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Resumen

Un subgrupo propio M de un grupo G se dice que es maximal en G si no
existe ningun subgrupo propio de G distinto de él que lo contenga. En 1885,
Frattini en su estudio sobre los subgrupos maximales de un grupo finito define
el subgrupo ¢(G) de un grupo G como la interseccién de G y sus subgrupos
maximales. Este subgrupo es conocido como el subgrupo de Trattiri de G y
es un subgrupo relevante en el estudio de los grupos nilpotentes. Si G es un
grupo finito entonces G posee subgrupos maximales y, por tanto, el subgrupo de
Frattini de un grupo finito siempre es propio en el grupo. Mds ain, si G es un
grupo finito entonces ¢(G) es nilpotente. Es de sobra conocido que en el universo
de los grupos finitos las condiciones G’ < ¢(G) y G/¢(G) nilpotente son ambas
equivalentes a la nilpotencia de G. Otras propiedades de los grupos finitos que
son equivalentes a la nilpotencia son, por ejemplo, la normalidad de todos los
subgrupos de Sylow, la subnormalidad de cada subgrupo, la centralidad de todo

factor principal o la normalidad de todo subgrupo maximal.

En grupos infinitos la situacidn es muy diferente puesto que no estd asegurada
la existencia de subgrupos maximales. Es decir, existen grupos infinitos que no
poseen subgrupos maximales y por tanto su subgrupo de Frattini coincide con
todo el grupo. En estos casos el subgrupo de Frattini del grupo proporciona
escasa informacién sobre el grupo. Como consecuencia en grupos infinitos no
podemos obtener caracterizaciones de la nilpotencia en términos del subgrupo
de Frattini.

En 1975, Tomkinson introduce una variacién de los subgrupos maximales,
los subgrupos mayores, y a partir de ella un subgrupo caracteristico u(G) con
propiedades similares a las del subgrupo de Frattini de un grupo finito. Usando
este subgrupo de tipo Frattini, en esta tesis doctoral presentamos una carac-

terizacion de una clase de grupos nilpotentes generalizados en el universo c£



de todos los grupos radicales localmente finitos con min-p para todo primo p,
analoga a la caracterizacién de los grupos finitos nilpotentes. La clase de grupos
nilpotentes generalizados considerada es la clase B formada por todos los c€-
grupos tales que cada subgrupo propio tiene clausura normal propia. Esta clase
de grupos est4 situada entre la clase de los c£-grupos nilpotentes y los c&-grupos
localmente nilpotentes y resulta ser la extensién natural de la clase de los grupos

nilpotentes finitos en el universo c£.

En esta misma linea, continuamos con el estudio de la clase B, obteniendo
un gran niumero de resultados que extienden los resultados conocidos de grupos
finitos nilpotentes. Més atin, a través de la caracterizacién de los B-grupos,
podemos probar que en todo c£-grupo G, el B-radical coincide con el subgrupo
de Fitting de G, F(G), es decir, coincide con el producto de todos los normales
nilpotentes de G. En general, el subgrupo de Fitting de un grupo infinito pro-
porciona escasa informacién sobre la estructura del grupo. En cambio, en el
universo c£, este subgrupo juega un papel muy importante al adquirir todas las
propiedades del B-radical. Este hecho nos permitird ademés obtener resultados
sobre el subgrupo de Fitting de un c£-grupo anélogos a los resultados de grupos
finitos. Por 1ltimo, estudiamos los inyectores asociados a la clase B en el uni-
verso de grupos c£, obteniendo una descripcién similar a la caracterizacién de

los inyectores nilpotentes de un grupo finito resoluble.

Otro punto importante en el andlisis de la clase B es el estudio de su versién
local, la clase B,,. Asi, en una segunda parte, obtenemos que esta clase de grupos
es la generalizacién natural de la clase de los grupos finitos p-nilpotentes. En este
sentido, extendemos algunos resultados de grupos finitos al universo de grupos
¢f. En particular, surgen propiedades que relacionan el B,-radical de un cl-
grupo G y un nuevo subgrupo caracteristico que se define como interseccién de
un cierto tipo de subgrupos mayores de G. Este subgrupo resulta ser una versién

local del subgrupo de tipo Frattini u(G) introducido por Tomkinson. Ademds,



caracterizamos los inyectores asociados a la clase de grupos p-nilpotentes gene-
ralizados B,,.

La tltima parte del trabajo estd dedicada al estudio de cC-grupos G = AB
factorizados por dos subgrupos A y B pertenecientes a la clase de grupos nilpo-
tentes generalizados B, asf como a la clase de los cL-grupos localmente nilpo-
tentes. Obtenemos, en este sentido, resultados que extienden algunos de los

teoremas ya conocidos de productos de grupos nilpotentes en el universo finito.
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Preface

A group is said to be locally finite if every finite subset of G generates a finite
subgroup. The class of locally finite groups is placed near the cross-roads of finite
group theory and the general theory of infinite groups. Many theorems about
finite groups can be phrased in such a way that their statements still make sense
for locally finite groups. However, in general, Sylow’s Theorems do not hold
in the class of locally finite groups and there are a number of generic examples
which show that locally finite groups can be very varied and complex. If we
restrict our attention to locally finite-soluble groups with min-p for all primes p
then the Sylow m-subgroups are very well behaved if 7 or its complementary in
the set of all primes is finite. The conjugacy of Sylow p-subgroups in these groups
is a very strong condition which have guaranteed the successful development of
formation theory and interesting results on Fitting classes in the universe ¢ of
all radical locally finite groups with min-p for all primes p. Moreover, using an
extension of the Frattini subgroup introduced by Tomkinson, it has been proved
a Gaschiitz-Lubeseder type theorem characterizing saturated formations in this

universe.

It is therefore appropriate to study the class c£ of all radical locally finite
groups with min-p for all primes p in more detail. In this thesis we have obtained

results which help to understand better the groups in this class.
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Consequently, the unspoken rule is that all groups considered in the three

chapters of this thesis belong to the class cf. The work is organized as follows.

In Chapter 1, we explore the class B of generalized nilpotent groups in the
universe c&. We obtain that this class behaves in the universe c£ as the nilpo-
tent groups in the finite universe and we determine the structure of B-groups
explicitly. Moreover, we show that the largest normal B-subgroup of a cL-group
is the Fitting subgroup. This fact allows us to prove some results concerning
the Fitting subgroup of a c£-group which are extensions of the finite ones. The
aim of the last section is to study the injectors associated to the class B. In
fact, we obtain a description of the B-injectors similar to the characterization

of nilpotent injectors of a finite soluble group.

Chapter 2 is devoted to study the local version of the class ®. This is
a natural generalization of the class of finite p-nilpotent groups. We extend
some results of finite groups to the above universe using a local version of a
Frattini-like subgroup. In particular, some properties appear relating the Frattini
and Fitting subgroups. The injectors associated to this class of generalized p-

nilpotent groups are also characterized.

Finally, Chapter 3 is concerned with the structure of a radical locally finite
group with min-p for all p, G = AB, factorized by two subgroups A and B in
the class B. We extend the well-known results of finite products of nilpotent

groups to the above universe.

We have introduced a Chapter 0 establishing the notation and terminology.
It also presents many of the well-known results that will be used throughout this
thesis. Notation that is not specifically cited here is consistent with that used
in {13, 14, 22, 23].



Chapter 0

Preliminaries

The main purpose of this introductory chapter is to establish the notation and
terminology and also list many results which will be used throughout this the-
sis. In this chapter we shall be concerned with infinite groups in general, not

necessarily locally finite ones.

0.1 Fundamental concepts

A group theoretical class or class of groups X is a class in the usual sense,
consisting of groups, with two additional properties:

(a) H = G € X implies that H € X,

(b) X contains the trivial group.

Groups which belong to a class X are referred to as X-groups. Standard
examples of group theoretical classes are the classes of finite groups, abelian
groups, nilpotent groups and soluble groups. For a deeper discussion of group

classes and closure operations we refer the reader to [23]. We only mention

5



6 0 Preliminaries

explicitly the closure operation L: If X is a class of groups then G € LX if and
only if every finite subset of G is contained in an X-group. We say that G is a
locally X-group in this case. For example, the group G is locally finite if every
finitely generated subgroup of G is finite. Analogously, the group G is locally

soluble if every finitely generated subgroup of G is soluble.

There are a number of standard methods which can be used to construct
examples of locally finite groups. These essentially depend on building the group
up from its finite subgroups. An example of an infinite locally finite group which

plays a very important role is the quasicyclic group:

Example 0.1. Let p be a prime. Then the complex pth roots of unity form a
group G = (z; : ¥ = 1,27, = z;;1 = 1,2,...). G is an infinite abelian p-group
which is the union of an ascending chain of cyclic p-groups of orders p,p?,. ...
We call this group a quasicyclic p-group or Priifer p-group, and denote it by C3°.
This group also can be thought of as the set of elements of p-power order in the
additive abelian group Q/Z, or as a direct limit of cyclic groups of orders p’.
Every proper subgroup of C° is a finite cyclic group. Thus G is clearly a locally

finite group.

A periodic or torsion group is a group each of whose elements has finite order.
Clearly the class of locally finite groups is a subclass of the class of periodic
groups, although these classes are different. Probably one of the most important
classes of periodic groups is the class of periodic locally soluble groups. Every

group in this class is locally finite ([13, (1.1.5)]).

If 7 is a nonempty set of primes, a 7-nurnber is a positive integer whose prime
divisors belong to 7. An element of a group is called a m-element if its order
is a m-number, and should every element be a w-element, the group is called a
m-group (in particular it is a periodic group). We will denote 7’ the set P\x.

The most important case is m# = {p}, when we speak of p-groups and p'-groups.
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We recall that if G is a finite group and 7 is a set of primes then a Hall
m-subgroup of G is a w-subgroup whose order is relatively prime to its index
and the Sylow p-subgroups of a finite group are precisely the Hall p-subgroups.
However a finite group need not contain Hall #-subgroups as the alternating
group As shows. We present now what is perhaps the usual definition of Sylow
subgroup in infinite group theory. Unlike with finite group theory we shall make
no distinction between Sylow and Hall subgroup. If G is a group and 7 is
a nonempty set of primes, G always contains maximal 7-subgroups by Zorn’s
Lemma. A maximal w-subgroup of G will be called a Sylow w-subgroup of G,
and the set of all Sylow m-subgroups of a group G is denoted by Syl.(G), with
the understanding that Syl,(G) consists of the trivial group if G is a 7'-group.
Again if 7 = {p} we omit the bracers and refer them as Sylow p-subgroups and

if m = P\{p}, we simply say Sylow p’-subgroups.

Suppose that H is a subgroup of a group & and suppose that « is an ordinal
number. An ascending series from H to G is a set of subgroups {V, : ¢ < a} of
G such that

(A1) V¢

(A2) V,

(A3) V,aV,. forall o < o,

(Ad) V) =, <, Vo for all limit ordinals A < a.

In this case we call H an ascendant subgroup of G, unless the series involved
is of finite length in which case, of course, H is said to be subnormalin G. A

descending series from G to H is a set of subgroups {A, : 0 < a} of G such that
(D1) Ay =G,
(D2) A, = H,

(D3) Ayyy 9 A, for all 0 < a,

(D4)

D4) Ar =(),<, Ao for all limit ordinals 7 < a-.
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In this case we call H a descendant subgroup of G, unless the series involved
is of finite length in which case H is again subnormal in G. It is easily seen
that subnormality and ascendance are preserved under taking homomorphic im-
ages, but this is not true for descendance. The subgroups V, (respectively As)
are called the terms of the series and the factor groups V,,,/V, (respectively
Ag/Ags1) are called the factors of the series. Moreover, an ascending (respec-
tively descending) series of is called normal if each term of the series is a normal
subgroup of G. More generally, if £ is a linearly ordered set, the above concepts
are particular cases of a series from H to G with order type X, when the linearly
ordered set ¥ or its reverse is well-ordered. But, as we will see later, seriality and
ascendance are equivalent in the class of groups that we will consider throughout
this work. Finally, a series between 1 and G is simply called a series in G. For

a fuller treatment of serial subgroups we refer the reader to [23].

Let X be a subgroup theoretical property. An ascending normal series {V; :
o < a}in agroup G is called an ascending X -series if V,4,/V, has the property
X as a subgroup of G/V, for each ¢ < a. Groups with have an ascending A'-
series are called hyper-X groups. For example, when X is centrality we obtain
the class of hypercentral groups. This class is one of the many generalizations of
the class of nilpotent groups. In particular, when X is the property of being a
normal X-subgroup (where X is a class of groups) we obtain the class of hyper-X
groups. For instance, a group G is hyperfinite if it has an ascending normal series
whose factors are finite. Likewise, a group G is hyperabelian if it has an ascending
normal series whose factors are abelian. In similar fashion, a descending normal
series in a group G is called a descending A -series if every factor of the series
has the property X as a subgroup of the appropriate factor group. Groups with
have a descending X-series are called hypo-X groups. In particular, when & is

centrality we obtain the class of hypocentral groups.

The class of locally nilpotent groups is a rather broad class of groups which
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is a generalization of the class of nilpotent groups. It is easy to prove that
all hypercentral locally finite groups are locally nilpotent, but the converse is
not true. Moreover, every locally finite-nilpotent group is the direct product of
its Sylow subgroups. This basic structure reduces the study of locally finite-
nilpotent groups, in some sense, to the study of locally finite p-groups. Recall
that the product of two normal nilpotent subgroups is nilpotent (this is Fitting’s
Theorem). The corresponding statement holds for locally nilpotent groups. Fur-
thermore, an arbitrary product of normal locally nilpotent subgroups of a group
is also locally nilpotent (and normal). Hence every group G has a unique largest
normal locally nilpotent subgroup called the Hirsch-Plotkin rodical of G, de-
noted by p(G) (see [22, (12.1.3)]). In fact, the Hirsch-Plotkin radical contains
all ascendant locally nilpotent subgroups of a group ({22, (12.1.4)]).

A number of other radicals play important roles in the theory of finite (and
hence locally finite) groups. For instance, it is easily seen that the product of an
arbitrary number of normal 7-subgroups of a group is again a w-group, for each
set of primes 7. Hence every group G has a unique largest normal m-subgroup
which is denoted by O,(G). If G is an arbitrary group, the upper m'n-series is
generated by repeatedly applying O, and O,. The first few terms are denoted
by Ox(G), Owr(G), Opan(G) and so on. For instance, Op(G)/0+(G) =
0.(G/0(G)).

Define the upper Hirsch-Plotkin series of a group G to be the ascending series
1 =Ry <Ry <...in which Raqi/R, is the Hirsch-Plotkin radical of G/R,.
If G coincides with a term of their upper Hirsch-Plotkin series then we call G
a radical group. Thus radical groups are precisely those groups which have an

ascending series with locally nilpotent factors.

There are numerous properties of infinite groups which are designed because

they are properties enjoyed by finite groups. Such finiteness conditions have
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played an extremely important role in the development of group theory over the
past fifty years. The property of being locally finite is, of course, such a finiteness
condition. Now we define another important example and related finiteness
condition. A group G is said to have the minimum condition on subgroups, or
simply, min, if each non-empty set of subgroups of G has a minimal element;
that is, if S = {H; : 4 € I} is a set of subgroups of G then there exists K € S
such that if L € S and L < K then L = K. It is easily seen that this property
is identical with the descending chain condition on subgroups, that is, every

descending chain of subgroups terminates in finitely many steps.

Certainly all finite groups have the minimum condition. Also, for each prime
p, the quasicyclic p-group has min, since the proper subgroups of such group
are all finite. Furthermore, if G is an abelian group then G has the minimum
condition if and only if G is a finite direct product of quasicyclic p-groups and
finite cyclic groups ([13, (1.5.5)]).

Now we define another important example of groups with min : Chernthov
groups. First of all we recall one of the most important classes of abelian groups:
the divisible groups. An abelian group G is called divisible if for every z € G
and every positive integer n there exists y € G such that z = ny. In particular,
the unique divisible finite group is the trivial group. The divisible groups have
a number of prominent properties which are characteristic for them and their
structure is completely known.

A group G is said to be a Chernikov group if it is a finite extension of an
abelian group with the minimum condition. Such groups are named in honor
of S. N. Chernikov, who made an extensive study of groups with the minimum
condition. It follows from the above structural result that a group G is Chernikov
if and only if it has a normal divisible abelian subgroup N of finite index, and
N is a direct product of only finitely many quasicyclic groups. For example, the

group C7° has an automorphism of order 2, namely the inversion automorphism,
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so we can form the Chernikov group [C’]‘;"]C’g. It is called the locally dihedral

p-group and it i1s interesting the case when p = 2.

Now we introduce the notion of the divisible part of a group. It will be very
useful throughout this work. Suppose that G is a group. If G has a unique largest
divisible abelian subgroup N containing all other divisible abelian subgroups,
then we call N the radicable part (or sometimes the divisible part) of G, and
denote this subgroup by G°. Of course, a group need not have a radicable part.
However if GY exists in the group G then it is clearly a characteristic subgroup
of G. Every Chernikov group G has a radicable part and it is precisely the finite

residual of ;. In particular, the radicable part of a finite group is trivial.

There is a more general condition than the minimum condition which is of
interest in this work and we now procee;i to describe this. Let p be a prime.
The group G is said to satisfy the minimum condition on p-subgroups (min-p
for short) if every non-empty subset of p-subgroups of G has a minimal element.
It is easy to check that G has min-p if and only if every descending chain of
p-subgroups terminates in finitely many steps.

In the following section we outline some of the main results on locally finite
groups satisfying min-p for all primes p. The best reference here is the book of
Dixon [13].

0.2 Basic results
We begin by recalling a very simple result concerning divisible subgroups. It
will be useful in this work.

Lemma 0.1. [23, (3.29.1)] Let R be a divisible abelian subgroup of a group G
and let F be o finite subgroup of G. If RF = R, then R = [R, F|Cr(F).
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We present now two strong structural results for locally finite-soluble groups
satisfying min-p for all p that we shall require throughout this text. The second

one was obtained by Kargapolov in 1961.

Lemma 0.2. [13, (2.5.13)] Suppose G 1is a locally finite-soluble group with
man-p for all primes p. Then G/O0(G) is a soluble Chernikou group for every

finite set of primes .

Recall that a group G is called residually finite if it contains a collection of

normal subgroups {N;}ie; such that G/N; is finite for all 4 € I and (¢, N; = 1.

Theorem 0.1. [13, (2.5.14)] Let G be a locally finite-soluble group satisfying
min-p for all primes p. Then G has a radicable part GO such that G/G° 1s
residually finite and the Sylow p-subgroups of G/ GO are finite for all primes p.

As it is well known Sylow proved in 1872 his now famous results concerning
the Sylow p-subgroups of a finite group. Hall generalized Sylow’s work in 1928.
He showed that a finite group G has Hall m-subgroups for every set of primes
7 if and only if G is soluble and went on to prove that in this case the Hall
m-subgroups form a unique conjugacy class. In general, Sylow’s theorems do not
hold in the class of locally finite groups. However, using the above results, it is
possible to obtain conjugacy results in the class of locally finite-soluble groups

with min-p for all p.

Theorem 0.2. [13, (3.1.1)] Let G be a locally finite-soluble group satisfying
min-p for all primes p. If @ is a finite set of primes then the Sylow w'-subgroups

of G are all conjugate in G.

Theorem 0.3. [13, (3.1.3)] Suppose G is locally finite-soluble and satisfies
min-p for all primes p. If © is a finite set of primes then the Sylow w-subgroups

of G are oll conjugate in G.
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We present also some elementary but useful consequences on the behaviour
of the Sylow subgroups of a locally soluble group with min-p, for all p, with

respect to factor groups, normal subgroups and serial subgroups.

Proposition 0.1. {13, (3.1.6)] Suppose G is locally finite-soluble and satisfies
man-p for oll primes p. Suppose w is a finite set of primes and that N is a
normal subgroup of G. If P € Syl.(G) and Q € Syl.(G) then

(i) PNN € Syl(N) and all the Sylow w-subgroups of N have this form.
(i) PN/N € Syl.(G/N) and all the Sylow m-subgroups of G /N have this form.
(iif) QNN € Syl.(N) and all the Sylow n'-subgroups of N have this form.

(iv) @QN/N € Syl.(G/N) and all the Sylow n'-subgroups of G/N have this

form.
(v) G=PQ.

Lemma 0.3. [13, (5.1.8)] Let G be a group, N a normal subgroup of G and
P a m-subgroup of G for some set of primes . Suppose that PN N € Syl.(N)
and PN/N € Syl.(G/N). Then P € Syl.(G).

Lemma 0.4. [12, (2.7)] Let G be a countable periodic locally soluble group with

man-p for all primes p. Suppose w is a finite set of primes. If P € Syl (G) and
H s a serial subgroup of G then PN H € Syl.(H).

Moreover, Proposition 0.1 and Lemma 0.3 allows us to obtain the following
useful consequence:
Corollary 0.1. [13, (5.1.9)] Let G be a locally finite-soluble satisfying min-p
for all primes p. Let m be a finite set of primes. Suppose that H and K are
subgroups of G satisfying K < Ng(H) and P is a w-subgroup of G such that
PNH e Syl (H) and PN K € Syl (K). Then

PNHEK = (PN H)(PNK) € Syl (HK).
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Recall that if H and K are two normal subgroups of a group G such that K
is contained in H we say that H/K is a chief factor of G if H/K is a minimal
normal subgroup of G/K. Concerning their structure we have the following

results due to Mal'cev.

Lemma 0.5. [13, (1.2.4)] Suppose that G is a periodic locally soluble group.

Then the chief factors of G are elementary abelian p-groups.

Lemma 0.6. [13, (1.2.6)] The chief factors of a locally nilpotent group are

central of prime order.

As a consequence, if G is a periodic locally soluble group with min-p for all

primes p, we may conclude the finiteness of all its chief factors.

0.3 The Frattini-like subgroup and the class c£

The Frattini subgroup ¢(G) of a group G is defined to be the intersection
of G and its maximal subgroups. In a finite group G, the Frattini subgroup is
always a proper subgroup of G and it enjoy some important properties. The
situation is quite different in infinite groups, mainly due to the fact of G having
insufficient maximal subgroups or even none at all. In 1975, Tomkinson intro-
duced a characteristic subgroup p(G) with properties similar to those of the
Frattini subgroup of a finite group. We recall now the definitions which appear
in Tomkinson’s papers [26] and [29].

Let U be a proper subgroup of a group G. Consider a properly ascending
chain

U=Uy<lU <...<Uy=0C

7 of subgroups from U to G, then we shall say that the ordinal o is the type of

the chain. We define m(U) to be the least upper bound of the types a of all
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such chains. Then m(U) can be considered as a measure of how far U is from G.
Clearly, m(U) = 1 if and only if U is a maximal subgroup of G. If G is either
infinite cyclic or a quasicyclic p-group, then m(1) = w.

A proper subgroup M of G is said to be a magor subgroup of G if m(U) =
m(M) whenever M < U < G. Roughly speaking, this means that every proper
subgroup containing M is as far from G as M is. If M is a major subgroup of G
we denote M € M;(G). The major subgroups of a group satisfying the maximal
condition (in particular, an infinite cyclic group) are just the maximal subgroups,
whereas every proper subgroup of a quasicyclic p-group is a non-maximal major -
subgroup.

The intersection of all major subgroups of G is denoted by u(G). When G
is finitely generated, 44(G) coincides with the Frattini subgroup ¢(G) of G. The

following result of Tomkinson, although elementary, will be of basic importance.

Lemma 0.7. {26, Lemma 2.3] Fvery proper subgroup U of a group G is con-

tained in a major subgroup of G.

As a consequence, (G is always a proper subgroup of G. Moreover, Tomkin-

son shows that if G is a Chernikov group then u(G) is a very small subgroup.
Proposition 0.2.-[27, (1.2)] If G is a Chernikov group then u(G) is finite.

Recall that if p is a prime, a divisible abelian p-group A which is ZG-module
for some group G is said to be divisibly irreducible if every submodule of A is
finite. In this way, a group G is said to be semiprimitive if it is the split extension,
G = [D]M, of a faithful divisibly irreducible ZM-module D by a finite soluble
group M. In such a group, M is a major subgroup of G and Coreg(M) = 1.
Moreover, Cq(D) = D and if G is a Chernikov group then D is the Fitting
subgroup of G ({29, (2.3)]). Note that this concept seems to be the natural
extension, in infinite groups, of the concept of a primitive group in finite soluble

groups. It will be widely used in this work.
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IFrom this point on all groups occurring will be in the class c£ composed of all
radical locally finite groups satisfying min-p for all primes p. Since every group
in the class ¢€ is locally soluble because it is radical, all results of Section 0.2
can be applied to the groups in the class c£. In particular, by Lemma 0.2, the

Sylow p-subgroups of a c£-group G are Chernikov groups for every prime p.

Furthermore, a locally soluble group & with min-p for all primes p is radical
if and only if G is hyperfinite. Therefore the following result concerning serial

subgroups can be applied to the class L.

Lemma 0.8. [13, (7.2.11)] Suppose that G is a hyperfinite group. Then every

serial subgroup of G is ascendant.

On the other hand, since every c£-group G is radical and satisfies min-p for
all primes p it follows that G contains minimal normal subgroups. Moreover,
by Lemma 0.5, every minimal normal subgroup of G is abelian. In particular,
each non-trivial homomorphic image of G contains a non-trivial normal abelian
subgroup. Therefore, applying [23, (1.22)], G is hyperabelian. Consequently,
every cL-group is hyperabelian and hence the following result can also be applied

to the class L.

Lemma 0.9. {23, (2.17)] Let G be a hyperabelian group and let F'(G) be its
Fitting subgroup. Then Cq(F(G)) < F(G).

Finally, we present a result, due to Ballester-Bolinches and Camp-Mora,
concerning major subgroups of c£-groups, that appears to be crucial throughout

this thesis.

Theorem 0.4. [3, Theorem 1) Let G be a cC-group and let M be a major

subgroup of G. Then:

(a) If M 1s a mazimal subgroup of G, then G/Corec(M) is a finite soluble

primitive group.
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(b) If M is not a mazimal subgroup of G, then G/Corec(M) is a semiprimitive

group.






Chapter 1

On a class of generalized

nilpotent groups

1.1 Introduction

A group G is said to be nulpotent if it has a central series of finite length.
It is well-known that there are numerous properties of finite groups which are
equivalent to nilpotence. For instance, subnormality of each subgroup, normal-
ity of all Sylow subgroups, centrality of every chief factor and normality of all
maximal subgroups. If the attention is restricted to locally finite-soluble groups,
the first three properties are sufficient to ensure local nilpotence and the latter
three ones are enjoyed by each locally nilpotent group.

It is also well-known that, for finite groups G, the conditions G’ < ¢(G) and
G /o(G) nilpotent are both equivalent to nilpotence. Taking into account that
the Frattini subgroup ¢(G) of a group G is defined as the intersection of G with
all its maximal subgroups, it is rather clear that the condition G’ < ¢(G) is

a weak property for infinite groups, even for locally finite groups, because an

19
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infinite group can have insufficient maximal subgroups or even none at all. For
instance, let G be the standard wreath product of a Priifer p-group and a Priifer
g-group. It is easy to show that G = ¢(G). However G is not locally nilpotent

if p# ¢q. Thus G' < ¢(G) does not imply local nilpotence and hence nilpotence.

Our first main objective in this chapter is to use the Frattini-like subgroup
1#(G) introduced by Tomkinson to study the class B of generalized nilpotent
groups in the universe cf. We show that in the class c€, B-groups are to infinite
groups as nilpotent groups to finite groups, obtaining a complete characterization
of the class B, through the Frattini-like subgroup, analogously to the finite one

for nilpotent groups and the Frattini subgroup.

We present structure results, some of which extend well known results and
concepts from the finite universe. Furthermore, in the first section of this chapter,
we ensure the existence of the B-radical in every group G belonging to the class
cf, showing that, in fact, it is the Fitting subgroup of G. Consequently, the
Fitting subgroup in a cC-group G share all the good properties of the B-radical

of G. Finally, we describe the relationships which exist, in the universe c£&,

between the class B and some of the main classes of generalized nilpotent groups.

In the second section we prove some results concerning the Fitting subgroup
of a c€-group which are extensions of the finite ones. Since the class B is a cL-
Fitting class, in the last section we proceed to describe the injectors associated
to this class. We obtain a similar characterization of the B-injectors in the class
¢f to the nilpotent injectors of a finite soluble group. We may prove that, in
fact, the maximal B-subgroups of a cf-group containing the Fitting subgroup

are precisely the B-injectors.
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1.2 The class B8

Let B be the class of all cC-groups in which every proper subgroup has a
proper normal closure. This is a class of generalized nilpotent groups in the
universe c£ because every nilpotent cL-group is in B and every finite $B-group
is nilpotent. Moreover, this class contains the class of all ¢£-groups for which
every subgroup is descendant.

As an attempt to extend the concept of chief factor of a group, we define the

concept of a d-chief factor of a cC-group.

Definition 1.1. Let G be a c£-group and consider two normal subgroups H, K
of G such that K is contained in H. We say that H/K is a &-chief factor of G
if H/K is either a minimal normal subgroup of G/K or a divisibly irreducible

ZG-module, that is, H/K has not proper infinite G-invariant subgroups.

Now we can establish our main result. It shows that B-groups play the same
role in the class c£ as finite nilpotent groups do in the class of all finite groups.
Moreover, we obtain a complete characterization of the B-groups G, through the
Frattini-like subgroup p(G), analogously to the finite one for nilpotent groups

and the Frattini subgroup. Let us first prove two preliminary lemmas.

Lemma 1.1. Let G be either a finite primitive soluble group or a semiprimitive

group. If G is a B-group, then G is abelian.

Proof. Suppose first that G is a finite primitive soluble group and let M
be a maximal subgroup of G with trivial core. Since G is a B-group and M is
a proper subgroup of G, it follows that (M%) is also a proper subgroup of G.
Hence, since M is maximal in G, we have that M = (M®). This implies that M
is a normal subgroup of G. Therefore M = 1 is a maximal subgroup of G and

thus G is a cyclic group of order p for some prime p.
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Now, suppose that G = [D]M is a semiprimitive group, where D is a faithful
divisibly irreducible ZAM-module and M is a finite soluble group with trivial
core. Denote T = (M%), the normal closure of M in G. Since G is a B-group,
it follows that 7" is a proper subgroup of G. Hence "= (DNT)M and DNT is
a proper subgroup of D. Moreover, as D NT aG and D is divisibly irreducible
it follows that D N 7T is finite. Notice that 7" is a finite subgroup of G because
M is also finite. Consequently M has only finitely many conjugates in G and
|G : Ng(M)] is finite. Consider now Ng(M) = Np(M)M and assume that
Np(M) = D. Then M is normal in G. Since Coreg(M) = 1, we have that
M =1 and G is abelian.

Therefore we may assume that Np(M) is a proper subgroup of D. The fact
that D is a normal subgroup of G implies that Np(M) is M-invariant and hence
it is finite. Since M is also finite, we have that Ng(M) is finite and hence G is a
finite group. This contradicts the fact that G is a semiprimitive group and the

lemma. is proved. O

Lemma 1.2. Let G be a c&-group. If G is a Chernikov B-group, then G is

nilpotent.

Proof. Let M be a major subgroup of G. Denote Mg = Coreq(M). By The-
orem 0.4, we have that either G/Mg is a finite primitive soluble group or G/M¢
is a semiprimitive group. Consequently, G/Mg is abelian by Lemma 1.1. Since
G /(@) is isomorphic to a subgroup of the cartesian product Crareat;c)G/Mc,
we have that G/u(G) is also an abelian group.

Let G = GYA, where A is a finite subgroup of G and GV is the radicable
part of G. Then Au(G) is a normal subgroup of G because G/u(G) is abelian.
Moreover, as G is a Chernikov group, it follows that p(G) is finite by Proposition
0.2. Therefore Au(G) is also a finite subgroup of G. Now, applying Lemma 0.1
we have that G? = [GY, Au(G)]Cgo(Ap(G)). Since Au(G) is a normal subgroup
of G, it follows that [G°, Au(G)] is contained in Au(G) and hence [G°, Au(G)]
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is finite. As a consequence G° = Ceo(Ap(G)). Since G = GO(An(G)) and G is
an abelian group, it follows that G is contained in the center of G. Therefore
G/Z(G) is a finite group. Moreover G/Z(G) is a B-group. Then G/Z(G) is

nilpotent and so G is nilpotent. il

Theorem 1.1. Let G be a group in the class c&. The following statements are

pairwise equivalent:

(i) G is a B-group.

(i1) G/u(G) is a B-group.

(i) G’ < p(G).

(iv) Every major subgroup of G is a normal subgroup of G.

(v) G is a direct product of nilpotent Sylow subgroups.

(vi) G is locally nilpotent and the radicable part of G 1is central.

(vil) FEwvery é-chief factor of G is central.

Proof. (i) implies (ii). This is clear from the fact that the class B is closed
under taking epimorphic images.

(i1) implies (iii). Note that if M is a major subgroup of G, then u(G) < Mg
and hence G/M is isomorphic to a quotient of G/u(G). Since G/u(G) is a B-
group, we have that G/Mg is also a B-group. Therefore, by Lemma 1.1, G /Mg
is an abelian group. Consequently G/u(G) is also abelian and then G' < 14(G).

(iii) implies (iv). Since G/u(G) is an abelian group, it follows that AM/u(G)
is a normal subgroup of G/(G) for every major subgroup M of G. Consequently
every major subgroup of & is a normal subgroup of G.

(iv) implies (i). Let H be a proper subgroup of G. Then, by Lemma 0.7, H

is contained in a major subgroup M of G. Since M is a normal subgroup of G,
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we have that (H®) < M. In particular, (H%) is a proper subgroup of G. Thus
G is a B-group.

(iii) implies (v). Since G' < p(G), it follows that G/u(G) is an abelian group.
In particular, G/u(G) is a locally nilpotent group and then, by [26, (5.2)], G is
locally nilpotent. Thus, if we denote by G, the unique Sylow p-subgroup of G
for each prime p, then G = Dr,G,. We prove that G, is a nilpotent group for
each prime p. Since G is a c£-group, we have that G, is a Chemikov group
for each prime p by Lemma 0.2. Moreover, G, is isomorphic to G/G,, where
Gy = Drgz,G,. Since (i) is equivalent to (iii), we have that G is a B-group
and consequently G, is also a B-group for each prime p. By Lemma 1.2, G,, is
nilpotent for each prime p.

(v) implies (iii). Let M be a major subgroup of G and denote Mg =
Coreg(M). Applying Theorem 0.4, if M is a maximal subgroup of G then
G /Mg is a finite primitive soluble group. By hypothesis, G is locally nilpotent.
In particular, G/M¢ is locally nilpotent and therefore G /Mg is nilpotent. Con-
sequently, G/Mg is a cyclic group of order p for some prime p and thus G/Mg
is an abelian group.

On the other hand, assume that M is a non-maximal major subgroup of G.
Then G /Mg is a semiprimitive group. By [29, (2.3)], F(G/Mg) = (G/Mg)°® =
Comg(F(G/Mg)) and F(G/Mg) is a p-group for some prime p. Moreover,
G /Mg is a direct product of nilpotent Sylow subgroups. Consequently, F(G/Mg)
G /Mg and G /Mg is a quasicyclic p-group because G /Mg is divisibly irreducible.
In both cases we have proved that if M is a major subgroup of G, then G /Mg
is an abelian group. As a consequence, G/u(G) is also abelian and thus G’ is
contained in the subgroup u(G).

(v} implies (vi). It is clear that G is locally nilpotent. For each prime p, G
has a normal Sylow p-subgroup G, and G = Dr,,GG,,. Moreover, G, is Chernikov
for all primes p by Lemma 0.2. Let G° be the radicable part of G. Then

G'nG, = Gg for all primes p. Therefore GV = DrpGg. Since G, is nilpotent, we
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have that Gg < Z(G,) by [13, (1.5.12)]. Consequently Gg < Z(G) for all primes
pand G° < Z(G).

(vi) implies (v). Arguing as above, we have that G = Dr,G, and G° =
DrpG’g. Since Gg < Z(G,) and Gy, is Chernikov, it follows that G,/Z(G,) is
nilpotent and so G, is nilpotent for all primes p. Hence (v) holds.

(vi) implies (vii). Let G be a locally nilpotent group such that G° < Z(G)
and consider a d-chief factor H/K of G. If H/K is a minimal normal of G/K
then, by [22, (12.1.6)], H/K 1is central.

Suppose now that H/K is a divisibly irreducible ZG-module. In particular,
H/K is a divisible subgroup of G/K and H/K is contained in (G/K)°, the
radicable part of G/K. On the other hand, if we denote T/K = (G/K)?, it
follows from Theorem 0.1 that the Sylow p-subgroups of G/{G°K), and hence
the Sylow p-subgroups of T/(G°K), are finite for each prime p. Furthermore,
T/(G°K) is a locally nilpotent group and hence it is the direct product of its
Sylow subgroups. Hernce every Sylow subgroup of T//(GYK) is a finite divisible
group and so it is trivial. Therefore T/K = (G/K)° = (G°K)/K. Consequently,
H/K < (G°K)/K < (Z(G)K)/K < Z(G/K) as required.

(vii) implies (vi). By hypothesis every d-chief factor of G is central. In
particular every chief factor of G is central. It follows from [13, (6.2.4)] that G
is locally nilpotent. Moreover, the Sylow subgroups of G are Chernikov groups.
Hence, to prove that G < Z(G), we may assume that G is a Chernikov p-group
for some prime p. Then G = G°A where A is a finite subgroup of G and G° is
the radicable part of G. Since GY is a divisible abelian p-group of finite rank, it
follows from [27, (1.3)] that there is a finite normal subgroup C of G contained
in G such that G°/C is a direct product of divisibly irreducible ZG-modules,
say

GO/C = (G1/C) x (G3/C) x -+ % (Gn/C).

Since G;/C' is a §-chief factor of G for all i € {1,--- ,n} then G;/C < Z(G/C)
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for all 4 € {1,--- ,n} and, G°/C < Z(G/C). Hence the commutator (G, G is
contained in C and [GY, G] is a finite group. Furthermore, applying Lemma 0.1
we have that G° = [G°, A]Ceo(A). But, since the commutator [G°, A] is a finite
group, it is clear that G° = Cgo(A). Therefore, as G" is abelian and G = G4,
we conclude that G? < Z(G). 0O

Assume that a group G has the minimum condition on subgroups. If G is a
B-group, then G is a direct product of nilpotent Sylow subgroups by Theorem
1.1. Since G has min, only finitely many of these Sylow subgroups are non trivial.

Hence G is actually a nilpotent group.

Corollary 1.1. Let G be a group in the class cC. Assume G satisfies the minimal
condition on subgroups. Then G 1s a B-group if and only if G is a nilpotent

group.

In particular, if the group G is the split extension of a quasicyclic 2-group by
its involution (that is, the locally dihedral 2-group), then G is a locally nilpotent
group, in fact it is hypercentral, but it is not a B-group. Notice that for instance
the subgroup generated by the involution is a major subgroup of the group G
which is not normal in G.

Consider the set {p;}i>1 of all prime numbers in their natural order. Let G,
be the split extension of the cyclic group (z;) of order pi by its automorphism

pit]
i .

1y; of order pii*l which maps z; to = Then G; is nilpotent of class 4. Let
G = Dr2,G;, then G is a B-group which is not nilpotent (see [26]).
These examples show that the class B is intermediate between the classes of

nilpotent ¢&-groups and locally nilpotent c£-groups.

Our aim now is to continue the study of the class B in the universe c&, as
it enjoys very interesting properties of nilpotent type. It is well-known that for
finite groups G, the Frattini subgroup ¢(G) is nilpotent. This result can be

extended to cL-groups using Tomkinson’s subgroup.
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Theorem 1.2. Let G be a group in the class c€. Then u(G) is a B-group with
finite Sylow subgroups.

Proof. By [26, (5.3)] we have that x(G) is locally nilpotent. Next we see
that every Sylow p-subgroup of u(G) is nilpotent for each prime p. Let p be
a prime and let P be a Sylow p-subgroup of x(G). By Lemma 0.2, we know
that G/O,(G) is a Chernikov group and, by Proposition 0.2, (G /0,(G)) is
finite. Since p(G)O0p(G)/Oy(G) is contained in p(G/Oy(G)), it follows that
#(G)Op(G)/Op(G) is finite and so is POy (G)/Oy(G). Therefore P is finite
and nilpotent. We conclude by Theorem 1.1 that u(G) is a B-group. 0

Our next result analyzes the behaviour of B as a class of c-groups. Recall
that a class § of c£-groups is said to be a c€-formation if it satisfies the following

properties:
(1) If G € § and N is a normal subgroup of G, then G/N € §.

(ii) If {N;}ses is a collection of normal subgroups of G € ¢£ such that G/N; € §
for every i € I and [\,c; V; =1, then G € §.

Theorem 1.3. B is a subgroup-closed cL-formation.

Proof. First we prove that every subgroup of a B-group is also a B-group.
Let GG be a B-group and let H be a subgroup of G. Since G is locally nilpotent,
we have that H is also locally nilpotent. Let H, be the Sylow p-subgroup of H
for each prime p. Then H, is contained in the unique Sylow p-subgroup G, of
G. By Theorem 1.1, we have that G, is nilpotent. Then H,, is also nilpotent for
each prime p. According to Theorem 1.1, H is a B-group.

On the other hand, it is clear that B is closed under taking epimorphic
images. Let {N;}ies be a collection of normal subgroups of G € c£ such that
G/N; € B for every v € I and {,.; N; = 1. Since G/N; is locally nilpotent for
all 7 € I, we know that G is locally nilpotent ([13, (6.2.11)]). Let G° be the
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radicable part of G. Then G°N;/N; is contained in (G'/Ni)o, which is central
in G/N; for all i € I. Therefore [G,G°] < N; for all i € I. This implies that
[G,G° =1 and GY is contained in Z(G). Applying Theorem 1.1, we have that
G is a B-group. ]

Theorem 1.3 allows us to show the existence of the B-radical in every group
G belonging to the class ¢€. It is known that the product of two normal nilpo-
tent subgroups is nilpotent ([22, (5.2.8)]). The corresponding statement holds
for locally nilpotent groups and is of great importance. Moreover in any group G
there is a unique maximal normal locally nilpotent subgroup (called the Hirsch-
Plotkin radical) containing all normal locally nilpotent subgroups of G (see (22,
(12.1.3)]). We obtain analogous results for the class % by defining the corre-

sponding radical subgroup associated to this class.

Theorem 1.4. Let G be a c&-group. Assume that H and K are two normal
B-subgroups of G. Then HK is a ‘B-group.

Proof. We know from Theorem 1.1 that H and K are locally nilpotent with
nilpotent Sylow subgroups. By [13, (12.1.2)] HK is locally nilpotent. Let p be
a prime and let A, and K, be the Sylow p-subgroups of H and K respectively.
Then it is clear that H,, and K, are normal in . Let S, be the Sylow p-subgroup
of HK. We have that S,NH = H,, S,N K = K, and 5, = H,K,. Therefore

Sy is a nilpotent group by Fitting’s Theorem. 0

Lemma 1.3. Let G be a Chernikov cC-group. Assume that G = J,c,G:, where
Gy is a normal B-subgroup of G for each 1 € I and {G; : 1 € I} is a totally

ordered sel by inclusion. Then G is o B-group.

Proof. Let G° be the radicable part of G and let A be a finite subgroup of
G such that G = G°A. If o € A, then there exists a, € I such that ¢« € G,,.

Since A is finite, it follows that {G,, : a € A} is finite and so we can choose a
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maximal element, K say. From the fact that {G; : 7 € I} is totally ordered, we
can conclude that G,, < K for each a € A. Therefore A is contained in K and

the result follows from Theorem 1.4. O

Theorem 1.5. Every group G € c£ has a unique largest normal B-subgroup,
denoted by §(G).

Proof. Consider the non-empty set S = {B « G : B € B}. Let C = {B; :
i € I} be a chain in §. We show that X = (J,.; B; is an upper bound for
Cin §. First, it is clear that X is a normal subgroup of G. By Lemma 0.2,
X/Oy(X) is a Chernikov group for all primes p, and X/0,(X) is the union of
the elements of the chain {B;0,(X)/Oy(X) : 4 € I}. By Lemma 1.3, X/Op(X)
is a B-group. Since (],0y(X) =1and B is a cC-formation by Theorem 1.3,
we conclude that X belongs to B. It is now clear that X is a subgroup which is
an upper bound for C. We may now apply Zorn’s Lemma to produce a maximal
element of S, §(G) say. Let N be a normal B-subgroup of G. By Theorem 1.4,
5(G)N is a normal B-subgroup of G. The maximality of §(G) in § implies that
5(G) = 6(G)N and N < §(G). Consequently, §(G) is the unique largest normal
B-subgroup of G. O

From Theorems 1.3 and 1.5, we have that the product of arbitrarily many
normal B-subgroups of a group G € c£ belongs to the class B. In particular,
the subgroup §(G) is the product of all normal B-subgroups of G.

Note that for every group G € c£, the Fitting subgroup F(G) is contained
in 6(G) by Theorem 1.5. Now if N € B is a normal subgroup of G, then every
Sylow subgroup of N is a normal nilpotent subgroup of G. Consequently N is
contained in the Fitting subgroup of G, F(G). This implies that §(G) = F(G)
for every group G € ¢£. It is known that in general the Fitting subgroup in an
infinite group gives little information about the structure of the group. However

in this case it plays an important role as it inherits the properties of the ‘B-
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radical.

We say that a subclass § of ¢ is a c&- Fitting class if it satisfies the following

properties:
(i) If G € § and H is a normal subgroup of &, then H € §.

(i) If G = (H; i € I) € c£ and, for each 7 € I the subgroup H; is a normal
F-subgroup of G, then G € 3.

Therefore, it is clear that 9B is an example of a c£-Fitting class. Perhaps, 1t 18
worth noting at this point a well-known result of Bryce and Cossey concerning
saturated formations and Fitting classes. It asserts that, in the finite soluble
universe, a subgroup-closed Fitting formation is saturated ([14, (X1.1.2)]). Thus
we can formulate the following question: Does Bryce and Cossey’s Theorem
hold in the class c£?. We will see that the answer to this question is negative

by proving that the class B is not a saturated cC-formation.

In finite groups a formation § is called saturated if a group G € § whenever
G/¢(G) € §. It is also well-known that, in the finite soluble universe, the
saturated formations are precisely the same classes as the so-called locally defined
ones. The main difficulty in extending the definition of saturated formation to
infinite groups lies in the aforementioned deficiencies of the Frattini subgroup.
Therefore, the definition of saturated formation is done locally in infinite groups

to avoid situations where a given group has no maximal subgroups.

However, Ballester-Bolinches and Camp-Mora. ({3]) show that it is possible
to characterize cC-saturated formations, which are the locally defined ones, by

means of the Frattini-like subgroup u(G).

Definition 1.2. [3, Definition 1] A c£-formation § is said to be [,-closed if

§ enjoys the following properties:



1.2 The class B 31

(i) A cC-group G is in § if and only if G/u(G) is in 3.

(i) A semiprimitive group G is an S-group if and only if it is the union of an

ascending chain {G; : i € N} of finite F-subgroups.

Theorem 1.6. (3, Theorem A] Let § be a cL-formation. Then § is E,-closed

if and only if § is a saturated c&-formation.

Applying this result, to see that the class 9B is not saturated, it will be enough

to prove that in the class c€, 9B is not E,-closed.

Example 1.1. Consider G = Dje = [Coe|(a) the locally dihedral 2-group and
the subgroups of Cyeo:

Qi(Creo) = { g € Cowo 1 0(g) | 2'} =~ Cyi, for each i > 1.

Then the group G can be expressed as G = Uis1Gi, where G; = Q;(Caw)(a),
for each natural number ¢ and {G; : ¢ > 1} is an ascending chain. Notice that
G is a finite 2-group for every i > 1. Hence G; is a nilpotent group and then a
B-group for each 4 > 1. However G is not a B-group. Therefore we have that
G is a semiprimitive group which is the union of an ascending chain of finite

B-subgroups but it is not in the class B.

This proves that, in the universe c£, the class B is not E,~closed and so it
Is not a saturated formation. Consequently, Bryce and Cossey’s Theorem is not

longer true in infinite groups as the class B shows.

We recall now some classes of generalized nilpotent groups, that Is, group
theoretical properties that are possessed by all nilpotent groups and which for
finite groups imply nilpotence. A group G is called a Fitting group if G = F(G),

that is, if G'is a product of normal nilpotent subgroups. Obviously, in the

universe ¢, every group G in the class B is a Fitting group since F(G) = 6(G).
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We say that a group G is a Baer group if it is generated by its abelian subnormal
subgroups, or equivalently, if every finitely generated subgroup of G is subnormal.
It is known that a Fitting group is a Baer group but the converse is not true,
even in the locally finite universe. On the other hand, we present an example of

a locally finite group which is a Fitting group but it is not in the class B.

Example 1.2. Let G = M(Q,GF(p)) be the McLain group determined by
the set Q of all rational numbers and the field GF(p) (see [22, (12.1.9)]). It is
clear that G is not in ¢£. Moreover, it is known that G is the product of its
normal abelian subgroups and hence is a Fitting group. Let H be the subgroup
generated by the set of all 1 + enp, such that a € Q, 8 € X and o < 3, where
X ={2? 2 € QuU{-2%: 1z € Q}. We have that H is a proper subgroup of
G and G = (HC). Therefore, G is a locally finite Fitting group which is not a

B-group.

However, in the universe c£, the relationship between these classes of gener-

alized nilpotent groups is quite different as the following result shows.

Theorem 1.7. Let G be a c€-group. Then the following statements are pairwise

equivalent:

(i) G is a B-group.

(i1) G 1is a Fiiting group.

(ii1) G is a Baer group.

(iv) G s hypocentral with hypocentral length < w.

Proof. 1t is clear that (i) implies (ii) and that (ii) implies (iii).
(iil) implies (i). Let G be a Baer group and consider a major subgroup M
of G. If M is maximal in G, it follows by [22, (12.1.5)] that M is normal in

G. Then G/M¢ is a cyclic group of order p, for some prime p, and hence it
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is abelian. Therefore, ¢/ < M¢. Suppose that M is not maximal in G. Then
G /Mg is a semiprimitive Baer group. We shall prove that G /M¢ is abelian. To
see this, we may assume that Mg =1. Then G = [DIM, where D is a divisibly
rreducible abelian p-group for some prime p and M is a finite soluble group with
trivial core. Denote M; = Q:(D)M, where Q,(D) is the subgroup generated by
the elements of D of order dividing p’. Then G = (M; -1 € NY and M; is finite
and hence subnormal in G for all i € N because G is a Baer group. Therefore
there exists a proper normal subgroup T; of G such that M; < T;. Since D is
divisibly irreducible and 7} = M(T; N D), it follows that 1; is finite. Therefore,
every subgroup of 7} is subnormal in T;. Consequently, 7. is nilpotent and then
M; is nilpotent for all 5 € N, We conclude that M; < 6(G) for all i € N and
hence G is a B-group. Consequently G is abelian by Lemma 1.1 and then G /Mg
is abelian for all major subgroups M of G. By Theorem 1.1, G is a B-group.

(i) implies (iv). Let G be a B-group and let p be a prime. Since G/O0,(G)
is Chernikov by Lemma 0.2 then, applying Lemma 1.2, G /Oy (@) is nilpotent,.
Hence, there exists n, € N such that T, (G) = [G,(),G] < Op(G) for each
prime p, where 7;(G) denotes the i-th term of the lower central series of G.
Therefore, 7,(G) = MNpew 78(G) < Yo, (G) < O (G) for every prime p and then
7(G) = L.

(iv) implies (i). G/Oy(G) is a Chernikov hypocentral group and then it is
nilpotent for every prime p. In particular, since B is a formation, we have that
G is a B-group. 0J

On the other hand, it is well-known that every hypercentral group is locally
nilpotent but, in general, the converse Is not true (see [22, (12.2)]). However, it
1s not difficult to see that, in the class cg, hypercentrality is equivalent to local

nilpotence.

Proposition 1.1. Suppose that G is in the class co. Then G 1s hypercentral if

and only if G is locally nilpotent.
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Proof. Suppose that G is locally nilpotent. To prove that G is hypercentral
it is enough to prove, by [23, (1.22)], that for every normal subgroup N of G
such that G/N is non-trivial we have that Z(G/N) contains a non-trivial normal
subgroup. Since G/N satisfies min-p, there exist a minimal normal subgroup
AJN of G/N. Moreover, applying Lemma 0.6, A/N < Z(G/N). We conclude
that Z(G/N) # 1 and hence G is hypercentral. 0

As a consequence of the above result, a cC-group G is locally nilpotent if and

only if every subgroup of G is ascendant in G (see 22, (12.2)]).

It is known that every descendant subgroup of a cf-group is ascendant
(Lemma 0.8), but the converse is not true as the locally dihedral 2-group shows.
Since the class B is a generalization of nilpotence that is stronger than local
nilpotence in the universe c£, it would be desirable to obtain a correspond-
ing result to the locally nilpotent one by using descendant subgroups. In [4]

Ballester-Bolinches and Camp-Mora have been able to do this.

Theorem 1.8. [4, Theorem 5] Let G be a cC-group and let H be a subgroup
of G. Then H 1is a descendant B-subgroup of G if and only if H is contained in
F(G).

Corollary 1.2. A c&-group G is a B-group if and only if every subgroup of G

1s descendant n G.

It is also well-known that a finite group is nilpotent if and only if every sub-
group is subnormal. For infinite groups the situation is different and the property
that every subgroup is subnormal is weaker than nilpotence. We conclude this

section by showing that these two properties are identical in the universe c£.

Theorem 1.9. A cC-group G is nilpotent if and only if every subgroup of G is

subnormal m G.
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Proof. 1t is easy to see that, in general, every subgroup of a nilpotent group
1s subnormal. Conversely, let G be a cﬁ-gz‘oup such that every subgroup is
subnormal. In particular, applying Corollary 1.2, G is a B-group and therefore
G < Z(G) by Theorem 1.1. On the other hand, G/G° is a periodic group with
every subgroup subnormal which is residually finite by Theorem 0.1, It follows
from [24] that G/GY is nilpotent. Since G0 < Z(G), we conclude that G is
nilpotent. O

1.3 The Fitting subgroup

As we have already prove, the subgroup generated by all normal B-subgroups
of a c€-group G is the F itting subgroup of G, which is also the largest normal
B-subgroup of G. In fact, it follows from Theorem 1.8 that the Fitting subgroup
of a group G is actually generated by all descendant B-subgroups of G. Tt is
known that the Fitting subgroup in an infinite group gives little information
about the structure of the group. However in this case it plays an important
role as it inherits the properties of the B-radical. The aim of this section is to
look more closely at the properties of the Fitting subgroup of a, cfl-group and its
behaviour as radical. We present some results which extend wel] known results

and concepts from the finite universe.

It is well-known that the Fitting subgroup of a finite group (' is the intersec-
tion of the centralizers of all chief factors of G (see [14, (A.13.8)]). This result
is also true for the Hirsch-Plotkin radical of a periodic locally soluble group (sce
(13, (1.3.5)], [13, (6.2.4)]). As one might expect. if G is a cL-group, there is an
important connection between [ (G) and the centralizers of the d-chief factors

as the following theorem shows.
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Theorem 1.10. Suppose that G is a cC-group. Then F(G) is the inlersection

of the centralizers of all d-chief factors of G

Proof. Let H/K be a d-chief factor of G. We show that [(G) is contained
in Cg(H/K). Since F(G)K/K < F(G/K), we may assume that K = 1.
If H is a minimal normal subgroup of G, then it follows from [13, (1.3.5)]
and [13, (6.2.4)] that the Hirsch-Plotkin radical of G, p(G), is contained in
Ce(H). Consequently, since F(G) < p(G), we have that F(G) is also con-
tained in Cg(H) as required. Suppose now that H is a divisibly irreducible
ZG-module. In particular, H is a divisible subgroup of G and so H < G% On
the other hand, F'(G) is a B-group. Then, applying Theorem 1.1, we have that
G® = (F(G))° < Z(F(G)). Therefore F(G) < Cg(H) and we may conclude
that F(G) < ({Ce(H/K) : H/K is a é-chief factor of G}. Next, we denote
T = N{Ce(H/K) : H/K is a d-chief factor of G}. We prove that T' < F(G).
Since T is a normal subgroup of G, we need only to show that 7" is in the class 8.
As it has been said above, p(G) is the intersection of the centralizers of all chief
factors of G and, consequently, 1" is contained in p(G). It follows that T is a io-
cally nilpotent group. It remains to prove that 7" has nilpotent Sylow subgroups.
Let T}, be the Sylow p-subgroup of 7" for the prime p. According to Lemma 0.2,
T, is a Chernikov group. Then T,,0 has finite rank. We argue by induction on
the rank of T,,O. If Tp0 = 1 then T, is a finite p-group and, consequently, it is
nilpotent. Then we may assume that TP0 is non-trivial. Consider the non-empty
set S = {4 < T,° A is anon-trivial divisible G-invariant subgroup of G}.
Since G satisfies min-p and S is a non-empty set of p-subgroups of G, there
exists a minimal element A in S. Then A is a divisibly irreducible ZG-module
and hence it is a d-chief factor of G. Consequently A is contained in the cen-
ter of T. On the other hand, we have that T/A = ({Cqa((H/A)/(K/A)) :
(H/A)/(K/A) is a é-chief factor of G/A}. Moreover, since A is a non-trivial di-

visible subgroup, the rank of T))/A = (TP/A)0 is less than the rank of 7). By
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induction, 7},/A is nilpotent (note that 7,,/A is the unique Sylow p-subgroup of
T'/A). Since A < Z(T},), we have that T, is nilpotent. Therefore 7 is a B-group,

as we wanted to see. J

Let G be a cf-group and consider M a major subgroup of G. Denote Mg =
Coreg(M). Then, applying Theorem 0.4, the factor group G /Mg is either a finite
soluble primitive group, if M is a maximal subgroup of G, or a semiprimitive
group, and therefore a Chernikov group, if M is not maximal in G. This result

motivates the following definition:

Definition 1.3. Suppose that G is a c€-group and let M be a major subgroup
of G. We define

Soc(G/Mg), if M is a maximal subgroup of G
Dy /M — (G/Mqg) grouj

(G/Mg)°, if M is not a maximal subgroup of G

It is easily seen that in both cases Dy /Mg = F(G/Mg), (Dp/Mg) N
(M/Mg) = 1 and Cgpg(Dym/Mg) = Da /Mg for every major subgroup M
of G.

Theorem 1.11. Let G be a c&-group. Then
F(G) = ﬂ{DM : M is a magjor subgroup of G}.

Proof. Denote R = (Y Dy : M is a major subgroup of G}. Suppose that N
is a nilpotent normal subgroup of G and consider a major subgroup M of G.
Then NM¢ /Mg < F(G/Mg) = Dy /Mg and hence N < D, for every major
subgroup M of G. We conclude that NV is contained in R and thus F(G) < R.

We prove now that R < F(G). Let M be a major subgroup of G. Since
R/(RN Mg) = RMg/Mg < Dy /Mg is abelian we have R’ < M. Therefore
R < p(G)N R and hence (26, (5.1)] implies that R is locally nilpotent. Let p be
a prime. Then (R°), is normal in G. If (R%), < M the [R, (R),] < (R%), < M.
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Assume now that (R°), is not contained in M. We have that (R"),M¢/Mc is a
non-trivial divisible normal subgroup of G/Mg which is contained in Dy /M.
If (R),M¢/Mc is a proper subgroup of D /Mg then (R%),Mg/Mg is finite, a
contradiction. It follows that (R%),Mg/Mg = Du/Meg. Since Co(Du/Mc) =
D,y it follows that R < Dy = Ca((R%),/((R%), N M¢)) and hence [R, (RY),] <
(R%), N M¢. Therefore [R, (R"),) < (R%), N M for each major subgroup M of
G. Tt follows that [R, (R%),] < u(G) N (R"),. However u(G)Oy(G)/Op(G) <
11(G/0,/(G)) which is finite by Proposition 0.2. Therefore w(GYN(RY), = (u(G)N
(R%),)0,(G)/Op(G) is also finite. Thus [R, (R?),] is finite and hence trivial,
since it is a divisible group. This holds for all primes p and hence R < Z(R).
Theorem 1.1 implies that R is a normal B-subgroup of G so that R < F(G),

the B-radical of G, as required. O

Some consequences of the above theorem, concerning the influence of the
structure of G/u(G) on that of G, are now given. A classical result in finite
groups asserts that F(G)/¢(G) = F(G/#(G)), where ¢(G) is the Frattini sub-

group of G. The corresponding result in our context is:
Corollary 1.3. Let G be a cC-group. Then F(G/u(G)) = F(G)/u(G).

Proof. According to Theorem 1.2, (G) is a B-subgroup of G and then it is
contained in F(G). Obviously, F(G)/u(G) is a normal B-subgroup of G/u(G)
and thus it is contained in F(G/u(G)). Conversely, let T/u(G) = F(G/u(G)).
By Theorem 1.10, F(G/u(G)) is the intersection of the centralizers of all 4-
chief factors of G/u(G) and, therefore, T centralizes every d-chief factor H/K
of G such that u(G) < K < H. Note that Dy/Mg is a d-chief factor of G
such that 4(G) < Mg < Dy for each major subgroup M of G. Consequently,
T < Ca(Dp/Mg) = Dy for every major subgroup M of G. Then, it follows
from Theorem 1.11 that 7" < F(G). t

. On the other hand, it is known that if G is a finite group and N is a nor-
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mal subgroup of G such that N/(N N ¢(G)) is nilpotent, then N is nilpotent.
This result has been extended to a class of infinite groups by Tomkinson ([26])
replacing nilpotent by locally nilpotent and ¢(G) by u(G). The following result

18 1n the same line.

Corollary 1.4. Let N be a descendant subgroup of a c&-group G containing
(G). Then N/u(G) is a B-group if and only if N is a B-group.

Proof. Suppose that N/u(G) € B. Applying Theorem 1.8 we have that
N/u(G) < F(G/u(G)). Moreover, F(G/u(G)) = F(G)/u(G) by Corollary 1.3.
Therefore, N < F(G) and consequently N € B because B is subgroup-closed
(Theorem 1.3). O

As a consequence of Theorem 1.1, we obtain the following description of the
Fitting subgroup of a cf-group G, which will be useful to find the injectors

associated to the class B.

Theorem 1.12. Suppose that G is a c€-group. Then F(G) = p(G) N Ce(GY),
where p(G) denotes the Hirsch-Plotkin radical of G.

Proof. Denote X = p(G) N Cg(G°). 1t is clear that X is locally nilpotent.
Moreover, G° = X because G% < X and then X° < Z(X). According to
Theorem 1.1, X is a B-subgroup of G and thus X is contained in F(G). On
the other hand, F(G) is a locally nilpotent normal subgroup of G and therefore
it is contained in p(G), the Hirsch-Plotkin radical of G. Moreover, G° is a
normal abelian subgroup and thus G® < F(G). Consequently, GO = (F(G))°.
Since F'(G) is a B-group, it follows from Theorem 1.1 that GO < Z(F(G)). We
conclude that I(G) < p(G) N Ce(GY). O

As the locally dihedral 2-group shows, it is not true that the ascendant 8-
subgroups of a c-group G lie in the Fitting subgroup of G. However we can
give a sufficient condition on an ascendant B-subgroup of G to be contained in

F(G).
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Corollary 1.5. Let G be a c&-group. Suppose A is an ascendant B-subgroup of
G such that GO < A. Then A < F(G).

Proof. By Theorem 1.1, A is an ascendant locally nilpotent subgroup of
G and thus, applying [22, (12.1.4)], it is contained in p(G), the Hirsch-Plotkin
radical of G. On the other hand, G° < A and therefore G = A%, Since A € B,
it follows from Theorem 1.1 that A < Co(G?). Then we conclude, by Theorem

1.12, that A is contained in F(G). O

It is known that for finite groups ¢(N) < ¢(G), the Frattini subgroup of G,
whenever N is normal in G. This result is clearly false for the subgroup u(G)
as is shown by taking G a quasicyclic p-group and N the subgroup of order p2.
Even for normal subgroups of finite index very little information was given by
Tomkinson ([28]) in this direction. We obtain that, in our universe, the Fitting

subgroup always satisfies this property.

Lemma 1.4. Let G be a c€-group and suppose that M is a non-maximal major
subgroup of G. Then G° is not contained in M and hence MG =G.

Proof. Let M be a non-maximal major subgroup of G. Then G/Mg is
semiprimitive and hence Chernikov. If G° < M then G°® < Mg so G/M¢ has
finite Sylow subgroups by Kargapolov’s Theorem (Theorem 0.1). Hence G /Mg
is finite, a contradiction. Thus G ¢ M. Moreover, if we have that MGP is a
proper subgroup of G, then MG? is a major subgroup of G which contains G°.
By the previous argument, it follows that M G is a maximal subgroup of G and
thus m(M) = m(MG®) = 1. Consequently, M is maximal in G, a contradiction.
We conclude that MGY = G, and the lemma follows. U

Theorem 1.13. Let G be a cC-group. Then pn(F(G)) < u(G).

Proof Let X = F(G) and consider M a major subgroup of G such that (X)

is not contained in M. If M is non-maximal in G, it follows from Lemma 1.4
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that MG = G and, therefore, Dy, = GOM,. Moreover, since G < X < Dy by
Theorem 1.11, we have that Dy = XMg. Now, assume that M is maximal in
G. This implies that Dy, /Mg is a minimal normal subgroup of G/Mg. Since X
Is not contained in M and X < Du by Theorem 1.11, it follows that Dy /Mg =
XMg/M¢. In both cases, p(Dps/Mg) = 1 and, consequently, u(XMg/Mg) = 1.
Therefore, u(X) < Mg because w(X)X O Mg)/(X N Mg) < (X Mg/Mg) = 1.
This contradicts our assumption and thus p(X) < M for each major subgroup
M of G. Consequently, u(F (G)) < u(G), and the theorem is proved. O

1.4 ‘B-injectors

In infinite groups there are of course several generalizations of the defini-
tion of Fitting class based on normal, ascendant or serial subgroups. Using
the first definition, we have already shown that B is a cL-Fitting class. On
the other hand, applying Theorem 1.8, the subgroup generated by descendant
B-subgroups of a cE—group 1s a B-group. This latter result motivates another
definition of Fitting class. We say that a subclass § of € is a cf)—Fitting class if

it satisfies the following properties:

I. f G € §and H is a descendant subgroup of G, then H € §.

2. UG=(H;:iel)ect and, for each 1 € I the subgroup H; is a descendant
§-subgroup of G, then G e 5.

Then, it is clear that B is a cL-Fitting class with this broader definition
using descendant subgroups. Note that this is not true if we replace, in the
definition of Fitting class, descendant, subgroups by serial subgroups (which are
i fact ascendant in a cﬁ-group). For instance, the locally dihedral 2-group is

an example of a join of serial B-subgroups which is not a B-group.
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Suppose that § is a subclass of cf and G € c€. An F-injector of G is
a subgroup V of G such that for all descendant subgroups H of G we have
that V N H € Maxgz(H). We denote the set of all §-injectors of the group G by
Inj;(G). The nilpotent injectors of a finite soluble group have been characterized
(see the book of Doerk and Hawkes [14]). A similar characterization of the locally
nilpotent injectors of a radical £-group has been obtained by Dixon using serial
subgroups (see [13, section (7.4)]). The aim of this section is to obtain the
corresponding description of the B-injectors in the class c€. TFirst we obtain
an analogous result to [13, (7.4.3)], characterizing the maximal B-subgroups
containing the Fitting subgroup. The key point is that Co(F(G)) < F (G) for
every c£-group G. This is a consequence of Lemma 0.9 hecause every cL-group

is hyperabelian.

Theorem 1.14. Let G be a c&-group. Suppose that V is a B-subgroup of G
containing the Fitting subgroup F(G) of G. Then V is a mavimal B-subgroup
of G containing F(G) if and only if V;, € Syly(Co((F(G))y) N Ca(G)).

Proof. By Theorem 1.1, V = Dr,V}, where V,, is the unique Sylow p-subgroup
of V for each prime p. Since (F(G))y < Vi and V), < Cg(Vyy) for each prime
p, it follows that V, < Co((F(G))y). On the other hand, G° < F(G) <V and,
therefore, G = VO. Applying Theorem 1.1, V < Cg(G®) and, in particular,
V, < Cg(G®) for each prime p. Then, we have that V, < Ce((F(G))y) N
Cg(GY) for each prime p. Suppose V, < W, € Syl (Co((F(G))p) N Ca(G")).
We shall show that (W, W,] = 1if p # ¢. Since (F(G))p <V, < W, <
Co((F(G)),), we have that F(G)W, = (F(G))yW, and hence W), is normal in
F(G)W,. Using the conjugacy of the Sylow p-subgroups of a c&-group, we deduce
that W, is a characteristic subgroup of F(G)W,. Furthermore, (W, W, <
[Cal(F(G))p), Ca((F(G)g)] € Co(F(G)) < F(G) and then W, normalizes
F(G)W,. Now, using symmetry and the fact that W is a characteristic subgroup
of F(G)W,, we have that [W,, W] < W, N W, =1 Thus V = Dr,V}, < Dr, W,



1.4 B-injectors 43

On the other hand, W, is a locally nilpotent group such that W, < Ce(GY)
and then (1W,)° < Z(W,). Applying Theorem 1.1, we have that W, is a B-
group for each prime p and hence Dr,W, € B because the class B is N -closed
(Theorem 1.5). By maximality of V as a B-subgroup of G, it follows that
V =Dr,V, = Dr,W, and consequently V, = W, € SyL(Ce((F(G))y)NCa(GY),
as we wanted to see. Conversely, we shall show that maximal B-subgroups
containing the Fitting subgroup always exist using Zorn’s Lemma. Let {Gi}ies
be a chain of B-subgroups of G such that F(G) < G for each i € I and consider
C' = U;e; Gi. We shall see that C is a B-group. Since G* < F(G) < G, and
(G:)° < Z(G,) by Theorem L1, it follows that G° < Z(G;) for each i € I.
As a consequence, G° < Z(C) and, in particular, C° < Z(C). Moreover, C is
the union of locally nilpotent groups and thus it is locally nilpotent. Applying
Theorem 1.1, C'is a B-group. This implies, by Zorn’s Lemma, that there exists
maximal B-subgroups of G containing F'(G). If V < W, a maximal B-subgroup
of G, then V,, < W,. However, by the above, W, € Syl (Co((F(G))y)NCe(GY))
so Wy, =V}, for all primes p and hence W = V. O

We can show that, in fact, the maximal B-subgroups of a cf-group containing
the Fitting subgroup are precisely the B-injectors. First we obtain a preliminary
result. It deals with the situation in which we take a product of a B-subgroup

of a descendant subgroup with the Fitting subgroup.

Lemma 1.5. Let G be a cL-group and W a B-subgroup of G. Suppose H is
o descendant subgroup of G and that FH) < W < H. Then WE(G) is a
B-subgroup of G.

Proof. Let {H, : 0 < a} be a descending series from G to H. Since W <H
we have that [W, F(G) N H,) < [Hppr, H,] < H, .y and so (W.F(G)n H,) <
F(G)NH, . Consequently, WF(G) N H,,, = W(F(G) N H,y1) is normal in
W(F(G)NH,) = WF(G)N H,. Hence {WF(G)NH, : ¢ < a} is a descending
series from W EF(G) to WEF(G) N H. On the other hand, applying Theorem
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1.8 and the fact that 9B is subgroup-closed, it is easily seen that F(G) N H =
F(H). Thus WF(G)NH = W(F(G)NH) = WF(H) = W. Therefore W is a
descendant subgroup of W F(G). Since the join of descendant B-subgroups is a

B-group by Theorem 1.8, we conclude that W F(G) is a B-group. O

Theorem 1.15. The mazimal B-subgroups of a cC-group G which conlain the

Fitting subgroup are precisely the B-injectors of G.

Proof. Consider V a maximal B-subgroup of G containing F'(G). Since
G® < F(G) £V and V° < Z(V) by Theorem 1.1, it follows that V is contained
in Cg(G®). Denote C = Cg(G). We shall show that V' is a maximal locally
nilpotent subgroup of C. Suppose that W is a locally nilpotent subgroup of
C = Cg(G® such that V < W. Then, W < Z(W) and, by Theorem 1.1, W
is a B-group. By maximality of V, we have that V = W. Moreover, p(C) =
p(G)NC = F(G) by Theorem 1.12. Therefore, V is a maximal locally nilpotent
subgroup of C' containing p(C), the Hirsch-Plotkin radical of C. Applying {13,
(7.4.5)], this implies that V is a locally nilpotent injector of C' with the broadest
definition using serial subgroups. In particular, V N D € Maxyn(D) for every
descendant subgroup D of C. Let H be a descendant subgroup of G. We
proceed to show that V N H € Maxg(H). Suppose that W is a B-subgroup
of G such that VN H < W < H. It is easy to show, by Theorem 1.8, that
F(H) = F(G) N H. Therefore, by Lemma 1.5, WF(G) is a B-subgroup of G.
Since G° < WF(G), it follows from Theorem 1.1 that WF(G) < Cg(GY). In
particular, W is contained in C. On the other hand, H N C is a descendant
subgroup of C and then VN (HNC) =V NH € Maxpn(H N C). However,
W is locally nilpotent, by Theorem 1.1, and VN H < W < HNC because W
is contained in C. Consequently, W = V N H and thus VN H € Maxg(H).
We conclude that V' € Injy(G), which is the desired conclusion. In particular,
applying these results, we can see that the B-injectors of a cL-group are finitely

conjugate (see {13, (5.3.6)]) and hence isomorphic by [13, (5.3.8)]. O



Chapter 2

A local approach to a class of

locally finite groups

2.1 Introduction

A property of groups is said to be “local” if it is generalized in a form referring
to a prime. An interesting problem in this context is to find out whether the
original property can be described as the conjunction of all the local properties
for all primes p. For instance, if we consider the property of finite groups of being
nilpotent groups, a local version is that of being p-nilpotent groups. Recall that
a finite group G is said to he p-nilpotent, for some prime p, if it has a normal
p-subgroup N such that G/N is p-subgroup. Obviously every finite nilpotent
group is p-nilpotent and a finite group which is p-nilpotent for all prime p is
nilpotent. In the same line, a similar approach to the class of locally nilpotent,
groups has been obtained by using the same definition of p-nilpotent groups (see
[13, (1.3.5)]).
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Our purpose in this chapter is to introduce and study a local version of
another class of generalized nilpotent groups, the class B. In the first section we
establish the local version of B-groups, called B,-groups. We show thai these
groups play the same role in the universe cf as finite p-nilpotent groups do in
the finite universe. In particular, some properties appear relating the p-Fitting
subgroup and a new characteristic subgroup which is defined by intersections of
certain types of major subgroups. This subgroup can be considered as the local
version of the Frattini-like subgroup u(G) introduced by Tomkinson. Moreover,
in the second section we study the injectors associated to this class of generalized

p-nilpotent groups in the universe cL.

2.2 The subgroup y,(G) and the class B,

A c&-group G is said to be p-nilpotent, for some prime p, if it contains a
normal Sylow p’-subgroup Q. In this case Q = O,(G) and G/Q is a p-group.
Recall that we have already defined O,,(G)/Op (G) = O,(G/O0y(G)). It is easy
to see that if G is p-nilpotent then G = O, (G). Moreover, in every cL-group
G, Opp(G) is the largest normal p-nilpotent subgroup of G.

This section is devoted to the study of a class of generalized p-nilpotent
groups, in the universe c£, which is a local version of the class B. Groups in
this class are called B,-groups. They play the same role in the universe cf as
finite p-nilpotent groups do in the finite one. We shall prove that this class can
be associated in a natural way to a local version of Tomkinson’s Frattini-like

subgroup. We begin with the following definition.

Definition 2.1. Let G be a cC-group. We say that G is a B,,-group, for some

prime p, if G is p-nilpotent and the Sylow p-subgroups of G are nilpotent.
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It is clear that a finite group is a B,-group if and only if it is p-nilpotent.
Moreover, applying Theorem 1.1 and [13, (1.3.5)}, a cf-group G is in the class
B if and only if G is a B,-group for every prime p.

Proposition 2.1. Let G be a cC-group and let p be a prime. Then G is a
B,-group if and only if G is p-nilpotent and P° is central in P for every Sylow
p-subgroup P of G.

Proof. Suppose that G is a B,-group and let P be a Sylow p-subgroup of -
G. Since P is nilpotent it follows from [13, (1.5.12)] that P° is central in P.
Conversely, suppose that G is p-nilpotent and for every Sylow p-subgroup P of
G, PYis central in P. Obviously P is locally nilpotent and it is a Chernikov
group by Lemma 0.2. Since P° < Z(P) we conclude that P is nilpotent. O

Recall that a class § of cL-groups is said to be a c€-formation if § is Q-closed
and it satisfies that every cC-group G containing normal subgroups {N;}ier such
that ﬂiel N; =1 and G/N; € § for every i € I also belongs to §. We can easily
see that B, is a subgroup-closed c£-formation and this fact will allow to show

the existence of its corresponding radical
Theorem 2.1. B, is a subgroup-closed c&-formation for every prime p.

Proof. The proof is straightforward using the same arguments to those used
in Theorem 1.3 and the fact that the class of all p-nilpotent groups is a subgroup-
closed cC-formation ([13, (6.2.6)]). O

Theorem 2.2. Let G be a c€-group. Assume that H and K are two normal

B,-subgroups. Then HK is a B,-group.

Proof. Since H and K are p-nilpotent normal subgroups, it follows that HK
is p-nilpotent. Let P be a Sylow p-subgroup of HK. By Corollary 0.1 we have
that P = (PN H)(PNK) because PN H and PN K are Sylow p-subgroups of
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H and K, respectively, by Proposition 0.1. Since H and K are B,-groups, we
have that PN H and PN K are normal nilpotent subgroups of P. Consequently,
we conclude that P is nilpotent by Fitting’s Theorem ([22, (5.2.8)]). O

Theorem 2.3. Euvery group G € cf has a unique largest normal By,-subgroup
denoted by 8,,(G) and called the By,-radical of G. Moreover, F(G) =1, Spp(G).

Proof. We argue as in Lemma 1.3. It is easy to prove that if G is a Chernikov
c£-group which is the union of a totally ordered set of normal B,-subgroups then
G is a B,~group. Using this fact and Theorem 2.1, we may apply Zorn’s Lemma
to construct a maximal normal B,-subgroup of G, denoted by 8,p(G). Tt follows
from Theorem 2.2 that d,,(G) is the unique largest normal % ,-subgroup of G.
Finally, since a c£-group G is in the class B if and only if G is a B,-group for
every prime p, we deduce that the Fitting subgroup of G can be described as
the intersection of the %B,-radicals because. it is the largest normal B-subgroup
of G. O

It is known that in a finite group G, the p-nilpotent radical Oy, (G) is the
intersection of the centralizers of all p-chief factors of G. Moreover, this result
has been generalized in [13, (6.2.4)] to periodic locally soluble groups. We obtain
an analogous result in c£-groups connecting the subgroup &,,(G) and the d-chief

factors which are p-groups.

Remark 2.1. Let T be a normal subgroup of a c€-group and let P be a Sylow

p-subgroup of T. Then P° = (7°),, the unique Sylow p-subgroup of 7°.

Theorem 2.4. Suppose that G is a cC-group. Then &,,(G) is the intersection

of the centralizers of all §-chief factors of G which are p-groups.

Proof. The proof runs parallel to the proof of Theorem 1.10, the only dif-
ference being in the use of the above remark. Let H/K be a d-chief factor

of G such that H/K is a p-group. We prove that 0,,(G) is contained in



2.2 The subgroup 11,(G) and the class B, 49

Ce(H/K). Since 6,,(G)K/K < Spp(G/K), we may assume that K = 1. If
H is a minimal normal subgroup of G, then Owp(G) is contained in Cq(H) by
(13, (6.2.4)]. Therefore 4,,,(G) < Ce(H) because 6,,(G) < 0,,(G). Suppose
now that A is a divisibly irreducible ZG-module. In particular H < G and
hence H < (G"),, the unique Sylow p-subgroup of G°. On the other hand,
(G%), < P where P is a Sylow p-subgroup of §,,(G). Then, it follows from
Proposition 2.1 that (G?), < P° < Z(P). In particular, H centralizes P.
Furthermore, H centralizes Oy (6,,(G)). Since opp(G) = POy (6,,(G)), we
conclude 4,,(G) < Cg(H) as required. Conversely, let T = (H{Ce(H/K) :
H/K is a é-chief factor of G which is a p-group}. We prove that 7' < 0prn(G).
As it has been said above, Opp(G) is the intersection of the centralizers of all
p-chief factors of G and, therefore, T is contained in Opp(G). Consequently T
is p-nilpotent. It remains to prove that every Sylow p-subgroup of T is nilpo-
tent. Let 7, be a Sylow p-subgroup of 7. According to Lemma, 0.2, T, is a
Chernikov group. In particular (T,)° has finite rank. We argue by induction on
the rank of (7,,)°. If (7,)° = 1 then T}, is a finite p-group and, consequently, it
is nilpotent. Then we may assume that (T)° is non-trivial. Consider the set
§={A<(T,)°: Ais a non-trivial divisible normal subgroup of G}. Applying
Remark 2.1, we have that (7,)° = (7°),, the unique Sylow p-subgroup of T,
and therefore (7,,)° is normal in G. Consequently, (T,)° € S and hence S is non-
empty set of p-subgroups of G. Since G satisfies min-p, there exists a minimal
element A in S. Then A is a divisibly irreducible ZG-module and hence it is
a d-chief factor of G. Consequently, T < Cc(A), that is, A is contained in the
center of . On the other hand, we have that T/4 = (WCq/a((H/A)/(K/A))
(H/A)/(K/A) is a 6-chief factor of G/A}. Moreover, since A is a non-trivial di-
visible subgroup, the rank of (7,)°/A4 = (T,/A)° is less than the rank of (1,,)°.
By induction, 7},/A is nilpotent (note that Tp/A is a Sylow p-subgroup of T'/A).
Since A < Z(T;,), we have that T, is nilpotent. Therefore T is a B,-group and
so T' < 0, (G), as we wanted to see. O
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In [20] Lafuente introduces a new characteristic subgroup ¢,(G) (where p
is a prime) of a finite group G, satisfying that ¢(G) = (0, ¢»(G). Using this
subgroup he obtains some results concerning maximal subgroups, Frattini and
Fitting subgroups. Following this line of thought, we extend this concept to the

universe ¢£. A local version of Tomkinson’s subgroup appears.

Definition 2.2. Let p be a prime and let G be a c€-group. Denote p,(G) =
N{M major subgroup of G : Dy /Mg is a p-group} if the intersection set is non-

empty and p,(G) = G in other case.

Obviously, we deduce from the definition that 1,(G) is a characteristic sub-

group of G for every prime p and u(G) =, ts(G)-

The subgroup ¢,(G) of a finite group G is contained in Opp(G) ([20, (1.3)]).
Moreover, in [20] it is proved that if G is a finite group then Opy,(G/¢,(G)) =
Opp(G)/#,(G) for some prime p. The following result and its corollary are the

“cL’-version.

Proposition 2.2. Let T be a normal subgroup of a cL-group G containing p,(G).
If T/ up(G) is p-nilpotent, then T is p-nilpotent.

Proof. Let Ty be a Sylow p'-subgroup of T'. Then 7}, is a Sylow p'-subgroup of
Ty pp(G). Since T/ p,(G) is p-nilpotent, it follows that T 1u,(G) is a normal sub-
group of G. Moreover Sylow p’-subgroups of Tpy,(G) are conjugate by Theorem
0.2. This implies that G = Ng(T},)u,(G). Assume that Ng(7;,) is a proper sub-
group of G. Then there exists a major subgroup M of G such that Ng(T)y) < M.
In particular G = Mp,(G). Since M is a proper subgroup of G, it follows
that j.,(G) is not contained in M and consequently Dy /M is a p-group. As-
sume that (Dy /M) N (T'Mg/Mg) = 1. Then TMg/Mg < Came(Dy/Me) =
Dy /Mg and hence TM¢g /Mg is a p'-group. This implies that TMg/Mg =
TyMg/Mg < M/Mg and therefore T is contained in M, a contradiction. Con-
sequently, (D /Mg) N (TMg/Mg) is a non-trivial normal p’-subgroup of G /Mg
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contained in T'Mg /M. Hence (D /Mg) N0 (TMg/Mg) < TyMeg/Mg < M/ Mg
and so (Dp/Mg)N (TMg/Mg) is contained in (M/Mg)N (Dy/Mg) =1, a con-
tradiction. Consequently Ne(T,) = G. In particular 7Ty, is a normal subgroup

of T and hence T is p-nilpotent. 1

Corollary 2.1. Let N be g normal subgroup of a cﬂ-group G. Then N is D-
nilpotent if and only if N/N 0 11,(G) is p-nilpotent. In particular, p,(G) is
contained in O, (G) and Opp(G/up(G)) = Opp(G)/ 1p(G).

Our next objective is to get a similar result changing Opp(G) by 6,,,(G). The

following extension of [20, (1.4)] turns out to be crucial.

Lemma 2.1. Let G be g cL-group and let p be a prime. Then Hp(G) /Oy (G) =
(G /Op(G)).  Therefore 1(G)/Ow(G) is a finite p-group and the Sylow p-
subgroups of u,(G) are nilpotent.

Proof. Suppose first that tp(G) = G, that is, for every major subgroup
M of G, Dy /Mg is a p'-group. We will show that G is a p-group. Suppose
that Oy (G) is a proper subgroup of G. Let M be a major subgroup M of G
containing O, (G). On the other hand, applying Corollary 2.1, we have that
G = Oy, (G) and so G/Oy(G) is a p-group. Consequently, G /My is a p-group,
which contradicts that Dy /Mg is a non-trivial p-group. We conclude that
Op(G) = G and the result is true in this case.

Assume now that 1(G) is a proper subgroup of G. We begin by proving
that O, (G) < tp(G). Let M be a major a subgroup of G such that Dy /Mg
Is a p-group. Suppose that Op(G) is not contained in M. Then Op (GY Mg /Mg
Is a non-trivial normal p'-subgroup of G /Mg contained in CG/MG(DM/MG) =
Dy /Mg which is a p-group, a contradiction. This implies that Op(G) < M and
therefore O, (G) < tp(G). We show that (G0 (@) < w(G/0, (@), Let
M/0,(G) be a major subgroup of G/0,(G). Suppose that tp(G) is not con-
tained in M. Then Dy, /M is a p-group. Since 1, (G) < Opp(G) by Corollary
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2.1, we have that p,(G)/Oy(G) is a p-group and so ,(G)Mg/Mc is a non-
trivial p-group. It follows that pu,(G)Mg/Mg < Ceomg(Da/Mg) = Dy /Mg,
a contradiction. Therefore p,(G) is contained in M and we conclude that
11 (G) /0 (G) < (G/Ow(G)). Let T/Op(G) = 11{G/Op(G)). We shall prove
that 7 < p,(G). Let M be a major subgroup of G such that Dy /Mg is a
p-group. Then O, (G) < M because Oy (G) < pp(G). Therefore M/Oy(G) is a
major subgroup of G/0,(G) and so T/Oy(G) < M/O,(G). We conclude that
T is contained in p,(G) and hence (G /Oy(G)) < 14,(G)/Op(G) as claimed.
Applying Lemma 0.2 we have that G/Oy(G) is a Chernikov group. Therefore
1#(G/0,(G)) is finite by Proposition 0.2. On the other hand, by Corollary 2.1,
pp(G) is p-nilpotent. Consequently O,(G) is the Sylow p'-subgroup of Lp(G)

and every Sylow p-subgroup of p,(G) is finite and so nilpotent. g

As a consequence of the above lemma, we obtain that the subgroup p,(G) of

a group G is contained in 6,,(G). We can say much more than this.
Theorem 2.5. Let G be a cL-group and let p be a prime. Then:
(i) 11,(G) 1s contained in 6yp(G).
(i) 8p(G/11(G)) = 8prp(G)/ 11p(G) = F(G/11p(G))-
(1) Cc(0pp(G)/11p(G)) = Sprp(G)-

Proof. (i) The above lemma shows that 1,(G) is a s.B,,-group and so p,(G)
is contained in §,,(G).

(i) Let T/u,(G) = 6,5(G/1p(G)). Applying Theorem 2.4 to G/u,(G) we
deduce that T centralizes every é-chief factor H/K of G such that H/K is
a p-group and u,(G) < K < H. Note that Dy /Mg is a é-chief factor of
G for every major subgroup M of G. Moreover, if Dy /Mg is a p-group we
have that p,(G) < Mg. Consequently, ' < Cg(Dp /M) = Dy for every

major subgroup M of G such that Dy /Mg is a p-group. By Theorem 2.6 we
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conclude that 7" < §,,,(G). Since the other inclusion is obvious, it follows that
(G /1p(G)) = 6p(G)/11p(G). On the other hand, it is clear that F(G/pu,(G))
1s contained in 6,,,(G/u,(G)). We prove that 8pp(G)/1p(G) is abelian. We
may assume that 1,(G) # G, since otherwise Syp(G)/p(G) = 1 is abelian.
Let M be a major subgroup of G such that Dar/Me is a p-group. Applying
Theorem 2.6, it follows that Spp(G) /Mg < Dy /Mg, which is an abelian group
by definition. Since pu,(G) = (Mg : Dy /Mg is a p-group} it follows that
opp(G)/1p(G) is abelian and hence it is contained in F(G/u(G)). We conclude
that 8,,(G)/11r(G) = F(G/1m(C)).

(i41) Applying Lemma 0.9, we have that Ct/up(e)(F(G/11,(G))) is contained
in F(G/pp(G)). Since F(G/un(G)) = 0pu(G)/1p(G) is abelian, it follows that
Ce/u(c)(F(G/11p(G))) = F(G/up(G)). This means that Ce(0pp(G)/1p(G)) =
Oprp(G). O

Corollary 2.2. Let N be a normal subgroup of a cC-group G. Then N is q
B,,-group if and only if N/N N pp(G) is a B,-group.

Corollary 2.3. Let G be a c8-group and let p be a prime. Then Cg(8,,(G)) <
5p’p(G)-

Corollary 2.4. Let G be a c&-group. Then, 0p(G/Op(G)) = 6,,(G)/Op(G)

for every prime p.

Proof. Our proof starts with the observation that Op(G) is a B-group and so
it is contained in 6,,(G). Let T/0,(G) = 0pp(G/Ow(G)). We shall prove that
T" < 6yp(G). From Lemma 2.1 and Theorem 2.5(1) we see that 11,(G)/Oy(G) =
WG/O0p(G)) < up(G/O,(G)) < owp(G/Oy(G)) and hence ju1,(G) < T. Thus
the group T/ 1,(G) is isomorphic to a quotient of Opp(G /O (G)) and so it is a
Bp-group. From Theorem 2.5(ii) we conclude that T/ 1p(G) < 6p(G/ 11, (G)) =
Opp(G)/1p(G) and hence T < 6,,(G). O
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Taking into account that the Fitting subgroup of a cL-group G is the inter-
section of the members of the set {Dys : M is a major subgroup of G} (Theorem
1.11), it seems to be natural the following characterization of the B,-radical of

G.

Theorem 2.6. Let G be a cC-group and let p be a prime. Then
pp(G) = ﬂ{DM - Dy /Mg 1s a p-group}.

(In the case that the intersection above is.the empty set, we have that bp(G) =

G)

Proof. Denote T = (\{Du : Dum/Mg is a p-group}. Let N be a normal
%B,-subgroup of G. We prove that N < T'. Consider a major subgroup M of
G such that Dy /Mg is a p-group. Then NMg/Mg is a B,-group and hence
it has a unique Sylow p/-subgroup, (NMg/M¢),, which is normal in G/Mg.
In particular (NMg/Mg)y < Come(Du/Me) = Dar/Mg. This implies that
(NMg/Mg)y = 1 and so NMg/Mg is a p-group. Consequently, NMg/Mg
is nilpotent because it is a B,-group. Therefore NMg/Mg < F(G/Mg) =
Dy /Mg and hence N < D, for every major subgroup M of G. We conclude
that N is contained in 7. In particular, 6,,(G) < T'.

We prove now that T < §,,(G). Assume that u,(G) is a proper subgroup
of G. Let M be a major subgroup of G such that Dy /M¢ is a p-group. Then
T/(T N Mg) = TMg/Mg < Dy /Mg is abelian. Therefore T/(T N uy(G)) is
abelian and so it is p-nilpotent. Applying Corollary 2.1, it follows that 1" is p-
nilpotent. It remains to prove, by Proposition 2.1, that if P is a Sylow p-subgroup
of T then P° < Z(P). According to Remark 2.1, PY = (TY),, the unique Sylow
p-subgroup of 7% and hence P° is normal in G. Let M be a major subgroup
of G with Dy /Mg p-group. If P® < M then [T, P% < P® < M. Assume
now that PY is not contained in M. Then POMg /Mg is a non-trivial divisible
normal subgroup of G/Mg. Moreover POMg/Mg < TMg/Mg < Dy /M.
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If P'Mc/Mg = Dy/Mg then T < Dy = Cg(P°Me/My) = Ca(PY/(P° N
Mg)). Consequently [T, P < PPN M. Asumme now that P'Mc/Mg is a
proper subgroup of Dy/Mg. Since Dy /Mg is divisibly irreducible, we have
that P'Mg /Mg is finite, a contradiction. Therefore, [T, P°) < P° " M for every
major subgroup M of G such that Dy /Mg is a p-group and hence [T, P%) < PN
4n(G). Moreover, (P 1 ()0 (G)/ Oy (G) < () /Op(C) = w(GO(G)
by Lemma 2.1. Since (G /0, (G)) is finite by Proposition 0.2, it follows that
P° N 1y(G) is finite. In particular, [T, P% is finite and hence trivial, since it
Is a divisible group. We conclude that P9 < Z(P) and hence T' < 0pn(G).
Assume now that u,(G) = G. Since (G) < Opy(G) by Corollary 2.1, we have
that G = Oy,(G). Moreover, G/Op(G) = u(G/0y(G)) by Lemma 2.1 and
hence G/0,(G) = 1. Therefore G is a p’-group. We conclude in this case that
G = 6,,(G). O

In Chapter 1 we obtain a description of the Fitting subgroup of a cL-group
n terms of the locally nilpotent radical and the radicable part. Now we obtain
the corresponding description of the B,-radical of a c€-group. This result will

be very useful in the characterization of the B,-injectors in the next section.

Lemma 2.2. Let G be o group in the class ¢ and let p be a prime. Then
op(G) = Opp(G) N Co((G?),), where (G%), 1s the unique Sylow p-subgroup of
GY.

Proof. Write X = O,.,(G)N Co((G),). Obviously X is a normal p-nilpotent
subgroup of G. Let P be a Sylow p-subgroup of X. Since G© is abelian we
have that it is contained in X and so (X%, = (G, Moreover, according to
the above remark, PO = (X9),. Therefore PO = (G°)p. On the other hand,
P <X < Ce((G),). We conclude that P9 < Z(P) and hence X is a B,-group
by Proposition 2.1. Conversely, every B,-group is p-nilpotent and so 0,p(G) <
Owp(G). Let us prove that Opp(G) < Ce((G),). Let Phea Sylow p-subgroup of
opp(G). Applying Proposftion 2.1, we have that P° < Z(P). Since G° < dprp(G)
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it, follows that G° = (8,,(G))". As before, Remark 2.1 gives P = (G°), and
consequently (GY),, < Z(P). On the other hand, Op{(8yp(G)) is the Sylow p'-
subgroup of §,,(G) and so 6,,(G) = POy (6,,(G)) by Proposition 0.1. Since
(GY), centralizes Oy (8,,(G)) we conclude that (G°), centralizes d,,(G) and so
5,p(G) < Ce((G®),), which completes the proof. O

2.3 ‘Bp-injectors

In infinite groups the definition of Fitting class is done in terms of the different
generalizations of subnormality. In this work we will be concerned with Fitting
classes defined using descendant subgroups. Working with this concept, it was
shown in Section 1.4 that B is a c&-Fitting class. Moreover, it was obtained a
similar description of the ®B-injectors in the class ¢£ to the nilpotent injectors
in the class of all finite soluble groups. We are now interested in studying the
B,-injectors in the class c£. In this sense, we need to prove an analogous result
to Theorem 1.8 in the class 9B, to ensure that this class of groups is a cL-Fitting

class with the definition using descendant subgroups.

Theorem 2.7. Let H be a descendant B,-subgroup of a cL-group G. Then H

is contained n 0,,(G).

Proof. Since every serial subgroup of a c¢£-group is ascendant by Lemma
0.8, it follows that H is an ascendant subgroup of G. Then, by {23, (1.31)],
H < Opy(G) because H is p-nilpotent. In particular H is descendant in O, (G).
If H < 6,,(0Opp(G)) then H < 6,,(G). Therefore, there is no loss of generality
in assuming that G is p-nilpotent. Applying Proposition 0.1, we have that
G = PO,(G) for every Sylow p-subgroup P of G. The task is now to show that
if Pis a Sylow p-subgroup of G then F(P) is a Sylow p-subgroup of 8,/,(G).

Since G is a c&-group , we have that P is a Chernikov group by Lemma 0.2 and
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hence, applying Corollary 1.1, F(P) is nilpotent. It follows that F(P)O,(G) is
in the class B, and so F(P)O,(G) is contained in d,/,(G) because it is normal in
PO, (G) = G. On the other hand, PNd,,(G) is nilpotent and so 1t is contaned
in F(P). Consequently, F(P) = P N &,,(G) and thus 6,,(G) = F(P)0,(G).
We deduce that F(P) is a Sylow p-subgroup of 6,,,(G). On the other hand, since
H is p-nilpotent it follows H = PyO,(H) where Py is a Sylow p-subgroup of
H. Moreover, there exists a Sylow p-subgroup P of G such that Py < P and
hence Py = PN H. Consequently, Py is a nilpotent descendant subgroup of P
and hence, applying Theorem 1.8, Py < F(P). Moreover Oy (H) < Oy(G) by
(23, (1.31)). We conclude that H = PyOy(H) < F(P)Op(G) = dpyp(G). O

Corollary 2.5. Let H be a descendant subgroup of a cL-group G. Then §,,(G)N
H = by,(H).

Proof. Obviously d,,(G) N H is a normal B,-subgroup of H and so it is
contained in &,,(H). Conversely, since H is descendant in G it follows that
Spp(H) is a descendant B,-subgroup of G and hence, by Theorem 2.7, it is
contained in 8,,(G). O

As a consequence of Theorem 2.7, the subgroup generated by descendant
B,-subgroups of a cL-group is a B,-group. We conclude that B, is a cL-Fitting
class. Note that this is not true if we replace, in the definition of a Fitting
class, descendant subgroups by serial subgroups (which are in fact ascendant in
a cC-group). For instance, the locally dihedral 2-group is an example of a join
of serial By-subgroups which is not a B,-group.

Moreover, this group has ascendant 9By-subgroups which are not contained
in the %g—radical. Therefore, it is not true that ascendant B ,-subgroups of a cl-
group G lie in the B,-radical of G. However, we can give a sufficient condition

on an ascendant B ,-subgroup of G to be contained in the B,-radical.
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Proposition 2.3. Suppose that A is an ascendant B,,-subgroup of a cL-group G
such that (G°), < A, where (G°), is the unique Sylow p-subgroup of G°. Then
A < 6,,(G).

Proof. According to [23, (1.31)], A < Op(G) because A is p-nilpotent. If we
prove that A < C¢((G®),), the assertion follows by Lemma 2.2. By hypothesis
(G%), < A, so (G, = (A%),. Moreover (A°), < P° < Z(P) where P is a
Sylow p-subgroup of A. This implies that P < Cc({G%),). On the other hand,
“applying [23, (1.31)], Oy (A) < Oy(G) < Cg((G°),). Since A = POy(A) we

conclude that A < Cg((G°),) and the proof is complete. O

Let § be a subclass of c€ and G € ¢f. Recall that an g-injector of G is a
subgroup V of G such that for all descendant subgroups H of G we have that
V N H is §-maximal in H. The following result describes the injectors for the

Fitting class of all p-nilpotent groups.

Theorem 2.8. Let G be a cL-group. Then
[”jGPIGp(G) = {PO,(G) : P is a Sylow p-subgroup of G}.

Therefore the p-nilpotent injectors of G are ezactly the mazimal p-nilpotent sub-
groups of G containing Op,(G) and they form a conjugacy class of subgroups of
G.

.Proof. Let P be a Sylow p-subgroup of G. We prove that PO, (G) is a
p-nilpotent injector of G. Let us first show that PO, (G) € Maxg,e,(G). Ob-
viously POy (G) is p-nilpotent. Let W be a p-nilpotent subgroup of G such
that PO, (G) < W. It follows that P is a Sylow p-subgroup of W and so
W = PO, (W). Therefore, it remains to prove that Oy (W) = O,(G). Since
Oy (W)/Op(G) = Op(W/O,(G)), there is no loss of generality in assuming
that O, (G) = 1 and proving that Oy (W) = 1. In particular, O,(G) = Opp(G).

Moreover, by Lemma 0.2, G is a Chernikov group, that is G = GYA where A is
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a finite subgroup of G. We can certainly assume that G® # 1, since otherwise
G is finite and soluble and then the result is true (see {18]). Since O, (G) = 1,
we have that G is a p-group. Therefore Op(W) = 0,(W)G/GY is finite.
Suppose, contrary to our claim, that Oy (W) # 1. Write A, = O,(G) N A.
Then G°A, = O,(G). Since 0,(G) < P < W it follows that A, < W and
hence A, normalizes O, (W). From a result of coprime action of finite groups
([14, (A.12.5)]) we have that Oy (W) = [Op/(W').,AP]COP,(W)(A,,). Moreover,
[Op (W), 4] < Op(G) N Op(W) = 1. We deduce that Oy (W) = Co,,(w)(Ap),
that is Op (W) < Cg(4,). On the other hand, G° = [G, O (W)]Cgo (O, (W))
by Lemma 0.1. Since G° < P < W we have that G° normalizes Op (W) and
s0 [G°,0y(W)] < G°NO,(W) = 1. Consequently G® = Cgo(O, (W), that is
Op (W) < Ce(G?). Since G°A, = 0,(G) = O,,(G) we conclude that Oy (W) <
Cc(0p(G)) < Op(G) # 1, a contradiction. Therefore O, (W) = 1 and thus we
have proved that PO, (G) is a maximal p-nilpotent subgroup of G. We are now
in position to show that if H is a descendant subgroup of G then PO, (G)NH is
S, 6p-maximal in H by the above argument. Since PNH is a Sylow p-subgroup
of H by Lemma 0.4, we have that (P N H)O,(H) is a maximal p-nilpotent
subgroup of H. Moreover, Oy(H) < Oy(G). Therefore (P N H)O,(H) =
(Oy(H)P)NH < (Oy(G)P) N H and hence (P N H)O,(H) = (Oy(G)P)NH
because (Oy(G)P) N H is p-nilpotent. We conclude that (0, (G)P) N H is
6, 6,-maximal in H and so we have that PO,(G) is a p-nilpotent injector of
G. We will be done if we show that every p-nilpotent injector of G appears
in that way. Let I be a p-nilpotent injector of G. In particular we can write
I'= Oy (1)1, where L, is a Sylow p-subgroup of I. We show that O, (I) = O,(G).
Clearly, since  is a p-nilpotent injector of G, it follows that Opp(G) < I and
thus O (G) < Op(1). Because O (I1)/0y(G) = Op(I/0,(G)), there is no loss
of generality in assuming that O,(G) = 1. Arguing as above we deduce that
Op(I) = 1. Therefore I = O,/(G)I, is contained in the p-nilpotent subgroup
Oy (G)P where P is a Sylow p-subgroup of G. We conclude, by maximality of
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I, that I = O,(G)P, which is our claim. In particular, we have obtained that
the p-nilpotent injectors of G are conjugate in G. Furthermore, by the same
method as above, it can be proved that every maximal p-nilpotent subgroup V
of G containing O,,(G) can be described as V = PO, (G) where P is a Sylow
p-subgroup of G, and consequently V is a p-nilpotent injector of G. Therefore,
the maximal p-nilpotent subgroups of a group containing the p-nilpotent radical

are precisely the p-nilpotent injectors. O

Note that, using the same arguments to those used in the proof of Theorem
2.8, we can replace descendant subgroups by ascendant subgroups to obtain the
same description for p-nilpotent injectors with the definition of injector using

ascendant subgroups.

We now proceed to show that the B,-injectors of a cL-group can be de-
scribed in terms of the p-nilpotent injectors of one of its subgroups. We require
a preliminary result. It deals with the situation in which we take a product of a

B ,-subgroup of a descendant subgroup with the %B,-radical.

Lemma 2.3. Let G be a cC-group and let W be a B,-subgroup of G. Suppose
that H is a descendant subgroup of G and é,,(H) < W < H. Then Wé,,(G)
is a By-subgroup of G.

Proof. By Corollary 2.5 we have that 6,,(G) N H = 6,,(H). Moreover,
applying Theorem 2.7, the join of descendant 9B,-subgroups is a B,-group. Using

these facts, the result follows by the same method as in Lemma 1.5. O

Theorem 2.9. Let G be a cL-group. Then the B,-injectors of G are ezactly the
p-nilpotent njectors of C = Ce((G®)p). In particular the Bp-injectors of G are

conjugate in G.

Proof. Denote C' = Cg((G?),) and let V be a p-nilpotent injector of C'. We
show that V is a B,-injector of G. According to Lemma 2.2, §,/,(G) = Op,(G) N
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C = Oyp(C). Of course, Opp,(C) <V because V is a p-nilpotent injector of C. It
follows that 6,,(G) < V. Let H be a descendant subgroup of G and suppose that
W is a B,-subgroup of H such that VN H < W. From Corollary 2.5, we have
that é,,(H) = §,,(G)NH < VNH < W < H. This clearly forces that W,,(G)
is a B,-group by Lemma 2.3. Since G° < §,/,(G) we have that (G°), is contained
in a Sylow p-subgroup P of Wd,,,(G). Consequently (G%), < P? < Z(P) because
Wy p(G) is a B ,-group. Thus P < C. Furthermore, O, (Wé,,(G)) < C. Since
Wéyp(G) = Op(Wéyp(G))P we conclude that Wé,,(G) < C. In particular,
W is contained in C. On the other hand, VN H = VN (H N C) is a maximal
p-nilpotent subgroup of H N C because V is a p-nilpotent injector of C. Since
VNH <W < HNC it follows that VN H = W. Therefore V N H is a
maximal *B,-subgroup of H, and we have proved that V € Inj‘BP(G). Conversely,
suppose that V' is a By-injector of G. Let us first observe that V' is contained
in C. Clearly G® < §,,(G) < V. Tt follows that (G%), is normal in V, and
consequently Oy (V) < Cg((G),). Moreover (G%), < V,, where V,, is a Sylow
p-subgroup of V and V,° < Z(V,). Therefore V,, < C. Since V = O, (V)V, we
conclude that V' < C'. We may now prove that V is a p-nilpotent injector of
C. Let D be a descendant subgroup of C and suppose that W is a p-nilpotent
subgroup of D such that VN D < W. Using Remark 2.1, it is easy to check that
W is a B,-group. Since D is also descendant in G we deduce that VN D =W
because V is a B-injector of G. We conclude that V is a p-nilpotent injector of

C as required. 0

Finally, we can show that, in fact, the maximal B ,-subgroups of a c£-group

containing the B,-radical are precisely the B,-injectors.

Theorem 2.10. The mazimal B,-subgroups of a cL-group G which contain the

B,-radical are precisely the B,,-injectors of G.

Proof. Obviously, every B,,-injector of G is a maximal B,-subgroup of G and

contains the B,-radical of G. Conversely, let V' be a maximal B,-subgroup of
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G such that &,,(G) < V. We wish to show that V € Injy (G). By Theorem
2.9, we are reduced to proving that V is a p-nilpotent injector of Ca((G%),).
Write C' = Cg((GY),). Arguing as in the proof of Theorem 2.9, it is easily seen
that V < C. We proceed to show that V is a maximal p-nilpotent subgroup
of C. Clearly V is p-nilpotent because it is a B,-group. Suppose that W is
a p-nilpotent subgroup of C such that V < W. Using Remark 2.1, it is clear
that W is a B,-group. Therefore, since V is a maximal B,-subgroup of G,
it follows that W = V and hence V is a maximal p-nilpotent subgroup of C.
Furthermore, applying Lemma 2.2, §,/,(G) = Opp(G) N C = Oyp(C). Therefore
V is a maximal p-nilpotent subgroup of C containing O,/,(C). As a consequence
of Theorem 2.8, we deduce that V is a p-nilpotent injector of C', which is the

desired conclusion. O



Chapter 3

On products of generalized

nilpotent groups

3.1 Introduction

If A and B are subgroups of a written group G, the product AB of A and B
is defined to be the subset of all elements of G with the form ab where a € A4 and
b € B. It is well known from elementary group theory that AB is a subgroup
if and only if AB = BA, i.e., the subgroups A and B are permutable. Should it
happen that AB coincides with the group G, with the result that G = AB = BA,
then G is said to be factorized by its subgroups A and B.

Factorized groups have played a significant part in the theory of groups over
the past fifty years. The first prominent result is a theorem of It6 (1955) which
states that every product of two abelian groups is metabelian, i.e., soluble with
derived < 2 (see [1, Ch.2]). After the appearance of It6’s Theorem attention
shifted to finite groups that are products of a pair of nilpotent groups, the

conjecture being that such subgroups are soluble. The motivation here was

63



64 3 On products of generalized nilpotent groups

provided by the well-known Burnside’s Theorem which states that a product
of two subgroups with prime power orders is soluble. The outcome of this line
of investigation was the celebrated result of Kegel and Wielandt ({1, (2.4.3)])
which shows that if A and B are nilpotent subgroups of a finite group G = AB,
then G is soluble. Such groups have been widely studied by several authors (see
(1, Ch.2]). To date Kegel and Wielandt’s result has not been generalized to
infinite groups. In fact, very little is known about the structure of a product of
two nilpotent groups, even in the locally finite universe. Some progress in this

direction was obtained in [15, 17}, replacing nilpotence by local nilpotence.

The aim of this chapter is to investigate the structure of a cC-group, G = AB,
factorized by two subgroups A and B belonging to the class B of generalized
nilpotent groups and also in the class of locally nilpotent groups. We extend

some results of products of finite nilpotent groups to the universe L.

3.2 Results

A group G is said to be metanilpotent, or G € M?, if there exists a nilpotent
normal subgroup N of G such that the factor group G/N is nilpotent. It is well

known that a product of two nilpotent groups is not metanilpotent in general.

Example 3.1. Let G = T, = [Cy x Cy]E; be the symmetric group of degree
four. Consider A = [Cy x C5]C5 and B = C3. Obviously A and B are nilpotent
subgroups of G = AB. However, F(G) = Cy x Cy and so G/F(G) is isomor-
phic to the group 23 which is not nilpotent. We conclude that G = ¥4 is not

metanilpotent.

However, in 1972 Maier shows that if the factors are finite and modular, then

the group is metanilpotent ([21, Theorem 1]). Recall that a group G is said to
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be modular if the subgroup lattice of G is modular (see [25]). The following two

results are extensions of Maier’s one in the universe c¢.

We say that a group G is locally nilpotent-by-locally nilpotent, or G € (LN)?,
if there exists a locally nilpotent normal subgroup N of G such that G/N is
locally nilpotent. Analogously, we say that a group G € B2 if there exists a
normal B-subgroup N of G such that G/N is a B-group. The following fact

turns out to be crucial in the proof of our results.

Remark 3.1. Applying Theorem 1.3, it is easy to see that B2 is a cL-formation
and, by Corollary 1.4, if G is a c£-group such that G/u(G) € B2, then G €
B> The same is true for the class (LM)? (see [13, (6.2.11)]) and ([3, Theorem
A]): (LM)? is a c-formation which is closed under extensions by Tomkinson’s
subgroup. Consequently a c£-group G belongs to § if and only if G /Coreg(M) €
§ for every major subgroup M of G, where F is either (LO)? or B2

Theorem 3.1. Let G = AB be a c&-group, where A and B are modular locally
nilpotent groups. Then G € (LN)2.

Proof. Let M be a major subgroup of G' and denote Mg = Coreg(M). Tt
is clear that G/Mg is the product of the modular locally nilpotent subgroups
AMg/Mg and BMg/Mc. Hence there is no loss of generality in assuming that
Mg =1 and then G is either a finite primitive soluble group or G is a semiprim-
itive group by Theorem 0.4. In the first case, we know that G is metanilpotent
by Maier’s Theorem. Consequently we may assume that G is a semiprimitive
group. In particular, G is a Chernikov group. Then G = [G°)M, where GP is a
divisibly irreducible abelian p-group for some prime p such that Cg(G?) = G°
and M is a finite soluble group. Applying [17, (1.3)], we can assume that A
is a p-group. Moreover, by [1, (3.2.10)], G° = AYBO. Let us first assume that
A is non-abelian. By Iwasawa’s theorem ([25, (2.4.14)]), A has finite exponent
and then A° = 1. Since A is a Chernikov group, we have that A is finite. Con-

Sequenﬂy GV is contained in B and so in B, the unique Sylow p-subgroup of
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B. If B, is non-abelian, applying [25, (2.4.14)], B, is finite and so G'=1, a
contradiction. We conclude that B, is abelian. Therefore B, < Ce(G% = G°
and so B, = G°. Since By < Cg(B,) = B,, we have that By = 1. Consequently
B = B, is a normal subgroup of G and the result follows. Assume now that A is
an abelian group. Since B is a locally nilpotent group satisfying min, we know
that B is a direct product of its Sylow subgroups and finitely many of them
are non-trivial. Moreover, by [25, (2.4.14)], each non-abelian Sylow subgroup of
B is finite and so nilpotent. Hence B is actually a nilpotent group. Since G
is an G;-group, it follows from [1, (7.2.2)] that AG® is normal in G and hence
AGY < 0,(G). Consequently, G = Op(G)B and we conclude that G € (L)%
Therefore we have proved that G/Mg € (LN)? for each major subgroup M of
G and hence G € (L9)? by Remark 3.1. O

One may ask whether theorem above is still true if we replace locally nilpo-
tence by the concept of B-group. The answer to this question is affirmative as

the following result show.

Theorem 3.2. Let G = AB be a c&-group, where A and B are modular B-
groups. Then G € B2.

Proof. Using the same arguments as in the proof of Theorem 3.1, we may
assume that G is either a finite primitive soluble group or G is a semiprimitive
group. Again if G is finite the result follows by Maier’s Theorem. Therefore we
can assume that G is a semiprimitive group. In particular, G is a Chernikov
group. Again G = [G°|M, where G is a divisibly irreducible abelian p-group
for some prime p such that Cg(G®) = GY, M is a finite soluble group and we
may assume that A is a p-group and G° = A°BY. If A is non-abelian we proceed
as in Theorem 3.1. Assume now that A is an abelian group. Now, B, being a
Chernikov B-group, is actually nilpotent by Corollary 1.1. Let B, be the unique
Sylow p-subgroup of B. If B, is non-abelian, applying 25, (2.4.14)], B, is finite
and so B® = 1. Then G® < A and hence A < Cg(G°) = G°. Therefore A = G°
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is a normal subgroup of G and the result follows. Assume now that B, is abelian.
By [15, (2.6)], AB, is a Sylow p-subgroup of G, B is a Sylow p’-subgroup of G
and G = (AB,)B,,. If By = 1, applying Itd’s Theorem ([1, (2.1.1)}), we conclude
that G is metabelian and in particular G € B2 Hence we may assume that
B, # 1. Let p(G) be the Hirsch-Plotkin radical of G. By Theorem 3.1, G/p(G)
is locally nilpotent and, moreover, it is finite because G/G° is finite. Since
(p(G))y < Oy(G) = 1, we have that p(G) is a p-group and so it is contained
in the Sylow p-subgroup AB, of G. On the other hand, since G/p(G) is locally
nilpotent, we deduce that (AB,)/p(G) is normal in G/p(G). Consequently, AB,
is a locally nilpotent normal subgroup of G and hence AB, < p(G). This
implies that AB, = p(G) and so G = p(G)By. As a consequence By is a
nilpotent finite subgroup of G. Let M, be a Sylow p’-subgroup of M. Of course,
M, is a Sylow p’-subgroup of G. Therefore, there is no loss of generality in
assuming that My = By. It follows that My = Mg x Mg, --- X Mg, is the
product of its Sylow subgroups, where g; # p for all j € {1,...,s}. Suppose
that s > 1 and let B; = B,M,, for all j € {1,...,s}. We now proceed to
show that AB € B2 by induction on |B : B°. Let ;7 € {1,...,s}. Since
BY < B, < B;, we have that (B;)® = B°. Moreover, B; £ B because s > 1. We
deduce that |B; : (B;)°| < |B : B° and hence, by induction, AB; € B2, that is,
(AB;)/F(AB;) € B. Moreover, F(AB;) = (AB;)® = G° because G° < p(G) <
AB;. Consequently, AB;/G° = (p(G)M,,)/G° is a nilpotent finite group. In
particular, p(G)/G® centralizes M,,G°/G°. This implies that [o(G), M,,] < G°
and then [p(G)NM, M, < G°NM = 1. This clearly forces that M,, centralizes
p(GYNM = M, for all j € {1...s}. Therefore M, centralizes M, and hence M
is nilpotent. We conclude that G/F(G) is nilpotent and so G € B2. Assume now
that s = 1, that is M,y = M, where q # p. Since M, is a‘ﬁnite nilpotent group,
every maximal subgroup of M, is normal. Let N;, N, be two maximal subgroups
of M,, where Ny # Np. Then M, = N;N,. We can now proceed analogously
to the proof of the case s > 1 to show that N; centralizes M N p(G) = M, for



68 3 On products of generalized nilpotent groups

i = 1,2. Therefore M, < Cg(M,) and hence M is nilpotent. We obtain that
G/F(G) is nilpotent and consequently G € B?. If M, has a unique maximal
subgroup, then we deduce that M, = B, is abelian and hence B = B, x B,
is also abelian. By Itd’s Theorem ([1, (2.1.1)]), we conclude that G = AB is

metabelian and, in particular, G € B2, which is our claim. O

Let G = AB. If A and B are normal nilpotent subgroups of &, then G is
nilpotent by a result of Fitting. However, if A and B are normal supersoluble
subgroups of G = AB, then G need not be supersoluble even in the finite case
(see [2]). This fact motivates the interest in the study of factorized groups
whose factors are connected by certain permutability properties (see [2, 9, 11]).
Following the terminology of [9], we consider a functor f which to every group
G associates a family of subgroups f(G) such that f(a(G)) = a(f(G)) for every
homomorphism « of G.. The subgroups A and B in a group G are called a
mutually f-permutable pair if A permutes with all members of f(B) U{B} and
B permutes with all member of f(A)U{A}. Further, A and B are called a totally
f-permutable pair if every member of f(A) U {A} permutes with every member
of f(B) U {B}. Examples of functors include: f(G) = s,(G), the family of
subnormal subgroups of G, f(G) = der(G), the terms of the derived series of G
and f(G) = s(G), the family of all subgroups of G. Thus the results of Asaad and
Shaalan [2] involve totally s-permutable pairs of subgroups A and B. Beidleman,
Galoppo, Heineken and Manfredino (see [9]) investigate the structure of a group
G = AB which is the product of either a certain mutually f-permutable pair or
a certain totally f-permutable pair of subgroups A and B. They extend Asaad
and Shaalan’s results to infinite groups considering totally s-permutable and
totally s,-permutable pairs. Moreover, they prove that if G = AB is a group
factorized by the totally s,-permutable pair of soluble subgroups A and B of
derived length d 4 and dg respectively, and d4 < dp, then & is soluble of derived
length dg < 2d4 + dp.
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The above result leads us to consider mutually der-permutable pairs in the

universe cfl.

Theorem 3.3. Let G = AB be a cC-group factorized by two B -subgroups A and
B. If A permutes with B', and B permutes with A" (in particular if A and B
are a mutually der-permutable pair), then G € B2,

Proof. Assume first that G is a finite primitive soluble group. Then G has
a unique minimal normal subgroup N and a maximal subgroup M such that
G = NM, Coreg(M) =1, NN M =1, N is a p-group for some prime p and
Cg(N) = N. Suppose that G = AB is a product of two nilpotent groups A and
B such that A permutes with B’, and B permutes with A’. We prove that G is
metanilpotent. Applying Gross’ Lemma ([1, (2.5.2)]) we may assume that B is
a p-group and A is a p’-group. In particular, N < B and AN B = 1. Denote
T = AB'. Then (B')® = (B')* < AB' = T. Assume that (B')C 5 1. This means
that N < (B)¢ < T and so N is really contained in B’ because B’ is a Sylow p-
subgroup of T. Hence B = NMNB = N(MNB) = B'(MNB) = MNB because
B’ < ¢(B). This is a contradiction. Consequently (B')¢ = 1. In particular
B" =1 and hence B is abelian. Since N < B, it follows that B < Ce(N)=N
and so B = N. In particular, we deduce that G is metanilpotent.

Suppose now that G = AB is a semiprimitive group which is a product of
two B-subgroups A and B such that A permutes with B, and B permutes with
A’. Then G = [G°|M, where D = G° is a divisibly irreducible abelian p-group
for some prime p such that Cq(D) = D and M is a finite soluble group. In
particular, A and B are Chernikov groups and thus, applying Proposition 0.2,
1(A) and p(B) are finite. Moreover, since A and B are B-groups, it follows from
‘Theorem 1.1 that A" < p(A) and B’ < w(B). Therefore A’ and B’ are finite.
Denote N = (A")° N D. Since D is divisibly irreducible and N is normal in G
it follows that either N = D or N is finite. Suppose that N is a finite subgroup
of D. Then it is easy to prove that G/N = [D/N](MN/N) is a semiprimitive
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group satisfying the hypothesis of the theorem. If we prove that G/N € B?,
then G € B2 because F(G/N) = D/N = F(G)/N. As a consequence, there
is no loss of generality in assuming that if N is a proper subgroup of D, then
N = 1. In the same manner, if we denote L = (B')°N D, we can assume without
loss of generality that if L # D, then L = 1. Suppose now that N = D. Then
D < (A = (4)5 < A'B and hence D < (A'B)°. By [1, (3.2.10)] and the
fact that A’ is finite we have that (A’B)° = B° and therefore D = B°. Since
B® < Z(B) by Theorem 1.1, we deduce that B < Cg(D) = D and thus B = D.
We conclude that B is a normal subgroup of G and consequently G € B2
Similar arguments apply to the case L = D, yielding A = D and G € B2. Then,
we may assume that N = 1 = L. This implies that (A")¢ < Cg(D) = D and
(B"Y¢ < Ce(D) = D and hence (A')¢ =1 = (B")°. In particular, A'= 1 = B’
and therefore A and B are, in fact, abelian subgroups of . By It6’s Theorem,
we conclude that G is metabelian and, in particular, G € B2. Let M be a
major subgroup of G. Denote Mg = Coreg(M). By Theorem 0.4, we have that
either G /Mg is a finite primitive soluble group or G /Mg is a semiprimitive group.
Moreover G /Mg satisfies the hypothesis of the theorem. By the above argument,
we have that G/Mg € B? for every major subgroup M of G. Therefore, applying

Remark 3.1, we conclude that G € 92, which is our claim. O

We also may prove that the converse of Theorem 3.3 is true in the finite case.

Remark 3.2. The finite metanilpotent groups are exactly those groups G = AB
which are a product of two nilpotent subgroups A and B such that A permutes
with B’, and B permutes with A’.

Proof. Assume that G is a finite group which is metanilpotent. Then G is
soluble. If A denotes the nilpotent residual of G, that is, the smallest normal
subgroup A of G with G/A nilpotent, it follows that A is also nilpotent. Now, if B
is a Carter subgroup of G (see [14, (III, 4.6)]), we have that G = AB. Moreover,

it, is clear that A permutes with B’ and B permutes with A’. Consequently, a
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finite group G is metanilpotent if and only if G is a product of two nilpotent

subgroups A and B such that 4 permutes with B’, and B permutes with A’. (]

‘A classical (and considerably hard) topic in the study of a product of two
nilpotent finite groups has been trying to obtain bounds for the derived length of
this kind of groups. In 1973, Pennington shows that there are strong restrictions
on the (¢ + d)th term of the derived series of a finite group G = AB where ¢
and d are the classes of the nilpotent subgroups A and B, respectively (see [1,
(2.5.3)}). This result has been generalized by Franciosi, De Giovanni and Sysak
to periodic radical groups ({15, Theorem D}). Now we obtain a similar result of
this kind, using the derived lenghts of the subgroups A and B instead of their
classes, under some restrictions on the permutability of their derived series. Let

us denote by d¢ the derived length of a soluble group G.

Theorem 3.4. Let G = AB be a cL-group factorized by the soluble B-groups
A and B. Let dg and dp be the derived lengths of A and B respectively. If
A permutes with B', and B permutes with A’ (in particular, if A and B are a
mutually der-permutable pair), then the (da+dp)th-term G@a*d5) of the derived
series of G 1s a w-group in B, where T = 7(A) N 7(B).

Proof. Let the cC-group G = AB be the product of two soluble B-subgroups
A and B such that A permutes with B, and B permutes with A’. Let d 4 and
dp be the derived lengths of A and B respectively. By Lemma 0.2, G/Oy(G)
is a soluble Chernikov group for every prime p. Moreover, G /Oy (G) satisfies
the hypothesis. If we prove that (G/0,(G))44*8) is a m-group in the class B
for every prime p, where # = m(A) N 7(B) then G4a+ds) will he a T-group in
the class B because B is a formation. Then, there is no loss of generality in
assuming that G is a Chernikov group such that O, (G) = 1 for some prime
p. Note that in a c&-group G, the Fitting subgroup F(G) is non-trivial. Since
Oy (G) = 1, we have that F(G) is a p-group.



72 3 On products of generalized nilpotent groups

Suppose first that p ¢ 7. We may assume that p € w(A). Since A and B are
locally nilpotent, it follows from {15, (2.6)] that A,B, is a Sylow p-subgroup of
G, where A, and B, are the unique Sylow p-subgroups of A and B respectively.
Moreover, since p ¢ w(B), we have that B, = 1 and thus A, is a Sylow p-
subgroup of G. In particular, F(G) < A, and hence 4, < Ce(F(G)). Since
every cC-group is hyperabelian, it follows from Lemma 0.9 that Co(F(G)) <
F(G) and thus A, = 1. We deduce that A is a Sylow p-subgroup of G. On the
other hand, it follows from Theorem 3.3 that G/F(G) € B, whence the Sylow
p-subgroup A/F(G) is normal in G/F(G). Consequently A is normal in G. In
this case, we can write dg < dg/sa + dg and being G/A = B we deduce that
Gl@atds) = 1 and the result follows.

Suppose now that p € w. Let M be a major subgroup of G and denote Mg =
Coreg(M). By Theorem 0.4, either G/My; is a finite primitive soluble group or
G /Mg is a semiprimitive group. Moreover, it satisfies the hypothesis. If we prove
that (G/Mg)44*48) is a m-group in the class B for each major subgroup M of G
then (G/u(G))@4+25) will be a 7-group in the class B because B is a formation.
Since p(G) is a p-group, from Corollary 1.4 we will deduce that G(¢4+4s) is 3
m-group in the class B. Then, without restriction of generality we can assume
that G is either a finite primitive soluble group or a semiprimitive group. If G is
a finite primitive soluble group, it follows from Gross’ lemma that A and B have
coprime orders. This contradicts the fact that p € #(A) N 7(B). Consequently,
we can assume that G is a semiprimitive group, that is, G = [G°]|M, where
D = GY is a divisibly irreducible abelian p-group for some prime p such that
Ce(D) = D and M is a finite soluble group. As in the proof of Theorem 3.3, we
consider N = (A)°ND and L = (B')°ND. Since D is divisibly irreducible, then
N = D or N is finite and the same conclusion can be drawn for L. If N = D
then it follows, by the same method as in the proof of Theorem 3.3, that B = D
is a normal subgroup of G. Therefore we deduce that G(#4+98) = 1. In the same

manner, if L = D we can see that A = D is normal in G and thus G(¢atds) = 1.
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Suppose now that N is a finite subgroup of G. Then G/N is a semiprimitive
group satisfying the hypothesis. Suppose that the result holds for G/N, that is,
(G/N)@4a+ds) i 5 r-group in the class B. Obviously, since N < D is a p-group
and p € 7, we have that G44+95) is o 7-group. Now we prove that G{¢a+d8) ¢ 8.
Let X = GU+ds) 0 D. Then X is a normal subgroup of G contained in D.
Since D is divisibly irreducible, then either X = D or X is finite. Suppose that
X = D. Then N < D < GUs+48) and hence G44+48) = D(M N Glda+ds)),
On the other hand, since G{¥4*48)N/N ¢ B, its radicable part D/N is central
in G4 N/N by Theorem 1.1. Therefore [D, G44%48)) < N. In particular,
since N is finite, [D, M N G{@4+48)] is finite and therefore, applying Lemma 0.1,
M N G@a+ds) < Cu(D) = D. We conclude that D = G(44*48). Then G(d4+ds)
is abelian and, in particular, it is a B-group. Assume now that X is finite and
consider the semiprimitive group G/X. Since (G448 /XN (D/X) = 1 we
have that G(44+48) /X < Cg/x(D/X) = D/X and hence Gl44*ds) < D. In
particular we conclude that G(@4+8) is abelian and then it is a B-group. As a
consequence of the above argument, there is no loss of generality in assuming
that if N is a proper subgroup of D then N = 1. Using the same reasoning, we
can assume without loss of generality that if L # D then L = 1. This leaves
the case N = 1 = L. Then (A')¢ < Cg(D) = D and (B')¢ < Cg(D) = D
and, consequently, A’ =1 = B’. Then A and B are in fact abelian subgroups of
G. By It6’s Theorem, we conclude that G is metabelian. That is G44+95) = 1

where dy = dg = 1, and the proof is complete. i

As a consequence of Theorem 3.4, we obtain that a cf-group G which is a
product of two soluble B-subgroups A and B such that A permutes with B’,
and B permutes with A’ is soluble of derived length less or equal than d4 + dp
provided that 7(A) Nx(B) = 0.

It was proved by Kegel ([19]) that if the finite group G = AB = AC = BC'is
the product of three nilpotent subgroups A, B and C, then G is nilpotent. This
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result has been extended by Franciosi, De Giovanni and Sysak to periodic radical
groups under the condition that al least one of the subgroups is hyperabelian
(see [15, Theorem BJ). Our next theorem extends these results to cC-groups and

the class B of generalized nilpotent groups.

Theorem 3.5. Let the c&-group G = AB = AC = BC be the product of three
B-subgroups A, B and C. Then G is o B-group.

Proof. Let M be a major subgroup of G and denote Mgz = Coreg(M).
By Theorem 0.4, either G/M¢ is a finite primitive soluble group or G/Mg is
a semiprimitive group. Moreover, G/Mg satisﬁés the hypothesis. If we prove
that G/M¢g € B for each major subgroup M of G then G/u(G) is a B-group.
Consequently, G is a B-group by Corollary 1.3. Hence, there is no loss of gen-
erality in assuming that Mg = 1. Suppose first that G is a finite group such
that G = AB = AC = BC, where A, B and C are nilpotent subgroups of
G. By Kegel’'s Theorem, G is a nilpotent group. Then, we may assume that
G = AB = AC = BC is a semiprimitive group which is the product of three
$B-subgroups A4, B and C. Since G has min, it follows from Corollary 1.1 that
A, B and C are actually nilpotent groups. Moreover, the soluble-by-finite group
G is an &;-group. Therefore, it follows from [1, (6.6.7)] that G is nilpotent and
so it is a B-group. O

A subgroup of a factorized group G = AB will usually not be the product of
a subgroup of A and a subgroup of B. Thus, a subgroup S of a factorized group
G = AB is said to be factorized if S = (ANS)(BNS)and ANB <S. Itis
known that the Fitting subgroup of a finite product of two nilpotent groups is

factorized (see [1, (2.5.7)]). We obtain the corresponding result in our universe.

Theorem 3.6. Let the cL-group G = AB be the product of two B-subgroups A
and B. Then the Fitting subgroup of G, F(G), is factorized.
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Proof. Suppose that G is a finite group. We have that A and B are nilpotent
groups and thus, applying [1, (2.5.7)], F(G) is factorized. Assume now that G
1s a semiprimitive group. Since G satisfies min, we have that A and B are in
fact nilpotent subgroups of G by Corollary 1.1. Moreover, G is a soluble &;-
group. Therefore, it follows from (1, (6.3.10)] that F(G) is factorized. Let M
be a major subgroup of G and denote Mg = Coreg(M). We have that either
G /Mg is a finite primitive soluble group or G/M¢ is a semiprimitive group.
Applying the above arguments to G/Mg, we have that Dy /Mg = F(G/Mg) is
factorized for every major subgroup M of G. Thus, according to [1, (1.1.2)(iii)],
Dy is factorized for every major subgroup M of G. But F(G) = ({Dum :
M is a major subgroup of G} by Theorem 1.11. We conclude from [1, (1.1.2)(i)]

b

that F(G) is factorized. O
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