into their ground state.

Ecut[eV] 300 400 500 600

a [�A] 5.668 5.688 5.696 5.704

α[o] 59.30 59.20 59.17 59.10

Vrh[�A
3] 126.76 127.74 128.21 128.45

Bix 0.000 0.000 0.000 0.000

Fex 0.277 0.278 0.279 0.279

Ox 0.561 0.562 0.563 0.563

Oy 0.961 0.962 0.964 0.964

Oz 0.109 0.110 0.111 0.111

k − point 3× 3× 3 4× 4× 4 5× 5× 5

a [�A] 5.696 5.696 5.696

α[o] 59.17 59.17 59.17

Vrh[�A
3] 128.21 128.21 128.21

Bix 0.000 0.000 0.000

Fex 0.279 0.279 0.279

Ox 0.563 0.563 0.563

Oy 0.964 0.964 0.964

Oz 0.111 0.111 0.111

Table 1.2: Calculated lattice constant a, rhombohedral angle α, volume Vrh of the rhombohedral
cell, and Wycko� positions (2a(x, x, x) for the cations and 6b(x, y, z) for the anions) of BiFeO3. Left:
for di�erent Energy cuto�s and 3 × 3 × 3 grid of k-points. Right: for di�erent grid of k-points and
Energy cuto� Ecut = 500 eV.

The stopping criteria for the relaxations was to achieve residual forces and stresses below 0.01
eV/�A and 1 kB, respectively. Relaxations were re-run until obtaining the relaxation within
one step to ensure that big changes in volume will not introduce error due to changes in the
number of plane waves included in the calculations. The structural details obtained for the
di�erent settings can be compared in table (1.2), where we can appreciate that the result
obtained for Ecut = 500 eV and a k − point grid of 3 × 3 × 3 are su�ciently converged. The
results for the equilibrium volume are shown graphically in Fig. (1.3).

Lattice dynamical properties are of special importance when describing the ferroelectric and
response properties of BFO. We also have computed the phonon frequencies for di�erent
settings and compared our results to determine which calculation conditions are su�ciently
converged with this respect. It can be see from table 1.4 that the 500 eV energy cuto� and
the grid 3×3×3 are already well converged with respect to the phonon frequencies calculations.

16



127.5

126.5

Figure 1.3: Convergence of the equilibrium Volume with respect to the Energy cuto� for a 3×3×3
grid of k-points for the BiFeO3 ground state

3× 3× 3

300 eV 400 eV 500 eV

56.8 56.6 57.0

61.0 61.0 61.2

72.1 72.1 72.2

72.3 72.4 72.5

85.8 85.6 85.6

90.3 90.1 90.2

500 eV

3× 3× 3 4× 4× 4 5× 5× 5

57.0 56.8 56.8

61.2 61.1 61.1

72.2 72.2 72.2

72.5 72.5 72.5

85.6 85.7 85.7

90.2 90.2 90.2

Figure 1.4: Calculated zone centered (�-point) phonon frequencies in cm−1 for BiFeO3 in the
ground sate (R3c with G-AFM)
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We also compared the energy di�erence between the ferromagnetic and antiferromagnetic
orders. The energy corresponding to di�erent magnetic orders can be expected to depend
strongly on the sampling of the Brillouin zone, a consequence of each magnetic order present-
ing di�erences in the electronic structure. In table 1.3, we may appreciate that the energy
di�erences di�er by no more than 0.1 meV/f.u. for the di�erent grids tried. In this respect, it
is shown in table 1.3 that the 500 eV energy cuto� and the grid 3× 3× 3 of k-points renders
a converged result for the magnetic interactions.

(EAFM − EFM) meV/ f.u

Ecut k-point grid

3× 3× 3 4× 4× 4 5× 5× 5

400 eV −284.4 −284.4 −284.4

500 eV −284.5 −284.5 −284.4

600 eV −284.3 −284.3 −284.5

Table 1.3: Energies di�erences between the the G-Antiferromagnetic and Ferromagnetic orders.
We ratify then the 3 × 3 × 3 grid of k-points and the 500 eV energy cuto� are accurate enough to
describe the system.

As we have shown a careful study involving the fundamentals quantities of interest need to
be done to ensure that the calculation conditions are optimal. In this work we will be dealing
with phase transitions, metastable phases with di�erent structural and/or magnetic orders,
etc. which requires an accurate description of the system. Here we have determined the
converged conditions for BiFeO3 calculations that will be used in this work (except where
indicated).
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Chapter 2

Magnetoelectric Multiferroics

This work is about magnetoeltric multiferroics, a relatively new class of materials discovered
by the mid of the past century, which involve simultaneously ferroelectricity and magnetism.
Ferroelectric materials exhibit spontaneous polarization that can be reverted (switched) by
an applied electric field, as happens to ferromagnets with magnetization and magnetic fields.
The simultaneous presence of these two properties in a single material is something difficult
to meet in nature. If we add the existence of a coupling between the order parameters, the
phenomena becomes even more exotic and fascinating.

The term multiferroic was defined by Schmid for the first time as: � Single-phase multifer-
roic materials are those that posses two or all three of the ferroic properties (ferroelectricity,
ferromagnetism, and ferroelasticity)� [79]. However this definition has been broadened to in-
clude materials that present any type of long range magnetic order (ferromagnetism, ferrimag-
netism, or anti-ferromagnetism), spontaneous electric polarization and/or ferroelasticity [24].
Such materials are of great interest for their potential technological applications and the basic
science behind these phenomena.

Figure 2.1: Simplified model of ME effect, coupled magnetization M and polarization P, turning
on a strongly enough electric field E induce a polarization and a change in the magnetization

Another concept that will be important for our objective is the magnetoelectric effect. The
property of a material to react to magnetic (electric) field undergoing a change in the polar-
ization (magnetization) it is known as magnetoelectricity, (see Fig. 2.1). The idea of a system
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with such a behavior at room conditions opens the path for a wide range of technological ap-
plications. The basic science behind their complex behavior and their possible implications for
technological applications have merged together the interest in this materials, making this a
very active �eld of research nowadays. It is in this scenario where our project takes place, with
the study and search for strategies that enhance the response of one of the most promising
magnetoelectric multiferroic materials, BiFeO3.

2.1 Fundamentals

2.1.1 Ferroelectricity

Ferroelectric materials as already mentioned, are those that exhibit a spontaneous polarization
that can be switched under an applied electric �eld. Certain conditions need to be present in
a material to present such properties. One of the conditions to exhibit spontaneous polariza-
tion is that the crystal symmetry must be polar (non-centrosymmetric), polarization thus is
associated with the loss of the inversion symmetry in the crystal. As for the polarization to be
switchable, there has to be a path linking two di�erent minima with the same polar symmetry
and energy but with the polarization pointing along di�erent directions, (see Fig. 2.2). This
switching of the polarization is con�rmed in the system by the presence of a polarization vs
electric �eld (P vs. E) hysteresis loop.

E E E

PP

P

P

P

P

Figure 2.2: (a) BaTiO3 in its high temperature paraelectric (PE) cubic perovskite structure and
in its room temperature tetragonal structure (for up and down polarization states). (b) Typical
double-well shape for the internal energy of BaTiO3 in terms of the order parameter P . (c) Hysteresis
loop of the polarization-electric �eld curve

The symmetry breaking from the non-polar paraelectric (PE) structure and the ferroelectric
structure can be described in a Landau theory with the polarization as the order parameter.
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In the vicinity of the phase transition, the Landau potential (F ) can be expanded in powers of
the the polarization P , with coe�cient that can be �tted to reproduce experimental results or
obtained from calculations. We chose the origin of energy for the paraelectric high symmetry
phase to be zero:

F(P ; E) =
1

2
AP 2 +

1

4
BP 4 +

1

6
CP 6 − EP (2.1)

where the expansion is truncated at sixth order. In this equation, F is the free energy density
and is related to F by F = F

Ω
with 
 the unit cell volume; E is the electric �eld and the

coe�cients A, B and C de�ne the energy pro�le.

T < T0

T > T0

Figure 2.3: Second order phase transition, energy pro�le for B > 0

At the equilibrium structure the condition:

∂F
∂P

= 0 &
∂2F
∂P 2

> 0 (2.2)

must be satis�ed. Usually the temperature dependence of the Landau potential is restricted
to the coe�cient A = A0(T −T0), with T0 the temperature at which the coe�cient A changes
sign ( i.e., the paraelectric phase is no longer a local minima). T0 may coincide with the Curie
temperature, but this is not always the case. We can generally assume that coe�cients A0 and
C are positive. The pro�le of the energy will change signi�cantly with the sign of B, which
determines whether the transition between the ferroelectric and paraelectric phases will be of
�rst or second order.
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For B > 0, the phase transition at T = T0 is of second order, the energy pro�le will evolve from
that of a single well to a double potential well as the temperature is decreased (see Fig. 2.3).
As the temperature is lowered, a polar phonon becomes softer until it gets to zero frequency
and freezes below TC (with TC = T0). As the atomic displacement corresponding to the polar
phonon is frozen, the energy pro�le develops a double potential well. There is a close relation
between the response of the system and the softening of the polar mode; this will be discussed
in more detail later in this chapter, (see section 2.2).

T < T0

T=Tc

T > Tc

Figure 2.4: First order phase transition, energy pro�le for B < 0

The case where B < 0 shows a di�erent behavior. For such systems the energy pro�le changes
from a three minima situation to the double potential well. Note that, even at T < TC the
system has a minima at the non-polar phase. In this case, the Curie temperature TC and T0

do not coincide; instead we have TC = T0 + B2/4A0C (see Fig. 2.4). At temperatures above
TC there is a single minimum, the paraelectric state. For T0 < T < TC the paraelectric phase
and the ferroelectric phase coexist as minima; in this region the phase transition between
the paraelectric and ferroelectric structures is of �rst order (there is a discontinuous change
in the properties related to the �rst derivative of the free energy of the system at the tran-
sition, e.g. Polarization). For temperature below T0 the system only exhibit the polar minima.

2.1.2 Magnetism

Magnetism is an old concept. However, the microscopic origin of this ancient phenomena
was not clearly understood until the discovery of the electron and the development of the
Quantum theory. The atomic structure, the electronic orbital momentum and spin, revealed
the origin of this phenomenon. Magnetism appears in systems in which some of the electrons
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are ordered according to their orbital component of the angular momentum and/or spin. For
examples when the number of up and down spin electrons is not equal, the system is said to
be magnetic (or have a net magnetic moment). For the purpose of this thesis, we will be only
concerned with spin magnetism.

Ions, for instance transition metals (TM), with partially �lled 3d-shells (l = 2) have 5-fold
degenerated orbitals (2l+ 1 degenerate levels), that can be double occupied (by up and down
spin oriented electrons). When �lling this orbitals the electrons intend to align their spins
and avoid the double occupancy of the same atomic orbital. The reason for such arrangement
is that when two electrons populate the same atomic orbital (with spin up and down), their
wavefunction will spatially overlap, resulting in an increase of the Coulomb repulsion. If in-
stead they align occupying di�erent orbitals the energy cost is reduced with the decrease of
the Coulomb repulsion, (Hund's �rst rule).

In condense matter, systems that are composed of magnetic ions may display a certain order in
the arrangement of the magnetic moments. The magnetic moments tend to align or anti-align
depending on the interaction between the magnetic species. Depending on this ordering the
system may exhibit a net magnetization (the sum of all magnetic moments is non zero) in the
ferromagnetic and ferrimagnetic order, or not, like in the case of the antiferromagnetic order.

The materials that have all magnetic moments aligned and pointing in the same direction
are known as ferromagnetic. Ferromagnets display an spontaneous magnetization that can be
reversed under the in
uence of a magnetic �eld. They exhibit a hysteresis loop for the depen-
dence of the magnetization in the magnetic �eld. While in the antiferromagnetic materials
there is no net magnetization, as all the spins are anti-aligned to cancel out the magnetiza-
tion. Ferrimagnetic materials are those in which the local magnetic moments of the atoms
on di�erent sublattices are opposed to each other, just as happens with antiferromagnetism.
However, the magnetic moments of the opposed sublattices are unequal (they may consist of
di�erent chemical species like in the case of Bi2FeCrO6, or ions as in the case of Fe2+ and
Fe3+) and, thus, the cancelation is not complete, which leads to a remaining magnetization
despite the anti-alignment of the spins.

Transition metal oxides (TMO) are a special case of magnetic materials. These materials
exhibit a wide variety of magnetic properties: ferromagnetism, antiferromagnetism, colossal
magnetoresistance, superconductivity, half metallicity, among others. When the transition
metal ions are placed in a crystal, like in the case of the transition metal oxides, the spherical
symmetry of the isolated atom is lost and the orbital degeneracy is lifted. Depending on the
symmetry of the crystal, the splitting will favor certain electronic con�guration. In the case
of a transition metal surrounded by an ideal oxygen octahedra, like in perovskite oxides (see
Fig. 1.1), the 5-fold orbital degeneracy of the 3d levels will be lifted favoring the t2g over the
eg

1. If the splitting � is too large the energy cost to populate the eg may be larger than that
of the double occupancy of the t2g (see Fig. 2.5 for more details), which may result in the
so-called low-spin con�guration.

Another role of the oxygens in the TMO is to participate in the magnetic interaction between

13d orbitals may be classi�ed by symmetry as eg(dx2−y2 , dz2) and t2g(dxy, dxz, dyz)
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Δ

Δ

JH JH

a) b) Δ < JH Δ > JH

Figure 2.5: Example of orbital degeneracy lifted for the 3d levels in Fe3+ (5-3d electrons), If the
splitting � of the levels is smaller than the energy cost of the double occupancy, the system will
populate all the orbitals (known as High Spin con�guration); Otherwise if � is too large, the system
will accommodate the electrons in the low lying orbitals t2g (known as the Low Spin con�guration

the TM atoms. These magnetic interaction can be explained making use of the Hubbard
model for the d electrons:

Hhub = −
∑

tijc
+
iσcjσ + U

∑
ni↑ni↓ (2.3)

The �rst term describes the kinetics of the system, with the tij the matrix describing the
probability of an electron hopping from site i to site j. The c+

iσ and cjσ are creation and
annihilation operators of electrons at sites i and j respectively, and with spin σ. The second
term is the Coulomb potential, where U is the magnitude of the on-site Coulomb repulsion,
with ni↑ and ni↓ the spin-up and spin-down electron occupation of the site i.

We are interested in the case of Mott-Hubbard insulators (U >> t), where these systems can
be described in perturbation theory.2. Consider a system with U >> t and ne = 1 (i.e. the
system is insulator and have one localized d-electron per site, see Fig. 2.6). If we �nd the
energy correction �E for second order perturbation theory in t/U << 1, we obtain for the
case (a) �E = 0 as the hopping from site i to site j is forbidden by Pauli exclusion principle.
In contrast, for case (b) the hopping is allowed and we obtain �E = −2t2

U
. As a result, the

con�guration with the antiferromagnetic order is favored. A similar result can be obtained
for the case of TMO where the TM atoms are linked by an oxygen, where the localized 3d
electrons of the TM atoms overlap with the same p orbital of the intermediate oxygen. These
interactions that are mediated by virtual electron transfers between the TM atoms and/or
between a shared anion and the two TM atoms are known as superexchange mechanism.

2a pedagogical explanation can be found in [?]
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Figure 2.6: Simple model to explain the magnetic interaction between the atoms. Consisting of
a system with U >> t (insulator) and one localized d-electron per site).There are two relevant
scenarios: (a) spins are aligned with ferromagnetic interaction between the two sites and, (b) spins
are antiparallel and the interaction is antiferromagnetic.

Di�erent orbital orientations and geometry of the bonding will result in a di�erent overlaps
between the orbitals, thus changing the exchange interaction. There is a set of rules known as
the Goodenough-Kanamori-Anderson rules (GKA) that were formulated to predict how this
exchange interaction should be according to the geometry of the bonding between TM atoms
and the oxygen. [37,51]

2.1.3 Magnetoelectric coupling

The magnetoelectric e�ect is a phenomenon in which the magnetization(polarization) is cou-
pled to the electric (magnetic) �eld. It can be de�ned if we expand the free energy in terms
of the electric E and magnetic H �elds:

F(E , H) = −
∑
i

P S
i Ei −

∑
j

MS
j Hj +

1

2

∑
ii′

χdii′EiEi′ +
1

2

∑
jj′

χmjj′HjHj′ +
∑
ij

αijEiHj

+
∑
ijj′

βijj′

2
EiHjHj′ +

∑
ii′j

γii′j
2
EiEi′Hj + ... (2.4)

where P S
i and MS

j are the spontaneous polarization and the magnetization in the direction
i or j respectively. The χdii′ and χmjj′ tensors are the dielectric and magnetic susceptibilities
of the medium. The rest of the terms are those involved in the magnetoelectric e�ect: α is
the linear magnetoelectric coupling, with β and γ being higher-order (quadratic) terms of the
magnetoelectric coupling. By dropping the higher-order coupings, β and γ, we can write:3

F(E ,H) = −
∑
i

P S
i Ei −

∑
j

MS
j Hj +

1

2

∑
ii′

χdii′EiEi′ +
1

2

∑
jj′

χmjj′HjHj′ +
∑
ij

αijEiHj (2.5)

3There are some works dedicated to the study of higher order e�ects [77, 78], but most of the literature
about ME refers to the linear e�ect.
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From Eq. (2.5) we can derive the dependence of the polarization P of the magnetic �eld H,

Pi(E ,H) = −∂F
∂Ei

= P S
i +

1

2

∑
i′

χdii′Ei′ +
∑
j

αijHj (2.6)

similarly for the dependence of M on the electric �eld E ,

Mj(E ,H) =
∂F
∂Hj

= MS
j +

1

2

∑
j′

χmjj′Hj′ +
∑
i

αijEi. (2.7)

As can be noticed, in the absence of a electric (magnetic) �eld the polarization (magnetization)
react to the magnetic (electric) �eld proportional to the order of α. The linear magnetoelectric
coupling is bounded from above by the dielectric and magnetic susceptibilities, as:

α2
ij < χdiiχ

m
jj (2.8)

which can be proven by calculating the change in the free energy that occurs when electric
and magnetic �elds are simultaneously applied to a magnetoelectric medium. [13] Thus, ferro-
electrics and ferromagnetic materials are expected to exhibit large magnetoelectric response,
as their often have a large dielectric and magnetic susceptibility respectively. It is important
to stress higher-order magnetoelectric e�ects are not limited by this upper bound. [24]

Note also that a linear magnetoelectric is not necessarily a multiferroic material. The mag-
netic point group (symmetry) of the material might allow spontaneous polarization in addition
to the linear magnetoelectric e�ect, however this is not always the case (e.g. Cr2O3). The
converse is also true: the linear ME e�ect is not allowed for all multiferroics (e.g. in bulk
BiFeO3 where the existence of an incommensurable spin cycloid forbids the linear e�ect).

This is a very active �eld of research, with new strategies to enhance this e�ect being explored.
Part of our work is motivated in this direction. At the end of the present chapter we devote
a section to mention the state of the art of this �eld of research.

2.2 Microscopic theory of functional properties of ME

multiferroics

Magnetoelectric multiferroics exhibit various functional properties, besides the switchable
spontaneous polarization, they may also display large magnetoelectric and the dielectric re-
sponses, which may make them suitable for technological applications.

We want to derive these response properties as the appropriate second derivatives of the energy
E per unit volume with respect to the perturbations. In the absence of strain, let us consider
the energy E({un}) per undeformed unit cell volume (
) as a function of the infrared (IR)
modes of the material, which can be obtained from diagonalization of the force-constant matrix
at the � point of the Brillouin zone (BZ). Let us denote by un the amplitude of the n-th IR
mode, with n running from 1 to NIR. In the presence of applied electric (E) and magnetic
(H) �elds, it is convenient to Legendre transform E({un}) into the electric-magnetic enthalpy
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F ({un}; E ,H). This enthalpy is expanded to second order around the zero-�eld equilibrium
structure, [46] as:

F ({un}, E ,H) =F0 −
∑
i

P S
i Ei −

∑
j

MS
j Hj +

1

2

∑
ii′

~χdii′EiEi′ +
1

2

∑
jj′

~χmjj′HjHj′ +
∑
ij

~αijEiHj

−
∑
i

P latt
i ({un})Ei −

∑
j

M latt
j ({un})Hj +

1

2

∑
n

κnu
2
n. (2.9)

Here F0 is the reference structure energy; Ei and Hj are the electric and magnetic �elds along
the direction i (j); P S

i and MS
j are the the spontaneous polarization and magnetization, re-

spectively; ~χdii′ , ~χmjj′ and ~αij are the frozen-ion contributions to the dielectric susceptibility,

magnetic susceptibility and magnetoelectric response, respectively. Finally, P latt
i and M latt

i

are the contributions to polarization and magnetization arising from distortions of the equi-
librium structure associated to IR modes, as given by,

P latt
i ({un}) =

1




∑
n

pdniun, and M latt
j ({un}) =

1




∑
n

pmnjun, (2.10)

Here, pdni is the mode polarity that measures the polarization induced by the n-th mode
eigendisplacement,ξ̂nτi, with

pdni =
∑
τi′

Zτ,ii′ ξ̂
n
τ,i′ , (2.11)

where ξ̂nτi is the component along the direction i′ of the atom τ , and Zτ,ij are the Born effective
charges,

Zτ,ii′ = −

∂Pi
∂rτ,i′

(2.12)

Zτ,ij is a fundamental quantity in the study of dynamical properties of polar crystals, and is
de�ned as the change in the polarization Pi with respect to the displacement of the atom τ
along the direction i′. We can de�ne a magnetic equivalent for the mode polarity and Born
charges just mentioned, which would have the forms

pmnj =
∑
τj′

ζτ,jj′ξ
n
τj′ and ζτ,jj′ = −


∂Mj

∂rτ,j′
(2.13)

The last term in Eq. (2.15) quanti�es the energy cost associated to the IR modes, with κn
being the sti�ness of the n-th IR mode (i.e., the eigenvalue of the force constant matrix).

Dielectric response in ferroelectrics is mainly driven by the lattice mediated contributions, with
the purely electronic contribution being a small part of the total response. In order to account
for such contributions we need to introduce the functional F̂ (E ,H) = minuF ({un}, E ,H).
Which can be obtained from the condition ∂F/∂un = 0, which leads to the the relation:

un = −
∑
i

pdniEi + pmniHi

κn
. (2.14)
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By replacing in Eq. (2.15) the result for the un we obtain,

F̂ (E ,H) =F0 −
∑
i

P S
i Ei −

∑
j

MS
j Hj +

∑
ii′

(
1

2
~χdii′ +

1




∑
n

pdnip
d
ni′

κn
)EiEi′

+
∑
jj′

(
1

2
~χmjj′ +

1




∑
n

pmnjp
m
nj′

κn
)HjHj′ +

∑
ij

(~αij +
1




∑
n

pdnip
m
nj

κn
)EiHj (2.15)

a new set of response functions now including the ions relaxations (i.e. the lattice contribution
to the response). For instance now the dielectric susceptibility will have the form:

χdij =
∂2F̂

∂Ei∂Ei′
= ~χdii′ +

1




∑
n

pdnip
d
ni′

κn
(2.16)

Analogously we �nd,

αij =
∂2F̂

∂Ei∂Hj

= ~αij +
1




∑
n

pdnip
m
nj

κn
(2.17)

From these equations we can see that the response will be ver large for the cases where κn → 0
(i.e., if we reduce the energy cost for the distortions).

So far we have shown how the magnetoelectric coupling and the dielectric response can be
expressed in terms of the mode polarities (electric and magnetic) and the force-constant ma-
trix eigenvalues. This is a desirable picture that lead to a better understanding of how the
dynamics of the lattice may a�ect the responses of the system. In this way the response can
be related to the phase transitions and the softening of the polar modes that accompany the
transition.

2.3 Difficulties to obtain ME multiferroics at room tem-

perature and contributions from first principles the-

ory

2.3.1 Scarcity of materials and small responses

According to Eq. (2.8), we can see that achieving a very large ME response requires �nd-
ing materials with a large dielectric and/or magnetic susceptibility. The largest dielectric
responses are found in ferroelectrics, while in ferromagnetic materials we observe the largest
magnetic susceptibilities. From this we may think about ferromagnetic ferroelectrics as the
best candidates for displaying giant ME e�ects. Besides ferromagnetic ferroelectrics many
other multiferroics (with antiferromagnetic or ferrimagnetic orders) are also promising sys-
tems for large ME response.
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According to Fiebig, we may classify the multiferroics in four major groups [28]:

• Compounds with perovskite structure: The �rst known multiferroic PbFe1/2Nb1/2O3 and
PbFe1/2Ta1/2O3 [?] and some of the best studied multiferroics have the perovskite struc-
ture. Most of the compounds have either ABO3 or A2BB'O6 as the general chemical
formula, and the variety of existing compounds is greatly enriched by chemical sub-
stitution (mostly AB1−xBxO3).These materials usually exhibit a distorted unit cell of
the ideal cubic perovskite. The compound that has been most extensively studied is
BiFeO3 [15], which is ferroelectric, ferroelastic and antiferromagnetic, and it is rhombo-
hedrally distorted with R3c space group. Interestingly, this compound displays a very
high electric and magnetic ordering temperatures of TC ∼ 1100 K and TN ∼ 650 K re-
spectively, which has stimulated the study and growth of a large variety of solid solutions
based on BiFeO3 [15].

• Compounds with hexagonal structure: In the case of su�ciently small cationic radii
compounds with the general formula ABO3 or A2BB'O6 may crystallize in a hexago-
nal structure instead of the typical perovskite. The largest and best known group of
hexagonal multiferroics is the one composed by the ferroelectric antiferromagnetic man-
ganites RMnO3 with R = Sc, Y, In, Ho, Er, Tm, Yb, Lu. [17] Their crystallographic
point symmetry is 6mm. Here we can �nd up to four long-range ordered subsystems:
the ferroelectric lattice with a Curie temperature of 570− 990 K, the antiferromagnetic
Mn3+ lattice with a Neel temperature of 70 − 130 K [8] and two rare-earth sublattices
with a magnetic ordering temperature of ∼ 5 K [82].

• Boracites: Boracite compounds with the general formula M3B7O13X are ferroelectric
ferroelastic antiferromagnets, in some cases exhibitng a weak ferromagnetic moment.
With M = Cr, Mn, Fe, Co, Cu, or Ni as the bivalent ion and X = Cl, Br, or I, a large
variety of compounds exists, many of which possess a ferroelectric Curie temperature
above room temperature, whereas the magnetic ordering temperature never exceeds 100
K [87].

• Fluorites: Multiferroics of composition BaMF4 with M = Mg, Mn, Fe, Co, Ni, and
Zn, were introduced and discussed in detail by Guggenheim and Scott [25, 80]. The
compounds are orthorhombic with 2mm point symmetry at high temperatures with an
extrapolated Curie temperature above the melting point. With a magnetic ordering tem-
perature around 25− 70 K the ferroelectric structures display purely antiferromagnetic
or weak ferromagnetic ordering.

The classi�cation given above was done in the 2005, but can be considered essentially valid
nowadays. Besides the examples listed here, there is a general di�culty in having electric
and magnetic long-range ordering in one compound. The number of multiferroic compounds
that are known is relatively small. Most of them are antiferromagnetic ferroelectrics, and the
preferred combination of ferromagnetism and ferroelectricity is only achieved in the form of
weak ferromagnetism or weak ferroelectricity accompanying the otherwise antiferroic order.

2.3.2 Computational studies on how to achieve ME multiferroism

Magnetoelectric multiferroics are a rather di�cult to �nd class of materials. If we then add
the condition of having such a behavior at room temperature, the materials are very few, and
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mostly limited to compounds of the BiFeO3 family (BiFeO3 and solid solutions of BiFeO3 with
other A and B cations Bi1−xAxFe1−xBxO3).

There are several points of view to address the problem of these complex materials where
ferroelectricity and magnetism take place simultaneously, and furthermore they are coupled.
In this section we will give a brie�ng on what we consider a representative sample of the works
in the �eld of �rst principles studies of magnetoelectric multiferroic materials.

The works by Nicola Spaldin were very in
uential in the �eld of magnetoelectric-multiferroics.
Spaldin discussed why there are so few materials that are magnetic and ferroelectric [43]; lim-
iting her analysis to transition-metal oxides (TMO), especially perovskites. She observed that
the ferroelectrics (e.g., titanates) have B-site ions with 3d0 electronic con�guration of the tran-
sition metal (TM) atom, whereas the magnetic materials require 3dn unpaired electrons. This
is the case of BiFeO3, where the polarization is mostly due to the lone pair (s2 orbital) of Bi+3,
so that the polarization comes mostly from the A-site while the magnetization comes from the
B-site (Fe+3). With this in mind, Spaldin and co-workers proposed the perovskite Bi2FeCrO6

with A-site ferroelectricity (Bi) and mixing magnetic cations (Fe/Cr) at the B-site, [4] result-
ing in a ferrimagnetic order from the partial cancelation of the anti-aligned lattices of Fe and
Cr. among others, Spaldin's works refueled the activity in the �eld and many groups started
working in this family of materials.

Contrary to the hypothesis followed by Spaldin et al. that ferroelectricity requires d0-ness
while magnetism requires partial d-state occupancy, a recent work by Ghosez et al. proved
that this a�rmation is not necessarily true. They showed that the cubic perovskite structure
of CaMnO3 also exhibits a weak ferroelectric instability due to the Mn4+ ions. [9] This ferro-
electric instability remains suppressed by a much stronger antiferrodistortive (AFD) instability
which is the responsible for the paraelectric (PE) ground state. Nevertheless, ferroelectricity
can be favored by epitaxial strain or chemical substitution, as in a hypothetical BaMnO3 with
perovskite structure. These works have opened a new paths that were assumed to be a dead
end for the design of new multiferroics.

Another path explored to �nd candidates that exhibit the linear magnetoelectric e�ect was
the work by Rondinelli et al.. In this work, they have proposed an strategy to enable the linear
ME coupling by appropriately breaking the symmetry at the interface of two oxides. [74] They
have found a carrier mediated response at the interface between a ferromagnetic metal and a
non-polar dielectric oxide. Although the observed e�ect was small it opened a new guideline
for the design of potential candidates for magnetoelectric devices.

Finally, it is worth to mention the works by Fennie; much has been done by his group in strain
engineering (i.e., tuning the materials properties by applying strain), and in the search of new
candidates that exhibit multiferroicity. For example the works in the polarization-strain cou-
pling of the multiferroic EuTiO3. In this material they showed how the predicted competition
between an antiferromagnetic- paraelectric (AFM-PE) phase and a ferromagnetic-ferroelectric
phase allows magnetic phase control with an applied electric �eld, and electric phase control
with an applied magnetic �eld, with modest critical �elds. More recently, they have proposed
a mechanism named by them as hybrid improper ferroelectricity to explain the ferroelectricity
induced by the rotation patterns of the oxygen octahedra for layered perovskites of the type
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An+1BnO3n+1. They discussed how these octahedra rotations simultaneously induce ferro-
electricity, magnetoelectricity and weak ferromagnetism for the Ca3Mn2O7, and proposed the
strain as a via to control the magnetism in the system.

2.3.3 Improving the ME response at room temperature

In this thesis we want to discuss some of the possible strategies to enhance the response in
ME multiferroics (more speci�cally in BiFeO3, our candidate of choice). Thus, we will discuss
di�erent strategies that may lead to an enhancement of the response in this material, the
di�erent mechanisms involved in such enhancements, and how are related to the work we are
presenting here. We begin by describing the di�erent strategies to enhance what we call the
normal response, i.e. the usual linear magnetoelectric coupling de�ned above.

Normal response

As we have mentioned before, the linear magnetoelectric coupling can be expressed in terms
of a lattice mediated part and a purely electronic contribution see Eq. (2.17). Now lets an-
alyze the terms contributing to αij and see how we can tune the material to maximize their
contributions.

For the purely electronic part, one should try to have an electronically soft system, like for
instance the electronic ferroelectric LuFe2O4 [49]. The problem with these systems is that
the relevant energy scale is typically of the order of the band gap. In order to enhance this
electronic response is desirable for the material to have a small band gap, which makes it less
suitable for applications.

Another way is to bring the magnetic ordering temperature TN close to room temperature
(Tr). For instance, having TN & Tr results in a strongly 
uctuating spin system at Tr, which
should lead to an enhancement of the ME response via the mechanism discussed by Mostovoy
et al. [62].

The remaining possibilities are in the lattice mediated part, which depends on several mate-
rial properties. It is proportional to the Z∗ Born e�ective charges, or its magnetic equivalent
ζ. There is no much room for improvement for the Z∗, as this electro-structural coupling
depend on the ionization charges and they are already anomalously large in most ferroelectric
perovskites [29, 95]. In the case of the ζ, one possibility is to use heavy magnetic species
that present stronger spin-orbit e�ects. But then transition metals with extended 4d and 5d
orbitals tend to result in a metallic behavior. On the other hand, if rare earths are employed,
the magnetic ordering temperatures tend to be very low.

We are left then with the lowering of κn (force constant matrix eigenvalues) in Eq. (2.17) as
a route to enhance the response. This lowering of κn it is directly related to the softening
of the lattice. A polar mode with an small value of κn has a low energy cost for the dis-
tortion associated with it. The response of the system is enhanced as this mode will react
strongly to external applied �elds. This can be achieved by bringing the ferroelectric (FE)
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ordering temperature TC close to Tr. For TC & Tr the system would experience large struc-
tural deformations in response to an applied E-�eld; such a structural softness would result in
an enhancement of the lattice-mediated dielectric and magnetoelectric responses. [46, 89]. In
fact, one expects to obtain a divergence of the lattice-mediated part of α in the vicinity to a
second-order FE transition. [71,90]

In this work we will be seeking to soften the lattice by chemical doping BiFeO3 with LaFeO3

as a possible solution to enhance the magentoelectric properties of BiFeO3. The details can
be found in chapter 4.

Phase change response

The recent experimental discovery of electric �eld (E) induced transitions in epitaxially com-
pressed BFO by Zeches et al. [94], has attracted attention as possibility to induce large re-
sponses in the system. This E-switching between two very di�erent phases (with change
in cell shape, polarization direction and magnetic order) implies a possible enhanced ME
response. This is the context of the works by Dieguez et al. [21] who proposed the solid
solution BiFe1−xCoxO3 (BFCO) as an alternative to the compressive strain. In their paper
they discuss how the BFCO solid solution is likely to display a rhombohedral to tetragonal
(R-T) morphotropic transition analogous to the one induced by epitaxial compression in BFO.

The phase-change response has a di�erent origin from that of the softening of the lattice. Here,
a large e�ect can be achieved from the change in the properties of the system as the external
�eld induces a �rst order phase transition. This phase transition will occur between phases
with di�erent polarization directions and magnetic orders. The result is a magnetoelectric
e�ect as the system is driven from one phase to the other.

This mechanism is relevant for the systems we will be discussing along this thesis. As we
have mentioned, we are interested in the enhancement of the response properties of BFO. For
that purpose we have done a thorough study of the low-energy phases in this material. We
have obtained a wide variety of phases with di�erents space groups, polarization directions
and magnetic orders. We will show how for compressive strain tetragonal phases may be
stabilized, and discuss in chapter 3 the implications of our results with respect to the observed
experiments by Zeches et al. [94]. Possible E-�eld induced transitions in BiFeO3-LaFeO3 solid
solution will also be discussed in the chapter 4.
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Chapter 3

BiFeO3 phases

In this chapter we will describe the structural richness of BiFeO3. This compound, despite
being one of the most studied multiferroics, continues to appear as one of the most fascinating
materials of the day. Recently it has been shown that it displays a variety of novel fundamental
e�ects, like an increase in conductivity at speci�cs domain walls [81] or new structural phases
in thin �lms with potentially useful response properties. [94]

Furthermore, BFO's phase diagram remains unresolved, with newly reported phases as func-
tion of temperature T and/or pressure p. In the review by Catalan et al. [15], a possible p-T
phase diagram was proposed. Since then, the understanding of the di�erent phase transitions
has increased and Guennou et al. [38] have recently proposed a di�erent one (see Fig. 3.1).
At ambient conditions, BFO has a rhombohedral symmetry with the R3c space group, with
a unit cell de�ned by a lattice parameter of arh = 3.965 �A and a small rhombohedral angle
α ≈ 89.3− 89.4o. It is also ferroelectric with a very large polarization of P ∼ 0.9 C/cm2 along
the [111] direction of the perovskite structure (see Fig. 1.1). Around T ≈ 1098 K, it has been
observed a sudden volume contraction corresponding to a �rst order phase transition. At the
transition it is observed a peak in the dielectric constant that has been associated to a FE to
PE transition. Although this can be arguable, as the dielectric response may exhibit peaks at
FE to FE transition also, as happens in the case of BaTiO3 for the tetragonal to orthorhombic
and orthorhombic to rhombohedral transitions. At higher temperatures T ≈ 1204 K a second
order phase transition was observed by Catalan et al. to a metallic phase that was determined
from x-ray di�raction data to be cubic. However recent studies by Arnold et al. show that
the cubic phase can only be expected at temperatures higher than the decomposition point of
the material [3] (see Fig. 3.1(b)).

Regarding the pressure induced structural transitions, experiments from Haumont et al. have
described two transitions at pressures of 3.5 and 10 GPa respectively. The �rst from rhombo-
hedral to monoclinic (C2/m) and the second one from monoclinic to orthorhombic (Pnma).
Theoretical calculations by Ravindran et al. [?] have observed a phase transition from rhom-
bohedral to orthorhombic phase at pressures of p = 14 GPa, but without indications of the
intermediate monoclinic phase. Experiments by Gavriliuk et al. at hydrostatic pressures up
to 65 GPa report an interesting transition that simultaneously involves loss of magnetic order,
high to low spin con�guration transition (spincrossover) and metallization. Their results sug-
gest a rhombohedral high pressure phase, as they did not found any signi�cant evidence of a
change in the symmetry, although they did observe a contraction of the unit cell volume. [32]

33



In the recent work, by Guennou et al. have shown up to four transitions at low pressures
(up to 11 GPa). In this range, they observations suggest phases displaying large unit cells
and complex domain structures. Between 11 and 38 GPa the non-polar Pnma phase was
observed to remain stable, with two high-pressure phase transitions at 38 and 48 GPa which
were marked by the occurrence of larger unit cells and an increase of the distortion away from
the cubic parent perovskite cell [38].

As we have seen, the structural phases of bulk BFO corresponding to high pressure and/or
high temperature regimes are not well determined and there is debate even about the nature
of the phases involved in the intermediate regions.

a) b)

Figure 3.1: Figures taken from references [15] and [38], of the proposed phase diagrams for BFO.
a) Phase diagram proposed by Catalan and Scott [15] with the high temperature and high pressure
phases, having the same cubic symmetry. b) Phase diagram proposed by Guennou et al. [38] ex-
perimental observations of phase transitions at high pressure have no indications of a cubic phase,
instead an orthorhombic phase was proposed.

The BFO thin �lms also exhibit a complex behavior. Recently Bea et al. [7] have shown that
a tetragonal phase with a very large c/a can be stabilized under epitaxial strain. Then, Zeches
et al. have reported the coexistence of the tetragonal and a rhombohedral phases (the latter
related to the BFO ground state) on a length scale of tens of nanometers in �lms grown with
intermediate strain displaying huge piezoelectric responses [94]. Other interesting results are
those obtained by Catalan et al., who have observed the presence of a surface layer (skin layer)
with a well di�erentiated structure from the inner crystal in BFO [?]. The presence of such skin
layer makes more complicated the structural characterization of BFO thin �lms, as the surface
has its own symmetry and undergoes its own phase transitions which interfere with measure-
ments of bulk BiFeO3. Thus it is important to unravel the structures that can be involved in
the skin layer to better understand the properties of the material and its behavior at interfaces.

Another active direction of research pertains to BFO solid solutions with di�erent rare earth
elements or transition metals. That is the case, for instance of the Bi1−xLaxFeO3 solid solu-
tion investigated in this thesis work, where structural phases corresponding to the intermediate
compositions are not well understood. [30,75,85,93]
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in our ICMAB group, while searching for the possible structural phases that may arise in the
solid solutions Bi1−xLaxFeO3 and BiFe1−xCoxO3, we performed a unbiased search for poten-
tially stable phases of the parent compound BFO, going beyond the ones reported already in
the literature. For that purpose we explored the most common distortions that take place
in perovskite materials. We found a rich scenario with many structural phases that are local
minima of the energy. Thus in this chapter we will present the lower energy phases obtained
and describe the implications of such a structural richness.

Figure 3.2: In this �gure are sketched: a) ferroelectric (FE) patterns associated with irreducible
representation �−4 (symmetry labels correspond to the BZ of the �ve-atom cubic cell), b) tanti-
ferroelectric (AFE) modes associated with zone-boundary q points (X-like, M-like, and R), and c)
antiferrodistortive (AFD) patterns corresponding to any combination of in-phase (M+

3 ) and anti-
phase (R+

4 ) rotations of the O6 octahedra around the Cartesian axes.

3.1 Comments on the computational approach

For the simulations we used the 40 atoms pseudocubic cell described in (1.2.2). This cell
can be constructed by doubling the 5-atoms unit cell of the ideal perovskite structure along
the cartesian directions x, y and z. Within this cell we were able to study the most com-
mon distortions from the cubic symmetry among the perovskite oxides. Among the di�erent
distortions that are common to perovskites, three major groups may be identi�ed (see Fig.
3.2):

• Ferroelectric (FE) patterns, consisting of the coordinated displacement of the atoms
sub-lattices along the same direction, FE distortions are associated to irreducible repre-
sentation �−4 which correspond to the � q-point [q = 2π

a
(0, 0, 0)] of the BZ.

• Antiferroelectric (AFE) distortions, in which the atoms are displaced in an antiphase
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manner canceling out the global polarization. AFE patterns can be associated to several
q-points in the BZ: X [q = π

a
(1, 0, 0)], M [q = π

a
(1, 1, 0)], or R [q = π

a
(1, 1, 1)].

• Antiferrodistortive (AFD) patterns, corresponding to any combination of in-phase (M+
3 )

and anti-phase (R+
4 ) rotations of the O6 octahedra around the Cartesian axes.

As has been explained before this cell is also compatible with the G- and C-antiferromagnetic
orders, the former corresponding to the ground state of BFO, and the latter occurring in su-
pertetragonal BFO's phase (see Fig. 3.3).

Figure 3.3: In this �gure are sketched: a) the 40- atom pseudocubic cell, b) the C-antiferromagnetic
order, and c) the G-antiferromagnetic order
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Scheme for structural phase exploration

In order to explore all the just mentioned distortions, we needed to consider a large number
of starting con�gurations. We have considered all the simple combinations of AFD patterns
described in table 3.1 and Fig. 3.4:1 Note that these AFD patterns include all the simple-tilt
systems discussed in the crystallographic literature for simple (ABO3) perovskites (see Fig.
3.5)

Table 3.1: All simple tilt systems used as starting point for the relaxations. Here we have employed
the Glazer notation, with a	b	c	, letters refer to tilts around axes [100], [010], [001] respectively; 	
superscript refer to whether the tilting is in-phase (+) or anti-phase (-) along certain axis, or absent
(0); a+a+b− means two equal-amplitude in-phase tilts around [100] and [010], and an anti-phase tilt
with a di�erent amplitude around [001]

a−b0c0

a−b+c0 a−b−c0

a−b−c− a−b−c+ a−b+c− a−b+c+

a+b0c0

a+b+c0 a+b−c0

a+b+c+ a+b−c+ a+b+c− a+b−c−

Figure 3.4: In this �gure are sketched: a) in-phase rotation of O6 octahedra (a0b0c+); b) anti-phase
rotation of the O6 octahedra (a0b0c−); along the [001] direction.

1Glazer have done a systematic study on octahedra tilting on perovskites, that later on was revised and
enriched by Howard et al. for more details refer to [36,45]
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The relaxations were done for all the con�gurations in table (3.1) on which we superimpose
combinations of FE and AFE distortions obtained by o�-centering of Bi cations.

Figure 3.5: A schematic diagram recording the structures for perovskites found by Howard et al.
(1998). The diagram shows the space-group symmetry, along with the Glazer (1972) symbol for the
tilts. The lines indicate group-subgroup relationships, and a dashed line joining a group with its
subgroup means that the corresponding phase transition is in Landau theory required to be �rst
order. The �gure has been reproduced from Howard et al. [Acta Cryst. (2002), B58, 565].

Furthermore we have studied di�erent cells with cubic, tetragonal and orthorhombic shapes
and di�erent magnetic orders like the G- and C-antiferromagnetic spin arrangements. In total
we have considered more than 300 starting con�gurations. For all these cases, we performed a
short molecular dynamics simulation with random initial velocities (in order to break all the
symmetries) and then a full structural relaxation. The lowest energy phases were con�rmed
as local minima by checking their stability against atomic and cell distortions.

For the structural search calculations, we employed the PBE+U functional, using essentially
the calculations conditions discussed in section (1.2.2). As we will discuss later there are cer-
tain subtleties regarding the DFT functional chosen for the study. Here we will report the
results obtained for three possible choices (LDA, PBE and PBEsol) and discuss which one
seems to be more suitable.

38



3.2 Results and Dicussion

3.2.1 Lowest-energy phases found

As mentioned before more than 300 starting con�gurations were considered. From these, we
obtained many local minima with energies within a range of 200 meV/f.u. above BFO's ground
state. We list the most relevant phases found by our study in table (3.2), where we show the
energies obtained by relaxing the relevant structures for di�erent functionals (PBE+U, the
one used for the explorations, as well as PBEsol+U and LDA+U).

Figure 3.6: Illustration of atomic displacements for di�erent symmetry modes that are relevant
in our study of BFO: (a) soft FE mode; (b) { (f) secondary modes mentioned in Table 3.2. Only
displacement directions, not magnitudes, are indicated, white, gray, and black circles represent Bi,
Fe, and O atoms, respectively.

39



We may appreciate from our results that the energy di�erences between phases depend strongly
on the functional used for the calculations. For the di�erent functionals, we observed changes
in the relative stability of the local minima and even some did not capture some of the phases
(this is the case of Pna21 which was found only with the PBE+U functional). These di�er-
ences will be addressed in more detail later in this chapter.

Table 3.2: Energies and distortions of the most stable energy minima found (seven top phases),
as well as a few saddle points (six bottom phases) included as reference. Columns 2{4 are the
energies obtained with di�erent DFT functionals. Note that the Pna21−G phase goes to Pnma−G
when relaxed with PBEsol+U and LDA+U. Columns 5{8 are the distortions from the ideal cubic
perovskite structure (Pm�3m) that characterize the phases. In all cases the FE and AFD modes fully
determine the symmetry breaking. A generic [x, y, z] FE (AFD) distortion involves displacements
(O6 rotations) along (around) the x, y, and z Cartesian axes. We indicate the dominant FE and
AFD distortions in bold. Column 8 includes other modes with a signi�cant contribution (at least
10% of the largest one). The mode analysis was done with the ISODISPLACE software [14]; note
that q-points indicated in symmetry labels constitute default choices and do not always correspond
to the actual distortion modulation (e.g., the X+

5 and X−5 AFE modes in the table are actually
modulated along the z direction).

�E = E − E(R3c−G) Structural distortions

Phases PBE+U PBEsol+U LDA+U �−4 (FE) R+
4 (AFD) M+

3 (AFD) Aditional distortions

Pc-C 19 106 134 [x, x, z] { [0, 0, z] AFE(M−5 ), O6-dist. (�−5 ), c/a = 1.27

Cm-C 12 103 132 [0, y, z] { [0, y, 0] O6-dist. (�−5 ), c/a = 1.27

Pna21-C 14 99 127 [0, 0, z] [x, x, 0] [0, 0, z ∼ 0] AFE (X+
5 , X−5 , R+

5 ,), c/a = 1.26

Cc-C 10 96 125 [x, x, z] [x, x, z ∼ 0] { AFE(R+
5 ), O6-dist. (�−5 ), c/a = 1.25

Pnma-G 60 27 14 { [x,x, 0] [0, 0, z] AFE (X+
5 , R+

5 )

Pna21-G 47 { { [0, 0, z] [x,x, 0] [0, 0, z] AFE (X+
5 , X−5 )

R3c-G 0 0 0 [x,x,x] [x,x,x] { {

P4mm-C 82 140 152 [0, 0, z] { { c/a = 1.28

R3m-G 136 169 191 [x,x,x] { { {

Amm2-G 175 203 213 [x,x, 0] { { {

R�3c-G 272 230 209 { [x,x,x] { {

I4/mcm-G 430 372 344 { [0, 0, z] { {

Pm�3m-G 981 906 870 { { { {
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Table 3.2 also includes a brief description of the distortions from the cubic structure (relevant
distortion modes depicted in Fig. 3.6) that characterize each phase. The phases are labeled by
their space group and a letter indicating the C- or G-AFM order . The computed polarizations
are listed in table 3.3 as well as the lattice parameters corresponding to the 40-atom cell. The
detailed structure of the local minima are presented in table 3.4 with the structures sketched
in Fig. 3.7.

Our calculation revealed three phases that can be obtained with relatively small changes of
the pseudo-cubic perovskite cell and which favor the G-AFM order, R3c-G, Pnma-G and
Pna21-G.

• All the functionals correctly predicted the ferroelectric R3c phase with G-AFM order as
the ground state, with a polarization along the [111] cartesian direction and anti-phase
O6 rotations around the same axis (a−a−a−).

• With regards to the Pnma structure, it is paraelectric (PE) and characterized by a
di�erent O6 rotation pattern (a−a−c+), which involves anti-phase rotations around [110]
and in-phase around [001]. This is a very common phase among perovskites (like for
instance LaFeO3, LaCrO3,GdScO3 or DyMnO3). In the case of BFO's Pnma-G phase,
it can be described as AFE, due to the Bi cations showing large anti-polar displacements
in the (001) plane (characterized by the X+

5 mode) with an amplitude of about 0.3 �A (
such AFE distortion is also present in LaFeO3, which we will discuss in chapter 4 where
the La o�-centering is about 0.2 �A).

• The Pna21-G phase is also orthorhombic with a very similar structure to Pnma-G,
but including a FE distortion along the axis of the in-phase rotations. In comparison
with the Pnma-G within the 40-atom cell, the Pna21-G exhibit an elongation along
the polarization direction, typical of the coupling between strain and FE distortions in
perovskite oxides.

These phases are strongly AFM; a strong AFM exchange between neighboring Fe ions is
evidenced by the large energy di�erence between the ferromagnetic (FM) and the G-AFM
con�gurations, of more than 200 meV/f.u., in agreement with the high Neel temperature ob-
served in bulk BFO.

Besides the just mentioned phases, other phases involving a large tetragonal distortion of the
cell (stretched along the z direction) were also obtained. These phases exhibiting a large c/a
ratios (c/a ≥ 1.25) will be refered in following as supertetragonal or T phases. Within these
phases, the most favored magnetic order was the C-AFM (see Fig. 3.3) with a FM exchange
interaction along the stretched direction. Along this direction the magnetic interactions are
weaker, with an energy splitting about 5 meV/f.u. between the G- and C-AFM orders; a
relatively lower ordering temperature is thus expected.

41



Figure 3.7: Sketch of phases obteined as energy minima: In the (a)(d) we show C-AFM supertetrag-
onal phases; in the left (right) image the c axis is perpendicular (parallel) to the page. The (e) and
(f) correspond to the G-AFM phases; two pseudocubic axes are equivalent in (e), with the left (right)
�gure having the nonequivalent axis perpendicular (parallel) to the page; the three pseudocubic axis
are equivalent in (f). The atomic species can be identi�ed as in Fig. 3.3
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Table 3.3: Computed PBEsol+U lattice parameters (corresponding to the 40-atom cell of Fig. 3.3)
and polarization values for the six stable phases of BFO listed in Table 3.2. The polarization direction
is given in a Cartesian reference that corresponds almost exactly with the 40-atom cell vectors. For
comparison, we also include the result for the P4mm− C structure.

Lattice parameters Polarizations

Phases a (�A) b (�A) c (�A) α (deg) β (deg) γ (deg) Magnitude C/m2 Direction

Pc-C 7.500 7.500 9.489 88.1 88.1 89.7 1.20 (0.29, 0.29, 0.92)

Cm-C 7.380 7.608 9.533 86.6 90.0 90.0 1.50 (0.00, 0.30, 0.95)

Pna21-C 7.515 7.515 9.452 90.0 90.0 90.0 1.39 (0.00, 0.00, 1.00)

Cc-C 7.527 7.527 9.444 88.0 88.0 90.0 1.45 (0.23, 0.23, 0.94)

Pnma-G 7.830 7.830 7.770 90.0 90.0 87.6 0 {

R3c-G 7.893 7.893 7.893 89.5 89.5 89.5 0.91 (0.58, 0.58, 0.58)

P4mm-C 7.414 7.414 9.526 90.0 90.0 90.0 1.52 (0.00, 0.00, 1.00)

Three of the T phases are monoclinic (Cc-C, Cm-C, and Pc-C) and one is orthorhombic
(Pna21-C); all of them are ferroelectric with a very large polarization component along [001]
direction (see the computed polarizations in table 3.3):

• In the case of the Cc-C phase, it presents a polarization in the (1�10) plane, as well as
relatively small AFD distortions. This type of monoclinic phase is usually termed MA;
[86] a similar phase has been studied theoretically in connection with the supertetragonal
structures observed experimentally in BFO �lms. [7, 39, 90,94]

• The Pc-C phase is very similar to the Cc-C with respect to polar distortions (it MA as
well), but it has a di�erent pattern of O6 rotations.

• The Cm-C phase has a polarization in the (100) plane and a very distorted cell in the
xy plane (monoclinic MC in the notation of [86]).

• The Pna21-C phase is very similar to the Pna21-G structure discussed above, the stretch-
ing of the cell and development of polarization coinciding with the axis of the in-phase
rotations.

Our results reveal a complex energy landscape, specially around the supertetragonal struc-
tures. For instance, in the case of the Cm-C phase it can be obtained as a Pm-C structure
distorted by the M+

3 [0, y, 0] mode listed in table 3.2. When going from Pm-C saddle point
to the Cm-C minimum, the system lower its energy by about 1 meV/f.u. of energy. Sim-
ilarly, the reported Pc-C phase is connected with a higher-symmetry Cm-C structure via a
M+

3 [0, 0, z] distortion. With such a complex energy landscape, we propose the structures in ta-
ble 3.2 as a probably incomplete list of the rich phase diagram that this compound can present.
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It is important to mention that we have explicitly checked that the above phases are local min-
ima of the energy. We �nd this result very interesting, as some of them (e.g., the pairs formed
by Pnma-G and Pna21-G, or Cc-C and Pc-C) are very similar structurally. Furthermore we
want to stress the presence of monoclinic phases with such small primitive cells being energy
minima in the absence of any stabilizing, electric �eld or stress. This is interesting because
as long as we know, monoclinic phases in bulk perovskite oxides tend to be associated with
complex solid solutions or large unit cells.

Table 3.4: Energy minima structures of table 3.2 as obtained from PBEsol+U calculations. In the
case of the Pna21 −G phase, the PBE+U result is given (see text).

Pc-C a = 7.291 �A b = 5, 291 �A c = 5.315 �A

(unique axis b) α = γ = 90o β = 139.46o

Atom Wyck. x y z
Bi 2a 0.8692 0.2649 0.4158
Fe 2a 0.4372 0.2467 0.4361
O 2a 0.0471 0.7150 0.5161
O 2a 0.5781 0.5084 0.3342
O 2a 0.5609 0.0152 0.2979

Cm-C a = 9.534 �A b = 7.380 �A c = 3.804 �A

(unique axis b) α = γ = 90o β = 86.60o

Atom Wyck. x y z
Bi 2a 0.4948 0 0.9617
Bi 2a 0.9959 0 0.9418
Fe 2a 0.2810 0.2482 0.5184
O 2a 0.3590 0 0.5151
O 2a 0.8446 0 0.5261
O 4b 0.0864 0.2388 0.5689
O 4b 0.3449 0.2443 0.0153

Pna21-C a = 5.314 �A b = 5.314 �A c = 9.452 �A

α = β = γ = 90o

Atom Wyck. x y z
Bi 4a 0.5451 0.4799 0.4590
Fe 4a 0.0195 0.5127 0.2448
O 4a 0.0357 0.5476 0.0493
O 4a 0.2669 0.7524 0.3170
O 4a 0.2633 0.2491 0.3058

Continued on next page
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Table 3.4 – continued from previous page

Cc-C a = 10.604 �A b = 5.322 �A c = 5.323 �A

(unique axis b) α = γ = 90o β = 62.80o

Atom Wyck. x y z
Bi 4a 0.4829 0.7707 0.1102
Fe 4a 0.2689 0.2630 0.2799
O 4a 0.0727 0.2986 0.4448
O 4a 0.3290 0.9986 0.4671
O 4a 0.3405 0.5032 0.4593

Pnma-G a = 5.650 �A b = 7.770 �A c = 5.421 �A

α = β = γ = 90o

Atom Wyck. x y z
Bi 4c 0.0523 1/4 0.0100
Fe 4b 0 0 1/2
O 4a 0.9722 1/4 0.5946
O 8d 0.2998 0.0461 0.3037

R3c-G a = b = 5.559 �A c = 13.782 �A

α = β = 90o γ = 120o

Atom Wyck. x y z
Bi 6a 0 0 0
Fe 6a 0 0 0.7236
O 18b 0.3156 0.2294 0.1238

Pna21-G a = 5.702 �A b = 5.507 �A c = 8.036 �A

PBE+U α = β = γ = 90o

Atom Wyck. x y z
Bi 4a 0.4435 0.0016 0.2194
Fe 4a 0.5015 0.5007 0.4943
O 4a 0.2137 0.7074 0.0519
O 4a 0.1848 0.6876 0.4796
O 4a 0.5302 0.4171 0.2532

3.2.2 Energy differences between phases

The results obtained for the energy di�erences between phases have a disturbingly dependence
on the DFT functional. We can appreciate from table 3.2 that the relative stability of phases
changes dramatically from one functional to another. For example we can see that Pnma-G
is more stable than the T phases according to PBEsol+U and LDA+U, but less stable ac-
cording to PBE+U. The di�erences can be so strong that we can appreciate even the loss
of stability of one phase: Pna21-G is stable for PBE+U, but the relaxation of this structure
with PBEsol+U and LDA+U leads to the Pnma-G structure. With such strong variations
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in the results depending on the choice of functionals, we questioned ourseves which of the
above mentioned functionals gives the right relative stability. We acknowledge the accuracy
of PBEsol regarding the structural description of individual phases [69] but, does that apply
also to relative stability among di�erent phases?

Ideally one would resort to a higher level �rst-principles theory (i.e. Quantum Monte Carlo)
to solve this question; however, such calculations are well beyond the scope of this work. Re-
sorting to simpler schemes like the so-called hybrid functionals, which are generally considered
to be more accurate than the functionals here employed, is not justi�ed as they are not well
tested for quantifying relative stabilities in cases like this one2. Moreover, structural predic-
tions with hybrids have been shown to depend strongly on the underlying generalized gradient
approximation, [10] which invalidates them for the present purposes.

Nevertheless we were able to make a signi�cant comparison with experiment for the transition
between the R3c-G and Pnma-G phases by studying the transition driven by hydrostatic
pressure. It is known [40] that at room temperature under hydrostatic pressure the R3c−G
phase at 3.5 GPa transforms into a monoclinic C2/m structure with a large cell (made of
12 formula units), and that a second transition at 10 GPa leads to the Pnma-G phase as
shown by Haumont et al. [40]. These results suggest that the crossover in retalive stability
between the R3c-G and the Pnma occurs in the range of pressure 3.5{10 GPa. If this region
is extrapolated to T = 0 K ( temperature at which our simulations takes place), we �nd the
R3c-G and Pnma-G phases invert their relative stability at a pressure between 5 and 14 GPa.
We studied this transition between the R3c-G and Pnma-G phases under hydrostatic pres-
sure3. We obtained (see Fig. 3.8) transition pressures of about 2 GPa for LDA+U, 3 GPa for
PBEsol+U, and 5 GPa for PBE+U. From these results, the PBE+U seems the most accurate
describing the relative stabilities of the phases, and the LDA+U should be avoided for this
purposes.

Similarly, we can compare with experiment our predictions for the R3c-G to supertetragonal
transition induced by epitaxial strain. We computed the relative stabilities of these phases
as function of the epitaxial strain corresponding to a square substrate in the (001) plane, to
determine the lattice mismatch needed to stabilize the large-(c/a) structures. We constrained
the 40 atoms cell to remain square in the plane (001) and performed structural relaxations of
the remaining degrees of freedom for the range of strains shown in Fig. 3.9. We can appreciate
from Fig. 3.9, where the obtained strain values for the transitions were of −2.3%, −4.0%, and
−4.5% for PBE+U, PBEsol+U, and LDA+U, respectively. Experiments have shown that a
BFO-(001) thin �lm grown on SrTiO3 (about −1.5% mis�t strain) exhibit a monoclinic struc-
ture that is an epitaxially distorted version of the R3c phase, which we will call from now on
R phase (this phase is believed to be monoclinic MA with the Cc space group [18]). However,
when grown on LaAlO3 substrates (about −4.8% mis�t strain), a supertetragonal T phase
whose symmetry remains unclear, [7] or a coexistence of the R and T phases, [94] has been
observed. These experiments, thus, suggest a phase change around epitaxial strains of −4.8%.
Comparing with our results and assuming the supertetragonal phases obtained by us are good

2Such comparison was employed in section 1.2.2 for the determination of the most appropriate U value for
describing the d-electrons. Where we compared two di�erent magnetic orders within the same structure.

3Details on how the simulation of phase transitions under hydrostatic pressure are done, will be given in
chapter 5
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Figure 3.8: Energy versus volume curves for the most stable phases of BFO. The labels at the top
indicate the DFT functional used. The transition pressures mentioned in the text were obtained by
computing the slope of the common tangent of the R3c-G and Pnma-G curves which is obtained
from the condition ER3c − PcVR3c = EPnma − PcVPnma.

candidates to represent the experimentally realized T phase, it seems that the PBE+U curve
is the least reliable, with the LDA +U giving the more accurate description of the transition.
This result that is not surprising, if we recall the known failure of the PBE approximations,
which tend to render too large tetragonal distortions in ferroelectric perovskites. [10,92]

Thus, the PBE+U and LDA+U approximations seem to work for one case but fail for the
other. However, PBEsol+U appears as a reasonable compromise, describing with an accept-
able degree of accuracy both situations. We thus, chose PBEsol+U as the most accurate
DFT theory available to us. At any rate, noting that PBE+U performance is very good as
regards the relative stability of the R3c-G and Pnma-G phases, we believe that the PBE+U
prediction of the new ferroelectric phase Pna21-G deserves to be taken into account.

3.3 Discussion of results

The results here presented have direct implications for the theoretical models describing BFO's
structural phase transitions as well as for current experimental works, specially regarding the
epitaxially compressed �lms in which supertetragonal phases were discovered. In the following
we will discuss the conclusions that can be drawn from these results.
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Figure 3.9: Energy of various BFO phases as a function of the mis�t (epitaxial) strain corresponding
to a square (001)-oriented substrate. The labels at the top indicate the DFT functional used. Note
that the R3c-G phase reduces its symmetry to Cc-G in these epitaxial conditions.

3.3.1 Implications for experimental work

Novel phases obtained in thin films

Recent experimental works in BFO thin �lms by B�ea et al. [7] and Zeches et al. [94] have
shown that a novel phase of BFO is obtained when thin �lms are grown on strongly compres-
sive substrates like LaAlO3. This phase is characterized by a large c/a ∼ 1.23 ratio and an out
of plane polarization of Pz ∼ 0.8 C/m2. A number of �rst principles studies [39, 90, 94] have
identi�ed this phase with a monoclinic Cc structure from LDA+U calculations. The predicted
phase has the same c/a ratio but exhibits a polarization of Pz = 1.5 C/m2, resulting in a large
quantitative disagreement with the experimental result.

In comparison, we have obtained several phases displaying large c/a ratios (see table 3.2) that
are minima for the epitaxial strain corresponding to LaAlO3 substrate. These phases are very
close in energies, with di�erences below the 10 meV/f.u. (see Fig. 3.9). Therefore not only
the Cc−C phase, but also the Pc-C, Cm-C, and Pna21-C phases are energetically accessible
for the mentioned experimental conditions.

Because our T phases are an almost perfect epitaxial match with the LaAlO3 substrate, the
structural and polarization data in tables 3.3 and 3.4 can be directly compared with the ex-
perimental results. Let us note that the T phases obtained from our calculations present a
signi�cant di�erence in values of polarizations. While the Pc-C phase (with a c/a = 1.27)
presents Pz ∼ 1.1 C/m2, the Cm−C and Pna21-C phases (with c/a of 1.26 and 1.25, respec-
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tively) present Pz ∼ 1.4 C/m2. A result that suggests the Pc−C phase as the best candidate
to represent the T phase observed experimentally (disagreements between the experiment and
theory would be below the 40% instead of the 90% of the previously proposed phase).

However, we want to stress that, because our T phases are so close in energy, predicting which
one is realized experimentally is not a simple task, and may depend on subtle details not
considered in our simulations. For instance, two of these phases (Pc-C and Cm-C) present no
tilts (i.e., no rotations around the [100] and [010] axes) of the O6 octahedra, which may make
them preferable if the BFO �lms are grown on (001) substrates that clamp such distortions
strongly. If a rectangular substrate is used, the Cm-C might be favored, with a distorted cell
in the xy plane, etc.

Transitions in bulk BiFeO3

From the results presented here, we want to make some comments on the structural phase
transitions in bulk BFO. Even though our calculations were done at the limit of low tempera-
tures4, a few comments can be made on the basis of the large energy di�erences between some
of relevant phases. Our results support experiments [?,15,65] showing that BFO's ferroelectric
R3c phase transforms into an orthorhombic Pnma structure at T ∼ 1100 K, with the cubic
Pm�3m phase appearing at temperatures over the 1200 K. Looking at the energy di�erences
of table 3.2, more speci�cally at those corresponding to the PBEsol + U calculations, we
may appreciate that the R3c-G and Pnma-G minima are very close in energy and constitute
strong instabilities of the prototype Pm�3m structure, which lies about 900 meV/f.u. above
them. This results are consistent with the observation that BFO's cubic phase can exist only
at very high temperatures. Our results also rule out the possibility of the transition sequence
R3c→ I4/mcm→ Pm�3m obtained by Kornev et al. [56] from Monte Carlo simulations with
e�ective Hamiltonians derived from �rst principles calculations. We �nd the I4/mcm rela-
tively higher in energy; thus, it is unlikely for this phase to occur instead of Pnma.

As for the pressure driven transitions, our results support the experimental observation of the
R3c to Pnma transition with increasing hydrostatic pressure. Moreover the PBE+U predicted
the phase Pna21-G to be favored under compression, nearly becoming the ground state in the
pressures range in which the R3c−G and Pnma-G phases revert their relative stability.

3.3.2 Other observations

Phenomenological theories

Now we will brie
y discuss the connection of our results with phenomenological models like
the Landau-Devonshire theory. It is known that such theories provides a successful descrip-
tion of many FE perovskites such as BaTiO3. [20,22,48] Actually we may think of the Landau
models as the simplest and most powerful approach that could be used to model BFO's phase

4For a proper description of �nite temperature e�ects a full statistical calculations are required, as the
relative stability of phases may depend on e�ects such as, vibrational entropy and thermal expansion, plus the
fact that the transition temperatures may depend strongly on the competing instabilities (see for instance the
work by Zhong and Vanderbilt [96]).
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diagram and properties. However, constructing the Landau potential for BFO, and determin-
ing the temperature dependence of the parameters, is task of great complexity which as far as
we know have not been accomplished yet. Our results have direct implications regarding the
order of the expansion in such a Landau potential.

If we try to describe the phases of this material, including the ones obtained in this study,
the Landau potential has to be written in terms of the primary order parameters: a FE order
parameter associated with the three dimensional polarization vector P, and two AFD order
parameters describing the in-phase and anti-phase O6 octahedra rotations. We need also to
include in the expression the cross terms between the three order parameters, plus an addi-
tional term describing the epitaxial strain if considered. With all this ingredients it should
be possible to derive the complex energy landscape of BFO with the corresponding minima.
From our �ndings, we can say that this Landau theory should include high-order terms in the
expansion. In a seminal paper by Vanderbilt and Cohen [86], they have analyzed the order
of the Landau potential needed to describe low symmetry phases in FE perovskites. They
have showed that a Landau potential F(P ) expanded up to 4th order in P can only present
rhombohedral and tetragonal minima, for the inclusion of orthorhombic minima the expansion
needs to be up to 6th order, and to capture the monoclinic minima up to 8th. From our results
we observe the coexistence of two monoclinic di�erent types of minima (MA and MC), in order
to describe such behavior we need a theory of 10-th or 12-th order in the polarization. Such
a level of complexity is unheard of, especially among simple ABO3 compounds.

The role of bismuth

Let us discuss now the importance of the Bications in BFO's structural phase transitions. With
the electronic con�guration (6s26p0), Bi is known to form very anisotropic bonding which re-
sults in the presence of lone pairs at the nonbonding side. This e�ect is responsible for the Bi
o�-centering in BFO ground state R3c-G, and for the high polarization observed in this ma-
terial. We computed the electron localization function (ELF) to analyze the characteristics of
Bi's electronic structure and how it varies with the structural changes. The results are shown
in Fig. 3.10, where we may appreciate the occurrence of the lone pairs for the ground state
R3c-G and supertetragonal Cc-C structures, along with a very anisotropic bonding. So far
this is what we expected considering the large Bi o� centering and large polarization of these
phases. However if we focus on results for the orthorhombic Pnma-G phase, clear di�erences
arise, as in that case we do not observe any signature of the lone pair in the ELF..

We have thus observed how Bi exhibits an ability to form di�erent coordination complexes
with the neighboring oxygens. These chemical e�ects appear as the driving force for the
structural richness of BFO. Thus, the relative stability between BFO's low energy phases is
probably determined by subtle competitions between di�erent Bi-O bonding mechanism.
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Figure 3.10: Electronic-localization-function (ELF) maps computed for the R3c-G, Cc-C, and
Pnma-G phases. The �gures on the left show the isosurface for an ELF value of 0.3 superimposed
onto the atomic structure. (a) We can appreciate the anisotropic charge distribution for the R3c-G
phase, it can be seen the nonbonding localization domain on the opposite side of Bi bonding to the
three neighboring O atoms, which is the signature of a lone pair; (b) we found lone pair forms in
the supertetragonal Cc-C phase, as might have been expected from Bis large o�-centering and the
anisotropic spatial distribution of its neighboring oxygens; (c) for the Pnma-G phase, the Bi cations
have four neighboring oxygens that form a rather regular BiO4 tetrahedron (the corresponding ELF
plots show a very isotropic localization domain around Bi).

3.4 Summary

In this chapter we have presented the results of our �rst principles search for potentially sta-
ble phases of the multiferroic BiFeO3. We performed a systematic study of most relevant
distortions that are common to perovskite oxides (more speci�cally, ferroelectric, antiferro-
electric, and anti-ferrodistortive). We obtained plenty of distinct low-energy phases of the
compound and restricted our discussion to the most stable ones. We found that some of
the minima presented here display complex structural distortions which lower the symmetry
to MA and MC monoclinic space groups preserving a relatively small unit cell. This was a
very peculiar �nding because, as far as we know the monoclinic structures reported in per-
ovskite oxides are usually associated to solid solutions [e.g. PbZr1−xTixO3 (MA type) [64] and
PbZn1/3Nb2/3O3 − PbT iO3]; occur in thin �lms under epitaxial strain, or present relatively
large unit cells.

From these results, a number of important implications for current research on BFO were
discussed:

• First of all we have found that BFO can form plenty of stable and metastable structural
phases. This is consistent with recent experimental observations that show, a wide
range of possible structural transitions at low temperatures, [73] surface-speci�c atomic
structures [60] and strain-induced new phases. [40, 94] Also, our results can be useful
for the experimental works exploring the possibility of obtaining large functional e�ects
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(piezoelectric, magnetoelectric) in BFO's �lms grown on strongly compressive substrates.
We have shown that there are plenty of phases with large polarizations and c/a aspect
ratios that can be realized in such conditions; the transitions (e.g., driven by temperature
or electric �elds) between such phases could give raise to useful e�ects.

• Our results also have implications for theoretical studies of BFO. We carried out a careful
comparison of the various DFT schemes most commonly employed to study BFO and
related compounds, and discussed the existing di�culties in quantifying the relative
phase stability. Further, we considered the implications of our �ndings as regards the
e�ective modeling of structural phase transitions in BFO. Our analysis shows that BFO
is rather unusual, and requires very high-order Landau potentials to capture the diversity
of structural phases that it presents. A result that is revealing the unexpected complexity
of this material in comparison with the theories devised for materials such as BaTiO3

or PbZr1−xTixO3.

• Finally, we have shown quantitative evidence of the dominant role of Bi in BFO's struc-
tural instabilities. We have computed the ELF and observed how in some of the phases,
the lone pair mechanism usually assumed to accompany the Bi{O bonding, is absent.
Instead, for the FE phases displaying strong Bi o� centering, such a mechanism is present
along with a large polarization. Thus, Bi's ability to form diverse and competitive in
energy coordination complexes with oxygen, appears as one the reasons for the richness
of structural phases presenting this material.

With this we have quanti�ed, and analyzed in some detail the structural richness of BiFeO3,
the most relevant representative of the family of Bi-based transition-metal perovskite oxides.
We have thus revealed a variety of unusual e�ects with important implications for current
experimental and theoretical works on this material.
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Chapter 4

Bi1−xLaxFeO3 Solid Solutions

As discussed before one of the proposed strategies to enhance the magnetoelectric response of
bismuth ferrite (BiFeO3 or BFO) is by means of a solid solution Bi1−xRexFeO3. In the present
chapter we want study how this can be achieved with the Bi1−xLaxFeO3 (BLFO) solid solution.

Among the multiferroics, BFO is the best studied compound. [15] Bulk BFO presents magne-
toelectric (ME) multiferroic order at room temperature (Tr) with magnetic and ferroelectric
ordering temperatures TN = 643 K and TC ≈ 1100 K respectively, [15] which places this
material as prospective candidate for technological applications. However, one of the current
challenges is to enhance the ME coupling, particularly the linear e�ect. The linear ME e�ect
is accounted by the tensor α, which was introduced in see section 2.1.3.

This coupling is not allowed by symmetry in bulk BFO, due to the presence of an incommensu-
rate cycloid-like modulation of BFO's antiferromagenic (AFM) spin structure. The existence
of such spin cycloid cancels out any linear ME coupling between P and M. However, if the
spin cycloid is destroyed, something that has been proposed to occur by applying an epitaxial
strain or by partial chemical substitution of the cations [6, 72], the experiments and �rst-
principles simulations suggest that BFO's linear ME coupling is still relatively weak. [89,97]

4.1 Expected enhancement of the magnetoelectric re-

sponse in Bi1−xLaxFeO3

With respect to the strategies to enhance BFO's linear ME response, previous theoretical
works have shown that by replacing the magnetic cation with other magnetic species (which
might have stronger spin-orbit interactions) the obtained results are not very promising. [89].
These calculations showed that the response to an electric �eld E in this material is dominated
by the deformation of the Bi{O bonds. In the cases studied (with the transition metal atoms
Co, Cr, and Mn, as well as double perovskites including Fe-Cr and Mn-Ni), such response
remains relatively independent of the magnetic species. Further, it was found that the mag-
netic response to the E is an indirect e�ect that is dominated by the Bi's structural distortions.

Our strategy here is to enhance the response via the softening of the lattice. As explained
in section (2.3.3), this strategy is designed to enhance the normal response. The system is
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brought close to a phase transition (preferably of second order) where the lattice deforma-
tions are stronger in the presence of an applied �eld. Such a structural softness would result
in an enhancement of the lattice-mediated ME e�ect, [46] which we have shown (see sec-
tion 2.1.3) to essentially follow the behavior of the dielectric response of the material. [89].
For our purpose this softening will be induced by chemical doping of BFO with LaFeO3 (LFO).

The BFO solid solutions appear as the best suited candidates for such response enhancement.
Recent works have shown how the ME response of the material at Tr can be increased by more
than one order of magnitude in the (BiFeO3)1−x {(CaTiO3)x solid solution. [53]. In this work
,the authors attribute the enhancement mechanism to the structural softness, and thus to the
lattice-mediated response. Other interesting results are those by Kan et al., who have shown
that an enhanced dielectric response can be achieved in Bi1−xRexFeO3 solid solutions with
Re = Sm, Gd, Dy, etc. [52] Also these authors claim to have observed a seemingly universal
phase diagram, with the particularity that, at intermediate compositions, the solutions exhibit
an anomalous response to applied electric �elds that has been associated with an E-induced
paraelectric (PE) to FE transition.

The Bi1−xLaxFeO3 (BLFO) solid solutions have traditionally attracted interest from exper-
imentalists. It has been shown that the spin cycloid characterizing bulk BFO disappears
upon doping with La. Besides, the doping of BFO (a FE compound) with the LFO (a PE
material) is expected to result in a morphotropic phase transition, which should carry with
it an enhancement of the dielectric response and the ME coupling α. Also, in the context
of the previous mentioned results on Bi1−xRexFeO3 compounds, BLFO appears as the ideal
model system to investigate from �rst-principles the physics of these compounds, as it seems to
present the same sort of phase diagram and allows for simulations that do not su�er from the
potential complications associated with the treatment of rare-earth elements (i.e., f electrons).

In this chapter we will present our results for the simulations of BLFO. Our results suggest
that an enhancement of the functional responses occurs for compositions close to both the
BFO and LFO limits. Our calculations reveal the atomistic mechanisms responsible for the
improved properties. Furthermore we observe the possibility of E-induced PE-to-FE and FE-
to-FE transitions, due to the presence of several (meta)stable phases that are quasi-degenerate
in energy in a wide range of intermediate compositions.

4.2 Our Computational Approach

We followed the criteria described in section (1.2.2) for the election of the functional and the
calculation conditions. We thus chose the Generalized Gradient Approximation to Density
Functional Theory (more precisely, the so-called PBE scheme proposed by Perdew et al. [67]),
as implemented in the VASP package. [57,58] As shown previously in chapter 3, the choice of
functional has a signi�cant e�ect on the relative stability of the phases here investigated, and
the PBE scheme seems to be the best option to treat the rhombohedral and orthorhombic
structures that are relevant for BLFO. A Hubbard-U following Dudarev's scheme [23] with
U = 4 eV was used for a better treatment of irons 3d electrons 1.

1the value for the U was done carefully, according to the criteria explained in the subsection 1.2.2
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We used the projector augmented wave method to compute the electronic wave functions
(discussed in subsection 1.2.1), solving explicitly for the following electrons: Fe's 3p, 3d, and
4s; Bi's 5d, 6s, and 6p; La's 5s, 5p, 5d, and 6s; and O's 2s and 2p. The wave functions were
expanded in a plane wave basis set truncated at 500 eV, and a 3 × 3 × 3 �-centered k-point
grid was used for integrations within the Brillouin zone (BZ) corresponding to the 40-atom
cell of Fig 4.1.

Figure 4.1: Supercell used in our simulations. The arrows on the Fe ions indicate the G-AFM spin
arrangement that characterizes BLFO.

As mentioned before, we worked with the 40-atom cell depicted in Fig.4.1. This cell is com-
patible with the experimentally observed atomic structures of BFO (rhombohedral R3c space
group and 10-atom primitive cell; see Fig.4.2 and denoted \R phase" in the following) and
LFO (orthorhombic Pnma space group and 20-atom cell; see Fig.4.3 and denoted \O1 phase"
in the following). It is also compatible with the G-AFM spin arrangement that is common to
both phases, see Fig.4.1.

Figure 4.2: R3c phase that is the ground state of pure BFO. In essence, this structure reduces to
R�3c when the Bi/La and Fe cations locate at the centrosymmetric positions in the middle of their
�rst-neighboring oxygen shells.

Within this 40-atom cell, we were able study the structural distortions that are usually present
in the low symmetry phases of most perovskite oxides (as mentioned in the previous chapter
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Figure 4.3: Pnma structure that is the ground state of pure LFO.

3). For this reason we expect our simulations to be able to capture the composition-dependent
structural transitions of BLFO in a realistic way. However, recent experiments suggest that
BLFOs intermediate phases, may have a more complex structures that are not compatible
with our chosen cell. [85] This issue will be discussed in more detail later in this chapter, along
with the connection of our results with the experiments.

We applied a systematic search for possible phases that may be relevant for this material (fol-
lowing the same procedure that was mentioned in the previous chapter3). For the structural
search we considered the compounds at the limits for x = 0 (BFO) and x = 1 (LFO), and
the x = 1/2 composition with a rocksalt arrangement of the Bi/La cations. For the relevant
phases identi�ed, we studied all the compositions available within the 40-atom cell (steps of
La composition of �x = 1/8).

x 1/8 1/21/4 3/8 5/8 3/4 7/80 1

Figure 4.4: R3c related inequivalent Bi/La arrangements, we have represented only the 8 A-site
present in the 40-atom pseudocubic cell where the Bi/La cations substitution takes place. This 8-sites
form a cube that is showed in a stereographic representation in the �gure, indicating with a black
dot the dopant (La) position.

At intermediate values of x the e�ect of the substitutional disorder was studied by simulating
explicitly all inequivalent Bi/La arrangements (see Fig. 4.4). For all the BLFO con�gurations
investigated, the atomic structure was fully relaxed until residual forces and stresses become
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smaller than 0.01 eV/�A and about 1 kB, respectively. Selected cases were further considered
for the computation of their electric polarization and electromechanical response properties,
following the standard methods. [91].

4.3 Phase diagram and basic properties

The BLFO solid solution has been the studied experimentally previously by many authors.
[30,84,85,93] However there are many discrepancies and contradictory results about the struc-
tures involved in its phase diagram. With this we faced our �rst problem in the simulation of
this compound. Thus, we started our study assuming no prior knowledge and performing the
exhaustive search mentioned above.

We were able to identify up to three phases that we consider relevant for understanding the
phase diagram of BLFO: the respective ground state phases for both pure compounds R3c for
BFO (Fig.4.2) and Pnma for LFO (Fig.4.3), plus an structure that is ferroelectric and presents
the Pna21 space group (see Fig.4.5). This third phase, which we will denote by O2 in the
following, is very similar to LFO's orthorhombic groundstate, having the same unit cell and O6

rotation pattern (conformed by anti-phase rotations around the [110]pc pseudocubic direction
and in-phase rotations around [001]pc, denoted by a−a−c+ in Glazers notation [36]). Its main
di�erence is the ferroelectric distortion along the [001]pc direction, that render a relatively high
value of polarization (about 0.5C/m2 for the O2 structure with the BFO composition).

Figure 4.5: Pna21 structure; the arrow indicates the direction along which a polarization appears
driven by the displacement of the Bi/La sublattice.

We may appreciate the richness and complexity of structural features that this system may
have in Figure 4.6. From our relaxations for the phases studied, for each di�erent composi-
tion, we have obtained many di�erent con�gurations. Some of them with very low symmetry,
and exhibiting exotic structures like those with complex tilts (a combination of in-phase and
anti-phase tilts along certain direction. We observed that these complex rotations patterns
involving in-phase and anti-phase tilting tend to appear in Bi/La arrangements that are rel-
atively high in energy. As a general rule we �nd that the system prefers Bi/La arrangements
that respect the rocksalt order.
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Figure 4.6: Tilting amplitudes for all phases and Bi/La arrangements (with a \+" we mean an
in-phase tilt and the \-" anti-phase tilt). The composition ranges are delimited by dashed lines.
The structures are ordered energetically from lower/left to higher/right energy with the lower energy
structure over the line delimiting the region. The small tilts should be exactly zero in the ideal R3c,
Pnma and Pna21 structures, but become �nite (thus leading to complex tilting patterns) due to the
Bi/La disorder.

We will discuss the relative stability of these phases, making use of the formation energy. This
is a useful concept to interpret the energy di�erences of phases involved in solid solutions.
The formation energy is de�ned as the di�erence in energy of the actual phase and the linear
interpolation between the pure phases:

Efor = E − (1− x)EBFO − xELFO (4.1)

where E is the energy of a particular BLFO structure of composition x, and EBFO and ELFO
are the ground-state energies of the pure compounds. The results can be observed in �gure
4.7, note that at a given x several points may appear for one particular phase, each of them
corresponds to a di�erent Bi/La arrangement.

As can be appreciated from �gure 4.7, the R phase of bulk BFO is the most stable structure
for x . 0.3. At x ∼ 0.3, we observe a �rst order phase transition to one of the orthorhombic
phases2. For the composition range 0.3 . x . 0.65 our results indicate that both phases O1
or O2 are degenerated, with the energy di�erences between them smaller than the dispersion
associated to di�erent Bi/La orderings. For x & 0.65 we �nd that the O2 phase destabilizes:
from that point on, our structural relaxations starting from the O2 structure recover the O1

2In �gures 4.7, 4.8 and 4.9, the two dashed vertical lines mark respectively, the discontinuous transformation
between R and O phases (at x ∼ 0.3) and the loss of stability of the O2 structure (at x ∼ 0.65)
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Figure 4.7: Formation energy of the three phases investigated as a function of composition (see text).
For a given color and composition, each point in the �gure corresponds to a di�erent arrangement
of the Bi/La atoms. The magenta triangles correspond to the PbZrO3-like Pbam phase discussed in
Subsection 4.6.

solution for all Bi/La arrangements. We could not study details of the transition from O2 to
O1 with increasing La composition, as we are limited to x = 1/8 composition steps.

We have also plotted the volume per formula unit for all the structures studied. It can be
noticed from �gure 4.8, how the system undergoes a sudden volume contraction at x ∼ 0.3
with the �rst order phase transition from rhombohedral to orthorhombic. As regards the
intermediate region, our results have veri�ed that both O1 and O2 are local minima of the
energy for compositions x ≤ 5/8. The implications of the simultaneous stability for these two
phases and the possibilities it may open will be further discussed in detail.

Figure 4.8: Cell volume per 5-atom formula unit, for all phases and Bi/La arrangements.
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Table 4.1: Calculated lattice constant a, rhombohedral angle α, volume Vrh of the rhombohedral
cell, and Wycko� positions of BiFeO3 and LaFeO3 in the R phase

BiFeO3 R3c a = b = c = 5.699 �A

α = β = γ = 59.14o Vrh = 128.318 �A
3

Atom Wyck. x y z

Bi 2a 0.27831 0.27831 0.27831

Fe 2a 0.0000 0.0000 0.0000

O 6b 0.71522 0.16730 0.31509

LaFeO3 R3c a = b = c = 5.570 �A

α = β = γ = 60.89o Vrh = 124.646 �A
3

Atom Wyck. x y z

La 2a 1
4

1
4

1
4

Fe 2b 0.00000 0.00000 0.00000

O 6e 0.67894 0.82106 1
4

As we have seen in the phase diagram of BLFO we obtained two FE phases. It is then im-
portant to understand the behavior of the polarization as the composition is changed. We
computed the polarizationof R and O2 phases as a function of composition by considering
the lowest-energy Bi/La arrangement for each x value. These results are presented in �gure
4.9, where we can observe how the spontaneous polarization of BLFO's R phase decreases
as the La content increases, disappearing at x = 1. At this limit (LFO) the R phase is no
longer polar and the space group is R�3c instead of R3c. For the O2 phase the same trend is

Figure 4.9: Polarization of the R and O2 phases as a function of composition, computed for
representative Bi/La arrangements. The solid line is the result of the Landau model discussed in
Section 4.5.
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Table 4.2: Calculated lattice constant a, orthorhombic angle α, volume Vorth of the orthorhombic
cell, and Wycko� positions of BiFeO3 and LaFeO3 in the O1 phase

BiFeO3 Pnma a = 5.719 �A, b = 7.868 �A, c = 5.488 �A,

α = β = γ = 90o V = 246.967 �A
3

Atom Wyck. x y z

Bi 4c −0.05160 1
4 −0.00954

Fe 4b 0.0000 0.0000 1
2

O1 8d 0.80062 −0.04722 0.19554

O2 4c 0.52958 1
4 0.09677

LaFeO3 Pnma a = 5.656 �A, b = 7.929 �A, c = 5.592 �A,

α = β = γ = 90o V = 250.811 �A
3

Atom Wyck. x y z

La 4c −0.03825 1
4 −0.00791

Fe 4b 0.00000 0.00000 1
2

O1 8d 0.78808 −0.04136 0.21242

O2 4c 0.51867 1
4 0.07751

Table 4.3: Calculated lattice constant a, orthorhombic angle α, volume Vorth of the orthorhombic
cell, and Wycko� positions of BiFeO3 in the O2 phase

BiFeO3 Pna21 a = 5.702 �A, b = 5.507 �A, c = 8.036 �A,

α = β = γ = 90o V = 252.338 �A
3

Atom Wyck. x y z

Bi 4a 0.4435 0.0016 0.2194

Fe 4a 0.5015 0.5007 0.4943

O1 4a 0.2137 0.7074 0.0519

O2 4a 0.1848 0.6876 0.4796

O3 4a 0.5302 0.4171 0.2532
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observed, with the main di�erence that the polarization of this phase goes to zero at the limit
of stability of the phase ( x ∼ 5/8).

From a closer inspection of the relaxed structures for both cases, we found the origin of this be-
havior. Our results indicate that La3+ tends to prefer oxygen environments that are relatively
isotropic and highly-coordinated, in contrasts with the large o�-centering and anisotropic oxy-
gen environment that are usual for Bi3+. This strong o�-centering of Bi is typically associated
with the occurrence of a lone pair at the non-bonding side. For the case of Bi, its chemical
preference results in the occurrence of large local electric dipoles (which add up to form the
macroscopic polarization), while there is no such local dipole for the ideal La environments
(i.e., those observed for LFO's O1 ground state as well as for its R-type PE phase of R�3c
symmetry).

4.4 Enhancement of the responses

Let us now focus on the response properties of the pure compounds. We will see how the
response is enhanced upon substitution of a small fraction of the Bi/La cations. We identi�ed
two di�erent mechanism behind the enhancement of the dielectric response as we dope the
pure compounds BFO and LFO with La and Bi respectively. We will discuss them separately
starting from the most simple to the more complex.

4.4.1 Enhanced response in Bi-doped LaFeO3

We will begin our discussion with the enhancement of the response for the case of LFO and the
Bi doped LFO ( Bi:LFO). Our results shown that, when LFO is doped with Bi the dielectric
response of the system is enhanced considerably (an enhancement of the 43% for the lattice-
mediated part of the dielectric response was observed) see table (4.4). This enhancement is
signi�cant for the zz component, something that is related to the presence of a low energy
(soft) polar mode with polarization along that direction. Such a soft mode is dominated by
Bi's displacements, and is essentially identical to the distortion connecting the PE O1 struc-
ture with the FE O2 phase.

Table 4.4: Computed dielectric susceptibility tensors for LaFeO3, Bi1/8La7/8FeO3, and
Bi1/2La1/2FeO3 (with rocksalt ordered Bi/La cations) in the O1 phase (see text). Results given
in the Cartesian (pseudo-cubic) setting de�ned in Fig. 4.1

LaFeO3 Bi1/8La7/8FeO3 Bi1/2La1/2FeO3

χlatt

 27 0 0
0 27 0
0 0 27

  35 0 0
0 37 0
0 0 39

  81 −29 −82
−29 83 83
−82 83 1186



So far, these results are the expected ones according to our strategy. The responsible of the
enhancement is the softening of the lattice, which is re
ected in the presence of a Bi-dominated
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soft mode. We can observe in table 4.4 for rocksalt-ordered Bi1/2La1/2FeO3 where this soft-
mode becomes barely stable, that the calculated response increases dramatically.

To make this argument more quantitative, let us recall that the lattice-mediated part of the
dielectric response is given by (see Section 2.2)

χlattij =
1




∑
s

psipsj
κs

(4.2)

χ

Figure 4.10: Cumulative plot of the χlattzz component of the dielectric susceptibility tensor (see text)
for the the O1 phase of pure LaFeO3 and Bi1/8La7/8FeO3.

The existence of a soft mode implies the presence of an small eigenvalue κs, which may result
in a large dielectric response. If we plot the evolution of the sum 4.2, as we add mode contri-
butions, we obtain the cumulative plot shown in �gure 4.10. Here we can see the details of the
enhancement of χlattzz ; from the �gure we con�rm that, with the Bi doping, a soft mode (indi-
cated with an arrow) appears and how this soft-mode is the responsible for essentially all the
enhancement. We then con�rmed by inspection of the mode eigenvector that this soft-mode
is dominated by a Bi{O distortion along z.

4.4.2 Enhanced response in La-doped BiFeO3

The situation is di�erent in the case of BFO and La doped BFO (La:BFO). A signi�cant
isotropic enhancement of the response can be appreciated from Table 4.5 for the χlatt tensors
computed for the R phases of pure BFO and Bi7/8La1/8FeO3. The enhancement of the dielec-
tric response in this case is not dominated by a single mode that becomes soft. Instead, we
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appreciate that the number of modes that contribute to the dielectric response of La:BFO is
much larger than in BFO. This can be visualized in the cumulative plot of �gure 4.10.

Table 4.5: Computed dielectric susceptibility tensors for BiFeO3, and Bi7/8La1/8FeO3 in the R
phase (see text). Results given in the Cartesian (pseudo-cubic) setting de�ned in Fig. 4.1

BiFeO3 Bi7/8La1/8FeO3

χlatt

 31 −5 −5
−5 31 −5
−5 −5 31

  39 −7 −7
−7 39 −7
−7 −7 39



If we compare the plots in �gure 4.11 with those obtained for the previous case, the �rst
di�erence is the pro�le observed. In contrast with the stepwise behavior of the Bi:LFO cu-
mulative plot, for the La:BFO case we observe a quasi-continuous growth of the response in
the range between 2 eV/�A and 10 eV/�A. Hence, we can see that instead of a single soft-mode
driven enhancement, the response of La:BFO is the result of the appearance of many new
polar modes, each of them giving a small contribution to the response. This implies that the
presence of La in the BFO structure causes a loss of symmetry that allows that modes that
were not polar in the pure BFO R phase acquire an small polarity.

χ

Figure 4.11: Cumulative plot of the χlattzz component of the dielectric susceptibility tensor (see text)
for the the R phase of pure BiFeO3 and Bi7/8La1/8FeO3.

In order to demonstrate that these small polarity modes are the responsible for the enhance-
ment, we did a test. We �ltered the small polarity modes from the sum 4.2 (we removed those
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with |psi| < 2|e|, where |e| is the elemental charge) and plotted the resulting cumulative plot
for both pure BFO and doped La:BFO (see Fig. 4.11). In the case of pure BFO, the �ltered
response is almost identical to the result including all the modes; in contrast, the �ltered
response of Bi7/8La1/8FeO3 is signi�cantly smaller than the total one, and the La-induced en-
hancement disappears completely.

Figure 4.12: Atomic structure of the R [(a) and (b)] and O1 [(c) and (d)] phases of BFO [(a) and (c)]
and LFO [(b) and (d)], focusing on the coordination of the A-site cations Bi and La. Representative
Bi{O and La{O bond distances ( �A) are indicated. In panel (b), dotted lines indicate the three La{O
pairs corresponding to the Bi{O bonds of 2.33 �A shown in panel (a).

From these results it is natural to arrive to the questions: Why do we obtain so many new
polar modes by doping the BFO-R phase with La? and, why did we not �nd a similar e�ect
when substituting La by Bi in the LFO-O1 structure? The answer to this questions can be
found if we look closely to the structural e�ects of the di�erent doping. From the structural
results discussed previously in section 4.3, we know that the R phase transforms continuously
from a polar (R3c) to non-polar (R�3c) structure as we go from pure BFO to pure LFO. If
we compare the structural data collected in tables 4.1 and 4.2 we may appreciate that, while
for the R phase the BFO and LFO present marked di�erences (di�erent space-group with
the change in the symmetry mentioned before), for the O1 phase both compositions have a
very similar structure. Thus, the La dopants induce a strong symmetry breaking in BFO-R,
while the structural perturbation is relatively small when we dope LFO-O1 with Bi. This
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occurs due to the di�erences in the chemical activity of Bi and La. While Bi presents an
electronic con�guration (6s2p0) that allows for orbital rearrangements suitable to form very
di�erent bond complexes with neighboring oxygen atoms, La tends to place itself at a centro-
symmetric position (this can be notice in the bond distance for La and Bi for both phases R
and O1 in �gure 4.12). When placed in the BFO-R structure, the La dopant tries to adopt its
preferred con�guration, which involves a large local distortion and, thus, a strong symmetry
breaking; as a result, many modes that are not polar in the R phase of pure BFO acquire a
small non-zero polarities. Such modes respond to the applied �eld, and result in a signi�cantly
enhanced response.

4.5 Phenomenological modeling of the response

So far we have discussed the enhanced dielectric response, and the atomistic origin of it. Now
we would like to construct a Landau theory to model the observed e�ects. To our knowledge
very few works have treated the composition variable explicitly in the Landau potential [41,42],
even though such an extension of the theory would be of great help in predicting material prop-
erties of systems where the composition change result in phase transitions. We thus decided
to build a simple Landau theory that accounts for the composition e�ects in BLFO.

We write the Landau potential for a single polarization component P and the composition x
as

F (P, x, E) = F 0(x) +
1

2
AP 2 +

1

4
BP 4 +

1

2
γxP 2 − EP (4.3)

here, F 0(x) contains all constant or P -independent terms. The composition x for a disordered
solid solution, is a fully symmetric scalar variable and thus the lowest order symmetry invari-
ant term, entering F (P, x, E) in a form that is analogous to how temperature is treated.

As in the previous section, let us start with the simplest case. If we describe with the above
model the case of Bi-doped LFO, the ground state is the PE O1 phase. Therefore we can
assume A > 0 and neglect the 4th-order term B. We will also introduce a new convention,
instead of using x for the composition we de�ne y = 1− x as the compositional variable, with
y = 0 corresponding to pure LFO. Then the y dependent dielectric susceptibility is given by

χ =
1

A− γy
(4.4)

With this expression we can now �t the results for χzz given in table 4.4. Taking the values of
χzz for y = 0 (LFO) and y = 1/8 (Bi1/8La7/8FeO3), we can obtain the values of the parameters:
A = 4.178 × 109 Jm/C2 and γ = 1.468 × 109 Jm/C2. If we look at the Landau potential for
this case

F (P, y, E) = F 0(y) +
1

2
AP 2 − 1

2
γyP 2 − EP (4.5)

we may see that the positive value of γ implies a shallower potential well as the Bi content
increases, with a lower energy cost associated to displacement along the FE instability. Hence,
the application and interpretation of our Landau-like model is straightforward in this case.
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Note also that the computed parameters suggest that the PE phase would become unstable
for y = A/γ = 2.85 or, equivalently, x = −1.85; this negative (non-physical) x is compatible
with the fact that the O1 phase remains stable even in the limit of pure BFO.

For the case of La-doped BFO the analysis follows the same procedure, ut this time we have
to remember that we are dealing with the properties of a FE phase. Thus, we need to consider
all the terms in equation 4.3, with A < 0 and B > 0. With the equilibrium polarization given
by:

Peq =

√
−A+ γx

B
(4.6)

and the dielectric response by,

χ =
1

2(A+ γx)
(4.7)

Again, we �t the parameters to reproduce correctly (i) Peq for x = 0 and x = 1/8 (where
P is the modulus of the [111]pc-oriented polarization of the R phase) and (ii) the response
to a [111]pc-oriented electric �eld at x = 0.3 The values of the parameters are: A =
−1.818 × 109 Jm/C2, B = 2.247 × 109 Jm5/C4, and γ = 2.375 × 109 Jm/C2. The posi-
tive value of γ now has two consequences: as the La content is increased the Peq decreases
and χ increases. This can be discussed in terms of the lattice dynamics: as x increases the FE
instability becomes weaker and the potential well more shallow, making it less energetically
costly to act on the polarization of the material, which means that the dielectric response is
enhanced. These results were the ones we expected from the beginning; note that the idea of
weakening the FE distortions to increase the dielectric response has been explored already in
a number of works [35,47].

However, as mentioned in the previous section, the origin of the shallowness of the FE energy
minimum in La: BFO is not associated to a soft mode, but to the increased number of polar
modes caused by the doping. Hence, this is an example of how a complex atomistic mechanism
may be hidden by the Landau potential. For these complex materials, care must be taken
when interpreting these simpli�ed models, which nevertheless, have predicted the behavior of
the Peq in a wide range of compositions (see the solid line in �gure. 4.9).

With respect to our proposed Landau potential, we want to comment on some features. Our
�tted Landau potential, underestimates the strength of BFOs FE instability. For example,
our potential gives an energy di�erence of about 150meV/f.u. between BFO's ground state
and the P = 0 structure, while we know from �rst-principles studies that BFOs cubic PE
phase lies more than 900meV/f.u. above the R phase (see chapter 3 ). These di�erences
are not surprising, as we �tted our potential to reproduce the equilibrium polarization and
response properties of the FE phase, and not the energy di�erence with respect to the cubic
structure. Another observation is that our �tted potential reproduces very well the evlution of
the polarization of the R phase in a wide composition range (see Fig. 4.9). This is remarkable
taking into account that the potential parameters were �tted to reproduce results obtained in

3We checked that alternative �tting strategies, for example demanding that the response is reproduced
exactly for x = 0 and x = 1/8 and it give very similar results.
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the limit of pure BFO. Hence, this seems to be a new example of how Landau potentials are
often accurate well outside its expected range of applicability. This fact has been pointed out
by other authors, as regards the modelization of temperature-dependent properties, [26] and
our work suggests that the same is true in the case of a varying composition.

4.5.1 Electric field driven phase transitions

As we already mentioned our results show that at the intermediate compositions of BLFO the
system can be in any of the orthorhombic phases O1 or O2 as they are nearly degenerated.
This simultaneous stability of two very similar phases was unexpected, and thus we did a some
calculations to con�rm it and characterize it better. As we may appreciate in �gure 4.13, we
computed the interpolation path between the PE O1 phase and two O2 structures with the
polarization pointing in opposite directions. As we may see from �gure 4.13, depending on
the ordering and the composition, the relative stability of phases O1 and O2 can be switched.

Interpolation from Pnma to Pna21
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Figure 4.13: Energy variation along the path interpolated between the O1 and O2 phases for
di�erent compositions (x = 2/8 green, and x = 3/8 blue) and Bi/La arrangement. The distortion is
given in arbitrary units as for each case the amplitudes are very di�erent.

We want to discuss the possibilities that this multi-stability may open. We will chose a
representative case for our discussions, which is the x = 3/8 and a quasi-rocksalt Bi/La
arrangement [see Fig. 4.14(a)], where the PE phase is more stable than the FE phase. We
can �t the energy vs polarization data of Fig. 4.14(a) to a sixth-order Landau-like potential
of the form

F (Pz, Ez) = F 0 +
1

2
AP 2

z +
1

4
BP 4

z +
1

6
CP 6

z − EzPz (4.8)

Setting F0 = 0, we obtain A = 7.105 × 108 Jm/C2, B = −4.111 × 1010 Jm5/C4, and
C = 4.760×1011Jm9/C6, all expressed in SI units. (To compute these coe�cients, we assumed
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that the volume per elementary perovskite cell is approximately constant and equal to 62.2 �A
3

throughout the interpolation path.)

Figure 4.14: Panel (a): Energy variation along the path interpolating between the O1 and O2
phases obtained for a particular composition (x = 3/8) and Bi/La arrangement. We quantify the
distortion in units of polarization assuming that a linear relationship between its amplitude and Pz.
The points correspond to energies obtained from �rst-principles, and the line is a �t to a 6-th order
Landau-like potential (see text). Panel (b): Polarization as a function of electric �eld, as obtained
from the �tted Landau-like potential. Thicker lines mark the lowest-energy state. Dashed arrows
sketch the transitions between the PE and FE phases that would occur in a hysteresis cycle.

From equation 4.8 we can compute the relation between Pz and Ez and obtaine the ideal
polarization-switching cycle of �gure 4.14(b). (We call it ideal because we are assuming a
mono-domain switching, that occurs homogeneously throughout the whole material). The
stability regions of polarization states for the phases O1 and O2 were determined and are
indicated by thicker lines in Fig. 4.14. Note that if the system is at O2− and the electric �eld
is adiabatically switched to zero, the system probably will keep its structure in a metastable
state until it transforms to the PE O1. This evolution through the possible metastable states,
and the proposed hysteresis cycle, is sketched by the dashed lines.4

These results are very reminiscent of the experimental observations by Kan et al. in Bi1−xRxFeO3

compounds (see �gure 5 of Ref. [52]), and the �eld-driven PE-to-FE transition hypothesized
in that work. The authors propose that such �eld induced transitions are a universal feature
of the Bi1−xRxFeO3. Our calculations suggest, in addition to the PE-O1 to FE-R transition
proposed by Kan et al., the phases involved in such transitions for the BLFO might be the PE
O1 and FE O2 structures. Also, our results suggest that such an O1 to O2 transformation
might be possible in a rather wide composition range (0.3 . x . 0.65) in which both phases
are quasi-degenerated.

4The quantitative values in such a hysteresis loop are not to be taken very seriously, as (i) the Landau-limit
for polarization switching is clearly a crude approximation to reality and (ii) the parameters of the Landau
potential in equation (4.8) may vary signi�cantly depending on the speci�c composition and Bi/La arrangement
considered.
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4.6 Connection with experiment

BLFO had attracted the attention from the experimental community for a long time. However,
the data collected about the structural transitions and the phases involved at intermediate
compositions is often contradictory. Intermediate phases of orthorhombic, monoclinic, and
triclinic symmetries, [30,85,93] and even incommensurate structures [75], have been reported.
Interestingly, our results suggest that some of the phases proposed in the literature do not
occur in BLFO. Examples of that are the phases compatible with our choice of simulation
cell and which we did not found any local minima for such structures (the C222 and C2221

variants reported by Zalesskii et al., [93] or the Imma symmetry reported by Troyanchuk et
al. [84]).

We would like to made an special mention to the recent work by Troyanchuk et al. [85].
These authors did a careful study, paying great attention to the sample preparation process
for BLFO, and found a di�erent intermediate phase at x ∼ 0.18. This phase with a Pbam
space group (similar to that of the PE ground state of perovskite PbZrO3) presents a 40 atom
orthorhombic unit cell that is incompatible with the cell used in our simulations ( PbZrO3 cell
is usually described as a

√
2a × 2

√
2a × 2a repetition of the elemental perovskite unit, while

our simulation cell is a 2a× 2a× 2a repetition). We wanted to check how this newly reported
phase entered the picture obtained by our simulation of the BLFO phase diagram. Thus, we
did �rst principles calculations to determine the formation energy of this PbZrO3-like phase,
using the crystallographic data provided in Ref. [85] as starting point of our structural relax-
ations. We considered three di�erent compositions, the pure BFO and LFO limits and the
Bi1/2La1/2FeO3 with a rocksalt arrangement of the Bi and La atoms. The results are shown
in Figs. 4.7 and 4.8 as magenta triangles. We �nd that the phase proposed by Troyanchuk et
al. is metastable at all the compositions considered here5, having a higher formation energy
than the O1 structure for the selected compositions. Therefore our results suggest that this
phase is not likely to appear in BLFOs phase diagram.

Therefore, from our calculations we do not have evidence to support any of the many struc-
tures that have been reported experimentally for BLFO's phase diagram, except for the stable
phases of the pure compounds (R3c for BFO and Pnma for LFO). However, we acknowledge
the fact that our simulations do not include thermal e�ects and are restricted to the investiga-
tion of local energy minima. For real materials, many factors that are beyond the scope of our
calculations may contribute to the stabilization of structural phases that are not minimum of
the energy. Nevertheless, we want to remark that, in the case of pure BFO, all the structures
appearing in its phase diagram, seem to be local energy minima, (as discussed in Chapter 3).
Hence, it is somewhat surprising that we were not able to validate with our simulations any
of the intermediate phases reported experimentally for BLFO.

Our results suggest a possible explanation for the diversity of structural phases found in this
compound. The positive formation energies shown in �gure 4.7 indicate that there is an energy
cost associated with the stabilization of the BLFO solid solution; in other words, at all compo-
sitions the most thermodynamically stable con�guration would involve a phase separation in
BFO-R and LFO-O1. The predicted instability of BLFOs solid-solved phase clearly indicates,

5We have not checked the structural stability of the Pbam phase, and in principle, it might be a saddle
point of the energy. Hence, their metastability is not con�rmed.
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that it may be a hard task to prepare samples in which the Bi and La atoms are well disor-
dered. In fact, in many of the crystallographic works it was necessary to assume some sort of
phase coexistence to model the structural data at intermediate compositions. Troyanchuk et
al. [85] have described how the sample-preparation procedure can critically a�ect the results.
All these facts suggest that most of the BLFO phases reported in the literature do probably
occur in samples prepared in some speci�c conditions; yet, it is not so clear whether they
may be stable phases of an ideal solid solution with Bi/La disorder. Let us also note that the
di�culties to identify BLFO's most stable phase pertain to compositions in the 0.1 . x . 0.5
range. Again, this seems consistent with our calculations, as that is the region in which (i)
we �nd the crossover from the R phase to the orthorhombic structures O1 and O2, and (ii)
according to our results BLFO can adopt di�erent orthorhombic conformations that are es-
sentially degenerate in energy.

4.7 Summary

We used �rst-principles methods to study the Bi1−xLaxFeO3 (BLFO) solid solution formed by
the multiferroic BiFeO3 (BFO) and the paraelectric antiferromagnet LaFeO3 (LFO). Investi-
gating BLFO's phase transitions as a function of the La content x, we �nd that at x ∼ 0.3
BLFO transforms discontinuously from BFOs rhombohedral ferroelectric phase into an or-
thorhombic structure. The nature of such an orthorhombic phase could not be fully deter-
mined from the simulations, as we obtained two di�erent states { namely, ferroelectric Pna21

and paraelectric Pnma{ that are essentially as stable in the 0.3 . x . 0.65 composition
range. We also found that the paraelectric Pnma phase prevails for x & 0.65. The phase
coexistence at intermediate x values suggests some appealing possibilities; for example, our
results indicate that an electric �eld might be used to induce paraelectric-to-ferroelectric phase
transformations in this compound. We have also discussed the connection between our results
and published crystallographic studies of BLFO solid solutions. Our simulations do not sup-
port any of the many di�erent phases that have been experimentally proposed to occur at
intermediate compositions. We have suggested some explanations for the experimental di�-
culties that hamper BLFO's structural characterization.

Additionally, we have shown that the chemical substitution of Bi/La atoms in the pure com-
pounds leads to signi�cantly improved response properties. (Our calculations were restricted
to the dielectric susceptibility, and we argue that the obtained enhancement should be ob-
served in the magnetoelectric response as well.) We have analyzed in detail the diverse origins
of the increased responses,

• In the case of Bi-doped LFO, the enhancement is associated with an incipient ferroelectric
instability involving Bi{O distortions.

• In contrast, in La-doped BFO the improvement relies on the strong structural relaxation
and local symmetry breaking caused by the La atoms, which result in the appearance
of many new polar modes that react to an applied electric �eld.

We have shown that both e�ects can be captured by a phenomenological theory in which the
composition x is explicitly treated in a Landau-like potential.
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In conclusion, our �rst-principles results for the BLFO multiferroic solid solution, suggest that
these compounds present many appealing features, ranging from improved response proper-
ties to the possibility of inducing structural phase transitions by application of electric �elds.
Further, we �nd that several BLFO phases are quasi-degenerate in energy in a wide composi-
tion range; thus, our calculations suggest that BLFO undergoes a very unusual morphotropic
transformation that deserves a detailed experimental investigation. Finally, some of our results
are strongly reminiscent of phenomena that has been experimentally found in similar solid so-
lutions, as for example the Bi1−xRxFeO3 compounds where R is a rare-earth lanthanide. Such
similarities suggest that, BLFO may be a convenient model system, representative of this
larger family of materials.
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Chapter 5

Spin transitions in BiFeO3 under
pressure

The complexity of BiFeO3 is not only structural as already mentioned. This compound may
exhibit a wide variety of interesting phenomena, like for instance the manifold transition
observed by Gavriliuk et al. [31{34] under hydrostatic pressure. These authors found that, at
room temperature and in the 40-50 GPa range BFO undergoes a transition that involves a
structural change, loss of magnetic order, and the metallization (see �gure 5.1). These authors
proposed a number of possible causes behind these transformations,

• An insulator-to-metal transition at which the 3d electrons of the Fe3+ ions are delocalized
and form a conduction band. Then, the associated magnetic transition would be from
an antiferromagnetic to a paramagnetic metallic state.

• A transition of the iron ions from a high-spin to a low-spin state. The iron ions in
BiFeO3 are in the high-spin state with S = 5/2 at normal pressure. The low-spin state
of Fe3+ ions involves a non-zero magnetic moment as well S = 1/2 , but the Neel point
TN with this con�guration can be expected to be much lower than that of materials with
Fe3+ ions in the high-spin state. In this case, the observed transition would be from a
high-spin antiferromagnetic to the low-spin paramagnetic state. Further, it is assumed
that the gap would close in the LS con�guration.

The experimentalists at that point were not sure about the nature of the mechanism behind
the transitions. When the experimental work came out, we wanted to understand the basics
of the correlation between the structural, electronic, and magnetic properties of BiFeO3 and
clarify which scenario was the responsible for the simultaneous change of properties at the
transition.This was in fact the �rst time our group worked on BFO.

5.1 Our approach

Model system considered

The goal of this project was to simulate the behavior of BFO under hydrostatic pressure,
and capture the e�ect of very high pressures in the electronic structure. For that purpose,
we employed a 10-atom simulation cell corresponding to the R3c phase of BFO's ground
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c)b)

Figure 5.1: Figures taken from (citaaa 8,9); in a) the p-V curves are plotted, as can be seen there is
a discontinous change in the curve corresponding to a structural transition; b) the magnetic hyper�ne
�eld drops to 0 at the transition, this e�ect occurs due to the transition of the BiFeO3 crystal to a
nonmagnetic state, thus, demonstrating the collapse of the localized magnetic moment of Fe; c) we
may appreciate the closure of the electronic gap at the transition region, indicator of an insulator to
metal transition.

state (see �gure 5.2). Within this unit cell, we were able to study the ferromagnetic and
G-antiferromagnetic orders, and also describe the di�erent spin con�gurations (i.e. high/low
spin and the possible mixture of both con�gurations) of Fe3+ 3d electrons.

In view of recent experimental evidences, we actually expect the HS-LS transition to take
place whithin the Pnma phase which becomes stable at 11 GPa [38] (see sketch of the phase
diagram in Fig. 3.1). However, the spin crossover transition can be expected to involve very
local changes in the FeO6 groups, which we expect to be very similar in the R3c and Pnma
structures. Thus, our simpli�ed study of the pressure e�ects on the 10 atom cell, should ac-
count for the main e�ects. Our good agreement with the experimental observations indicates
that this is actually the case.

Figure 5.2: Representation of the 10 atom simulation cell used in our calculations with the R3c
symmetry corresponding to the BFO ground state

The e�ects studied here occur in a regime of very high pressures. We considered the inter-
actions with the aid of the local-density approximation to DFT. We included the so-called
LDA + U correction of Dudarev et al. [?] for a better treatment of Fe's 3d electrons, as
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implemented in the Vienna ab-initio simulation package (VASP). Our choice of LDA was con-
ditioned by two facts: (1)-the GGA's available at the time were known to overestimate the
ferroelectric distortions in perovskite oxides with lone pairs (e.g., PbTiO3); (2)-the frequent
use of LDA in most prior theoretical works on BFO. Thus, we used a rather simple approach
to describe the physics of the system, which resulted to be enough to capture the qualitative
description of the phenomena that we were interested in.

For this work, we compared the energies of di�erent electronic phases, (insulating vs. metal-
lic). in which the Fe3+ ions display di�erent spin states. Describing this scenarios accurately
constitutes a challenge for any ab-initio approach; particularly, the choice of U to enter the
LDA+U scheme should be carried with caution. For this reason, we repeated all our calcu-
lations for the values 3 and 4 eV of the U parameter, and thus con�rm that our qualitative
conclusions are reliable. Unless otherwise indicated, the reported results are for U = 3 eV.

Computational details

The details of this calculations are essentially as those discussed in chapter 1, except for the
following di�erences. We used a �-centered 7× 7× 7 k-point grid for integrations in the Bril-
louin zone corresponding to the unit cell in Fig. 5.2, which is higher than the one chosen in
chapter 1; this choice is justi�ed by the fact that we want to study also metallic solutions, and
a denser sampling of the Brillouin zone is needed. Also, the electronic wave functions were
described with a plane-waves basis truncated at 400 eV. These calculation conditions were
checked to render converged results for the quantities of interest, following a similar scheme
as the one discussed in chapter 1.

Therefore, we ran a set of structural relaxations for a variety of atomic, electronic, and mag-
netic con�gurations. This allowed us to identify a large number of possible phases and de-
termine their relative stability and properties. The structural relaxations were started from
con�gurations in which we has broken the symmetry in order to allow the system be able to
�nd the lowest energy phase. With the appropriate choice of the starting spin state in the
calculations, we were able to obtain di�erent electronic con�gurations e.g., high-spin (HS) and
low-spin (LS) states of the Fe3+ cations, plus a phase with no local magnetic moments and
metallic character that we will refer to as no-spin state (NS). For this purpose, we started
the calculations from a spin polarized state, specifying the initial local magnetic moment on
each atom (for Fe3+, we used 5 unpaired electrons in the HS con�guration and 1 unpaired
electron for the LS). We neglected the incommensurate spin cycloid in BFO, for the inclusion
of this feature would requires a considerably bigger simulation cell that we can not a�ord.
Consequently we only considered collinear spin con�gurations.

5.2 Results for the structural and spin transitions

In order to extract the equation of state of the system, we performed structural relaxations at
�xed volumes within the range of volumes of interest. As result we obtained the equation of
state for the most relevant phases; i.e., the three phases that we found to be stable at some
pressure range are:

75



Figure 5.3: Computed equations of state for the most relevant phases obtained in this study.

• the R3c phase of the ground state, with G-antiferromagnetism and the Fe3+ 3d electrons
in a high-spin con�guration, (HS) phase;

• a phase with R�3c symmetry and a low-spin con�guration of the Fe3+ 3d electrons, (LS)
phase;

• and a third phase of R3c symmetry with a null magnetic moment and a metallic behavior,
(NS) phase.

which can be seen in �gure 5.3.

We �tted our results to obtain the equation of state E(V ), from which we have derived the
pressure dependence on volume p(V ) = −∂E/∂V ; by inverting this relationship we also get
V (p). A better description of the phases stability can be obtained if, instead of plotting the
equation of state, we draw the enthalpy of the system:

H(p) = E(V (p)) + pV (p) (5.1)

We computed the enthalpy H for all the points obtained from our calculations, and drew the
enthalpy di�erences for the relevant phases with respect to the HS phase. The result can be
seen in �gure 5.4 (a), where we can appreciate that for up to 36 GPa the most stable phase
found was the HS phase, over 36 GPa we observed the LS phase which remained stable up to
72 GPa where our calculations point to the NS phase.

We have plotted the dependence on pressure of the key properties of the material in �gure 5.4.
Here we can observe clearly the simultaneous changes associated with the �rst order transition
between the HS and LS phases, namely, the drop in volume (panel b), and the change in the
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Figure 5.4: Variation of the fundamental properties of the system with respect to pressure. We
show for for the relevant phases (HS, LS, and NS): panel a) the variation of the enthalpy ; panel
b) Volume vs pressure curves; panel c) Change of local magnetic moments with pressure; panel d)
Electronic gap of the material; and in panels from e) to i)we have plotted the dependence on pressure
of the structural parameters de�ning the phases of interest. Dashed lines indicate the transition
pressures.
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Fe magnetic moments (panel c). It is interesting to note how the magnetic moments are nearly
pressures independent within both the HS and LS phases.

We can express the obtained phases as the ideal cubic perovskite structure plus the amplitude
of primary distortions (see table 5.1). The structural induced changes may be observed from
�gure 5.4, where we present the amplitude of the primary distortions de�ning the structural
phases (see table 5.1). These primary distortions can be classi�ed according to their symmetry
as:

• polar displacements associated with irreducible representation �−4 (symmetry labels cor-
respond to the BZ of the �ve-atom cubic cell).

• antiferrodistortive (AFD) patterns corresponding to anti-phase (R+
4 ) rotations of the O6

octahedra around the [111] direction of the cubic structure.

For all the phases, we found oxygen octahedra rotations quanti�ed by the R+
4 -type parameter

z, de�ned in table 5.1. Our calculations show that such rotations remain relatively unchanged
under compression. However, as regards the FE distortions described by the �−4 -type parame-
ters w, x, and y, they are always present for the HS phase, but are completely absent in the LS
phase. At very high pressures, in the NS phase, distortions breaking the inversion symmetry
appear and increase with further compression.

Table 5.1: Structural parametrization for a uni�ed description of all the phases here discussed.
Listed are the occupied Wycko� orbits according to the rhombohedral setting of the R3c space
group. The locations of the representative atoms are given as the sum of a reference position plus
�-type (corresponding to zone center distortions) or FE distortion and R-type (corresponding to zone
boundary distortions) or antiferrodistortive distortions. The representative Bi is chosen to be at the
origin.Whenever both �- and R-type distortions occur, we get the R3c space group; when only �-type
(R-type) distortions exist, we obtain R3m (R�3c) ; and when both �- and R-type displacements are
null, we recover the ideal Pm�3m perovskite structure. In all cases, the 10-atom unit cell is fully
speci�ed by a single lattice parameter a = b = c and the rhombohedral angle α = β = γ.

Distortions

Atom Wyck. Reference pos. FE dist. (�−4 )-type AFD dist. (R)-type

Bi 2a (0, 0, 0) +(0, 0, 0) {

Fe 2a (1/4, 1/4, 1/4) +(w,w,w) {

O 6b (1/2, 0, 1/2) +(x, y, x) +(z, 0,−z)

The observed FE distortion has its origin in Bi's stereochemical activity. Basically, what we
observed in the HS phase is that the Bi atoms move along the [111] direction to approach the
three O atoms forming a face of the neighboring oxygen octahedron. In the LS phase, there
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is a change in Bi coordination: we �nd BiO3 planar groups in which the three oxygen atoms
binding with the Bi atom belong to three di�erent O6 octahedra. In the NS phase, these
planar groups are also present, but coexist with an small distortion that breaks the center of
inversion (see �gure 5.5).

Figure 5.5: Structural details of Bi activity, we may appreciate the changes in Bi coordination as
the distance between Bi and the neighboring oxygens change with pressure.

As discussed in previous chapter Bi's coordination is the main factor controlling the occur-
rence of the FE distortion in BFO. The same is true in the system under compression.

So far we have seen that our calculations show that, as BFO is pressurized, two main changes
are induced: the change in Bi coordination (with the subsequent loss of FE distortion) and
the change in the Fe3+ electron's con�guration (from high to low spin). It is important to note
that, even if not competing in energy, we obtained many metastable phases exhibiting di�erent
combinations of the above mentioned features. For instance, besides the observed phase with
a LS con�guration, we found solutions with intermediate spin (two electrons paired and three
unpaired electrons, in each Fe atom) and a mixed spin phase (one iron in the HS and the
other one in the LS con�guration in the 10-atom cell). Such mixed spin phase was found to be
stable in a very narrow range of pressure (35 to 37 GPa). This result, which we �nd interesting
and exotic, will be kept outside the discussion, as the stability range is too small to be relevant.

The computed HS-LS transition pressure is about 36 GPa, in a reasonable agreement with
the experimentally observed one at 40-50 GPa. The predicted presence of many competing
metastable phases, being consistent with the di�use transition reported by the experiments.
Further, our results for p(V ) in �gure 5.6 are in good qualitative agreement with the experi-
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mental data.

We have computed the bulk modulus (B0) of the HS and LS phases, and �nd them to be
markedly di�erent. The computed bulk modulus is very sensitive to pressure, increasing
strongly with compression. For the HS phase we obtained B0 = 130 − 300 GPa within its
stability range (from 0 to 36 GPa), and B0 = 400− 500 GPa for the LS phase (for pressures
between 36 and 72 GPa). The HS phase is signi�cantly softer than the LS near the transi-
tion point, as observed experimentally Gavriliuk et al. [34] give a single value for the bulk
modulus of their low-pressure phase (corresponding to the HS phase) of 76 GPa, and for the
high-pressure phase (corresponding to the LS phase) they report 290 GPa, which makes a
comparison di�cult. Moreover, from the data in their work we deduce B0 = 180 GPa for the
low-pressure (HS) phase, a value much greater than the one of 76 GPa given by the authors
themselves.

o

Figure 5.6: In this �gure we can compare the results obtained by the experiment and those obtained
by us for the Volume vs. Pressure curves. In the panel a) the results reported by Gavriliuk et al.;
panel b) show our results, where we ca appreciate a close agreement with the experiment (dash-lines
sign the stable phase).

Finally, the pressure dependence of the enthalpy di�erence between the LS and HS phases was
experimentally determined to be 12 meV/GPa at the transition region, and we obtained about
15 meV/GPa. All this evidence supports the obtained LS phase, is a good representation of
the one involved in the experiments done by Gavriliuk et al.

5.3 Metallization at the HS-LS transition

The computed HS phase, has a G-AFM spin order and is insulating, as expected in accordance
with the phase corresponding to BFO groundstate. The energy di�erences between G-AFM
and FM orders for the HS con�guration rises with pressure, from 0.27 eV/f.u. at 0 GPa to
about 0.65 eV/f.u. at 36 GPa. These observations are compatible with the experimentally
reported high ordering temperature TNeel = 643 K at 0 GPa, and its increase with pressure.
We may appreciate from �gure 5.4 d) that the HS phase exhibits a relatively large energy
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gap, which decreases under pressure. Experimentally, the gap was observed to decrease from
2.0 eV to 1.5 eV in the range from 0 to 40 GPa, with a variation of ∼ 12.5 meV/GPa; [34]
our predicted gap changes from 1.7 to 1.2 eV between 0 and 36 GPa, with a variation of 13.9
meV/GPa; thus, our results are in a reasonable agreement with the experiments.

However, if we look at the LS phase, our results reveal a more complex scenario. For the LS
phase, throughout its stability range, the G-AFM and FM orders are quasi degenerate with a
di�erence in energy of less than 0.03 eV/f.u. Moreover, their relative stability is switched when
the pressure is increased. Thus, for the LS phase, the magnetic ordering temperature will be
at least an order of magnitude smaller than that of the HS phase. These results suggest that
if we heat the LS phase up to room temperature, it will appear in a disordered paramagnetic
state.

Figure 5.7: Density of states of the LS phase for the FM and G-AFM con�gurations of the LS
phase of BFO at 50 GPa. We observe a half metallic solution for FM con�guration.

We also found that, for the LS phase, the electronic structure depends strongly on the spin
arrangement (see Fig. 5.7). While the G-AFM order presents a gap of around 0.8 eV, for
the FM order the system is half-metallic. Thus, at room temperature a metallic behavior
is expected, as the thermal averaged equilibrium state should present a signi�cant electronic
density of states at the Fermi level.

Therefore, the BFO's pressure driven HS to LS phase transition is accompanied by the si-
multaneous changes in structure, spin con�guration, magnetic order, and insulator to metal
transformations.
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5.4 Implications of our results

Our simulations are essentially in agreement with the mechanism proposed by Gavriliuk et
al. [34] to explain the observed pressure driven transitions. However, it is important to remark
that, while our calculations were done for the system at 0 K, the experiments were performed
at Troom.

Computing the temperature vs. pressure (T − p) phase diagram ab-initio is beyond the scope
of our work. We can nevertheless estimate the temperature stability range of the phases by
calculating the enthalpy di�erences with respect to the cubic phase. Such a quantity should
be roughly proportional to the temperature at which the transition to the cubic phase occurs.
For 0 GPa, we obtained a di�erence of 0.88 eV/f.u. between the R3c HS phase and the low-
est energy cubic phase, which displays HS con�guration. This quantity is relatively large, as
expected for a transition that occurs at very high temperatures (∼ 1000 K). The di�erence
in enthalpies decreases moderately when the pressure is increased. For instance, at 50 GPa
the di�erence between the LS phase and the lowest energy cubic phase (which presents LS
con�guration at these pressures), is about 0.60 eV/f.u., a value that would correspond ap-
proximately to a transition temperature in the 700-800 K range. This results supports our LS
phase as the one observed experimentally by Gavriliuk et al. at room temperature.

We want to comment on the possible implications of our study for the T − p phase diagram of
BFO. Catalan et al. [15] have obtained, for the high temperature regime, a cubic phase with
metallic character. The same authors have proposed this cubic phase as the equilibrium state
corresponding to the high pressure and low temperatures for this material. Our calculations,
even if restricted to the simple 10-atom simulation cell, included as a possibility the ideal
cubic perovskite. However, for pressures in a range up to 100 GPa, we were not able to �nd
this phase as the most stable one. For all the range of pressure explored in this study, we
always observed some distortions lowering the symmetry, like the O6 octahedra tilting, and
the ferroelectric distortion associated to Bi's coordination. This is consistent with the obser-
vations by Gavriliuk et al. [34] and Haumont et al. [40] who reported a non-cubic structure at
high pressures and room temperature. Also in a very recent paper by Guennou et al. have
reported a careful study of BFO under hydrostatic pressure and have shown that indeed the
high pressure phase is not cubic. [38]

Let us make a �nal comment on our computational approach and the quantitative results
obtained. As already mentioned, our simulations have employed the LDA+U functional. The
choice of the U, and the way to deal with the d-electrons under very high pressures, is not an
obvious one. For that reason, we repeated all our calculations with two values for the U de-
scribing the Fe3 3d electrons, U = 3 and 4 eV. Our qualitative results were identical, the only
di�erence been at the quantitative level where we observed a positive shift of the transition
pressures as we increased the value of U. For instance, the computed pressure for the HS-LS
transition for U = 3 eV was of 36 GPa, while for U = 4 eV, occurs at 42 GPa. Our results for
the LS-NS transition are less obvious: the transition pressure in this case depends strongly
on the choice of U (it is shifted by almost a factor 2, obtaining 130 GPa for U = 4 eV). thus,
it is clear that we do not have a quantitative predictive theory at very high pressures.Yet,
given the drastic simpli�cations made in this work as regards the simulated system (i.e. we
restricted to a 10-atom unit cell), we thought it was not reasonable to insist further in the
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quantitative accuracy of the LDA+U scheme employed.

5.5 Summary

In this work we have identi�ed the main structural, electronic, and magnetic e�ects that
occur in BiFeO3 under compression and how they are connected. More precisely, we found
that under hydrostatic pressure the system:

• su�ers a change in the coordination of the Bi atoms, which tend to form BiO3 planar
groups

• undergoes a HS-LS crossover transition for Fe3+ at pressures around 40 GPa

• the magnetic interactions are relatively weak in the LS phase, which should result in a
relatively low magnetic ordering temperature

• the electronic structure of the LS phase strongly depends on the magnetic order, which
suggests that, at room-temperature the paramagnetic LS phase will be metallic.

These are drastic transformations, which involve relatively large energy scales. Thus, these
predictions seem reliable, in spite of the approximations made for our theoretical study. Our
predictions for the HS-LS transition are thus consistent with the manifold transformation ob-
served experimentally by Gavriliuk et al., [34] and provides an explanation for it.

Let us conclude by saying that our investigations were by no means exhaustive and many
issues remain open. For example, our results strongly suggest that BFO will not present a
cubic phase Pm�3m at high pressures; however, we cannot deduce from our calculations the
space group of the high-pressure phases. There are many possibilities involving unit cells
larger than the 10-atom one used in our simulations, which were considered in this work.
Similarly, the possibility of complex magnetic orders occurring at high pressures has not been
explored. Finally, for more accurate quantitative calculations of the transition pressures, and
the properties of the high-pressure phases, it would be required the use of sophisticated �rst-
principles techniques that can improve over our LDA+U results.
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Chapter 6

Towards a systematic treatment of
complex structural phases in
perovskite oxides

As already mentioned, perovskites are materials with singular properties. The ideal perovskite
structure is quite symmetric, it can be explained as a lattice of corner sharing oxygen octahe-
dra with interpenetrating simple cubic lattices of cations (see Fig. 1.1). However, perovskites
present a rich phase diagram with phases exhibiting di�erent physical properties. Under-
standing these structural phase transitions and under which conditions they may occur, is
then crucial for the development of new materials with enhanced properties.

Ideally, we want to have a phenomenological model able to explain and predict the structural
phases of a material as complex as BiFeO3 (BFO). Such a theory could be used to predict the
stability of phases under di�erent conditions and thus, obtain relevant information about the
properties of the material. However as explained before, BFO has a very complicated energy
map with plenty of minima. The �rst step into developing such theory would be to identify
the primary distortions that need to be considered explicitly in it.

Recalling the distinction done among the di�erent distortions that are common to perovskites,
two major group were identi�ed,

• the ferroelectric (FE) polar distortions, associated with the freezing of a soft mode at
Brillouin zone center (� modes), and described in terms of the polarization P.

• the antiferrodistortive (AFD) distortions, composed by in-phase and/or anti-phase tilt-
ings of the oxygen octahedra, corresponding to the condensation of a soft mode at
Brillouin zone boundary (type M and R modes, respectively). These will be described
by two order parameters, de�ned as M = (mx,my,mz) for the in-phase rotations, and
R = (rx, ry, rz) for the anti-phase rotations, around the principal perovskite axes x, y,
and z.

The occurrence of di�erent combination of such distortions results in the most commonly ob-
served structures among the oxide perovskites, see table 6.1.

The energetics of the FE distortions was studied in the seminal paper by King-Smith and
Vanderbilt [54], where they discussed the total energy surface as function of P, correctly
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FE AFD FE + AFD

P[x, y, z] a	b	c	 P[x, y, z] + a	b	c	

R3m P[111] R�3c a−a−a− R3c a−a−a−

P[111]

{ Pnma a−a−c+ Pna21
a−a−c+

P[001]

P4mm P[001] I4/mcm a0a0c− {

Table 6.1: Most common symmetries of perovskites in nature, and their respective type of distortion
from the ideal cubic. Again we have employed the Glazer notation, with a	b	c	, letters refer to tilts
around axes [100], [010], [001] respectively; 	 superscript refer to whether the tilting is in-phase(+)
or anti-phase(-) along certain axis, or absent(0); 	= +,−, 0 and a+a+b− means two equal in-phase
tilts along [100] and [010] and a di�erent anti-phase tilt along [001]

predicting the groundstate symmetries for classic FE compounds (BaTiO3,KNbO3, PbTiO3

among others). Later, they extended their study to include the AFD and the FE distortions
in tetragonal SrTiO3. [76] However, their theory was not intended to consider more complex
scenarios than that of the energetics of the tetragonal AFD distortions. In order to describe
more complex structures, it is needed to include all the possible tilts which in principle occur
individually (as in the tetragonal a+b0b0 phase) or combined (as in an orthorhombic a−a−c+

phase). Thus, a theory that includes the AFD order parameters [E(P,M,R)] is still missing,
and might be of great use to predict and explain the role played by such distortions in the
stabilization of structural phases in many perovskite oxides.

6.1 Modeling the energetics of oxygen-octahedra rota-

tions

We want to describe the energetics of perovskites in terms of the primary order parameters.
As a �rst step, we will derive the energy in terms only of the M and R type of distortions
(i.e. rotations of the oxygen octahedra). We chose to construct a 4-th order expansion of the
energy around the cubic phase, and analyze if it is enough to correctly describe a relatively
simple system. The energy of the system for certain amplitude of the distortions M and R is
obtained from,

E(M,R) = min
u|M,R

EDFT (u) (6.1)

where the generalized vector u describes an arbitrary atomic structure, and the minimization is
over u compatible with speci�c values of M and R. The energy expansion will be written as a
linear combination of sets of invariant polynomials in the components of the order parameters:

E(M,R) = Ecubic + E(M) + E(R) + Eint(M,R). (6.2)
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4th Order Theory

In analogy with the approach adopted by Vanderbilt and King-Smith [54]. we want to have a
general model to describe similarly the phase transitions involving the O6 octahedra rotations.
Thus, we have expanded the energy up to 4-th order in M = (mx,my,mz) and R = (rx, ry, rz),

E(M,R) =E0 + κ+m2 + κ−r2 + α+m4 + α−r4 + γ+(m4
x +m4

y +m4
z) (6.3)

+ γ−(r4
x + r4

y + r4
z) + α±m2r2 + ϑ(m2

xr
2
x +m2

yr
2
y +m2

zr
2
z)

where:

m2 = (m2
x +m2

y +m2
z) ; r2 = (r2

x + r2
y + r2

z)

and
m4 = (m2)2 = (m4

x +m4
y +m4

z + 2m2
xm

2
y + 2m2

xm
2
z + 2m2

ym
2
z)

r4 = (r2)2 = (r4
x + r4

y + r4
z + 2r2

xr
2
y + 2r2

xr
2
z + 2r2

yr
2
z)

Note that κ+, κ−, α+ and α− are the coe�cients describing the isotropic part of the energy
(i.e., the part that remains invariant under rotations of M and R) while γ+, γ− and ϑ account
for the anisotropy. The superscripts in the coe�cients account for the (+) in-phase and (-) the
anti-phase rotations parameters. The coe�cients κ+ and κ− are related to the eigenvalues of
the force-constant matrix of the cubic reference structure; when κ+ or− < 0 the corresponding
distortion is a instability of the cubic phase. The coe�cients α± and ϑ account for the
coupling between the in-phase and the anti-phase rotations, with ϑ quantifying the energy
cost of complex tilts (i.e., those involving a combination of in-phase and anti-phase rotations
around one axis) in the system.

Analytic solution for high-symmetry tilt phases

Let us derive the analytic expressions for the possible energy minima along the high symmetry
directions. For the time being, we will focus on the anti-phase tiltings, as the derivation for
the in-phase tilting is analogous. The energy expression for the anti-phase tilting R is:

E(R) = E0 + κ−r2 + α−r4 + γ−(r4
x + r4

y + r4
z) (6.4)

Considering the presence of tilting along the high symmetry directions, we obtained:

For the tetragonal case with R || [100] (i.e. a−b0b0 tilting) the energy can be written as,

E(rx) = E0 + κ−r2
x + α−r4

x + γ−r4
x (6.5)
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For the existence of a extrema it must satisfy:

dE(rx)

drx
= 2κ−rx + 4α−r3

x + 4γ−r3
x = 0 (6.6)

From this equation we may extract the amplitude of the tilting and the energy of the minima
to be:

a−b0b0 : r2
x = − κ−

2(α− + γ−)
E = E0 −

(κ−)2

4α− + 4γ−

Proceeding in the same manner for the other directions we obtain that:
for R || in the [110] direction, taking ry = rx, the expressions are:

a−a−c0 : r2
x = − κ−

2(2α− + γ−)
E = E0 −

(κ−)2

4α− + 2γ−

for R || in the [111] direction, taking rz = ry = rx the expressions are:

a−a−a− : r2
x = − κ−

2(3α− + γ−)
E = E0 −

(κ−)2

4α− + 4
3
γ−

We also computed the Hessian for each of the phases discussed, and obtained that within
our model, assuming the R a instability of the cubic phase (i.e., κ− < 0 and α− > 0, with
|α−| > |γ−|), there can be only one type of minimum of the energy. More precisely, if γ− < 0,
we have a tetragonal (a−b0b0) minimum; while the rhombohedral phase is stabilized for γ− > 0.
The orthorhombic phase on the other hand, is always a saddle point of the energy.
the only possible minimum is the rhombohedral a−a−a− phase, (see table 6.2).

According to this results, the relative energy between the di�erent axes of the octahedra
rotations will depend on the sign of γ−. From these results, we may see that for a system
with the tilting patterns composed only by anti-phase rotations, if the lower energy is that
one along the [111] direction, then the coe�cient γ− must be positive.

[100]︷ ︸︸ ︷
− (κ−)2

4α− + 4γ−
>

[110]︷ ︸︸ ︷
− (κ−)2

4α− + 2γ−
>

[111]︷ ︸︸ ︷
− (κ−)2

4α− + 4
3
γ−

(6.7)

We may also see that the condition γ > −3α must be satis�ed, otherwise the energy has
unphysical divergence to −∞, and the order of the expansion would need to be increased.

The same result is obtained if only in-phase tilting are considered. However, the situation is
di�erent when considering a composed tilting pattern of in-phase and anti-phase rotations. We
also computed the energy minima condition for the most relevant case, (i.e., that corresponding
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Table 6.2: Eigenvalues and eigenvectors obtained for the 4-th order theory. Results for the high
symmetry phases here considered are shown.

Eigenvalues
(eigenvectors)

a−b0b0 −4κ− 2κ−γ−

α−+γ−
2κ−γ−

α−+γ−

(1, 0, 0) (0, 1, 0) (0, 0, 1)

a−a−c0 −4κ− − 4κ−γ−

2α−+γ−
2κ−γ−

2α−+γ−

(1, 1, 0) (−1, 1, 0) (0, 0, 1)

a−a−a− −4κ− − 4κ−γ−

3α−+γ−
− 4κ−γ−

3α−+γ−

(1, 1, 1) (−1, 0, 1) (−1, 1, 0)

to the orthorhombic a−a−c+ phase) taking rx = ry = r, mz = m, and rz = mx = my = 0, we
have:

E(r,m) = E0 + κ+m2 + κ−2r2 + α+m4 + α−4r4 + α±2m2r2 + γ+m4 + γ−2r4 (6.8)

= E0 + κ+m2 + κ−2r2 + ~α+m4 + ~α−4r4 + α±2m2r2

where we have used ~α− = (2α− + γ−) and ~α+ = (α+ + γ+) for an easier interpretation.
From the conditions of extremal:

∂E(r,m)

∂r

∣∣∣
m

= 0 and
∂E(r,m)

∂m

∣∣∣
r

= 0 (6.9)

We �nd the equilibrium values for r and m are given by:

r2 =
−κ−

2~α− − (α±)2

α̃+

+
κ+α±

4~α+ ~α− − 2(α±)2
and m2 =

−κ+

2~α+ − (α±)2

α̃−

+
κ−α±

2~α+ ~α− − (α±)2

and the energy:

Ea−a−c+ = E0 −
(κ−)2

2~α− − (α±)2

α̃+

− (κ+)2

2(2~α+ − (α±)2

α̃−
)

+
κ−κ+α±

2~α+ ~α− − (α±)2
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These results now include the coe�cient α± for the coupling between the in-phase and anti-
phase tilting.

We have thus introduced the simplest theory that may allow us to capture the energetics of
the O6- octahedra tilting in perovskites. Now, let us try to apply it to a simple material .

6.2 Case study: LaAlO3

We �rst wanted to try our model for describing the energetics of the tilting patterns in a
simple system. For that purpose we chose LaAlO3, a paraelectric system that only exhibits
O6 octahedra rotations in its ground state. LaAlO3 has a rhombohedral symmetry in its
ground state, with the space group R�3c (a−a−a−). This material is insulating and does not
exhibit magnetism, and thus its treatment should be relatively simple.

Calculation details

The calculations conditions were obtained from a convergence test following the scheme pre-
sented in section (1.2.2). As the system is not magnetic, it does not present strongly localized
electrons in the valence and thus, we do not need to use U -corrected functionals. For the sim-
ulations we used the generalized gradient approximation (GGA) to density functional theory:
more precisely, the PBE and PBEsol schemes as implemented in the VASP package. We have
employed the PAW method to represent the ionic cores, solving for the following electrons:
Al's 3s, and 3p; La's 5s, 5p, 5d, and 6s; and O's 2s and 2p. Wave functions were represented
in a plane-wave basis truncated at 600 eV, and a 3× 3× 3, �-centered k-point grid was used
for integrations within the Brillouin zone (BZ) corresponding to the 40-atoms cell (analogous
to the one shown in Fig. 1.1).

6.2.1 Results for the exploration of high-symmetry phases

We started by studying the high-symmetry structures discussed in section 6.1, i.e., the anti-
phase tilt patterns denoted by a−b0b0, a−a−c0 and a−a−a− in Glazer's notation. To do this,
we run structural relaxations that are constrained to maintain the targeted symmetry. The
results are shown in table 6.3. We ran the relaxations with and without considering the strain
response to the O6-rotations, in order to quantify the importance of the cell deformations.

As we can see the choice of the GGA functional plays an important role in the relative stabil-
ities of the phases investigated. This was unexpected, as we thought that for a rather simple
compound as LaAlO3 the qualitative results would not be very sensitive to the functional. We
also considered the orthorhombic a−a−c+ tilting pattern, but the relaxations started from this
con�gurations always ended in the a−a−c0 phase.

Some important conclusions can be extracted from the results in table 6.3 already.
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Table 6.3: Energies for the di�erent con�gurations in LaAlO3, at �xed cell and after full relaxations.
These results were obtained for PBE and PBEsol functionals are presented. The energies are reported
as relative energies with respect to the cubic phase. Note that the θx = ArcSin(rx)

�E = E − Ecub in [meV/f.u.]
(Rotation angles, θx, θy, θz) in [o]

LaAlO3 PBEsol PBE

Fully relaxed Fixed Cell Fully relaxed Fixed Cell

a−b0b0 −11.91 −10.72 −17.91 −16.09

(5.8, 0.0, 0.0) (5.8, 0.0, 0.0) (6.4, 0.0, 0.0) (5.7, 0.0, 0.0)

a−a−c0 −12.30 −10.52 −19.08 −14.73

(4.2, 4.2, 0.0) (4.2, 4.2, 0.0) (4.7, 4.7, 0.0) (4.4, 4.4, 0.0)

a−a−a− −12.26 −11,01 −19.16 −17.33

(3.4, 3.4, 3.4) (3.4, 3.4, 3.4) (3.9, 3.9, 3.9) (3.6, 3.6, 3.6)

a0a0a0 0, 00 0.00 0.00 0.00

(0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

Functional dependence of the results

The experimental ground state was only obtained correctly with the PBE functional. To our
surprise, the results obtained with PBEsol are not in agreement with the experimental ob-
servations for LaAlO3, and the a−a−c0 tilting pattern is predicted as the ground state of the
material. However, as can be appreciated from the table 6.3, the di�erences in energy are
very small, i.e., of the order of hundredth of meV per formula unit between the a−a−c0 or-
thorhombic and a−a−a− rhombohedral phases. These small energy di�erences, and the wrong
description given by PBEsol, may be an indicator of the need to include zero-point corrections
in the calculations of the relative stability of these phases.

Effect of strain and compatibility with our 4-th order theory

The only result compatible with a 4-th order theory is the PBE result with cell relaxations.
The fully-relaxed PBEsol results predict an orthorhombic ground state, which as discussed
above, cannot be captured by our 4-th order theory. From table 6.3, we can also observe
that for �xed cell calculation the energy relation obtained is: E[111] < E[100] < E[110], while
the result of the 4-th order theory would be: E[111] < E[110] < E[100] (see relations 6.7). Two
conclusions can be drawn from these numbers: (1) the strain has an important role in the
relative phase stability; (2) even in the simpler case of a frozen strain relaxation, our 4-th
order theory is not able to capture the �rst principle results.
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Obtained coefficients for the 4-th order theory

While we have seen its validity is questionable, let us focus on the PBE fully relaxed results
and see how well our 4-th order theory can describe them. From the results obtained for the
high symmetry directions, we may �t the parameters regarding the anti-phase tilting (i.e., κ−,
α−, and γ−, see table 6.4).

Table 6.4: Di�erent sets of parameters obtained for the 4-th order theory: Fit 1,was obtained
enforcing the conditions for the tilting amplitudes for the minima; Fit 2, correspond to the conditions
for the energies for the minima; Fit 3, is the �t to energies and tilting amplitudes of the minima

Theory coe�cients �E = E − Ecub in [meV/f.u.]
(Rotation angles, θx, θy, θz) in [o]

κ− [eV/�A2] α− [eV/�A4] γ− [eV/�A4] [100] [110] [111]

Fit 1 −23 747 247 Fit 1 −16.7 −19.1 −20.0

(6.1, 0, 0) (4.7, 4.7, 0) (3.9, 3.9, 3.9)

Fit 2 −29 1351 172 Fit 2 −17.9 −18.9 −19.3

(5.6, 0, 0) (4.1, 4.1, 0) (3.4, 3.4, 3.4)

Fit 3 −28 1242 126 Fit 3 −18.6 −19.5 −19.8

(5.8, 0, 0) (4.2, 4.2, 0) (3.5, 3.5, 3.5)

From table 6.4, we may appreciate the energy hierarchy among the phases is well reproduced;
however, the di�erences in energy between the orthorhombic and the rhombohedral phases
are overestimated with any of the parameters obtained from the di�erent �ts. For example,
�tting only to the structure, we found good agreement with the amplitude for the minima, but
the energy di�erence between the tetragonal and rhombohedral phases are overestimated by
a factor of ∼ 3. The predicted curves are shown in Fig. 6.2 along with the calculated points
for the di�erent phases.

Checking for the presence of higher order terms in the energy landscape

So far, the energy hierarchy obtained with the PBE fully relaxed calculations are compatible
with the 4-th order theory, but still there are some inconsistencies between the model and
the calculated points. From our previous discussion in section 6.1, we know that we can only
describe a single type of minimum (either rhombohedral or tetragonal) within our model. An
important test with this respect is to check wether the computed phases are local minima
or saddle points in the energy landscape. A simple way to determine this is to compute the
interpolation path between the di�erent phases and see how the energy changes.

From Fig. 6.2 we can appreciate that our calculations found the a−b0b0, and a−a−c0 phases
are also local minima of the energy. This is apparent from the energy barriers that separate
the di�erent minima along the interpolation paths.
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Figure 6.1: Energy dependence with respect to tilting angle for the di�erent sets of parameters
obtained, Fit 1 is represented in solid lines, Fit 2 in dashed and Fit 3 with dotted lines; the colors
stand for: blue [111], red [110] and purple [100].

Hence in order to capture the energetics of LaAlO3, even if computed at the PBE level we
clearly need to increase the order of the theory.

6.3 Conclusions and next steps

Here we have shown the �rst step in constructing a general theory to capture the energet-
ics of the most common distortions present in perovskites. We tried to capture the relative
stability of di�erent high symmetry phases in LaAlO3 with an energy expansion up to 4-th
order in the M and R AFD distortions. The analytic solutions of the model were compared
with the DFT results for the minima along the high-symmetry directions [100], [110], and [111].

The relative stability of the phases was found to be only captured by the PBE functional.
However, the energy di�erences obtained from our GGA calculations are very small within
PBE, and wrong for PBEsol. An issue that would require a further investigation, as one would
expected to have an adequate description of a system that is rather simple (not magnetic, in-
sulating and paraelectric).

From our PBE calculations we have �tted the 4-th order theory. The obtained coe�cients
shown in table 6.4, where we can see that for LaAlO3, the anti-phase tilting are a instability
of the cubic phase (with κ− < 0). Note that in our calculations we do not considered any case
composed by complex tilts, thus we were not able to �t ϑ as it accounts for the occurrence
of such complex distortions. We computed the energies along the interpolation path between
the high-symmetry phases, and found that in the case of LaAlO3 the 4-th order theory is not
su�cient to describe the existence of the orthorhombic minimum (a−a−b0) and thus, we would
need to go for higher order theories.
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Figure 6.2: Computed energies along the interpolated paths linking the minima for the phases
a−b0b0, a−a−b0 and a−a−a−.

Thus, LaAlO3 resulted to be a more complex material with respect to the structural phases
it exhibit than expected. Therefore the next steps will be,

• With respect to the theoretical model, to extend the theory to higher order to describe
the minima LaAlO3 present.

• Regarding the DFT calculations, the question is whether the PBE functional is giving
correctly the magnitude of the energy di�erences? It would be useful to have results
for the relative energies of the phases discussed including zero-point corrections in the
calculations.

The results presented in this last chapter are part of an ongoing project, that should �nish with
a general model to describe the interplay between the most common structural distortions in
perovskite oxides, and the strain.
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Conclusions

In the present work we have studied the properties of one of the most relevant magnetoelectric
multiferroic materials, BiFeO3. We have discussed the structural richness of this compound
and the possible reason behind. The implications of our �ndings and the relation with recent
experimental results were discussed in chapter 3. In this chapter we have presented the re-
sults of our �rst principles search for potentially stable phases of the multiferroic BiFeO3. We
performed a systematic study of most relevant distortions that are common to perovskite ox-
ides (more speci�cally, ferroelectric, antiferroelectric, and anti-ferrodistortive). We obtained
plenty of distinct low-energy phases of the compound and restricted our discussion to the
most stable ones. We found that some of the minima presented here display complex struc-
tural distortions which lower the symmetry to MA and MC monoclinic space groups preserving
a relatively small unit cell. This was a very peculiar �nding because, as far as we know the
monoclinic structures reported in perovskite oxides are usually associated to solid solutions
[e.g. PbZr1−xTixO3 (MA type) [64] and PbZn1/3Nb2/3O3−PbT iO3]; occur in thin �lms under
epitaxial strain, or present relatively large unit cells.

From these results, a number of important implications for current research on BFO were
discussed:

• First of all, we have found that BFO can form plenty of stable and metastable structural
phases. This is consistent with recent experimental observations that show, a wide
range of possible structural transitions at low temperatures, [73] surface-speci�c atomic
structures [60] and strain-induced new phases. [40, 94] Also, our results can be useful
for the experimental works exploring the possibility of obtaining large functional e�ects
(piezoelectric, magnetoelectric) in BFO's �lms grown on strongly compressive substrates.
We have shown that there are plenty of phases with large polarizations and c/a aspect
ratios that can be realized in such conditions; the transitions (e.g., driven by temperature
or electric �elds) between such phases could give raise to useful e�ects.

• Our results also have implications for theoretical studies of BFO. We carried out a careful
comparison of the various DFT schemes most commonly employed to study BFO and
related compounds, and discussed the existing di�culties in quantifying the relative
phase stability. Further, we considered the implications of our �ndings as regards the
e�ective modeling of structural phase transitions in BFO. Our analysis shows that BFO
is rather unusual, and requires very high-order Landau potentials to capture the diversity
of structural phases that it presents. A result that is revealing the unexpected complexity
of this material in comparison with the theories devised for materials such as BaTiO3

or PbZr1−xTixO3.
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• Furthermore, we have shown quantitative evidence of the dominant role of Bi in BFO's
structural instabilities. We have computed the ELF and observed how in some of the
phases, the lone pair mechanism usually assumed to accompany the Bi{O bonding, is
absent. Instead, for the FE phases displaying strong Bi o� centering, such a mechanism is
present along with a large polarization. Thus, Bi's ability to form diverse and competitive
in energy coordination complexes with oxygen, appears as one the reasons for the richness
of structural phases presenting this material.

With this we have quanti�ed, and analyzed in some detail the structural richness of BiFeO3,
the most relevant representative of the family of Bi-based transition-metal perovskite oxides.
We have thus revealed a variety of unusual e�ects with important implications for current
experimental and theoretical works on this material.

In chapter 4 we have used �rst-principles methods to study the Bi1−xLaxFeO3 (BLFO) solid so-
lution formed by the multiferroic BiFeO3 (BFO) and the paraelectric antiferromagnet LaFeO3

(LFO). Investigating BLFO's phase transitions as a function of the La content x, we �nd that
at x ∼ 0.3 BLFO transforms discontinuously from BFOs rhombohedral ferroelectric phase
into an orthorhombic structure. The nature of such an orthorhombic phase could not be fully
determined from the simulations, as we obtained two di�erent states { namely, ferroelectric
Pna21 and paraelectric Pnma{ that are essentially as stable in the 0.3 . x . 0.65 compo-
sition range. We also found that the paraelectric Pnma phase prevails for x & 0.65. The
phase coexistence at intermediate x values suggests some appealing possibilities; for example,
our results indicate that an electric �eld might be used to induce paraelectric-to-ferroelectric
phase transformations in this compound. We have also discussed the connection between our
results and published crystallographic studies of BLFO solid solutions. Our simulations do
not support any of the many di�erent phases that have been experimentally proposed to oc-
cur at intermediate compositions. We have suggested some explanations for the experimental
di�culties that hamper BLFO's structural characterization.

Additionally, we have shown that the chemical substitution of Bi/La atoms in the pure com-
pounds leads to signi�cantly improved response properties. (Our calculations were restricted
to the dielectric susceptibility, and we argue that the obtained enhancement should be ob-
served in the magnetoelectric response as well.) We have analyzed in detail the diverse origins
of the increased responses,

• In the case of Bi-doped LFO, the enhancement is associated with an incipient ferroelectric
instability involving Bi{O distortions.

• In contrast, in La-doped BFO the improvement relies on the strong structural relaxation
and local symmetry breaking caused by the La atoms, which result in the appearance
of many new polar modes that react to an applied electric �eld.

We have shown that both e�ects can be captured by a phenomenological theory in which the
composition x is explicitly treated in a Landau-like potential.

In conclusion, our �rst-principles results for the BLFO multiferroic solid solution, suggest that
these compounds present many appealing features, ranging from improved response proper-
ties to the possibility of inducing structural phase transitions by application of electric �elds.
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Further, we �nd that several BLFO phases are quasi-degenerate in energy in a wide composi-
tion range; thus, our calculations suggest that BLFO undergoes a very unusual morphotropic
transformation that deserves a detailed experimental investigation. Finally, some of our results
are strongly reminiscent of phenomena that has been experimentally found in similar solid so-
lutions, as for example the Bi1−xRxFeO3 compounds where R is a rare-earth lanthanide. Such
similarities suggest that, BLFO may be a convenient model system, representative of this
larger family of materials.

The high pressure e�ects on the spin con�gurations in the 3d orbitals of Fe3+ for BiFeO3, were
discussed in chapter 5. Our results support and explain the spin-crossover that is responsible
for the change in the magnetic and conduction properties of BiFeO3 at high pressures. More
precisely, we found that under hydrostatic pressure the system:

• su�ers a change in the coordination of the Bi atoms, which tend to form BiO3 planar
groups

• undergoes a HS-LS crossover transition for Fe3+ at pressures around 40 GPa

• the magnetic interactions are relatively weak in the LS phase, which should result in a
relatively low magnetic ordering temperature

• the electronic structure of the LS phase strongly depends on the magnetic order, which
suggests that, at room-temperature the paramagnetic LS phase will be metallic.

These are drastic transformations, which involve relatively large energy scales. Thus, these
predictions seem reliable, in spite of the approximations made for our theoretical study. Our
predictions for the HS-LS transition are thus consistent with the manifold transformation ob-
served experimentally by Gavriliuk et al., [34] and provides an explanation for it.

Let us conclude by saying that our investigations were by no means exhaustive and many is-
sues remain open. For example, our results strongly suggest that BFO will not present a cubic
phase Pm�3m at high pressures; however, we cannot deduce from our calculations the space
group of the high-pressure phases. There are many possibilities involving unit cells larger
than the 10-atom one used in our simulations, which were considered in this work. Similarly,
the possibility of complex magnetic orders occurring at high pressures has not been explored.
Finally, for more accurate quantitative calculations of the transition pressures, and the prop-
erties of the high-pressure phases, it would be required the use of sophisticated �rst-principles
techniques that can improve over our LDA+U results.

In chapter 6 we have presented a preliminary study on the energy maps for rotations of the
oxygen octahedra in perovskite oxides. Here we have shown the �rst step in constructing a
general theory to capture the energetics of the most common distortions present in perovskites.
We tried to capture the relative stability of di�erent high symmetry phases in LaAlO3 with an
energy expansion up to 4-th order in the M and R AFD distortions. The analytic solutions
of the model were compared with the DFT results for the minima along the high-symmetry
directions [100], [110], and [111].

The relative stability of the phases was found to be only captured by the PBE functional.
However, the energy di�erences obtained from our GGA calculations are very small within
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PBE, and wrong for PBEsol. An issue that would require a further investigation, as one would
expected to have an adequate description of a system that is rather simple (not magnetic, in-
sulating and paraelectric).

From our PBE calculations we have �tted the 4-th order theory. The obtained coe�cients
shown in table 6.4, where we can see that for LaAlO3, the anti-phase tilting are a instability
of the cubic phase (with κ− < 0). Note that in our calculations we do not considered any case
composed by complex tilts, thus we were not able to �t ϑ as it accounts for the occurrence
of such complex distortions. We computed the energies along the interpolation path between
the high-symmetry phases, and found that in the case of LaAlO3 the 4-th order theory is not
su�cient to describe the existence of the orthorhombic minimum (a−a−b0) and thus, we would
need to go for higher order theories.

Thus, LaAlO3 resulted to be a more complex material with respect to the structural phases
it exhibit than expected. Therefore the next steps will be,

• With respect to the theoretical model, to extend the theory to higher order to describe
the minima LaAlO3 present.

• Regarding the DFT calculations, the question is whether the PBE functional is giving
correctly the magnitude of the energy di�erences? It would be useful to have results
for the relative energies of the phases discussed including zero-point corrections in the
calculations.

The results presented in this last chapter are part of an ongoing project, that should �nish
with a general model to describe the interplay between the most common structural distor-
tions in perovskite oxides, and the strain.
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