

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

DVFS Power Management in

HPC Systems

Maja Etinski

Department of Computer Architecture

Technical University of Catalonia

Advisors: Julita Corbalan and Jesus Labarta

A thesis submitted for the degree of

Doctor of Philosophy

Acknowledgements

My first and most sincere acknowledgements must go to my advi-

sors, Julita Corbalan and Jesus Labarta. Their continuous support

has made my PhD studies a pleasant experience. Julita’s guidance

through the research, as well as the thesis writing process, was pre-

cious. I am especially grateful for her motivation, patience and en-

thusiasm. I would also like to thank Jesus for his ideas and support.

Without his help this thesis would not be possible.

Over last four years, many people crossed my path and affected my

life. Now it would be difficult to name all of them. Therefore, I would

like to thank all my colleagues from Barcelona Supercomputing Center

for the nice time I had in Barcelona. I enjoyed their friendship and

the everyday atmosphere in the center.

During my PhD studies I spent three months in the group of pro-

fessor Margaret Martonosi at Princeton University. During this stay

I worked on electricity cost reduction of multiple-site Internet ser-

vices broadening the field of my interests. I am very grateful for this

opportunity that added considerably to my graduate experience.

I appreciate the help from Barcelona Supercomputing Center that

provided computational resources necessary for this thesis. Also, I

would like to thank the KTH center for opportunity to use their Povel

system.

I would also like to thank my wonderful family for the unconditional

support they provided me. Their continuous support was especially

valuable in the days of being far away from home.

I would like to thank the Spanish Ministry of Science and Education

for the FPI scholarship (BES-2008-005709). This thesis has been also

supported by the Spanish Ministry of Science and Education (under

contract CICYT TIN200760625C020), by the IBM/BSC MareIncog-

nito project (under the grant BES-2005-7919) and by the Generalitat

de Catalunya (2009-SGR-980). I sincerely acknowledge their support.

Abstract

Recent increase in performance of High Performance Computing (HPC)

systems has been followed by even higher increase in power con-

sumption. Power draw of modern supercomputers leads to very high

operating costs and reliability concerns. Furthermore, it has nega-

tive consequences on the environment. CPU power consumption ac-

counts for a major part of the total system power consumption. Dy-

namic Voltage Frequency Scaling (DVFS) is a widely used technique

for CPU power management. Running an application at lower fre-

quency/voltage reduces its power consumption. However, frequency

scaling should be used carefully since it affects negatively the appli-

cation performance. We argue that the job scheduler level presents a

good place for power management in an HPC center having in mind

that a parallel job scheduler has a global overview of the entire system.

In this thesis we propose power-aware parallel job scheduling policies

where the scheduler determines the job CPU frequency, besides the

job execution order. Based on the goal, the proposed policies can be

classified into two groups: energy saving and power budgeting policies.

The energy saving policies aim to reduce CPU energy consumption

with a minimal performance penalty. The first of the energy saving

policies assigns the job frequency based on system utilization while

the other makes job performance predictions. The second group of

policies are policies for power constrained systems. In contrast to

the systems without a power limitation, in the case of a given power

budget the DVFS technique even improves overall job performance

reducing the average job wait time. The last contribution of this thesis

is an analysis of the DVFS technique potential for energy-performance

trade-off in current and future HPC systems. Ongoing changes in

technology decrease the DVFS applicability for energy savings but

the technique still reduces power consumption making it useful for

power constrained systems.

Contents

Contents v

List of Figures ix

Nomenclature xii

1 Introduction 1

1.1 Power consumption of current large scale computing systems . . . 1

1.2 The DVFS technique . 4

1.3 Parallel job scheduling . 7

1.3.1 The EASY backfilling policy 8

1.4 Power-aware job scheduling . 10

1.4.1 Energy saving policies . 11

1.4.2 Power budgeting policies 14

1.5 Contributions . 16

1.6 Publications . 17

1.7 Thesis organization . 19

2 Background 21

2.1 Introduction . 21

2.2 CPU power management . 22

2.2.1 HPC systems . 22

2.2.1.1 Application level 23

2.2.1.2 System level . 24

2.2.2 Data centers . 25

v

CONTENTS

2.2.3 Desktop/mobile systems 26

2.3 Other system components . 28

3 Methodology 30

3.1 Introduction . 30

3.2 DVFS impact modeling at job level 31

3.2.1 Execution time modeling 31

3.2.2 Power modeling . 34

3.3 Simulator . 36

3.4 Job performance metrics . 37

3.5 Workload traces . 39

3.6 Workloads . 40

3.6.1 The CTC workload . 42

3.6.2 The SDSC workload . 43

3.6.3 The SDSC Blue workload 45

3.6.4 The LLNL Thunder workload 46

3.6.5 The LLNL Atlas workload 48

4 Energy Saving Policies 50

4.1 Introduction . 50

4.2 UPAS . 53

4.2.1 Algorithm . 54

4.2.2 Evaluation . 56

4.2.2.1 Policy parameters 56

4.2.2.2 Performance/energy results 57

4.3 BSLD-driven policy . 61

4.3.1 Algorithm . 62

4.3.2 Evaluation . 65

4.3.2.1 Policy parameters 65

4.3.2.2 Performance/energy results 66

4.4 Summary . 70

5 Power Budgeting Techniques 73

5.1 Introduction . 73

vi

CONTENTS

5.2 PB-guided policy . 74

5.2.1 Algorithm . 75

5.2.1.1 Managing DVFS 75

5.2.1.2 The EASY backfilling modifications 77

5.2.2 Evaluation . 79

5.2.2.1 Policy parameters 79

5.2.2.2 Performance analysis 80

5.3 MaxJobPerf policy . 91

5.3.1 Algorithm . 92

5.3.2 Evaluation . 96

5.3.2.1 Policy parameters 96

5.3.2.2 Performance analysis 97

5.4 Summary . 118

6 DVFS Energy-Performance Trade-off of Large Scale Parallel Ap-

plications 119

6.1 Introduction . 119

6.2 The concept of trade-off . 120

6.3 Impact of frequency scaling on execution time 123

6.3.1 Performance measurements 123

6.3.2 Analysis of frequency scaling impact on execution 127

6.3.2.1 Frequency impact on communication time 127

6.3.2.2 Frequency impact on application load balance . . 127

6.3.3 DVFS and performance loss of parallel applications 130

6.3.4 Different parallel architectures 133

6.4 Trade-off analysis . 133

6.4.1 Energy model . 134

6.4.2 Parametric analysis . 136

6.5 Summary . 141

7 Conclusions 142

7.1 Power-aware scheduling . 142

7.2 Future work . 144

vii

CONTENTS

References 145

viii

List of Figures

1.1 Energy-performance trade-off. 6

1.2 Running and queued jobs. 7

1.3 Backfilling scenarios. 9

1.4 Effect of frequency scaling on job scheduling. 12

1.5 Two energy consumption scenarios. 13

1.6 Normalized CPU energy consumption for a given portion of jobs

executed at reduced frequency. Reduced frequency equals 50%

of the nominal frequency, static power accounts for 30% of CPU

power, jobs show medium sensitivity to frequency scaling. 14

1.7 Benefit of frequency scaling for power constrained systems - more

jobs can run under the same power budget. 15

3.1 Job size distribution: CTC. 42

3.2 The CTC workload. 43

3.3 Job size distribution: SDSC. 44

3.4 The SDSC workload. 44

3.5 Job size distribution: SDSCBlue. 45

3.6 The SDSCBlue workload. 46

3.7 Job size distribution: LLNLThunder 47

3.8 The LLNLThunder workload. 47

3.9 Job size distribution: LLNLAtlas. 48

3.10 The LLNLAtlas workload. 49

4.1 CPU energy reduction assuming that all jobs are executed at the

lowest frequency. 51

ix

LIST OF FIGURES

4.2 Job performance penalty assuming that all jobs are executed at

the lowest frequency. 52

4.3 Energy/performance trade-off efficiency assuming that all jobs are

executed at the lowest frequency. 52

4.4 UPAS policy: Normalized CPU energy (idle CPUs do not consume

power): WQthreshold = 0, 4, 16, NO. 58

4.5 UPAS policy: Normalized CPU energy (idle CPUs at the lowest

available frequency): WQthreshold = 0, 4, 16, NO. 58

4.6 UPAS policy: Normalized mean job Bounded Slowdown (BSLD):

WQthreshold = 0, 4, 16, NO. 59

4.7 UPAS policy: Mean job wait time (in seconds): WQthreshold =

0, 4, 16, NO. 60

4.8 UPAS policy: energy/performance trade-off efficiency. 61

4.9 BSLD-drvien policy as a modification of the EASY backfilling:

Making a job reservation and assigning CPU frequency. 63

4.10 BSLD-drvien policy as a modification of the EASY backfilling:

Backfilling a job and assigning CPU frequency. 64

4.11 BSLD-driven policy: Normalized CPU energy (idle CPUs do not

consume power): WQthreshold = 0, 4, 16, NO and BSLDthreshold =

1.5, 2, 3. 66

4.12 BSLD-driven policy: Normalized CPU energy (idle CPUs at the

lowest available frequency): WQthreshold = 0, 4, 16, NO andBSLDthreshold =

1.5, 2, 3. 67

4.13 BSLD-driven policy: Normalized mean job Bounded Slowdown

(BSLD): WQthreshold = 0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3. 68

4.14 BSLD-driven policy: Mean job wait time (in seconds) : WQthreshold =

0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3. 69

4.15 BSLD-driven policy: energy/performance trade-off efficiency. . . . 70

4.16 Energy-performance trade-off with the BSLD-driven policy. 71

5.1 Dynamic change of BSLDth depending on the current power draw. 76

5.2 The PBguided policy: Making a job reservation. 78

5.3 The PBguided policy: Backfilling a job. 79

x

LIST OF FIGURES

5.4 The PBguided policy - 70% power budget (default parameters):

BSLD. 81

5.5 The PBguided policy -70% power budget (default parameters):

wait time (in seconds). 82

5.6 The CTC workload - power budget of 70%. 84

5.7 The SDSC workload - power budget of 70%. 85

5.8 The SDSCBlue workload - power budget of 70%. 86

5.9 The LLNLThunder workload - power budget of 70%. 87

5.10 The LLNLAtlas workload - power budget of 70%. 88

5.11 Different policy thresholds (default thresholds - Plower = 60%, Pupper =

90% with two higher settings - Plower = 80%, Pupper = 90% and

Plower = 80%, Pupper = 95%), power budget=70%: BSLD. 89

5.12 Different policy thresholds (default thresholds - Plower = 60%, Pupper =

90% with two higher settings - Plower = 80%, Pupper = 90% and

Plower = 80%, Pupper = 95%), power budget=70%: wait time (in

seconds). 89

5.13 The EASY based baseline and PBguided policy for different power

budgets: BSLD. 90

5.14 The EASY based baseline and PBguided policy for different power

budgets: wait time (in seconds). 90

5.15 Comparison of different power budgeting policies: BSLD. 98

5.16 Comparison of different power budgeting policies: wait time (in

seconds). 99

5.17 The CTC workload - power budget of 70%. 101

5.18 The SDSC workload - power budget of 70%. 102

5.19 The SDSCBlue workload - power budget of 70%. 103

5.20 The LLNLThunder workload - power budget of 70%. 104

5.21 The LLNLAtlas workload - power budget of 70%. 105

5.22 Policy comparison for power unconstrained case. 106

5.23 The CTC workload: job wait time. 108

5.24 The CTC workload: job BSLD. 108

5.25 The SDSC workload: job wait time. 109

5.26 The SDSC workload: job BSLD. 109

xi

LIST OF FIGURES

5.27 The SDSCBlue workload: job wait time. 110

5.28 The SDSCBlue workload: job BSLD. 110

5.29 The LLNLThunder workload: job wait time. 111

5.30 The LLNLThunder workload: job BSLD. 111

5.31 The LLNLAtlas workload: job wait time. 112

5.32 The LLNLAtlas workload: job BSLD. 112

5.33 The CTC workload: MaxJobPerf with different reservation assign-

ment conditions. 113

5.34 The SDSC workload: MaxJobPerf with different reservation as-

signment conditions. 114

5.35 The SDSCBlue workload: MaxJobPerf with different reservation

assignment conditions. 114

5.36 The LLNLThunder workload: MaxJobPerf with different reserva-

tion assignment conditions. 115

5.37 The LLNLAtlas workload: MaxJobPerf with different reservation

assignment conditions. 115

5.38 TheMaxJobPerf policy: Impact of job activity known(Oracle)/unknown(Default)

prior to job execution. 116

5.39 The MaxJobPerf policy: Impact of parameter WQChunkSize. . . 117

6.1 Two energy scenarios. 121

6.2 β dependence on frequency and application size. 125

6.3 β values for different number of processors. 126

6.4 βglobal: measured and estimated values. 132

6.5 CPU power reduction required when scaling frequency down for

20%. 137

6.6 CPU power reduction required when scaling frequency down for

50%. 138

6.7 CPU power reduction required when scaling frequency down for

75%. 139

xii

Chapter 1

Introduction

Abstract

This chapter gives motivation for research in the domain of power-aware high

performance computing. Since our work targets CPU power consumption, DVFS

is introduced here as a CPU power management technique. This thesis proposed

power management via DVFS at the level of parallel job scheduler for two dif-

ferent purposes: CPU energy reduction and performance enhancement in power

constrained systems. These two goals are explained in more detail. At the end of

the chapter, the thesis’s contributions are presented.

1.1 Power consumption of current large scale

computing systems

Power consumption of various computing systems has been an important focus

of research over the last two decades. First it appeared as a concern in battery

operating devices where the energy consumption is critical for battery life. Over

the last decade power consumption emerged as an issue in High Performance

Computing (HPC) systems as well. Ever-increasing power consumption of HPC

systems also became a serious limiting factor on the way to exascale computing.

Striving for performance has been followed by a constant increase in the peak

power draw. The struggle for performance in the HPC community is reflected

in the Top500 list of the 500 most powerful supercomputers updated twice per

1

year [39]. The number one ranked system of the June2010 list, Jaguar, comprises

of almost 225 thousand cores and it brings the theoretical peak capability to 2.3

petaflop/s consuming 6.95 MW [38]. Table 1.1 gives the first ten top ranked

supercomputers from the next list - November2010. The column Rmax gives

the maximal LINPACK performance achieved in teraflops whilst the last column

shows power consumption in KW for the entire system. Jaguar requires almost

2.8 times the electric power of the previous top ranked system, Roadrunner.

This difference translates into millions of dollars per year in operating costs.

Estimates for future exascale computers’ power consumption range from many

tens to low hundreds of megawatts [29], suggesting an even higher relevance of

power dissipation related concerns in HPC environments.

Rank Computer Cores Rmax Power

Tianhe-1A - NUDTH TH MPP, X5670 2.93GHz 6C
1 NVIDIA GPU, FT-1000 8C / 2010 186368 2566.00 4040.00

NUDT
Jaguar-Cray XT5-HE Opteron 6-core 2.6GHz /

2 2009 224162 1759.00 6950.60
Cray Inc.
Nebulae-Dawning TC3600 Blade, Intel X5650

3 NVidia Tesla C2050 GPU /2010 120640 1271.00 2580.00
Dawning
TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C

4 X5670, Nvidia GPU, Linux/Windows / 2010 73278 1192.00 1398.61
NEC/HP
Hopper - Cray XE6 12-core 2.1GHz / 2010

5 Cray Inc 153408 1054.00 2910.00

Tera-100 - Bull bullx super-node S6010/S6030
6 2010 138368 1050.00 4590.00

Bull SA
Roadrunner-BladeCenter QS22/LS21 Cluster,

7 PowerXCell 8i 3.2GHz / Opteron DC 1.8 GHz 122400 1042.00 2345.50
Voltaire Infiniband / 2009
IBM
Kraken XT5 - Cray XT5-HE Opteron 6-core 2.6

8 GHz / 2009 98928 831.70 3090.00
Cray Inc.

9 JUGENE - Blue Gene/P Solution 294912 825.50 2268.00
IBM
Cielo - Cray XE6 8-core 2.4 GHz / 2010

10 Cray Inc. 107152 816.60 2950.00

Table 1.1: The November 2010 Top500 list.

Power consumption of such magnitude has arised power-awareness in super-

computing centers. This is why the Top500 list has been accompanied recently by

2

the Green500 list ranking the most energy efficient supercomputers [35]. Super-

computers show high variability in energy efficiency that is measured in ”FLOPS-

per-Watt“. For instance, the number one ranked from the June2011 list, IBM

Blue Gene/Q achieves efficiency of 1684 MFLOPS/W, whilst the last ranked

achieves only 21 MFLOPS/W.

Besides a tremendous increase in operating costs, power-awareness in HPC

centers is motivated nowadays by other reasons such as system reliability. At the

chip level, power wall was predicted more than ten years ago with a famous pic-

ture of die thermal densities equal to that of a nuclear reactor. This made a case

for energy efficient performance [25]. Power density directly impacts the amount

of heat generated which has direct consequences on system reliability. As a rule of

thumb, the Arrenhius equation applied to microelectronics estimates doubling of

the rate of system failures for every 10◦ C increase in temperature [31]. Further-

more, higher temperatures have more demanding cooling requirements that lead

to further increase in the operating costs. Also, power consumption of large scale

computing systems presents an environmental concern since most of the electric-

ity produced over the world comes from burning coal. Hence, supercomputers

have a large carbon footprint.

According to the reasons just described, power management in HPC systems

presents an important issue. This thesis explores the potential of an existing

power management technology for application in future systems. We argue that

the level of parallel job scheduling presents a good place for power control in HPC

environments. The thesis proposes power-aware parallel job scheduling. Though

supercomputers are ranked by the achieved number of FLOPS, this is not what

matters the most in daily operation of an HPC center. User satisfaction in an

HPC center is not only determined by the job execution time but also by its

wait time. Hence, both the job run time and wait time must be considered when

analyzing how power management affects job performance. Moreover, the job

scheduler has a complete view of the HPC system. It is aware of the following:

running jobs and the current load, queued jobs waiting for execution and their

wait times, and available resources. Hence, the scheduler can estimate overall job

performance loss due application of a power reduction technique. A job scheduler

implements a job scheduling policy and in conjunction with the resource selection

3

policy it manages system resources at the job level. Since power has become an

important resource, it is reasonable to enable job schedulers to manage power

consumption. This thesis proposes an extension of the parallel job scheduler’s

functionalities with a CPU power management module.

Processor power consumption presents a significant portion of the total system

power. Though this portion is system and load dependent, it accounts for a major

fraction of the total system power when the system is under load [24]. Dynamic

Voltage Frequency Scaling (DVFS) is a widely used technique for CPU power

reduction. This technique offers modes in which the processor dissipates less

power under certain performance degradation. Since the work presented in the

thesis is based on DVFS, the next section gives a description of the very technique.

1.2 The DVFS technique

A DVFS-enabled processor supports a set of frequency/voltage pairs called gears

or P-states. This technique allows for dynamic control of the processor operating

frequency and voltage. In current multicores this control is available at the core

granularity. Some examples of this mechanism are AMD’s Cool’n’Quiet for desk-

top and server systems and PowerNow! for mobile systems. Another common

example is Intel’s SpeedStep technology.

Though the actual number of P-states might differ among different architec-

tures, it is usual to have between 3 and 10 DVFS gears. Table 1.2 gives some

examples of supported frequencies in different processors.

Processor Frequencies (GHz)

AMD Athlon-64 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
AMD Istanbul 0.8, 1.1, 1.4, 1.6, 2.1

Crusoe 0.3, 0.53, 0.66, 0.80, 0.93
Intel Core 2 Duo 0.80, 0.93, 1.06, 1.20, 1.60, 1.86, 2.00, 2.13, 2.26, 2.40, 2.53

Table 1.2: CPU frequencies available in different architectures.

The DVFS technique has been designed to enable various degrees of CPU

power reduction through different P-states. Running a processor in a lower fre-

quency/voltage setting reduces CPU power consumption substantially. The dy-

4

namic component of CPU power can be directly reduced via frequency/voltage

scaling since it is proportional to the product of frequency and the square of

voltage. Accordingly, a small reduction in these settings gives high reduction

in dynamic CPU power. Static power is less dependent on these settings and

thus more difficult to manage in this way. Further increase of static portion in

total CPU power might affect the DVFS technique applicability in a negative

way. Nevertheless, at the moment of the beginning of this thesis, as well as at

the moment of its finalization, the technique can achieve significant CPU power

reduction.

Power reduction achieved through frequency-voltage scaling comes at a per-

formance cost. Unfortunately, lower CPU frequency normally leads to an increase

in the application execution time. The severity of the performance penalty due

to frequency scaling depends on the application CPU boundedness. From the

system perspective, longer execution times are not the only negative side of the

technique but they have further negative consequences. Frequency scaling does

not only affect the application execution time, it might increase the wait time of

other jobs in the HPC system due to the artificial increase in the computational

load caused by frequency scaling. Hence the DVFS technique must be applied

carefully, not to extensively degrade performance.

DVFS is normally used to trade performance for energy in the manner shown

in Figure 1.1. Assuming that there are at least two CPU frequencies available, f1

and f2 (f1 > f2), there is the opportunity to choose between a shorter execution

time T1 followed by higher average CPU power P1 and a longer execution time

T2 at lower power P2. As a reduction in CPU frequency significantly decreases

CPU power while affecting less the execution time, the second scenario results in

a lower energy consumption (E(f2) = P2 ∗ T2 < E(f1) = P1 ∗ T1).

Thus, frequency selection normally involves an energy-performance trade-off.

In the chapter on related work, we describe some proposals to save energy via

DVFS without affecting application performance. These approaches try to ex-

ploit certain application characteristics such as load imbalance or presence of

communication intensive regions that are not frequency-sensitive. Unfortunately,

they can be applied only to certain applications and can not result in high energy

savings.

5

Figure 1.1: Energy-performance trade-off.

It is important to note the distinction between power and energy consumption

as a lower power consumption does not necessarily lead to a lower energy. Since

energy is power consumed over an interval of time, power reduction should be high

enough to amortize for the power consumption over the longer execution time if

energy savings are the goal. Accordingly, besides the power reduction, efficiency

of a performance-energy trade-off via DVFS also depends on the performance

loss caused by frequency scaling. This loss is not necessarily proportional to the

frequency reduction and depends on the application CPU boundedness. Regions

where the CPU is on a critical path are highly sensitive to frequency scaling.

However, memory bound and communication intensive regions show very low

sensitivity to frequency change. Thus different applications experience different

performance loss for the same amount of CPU frequency reduction. Furthermore,

the same application can experience different performance loss on different plat-

forms. In this thesis, we also analyze the DVFS technique potentials for future

HPC systems and applications.

The first power management approach using frequency scaling was proposed

in 1994 [78]. Nowadays, DVFS is present in all computing systems from laptops

to HPC centers. Its most common use is over periods of low load when it does

not affect performance significantly. For instance, the Linux onDemand gover-

nor changes CPU frequency in response to load. Nevertheless, mobile and HPC

workloads and goals differ to a large degree. Accordingly, while DVFS is widely

6

used in laptops, HPC applications in supercomputing centers are executed at the

highest available frequency.

1.3 Parallel job scheduling

HPC users submit their jobs together with job requirements to an HPC center.

The mandatory job requirements are normally an estimate of the job runtime (the

requested time) and the number of requested processors. After a job submission,

the job is sent to the wait queue. The job wait time is affected by multiple

factors. These factors include the job scheduling policy, the current load in the

center and the job requirements. For instance, if there are no queued jobs and

there are available resources, the scheduler can start the job immediately after

the submission. In situations of a highly loaded system, the job can spend hours

waiting in the queue. This is more probable to happen to jobs requesting many

processors. In Figure 1.2 it can be seen how load can fluctuate. The figure gives

the number of running and queued jobs over one week in the MareNostrum system

[80].

Figure 1.2: Running and queued jobs.

A parallel job scheduling policy determines how to share resources of a paral-

lel machine among the jobs submitted to the system. The traditional scheduling

has two dimensions determined by the job requirements: the number of proces-

sors requested and the job requested time. In this work, we assume rigid jobs

meaning that the job number of processors is fixed and specified by the user at

the submission time. This reflects the current situation in HPC centers.

7

As explained before, the job scheduling policy decides which of the jobs from

the wait queue will execute next once there are available resources. Additionally,

a resource allocation policy selects which available resources will be used for the

job chosen for execution by the job scheduling policy. In this work we investigate

job scheduling policies assuming First Fit as the processor allocation strategy.

The most simple parallel job scheduling policy, First Come First Served policy

(FCFS), had been used in the beginnings of cluster computing. Later, it has been

replaced by more complex policies that improve system utilization. Nowadays

backfilling policies are the basis of modern schedulers. The EASY backfilling is

a quite simple but still effective representative of this family of policies. It is

explained in the next section.

1.3.1 The EASY backfilling policy

Backfilling-strategies are a set of policies designed to eliminate the fragmentation

typical for the FCFS policy. With the FCFS policy a job can not be executed

before previously arrived ones, even if there are holes in the schedule where it

could run without delaying the others. Backfilling policies improve this flaw,

allowing a job to run before previously arrived ones under certain conditions.

There are various backfilling policies classified by characteristics such as the

number of reservations and the priority criteria algorithm used in the backfilling

queue. The number of reservations determines how many jobs at the head of the

wait queue will be allocated such that later arrived jobs can not delay their start

times. Only if such delay does not occur, a job can be run before others that

arrived previously (backfilled). When there are less jobs in the wait queue than

reservations jobs are executed in the FCFS order. If all reservations are used, the

algorithm tries to backfill jobs from another queue (the backfilling queue) where

jobs are potentially sorted in an order different from by submission time. For

instance, jobs in the backfilling queue can be sorted by their requested times.

The EASY-backfilling is one the simplest but still very effective backfilling

policy. The backfilling queue is sorted in the FCFS order and the number of

reservations is set to 1. With the EASY backfilling a job can be scheduled for

execution in two ways that are represented by two functions MakeJobReser-

8

vation(J) and BackfillJob(J).

Since the number of reservations with the EASY backfilling is one, only the

first job in the wait queue gets a reservation. The reservation for the first job is

made with MakeJobReservation(J). It is called every time the scheduler is

invoked. The EASY scheduler is invoked each time a job is submitted or when a

job finishes making additional resources available for jobs in the wait queue. If

at its arrival time there are enough processors, MakeJobReservation(J) will

start immediately a job and remove it from the queues. Otherwise, if it is the

first job in the queue it will make a reservation based on submitted user estimates

of already running job runtimes. If there is already a job with a reservation, the

scheduler will try to backfill it. BackfillJob(J) tries to find an allocation for a

job J from the backfilling queue such that the reservation is not delayed.

Figure 1.3 illustrates the idea behind backfilling. Jobs are numbered according

to their arrival order. At the moment of the job 4 arrival there are not enough

processors to run it. Hence, job 4 gets a reservation for the moment when enough

processors will be available. The job number 5 can be backfilled if it does not

require more than currently free nodes and will terminate by the reservation time

(Figure 1.3 (a)) or if it requires no more than the minimum of the currently free

nodes and the nodes that will be free at the reservation time (Figure 1.3 (b)).

Jobs scheduled in this way are called backfilled jobs. Normally, backfilled jobs

are short jobs or jobs that do not request many processors.

(a) Enough CPUs (b) Enough time

Figure 1.3: Backfilling scenarios.

The concept of backfilling is based on the assumption that the scheduler has

9

user provided estimates of job runtimes. In this way, the scheduler can determine

when there will be enough resources available when making a reservation. Simi-

larly, the scheduler needs job runtime estimates to decide whether a job can run

without delaying the reservation. It is in the user’s interest to give an accurate

estimate of the runtime as an underestimation leads to killing the job, while an

overestimation may result in a longer wait time.

The majority of our power-aware policies are extensions of the EASY backfill-

ing. The main goals and constraints of power-aware job scheduling are explained

in the following section.

1.4 Power-aware job scheduling

This thesis proposes to upgrade HPC job schedulers with an additional module

in charge of frequency assignment at job granularity. We refer to this concept as

power-aware parallel jobs scheduling. It assumes that the system supports the

DVFS technique.

The scheduler selects one of the supported DVFS frequencies for each job at

its scheduling time. The same frequency is used for each job’s process over the

entire job execution. Thus, the frequency of a running job is not changed even in

the case of a dramatic increase or decrease in the number of active processors and

the following change in power consumption. Potential changes in load are taken

into account via newly arriving jobs, since we look at online scheduling where

jobs are constantly arriving. At this level of granularity, frequency scaling does

not add any overhead in time or energy. More importantly, due to the coarse

grain nature of the scaling algorithms, the system reliability is not endangered.

Too frequent frequency changes might reduce chip life time.

Power management in an HPC center can be motivated by desirable energy

reduction that reduces operating costs. However, this is not the only reason for

power management, it can be forced by a strictly imposed power budget. The

available power budget can be determined by the power provisioning infrastruc-

ture which is extremely costly. The cost of building a power provisioning facility

is in the range of $10-22 per deployed IT watt [4]. With constantly increasing

supercomputer power consumption, available power will be very often limited

10

by the power provisioning infrastructure. Hence, we distinguish two groups of

policies based on their purpose: energy saving and power budgeting policies.

1.4.1 Energy saving policies

This part of the thesis examines ways to save energy through energy-performance

trade-off. Running a job at a lower frequency decreases CPU power consumption

and leads to CPU energy savings. An increase in job run times of jobs executed

at reduced frequencies might be acceptable to a certain degree if it results in

energy savings.

Frequency reduction affects directly the performance of the job running at

lower frequency. Furthermore, it can result in additional performance degradation

of other jobs due to an artificial increase in load that can lead to higher job

wait times. Thus, when examining the energy-performance trade-off the entire

workload should be taken into account. Policies that belong to this group are

designed to use lower frequencies in such a way that job performance loss is

controlled. The biggest challenge was to detect when frequency scaling does not

penalize significantly the overall job performance measured in job performance

metrics.

Figure 1.4 shows a simplified example of parallel job scheduling. The cluster

on which scheduling is performed is represented by a rectangle determined by

time and the number of processors. Similarly, the job’s number of processors

and runtime are represented by job rectangles. The first case corresponds to all

jobs running at the nominal frequency. In the second case some jobs from the

workload are executed at lower frequencies (Job2, Job3, Job4 and Job6) taking

more time. In the last case when Job5 is also run at reduced frequency, the wait

times of Job4, Job6 and Job7 are increased penalizing overall job performance.

Job performance losses due to frequency scaling are apparent once one focuses

on the entire workload.

When we started to work on power-aware scheduling CPU power was the main

contributor to the dynamic power [17]. Dynamic power is the activity dependent

power component. Hence, we assumed that the difference between idle and active

power of other system components is negligible. Figure 1.5 gives system energies

11

(a) Nominal frequency - no performance loss due
to frequency scaling

(b) Lower frequencies - jobs running at reduced
frequency have longer run times

(c) Lower frequencies - frequency scaling affects
job wait times

Figure 1.4: Effect of frequency scaling on job scheduling.

12

consumed in the cases of the nominal and a reduced CPU frequency. When

running at the nominal frequency processors dissipate more power compared to

the reduced frequency. In the first case the job finishes earlier and the rest of the

time, the processors are idle. In both cases other system components consume

the same power. Note that in the policy evaluations we will discuss CPU energy

savings. Accordingly, these savings expressed as a portion of the system energy

consumption would be lower.

(a) Nominal frequency (b) Reduced frequency

Figure 1.5: Two energy consumption scenarios.

Figure 1.6 gives an illustration of the potential CPU energy savings achievable

via DVFS in an HPC center. The CPU energy needed to execute an HPC work-

load is estimated for a given portion of workload executed at reduced frequency

and the rest of the workload at the nominal frequency. This estimation illus-

trates the DVFS technique’s energy saving potential based on power/execution

time models described in Chapter 3 but it does not show job performance degra-

dation. In the figure it is assumed that the frequency is halved and that the

voltage is proportional to frequency. Static power is assumed to be equal to 30%

of total CPU power when the processor runs at the nominal frequency. Jobs are

assumed to show a medium sensitivity to frequency scaling. These parameters

correspond to average values at the time we started the thesis work.

The figure shows a very clear potential for energy savings via frequency scaling.

For instance, if half of the load is run at halved frequency, the CPU energy needed

to execute the workload is 32% lower than in the case when all jobs are run at

the top frequency. Further reduction in frequency would result in even higher

13

Figure 1.6: Normalized CPU energy consumption for a given portion of jobs
executed at reduced frequency. Reduced frequency equals 50% of the nominal
frequency, static power accounts for 30% of CPU power, jobs show medium sen-
sitivity to frequency scaling.

energy savings. Unfortunately, further frequency reduction leads to an additional

performance loss.

Our goal was to discover how much frequency scaling affects job performance

averaged over entire workloads and how to control this performance degradation.

We proposed two policies. The first policy uses the current system utilization

as a proxy of system load when deciding about the job frequency. The other

policy assigns job frequency based on the predicted job performance at different

frequencies. Both of them take into account the wait queue length when selecting

the job frequency. Our evaluations of the proposed policies show the possible

range of CPU energy savings under controlled job performance losses.

1.4.2 Power budgeting policies

Power budgeting policies have a different purpose than energy saving policies.

Here, the main goal is to maximize the overall job performance under a given

power budget. Note that these policies do not consider the energy consumption.

Also, it is important to distinguish job performance measured in job performance

metrics (and determined by both job run and wait times) from the job run time.

Obviously, when there is enough power available for all jobs to run at the

nominal frequency, the best performance is achieved without frequency reduc-

tion. A more complicated case arises when the available power is not sufficient

14

to execute the entire load at the top frequency. Using reduced frequencies allows

more jobs to execute simultaneously leading to lower wait times. As job perfor-

mance depends on both the wait and run time, a decrease in wait times may

amortize longer run times of the jobs executed at reduced frequency and lead to

better overall performance. Note that here the assumption is that there are more

processors available than power to run all of them at the nominal frequency. The

idea of power constrained scheduling is shown in Figure 1.7.

Figure 1.7: Benefit of frequency scaling for power constrained systems - more
jobs can run under the same power budget.

The workload comprises of five jobs waiting for execution. Again, a given job’s

x -dimension represents the job run time while its y-dimension is the requested

number of processors. Running all of them at the nominal frequency results in

the upper execution order shown in the figure. In this case, the makespan is T2.

If some of them execute at reduced frequency, all jobs can run at the same time

under the given power budget (bottom part of the figure). Then, the makespan

T1 is shorter than the previous one. We show that, despite longer run times

of some jobs, overall job performance improves with frequency scaling in power

constrained systems.

Here we also proposed two budgeting policies. The first policy is an upgrade

15

of the EASY backfilling that already shows benefits from the frequency scaling

for power constrained systems. The other policy is a completely new policy based

on an optimization problem, that fully exploits all available power.

We believe that power-budgeting policies will be necessary in future super-

computing centers because of constantly increasing system power demands. As

power is becoming a constrained resource in HPC environments, it is natural to

be managed by the job scheduler.

1.5 Contributions

In this thesis, we explored CPU power and energy consumption of HPC work-

loads. It was investigated how and when to use DVFS as a power management

technique.

Our contributions may be summarized in the following:

• First, to the best to our knowledge, we were first to propose power-aware

parallel job scheduling based on the DVFS technique. The use of DVFS has

been investigated before in different systems including HPC environments

but not at the parallel job scheduling level. Previous work in HPC systems

mainly targeted the application level. We argue that the job scheduler

presents a good place for power management thanks to its global knowl-

edge of the system. Moreover, as it performs management of other system

resources, it should be extended to deal with power as a new resource of

great importance. We developed an infrastructure that includes high-level

power and performance models and a simulation infrastructure to evaluate

different power-aware policies.

• Second, we designed two policies to reduce energy consumption with a con-

trol over performance degradation due to frequency scaling. The first policy

exploits energy savings that can be achieved by running jobs at reduced fre-

quency when the system load is low [14]. The other policy decides whether

to run a job at reduced frequency based on job performance prediction [12].

This part of the thesis is aimed at discovering real potentials of DVFS fo-

cusing on the entire workload. We showed that energy savings come at high

16

performance costs because of the increase in job wait times.

• Third, we explained when DVFS can improve job performance in an HPC

center. A power constrained system can benefit from DVFS running more

processors simultaneously but at reduced frequencies. This was shown with

two policies. The first power budgeting policy is based on job performance

predictions [13]. The other policy schedules jobs and assigns them frequency

using linear programming [15]. This policy manages both processors and

power at the same time considering more queued jobs simultaneously.

• Fourth, we developed models of frequency scaling impact on execution time

and CPU power consumption of parallel applications. The models are based

on the application’s parallel efficiency (portion of computation in the total

execution time). The model of frequency scaling impact on parallel appli-

cation performance was validated with measurements on a modern large

scale cluster [16].

• Last, we analyzed the future potentials of DVFS for the energy-performance

trade-off. Memory power consumption increases, as well as a CPU’s static

power portion. These aspects of future systems would have negative con-

sequences on the DVFS application. On the other hand, parallel efficiency

of large scale applications might contribute to the efficiency of DVFS. De-

pending on the application’s parallel efficiency, its performance does not

have to be seriously affected by frequency scaling. As the efficiency of the

DVFS technique is affected by many changing parameters, we used our

models to explore under which conditions DVFS would be useful for the

energy-performance trade-off in new technologies [16].

1.6 Publications

As the result of the thesis we have published the following papers:

1. M. Etinski, J. Corbalan, J. Labarta and M. Valero. BSLD-threshold driven

power management policy for HPC centers. In IEEE International Parallel

17

and Distributed Processing Symposium, Workshops and PhD Forum 2010

Proceedings, HPPAC workshop, pages 1-8, GA, Atlanta, April 2010.

This paper proposes the energy-saving policy which selects frequency based

on predicted job performance. The policy is described in Section 4.3.

2. M. Etinski, J. Corbalan, J. Labarta and M. Valero. Utilization driven

power-aware parallel job scheduling. International Conference on Energy-

Aware High Performance Computing, In Computer Science - Research and

Development, Springer 25/2010, pages 207-216, Hamburg, September 2010.

Section 4.2 presents the policy evaluated in this paper. This policy assigns

CPU frequency based on system utilization aiming at energy savings with

minimal job performance degradation.

3. M. Etinski, J. Corbalan, J. Labarta and M. Valero. Optimizing job per-

formance under a given power constraint in HPC centers. In IEEE Inter-

national Conference on Green Computing Proceedings, pages 257-267, IL,

Chicago, August 2010.

The work presented in this paper shows the DVFS potential for power

constrained systems. It corresponds to Section 5.2.

4. M. Etinski, J. Corbalan, J. Labarta and M. Valero. Linear programming

based parallel job scheduling for power constrained systems. In Proceedings

of the IEEE International Conference on High Performance Computing and

Simulations 2011, pages 72-80, Istanbul, July 2011.

In this paper, we proposed an optimization based policy that fully exploits

available power improving performance of a power constraint system. It is

described in Section 5.3.

5. M. Etinski, J. Corbalan, J. Labarta and M. Valero. Understanding the

future of energy-performance trade-off via DVFS in HPC environments.

In Journal of Parallel and Distributed Computing, Elsevier, accepted for

publication, 2012.

Our analysis of DVFS efficiency for different application/platform charac-

teristics is presented in this paper. Furthermore, it gives the validation of

18

our parallel application performance model at different CPU frequencies.

This work corresponds to Chapter 6.

Also, we prepared a book chapter on power-aware parallel job scheduling for:

6. Handbook of Energy-Aware and Green Computing. Chapman & Hall/CRC

Computer & Information Science Series, January 2012.

1.7 Thesis organization

This thesis is organized as follows. The next chapter gives an overview of related

work. Since the majority of related works, as well as this thesis, targets CPU

power consumption special attention is devoted to research done on CPU power.

When discussing CPU power management, we distinguish three groups of sys-

tems: HPC centers, data centers and desktop/mobile systems. At the end of the

chapter, a short description of power management of other system components is

given.

Chapter 3 explains methodology used in evaluations of all policies in this

thesis. As policy evaluation is based on simulations, we model the DVFS effect on

the job run time and CPU power consumption. The impact of frequency scaling

on execution time is explained in Section 3.2.1 whilst Section 3.2.2 describes CPU

power. The models are followed by a description of the simulator used in this

work. Section 3.6 presents workloads used in simulations. The chapter ends with

an explanation of job performance metrics.

Chapter 4 presents energy saving policies whilst Chapter 5 deals with power

budgeting. In both cases, policy results are presented and discussed.

An analysis of DVFS potentials for energy-performance trade-off in current

and future HPC systems is given in Chapter 6. Here, we present measurements

of the impact of frequency scaling on execution time of large scale applications.

Then, the model estimating this impact based on the application’s parallel ef-

ficiency is verified. Finally, we perform a parametric analysis of the DVFS’s

potential for energy savings in future systems.

Chapter 7 concludes this thesis. Our findings on DVFS use in HPC systems

are exposed in this chapter.

19

The document ends with the list of references.

20

Chapter 2

Background

Abstract

Here we present related work on power management in various systems. First,

power reduction in HPC systems is discussed at both system and application level.

Then, we give an overview of power-aware computing in general. The presented

research mainly targets CPU power consumption, though at the end we present

some of the power management approaches proposed for other system components.

2.1 Introduction

There has been extensive research on power management in computing systems

over the last two decades. However, there are no works dealing with DVFS appli-

cation for online parallel job scheduling of rigid jobs. Hence, for the evaluation of

our policies we always make comparisons against a widespread scheduling policy

that does not use frequency scaling. Here, we present different power management

approaches from related work.

The main target of power-aware research has normally been processor power

consumption since it accounts for the greatest fraction in system power. Though

the CPU power portion is system dependent, it is considered to be around 50%

of system power consumption under load [24].

It is important to note that this is a very active field of research with new

proposals appearing regularly. Furthermore, research is driven by fast changing

21

technology that determines a given approach’s efficiency. Accordingly, not all

related works were published at the beginning of this thesis nor all of them have

the same relevance today as when they were published. Nevertheless, we present

the entire related work here.

We distinguish three groups of systems when presenting research on CPU

power management. These three groups, HPC systems, data centers and desk-

top/mobile systems, have different purposes and accordingly different goals and

constraints. For instance, high performance computing workloads comprise of

parallel applications. On the other hand, data centers process user requests that

have a lower level of parallelism. Furthermore, though data center requests take

less time than HPC applications to execute, their response time is of great im-

portance for user comfort. Desktop/mobile workloads are often sequential and

more interactive. There is also more variety in these workloads compared to the

previous two types. Thus, there are different power reduction approaches for

different system types.

Due to increasing memory power dissipation, main memory consumption

starts to be considered as another system component consuming a large portion

of system power. Accordingly, there are emerging proposals on main memory

power management. In the last section of this chapter, we describe works on

main memory consumption, as well as disk power management.

2.2 CPU power management

Much research has been conducted on CPU power consumption in various types

of systems. Works of relevance to the thesis are presented in this section, and in

particular in the next subsection.

2.2.1 HPC systems

We distinguish two groups of approaches in HPC environments depending on

whether they deal with an application or the entire workload. These two main

approach levels are described below.

22

2.2.1.1 Application level

Ge et al. presented a framework for a detailed analysis of per device energy

consumption of parallel applications on multicore, multiprocessor-based nodes

[24]. Also, power efficiency and performance impact of frequency scaling were

discussed. This work gives valuable insights into frequency scaling impact on

parallel applications that have been partially used in our power/performance

models. Freeh et al. investigated DVFS energy-performance trade-off of parallel

applications together with characteristics that determine the application perfor-

mance loss [22]. Our work from Chapter 6 extends this analysis and proposes a

model of parallel application’s performance loss due to frequency reduction.

A theoretical study on parallel application energy efficiency was done by Cho

and Melhem [6]. They determined optimal frequencies for the serial and parallel

regions for a given number of processors and the ratio of serial and parallel appli-

cation portions. An analytical model of energy scalability of parallel applications

was proposed [9]. The authors studied the possibility to maintain application

performance at lower energy consumption running the application on more pro-

cessors but at lower frequency. It was concluded that this is possible but only

CPU energy was taken into account. Ge and Cameron investigated parallel appli-

cation energy efficiency as well, introducing the term power-aware speedup [23].

They proposed a model that takes into account parallel overhead and predicts

power-aware performance for different processor counts and frequencies. How-

ever, in our work we assume rigid jobs that have a fixed number of processors

determined at the submission time since it is the most common case nowadays.

Rountree et al. introduced a system that uses linear programming to deter-

mine the bound on energy savings for MPI programs for any specified time delay

[70]. They concluded that while some programs can save a significant amount of

energy with DVFS, up to 15% with 1% of time delay. For some others only little

savings of about 3% are possible. Lim and Freeh conducted a similar study for

sequential applications [55].

Power-aware runtime systems for parallel applications were developed. Kap-

piah et al. implemented a system that aims to reduce CPU energy with no

performance penalty [44]. The system targeted load imbalanced MPI applica-

23

tions reducing frequency of nodes with less computation assigned and therefore

with slack time. In this way, the execution time was not seriously affected as

less loaded nodes running at lower frequency would arrive just in time for com-

munication with the other nodes. Their system succeeded to save up to 8% of

system energy while increasing the execution time by 2.6%. Li et al. proposed

another runtime system for energy-efficient execution of hybrid MPI/OpenMP

applications [52]. This system saves 4.18% on average and up to 13.8% of energy

with no performance penalty using DVFS and dynamic concurrency throttling.

Hsu and Feng proposed an algorithm for online frequency selection in a way that

the slowdown does not exceed a given threshold [31]. They exploited the fact

that regions with more off-chip accesses can run at lower frequency with less per-

formance loss. Lim et al. presented a MPI runtime system that reduced CPU

frequency during communication intensive phases [56]. All of these systems aim

to save energy with minimal performance degradation exploiting certain appli-

cation characteristics. Accordingly, they can not be applied successfully to all

applications. These runtime systems are orthogonal to our work and can be com-

plementary to power-aware parallel job scheduling when the maximal frequency

selected by the runtime system does not exceed the frequency that the scheduler

assigned to the job.

2.2.1.2 System level

Today’s computing systems are still not energy-proportional meaning that power

consumption of an idle system accounts for about half of the power consumption

under load [17]. Accordingly, there has been research on the appropriate number

of nodes that should be powered-on to save idle energy. Lawson et al. developed

policies that reduce energy consumption by powering on/off system nodes while

meeting a pre-defined service level agreement [49]. Online simulations were used

to predict future load and to adjust the number of powered on processors. A

packing strategy that maps jobs to nodes was proposed to maximize the number of

idle nodes so they can be powered off [30]. Due to the high power consumption of

idle systems, there is an initiative both in the research community and industry to

achieve energy-proportional computing [3]. Having lower idle power consumption

24

would directly solve the problem addressed in these works.

To the best of our knowledge, our work is the first to propose DVFS use at the

parallel job scheduling level in an HPC center. However, DVFS based scheduling

was proposed for bag-of-task applications with deadline constraints [47]. Bag-of-

task applications are parallel applications that consist of independent tasks, and

accordingly are not representative of the applications commonly found in super-

computing centers nowadays. Their simulations results achieve up to 45% savings

in CPU energy. Similarly, scheduling of sequential workloads on computer grids

with variable frequency was investigated [48]. Like in the previously mentioned

works, the authors also examined the effect of turning the machines off and on.

Power-aware scheduling of bag-of-task applications has also been studied for het-

erogeneous clusters [1]. This work uses the solution to a linear programming

problem when allocating jobs on machines with different power consumption.

2.2.2 Data centers

High electricity costs in large data centers has motivated research on power-aware

computing in this type of systems. There has been considerable research on

energy conservation in data centers. For instance, an early work investigated the

benefit of turning on and off cluster nodes depending on the load [65]. Elnozahy et

al. proposed five policies for power management in server farms that use dynamic

voltage scaling and node vary-on/vary-off [61]. The policies were evaluated using

real-life Web server traces. The largest savings were observed for voltage scaling in

conjunction with bringing nodes online and taking them offline. Later, Meisner et

al. proposed PowerNap, an energy-conservation approach that transitions rapidly

between an active and a low power idle state in response to load [59]. They used

existing hardware mechanisms to construct a server with such low idle power

consumption.

Similarly to HPC systems, there have been efforts to find the best fitting

platform in heterogeneous environments. A workload allocation method for het-

erogeneous clusters that improves power efficiency of the whole data center was

developed [63].

The electricity bill does not depend only on the amount of energy consumed

25

over the month but also on the pricing scheme agreed between the power utility

and the data center. Recently, approaches that exploit geographical and temporal

price variability have been proposed. Multi-site Internet services can leverage

geographical price variability through demand redirection to data centers with

lower electricity price [66]. Another policy that routes demand of a multi-site

Internet service to reduce the electricity costs taking into account brown energy

caps has been designed [50].

Another way to intelligently schedule power draw taking into account the

pricing model is by using UPS batteries [27; 77]. Urgaonkar et al proposed an

optimization based algorithm to minimize the electricity bill by storing energy in

UPS batteries when the electricity price is lower and using it when the price is

high [77]. Govindan et al proposed to use batteries for peak shaving with a peak

based pricing scheme. Over slots with high load energy from batteries is used to

reduce the peak billing component [27].

Also, power provisioning infrastructure that can sustain the peak power draw

might be very costly. Fan et al. investigated the aggregate power usage of large

collections of servers for different applications [17]. They remarked that a gap

between the achieved and aggregate power consumption can be exploited for

additional computing equipment within the same power budget. Ensemble power

management based on power allocation among its blades using DVFS for power

control was studied and two policies were proposed [68]. It was concluded that

power management at a higher level instead of the local blade level allows for

higher power budget reductions with marginal reductions in performance.

2.2.3 Desktop/mobile systems

This section describes research that is not directly related to high performance

computing, parallel processing or data centers. The majority of works from this

section presents efforts done at the chip level.

OnDemand is one of the Linux dynamic in-kernel governors that changes CPU

frequency depending on CPU utilization [64]. Its algorithm is quite simple using

regular CPU utilization checks. If the utilization is higher than a given upper

threshold it sets the CPU frequency to the nominal. Similarly, if the utilization is

26

lower than a given lower threshold, the CPU frequency is decreased by a certain

percentage. Nowadays, many laptops use this governor. Another policy that uses

DVFS was proposed [57]. It adapts CPU frequency based on the user feedback.

The authors remarked a significant improvement over Windows XP DVFS.

A framework for the run time DVFS use was integrated in a general dy-

namic compilation system [79]. This framework takes into account program phase

change when selecting p-state. Dynamic compilation was used to avoid certain

limitations of the static approach such as the dependence of memory boundedness

on the program input size and patterns. Snowdon et al. developed a platform

which uses a pre-characterized model at run-time to predict the performance and

energy consumption of a piece of software [75]. Similar models for the same pur-

pose were developed for superscalar processors [45]. These models do not require

previous runs at all available frequencies. Online performance and power con-

sumption based on performance counters were studied to implement two policies

for application-aware power management [67]. One of the policies adapts CPU

frequency according to the available power budget whilst the other’s purpose is

to save energy with a minimal performance loss.

Power constrained systems were investigated as well. For instance, Isci et

al. analyzed per chip power budgeting [41]. They introduced a concept of a

global power manager in charge of per core power mode control. Several DVFS

policies were evaluated for different objectives such as prioritization, fairness and

optimized chip-level throughput. Felter et al. investigated active power allocation

between the processor and the memory subsystem [20]. The policies proposed in

this work used throttling to perform a workload-guided power control of both

system components aiming to maximize performance for a given power budget.

Rubio et al. suggested that overclocking might be used to improve performance

of workloads that have sufficient slack in their power requirements [72].

Also, bounds on energy savings using DVFS were explored [81]. The algo-

rithm took into consideration DVFS characteristics such as the switching costs

and the number of p-states. Program states were considered as well. Miyoshi et

al. investigate which DVFS setting is the most energy efficient [60]. They in-

troduced a concept called critical power slope to investigate power-performance

characteristics of different systems that determine frequency scaling energy effi-

27

ciency. Finally, Le Sueur and Heiser examined the potential of DVFS for energy

savings over three platforms and analyzed which development trends limit the ef-

fectiveness of the technique [51]. They found that on new platforms DVFS tends

to be less effective.

Our work, as well as many other power management works, is based on sim-

ulations. Accordingly, there has been research devoted to power modeling at

various levels. The power model used in our work is given in Section 3.2.2. Here

we present a short overview of power models in general. Rivore et al. give a com-

parison of high-level full-system power models [69]. Five models were compared

over different platforms and workloads to conclude that a model based on OS

utilization metrics and CPU performance counters was the most accurate, espe-

cially for systems whose dynamic power consumption was not dominated by the

CPUs. Butts and Sohi proposed a simple static CPU power model for architects

[5]. This leakage power model was improved to account for temperature impact

[54; 82].

2.3 Other system components

Though CPU power consumption attracts the most attention in the research

community, there have been considerable efforts investigating power efficiency of

other system components. Here we give a concise overview of studies on main

memories and disks.

Li et al. proposed memory/disk energy saving schemes whose control algo-

rithms provide a performance guarantee [53]. This work used low-power operating

modes to reduce main memory energy consumption. Though data was preserved

in all power modes, a chip had to be in the active mode to perform a read or

write operation. In order to access data on a chip in low-power mode, the energy

for bringing the chip back to active mode is needed followed by an additional

delay. Accordingly, these modes must be selected carefully to avoid excessive

performance degradation. Though low power modes were available for disks, the

authors argued that multi-speed disks presented a better choice. A disk rotating

at lower speed consumes less power. The penalty for lower power consumption

is a longer request service time. In order to control performance degradation, a

28

technique that forces all devices to full-power mode when the performance loss

would exceed a given limit was proposed. Furthermore, two algorithms for device

mode selection, epoch or threshold based, were investigated.

Power proportionality of large scale cluster-based storage has been examined

[2]. Traditionally, such storage randomly places replicas of each block on a number

of nodes of the storage system. Power proportionality in this work comes from

a data layout policy that allows systems to change the number of powered-on

nodes scaling both performance and power consumption.

Power budgeting in memory subsystems using low-power modes has been

studied [10]. Four policies to limit power consumption driven by the load on

the memory subsystem were proposed and evaluated. One of the policies uses

the Multi-Choice Knapsack problem to distribute power among memory devices

while the others select power states based on a list of recently used devices. The

authors found that two of the policies could limit power with very low performance

degradation.

Recently, two works advocating DVFS for main memory have appeared. As

previously argued for disks [53], memory power modes require entire DRAM ranks

to be idle. Hence, active low-power modes have been proposed [8]. These modes

would be implemented using dynamic voltage and frequency scaling applied to

the memory controller and dynamic frequency scaling to the memory channels

and DRAM devices. The authors proposed a management policy for the operat-

ing system to select a mode based on the performance loss the application would

accept. Similarly, memory DVFS was seen as a way to achieve energy propor-

tionality in the other work as well [7]. In this work, a control algorithm that

adjusts memory voltage and frequency based on memory bandwidth utilization

was proposed.

Power management of the memory subsystem in HPC environments could be

done at the job scheduling level together with CPU power management, making

it more effective. Though memory DVFS is still in the domain of research, its

availability would enable further leverage to reduce job power consumption and

it can present one of the directions for future work.

29

Chapter 3

Methodology

Abstract

In this chapter, we explain the evaluation methodology used in the thesis. Since

the evaluation approach is simulation based, it involves modeling of power and

performance at different frequencies. These models and the simulator’s structure

are explained here. Also, we present common job performance metrics. At the

end, the parallel workloads used in the thesis are described and analyzed.

3.1 Introduction

Policies proposed in the following chapters were evaluated through simulations.

In this chapter, we explain the simulation methodology that includes modeling

of DVFS impact on job run time and CPU power consumption. We improved

existing models of CPU power consumption and performance to model impact

of frequency scaling on parallel applications. The important contribution of our

work is the ability of our models to correlate a given application’s power re-

duction and performance loss through application characteristics. We proposed

models that use application parallel efficiency when estimating both the average

application power consumption and performance loss. After the explanation of

the models, we describe the simulator used in this thesis. It is followed by an

overview of widespread job performance metrics and our modifications that take

into account the job performance loss due to frequency reduction. An extensive

30

analysis of the parallel workloads used in the evaluation process is presented at

the end of this chapter.

3.2 DVFS impact modeling at job level

Frequency scaling affects the application execution time and power consumption

in a way that is application dependent. In our work we need high level models

of the execution time and the average CPU power consumption that take into

account the frequency/voltage settings. While simulating a power-aware policy,

the simulator gets the job run time from the workload log. This value is assumed

to be the original run time that corresponds to the job run time at the nominal

frequency. The job’s new run time at reduced frequency is determined according

to the model explained in the next section. It is followed by the model that

gives the job’s average CPU power consumption for different frequency/voltage

settings.

Since modern supercomputer workloads mainly consist of large scale parallel

applications, modeling described here devotes special attention to parallel appli-

cations. Before we start with further explanations, it is important to note that

frequency scaling does not impact computation and communication phases in the

same way. While computation time depends heavily on CPU frequency, commu-

nication time almost does not vary for different frequencies [24]. Furthermore,

computation and communication phases should be distinguished as CPU power

consumption is lower in communication resulting in lower average power con-

sumption of communication intensive applications. Accordingly, we propose to

use the application parallel efficiency (the portion of computation in the execution

time) to capture this difference.

3.2.1 Execution time modeling

Running all processors of an application at reduced frequency increases the ap-

plication execution time. This increase is not necessarily proportional to the re-

duction in frequency. It is determined by non-CPU activity i.e. memory accesses

and communication latency. The β metric, introduced by Hsu and Kremer [32],

31

and investigated by Freeh et al. [22], gives the application slowdown compared

to the CPU slowdown:

T (f)/T (fmax) = β(fmax/f − 1) + 1 (3.1)

where T (fmax) represents the application execution time at the nominal frequency

fmax, while T (f) is the execution time at reduced frequency f .

This relation between the reduction in frequency and the increase in the execu-

tion time was derived for sequential applications assuming that the computation

time TCPU scales inversely proportional with frequency while the memory access

time TMEM does not change:

TCPU(f) + TMEM

TCPU(fmax) + TMEM

=
TCPU(fmax) ∗ fmax

f
+ TMEM

TCPU(fmax) + TMEM

(3.2)

T (f)

T (fmax)
=

TCPU(fmax)

TCPU(fmax) + TMEM

(
fmax

f
− 1) + 1 (3.3)

Thus, β equals:

β =
TCPU(fmax)

TCPU(fmax) + TMEM

(3.4)

In the case of parallel applications, communication latency is an additional

non-CPU activity insensitive to frequency scaling. The same metric β is used for

parallel applications to measure their performance sensitivity to frequency scaling

[13; 22].

Different jobs experience different execution time penalties depending on their

CPU-boundedness. Theoretically, if an application would be completely CPU

bound, its β would be equal to 1 while β = 0 means that the execution time is

insensitive to frequency scaling. In practice, the β parameter has values between

0 and 1. It is important to mention that the β parameter describes applica-

tion/platform characteristics and does not depend on the amount the frequency

was reduced by. The highest variance observed between two β values of same

application for different frequencies was 5% [22].

The β parameter of a parallel application is heavily dependent on the commu-

nication portion in the execution time. We derive the relation between the global

32

application βglobal value and the average computation phase βcomp, assuming the

application’s parallel efficiency of p - the portion of total execution time spent in

computation. As communication time stays nearly the same at lower frequencies,

the following holds:

T (f) = pT (fmax)(βcomp(fmax/f − 1) + 1) + (1− p)T (fmax). (3.5)

Equalizing T (f) from equations (3.1) and (6.4) gives βglobal = pβcomp. βcomp

represents the frequency scaling impact on sequential code. In this way, the

non-CPU activity influence is decomposed into the memory and communication

factors. This relation was validated by measurements in Chapter 6.

We assigned p and βcomp parameter values to each job according to the dis-

tributions presented in the next paragraph. These assigned values were used to

generate for each job the parameters needed in the evaluation.

Among 20 sequential benchmarks observed in [22], three have β in the in-

terval (0.2,0.4), ten are in the interval (0.4,0.8) and the others have β from the

(0.8,1) interval. Therefore, in our work βcomp was assumed to have uniform distri-

butions: U(0.2, 0.4), U(0.4, 0.8) and U(0.8, 1.0) with the following probabilities:

3/20, 1/2 and 7/20 respectively. The parallel efficiency of an application depends

on the application, its inputs and the number of processor used. Some works

give this ratio for different applications [21; 73]. The parameter p in this work

has been modeled according to the probability distribution given in Table 3.1.

CPU(J) represents the number of processors of the job J . Sequential jobs do not

spend time in communication, therefore their p value is equal to 1. For parallel

jobs the parameter p has one of the three uniform distributions, given for each

range of processors, with the probability of 1/3.

CPU(J) = 1 1 < CPU(J) ≤ 16 16 < CPU(J) ≤ 64 64 < CPU(J) ≤ 512 CPU(J) > 512

U(0.6, 0.75) U(0.5, 0.7) U(0.2, 0.6) U(0.1, 0.5)
p = 1 U(0.75, 0.9) U(0.7, 0.8) U(0.6, 0.8) U(0.5, 0.7)

U(0.9, 0.95) U(0.8, 0.9) U(0.8, 0.9) U(0.7, 0.8)

Table 3.1: Parameter p distribution depending on the job number of processors
CPU(J); p can get value from each of three given uniform distributions with the
same probability.

33

3.2.2 Power modeling

CPU power consists of dynamic and static power [67]. Dynamic power depends on

the CPU switching activity while static power represents various leakage powers

of the MOS transistors. The dynamic component equals to:

Pdynamic = ACfV 2 (3.6)

where A is the activity factor, C is the total capacity, f is the CPU frequency

and V is the supply voltage. The static power is proportional to the voltage [5]:

Pstatic = αV. (3.7)

Based on these relations we further model CPU power consumption of parallel

applications. In our model the parameter α is determined as a function of the

static portion in the total CPU power of a processor running at the top frequency.

As all the parameters are platform dependent, they can be set in the simulator’s

configuration files.

CPU power dissipation is not constant over an application execution. De-

pending on application phase, processor activity can differ and, accordingly, CPU

power consumption can vary significantly. Whilst in a communication call, a pro-

cessor consumes power nearly equal to the power of an idle processor [24]. The

application parallel efficiency at a given frequency f is needed to compute the

application average CPU power consumption at this frequency. If a parallel appli-

cation Ji has parallel efficiency of p at the nominal frequency, its average activity

factor needed to compute the average power consumption is:

Ai(fnominal) = p ∗ Acomp + (1− p) ∗ Acomm (3.8)

where Acomp and Acomm are computation and communication phase activities at

the nominal frequency, respectively. The ratio between Acomp and Acomm can be

obtained from the two following equations using power measurements of compu-

tation and communication phases [24]:

Pstatic + Acomp ∗ f ∗ V 2 = Pcomp (3.9)

34

Pstatic + Acomm ∗ f ∗ V 2 = Pcomm. (3.10)

This system of equations yields Acomp/Acomm for a given portion of static

power in total CPU power. Note that the average job power consumption is

the average processor power consumption for the given average activity at the

given frequency, multiplied by the number of processors used. The average job

activity depends on frequency as the computation/communication ratio changes

with frequency reduction. As we mentioned before, computation time increases

with frequency scaling while communication stays nearly the same. Therefore, if

p represents the parallel efficiency at the nominal frequency, average job activity

at reduced frequency f is given by the equation (3.11) where βcomp(Ji) is com-

Ai(f) = (p ∗ (βcomp(Ji)(fnominal/f − 1) + 1) ∗Acomp + (1− p) ∗Acomm)/(βglobal(Ji)(fnominal/f − 1) + 1)
= (βglobal(Ji)(fnominal/f − 1) ∗Acomp + p ∗Acomp + (1− p) ∗Acomm)/(βglobal(Ji)(fnominal/f − 1) + 1)
= (βglobal(Ji)(fnominal/f − 1) ∗Acomp +Ai(fnominal))/(βglobal(Ji)(fnominal/f − 1) + 1).

(3.11)

putation phase beta described in the previous section. Accordingly, the average

power consumed by a job Ji at frequency f is equal to:

P (Ji) = CPU(Ji) ∗ (αVf + Ai(f)fV
2
f) (3.12)

where Vf is the corresponding voltage of frequency f .

Ai(fnominal) values were generated for each simulated job using its p value.

The p and βcomp parameter values assigned to the job were used to compute

values of βglobal and Ai(fnominal) parameters. Once these values were obtained

they were sufficient to model job power consumption and runtime at different

CPU frequencies.

The portion of static power when a processor is running sequential code at the

nominal frequency was assumed to be 30%. As low power modes were not widely

available at the time of the energy saving work, we looked at two scenarios for

idle CPU power. In the first case, all system idle processors are in a low-power

mode and they do not consume power whilst in the other case, they are idle at

the lowest available frequency with an activity 1.9 times lower than the activity

under load. This is the same ratio used for Acomp/Acomm as the power during

35

communication is similar to idle power [24].

The DVFS gear set used throughout the thesis is given in Table 3.2. Note

that only frequency and voltage ratios matter to our results since they are al-

ways given in a normalized form. The given frequency/voltage ratios correspond

to a frequency-and voltage-scalable AMD Athlon-64. The last row of the ta-

ble presents the normalized average power dissipated per processor running a

sequential code for each frequency/voltage pair.

f(GHz) 0.8 1.1 1.4 1.7 2.0 2.3
V (V) 1.0 1.1 1.2 1.3 1.4 1.5

Norm(P) 0.31 0.40 0.51 0.65 0.81 1.0

Table 3.2: DVFS gear set used in thesis.

3.3 Simulator

Alvio is an event-driven parallel job scheduling simulator used in the evaluation

process [28]. It is a C++ simulator capable of simulating various backfilling

policies and easy to extend due to its structure. We upgraded it to support our

policies and power/performance models.

Each of the workloads simulated in the evaluation process presents a set of

jobs submitted to a supercomputing center over a certain period of time. All

workload data that the simulator needs are contained in the workload logs. In

the beginning of a simulation, the simulator processes the workload file. At that

point, it generates an ARRIVAL event for each job according to job arrival times

from the workload log. All events are stored in a queue ordered by the event

time. The simulator updates all structures used to store information on available

resources and queued jobs when processing an event. During the simulation

process, other events such as START and TERMINATION are added to the

queue and processed. Each of these events invokes the simulated scheduler. The

simulator generates a START event when it decides a job’s start to run. The

event time corresponds to the job start time determined by the scheduling policy.

A TERMINATION event is generated based on the job run time whilst the policy

36

decisions are driven by the job requested time. In this way, the real behavior of

a scheduling system is properly simulated.

The input files are used to specify the scheduling policy, its parameters, power

model inputs, the workload and certain job characteristics that we added to

simulate their sensitivity to frequency scaling. The simulator needs the following

input files:

• Configuration file - this file is used to specify the scheduling policy and

its parameters. Furthermore, it specifies the resource allocation policy,

workload portion to be simulated and some simulator settings as well. In

the case of power budgeting, the power budget is set in this file. Finally,

this file contains paths of the other input and output files.

• Architecture file - this file describes the architecture simulated including

the number of processors. For all workloads we used the original number

of processors available in the workload traces. DVFS settings are specified

here, as well as platform power model parameters from the previous section.

• Workload log file - this file contains jobs whose scheduling is being sim-

ulated. It is explained in more detail in the next section.

• Beta file - sensitivity to frequency scaling of each simulated job is given in

this file by the β parameter (see Section 3.2.1).

• Activity file - this file gives job activities explained in the previous section.

For energy saving policies, the simulator updates the energy consumed so

far every time it processes a START or TERMINATION event since these are

the moments when CPU power consumption changes. The energy increment

corresponds to the energy consumed over the interval between the current and

the previous event of one of these two types.

3.4 Job performance metrics

Response time, slowdown and bounded slowdown are frequently used metrics

for evaluation of parallel job scheduling policies [18]. Response time is defined

37

as total wallclock time from the moment of job submission until its completion

time. This time consists of: the waiting time that the job J spends waiting for

execution (WaitT ime(J)) and the running time (RunTime(J)) during which it

is executing on processing nodes. The waiting time itself is also used as a job

performance metric.

Since job run times can vary a lot, there is a large variance in response times.

Hence, there are metrics that take the job run time into account. Slowdown of a

job J is the ratio of the job response time and its run time:

Slowdown(J) =
WaitT ime(J) +RunTime(J)

RunTime(J)
. (3.13)

Though the slowdown metric takes into account the job runtime when mea-

suring job delay, jobs with short runtimes can have very high slowdown in spite

of an acceptable wait time. A new metric, bounded slowdown (BSLD) has been

proposed to avoid this effect of very short jobs on slowdown statistics. It is equal

to the following:

BoundedSlowdown(J) = max(
WaitT ime(J) +RunTime(J)

max(Th,RunTime(J))
, 1). (3.14)

A job with runtime shorter than the threshold Th is assumed to be very

short and its BSLD has value 1 - perfect slowdown. In today’s supercomputing

workloads a job shorter than 10 minutes can be assumed to be very short [46].

Accordingly, in the following policy evaluations the threshold Th is set to 10

minutes.

As frequency scaling affects job runtime, we have defined BSLD of a job

executed at reduced frequency:

BoundedSlowdown(J, f) = max(
WaitT ime(J) +RunTime(J) ∗ Pf (J, f)

max(Th,RunTime(J))
, 1)

(3.15)

where Pf (J, f) is the penalty factor that determines how much the job runtime

increases when the CPU frequency is reduced to f (described in Section 3.2.1).

38

The BSLD metric gives the bounded ratio between time spend in system and job

runtime. Defined in this way, BoundedSlowdown(J, f) reflects performance loss

due to frequency scaling.

3.5 Workload traces

In this thesis, we used traces of five workloads from Parallel Workload Archive

[34]. The traces are coming from real large scale parallel systems in production

use. Their logs are in the Standard Workload Format (swf). A .swf file starts

with a header containing a description of the system. It is followed by the trace

body. Each line of the trace body represents a job which is described by 18 data

fields. We consider only the following fields of interest:

• Job Number - a counter field starting from 1

• Submit Time - in seconds; lines in the log are sorted by ascending sub-

mittal times

• Run Time - in seconds; the wall clock time the job was running

• Number of Allocated Processors - an integer; in our work this is as-

sumed to be the number of requested processors

• Requested Time - in seconds; this field is the user run time estimate.

Cleaned traces were used for all workloads [19]. A cleaned trace does not

contain flurries of activity by individual users which may not be representative

of normal usage. In the evaluation process, we simulated 5,000 job portion of

each workload as some simulations take long time. The workload parts used in

simulations were selected so that they do not have many jobs removed.

An overview of the used workloads is given in the following subsections. For

more information on them please see the Parallel Workload Archive website [34].

39

3.6 Workloads

Five workloads were simulated using their logs: CTC, SDSC, SDSCBlue, LLNLThun-

der and LLNLAtlas [34]. A comparison between entire workloads and simulated

workload portions is given in Table 3.3. It shows the average values of the re-

quested number of processors, requested time and the job run time over the

entire workloads and the simulated portions. The average requested and run

times are given in seconds. Simulated portions of the CTC and SDSC workloads

are very similar in the given characteristics to the entire workloads. The other

three workloads contain smaller jobs on average than their corresponding simu-

lated portions. Simulated fractions of LLNLThunder and LLNLAtlas have lower

average run time compared to the entire workloads. It is especially pronounced

in the case of the LLNLAltas. Here, the workload average job run time is 5,033

seconds whilst the simulated jobs have an average of 1,523 seconds. However,

this is the greatest difference, other workload portions are more similar to their

corresponding workloads. Simulated workload portions provide high variety in

both system size and job size allowing an extensive evaluation of the policies.

Workload Avg.CPUs Avg.ReqTime Avg.RunTime
entire portion entire portion entire portion

CTC 10.98 10.03 24,396 25,859 11,277 11,149
SDSC 11.03 9.17 17,401 15,185 6,699 6,311

SDSC-Blue 38.23 45.30 10,198 8,770 4,041 4,301
LLNL-Thunder 41.73 50.09 1,154 1,181 2,186 1,120
LLNL-Atlas 358.14 539.45 34,038 19,343 5,033 1,523

Table 3.3: Average job characteristics: entire workload and simulated portion.

Table 3.4 shows which portion of the each of the workloads was simulated.

For instance, scheduling of the jobs with job numbers between 20,000 and 25,000

was simulated in the case of the CTC workload.

Workload CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

Portion 20K-25K 40K-45K 20K-25K 20K-25K 10K-15K

Table 3.4: Simulated workload portions.

Table 3.5 reflects how loaded were the simulated systems. The Avg BSLD

40

column shows the average job bounded slowdown (see Section 3.4). The Utiliza-

tion gives a system performance metric defined as:

Utilization =

∑Njobs

k=1 Prock ∗RunTimek
Nproc ∗ T

(3.16)

where Prock is the number of processors of the k-th job and RunTimek is its run

time. Nproc is the total number of processors of the system and T represents the

workload makespan. Avg LR is the average load requested. Load requested is

equal to:

LR =

∑Nrunning

r=1 Procr +
∑Nqueued

q=1 Procq

Nproc

(3.17)

where Nrunning and Nqueued are the numbers of currently running and queued jobs,

respectively. These values from the table are obtained with the EASY backfilling

policy for the simulated workload portions.

Workload Avg BSLD Utilization (%) Avg LR

CTC 4.66 70.09 1.61
SDSC 24.91 85.33 8.17

SDSCBlue 5.15 69.17 2.31
LLNLThunder 1 79.59 0.80
LLNLAtlas 1.08 75.25 0.94

Table 3.5: Workload characterization.

Since the scheduled jobs are assumed to be rigid, the system utilization is

not a good measure of system load. There might be many jobs waiting in the

queue even under utilization lower than 90%. This is especially true for smaller

systems such as SDSC. A smaller system at utilization of 90% can have many

jobs in the wait queue as the free processors might not be sufficient to start the

first job from the queue and others can be prevented from execution because of

the first job’s reservation. Hence, the average load requested is a better metric of

system load. From the table we can see how the average BSLD follows the load of

the system. The most loaded SDSC has an average BSLD of 24.91. Less loaded

workloads, CTC and SDSC, have the average BSLD of about 5. LLNLThunder’s

jobs have the perfect BSLD of 1 and the average load requested below 1. Many

41

of LLNLThunder’s jobs are short meaning that their BSLD can be 1 even if they

spent some time in the wait queue. LLNLAtlas’s jobs have low BSLD due to light

system load.

3.6.1 The CTC workload

The CTC workload presents a log from the Cornell Theory Center. The jobs were

submitted to a IBM SP2 machine with 430 nodes dedicated to running batch jobs.

The log contains 79,302 jobs recorded over 11 months, from July 1996 until May

1997.

The jobs of this workload have long run times and relatively low level of

parallelism. This is reasonable taking into account that the log was recorded

more than 10 years ago. The average job runtime is 11,149 seconds which makes

it the longest average job runtime among the observed workloads. The level of

parallelism is quite low with an average of 10 processors per job.

Figure 3.1 shows the job size distribution of the simulated workload portion.

We distinguished the following job classes: sequential jobs, small parallel jobs

with less than 16 processors, from 16 up to 64, from 64 up to 512 and bigger than

512 processors. Out of 5,000 simulated jobs, more than 2,000 were sequential.

Small parallel jobs up to 16 processors accounted for a similar workload fraction.

Jobs greater than 16 processors made only about 10% of the workload.

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

of
 J

ob
s

CTC

sequential
(1,16]

(16,64]
(64,512]

more than 512

Figure 3.1: Job size distribution: CTC.

42

Figure 3.2 gives system utilization and load requested over time for the CTC

workload’s portion. Both graphics assume scheduling with the EASY backfilling

policy. This workload has high variation in system utilization with periods of

utilization close to 100%. On the other hand, the machine utilization sometimes

drops below 20%. Load requested has a spike, when it almost reaches a load of

10. Other than that, it stays close to 5 or below.

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

CTC

(a) System utilization

 0

 5

 10

 15

 20

R
eq

ue
st

ed
 L

oa
d

Time

CTC

(b) Normalized load requested

Figure 3.2: The CTC workload.

3.6.2 The SDSC workload

This workload log was obtained in a 128-node IBM SP2 system located at the

San Diego Supercomputing Center. It is the smallest of the simulated systems.

The entire workload contains 73,496 jobs submitted from May 1998 until April

2000.

The average job runtime is 6,311 seconds. It is lower than in the case of CTC

but still quite high compared to newer workloads. Job size distribution is slightly

different as can be seen in Figure 3.3. There are less sequential jobs and more

small parallel ones.

The major difference between the CTC and SDSC workloads is in load re-

quested. The SDSC workload is highly loaded as can be seen in Table 3.5. The

SDSC’s average BSLD is much higher than for other workloads implicating much

longer wait times. Its utilization is also higher, but this is not sufficient to reflect

43

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

of
 J

ob
s

SDSC

sequential
(1,16]

(16,64]
(64,512]

more than 512

Figure 3.3: Job size distribution: SDSC.

the high system load. Both utilization and load over time are represented in

Figure 3.4. As can be remarked, the load requested is higher than for CTC. It

is almost always over 5 with few spikes over 15. The system utilization in the

second half never falls bellow 60%. In the first half of the simulated portion, the

utilization drops but only because of reservations of large jobs that prevent other

queued jobs from execution.

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

SDSC

(a) System utilization

 0

 5

 10

 15

 20

R
eq

ue
st

ed
 L

oa
d

Time

SDSC

(b) Normalized load requested

Figure 3.4: The SDSC workload.

44

3.6.3 The SDSC Blue workload

The SDSC Blue workload was executed at the San Diego Supercomputing Center

in a 144-node IBM SP machine with 8 processors per node (1152 processors in

total). The entire log covers more than two years of production use, 250,440 jobs

submitted from April 2000 until January 2003.

This workload has higher level of parallelism than the previous two workloads

with an average number of requested processors per job of 45. Furthermore,

its jobs are shorter than jobs from the previous two workloads following the

general trend by which jobs tend to become shorter but increase in the number

of processors.

The job size distribution of this workload is given in Figure 3.5. There are

no sequential jobs in the log as each job was assigned at least one node of 8

processors. More parallel jobs with more than 16 or 64 processors are present in

this workload. There are few jobs requesting more than 512 processors.

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

of
 J

ob
s

SDSCBlue

sequential
(1,16]

(16,64]
(64,512]

more than 512

Figure 3.5: Job size distribution: SDSCBlue.

The requested load has high variations that are reflected in fluctuations of the

system utilization (see Figure 3.6). Load requested has spikes reaching almost

15, though the majority of time it is below 3.

45

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

SDSCBlue

(a) System utilization

 0

 5

 10

 15

 20

R
eq

ue
st

ed
 L

oa
d

Time

SDSCBlue

(b) Normalized load requested

Figure 3.6: The SDSCBlue workload.

3.6.4 The LLNL Thunder workload

This log comes from a large cluster installed at Lawrence Livermore National

Lab. The cluster has 4,008 processors used for job executions. 128,662 jobs were

recorded over several months, starting from February 2007. This and the next

log are the newest logs used in the simulations. Furthermore, they are obtained

from larger systems than the previous three.

This machine was devoted to a large number of smaller to medium size jobs.

Though the average number of processors in this log is 50, this presents a lower

level of parallelism compared to the next log that is from the same center. Figure

?? shows the job size distribution. The majority of simulated jobs are between

16 and 64 processors. The number of jobs larger than 512 processors is still quite

low. This workload contains shorter jobs than others.

The LLNLThunder workload’s utlization is high with low variation. In spite

of high utilization, the average BSLD of simulated jobs was perfect. The BSLD of

1 means that they did not wait for execution or if they did, their run times were

short as the threshold from the bounded slowdown definition allows small jobs to

spend some time waiting without affecting their BSLD (see BSLD definition 3.14).

The LLNLThunder system was perfectly dimensioned since the load requested was

always suitable for the system size and machine was not underutilized.

46

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

of
 J

ob
s

LLNLThunder

sequential
(1,16]

(16,64]
(64,512]

more than 512

Figure 3.7: Job size distribution: LLNLThunder

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

LLNLThunder

(a) System utilization

 0

 5

 10

 15

 20

R
eq

ue
st

ed
 L

oa
d

Time

LLNLThunder

(b) Normalized load requested

Figure 3.8: The LLNLThunder workload.

47

3.6.5 The LLNL Atlas workload

The LLNL Atlas workload contains 60,332 jobs executed on 9,216 processors from

November 2006 until Jun 2007. This is the largest simulated system in the thesis.

Atlas was intended for running large scale parallel jobs. The average number

of processors of the simulated jobs was 538. This is more than ten times higher,

even when compared to the LLNL Thunder workload. Figure 3.9 gives the job

size distribution of the simulated LLNL Atlas portion. The majority of jobs

are still small parallel jobs but the rest are equally distributed among larger job

classes. There are over 500 jobs requesting more than 512 jobs. The average job

runtime is similar to the one from the LLNL Thunder workload.

 0

 500

 1000

 1500

 2000

 2500

 3000

N
um

be
r

of
 J

ob
s

LLNLAtlas

sequential
(1,16]

(16,64]
(64,512]

more than 512

Figure 3.9: Job size distribution: LLNLAtlas.

Jobs of this workload did not experience long wait times either. Their average

BSLD was 1.08 whilst the system utilization was 75%. This workload has more

variation in both system utilization and load requested compared to the previous

one. There is one moment of very high requested load that is responsible for

slightly higher average BSLD compared to LLNL Thunder.

48

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

LLNLAtlas

(a) System utilization

 0

 5

 10

 15

 20

R
eq

ue
st

ed
 L

oa
d

Time

LLNLAtlas

(b) Normalized load requested

Figure 3.10: The LLNLAtlas workload.

49

Chapter 4

Energy Saving Policies

Abstract

This chapter investigates the potential of DVFS for energy reduction in super-

computing centers. Two frequency assignment algorithms are integrated into the

widespread EASY backfilling policy to evaluate the energy/performance trade-off

via DVFS in standard parallel workloads. The first policy reduces CPU frequency

only during periods of low load while the other applies more aggressive frequency

scaling based on job’s predicted performance. Based on the simulation results,

we conclude that while the impact on job performance for a modest energy re-

duction might be acceptable, more substantial energy savings lead to a severe job

performance loss because of the artificial increase in the load due to longer job

run times.

4.1 Introduction

Energy saving policies proposed here trade job performance for energy savings.

Running a certain job at reduced frequency decreases CPU energy consumption

increasing the job runtime. From the user point of view longer runtimes might

be acceptable in HPC environments up to a certain degree. Note that frequency

scaling might impact user satisfaction differently in other systems such as data

centers providing Internet services. HPC applications take much longer than

requests common in other data centers and a slight increase in time might be

50

negligible from the user point of view. However, frequency scaling can seriously

decrease job performance in HPC centers. The problem appears when longer

runtimes artificially increase the load at a degree that affects job wait times.

Figure 4.1 shows the upper bound on CPU energy savings. The savings pre-

sented in the figure are calculated assuming that all jobs run at the lowest avail-

able frequency (0.8 GHz). Each job shows the same sensitivity to frequency

scaling and the same average power consumption as in the rest of this thesis. In

this case of the most aggressive frequency scaling it is possible to reduce CPU

energy consumption by 37% to 44%. However, this would have a severe impact

on job performance as it can be seen in Figure 4.2. The figure shows the mean

job BSLD for each workload at the nominal frequency (2.3 GHz) and the lowest

available frequency with the EASY backfilling policy. Due to frequency scaling,

the mean job BSLD has increased manyfold. Hence, frequency scaling has to be

applied selectively.

0 %

20 %

40 %

60 %

80 %

100 %

P
ot

en
tia

l C
P

U
 E

ne
rg

y
S

av
in

gs

(e
nt

ire
 w

or
kl

oa
d

at
 0

.8
 G

H
Z

)

CTC
SDSC

SDSCBlue
LLNLThunder

LLNLAtlas

Figure 4.1: CPU energy reduction assuming that all jobs are executed at the
lowest frequency.

We look at one more metric that combines the energy reduction and perfor-

mance penalty into a single value. Figure 4.3 gives the product of the workload’s

CPU energy consumption and the mean job BSLD when all jobs run at the lowest

frequency normalized with respect to the same value at the nominal frequency.

The values of this metric are especially high for workloads with originally good

job performance (LLNLThunder and LLNLAtlas), since they suffer from higher

51

 0

 50

 100

 150

 200

 250

M
ea

n
Jo

b
B

S
LD

 CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

EASY Backfilling - 2.3 GHz
EASY Backfilling - 0.8 GHz

Figure 4.2: Job performance penalty assuming that all jobs are executed at the
lowest frequency.

relative performance penalty.

 0

 5

 10

 15

 20

 25

 30

(N
ew

T
ot

al
E

/T
ot

al
E

)*
(N

ew
M

ea
nB

S
LD

/M
ea

nB
S

LD
)

(e
nt

ire
 w

or
kl

oa
d

at
 0

.8
 G

H
Z

)

CTC
SDSC

SDSCBlue
LLNLThunder

LLNLAtlas

Figure 4.3: Energy/performance trade-off efficiency assuming that all jobs are
executed at the lowest frequency.

Both energy saving policies proposed in the thesis, the utilization power-aware

scheduling (UPAS) and BSLD-driven policy aim to exploit periods of lighter load.

Jobs are executed at reduced frequency if their wait times are acceptably low.

The policies have a mechanism that also controls frequency scaling impact on the

jobs in the wait queue. In this way frequency scaling does not increase signifi-

cantly wait times of queued jobs. The UPAS policy uses a system metric, system

52

utilization, to determine when to apply frequency scaling whilst the BSLD-driven

policy predicts the job BSLD to decide whether to run the job at a reduced fre-

quency. In this way both policies aim at saving energy without endangering user

satisfaction.

Both energy saving policies were implemented as frequency scaling algorithms

added to the EASY backfilling as the base job scheduling policy. The frequency

assignment algorithm of the UPAS policy is not closely related to the job schedul-

ing policy. Also, with this policy the frequency assigned depends on the system

state but not on the job itself. Accordingly, jobs submitted at the same time

will run at the same frequency. In contrast, the frequency assignment algorithm

of the BSLD-driven policy depends more on the job requirements and interacts

more with the job scheduling. For instance, a higher frequency will be assigned

than the one selected by the frequency scaling algorithm in a situation when it

would not be possible to backfill the job at the lower frequency but it is possible

at the higher.

The UPAS scheduling policy is described and evaluated in the next section.

It is followed by the BSLD-driven policy and their comparison.

4.2 UPAS

The Utilization-driven Power-Aware Scheduling, UPAS, is designed to apply

DVFS during periods of low system utilization. System utilization is an easy

to compute metric that can reflect system current state and possible frequency

scaling consequences on job performance. This simple policy presents the first

attempt to evaluate DVFS potentials for HPC workloads, looking at the potential

energy savings and the subsequent job performance loss at the same time. Con-

ceptually, it resembles a Linux governor that controls frequency scaling based on

single CPU utilization. Obviously, HPC workloads are executed at the nominal

frequency under the OnDemand Linux governor. System utilization represented

by the portion of occupied processors is a simple proxy of the system load that

can be used in the frequency selecting process.

Analyzing supercomputer workloads from the Parallel Workload Archive [34],

it can be found that most of the workloads have an average system utilization in

53

the range of 45% - 85%. Note that the workloads used in this thesis (and described

in Section 3.6) have higher average system utilization, in the range of 70%-85%.

In this way we do not evaluate underutilized systems which would benefit more

from UPAS. Because of machine and power provisioning facility price, we believe

that the number of underutilized systems is decreasing. However, supercomputing

systems might have transient periods of low load. For example, during night and

holidays HPC centers can be under lower load than usually.

Applying DVFS to jobs during periods of low utilization should have a mini-

mum impact on performance since, if the utilization of the system is low, typically

there are no jobs waiting for resources. However, previous works suggest that the

goal of achieving near 100% utilization while supporting a real parallel supercom-

puting workload is unrealistic when jobs submitted to the system are rigid jobs

[43]. This is especially true for smaller systems where 10% or 20% of the machine

might not be sufficient for proper backfilling. To properly handle situations when

the utilization is not very high but there are waiting jobs, we include a second

level of policy control. UPAS includes a threshold that prevents the scheduler

from running jobs at reduced frequency if there are more jobs in the wait queue

than a given threshold.

4.2.1 Algorithm

The frequency scaling algorithm applied by the UPAS policy is interval-based,

meaning that the same reduced frequency is used over an interval. The interval

duration is denoted as T hereafter. A job started during the interval Ij will be

run at a CPU frequency that depends on the previous interval Ij−1 utilization.

Utilization of the j-th time interval, Uj, is equal to:

Uj =

∑Njobs

k=1 Prock ∗RunTimejk
Nproc ∗ T

(4.1)

where Prock is the number of processors of the k-th job that has been executing

during the interval Ij and RunTimejk is its execution duration in the interval Ij.

Nproc is the total number of processors of the system.

Selected CPU frequency also depends on two utilization thresholds Uupper and

54

Ulower. Utilization of the previous interval is compared against the thresholds and

depending on the results CPU frequency is assigned to the jobs arrived over that

interval. Thus, at high system utilization jobs are run at the nominal frequency. If

the system utilization is lower than Uupper moderate frequency scaling is applied.

Finally, low utilization below Ulower tolerates more aggressive frequency scaling.

An additional threshold, WQthreshold, enables better control over the energy-

performance trade-off. As we already explained, it can happen that there are

many jobs queued in spite of not very high utilization, especially in smaller sys-

tems. The control mechanism prevents the scheduler from frequency scaling when

there are more than WQthreshold jobs in the wait queue. Hence, a job Jk arrived

during the j-th interval runs at the frequency determined according to:

freq(Jk) =


ftop for Uj−1 ≥ Uupper or WQsize > WQthreshold ,

fupper for Ulower ≤ Uj−1 < Uupper and WQsize ≤ WQthreshold ,

flower for Uj−1 < Ulower and WQsize ≤ WQthreshold .

(4.2)

WQsize represents the current number of jobs in the wait queue. ftop is the

nominal CPU frequency whilst fupper and flower are predefined frequencies from

the supported DVFS gear set (fupper > flower). Note that WQsize corresponds

to the current length of the wait queue, that can change over an interval and

accordingly impact the decision whether to run a job at reduced frequency.

It would be possible to use the current system utilization avoiding interval-

based made decisions. However, an averaged system utilization over the interval

T is used instead of the current system utilization to avoid use of a possible short

term low value different from the average.

Once the job frequency is assigned, the scheduler applies the EASY backfilling

scheduling policy using new job requested time. The new requested time is the

original requested time scaled by a factor determined according to the execution

time model (Section 3.2.1). Also, over the simulation process the new runtime is

determined in the same way, assuming the runtime from the log to be the runtime

at the nominal frequency.

Again, frequency scaling is performed statically, once for the whole job ex-

55

ecution. As system load normally has no sudden changes, dynamic frequency

assignment would not give significantly different results. Every significant change

in system utilization is followed by a new frequency assignment decision applied

to newly arrived jobs.

Note that the job frequency is assigned at the job arrival. We also tested

frequency assignment at the job start time using the same frequency selection

rules in order to take into account a possible change in utilization. However,

UPAS applies DVFS only when the utilization is not high and there are not many

queued jobs meaning that most often the job arrival and start time coincide.

Accordingly, this is not of importance due to the UPAS’s conservative nature.

More aggressive frequency scaling is explored with the next proposed policy.

4.2.2 Evaluation

We evaluated the UPAS policy for the workloads described in Section 3.6. First,

we simulated the scheduling without frequency scaling with the EASY backfilling

to obtain job performance metrics and energy consumption. These performance/

energy values were used as a baseline.

4.2.2.1 Policy parameters

The frequency scaling algorithm parameters are the interval duration T , two

utilization thresholds Uupper and Ulower, reduced frequencies fupper and flower, and

WQthreshold. Analyzing workload utilizations we have decided to set the upper

threshold below which frequency scaling starts, Uupper, to 80%. The utilization

threshold for more aggressive scaling Ulower was set to 50%.

The frequency used for system utilization between Ulower and Uupper was the

highest of reduced frequencies from the supported DVFS gear set - fupper = 2.0

GHz (see Table 3.2). The lower reduced frequency flower was set to 1.4 GHz since

for a fixed application β (frequency sensitivity) it is the reduced frequency with

the best ratio between energy reduction and penalty in execution time.

Two values for the interval duration T , 10 minutes and 1 hour, were tested

in the simulations. As the difference in results is 1% or less, the algorithm is

not very sensitive to the interval duration. 10 min interval showed slightly better

56

results in both energy and performance. Hence, in the thesis we give results for

10 minute intervals.

Four different values ofWQthreshold were selected for evaluation, WQthreshold =

0, 4, 16, NO. The threshold of 0 means that no DVFS will be applied if there is

any job waiting in the queue. Less restrictive thresholds are 4 and 16 jobs. The

last one, WQtheshold = NO, puts no limit on the wait queue size (frequency is

assigned only based on the system utilization).

4.2.2.2 Performance/energy results

Energy consumed with the UPAS policy for different WQthreshold parameters is

shown in Figures 4.4 and 4.5. Both figures give energy values normalized with re-

spect to the baseline values (energy consumed with the EASY backfilling without

frequency scaling). Figure 4.4 presents energy consumed to execute the workload

jobs. In this case, idle processors were put in a low power mode in which power

consumption is negligible. We refer to this energy as computational energy. On

the other hand, energy values represented in figure 4.5 include energy consumed

by idle system processors. In the thesis, this energy is referred to as total CPU

energy. In this case idle processors were not in a low power mode and this case

reflects a usual situation in an HPC center nowadays. In the future, idle power is

expected to decrease. Power dissipation of an idle processor that is not in a low

power mode was explained in Section 3.2.2.

There is almost no difference in relative energy reduction between the two en-

ergy scenarios as can be remarked in the figures. The highest observed difference

in relative savings was 0.8%. This comes from two reasons. First, even when

not in a low mode power consumption of an idle processor is not high. Second,

simulated workloads have high utilization and processors are not idle very often.

Furthermore, in both energy scenarios, energy values are normalized with respect

to the energies consumed without frequency scaling but with the same idle power

consumption that was assumed with the UPAS scheduling.

The maximal CPU energy reduction achieved was 11% for the CTC workload.

SDSCBlue and LLNLAtlas had similar energy savings of 10%. The workloads

with higher utilization (see table 3.5), SDSC and LLNLThunder, achieved mod-

57

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

CTC SDSC SDSCBlueLLNLThunder LLNLAtlas

E
(id

le
=

0)

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.4: UPAS policy: Normalized CPU energy (idle CPUs do not consume
power): WQthreshold = 0, 4, 16, NO.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

CTC SDSC SDSCBlueLLNLThunder LLNLAtlas

E
(id

le
=

lo
w

)

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.5: UPAS policy: Normalized CPU energy (idle CPUs at the lowest
available frequency): WQthreshold = 0, 4, 16, NO.

58

est savings of 4% in the most aggressive case. Workloads from smaller systems

(CTC, SDSC, SDSCBlue) saved more energy for higher values of WQthreshold.

Different values of WQthreshold higher than 0 for workloads from bigger systems,

LLNLThunder and LLNLAtlas, give almost the same results implying that bigger

systems have very short wait queues when the utilization is lower than 80%.

Figures 4.6 and 4.7 show how the UPAS scheduling affects job performance

metrics. Figure 4.6 gives normalized values of the mean job BSLD (for job per-

formance metrics see Section 3.4). The values are normalized with respect to

the baseline (mean BSLD obtained with the EASY backfilling without DVFS).

Figure 4.7 presents the mean job wait times where the column Orig represents

the baseline mean wait time.

 0

 0.5

 1

 1.5

 2

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

N
or

m
al

iz
ed

 B
S

LD

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.6: UPAS policy: Normalized mean job Bounded Slowdown (BSLD):
WQthreshold = 0, 4, 16, NO.

The original mean BSLD values vary significantly for different workloads. For

example, the SDSC workload has the highest original mean BSLD of 24.91. The

mean BSLD of the LLNLAtlas execution without DVFS is 1.08. The best one is

LLNLThunder’s mean BSLD, equal to 1. Taking into account that some other

energy saving approaches might increase the mean BSLD many times [49], the

UPAS policy does not penalize job performance significantly. The highest rel-

ative increase in the mean BSLD was observed for the SDSC workload - 46%

(WQthreshold = NO). The CTC’s mean BSLD for the same WQthreshold value

increases by 39%. Other workloads experience slightly less performance loss of

about 30%. In the case of the SDSCBlue, it is interesting that job performance

59

 0

 10000

 20000

 30000

 40000

 50000

CTC SDSC SDSCBlueLLNLThunderLLNLAtlas

W
ai

t t
im

e

Orig
WQ=4
WQ=4

WQ=16
WQ=NO

Figure 4.7: UPAS policy: Mean job wait time (in seconds): WQthreshold =
0, 4, 16, NO.

slightly improved because of different backfilling events caused by longer job run-

times. New holes in the schedule might let more smaller jobs execute earlier. The

number of backfilled jobs increased when UPAS was applied to the SDSCBlue

workload. Accordingly, their BSLD improvement led to an improvement in the

mean job BSLD.

Generally, higherWQthreshold values result in higher performance penalty (and

higher energy savings). Relative penalty in performance is not always propor-

tional to achieved savings. Although less restrictive frequency scaling per work-

load (with higher value of the WQthreshold parameter) results in an increase in

the mean BSLD value, similar energy savings for different workloads can result

in different relative performance penalty. For instance, the SDSC and CTC ex-

perienced performance loss of 46% and 39% while saving 4% and 11% of energy,

respectively.

The increase in the mean BSLD of a workload is due to two reasons. According

to how we defined BSLD for jobs executed at reduced frequency by the formula

(3.15), scaling a job frequency down penalizes its BSLD since the job execution

time increases. Furthermore, running a job at reduced frequency can increase

the wait time of other jobs. A longer wait time leads to a higher BSLD which is

the second reason for the performance decrease. Longer mean wait times can be

seen in Figure 4.7. For WQthreshold values different from NO, the figure shows

very slight increase in the mean wait time thanks to the the wait queue length

60

checking mechanism. For WQthreshold = NO job wait time can be penalized more

severely. In the case of workloads with low original wait times, LLNLThunder

and LLNLAtlas, the mean wait time increase is high in relative but still quite low

in absolute terms (up to 5 few minutes).

Figure 4.8 shows the product of the normalized values of workload energy

consumption and mean job BSLD. Since all the workloads have values lower than

1.5, the trade-off efficiency achieved with the UPAS policy is reasonable.

 0

 0.5

 1

 1.5

 2

 2.5

(N
ew

T
ot

al
E

/T
ot

al
E

)*
(N

ew
M

ea
nB

S
LD

/M
ea

nB
S

LD
)

 CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

WQth=0
WQth=4

WQth=16
WQth=NO

Figure 4.8: UPAS policy: energy/performance trade-off efficiency.

UPAS has been designed as a conservative approach to reduce energy con-

sumed by HPC centers. Hence penalty in job performance was not very high

comparing to other energy reduction approaches [49]. On the other hand, energy

savings were modest varying from 4% to 11%. We saw that the potential for the

energy/performance trade-off depends on the workload. Highly loaded systems

achieve modest savings at the price of more sever performance loss.

4.3 BSLD-driven policy

The UPAS scheduling policy was designed to exploit periods of low system load.

With this simple policy, jobs execute at reduced frequency only when the system

utilization is below given limits. In the case of system utilization increase, all

jobs are scheduled to run at the nominal frequency. Furthermore, with UPAS all

jobs arrived at the same time interval and executed at reduced frequency will be

61

assigned the same CPU frequency. In contrast, the BSLDdriven policy selects

frequency per each job based on its predicted performance. Hence, two job with

the same arrival time can run at different frequencies as the frequency assignment

is job-orientated. Also, the job frequency is determined at the scheduling time,

not at the job arrival time since under a higher load a job might be scheduled

much after its arrival. Since the BSLDdriven policy can run a job at reduced

frequency even under a high load, it is important that the frequency decision is

made at the scheduling time.

The frequency assignment algorithm of the BSLD-driven policy is less con-

servative compared to the UPAS’s. Here, the scheduler can run a job at reduced

frequency even under high system utilization, if its predicted performance at the

reduced frequency is acceptable according to a predefined condition. The same

mechanism that controls performance loss of the rest of the workload, through

wait queue length checks, is used again with the BSLD-driven policy.

4.3.1 Algorithm

This policy is designed to apply frequency scaling to jobs with better (lower)

BSLD. Thus, jobs with higher BSLD values are executed at the nominal frequency

not to additionally decrease their performance. Basically, jobs with low wait times

will be executed at reduced frequency. The BSLD metric is used to choose CPU

frequency among the supported ones. According to our algorithm a job will be

run at a lower frequency if its predicted BSLD at the lower frequency is less than

previously set BSLDthreshold.

We predict the job’s BSLD in the following way:

PredBSLD(f) = max(
WT +RQ ∗ Coef(f, β)

max(Th,RQ)
, 1) (4.3)

where WT is the job wait time according to the current schedule and RQ

represents the requested time. The job requested time is used as an estimate of

its run time. Coef(f, β) is a penalty function that reflects how much the job

runtime is increased depending on the frequency reduction and job sensitivity to

frequency scaling (see Section 3.2.1).

With the EASY backfilling a job can be scheduled in two manners. If the job

62

is the head of the wait queue it is allocated with MakeJobReservation(J).

Depending on current resource availability the job will be sent to execution im-

mediately or a reservation will be made for it. The other way to schedule a job is

with the BackfillJob(J) function. It is called when there is already a job with

a reservation. BackfillJob(J) tries to find an allocation for the job such that

the reservation is not violated. For more on the EASY Backfilling see Section

1.3.1.

Pseudo codes of the energy-saving MakeJobReservation(J) and Back-

fillJob(J) algorithms are shown in Figure 4.9 and Figure 4.10 respectively.

Again, the job frequency is selected once at the scheduling time and it stays

the same over the entire job execution. While selecting the job frequency, the

scheduler iterates starting from the lowest available CPU frequency trying to

schedule the job such that it satisfies the BSLD condition. The BSLD condition

at a given frequency f is satisfied if the job’s predicted BSLD at the frequency

f is lower than the previously set value of BSLDthreshold (in the pseudo code

represented by satisfiesBSLD). If the job can not be scheduled at the lowest

frequency, the scheduler tries with the next higher frequency and so on.

MakeJobReservation(J)
if (WQsize ≤WQthreshold) then

for f = Flowest to Ftop do
Alloc = findAllocation(J,f);
if (satisfiesBSLD(Alloc, J, f) and satisfiesWQ()) then

schedule(J, Alloc);
break;

end if
end for

else
Alloc = findAllocation(J,Ftop)
schedule(J, Alloc);

end if

Figure 4.9: BSLD-drvien policy as a modification of the EASY backfilling: Mak-
ing a job reservation and assigning CPU frequency.

Again, in order to control frequency scaling impact on other jobs in the system,

a job will be run at reduced frequency only if there are no more thanWQthreshold

jobs in the wait queue (checked by satisfiesWQ). Otherwise the job will be run

63

BackfillJob(J)
if (WQsize ≤WQthreshold) then

for f = Flowest to Ftop do
Alloc = TryToFindBackfilledAllocation(J,f);
if (correct(Alloc) and satisfiesBSLD(Alloc, J, f)and satisfiesWQ()) then

schedule(J, Alloc);
break;

end if
end for

else
Alloc = TryToFindBackfilledAllocation(J,Ftop)
if (correct(Alloc)) then

schedule(J, Alloc);
end if

end if

Figure 4.10: BSLD-drvien policy as a modification of the EASY backfilling: Back-
filling a job and assigning CPU frequency.

at the highest frequency Ftop. This was introduced to prevent the scheduler from

running a job with good predicted performance at reduced frequency if it might

delay many other jobs.

When making a job reservation, the scheduler will find the lowest CPU fre-

quency at which all conditions are satisfied. If there is no such reduced frequency,

the scheduler will find an allocation at the nominal frequency Ftop. Back-

fillJob(J) tries to find an allocation for the job that does not delay an existing

job reservation. Such an allocation does not necessarily exist in the scheduler,

even not for the nominal frequency. Here, it might happen that the job frequency

is not determined only based on its predicted BSLD and the wait queue length but

on the current schedule. As the scheduler scales the job requested time depending

on the scheduled frequency, it might happen that it is not possible to backfill a

job at reduced frequency even if it satisfies all conditions but it is possible at

a higher frequency. In such a situation, the job will be backfilled at the higher

frequency to maximize the machine utilization and obtain better performance.

Note that in practice the scheduler does not know in advance the job’s beta

that reflects the execution time sensitivity to frequency scaling. The scheduler

can assume the most conservative case of β = 1 meaning that the execution time

64

is inversely proportional to the CPU frequency. This value can be used for all

scheduling decisions including modeling of the new job requested time at reduced

frequency. The more conservative estimation of the job’s beta introduces an

additional inaccuracy into already inaccurate runtime estimates. In the following

evaluation of the BSLD policy, we assume that the scheduler is aware of the job

sensitivity to frequency scaling at the scheduling time. The additional inaccuracy

due to unknown β values will be investigated in Section 5.2 when evaluating the

PB-guided policy. Its evaluation will show that a highly accurate estimation of

the job runtime at reduced frequency at the scheduling time is not necessary.

4.3.2 Evaluation

4.3.2.1 Policy parameters

The idea of the BSLD-driven policy is that frequency scaling should be applied

only to jobs whose predicted BSLD at the selected frequency is satisfyingly low.

BSLDthreshold is used to specify how low the predicted BSLD should be to apply

scaling. It can be seen as a desired BSLD target or an acceptable job performance

degradation. Note that it does not represent the mean job BSLD to be achieved,

but just a way of control over frequency scaling taking into account the job current

wait time with respect to its requested time.

Here, we also use the same workloads as in the rest of the thesis (see Section

3.6). The median job BSLD of all workloads except SDSC is 1 when they are

scheduled with the EASY backfilling without DVFS. It means that the majority

of all jobs normally have the best possible job performance. The SDSC’s median

job BSLD without frequency scaling is 2.64. It is the most loaded workload of all

observed workloads. In the evaluation, we tested various values of BSLDthreshold

for all workloads. The used values of BSLDthreshold were 1.5, 2 and 3.

Again, four different values were used for WQthreshold, starting from the most

conservative (WQthreshold = 0) that does not allow the scheduler to select reduced

CPU frequency if there is any job waiting in the queue. 4 and 16 are less conser-

vative and the last used value WQthreshold = NO is the most aggressive meaning

that the wait queue length is not checked at the frequency selection stage.

The following section gives the BSLD-driven policy job performance and en-

65

ergy consumption results. They are compared against baseline values correspond-

ing to the scheduling with the EASY backfilling policy without DVFS.

4.3.2.2 Performance/energy results

Again, when evaluating energy consumption we examine two energy scenarios.

The first scenario looks at the computational energy where idle processors do

not consume power whilst the second assumes the total CPU energy when idle

processors are at the lowest available frequency still consuming some power (for

details see Section 3.2.2).

Figure 4.11 shows the computational energy consumed with the BSLD-driven

policy normalized with respect to the baseline computational energy. Normalized

total CPU energy is given in Figure 4.12. The results are grouped by workload,

BSLDthreshold andWQthreshold. Like with the UPAS policy, the difference between

relative energy savings in two energy scenarios is not high. However, the energy

savings in the scenario with non-zero idle power are higher, with up to 4% of

difference.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3

E
(id

le
=

0)

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.11: BSLD-driven policy: Normalized CPU energy (idle CPUs do not
consume power): WQthreshold = 0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3.

With the BSLD-driven policy and selected policy parameters, achieved CPU

energy savings are up to 26%. All workloads, except SDSC, can achieve savings

66

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3

E
(id

le
=

lo
w

)

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.12: BSLD-driven policy: Normalized CPU energy (idle CPUs at the low-
est available frequency): WQthreshold = 0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3.

greater than 20%. These savings are higher than the ones obtained with the

UPAS policy which was more conservative. On the other hand, the most loaded

workload, SDSC, saves up to 4% of energy, similarly to the UPAS policy. SDSC’s

savings are modest because the policy parameters were selected not to allow

frequency scaling under low performance. Nevertheless, the results show in order

to target a specific amount of savings, the thresholds should be determined based

on the workload.

For all workloads, for a fixed value of BSLDthreshold, the wait queue control

mechanism implemented throughWQthreshold allows different degrees of the trade-

off. For higher values of the threshold, higher savings are obtained and the other

way around, for lower valued of WQthreshold energy savings are lower. For a

fixed WQthreshold, higher values or BSLDthreshold generally lead to higher savings

and vice versa. Nevertheless, this is not always the case. For instance, the

LLNLAtlas workload for WQthreshold = NO reduces its energy consumption for

3% more with BSLDthreshold = 1.5 than with BSLDthreshold = 2. More aggressive

frequency scaling decisions in the beginning can lead to less scaling in total due

to performance degradation propagation on later jobs. Nevertheless, this is more

an exception that the common case.

We present the mean job BSLD and wait time as metrics of performance.

67

The mean job BSLD normalized with respect to the baseline value is presented

in Figure 4.13. Figure 4.14 shows the mean job wait time.

 0

 5

 10

 15

 20

1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3

N
or

m
al

iz
ed

 B
S

LD

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.13: BSLD-driven policy: Normalized mean job Bounded Slowdown
(BSLD): WQthreshold = 0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3.

With the UPAS scheduling policy, the mean job BSLD was never penalized

more than 50%. Here, we can see mean BSLD even 15 times higher than the

baseline though for the majority of the parameter combinations and workloads,

the increase in the mean BSLD is below 50%. The highest relative penalty expe-

rience LLNLThunder and LLNLAtlas, because they are the workloads with the

lowest original mean BSLD leading to more frequency scaling. Also, for all work-

loads the penalty is the highest for the most aggressive parameter combination

(BSLDthreshold = 3, WQthreshold = NO).

WQthreshold has higher influence for higher values of BSLDthreshold. For in-

stance, if BSLDthreshold is set to 1.5, the WQthreshold value has almost no impact

on CTC, SDSC, SDSCBlue while for BSLDthreshold = 3 due to more frequent fre-

quency scaling, the parameter WQthreshold controls more the performance degra-

dation. Similarly, for higher values of WQthreshold, the BSLDthreshold parameter

has more impact on performance.

We can see that the BSLD penalty comes from higher job wait times due

to an artificial increase in the computational load caused by frequency scaling.

Comparing Figures 4.13 and 4.14 it can be observed that BSLD degradation

68

 0

 10000

 20000

 30000

 40000

 50000

 60000

1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3 1.5 2 3

W
ai

t t
im

e

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

WQ=0
WQ=4

WQ=16
WQ=NO

Figure 4.14: BSLD-driven policy: Mean job wait time (in seconds) :
WQthreshold = 0, 4, 16, NO and BSLDthreshold = 1.5, 2, 3.

follows the wait time increase. A great fraction of the job performance loss comes

from the increase in the job wait times, not only from the longer run times.

For instance, in the case of the LLNLAtlas workload, multiple increase in the job

wait time is responsible for much higher BSLD. For this reason, it is important to

use both thresholds to control both components of the performance degradation,

longer job run times and and higher wait times.

Another important observation is that a small increase in energy savings can

lead to much higher performance loss. For instance, in the case of LLNLAtlas,

for BSLDthreshold = 3 changing the WQthreshold value from 16 to NO results in

only 0.6% more savings while the mean BSLD increases for more than 50% due

to the higher wait times.

The BSLD-driven policy was designed for more intensive frequency scaling

than the UPAS policy. In order to use DVFS more often, the BSLD-driven

policy estimates BSLD of each job before reducing its frequency. Higher savings

with the BSLD-driven policy were followed by higher relative performance loss.

A lower trade-off efficiency with the BSLD-driven policy can be seen in Figure

4.15. The penalty in performance is not proportional to the achieved savings.

However, for the parameters for which the two policies achieve the same savings,

the performance degradation is similar.

69

 0

 5

 10

 15

 20

 25

(N
ew

T
ot

al
E

/T
ot

al
E

)*
(N

ew
M

ea
nB

S
LD

/M
ea

nB
S

LD
)

 CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

BSLDth=1.5 WQth=0
BSLDth=2 WQth=0
BSLDth=3 WQth=0

BSLDth=1.5 WQth=NO
BSLDth=2 WQth=NO
BSLDth=3 WQth=NO

Figure 4.15: BSLD-driven policy: energy/performance trade-off efficiency.

Figure 4.16 gives the job performance loss for a given CPU energy reduction

obtained with the BSLD-driven policy. In this figure it can be seen how addi-

tional savings affect the mean job performance. Note that this relative penalty

in performance is workload dependent. While CTC, SDSCBlue and LLNLAtlas

have similar behavior, the LLNLThunder’s performance is more sensitive and ad-

ditional savings of only 5% can increase the mean job BSLD for 400%. However,

its mean BSLD without frequency scaling is 1 meaning that even an increase of

500% gives a reasonable performance.

4.4 Summary

In this chapter, we presented two parallel job scheduling policy designed to save

CPU energy running certain jobs at reduced frequency. The policies aimed at per-

formance conservation. The first policy, UPAS, was based on a simple frequency

assignment algorithm that assigns job frequency based on the current system

utilization. The frequency scaling algorithm was added to the EASY backfilling

scheduling policy. This policy was the first attempt to estimate potential CPU

energy savings with DVFS application at the job scheduling level and their costs

in job performance. The results showed that applying DVFS only under low sys-

70

0 %

100 %

200 %

300 %

400 %

500 %

600 %

5 % 10 % 15 % 20 % 25 % 30 %

In
cr

ea
se

 in
 M

ea
n

Jo
b

B
S

LD

CPU Energy Savings

CTC
SDSC

SDSCBlue
LLNLThunder

LLNLAtlas

Figure 4.16: Energy-performance trade-off with the BSLD-driven policy.

tem utilization gives modest energy savings. Achieved CPU energy savings were

up to 11% at the price of 30% to 50% higher mean job BSLD.

The second policy, BSLD-driven, was design for more aggressive frequency

scaling. In this case, the scheduler considers performance of the job being sched-

uled when deciding about its frequency. The job’s predicted BSLD is used to

select its frequency. Thus, a job can run at reduced frequency even under high

system utilization if its predicted BSLD is good thanks to its low wait time. The

BSLD-driven policy saves more energy than UPAS achieving energy reduction of

up to 26%. Nevertheless, higher savings are followed by more severe performance

degradation.

Job performance measured in BSLD metric depends on the job wait and run

time. Frequency scaling affects directly the run time of the job it was applied

to and, indirectly wait times of other jobs. Since the performance degradation

comes from both longer job runtime and higher wait times, both policies have a

possibility to check the wait queue length before reducing CPU frequency. This

is introduced in order not to penalize wait times of other jobs.

In spite of performance loss precaution, this chapter clarifies that CPU energy

savings through frequency scaling come at non-negligible job performance costs.

71

The workload’s benefit from DVFS, applied in this manner, depends on how

loaded is the system. SDSC , the workload with the highest load, almost can

not save energy with tested policy parameters. Moreover, even very modest

savings lead to performance loss. Other workloads save about 20% of CPU energy

but suffer from severe performance degradation. Relative performance loss is

especially high for workloads with good original job performance.

Note that we investigate CPU energy savings, corresponding system energy

savings are proportionally lower. Furthermore, low power modes of other system

components in future might reduce DVFS efficiency for energy reduction. We

discuss this issue in Chapter 6.

In the next chapter, we investigate DVFS application for power constrained

systems. The goal is not anymore energy reduction but performance optimization

under a given power budget.

72

Chapter 5

Power Budgeting Techniques

Abstract

Large-scale systems are becoming more power constrained due to limitations of

the existing power provisioning infrastructure and its costs at the site construc-

tion time. This chapter first introduces a power budgeting policy, which is an

extension of the EASY backfilling, to show how DVFS improves job performance

in a power constrained system because of an improvement in the mean job wait

time. Then, we propose a completely new policy based on an optimization problem

that simultaneously manages both CPUs and power. This policy fully exploits the

available power and further improves job performance.

5.1 Introduction

In traditional parallel job scheduling the availability of physical resources such as

processors has been considered to be the only limiting factor preventing all queued

jobs to start immediately. With the increase in processor power consumption, the

available power has emerged as a new constraint. We believe that available power

budget will present an even more strict limitation in future. This limitation

might be permanent or temporal. For instance, the cost of building a power

provisioning facility is very high and it can limit the amount of power available to

the computing system. This presents a permanent limitation that is determined

at the time of the center’s construction. Then, a power budget can be imposed to

73

limit the high operating costs. In this case, the budget can vary over the center

life. Finally, power budget might be temporarily enforced because of a failure of

the power provisioning facility or a wider range catastrophe.

In all of the above mentioned situations, the assumption is that the power

budget is lower than the power needed to run all available processors at the

nominal frequency. In this chapter, we propose two power budgeting policies:

PB-guided and MaxPerf. They both use frequency scaling to run more jobs

simultaneously under a given power constraint. Lower frequencies allow more

processors to be used simultaneously than at the nominal frequency. In this way,

it is possible to achieve better job performance as we show with these two policies.

This chapter explores the benefit of frequency scaling for power constrained HPC

systems.

The PB-guided policy is a power budgeting upgrade of the traditional EASY

backfilling policy. When the EASY scheduler is invoked, it selects jobs to run on

the available processors from the wait queue one by one. Similarly, the PB-guided

policy assigns CPU frequency to each job independently of the frequencies to be

assigned to the other jobs that will be selected for execution. The frequency as-

signment is driven by current power draw and the job predicted performance. On

the other hand, MaxPerf is a completely new policy that solves an optimization

problem to select jobs for execution from the wait queue and to assign them CPU

frequencies at the same time. In this way, it exploits better the available power

budget. Also, this policy relaxes further the first-come-first-served execution or-

der to allow better job packing.

5.2 PB-guided policy

The PB-guided is similar to the BSLD-driven policy from Section 4.3 in the sense

that it uses predicted BSLD for frequency selection. The crucial difference is that

now policy does not allow a job to start if it would violate the power budget.

Furthermore, the frequency assignment is influenced by the current power draw.

The PB-guided policy is defined as power conservative. In a similar way

that work conservative scheduling policies manage CPUs [74], we keep a certain

amount of power anticipating new arrivals. This concept implies that we start to

74

apply DVFS before a job can not be started because of the power constraint. On

the other hand, when there is no danger of overshooting the power limit DVFS

should not be applied to maintain better run and wait times achieved at the

nominal frequency.

The policy implementation details are given below. They are followed by the

policy evaluation.

5.2.1 Algorithm

The next subsection describes exactly how DVFS aggressiveness is controlled

depending on the job requirements and the state of the system. It is followed by

an explanation of the modifications made to the EASY backfilling to implement

the frequency scaling algorithm and power budget control.

5.2.1.1 Managing DVFS

Having in mind that this policy should be integrated in an HPC center, our

main aim is to optimize the job performance reflected in user satisfaction. CPU

frequency is determined depending on the job’s predicted BSLD like with the

BSLD-driven policy. In contrast to the BSLD-driven policy, here frequency scal-

ing is used to improve job wait times running more of them at the same time.

Hence, we need a DVFS control algorithm that selects the highest frequency

when the power budget is not endangered and lower frequency when there is no

sufficient power.

Table 5.1 gives a list of the variables used in the DVFS management algo-

rithm of the PB-guided policy. Similarly to the BSLD-driven policy, the BSLDth

threshold is introduced to select the job CPU frequency. We can control DVFS ag-

gressiveness by changing dynamically the value of this threshold. Higher BSLDth

values allow more aggressive frequency scaling that includes use of the lowest

available CPU frequencies. Jobs consume less at lower frequencies allowing for

more jobs to run simultaneously. Setting BSLDth to a very low value prevents

the scheduler from running jobs at reduced frequencies. In order to run at re-

duced frequency f a job has to satisfy the BSLD condition at frequency f . A job

satisfies the BSLD condition at frequency f if its predicted BSLD at the same

75

frequency is lower than the current value of BSLDth.

Variable Description

Predicted job BSLD based on

PredBSLD requested time and CPU frequency

BSLDth Currently used BSLD threshold

Pcurrent Current CPU power draw

User-specified bound above which

Plower frequency scaling is enabled

User-specified CPU power bound

Pupper for aggressive frequency scaling

User-specified BSLD threshold

BSLDlower for less intensive scaling

User-specified BSLD threshold

BSLDupper for more intensive scaling

Table 5.1: Variables used within the policy and their meaning.

Figure 5.1: Dynamic change of BSLDth depending on the current power draw.

The value of BSLDth is changed dynamically depending on the actual power

draw as presented in Figure 5.1. BSLDth is set based on current power con-

sumption Pcurrent that includes power consumed by already running jobs and

power that would be consumed by the job that is being scheduled at the given

76

frequency f . Plower and Pupper are thresholds that manage closeness to the power

limit. When CPU power consumption overpasses Plower, it means that processors

consume a considerable amount of power. Finally, when Pupper is overshot there

is a high probability that soon it would not be possible to start a job due to the

power constraint. The power consumption thresholds determine BSLDth in the

way given by equation 5.1.

BSLDth =


0 for Pcurrent < Plower,

BSLDlower for Plower ≤ Pcurrent < Pupper,

BSLDupper for Pcurrent ≥ Pupper.

(5.1)

Hence, when instantaneous power draw is not high, no frequency scaling will

be applied since the predicted job BSLD is always higher than 1 according to its

definition. When the power consumption starts to increase, BSLDth increases

as well leading to frequency scaling. When power draw almost reaches the limit,

BSLDth is set to a higher value to force aggressive frequency reduction using

the lowest available frequencies.

5.2.1.2 The EASY backfilling modifications

As explained before, with the EASY backfilling policy a job is scheduled with

one of the two functions: MakeJobReservation(J) and BackfillJob(J). We

modified both functions to implement the PB-guided policy in the way presented

in Figure 5.2 and Figure 5.3, respectively.

With the PB-guided scheduling it is not anymore sufficient to find enough

free processors to make a job allocation. An allocation has to satisfy the power

constraint and the BSLD condition, if the job should run at reduced frequency

(Figure 5.2 - line 12), or only the power constraint, if it is scheduled for execution

at the nominal frequency (Figure 5.2 - line 20).

The scheduler iterates starting from the lowest available CPU frequency trying

to schedule a job such that the BSLD condition is satisfied. If it is not possible to

schedule the job at the current frequency, the scheduler tries with the next higher.

Forcing lower frequencies is especially important when there are jobs waiting for

execution because of the power constraint. On the other hand when the load is

77

1: MakeJobReservation(J)
2: if alreadyScheduled(J) then
3: annulateFrequencySettings(J);
4: end if
5: scheduled← false;
6: shiftInT ime← 0;
7: nextF inishJob←

next(OrderedRunningQueue);
8: while (!scheduled) do
9: f ← FlowestReduced

10: while f < Fnominal do
11: Alloc = findAllocation(J,currentTime + shiftInTime,f);
12: if (satisfiesBSLD(Alloc, J, f) and

satisfiesPowerLimit(Alloc, J, f)) then
13: schedule(J, Alloc);
14: scheduled← true;
15: break;
16: end if
17: end while
18: if (f == Fnominal) then
19: Alloc = findAllocation(J,currentTime + shiftInTime, Fnominal)
20: if (satisfiesPowerLimit(Alloc, J,Fnominal))

then
21: schedule(J, Alloc);
22: break;
23: end if
24: end if
25: shiftInT ime←

FinishT ime(nextF inishJob)− currentT ime;
26: nextF inishJob← next(OrderedRunningQueue);
27: end while

Figure 5.2: The PBguided policy: Making a job reservation.

low, jobs will be prevented from running at low frequencies by a lower BSLDth

value. If none of the allocations found in the allocation search satisfies all the

conditions, then in the next iteration the scheduler will try to find an allocation

starting from the moment of the next expected job termination.

BackfillJob(J) tries to find an allocation that does not delay the head of the

wait queue and satisfies the power constraint. It also checks the BSLD condition

when assigning a reduced frequency.

78

1: BackfillJob(J)
2: if alreadyScheduled(J) then
3: annulateFrequencySettings(J);
4: end if
5: f ← Flowest

6: while f < Fnominal do
7: Alloc = TryToFindBackfilledAllocation(J,f);
8: if (correct(Alloc) and satisfiesBSLD(Alloc, J, f)

and satisfiesPowerLimit(Alloc,J,f)) then
9: schedule(J, Alloc);
10: break;
11: end if
12: end while
13: if (f == Fnominal) then
14: Alloc = TryToFindBackfilledAllocation(J,Fnominal)
15: if (correct(Alloc) and

satisfiesPowerLimit(Alloc, J,Fnominal)) then
16: schedule(J, Alloc);
17: end if
18: end if

Figure 5.3: The PBguided policy: Backfilling a job.

5.2.2 Evaluation

5.2.2.1 Policy parameters

This section gives an extensive evaluation of the PB-guided policy for different

power budgets. First, we specify the default values of the policy parameters used

in the evaluation. Then, we explain the policy used as a baseline.

Default values. In the default case, a workload’s power budget is set to 70%

of the power that is consumed when all system processors dissipate the maximal

power. The maximal power is dissipated when a processor runs a sequential code

(no communication) at the nominal frequency. Note that we assume that not all

system processors can be used to run jobs at the nominal frequency at the same

time under the given power budget. The parameters Plower and Pupper, which

specify the power draw above which frequency scaling of a certain intensity will

start, are set to 60% and 90% of the workload’s power budget, respectively. Other

power thresholds are also evaluated. We concluded that the BSLD threshold value

79

of the BSLD-driven policy should be workload-specific (see Section 4.3.2). Hence,

we decided here to set the BSLD threshold values depending on the workload.

After some initial tests, we decided to use the mean BSLD of the workload without

power constraints (avg(BSLD)) for the parameter BSLDlower. The parameter

BSLDupper is set to a two times higher value, 2 ∗ avg(BSLD). The simulations

of the workloads without a power constraint are performed to obtain the original

mean BSLD values. These values are given in Table 3.5.

Baseline policy. The baseline used in the evaluation is the EASY scheduling

policy that respects the power budget without frequency scaling. With the base-

line all the jobs are executed at the nominal frequency. The power consumption

is controlled through the number of busy/idle processors. Hence, when a job is

scheduled to start (according to the EASY backfilling), an additional check is per-

formed. It has to be confirmed that running the job (at the nominal frequency)

would not violate the power budget. At the scheduling time, the scheduler esti-

mates a job’s power consumption with the maximal power consumption for the

given number of processors. We assume that once the job starts, its average

consumption is available to the scheduler.

Imposing a power constraint severely penalizes the mean job wait time. For

instance, the mean wait time of the CTC workload without power constraint is

7,107 seconds, while with the default power budget of 70% it increases to 32,584

seconds. The LLNLThunder’s mean wait time originally was 0 seconds, to become

4,884 seconds in the power constraint case. Much worse job performance in the

power constraint case comes from the limited number of processors that can be

powered at a given time and accordingly, a lower number of jobs that execute

simultaneously resulting in longer wait times. In the next section we analyze how

DVFS helps to improve the job performance under a power constraint.

5.2.2.2 Performance analysis

The potential of DVFS. Figure 5.4 gives the PB-guided policy comparison in

the mean job BSLD against the baseline.

The PB-guided policy performs better than the baseline for all workloads.

Especially high improvement in BSLD is achieved for the SDSC, SDSCBlue,

80

 0

 20

 40

 60

 80

 100

 120

 140

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline
PB-guided

Figure 5.4: The PBguided policy - 70% power budget (default parameters):
BSLD.

LLNLThunder and LLNLAtlas workloads. It is clear that frequency scaling is very

beneficial in a power constrained system. For instance, The LLNLThunder’s mean

BSLD with the baseline policy is 8. With the PB-guided policy, its mean BSLD

is 2.16 because of frequency scaling. The explanation of such an improvement

can be seen in Figure 5.5. It shows the mean job wait time for both baseline and

the PB-guided policy.

Since jobs running at reduced frequency consume less power, it was possible to

run more jobs simultaneously under the same power budget resulting in lower job

wait times. Better wait times led to lower BSLD values even though the job run

times were affected by frequency scaling as shown in Table 5.2. Higher relative

increase in the mean job run time can be observed for smaller systems (CTC

and SDSC) whose jobs have a lower level of parallelism. Hence, their execution

times are more sensitive to frequency scaling (this dependence of application

sensitivity to frequency scaling on the number of CPUs is explained in more

detail in Chapter 6). Furthermore, due to higher loads their processors were

running at lower average CPU frequency as shown in Table 5.3.

Figures 5.6 - 5.10 show per workload system utilization and power consump-

tion over time for the baseline and the PBguided policy. The power graphics

contain a horizontal line that marks the workload available power budget (set to

81

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline
PB-guided

Figure 5.5: The PBguided policy -70% power budget (default parameters): wait
time (in seconds).

Workload Baseline-EASY Backfilling PBguided

CTC 9,713 14,713
SDSC 6,506 8,529

SDSCBlue 3,639 4,571
LLNLThunder 503 556
LLNLAtlas 905 1,022

Table 5.2: Mean job runtime given in seconds without (Baseline-EASY Back-
filling) and with frequency scaling (PBguided).

the default value of 70%).

The utilization graphics show that the PBguided policy exploits the available

processors more efficiently since more of them can run simultaneously due to lower

frequencies. Furthermore, the plots depict that the DVFS based policy achieves

shorter makespans.

Since in the majority of the workloads there are few large jobs that can not

run at the nominal frequency under the given power budget, with the baseline

policy it would not be possible to schedule them. We allow these jobs to violate

the power budget. With both policies they are executed at the nominal frequency

to provide a fair comparison. For this reason there are some spikes higher than

the power budget in the power consumption graphics.

82

Workload CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

Mean CPU Frequency 1.48 1.46 1.64 2.06 2.05

Table 5.3: Mean frequency of a running CPU in GHz under the PBguided policy
(the nominal frequency is 2.1 GHz).

None of the polices fully exploits the available power. For instance, in the

case of the CTC workload, there are periods when the utilization is close to

100% but there is a substantial margin between the actual power draw and the

budget. However, the PBguided policy clearly shows the potential of DVFS for

job performance improvement in a power constrained system.

Various policy thresholds. We evaluated how different values of Plower

and Pupper thresholds impact performance achieved with the PBguided policy.

Recall that default threshold values, Plower = 60% and Pupper = 90%, were used

so far. Here we test the following threshold sets: Plower = 80%, Pupper = 90% and

Plower = 80%, Pupper = 95%. In this way the policy behavior is less conservative,

starting to apply frequency scaling when the power consumption is closer to the

power budget. Figure 5.11 gives the mean job BSLD for different threshold sets

whilst Figure 5.12 represents the mean job wait times.

In general, the policy with a stricter scaling condition performs especially

better for smaller systems (CTC and SDSC) in which load behavior is less stable.

The SDSCBlue workload obtains the best results with the lowest thresholds.

LLNLThunder and LLNLAtlas slightly benefit from the threshold increase to

(80%, 90%). However, further threshold increase to (80%, 95%) leads to a small

performance loss. These remarks hold for both BSLD and wait time.

Different power budgets. Due to lower wait times, the PBguided policy

achieves better job performance than the baseline across a variety of power bud-

gets. Figures 5.13 and 5.14 show the mean BSLD and wait time for different

budgets. So far, we assumed the default power budget of 70% of the maximal

power consumed by all system processors. Here we look at two more budgets: a

stricter of 60% and a looser budget of 80% of the maximal power.

As shown in the figures, the DVFS based policy provides an improvement

over the baseline in all power constrained cases. Normally, the relative difference

83

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

Baseline-EASY Backfilling
PB-guided

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

Baseline-EASY Backfilling
PB-guided

(b) Power consumption over time

Figure 5.6: The CTC workload - power budget of 70%.

in performance increases with a stricter budget. For instance, in the case of the

LLNLThunder workload, under power budgets of 60%, 70% and 80%, the mean

BSLD of the PBguided policy is 88%, 73% and 60% lower, respectively, comparing

to the baseline. Note that in some cases the mean BSLD might be higher under

a lower budget with the same policy since the number of jobs allowed to violate

the budget (large jobs that can not be executed with the baseline under the given

84

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

Baseline-EASY Backfilling
PB-guided

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

Baseline-EASY Backfilling
PB-guided

(b) Power consumption over time

Figure 5.7: The SDSC workload - power budget of 70%.

budget) is not the same for different budgets.

On the other hand, in a power unconstrained system the PBguided policy

might still use frequency scaling penalizing both job run and wait times. In our

results, this can be seen for the CTC workload under the budget of 80% where

the baseline achieves slightly better performance. CTC has lower utilization,

especially over certain phases, making the budget of 80% too loose to present a

85

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

Baseline-EASY Backfilling
PB-guided

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

Baseline-EASY Backfilling
PB-guided

(b) Power consumption over time

Figure 5.8: The SDSCBlue workload - power budget of 70%.

constraint. Hence, it is important to use this budgeting policy only when there

is not enough power.

Oracular knowledge of β. In the results presented so far, it was assumed

that the scheduler does not have any knowledge of the job sensitivity to frequency

scaling at the scheduling time. This is the case that corresponds to the reality.

Here, we test whether an oracular knowledge would help the scheduler. In prac-

86

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

Baseline-EASY Backfilling
PB-guided

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

Baseline
PB-guided

(b) Power consumption over time

Figure 5.9: The LLNLThunder workload - power budget of 70%.

tice, it would be possible to obtain this information from previous executions.

In Table 5.4 we compare scheduling results assuming that the scheduler knows

the job’s β at the scheduling time (the oracular case - columns β) and that the

scheduler has no oracular knowledge (the reality case - columns no β). The

mean job BSLD, wait time and frequency are given in the table. It can be

remarked observing the table that additional information on job sensitivity does

87

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

Baseline-EASY Backfilling
PB-guided

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

Baseline-EASY Backfilling
PB-guided

(b) Power consumption over time

Figure 5.10: The LLNLAtlas workload - power budget of 70%.

not improve performance. Moreover, in the majority of the cases the scheduler

performs better when β values are not available at the scheduling time.

If the scheduler does not have the job’s β at the scheduling time, the most

conservative value of β of is assumed (β = 1). Hence, the scheduler overestimates

the increase in the execution time due to frequency scaling and assigns slightly

higher frequency than in the case of an accurate β (see column Mean Freq).

88

 0

 20

 40

 60

 80

 100

 120

 140

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

PB-guided (60%,90%)
PB-guided (80%,90%)
PB-guided (80%,95%)

Figure 5.11: Different policy thresholds (default thresholds - Plower =
60%, Pupper = 90% with two higher settings - Plower = 80%, Pupper = 90% and
Plower = 80%, Pupper = 95%), power budget=70%: BSLD.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

PB-guided (60%,90%)
PB-guided (80%,90%)
PB-guided (80%,95%)

Figure 5.12: Different policy thresholds (default thresholds - Plower =
60%, Pupper = 90% with two higher settings - Plower = 80%, Pupper = 90% and
Plower = 80%, Pupper = 95%), power budget=70%: wait time (in seconds).

89

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline - 60%
PB-guided - 60%

Baseline - 70%
PB-guided - 70%

Baseline - 80%
PB-guided - 80%

Figure 5.13: The EASY based baseline and PBguided policy for different power
budgets: BSLD.

 0

 50000

 100000

 150000

 200000

 250000

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline - 60%
PB-guided - 60%

Baseline - 70%
PB-guided - 70%

Baseline - 80%
PB-guided - 80%

Figure 5.14: The EASY based baseline and PBguided policy for different power
budgets: wait time (in seconds).

90

This introduces more inaccuracy into scheduling through longer requested

times as the scheduler estimates them using β of 1. In previous work [76], it has

been remarked that inaccurate estimates can yield better performance than ac-

curate ones. An overestimated requested time leaves larger ’holes’ in the schedule

for backfilling smaller jobs. As the result average slowdown and wait time may

be lower. Similarly, in our case less accurate β values can improve the average

wait time.

Workload Mean BSLD Mean WT Mean Freq
no β β no β β no β β

CTC 15.63 21.74 25720 39081 1.46 1.39
SDSC 101.23 112.86 130200 150367 1.53 1.52

SDSCBlue 16.58 23.88 19893 35535 1.44 1.55
LLNLThunder 2.16 6.56 1005 3885 1.42 1.34
LLNLAtlas 4.39 3.83 2606 2258 1.68 1.66

Table 5.4: Comparison of two scenarios: β unknown prior to execution (no β)
and β known in advance (β).

5.3 MaxJobPerf policy

The MaxJobPerf policy is a job scheduling policy that considers available power

as a critical resource, similarly to the available processors. It makes scheduling

decisions solving an optimization problem where the job wait time is minimized

under the constraints imposed by available resources: power and CPUs. Recall

that the PB-guided policy was designed to manage power in a conservative way

saving some power for the other jobs from the wait queue or jobs that might arrive

soon. Due to this conservatism, the power budget may not be fully exploited.

MaxJobPerf is a more sophisticated power budgeting policy that manages both

critical resources simultaneously. Each time the scheduler is invoked, it solves

an optimization problem to determine which jobs from the wait queue should

start. The same optimization problem distributes the available power among

the jobs assigning CPU frequency to each of the selected jobs. In this way the

scheduler allocates both types of available resources, the processors and power,

to all queued jobs at the same time.

91

The policy is based on integer linear programming. Linear programming

based optimizations have been already used for power unconstrained systems

targeting specific types of scheduling such as scheduling of moldable jobs [11],

and scheduling in heterogeneous environments [62]. Its application in HPC job

schedulers for power constrained systems can be very useful as the scheduling

decisions naturally fit to an optimization framework.

5.3.1 Algorithm

With the MaxJobPerf policy a job can be scheduled for execution in two ways.

The scheduler is invoked at:

• Job arrival

• Job termination.

Job arrival. If there are enough resources to run a job at its arrival time, the

job will start immediately at the highest possible frequency for available power.

This means that there must be enough processors and power sufficient to run it

at least at the lowest available CPU frequency. If there are not enough resources,

the job is sent to the wait queue that is ordered by submission times.

Job termination. When a job terminates leaving some resources free, the

scheduler solves the optimization problem described below selecting from the wait

queue jobs to start and determining their frequencies. Recall that the job number

of processors is fixed since we consider rigid jobs. Furthermore, note that the job

frequency is assigned once, at the job start time and it remains the same for

all job processes over the entire runtime. We did not consider the possibility to

increase frequency during the job execution since additional available power will

be allocated to constantly arriving jobs.

The optimization problem. Let’s assume that the system processors

support n different frequencies: f1, f2,fn. Each of the problem variables

F1, F2, ..., FX corresponds to one of the jobs being scheduled at the moment.

They take integer values from 0 to the number of available DVFS gears. Vari-

able Fi determines whether the job Ji is selected to be run by the optimization

92

solution. Moreover, it determines the CPU frequency assigned to the job in case

it is chosen for execution. The meaning of the Fi variable is defined as follows:

Fi =

{
0 , job Ji is not selected to run,

k ∈ {1, 2, ..., n} , job Ji will run at frequency fk.
(5.2)

Given that Pcurrent and CPUoccupied are the current CPU power draw and the

number of occupied processors, respectively, the optimization problem constraints

are the following:

Pcurrent +

WQChunkSize∑
i=1

P (Fi) ∗ CPU(Ji) ≤ Pbudget (5.3)

CPUoccupied +

WQChunkSize∑
1

sign(Fi) ∗ CPU(Ji) ≤ CPUtotal (5.4)

Fi ∈ {0, 1, 2, ..., n} (5.5)

where P (Fi) represents the power consumption of a processor running at the

fFi
frequency. If Fi is zero then the power P (Fi) is zero as well. CPU(Ji) is

the number of processors requested by the job Ji. The first constraint limits the

overall CPU power consumption to be lower than the given power budget Pbudget.

The second constraint ensures that at a given moment only the available number

of processors can be assigned to jobs.

The integer linear programming problem on which the policy is based is a NP-

hard problem. Thus, the time to solve it grows exponentially with the wait queue

size. For this reason, the policy solves the problem for the first WQChunkSize

jobs from the wait queue. When the firstWQChunkSize jobs are processed (used

as inputs of the optimization problem), the scheduler solves the same optimization

problem for the next WQChunkSize jobs and the remaining resources, if any. In

this way, FCFS order is additionally enforced as a side effect. Note that at one

moment there might be less than WQChunkSize jobs left in the wait queue to

be processed.

93

The objective function of the optimization problem is defined as follows:

WQChunkSize∑
1

P (Fi) ∗WaitT ime(Ji) (5.6)

where WaitT ime(Ji) is the time that the job Ji spent in the wait queue. The

problem is to maximize the given objective function under the given constraints.

In this way, higher priority is given to longer waiting jobs and to higher frequen-

cies. We have decided to use the wait time metric in the objective function as its

exact value is available at the scheduling time. Other job performance metrics,

such as bounded slowdown, require the job runtime, which is unknown at the

scheduling time. Requested times might be used instead of job run times but

using estimates would introduce certain inaccuracy.

We used the following assumptions:

1. There is information on the actual power draw of running processors avail-

able to the scheduler. This information is not difficult to obtain in practice.

2. Free processors are assumed to be in a low power mode consuming no power.

3. The scheduler does not know the job power consumption before the job

starts. At the moment of scheduling, it is estimated to be the highest

possible for the corresponding number of processors.

After some initial tests we saw that the policy behaves very well. However,

for some workloads the maximal wait time increased significantly compared to

the EASY backfilling. Jobs that suffered from very high wait time were very

large jobs requesting almost all available processors of the system. Constantly

arriving smaller jobs have led to starvation of large jobs by preventing them from

satisfying the second constraint. Therefore, in order to guarantee that all jobs

will be scheduled for execution, a concept of reservations has been introduced.

Without reservations the scheduler did not need the job requested times. In order

to manage reservations the scheduler will need the requested times. As with the

backfilling policies, nowadays it is common to oblige users to submit their runtime

estimates when submitting a job.

94

PReservationStart +

WQChunkSize∑
i=1

Greater(CurrentT ime+RequestedT ime(Ji), ReservationStart) ∗ P (Fi) ∗ CPU(Ji)

≤ Pbudget (5.7)

CPUReservationStart +

WQChunkSize∑
1

Greater(CurrentT ime+RequestedT ime(Ji), ReservationStart) ∗ sign(Fi) ∗ CPU(Ji)

≤ CPUtotal (5.8)

With our policy, as with the EASY backfilling, there can be only one reser-

vation at a given moment. If a job gets a reservation, none of the jobs scheduled

later can delay it. However, if the job succeeds to be selected to run before its

reservation, it will run anyway and the reservation will be canceled. When making

a reservation, the scheduler uses the requested times of running jobs to determine

the earliest moment when enough processors will be available. Furthermore, there

must be enough power to run the job with reservation at the lowest frequency at

least. The frequency assigned to the job with reservation is the highest frequency

that would not violate the budget. After a reservation is made, the optimization

problem is extended by two new constraints given by inequalities (5.7) and (5.8).

PReservationStart and CPUReservationStart are power consumption and the number

of occupied processors at the reservation start moment, respectively. For a job

being scheduled, these constraints are considered only if it is expected to be

still running at the reservation start time. That is determined based on the job

requested time denoted as RequestedT ime(Ji). The function Greater(a, b) is

defined by equation 5.9.

Greater(a, b) =

{
1 , if a ≥ b ,

0 , otherwise.
(5.9)

Similar checks are done when trying to start a job at its arrival time. If there

is a reservation made and the requested time of the arrived job is longer than

ReservationStart−CurrentT ime, the scheduler needs to check both timestamps,

current and the reservation start time, for resource availability.

95

The first job in the wait queue gets a reservation if it satisfies the reser-

vation acquisition condition. Here, we will assume that the reservation condi-

tion is satisfied if the job current wait time is greater than a given threshold

WaitT imeLimit. In the next section we investigate different reservation acqui-

sition conditions based on job size (requested number of processors) and its wait

time. The policy designed in this way guarantees that all jobs will run. This can

be proved easily using mathematical induction.

Proof that all jobs will run. A job submitted to a center with the policy

defined above will run.

Initial Step. Let’s consider a job’s position in the wait queue at its submis-

sion time. If the job is the first in the wait queue at the submission time, it will

get a reservation after WaitT imeLimit if it does not start before. A job with a

reservation will run.

Inductive Step. Assume that a job that has the k-th position in the wait

queue at the submission time will run for k = 1, 2, ..., n− 1 . Let’s assume a job

J comes to the wait queue and gets the n-th position. According to the inductive

assumption all jobs before the job J will run and the job J will become the first

job in the wait queue at one moment. If not before, after WaitT imeLimit time

it will get a reservation and run eventually. This completes the inductive step.

5.3.2 Evaluation

5.3.2.1 Policy parameters

Here we assume the same baseline that was used to evaluate the PB-guided policy.

The baseline policy enforces the power budget without frequency scaling (the

same as in Section 5.2.2): jobs are scheduled with the EASY backfilling policy

to run at the nominal frequency but with an additional constraint that prevents

a job from being started if it would violate the power budget. Furthermore, we

compare the MaxJobPerf policy against PB-guided.

Default case. Again, if not stated otherwise, the power budget used in simu-

lations is equal to 70% of the maximal CPU power (power that would be consumed

if all system processors would run sequential jobs at the nominal frequency). The

assumed default value of the parameter WQChunkSize is seven meaning that

96

scheduling of the first seven jobs from the wait queue is tried and if there are

resources left afterwards, the next seven jobs are processed and so on. In the de-

fault case, we assume reservations based on job size. We set JobSizeLimit = 50%

and WaitT imeLimit = 107. Hence, the first job from the wait queue will get a

reservation if its requested number of CPUs is greater than half of the number

of system processors or it has been waiting in the queue longer than 107 seconds.

Since WaitT imeLimit is set to a high value, the reservations are normally driven

only by the job size (the requested number of processors). Later, we discuss reser-

vations based only on the job wait time. Later, we discuss reservations based on

the job wait time as they need to be discussed separately since WaitT imeLimit

should be workload specific.

5.3.2.2 Performance analysis

The MaxJobPerf policy. Here we evaluate the policies for three different

values of the CPU power budget. Power budgets of 60%, 70% and 80% of the

maximal CPU power of the corresponding system are used. Figure 5.15 gives the

mean job BSLD value of all simulated jobs. Their mean wait times are shown in

Figure 5.16.

Both DVFS-based policies clearly outperform the baseline policy for all power

budgets showing the benefit of frequency scaling for power constrained systems.

Furthermore, MaxJobPerf achieves better results than the PB-guided policy for

almost all workloads and power budgets. PB-guided for some budgets can achieve

same or slightly better performance for LLNLThunder and LLNLAtlas work-

loads. Note that while the MaxJobPerf policy never violates the power budget,

PB-guided is allowed to exceed it. We will see later that with a reservation

acquisition condition based on the wait time, MaxJobPerf always outperforms

PB-guided as well. For a lower power budget the difference between the DVFS

based policies and the EASY based baseline is especially pronounced. The perfor-

mance difference between the two DVFS policies seems to be stable over various

power budgets.

Figures 5.17 - 5.21 depict per workload system utilization and power con-

sumption over time for both DVFS power budgeting policies. The MaxJobPerf

97

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline
PB-guided

MaxJobPerf

(a) Power Budget= 60%

 0

 20

 40

 60

 80

 100

 120

 140

 160

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline
PB-guided

MaxJobPerf

(b) Power Budget= 70%

 0

 50

 100

 150

 200

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline
PB-guided

MaxJobPerf

(c) Power Budget= 80%

Figure 5.15: Comparison of different power budgeting policies: BSLD.

98

 0

 50000

 100000

 150000

 200000

 250000

CTC SDSC SDSCBlueLLNLThunderLLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline
PB-guided

MaxJobPerf

(a) Power Budget= 60%

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

CTC SDSC SDSCBlueLLNLThunderLLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline
PB-guided

MaxJobPerf

(b) Power Budget= 70%

 0

 50000

 100000

 150000

 200000

 250000

CTC SDSC SDSCBlueLLNLThunderLLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline
PB-guided

MaxJobPerf

(c) Power Budget= 80%

Figure 5.16: Comparison of different power budgeting policies: wait time (in
seconds).

99

policy is given with the wait time based reservations that are explained later.

The power graphics contain a horizontal line that marks the workload available

power budget (set to 70% in these experiments).

Looking at the timeline we can see that the MaxJobPerf policy has the same

or shorter makespan than PBguided. In this comparison, we allowed the baseline

policy to overpass the budget if it was not possible to run a job alone at the nom-

inal frequency under the given budget. This happens with large jobs requesting

a great portion of the machine. The same was done for the other policy used

for comparison, the PB-guided policy. The MaxJobPerf policy never violates the

power budget. Furthermore, it exploits available power more efficiently than the

PBguided policy.

Power unconstrained case. The MaxJobPerf policy is designed so that the

available power is fully utilized. Accordingly, when there is no power limitation

imposed, all jobs are executed at the nominal frequency. Figure 5.22 compares

the MaxJobPerf policy against the baseline (the EASY backfilling) when there

is sufficient power to run all system processors at the top frequency. Mean job

BSLD and wait time obtained with both policies are given in the figure.

Without a power constraint, the MaxJobPerf policy achieves similar perfor-

mance to the EASY backfilling. The LLNLThunder has the same performance

with both policies (the mean BSLD is 1). The mean BSLD of half of the other

workloads is better with one policy and the other half with the other. The SDSC

and LLNLAtlas workloads benefit from the job execution order used with the

EASY backfilling whilst the CTC and SDSCBlue workloads profit from better

packing due to more relaxed execution order with MaxJobPerf.

The MaxJobPerf policy tends to decrease the mean job wait time compared

to the EASY backfilling. The mean value is lower for all workloads except the

LLNLAtlas. On the other hand, the maximal job wait time is higher with

MaxJobPerf. The difference is especially pronounced for the SDSC workload

where the maximal job wait time with MaxJobPerf is more than twice the max-

imal wait time obtained with the EASY backfilling. For other workloads, this

difference is significantly lower, below 30%. Hence, the reservation condition for

the SDSC workload should be improved.

Reservation importance. Table 5.5 shows how important reservations can

100

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

PB-guided
MaxJobPerf

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

PB-guided
MaxJobPerf

(b) Power consumption over time

Figure 5.17: The CTC workload - power budget of 70%.

be for some workloads. The columns are the mean job bounded slowdown, the

mean job wait time in minutes, the maximal job wait time in hours and the

wait time standard deviation in minutes. The subcolumns respresent the follow-

ing policies: the EASY based baseline (base), the MaxJobPerf policy without

reservations (noRes) and the default case with reservations (Res).

The MaxJobPerf policy without reservations achieves better average BSLD

101

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

PB-guided
MaxJobPerf

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

PB-guided
MaxJobPerf

(b) Power consumption over time

Figure 5.18: The SDSC workload - power budget of 70%.

for all workloads except SDSC-Blue. Unfortunately, analyzing the job wait times

it was observed that big jobs that appear in some workloads suffer from very high

wait times (CTC, SDSC). This may be a problem in the case of smaller systems,

such as SDSC, where a job requests the whole machine. As resources are allocated

to newly arriving jobs, a job requesting a large portion of the machine will not

be able to satisfy the optimization condition related to the number of processors.

102

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

PB-guided
MaxJobPerf

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

PB-guided
MaxJobPerf

(b) Power consumption over time

Figure 5.19: The SDSCBlue workload - power budget of 70%.

Reservation acquisition conditions. Different requirements for a job to

get a reservation were tested. Table 5.6 shows the same performance metrics as

Table 5.5 for three different reservation acquirement conditions. Here we intro-

duce results obtained with only time constraint - column time. In this case, a

job from the head of the wait queue will get a reservation if its wait time is higher

than the 95th percentile of the wait time obtained with the EASY based baseline

103

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

PB-guided
MaxJobPerf

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

PB-guided
MaxJobPerf

(b) Power consumption over time

Figure 5.20: The LLNLThunder workload - power budget of 70%.

for the corresponding workload. The other two conditions are job size based: the

head of the wait queue must request more than 30% of system processors (column

30%) or 50% (column 50%) to get a reservation. In order to ensure that all

jobs will be executed WaitT imeLimit is set to 107 seconds. In this way it is

not supposed to impact the execution order under normal conditions. The last

condition is our default case described before.

104

0

20

40

60

80

100

S
ys

te
m

 U
til

iz
at

io
n

(%
)

Time

PB-guided
MaxJobPerf

(a) System utilization over time

PB

P
ow

er
 C

on
su

m
pt

io
n

Time

PB-guided
MaxJobPerf

(b) Power consumption over time

Figure 5.21: The LLNLAtlas workload - power budget of 70%.

It can be observed that wait time driven reservations achieve the best average

BSLD for four out of five workloads. Only the SDSCBlue workload has the

best performance with reservations assigned to the first job in the queue greater

than 50% of the system. The same holds for the average job wait time. Time

based reservations limit the maximal wait time the best for three out of five

workloads. Observing Tables 5.5 and 5.6 it can be concluded that the two biggest

105

 0

 5

 10

 15

 20

 25

 30

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Baseline-EASY Backfilling
MaxJobPerf

(a) Mean job BSLD

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

CTC SDSC SDSCBlueLLNLThunderLLNLAtlas

M
ea

n
jo

b
w

ai
t t

im
e

Baseline-EASY Backfilling
MaxJobPerf

(b) Mean job wait time (in seconds)

Figure 5.22: Policy comparison for power unconstrained case.

systems, LLNLThunder and LLNLAtlas, show no need for reservations since there

is no job starvation even without them. Surprisingly, LLNLAtlas has better

performance without reservations than with them. It contains many large jobs

and reservations based on the job size are unnecessarily made too often. In the

106

Workload Avg.BSLD Avg.WT (min) Max.WT (hours) StDev.WT (min)
base noRes Res base noRes Res base noRes Res base noRes Res

CTC 17.84 2.87 4.16 543 49 88 138.76 125.07 65.36 1,033 253 275
SDSC 143.12 64.6 68.65 3050 981 1,355 588.55 1,195.78 324.50 6,604 4,135 2,751

SDSC-Blue 57.37 6.13 5.97 1078 77 80 557.32 67.51 60.46 5,059 323 304
LLNL-Thunder 8.00 1.91 1.96 81 13 14 27.47 10.39 11.71 224 50 41
LLNL-Atlas 14.57 2.11 5.46 169 18 66 26.46 13.52 30.83 303 64 203

Table 5.5: Job performance with Baseline and MaxJobPerf policy with and
without reservations.

Workload Avg.BSLD Avg.WT (min) Max.WT (hours) StDev.WT (min)
time 30% 50% time 30% 50% time 30% 50% time 30% 50%

CTC 3.42 4.22 4.16 68 91 88 69.24 64.87 65.36 245 270 275
SDSC 48.94 70.78 68.65 856 1,445 1,355 329.01 281.56 324.50 2,171 2,834 2,751

SDSC-Blue 9.49 8.00 5.67 122 130 80 52.58 55.04 60.46 360 355 304
LLNL-Thunder 1.89 1.96 1.96 12 14 14 10.16 11.71 11.71 52 41 41
LLNL-Atlas 2.11 5.23 5.46 18 62 66 12.86 29.27 30.83 63 191 203

Table 5.6: Job performance withMaxJobPerf for different reservation assignment
conditions.

case of LLNLThunder, time based reservations lead to a slight improvement in

performance.

Wait time based reservations. In order to design a policy that can be

safely applied in a supercomputing center, we have investigated how to manage

reservations. So far, different requirements for a job to get a reservation have

been tested. Reservations based on the job size are more straightforward as they

do not require any previous analysis. On the other hand, reservations based on

the job wait time require WaitT imeLimit to be set to a workload dependent

value. Nevertheless, time based reservations achieve better results.

We tested five values of WaitT imeLimit for each workload. The values for

each workload were selected so they are evenly distributed between 0 and the

maximal job wait time obtained with the scheduling without reservations. Figures

5.23 - 5.32 show job wait times and BSLD for different values of WaitT imeLimit.

The WaitT imeLimit value is given in seconds. For instance, WaitT imeLimit

= 10K sets the wait time threshold to 10,000 seconds. x - axis presents the job

number of processors.

For both metrics, job BSLD and wait time, lower values are better. For lower

values of WaitT imeLimit the job wait time does not depend on the job size.

Increasing the limit leads to higher wait times for bigger jobs while smaller jobs

wait less (left lower corner of the plots shrinks towards 0). Generally, the BSLD

metric follows the job wait time though it can happen that a longer job runtime

107

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250 300 350

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(a) WaitT imeLimit = 10K

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250 300 350

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(b) WaitT imeLimit = 50K

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250 300 350

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(c) WaitT imeLimit = 150K

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250 300 350

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(d) WaitT imeLimit = 300K

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 50 100 150 200 250 300 350

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(e) WaitT imeLimit = 400K

Figure 5.23: The CTC workload: job wait time.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

Jo
b

B
S

LD

Number of Processors

(a) WaitT imeLimit = 10K

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

Jo
b

B
S

LD

Number of Processors

(b) WaitT imeLimit = 50K

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

Jo
b

B
S

LD

Number of Processors

(c) WaitT imeLimit = 150K

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

Jo
b

B
S

LD

Number of Processors

(d) WaitT imeLimit = 300K

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

Jo
b

B
S

LD

Number of Processors

(e) WaitT imeLimit = 400K

Figure 5.24: The CTC workload: job BSLD.

108

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(a) WaitT imeLimit = 100K

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(b) WaitT imeLimit = 300K

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(c) WaitT imeLimit = 500K

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(d) WaitT imeLimit = 750K

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(e) WaitT imeLimit = 1M

Figure 5.25: The SDSC workload: job wait time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

Jo
b

B
S

LD

Number of Processors

(a) WaitT imeLimit = 100K

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

Jo
b

B
S

LD

Number of Processors

(b) WaitT imeLimit = 300K

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

Jo
b

B
S

LD

Number of Processors

(c) WaitT imeLimit = 500K

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

Jo
b

B
S

LD

Number of Processors

(d) WaitT imeLimit = 750K

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

Jo
b

B
S

LD

Number of Processors

(e) WaitT imeLimit = 1M

Figure 5.26: The SDSC workload: job BSLD.

109

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000 1200

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(a) WaitT imeLimit = 10K

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000 1200

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(b) WaitT imeLimit = 50K

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000 1200

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(c) WaitT imeLimit = 100K

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000 1200

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(d) WaitT imeLimit = 150K

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000 1200

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(e) WaitT imeLimit = 200K

Figure 5.27: The SDSCBlue workload: job wait time.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

Jo
b

B
S

LD

Number of Processors

(a) WaitT imeLimit = 10K

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

Jo
b

B
S

LD

Number of Processors

(b) WaitT imeLimit = 50K

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

Jo
b

B
S

LD

Number of Processors

(c) WaitT imeLimit = 100K

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

Jo
b

B
S

LD

Number of Processors

(d) WaitT imeLimit = 150K

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

Jo
b

B
S

LD

Number of Processors

(e) WaitT imeLimit = 200K

Figure 5.28: The SDSCBlue workload: job BSLD.

110

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(a) WaitT imeLimit = 5K

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(b) WaitT imeLimit = 10K

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(c) WaitT imeLimit = 20K

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(d) WaitT imeLimit = 30K

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(e) WaitT imeLimit = 40K

Figure 5.29: The LLNLThunder workload: job wait time.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

B
S

LD

Number of Processors

(a) WaitT imeLimit = 5K

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

B
S

LD

Number of Processors

(b) WaitT imeLimit = 10K

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

B
S

LD

Number of Processors

(c) WaitT imeLimit = 20K

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

B
S

LD

Number of Processors

(d) WaitT imeLimit = 30K

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

Jo
b

B
S

LD

Number of Processors

(e) WaitT imeLimit = 40K

Figure 5.30: The LLNLThunder workload: job BSLD.

111

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(a) WaitT imeLimit = 5K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(b) WaitT imeLimit = 10K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(c) WaitT imeLimit = 20K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(d) WaitT imeLimit = 30K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Number of Processors

(e) WaitT imeLimit = 40K

Figure 5.31: The LLNLAtlas workload: job wait time.

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

B
S

LD

Number of Processors

(a) WaitT imeLimit = 5K

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

B
S

LD

Number of Processors

(b) WaitT imeLimit = 10K

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

B
S

LD

Number of Processors

(c) WaitT imeLimit = 20K

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

B
S

LD

Number of Processors

(d) WaitT imeLimit = 30K

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Jo
b

B
S

LD

Number of Processors

(e) WaitT imeLimit = 40K

Figure 5.32: The LLNLAtlas workload: job BSLD.

112

amortizes high wait time.

Figures 5.33 - 5.37 show the mean and maximal values of the job BSDL

and wait time for different values of WaitT imeLimit (here x -axis). Each of the

graphics has two lines: WT - representing results obtained for different values of

WaitT imeLimit and job size- the result when reservations are based on the job

size (job size threshold of 50%).

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

10K 50K 150K 300K 400K

M
ea

n
Jo

b
B

S
LD

WaitTime Limit (seconds)

WT
job size

(a) Mean BSLD

 150

 200

 250

 300

 350

 400

10K 50K 150K 300K 400K

M
ax

 J
ob

 B
S

LD

WaitTime Limit (seconds)

WT
job size

(b) Max BSLD

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

10K 50K 150K 300K 400K

M
ea

n
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)

WaitTime Limit (seconds)

WT
job size

(c) Mean wait time

 150000

 200000

 250000

 300000

 350000

 400000

 450000

10K 50K 150K 300K 400K

M
ax

 J
ob

 W
ai

t T
im

e
(s

ec
on

ds
)

WaitTime Limit (seconds)

WT
job size

(d) Max wait time

Figure 5.33: The CTC workload: MaxJobPerf with different reservation assign-
ment conditions.

It can be observed in the Max WT graphics that the job size reservations do

not constrain the maximal job wait time as well as the wait time based reserva-

tions. For all workloads except CTC, the maximal job wait time is the same or

lower than with the job size based reservations for all values of WaitT imeLimit.

On the other hand, the job size based reservations in some cases limit better the

maximal job BSLD.

Higher values of WaitT imeLimit lead to better (lower) mean job BSLD at

the price of higher maximal wait time (see Mean BSLD and Max WT graph-

ics). This behavior has been shown in Figures 5.23-5.32. In this way the system

administrator gets an opportunity to decide how much to penalize bigger jobs

113

 45

 50

 55

 60

 65

 70

 75

100K 300K 500K 750K 1M

M
ea

n
Jo

b
B

S
LD

WaitTime Limit (seconds)

WT
job size

(a) Mean BSLD

 1300

 1400

 1500

 1600

 1700

 1800

 1900

100K 300K 500K 750K 1M

M
ax

 J
ob

 B
S

LD

WaitTime Limit (seconds)

WT
job size

(b) Max BSLD

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

100K 300K 500K 750K 1M

M
ea

n
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)

WaitTime Limit (seconds)

WT
job size

(c) Mean wait time

 800000

 850000

 900000

 950000

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

100K 300K 500K 750K 1M

M
ax

 J
ob

 W
ai

t T
im

e
(s

ec
on

ds
)

WaitTime Limit (seconds)

WT
job size

(d) Max wait time

Figure 5.34: The SDSC workload: MaxJobPerf with different reservation assign-
ment conditions.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

10K 50K 100K 150K 200K

M
ea

n
Jo

b
B

S
LD

WaitTime Limit (seconds)

WT
job size

(a) Mean BSLD

 270

 280

 290

 300

 310

 320

 330

 340

 350

 360

 370

10K 50K 100K 150K 200K

M
ax

 J
ob

 B
S

LD

WaitTime Limit (seconds)

WT
job size

(b) Max BSLD

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

10K 50K 100K 150K 200K

M
ea

n
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)

WaitTime Limit (seconds)

WT
job size

(c) Mean wait time

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 220000

 225000

10K 50K 100K 150K 200K

M
ax

 J
ob

 W
ai

t T
im

e
(s

ec
on

ds
)

WaitTime Limit (seconds)

WT
job size

(d) Max wait time

Figure 5.35: The SDSCBlue workload: MaxJobPerf with different reservation
assignment conditions.

114

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

5K 10K 20K 30K 40K

M
ea

n
Jo

b
B

S
LD

WaitTime Limit (seconds)

WT
job size

(a) Mean BSLD

 44

 46

 48

 50

 52

 54

 56

 58

 60

 62

5K 10K 20K 30K 40K

M
ax

 J
ob

 B
S

LD

WaitTime Limit (seconds)

WT
job size

(b) Max BSLD

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

5K 10K 20K 30K 40K

M
ea

n
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)

WaitTime Limit (seconds)

WT
job size

(c) Mean wait time

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

5K 10K 20K 30K 40K

M
ax

 J
ob

 W
ai

t T
im

e
(s

ec
on

ds
)

WaitTime Limit (seconds)

WT
job size

(d) Max wait time

Figure 5.36: The LLNLThunder workload: MaxJobPerf with different reservation
assignment conditions.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

5K 10K 20K 30K 40K

M
ea

n
Jo

b
B

S
LD

WaitTime Limit (seconds)

WT
job size

(a) Mean BSLD

 40

 60

 80

 100

 120

 140

 160

 180

 200

5K 10K 20K 30K 40K

M
ax

 J
ob

 B
S

LD

WaitTime Limit (seconds)

WT
job size

(b) Max BSLD

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

5K 10K 20K 30K 40K

M
ea

n
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)

WaitTime Limit (seconds)

WT
job size

(c) Mean wait time

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

5K 10K 20K 30K 40K

M
ax

 J
ob

 W
ai

t T
im

e
(s

ec
on

ds
)

WaitTime Limit (seconds)

WT
 job size

(d) Max wait time

Figure 5.37: The LLNLAtlas workload: MaxJobPerf with different reservation
assignment conditions.

115

in favor of other jobs. The best WaitT imeLimit values considering meanB-

SLD/maxWT trade-off are the following: CTC - 150K, SDSC - 750K, SDSCBlue

- 150K, LLNLThunder - 20K, LLNLAtlas - 20K. It is important to note that

the difference between two adjacent values of WaitT imeLimit is not very high,

meaning that systems can be classified based on the expected load where each

class has one value of WaitT imeLimit assigned.

Job activity factor. So far, it has been assumed that the job average power

consumption is unknown at the scheduling time. We have investigated whether

knowing the average job power consumption prior to its execution might improve

job performance. Figure 5.38 gives the average BSLD when job power consump-

tion is not known (Default case), and when it is known at the scheduling time

(Oracle case). In the default case, the maximal power consumption for the given

number of processors is used at the scheduling time. This results in an overesti-

mation of the job power consumption at the scheduling time. Once a job finally

starts, its actual power consumption becomes available to the scheduler.

 0

 10

 20

 30

 40

 50

 60

 70

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

Default
Oracle

Figure 5.38: The MaxJobPerf policy: Impact of job activity
known(Oracle)/unknown(Default) prior to job execution.

It is interesting that the additional information on the actual job power con-

sumption at the scheduling time does not result always in better average BSLD.

The oracular knowledge helps in the scheduling of the SDSC and LLNLThunder

workloads improving the average BSLD by 3% and 21% respectively. It does not

116

affect the LLNLAtlas workload, while CTC and SDSCBlue have slightly better

performance (2% and 12%) when higher power values are used at the scheduling

time leaving sometimes power for small jobs.

The parameter WQChunkSize. The policy parameter WQChunkSize

determines how many contiguous jobs from the wait queue will be regarded in the

optimization problem at the same time. After processing the firstWQChunkSize

jobs, the next group of jobs from the wait queue is processed trying to schedule

them with the remaining resources. In Figure 5.39, we give the mean BSLD for

the following values of the parameter WQChunkSize: 7, 5 and 3.

 0

 10

 20

 30

 40

 50

 60

 70

CTC SDSC SDSCBlue LLNLThunder LLNLAtlas

M
ea

n
jo

b
B

S
LD

WQChunkSize=3
WQChunkSize=5
WQChunkSize=7

Figure 5.39: The MaxJobPerf policy: Impact of parameter WQChunkSize.

Lower values of the parameter WQChunkSize artificially enforce the FCFS

order, selecting jobs first from the head of the wait queue in which jobs are

sorted in the arrival order. However, the parameter WQChunkSize has been

introduced in order to limit the time needed to solve the NP-hard optimization

problem. Interestingly, the SDSC average BSLD is better for lower values of the

parameter. The other workloads slightly benefit from higher chunk sizes. We

can conclude based on the observed systems that there is no need to use values

higher than the default value. Furthermore, for WQChunkSize = 7 the problem

is small enough to result in an immediate solution.

117

5.4 Summary

In this chapter, we proposed and evaluated two parallel job scheduling policies

that use frequency scaling to improve job performance under a given power con-

straint. A power constrained system contains more processors than can be pow-

ered at the full speed. In such a system, power presents a critical resource that

affects job performance through high wait times. Running certain jobs at reduced

frequency allows more jobs to run simultaneously under the same power budget.

For this reason, both policies achieved better performance than the baseline - the

scheduling with the EASY backfilling without frequency scaling. We showed that

these policies do not need in advance any information that is difficult to obtain in

practice, such as an application’s sensitivity to frequency scaling or its accurate

power consumption.

The frequency assignment algorithm of the first presented policy, PB-guided,

is driven by predicted job performance at a given frequency and by the current

power draw of running processors. This policy presents an upgrade of the EASY

backfilling. Already with this EASY policy extension it was clear that DVFS can

improve job wait times in power constrained centers. However, it does not fully

use the available power budget.

The other proposed policy, MaxJobPerf, manages both processors and power

as system resources at the same time. It is a completely new policy based on

an integer linear programming problem. The MaxJobPerf policy fully exploits

the available power sharing it among the queued jobs based on the optimization

problem. Also, this policy achieves further performance improvement due to

relaxed job execution order that enables better packing.

We showed how important are job reservations in order to avoid job starvation.

Reservations are necessary for more loaded workloads to limit the wait time of

large jobs. We found that it is the best to assign them based on the job wait

time. On the other hand, for some workloads such as LLNLThunder, the policy

does not lead to job starvation even without reservations. For such a workload,

the users are not obliged to submit their run time estimates.

118

Chapter 6

DVFS Energy-Performance

Trade-off of Large Scale Parallel

Applications

Abstract

This chapter analyzes CPU frequency scaling impact on parallel application’s exe-

cution and performance. Here we present measurement results and the validation

of the performance model used in the thesis. Based on the conclusions from the

first part of the chapter, we perform a parametric analysis of DVFS efficiency for

energy/performance trade-off in future systems. The effects of certain applica-

tion/platform characteristics, such as application sensitivity to frequency scaling

and idle power consumption, are investigated.

6.1 Introduction

Intuitively, it is clear that the efficiency of the scheduling policies proposed in

previous chapters strongly depends on DVFS impact on CPU power consumption

and job run time. For energy saving policies it is crucial that an execution at

reduced frequency results in lower energy consumption, not only lower power.

On the other hand, for power budgeting policies it is only important that the

underlying technology provides gears with lower power consumption.

119

In this chapter, we discuss the potential of the DVFS technique in current

and future HPC systems. Energy benefit of executing an application at reduced

frequency is evaluated for different application/platform characteristics. Also,

sensitivity to frequency scaling is evaluated through the parameter β introduced

in Section 3.2.1. This sensitivity of sequential and small scale parallel applications

has been studied thoroughly in related work [22; 51]. Here, special attention is de-

voted to large-scale parallel applications. Our analysis is based on measurements

for large-scale parallel applications with up to 720 cores.

Furthermore, we developed a model that estimates parallel application sensi-

tivity to frequency scaling based on its parallel efficiency. This model gives an

upper bound on application performance loss due to frequency reduction. Perfor-

mance loss is one of the main aspects that determine DVFS trade-off efficiency.

Other important aspects such as the amount of power reduction and system idle

power portion are explained to give a clear view of the trade-off potential. Finally,

we present a parametric analysis to foresee DVFS future in HPC environments.

6.2 The concept of trade-off

DVFS energy reduction techniques in HPC systems can be classified into two

classes. The first class of approaches accepts a certain penalty in performance

for reduced energy consumption [31; 40; 55; 75]. The other class executes parts

of an application at lower frequency only if it is not on the critical path avoiding

performance loss [44; 56; 71]. There are two main drawbacks of the second

class of approaches: they can be applied only to specific applications (i.e load

imbalanced or communication intensive) and they involve fine grain DVFS use

that may present a chip reliability issue.

Note that energy saving policies proposed in this thesis fall into the first

class of approaches. Power budgeting policies trade application performance,

measured in application execution time, for lower application power consumption

and better job performance determined by job wait time. None of the policies

directly exploits application characteristics, striving to achieve energy savings

for the same execution time. Hence, here we discuss the DVFS potential for

the energy-performance trade-off in current and future large scale HPC clusters.

120

This chapter is motivated by the fact that the DVFS technology seems to be less

effective for sequential applications than it was before [51].

Figure 6.1 gives two power/execution time scenarios for an application. The

first one represents the application execution at the nominal CPU frequency

whilst the other case assumes that the application runs at a reduced frequency f .

In the second case the application takes longer, finishing at the moment T2. When

running at the nominal frequency the application execution ends at the moment

T1. In this case the system consumes power1 P (fmax) until the moment T1 and

Pidle from T1 until T2. The application running at the reduced frequency dissi-

pates P (f) over the entire observed time interval. The mentioned values are the

average system power consumption values over the observed intervals. Hence,

the energy E(fmax) consumed in the first case is P (fmax) ∗ T1 + Pidle ∗ (T2 − T1).

In the second case, the energy consumption E(f) is equal to P (f) ∗ T2. Since

CPU power consumption accounts for a high portion of the total system power,

reduction in CPU power due to frequency scaling leads to a significant difference

between P (fmax) and P (f) (P (f) < P (fmax)). Therefore, the second scenario in

which the application runs at reduced frequency has been considered to be more

energy efficient (E(f) < E(fmax)).

Figure 6.1: Two energy scenarios.

New attitudes, contrary to conventional wisdom that in general DVFS saves

energy in spite of performance loss, have emerged recently. For instance, Le

Sueur et al. found that while DVFS was effective on older platforms, it actually

increases energy usage of sequential applications on the most recent platforms

[51].

Running an application at lower frequency/voltage results in lower CPU power

consumption. However, due to an increase in the application execution time,

1the system power, not only CPU

121

frequency reduction may lead to higher energy consumption. Critical aspects that

must be considered when evaluating the frequency scaling potential for energy

savings are the following:

• The increase in the execution time for a given amount the frequency was

reduced by.

• The portion of total system power reduction for a given amount the fre-

quency was reduced by.

• The ratio of idle and active system power.

Longer execution time at lower frequency is not only a performance issue but

it determines whether the reduction in frequency results in energy savings. The

increase in the execution time is not necessarily proportional to the reduction in

frequency as explained in Section 3.2.1. How much frequency scaling affects the

application execution time depends on non-CPU activity i.e. memory accesses

and communication latency. It is important to state that this work targets large

scale parallel applications whose performance loss highly depends on the portion

of time spent in communication.

When evaluating an energy saving approach it is common to regard only the

energy consumed during an application execution, even when different approaches

do not have the same execution times. Miyosi argued that the power consumed

while idle must be taken into account if overall savings are the goal [60]. The

system can not be simply turned off when an application finishes. In fact, idle

cluster power is still very high, accounting for about half of the power consumed

under load [17]. Idle processors can be put into a low power mode but this is still

not the case with other system components. Future cluster design must radically

decrease idle power in order to achieve energy proportional computing [3]. Thus,

two energy scenarios must be compared during the same time interval.

Our contributions in this chapter are:

• Frequency scaling impact on performance was measured and analyzed on a

modern platform for real world applications with up to 712 processors.

• We proposed (in Section 3.2.1) and validated here a model of frequency

scaling impact on execution time for large scale MPI applications.

122

• A parametric analysis of DVFS energy efficiency was performed for large

scale parallel applications.

Similarly to findings of Le Sueur et al. for sequential applications, we find that

the DVFS technique potential for parallel applications is diminishing as well, in

spite of the fact that the communication time does not scale with frequency

scaling. Execution times of parallel applications running on newer systems tend

to be more sensitive to frequency scaling than they were before. Though energy-

proportional computing is still a research challenge, we show how the eventual

reduction in idle power consumption will further diminish opportunities for DVFS

energy savings.

In spite of decreasing DVFS energy saving potential, the technique still can

be used to reduce power consumption in power constrained systems to run more

jobs simultaneously resulting in the same or higher energy consumption. Be-

cause of increasing main memory power consumption, memory DVFS has been

proposed recently [7; 8]. Applying frequency/voltage scaling to both processors

and memory subsystem might present a solution for future clusters.

6.3 Impact of frequency scaling on execution

time

6.3.1 Performance measurements

Each blade of the platform used for the measurements, called Povel [42], consists

of a 4-socket server supporting the AMD Istanbul CPUs with the AMD SR5670

chipset, both released in the summer of 2009. The nodes have AMD 8425 2.1

GHz 6-core HE CPUs and four DDR2 memory sockets for each CPU socket.

Thus, the machine used for measurements consists of 24-core nodes with 32 GB

of memory. They are interconnected by a full-bisection QDR Infiniband network.

The processors support five frequencies: 2.1 GHZ, 1.6 GHZ, 1.4 GHz, 1.1 GHz

and 0.8 GHz. Our results were obtained with C class applications from the NAS

Parallel Benchmark 3.3 suite [37] and with Gromacs 4.5.1, a real world molecular

dynamics application [36]. We ran each of the applications ten times at each of

123

the supported frequencies and then used the minimal execution time over ten runs

to compute β values. Minimal execution time was used to avoid some outliers

that were present at all frequencies.

The β value of an application is computed using the execution times at the

nominal and reduced frequency fi. Accordingly, we define β(fi) as:

β(fi) =

T (fi)
T (fmax)

− 1

fmax

fi
− 1

(6.1)

where T (fmax) is the execution time at the nominal frequency 2.1 GHz for the

given number of processors. T (fi) represents the execution time at frequency

fi for the same number of processors. Note that here β(fi) is a function of the

frequency, not only of the application and platform.

Figure 6.2 gives β(fi) values for each of the reduced frequencies and bench-

marks. These values are given for different numbers of cores, starting from 4

up to 121 or 128 depending on the benchmarks. Gromacs values are given for

application sizes from 16 up to 720 processors.

There was no high variation among an application’s β(fi) values for a fixed

number of processors and various reduced frequencies (see horizontal lines in

Figure 6.2). The highest difference observed for two different frequencies was

0.16 (for the SP benchmark). Variations were higher than those obtained with

measurements from related work [22], but still satisfyingly low to have a value

independent from the amount the frequency was reduced by.

Generally, lower frequencies showed proportionally more sensitivity to fre-

quency scaling reflected in higher β(fi) values. For instance, the SP lines in

Figure 6.2 are not horizontal because of higher betas for lower frequencies. This

might be explained by a possible decrease in the memory bus frequency with

the CPU frequency scaling down. This behavior has been observed for an AMD

Opteron based cluster [75].

We remarked that memory bandwidth was lower for lower CPU frequencies.

The STREAM benchmark [58] results at different frequencies are given in Table

6.1. The array size used for tests was 83,750,000.

Since SP is memory bound, it was more affected by the memory bus frequency.

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

4
8

16
64

128

(a) CG.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

4
8

16
64

128

(b) FT.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

4
8

16
64

128

(c) IS.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

4
9

16
64

121

(d) BT.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

9
16
64

121

(e) SP.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

16
32
64

256
500
720

(f) Gromacs

Figure 6.2: β dependence on frequency and application size.

125

2.1 GHz 1.6 GHz 1.4 GHz 1.1 GHz 0.8 GHz

Copy: 4.63 4.30 3.95 3.50 2.82
Scale: 4.54 4.17 3.83 3.38 2.73
Add: 5.03 4.56 4.17 3.70 2.95
Triad: 4.78 4.37 4.00 3.55 2.83

Table 6.1: Single thread Stream performance (GB/sec).

Nevertheless, the possible memory bus frequency change should not present a

source of a significant additional performance loss.

Figure 6.3 shows the least square fitted β for each application and each num-

ber of processors. The number of processors (the x-axis, exponential scale) has a

strong impact on an application’s β. Communication intensive benchmarks FT

and IS show clear decrease in application sensitivity to frequency scaling with an

increase in the number of cores. In this case, the computation/communication

ratio drops with larger numbers of cores. The same happens with CG, a computa-

tion intensive benchmark with non-negligible communication. For lower numbers

of cores its β is high but it decreases fast reaching only 0.08 for 128 cores. On

the other hand, since SP scales well, its β almost does not change. However, its

β values are very low since it is a memory bound application benchmark. BT

is between two extreme cases, decreasing its β from 0.74 (4 cores) to 0.41 (121

cores). Gromacs’s beta stays around 0.7 for 16, 32 and 64 cores. It gets lower

slowly, 0.54 for 256 cores and about 0.40 for 500 and 720 cores, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 16 128 720

B
et

a

Number of processors

cg
ft
is
bt
sp

gromacs

Figure 6.3: β values for different number of processors.

126

6.3.2 Analysis of frequency scaling impact on execution

This section presents a few interesting remarks observed during the measurements

of frequency scaling impact on the parallel benchmarks.

6.3.2.1 Frequency impact on communication time

It has been already remarked that frequency scaling has almost no effect on com-

munication time as the processor is not on the critical path during communication

[24; 56]. This observation has been made for clusters with a very small number

of cores per node. As we had the opportunity to use a machine with 24 cores

per node, we observed that the communication time was affected by frequency

scaling when all processes were on one node.

Paraver traces were generated for CG, IS and FT benchmarks at all frequen-

cies for 16 and 64 cores. Paraver is a visualization and analysis tool for parallel

application executions [33]. The traces obtained during benchmark executions

were used to analyze the impact of frequency scaling on parallel application exe-

cutions.

Table 6.2 gives the total time spent in MPI calls in seconds at different fre-

quencies for 16 cores of one node and 64 cores distributed over 3 nodes. In

contrast to conclusions made in related work, in the case of 16 cores (all cores

on the same node) the communication time increased with the CPU frequency

reduction. This happened because of the MPI intra-node implementation that

is done through a memory mapped shared file involving processor activity and

depending on memory bandwidth. Note that the memory bus frequency depends

on the processor frequency in the cluster we used for measurements but it does

not have to be the case on other platforms. When 4 nodes are used for execu-

tions on 16 cores (4 cores per node) the communication time is not affected by

the CPU frequency change. Similarly, the MPI time does not depend on the CPU

frequency in the case of 64 cores (distributed over 3 nodes).

6.3.2.2 Frequency impact on application load balance

Normally with NAS benchmarks all threads simultaneously execute a computa-

tion or communication phase. Unbalanced executions do not use all available

127

Benchmark Freq (GHz) Comm (sec) Comm (sec)
16 cores 64 cores

CG.C

2.1 65.77 1008.82
1.6 80.60 1043.02
1.4 86.53 1042.32
1.1 95.05 1090.01
0.8 125.84 1166.53

IS.C

2.1 23.33 140.77
1.6 23.02 143.02
1.4 24.61 145.30
1.1 27.78 147.09
0.8 33.28 145.29

FT.C

2.1 106.10 547.10
1.6 126.97 534.38
1.4 135.33 549.95
1.1 160.22 515.41
0.8 203.28 527.44

Table 6.2: Communication time at different frequencies.

resources optimally as cores that finish earlier with computation have to wait for

others to communicate. More balanced executions lead to shorter run times. The

load balance degree of an application can be defined as:

LB =

∑n
i=1 CompTimei

n ∗max1≤j≤nCompTimej
(6.2)

where the numerator is the sum of the total times that each process spent in

computation. The denominator is the product of the number of processes n and

the maximal computation time per process. Load balance defined in this way rep-

resents the ratio between the average and the maximal per process computation

time.

The executions were almost perfectly balanced in the case of 16 cores. The

LB column of Table 6.3 shows the load balance degree of the entire benchmarks

for 64 cores executed at different frequencies. All iterations of an execution had

the same load imbalance. Moreover, the same thread was always the slowest

over all iterations of an execution in spite of the same number of instructions per

process. We remarked that lower frequencies had more balanced executions. In

128

contrast to what we expected, analyzing traces of CG, FT and IS executed on

64 cores, we observed that the difference between the maximal and the minimal

computation time per thread normalized with respect to the execution at the

nominal frequency does not always increase (the column Norm(Max-Min)).

On the contrary, in the case of CG and FT the computation time difference

among threads decreases with frequency reduction. Also, the standard deviation

of computation time per thread stays nearly the same or even decreases with

frequency reduction. This means that not all processes in a computation phase

were equally sensitive to frequency scaling though they were executing the same

instructions. We could not obtain traces with the number of L3 misses on Povel

to further clarify this phenomenon. Taking into account that the computation

time increases with frequency reduction, the same or a lower absolute difference

among threads leads to better load balance at lower frequencies.

Benchmark Freq (GHz) LB Norm(Max-Min)

CG.C.64

2.1 0.65 1.00
1.6 0.69 0.90
1.4 0.74 0.79
1.1 0.86 0.55
0.8 0.91 0.43

IS.C.64

2.1 0.71 1.00
1.6 0.73 1.02
1.4 0.73 1.07
1.1 0.76 1.17
0.8 0.80 1.10

FT.C.64

2.1 0.85 1.00
1.6 0.87 1.08
1.4 0.90 0.90
1.1 0.93 0.72
0.8 0.95 0.68

Table 6.3: Load balance and difference between the maximal and minimal per
thread computation phase durations at different frequencies.

129

6.3.3 DVFS and performance loss of parallel applications

The impact of frequency scaling on the execution time decreases remarkably when

running an application on more processors as shown in Section 6.3.1. Increasing

the number of processors results in a higher portion of time spent in communi-

cation. Thus, the β parameter of a parallel application is heavily dependent on

the application’s parallel efficiency (the portion of computation in total execution

time). In order to distinguish the impact of frequency scaling on computation

phases and the entire parallel application, we define βcomp(fi) as follows:

βcomp(fi) =

Tcomp(fi)

Tcomp(fmax)
− 1

fmax

fi
− 1

(6.3)

where total computation times Tcomp(fi) and Tcomp(fmax) (the sum of per process

computation times) at corresponding frequencies are used instead of the appli-

cation execution times. Note that βcomp(fi) defined in this way represents an

averaged value, not per process value. As shown in the previous section, two pro-

cesses of the same application can show different sensitivity to frequency scaling.

The relation between the global application βglobal value and the average com-

putation phase βcomp can be derived assuming the application’s parallel efficiency

of p. In the previous section, we have seen that the communication time of

applications which processes communicate over the network does not vary with

frequency even on the platforms where CPU frequency scaling affects memory

bus frequency. Hence, it can be assumed that the communication time of HPC

applications does not depend on CPU frequency as they are supposed to run on

more than one node. Given that communication time stays nearly the same at

reduced frequencies, the following holds:

T (f) = pT (fmax)(βcomp(
fmax

f
− 1) + 1) + (1− p)T (fmax). (6.4)

Equalizing T (f) from equations (3.1) and (6.4) gives:

βglobal = pβcomp. (6.5)

130

As βcomp ≤ 1 then βglobal ≤ p.

In order to validate this relation between βglobal and βcomp, we analyzed CG,

FT and IS benchmark executions at all supported frequencies for 16 and 64

processors. We used 4 nodes for runs on 16 cores (4 cores per node). The parallel

efficiency p was determined at the nominal frequency, βglobal(fi) and βcomp(fi)

were computed for all reduced frequencies. Figure 6.4 compares actual βglobal(fi)

values (measured) against those obtained with the formula βglobal(fi) = pβcomp(fi)

(estimated).

The formula overestimates the βglobal value if the time in MPI calls decreases.

Similarly, the value is underestimated if the time in MPI increases with frequency

reduction. For instance, in the case of FT executed on 64 cores, some executions

at reduced frequency showed a decrease in the time spent in MPI. In these situ-

ations, the formula overestimates the βglobal value.

As Figure 6.4 shows, the formula based on p and βcomp gives a very good

estimation of the application’s β. Accordingly, this formula can give an approx-

imation of large scale application sensitivity to frequency scaling knowing its

parallel efficiency. In order to have a highly accurate estimation of βglobal, it is

necessary to obtain βcomp. Without βcomp, the formula gives the upper bound on

the application βglobal that is equal to the parallel efficiency p.

We remarked that the computation phase beta βcomp of a benchmark differs

depending on whether the benchmark was run on 16 or 64 cores. All of the three

observed benchmarks, IS, CG and FT, had lower computation beta values when

executed on 64 cores. This can be explained with higher memory contention

when using 22 or 21 out of 24 cores per node as it is the case for 64 processes.

Similarly, in the case of 16 cores, βcomp is higher when cores are distributed over

four nodes instead of one. Least square fitted values of βcomp are given in Table

6.4.

Benchmark 16 cores/1 node 16 cores/4 node 64 cores/3 node

cg.C 0.66 0.87 0.45
is.C 0.79 0.82 0.57
ft.C 0.64 0.66 0.53

Table 6.4: Values of βcomp for various number of cores per node.

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

16-measured
16-estimated
64-measured
64-estimated

(a) CG.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

16-measured
16-estimated
64-measured
64-estimated

(b) FT.C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 1.1 1.4 1.6

B
e
ta

Frequency

16-measured
16-estimated
64-measured
64-estimated

(c) IS.C

Figure 6.4: βglobal: measured and estimated values.

132

6.3.4 Different parallel architectures

Parallel application performance loss because of frequency scaling has been mea-

sured before [22; 24]. These measurements have been performed on two systems

older than Povel. The system A was a cluster of ten nodes, each node contained

an AMD Athlon-64 and 1GB main memory [22]. The nodes were connected by

a 100 Mb/s network. The other system, system B, presents 4 nodes of a cluster

which nodes were equipped with two dual-core AMD Opteron processors and six

1 GB SDRAM modules [24]. In the second work, β values have not been given

directly. We have computed them based on the given execution times at differ-

ent frequencies. The impact of the used platform on application sensitivity to

frequency scaling is presented in Table 6.5.

Benchmark Povel System A System B

is.C.8 0.645 0.094
bt.C.9 0.639 0.227
sp.C 9 0.282 0.231
is.C.16 0.457 0.200
bt.C.16 0.584 0.512
cg.C 9 0.663 0.325
ft.C 9 0.616 0.375

Table 6.5: β values obtained on different clusters.

On the older platforms all benchmarks had lower β values compared to the

values we measured. This is especially pronounced for IS, which is a communica-

tion intensive benchmark. It showed much less sensitivity to frequency because of

slower networks. Network and memory subsystem improvements lead to higher

application sensitivity to frequency scaling.

6.4 Trade-off analysis

In the previous section we showed how frequency scaling affects performance of

large scale parallel applications. This was done through the evaluation of the

parameter β (global application β) that directly determines the increase in the

application execution time at reduced frequency. As we have seen, this parameter

133

highly depends on the application’s parallel efficiency (portion of the time spent

in communication). This is the main difference between frequency scaling impact

on sequential or low level parallelism and large scale parallel applications. Since

communication time (of large-scale applications) is insensitive to frequency and

large scale parallel applications suffer from lower parallel efficiency, their perfor-

mance is less penalized by frequency reduction. Performance loss is one of the

main aspects of the DVFS energy efficiency since a longer application execution

time means longer active system state (and higher system power over a longer

period of time) and a shorter idle system state (when the system power is lower).

This indicates that DVFS might be more effective for large-scale applications.

In this section we investigate which application/platform requirements must

be satisfied in order to save energy running an application (or its part) at reduced

frequency. Similarly to Amdahl’s law where the speedup of the program is limited

by the sequential fraction of the program, system power reduction with CPU

frequency scaling is limited by the system power fraction that is not reduced by

CPU frequency scaling (i.e. power consumed by other system components).

First, an energy consumption model is presented. The model computes sys-

tem energy consumption for both energy scenarios, running an application at the

nominal frequency and being in idle mode afterwards and the other when the

application runs at reduced frequency. The system energy consumed over an in-

terval of time is equal to the product of the average system power over the interval

and its duration. The energy model is followed by an analysis of changing param-

eters that control energy efficiency of the DVFS technique. Application/platform

parameters such as application sensitivity to frequency scaling (β), the fraction

of CPU power in system power and idle system power portion are investigated.

6.4.1 Energy model

Let’s regard again Figure 6.1. Assuming that the execution time at the nominal

frequency T1 is 1 and the application’s global beta is equal to β. T2, the execution

time at a reduced frequency f is β∗(fmax

f
−1)+1. Therefore, the energy consumed

134

in the first case is:

P (fmax) ∗ 1 + Pidle ∗ β ∗ (
fmax

f
− 1). (6.6)

The energy consumed at the reduced frequency f is:

P (f) ∗ (β ∗ (fmax

f
− 1) + 1). (6.7)

Note that power values in the above equations represent total system power,

not only CPU power. In order to save the Esaving fraction (0 < Esaving < 1)

of system energy running the processors at the frequency f , the following must

hold:
P (f) ∗ (β ∗ (fmax

f
− 1) + 1)

P (fmax) + Pidle ∗ β ∗ (fmax

f
− 1)

≤ 1− Esaving. (6.8)

For instance, Esaving = 0.05 means that the system energy consumed when the

application runs at the reduced frequency is decreased by 5% compared to the

case in which the application is executed at the nominal frequency. Then, in

order to save Esaving of the system energy, the normalized system power at the

lower frequency/voltage setting must be:

P (f)

P (fmax)
≤ (1− Esaving) ∗

1 + β ∗ Pidle

P (fmax)
∗ (fmax

f
− 1)

β ∗ (fmax

f
− 1) + 1

. (6.9)

Whether this inequality will be satisfied for a given value of Esaving depends

on the following application/platform characteristics: the application sensitivity

to frequency scaling (β), achievable system power reduction for a given amount

the frequency was scaled down (P (f)
P (fmax)

) and on the ratio between the idle system

power and system power under load (Pidle

P (fmax)
). Since CPU frequency scaling affects

only CPU power, we investigate how much CPU power consumption should be

reduced by frequency reduction. The portion of CPU power in total system power

under load is system dependent. Let’s assume CPU power accounts for CPUfrac

fraction of the system power P (fmax). In order to achieve the necessary ratio of

P (f) and P (fmax), the frequency/voltage scaling must reduce the CPU power

135

by:

CPU power reduction =
1− P (f)

P (fmax)

CPUfrac

. (6.10)

In other words, in order to reduce system power by 20% (P (f)
P (fmax

) = 0.8) assuming

that CPU power accounts for half of the system power (CPUfrac = 0.5) the

frequency scaling must lead to CPU power reduction of 40%.

6.4.2 Parametric analysis

Figures 6.5-6.7 show how much the CPU power must be reduced to save 5% or

10% of the system energy (Esaving) as a function of the application’s β. Each of

the figures assumes a different amount of frequency reduction. Figure 6.5 shows

the case where the frequency is reduced by 20%, Figure 6.6 displays half frequency

whilst the last one gives necessary CPU power reduction when the new frequency

is 25% of the nominal one. We investigated three cases of CPU power fraction:

30%, 40% and 50% of the system power. Various values of the system idle power

fraction (0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01) were analyzed and represented

by different lines in each graphic. Nowadays idle power is generally never below

50% [17]. Achieving energy proportional computing would mean reducing the

idle power fraction to a negligible value (0.05 or 0.01).

Both β and the idle power fraction have a strong impact on CPU power

reduction required to achieve energy savings. Idle power has greater importance

for higher beta values and/or more aggressive frequency reduction as both lead to

a higher increase in execution time. Low idle power consumption would require

very high CPU power reduction to save energy by lowering the frequency. Note

that we have discussed only 5% and 10% system energy savings.

All of the graphics contain a horizontal line marking the upper bound on

possible CPU power reduction (reduction = 1). Figures 6.6 and 6.7 show that for

low idle power, lower CPU power fraction and higher beta values it is not possible

to save energy by reducing the CPU frequency (required CPU power reduction is

higher than 1). This is especially pronounced for aggressive frequency reduction

(Figure 6.7). In this case, if CPU power portion is 30% of the system power, DVFS

can not save energy for almost any of the parameter combinations (idle power,

136

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(a) CPUfrac = 50%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

P
U

 p
o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(b) CPUfrac = 40%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(c) CPUfrac = 30%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(d) CPUfrac = 50%,Esaving = 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(e) CPUfrac = 40%,Esaving = 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(f) CPUfrac = 30%,Esaving = 10%

Figure 6.5: CPU power reduction required when scaling frequency down for 20%.

137

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(a) CPUfrac = 50%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

P
U

 p
o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(b) CPUfrac = 40%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(c) CPUfrac = 30%,Esaving = 5%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(d) CPUfrac = 50%,Esaving = 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(e) CPUfrac = 40%,Esaving = 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(f) CPUfrac = 30%,Esaving = 10%

Figure 6.6: CPU power reduction required when scaling frequency down for 50%.

138

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(a) CPUfrac = 50%,Esaving = 5%

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C

P
U

 p
o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(b) CPUfrac = 40%,Esaving = 5%

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(c) CPUfrac = 30%,Esaving = 5%

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(d) CPUfrac = 50%,Esaving = 10%

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(e) CPUfrac = 40%,Esaving = 10%

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 p

o
w

e
r

re
d
u
c
ti
o
n

Beta

0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

(f) CPUfrac = 30%,Esaving = 10%

Figure 6.7: CPU power reduction required when scaling frequency down for 75%.

139

beta). For higher CPU power fractions, reducing the frequency aggressively saves

energy for current values of idle power. In the future, if idle power decreases

significantly, it will not be energy efficient to run at very low frequencies.

The other two cases (Figures 6.5 and 6.6) should be discussed in more detail

as the majority of parameter combinations requires CPU power reduction of less

than 1. CPU power consumption consists of a dynamic and a static part (as

explained in Section 3.2.2). The application activity has some impact on the

dynamic part resulting in slightly different consumption of different applications.

For instance, communication intensive applications consume less CPU power than

computation intensive. However, at this level of analysis it can be assumed that

HPC applications dissipate the same CPU power at a given frequency. At this

granularity, we assume that static CPU power is proportional to voltage [5], and

dynamic to the product of frequency and the square of voltage [26]. With a

linear relation between the voltage and frequency, CPU power is proportional to

αf+f 3. Note that the voltage window will be more narrow in the future allowing

for less power reduction. Furthermore, the static power portion is increasing with

technology scaling. For 40% of static portion, frequency reduction of 20% leads to

CPU power reduction of 37%. Halving the frequency reduces CPU power by 73%.

Note that these are optimistic estimations of power reduction. A higher static

power fraction would result in lower savings for the same frequency reduction.

According to the power reduction estimation discussed above, 20% of fre-

quency decrease (Figure 6.5) nowadays leads to CPU power reduction of 37%

(represented by the lower horizontal line). If CPUfrac = 50% it is possible to

achieve even 10% of energy savings for current idle power consumption and all

beta values or for lower betas (β < 0.5) in the case of low idle power. In the

previous section, we showed that nowadays even large scale parallel applications

normally do not have such low betas. With lower CPUfrac, DVFS has less poten-

tial. Hence, if CPUfrac = 30% it is possible to save 10% of energy only for β = 0.1

and the idle power fraction equal or higher than 50%. For CPUfrac = 40% energy

savings of 10% are possible for β < 0.5 and idle power equal or higher than 40%.

Energy savings of 5% can be achieved for all applications (and all betas) if the

idle power consumption is at least half of the maximal power consumption. For

lower idle power, applications very sensitive to frequency scaling can not save

140

energy with this reduction of frequency.

More aggressive frequency scaling of 50% (Figure 6.6) nowadays results in

73% of CPU power reduction (marked with the lower horizontal line). Again,

for CPUfrac = 30% savings are possible for very high idle power or for low beta

values. For higher CPUfrac, energy savings are possible for all betas and high idle

power. Low betas (β < 0.4) achieve energy reduction regardless of idle system

power.

6.5 Summary

In this chapter, we analyzed the potential of DVFS in current and future HPC

systems. We discussed performance loss due to frequency scaling as one of the

crucial aspects of DVFS energy efficiency. Large scale parallel applications are

less sensitive to frequency scaling than sequential applications as frequency scal-

ing does not affect the time spent in communication. We explained how the

application’s parallel efficiency bounds the performance loss. Accordingly, run-

ning large parallel applications at reduced frequency might seem promising. On

the other hand, new architectures tend to show more sensitivity to frequency

scaling because of less memory stalls and shorter communication times.

Furthermore, energy savings via DVFS depend on the cluster power consump-

tion characteristics: the idle power consumption and the fraction of CPU power

in the total system power. We showed that achieving energy-proportional com-

puting would seriously limit the DVFS use for an energy-performance trade-off.

Reducing the CPU power fraction to 30% or less would have a similar effect.

141

Chapter 7

Conclusions

Abstract

Our conclusions about DVFS use at the level of parallel job scheduling are pre-

sented in this chapter. The results show that DVFS has a very limited potential

for substantial energy savings at this level due to high impact on both job wait and

run times. On the other hand, the frequency scaling technique improves job per-

formance in power constrained systems. At the end of this chapter, some possible

direction for future work are proposed.

7.1 Power-aware scheduling

Ever-increasing power consumption of computing systems have motivated a large

body of research on power and energy reduction. This is an especially important

issue in the HPC community, since large scale systems nowadays can consume

close to 10 MWatts of power. Processors have been traditionally seen as the

major power consumers and, accordingly most attention was devoted to their

power management, in both industry and academia research.

In this thesis, we investigated how to manage CPU power and energy in

HPC systems. Our work was based on DVFS, a ubiquitous technology for CPU

power management that uses frequency/voltage scaling to reduce power. We

examined its potential for both power unconstrained and constrained systems.

For power unconstrained HPC systems, energy saving benefits were evaluated.

For power constrained systems, DVFS was used to improve job performance for a

142

given power budget. Furthermore, we proposed and validated by measurements

a model of frequency scaling effect on an HPC application’s performance. This

was used to analyze DVFS efficiency for current and future HPC systems taking

into account certain application/platform parameters.

We gave motivation for frequency/voltage scaling at job granularity making

a case for power-aware parallel job scheduling. Besides the execution order, a

power-aware scheduler assigns CPU frequency to each job. All policies proposed

in the thesis apply coarse grain frequency scaling meaning that only one frequency

is assigned to a job for the entire execution. In this way, frequency change does

not present a reliability issue as would be the case with fine grain scaling. Further-

more, performance and energy overheads due to frequency change are negligible.

In the beginning of this research, policies for energy reduction were designed

and examined. However, frequency scaling used for energy reduction involves a

trade-off between energy and performance. Frequency scaling increases the run

time of the job it was applied to, but it can further degrade job performance

by affecting wait times of other jobs. The energy saving policies were designed

to control performance loss through certain thresholds. Frequency scaling was

not used in situations of high load in which frequency scaling would additionally

penalize already bad performance. Hence, in the case of the most loaded work-

load, only very modest savings were possible. We showed that energy reduction

achieved in this way leads to considerable job performance degradation for CPU

energy savings of about 20%. Lower energy savings of about 10% do not affect

performance significantly.

However, in future HPC systems, DVFS’s efficiency for energy reduction might

decrease. If it comes to a substantial decrease in idle system power and an

improvement in memory and network subsystems, frequency/voltage scaling will

not be able to save energy. We explained this in more detail in Chapter 6.

Though DVFS might become less effective for energy reduction, it will still

be able to reduce power consumption. This can be used to improve performance

of power constrained systems since lower job power consumption allows for more

jobs to run simultaneously. In the second part of the thesis, we proposed DVFS

use in HPC systems with a power limitation. We believe that more systems will

be power constrained in the future, making it important to use the available

143

power budget efficiently.

Two power budgeting policies were designed and evaluated. The PB-guided

policy, that extends the EASY backfilling policy with a frequency assignment

algorithm, already showed the potential of the DVFS technique for power con-

strained systems. The other power budgeting policy presents our main contribu-

tion. It fully exploits available power distributing it among queued jobs based on

an optimization problem solution. Since power is expected to be a limiting factor

in the future, this policy treats power as one of the system resources. We showed

that frequency scaling applied in this manner leads to a great improvement in job

performance. For all workloads, this policy leads to a severalfold decrease in the

mean BSLD. Furthermore, the policy also achieves good performance for power

unconstrained systems.

7.2 Future work

The work done in this thesis can be extended in various directions. For instance,

we assumed rigid jobs whose number of processors is fixed and determined at the

submission time. Since job power consumption depends on the used number of

processors, the scheduler can manage power consumption through an intelligent

CPU assignment policy. This can be done for moldable jobs that can change

their width at the application start time, or more dynamically with malleable

jobs whose width can be changed during execution.

Also, since frequency scaling does not affect all applications at the same de-

gree, a policy that uses runtime information on application sensitivity to fre-

quency to set the job’s CPU frequency can be designed. For instance, hardware

counters might be used to determine which jobs would not be affected substan-

tially by frequency reduction.

Furthermore, since heterogeneous systems with GPUs are becoming more

common, scheduling policies for this type of systems that take into account power

consumption of different processing units will be necessary in the future.

144

References

[1] H. Al-Daoud, I. Al-Azzoni, and D. Down. Power-aware linear programming

based scheduling for heterogeneous computer clusters. In Green Computing

Conference, 2010 International, page 325, Chicago, IL, August 2010. 25

[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan.

Robust and flexible power-proportional storage. In Proceedings of the 1st

ACM symposium on Cloud computing, SoCC ’10, pages 217–228, New York,

NY, USA, 2010. ACM. 29

[3] L. A. Barroso and U. Hölzle. The case for energy-proportional computing.

Computer, 40(12):33–37, 2007. 24, 122

[4] L. A. Barroso and U. Holzle. The datacenter as a computer: An introduction

to the design of warehouse-scale machines. Synthesis Lectures on Computer

Architecture, 4(1):1–108, 2009. 10

[5] J. Butts and G. Sohi. A static power model for architects. Microarchitec-

ture, 2000. MICRO-33. Proceedings. 33rd Annual IEEE/ACM International

Symposium on, pages 191–201, 2000. 28, 34, 140

[6] S. Cho and R. G. Melhem. On the interplay of parallelization, program

performance, and energy consumption. IEEE Transactions on Parallel and

Distributed Systems, 21:342–353, 2010. 23

[7] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory

power management via dynamic voltage/frequency scaling. ICAC ’11, New

York, NY, USA, 2011. ACM. 29, 123

145

REFERENCES

[8] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale:

active low-power modes for main memory. In Proceedings of the sixteenth

international conference on Architectural support for programming languages

and operating systems, ASPLOS ’11, pages 225–238, New York, NY, USA,

2011. ACM. 29, 123

[9] Y. Ding, K. Malkowski, P. Raghavan, and M. Kandemir. Towards energy

efficient scaling of scientific codes. Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pages 1–8, April 2008. 23

[10] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini. Limiting the power

consumption of main memory. In Proceedings of the 34th annual interna-

tional symposium on Computer architecture, ISCA ’07, pages 290–301, New

York, NY, USA, 2007. ACM. 29

[11] P.-F. Dutot, L. Eyraud, G. Mounié, and D. Trystram. Bi-criteria algorithm

for scheduling jobs on cluster platforms. In Proceedings of the sixteenth an-

nual ACM symposium on Parallelism in algorithms and architectures, SPAA

’04, pages 125–132, New York, NY, USA, 2004. ACM. 92

[12] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. BSLD threshold driven

power management policy for HPC centers. In Parallel and Distributed Pro-

cessing Symposium, Workshops and PhD Forum 2010 Proceedings. IEEE

International, pages 1–8, Atlanta, GA, April 2010. 16

[13] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing job perfor-

mance under a given power constraint in HPC centers. In Green Computing

Conference, 2010 International, pages 257–267, Chicago, IL, August 2010.

17, 32

[14] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Utilization driven power-

aware parallel job scheduling. Computer Science - Research and Develop-

ment, Springer, 25/2010:207–216, August 2010. 16

[15] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Linear programming

based parallel job scheduling for power constrained systems. In Proceedings

146

REFERENCES

of the IEEE International Conference on High Performance Computing and

Simulations, HPCS ’11, 2011. 17

[16] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Understanding the

future of energy-performance trade-off via DVFS in HPC environments. In

Journal of Parallel and Distributed Computing, Accepted for publication,

2012. 17

[17] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a

warehouse-sized computer. In ISCA ’07: Proceedings of the 34th annual

international symposium on Computer architecture, pages 13–23, New York,

NY, USA, 2007. ACM. 11, 24, 26, 122, 136

[18] D. G. Feitelson. Metrics for parallel job scheduling and their convergence.

In Revised Papers from the 7th International Workshop on Job Scheduling

Strategies for Parallel Processing, JSSPP ’01, pages 188–206, London, UK,

2001. Springer-Verlag. 37

[19] D. G. Feitelson and D. Tsafrir. Workload sanitation for performance eval-

uation. In Proceedings of the IEEE International Symposium Performance

Analysis of Systems and Software, 2006. 39

[20] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A performance-conserving

approach for reducing peak power consumption in server systems. In ICS ’05:

Proceedings of the 19th annual international conference on Supercomputing,

pages 293–302, New York, NY, USA, 2005. ACM. 27

[21] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application

sensitivity to OS interference using kernel-level noise injection. In Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 19:1–

19:12, Piscataway, NJ, USA, 2008. IEEE Press. 33

[22] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.

Rountree, and M. E. Femal. Analyzing the energy-time trade-off in high-

performance computing applications. IEEE Transactions on Parallel and

Distributed Systems, 18(6):835–848, 2007. 23, 32, 33, 120, 124, 133

147

REFERENCES

[23] R. Ge and K. W. Cameron. Power-aware speedup. Parallel and Distributed

Processing Symposium, International, 0:56, 2007. 23

[24] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron. Power-

pack: Energy profiling and analysis of high-performance systems and appli-

cations. IEEE Trans. Parallel Distrib. Syst., 21:658–671, May 2010. 4, 21,

23, 31, 34, 36, 127, 133

[25] P. Gelsinger. Microprocessors for the new millennium: Challenges, opportu-

nities, and new frontiers. In Digest of Technical papers, Solid-State Circuits

Conference 2001, 2001. 3

[26] R. Gonzalez, B. M. Gordon, and M. A. Horowitz. Supply and threshold

voltage scaling for low power CMOS. IEEE Journal of solid-State Circuits,

32:1210–1216, 1997. 140

[27] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Benefits and limi-

tations of tapping into stored energy for datacenters. In Proceedings of the

38th annual international symposium on Computer architecture, ISCA ’11,

2011. 26

[28] F. Guim and J. Corbalan. A job self-scheduling policy for HPC infras-

tructures. In JSSPPS ’08: Proceedings of the Workshop on Job Scheduling

Strategies for Parallel Processing, pages 51–75. Springer-Verlag, 2008. 36

[29] P. Henning and A. B. W. Jr. Trailblazing with roadrunner. Computing in

Science and Engineering, 11:91–95, 2009. 2

[30] J. Hikita, A. Hirano, and H. Nakashima. Saving 200kw and 200 k dollars per

year by power-aware job and machine scheduling. Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages

1–8, April 2008. 24

[31] C. hsing Hsu and W. chun Feng. A power-aware run-time system for high-

performance computing. sc, 0:1, 2005. 3, 24, 120

148

REFERENCES

[32] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a

compiler algorithm for CPU energy reduction. In PLDI ’03: Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and

implementation, pages 38–48, New York, NY, USA, 2003. ACM. 31

[33] http://www.bsc.es/plantillaA.php?cat id=485. Paraver. 127

[34] http://www.cs.huji.ac.il/labs/parallel/workload/. Parallel workload

archieve. 39, 40, 53

[35] http://www.green500.org/. The GREEN500 list. 3

[36] http://www.gromacs.org/. 123

[37] http://www.nas.nasa.gov/Resources/Software/software.html. 123

[38] http://www.nccs.gov/computing resources/jaguar/. The jaguar supercom-

puter. 2

[39] http://www.top500.org/. The TOP500 list. 2

[40] S. Huang and W. Feng. Energy-efficient cluster computing via accurate

workload characterization. In Proceedings of the 2009 9th IEEE/ACM In-

ternational Symposium on Cluster Computing and the Grid, CCGRID ’09,

pages 68–75, Washington, DC, USA, 2009. IEEE Computer Society. 120

[41] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An

analysis of efficient multi-core global power management policies: Maximiz-

ing performance for a given power budget. In MICRO 39: Proceedings of

the 39th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 347–358, Washington, DC, USA, 2006. IEEE Computer Society. 27

[42] L. Johnsson, D. Ahlin, and J. Wang. The SNIC/KTH PRACE prototype:

Achieving high energy efficiency with commodity technology without accel-

eration. International Conference on Green Computing, 0:87–95, 2010. 123

[43] J. P. Jones and B. Nitzberg. Scheduling for parallel supercomputing: A

historical perspective of achievable utilization. In IPPS/SPDP ’99/JSSPP

149

REFERENCES

’99: Proceedings of the Job Scheduling Strategies for Parallel Processing,

1999. 54

[44] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. Just in time dynamic

voltage scaling: Exploiting inter-node slack to save energy in MPI programs.

sc, 0:33, 2005. 23, 120

[45] G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval-based models for

run-time DVFS orchestration in superscalar processors. In Proceedings of

the 7th ACM international conference on Computing frontiers, CF ’10, pages

287–296, New York, NY, USA, 2010. ACM. 27

[46] R. Kettimuthu, V. Subramani, S. Srinivasan, T. Gopalsamy, D. K. Panda,

and P. Sadayappan. Selective preemption strategies for parallel job schedul-

ing. Int. J. High Perform. Comput. Netw., 3(2/3):122–152, 2005. 38

[47] K. H. Kim, R. Buyya, and J. Kim. Power aware scheduling of bag-of-tasks

applications with deadline constraints on DVS-enabled clusters. Cluster

Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE International

Symposium on, pages 541–548, May 2007. 25

[48] M. Lammie, P. Brenner, and D. Thain. Scheduling grid workloads on mul-

ticore clusters to minimize energy and maximize performance, 2009. 25

[49] B. Lawson and E. Smirni. Power-aware resource allocation in high-end sys-

tems via online simulation. In ICS ’05: Proceedings of the 19th annual

international conference on Supercomputing, pages 229–238, New York, NY,

USA, 2005. ACM. 24, 59, 61

[50] K. Le, R. Bianchini, T. Nguyen, O. Bilgir, and M. Martonosi. Capping

the brown energy consumption of internet services at low cost. In Green

Computing Conference, 2010 International, pages 3–14, Chicago, IL, August

2010. 26

[51] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling: The laws

of diminishing returns. In Proceedings of the 2010 Workshop on Power Aware

150

REFERENCES

Computing and Systems (HotPower’10), Vancouver, Canada, Oct 2010. 28,

120, 121

[52] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopou-

los. Hybrid MPI/OpenMP power-aware computing. Parallel and Distributed

Processing Symposium, International, 0:1–12, 2010. 24

[53] X. Li, Z. Li, Y. Zhou, and S. Adve. Performance directed energy management

for main memory and disks. Trans. Storage, 1:346–380, August 2005. 28, 29

[54] W. Liao, F. Li, and L. He. Microarchitecture level power and thermal sim-

ulation considering temperature dependent leakage model. In Proceedings

of the 2003 international symposium on Low power electronics and design,

ISLPED ’03, pages 211–216, New York, NY, USA, 2003. ACM. 28

[55] M. Y. Lim and V. W. Freeh. Determining the minimum energy consump-

tion using dynamic voltage and frequency scaling. Parallel and Distributed

Processing Symposium, International, 0:348, 2007. 23, 120

[56] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, transparent

frequency and voltage scaling of communication phases in MPI programs.

sc, 0:14, 2006. 24, 120, 127

[57] B. Lin, D. P. Mallik, Arindam, G. Memik, and R. Dick. User-and process-

driven dynamic voltage and frequency scaling. IEEE International Sym-

posium on Performance Analysis of Systems and Software, ISPASS, pages

11–22, 2009. 27

[58] J. D. McCalpin. Memory bandwidth and machine balance in current high

performance computers. IEEE Computer Society Technical Committee on

Computer Architecture (TCCA) Newsletter, pages 19–25, Dec. 1995. 124

[59] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server

idle power. SIGPLAN Not., 44(3):205–216, 2009. 25

[60] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Rajkumar.

Critical power slope: understanding the runtime effects of frequency scaling.

151

REFERENCES

In Proceedings of the 16th international conference on Supercomputing, ICS

’02, pages 35–44, New York, NY, USA, 2002. ACM. 27, 122

[61] E. N. (mootaz Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient

server clusters. In In Proceedings of the 2nd Workshop on Power-Aware

Computing Systems, pages 179–196, 2002. 25

[62] V. K. Naik, C. Liu, L. Yang, and J. Wagner. Online resource matching

for heterogeneous grid environments. In Proceedings of the Fifth IEEE In-

ternational Symposium on Cluster Computing and the Grid (CCGrid’05) -

Volume 2 - Volume 02, CCGRID ’05, pages 607–614, Washington, DC, USA,

2005. IEEE Computer Society. 92

[63] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for

power efficient data centers. Autonomic Computing, International Confer-

ence on, 0:5, 2007. 25

[64] V. Pallipadi and A. Starikovskiy. The ondemand governor - past, present,

and future. Proceedings of the 2006 Linux Symposium, pages 215–229, 2006.

26

[65] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing

and unbalancing for power and performance in cluster-based systems. In In

Workshop on Compilers and Operating Systems for Low Power, 2001. 25

[66] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cut-

ting the electric bill for internet-scale systems. In Proceedings of the ACM

SIGCOMM 2009 conference on Data communication, SIGCOMM ’09, 2009.

26

[67] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, and F. Rawson. Application-

aware power management. IEEE Workload Characterization Symposium,

0:39–48, 2006. 27, 34

[68] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level power

management for dense blade servers. In Proceedings of the 33rd annual in-

152

REFERENCES

ternational symposium on Computer Architecture, ISCA ’06, pages 66–77,

Washington, DC, USA, 2006. IEEE Computer Society. 26

[69] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of high-level

full-system power models. In Proceedings of the 2008 conference on Power

aware computing and systems, HotPower’08, pages 3–3, Berkeley, CA, USA,

2008. USENIX Association. 28

[70] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski, and

M. Schulz. Bounding energy consumption in large-scale MPI programs. In

SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing,

pages 1–9, New York, NY, USA, 2007. ACM. 23

[71] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh,

and T. Bletsch. Adagio: making DVS practical for complex HPC applica-

tions. In Proceedings of the 23rd international conference on Supercomputing,

ICS ’09, pages 460–469, New York, NY, USA, 2009. ACM. 120

[72] J. Rubio, K. Rajamani, F. Rawson, H. Hanson, S. Ghiasi, and T. Keller.

Dynamic processor overclocking for improving performance of power-

constrained systems, 2005. 27

[73] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis. Quantifying the po-

tential benefit of overlapping communication and computation in large-scale

scientific applications. In Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. 33

[74] R. Smirni, E. Rosti, E. Smirni, G. Serazzi, and L. W. Dowdy. Analysis of non-

work-conserving processor partitioning policies. In In IPPS ’95 Workshop on

Job Scheduling Strategies for Parallel Processing, pages 165–181. Springer-

Verlag, 1995. 74

[75] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. Koala: a platform

for OS-level power management. In Proceedings of the 4th ACM European

conference on Computer systems, EuroSys ’09, pages 289–302, New York,

NY, USA, 2009. ACM. 27, 120, 124

153

REFERENCES

[76] D. Tsafrir and D. G. Feitelson. The dynamics of backfilling: solving the

mystery of why increased inaccuracy may help. In IEEE International Sym-

posium on Workload Characterization (IISWC), pages 131–141, San Jose,

California, October 2006. 91

[77] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam. Optimal

power cost management using stored energy in data centers. In Proceedings

of the ACM SIGMETRICS joint international conference on Measurement

and modeling of computer systems, SIGMETRICS ’11, 2011. 26

[78] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced

CPU energy. USENIX SYMP. OPERATING, pages 13–23, 1994. 6

[79] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,

J. Lee, and D. Brooks. A dynamic compilation framework for controlling

microprocessor energy and performance. In Proceedings of the 38th an-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO

38, pages 271–282, Washington, DC, USA, 2005. IEEE Computer Society.

27

[80] www.bsc.es/plantillaA.php?cat id=5. Marenostrum. 7

[81] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using run-

time dynamic voltage scaling: an exact algorithm and a linear-time heuristic

approximation. In Proceedings of the 2005 international symposium on Low

power electronics and design, ISLPED ’05, pages 287–292, New York, NY,

USA, 2005. ACM. 27

[82] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.

Hotleakage: A temperature-aware model of subthreshold and gate leakage

for architects, 2003. 28

154

