
3
Methodology

Our purpose is to obtain an intelligible fuzzy model from a set of input-
output data in a fast and simple way. Thus, not only the models must be
intelligible but also the method itself. Although the method will be presented
as an automatic process, its simplicity will also allow users to tune it in a
fast manner depending on the requirements of the problem.

In summary our method will identify, from a set of input-output data, the
necessary partitions to be applied to each input variable in order to model
the data in a satisfactory manner. Later it will compute the rules which
relate these partitions and furthermore, we will apply some techniques in
order to simplify the final model and also to assure its intelligibility. The
resulting model will be computed as an output singleton type FRBS due to
the reasons which have been explained in the previous chapter.

In this section we will detail all the aspects related to these guidelines.
Furthermore the whole algorithm is given in the appendix in order to facili-
tate its understanding.

3.1 Outline of the method

The method we propose is based on the fact that a fuzzy system can be
analyzed as a system which interpolates a function between different regions
defined by fuzzy sets. Observe, for instance, the transfer functions of the
simple fuzzy systems plotted in figure 3.1 where the fuzzy partitions define
the regions between which the output values are interpolated.

In this sense, our method will divide the universe of scope of each input
in different partitions which will be assigned to fuzzy sets. Furthermore, and
by being interested in obtaining a simple and fast technique, we will only
work with one-dimensional functions by dividing the samples of the original
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Figure 3.1: Two examples of simple fuzzy models.

MISO system of N inputs in N SISO systems, one for each input. Later we
will join the different variables when defining the rules. At the end of the
work we will explain the problems which can arise with this option.

Let us introduce the method a little more.

In one of the first steps we will find an optimal relation between the
output variable and each possible input. These relations will be computed
with an inverse distance weighted average method. The resulting functions
are called fuzzy curves and they will be optimized by means of the square
error.

In this way, the following steps will work with optimal one-dimensional
functions in order to operate in a fast manner in comparison with the actions
which would have been required with the original cloud of samples.

Once we have the optimal fuzzy curves, for each input variable we will
find the necessary fuzzy sets to obtain a linear-piecewise approximation of
the estimated optimal fuzzy curve.

Then we will compute the possible output set assigned to each input
partition and consequently the necessary rules to define our fuzzy model.
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These two steps, the linearization of the fuzzy curves and the search of
the output values, are developed in a hierarchical process. Therefore we will
increase the input partitions and also the corresponding number of sets in
every step. This will also increase the model’s complexity but will reduce its
error and the process ends when we are satisfied with the trade-off between
accuracy and intelligibility.

In fact this trade-off is adjusted by users with a parameter called desired
error which defines the maximum error which can be accepted. In fact this
parameter will be used in several steps of the method (when optimizing the
fuzzy curves, when linearizing them, when clustering some values, ...) and it
will be one of the few optional parameters of the whole method apart from
the alternatives which can be considered when a fuzzy system is computed
such as the implication method, the defuzzification technique, the T-norms,
the S-norms, ... and also some necessary values to round different numbers
which will be described later.

Apart from these basic steps (optimal fuzzy curves, linearization and out-
put sets) there are some complementary operations in order to accelerate the
whole process, for example the use of rounded numbers in some points of the
method, or to assure an intelligible final model, for example by considering
some clustering techniques.

The overall method is summarized in figure 3.2.

In the following sections we will give the details, the refinements and also
the different options to be considered. Nevertheless some aspects will not be
explained, basically those related to the search of an efficient computational
cost and some minor points of the method, in order to focus on the basic
steps by avoiding the dispersion of the guidelines. Anyway we provide the
whole algorithm in the appendix.

3.2 Grid partition of the UoS with rounded

numbers

By not being interested in a high accuracy method but in a fast, simple
and intelligible solution, the values of either the inputs or the output will be
rounded to the closest number from a set of values which is computed for
every variable.

Each one of these sets will vary based on the demanded accuracy, which
is defined with the desired error parameter and thus, the higher accuracy the
more possible values will be considered for each set.

Thus, for every variable we build a set of equidistant values which cover
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Figure 3.2: A look to the overall method.

the whole universe of scope, from the lowest sample to the highest one, whose
step is computed as

(max(variable)−min(variable))× (desired error parameter) (3.1)

Finally these values are also rounded to their closest decade in order to
improve the intelligibility of the resulting models.
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Example
Suppose a variable whose samples vary between 0.4562 and 5.3246. If the desired
error parameter was 15%, the previous formula would give (5.3246 − 0.4562) ×
0.15 = 0.7303 ' 1, reason why any later value related to this variable, like for
example the cores of its fuzzy sets, would be placed to the closest value between
0, 1, 2, 3, 4, 5 or 6 because only these values could define the discrete values of
the universe of scope.
Otherwise if the desired error parameter was only 5% then the previous formula
would have given (5.3246 − 0.4562) × 0.05 = 0.2434 ' 0.1 and in this case any
result would have been rounded to 0.4, 0.5, 0.6, ... , 5.2, 5.3 or 5.4.

Furthermore and in order to reduce the size of these possible rounded
numbers but while keeping the most representative values, if none of the
samples is close to one of these possible numbers by being all the samples
closer to some other values then we remove this number from the set. This
would reduce the necessary time to search the rounded values without de-
grading the representativity of the set.

3.3 Optimal fuzzy curves

The fact to compute the fuzzy sets from the original data can be very arduous
if we have many samples. Therefore recall that we prefer to work with a
simplified relation between the output variable and each possible input. This
relation will be defined as a fuzzy curve.

3.3.1 Fuzzy curves

There are many techniques in the literature able to give a relation between
the output variable and each possible input. The most popular among them
are:

• Linear regression

• Weighted average

• Spline (Bézier curves)

Several alternatives coexist because they have different advantages and
disadvantages [23, 29]. The most important differences are summarized in
table 3.1.

We prefer in this case the weighted average prior to the other alternatives
because
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Method Main advantage Main disadvantage

Linear regression Optimal result which di-
minishes the square error

Lack of a method able
to discern the best or-
der of the model (model’s
structure)

Weighted average Low computational cost Lack of a compact equa-
tion as result

Spline (Bézier curves) Smooth, continuous,
derivable and robust
results even with few
samples, and therefore
suitable for CAD designs
more than mathematical
analyses

High computational cost
if many samples are con-
sidered (a cloud of sam-
ples) or the requirement
of windowed samples (a
degree) in order to reduce
it

Table 3.1: Advantages and disadvantages between linear regression, weigthed
average and Spline.

⇒ we are not interested in an extremely accurate result but in a fast
solution which shows the tendency that the output variable adopts
when the input varies

⇒ we do not need any algebraic equation as result because the following
steps work with numerical methods

⇒ we may not have any previous intuition of the possible relation be-
tween the input and the output which could provide a reliant model’s
structure

Furthermore, the weighted average has an important similitude with fuzzy
logic because both methods evaluate the result by considering not only the
current situation but also its neighborhood.

Given a set of samples {x, y}, the weighted average computes the output
ŷi when the input is xi as

ŷi =

∑N
k=1 ωikyk∑N

k=1 ωik

(3.2)

where ωik are the weights used to average the output samples yk based on
different possible criteria. Among them the distance d (xi, xk) between xi
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and the input value xk is frequently accepted, then ωik = d (xi, xk) and

ŷi =

∑N
k=1 d (xi, xk) yk∑N

k=1 d (xi, xk)
(3.3)

where the distance d (xi, xk) can be defined in many ways as shows table 3.2.

d (xi, xk) Absolute Relative

Linear norm |xi − xk| |xi − xk|/β
Square norm (xi − xk)

2 (xi − xk)
2 /β

Table 3.2: Distance measurements.

Furthermore these alternatives can be part of another function in order to
emphasize some samples. For instance ωik = exp (−d (xi, xk)) is commonly
accepted in order to enhance the closest values.

From the previous options,

⇒ we choose the square norm in order to diminish the square error (opti-
mization procedure)

⇒ we choose only the use of a negative exponential function in order to
compute ωik and then we will have less parameters to optimize by fixing
ωik

⇒ we choose a relative function because otherwise there wouldn’t be any
possible parameter to optimize

At this point it seems necessary to clarify the apparent incoherence of
diminishing the error when in fact we have bet for a simple, although not
accurate, method. Certainly the precision of the resulting function is not
its most valuable characteristic, but obviously, if the final result displayed
a good performance in terms of error no one would reject it. The method
we propose will search for a weighted function with a low square error but
without assuring its lowest value, as we will just find a statistic of it and
thus, this optimized function will have a certain tolerance, while reducing
the necessary time to assure the optimal value. This tolerance will be the
trade-off between the desired precision and the required computational cost
and, in general, we will assume a high tolerance but with a satisfactory error
according to our objectives.
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When one works with a weighted average one always doubts about the
window’s length which is defined by a relative measurement of the distance
between points. This one will be the parameter that we will optimize.

Therefore, the proposed weighted function is the following one where the
β parameter can be adjusted in order to diminish the square error as will be
detailed later:

ŷi =

∑N
k=1 φikyk∑N

k=1 φik

(3.4)

φik = exp

(
−

(
xk − xi

β

)2
)

(3.5)

In fact this function was proposed by Y. Lin and G. A. Cunningham III
[69, 70] and it was called fuzzy curve because of its similarities with a fuzzy
system with N rules, one per sample, where φik represents the antecedent set
placed at xk and evaluated when x = xi.

Lin et al. used them as a fuzzy modeling method able to identify the sig-
nificant input variables, determine the model’s structure and set the initial
weights in a neuro-fuzzy model. They can be interpreted like radial basis
functions (RBF) by means of which the value in a point comes near by the
average of the samples near this point according to its distance, exponen-
tially measured. Consequently, the resulting functions display a very smooth
behavior which allows us to know the relation between the variables of the
system, from which we can develop many analyses.

These functions have been used in several applications in which, from
input/output data pairs, the fuzzy curves are generated in order to discern
those variables which are more relevant when modeling the operation of the
system, in addition to helping the development of neural networks or fuzzy
systems to foretell the behavior of the system.

The main area where most applications have been developed by using
fuzzy curves is in the engineering of mines and geology due to the specializa-
tion of its precursors in this field. We can mention in this sense the appli-
cations developed in the New Mexico Tech’s Petroleum Recovery Research
Center which improve the chances of locating oil, better assess the risks of
prospecting and drilling for oil and also reduce the costs of oil exploration,
for example by computing an average of hydrocarbon equivalent production
in the Brushy Canyon wells of New Mexico, USA [121]. Another application
consists in ranking the variables applied to restimulation of gas storage wells
in the Clinton sand of Ohio, USA [80]. We can find more recent applications
of different nature where these curves are used to model a wastewater plant
[31] or to predict the algal blooms in the Ortobello lagoon of Italy [77].
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3.3.2 Optimal fuzzy curves

Until now β has usually been adjusted empirically and in fact Lin et al.
suggest a value equal to the 20% of the variable’s range. But as we have
introduced before, it is possible to work with an optimized fuzzy curve be-
cause the β of the fuzzy curve can be adjusted in such a way that this curve
diminishes the square error defined as the difference between the value of the
curve and the original sample [32].

Nevertheless, we can not define the error from the sum of all the input
samples because then the trivial solution for the parameter β would be equal
to zero. Observe that if β is close to zero then any φik = 0 except for
k = i because then φii = 1 and ŷi = yi. Thus, the error defined as ε =∑N

i=1 (yi − ŷi)
2 = 0 but this would give rise to very sharp curves. On the

contrary, if β tends to infinity then φik will be close to one and then ŷi will
be the mean of the output values. In this case we will obtain too flat curves.

Example
Consider a function with only 6 samples: (0,3), (1,2), (2,4), (3,7), (4,5) and (5,3),
which is implemented with a fuzzy curve with different values for the β equal to
0.1, 1, 2 and 10. The resulting fuzzy curves are given in the following figure:
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If β is very low in comparison with the range of the input values then the fuzzy
curve is very sharp. On the contrary, if β is very high the fuzzy curve is very flat
and close to 4 by being the mean between 3, 2, 4, 7, 5 and 3. Thus, the optimal
β is expected to be proportional to the range of the input values.
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Consequently, we will have to divide the samples in two groups: those
that will be used to search the optimal parameter and the rest that will
be used to evaluate the square error which has been committed with this
adjustment.

This can arise a problem if the number of samples is not enough big to
keep the original form of the fuzzy curve when they are split in two groups
and in this case, the β which diminishes the error is in general lower than the
value found with the method we propose. Furthermore this division of the
samples will give strongly sensible values of the parameter β to this partition,
reason why later a statistical study will be made in order to fit its value.

Therefore, we begin by dividing the N samples in N1 samples which are
used to calculate the fuzzy curve (train points) and N2 = N − N1 samples
which are used to test the error (test points). In this way the values of the
fuzzy curve in each test point will be computed by using only the N1 values
with the equation 3.6.

ŷi =

∑N1

k=1 φikyk∑N1

k=1 φik

(3.6)

Once the fuzzy curve has been computed, the error in each one of the N2

test points is εi = yi − ŷi and the global square error is

ε =
1

2

N2∑
i=1

εi
2 (3.7)

As we look for the necessary value of β to diminish this error, we come
to calculate the equation 3.8.

∂ε

∂β
=

N2∑
i=1

(yi − ŷi)
∂ŷi

∂β
= 0 (3.8)

Once developed the previous equation we would obtain the condition of
the equation 3.9

N2∑
i=1

[A] [− (B) (C) + (D) (E)]

[C]3
= 0 (3.9)
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where

A =

N1∑

k=1

φik (yi − yk) (3.10)

B =

N1∑

k=1

φik(xi − xk)
2yk (3.11)

C =

N1∑

k=1

φik (3.12)

D =

N1∑

k=1

φik(xi − xk)
2 (3.13)

E =

N1∑

k=1

φikyk (3.14)

by which we can obtain the parameter β which diminishes the global error.
Observe how the previous equation does not present a trivial solution,

reason why it must be solved by numerical methods.
In order to accelerate the process, it would be interesting to know the

boundaries between which the β can be optimal. In this sense we can observe
how the error tends to become stable either for low values of β or for high
values and consequently the value which diminishes the error must be found
between these limits.

Therefore, if β is very small then ŷi ' yk for |xi − xk|min and only the
closest train point to each test point affects to the computation of the fuzzy
curve, reason why the error tends to become stable from a certain value of
β.

In order to determine this value we have to analyze for which value the
effect of the second train point closest to each test point is insignificant and
only the effect of the closest train point prevails. If d1 is the distance from a
test point to its closest train point and d2 is the distance from the same test
point to the second train point closest to it, it is interesting to find the β for
which

ω1 = exp

[
−

(
d1

β

)2
]
À ω2 = exp

[
−

(
d2

β

)2
]

(3.15)

or at least for a given η ' 0 find the β for which ηω1 > ω2. In this case we
would find that

β >

√
−d2

2 − d1
2

ln (η)
= βmin (3.16)
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The most critical situation occurs for the test point having the two train
points with the minimum value for d2

2 − d1
2.

There is also a big value of β for which the error tends to become stable
because then ŷi is similar to the mean of all the train points.

In this case for each test point we search a value of β for which, if d1 is
the distance from the test point to the train point closest to it and d∞ is the
distance from the same test point to its farthest train point,

ω1 = exp

[
−

(
d1

β

)2
]
≥ ω∞ = exp

[
−

(
d∞
β

)2
]

(3.17)

or at least for a given η ' 1 find the β for which ηω1 < ω∞. Similarly to the
previous process we would find that

β <

√
−d∞

2 − d1
2

ln (η)
= βmax (3.18)

In this case the most critical situation will occur for the test point with the
maximum value for d∞

2 − d1
2.

Once we have the values between which the optimal β can be found, we
use a numerical method to determine it. Nevertheless, the fact to divide the
samples in two groups can give more than one local minimum which solves
the equation 3.9, or even none. Thus, for each group of samples, the range
between βmin and βmax is logarithmically divided in order to locate and to
reduce the range (or ranges) where an optimal value can be found. Then
we find the local minimum of each range by using a dichotomist method
and once all the local minima have been found, the resulting error with each
minimum is computed in order to choose the one with the lowest global error.

By dividing the samples in two groups, the optimal value obtained in
every partition may not be the optimal one for the whole group of samples,
reason why we will not be able to assure the optimal value but at least a
statistic.

For this reason we will create different partitions of the samples in an
iterative way, from which we will obtain, for each partition, an optimal value
of β = βi with which we will compute, according to the theorem of the central
limit, a confidence interval for this parameter. We will stop the process after
n iterations when the confidence interval allows us to assure the optimal
value of β with a lower error than an established level η. According to our
objectives this level η should not be very low because we do not seek very
accurate results. Thus, we will obtain fuzzy curves with a satisfactory error
but without increasing our method’s computational cost.
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In fact we can know, in every iteration, the number of remaining iterations
because the confidence interval with a level of confidence α, typically α = 5%,
is

β ± tα/2,n−1
s√
n

(3.19)

where

s =

√√√√ 1

n− 1

n∑
i=1

(
βi − β

)
(3.20)

and then

tα/2,n−1
s√
n

< ηβ (3.21)

or

n >

[
tα/2,n−1s

βη

]2

(3.22)

Nevertheless at least 20 iterations should always be considered in order
to guarantee the theorem of central limit.

Example

We want to compute the optimal fuzzy curve from the samples given in the fol-
lowing table:

Sample x y Sample x y

1 0.0579 3.8529 8 0.2026 4.6040
2 0.8132 6.2282 9 0.0099 4.3126
3 0.1389 4.2557 10 0.6721 6.0068
4 0.1987 4.6400 11 0.8462 6.6147
5 0.5252 5.3736 12 0.4660 5.5162
6 0.0153 3.8437 13 0.7468 6.3632
7 0.4451 5.4368 14 0.4186 5.1272

First, we must generate the test points and the train points. In fact these sets
of points are computed by taking randomly two samples close to each rounded
value of the universe of scope, one of them as train point and the other one as
test point. In the next chapter we will explain in detail a whole example and we
will tell exactly how these sets are computed. Thus, if in this case the universe of
scope is rounded to 0.1, these sets could be:

Test points Train points
Sample x y Sample x y

1 0.0153 3.8437 8 0.0099 4.3126
2 0.1389 4.2557 9 0.0579 3.8529
3 0.2026 4.6040 10 0.1987 4.6400
4 0.4451 5.4368 11 0.4186 5.1272
5 0.5252 5.3736 12 0.4660 5.5162
6 0.6721 6.0068 13 0.7468 6.3632
7 0.8462 6.6147 14 0.8132 6.2282
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Now we compute the boundaries between which the optimal β is found βmin ≤
βopt ≤ βmax. For βmin we search the distance between the first and the second
of the train points closest to each test point in order to find the points for which
this distance is the minimum. This occurs for the fourth test point (0.4451) which
has the first and second of the train points closest to it at 0.4660 and 0.4186.
Consequently, d1=0.0209 and d2=0.0264 and this is the case with the minimum
d2
2 − d2

1. Thus, if the parameter η = 10% then,

βmin =

√
−0.02642 − 0.02092

ln 0.1
= 0.0107

For βmax we search the test point having the train point farthest to it and also the
train point closest to it with the maximum distance between them. This occurs
for the seventh test point (0.8462) which has the farthest train point placed at
0.0099 and the closest one placed at 0.8132. Thus, d1=0.0331 and d∞=0.8364,
and if the parameter η = 10% then,

βmax =

√
−0.83642 − 0.03312

ln 0.9
= 2.5746

As the range between βmin and βmax is usually very large we compute the deriva-
tive of the square error ∂ε

∂β with some values for the β parameter inside this range
in order to reduce the range between which the optimal value is found. For in-
stance if 3 points per decade were considered then the following 9 values would be
computed:

β 0.0107 0.0212 0.0421 0.0835 0.1658 0.3292 0.6534 1.2970 2.5746
∂ε/∂β -0.0033 -0.0147 -0.0805 -0.0399 0.0099 0.3843 0.9838 0.4522 0.1296

Therefore, the optimal β is between 0.0835 and 0.1658. We finally use the bisection
method in order to fit the optimal value with an error lower than the 10%. In this
case only three iterations are necessary:

Iteration Initial 1st 2nd 3rd

[βmin, βmax] [0.0835,1658] [0.1247,0.1658] [0.1453,0.1658] [0.1555,0.1658]
[∂ε/∂βmin, ∂ε/∂βmax] [-0.0399,0.0099] [-0.0241,0.0099] [-0.0135,0.0099] [-0.0034,0.0099]

Once the optimal β is between 0.1555 and 0.1658, we can assure it with an error
lower than 10% and we conclude an optimal β equal to the mid point of this range,
that is 0.1607.

3.4 Input partition

The fact to work with one-dimensional functions (fuzzy curves) instead of the
original cloud of samples will simplify this step. For this purpose we suggest
a piecewise linearization of each fuzzy curve because its mapping with the
final fuzzy sets is very simple and in fact any error can be reached based on
the number of segments we consider. In general the more segments the less
error but the less intelligibility.
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3.4.1 Linearization of the fuzzy curves

Remember that any linear segment can be obtained with a fuzzy system
without any error as can be observed in figure 3.3. Thus, the overall error will
be due to the linearization of the curve but not to the fuzzy approximation.
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Figure 3.3: A straight line implemented with a fuzzy system.

Observe that if we define

µX1 (x) =
x2 − x

x2 − x1

(3.23)

as the fuzzification of the input value x in the set X1,

µX2 (x) =
x− x1

x2 − x1

(3.24)

as the fuzzification of the input value x in the set X2, y1 as the core1 of the
set Y1, y2 as the core of the set Y2 and the defuzzification technique is defined
as

y =
µX1 (x) y1 + µX2 (x) y2

µX1 (x) + µX2 (x)
(3.25)

then, with the fact that µX1 (x) + µX2 (x) = 1, we conclude that

y =
µX2 (x) (y2 − y1) + y1

1
=

x− x1

x2 − x1

(y2 − y1) + y1 =
y2 − y1

x2 − x1

(x− x1) + y1

(3.26)
which is the equation of the original line. In fact we have computed an output
singleton FRBS with the sum-product operator.

1Point of the fuzzy set with the highest degree by being its most representative value.
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Therefore we can use triangular membership functions by being interested
in a simple fuzzy model able to fit the linearized fuzzy curve without any
error.

In fact L.X. Wang [117] proved the universal approximation theorem for
fuzzy systems from which any real continuous function can be implemented
with bell-shaped Gaussians membership functions (or any square integrable
functions).

This theorem is not in contrast to the solution we propose because the
use of Gaussians membership functions do not guarantee an optimal solution
in terms of the number of sets. On the contrary, the number of triangular
membership functions which are necessary to implement a linear function
without error is optimal for the FRBS we take into account.

This kind of implementation of a linear segment with a fuzzy system
was already used by C.M. Higgins and R.M. Goodman [40] but with a more
complex procedure if the overall method is compared. It has also been used
in computed aided geometric design CADG [29] where the fuzzy curves are
called hat functions.

The method we propose is similar to the one suggested by C.M. Higgins
and R.M. Goodman [40]. The main difference is that we work with only
one input variable every time in order to avoid the required simplification
that C.M. Higgins and R.M. Goodman need after all their fuzzy sets and
consequently all their linguistic rules are stated.

Therefore, we suggest the following procedure:

1. We plot a straight line to join the first and the last point of the fuzzy
curve. In fact these points will fix the boundaries of the universe of
scope and also the extreme fuzzy sets.

2. We choose the farthest point of the fuzzy curve to the linear approxi-
mation in order to be part of the next linearization and to reduce the
current maximum error.

Thus, a straight line joins this point and the next point of the scope
which was considered in the previous linear approximation while an-
other straight line joins the selected point and the previous point of the
scope which was considered in the previous linear approximation.

3. We modify the fuzzy sets in order to implement this linearization with
fuzzy partitions.

4. We repeat the process until assuring the desired precision.
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Finally the fuzzy curve defined with N points fc = {(xi, yi) | i = 1...N}
is piecewised linearized by considering the boundaries of each one of the
segments {(xj, yj) ∈ fc} as

l (xi) =

{
yj − yj−1

xj − xj−1

(xi − xj−1) + yj−1 | xj−1 ≤ xi ≤ xj

}
(3.27)

Example
In the following figure we have an example of the method and also the necessary
fuzzy sets in order to define each linear segment:
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The error may not be a monotonically decreasing sequence but it can
be easily concluded that if the fuzzy curve is defined with N points, the
proposed method will remove the error in N-1 iterations at most because
then the linearization will be defined with N-1 straight lines by joining the
N points and consequently, N fuzzy sets will be considered for the input
variable, one for each point.

Nevertheless, we will fix a certain error different from zero, by using the
desired error parameter, in order to avoid this situation and to stop the
process before. Obviously the lower accepted error the higher number of sets
and also the higher complexity of the model.

The measurement of the error can be computed again in many ways, like
those described in table 3.2, but in this case:

⇒ it is not necessary to optimize any parameter

⇒ there is no reason to penalize those points with a high error more than
with the error itself
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⇒ nevertheless, it is necessary a relative error because the process must
stop when the linearization relative to the fuzzy curve shows a good
approximation

Therefore the error in this step will be defined with equation 3.28

ε =

∑
k |ŷk − yk|∑

k |yk| (3.28)

where yk is the output value of the k-th point of the fuzzy curve and ŷk is
the value of the linear approximation for the same point.

Anyway we also compute the square error and the root mean square
error in order to compare our method with the precision achieved in the
most popular examples found in the literature.

Observe that the solution we propose is based on fuzzy partitions (Ruspini
partitions) in order to guarantee:

• the distinguishability property

• the completeness property

• the coverage of the scope

• the normal property

• the transparency of the model

which are some of the necessary conditions among the intelligibility criteria
that we have analyzed in the previous chapter and thus, we satisfy several
properties of intelligible fuzzy models.

3.4.2 Round-off errors and rounded values

At this point it is interesting to expose the problems which can appear due to
the round-off errors and their solution. We have already explained the need
to work with rounded numbers in the universe of scope but we will require a
similar solution in the axis of ordinate.

That is because computers can not store exact values when dealing with
floating point numbers except for powers of two. The ANSI/IEEE standard
754 suggests that any non-zero number should be computed by using the
form ± (1 + f)×2e where either the mantissa f or the exponent e must have
finite expansions in base two. This finite nature of f brings about round-off
errors because these computed numbers have a limited accuracy while the
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finite nature of e may involve underflow and overflow problems. We must
take into account this problem.

Here some aspects should be considered. The first one refers to the sam-
ples and should be considered before starting the process. It is the machine
epsilon (epsmch) defined as the smallest positive number such that 1+epsmch
is not equal to 1.

Example
When using C library files this parameter can be found in the header file float.h
as a constant called DBL EPSILON. Instead of fixing its value we consider more
properly to compute it with the following simple sequence in order to avoid working
with samples close to it:
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Other problems due to round-off errors can be minimized or even avoided
with a proper program, basically by controlling the loops or the comparisons.
Recall that the potential errors in a loop is much greater than in sequential
code and after computing N arithmetic operations the total round-off error
can be on the order of

√
Nepsmch if the round-off errors come in randomly

up or down.
We have tried to avoid accumulating floating point values through re-

peated addition or subtraction in loops as much as possible. We also have
avoided direct comparisons between numbers and before doing a test for
equality, we have compared the difference of the operands to check them
against a tolerance.

In general these problems can be avoided if working with rounded values.
Moreover, by not being very interested in the exactitude of the models but
in its global intelligibility, rounded values seem to have more benefits than
disadvantages. For example if we must search the point of the linearized fuzzy
curve with the maximum error and two of these points have an error very
similar (equal if they were rounded) and clearly higher than the error of the
rest of points, then it would be plausible to choose both points simultaneously
and not only one of them.

Example
This phenomenon can be better understood with the following example. Suppose
that the proposed method is applied with Matlab to the sine function defined
between 0 and π with 101 equidistant samples. The first four iterations are plotted
in the following figure:
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Observe that in the fourth iteration only the point {1.2252, 0.9409} has been
chosen in order to implement the new segment instead of taking it but also the
point {1.9164, 0.9409} by being apparently at the same distance than the previous
linearization, like the points {0.8796, 0.7705} and {2.2619, 0.7705} were chosen in
the third iteration for the same reason.
This problem is due to the round-off errors. In the example, the distance be-
tween the point {1.2252, 0.9409} or the point {1.9164, 0.9409} and the previous
linearization is apparently the same except for my computer.

For this reason either the input values or the output values must be
rounded and therefore the corresponding axis of abscissa and the axis of
ordinate.

These rounded axes obviously can differ between users. In general the
lower step the more precision but the more complexity and consequently a
less comprehensible model. Thus, every user must define it by averaging the
precision and the understanding.

The fact to work with rounded values can give more than one point with
the same maximum error in some iterations. We suggest considering all of
them for the next linearization except for when these points are successive.
In this case we will only consider the point which really displays the highest
error without being rounded or the mean between those which have the
maximum rounded error.

Figure 3.4 shows this phenomenon where we would choose two points for
the next linearization because both of them have the maximum rounded error
and, as each one of them has more than one value with the same rounded
error, we choose the value with the highest error or their mean.
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Figure 3.4: Effect of the rounded values when linearizing.

Another conclusion related with the use of rounded values is that they
bound the maximum number of sets and consequently also the linear model.

For this reason the process will stop whether the desired error is accom-
plished or if the number of iterations is equal to the minimum between the
number of possible segments and the number of different possible levels of
error due to the rounded values.

Example
This phenomenon can be clearly observed again with the sine function example.
Consider that the x-axis is rounded with a step of π/10 and thus, a maximum of
10 segments can be implemented. Also consider that the y-axis is rounded with
a step of 0.2 and thus, a maximum of 5 different levels of error can be perceived.
In this case the linearization would admit a maximum of 5 segments by being the
minimum between 5 and 10.

3.4.3 Odd fuzzy curves

The odd fuzzy curves require a special treatment because the mid-point of the
linearized fuzzy curve passes through the optimal fuzzy curve and therefore,
the error in this point is always zero. According to the proposed method
this point would never be chosen as the core of a new set because in every
iteration only those points with the highest error are selected.

Nevertheless this point can be very significant when the process is de-
scribed because it defines its symmetry. Furthermore in control systems it
typically defines the desired situation when the target has been accomplished,
i.e. the error is zero.

For these reasons, if an odd fuzzy curve is identified, its mid-point is
chosen at the beginning together with the first and the last points and thus,
we begin with three fuzzy sets instead of only two.
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Example
Observe in the following figure how the odd fuzzy curve never considers its mid-
point:
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Therefore we choose it at the beginning in order to define this situation in the
model:
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This special consideration is necessary to guarantee the natural zero po-
sitioning. Recall that in some problems this is a necessary condition among
the intelligibility criteria that we have analyzed in the previous chapter.
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3.5 Possible output sets

Once defined the input fuzzy sets and consequently after fixing the maximum
number of rules as the product of the number of sets of each variable, it is
only necessary to define the linguistic rules by computing the output set for
each possible rule.

In fact first we will search the possible output sets and later we will cluster
them in order to reduce the number of output sets and thus, to increase the
model’s intelligibility.

This first problem, the search of the possible output sets, is commonly
solved by finding the value which best fits from the set of samples. Here we
can consider the two most popular alternatives, the Wang&Mendel’s method
and the Takagi&Sugeno’s method. In fact both of them have been proved in
our method and any of them could be considered. We will detail both but
nevertheless, later we will justify why we prefer the first one.

3.5.1 Wang&Mendel’s alternative

The first alternative was proposed by L.X. Wang and J.M. Mendel [120] who
designed a simple method to generate a set of ”if ... then ...” rules by working
directly with the input-output data. The method requires the division of the
universe of scope into different regions having membership functions, either
for the input variables or for the output. Then for each possible rule formed
by a combination of input regions they choose the output set closest to the
output value of the sample with the highest implication level. The method
is summarised as follows:

1. First, they assign each sample to the possible rule with the highest
degrees of membership.

2. In order to resolve conflicting rules, i.e. rules with more than one
sample assigned to it whose output values are closest to different output
sets, they compute a degree for each sample as the product of the
degrees of membership, either for the input variables or for the output.
The sample with the highest degree is kept in order to assign the output
set closest to it as the output set of the rule.

3. Finally they generate the combined rulebase comprised both of numer-
ically generated fuzzy rules as described above and linguistic informa-
tion provided by experts.
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Example
Suppose that we must decide which output set among Y1 . . . Y6 must be assigned
to the following rule
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from the following samples:

Sample x1 x2 x3 y
1 0.6 0.4 0.7 0.58
2 0.8 0.6 0.5 0.38
3 0.7 0.2 0.5 0.65
4 0.3 0.0 0.8 0.29
5 0.2 0.7 0.9 0.46
6 0.8 0.2 0.1 0.17
7 0.4 0.2 0.4 0.72
8 0.5 0.7 0.0 0.24

First of all we search the samples that applied to the rule under test show degrees
of membership higher than other rules. In fhis case we will just take into account
the samples with 0.25 ≤ x1 ≤ 0.75, 0.00 ≤ x2 ≤ 0.40 and 0.40 ≤ x3 ≤ 1.00. Thus,
we will only consider the samples number 1, 3, 4 and 7 for the current rule.
Then we search the output set closest to the output value of each one of these
four samples. In this case there are conflicting rules because the sample number 1
and 3 would assign the output set Y3, but the sample number 4 would assign the
output set Y2 and the sample number 7 would assign the output set Y5. Thefefore,
we come to compute the degrees of these four samples as:

Sample 1 → µX1(0.6)× µX2(0.4)× µX3(0.7)× µY4(0.58) =
= 0.80× 0.50× 1.00× 0.90 = 0.36

Sample 3 → µX1(0.7)× µX2(0.2)× µX3(0.5)× µY4(0.65) =
= 0.60× 0.75× 0.75× 0.75 = 0.25

Sample 4 → µX1(0.3)× µX2(0.0)× µX3(0.8)× µY2(0.29) =
= 0.60× 1.00× 1.00× 0.55 = 0.33

Sample 7 → µX1(0.4)× µX2(0.2)× µX3(0.4)× µY5(0.72) =
= 0.80× 0.75× 0.50× 0.60 = 0.18

Thus, the output set applied to the rule must be Y4 by being the output set closest
to the output value of the sample with the highest degree.

As we do not have at this point of the method any division of the uni-
verse of scope of the output variable, we propose a similar version of this
method which basically consists in computing the implication value of each
sample like Wang&Mendel but without considering the bag of output sets.
Furthermore we do not split the samples in different groups because all of
them are considered for each possible rule.
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Example
In the last example, if we compute the T-norms with the product, the following
implication values would be computed for each sample as,

Sample 1 → µX1(0.6)× µX2(0.4)× µX3(0.7) = 0.40
Sample 2 → µX1(0.8)× µX2(0.6)× µX3(0.5) = 0.23
Sample 3 → µX1(0.7)× µX2(0.2)× µX3(0.5) = 0.34
Sample 4 → µX1(0.3)× µX2(0.0)× µX3(0.8) = 0.60
Sample 5 → µX1(0.2)× µX2(0.7)× µX3(0.9) = 0.05
Sample 6 → µX1(0.8)× µX2(0.2)× µX3(0.1) = 0.00
Sample 7 → µX1(0.4)× µX2(0.2)× µX3(0.4) = 0.30
Sample 8 → µX1(0.5)× µX2(0.7)× µX3(0.0) = 0.00

thus, we conclude that the core of a possible output set could be placed at 0.29
by being the output value of the sample with the highest implication level.

Thus, the main difference between the alternative we propose and the
original method defined by Wang&Mendel is that we do not use any prede-
fined bag of output sets because we just need to define where the output sets
may be placed (possible output sets and not the final output sets). Later we
will use clustering techniques and rounded values in order to define the final
output sets and consequently the final rules.

3.5.2 Takagi&Sugeno’s alternative

The second alternative proposed by T. Takagi and M. Sugeno [112, 109, 110]
finds the optimum rules for a fixed membership function configuration. In
spite of diminishing the error, its computational cost is significantly higher
if there are many input partitions, as can be derived from the following
operations [95].

Let us consider K samples of a system F with N inputs (X1, . . . , XN) and
one output (Y) given by K vectors as

(
xk

1, x
k
2, . . . , x

k
N ; yk

)
k = 1, 2, . . . , K

with ~xk ∈ < and yk ∈ <. We are interested in approximating these data
with a fuzzy system of the form:

If x1 is X i1
1 and x2 is X i2

2 and . . . and xN is X iN
N then y is Yi1i2...iN

where X im
m ∈ {X1

m, X2
m, . . . , Xnm

m } with nm being the number of membership
functions of the input m while Yi1i2...iN ∈ < is the numeric consequent of the
rule.

In our approach we compute the T-norm with the product and the de-
fuzzification with the sum-product operator. Thus, the implication value
µi1i2...iN (~x) of the rule with Yi1i2...iN is computed by

µi1i2...iN (~x) =
N∏

m=1

µXim
m

(xm) (3.29)
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where µXim
m

(xm) is the degree of membership of the m component of the
vector ~x related to the linguistic function im.

By using the above notation the fuzzy function can be expressed as fol-
lows:

∼
F

(
~xk; Y

)
=

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(
Yi1i2...iN

N∏
m=1

µXim
m

(
xk

m

)
)

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(
N∏

m=1

µXim
m

(
xk

m

)
) (3.30)

We are interested in finding all the consequents Yi1i2...iN of
∼
F

(
~xk; R

)
in

order to minimize the objective function

O(Y ) =
∑

k

(
F

(
~xk

)− ∼
F

(
~xk; Y

))2

(3.31)

Thus, we come to compute

∂O(Y )

∂Yj1j2...jN

= −2
∑

k

[(
F

(
~xk

)− ∼
F

(
~xk; Y

))
(

∂
∼
F

(
~xk; Y

)

∂Yj1j2...jN

)]
(3.32)

And by introducing the following notation

Si1i2...iN ,j1j2...jN
=

∑

k

N∏
m=1

µXim
m

(
xk

m

)

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(
N∏

m=1

µXim
m

(
xk

m

)
)×

×

N∏
m=1

µXjm
m

(
xk

m

)

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(
N∏

m=1

µXim
m

(
xk

m

)
)

(3.33)

SF,j1j2...jN
=

∑

k

F
(
~xk

) ·

N∏
m=1

µXjm
m

(
xk

m

)

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(
N∏

m=1

µXim
m

(
xk

m

)
) (3.34)
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we obtain the following system of linear equations:

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑

iN=1

(Yi1i2...iN · Si1i2...iN ,j1j2...jN
) = SF,j1j2...jN

(3.35)

where 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, and so on. Therefore, by solving this
system of n1 × n2 × · · · × nN linear equations we obtain the consequents
Yi1i2...iN of all the rules which minimize the square error.

This matrix is always two-dimensional and symmetrical, reason why it
is recommended to be solved with the Cholesky factorisation [93] by being
one of the fastest decomposition available. It constructs a lower triangular
matrix as a particular case of the LU decomposition from which we can solve
the linear system.

Example
We will compare Wang&Mendel and Takagi&Sugeno with this example. Consider
that we are approaching the following function:

y = | sin(x1)ex2 | where x1 ∈ [−π/2, π/2] and x2 ∈ [−3, 0]

with the following 30 samples:

Samples
k x1 x2 y k x1 x2 y

1 -1.0672 -0.9205 +0.3489 16 -1.0819 -1.1376 +0.2830
2 +0.4581 -1.3420 +0.1156 17 +1.1183 -0.2856 +0.6760
3 +1.1636 -1.1244 +0.2983 18 -0.1232 -2.2968 +0.0124
4 +1.0014 -2.9704 +0.0432 19 -0.2758 -1.9944 +0.0371
5 +0.7380 -0.6184 +0.3625 20 -0.6365 -1.1181 +0.1943
6 -1.0492 -1.8967 +0.1301 21 -0.8235 -0.0510 +0.6970
7 -0.2436 -2.4183 +0.0215 22 +0.5181 -2.4036 +0.0448
8 +0.9925 -1.1046 +0.2775 23 -1.1404 -1.8723 +0.1397
9 -0.1549 -0.2052 +0.1257 24 +1.2262 -0.7390 +0.4495
10 -1.5533 -1.8243 +0.1613 25 -0.4835 -0.4658 +0.2917
11 +1.1714 -1.0497 +0.3225 26 -0.9704 -0.8062 +0.3685
12 +1.4668 -1.7998 +0.1644 27 -0.0306 -1.2924 +0.0084
13 -1.5396 -0.7999 +0.4492 28 -0.1340 -1.3537 +0.0345
14 -0.2194 -1.7404 +0.0382 29 +1.2617 -1.0334 +0.3389
15 +0.5885 -0.2401 +0.4366 30 -1.4163 -0.9028 +0.4006

Suppose that we have already divided the universes of scope of both inputs with
the following fuzzy sets
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and we are interested in finding the output singletons for its 3 × 2 = 6 possible
rules.
If we used the Wang&Mendel’s method, we would search, for each possible rule,
the sample with the highest implication value in order to assign its output value
as the output singleton of the rule.
In this case, the rules would have been fixed as follows:
Rule 1 with highest implication value from the 10th sample:

if x1 is close to −π/2 and x2 is close to -3 then y is close to 0.1613
Rule 2 with highest implication value from the 13th sample:

if x1 is close to −π/2 and x2 is close to 0 then y is close to 0.4492
Rule 3 with highest implication value from the 18th sample:

if x1 is close to 0 and x2 is close to -3 then y is close to 0.0124
Rule 4 with highest implication value from the 9th sample:

if x1 is close to 0 and x2 is close to 0 then y is close to 0.1257
Rule 5 with highest implication value from the 4th sample:

if x1 is close to π/2 and x2 is close to -3 then y is close to 0.0432
Rule 6 with highest implication value from the 17th sample:

if x1 is close to π/2 and x2 is close to 0 then y is close to 0.6760
Otherwise if we used the Takagi&Sugeno’s optimal method, we would first prepare
the following system of linear equations,

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6




X11,11 X12,11 X21,11 X22,11 X31,11 X32,11

X11,12 X12,12 X21,12 X22,12 X31,12 X32,12

X11,21 X12,21 X21,21 X22,21 X31,21 X32,21

X11,22 X12,22 X21,22 X22,22 X31,22 X32,22

X11,31 X12,31 X21,31 X22,31 X31,31 X32,31

X11,32 X12,32 X21,32 X22,32 X31,32 X32,32







Y11

Y12

Y21

Y22

Y31

Y32




=




XF,11

XF,12

XF,21

XF,22

XF,31

XF,32




where

Xi1i2,j1j2 =
30∑

k=1

µ (k) in the rule i1i2
6∑

r=1

µ (k) in the r-rule

· µ (k) in the rule j1j2
6∑

r=1

µ (k) in the r-rule

XF,j1j2 =
30∑

k=1

output value of the k-sample · µ (k) in the rule j1j2
6∑

r=1

µ (k) in the r-rule

By computing the different values we have the following system



1.0925 1.1785 0.5385 0.4796 0.0000 0.0000
1.1785 2.2244 0.4796 1.0682 0.0000 0.0000
0.5385 0.4796 2.6104 1.7181 0.5569 0.3888
0.4796 1.0682 1.7181 3.3435 0.3888 1.0182
0.0000 0.0000 0.5569 0.3888 1.1268 0.9485
0.0000 0.0000 0.3888 1.0182 0.9485 2.0750







Y11

Y12

Y21

Y22

Y31

Y32




=




0.7117
1.6627
0.6457
1.9470
0.6520
1.6526




from which we obtain the rules:
Rule 1 with output singleton equal to Y11:

if x1 is close to −π/2 and x2 is close to -3 then y is close to -0.3136
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Rule 2 with output singleton equal to Y12:
if x1 is close to −π/2 and x2 is close to 0 then y is close to 0.8498

Rule 3 with output singleton equal to Y21:
if x1 is close to 0 and x2 is close to -3 then y is close to -0.0338

Rule 4 with output singleton equal to Y22:
if x1 is close to 0 and x2 is close to 0 then y is close to 0.1483

Rule 5 with output singleton equal to Y31:
if x1 is close to π/2 and x2 is close to -3 then y is close to -0.1142

Rule 6 with output singleton equal to Y32:
if x1 is close to π/2 and x2 is close to 0 then y is close to 0.7822

If we compare both methods by considering the results of the last example,
we could observe that

⇒ Obviously Takagi&Sugeno’s optimal solution is better in terms of error
because this is its main objective2.

⇒ Wang&Mendel’s method is clearly faster because it avoids the need to
build the linear system and to solve it3.

⇒ Takagi&Sugeno can fail if the system is badly conditioned4.

⇒ Takagi&Sugeno can give absurd results5.

Therefore, due to these aspects and according to our objectives, we pre-
fer in general the Wang&Mendel’s option rather than the Takagi&Sugeno’s
option.

3.5.3 Removing rules not according to the samples
from the rule matrix

After applying one of the previous alternatives, the Wang&Mendel or the
Takagi&Sugeno, we can also find out those rules to be omitted by not having
any sample directly related to it. This occurs if the implication value of all
the samples applied to a possible rule is zero.

2In this case the RMSETakagi&Sugeno=6.5% while the RMSEWang&Mendel=10.4%.
3In this case the elapsed time with Takagi&Sugeno was only the double than the

Wang&Mendel’s option but it increases significantly basically with the number of input
partitions.

4We must control this phenomenon and if it occurs we change to the Wang&Mendel’s
option.

5Observe how in this example there are output sets placed outside the reasonable limits
of the original function [0,1].
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In this way the rule matrix can be simplified and only the rules suited
with the original set of samples are preserved.

Example
Suppose a system with 2 inputs from which we have already decided the input sets
for a certain set of samples and also the possible output sets. The input values of
the different samples are also plotted over the rule matrix as a shadow:
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Observe how there are two rules without any sample directly related to them and
they may be removed from the rule matrix.
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Thus, there will be only 40 rules instead of the possible 42.

By considering this option we improve the compactness of the fuzzy rules,
which is one of the criteria for a satisfactory intelligibility of the final model.
Anyway recall that then the completeness of fuzzy partitions, another of these
criteria, could be degraded if finally there were no rules related to an input
set. Nevertheless the final model adapts better to the input-output data.
Therefore, we suggest that the users consider this option or not based on the
nature of the problem and their preferences.
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3.6 Clustering the possible output sets

Clustering can be considered as the process of grouping objects which are
similar in some way. A cluster is therefore a collection of objects which
are similar between them and dissimilar to the objects belonging to other
clusters. Thus, we can cluster the possible output values of the fuzzy rules
in order to reduce the number of output sets and consequently the labels of
the output variable.

This is a necessary step if we are interested in satisfying a justifiable
number of labels, which is a necessary condition among the intelligibility
criteria which have been analyzed in the previous chapter.

Clustering methods can be classified as:

• Exclusive clustering: data are grouped in an exclusive way so that each
datum belongs to only one cluster because a clear neighbor is defined
between them. The typical algorithm is K-means.

Despite being very simple it has some disadvantages: the results depend
on some values which in general are chosen randomly and moreover we
often have no way of knowing how many clusters exists. For these
reasons we avoid this method.

• Overlapping clustering: on the contrary this method uses fuzzy sets in
order to cluster the data and thus, each point may belong to more than
one cluster with different degrees of membership.

The most popular algorithm is Fuzzy C-means which will be discussed
later in detail because we consider it a suitable solution.

• Hierarchical clustering: this method is based on the union between
the two nearest clusters at each iteration. The beginning condition is
realized by setting every datum as a cluster and after some iterations
the final number of clusters is reached.

Here we suggest Chiu’s clustering which will be explained later by being
our preferred alternative.

• Probabilistic clustering: the clusters are given by the probabilistic
membership of each datum to possible clusters. A good example is
the mixture of gaussian.

Nevertheless we avoid this method because we seek finite values but not
probabilistic values and moreover its computational cost is in general
higher than the other methods.
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3.6.1 Fuzzy C-means

This method developed by J. C. Dunn in 1973 [24] and improved by J. C.
Bezdek in 1981 [4] is frequently used nowadays in order to find the optimum
C clusters of a given data of length L. It is based on the minimization of the
following objective function

Om =
L∑

i=1

C∑
j=1

µm
ij‖xi − cj‖2 1 ≤ m ≤ ∞ (3.36)

where m is any real number greater than 1, xi is the i-th of N-dimensional
data to cluster, cj is the N-dimensional center of the j-th cluster and µij is
the degree of membership of xi in the cluster j. Fuzzy partition is carried
out through an iterative optimization of the objective function shown above,
with the update of the degrees µij and the cluster centers cj given by

µij =
1

C∑

k=1

(‖xi − cj‖2

‖xi − ck‖2

) 2
m−1

(3.37)

cj =

L∑
i=1

µm
ij · xi

L∑
i=1

µm
ij

(3.38)

The process ends when maxij

{
|µ(k+1)

ij − µ
(k)
ij |

}
< ε where ε is a termination

criterion between 0 and 1.
It must be noticed that an initial matrix with all µij must be randomly

realized at the beginning. Thus, different initializations cause different evo-
lutions which can converge to a different local minimum of the cost function
Om.

We have tested this method in some experiments which will be shown
later with m = 2 and ε equal to the desired error parameter (ε = 1% in this
case) from which we have observed two disadvatages.

The first one is the need of fixing the number of clusters. Here we suggest
a number proportional to the number of the input partitions, for example
the sum of the input sets.

The second problem is the high computational cost if the dimension of
the matrix with µij is very high basically if many rules must be considered.
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3.6.2 Hierarchical clustering: Chiu’s method

Here we present a hierarchical method proposed by S. L. Chiu in 1994 [18]
which was originally developed in order to obtain the initial values for itera-
tive optimization-based clustering methods such as Fuzzy C-means.

Nevertheless we have observed that its performance is in general very
satisfactory and there is no need to combine it with other techniques in
order to obtain representative clusters.

Consider N data points xi |1≤i≤N . We consider each point as a potential
cluster center and define a measure of the potential of each xi as

Pi =
N∑

j=1

e−α‖xi−xj‖2 (3.39)

where α = 4\r2
α being rα a positive constant. The measure of potential for a

data point is a function of its distances to all other data points. Thus, a data
point with many neighboring data points will have a high potential value. In
fact rα is the radius which defines a significant neigborhood.

After the potential of every data point has been computed we choose the
data point with the highest potential as the first cluster center. Let x∗1 be
the location of the first cluster center and P ∗

1 its potential value. We then
revise the potential of each data point xi as

Pi = Pi − P ∗
1 e−β‖xi−x∗1‖2 (3.40)

where β = 4\r2
β being rβ a positive constant. Thus, we substract an amount

of potential from each data point as a function of its distance from the first
cluster center. Those points close to x∗1 will have greatly reduced its potential
and therefore will unlikely be selected as the next cluster centers. Now rβ

defines the reighborhood which will have measurable reductions in potential.
Chiu suggests rβ = 1.5rα but we usually use the same value (rβ = rα).

In fact we prefer rα = rβ = ε (max(x)−min(x)) and α = β = − ln(ε)/ra
2

where ε is the value of the desired error parameter.
Once the potential of all the data points has been revised we choose the

data point with the highest remaining potential as the second cluster center.
We then further reduce the potential of each data point according to their
distance to the last cluster center.

In general, after the k-th cluster center has been obtained, we revise the
potential of each data point as

Pi = Pi − P ∗
k e−β‖xi−x∗k‖2 (3.41)

where x∗k is the location of the k-th cluster and P ∗
k its potential value.
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We stop when P ∗
k < εP ∗

1 where ε is equal to the desired error parameter.

Example
In order to clarify both alternatives we can suppose an example where a set of
twenty possible output sets, obtained with Wang&Mendel’s or Takagi&Sugeno’s
methods, will be clustered in order to improve the model’s intelligibility.
Suppose that these possible output sets are placed at: 0.0099, 0.0153, 0.0579,
0.1389, 0.1987, 0.1988, 0.2026, 0.2028, 0.2722, 0.3529, 0.4186, 0.4451, 0.4660,
0.5252, 0.6038, 0.6721, 0.7468, 0.8132, 0.8462 and 0.9318.
If we consider fuzzy C-means with 6 clusters, first we would generate a 6 × 20
matrix with random values where we could find, for each cluster, the degree of
membership computed in every possible output set. Obviously the sum of the
values of each column must be equal to one.
The following figure shows the first iterations with a certain initial matrix:
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In this case the cluster centers changed as follows:

Iteration 1 → 0.3346 0.4034 0.4054 0.4057 0.4491 0.5005
Iteration 2 → 0.2574 0.3677 0.3784 0.3803 0.4681 0.5862
Iteration 3 → 0.1986 0.3407 0.3661 0.3736 0.4834 0.6748
Iteration 4 → 0.1721 0.3065 0.3533 0.3812 0.4922 0.7394
Iteration 5 → 0.1565 0.2517 0.3496 0.4133 0.5024 0.7840
Iteration 6 → 0.1245 0.2263 0.3483 0.4311 0.5281 0.8092

Otherwise if we considered Chiu’s alternative we should compute the potential P
of each possible point in order to choose as cluster the point with the highest P.
Remember that once we have chosen a cluster then the potentials are computed
again by substracting a magnitude based on its distance to the last cluster.
The first clusters are given as follows based on their potential and ε = 10%:
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Point P1 P2 P3 P4 P5 P6

0.0099 +2.5386 +2.5383 +2.5383 -0.0603 -0.0603 -0.0603
0.0153 +2.6198 +2.6193 +2.6193 +0.0000 -0.0000 -0.0000
0.0579 +2.3319 +2.3106 +2.3106 +0.7092 +0.7092 +0.7092
0.1389 +2.6250 +0.8826 +0.8826 +0.8409 +0.8409 +0.8409
0.1987 +4.6088 -0.0001 -0.0001 -0.0004 -0.0004 -0.0004
0.1988 +4.6089 +0.0000 -0.0000 -0.0003 -0.0003 -0.0003
0.2026 +4.5999 +0.0094 +0.0094 +0.0092 +0.0092 +0.0092
0.2028 +4.5993 +0.0098 +0.0098 +0.0097 +0.0097 +0.0097
0.2722 +2.1881 +1.1161 +1.1152 +1.1152 +1.1152 +1.1152
0.3529 +1.6202 +1.6128 +1.3139 +1.3139 +1.3139 +1.3139
0.4186 +2.7313 +2.7313 +0.2547 +0.2547 +0.2547 +0.2547
0.4451 +2.9932 +2.9932 +0.0000 -0.0000 -0.0000 -0.0000
0.4660 +2.8579 +2.8579 +0.1986 +0.1986 +0.1986 +0.1986
0.5252 +1.8004 +1.8004 +1.2730 +1.2730 +1.2730 +1.2687
0.6038 +1.4804 +1.4804 +1.4771 +1.4771 +1.4771 +1.0535
0.6721 +1.5109 +1.5109 +1.5109 +1.5109 +1.5014 +0.0000
0.7468 +1.5968 +1.5968 +1.5968 +1.5968 +0.9683 +0.6365
0.8132 +2.0736 +2.0736 +2.0736 +2.0736 +0.0000 -0.0069
0.8462 +1.9502 +1.9502 +1.9502 +1.9502 +0.4079 +0.4075
0.9318 +1.1596 +1.1596 +1.1596 +1.1596 +1.1138 +1.1138

The first cluster would be 0.1988 with P=4.6089, the second cluster would be
0.4451 with P=2.9932, the third cluster would be 0.0153 with P=2.6193, the
fourth cluster would be 0.8132 with P=2.0736, the fifth cluster would be 0.6721
with P=1.5014 and the sixth cluster would be 0.3529 with P=1.3139.
As explained before, the Chiu’s cluster selection is compatible with fuzzy C-means
because we could apply first the Chiu’s method in order to define the number
of clusters and also a first fuzzification matrix. In this way the fuzzy C-means
converges faster as can be observed in the following figure:
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Iteration 1 → 0.0304 0.1980 0.3417 0.4630 0.6494 0.8514
Iteration 2 → 0.0288 0.1969 0.3424 0.4616 0.6541 0.8530
Iteration 3 → 0.0284 0.1967 0.3424 0.4613 0.6571 0.8542
Iteration 4 → 0.0284 0.1966 0.3423 0.4614 0.6592 0.8550
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Despite being compatible the use of Chiu’s method with fuzzy C-means,
we usually prefer to compute the possible output sets only with the Chiu’s
alternative and thus, we avoid fuzzy C-means because of its high computa-
tional cost.

Finally it must be noticed that the final output sets will be rounded by
using the method we have explained before in order to improve the intelligi-
bility of the model.

3.7 Criteria to stop the process

The proposed hierarchical process (linarization → input partition → output
sets → model’s rules) goes on until the fuzzy model is enough satisfactory in
terms of the error. Obviously the less error the more partitions and the less
intelligibility. Therefore, we compute different models until the error reaches
the desired error parameter which is fixed at the beginning based on our
subjective trade-off between accuracy and intelligibility.

When we talk about the error we refer to the normalized root mean square
error (NRMSE). This is the empirical standard deviation of the (non mean)
error normalized by the square error of the empirical variance of the model
we are trying to estimate. Thus, the NRMSE is defined as equation 3.42.

NRMSE =

√ ∑
k (ymodel (k)− ymeasured (k))2

∑
k (ymodel (k)−mean (ymeasured))

2 (3.42)

This criterion was defined by D. H. Nash and B. Sutcliffe [81] together
with the modeling efficiency ME = 1 − NRMSE2 in order to evaluate the
performance of a model in a way independent of either the scale factors or
the number of data.

But in fact we take into account two criteria in order to decide if the
process should finish. The first is the logical fact that the overall model
reaches an error equal or lower than the desired error parameter. The second
is the fact that all the fuzzy curves have an error equal or lower than the
desired error parameter because then we can not increase the number of
partitions by having obtained a satisfactory linearization in every fuzzy curve.
We stop the process when any of both alternatives happens.

Anyway, it could occur that the best model in terms of either the error
or the intelligibility might have been reached before the last iteration. Recall
that the error may not be a monotonically decreasing sequence. Therefore,
when the process stops, we always give as result the model with the lowest
error, even if it had been obtained before the last iteration. Moreover its
intelligibility must be in general better by having less partitions.
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3.8 Summary

In this chapter we have detailed the method we propose in order to obtain
an intelligible fuzzy model from a set of input-output data.

We have explained the basic steps: the computation of the optimal fuzzy
curves for each possible input, the input partition, the choice of the possi-
ble output values and the clustering solution in order to assure intelligible
models. Several alternatives were considered in some steps which have been
compared in order to offer criteria when applying the method.

We have also explained some aspects which are very important if we seek
intelligible models, like the proper use of rounded numbers or the special
consideration of the odd fuzzy curves.

Furthermore, we have chosed the different solutions by considering not
only the computational cost, but the necessary criteria to satisfy the intelli-
gible models explained in the previous chapter.

One should take into account that some aspects related to the search of an
efficient computation have not been explained in order to avoid the dispersion
of the explanations. For example, we have not mentioned that the points of
the linearized fuzzy curve are only computed between the boundaries of the
segment having the maximum error because the rest of points do not change
their value and are already stored in memory. Anyway, this and other aspects
can be found in the appendix where the whole algorithm is provided.
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