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Abstract 
 

In this PhD thesis, various structural engineering strategies are applied to develop 

innovative templates based on nanoporous anodic alumina. These templates are then 

used to develop other nanostructures based on such multi-purpose materials as 

polymers, magnetic metals and semiconductors. These replicated nanostructures can 

be integrated in various types of nanodevices (e.g. nanoelectrodes for direct deposition 

of nanoparticles from a gas draught, bulk-heterojunction solar cells, one-dimensional 

optoelectronic devices, nanofilters and so on).   

 

As a starting point, the methods for fabricating nanoporous anodic alumina templates 

are presented.  

 

First four typical self-ordered nanoporous anodic alumina templates are fabricated 

using the two-step anodization process under mild anodization conditions. The acids 

used for fabricating these nanoporous anodic alumina templates are sulphuric (H2SO4), 

oxalic (H2C2O4) and phosphoric (H3PO4). Second, self-ordered nanoporous anodic 

alumina templates are fabricated following the one-step anodization process under 

hard conditions. Third, the two-step anodization technique is used under hard 

conditions to develop nanoporous anodic alumina templates without a protective layer, 

which is characteristic of the typical one-step anodization process. Fourth, following a 

re-anodization technique under galvanostatic conditions, the aluminium oxide barrier 

layer located at the pore bottom tips of these templates is removed without removing 

the aluminium substrate or detaching the nanoporous anodic alumina template. Fifth, 

by means of an asymmetric two-step anodization process in which the anodization 

conditions are modified (i.e. anodization voltage, type and concentration of the acid 

electrolyte), hierarchical nanoporous anodic alumina templates with multiple 

configurations are fabricated.  
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 II

Sixth, bilayered nanoporous anodic alumina templates are produced by combining mild 

and hard anodization regimes. Seventh, a silicon nitride master stamp is used to 

fabricate perfectly ordered nanoporous anodic alumina templates by means of the 

nanoimprint technique and direct anodization. Furthermore, by nanoimprinting and 

applying suitable anodization conditions, perfectly ordered nanoporous anodic alumina 

templates with extraordinary pore arrangement can be generated. Finally, high aspect 

ratio nanoporous anodic alumina funnels are fabricated by intercalating consecutive 

anodizing and pore widening steps. These nanostructures have extremely accurate 

geometric characteristics as a result of two systematic calibration processes. In 

addition, a theoretical model for the pore growth during the anodization process is 

developed and experimentally validated.  

 

Subsequently, some nanostructures replicated from the templates based on 

nanoporous anodic alumina are discussed. 

 

First, arrays of magnetic nanopillars on aluminium substrates are synthesized by DC 

electrochemical deposition and characterized by environmental scanning electron 

microscopy (ESEM), energy dispersive X-ray spectroscopy (EDXS) and micro-X-ray 

diffraction (μ-XRD) measurements. Because of their magnetic properties, these 

nanopillars arrays can be used as nanoelectrodes for the direct deposition of 

nanoparticles from a gas draught or as electrostatic precipitators. Second, quasi-

ordered P3HT nanopillar-nanocap structures of controlled size are fabricated by using 

hierarchical nanoporous anodic alumina as a template. Furthermore, high-density 

nanopillar arrays of the same polymer are transferred onto ITO/glass substrates. The 

resulting nanostructure is characterized by ESEM, transmission electron microscopy 

(TEM), thermogravimetry (TGA), μ-XRD and current-sensing atomic force microscopy 

(CS-AFM). It is confirmed that such polymeric nanostructures can be used to develop 

high-efficient bulk-heterojunction organic solar cells.  
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Third, mosaic arrays of nickel nanowires and nanotubes are successfully fabricated by 

using bilayered nanoporous anodic alumina templates. The resulting nanostructures 

are used to make a systematic study of how the main anodization parameters influence 

pore re-arrangement during the change from mild to hard anodization. These arrays of 

magnetic nanostructures could be used in new data storage platforms. Finally, linear 

silica nanosphere chains with helical alignments are fabricated by vacuum infiltration 

through nanoporous anodic alumina funnels. These nanostructures can be integrated 

in one-dimensional nano-optical devices. 

 

The presented results are expected to be the starting point for the development of new 

nanodevices and applications in a wide range of research fields. 
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Figure 3.11     Schematic slanted section views describing the two-step anodization 

process under hard conditions. a) Annealed and electropolished 

aluminium substrate. b) PD-NAATs with a protective layer on the top 

and ordered pores on the bottom with the interpore distance for the 

hard anodization voltage. c) Patterned Al substrate after removing the 

oxide film. d) PD-NAAT with straight and ordered pores. (Page 65) 

Figure 3.12     Set of ESEM images of PD-NAATs fabricated by two-step anodization 

process under hard conditions. a) Top view of a burnt NAAT (rests of 

fused alumina and branched pores are denoted by yellow and red 

arrows, respectively). b) Branched pores on the top of a NAAT. c) Top 

view of the resulting NAAT fabricated under suitable conditions at 140 

V by the two-step anodization. d) Cross-section view of the same 

NAAT (pores are straight and well-defined). (Page 67) 

Figure 3.13     Current density and voltage-time (J-t and V-t) transients for a PD-NAAT 

fabricated by the two-step anodization process under hard conditions 

with H2C2O4     0.3 M at 120 V and the re-anodization process under 

galvanostatic conditions to remove the oxide barrier layer from the pore 

bottom tips. Each different background indicates each of the four 

stages of the process (yellow-1st anodization step, white-removing the 

alumina layer, orange-2nd anodization step and red-3rd re-anodization 

step). (Page 70) 
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Figure 3.14     Schematic slanted and cross-section views describing the re-

anodization process for removing the oxide barrier layer from the pore 

bottom tips of NAATs fabricated by the two-step anodization process 

under hard conditions. Magnified views of the pore bottom tips after 

each step of the re-anodization process are shown in red circles. In this 

case, it is represented a virtual re-anodization process of 3 steps. 

(Page 72) 

Figure 3.15     Set of ESEM images of a NAAT fabricated by the two-step anodization 

process under hard conditions before and after the re-anodization 

process. a) General cross-section view before the re-anodization 

process. b) Magnified view of the yellow square in (a). c) Cross-section 

view after the re-anodization process. d) Slanted cross-fracture after 

the re-anodization process (yellow arrowheads indicate the aluminium 

substrate inside the opened pores). (Page 73) 

Figure 3.16     Schematic cross-section and top views describing the asymmetric two-

step anodization process for fabricating HNAATs. a) First step of the 

anodization process under conditions (a). b) Pattern on the aluminium 

substrate surface after removing the oxide film by wet chemical 

etching. c) Second step of the anodization process under conditions 

(b). Magnified views of the cross-section (red circle in (c)) and top 

(orange circle in (c)) of the resulting HNAAT. (Page 75) 

Figure 3.17     Set of ESEM images of the different types of HNAATs fabricated by the 

asymmetric two-step anodization process. a) Top view of the 

corresponding HNAAT. b) Bottom view of the corresponding HNAAT 

after removing the Al substrate by wet chemical etching. (Page 79) 
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Figure 3.18     Pore density-voltage ratio (ρp/conc-RV2/V1) relationship for samples from 

S1 to S8 (filled black circles). The red solid curve represents the 

potential fit of the experimental data. (Page 81) 

Figure 3.19     Set of AFM and ESEM images of different types of HNAATs fabricated 

by the asymmetric two-step anodization process. a) AFM top view of 

the resulting HNAAT obtained under conditions S6. b) Magnified view 

of the blue square in (a). c) Cross-section profile of the same HNAAT 

corresponding to the white line in (b). d) ESEM cross-section view of 

the resulting HNAAT obtained under conditions S5. (Page 82) 

Figure 3.20     Current density-time (J-t) transients corresponding to the second 

anodization step for the samples S6, S7, S8 and the symmetric 

process with H2SO4  0.3 M at 18 V (Sy). a) J-t transients for the first 

1800 s. b) J-t transients for the first   400 s in (a). c) Time values (tmin) 

(solid red line and circles-left scale) and current density values (Jmin) 

(solid black line and stars-right scale) corresponding to the minima of 

the current density curves in (a) as a function of the corresponding 

interconcavity distance (dinterconc). (Page 85) 

Figure 3.21     Schematic cross-section view describing how pores nucleate and grow 

inside the concavities of the HNAAT but some of them close to the 

outer hexagonal lattice vanish (V) or merge (M) by the self-ordering 

mechanism. (Page 86) 

Figure 3.22     Set of ESEM images of the HNAATs fabricated under conditions S9 

and S10 by the asymmetric two-step anodization process. a) Top view 

of sample S9 at    0.2 M and b) 0.1 M. c) Top view of sample S10 at 0.1 

M and b) 0.015 M. The red circles indicate concavities with more than 

one pore. (Page 87) 
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Figure 3.23  Set of ESEM images at two different magnifications of the HNAATs 

fabricated under conditions S9 and S10 by the asymmetric two-step 

anodization process. a) Top view of sample S9. b) Magnified view of 

the red square in (a). c) Top view of sample S10. d) Magnified view of 

the red square in (c). (Page 88) 

Figure 3.24     Template thickness (τ) as a function of the total current charge (Q) for 

each of the anodization voltages (i.e. 40, 80, 110 and 140 V) together 

with their corresponding linear fittings (equations are shown in Table 

3.4). (Page 90) 

Figure 3.25 Set of ESEM images of the top, bottom and cross-section views of the 

different types of BNAATs together with a cross-section schematic view 

describing the general structure of these BNAATs. (Page 94)   

Figure 3.26 Set of graphics of ρp(HA) as a function of the main anodization 

parameters Rv and VHA. a) Average values of ρp(HA) as a function of Rv 

for each value of VHA. b) Average values of ρp(HA) as a function of VHA 

for each value of Rv. c) 2D contour plot of ρp(HA) as a function of Rv 

and VHA. d) 3D representation of ρp(HA) as a function of Rv and VHA. 

(Page 100)      

Figure 3.27 Schematic slanted section views describing the one-step anodization 

process for fabricating MD-NAATs by nanoimprinting. a) The Si3N4 

master stamp is pressed onto the annealed and electropolished 

aluminium substrate. b) The Si3N4 master stamp pattern is transferred 

to the Al substrate surface. c) Resulting MD-NAAT after direct 

anodization under suitable conditions. (Page 102) 
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Figure 3.28 Set of ESEM images corresponding to the different stages of the 

nanoimprint process. a) Cross-section view of the Si3N4 master stamp. 

b) Top view of the Si3N4 master stamp. c) Annealed and 

electropolished aluminium substrate after transferring the pattern from 

the Si3N4 master stamp by pressing at 20 kN·cm-2. d) Resulting MD-

NAAT after direct anodization at 93 V. (Page 103)     

Figure 3.29 Schematic top view of a MD-NAAT with extraordinary interpore 

distance fabricated by nanoimprinting. Each new pore (blue circles) 

grows guided by three imprinted pores (gray circles) since the 

concentric electric field around each imprinted pore (green dotted 

circles) prevents from the generation of disordered pores inside the 

pore lattice. (Page 105) 

Figure 3.30 Set of ESEM images of two types of MD-NAATs fabricated by 

nanoimprinting. a) With ordinary interpore distance of 235 nm at 93 V 

(blue circle indicates a virtual guided pore generated under suitable 

anodization conditions). b) With extraordinary interpore distance of 203 

nm at 81 V (red circle denotes a guided pore generated inside the pore 

lattice of three imprinted pores). (Page 106)     

Figure 3.31 Schematic cross-section view of the fabrication process of nickel 

master stamps from PD-NAATs. a) Resulting PD-NAAT after the two-

step anodization process. b) PD-NAAT after dissolving selectively the 

remaining Al substrate. c) Thin layer of Ni sputtered on the bottom of 

the PD-NAAT. d) Growth of the Ni layer by electrodeposition. e) 

Resulting Ni master stamp after removing the PD-NAAT. (Page 107) 
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Figure 3.32 Replicated nickel master stamps from the bottom of two types of PD-

NAATs. a) Pore lattice of 100 nm with H2C2O4 at 40 V. b) Pore lattice of 

500 nm with H3PO4 at 195 V. (Page 107) 

Figure 3.33 Schematic cross-section diagram describing the selective pore opening 

process in MD-NAATs with extraordinary pore arrangement. 

(Page 108) 

Figure 3.34 Experimental relationships between the fabrication parameters (i.e. 

total current charge (Q), anodization time length (t) and pore widening 

time (tpw)) and the geometric characteristics (i.e. pore length (LP) and 

diameter (dP)) obtained from the calibration processes). a) Total current 

charge (black solid line is numerical simulation and black solid stars 

are experimental values) and pore length (light gray solid line is 

numerical simulation and light gray solid circles are experimental 

values) versus anodization time. b) Pore length versus total current 

charge. c) Pore diameter versus pore widening time. (Page 120)     

Figure 3.35 Set of ESEM images of cross-section view of the fabricated types of 

NAAFs together with magnified views of the junctions between 

consecutive segments (yellow rectangles in (a), (b), (c) and (d)) and a 

sketch of the NAAF structure. a) NF-I. b) NF-II. c) NF-III. d) NF-IV. 

(Page 122)     

Figure 3.36 Current density (J-light gray solid line-left scale) and total current 

charge (Q-black solid line-right scale) transients throughout the 

anodization process for the types of NAAFs fabricated. a) NF-I. b) NF-

II. c) NF-III. d) NF-IV. (Page 124) 
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Chapter 4 

Figure 4.1 Current and voltage-time (I-t and V-t) transients for the 

electrodeposition processes under controlled potential conditions. The 

different sections of the current transient are separated by red solid 

lines. a) For Co-NPs at -3 V. b) For Ni-NPs at -5 V. (Page 133) 

Figure 4.2 Schematic slanted views describing the electrodeposition process 

using a PD-NAAT without oxide barrier layer fabricated by the two-step 

anodization process under hard conditions. a) PD-NAAT without oxide 

barrier layer. b) A thin layer of metal is deposited at the pore bottoms. 

c) Fast growth of metallic nanopillar arrays inside the template. d) The 

template is entirely filled with metal. e) Metal film growth on the 

template surface. f) Resulting metallic nanopillar arrays after removing 

the template when the process is stopped at (d). (Page 134) 

Figure 4.3 Set of ESEM images of the fabricated metallic nanopillar arrays. a) 

Cross-section view of the Co-NPs after removing the template. b) 

Cross-section view of the Ni-NPs after removing the template. c) 

Magnified bottom view of Co-NPs. d) Magnified bottom view of Ni-NPs. 

e) Magnified top view of Co-NPs. f) Magnified top view of Ni-NPs. 

(Page 136) 

Figure 4.4 Elemental qualitative analysis of Co-NPs and Ni-NPs by energy 

dispersive X-ray spectroscopy (EDXS). a) Spectrum and weight 

percentage (inset) of the elements present in Co-NPs. b) Spectrum and 

weight percentage (inset) of the elements present in Ni-NPs. 

(Page 137) 

Figure 4.5 X-ray diffraction patterns of Co-NPs (a) and Ni-NPs (b). (Page 138) 
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Figure 4.6 Schematic slanted section views describing the fabrication process of 

P3HT nanopillars on a substrate of P3HT quasi-hexagonally arranged 

nanocaps. a) 1st anodization step. b) Removing the Al2O3 film by wet 

chemical etching. c) 2nd anodization step under asymmetric conditions. 

d) P3HT spin-coated HNAAT. e) P3HT infiltration by melt-assisted 

wetting. f) Removing of the remaining Al substrate and the HNAAT by 

wet chemical etching processes. (Page 142) 

Figure 4.7 Current density and voltage-time (J-t and V-t) transients for the 

fabrication process of the HNAAT under asymmetric conditions. Point 

A indicates nanocaps formation and B when nanopillars reach a 

suitable depth. (Page 144) 

Figure 4.8 Set of ESEM images of the resulting P3HT nanostructure. a) Top view 

of the P3HT nanocap arrays substrate. b) Tilted (45º) top view of the 

P3HT nanocap arrays substrate. c) Top view of the P3HT nanopillar 

arrays. d) Tilted (45º) top view of the P3HT nanopillar arrays. 

(Page 145) 

Figure 4.9 Slanted cross-section view diagram describing the fabrication process 

of the high-density arrays of semiconducting Poly(3-hexylthiophene) 

nanopillars on ITO/glass substrates. a) NAAT template on aluminium 

substrate once the second step of the anodization process has finished 

(ordered pores). b) P3HT spin-coated NAAT.  c) P3HT-covered NAAT 

pressed and fixed to an ITO/glass substrate. d) NAAT infiltrated with 

P3HT after heating and annealing treatment. e) Arrays of 

semiconducting P3HT nanopillars on ITO/glass substrate after 

removing the remaining Al substrate and the NAAT. (Page 151) 
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Figure 4.10 Set of ESEM images of a NAAT. a) Top view of a NAAT. b) Cross-

section view of the same NAAT. (Page 153)   

Figure 4.11 Current density and voltage-time (J-t and V-t) transients for the 

fabrication process of a NAAT. (Page 155)   

Figure 4.12 Thermogravimetry curve of normalized mass (W, black line-left scale) 

and derivative thermogravimetry curve (dW, red line-right scale) of a 

P3HT sample. The blue circles indicate the main decomposition 

temperatures (i.e. 314, 473 and 549ºC). (Page 156) 

Figure 4.13 Set of cross-sectional TEM and ESEM images. a) TEM image of cross-

section view of a P3HT nanostructured film after microtoming. b) ESEM 

image of cross-section view of the same P3HT nanostructured film 

without removing the Al substrate and the NAAT. c) Magnified view of 

the red square in (b). (Page 157) 

Figure 4.14 Definition of the geometric characteristics for the NAAT and the 

replicated P3HT nanostructure. a) Cross-section view of the NAAT. b) 

Top view of the NAAT. c) Cross-section view of the P3HT 

nanostructure. d) Top view of the P3HT nanostructure. (Page 159) 

Figure 4.15 Set of ESEM images of the high-density arrays of semiconducting 

P3HT nanopillars on ITO/glass substrates. a) Top view. b) Magnified 

view of the red square in (a). c)  Cross-section view of the same 

sample after fracturing the ITO/glass substrate. d) Magnified view of 

the red square in (c). (Page 160)   

Figure 4.16 J-V characteristics of P3HT film and nanopillars by CS-AFM. a) J-V 

curves of P3HT nanopillars (light grey solid line) and P3HT film (black 

solid line). b) Scheme of CS-AFM measurements for P3HT nanopillars 

and P3HT film. (Page 162)       
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Figure 4.17 Topography and current mappings of P3HT nanopillars and P3HT film 

by CS-AFM images. a) AFM topography for P3HT nanopillars. b) AFM 

topography for P3HT film. c) AFM current mapping for P3HT 

nanopillars and d) P3HT film. e) AFM topography (black solid line-left 

scale) and current (red solid line-right scale) profiles corresponding to 

the blue line in (a) and (c), respectively. f) AFM topography (black solid 

line-left scale) and current (red solid line-right scale) profiles 

corresponding to the blue line in (b) and (d), respectively. (Page 163)    

Figure 4.18 Cross-section view diagram for a) P3HT film and b) nanopillars and 

their equivalent electric circuits. (Page 167) 

Figure 4.19 P3HT chains alignment by nanoconfinement. a) µ-X-ray diffraction 

analysis of P3HT film and nanopillars. b) Scheme showing how the 

P3HT chains are randomly arranged inside the film bulk. c) Scheme 

showing the arrangement of the P3HT chains inside the nanopillars 

after the NAATs infiltration. (Page 170)      

Figure 4.20 Set of ESEM images of a BNAAT fabricated under conditions S2.0-140 

(Table 3.5). a) HA bottom view of the BNAAT after applying a reactive 

ion etching process (open pores). b) MA top view of the BNAAT. c) 

Cross-section view of the BNAAT. d) Magnified view of the red 

rectangle in (c) (V denotes vanished pores, M identifies these pores 

that merge and C these pores that continue after the voltage change 

(transition layer)). (Page 174) 
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Figure 4.21 Cross-section view scheme showing the fabrication process of mosaic 

arrays of Ni-Nws and Ni-Ntbs. a) As-produced BNAAT. b) Removing 

the remaining Al substrate by wet chemical etching. c) Pore opening 

process of the HA side by reactive ion etching. d) Formation of copper 

contact by electrodeposition on the MA side. e) Nickel 

electrodeposition (fabrication of Ni-Nws). f) Removing the Cu contact 

by mechanical polishing. g) Atomic layer deposition (fabrication of Ni-

Ntbs). (Page 175) 

Figure 4.22 Identification of different layers in a BNAAT by the electrodeposition 

transient. a) Current and voltage-time (I-t and V-t) transients of an 

entirely filled BNAAT by Ni electrodeposition under galvanostatic 

conditions. b) Schematic cross-section view showing the different 

layers of the BNAAT. (Page 178) 

Figure 4.23 Set of ESEM images of the MA side of each type of BNAAT after Ni 

electrodeposition, mechanical polishing, cleaning and pore widening. 

(Page 180)  

Figure 4.24 Schematic diagram showing the image analysis process carried out to 

estimate NFP/NEP. (Page 181) 

Figure 4.25 Set of graphics of NFP/NEP as a function of the main anodization 

parameters (i.e. Rv and VHA). a) Average values of NFP/NEP as a 

function of Rv for each value of VHA. b) Average values of NFP/NEP as a 

function of VHA for each value of Rv. c) 2D contour plot of NFP/NEP as a 

function of Rv and VHA. d) 3D representation of NFP/NEP as a function of 

Rv and VHA. (Page 186)       
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Figure 4.26 Current density and voltage-time transients (i.e. J-t and V-t) for the 

fabricated BNAATs. a) S0.5-80, S1.0-80 and S2.0-80. b) S0.5-110, S1.0-110 and 

S2.0-110. c) S0.5-140, S1.0-140 and S2.0-140. d) Magnified view of (a). e) 

Magnified view of (b). f) Magnified view of (c). (Page 187) 

Figure 4.27 Schematic cross-section view of a BNAAT showing the three possible 

pore rearrangements that take place during the anodization regimen 

change. a) ρp(HA)/ρFP(MA) < 1 case i. b) ρp(HA)/ρFP(MA) = 1 case ii. c) 

ρp(HA)/ρFP(MA) > 1 case iii. (Page 190) 

Figure 4.28 ESEM top view of a virtual mosaic array of nickel nanowires and 

nanotubes using a BNAAT. Ni-Nws are denoted by light green light 

solid circles and Ni-Ntbs by green empty circles. (Page 193) 

Figure 4.29 Silica nanospheres provided by Dr. Luís M. Liz-Marzán’s group. a) 

Schematic cross-section view of a silica nanosphere. b) TEM image 

analysis of silica nanospheres. c) Particle diameter distribution 

obtained from TEM image analysis. (Page 196)    

Figure 4.30 Pore widening calibration process for samples fabricated by the two-

step hard anodization process with H2C2O4 at 140 V. a) Experimental 

relationship between pore diameter (dp) and pore widening time (tpw). b) 

Set of ESEM images of the top view of samples at different lengths of 

pore widening time. c) Gaussian fits and pore diameter distributions of 

the different samples used in the calibration process. (Page 198)   

Figure 4.31 Set of ESEM images of the NAAF used to fabricate the Si nanosphere 

chains. a) Top view. b) Bottom view after detachment and pore 

opening. c) Cross-section view. d) Magnified view of the red square in 

(c). (Page 200)          
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Figure 4.32 Experimental set-up used to carry out the infiltration of the NAAF with 

Si nanospheres. a) General view of the experimental set-up. b) Sample 

holder. c) Magnified view of the sample holder cover. d) Magnified view 

of the sample holder base. (Page 201) 

Figure 4.33 Set of ESEM images of the resulting silica nanosphere chains. a) Silica 

nanosphere chains on the polyamide filter after filtrating and cleaning. 

b) Magnified view of the red square in (a). (Page 202)   

Figure 4.34 Virtual configurations of Si nanosphere chains using different types of 

NAAFs. a) Two-segments with one and two Si nanospheres. b) Two 

segments with one and three Si nanospheres. c) Three segments with 

one, two and three Si nanospheres. (Page 202)          
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Table 4.5 Parameters and their values used to calculate the contact area for the 

P3HT film and the P3HT nanopillars. (Page 166)      

Table 4.6 Parameters and their values used to calculate the electric resistivity 

and the electric conductivity for the P3HT film and the P3HT 

nanopillars. (Page 169) 

Table 4.7 Complete set of the NFP/NEP measurements for each of the fabricated 

BNAATs. (Page 182) 

Table 4.8 Average values and standard deviations of the number of filled pores 

(NFP), empty pores (NEP) and their ratio (NFP/NEP) for the fabricated 

BNAATs. (Page 183) 

Table 4.9 ANOVA table for the 32-factorial design corresponding to table 4.7. 

(Page 184) 
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Table 4.10 Comparison between the pore density values calculated from the HA 

side (i.e. ρp(HA) in Table 3.6) and the filled pore density values 

obtained after dividing the number of filled pores in the MA side by the 

area analyzed (i.e. ρFP(MA) = NFP/Area). (Page 191)  
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1.1. Objectives and structure of this PhD thesis        

The objectives of this PhD thesis are the following: 

i) To improve and develop the experimental set-up and the control system used to 

fabricate nanoporous anodic alumina templates.  

ii) To fabricate nanoporous anodic alumina templates with typical nanostructures 

by two-step anodization (mild anodization) and one-step anodization (hard 

anodization). 

iii) To fabricate innovative nanoporous anodic alumina templates using several 

anodization strategies. 

iv) To functionalize these nanoporous templates and characterize the resulting 

nanostructures. 

 

The structure of this PhD thesis is as follows: Chapter 1 discusses the historical 

development and the state of the art of nanoporous anodic alumina. It also provides 

a detailed electrochemical description of the aluminium anodization process. 

Chapter 2 describes the development of the experimental set-up used to fabricate 

nanoporous anodic alumina templates (i.e. electrochemical cell) and to pre-treat 

commercial aluminium substrates. Chapter 3 deals with both the typical and 

innovative structures based on nanoporous anodic alumina resulting from different 

anodization strategies. Chapter 4 focuses on the functionalization, characterization 

and applications of the nanostructures derived from these nanoporous anodic 

alumina templates with typical and innovative structures. Chapter 5 summarizes 

and presents the conclusions obtained in the course of this PhD dissertation. 
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1.2. Origins of nanoporous anodic alumina        

The earliest studies that reports on nanoporous anodic alumina (NAA) date back to the 

first decades of the 20th century and mainly focus on protective and decorative 

purposes. Numerous patents were taken out over the years. In 1923, Bengough and 

Stuart patented an electrochemical method for protecting aluminium (Al) foil and its 

alloys from corrosion [1]. Carboni discovered a colouring method for Al foils in 1936, 

which combined sequential anodization and alternating current using an acid solution 

and a metal salt solution as electrolytes, respectively [2].  

 

In 1953, Keller characterized the nanoporous anodic alumina structure for the first time 

by electron microscopy. In his work, he describes the NAA structure as hexagonally 

arranged arrays of nanometric pores, in which the interpore distance (i.e. the distance 

between the centres of adjacent pores) is directly proportional to the anodization 

voltage [3]. This work became the base for subsequent studies on the chemical and 

physical properties of NAA. In this regard, the first theoretical models about the 

formation mechanisms of both barrier and porous types of aluminium oxide (Al2O3) 

were developed by Diggle in 1968 [4]. Subsequently, Thompson and Wood made good 

use of new characterization techniques such as microtome sectioning and transmission 

electron microscopy to provide a better understanding of the growth mechanism of 

NAA, anion incorporation and water content in the NAA structure [5-9].  

 

Numerous theoretical models about pore nucleation and growth in NAA have been put 

forward [10-18], but the actual mechanism of NAA growth has yet to be completely 

clarified. The scientific community agrees that pore nucleation starts to take place in 

the oxide thin film formed on the aluminium surface at the beginning of the anodization 

process (Figure 1.1 a). Instabilities in the electric field across the oxide thin film 

generate electric field concentrations at certain sites on the oxide film surface            
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(i.e. irregularities). At these sites, which act as nucleating centres, the electric field is 

stronger, ionic conduction is enhanced and local temperature is increased by the Joule 

effect (Figure 1.1 b). So, oxide is preferentially dissolved and pores are generated 

through the oxide film surface, growing from these nucleating centres (Figure 1.1 c). 

Once pores have nucleated, they grow until they achieve a steady state of growth, at 

which point the flux of ionic species through the oxide barrier layer is in equilibrium 

(Figures 1.1 d and e). This mechanism is generally accepted and resembles the 

mechanism of other porous materials obtained by anodization (e.g. microporous 

silicon).  

 

The discovery of the two-step anodization process in 1995 [19] and the nanoimprint 

process two years later [20] by Masuda and Fukuda, are two turning points in the 

history of NAA. These fabrication processes are relatively inexpensive ways of 

fabricating polydomain and monodomain nanoporous structures based on aluminium 

oxide. The pore size distribution of these types of NAA is extremely narrow and can be 

fabricated with a high aspect ratio (i.e. pore length / pore diameter). This fact opened a 

new window on the fabrication of a new generation of nanostructures.    

 

From the functionalization point of view, nanoporous anodic alumina templates 

(NAATs) are a promising way of fabricating a wide range of nanostructures. The main 

reasons for this are that NAATs can be fabricated in a cost-effective way and the 

hexagonal pore arrangement can be easily transferred to other materials. A wide 

variety of nanostructures based on multiple materials has been fabricated from 

nanoporous anodic alumina templates. The most characteristic examples are 

nanodots, antinanodots (holes), nanorods, nanowires, nanotubes, nanomembranes 

and photonic crystals based on metals, oxides, semiconductors, polymers, carbon, 

diamond, biomaterials, etc [21-135].  
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Owing to the physical, mechanical and chemical properties of NAATs, the number of 

functionalization techniques that can be used to functionalize NAATs is rather large. 

Some examples are evaporation deposition, electrochemical deposition, electroless 

deposition, thermal decomposition, physical vapour deposition, vacuum infiltration, 

radiofrequency magnetron sputtering deposition, catalyzed epitaxial crystal growth, sol-

gel synthesis, atomic layer deposition, dry etching, plasma etching, ion milling etching, 

reactive ion etching, molecular beam epitaxy, metal-organic chemical vapour 

deposition, vapour-liquid-solid growth, low-pressure chemical vapour deposition, the 

melt-assisted template method, simple wetting, chemical vapour deposition 

polymerization, electropolymerization and so forth. 

 

The work of many other groups has been published in recent years and has made an 

extraordinary contribution to the development of nanoporous anodic alumina 

technology and its applications. This work will be mentioned throughout this PhD 

thesis. 
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1.3. State of the art 

1.3.1. Electrochemistry of the aluminium anodization process 

In terms of thermodynamics, when certain metals or semimetals such as tantalum (Ta), 

zirconium (Zr) and aluminium (Al) are exposed to the oxygen (O2) present in air 

environment (Eq. 1.1) or liquid water (Eq. 1.2), they react spontaneously and a thin film 

of the corresponding metal oxide is formed. In the case of aluminium, this phenomenon 

is thermodynamically favoured by the large negative Gibb’s free energy change [136]. 

 

1·1582 −−=Δ→+ molKjG     (s)OAl(g)O
2
32Al(s) 0

322                                                     (1.1) 

1·8713 −−=Δ+→+ molKjG    (g)3H (s)OAlO(l)H2Al(s) 0
2322                                         (1.2) 

 

From the electrochemical point of view, the aluminium anodization process for 

fabricating NAA is usually carried out using an electrolyte consisting of an aqueous 

solution of sulphuric, oxalic or phosphoric acid, in which both the anode (i.e. aluminium 

foil) and the cathode (i.e. platinum wire (Pt)) are partially immersed. When the 

anodization voltage is applied between the anode and cathode, pores nucleate and 

start to grow on the Al surface. The growth mechanism in steady state is the result of 

competing oxidation (i.e. formation of oxide) and dissolution (i.e. dissolution of oxide) 

through the anodization process. First, aluminium oxide grows at the aluminium-

alumina interface and within the oxide barrier layer because of the countermigration of 

ionic species (i.e. Al3+ and O2-). Second, aluminium oxide (Al2O3) is dissolved at the 

alumina-electrolyte interface.  
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This process can be basically expressed by the following reduction-oxidation (i.e. 

redox) equations: 

 

i) Formation of alumina (aluminium-alumina interface – anode) 

-
322 6e(aq)6H (s)OAlO(l)H2Al(s) ++↔+ +3                                                        (1.3) 

ii) Dissolution of alumina (alumina-electrolyte interface – anode) 

)(3)(2 2
3 lOHaqAl(aq)6H(s)OAl 32 +→+ ++                                                          (1.4) 

iii) Diffusion of aluminium cations (within oxide barrier layer – anode) 

-3 6eaqAl2Al(s) +→ + )(2                                                                                     (1.5) 

iv) Hydrogen evolution (electrolyte-cathode interface – cathode) 

)(3 2 gH6e(aq)6H - →++                                                                                     (1.6)  

 

At the same time as the anodic (Eq. 1.3, 1.4 and 1.5) and cathodic (1.6) reactions take 

place, side reactions such as oxygen evolution at the anode evolve throughout the 

anodization process. This means that the experimental anodic current efficiency (μ) is 

always lower than 100%. The current density (J) of the anodization process under 

potentiostatic conditions is a result of combining the anion (Ja), cation (Jc) and electron 

(Je) current densities.  

 

eca JJJJ ++=                                                                                                           (1.7) 

 

However, since the electric conductivity of the aluminium oxide is extremely low, the 

predominant mechanism for transporting the charges for anodic and cathodic reactions 

is ionic transport (i.e. Je <<< Ja + Jc). In this way, Eq. 1.7 yields: 

 

ca JJJ +≅                                                                                                                  (1.8) 
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For this reason, from the kinetic point of view, the anodization process of aluminium is 

mainly rate-limited by the ionic transport of the main ionic species (i.e. Al3+ and O2-) 

across the aluminium-alumina interface, the alumina barrier layer and the alumina-

electrolyte interface. The current density-time transient under potentiostatic conditions 

can be divided into four main sections, which are related to the four NAA growth stages 

(Figure 1.1 a). During the first few seconds of the anodization process, the current 

density decreases abruptly (S1 in Figure 1.a). In this stage, the aluminium substrate is 

covered by a thin, compact layer of Al2O3 (Figure 1.1 b). Then J reaches its minimum 

value (S2 in Figure 1.a) due to local instabilities in the electric field across the oxide 

barrier layer (Figure 1.1 c) and subsequently increases to its maximum value (S3 in 

Figure 1.a). During this period of time, pores nucleate on the oxide thin film (Figure 1.1 

d). Finally, the current density decreases slightly and asymptotically to a constant value 

(S4 in Figure 1.a) at which pore growth is under steady state (i.e. pores grow at a 

constant rate) (Figure 1.1 e and f). 

 

In terms of crystallography, as-produced NAA basically consists of an amorphous 

phase. However, the NAA crystallographic phase evolves by being subject to a thermal 

treatment [137-142]. Figure 1.2 shows the crystallographic phases of the NAA as a 

function of temperature. First, the crystallographic phase transition from amorphous to 

gamma alumina (γ - Al2O3) starts at 700ºC, becoming entirely γ - Al2O3 at 1000ºC. If the 

temperature increases, a new crystallographic phase transition is initialized at 1100ºC 

from gamma alumina to alpha alumina (α - Al2O3 or corundum). Finally, at 1200ºC the 

NAA crystallographic phase becomes pure α-alumina.  
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Figure 1.1 Current density-time transient of a typical anodization of aluminium under 

potentiostatic conditions (oxalic acid 0.3 M at 40 V) and schematic cross-section views 

describing the first stages of the anodization process. a) The four main sections of the 

J-t transient (S1, S2, S3 and S4) are related to different stages of pore formation and 

growth: b) Formation of a thin, compact layer of Al2O3 (S1 in (a)). c) Instabilities in the 

electric field across the oxide film dissolve partially the oxide at certain sites (i.e. 

nucleating centres) (S2 in (a)). d) Pore formation at the nucleating centres on the 

aluminium oxide surface (S3 in (a)). e) Steady growth of pores (i.e. competition 

between formation and dissolution of aluminium oxide) (S4 in (a)). f) Magnified view of 

the red circle in (e) showing the transport of the main ionic species through the oxide 

barrier layer.  
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Chemically, two main regions can be distinguished in the structure of a nanoporous 

anodic alumina pore (Figure 1.3) [143-145]. The first one is an inner layer close to the 

aluminium-alumina interface, which is basically composed of pure alumina. The second 

one is an outer layer located between the inner layer and the alumina-electrolyte 

interface, which is contaminated by anionic species from the acid electrolyte (i.e. 

phosphate, sulphate, oxalate, etc). The ratio between the inner layer thickness and the 

outer layer thickness (i.e. τinner/τouter) depends on the acid electrolyte for NAA fabricated 

under disordered regimens of pore growth: they are 0.05 for H2SO4, 0.1 for H2C2O4 and 

0.5 for H3PO4 [6]. Nevertheless, for NAA fabricated under ordered regimens of pore 

growth, this ratio is constant (i.e. 0.2) and, thus, independent of the acid electrolyte 

used [145]. One important property of these layers is that the outer layer is less 

resistant to chemical etching than the inner layer, which prevents the structure from 

collapsing even at high porosity.  

 

 

Figure 1.2 Crystallographic phases present on nanoporous anodic alumina as a 

function of the temperature.  
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Figure 1.3 Schematic diagram of a nanoporous anodic alumina pore showing the 

chemical composition distribution inside the pore walls. a) Top view. b) Cross-sectional 

view. c) Environmental scanning electron microscopy (ESEM) image of the top view of 

a NAAT fabricated with oxalic acid 0.3 M at 40 V.   
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1.3.2. Anodizing parameters and structural characteristics of nanoporous 

anodic alumina  

The structural characteristics of the nanoporous anodic alumina templates—that is to 

say, pore diameter (dp), interpore distance (dinterp), porosity (P), degree of hexagonal 

pore arrangement, template thickness (τ) and barrier layer thickness (τBL)—can be 

controlled by the anodization parameters (i.e. anodization voltage (V), anodization time 

(t) and type, temperature (T) and concentration (C) of the acid electrolyte) [145]. Table 

1.1 qualitatively summarizes the relationships between the most characteristic 

anodization parameters and the main structural characteristics.  

 

First, the anodization voltage is restricted for a given acid electrolyte and its 

concentration because if the anodization voltage is excessively high, the oxide barrier 

layer usually burns and the pore growth is not homogeneous. There are three main 

reasons for this phenomenon: i) conductivity increases in the oxide barrier layer at the 

pore bottom tips produced by local heating; ii) ionization of atoms that generate more 

electrons due to energy from the electric field; and iii) breakdown of the oxide barrier 

layer from pre-existing cracks. The conductivity of the most usual acid electrolytes used 

to anodize aluminium follows the sequence H2SO4 >H2C2O4 >H3PO4. According to this, 

the ranges of the anodization voltage are 5-40 V for sulphuric acid (H2SO4), 30-140 V 

for oxalic acid (H2C2O4) and 80-200 V for phosphoric acid (H3PO4). In addition, the 

interpore distance (i.e. the distance between the centres of adjacent pores) is directly 

proportional to the anodization voltage (Eq. 1.9). The proportionality constant (K1) 

depends on the anodization regimen, which is approximately 2.5-2.8 nm·V-1 for mild 

anodization and 2.0 nm·V-1 for hard anodization [146]. The interpore distance of the 

NAATs varies from 50 to 500 nm, depending on the anodization conditions (Figure 

1.4). 

VKd 1interp =                                                                                                               (1.9) 
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The pore diameter is basically a function of the pH value (i.e. type and concentration of 

the acid electrolyte). Low pH values lead to low anodization voltages. This means that 

the field-assisted dissolution of Al2O3 at the pore tips is reduced and dp decreases. For 

this reason pore diameters are largest with H3PO4 (i.e. higher pH and V) and the 

shortest with H2SO4 (i.e. lower pH and V). The pore diameter of as-produced NAATs 

can also be increased to several tens of nanometres by means of a wet chemical 

etching process.  

 

 

 

Figure 1.4 Summary of the relationship between the interpore distance and the 

anodization voltage for self-ordered pore growth under mild anodization regimen (MA) 

in sulphuric (solid black squares), oxalic (solid green triangle) and phosphoric (solid 

cyan rhombuses), and under hard anodization regimen (HA) in sulphuric (solid red 

circles) and oxalic (solid blue triangles). The blue and pink dashed lines indicate the 

trend lines for MA and HA regimens, respectively.  
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The pore growth rate (RP) is affected by the acid electrolyte temperature (T), 

decreasing as T is reduced. In order to prevent the NAAT from dissolving in the course 

of the anodization process, the temperature of the acid electrolyte solution has to be 

kept lower than room temperature. The usual temperatures for anodization with oxalic 

and sulphuric acid solutions under mild anodization conditions are commonly between 

5 and 18ºC. Nevertheless, for anodization at high voltages (i.e. phosphoric acid at 195 

V under mild conditions and oxalic acid at 140 V under hard conditions), T must be 

close to 0ºC if the NAATs are not to be burned by local heat generated at the pore 

bottom tips. For extraordinary anodization voltages (i.e. high-field anodization 

[147,148]), the acid electrolyte temperature can be kept below 0ºC by adding a certain 

quantity of ethanol (EtOH) to the acid aqueous solution. Another parameter that has an 

effect on the pore growth rate is the stirring rate of the acid electrolyte since this 

ensures that the diffusion of the ionic species and the temperature inside the pores are 

homogeneous during the anodization process.  

 

The degree of the hexagonal pore arrangement can be disturbed for several reasons. 

First, after anodization, the grain boundaries of the aluminium substrate become 

domain boundaries on the NAAT surface. These boundaries introduce disturbances 

that lead to deformations of the pore arrangement [149]. In order to reduce the number 

of grain boundaries and enlarge the polydomain areas (i.e. areas with the same pore 

lattice orientation) it is recommended to enlarge the grain size of the aluminium foils by 

applying an annealing process at 400ºC for 3 h under N2 atmosphere. Secondly, the 

length of the anodization time affects the average domain size as well, being maximum 

after 24 h of anodization (i.e. 4 μm2, approximately) [145]. So, for a two-step 

anodization process, the first anodization step should be approximately 24 h. Longer 

anodization times lead to ordering deviations due to changes in the pH value inside 

pores. Finally, commercial aluminium substrates present parallel trenches of several 

micrometres on their surface generated in the course of the industrial rolling.  
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These trenches (i.e. surface roughness) yield different pore growth rates on the 

aluminium substrate surface that modify the pore arrangement. In order to reduce the 

surface roughness, an electropolishing stage is usually applied to the commercial 

aluminium foils before anodization. Figure 1.5 shows the effect of the annealing and 

electropolishing treatments on commercial Al substrates. 

 

 

 

 

Figure 1.5 Effect of annealing and electropolishing treatments on commercial 

aluminium substrates. a) ESEM image of an as-produced commercial aluminium 

substrate. b) ESEM image of an electropolished commercial aluminium substrate 

without annealing treatment (small grain sizes). c) ESEM image of an electropolished 

commercial aluminium substrate with annealing treatment (the average grain size is 

noticeable increased in contrast to (b)). 
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The NAAT porosity (P) depends on the anodization regimen and, for an ideal 

hexagonal pore arrangement, it can be estimated by Eq. 1.10 (i.e. for samples 

fabricated under self-ordered pore growth conditions). Under mild anodization 

conditions, P follows the 10% porosity role [145]. However, under hard anodization 

conditions, its value is reduced by up to approximately 3.3% [146]. In addition, for 

samples fabricated under disordered pore growth conditions, P can be higher or even 

lower than 10%. 

 

2

interp32 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

d
d

P pπ
                                                                                                  (1.10) 

 

The oxide barrier layer thickness (τBL) at the pore bottom tips is directly proportional to 

the anodization voltage (Eq. 1.11). The proportionality constant (K2) depends on the 

anodization regimen as well, and is 1.3 and 1.0 nm·V-1 for mild and hard anodization 

regimens, respectively. In accordance with the high field conductivity theory, τBL is 

inversely proportional to J. For this reason, the oxide barrier layer thickness reduction 

is attributed to the characteristic high current density of a hard anodization process 

[146]. 

 

VK2BL =τ                                                                                                                (1.11) 

 

Usually, the NAAT thickness (τ) is controlled by the anodization time (t). Under 

galvanostatic conditions, the relationship between τ and t is linear. However, under 

potentiostatic conditions, the template thickness does not grow linearly as the 

anodization time increases. So, to fabricate NAATs with controlled thickness under 

such anodization conditions, it is more accurate to control τ  using the total current 

charge (Q), since the relationship between τ and Q is linear [150,151]. 
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In addition, the fabrication of defect-free NAATs requires aluminium foils of a high 

degree of purity (i.e. higher than 99.99%). Bulk impurities become cracks and ruptures 

in the NAAT structure after anodization because of different volume expansions of Al-

Al2O3 which can affect the functional properties of the NAATs. 

 

 Structural Characteristics 

Anodization 
Parameters dp dinterp P RP τBL 

V ↑ (medium) ↑  (high) ↓ (high) ↑  (high) ↑  (high) 

t ↑  (low) - ↑  (low) ↓ (low) - 

T ↑  (low) - ↓ (low) ↑  (medium) ↓ (medium)

C-pH ↑  (low) ↑  (low) ↑  (medium) ↓ (high) ↑  (high) 
 

Table 1.1 Qualitative relationships between anodization parameters and structural 

characteristics of the NAATs. The symbol ↑ denotes that the dependence between the 

anodization parameter and the corresponding structural characteristic is direct, and ↓ 

that this dependence is inversed. The degree of these dependences (included between 

brackets) is divided into low, medium and high. 
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1.3.3. Experimental techniques for fabricating nanoporous anodic alumina 

templates  

The first nanoporous anodic alumina templates that were fabricated using one 

anodization step were not of sufficient quality to be used as templates for fabricating 

other nanostructures. The main reason was that they presented imperfections that 

were transferred to the replicated nanostructures in the course of the replication 

process [70,152-154].  

 

The discovery of the two-step anodization process [19] made it possible to fabricate 

NAATs with an almost ideal hexagonal pore arrangement because of the self-ordering 

mechanism. This process consists of applying a long first anodization step (i.e. about 

24 h) to high purity annealed and electropolished Al substrates. In the course of this 

anodization step, the initially disordered pores are hexagonally ordered inside domains 

of several μm2 by the self-ordering mechanism. Then, the Al2O3 film, which has 

disordered pores on the top and ordered pores on the bottom, is removed by wet 

chemical etching. The remaining Al substrate presents a patterned surface with 

hexagonally ordered concavities. Subsequently, the second anodization step is applied 

under the same conditions as the first step. Then, pores start to grow from the 

concavities located on the patterned Al surface, which act as nucleating centres 

concentrating the electric field. The pores remain hexagonally arranged throughout the 

second anodization step. This process can be applied to fabricate polydomain NAATs 

(PD-NAATs) with interpore distances of 55, 100 and 400-500 nm at a wide range of 

anodization voltages (20, 40 and 160-195 V, respectively) by using sulphuric [155], 

oxalic [156] and phosphoric [157] acid solutions, respectively. In addition, polydomain 

NAATs with unusual interpore distances of 270 and 600 nm can be fabricated using 

solutions of malonic [158] and citric acid [159] at 140 and 240 V, respectively. 
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Monodomain nanoporous anodic alumina templates (MD-NAATs) with perfectly 

hexagonal pore arrangements (i.e. NAATs without domain boundaries) were first 

fabricated by means of a nanoimprint process [20]. In this process, a silicon carbide 

(SiC) master stamp with hexagonally ordered convex tips on its surface is fabricated by 

electron beam lithography. This mould is pressed on the top of an annealed and 

electropolished Al substrate by applying several tons·cm-2. Then, the anodization 

process is conducted in one step under suitable conditions (i.e. the anodization voltage 

is established by substituting the lattice constant of the SiC master stamp in Eq. (1.9)). 

This process enables monodomain NAATs to be mass produced in a cost-effective 

way since the SiC mould can be used dozens of times. However, it has several 

disadvantages: for example, the imprinted area is relatively small (i.e. around 3 mm2) 

and the master stamp has to be changed every time the interpore distance and pore 

diameter need to be modified.  

 

MD-NAATs with a square pore arrangement can be fabricated using the nanoimprint 

process too [160-161]. However, the aspect ratio (i.e. τ·dP
-1) of such NAATs cannot be 

higher than 200 since the pores trend spontaneously to hexagonal arrangements after 

a certain anodization time (i.e. about 1 h) by the self-ordering mechanism.  

 

The nanoimprint technique has evolved and one of the developments is the smart 

nanoimprinting [162]. This technique uses a master stamp with silicon nitride (Si3N4) 

nanopyramids fabricated by deep-UV lithography (DUVL), which is bound to a Si wafer. 

The main advantages of this nanoimprint method are that the pressure applied is 50 

times lower and the imprinted area is 30 times larger than the traditional nanoimprint 

technique [20]. In addition, by selecting the suitable anodization voltage, it is possible 

to use the self-guiding mechanism to fabricate MD-NAATs with an interpore distance 

that is 60% of the lattice constant of the master stamp (i.e. every three imprinted pores 

generate a new pore at the incentre of the triangular lattice (Figure 1.7)).  
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Nevertheless, this fabrication method has several disadvantages. First, the master 

stamps can be used only once or twice because Si is a rather brittle material and it is 

easily crushed after imprinting. Secondly, the size and the depth of the imprinted 

pattern can vary widely through the Al surface leading to defects in the NAAT. Finally, 

the DUVL limits the interpore distances to 500 nm and the fabrication process of these 

master stamps requires expensive laboratory equipment.  

 

 

 

Figure 1.6 Schematic diagram describing the most widely used methods for fabricating 

PD-NAATs and MD-NAATs throughout the NAA history. a) One-step anodization 

(disordered PD-NAAT). b) Two-step anodization (ordered PD-NAAT). c) 

Nanoimprinting anodization (ordered MD-NAAT).  
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Another variation of this technique is to use commercial optical diffraction gratings as 

the master stamp [163]. First, a commercial optical diffraction grating with a line 

spacing of 833 nm is pressed on an annealed and electropolished aluminium substrate. 

Secondly, the grating is turned 60º with respect to the direction of the first imprint and is 

again pressed on the Al surface. In this way, rhomboidal ridges with a period of 962 nm 

are transferred onto the Al surface and, by selecting suitable anodization conditions, 

NAATs can be obtained with an interpore distance of 481 nm (i.e. the half period of the 

rhomboidal ridges transferred to the Al substrate). This imprint technique is reasonably 

cheap but is limited by the periods of the commercially available gratings. Another hard 

material, nickel (Ni), has successfully been used to fabricate master stamps in a fast 

and cost-effective way. In addition, owing to the mechanical strength of Ni, this master 

stamp can be used more than once to fabricate monodomain NAATs by nanoimprinting 

[164].  

 

 

 

Figure 1.7 Schematic top view of a MD-NAAT fabricated by smart nanoimprinting. 

Each new pore (red circles) grows guided by three imprinted pores (grey circles). 
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Alternative nanoimprint approaches that use nanosphere arrays have been applied to 

fabricate monodomain NAATs. In this technique, a layer of colloidal nanosphere arrays 

of several materials (e.g. Si [165], Fe2O3 [166], polystyrene [167]) is deposited on a 

substrate (e.g. mica substrates) and then pressed on the surface of an annealed and 

electropolished Al substrate. The nanosphere layer shape is transferred to the Al 

surface. Finally, the nanosphere layer is removed and the anodization process is 

carried out under suitable conditions (i.e. the anodization voltage is calculated by 

substituting the lattice constant of the nanosphere pattern in Eq. (1.9)). The main 

limitations of these approaches are that it is extremely difficult to obtain uniform layers 

of nanosphere arrays from colloidal nanosphere solutions and the defects present in 

the nanosphere layer are transferred to the patterned Al substrate. 

 

Such lithographic techniques as electron beam lithography (EBL) [168] and focus-ion-

beam lithography (FIBL) [169] have successfully been used to fabricate monodomain 

NAATs. In these fabrication techniques, the pitch hexagonal pattern is first transferred 

from a photoresist or PMMA resist to an annealed and electropolished Al substrate by 

wet chemical etching. Then, the suitable anodization voltage is applied and a 

monodomain NAAT without defects is obtained. The main advantage of these 

techniques is that they provide high spatial resolution (i.e. lower than 100 nm) and it is 

possible to optimize the depth of the patterning hollows for effective pore guiding. 

However, it is unlikely that these techniques can be used for mass production of 

monodomain NAATs because of the serial writing process. In addition, the laboratory 

equipment required is rather expensive.  

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



1. Introduction 

 _____________________________________________________________                                  23

A promising technique for fabricating monodomain NAATs is interference lithography 

(IL) [170]. This process starts by covering the aluminium substrate with an ARC 

material, and then continues by spin-coating with a photoresist. The photoresist/ARC 

stack is patterned by IL using a double-exposure technique to produce periodic arrays 

of holes in the photoresist with hexagonal symmetry (i.e. the Al substrate is rotated 60° 

after the first exposure). The spacing of the holes is set by the choice of the angle 

between the interfering laser beams. The periodic patterns created in the photoresist 

are transferred to the ARC layer by dry etching using O2 plasma. The pattern is 

subsequently transferred to the aluminium substrate by wet chemical etching. Then, 

the ARC and photoresist layers are removed by using a resist-stripping solution. The 

patterned Al substrate is anodized by applying a suitable anodization voltage. The main 

advantages of interference lithography with regards to EBL and FIBL are that it allows 

patterning over large areas and it is possible to use it with a wide variety of substrates 

such as silicon, glass and flexible polymer substrates. Nevertheless, unlike other 

techniques this technique requires costly laboratory facilities and the roughness of the 

aluminium substrate has to be extremely low. 
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1.4. Summary 

This chapter has presented a general description of both the origins and the state-of-

the-art of the technology based on nanoporous anodic alumina. It has been 

demonstrated that, in spite of the considerable effort made by many research groups 

and the high number of reports on this topic, some questions about pore formation, 

growth and the self-ordering mechanism of nanoporous anodic alumina are yet to be 

clarified.  

 

Nowadays, nanotechnology requires defect-free nanostructures with well-defined 

structural characteristics. In order to fabricate such nanostructures by template 

synthesis, defect-free templates need to be developed since any imperfections will be 

transferred to the replicated nanostructure in the course of the process of synthesis. 

These defects lead to of the functional failings of those devices in which these faulty 

nanostructures have been integrated. Therefore, the accuracy and the productive 

efficiency of the well-established NAAT fabrication techniques, which have been 

mentioned throughout this chapter, should be improved. Fabrication techniques such 

as interference lithography and nanoimprinting with versatile and long-lasting moulds 

are promising methods that may be able to produce MD-NAATs at industrial level 

without structural defects over large areas. However, several drawbacks still have to be 

resolved.  

 

NAA, then, is far from being a well-known material. There are still many questions that 

need to be clarified if the material and its applications are to be better understood. 
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In this chapter, the experimental set-up used to perform anodizations and the pre-

treatment of commercial aluminium substrates are described in detail.  

 

First, the evolution over the time of the experimental set-up used to fabricate 

nanoporous anodic alumina templates (i.e. the electrochemical cell) is presented. The 

technical improvements made to improve the fabrication process are discussed step by 

step. Furthermore, suggestions are made for future upgrades to increase the 

production of nanoporous anodic alumina templates. These upgrades will make future 

experiments more effective and able to cope with the high number of samples required.  

 

Secondly, the treatments applied to commercial aluminium foils are reported. The 

reasons why such treatments are needed to fabricate defect-free PD-NAATs or MD-

NAATs are explained and discussed. In this regard, the effects on commercial 

aluminium substrates of the annealing and the electropolishing processes are studied 

using several characterization techniques (i.e. ESEM and AFM).  
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2.1. Experimental setup for anodizing        

2.1.1. Home-made electrochemical cell (evolution) 

Basically, as Figure 2.1 shows, an electrochemical cell for anodizing aluminium can be 

divided into the following main parts:  

i) Anode (aluminium foil - 1) 

ii) Cathode (platinum wire - 2) 

iii) Electrolyte (acid aqueous solution - 3) 

iv) Power supply (driving force - 4). 

Both anode (Al) and cathode (Pt) are partially dipped into the acid electrolyte solution, 

which acts as a medium for transporting the ionic species between the anode and 

cathode (i.e. H+, Al3+ and O2-). The power supply provides the energy required to ionize 

aluminium at the aluminium-alumina interface (anode) and generates electrons (e-). 

When the suitable anodization voltage is applied between the anode and cathode, 

pores nucleate and start to grow on the Al surface.  

 

Figure 2.1 Schematic diagram of a basic electrochemical cell for anodizing aluminium 

substrates. 
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As Figure 2.2 shows, the first anodization setup was developed by Dr. Lukas Vojkuvka 

and consisted of a Teflon arm (1 in Figure 2.2) equipped with a Teflon holder (2 in 

Figure 2.2) for a copper (Cu) plate (3 in Figure 2.2), on which aluminium substrates of 1 

cm2 were placed. This Cu plate was connected to the positive pole of the power supply 

by an insulating-covered copper wire (4 in Figure 2.2). In order to isolate part of the 

aluminium substrate from the acid electrolyte, a polyvinyl chloride (PVC) cover with a 

rubber o-ring was screwed on the Teflon holder (5 in Figure 2.2). The acid electrolyte 

was poured into a double-walled glass (6 in Figure 2.2) connected to a liquid-cooler 

thermostat with recirculation (7 in Figure 2.2) for adjusting the electrolyte temperature 

and stirred constantly by a magnetic stirring plate. This experimental setup presented 

several disadvantages. First, there were often leaks into the aluminium holder because 

of the poor pressure of the PVC cover on the Teflon holder. Secondly, temperature 

instabilities were found a result of poor temperature isolation. Finally, the electrolyte 

flowed heterogeneously on the anode surface because of the stirring orientation (i.e. 

perpendicular to the Al surface). These problems led to the development of an 

improved electrochemical cell. 

 

 

Figure 2.2 Detailed photography of the first experimental setup used to fabricate 

NAATs.  
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The following experimental setup developed by our technical support group under the 

supervision of Dr. Lukas Vojkuvka yielded a noticeable improvement (Figure 2.3 a) 

which allowed our research group to fabricate other types of NAATs (i.e. samples 

fabricated with oxalic and phosphoric acid under hard and mild anodization conditions, 

respectively). In contrast to the first anodization cell, the new electrochemical cell made 

it possible to control both the electrolyte and the aluminium substrate temperatures, 

since the cooling system was divided into two main parts. The first one refrigerated the 

aluminium substrate by means of a Peltier cooling plate and the second one directly 

cooled the electrolyte solution by a stainless steel coil. Another technical improvement 

on the first experimental setup was that the stirring direction was parallel and close to 

the Al substrate. This yielded homogeneous electrolyte temperature and concentration 

through the Al substrate surface in the course of the anodization process. Neither were 

there any electrolyte leaks during the anodization process, firstly because the acid 

electrolyte solution was placed on a Teflon container with a circular window sealed by a 

rubber o-ring on the bottom to expose the Al substrate to the acid electrolyte, and 

secondly because it was possible to apply a higher and homogeneous pressure by 

eight screws between the rubber o-ring in the Teflon container and the Al substrate 

attached to the Cu plate. Basically, the upgraded electrochemical cell has two main 

parts and several attached elements:  

 

1) Cover part (Figures 2.3 b and c) 2) Base part (Figures 2.3 d, e and f) 

1.1 PVC cover  2.1 Teflon container 

1.2 Electric motor  2.2 Cu plate  

1.3 Teflon stirrer 2.3 Rubber o-ring 

1.4 Spiral Pt wire rolled into Teflon stick 2.4 Circular window 

1.5 Stainless steel coil 2.5 Peltier cooling plate  

1.6 Thermal probe PT-1000        2.6 Cooler thermostat recirculation 
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Figure 2.3 Detailed photography of the second experimental setup used to fabricate 

NAATs. a) General photography of the assembled electrochemical cell in the course of 

an anodization process. b) Lateral view photography of the PVC cover. c) Bottom view 

photography of the PVC cover. d) General photography of the liquid-cooler thermostat 

with recirculation circuit and the Peltier cooling plate. e) Lateral view photography of the 

Teflon container fixed to the Cu plate. f) Bottom view photography of the Teflon 

container.  
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The second experimental setup was successfully used and allowed our research group 

to accurately control the fabrication process of nanoporous anodic alumina templates. 

However, after one year of use, several problems were detected with the temperature 

control. In spring and summer time, the laboratory temperature was relatively high (i.e. 

between 20 and 30ºC) and samples fabricated with oxalic and phosphoric acid under 

hard and mild anodization conditions, respectively, often got burnt as a result of the 

high temperature of both the acid electrolyte and the Al substrate. This setback was 

fortunately avoided by several new enhancements (Figure 2.4). First, the isolation 

systems of both the Peltier cooling plate and the PVC cover were improved by covering 

the former with an expanded polystyrene (EPS) casing and the latter with flexible 

thermal insulating rubber (Armaflex). Second, a more powerful liquid-cooler thermostat 

was purchased to increase the pumping pressure in the cooling circuit. Third, a 

temperature data logger (model Almemo MA2590-3S) was connected to the thermal 

probe PT-1000 for monitoring and saving in-situ the electrolyte temperature in the 

course of the anodization experiments. This instrument made it possible to adjust the 

target temperature of the thermostat as a function of the electrolyte temperature inside 

the electrochemical anodization cell. 

 

With the experience of the last six years, our research group has been able to fabricate 

an experimental setup that has allowed us to accurately and effectively fabricate 

multiple types of NAATs. It has been proven that controlling such anodization 

parameters as the system temperature (i.e. both acid electrolyte and aluminium 

substrate temperature) and the stirring performance is the key factor in fabricating 

defect-free NAATs successfully. Figure 2.5 shows a Gantt diagram of the evolution of 

the experimental setup over the last six years together with a summary of the different 

technical modifications. All these technical enhancements are the result of the hard 

work of both previous and present members of our research group and its technical 

support.  
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Figure 2.4 Detailed photography of the third experimental setup used to fabricate 

NAATs. a) General view photography of the experimental setup. b) Bottom view 

photography of the Armaflex covered PVC cover. c) Lateral view photography of the 

Armaflex covered PVC cover. d) Top view photography of the EPS casing that covers 

the Peltier cooling plate. e) Magnified photography of the assembled setup.  
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Figure 2.5 Gantt diagram describing the evolution of the experimental setup over the 

last six years. The first experimental setup was used for 1.5 years, the second one for 

2.5 and the third one for 2 years. 
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2.1.2. Equipment and software for anodizing and data storage 

In order to carry out an in-depth study of the anodization processes of the different 

NAATs fabricated during our experimental work, we had to analyse the anodization 

curves. To this end, several devices and software for anodization and data storage 

were incorporated into the second experimental setup. This laboratory equipment was 

assembled on a wheeled shelf (Figure 2.6) and consisted of: 

 

1) Personal computer for monitoring, control and data storage 

2) Two power supplies for anodizing (Delta Elektronika model SM-1500 and 

Agilent  model N5772A) 

3) Two multimeters for I-V measurements (Agilent model HP34401A) 

4) Power supply for stirring 

 
 
To fabricate the different types of typical and new nanoporous anodic alumina 

templates, different types of voltage (V) and current density (J) profiles needed to be 

applied. To this end, a complete set of home-made Labview programs was developed. 

These programs made it possible not only to construct multiple profiles of both V and J 

but also to control and monitor the anodization process using several control 

parameters such as anodization time (t) and total current charge (Q). Some examples 

of this set of programs are shown in Figure 2.7. The communication between the 

software developed and installed in the PC and the anodizing hardware (i.e. power 

supplies and multimeters) was established by means of a high-speed GPIB-USB 

controller (National Instruments), which provided a superior performance of up to 1.8 

MB·s-1 with the standard IEEE 488 handshake. 
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Figure 2.6 Experimental equipment used to fabricate nanoporous anodic alumina 

templates. All these devices were assembled on a wheeled shelf to ease the 

equipment transport in our laboratory. 
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Figure 2.7 Some examples of Labview programs developed for anodizing aluminium 

substrates. a) Ramp-step profile of V controlled by the anodization time. b) Ramp-step 

profile of V controlled by the total current charge. c) Constant profile of V controlled by 

the anodization time. d) Constant profile of V controlled by the total current charge. 
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2.1.3. Future upgrades of the experimental setup 

As has been mentioned above, the experimental setup used to fabricate NAATs has 

been modified three times over the last six years, which has allowed our research 

group to fabricate both typical and new NAATs free of defects. Nevertheless, as a 

result of the high demand of samples for future experiments, several upgrades would 

need to be applied to increase fabrication efficiency. For example:  

 

i) Teflon containers with several windows enable various NAATs to be fabricated in 

the same anodization process. It would also be possible to produce NAATs with 

various diameters if Teflon containers had windows of different diameters.   

ii) If the electrochemical cell was duplicated, triplicated or quadruplicated, several 

anodization cells could be serial connected, which would exponentially increase 

NAAT production. 

iii) If the electrochemical cell were smaller it would be easier to handle. Temperature 

control would also be easier because little acid electrolyte would be required. 

iv) In order to accelerate the treatment of commercial aluminium substrates, there 

should be a mechanical method for cutting individual chips from commercial Al foils 

(e.g. by pressing different types of moulds depending on the desired chip 

diameter). 

v) An expressly designed copper thermal interchanger plate, a more powerful 

thermostat and better thermal insulation equipment would enable the system 

temperature to be controlled more efficiently. 

vi) Substituting the spiral Pt wire rolled into a Teflon stick by a Pt grid close to the Al 

substrate window would increase the current efficiency of the anodization process. 

vii) Writing standard protocols for each step of the fabrication processes enable group 

members to fabricate NAATs more easily and quickly. 
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2.2. Pre-treatment of aluminium substrates  

2.2.1. Commercial aluminium foils 

High-purity commercial aluminium foils used in the course of all our experiments were 

purchased from Goodfellow Cambridge Ltd. The technical characteristics of these Al 

substrates are presented in Table 2.1.  

 

As was mentioned in 1.3.2, the purchased Al substrates needed to be treated before 

anodizing for two main reasons: one, to enlarge the grain size of the commercial Al 

substrates by an annealing process and therefore reduce the number of domain 

boundaries and enlarge the average domain size of the resulting PD-NAATs; and two, 

to reduce the surface roughness of the annealed Al substrates by means of an 

electropolishing treatment. In this way, pore arrangement dislocations and surface 

defects could be avoided. 

 

Technical Characteristic Data 

Supplier Goodfellow Cambridge Ltd 

Code AL000431 (459-928-30) 

Purity 99.999% 

Impurities (ppm) Cu (0.3) 

Fe (0.3) 

Mg (1.2) 

Si (0.8) 

Size 5 cm x 5 cm x 250 μm 

Temper As-rolled 

 

Table 2.1 Technical characteristics of commercial aluminium foils used in our 

experiments. 
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2.2.2. Annealing of commercial aluminium foils 

The hexagonal pore arrangement of self-ordered nanoporous anodic alumina 

templates gets worse as the number of grain boundaries in the aluminium substrate is 

increased. After anodization, these grain boundaries become domain boundaries on 

the NAAT surface and the pore arrangement is disturbed. In order to enlarge the grain 

size (i.e. reduce the number of grain boundaries) and homogenize the crystalline phase 

of commercial Al substrates, an annealing process is applied. Previously, the 

commercial Al foils are chemically treated to remove superficial organic impurities by 

immersion in a solution of HF:HNO3:HCl:H2O in a volume ratio of 1:10:20:69 at 60ºC for 

3 min. Afterwards, they are degreased in an ultrasonic bath with acetone for 2 min at 

room temperature, rinsed with double-deionised water (Purelab Option-Q 18.2 MΩ-cm) 

twice and dried under N2 current. Then, the degreased Al substrates are deposited on 

porcelain supports in an electric furnace equipped with a nitrogen (N2) inlet to prevent 

oxidation at high temperature. Both temperature and N2 flux are automatically 

monitored and controlled in the course of the annealing process, which consists of 

three temperature steps (Figure 2.8). First, the temperature is increased slowly at 

10ºC·min-1 until it reaches the annealing temperature (i.e. 400ºC). This temperature is 

maintained constant for 3 h and, then, the furnace chamber is cooled slowly to room 

temperature. The N2 flux remains constant throughout the process at a rate of 200 

sccm. Finally, the annealed Al substrates are stored inside ziplock plastic bags under 

N2 environment. 

 

The resulting pore ordering of the NAATs fabricated from chemically and thermally 

treated commercial aluminium foils is always improved if suitable cleaning and 

annealing processes are applied before anodizing. 
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Figure 2.8 Annealing process applied to commercial aluminium foils before 

electropolishing. 
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2.2.3. Electropolishing of annealed aluminium foils 

The surfaces of commercial aluminium substrates are tarnished and have trenches 

several micrometres deep. These surface imperfections yield different pore growth 

rates on the aluminium substrate that modify the pore arrangement and are the source 

of structural defects on the resulting NAATs. In order to reduce the surface roughness 

and remove tarnishes from the Al surface an electropolishing process (i.e. surface 

smoothening) is applied before anodizing. In this process, the annealed aluminium 

substrate (anode) and a stainless steel bar (cathode) are submerged in a special 

electrolyte solution. Then, a voltage is applied between them and the aluminium is 

oxidized but no oxide is formed due to the chemical conditions of the electrolyte used. 

The electric field generated on the Al surface is higher at the surface protuberances 

than at the basins between adjacent protuberances, so the former dissolve faster than 

the latter [171,172]. In the course of the electropolishing process, a viscous layer forms 

on the aluminium surface, which peels off after some time. This phenomenon can be 

observed with the naked eye and approximately indicates the end point of the 

electropolishing process. 

 

The electrolyte solution used to electropolish the annealed aluminium substrates is a 

mixture of ethanol (EtOH) and perchloric acid (HClO4) 4:1 (v:v). The temperature of 

both reagents must be kept around 5ºC before mixing since this reaction is extremely 

exothermic and can be explosive. The electropolishing process is carried out in a 

double-walled coolant glass by applying 20 V for 2 min at 5ºC under a constant stirring 

rate of 300 r.p.m. to remove the bubbles generated on the Al surface. It is advisable to 

modify the stirring direction (i.e. from ckw. to ccw.) several times during the 

electropolishing process to obtain a better smoothing effect. The typical current profile 

of an electropolishing process has two main parts (Figure 2.9 a). At the beginning of 

this process, the value of the current is very high (i.e. 2.5 A, approximately) but 

decreases ostensibly during the first few seconds (i.e. about 20 s) until it becomes 
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constant after some time (i.e. around 1.5 A). The smoothing surface effect takes places 

during the first 2 o 3 min and it is not recommended to extend the process any longer. 

Finally, the electropolished aluminium substrates are cleaned in an ultrasonic bath with 

EtOH for 2 min at room temperature, rinsed with double-deionised water (Purelab 

Option-Q 18.2 MΩ-cm) and dried under N2 current. According to atomic force 

microscopy (AFM) analysis, the surface roughness of annealed and electropolished Al 

substrates is less than 5 nm (Figures 2.9 b). Before anodizing, the annealed and 

electropolished Al substrates of 25 cm2 are cut into squared pieces of 1 cm2 and stored 

inside ziplock plastic bags under N2 environment. 
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Figure 2.9 Electropolishing process. a) Voltage and current-time transients of a typical 

electropolishing process under potentiostatic conditions (EtOH:HClO4 4:1 (v:v) at 20 V) 

and schematic cross-section views of an annealed Al substrate before (1) and after (2) 

electropolishing. The electric field generated is mainly focused on the protuberances 

(red arrows), producing the smoothing surface effect. b) AFM images together with the 

corresponding cross-section profiles (blue lines) for Al substrates annealed but not 

electropolished (left) and annealed and electropolished (right). 
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2.3. Summary 

This chapter has described the laboratory equipment for fabricating nanoporous anodic 

alumina templates.  

 

First, we have provided a detailed account of how the electrochemical cell used to 

fabricate nanoporous anodic alumina templates has evolved in recent years. The 

technical improvements made in the anodization set-up have ostensibly improved the 

fabrication process. This has been reflected in the production of defect-free 

nanoporous anodic alumina templates. Bearing in mind the high demand of templates 

for future applications, we have also made suggestions for future upgrades focused on 

productivity.  

 

Secondly, the treatments applied to commercial aluminium foils have been explained 

and discussed. It has been demonstrated that an annealing process considerably 

increases the aluminium grain size. This leads to larger domains in the resulting 

nanoporous anodic alumina templates after anodizing. It has also been experimentally 

proven that the application of a subsequent electropolishing step reduces the surface 

roughness of commercial aluminium substrates from 100 to 5 nm, approximately. 

 

 

In the following chapter, several anodization techniques for fabricating nanoporous 

anodic alumina templates will be discussed. These anodization processes are 

performed in the electrochemical cell using annealed and electropolished aluminium 

substrates.  
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In this chapter, the experimental methods for fabricating typical and innovative 

nanostructures based on nanoporous anodic alumina are described in detail.  

 

First, the fabrication processes of typical PD-NAATs are presented. These typical 

nanostructures are: i) PD-NAATs fabricated with sulphuric, oxalic and phosphoric acid 

by a two-step anodization process under mild conditions; and ii) PD-NAATs fabricated 

with oxalic acid by a one-step anodization process under hard conditions.  

 

Secondly, the fabrication techniques for producing innovative NAATs are discussed in 

detail. These innovative nanostructures can be divided into: i) PD-NAATs produced 

with oxalic acid by a two-step anodization process under hard conditions; ii) PD-NAATs 

without an oxide barrier layer on aluminium substrates by a re-anodization technique; 

iii) hierarchical nanoporous anodic alumina templates fabricated by an asymmetric two-

step anodization process using sulphuric, oxalic and phosphoric acid; iv) bilayered 

NAATs produced by combining mild and hard anodization regimes in the same 

process; v) MD-NAATs with an extraordinary pore arrangement by the nanoimprinting 

process; and vi) nanoporous anodic alumina funnels created by the consecutive 

combination of anodizing and pore widening steps.  
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3.1. Typical nanoporous anodic alumina templates  

In this section, the experimental fabrication processes of typical PD-NAATs are 

described. The fabricated PD-NAATs are divided into two main types depending on the 

anodization regime. The first type is fabricated by the two-step anodization process 

under mild conditions and the second type by the one-step anodization process under 

hard conditions. 

 

3.1.1. Two-step anodization process (mild anodization)  

To produce polydomain nanoporous anodic alumina templates with hexagonal pore 

arrangements the two-step anodization technique is used [19]. The annealed and 

electropolished Al substrates (Figure 3.1 a) are anodized in one of the four commonly 

used acid solutions in our home-made electrochemical cell. The corresponding 

anodization voltages and acid electrolyte temperatures together with the concentrations 

are shown in Table 3.1 As was described in 1.3.3, the first anodization step is usually 

performed for 24 h. When the first anodization step is finished, the aluminium oxide 

(Al2O3) film with disordered pores on the top and ordered pores on the bottom is 

selectively dissolved by wet chemical etching in a mixture of phosphoric acid (H3PO4) 

0.4 M and chromic acid (H2CrO7) 0.2 M at 45ºC (Figure 3.1 b). The etching usually 

lasts for as long as the first anodization step (i.e. about 24 h). However, it can last more 

or less depending on the type of acid used. It is possible to reduce this time by 

increasing the temperature solution at 70ºC. So, it is recommended to confirm that the 

oxide layer has been entirely removed both visually, using a drop of water, and 

electrically, using a tester. In this way, a hexagonally ordered pattern of hemispherical 

concavities is produced on the aluminium surface by the self-ordering mechanism 

(Figure 3.1 c). Then, the second anodization step is conducted under the same 

anodization conditions as the first step. The anodization time of the 2nd step will depend 

on the thickness of the resulting PD-NAAT.  
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In contrast to the 1st anodization step, in the 2nd anodization step the pores grow in an 

orderly fashion, guided by the concavities on the patterned aluminium surface. The 

resulting pores are straight and hexagonally ordered in domains of 4 μm2 (Figure 3.1 

d).  

 

Figure 3.2 shows the typical current density-time (J-t) transients for each type of PD-

NAAT fabricated by the two-step anodization process with H2SO4 0.3 M at 20 V, 

H2C2O4 0.3 M at 40 V, H3PO4 0.3 M at 160 V and H3PO4 1 wt % at 195 V. At first sight, 

as mentioned in chapter 1 (Figure 1.1), these curves can be divided into four main 

sections. However, all the anodization curves of the first step differ from those of the 

second step in the following aspects:  

 

i) The minimum value of J (S2 in Figure 1.1) is higher for 2nd step than for 1st step.  

ii) The characteristic local maximum peak of J related to the pore nucleation (S3 in 

Figure 1.1) disappears from the 2nd step.  

 

These differences can be attributed to the effect of the aluminium substrate patterning 

(i.e. concavities on the aluminium surface after the Al2O3 film resulting from the 1st 

anodization step has been removed). The local instabilities of the electric field across 

the oxide barrier layer are reduced since it is concentrated on the bottom of the 

concavities and pores grow directly on the bottom of these concavities. Finally, for long 

anodization times, it is observed that both curves (i.e. 1st and 2nd step) converge 

asymptotically at an approximately constant value of J.  
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Figure 3.1 Schematic slanted section views describing the two-step anodization 

process. a) Annealed and electropolished aluminium substrate. b) PD-NAATs with 

disordered pores on the top and ordered pores on the bottom. c) Patterned Al substrate 

after removing the oxide film with disordered pores. d) PD-NAAT with straight and 

hexagonally ordered pores.  

 

Figure 3.2 Current density-time (J-t) transients for each type of PD-NAATs fabricated 

by the two-step anodization process. a) H2SO4 0.3 M at 20 V. b) H2C2O4 0.3 M at 40 V. 

c) H3PO4 0.3 M at 160 V. d) H3PO4 1 wt % at 195 V.  
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Figure 3.3 shows a set of environmental scanning electron microscopy (ESEM) images 

of the typical nanoporous anodic alumina templates fabricated by two-step anodization 

under mild anodization conditions. The interpore distances (dinterp) and pore diameters 

(dp) of these nanostructures are 500 and 160 nm for H3PO4 1 wt % at 195 V (Figures 

3.3 a and b), 400 and 120 nm for H3PO4 0.3 M at 160 V (Figures 3.3 c and d), 100 and 

30 nm for H2C2O4 0.3 M at 40 V (Figures 3.3 e and f), and 20 and 55 nm for H2SO4   

0.3 M at 20 V (Figures 3.3 g and h), respectively. The structural characteristics of the 

typical PD-NAATs fabricated by the two-step technique are summarized in Table 3.1. 

Acid Type C V (V) T (ºC) dinterp (nm) dp (nm) 

1 wt % 195 0 500 160 H3PO4 

0.3 M 160 5 400 120 

H2C2O4 0.3 M 40 5 100 30 

H2SO4 0.3 M 20 5 55 20 

 

Table 3.1 Characteristics of the commonly used acid solutions, anodization voltages 

and temperatures together with the interpore distances (dinterp) and pore diameters (dp) 

of the resulting PD-NAATs. 

 

In order to obtain free-standing nanoporous anodic alumina templates, the underlying 

aluminium substrate is commonly dissolved by selective wet chemical etching using a 

saturated solution of hydrochloric acid and cupric chloride (HCl·CuCl2). Depending on 

the later functionalization stages, it is sometimes appropriate to use lower 

concentrations of the same solution at a low temperature to reduce the heat generated 

in the course of the Al dissolution (i.e. exothermic chemical reaction). Occasionally the 

aluminium substrate needs to be partially dissolved to make the NAAT more 

mechanically stable and easy to handle. This is possible if the areas to be conserved 

are protected with nail lacquer or a special etching window.  
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Figure 3.3 Set of ESEM images of the four types of commonly PD-NAATs fabricated 

by the two-step anodization process. Top and bottom views of PD-NAATs produced by 

a) and b) H3PO4 1 wt % at 195 V. c) and d) H3PO4 0.3 M at 160 V. e) and f) H2C2O4   

0.3 M at 40 V. g) and h) H2SO4 0.3 M at 20 V. 
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An atomic force microscopy (AFM) analysis of the PD-NAATs bottoms reveals that the 

pore bottom tips are closed and covered by a hemispherical oxide barrier layer (Figure 

3.4). In some functionalization processes, the oxide barrier layer needs to be removed 

to obtain nanoporous anodic alumina membranes (NAAMs). There are several 

methods by which this can be done, but the most widely used is chemical etching of 

the pore bottom by a phosphoric acid solution 5 wt % at 35ºC. The NAAT is set on the 

surface of the acid solution with the top (i.e. open side) facing up and the bottom (i.e. 

closed side) facing down and in contact with the acid solution. The etching time 

depends on the thickness of the oxide barrier layer and, therefore, on the anodization 

condition (i.e. voltage, type of electrolyte, etc), with the etch rate between 75 and 100 

nm·h-1. This wet chemical etching technique is very irregular since the pore openings 

are non-uniform and the etching rate is rather difficult to control. In addition, the pore 

diameter enlarges slightly because the acid solution penetrates into the pores before 

the pore opens completely. As Figures 3.4 e and f show, after etching, larger voids 

appear through the bottom of the NAAT and open and closed pores can be observed. 

The resulting NAAMs do not reach the quality requirements of certain later 

applications. Other alternative techniques will be described and discussed in section 

3.2.2. 

 

The pore diameter (dp) and porosity (P) of the typical PD-NAATs fabricated by the two-

step anodization with the four common acid solutions can be modified by means of wet 

chemical etching (i.e. pore widening). For this purpose an aqueous solution of 

phosphoric acid 5 wt % is commonly used at 35ºC. The dissolution rate is 

approximately the same for each of the four common types of PD-NAATs fabricated 

(i.e. 1.4 nm·min-1). Figure 3.5 shows an example of a calibration process that controls 

the pore diameter of PD-NAAT produced with H3PO4 0.3 M at 160 V.  
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Figure 3.4 Set of AFM (before chemical etching) and ESEM (after chemical etching) 

images of a PD-NAAT fabricated with H2C2O4 0.3 M at 40 V. a) AFM top view. b) AFM 

bottom view. c) Magnified view of the blue square in (b). d) Three-dimensional image of 

(c). e) ESEM bottom view after chemical etching for pore opening. f) Magnified view of 

the white square in (e). 
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Figure 3.5 Pore widening calibration for samples fabricated with H3PO4 0.3 M at 160 V. 

a) Experimental relationship between pore diameter (dp) and pore widening time (tpw). 

b) Set of ESEM images of the top views of samples after different lengths of pore 

widening time (i.e. Sa as-produced, Sb 15 min, Sc 30 min, Sd 45 min and Se 60 min). c) 

Pore diameter distributions and Gaussian fits for each sample after measurements 

from the ESEM images in (b).  
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Another phenomenon that has been observed is that, for NAATs fabricated under high 

anodization voltages (i.e. NAATs fabricated with H3PO4 1 wt % at 195 V and H3PO4 0.3 

M at 160 V), more than one pore may grow inside certain concavities mainly located on 

the domain boundaries of the patterned aluminium surface. This is illustrated in Figure 

3.6, which shows ESEM images of the top of two NAATs fabricated with H3PO4 1 wt % 

at 195 V (Figure 3.6 a) and H3PO4 0.3 M at 160 V (Figure 3.6 e). In these ESEM 

images, the domain boundaries are identified by red lines. From magnified views of 

such images, it can be observed that these deformed pores (i.e. red circles) appear 

mainly inside some of the concavities located on the domain boundaries and not within 

these domains (Figures 3.6 b and f). In addition, ESEM images of the bottom views of 

the same NAATs after the aluminium has been removed with a solution of HCl·CuCl2 

show that the domain boundaries (i.e. red lines in Figures 3.6 c and g) on the bottom 

are delimited by holes. From magnified views (Figures 3.6 d and h), it is observed that 

these holes (i.e. red circles) are located on irregular junctions that connect four or five 

non-hexagonally ordered pores and are initially filled with high aluminium nanopillars 

(Figure 3.6 i).  

 

This phenomenon is produced by the fact that the high electric field is strong at high 

anodization voltages, which generates local Joule heating, local compressive stresses 

due to electrostriction and volume expansion due to aluminium oxidation [149,158,173-

175]. All these effects are concentrated mainly at pores located on the domain 

boundaries, deforming the ones on the top and producing irregular junctions on the 

bottom, which are filled with Al in the course of the anodization process. 
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Figure 3.6 Set of ESEM images of NAATs fabricated with H3PO4 1 wt % at 195 V and 

H3PO4 0.3 M at 160 V. a) ESEM top view of a NAAT fabricated with H3PO4 1 wt % at 

195 V (red lines denote domain boundaries). b) Magnified view of the blue square in (a) 

showing the deformed pores (red circles). c) ESEM bottom view of the same NAAT 

shown in (a) after removing the Al substrate (red lines indicate domain boundaries). d) 

Magnified view of the blue square in (c) showing the holes between irregular junctions 

(red circles). e) ESEM top view of a NAAT fabricated with H3PO4 0.3 M at 160 V (red 

lines denote domain boundaries). f) Magnified view of the blue square in (e) showing 

the deformed pores (red circles). g) ESEM bottom view of the same NAAT shown in (e) 

after removing the Al substrate (red lines indicate domain boundaries). h) Magnified 

view of the blue square in (g) showing the holes between irregular junctions (red 

circles). i) ESEM image of Al nanopillars and schematic cross-section view describing 

the generation of deformed pores (top) and aluminium nanopillars (bottom). 
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3.1.2. One-step anodization process (hard anodization)  

Polydomain nanoporous anodic alumina templates with hexagonal pore arrangement 

are fabricated under hard anodization conditions using the one-step anodization 

technique [146]. The annealed and electropolished Al substrates are anodized in 

H2C2O4 0.3 M at 0ºC under high voltages. The experimental setup is the same as the 

one used to produce PD-NAATs by the two-step anodization process but the 

anodization conditions are different. The one-step anodization for fabricating PD-

NAATs under hard anodization conditions is divided into three stages (Figure 3.7 a). 

First, when the acid electrolyte temperature is slightly higher than 0ºC (i.e. about 1ºC), 

the anodization process starts under a constant voltage at 40 V. After about 5 min, the 

electrolyte temperature is very close to 0ºC and the anodization voltage is slowly 

increased at a rate of 0.5 V·s-1 until it reaches the target voltage (i.e. hard anodization 

voltage). Then, the anodization voltage is maintained constant until the desired NAAT 

thickness is reached. Figure 3.7 a shows a typical current density-time (J-t) transient of 

a one-step anodization process under hard anodization conditions. During the one-step 

anodization process, the following three different anodization regimes take place: 

 

i) Mild anodization (MA) regime at 40 V (S1 in Figure 3.7 a). 

ii) Transition anodization (TA) regime at voltage ramp 0.5 V·s-1 (S2 in Figure 3.7 a). 

iii)  Hard anodization (HA) regime at 140 V (S3 in Figure 3.7 a).  

 

These different anodization regimes (i.e. MA, TA and HA) generate three different 

layers on the resulting NAAT (Figure 3.7 b). During the first stage (S1), a protective 

layer of NAA with disordered pores is formed on the aluminium surface. This layer is 

about 500 nm thick and has two main functions: namely, i) to suppress breakdown 

effects due to high temperatures and ii) to enable uniform oxide film growth at high 

voltage. When the anodization voltage is increased (S2), the pores are reorganized 

because the anodization conditions modify the pore lattice constant (i.e. dinterp).  
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In this way, some pores vanish (V in Figure 3.7 c) and others merge (M in Figure 3.7 c) 

or continue (C in Figure 3.7 c) by the self-ordering mechanism during the transition 

regime. The number of pores that vanish, merge or continue cannot be directly 

established by cross-sectional observation because of the heterogeneity of the 

transition layer. However, this value can be estimated indirectly (e.g. by 

electrodeposition of metal into the pores). Section 4.4 makes an exhaustive study of 

how the key parameters (i.e. anodization voltage ramp and hard anodization voltage) 

affect on the quantity of pores that vanish, merge or continue growing by the self-

ordering mechanism. Finally, when the hard anodization voltage is reached (S3), the 

pores growth uniformly at an exponential growth rate, which is characteristic of a hard 

anodization process [146].  

 

It has been demonstrated experimentally that the ordering degree increases as the 

hard anodization voltage increases, the optimum value being 140 V [146]. Higher or 

lower anodization voltages distort the pore lattice. ESEM images of the most 

representative PD-NAATs fabricated by the one-step anodization process under hard 

conditions are shown in Figure 3.8. It can be seen that the protective layer on the top of 

the PD-NAATs is made up of disordered pores (Figures 3.8 a and b). The protective 

layer can be seen in cross-section views (Figures 3.8 c and d). Nevertheless, even at 

high magnifications (Figures 3.8 e and f), the pores that vanish cannot be distinguished 

from those that merge or continue. The bottom views of the same PD-NAATs after the 

aluminium substrate has been removed with a solution of HCl·CuCl2 (Figures 3.8 g and 

h) confirm that the degree of hexagonal pore arrangement is ostensibly higher at 140 V 

than at 120 V. 
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Figure 3.7 One-step anodization process under hard conditions. a) Current density-

time (J-t) transient for a PD-NAAT fabricated by the one-step anodization process 

under hard conditions with H2C2O4 0.3 M at 140 V. b) Schematic cross-section view of 

the resulting PD-NAAT. c) Magnified views of the green and red circles in (b). 
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The most noticeable characteristics of the PD-NAATs fabricated under hard 

anodization conditions are the following: 

 

i) The proportionality constant between the anodization voltage (V) and the interpore 

distance is 2.0 nm·V-1, which is lower than for mild anodization conditions (i.e. 2.5-

2.8 nm·V-1). This reduction is attributed to the lower voltage dependence of both 

the pore diameter (dp) and the oxide barrier layer thickness at the pore bottom tips 

(τBL) under high electric field (i.e. high current density). 

ii) The porosity under hard anodization conditions is between 3.3 and 3.4%, which is 

approximately three times lower than for mild anodization under self-ordering 

conditions (i.e. 10%).  

iii) The proportionality constant between the anodization voltage (V) and the oxide 

barrier layer thickness at the pore bottom tips (τBL) is 1.0 nm·V-1, which is 20% 

lower than for mild anodization conditions (i.e. 1.3 nm·V-1). This reduction is 

related to the high current density (J) associated with the hard anodization 

process. 

iv) The level of impurities for hard anodization conditions is lower than for mild 

anodization conditions, which influences both the electrical and optical properties 

(e.g. the PD-NAATs fabricated under hard conditions are bright yellow and those 

fabricated under mild conditions are transparent (Figure 3.9)).  

v) Strong fracture behaviour at the cell junctions under weak mechanical forces, 

which produces crack propagation across the pores of PD-NAATs fabricated 

under hard conditions [175]. 
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Figure 3.8 Set of ESEM images of PD-NAATs fabricated with H2C2O4 0.3 M at 120 and 

140 V by the one-step anodization process under hard conditions. a and b) Top views 

of NAATs fabricated at 120 and 140 V, respectively. c and d) Cross-section views of 

NAATs fabricated at 120 and 140 V, respectively (red dotted lines denote the transition 

layer from MA to HA). e and f) Magnified views of the transition zone in (c) and (d). g 

and h) Bottom views of NAATs fabricated at 120 and 140 V, respectively.   

 

 

Figure 3.9 Digital photography showing the change in colour of PD-NAATs fabricated 

by the one-step anodization process under hard conditions. The yellow bright increases 

as the hard anodization voltage increases.  
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3.2. Innovative nanoporous anodic alumina templates 

This section presents some alternative processes for fabricating innovative NAATs. 

First, the two-step anodization process is used under hard conditions to produce PD-

NAATs without a protective barrier layer. Second, a re-anodization technique under 

galvanostatic conditions is applied to remove the oxide barrier layer from the pore 

bottom tips of these PD-NAATs. Third, an asymmetric two-step anodization process is 

used to fabricate hierarchical nanoporous anodic alumina templates with a wide range 

of configurations. Fourth, combinations of mild and hard anodization regimes are 

applied to produce bilayered NAATs. Fifth, MD-NAATs with extraordinary pore 

arrangements are generated by nanoimprinting from a silicon nitride master stamp. 

Finally, nanoporous anodic alumina funnels are fabricated by combining anodizing and 

pore widening stages. 

 

3.2.1. Nanoporous anodic alumina templates without protective layer 

under hard conditions 

The one-step anodization process for fabricating PD-NAATs under hard conditions has 

been presented in section 3.1.2. As has been shown, the resulting structures present a 

protective layer of about 500 nm. This layer is composed of disordered pores with an 

average diameter of 30 nm and its main functions are to suppress breakdown effects 

due to high temperatures and to allow uniform pore growth at high voltage. From the 

functionalization point of view, this layer may prevent templates for providing well-

defined nanostructures (e.g. metallic nanowires with rounded terminals). In order to 

remove the protective layer from the top of the PD-NAATs fabricated under hard 

conditions by the one-step process, a wet chemical etching in phosphoric acid solution 

5 wt % at 35ºC was applied. The results (Figure 3.10) demonstrate that this technique 

cannot dissolve this layer entirely without total collapse of the NAAT. Even after long 

etching times, a hair-like layer of Al2O3 remain on the template surface.   
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In addition, the pore diameter is considerably enlarged. Other techniques enable this 

layer to be removed entirely (e.g. ion milling, mechanical polishing, etc), but they 

require expensive laboratory equipment.  

 

In order to fabricate PD-NAATs under hard anodization conditions without a protective 

layer in a fast and cost-effective way, a two-step anodization process is applied. In this 

process, the anodization conditions are modified (Figure 3.11). The first step is the 

one-step anodization process under hard anodization conditions. So, first, the annealed 

and electropolished Al substrates (Figure 3.11 a) are anodized in H2C2O4 0.3 M at 0ºC 

in the electrochemical cell under potentiostatic conditions at 40 V for 5 min. Then, the 

anodization voltage is increased at 0.5 V·s-1 until it reaches the hard anodization 

voltage, which is maintained for 30 min until pore development is complete (Figure 3.11 

b). When the 1st anodization step is finished, the Al2O3 film with the protective layer on 

the top and ordered pores on the bottom is selectively dissolved by wet chemical 

etching in a mixture of phosphoric acid (H3PO4) 0.4 M and chromic acid (H2CrO7) 0.2 M 

at 70ºC.  

 

Figure 3.10 Set of ESEM images of a PD-NAAT fabricated by the one-step anodization 

process under hard conditions after wet chemical etching in phosphoric acid solution 5 

wt % for 1 h at 35ºC. a) Top view. b) Slanted cross-section view (the protective layer 

becomes hair-like alumina after long wet chemical etching).  
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The etching time length is twice as long as the first anodization step (i.e. about 1 h). In 

this way, a hexagonally ordered pattern of hemispherical concavities is produced on 

the aluminium surface by the self-ordering mechanism (Figure 3.11 c). The lattice 

constant of this pattern is the same as the interpore distance for the hard anodization 

voltage. Then, the second anodization step is conducted by directly applying the hard 

anodization voltage. The acid electrolyte concentration is modified in the course of the 

anodization process. For the first 5 min, the acid solution used is H2C2O4 0.05 M in a 

mixture of ethanol and water (EtOH:H2O 1:3 (v:v)). Subsequently, the acid electrolyte 

concentration is increased to 0.3 M. In addition, the stirring rate is increased up 500 

r.p.m. during the course of the anodization process. The electrolyte temperature is 

maintained below 0ºC during the first minutes of the anodization process without 

freezing (i.e. -4ºC, approximately). After 10 min, the system temperature is increased to 

0ºC and remains constant until the anodization process is finished (Figure 3.11 d). 

Ethanol is selected as the dissolvent to reduce the acid electrolyte temperature 

because it has an extremely low freezing point (i.e. -114.3ºC) and does not react with 

Al owing to its weak acidity (i.e. pKa 15.9). This strategy has previously been used to 

produce NAATs under high-field anodization [176,177].  
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In this process, four factors prevent the NAAT from burning as a result of the high 

temperature generated at high voltage. They are the following: 

 

i) The lower acid electrolyte temperature makes it possible to dissipate the large 

amount of heat generated during the anodization process under high voltage 

due to the Joule effect.  

ii) The high stirring rate guarantees a constant flow of cooled electrolyte inside the 

pores and prevents the EtOH from vaporizing at the pore bottom due to high 

temperature. 

iii) The patterning of the Al substrate surface increases the anode area, so the 

current density (J) involved in the process is reduced. 

iv) The reduction of acid electrolyte concentration during the first minutes of the 

anodization process decreases the electric field strength, leading to 

homogeneous pore growth.  

 

 

Figure 3.11 Schematic slanted section views describing the two-step anodization 

process under hard conditions. a) Annealed and electropolished aluminium substrate. 

b) PD-NAATs with a protective layer on the top and ordered pores on the bottom with 

the interpore distance for the hard anodization voltage. c) Patterned Al substrate after 

removing the oxide film. d) PD-NAAT with straight and ordered pores. 
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If the acid electrolyte temperature is excessively high or the stirring rate is not high 

enough, then, the oxide film may burn. This phenomenon is reflected in an abrupt 

increase in the current density (J) and in the generation of a dark yellow spot at the 

NAAT centre. By inspecting ESEM images of a burnt NAAT, it can be seen that a thin 

fused layer of Al2O3 partially covers disordered and branched pores (Figure 3.12 a). If 

the acid electrolyte temperature is reduced and the stirring rate is increased, the oxide 

film does not burn. However, branched pores (i.e. more than one pore per concavity on 

the patterned Al substrate) appear on the concavities located on the domain 

boundaries of the patterned Al substrate (Figure 3.12 b). This generation of branched 

pores is attributed to local concentrations of the field strength that produce 

heterogeneous pore growth. This drawback can be avoided by reducing the acid 

electrolyte concentration during the first minutes of the 2nd anodization step (Figures 

3.12 c and d). Finally, when the pore development is complete, the acid electrolyte 

concentration is increased to conserve the hexagonal pore ordering throughout the rest 

of the anodization process.   

 

With this method, PD-NAATs can be successfully fabricated under hard conditions 

without a protective oxide layer. This ostensibly increases the number of later 

applications because these templates have straight and well-defined pores in all their 

volume. Also no additional stages are required to remove the protective layer after 

anodizing, which noticeably reduces fabrication costs.  
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Figure 3.12 Set of ESEM images of PD-NAATs fabricated by two-step anodization 

process under hard conditions. a) Top view of a burnt NAAT (rests of fused alumina 

and branched pores are denoted by yellow and red arrows, respectively). b) Branched 

pores on the top of a NAAT. c) Top view of the resulting NAAT fabricated under 

suitable conditions at 140 V by the two-step anodization. d) Cross-section view of the 

same NAAT (pores are straight and well-defined). 
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3.2.2. Nanoporous anodic alumina templates without oxide barrier layer  

As is well known, from the functionalization point of view, one of the most important 

disadvantages of as-produced NAATs is that they present an alumina barrier layer 

between the inner side of the pores at the bottom and the aluminium substrate. This 

oxide barrier layer isolates electrically the aluminium substrate from the inner side of 

the pores and impedes to use directly as-produced NAATs for electrodeposition. The 

original structure must be modified by additional stages and several methods have 

been developed for removing this oxide barrier layer. In that regard, several authors 

have characterized and modified the oxide barrier layer by applying re-anodization 

techniques [178-181]. 

 

The most widely used method to remove the oxide barrier layer from the pore bottom 

tips involves the dissolution of the Al substrate in a saturated solution of cupric chloride 

and hydrochloric acid (HCl·CuCl2) or in a saturated solution of mercury (II) chloride 

(HgCl2) and the subsequent pore bottom opening, pore widening and sputtering of a 

metal contact [182,183]. The NAAT can also be detached from the Al substrate by 

applying a reversed-bias voltage in the same anodization electrolyte [184] or a direct-

bias voltage in a mixture of ethanol (EtOH) and perchloric acid (HClO4) [185,186].  

 

When the NAAT is prepared on such substrates as Ag, the oxide barrier layer at the 

pore bottom tips is thinner than those prepared on aluminium substrates [187]. So, this 

oxide barrier layer can be removed without entire dissolution of the NAAT by 

conventional wet chemical etching in phosphoric acid solution 5 wt %. Another way of 

completely removing the oxide barrier layer from the pore bottom tips is to use a 

cathodic polarization method in neutral potassium chloride (KCl) solution. This method 

has been used for samples prepared on n-type silicon substrates with a Ti underlayer 

[188]. This technique can be applied as well as for NAATs prepared on Al substrates, 

but it is previously required stepwise anodization voltage reduction to pre-perforate the 
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oxide barrier layer [189]. In the particular case of NAATs grown on a conducting 

underlayer, the oxide of which has a higher ionic conductivity than alumina, the oxide 

barrier layer can be selectively perforated by this oxide [190]. 

 

In this section, it is discussed an electrochemical approach for dissolving in situ the 

oxide barrier layer of NAATs fabricated by the two-step anodization process under hard 

conditions. This process is carried out in successive re-anodization steps under 

galvanostatic conditions and a criterion to establish when a new step has to begin is 

established. 

 

First, the annealed and electropolished Al substrates are anodized following the two-

step anodization process under hard anodization conditions exposed in section 3.2.1. 

When the 2nd step of the anodization process under potentiostatic conditions is 

finished, a new 3rd step is applied in the same acid electrolyte solution (Figure 3.13). 

This step consists of a stepwise current-limited re-anodization under galvanostatic 

conditions. The starting value of J is established depending on the last value of J 

recorded in the 2nd anodization step. This value is halved and the anodization process 

goes on by applying this current density value. Then, the voltage decreases until it 

reaches an almost steady value. Once this quasi-steady state has been reached, the 

current density is again halved, with the consequent reduction in voltage. The criterion 

by which the current density is again halved and a new step of the current density re-

anodization starts is the instant at which the rate of voltage reduction is 0.1 V·s-1. Each 

re-anodization step implies a reduction of several tens of nanometres of the oxide 

barrier layer thickness (τBL). By repeating this procedure consecutively until reach low 

voltages (i.e. about 5 V), it is possible to reduce the oxide barrier layer of the pore 

bottom tips without pore branching. Finally, to uniformly remove the rest of the oxide 

barrier layer, a conventional wet chemical etching in phosphoric acid solution 5 wt % at 

35ºC is performed.  
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Figure 3.13 Current density and voltage-time (J-t and V-t) transients for a PD-NAAT 

fabricated by the two-step anodization process under hard conditions with H2C2O4     

0.3 M at 120 V and the re-anodization process under galvanostatic conditions to 

remove the oxide barrier layer from the pore bottom tips. Each different background 

indicates each of the four stages of the process (yellow-1st anodization step, white-

removing the alumina layer, orange-2nd anodization step and red-3rd re-anodization 

step).  
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When the re-anodization current density is suddenly halved, the quantity of electro-

generated aluminium cations (Al3+) decreases. This implies a reduction of the oxide 

formation rate because of the lack of aluminium cations. However, the oxide dissolution 

rate remains steady for some time at the inner side of the pore bottom tips owing to this 

chemical reaction depends mainly on the local temperature. Therefore, the net effect is 

that the oxide barrier layer gets thinner, which is reflected in a decrease in the anodic 

voltage. This oxide barrier layer thinning at the pore bottom tips can also be expressed 

in terms of the pore branching (Figure 3.14). So, when the applied current density is 

halved, the voltage decreases and pore branching occurs at the pore bottom tips. 

However, just before the new pores are completely developed and begin to grow in a 

steady growth rate, the current density is halved again and new branched pores are 

generated inside those recently generated pores. In this way, by repeating this process 

consecutively, the oxide barrier layer thickness of the original pores is reduced without 

the complete growth of new pores.  

 

As can be seen in Figure 3.15, by the end of the process, the oxide barrier layer of the 

initial structure (Figure 3.15 a and b) has been completely removed from the pore 

bottom tips (Figures 3.15 c and d). During this process, the pore diameters also 

increase several tens of nanometres due to the applied wet chemical etching. The pore 

opening is homogeneous throughout the metal-oxide interface and the NAAT remains 

on the aluminium substrate. However, it must be taken into account that the resulting 

NAAT can be broken down by mechanical stress given that the conversion of 

aluminium to alumina involves large stresses. The theoretical Pilling-Bedworth Ratio 

(PBR) for porous alumina formation with a 100% current efficiency is 1.60 and its 

experimental value under conditions similar to those used in our process is 1.18 [151]. 

Moreover, the oxide barrier layer gives mechanical stability to the NAAT and, when it is 

removed, the fragility of the resulting NAAT increases. In order to prevent peeling off or 

fracture as far as possible, the NAAT has to be thick enough to resist these stresses.  
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In addition, the value of the current density at each step of the re-anodizing stage must 

be enough in the following step to prevent partial discharges in the oxide barrier layer. 

These discharges are produced by an insufficient reduction in ionic species and can 

generate non-uniform branched current pathways across the oxide barrier layer that 

lead to produce disordered branched pores as a result of the mechanical stress 

between neighbouring pores.  

 

 

Figure 3.14 Schematic slanted and cross-section views describing the re-anodization 

process for removing the oxide barrier layer from the pore bottom tips of NAATs 

fabricated by the two-step anodization process under hard conditions. Magnified views 

of the pore bottom tips after each step of the re-anodization process are shown in red 

circles. In this case, it is represented a virtual re-anodization process of 3 steps. 
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By means of this technique, it is possible to fabricate NAATs without oxide barrier layer 

at the pore bottom tips that remain attached to the aluminium substrate. In contrast to 

other techniques, by this method, the post-treatment costs of the as-produced NAATs 

are considerably reduced. As it will be shown in 4.1, such resulting nanostructures can 

be used to fabricate arrays of metallic nanopillars on aluminium substrates by direct 

electrodeposition.  

 

 

Figure 3.15 Set of ESEM images of a NAAT fabricated by the two-step anodization 

process under hard conditions before and after the re-anodization process. a) General 

cross-section view before the re-anodization process. b) Magnified view of the yellow 

square in (a). c) Cross-section view after the re-anodization process. d) Slanted cross-

fracture after the re-anodization process (yellow arrowheads indicate the aluminium 

substrate inside the opened pores). 
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3.2.3. Hierarchical nanoporous anodic alumina templates 

As was commented in 3.1.1, the general structure of nanoporous anodic alumina 

templates fabricated by the two-step anodization process is a close-packed array of 

hexagonally arranged cells containing pores in each cell-centre. Geometric 

characteristics such as pore diameter, interpore distance, porosity and pore density are 

determined by the anodization voltage, temperature (T), and type and concentration of 

the acid electrolyte. Thus, self-ordered nanoporous anodic alumina can be fabricated 

with a relatively wide range of these geometric characteristics. However, from the point 

of view of developing nanostructures with new morphologies, it is very interesting to 

modify the original structure of nanoporous anodic alumina templates fabricated by the 

two-step anodization process. To this end, it is possible to use several strategies that 

allow changing the original structure of self-ordered nanoporous anodic alumina 

templates. One example of this is to use an asymmetric two-step anodization process, 

in which the anodization conditions (i.e. anodization voltage (V), and acid electrolyte 

type and concentration (C)) between the first and second step are modified (Figure 

3.16). The resulting nanostructure based on self-ordered nanoporous anodic alumina, 

which is called hierarchical nanoporous anodic alumina templates (HNAATs), consists 

of an outer hexagonal lattice of concavities inside which a number of pores grow. The 

geometric characteristics of the outer concavities and the inner pores depend on the 

anodization conditions used during the first (Figure 3.16 a) and the second step (Figure 

3.16 c) of the anodization process, respectively. So, HNAATs with a wide range of 

geometric characteristics can be obtained. The interpore distance and pore diameter of 

both outer concavities and inner pores can be adjusted by establishing the anodization 

parameters to satisfy the requirements of later applications (e.g. gas sensors, solar 

cells, photonic devices, filters, etc).  
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Figure 3.16 Schematic cross-section and top views describing the asymmetric two-

step anodization process for fabricating HNAATs. a) First step of the anodization 

process under conditions (a). b) Pattern on the aluminium substrate surface after 

removing the oxide film by wet chemical etching. c) Second step of the anodization 

process under conditions (b). Magnified views of the cross-section (red circle in (c)) 

and top (orange circle in (c)) of the resulting HNAAT.  
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In order to study how the anodization parameters affect on the resulting hierarchical 

nanoporous anodic alumina templates, four primary anodization conditions are 

arbitrarily chosen: namely, i) H3PO4 0.3 M at 170 V and 5ºC (MA), ii) H2C2O4 0.3 M at 

40 V and 5ºC (MA), iii) H2C2O4 0.3 M at 120 V and 0ºC (HA) and iv) H2SO4 0.3 M at    

18 V and 5ºC (MA). These conditions (or these conditions with a slight modification in 

the voltage or in the acid concentration) are used in the 1st or 2nd anodization step in 

different combinations so as to provide HNAATs with different geometric 

characteristics. Table 3.2 summarizes the combinations and modifications of the 

anodization conditions applied during the 1st and 2nd step, and the time length of the 

pore widening (tpw) applied after the anodization process. Samples are classified 

according to the parameter that is changed in the second step with respect to the first 

(i.e. voltage, acid type or concentration). 

 

1st Step 2nd Step 
Parameter Sample Acid V 

(V) 
C 
(M) 

T 
(ºC) 

Acid V 
(V) 

C  
(M) 

T  
(ºC) 

tpw  (min) 

S1 H2C2O4 120 0.3 0 H2C2O4 40 0.3 5 15 

S2 H2C2O4 40 0.3 5 H2C2O4 20 0.3 5 15 V 

S3 H3PO4 170 0.3 5 H3PO4 85 0.3 5 10 

S4 H3PO4 170 0.3 5 H2C2O4 120 0.3 0 15 

S5 H3PO4 170 0.3 5 H2C2O4 40 0.3 5 10 

S6 H3PO4 170 0.3 5 H2SO4 18 0.3 5 10 

S7 H2C2O4 120 0.3 0 H2SO4 18 0.3 5 5 

Acid 

S8 H2C2O4 40 0.3 5 H2SO4 18 0.3 5 5 

S9 H3PO4 170 0.3 5 H3PO4 170 0.2 5 15 
C 

S10 H2C2O4 120 0.3 0 H2C2O4 120 0.1 0 15 

 

Table 3.2 Anodization conditions for fabricating the different types of HNAATs.  
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To produce hierarchical nanoporous anodic alumina templates, the annealed and 

electropolished Al substrates are anodized in our home-made electrochemical cell. The 

first anodization step depends on whether the anodization regimen is mild (MA) or hard 

(HA). For the samples fabricated under mild anodization conditions (i.e. S2, S3, S4, S5, 

S6, S8 and S9) the first step consists of applying directly the corresponding anodization 

voltage from the beginning. For the samples fabricated under hard anodization 

conditions (i.e. S1, S7 and S10) a thin protective oxide layer is first formed on the 

aluminium surface to suppress breakdown effects due to high temperature and enable 

uniform oxide film growth at high voltage. When the first anodization step finishes, the 

aluminium oxide film is dissolved by wet chemical etching in a mixture of phosphoric 

acid 0.4 M and chromic acid 0.2 M at 70ºC for twice the time length as the first 

anodization step. In this way, a pattern of hexagonally arranged concavities is 

produced on the aluminium surface. Then, the 2nd step of the anodization process is 

carried out under asymmetric anodization conditions (i.e. one or two anodization 

parameters are changed respect to the 1st step) and pores (i.e. inner pores) grow 

inside the concavities on the aluminium surface, which become alumina after 

anodizing. The anodization voltage is maintained until the hierarchical nanoporous 

anodic alumina template is thick enough to handle. After anodizing, the remaining 

aluminium substrate is removed in a saturated solution of HCl·CuCl2. So, it is possible 

to observe by ESEM the bottom of the resulting HNAATs. Finally, the pores are slightly 

widened by wet chemical etching in phosphoric acid solution 5 wt % at 35ºC to make it 

easier ESEM image analysis.  
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Figure 3.17 shows a set of ESEM images of the fabricated HNAATs (i.e. from S1 to 

S10). At first glance, it is observed that, under the applied anodization conditions, it is 

possible to fabricate HNAATs with a wide range of geometric characteristics such as 

interconcavity (dinterconc) and interpore (dinterp) distance (i.e. centre-to-centre concavity 

and pore distance, respectively) and concavity (dconc) and pore (dp) diameter. Also, in 

order to determine the extent of pore generation, the pore density (ρp/conc), that 

represents the number of pores per concavity, is estimated. The obtained results are 

summarized in Table 3.3.  

 

Sample dinterconc (nm) dinterp (nm) dconc (nm) dp (nm) 
ρp/conc 

(pores/concavity)

S1 249.3 ± 32.9 105.0 ± 9.2 219.0 ± 18.7 45.9 ± 10.4 10.1 ± 1.7 

S2 104.0 ± 9.7 74.4 ± 8.7 64.5 ± 7.8 22.1 ± 3.6 1.9 ± 0.8 

S3 393.1 ± 37.2 126.2 ± 16.0 326.2 ± 31.5 108.0 ± 23.3 3.6 ± 0.7 

S4 405.6 ± 46.7 282.8 ± 28.1 303.5 ± 37.0 64.0 ± 16.4 6.3 ± 1.2 

S5 413.6 ± 37.1 97.6 ± 9.7 367.6 ± 30.0 36.5 ± 7.0 15.3 ± 3.0 

S6 397.0 ± 45.4 48.1 ± 8.6 369.2 ± 53.3 23.1 ± 3.7 61.4 ± 6.5 

S7 292.0 ± 35.2 47.5 ± 7.3 264.4 ± 41.0 23.4 ± 4.5 38.4 ± 3.5 

S8 104.4 ± 10.5 55.5 ± 9.3 83.2 ± 11.5 21.0 ± 3.0 5.2 ± 0.8 

 

Table 3.3 Geometric characteristics of the resulting HNAATs after image analysis 

(dinterconc, dinterp, dconc, dp and ρp/conc). Values corresponding to samples S9 and S10 are 

not shown because in these samples there was not homogenous pore generation. 

 

As follows, it will be made an exhaustive analysis of the influence of each anodization 

parameter on the resulting HNAATs. 
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Figure 3.17 Set of ESEM images of the different types of HNAATs fabricated by the 

asymmetric two-step anodization process. a) Top view of the corresponding HNAAT. b) 

Bottom view of the corresponding HNAAT after removing the Al substrate by wet 

chemical etching. 

 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



3. Fabrication Methods of Nanoporous Anodic Alumina Templates 
 

_____________________________________________________________ 
 

80

For samples S1, S2 and S3, the anodization voltage is reduced between the first and 

the second step while the rest of anodization parameters (i.e. type of acid electrolyte 

and concentration) are kept constant. In the case of samples S4 to S8, the voltage is 

also changed as a consequence of the acid electrolyte type change. As Figure 3.17 

shows, for samples from S1 to S8, the generation of pores inside the concavities is 

practically uniform through the top of the HNAATs. The value of the pore density 

(ρp/conc) as a function of the voltage ratio between the first and the second step (RV2/V1), 

which is defined as the ratio of the second step voltage (V2) to the first step voltage 

(V1), is represented in Figure 3.18 for samples from S1 to S8. The mathematical 

relationship between the pore density and the voltage ratio is also included in this 

graph. The trend line is calculated for the range of RV2/V1 studied (i.e. 0.11-0.71). The 

results suggest a noticeable increase in the density as the voltage ratio decreases. It is 

interesting to note, however, the difference in pore density for samples S2 and S3. 

Both correspond to a RV2/V1 = 0.50, but for different acids. More specifically, the pore 

density is 1.92 for oxalic acid and 3.58 for phosphoric acid for the same voltage ratio 

(i.e. 0.50). This suggests that the type of acid influences the relationship between the 

pore density and the voltage ratio. It is also observed that a major decrease in the 

anodization voltage between the first and the second step increases the pore density 

for the same acid electrolyte, the value of which is 10.08 for S1 and 1.92 for S2 with 

RV2/V1 0.33 and 0.50, respectively.  

 

In samples from S4 to S8 an asymmetric process with a different acid electrolyte in the 

1st and 2nd anodization step is applied. The combinations are chosen so that the 

second anodization step voltage (V2) is lower than the first anodization step voltage 

(V1). An interesting result is observed for samples S6, S7 and S8. In contrast with 

previous studies [191,192], it is found that the pores do not only appear at the bottom 

of the concavities but also nucleate on their walls.  
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To confirm this, an AFM image analysis is carried out for sample S6 (Figure 3.19 a, b 

and c) and a cross-sectional ESEM image analysis for sample S5 (Figure 3.19 d). Both 

the top and cross-section views from AFM images (Figure 3.19 a, b and c) reveal that 

pores do not only nucleate and grow on the bottom of the concavities but also on their 

walls. This is shown by the points 1, 2, 8 and 9 of the AFM cross-section (Figure 3.19 

c). This phenomenon is attributed to the fact that pores cannot nucleate on the outer 

hexagonal lattice of the concavities since the alumina-aluminium interface angle (θ0-m) 

is less than 180 degrees there and, then, the field-assisted oxide dissolution is 

suppressed. So, they are forced to nucleate and grow on the walls of the concavities 

and perpendicularly to the Al surface, what distorts the corresponding pore lattice 

constant.  

 

 

Figure 3.18 Pore density-voltage ratio (ρp/conc-RV2/V1) relationship for samples from S1 

to S8 (filled black circles). The red solid curve represents the potential fit of the 

experimental data. 
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Figure 3.19 Set of AFM and ESEM images of different types of HNAATs fabricated by 

the asymmetric two-step anodization process. a) AFM top view of the resulting HNAAT 

obtained under conditions S6. b) Magnified view of the blue square in (a). c) Cross-

section profile of the same HNAAT corresponding to the white line in (b). d) ESEM 

cross-section view of the resulting HNAAT obtained under conditions S5.  
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Another result that is worth noting is found for samples S6, S7 and S8, in which the 

conditions of the second anodization step are the same (i.e. anodization voltage, type 

and acid concentration) but the first step conditions are different. In these conditions, 

as Figures 3.20 a and b show, the minimum of the anodization current density (J) 

versus time (t) transient is shifted with respect to the symmetric process (i.e. 

anodization process using H2SO4  0.3 M at 18 V for both the 1st and 2nd anodization 

step). More concretely, the minimum appears later tmin and has a lower value Jmin. 

Furthermore, for larger interconcavity distances (dinterconc) on the patterned aluminium 

surface, the minimum appears at a longer tmin and the Jmin value is lower. The 

corresponding values of tmin and Jmin are represented in Figure 3.20 c together with the 

corresponding trend lines. This shift can also be explained as follows. When the 

anodization conditions applied during the second step of the anodization process 

reduce the pore lattice constant with regards to the first step (i.e. asymmetric process), 

some nucleating centres (i.e. the preferred location for pore growth) appear on the 

concavity walls of the patterned aluminium surface since the pores cannot nucleate on 

the outer hexagonal lattice of the concavities (where θo-m is less than 180º). Then, as 

Figure 3.21 illustrates, some pores nucleate and begin to grow on the concavity walls. 

The number of these pores increases as the concavities on the patterned aluminium 

surface gets wider and deeper (S8→S7→S6), which is reflected in an increase in tmin 

and a decrease in Jmin (Figure 3.20 c). However, after a certain time, these pores 

vanish and merge by the self-ordering mechanism and the current density curve leads 

to a constant value when the steady-state pore growth is reached. As Figure 3.20 a 

shows, this value is reached more quickly in the symmetric process than in the 

asymmetric processes. This phenomenon may be related to the arrangement of pores 

inside the concavities, which is slower because of the distortion in the corresponding 

pore lattice constant. This distortion is counteracted when some pores vanish and 

merge by the self-ordering mechanism until the pore lattice constant for the applied 

anodization conditions is reached.  
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Finally, it is observed that the steady-state value is the same in all the studied cases 

(i.e. Sy, S6, S7 and S8), which means that the interpore distance on the bottom of the 

HNAAT after a certain anodization time depends only on the anodization voltage 

applied during the second step of the anodization process. This is confirmed by ESEM 

image analysis of the bottom of the HNAATs (Figure 3.17). These results agree with 

previous studies in which a set of asymmetric anodizations are carried out by modifying 

the anodization voltage in the second step of the process but keeping the voltage in the 

first step constant and using the same acid electrolyte throughout the process [192]. 

 

For samples S9 and S10, the acid electrolyte concentration between the first and the 

second step of the anodization process is modified. In these conditions, it is observed 

that, unlike samples from S1 to S8, the generation of pores is not uniform through the 

top surface of the HNAATs and there are two or three pores per concavity at most. This 

can be seen in Figure 3.22, which shows ESEM images of the surface of samples S9 

and S10. This fact is mainly attributed to the reduction of the acid electrolyte 

concentration reduces the electric field strength while the average interpore distance 

remains practically constant, because it depends essentially on the anodization voltage 

(Table 1.1). For instance, Figure 3.22 shows that, in the case of sample S9, when the 

acid electrolyte concentration is reduced from 0.3 to 0.2 M (Figure 3.22 a) some 

concavities present more than one pore per concavity. However, when the acid 

electrolyte concentration is reduced to 0.1 M only one pore per concavity can be 

observed (Figure 3.22 b). In the case of sample S10, when the acid electrolyte 

concentration is decreased from 0.3 to 0.1 M, certain quantity of concavities presents 

more than one pore (Figure 3.22 c). After subsequent experiments, it is proven that, 

when the acid electrolyte concentration is reduced to 0.015 M, just one pore per 

concavity is found on the top surface of the HNAAT (Figure 3.22 d). As it is commented 

in section 3.2.1, to reduce noticeably the acid concentration during the initial stage of 
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the 2nd step of the anodization process is a successful strategy for fabricating NAATs 

by the two-step hard anodization process without a protective layer.  

 

Figure 3.20 Current density-time (J-t) transients corresponding to the second 

anodization step for the samples S6, S7, S8 and the symmetric process with H2SO4  

0.3 M at 18 V (Sy). a) J-t transients for the first 1800 s. b) J-t transients for the first   

400 s in (a). c) Time values (tmin) (solid red line and circles-left scale) and current 

density values (Jmin) (solid black line and stars-right scale) corresponding to the minima 

of the current density curves in (a) as a function of the corresponding interconcavity 

distance (dinterconc).  
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Another observed phenomenon is that, in samples S9 and S10, these concavities with 

more than one pore are located close to the domain boundaries of the patterned 

aluminium surface. This is illustrated in Figure 3.23, in which samples S9 and S10 are 

depicted at two different magnifications. In these images, the domain boundaries are 

identified by red solid lines and the concavities with more than one pore appear 

preferentially close to these domain boundaries and not inside the concavities within 

the alumina domains. These boundaries seem to act as nucleation centres for 

generating more than one pore per concavity. All this can be attributed to the fact that 

the reduction in the acid electrolyte concentration decreases the strength of the electric 

field at the aluminium oxide barrier layer. Consequently, the growth of pores is inhibited 

except at those sites where the electric field is somewhat enhanced (i.e. domain 

boundaries). This leads to the development of non-uniform current pathways through 

the Al2O3 barrier layer during the initial stage of the second anodization step and to the 

formation of more than one pore per concavity. 

 

 

 

 

 

Figure 3.21 Schematic cross-section view describing how pores nucleate and grow 

inside the concavities of the HNAAT but some of them close to the outer hexagonal 

lattice vanish (V) or merge (M) by the self-ordering mechanism.   
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Figure 3.22 Set of ESEM images of the HNAATs fabricated under conditions S9 and 

S10 by the asymmetric two-step anodization process. a) Top view of sample S9 at    

0.2 M and b) 0.1 M. c) Top view of sample S10 at 0.1 M and b) 0.015 M. The red 

circles indicate concavities with more than one pore. 
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One of the main advantages of hierarchical nanoporous anodic alumina templates is 

that they are very versatile, because their geometric characteristics such as 

interconcavity and interpore distance, concavity and pore diameters, and pore density 

can be designed to satisfy the requirements (e.g. relationship between concavity and 

pore diameters, etc) of later applications (e.g. filters, sensors, solar cells, etc). One 

application of these nanostructures will be exposed in section 4.2, where the fabrication 

process of quasi-ordered P3HT nanopillar-nanocap structures with controlled size from 

HNAATs is shown in detail. 

 

 

Figure 3.23 Set of ESEM images at two different magnifications of the HNAATs 

fabricated under conditions S9 and S10 by the asymmetric two-step anodization 

process. a) Top view of sample S9. b) Magnified view of the red square in (a). c) Top 

view of sample S10. d) Magnified view of the red square in (c). 
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3.2.4. Bilayered nanoporous anodic alumina templates 

This section discusses the fabrication process of bilayered nanoporous anodic alumina 

templates. Two anodization regimes (i.e. mild anodization (MA) and hard anodization 

(HA)) are combined to obtain NAATs with two types of layers. The pores of these 

layers present different geometric characteristics (i.e. interpore distance and pore 

diameter, mainly). In order to fabricate bilayered nanoporous anodic alumina templates 

(BNAATs), the two-step anodization technique is used to anodize the annealed and 

electropolished Al substrates. The first anodization step consists of applying directly the 

anodization voltage for mild anodization (i.e. 40 V) with H2C2O4 0.3 M for 24 h. When 

the first anodization step finishes, the aluminium oxide film is dissolved by wet chemical 

etching using a mixture of H3PO4 0.4 M and H2CrO3 0.2 M at 45ºC for the same length 

of time as the first anodization step, approximately. Then, the 2nd step of the 

anodization process is started under the same anodization conditions (i.e. H2C2O4     

0.3 M at 40 V). When the oxide layer reaches a previously established thickness, the 

anodization voltage is increased at a certain rate until the hard anodization voltage is 

reached. This process is conducted until the hard oxide layer achieves the previously 

established thickness. In this way, it is possible to produce NAATs with two types of 

layers, the first one under mild conditions and the second one under hard conditions. 

Subsequently, the remaining aluminium substrate is removed in a saturated solution of 

HCl·CuCl2, and a pore opening process is carried out using a reactive ion etching 

(RIE), which combines a mixture of two types of gases (i.e. oxygen (O2) and 

tetrafluoromethane (CF4)) with a plasma source. After this, both sides of the BNAATs 

(i.e. mild and hard sides) are inspected by ESEM.  
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In order to control the thickness of each layer, an anodizing system is used to control 

the total current charge (Q). This system calculates the total current charge of the 

anodization process (i.e. the integrated current passed through the system) in real time 

and stops when it reaches the pre-set target value of Q. Before fabricating the 

BNAATs, several calibration processes are carried out to relate the template thickness 

(τ) to Q depending on the anodization voltage (Figure 3.24). Four different anodization 

voltages are applied (i.e. 40, 80, 110 and 140 V) and four samples are fabricated for 

each one at different total current charge limits (i.e. 10, 20, 30 and 40 A·s). The 

template thickness is measured at ten different cross-sections for each sample. The 

growth rates obtained and the respective linear fittings are summarized in Table 3.4. In 

this way, the total current charge limits are established as a function of the layer 

thickness for each anodization voltage.  

 

Figure 3.24 Template thickness (τ) as a function of the total current charge (Q) for 

each of the anodization voltages (i.e. 40, 80, 110 and 140 V) together with their 

corresponding linear fittings (equations are shown in Table 3.4).  
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Once the calibration processes have finished, the BNAATs can be designed. In this 

case, the experimental conditions are selected to fabricate BNAATs with a total 

thickness of 40 μm (i.e. 20 μm for the MA side and 20 μm for the HA side). A set of 

ESEM images of the BNAATs obtained is shown in Figure 3.25.  

 

In order to estimate the qualitative and quantitative influence of the main anodization 

parameters (i.e. anodization voltage ramp and hard anodization voltage) on the pore 

density of the hard side (ρp(HA)) of each type of BNAAT, a 3k-factorial design is chosen 

to optimize the number of experiments and to investigate possible quadratic effects in 

the relationship between parameters and the variable studied. The two experimental 

parameters analyzed (k = 2) are the anodization voltage ramp (Rv) and the hard 

anodization voltage (VHA). These experimental parameters are modified at three levels 

(i.e. low, medium and high): namely, 0.5, 1.0 and 2.0 V·s-1 for Rv and 80, 110 and     

140 V for VHA. So, a total of 32 = 9 experiments are performed.  

 

Anodization Voltage 

(V) 

Growth Rate 

(μm·(A·s)-1) 

Linear Fitting 

(τ  versus Q ) 

Correlation 

Coefficient (R) 

40 0.48 τ (μm) = 0.48·Q (A·s) + 0.24 0.99977 

80 0.57 τ (μm) = 0.57·Q (A·s) + 0.31 0.98583 

110 0.58 τ (μm) = 0.58·Q (A·s) + 1.66 0.99993 

140 0.63 τ (μm) = 0.63·Q (A·s) + 3.74 0.99245 

 

Table 3.4 Growth rates and linear fittings after various calibration processes. 
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A summary of the fabrication conditions of the BNAATs produced (i.e. experimental 

matrix) is shown in Table 3.5. 

  VHA (V) 

 Sample Label 80 110 140 

0.5 S0.5 - 80 S0.5 - 110 S0.5 - 140 

1.0 S1.0 - 80 S1.0 - 110 S1.0 - 140 

R
v (

V
·s

-1
) 

2.0 S2.0 - 80 S2.0 - 110 S2.0 - 140 

 

Table 3.5 Experimental matrix showing the experiments performed to fabricate nine 

different types of BNAATs. The BNAATs are labelled as a function of the 

corresponding values of Rv and VHA. 

 

The average value of the main geometric characteristics of each type of BNAAT such 

as the interpore distance of the mild side (dinterp(MA)), the interpore distance of the hard 

side (dinterp(HA)), the pore density of the mild side (ρp(MA)) and the pore density of the 

hard side (ρp(HA)) are analyzed in detail and measured through ESEM image analysis. 

The results are shown in Table 3.6. 

 

In order to reduce the uncertainty in the data derived, ρp(HA) is measured in four 

different areas of the same sample (i.e. four replications per sample) and calculated as 

the number of pores per analyzed area. All the data collected (i.e. a total of 36 

measurements) are compiled in Table 3.7. 
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Sample 
dinterp(MA) 

(nm) 

dinterp(HA) 

(nm) 

ρp(MA) ·1010 

(pores·cm-2) 

ρp(HA) ·109 

(pores·cm-2) 

S0.5 - 80 194 ± 15 2.99 ± 0.18 

S0.5 - 110 228 ± 14 2.06 ± 0.11 

S0.5 - 140 283 ± 11 1.83 ± 0.25 

S1.0 - 80 200 ± 15 2.64 ± 0.12 

S1.0 - 110 222 ± 18 2.13 ± 0.16 

S1.0 - 140 279 ± 12 2.02 ± 0.08 

S2.0 - 80 206 ± 16 2.13 ± 0.19 

S2.0 - 110 244 ± 17 2.03 ± 0.08 

S2.0 - 140 

105 ± 7 

285 ± 29 

1.05 ± 0.11 

1.61 ± 0.11 

 

Table 3.6 Geometric characteristics of the fabricated BNAATs. Interpore distance of 

the mild side (dinterp(MA)), interpore distance of the hard side (dinterp(HA)), pore density 

of the mild side (ρp(MA)) and pore density of the hard side (ρp(HA)). 
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Figure 3.25 Set of ESEM images of the top, bottom and cross-section views of the 

different types of BNAATs together with a cross-section schematic view describing the 

general structure of these BNAATs. 
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 VHA (V) 

 

ρp(HA) ·109 

(pores·cm-2) 80 110 140 

0.5 3.11 2.21 1.58 

 3.02 2.03 1.69 

 2.73 1.95 2.15 

 3.10 2.06 1.88 

1.0 2.65 2.04 2.04 

 2.71 2.35 1.93 

 2.73 2.12 2.12 

 2.47 1.99 1.99 

2.0 2.36 1.93 1.73 

 2.12 2.03 1.59 

 2.15 2.12 1.65 

R
v (

V
·s

-1
) 

 1.90 2.05 1.47 

 

Table 3.7 Complete set of the ρp(HA) measurements for each BNAATs.  

 

Below, an analysis of variance (ANOVA) of the experimental results is carried out, 

which will give objective conclusions about how the anodization parameters (i.e. Rv and 

VHA) affect the analyzed variable (i.e. ρp(HA)).  
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If the effects of Rv and VHA are αi and βj, respectively, the following three null 

hypotheses are tested by means of the ANOVA test: 

 

i) H0: (α·β)ij = 0 (there is not significant effect of the interaction between the 

anodization parameters (i.e. Rv·VHA) on ρp(HA)). 

ii) H1: αi = 0 (there is not significant effect of Rv on ρp(HA)). 

iii) H2: βj = 0 (there is not significant effect of VHA on ρp(HA)). 

 

If these hypotheses are rejected, then, the alternative hypotheses will be accepted. 

These alternative hypotheses are presented as follows: 

 

i) H0*: (α·β)ij ≠ 0 (there is significant effect of the interaction between the 

anodization parameters (i.e. Rv·VHA) on ρp(HA)). 

ii) H1*: αi ≠ 0 (the effect of Rv on ρp(HA) is significant). 

iii) H2*: βj ≠ 0 (the effect of VHA on ρp(HA) is significant). 

 

The ANOVA table is calculated from the equations shown in Table 3.8, where SS is the 

sum of squares of the source, DF denotes the degree of freedom of the source, MS is 

the mean square of the source, F0 is the test statistic of this source, a and b denote the 

total number of levels for Rv and VHA, respectively, and n is the total number of 

replications.  
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Source SS DF MS F0 

Rv  ∑
=
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Table 3.8 Equations of the ANOVA table for a 32-factorial design. 

 

The strategy used to test the null hypotheses H0, H1 and H2 is to compare the value of 

F0 calculated from the ANOVA table to the value of the F-distribution for a significance 

level of 95% (i.e. 0.05) with the corresponding value of DF(Source) and DF(Error) (i.e. 

F(0.05; DF(Source); DF(Error))). In this way, the tested null hypotheses (i.e. H0, H1 and H2) 

associated with each case enumerated above will be rejected if the following results 

are obtained: 

 

i) F0-Rv·VHA ≥ F(0.05; DF(Rv·VHA); DF(Error)).  

ii) F0-Rv ≥ F(0.05; DF(Rv); DF(Error)).  

iii) F0-VHA ≥ F(0.05; DF(VHA); DF(Error)).  

 

 

So, after the values of each parameter are substituted in the equations shown in Table 

3.8, the resulting ANOVA is presented in Table 3.9.  
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Source SS DF MS F0 

Rv (V·s-1) 0.997 2 0.498 21.99 

VHA (V) 3.680 2 1.840 81.21 

Rv ·VHA (V2·s-1) 0.840 4 0.210 9.27 

Error 0.610 27 0.023 

Total 6.130 35 

 

Table 3.9 ANOVA table for the 32-factorial design corresponding to table 3.7. 

 

The ANOVA test confirms that the interaction between Rv and VHA is significant 

because 9.27 is much larger than F(0.05; 4; 27) = 2.73. So, the hypothesis H0 is rejected. It 

is also shown that the effect of VHA on ρp(HA)  is approximately four times stronger than 

the effect of Rv, although they are both significant (i.e.  81.21 and 21.99 > F(0.05; 2; 27) = 

3.35). 

 

In order to determine the combined effect of the main anodization parameters (i.e. Rv 

and VHA) on the studied variable (ρp(HA)) and their individual effects, we analyze how 

the variable changes when one of the parameters is fixed and the other is varied and 

vice versa. The results can be seen in Figure 3.26. First, it is observed that ρp(HA) 

varies linearly when the value of Rv is changed at 80 V. However, this linear behaviour 

disappears at 110 and 140 V (Figure 3.26 a). This reveals the presence of quadratic 

effects on the pore density of the hard side as the hard anodization voltage increases. 

When Rv is fixed and VHA is modified, a slight quadratic effect appears when the hard 

anodization voltage increases at 2.0 V·s-1 (Figure 3.26 b). These quadratic effects on 

ρp(HA) can be observed both in the 2D contour plot (Figure 3.26 c) and the 3D 

representation (Figure 3.26 d).  
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From the electrochemical point of view, these results can be explained in terms of the 

self-ordering mechanism. As was mentioned in the introduction, pore ordering depends 

mainly on the anodization voltage and for a given acid electrolyte the hexagonal pore 

arrangement is perfect only under particular anodization conditions. In the case of 

oxalic acid, these conditions are 40 and 140 V for mild and hard anodization regimes, 

respectively. For intermediate anodization voltages (i.e. 80 and 110 V), the pore 

ordering is disturbed because the porosity is progressively modified from about 10 (i.e. 

at 40 V) to 3.3% (i.e. at 140 V). So, the quadratic effects observed in ρp(HA) when Rv 

and VHA are modified can be attributed to nonlinear instabilities of the pore ordering 

during the anodization regime transition from MA to HA. It is also proven that the 

anodization voltage ramp influences the pore density of the hard side as well as the 

hard anodization voltage, although the effects are weak and strong, respectively.  
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Figure 3.26 Set of graphics of ρp(HA) as a function of the main anodization parameters 

Rv and VHA. a) Average values of ρp(HA) as a function of Rv for each value of VHA. b) 

Average values of ρp(HA) as a function of VHA for each value of Rv. c) 2D contour plot 

of ρp(HA) as a function of Rv and VHA. d) 3D representation of ρp(HA) as a function of Rv 

and VHA. 
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3.2.5. Perfectly ordered nanoporous anodic alumina templates 

This section discusses the fabrication process of monodomain nanoporous anodic 

alumina templates (MD-NAATs) by nanoimprinting. Nanoimprinting has been improved 

[160-164] since it was first used to fabricate high-aspect ratio MD-NAATs [20], and it is 

now one of the most cost-effective and efficient methods of producing MD-NAATs. The 

nanoimprint process makes it possible to produce perfect patterns of the master stamp 

on the annealed and electropolished Al substrates which, after direct anodization under 

suitable conditions, become MD-NAATs (Figure 3.27). However, crucial factors such as 

the stamping pressure (PS) and the anodization conditions first have to be optimized. In 

this way, perfectly ordered nanoporous anodic alumina templates can be mass 

fabricated and the durability of the master stamp increased. In this case, the master 

stamp used consists of hexagonally arranged Si3N4 pyramids with a period of 235 nm 

(Figures 3.28 a and b). These pyramids are 130, 100, and 100 nm long, wide and high, 

respectively. This Si3N4 master stamp is placed on an annealed and electropolished 

aluminium substrate and then pressed under 20 kN·cm-2 using a conventional oil press. 

The stamping pressure is maintained constant for 5 min to compensate for elastic 

deformations in the Al substrates, which is reflected in a progressive decrease in PS 

during the stamping process. The master stamp pattern, then, is transferred to the 

entire surface of the aluminium substrate (Figure 3.28 c). After the nanoimprint 

process, the anodization conditions have to be adjusted to the master stamp period 

(i.e. 235 nm), since the transferred pattern defines the subsequent nucleation of pores 

during the first stage of the anodization process. So, according to Eq. 1.9, the 

anodization voltage for the interpore distance of 235 nm is about 93 V. In order to 

prevent the template from burning, an acid electrolyte solution of H2C2O4 0.3 M in a 

mixture of ethanol and water (EtOH:H2O 1:3 (v:v)) is used and the stirring rate is 

increased to 500 r.p.m. during the course of the anodization process.  
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It is thus possible to maintain the electrolyte temperature at around 0ºC. If the self-

ordering conditions and the master stamp period match, high aspect ratio (i.e. pore 

length / pore diameter) MD-NAATs can be fabricated (Figure 3.28 d). 

 

 

Figure 3.27 Schematic slanted section views describing the one-step anodization 

process for fabricating MD-NAATs by nanoimprinting. a) The Si3N4 master stamp is 

pressed onto the annealed and electropolished aluminium substrate. b) The Si3N4 

master stamp pattern is transferred to the Al substrate surface. c) Resulting MD-NAAT 

after direct anodization under suitable conditions. 
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Furthermore, the combination of the self-ordering mechanism and the nanoimprint 

technique allows monodomain nanoporous anodic alumina templates to be fabricated 

with an extraordinary pore arrangement (i.e. interpore distance shorter than the master 

stamp period). It is also necessary to adjust the anodization voltage so that the 

interpore distance is 86% that of the master stamp. This strategy is represented in 

Figure 3.29 and can be explained as follows: after the master stamp pattern has been 

transferred onto the Al substrate surface and the suitable anodization conditions 

applied, the self-ordering mechanism leads to new pore growth in the triangular lattice 

delimited by three imprinted pores.  

 

 

Figure 3.28 Set of ESEM images corresponding to the different stages of the 

nanoimprint process. a) Cross-section view of the Si3N4 master stamp. b) Top view of 

the Si3N4 master stamp. c) Annealed and electropolished aluminium substrate after 

transferring the pattern from the Si3N4 master stamp by pressing at 20 kN·cm-2. d) 

Resulting MD-NAAT after direct anodization at 93 V. 
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When the suitable anodization voltage is applied, the concentric electric field around 

the patterned holes prevents new pores from being randomly generated inside the 

triangular pore lattice formed by the imprinted pores. Pores are only allowed to grow at 

the centre of each group of three imprinted pores. In order to calculate the anodization 

voltage suitable for generating guided pores, it must be taken into account that the 

diameter of the concentric electric field (dCEF) has to match the distance between 

printed pores (i.e. dinterp). So, taking into account that the relationship between the 

diameter of the concentric electric field and the anodization voltage is given by Eq. 3.1 

[162], the anodization voltage required to generate one guided pore inside each 

triangular pore lattice of imprinted pores can be estimated. Finally, the anodization 

voltage required to generate guided pores in a triangular pore lattice with a period of 

235 nm is found to be 81 V, and the interpore distance of the resulting MD-NAAT is 

about 203 nm (Figure 3.30). 

 

89.2
CEFd

V =                                                                                                                    (3.1) 

 

In order to explore other triangular pore lattices, two types of nickel (Ni) master stamps 

are developed. These stamps are replicated from the bottom of PD-NAATs with 

interpore distances of 500 and 100 nm (i.e. H3PO4 1 wt % at 195 V and H2C2O4 0.3 M 

at 40 V). The fabrication process of these Ni master stamps is represented in Figure 

2.40. First, PD-NAATs with interpore distances of 500 and 100 nm are fabricated by 

the two-step anodization process (Figure 3.31 a). Second, the remaining aluminium 

substrate is removed in a saturated solution of HCl·CuCl2 (Figure 3.31 b). Third, a thin 

layer of Ni is sputtered on the bottom of the PD-NAATs at 80 mA for 5 min (i.e. a 

thickness of about 100 nm) (Figure 3.31 c). Fourth, the thickness of this layer is 

increased to 50 μm by electrodeposition of Ni from a Ni plating solution with NiCl2·6H2O 

(0.084 M), Ni(H2NSO3)2·4H2O (1.59 M) and H3BO3 (0.33 M) at 7 mA·cm-2 for 3 h  
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(Figure 3.31 d). Finally, the PD-NAAT is dissolved by wet chemical etching using a 

mixture of H3PO4 0.4 M and H2CrO3 0.2 M at 45ºC for about 24 h (Figure 3.31 e). 

Unfortunately, it has not been possible to present here the results obtained after 

imprinting such Ni master stamps onto annealed and electropolished Al substrates. 

Nonetheless, it is expected that these Ni master stamps (Figure 3.32) can be used to 

fabricate PD-NAATs with shorter pore lattices than the Ni master stamps. They can 

also be used as a new way of fabricating PD-NAATs with hexagonal pore 

arrangements in one step, because the 1st anodization step will be substituted by the 

imprinting stage.  

 

 

 

Figure 3.29 Schematic top view of a MD-NAAT with extraordinary interpore distance 

fabricated by nanoimprinting. Each new pore (blue circles) grows guided by three 

imprinted pores (grey circles) since the concentric electric field around each imprinted 

pore (green dotted circles) prevents from the generation of disordered pores inside the 

pore lattice. 
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Figure 3.30 Set of ESEM images of two types of MD-NAATs fabricated by 

nanoimprinting. a) With ordinary interpore distance of 235 nm at 93 V (blue circle 

indicates a virtual guided pore generated under suitable anodization conditions). b) 

With extraordinary interpore distance of 203 nm at 81 V (red circle denotes a guided 

pore generated inside the pore lattice of three imprinted pores). 
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Figure 3.31 Schematic cross-section view of the fabrication process of nickel master 

stamps from PD-NAATs. a) Resulting PD-NAAT after the two-step anodization 

process. b) PD-NAAT after dissolving selectively the remaining Al substrate. c) Thin 

layer of Ni sputtered on the bottom of the PD-NAAT. d) Growth of the Ni layer by 

electrodeposition. e) Resulting Ni master stamp after removing the PD-NAAT. 

 

 

 

Figure 3.32 Replicated nickel master stamps from the bottom of two types of PD-

NAATs. a) Pore lattice of 100 nm with H2C2O4 at 40 V. b) Pore lattice of 500 nm with 

H3PO4 at 195 V.  
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One of the main characteristics of MD-NAATs with an extraordinary pore arrangement 

fabricated by nanoimprinting is that the oxide barrier layer at the pore bottom tips of the 

guided pores is thinner than at the imprinted pores. This makes it possible to 

selectively penetrate the oxide barrier layer. It is thus possible for the guided pores to 

be filled first with a certain material A and, after the imprinted pores have been opened, 

with a material B. This idea is schematically represented in Figure 3.33. 

 

 

 

Figure 3.33 Schematic cross-section diagram describing the selective pore opening 

process in MD-NAATs with extraordinary pore arrangement.   
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3.2.6. Nanoporous anodic alumina funnels 

In previous works, inverted cone NAATs have been moulded using multi-short-

consecutive anodization and pore widening steps [193,194], and nanoporous anodic 

alumina funnels with short aspect ratio have been used as a template to fabricate 

shape-coded silica nanotubes [195]. Nevertheless, so far no works have reported 

about the fabrication of nanoporous anodic alumina funnels (NAAFs) with high aspect 

ratio, although these nanostructures could lead to a wide range of later applications as 

diameter-modulated polymer fibres [196], linear noble-metal nanoparticle chains with 

modulated diameters for one-dimensional nano-optical devices (e.g. plasmonic 

waveguides, plasmonic printing) [197], magnetic nanotubes and nanowires with 

multiple diameter modulations [198], chiral nanosphere chains of several materials 

(gold, polystyrene, etc) by vacuum infiltration [199-201]  and so on. In previous works 

[193-194], in which funnel-like nanoporous anodic alumina templates with short aspect 

ratio were fabricated under controlled potential conditions, the key factor used to 

control the length of each segment was the anodization time length. However, in order 

to fabricate NAAFs with high aspect ratio and controlled segment length under 

controlled potential conditions, the key factor must be the total current charge passed 

throughout the system, and not the anodization time length. In this section, it is 

described an accurate method for fabricating high aspect ratio nanoporous anodic 

alumina funnels. This method is based on combining sequential anodizing and pore 

widening steps. Four types of NAAFs are fabricated by modifying the controlling 

parameters of the anodization and the etching processes (i.e. the total current charge 

and the pore widening time length, respectively). A theoretical electrochemical model is 

applied to estimate quantitatively the dependence of the pore length on the anodization 

time under controlled potential conditions. In addition, the experimental relationships 

between the pore length, the anodization time and the total current charge are obtained 

after various calibration experiments.  
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The experimental relationship between the pore widening time and the pore diameter is 

established as well. The obtained results confirm that, under controlled potential 

conditions, the key factor to control the segment length of NAAFs with high aspect ratio 

is the integrated current passed throughout the system, and not the anodization time 

length. The geometric characteristics of the resulting nanostructures (i.e. the pore 

diameter and the length of each segment) are analyzed in detail by environmental 

scanning electron microscopy (ESEM).  

 

The electrochemical system that represents the aluminium (Al) anodization is basically 

divided into two electrodes (i.e. anode and cathode), an acid electrolyte solution as a 

medium and a power supply, which provides electrical energy (i.e. the driving force of 

the anodization process). The voltage applied to the electrochemical system (V) can be 

expressed as follows: 

 

Systemca IREEV +−= )(                                                                                                (3.2) 

 

where Ea is the anodic potential drop for driving the anodic reactions, Ec is the cathodic 

potential drop for driving the cathodic reactions, I is the current passed throughout the 

system and RSystem (73.73 KΩ from experimental measurements) is the electric 

resistance of the system (i.e. contacts, wires, acid electrolyte solution, etc). On the one 

hand, it has to take into account that, in the course of the anodization process, there is 

a thin layer of aluminium oxide (Al2O3) covering the Al surface. So, it is possible to 

assume that the anodic potential drop has, approximately, a linear relationship with the 

Al2O3 film resistance (ROx) and the anodic reaction rate is limited by the ionic migration 

throughout the oxide film [202]. In this way, Ea is given by:  

 

OxaaCorra RSJEE +≈                                                                                                  (3.3) 
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where ECorr is the free corrosion potential of Al in the acid electrolyte solution, Ja is the 

anodic current density and Sa is the anode surface area (0.71·10-4 m2 from 

experimental measurements). In addition, ROx can be expressed as: 

 

t
S
J

KKR
a

a
OxdfOx ρ)( −=                                                                                           (3.4) 

 

where Kf and Kd are the formation and the dissolution coefficients of Al2O3 in the Al 

anodization process (5.275·10-9 and 2.374·10-9 m3·(A·s)-1, respectively [203]), ρOx is the 

apparent resistivity of Al2O3 (1·1010 Ω·m), and t is the anodization time.  

 

On the other hand, the main cathodic reaction that takes place during the Al 

anodization process in the acid electrolyte solution is the hydrogen (H2) evolution. So, 

assuming that the difference between the free corrosion potentials of electrodes made 

of different materials is practically negligible in contrast to the voltage drop between 

them, the cathodic potential drop is given by the Tafel’s equation [204]. This is: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈ r

Corr

a
cCorrc S

J
J

LnEE β                                                                                      (3.5) 

 

where βc is the Tafel’s slope, JCorr is the free corrosion current density of Al in the acid 

electrolyte solution and Sr is the ratio between the surface areas of the anode and the 

cathode in the corrosion process (i.e. Sr = Sa/Sc). Substituting Equations Eq. 3.3, 3.4 

and 3.5 into Eq. 3.2, then V can be expressed as follows: 

 

Systemaaaca RSJKJLntJKV +++= 2
2

1 )(β                                                                    (3.6) 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



3. Fabrication Methods of Nanoporous Anodic Alumina Templates 
 

_____________________________________________________________ 
 

112

where K1 and K2 are constants if the anodization parameters (i.e. temperature, 

concentration of the acid electrolyte solution, stirring rate, etc) are not modified in the 

course of the anodization process. These constants are given by the following 

expressions: 

 

Oxdf KKK ρ)(1 −=                                                                                                     (3.7) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Corr

r
c J

S
LnK β2                                                                                                      (3.8) 

 

So, deriving V respect to the anodization time (t) and taking into account that, under 

controlled potential conditions, V is constant and Ja is a function of t, Eq. 3.6 leads to: 

  

dt
dJ

RS
dt

dJ
Jdt

dJ
tJKJK

dt
dV a

Systema
a

a
c

a
aa +++==

120 1
2

1 β                                         (3.9) 

 

Reorganizing Eq. 2.9: 

 

caSystemaa

aa

JRStJK

JK
dt

dJ

β++

−
=

2
1

3
1

·2
                                                                            (3.10) 

 

If it is considered that, for the cathodic reaction (i.e. hydrogen evolution), the value of βc 

ranges from 50 to 80 mV [202], it is possible to neglect βc with regards to the other 

terms of the denominator. In this way, Eq. 3.10 yields: 

 

43

2
1

KtJK
JK

dt
dJ

a

aa
+

−
=                                                                                                      (3.11) 
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where K3 and K4 are constants and correspond to the following equations: 

 

13 2KK −=                                                                                                                  (3.12) 

and 

Systema RSK =4                                                                                                           (3.13)  

 

Finally, by substituting the known values, Eq. 3.11 becomes:  

 

)24.5()02.58(
)01.29( 2

+
−

=
tJ

J
dt

dJ

a

aa                                                                                          (3.14) 

 

In order to solve this ordinary differential equation (ODE), the 4th order Runge-Kutta 

numerical method is applied with the initial value problem Ja(t = 0 s) = 650 A·m-2 and  

Δt = 0.1 s. Once the numerical relationship between Ja and t is obtained for each time 

step (Δt), the evolution of the pore length (LP) in the course of the anodization process 

can be calculated by applying the pore-filling method under controlled potential 

conditions [150,151]: 

 

∫
=

=

=
ftt

tt
aP dttJKL

0

)·(5                                                                                                      (3.15) 

 

where K5 is a constant value calculated as: 

 

Ox

Ox

zFd
M

K
η

=5                                                                                                              (3.16) 
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where MOx is the atomic weight of alumina (101.96 g·mol-1), η is the anodic current 

efficiency (0.70 [151]), z is the number of electrons associated with the alumina 

formation (6), F is the Faraday’s constant (96484.56 C·mol-1) and dOx is the alumina 

density (3.2 g·cm-3 [145]).  

 

The theoretical electrochemical model for nanoporous anodic alumina growth 

expressed by Eq. 3.14 and 3.15 will be contrasted by the experimental results 

presented as follows. 

First, two calibration processes to relate the pore length (LP) to Q and the pore 

diameter (dp) to the pore widening length (tpw), respectively, are carried out. In order to 

calibrate the pore length, eight samples are fabricated following the two-step 

anodization process under controlled potential conditions (i.e. 160 V) using the 

anodizing control system based on the total current charge control presented in 3.2.4. 

The acid electrolyte is an aqueous solution of phosphoric acid (H3PO4) 0.3 M at 5ºC. 

The time length of the first anodization step is 1 h and the second anodization step is 

limited by the total current charge. The different total current charge limits are 5, 10, 15, 

20, 25, 30, 35 and 40 A·s and the resulting samples are labelled as Q05, Q10, Q15, Q20, 

Q25, Q30, Q35 and Q40, respectively. The pore length of each sample is measured at ten 

different cross-sections. In this way, the experimental relationships between Q, LP and t 

are estimated under the anodization conditions used to fabricate the NAAFs. To 

calibrate the pore widening process, five samples are fabricated following a two-step 

anodization process under controlled potential conditions (i.e. 160 V). The time length 

of both anodization steps is 1 h, using as acid electrolyte an aqueous solution of 

phosphoric acid (H3PO4) 0.3 M at 5ºC. These samples are labelled as PW0, PW15, 

PW30, PW45 and PW60. After the fabrication process, these samples are immersed in 5 

wt % aqueous phosphoric acid at 35ºC for 0, 15, 30, 45 and 60 min, respectively. So, 

the relationship between the pore diameter (dP) and the pore widening time length (tpw) 

is established. 
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After the calibration processes, nanoporous anodic alumina funnels with high aspect 

ratio are fabricated by anodizing annealed and electropolished Al substrates by the 

two-step process. The anodization is carried out in our thermally isolated 

electrochemical cell under controlled potential conditions. In the course of the 

anodization process, the electrolyte is constantly stirred and its temperature is adjusted 

at 5ºC. The first anodization step consists of applying the anodization voltage directly 

(i.e. 160 V) in an electrolyte aqueous solution of H3PO4 0.3 M for 1 h at 5ºC. 

Subsequently, this nanoporous anodic alumina film with disordered pores on the 

surface and ordered pores on the bottom is dissolved by wet chemical etching in a 

mixture of phosphoric acid 0.4 M and chromic acid 0.2 M at 70ºC for the same length of 

time as the first anodization step (i.e. about 1 h). Then, multiple subsequent 

anodization steps are conducted under the same anodization conditions but using as 

control factor the total current charge (Q) instead of the anodization time (t). Depending 

on the number of subsequent anodization steps, the four types of samples are labelled 

as NF-I, NF-II, NF-III and NF-IV for one, two, three and four subsequent anodization 

steps, respectively. Each subsequent anodization step corresponds to one segment in 

the resulting NAAF structure. The total current charge of the whole fabrication process 

is 62.64 A·s, which corresponds to the target pore length of 30 μm. Taking into account 

that the pore length is directly proportional to the total current charge, this value is 

divided by the number of subsequent anodization steps (i.e. the number of segments in 

the resulting NAAF structure) and the limit values of Q for each subsequent anodization 

step are 62.64, 31.32, 20.88 and 15.66 A·s for samples NF-I, NF-II, NF-III and NF-IV, 

respectively. Between consecutive anodization steps, a pore widening stage, 

conducted by wet chemical etching in 5 wt % aqueous phosphoric acid at 35ºC, is 

intercalated to enlarge the pore diameter (dP), which depends on the pore widening 

time (tpw). Finally, the remaining aluminium substrate is removed in a saturated solution 

of HCl·CuCl2. The fabrication conditions of each type of sample are summarized in 

Table 3.10. 
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Type  of 

NAAF 

Anodization Steps 

(after first step) 
QTotal (A·s) Qlimit (A·s) 

Pore Widening 

Steps 

I 1 62.64 1 

II 2 31.32 2 

III 3 20.88 3 

IV 4 

62.64 

15.66 4 

 

Table 3.10 Fabrication conditions for the different types of NAAFs (NF-I, NF-II, NF-III 

and NF-IV). 

 

Both samples used to obtain the calibration curves (i.e. Q05, Q10, Q15, Q20, Q25, Q30, Q35, 

Q40, PW0, PW15, PW30, PW45 and PW60) and the NAAFs (i.e. NF-I, NF-II, NF-III and NF-

IV) are inspected by ESEM and the measurements of dP and LP are obtained from 

ESEM image analysis using a standard image processing package (ImageJ, public 

domain programme developed at the RSB of the NIH, USA). The obtained results are 

shown in Table 3.11. The results from the total current charge calibration process are 

shown in Figure 3.34. The relationships Q-t (black solid line and stars in Figure 3.34 a - 

left) and LP-t (light grey solid line and circles in Figure 3.34 a - right) are not linear, 

following power trend lines (the obtained equations from the numerical simulations 

fittings for Q-t and LP-t are included in Figure 3.34 a). Both the experimental values 

(black stars and light grey circles in Figure 3.34 a) and the numerical simulations 

obtained from the theoretical model developed (solid black and light grey lines in Figure 

3.34 a) are in good agreement. The total current charge and the pore length evolution 

throughout the anodization process can be divided into three main sections (Figure 

3.34 a). At the first seconds of the anodization process (i.e. about 20 s), the pore 

growth rate is very fast because the anodic current is entirely used in this process.  

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



3. Fabrication Methods of Nanoporous Anodic Alumina Templates 
 

_____________________________________________________________ 
 

117

These results agree with previous works which reported about the growth rate of 

NAATs at the first seconds of the anodization process (i.e. oxide barrier layer and pore 

formation) [205]. After the first seconds of the anodization process, the pore growth 

rate is progressively reduced as a result of the development of side reactions, which 

decrease the anodic current efficiency (i.e. η). This growth rate reduction is maintained 

until moderate anodization times (i.e. 2.5 h, approximately). Finally, for longer 

anodization times, the pore growth rate becomes practically constant throughout the 

anodization and can be fitted to a straight line. In addition, as Figure 3.34 b shows, the 

pore length is directly proportional to the total current charge (i.e. the dependence of Q 

on the anodization time is the same that for LP but dividing by a constant factor of 1.8 

A·s·μm-1). From the electrochemical point of view, it means that the number of 

electrons transferred into the electrochemical cell at a given time is directly proportional 

to the number of oxygen (O) atoms used to form Al2O3, and the number of O atoms 

used to oxidize aluminium corresponds to the number of O atoms diffused throughout 

the Al2O3 layer at the same time. The value of this proportionality constant fluctuates 

slightly throughout the anodization process (Table 3.12) because of side reactions such 

as oxygen evolution at the anode [205], which reduce relatively the anodic current 

efficiency. This could explain the slight deviation of the experimental values of Q·LP
-1 

from the trend line (Figure 3.34 b).  
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    Measured Values Target Values 

Type  of 

NAAF  

Anodization 

Step 

Qlimit 

(A·s) 
t (min) LP (μm) dP (nm) 

Aspect 

Ratio 
LP (μm) dP (nm) 

Aspect 

Ratio 

I 2 62.64 385.3 30.22 
± 

0.19 

148.21 
± 

8.66 

203.9 30 150 200 

2 31.32 158.6 14.95 
± 

0.19 

157.90 
± 

7.26 

94.7 15 150 100 II 

3 31.32 229.7 15.51 
± 

0.19 

209.46 
± 

10.19 

74.1 15 200 75 

2 20.88 81.2 9.74 
± 

0.15 

155.68 
± 

9.26 

62.6 10 150 66.7 

3 20.88 136.0 9.43 
± 

0.17 

204.15 
± 

8.82 

46.2 10 200 50 

III 

4 20.88 146.3 10.70 
± 

0.14 

250.76 
± 

10.91 

42.7 10 250 40 

2 15.66 105.4 7.19 
± 

0.25 

152.08 
± 

6.91 

47.3 7.5 150 50 

3 15.66 111.0 7.29 
± 

0.22 

199.38 
± 

11.86 

36.6 7.5 200 37.5 

4 15.66 111.1 7.16 
± 

0.23 

245.12 
± 

12.18 

29.2 7.5 250 30 

IV 

5 15.66 109.5 7.19 
± 

0.26 

288.91 
± 

18.13 

24.9 7.5 300 25 

 

Table 3.11 Geometric characteristics measured for each type of NAAF (i.e. pore 

length, pore diameter and aspect ratio of each segment) together with their target 

values (i.e. predicted values from the experimental relationships obtained after the 

calibration processes). 

 

Regarding to the results obtained for the pore widening process, as Figure 3.34 c 

shows, the relationship between dP and tpw is practically linear, with a dissolution rate of 

about 1.4 nm·min-1. So, it is possible to fabricate NAAFs with controlled segment 

diameter. The pore widening times and their corresponding pore diameters are 

summarized in Table 3.13. 
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LP (μm) Q (A·s) Q·LP
-1 ((A·s)·μm-1) 

3.0 5 1.7 

5.9 10 1.7 

7.6 15 2.0 

10.4 20 1.9 

14.5 25 1.7 

16.1 30 1.9 

18.2 35 1.9 

21.9 40 1.8 

 

Table 3.12 Values of the proportionality constant between Q and LP obtained from the 

total current charge calibration process.  

 

 

tpw (min) dP (nm) 

14 150 

32 200 

50 250 

68 300 

 

Table 3.13 Pore widening times and their corresponding pore diameters obtained from 

the pore widening calibration process. 
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Figure 3.34 Experimental relationships between the fabrication parameters (i.e. total 

current charge (Q), anodization time length (t) and pore widening time (tpw)) and the 

geometric characteristics (i.e. pore length (LP) and diameter (dP)) obtained from the 

calibration processes). a) Total current charge (black solid line is numerical simulation 

and black solid stars are experimental values) and pore length (light grey solid line is 

numerical simulation and light grey solid circles are experimental values) versus 

anodization time. b) Pore length versus total current charge. c) Pore diameter versus 

pore widening time. 
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The cross-section of the fabricated NAAFs are inspected by ESEM and a set of the 

images is shown in Figure 3.35 together with magnified views of the junctions between 

consecutive segments and a sketch of the corresponding NAAF structure. The 

geometric characteristics of each type of NAAF (i.e. pore length, pore diameter and 

aspect ratio of each segment) are summarized in Table 3.11 together with their target 

values (i.e. predicted values from the experimental relationships obtained after the 

calibration processes). As Figure 3.35 a shows, the structure of sample NF-I consists 

of one segment with average pore length of 30.22 μm and average pore diameter of 

148.21 nm. These values are very close to the target values of 30 μm and 150 nm, 

respectively. The structure of this sample is the typical structure of NAAT fabricated by 

the two-step anodization process. Figure 3.35 b shows the cross-section view of 

sample NF-II, which presents two segments with average pore lengths of 15.51 and 

14.95 μm for segments 1 and 2 (from top to bottom of the NAAF), respectively. The 

average pore diameters of these segments are 209.46 and 157.90 nm, respectively. 

Three segments are distinguished in the cross-section view of sample NF-III (Figure 

3.35 c). The average segment lengths are 10.70, 9.43 and 9.74 μm with average pore 

diameters of 250.76, 204.15 and 155.68 nm for segments 1, 2 and 3, respectively. 

Finally, as Figure 3.35 d shows, sample NF-IV consists of four segments with average 

lengths of 7.19, 7.16, 6.91 and 7.19 μm and average diameter of 288.91, 245.12, 

199.38 and 152.08 nm for segments 1, 2, 3 and 4, respectively. As Table 3.11 shows, 

the measured values of the pore length and the pore diameter are rather close to the 

target values. This denotes that the calibration processes allow design with high level 

of accuracy nanoporous anodic alumina funnels with high aspect ratio (i.e. LP/dP).  
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Figure 3.35 Set of ESEM images of cross-section view of the fabricated types of 

NAAFs together with magnified views of the junctions between consecutive segments 

(yellow rectangles in (a), (b), (c) and (d)) and a sketch of the NAAF structure. a) NF-I. 

b) NF-II. c) NF-III. d) NF-IV. 
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The evolution of the current density (J) and the total current charge (Q) in the course of 

the anodization process were recorded and are shown in Figure 3.36. As first result, it 

is observed that as the number of consecutive anodization steps is increased, the 

difference in the anodization time length is shorter between consecutive anodization 

steps (Table 3.11). In fact, the length of the anodization time corresponding to sample 

NF-IV for the second, third, fourth and fifth step is practically the same. In addition, the 

time length corresponding to the second anodization step is shorter than the time 

length of later anodization steps for all these samples with multiple anodization steps 

(i.e. NF-II, NF-III and NF-IV). This could be attributed to the total current charge 

employed to form the oxide barrier layer and pore nucleation on the patterned Al 

substrate during the first stage of the second anodization step. This stage is denoted 

by a typical current density peak, which vanishes for later anodization steps since no 

total current charge is used to nucleate pores. This is due to the fact that the oxide 

barrier layer is not entirely removed from the pore bottom tips after the pore widening 

steps for samples with more than two anodization steps (i.e. NF-II, and NF-III and NF-

IV). Another reason for which the length of the anodization time corresponding to 

consecutive anodization steps is more similar as the number of anodization steps is 

increased is that, as the total current charge limit is reduced, the relationship between 

Q and t becomes practically linear. 
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Figure 3.36 Current density (J-light grey solid line-left scale) and total current charge 

(Q-black solid line-right scale) transients throughout the anodization process for the 

types of NAAFs fabricated. a) NF-I. b) NF-II. c) NF-III. d) NF-IV. 
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In summary, in this section has been reported about the fabrication and 

characterization of four types of nanoporous anodic alumina funnels with high aspect 

ratio. To the best of our knowledge, for the first time, this type of nanostructures has 

accurately been designed and fabricated. The target values of both LP and dP of each 

segment and the measured values are very close. This resulted from two systematic 

calibration processes, which allow designing the NAAF structure with a high level of 

accuracy. In addition, the experimental relationships between the fabrication 

parameters (i.e. total current charge, anodization time length and pore widening time) 

and the geometric characteristics of the resulting nanostructures (i.e. pore length and 

diameter) have been obtained.  

 

A theoretical electrochemical model has been deduced to explain the pore growth 

throughout the anodization time under controlled potential conditions. The numerical 

simulation obtained from this electrochemical model agrees with the experimental 

results of the relationship between the pore length and the anodization time. So, it is 

proven that the electrochemical model developed is suitable to predict the pore growth 

throughout the anodization process under controlled potential conditions.  

 

It is expected that the presented NAAFs could be used as a template to fabricate a 

wide range of new nanostructures which can be used in a wide range of later 

applications as sensors, actuators, photonic devices and so on.  
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3.3. Summary 

This chapter has described the experimental techniques for fabricating typical and 

innovative nanostructures based on nanoporous anodic alumina.  

 

The fabrication processes of two types of typical NAATs have been explained: PD-

NAATs produced with sulphuric, oxalic and phosphoric acid by the two-step 

anodization process under mild conditions and PD-NAATs fabricated with oxalic acid 

by the one-step anodization process under hard conditions. Furthermore, several 

fabrication techniques for producing innovative NAATs (i.e. innovative pore geometries) 

have been discussed. These nanostructures are: PD-NAATs produced without a 

protective layer by a two-step anodization process under hard conditions, PD-NAATs 

without an oxide barrier layer on aluminium substrates, hierarchical nanoporous anodic 

alumina templates, bilayered NAATs, MD-NAATs with extraordinary pore arrangement 

and nanoporous anodic alumina funnels. 

 

In the following chapter, several applications of these templates will be presented. 

Nevertheless, these nanostructures are expected to be used in numerous other 

applications in the near future. 
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In this chapter, some applications of the nanoporous anodic alumina templates 

presented in the previous chapter are explained in detail.  

 

First, arrays of cobalt and nickel nanopillars on aluminium substrates are synthesized 

by DC electrochemical deposition using a template of PD-NAATs without an oxide 

barrier layer (section 3.2.2). Second, quasi-ordered P3HT nanopillar-nanocap 

structures with controlled size are fabricated by replicating from hierarchical 

nanoporous anodic alumina templates (section 3.2.3). Third, high-density nanopillar 

arrays of the same polymer with an average nanopillar height of 300 nm and an 

average distance between adjacent nanopillars of 50 nm are transferred on ITO/glass 

substrates from PD-NAATs fabricated by the two-step anodization process (section 

3.3.1). Fourth, the first step for fabricating mosaic arrays of nickel nanowires and 

nanotubes by electrochemical deposition and atomic layer deposition (ALD) using 

bilayered nanoporous anodic alumina templates is presented (3.2.4). Finally, silica 

nanoparticle chains are fabricated by vacuum infiltration through nanoporous anodic 

alumina funnels (section 3.2.6).  

 

By way of a conclusion, in each section, various future experiments for continuing the 

work are discussed.  
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4.1. Cobalt and nickel nanopillar arrays on aluminium 

substrates 

In terms of nanostructure fabrication, choosing a suitable template is one of the most 

crucial factors in the synthesis process, because any defect in this template could be 

transferred to the resulting nanostructure via replication. So far, several materials have 

been used as a template for synthesizing nanowires or nanotubes. Nanoporous anodic 

alumina templates (NAATs) have become one of the most widely used for the following 

reasons: first, in contrast to other templates as polycarbonate membranes, NAATs 

present a higher pore density and a narrower diameter pore distribution [206]. 

Secondly, the pore diameter and the interpore distance are rather controllable by 

adjusting the anodization conditions [20]. Thirdly, as it has been commented in 

previous chapters, by means of the two-step anodization process [19], it is possible to 

fabricate PD-NAATs with a self-ordered hexagonally and periodic pore arrangement in 

a more cost-effective way than with other methods like electron beam lithography [207]. 

The electrochemical deposition of metals from an electrolyte solution is commonly used 

to fabricate nanowires and nanotubes by filling porous templates since it is a fast and 

well-controlled method. Nonetheless, as-produced PD-NAATS have certain 

disadvantages to be used directly as a template when an electrochemical deposition is 

desirable. The main disadvantage is that there is an aluminium oxide barrier layer 

between the pore bottom and the aluminium substrate. This oxide barrier layer 

electrically isolates the metallic aluminium substrate from the inner side of the pores. 

For this reason, when a direct current (DC) electrodeposition is carried out in an as-

produced NAAT, it is rather unstable and there is no uniform filling of the pores. 

Moreover, high electrodeposition potentials are needed for tunnelling the electrons 

throughout the oxide barrier layer of the pore bottom. Other deposition techniques like 

electroless deposition [62], sol–gel [208], chemical vapour deposition [209] and atomic 

layer deposition (ALD) [198] can avoid this drawback, since the growth of nanowires or 
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nanotubes does not start at the pore tips, but from the pore walls. So far, several 

methods have been applied for electrodepositing metals into NAATs. The most 

commonly used are two. In the first one [210,211], the NAAT must be detached from 

the aluminium substrate by dissolving the remaining Al substrate in a saturated solution 

of HCl·CuCl2 or in a saturated solution of mercury (II) chloride (HgCl2). Subsequently, 

the Al2O3 barrier layer is removed from the pore bottoms by a chemical etching process 

in a solution of phosphoric acid (H3PO4). Finally, an electrical contact is sputtered on 

one side of the freestanding NAAT. The second one is the pulsed electrodeposition 

method, in which the NAAT remains on the aluminium substrate. By means of this 

method, magnetic nanowire arrays of nickel have successfully been fabricated [21]. In 

this section, it is presented a method for fabricating cobalt (Co) and nickel (Ni) 

nanopillars (NPs) on aluminium substrates by direct electrodeposition using PD-NAATs 

without oxide barrier layer. So, after removing the alumina template, the metallic 

nanowires remain on the aluminium substrate. 

 

PD-NAATs are prepared using the two-step anodization process under hard conditions 

presented in section 3.2.1. When the anodization process is finished, the oxide barrier 

layer at the pore bottom tips is removed by applying the re-anodization technique under 

galvanostatic conditions commented in section 3.2.2. After the anodization process, the 

resulting PD-NAATs with open pores at the Al2O3-Al interface acted as a transfer mask 

to fabricate Co and Ni nanopillar arrays on Al substrates by DC electrodeposition. The 

interpore distance, the pore diameter and the thickness of these templates are 250 nm, 

200 nm and 12 μm, respectively. During the DC electrodeposition process, the upper 

side of these templates is placed in contact with the corresponding electrolyte 

solutions. In order to fabricate cobalt nanopillar arrays (Co-NPs), the electrolyte 

consists of an aqueous solution of cobalt sulphate heptahydrate (CoSO4·7H2O) as 

cobalt source and boric acid (H3BO3) as stabilizer. For fabricating nickel nanopillar 

arrays (Ni-NPs), it is employed an aqueous solution containing nickel sulphate 
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hexahydrate (NiSO4·6H2O) and nickel chloride hexahydrate (NiCl2·6H2O) as nickel 

source and boric acid (H3BO3) as stabilizer. Both aqueous solutions are constantly 

stirred at 150 r.p.m. and heated at 40ºC during the electrodeposition process in order 

to maintain a constant concentration of the electrolyte inside the pores. The 

concentration and pH of each electrolyte solution are shown in Table 4.1.  

 

Electrolyte Solution pH Compound C (g·L-1) Function 

Ni 4.5 NiSO4·6H2O 300 Nickel Source 

  NiCl2·6H2O 45 Nickel Source 

  H3BO3 45 Stabilizer 

Co 3 CoSO4·7H2O 400 Cobalt Source

  H3BO3 45 Stabilizer 

 

Table 4.1 Characteristics of the electrolyte solutions employed for Co and Ni 

electrodeposition. 

 

Prior to the electrodeposition process, the templates are immersed in the 

corresponding electrolyte bath for 5 min in order to completely wet the inner side of the 

porous structure. The DC electrodeposition is carried out using a platinum (Pt) wire as 

cathode and applying a constant profile of -3 V for Co solution and -5 V for Ni solution. 

To characterize the Co-NPs and Ni-NPs, when the DC electrodeposition process is 

finished, the templates are immersed in a mixture of H3PO4 0.4 M and H2CrO3 0.2 M at 

70ºC for 1h in order to dissolve entirely the alumina structure used as a template. 

Finally, the samples are washed with deionised water and dried under a draught. A 

power supply from Keithley (model 2420 SourceMeter) is used to perform the DC 

electrodeposition process.  

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



4. Applications of Nanoporous Anodic Alumina Templates 

____________________________________________________________ 132

Figure 4.1 shows the current-time (I-t) transients corresponding to the DC 

electrodeposition process of Co and Ni nanopillar arrays under controlled potential 

conditions. It is possible to distinguish four different sections in the current curve for 

both cobalt (Figure 4.1 a) and for nickel (Figure 4.1 b) electrodeposition. First, the 

current decreases abruptly until it reaches a steady value (section 1 - S1). Then, the 

current remains constant through a certain time length (section 2 - S2). Subsequently, 

there is a noticeable increase until a second steady value is reached (section 3 - S3). 

Finally, the current value becomes constant throughout the time again (section 4 - S4). 

These four sections can be related to different stages of the growth of nanopillar arrays 

inside the PD-NAATs. This process starts using as a template a PD-NAAT with open 

pores at the Al2O3-Al interface (Figure 4.2 a). In the first section of the electrodeposition 

curve (S1), metal nucleation centres in the pore bottom start to grow (Figure 4.2 b). The 

decrease in the current profile can be explained by local depletion of the ionic 

concentration at the pore bottom [212]. The current stabilizes when the ionic diffusion 

can be compensated for this depletion (S2), and the metallic nanopillars grow filling the 

pores (Figure 4.2 c). When the pores are entirely filled with Co and Ni, hemispherical 

tips of metal grow over the upper end of each nanopillar (Figure 4.2 d), resulting in the 

increase in current observed in the electrodeposition curve (S3). Finally, a metallic film 

is formed on the PD-NAAT surface (Figure 4.2 e), what is denoted by a constant 

current value through the time (S4). In order to obtain Co and Ni nanopillar arrays 

without structural defects after removing the PD-NAAT, the electrodeposition process 

must be finished at the end of S2 (Figure 4.2 f).  
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Figure 4.1 Current and voltage-time (I-t and V-t) transients for the electrodeposition 

processes under controlled potential conditions. The different sections of the current 

transient are separated by red solid lines. a) For Co-NPs at -3 V. b) For Ni-NPs at -5 V. 
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Figure 4.2 Schematic slanted views describing the electrodeposition process using a 

PD-NAAT without oxide barrier layer fabricated by the two-step anodization process 

under hard conditions. a) PD-NAAT without oxide barrier layer. b) A thin layer of metal 

is deposited at the pore bottoms. c) Fast growth of metallic nanopillar arrays inside the 

template. d) The template is entirely filled with metal. e) Metal film growth on the 

template surface. f) Resulting metallic nanopillar arrays after removing the template 

when the process is stopped at (d). 
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Once the fabrication process is finished, the resulting Co and Ni nanopillar arrays 

structures are characterized in detail by several techniques. First, the Co-NPs and Ni-

NPs are inspected by ESEM image analysis. Figure 4.3 compiles a set of ESEM 

images of the Co-NPs (Figure 4.3 a) and Ni-NPs (Figure 4.3 b) in which it can be 

observed that these nanopillar arrays remain fixed on the aluminium substrates after 

dissolving the PD-NAAT (Figures 4.3 c and d). In addition, as Figures 4.3 e and f show, 

the hexagonal arrangement corresponding to the PD-NAAT is kept after the 

electrodeposition process. The average interpillar distance (i.e. about 250 nm) 

corresponds to the average interpore distance of the template. This means that the 

resulting nanostructure is tough enough to withstand the post-treatment (i.e. dissolution 

of the PD-NAAT and cleaning). Moreover, the average pillar diameter (i.e. about 200 

nm) is close to the average pore diameter of the template. There are no structural 

defects in the resulting nanopillars. It is confirmed that the average height of the 

nanopillars (i.e. around 12 μm) correspond approximately to the thickness of the PD-

NAAT. These facts imply that the electrodeposition process is carried out under 

suitable conditions and the filling of the template pores is practically total.  

 

Secondly, in order to confirm the chemical elements, the nanostructures are analysed 

by energy dispersive X-ray spectroscopy (EDXS). As Figure 4.4 shows, both the 

samples of Co (Figure 4.4 a) and Ni (Figure 4.4 b) nanopillar arrays are exclusively 

composed of aluminium (from the Al substrate) and the respective metal (Co or Ni), 

what means that there is no chemical contamination after the applied post-treatment. 

The quantitative results are 19.5% Al and 80.5% Co for Co-NPs and 27.3% Al and 

72.7% Ni for Ni-NPs.  
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Figure 4.3 Set of ESEM images of the fabricated metallic nanopillar arrays. a) Cross-

section view of the Co-NPs after removing the template. b) Cross-section view of the 

Ni-NPs after removing the template. c) Magnified bottom view of Co-NPs. d) Magnified 

bottom view of Ni-NPs. e) Magnified top view of Co-NPs. f) Magnified top view of Ni-

NPs. 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



4. Applications of Nanoporous Anodic Alumina Templates 

____________________________________________________________ 137 

 

Figure 4.4 Elemental qualitative analysis of Co-NPs and Ni-NPs by energy dispersive 

X-ray spectroscopy (EDXS). a) Spectrum and weight percentage (inset) of the 

elements present in Co-NPs. b) Spectrum and weight percentage (inset) of the 

elements present in Ni-NPs. 
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At last, the crystal phase of cobalt and nickel nanopillar arrays is revealed by micro-X-

ray diffraction (μ-XRD) analysis. As Figure 4.5 shows, both Co and Ni patterns of 

nanopillar arrays present high-purity crystal phases since there are not any diffraction 

peaks of their corresponding oxides. The main peaks for Co nanopillars are four and 

appear at 41.6, 44.5, 47.4 and 62.5º, which correspond to <100>, <002>, <101> and 

<102> planes for a hexagonal crystal lattice, respectively (Figure 4.5 a). The main 

peaks for Ni nanopillars are three and appear at 41.5, 51.8 and 76.4º, which 

correspond to <111>, <200> and <220> planes for a face-centred cubic crystal lattice, 

respectively (Figure 4.5 b). 

 

Figure 4.5 X-ray diffraction patterns of Co-NPs (a) and Ni-NPs (b). 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



4. Applications of Nanoporous Anodic Alumina Templates 

____________________________________________________________ 139

In summary, in this section it has been reported a simple electrochemical approach to 

fabricate cobalt and nickel nanopillar arrays on aluminium substrates. By means of this 

technique, it is feasible to reduce the number of stages in the fabrication process 

because the removing of the oxide barrier layer from the pore bottom tips of the PD-

NAAT takes place during the anodization process. Another main feature of this process 

is that the Co and Ni nanopillar arrays remain on the aluminium substrate after 

removing the template. In addition, the resulting nanostructures have not presented 

any defect and the nanopillar diameter and height and the interpillar distance 

correspond to the geometric characteristics of the template.  

 

It is considered that this is a promising technique for future applications and a means 

for fabricating new nanodevices. One example of a future application of the resulting 

nanostructures presented in this section could be to use the metallic nanopillar arrays 

as nanoelectrodes for direct deposition of nanoparticles from a gas draught. This 

nanostructure would act as an electrostatic precipitator by applying a high-voltage field. 
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4.2. Quasi-ordered P3HT nanopillar-nanocap structures    

Nowadays, it is possible to fabricate polymeric nanostructures such as nanotubes, 

nanowires and nanorods by nanolithography [213], mechanical patterning [214] and 

electro-spinning [215]. However, in order to produce highly-ordered polymeric 

nanostructures [216–218], the most vastly used method has become the template 

synthesis using nanoporous moulds because it is a cost-effective fabrication technique. 

So far, nanoporous anodic alumina templates (NAATs) have become one of the most 

widely used porous material as a pattern for their specific geometric characteristics (i.e. 

pore density, pore diameter distribution, interpore distance and thickness). In addition, 

by applying several strategies it is possible to modify the original structure of NAATs. 

One example of modification are the hierarchical nanoporous anodic alumina templates 

(HNAATs) presented in section 3.2.3, which are a promising material in order to be 

used for developing novel nanostructures and nanodevices. One interesting 

functionalization of HNAATs is to infiltrate their pores with polymers, which have many 

potential applications owing to their physical and chemical properties (e.g. 

transparency, pliability, biocompatibility, biodegradation and so on). In that regard, 

among the thiophene family, Poly(3-hexylthiophene) (P3HT) is a suitable conjugated 

polymer for being used to develop polymer-based photovoltaic cells. The efficiency of 

these solar cells can be increased by means of nanostructured bulk-heterojunctions in 

which the interfacial distance between the donor and the acceptor phases is lower than 

20 nm [219]. In this section, it is presented a method for fabricating nanopillar-nanocap 

structures based on P3HT by using HNAATs as a template. The applied technique 

consists of a combination between the spin-coating and the melt-assisted template 

wetting methods. The resulting nanostructure consists of P3HT nanopillars on a 

substrate of P3HT quasi-hexagonally arranged nanocaps. The geometric 

characteristics of these structures are analyzed in detail through ESEM images.  
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In this case, the hierarchical nanoporous anodic alumina template used to develop 

P3HT nanopillar-nanocap structures corresponds to that fabricated under conditions S5 

shown in section 3.2.3. This template is fabricated using direct anodization of annealed 

and electropolished aluminium substrates following an asymmetric two-step 

anodization process. The 1st anodization step consists of applying the anodization 

voltage directly (i.e. 170 V) in an electrolyte aqueous solution of phosphoric acid 0.3 M 

(Figure 4.6 a). Then, the resulting nanoporous anodic alumina film is dissolved by wet 

chemical etching in a mixture of H3PO4 0.4 M and H2Cr2O7 0.2 M at 70 °C. As a result, 

a hexagonal pattern is produced on the aluminium surface (Figure 4.6 b). Afterwards, 

the 2nd step of the anodization process is conducted under asymmetric anodization 

conditions (i.e. 40 V) in an aqueous solution of oxalic acid 0.3 M. So, a HNAAT, which 

consists of an outer hexagonal lattice of concavities in the interior of which pores grow, 

is resulted (Figure 4.6 c). The anodization voltage (i.e. 40 V) during the 2nd anodization 

step is maintained for 3 min, this is when the hierarchical nanoporous anodic alumina 

template reaches the target thickness (i.e. about 500 nm). After the anodization 

process, a slight pore widening step is applied by wet chemical etching in an aqueous 

solution of phosphoric acid 5 wt % at 35 °C for 10 min in order to facilitate the 

infiltration process of the pores. Once the template fabrication process is finished, the 

HNAAT is infiltrated with Poly(3-hexylthiophene). First, the template is spin-coated at 

2000 r.p.m. for 30 s by a drop of a chloroform (CH3Cl) solution of P3HT 10 wt % 

(P3HT, melting point 238°C, Mw∼17500 g·mol−1, 99.995% regioregularity, Sigma-

Aldrich) (Figure 4.6 d). Secondly, the covered hierarchical nanoporous anodic alumina 

template is annealed at 250°C for 30 min in air environment for injecting the polymer 

into the pores by melt-assisted wetting (Figure 4.6 e). Finally, the infiltrated template is 

slowly cooled to room temperature and the remaining Al substrate is removed in a 

saturated solution of cupric chloride and hydrochloric acid (HCl·CuCl2). Subsequently, 

the HNAAT is dissolved in a solution of sodium hydroxide (NaOH) 1 M at room 

temperature (Figure 4.6 f) for 1 h. 
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Figure 4.6 Schematic slanted section views describing the fabrication process of P3HT 

nanopillars on a substrate of P3HT quasi-hexagonally arranged nanocaps. a) 1st 

anodization step. b) Removing the Al2O3 film by wet chemical etching. c) 2nd 

anodization step under asymmetric conditions. d) P3HT spin-coated HNAAT. e) P3HT 

infiltration by melt-assisted wetting. f) Removing of the remaining Al substrate and the 

HNAAT by wet chemical etching processes. 
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The geometric characteristics of the HNAAT and the replicating polymeric 

nanostructure are characterized by ESEM image analysis. In order to compare the 

geometric characteristics of the template with the moulding nanostructure, the 

interconcavity (dinterconc) and the interpore (dinterp) distance (i.e. centre-to-centre 

concavity and pore distance, respectively), the concavity (dconc) and pore (dp) diameter, 

the intercap distance (dintercap) (i.e. centre-to-centre cap), and both the cap (dcap) and 

pillar (dpillar) diameter are estimated by ESEM image analysis. The obtained results are 

summarized in Table 4.2. The standard deviation is used as an estimation of the 

dispersion in the measurements. 

 

Geometric Characteristic Measurement (nm) 

dinterconc 398 ± 40 

dinterp 101 ± 7 

dconc 370 ± 33 

dp 78 ± 14 

dintercap 388 ± 35 

dcap 351 ± 36 

dpillar 52 ± 4 

 

Table 4.2 Geometric characteristics of the resulting P3HT nanostructure. Interconcavity 

(dinterconc) and interpore (dinterp) distances, concavity (dconc) and pore (dp) diameters, 

intercap distance (dintercap), and cap (dcap) and pillar (dpillar) diameters. 
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The current density and voltage-time (J-t and V-t) transients corresponding to the 

fabrication process of the hierarchical nanoporous anodic alumina template are shown 

in Figure 4.7. As it has been commented in section 3.2.3, the main difference between 

symmetric and asymmetric two-step anodization processes is that, during the second 

step of the asymmetric process, there is a shift in the minimum of J. In this case, this 

shift is produced by the anodization voltage decrement between the 1st and 2nd step of 

the anodization process since it implies a reduction in the lattice constant. So, pores 

grow inside the concavities on the HNAAT surface. Before the infiltration stage, the 

HNAAT is analyzed by ESEM image analysis and the resulting average interconcavity 

and interpore distances are 398 and 101 nm, respectively. The average concavity and 

pore diameters are 370 and 78 nm, respectively (Table 4.2). 

 

 

Figure 4.7 Current density and voltage-time (J-t and V-t) transients for the fabrication 

process of the HNAAT under asymmetric conditions. Point A indicates nanocaps 

formation and B when nanopillars reach a suitable depth. 
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In order to characterize the P3HT nanocap substrate, one HNAAT is fabricated by 

stopping the 2nd step of the anodization process just before the pores started to grow 

(point A in Figure 4.7). As Table 4.2 shows, the average intercap distance is 388 nm 

and the average cap diameter is 351 nm (Figures 4.8 a and b). These results are 

slightly shorter than the average interconcavity distance and the average concavity 

diameter of the HNAAT, respectively. This fact implies that, during the annealing 

process, a slight bulk contraction of the P3HT nanostructure takes place owing mainly 

to the solvent (CH3Cl) evaporation.  

 

 

Figure 4.8 Set of ESEM images of the resulting P3HT nanostructure. a) Top view of 

the P3HT nanocap arrays substrate. b) Tilted (45º) top view of the P3HT nanocap 

arrays substrate. c) Top view of the P3HT nanopillar arrays. d) Tilted (45º) top view of 

the P3HT nanopillar arrays. 
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For fabricating the final P3HT nanostructure with firm nanopillars on the substrate of 

nanocap arrays (Figures 4.8 c and d), the anodization process is stopped when the 

pores reached a height of about 500 nm (point B in Figure 4.7). Deeper pores generate 

bundles of collapsed nanopillars, which cannot remain firm after the post-treatment 

process (i.e. template removing and cleaning). As Table 4.2 shows, the average pillar 

diameter is 52 nm. As the same that nanocap case, the nanopillars contract slightly 

their dimensions (i.e. pillar diameter and height) with regards to the pore values (i.e. 

pore diameter and height). 

 

In summary, it has been exposed a reasonably fast and cost-effective method for 

fabricating a hierarchical nanostructure based on P3HT nanopillar arrays on a 

substrate of the same polymer with quasi-hexagonally ordered nanocap arrays. By 

combining the spin-coating method with the melt-assisted wetting method a HNAAT is 

infiltrated with P3HT. So, it is possible to replicate an original nanostructure based on 

that polymer in a controlled way. It is found out that the resulting P3HT nanostructure 

suffered a slight bulk contraction owing to the solvent evaporation during the annealing 

process.  

 

It is expected that the resulting P3HT nanostructure presented in this section could be 

used for enhancing the efficiency of nanostructured organic solar cells. This fabrication 

process could be extended to different types of copolymers with other interesting 

properties (e.g. conductivity, luminescence and so on). Furthermore, the resulting 

nanostructure can be easily fabricated with a wide range of geometric characteristics 

for satisfying the requirements of later applications. 
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4.3. High-density nanopillar arrays of P3HT on ITO/glass 

substrates 

Semiconducting organic polymers have become materials with a wide range of 

applications. In recent years, an increasing attention has been paid to the development 

of optoelectronic devices as polymer light-emitting diodes and solar cells [220-223]. 

Nowadays, owing to the high demand of energy, scientists are focusing their interest 

on the development of high-efficient organic solar cells. Recently, several studies have 

shown that to produce nanometre-scale interpenetrating network of a donor and an 

acceptor phase is a promising way to improve the efficiency of organic solar cells [224-

227]. In these networks, the interfacial distance between the donor and the acceptor 

must be similar to the exciton diffusion length. So far, fabrication methods such as 

nanoimprinting [224], nanolithography [228], electro-spinning [215], printing and coating 

[229] and template-assisted synthesis [219] have been used to produce this kind of 

nanostructures. Among them, the most widespread method is the template synthesis 

using nanoporous templates, since it is a cost-effective and versatile fabrication 

technique. Since the two-step anodization process was reported [19], nanoporous 

anodic alumina templates (NAATs) have become a material vastly used as a template 

because it is possible to fabricate NAATs with quasi-hexagonal pore arrangement in an 

inexpensive way.  

 

Polymer nanostructures such as nanowires and nanotubes have been fabricated by 

using NAATs following several infiltration techniques (e.g. by wetting the template with 

a polymer solution or melt, by direct polymerization of a monomer inside the pores of 

the template, etc.) [95]. In order to incorporate these nanostructures into optoelectronic 

devices, it is needed to transfer them from the template to substrates which combine 

electrical conductivity and optical transparency (e.g. indium-tin-oxide (ITO)/glass 

substrates).  
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However, it is necessary to avoid some drawbacks (e.g. the collapse and loss of well-

aligned orientation, the lack of adhesion with the supporting substrate, the entrapping 

of gas bubbles into the nanostructure bulk and between the nanostructure base and 

the supporting substrate and so on). For these reasons, each step of the fabrication 

process and the used materials are crucial factors to produce faultless nanodevices 

such as high-efficient polymer solar cells, sensors and so forth. Owing to their physical 

and chemical properties, polymers of the thiophene family such as Poly(3-

hexylthiophene) (P3HT) are suitable conjugated polymers for being used in polymer-

based photovoltaic cells. The main reason of this is that P3HT presents a high 

absorption coefficient close to the maximum photon flux in the solar spectrum and high 

charge-carrier mobility. In addition, if the nanopillars are perpendicularly aligned to the 

ITO substrate without forming aggregates, it is possible to fill completely the matrix 

formed by the arrays of P3HT nanopillars with an electron-conducting polymer (e.g. 

phenyl-C61-butyric acid methyl ester (PCBM)).   

In this section, it is described a method for fabricating high-density arrays of P3HT 

nanopillar arrays on ITO/glass substrates by replicating from nanoporous anodic 

alumina templates. The applied technique consists of a combination between the spin-

coating and the melt-assisted template wetting methods [230]. One of the essential 

points is to avoid generation of defects in the resulting P3HT nanostructure during the 

fabrication process. Therefore, the nanopillar bulk is inspected by cross-sectional 

transmission electron microscopy (TEM). The aspect ratio of the P3HT nanopillars is 

adjusted by controlling the pore length and diameter of the NAATs. The geometry of 

the polymer nanostructure is analyzed in detail through ESEM. In order to compare the 

conductivity of a P3HT continuous film with the conductivity of a single P3HT 

nanopillar, a current sensing atomic force microscopy (CS-AFM) analysis is performed. 

The conductivity increase in the nanostructured sample is related to the alignment of 

the polymer chains into the nanopillars bulk by a micro-X-ray diffraction (µ-XRD) 

analysis.  
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The employed materials are ITO-coated glass substrates (with nominal sheet 

resistance of 15 Ohm·sqr-1) purchased from PsiOTec Ltd, high-purity (99.999%) 

aluminium (Al) sheets obtained from Goodfellow Cambridge Ltd and P3HT purchased 

from Sigma-Aldrich (melting point 238ºC, Mw∼17500 g·mol-1, 99.995% regioregularity). 

 

First, nanoporous anodic alumina templates are fabricated using direct anodization of 

these annealed and electropolished Al substrates in our home-made electrochemical 

cell following a two-step anodization process. The first anodization step consists of 

applying the anodization voltage directly (i.e. 160 V) in an electrolyte aqueous solution 

of phosphoric acid 0.3 M. The resulting thin film of nanoporous anodic alumina 

presents disordered pores on the surface and ordered pores on the bottom due to the 

self-ordering mechanism. When the first anodization step finishes, the porous 

aluminium oxide (Al2O3) film is dissolved by wet chemical etching in a mixture of 

phosphoric acid 0.4 M and chromic acid 0.2 M at 70ºC. Then, the second step of the 

anodization process is conducted under the same anodization conditions that the first 

step but for 2.5 min. So, the nanoporous anodic alumina template reaches a suitable 

pore length (i.e. about 300 nm) with quasi-hexagonal pore arrangement. After 

anodization, a pore widening stage is conducted by wet chemical etching in 5 wt % 

aqueous phosphoric acid at 35ºC for 40 min. Then, the pore diameter is enlarged up to 

300 nm (Figure 4.9 a).  

 

The commercial ITO-coated glass substrates are cleaned by ultrasonication in 

detergent, isopropyl alcohol, and acetone. Then, they are dried under a stream of 

nitrogen (N2) and stored in N2 environment just before their use in the fabrication 

process.  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



4. Applications of Nanoporous Anodic Alumina Templates 

____________________________________________________________ 150

Once the anodization process is finished, the NAAT is infiltrated with Poly(3-

hexylthiophene). First, the template (i.e. aluminium substrate with a thin nanoporous 

anodic alumina film with open nanopores on the top) is spin-coated at 2000 r.p.m. for  

30 s by a drop of a chloroform (CH3Cl) solution of P3HT 10 wt % (Figure 4.9 b). 

Secondly, a cleaned ITO/glass substrate is pressed on the top of the spin-coated 

NAAT and fixed to it (Figure 4.9 c). Thirdly, the system glass/ITO-P3HT-NAAT is pre-

heated at 60ºC for 30 min and, then, annealed at 250ºC for 30 min in air environment. 

So, the polymer is injected into the pores by melt-assisted wetting (Figure 4.9 d). 

Finally, the sample is slowly cooled to room temperature and the remaining aluminium 

substrate is removed in a saturated solution of HCl·CuCl2. The NAAT is dissolved in a 

solution of sodium hydroxide (NaOH) 1 M for 1 h (Figure 4.9 e). The polymer 

nanostructure attached to the ITO/glass substrate is rinsed with double-deionised water 

(Purelab Option-Q 18.2 MΩ-cm) for several times to eliminate residual sodium and 

aluminium hydroxide from the nanostructured P3HT film. Subsequently, it is dried at 

30ºC for 1 h and stored in N2 environment in the dark just before its characterization.  
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Figure 4.9 Slanted cross-section view diagram describing the fabrication process of 

the high-density arrays of semiconducting Poly(3-hexylthiophene) nanopillars on 

ITO/glass substrates. a) NAAT template on aluminium substrate once the second step 

of the anodization process has finished (ordered pores). b) P3HT spin-coated NAAT.  

c) P3HT-covered NAAT pressed and fixed to an ITO/glass substrate. d) NAAT 

infiltrated with P3HT after heating and annealing treatment. e) Arrays of 

semiconducting P3HT nanopillars on ITO/glass substrate after removing the remaining 

Al substrate and the NAAT. 
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Several techniques are used to characterize the fabricated samples. First, it is 

confirmed by thermogravimetry analysis that the thermal treatment does not imply the 

thermal decomposition of the P3HT samples. The morphology of the NAATs and their 

polymeric replicas are inspected by ESEM. In order to analyse cross-sectional images 

of the P3HT nanostructures by TEM, two NAATs are spin-coated at lower speed (i.e. 

500 r.p.m. for 30 s). Then, these samples are fixed to ITO/glass substrates and 

processed following the same thermal treatment that the rest of samples (i.e. pre-

heating and annealing conditions). After cooling, they are dipped into liquid N2 to 

detach the infiltrated NAATs from the ITO/glass substrates. One of them is bent without 

remove both the Al substrate and the NAAT and, subsequently, analysed by ESEM. 

The other one is cross-sectionally microtomed after removing the Al substrate and the 

NAAT and observed by TEM. In addition, current sensing atomic force microscopy 

(CS-AFM) is performed for two kinds of devices: namely, glass-ITO/P3HT (film) and 

glass-ITO/P3HT (nanostructured). In order to evaluate and compare the electrical 

properties of the P3HT nanopillars, a P3HT flat sample is prepared (without 

nanostructuring). A glass/ITO substrate is spin-coated with the same P3HT solution 

(CH3Cl-P3HT 10 wt %) at higher speed (i.e. 4000 r.p.m. for 30 s). The applied thermal 

treatment is the same that for the P3HT nanostructured samples. The thickness of the 

P3HT film is approximately equivalent to the nanopillar height and the substrate 

thickness (i.e. 425 nm). Electrically conductive platinum-chromium coated cantilevers 

(ElectriMulti75-G with force constant 3 N/m from Budgetsensors) are used to scan the 

surface of these devices while the current is measured between the tip and the 

ITO/glass substrate. In order to detect the P3HT chain alignment, micro-X-ray 

diffraction (µ-XRD) measurements are performed. The geometric characteristics of the 

NAAT and the arrays of P3HT nanopillars are measured by ESEM image analysis 

using ImageJ.  
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First, the template design is a crucial factor because the low exciton diffusion length in 

semiconducting polymers implies that the space between adjacent nanopillars must be 

of order of several tens of nanometres. To this end, by nanostructuring the P3HT film, 

the donor/acceptor interface can be enlarged within the attainable exciton diffusion 

length. For this reason, NAATs are employed since they can be fabricated with 

controlled pore geometry. For a given acid electrolyte, the interpore distance (dinterp) is 

mainly established by the anodization voltage (V), the pore diameter (dp) depends on 

the pore widening time (tpw) and the anodization voltage, and the pore length (Lp) is 

controlled by the anodization time (t). Figures 4.10 a and b show ESEM images of the 

top and the cross-sectional view of one NAAT, respectively. The templates are 

fabricated by the well-established two-step anodization process in phosphoric acid, 

yielding templates with an average interpore distance of 400 nm (i.e. V = 160 V) and an 

average pore length of 300 nm (i.e. t = 2.5 min). The average pore diameter of 300 nm 

is adjusted by the length of the pore widening time (i.e. tpw = 40 min).  

 

 

Figure 4.10 Set of ESEM images of a NAAT. a) Top view of a NAAT. b) Cross-section 

view of the same NAAT. 
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The current density and voltage-time (J-t and V-t) transients for the NAAT fabrication 

process are shown in Figure 4.11.  

 

In order to fill entirely the fabricated NAATs with P3HT as well as to attach them to 

ITO/glass substrates, it is used a combination between spin-coating and melt-assisted 

wetting methods together with a subsequent thermal moulding stage. By means of this 

technique, the formation of hollow nanopillars is avoided and the substrate thickness of 

the P3HT nanopillar arrays (i.e. the P3HT film located between the nanopillar base and 

the ITO/glass substrate) is controlled. After pressing and fixing the P3HT-covered 

NAATs to the ITO/glass substrates, the samples are pre-heated at 60ºC to evaporate 

the dissolvent (CH3Cl). Then, to remove any air inclusion from the interface between 

the P3HT film and the ITO/glass substrate, the temperature is slowly increased to 

250ºC (i.e. just above the P3HT melting point 238ºC). In this way, the filling of the 

pores and the adhesion of the ITO/glass substrate to the cured P3HT film are improved 

and completed throughout the NAAT. However, the removing processes of the Al 

substrate and the NAAT can produce the detachment of the nanostructured P3HT film 

as they are exothermic chemical reactions. In order to prevent this, both the HCl·CuCl2 

and the NaOH solutions are cooled at 5ºC and these processes are conducted at low 

stirring rate (i.e. 100 r.p.m.). In order to verify if the applied thermal treatment implies 

the thermal decomposition of the P3HT samples, a thermogravimetry analysis is 

performed. To this aim, a P3HT flat sample (i.e. without nanostructuring) is prepared as 

follows: a glass/ITO substrate is spin-coated with a P3HT solution (CH3Cl-P3HT         

10 wt %) at 4000 r.p.m. for 30 s. In this way, the thickness of this P3HT film is 

approximately equivalent to the nanopillar height and the substrate thickness (i.e. 425 

nm). The P3HT film is detached from the glass/ITO substrate by dipping into liquid N2 

and dried at room temperature for 24 h. Subsequently, the thermogravimetric analysis 

of the P3HT sample is carried out using a TGA instrument from Mettler-Toledo (model 

TGA/SDTA 851e) in the temperature range from 19 to 990ºC.  
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The applied nominal heating rate is 10ºC·min-1 and the air flow rate is maintained at 90 

ml·min-1 during the entire process. Figure 4.12 shows the thermogravimetry curve of 

normalized mass (W, black line-left scale) and the derivative thermogravimetry curve 

(dW, red line-right scale). The thermal decomposition of the P3HT sample under air 

atmosphere can be divided on three main stages. The first stage takes place at 314ºC 

and it is due to the division of weaker alkyl chain [231-234]. The second stage is the 

maximum decomposition temperature at 473ºC and it is related to the scission of the 

alkyl side chain. The third decomposition stage appears at 549ºC. During this stage, 

the oxidation of the P3HT sample is accelerated and the pyrolysis of the aromatic 

backbone of the P3HT chain takes place. Beyond 578ºC the thermal decomposition is 

finished and both W and dW remain stable. So, it is demonstrated that the thermal 

treatment applied in the course of the fabrication process does not imply the P3HT 

decomposition. For this reason, it is possible to use the resulting nanostructure in later 

applications as nanostructured organic solar cells. 

 

Figure 4.11 Current density and voltage-time (J-t and V-t) transients for the fabrication 

process of a NAAT. 
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To inspect if the fabricated arrays of Poly(3-hexylthiophene) nanopillars are entirely 

solid and no air bubbles remain entrapped after the fabrication process, an analysis of 

cross-sectional TEM images is performed (Figure 4.13 a). After this, it is proven that 

the filling of the P3HT nanopillars is completely homogeneous. This guarantees that 

the arrays of P3HT nanopillars have high mechanical firmness and the conductivity 

throughout them is not hindered by any void into the nanopillar bulk. Another sample 

prepared following the same fabrication process but without removing the NAAT is bent 

and observed by cross-sectional ESEM images (Figures 4.13 b and c). The substrate 

thickness of the P3HT nanopillar arrays for these samples is 10 µm. So, it is possible to 

avoid the disintegration of the nanostructured P3HT during the preparation of the 

microtome sections. 

 

Figure 4.12 Thermogravimetry curve of normalized mass (W, black line-left scale) and 

derivative thermogravimetry curve (dW, red line-right scale) of a P3HT sample. The 

blue circles indicate the main decomposition temperatures (i.e. 314, 473 and 549ºC).  
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Figure 4.13 Set of cross-sectional TEM and ESEM images. a) TEM image of cross-

section view of a P3HT nanostructured film after microtoming. b) ESEM image of 

cross-section view of the same P3HT nanostructured film without removing the Al 

substrate and the NAAT. c) Magnified view of the red square in (b). 
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By means of ESEM image analysis, the structural characteristics of the resulting P3HT 

nanostructures are measured. The average pillar diameter (dpillar) is 269 nm and the 

average interpillar distance (dinterpillar) is 399 nm. The average pillar height (Hpillar), the 

average distance between adjacent pillars (Einterpillar) and the average substrate 

thickness (St) estimated from ESEM images are 295, 56 and 130 nm, respectively. The 

geometric characteristics of both the NAAT and the replicated P3HT nanostructure are 

defined in Figure 4.14 and their measurements together with their respective standard 

deviations are summarized in Table 4.3. The dissolvent evaporation and the 

crystallization after the thermal treatment yield a slight contraction of the nanopillar 

dimensions (i.e. pillar diameter and height) with regards to the pore diameter and 

height of the template. As Figures 4.15 a and b show, no bundles of P3HT nanopillars 

are observed throughout the sample surface and the nanostructured film remains 

completely attached to the ITO/glass substrate after the fabrication process (Figures 

4.15 c and d). The natural tendency of polymer nanopillars to form aggregates by 

attraction forces during the drying step can be overcome by designing appropriately the 

nanopillar aspect ratio (i.e. Hpillar/dpillar). For this reason, it is extremely important to 

control the fabrication process of the NAATs. In addition, it is possible to fabricate 

nanopillar arrays with higher aspect ratios by combining a suitable nanopillar design 

with other strategies such as supercritical drying and freeze-drying, [219,235]. 
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Geometric Characteristic Symbol Value ± STD (nm) 

Pore Diameter dp 308 ± 16 

Pore Length Lp 303 ± 24 

Pillar Diameter dpillar 269 ± 26 

Interpillar Distance dinterpillar 399 ± 35 

Distance between adjacent pillars Einterpillar 56 ± 12 

Pillar Height Hpillar 295 ± 56 

Substrate Thickness St 130 ± 20 

 

Table 4.3 Average measurements of the geometric characteristics and their standard 

deviations for the resulting P3HT nanostructures. 

 

 

 

Figure 4.14 Definition of the geometric characteristics for the NAAT and the replicated 

P3HT nanostructure. a) Cross-section view of the NAAT. b) Top view of the NAAT. c) 

Cross-section view of the P3HT nanostructure. d) Top view of the P3HT nanostructure.  
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Figure 4.15 Set of ESEM images of the high-density arrays of semiconducting P3HT 

nanopillars on ITO/glass substrates. a) Top view. b) Magnified view of the red square in 

(a). c)  Cross-section view of the same sample after fracturing the ITO/glass substrate. 

d) Magnified view of the red square in (c). 
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The high-density arrays of semiconducting P3HT nanopillars on ITO/glass substrates 

are electrically characterized by current sensing atomic force microscopy (CS-AFM). 

Figure 4.16 a shows the current density-voltage (J-V) characteristic of the 

nanostructured P3HT and the P3HT film. The real contact area between the samples 

(i.e. P3HT film and P3HT nanopillars) and the AFM tip is estimated by applying the 

Hertz theory. In the case of the nanostructured sample, this curve can be considered 

as the J-V characteristic for a single nanopillar (Figure 4.16 b), since the tip diameter of 

the cantilever is < 25 nm (Table 4.4). In the bias voltage range of ± 2 V, the current 

density (J) of the P3HT nanopillar is much higher than the P3HT film. Both curves 

exhibit sigmoidal shapes and this result agrees with the results obtained for other 

nanostructured polymers [236]. This behaviour is shown by many photoelectrochemical 

solar cells [237,238]. Figures 4.17 a and b show the AFM topography images of the 

P3HT nanopillars and the P3HT film, respectively. Their AFM current mapping images 

are shown in Figures 4.17 c and d. On the one hand, it is seen that the current is 

homogeneously distributed throughout the film surface, even though some small 

fluctuations appear owing to the surface roughness according to previous studies 

[239,240]. On the other hand, the current is heterogeneously arranged throughout the 

surface of the P3HT nanopillars. It is observed that the current is ostensibly higher in 

those areas corresponding to the nanopillar tips. In order to verify this, a cross-

sectional CS-AFM image analysis is carried out. Figures 4.17 e and f show the 

superimposed AFM topography and current profiles of the P3HT nanopillars and the 

P3HT film, respectively. It is seen that the maximum values of the current for the P3HT 

nanopillars match approximately with the nanopillar positions in the topography profile. 

This occurs for the P3HT film as well, but the maximum current values are due to small 

protuberances located on the P3HT film surface. The average maximum current for the 

P3HT nanopillars is 20.02 nA while for the P3HT film is 6.55 nA, which is approximately 

3 times lower. Their standard deviations (SD) of current are 5.95 and 0.03 nA, 

respectively.  
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Figure 4.16 J-V characteristics of P3HT film and nanopillars by CS-AFM. a) J-V curves 

of P3HT nanopillars (light grey solid line) and P3HT film (black solid line). b) Scheme of 

CS-AFM measurements for P3HT nanopillars and P3HT film. 
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Figure 4.17 Topography and current mappings of P3HT nanopillars and P3HT film by 

CS-AFM images. a) AFM topography for P3HT nanopillars. b) AFM topography for 

P3HT film. c) AFM current mapping for P3HT nanopillars and d) P3HT film. e) AFM 

topography (black solid line-left scale) and current (red solid line-right scale) profiles 

corresponding to the blue line in (a) and (c), respectively. f) AFM topography (black 

solid line-left scale) and current (red solid line-right scale) profiles corresponding to the 

blue line in (b) and (d), respectively.  
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Characteristic Value 

Resonant Frequency 75 kHz 

Force Constant 3 N/m 

Cantilever Length 225 μm 

Mean Width 28 μm 

Thickness 3 μm 

Tip Height 17 μm 

Tip Set Back 15 μm 

Tip Radius < 25 nm 

Coating Cr/Pt on both sides 

Half Cone Angle 20º - 25º along cantilever axis 

25º - 30º from side 

10º at the apex 

Contact Resistance 300 Ohms on platinum thin film surface 

 

Table 4.4 Properties of the electrically conductive platinum-chromium coated 

cantilevers (ElectriMulti75-G from Budgetsensors). 
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In order to validate this result, it is calculated the electric conductivity (σ) and the 

electric resistivity (ρ) of the P3HT nanopillars and the P3HT film from the J-V 

characteristic (Figure 4.16 a). So, first, it is necessary to estimate the contact area (Ac) 

between the AFM tip and the studied samples (i.e. film and nanopillars). To this aim, 

the contact radius between the AFM tip and the sample (rc) is calculated by applying 

the Hertz theory [240-247] as follows: 
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where F is the loading force, Fad is the adhesion force, R* is the effective radius of 

curvature of the AFM tip-sample contact and E* is the effective Young’s modulus. R* is 

calculated as: 
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where RAFMtip and Rsample are the radius of the AFM tip and the radius of the sample, 

respectively. E* is given by: 
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where σAFMtip and σsample are the Poisson’s ratios, and EAFMtip and Esample are the Young’s 

modulus of the AFM tip and the sample, respectively. 
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Finally, the contact area between the AFM tip and the sample can be calculated as: 

 

2
cc rA π=                                                                                                                      (4.4) 

 

Table 4.5 shows the value of each parameter under the work conditions. By 

substituting these values in the equations, the contact radius and the contact area are 

3.9 nm and 48.7 nm2 for the P3HT film and 3.7 nm and 43.9 nm2 for the P3HT 

nanopillars, respectively.  

 

Parameter Value 

F (nN) 7 

Fad (nN) 1 

RAFMtip (nm) 25 

Rsample (nm) (P3HT film) ∞ 

Rsample (nm) (P3HT nanopillars) 150 

R* (nm) (P3HT film) 25.0 

R* (nm) (P3HT nanopillars) 21.4 

σAFMtip = σPt 0.39 [248] 

σsample = σP3HT 0.35 [249] 

EAFMtip = EPt (GPa) 168 [248] 

Esample = EP3HT (GPa) 2.2 [249] 

E* (GPa) 2.5 

 

Table 4.5 Parameters and their values used to calculate the contact area for the P3HT 

film and the P3HT nanopillars. 
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In order to calculate the electrical conductivity (σ) of the studied samples (i.e. P3HT film 

and P3HT nanopillars) from the current density-voltage (J-V) characteristic (Figure 4.16 

a), only those points corresponding to the straight stretches of these curves are 

considered (i.e. between 0 and 2.5 V). After linear fittings of these points, the electrical 

resistances of both the P3HT film (Rfilm) and the P3HT nanopillars (Rnanopillars) result  

0.29 x 109 and 0.17 x 109 Ω, respectively.  

 

Furthermore, to estimate the real conductivity of the P3HT nanopillars, two equivalent 

electric circuits are designed (Figure 4.18).  

 

 

 

Figure 4.18 Cross-section view diagram for a) P3HT film and b) nanopillars and their 

equivalent electric circuits. 
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Two relationships are obtained from these equivalent electric circuits: 
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where Rfilm is the electric resistance of the P3HT film, Rnanopillars is the electric resistance 

of the P3HT nanopillars, Rpillar is the electric resistance of one P3HT nanopillar and 

Rsubstrate is the electric resistance of the P3HT substrate under this nanopillar. The 

electric resistivities of the P3HT film, nanopillar and substrate are ρfilm, ρpillar and 

ρsubstrate, respectively. The thickness of the P3HT nanopillar (i.e. its height) is tpillar and 

tsubstrate is the thickness of the P3HT substrate under this nanopillar. Finally, Ac(film), 

Ac(pillar) and Ac(substrate) are the contact areas of the P3HT film, the P3HT nanopillar and 

the P3HT substrate under such nanopillar calculated by the Hertz theory, respectively. 

Considering that ρsubstrate = ρfilm, Ac(substrate) = Ac(pillar) and substituting the values shown in 

Table 4.6, the electric resistivities of the P3HT film (ρfilm) and the P3HT pillar (ρpillar) 

result 3.3 and 1.0 Ω·cm, and their conductivities (σ = 1/ρ) are 0.3 and 1.0 S·cm-1, 

respectively. Furthermore, the electric resistivity of the P3HT film (ρfilm) is validated 

using a resistivity testing equipment with 4-points from Lukas labs and the average 

value for ρfilm after 10 measurements results 2.7 Ω·cm. So, this result ratifies that the 

electric conductivity of the P3HT nanopillars is approximately three times higher than 

the electric conductivity of the P3HT film. The measured σ of the P3HT film is in good 

agreement with previously reported conductivity values [250].  
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Parameter Value 

tfilm (nm) 425 

tpillar (nm) 295 

tsubstrate (nm) 130 

Ac(film) (nm2) 48.7 

Ac(substrate) = Ac(pillar) (nm2) 43.9 

Rfilm (Ω) 0.29 x 109 

Rnanostructured (Ω) 0.17 x 109 

 

Table 4.6 Parameters and their values used to calculate the electric resistivity and the 

electric conductivity for the P3HT film and the P3HT nanopillars. 

 

This result agrees with the assumption that nanostructured polymers present higher 

conductivity than flat films of the same polymer. This can be explained by the 

nanoconfinement of the polymer chains inside the nanopillar, which are oriented along 

the nanopillar axis (i.e. perpendicular to the substrate) after the infiltration process 

[236,251]. In order to confirm this issue, these samples are analyzed by micro-X-ray 

diffraction (µ-XRD). Figure 4.19 a shows the out-of-plane µ-XRD profile from 2θ = 6.7 

to 41º for P3HT nanopillars and P3HT film. There are three main peaks for P3HT 

nanopillars and appear at 10.8, 16.1 and 23.6º, which correspond to 〈200〉, 〈300〉 and 

〈010〉 planes, respectively. The peak intensity is higher in these angles for nanopillars 

than for film, which indicates the presence of vertically aligned P3HT chains inside the 

nanopillars. So, the P3HT chain alignment takes place during the infiltration process of 

P3HT into the NAATs and remains after the fabrication process (Figures 4.19 b and c).  
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There is π-π stacking of the P3HT chains along the nanopillar axis (i.e. orthogonal to 

the substrate), which improves the charge-mobility in comparison with the film structure 

based on the same polymer.  

 

 

Figure 4.19 P3HT chains alignment by nanoconfinement. a) µ-X-ray diffraction 

analysis of P3HT film and nanopillars. b) Scheme showing how the P3HT chains are 

randomly arranged inside the film bulk. c) Scheme showing the arrangement of the 

P3HT chains inside the nanopillars after the NAATs infiltration.  
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In summary, it has been reported on the fabrication and characterization of high-

density arrays of semiconducting Poly(3-hexylthiophene) nanopillars on ITO/glass 

substrates. This nanostructure presented an average nanopillar height of 300 nm and 

an average distance between adjacent nanopillars of 50 nm, approximately. 

Nanoporous anodic alumina with designed pore size it has been used as a template. 

These templates have been infiltrated with P3HT by combining the spin-coating 

method with the melt-assisted wetting method. After the fabrication process, faultless 

P3HT replicas of these templates without internal voids and aggregates have been 

obtained and they have remained perfectly fixed on the ITO/glass substrate. Therefore, 

the aim of fabricating high-density arrays of P3HT nanopillars with high interface 

required for photovoltaic applications has been successfully reached. To the best of our 

knowledge, for the first time these nanostructures have been characterized by current 

sensing atomic force microscopy and the J-V characteristic of a single P3HT nanopillar 

has been measured. It has been demonstrated that the conductivity of the 

nanostructured sample is enhanced owing to the high alignment of P3HT chains 

throughout the nanopillar axis (i.e. perpendicular to ITO/glass substrate). By means of 

µ-X-ray diffraction analysis, it has been found out that this chain alignment is produced 

by confinement during the P3HT infiltration step of the fabrication process.  

 

As it has been demonstrated, the use of these high-density arrays of semiconducting 

P3HT nanopillars can be a suitable way to enhance the efficiency of photovoltaic 

devices. There are two main reasons for this: on the one hand, the conductivity is 

improved by vertical alignment of P3HT chains in nanopillars and, on the other hand, 

nanostructuring provides a larger interface for charge collection. It is expected that the 

presented P3HT nanostructure could be integrated in polymeric nanostructured solar 

cells in the near future. In addition, this fabrication process could be extended to 

different types of copolymers to satisfy the requirements of later applications such as 

sensors, actuators, photonic devices and so on.  
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4.4. Mosaic arrays of nickel nanowires and nanotubes 

From the applications point of view, nanocomposites made of two types of materials or 

geometries are of particular interest because they make it possible to produce a new 

generation of nanodevices (e.g. functional nanoelectrodes, sensors, catalysts, optical 

devices, etc.). To date, various studies have reported that two types of materials have 

been combined in the same nanostructure using nanoporous anodic alumina templates 

(NAATs). Mosaics of metallic nanowires made of two types of metals have been 

fabricated into NAATs produced by nanoimprinting because these templates make it 

possible a selective pore opening under suitable anodization conditions (section 3.2.5) 

[252]. By means of alternating electrodeposition, magnetic multilayered nanowires with 

alternating ferromagnetic and nonmagnetic metallic layers have been fabricated using 

NAATs [253]. Nevertheless, in some applications, it would be desirable to fabricate 

nanostructures that combine two types of geometries in the same NAAT. This section 

describes a method for fabricating mosaic arrays of nickel (Ni) nanowires and 

nanotubes in the same template by using bilayered nanoporous anodic alumina 

templates (BNAATs). It is also demonstrated that this method is a way of indirectly 

studying what happens in the transition layer of BNAATs when the main anodization 

parameters (i.e. anodization voltage ramp and hard anodization voltage) are modified. 

 

As was mentioned in section 3.2.4, BNAATs can be designed and fabricated by 

combining mild (MA) and hard (HA) anodization regimes. In these templates, when the 

anodization regime changes from MA to HA, some pores vanish and others merge 

and/or continue. This is because the change in the anodization voltage enlarges both 

the pore lattice (i.e. interpore distance) and the pore diameter. Therefore, the pores are 

rearranged by the self-ordering mechanism.  
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It is difficult to observe this phenomenon by means of a cross-sectional analysis using 

ESEM or TEM (Figure 4.20). Neither do these experimental techniques enable the 

number of pores that vanish and merge and/or continue to be quantified. In order for 

this to be done, indirect methods such as the electrodeposition of metals need to be 

used. This can be summed up in the following way (Figure 4.21): when the oxide 

barrier layer on the bottom of the BNAAT (i.e. HA side) is removed (Figures 4.21 a, b 

and c), the pores that connect the MA side to the HA side are those pores that merge 

and/or continue after the anodization voltage change (i.e. the open pores). The other 

pores on the MA side are the ones that vanish at the transition layer when the 

anodization voltage is increased (i.e. the closed pores at the transition layer). The 

number of pores that have vanished during the voltage change can thus be indirectly 

quantified by means of a method such as metal electrodeposition (Figure 4.21 d and 

e). So, the number of filled pores in the MA side after the electrodeposition (i.e. 

nanowires) will be the number of open pores that connect the top and bottom of the 

BNAAT (i.e. pores that merge and/or continue). The empty pores will be the closed 

pores (i.e. the pores that vanish). In addition, after the electrodeposition process, by 

removing the metal contact used to carry out the electrodeposition (Figure 4.21 f) and 

applying an atomic layer deposition (ALD) stage to the MA side, nanotubes can be 

fabricated in these empty pores, generating mosaic arrays of Ni nanowires (Ni-Nws) 

and nanotubes (Ni-Ntbs) in the NAAT itself (Figure 4.21 g). 
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Figure 4.20 Set of ESEM images of a BNAAT fabricated under conditions S2.0-140 

(Table 3.5). a) HA bottom view of the BNAAT after applying a reactive ion etching 

process (open pores). b) MA top view of the BNAAT. c) Cross-section view of the 

BNAAT. d) Magnified view of the red rectangle in (c) (V denotes vanished pores, M 

identifies these pores that merge and C these pores that continue after the voltage 

change (transition layer)). 
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Figure 4.21 Cross-section view scheme showing the fabrication process of mosaic 

arrays of Ni-Nws and Ni-Ntbs. a) As-produced BNAAT. b) Removing the remaining Al 

substrate by wet chemical etching. c) Pore opening process of the HA side by reactive 

ion etching. d) Formation of copper contact by electrodeposition on the MA side. e) 

Nickel electrodeposition (fabrication of Ni-Nws). f) Removing the Cu contact by 

mechanical polishing. g) Atomic layer deposition (fabrication of Ni-Ntbs).  
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In this case, the nine types of bilayered nanoporous anodic alumina templates are 

designed and fabricated in the conditions described in section 3.2.4. The experimental 

conditions are selected to fabricate BNAATs with a total thickness of 40 μm (i.e. 20 μm 

for the MA side and 20 μm for the HA side) for two main reasons: i) to control the 

length of the nanotubes fabricated by ALD and ii) to facilitate sample handling in the 

course of the fabrication process.  

 

The BNAATs are fabricated using the two-step anodization technique discussed in 

section 3.2.4. Briefly, the 1st anodization step consists of directly applying the mild 

anodization voltage (i.e. 40 V) with H2C2O4 0.3 M for 24 h. Then, the resulting Al2O3 film 

is dissolved by wet chemical etching using a mixture of H3PO4 0.4 M and H2CrO3 0.2 M 

at 45ºC. Subsequently, the 2nd step of the anodization process is started under the 

same anodization conditions (i.e. H2C2O4 0.3 M at 40 V) and, when the oxide layer 

reaches a thickness of 20 μm, the anodization voltage is increased at a set rate (i.e. 

0.5, 1.0 or 2.0 V·s-1) until it reaches the hard anodization voltage (i.e. 80, 110 or 140 V). 

This process is conducted until the hard oxide layer reaches a thickness of 20 μm. The 

thickness of each layer is controlled by the anodizing control system presented in 

section 3.2.4. The remaining aluminium substrate is removed in a saturated solution of 

HCl·CuCl2, and a pore opening process is applied to the HA side by a reactive ion 

etching (RIE) that combines a mixture of O2 and CF4 with a plasma source. After this, 

both sides of the BNAATs (i.e. MA and HA sides) present open pores. Thereupon, a 

thin layer of gold (Au) is plasma-sputtered onto the MA side of the BNAATs using a 

conventional sputter coater for SEM observations to make the MA side surface 

electrically conductive. A copper (Cu) contact, which acts as working electrode, is 

grown from this Au layer by electrodeposition from a Cu plating solution comprising 

copper (II) sulphate (CuSO4) 0.5 M and ammonium sulphate ((NH4)2SO4) 1 M under 

galvanostatic conditions (i.e. -20 mA) at 45ºC for about 4 min.  
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Once the Cu contact has been created on the MA side of the BNAATs, a nickel 

electrodeposition process is performed using a solution composed of nickel sulphate 

hexahydrate (NiSO4·6H2O) 300 g·L-1, nickel chloride hexahydrate (NiCl2·6H2O) 45 g·L-1 

and boric acid (H3BO3) 45 g·L-1 as Ni electrolyte. To this end, the MA side of the 

corresponding BNAAT (i.e. side with the Cu contact) is placed in contact with the 

copper plate of the electrodeposition cell and the HA side faces the Ni electrolyte 

solution, which is constantly stirred at 150 r.p.m. and heated at 35ºC throughout the 

electrodeposition process. A platinum (Pt) mesh is used as counter electrode and the 

electrodeposition process is conducted at -2 mA using a potentiostat-galvanostat from 

Gamry (model 600).  

 

The various layers of the BNAATs can be identified from the electrodeposition 

transient, which allows the length of the Ni nanowires to be controlled at the same time. 

The example in Figure 4.22 shows the current (I-t) and voltage-time (V-t) transients for 

a BNAAT to be completely filled under galvanostatic conditions. Three main sections, 

which are related to the different layers of the BNAAT, can be distinguished in the 

voltage curve for the Ni electrodeposition. First, the voltage decreases abruptly until it 

reaches a steady value. This value is maintained for a certain period of time (section    

1 - S1). Then, there is a noticeable increase in V until a second steady value is reached 

(section 2 - S2). After a certain period of time, the voltage suddenly increases again 

until it reaches a new constant value. This value remains constant throughout the rest 

of the electrodeposition process (section 3 - S3). These three sections can be related to 

different stages of the Ni-Nws growth inside the BNAAT. First, the Ni-Nws grow from 

the bottom (i.e. Cu contact) to fill the MA layer (S1). When the Ni-Nws front reaches the 

transition layer (i.e. transition between MA and HA sides), V increases because the 

electrodeposition area changes as a result of the change in the anodization regime. 

Then, the Ni-Nws front starts to grow through the HA layer and this leads to a new 

constant value of V (S2).  
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Subsequently, when the Ni-Nws front reaches the top of the BNAAT, hemispherical tips 

of Ni grow over the BNAAT surface. This leads to another increase in V since the 

electrodeposition area is enlarged again. Finally, a growing constantly Ni layer covers 

the BNAAT surface, which is denoted by a constant value of V through the time (S3). 

 

 

 

Figure 4.22 Identification of different layers in a BNAAT by the electrodeposition 

transient. a) Current and voltage-time (I-t and V-t) transients of an entirely filled BNAAT 

by Ni electrodeposition under galvanostatic conditions. b) Schematic cross-section 

view showing the different layers of the BNAAT.   
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After the Ni electrodeposition process, the Cu contact must be removed from the MA 

side of the BNAATs so that the Ni-Nws can be observed. To this end, a graded 

mechanical polishing is carried out with the following polishing steps: 

 

i) Water in a disc of SiC grinding paper 4000#. 

ii) Suspension of 6 μm diamond particles on a polishing wheel. 

iii) Suspension of 250 nm diamond particles on a polishing wheel. 

iv) Suspension of 50 nm silica particles on a polishing wheel. 

 

The mechanical polishing rate is established by repeated ESEM images acquired at 

different steps in this process. Between successive polishing steps, an exhaustive 

cleaning stage with deionized water is required to remove the particles left behind by 

each polishing solution from the BNAAT surface and to prevent possible contamination. 

If contamination does occur polishing will be irregular. Finally, to obtain well-contrasted 

ESEM images, a final pore widening step is performed after the mechanical polishing 

process by wet chemical etching in phosphoric acid solution 5 wt % at 35ºC for 20 min.  

 

Figure 4.23 shows a set of ESEM images of the MA side of the resulting 

nanostructures. At first glance, it is observed that the Ni-Nws are randomly distributed 

and relatively short domains of empty pores appear over the entire MA side surface. 

This means that, when the anodization voltage is increased from MA to HA regime, the 

re-arrangement of pores in the transition layer (i.e. ramped voltage section) is not 

ordered. However, once the HA voltage has been reached, after some time the pores 

tend to adopt a hexagonal arrangement because of the self-ordering mechanism. This 

can be observed in Figure 3.25, which shows the HA side of the different types of 

BNAATs and the extent to which the pores are hexagonally arranged varies according 

to the anodization conditions (i.e. minimum order for S0.5-80 and maximum order for  

S2.0-140).  
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In order to quantify the effect of the main anodization parameters on the ratio between 

filled pores (i.e. NFP = Ni-Nws) and empty pores (i.e. NEP = future Ni-Ntbs), a 3k-factorial 

design of experiments is applied to estimate possible quadratic effects on the studied 

variable (i.e. ratio between filled and empty pores (NFP/NEP)). For each one of the 

experiments (i.e. a total of 32 = 9), the MA side is analyzed in detail by image analysis 

and four ESEM images at different areas of approximately 6 µm2 are obtained to 

reduce the amount of variability in the data derived from local effects. The image 

analysis process carried out to estimate NFP/NEP is schematically explained in Figure 

4.24.  

 

 

 

Figure 4.23 Set of ESEM images of the MA side of each type of BNAAT after Ni 

electrodeposition, mechanical polishing, cleaning and pore widening.   
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First, using ImageJ, two thresholds are obtained from each ESEM image, one for filled 

pores and the other for empty pores. Then, by selecting suitable threshold limits, filled 

pores (NFP) and empty pores (NEP) can be distinguished. Subsequently, each pore is 

outlined by ellipses and, therefore, the number of each type of pores can be 

automatically counted. All the acquired data are shown in Table 4.7 (i.e. total of 36 

measurements) and the average values of NFP, NEP, and NFP/NEP together with their 

corresponding standard deviation are summarized in Table 4.8 for each type of 

BNAAT. 

 

Figure 4.24 Schematic diagram showing the image analysis process carried out to 

estimate NFP/NEP. 
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 VHA (V) 

 

NFP/NEP 

(Filled pores/Empty pores) 80 110 140 

0.5 0.36 0.27 0.18 

 0.34 0.24 0.16 

 0.39 0.31 0.14 

 0.35 0.27 0.15 

1.0 0.37 0.21 0.16 

 0.29 0.24 0.16 

 0.35 0.23 0.17 

 0.36 0.29 0.15 

2.0 0.33 0.26 0.11 

 0.32 0.24 0.12 

 0.33 0.23 0.12 

R
v (

V
·s

-1
) 

 0.32 0.23 0.11 

 

Table 4.7 Complete set of the NFP/NEP measurements for each of the fabricated 

BNAATs.  
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Sample 
NFP 

(Filled pores) 

NEP 

(Empty pores) 

NFP/NEP 

(Filled pores/Empty pores) 

S0.5 - 80 162 ± 14 450 ± 20 0.36 ± 0.02 

S0.5 - 110 123 ± 8 456 ± 37 0.27 ± 0.03 

S0.5 - 140 76 ± 7 481 ± 9 0.16 ± 0.02 

S1.0 - 80 139 ± 14 409 ± 10 0.34 ± 0.04 

S1.0 - 110 107 ± 11 445 ± 12 0.24 ± 0.03 

S1.0 - 140 80 ± 4 501 ± 7 0.16 ± 0.01 

S2.0 - 80 142 ± 2 440 ± 4 0.32 ± 0.01 

S2.0 - 110 102 ± 7 424 ± 3 0.24 ± 0.02 

S2.0 - 140 57 ± 3 496 ± 6 0.12 ± 0.01 

 

Table 4.8 Average values and standard deviations of the number of filled pores (NFP), 

empty pores (NEP) and their ratio (NFP/NEP) for the fabricated BNAATs. 

 

As was pointed out in section 3.2.4, an analysis of variance (ANOVA) of the 

experimental results is performed to make an objective analysis of the effect of the 

anodization parameters (i.e. Rv and VHA) on the analyzed variable (i.e. NFP/NEP). So, the 

three null hypotheses tested by means of the ANOVA are: 

 

i) H0: (α·β)ij = 0 (there is not significant effect of the interaction between the 

anodization parameters (i.e. Rv·VHA) on NFP/NEP). 

ii) H1: αi = 0 (there is not significant effect of Rv on NFP/NEP). 

iii) H2: βj = 0 (there is not significant effect of VHA on NFP/NEP). 

 

where αi and βj are the effects of Rv and VHA, respectively. 
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After substituting the values of each parameter in the equations summarized in Table 

3.8, the resulting ANOVA is presented in Table 4.9.  

 

Source SS DF MS F0 

Rv (V·s-1) 0.0082 2 0.0041 8.40 

VHA (V) 0.2366 2 0.1183 243.80 

Rv ·VHA (V2·s-1) 0.0020 4 0.0005 1.04 

Error 0.0100 27 0.0005 

Total 0.2600 35 

 

Table 4.9 ANOVA table for the 32-factorial design corresponding to table 4.7. 

 

The ANOVA test confirms that the interaction between Rv and VHA is not significant 

because 1.04 is shorter than F(0.05; 4; 27) = 2.73. So, hypothesis H0 is accepted and the 

interaction of the anodization parameters (i.e. Rv·VHA) has no significant effect on 

NFP/NEP. When the hypotheses H1 and H2 are analyzed, both are rejected since the 

effects of both anodization parameters are significant (i.e.  8.40 and 243.80 > F(0.05; 2; 27) 

= 3.35). So, the alternative hypotheses H1* and H2* are accepted (section 3.2.4). 

Nevertheless, it should be taken into account that the effect of Rv and VHA on NFP/NEP is 

3.3 and 96.3% of the total effect, respectively. The effect of the anodization voltage 

ramp on NFP/NEP, then, is practically negligible in contrast to the effect of the hard 

anodization voltage. 
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Figure 4.25 visually represents the change in the studied variable when one of the 

anodization parameters is fixed and the other is modified and vice versa. First, it is 

observed that NFP/NEP varies linearly when the value of Rv is changed at 80 V. 

Nonetheless, slight quadratic effects on the NFP/NEP ratio appear when the voltage 

ramp is increased at 110 and 140 V (Figure 4.25 a). When Rv is fixed and VHA is varied, 

no significant quadratic effects are observed on NFP/NEP when the hard anodization 

voltage increases (Figure 4.25 b). So, the effect of VHA on NFP/NEP is practically linear. It 

can also be seen that the separation length between the trend lines in Figure 4.25 a 

are ostensibly larger than in Figure 4.25 b. This confirms the statistical results obtained 

from the ANOVA test since the effect of VHA on NFP/NEP is more significant than the 

effect of Rv. These results can also be observed in the 2D contour plot (Figure 4.25 c) 

and in the 3D representation (Figure 4.25 d). 

 

In order to interpret the results from the electrochemical point of view, the different 

anodization curves are analyzed in detail. With the end of simplifying this analysis, the 

stage corresponding to MA is neglected. Figure 4.26 shows the current density and 

voltage-time transients (i.e. J-t and V-t, respectively) of the voltage ramp and HA 

stages for the fabricated BNAATs. As first result, it is verified that the effect of the 

anodization voltage ramp is rather weak since the anodization curves for a given VHA 

are very close and almost coinciding (Figures 4.26 a, b and c, respectively). 

Furthermore, from these curves it is confirmed that anodization at 80 to 140 V follows 

the hard anodization mechanism (i.e. an exponential decay of current density which 

asymptotically tends to a constant value (limiting current density)) [146]. However, it is 

observed that the shape of the anodization curves corresponding to the hard 

anodization voltages of 80 and 110 V (Figures 4.26 a and b, respectively) clearly differ 

from those obtained at 140 V (Figure 4.26 c), which indicates that the effect of the hard 

anodization voltage is rather strong.  
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Furthermore, when the voltage ramp stage is magnified (Figures 4.26 d, e and f), two 

current density increases with a relative minimum or a plateau stage in between are 

observed in all the BNAATs. Nevertheless, some differences can be distinguished: 

namely, i) for the process at 80 V, two J increases take place and the relative minimum 

of J coincides with the end of the voltage ramp stage (Figures 4.26 a and d), ii) for the 

process at 110 V, two J increases with a plateau in between are distinguished and the 

voltage ramp end coincides with the second increase of J (Figure 4.26 b and e) and iii) 

for the 140 V process, three J increases with two plateaus are observed. The voltage 

ramp end coincides with the second increase of J and a third increase of J is observed 

after this (Figures 4.26 c and f).  

 

 

Figure 4.25 Set of graphics of NFP/NEP as a function of the main anodization 

parameters (i.e. Rv and VHA). a) Average values of NFP/NEP as a function of Rv for each 

value of VHA. b) Average values of NFP/NEP as a function of VHA for each value of Rv. c) 

2D contour plot of NFP/NEP as a function of Rv and VHA. d) 3D representation of NFP/NEP 

as a function of Rv and VHA. 
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Figure 4.26 Current density and voltage-time transients (i.e. J-t and V-t) for the 

fabricated BNAATs. a) S0.5-80, S1.0-80 and S2.0-80. b) S0.5-110, S1.0-110 and S2.0-110. c) S0.5-140, 

S1.0-140 and S2.0-140. d) Magnified view of (a). e) Magnified view of (b). f) Magnified view 

of (c). 
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From the structural point of view, these results can be explained in terms of pore 

rearrangement. To this end, it is required to compare the pore density values 

calculated from the HA side before Ni electrodeposition (i.e. ρp(HA) in Table 3.6) to 

those values obtained after dividing the number of filled pores in the MA side by the 

corresponding analyzed area (i.e. ρFP(MA) = NFP/Area in Table 4.10). In this test, three 

possible idealized cases are taken into consideration (Figure 4.27): 

 

i) If ρp(HA)/ρFP(MA) < 1, then the pore density in the HA side is lower than the 

density of filled pores in the MA side. In this case, a significant number of pores would 

merge upon changing the anodization regime from MA to HA (Figure 4.27 a). 

ii) If ρp(HA)/ρFP(MA) = 1, then the pore density in the HA side coincides with the 

filled pore density in the MA side. This would indicate that most “mild” pores simply 

continue growing when the anodization regime changes to HA (Figure 4.27 b).  

iii) If ρp(HA)/ρFP(MA) > 1, then the number of pores per unit area in the HA side is 

higher than the number of filled pores in the MA side. This situation would imply 

significant pore branching when the anodization regime changes from MA to HA in 

some of the pores that continue growing after this change (Figure 4.27 c). 

 

Considering the interval of the statistical error (i.e. standard deviation), we can exclude 

ρp(HA)/ρFP(MA) < 1 (i.e. case i) under the anodization conditions studied (Table 4.10). 

In the case of samples S0.5-80, S1.0-80, S2.0-80 and S0.5-110, the values of ρFP(MA) and 

ρp(HA) are the same (i.e. case ii). The other samples (i.e. S0.5-140, S1.0-110, S1.0-140, S2.0-110 

and S2.0-140) display ρp(HA)/ρFP(MA) > 1 (i.e. case iii), with the maximum difference 

between both values obtained for sample S2.0-140.  
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These results can be interpreted as follows: when the anodization regime changes 

from MA to HA, some pores vanish and other ones continue growing. At this point, pore 

vanishing is reflected in the J-t transient as the first current density increase observed 

during the voltage ramp step. As voltage rises, the oxidation rate at the Al-Al2O3 

interface increases faster than the dissolution rate at the Al2O3-Electrolyte interface. 

Then, the oxide barrier layer gets thicker, which is translated in a relative minimum (for 

samples S0.5-80, S1.0-80, S2.0-80) or in a plateau (for samples S0.5-140, S1.0-110, S1.0-140, S2.0-110 

and S2.0-140) of the current density (i.e. higher electrical resistance). After this, a second 

increase in the current density is observed. This could be related to nucleation of new 

pores at some of the old pores (i.e. pores that continue growing).  

 

This nucleation is not homogeneous (i.e. large domains of empty pores in Figure 4.23), 

what is progressively compensated by the self-ordering mechanism (i.e. exponential 

decay and stabilization of the current density after reaching the second increase of J). 

This pore rearrangement by the self-ordering mechanism depends on the anodization 

conditions. So, for samples fabricated at 140 V (i.e. S0.5-140, S1.0-140 and S2.0-140) a third 

increase of J takes place, what could be attributed to a pore branching phenomenon 

after the voltage ramp stage. Analyzing the results obtained from the test of the three 

idealized cases (Figure 4.27), samples S1.0-110 and S2.0-110 cannot be included in this 

interpretation because the third increase of J is not observed in their J-t transients 

(Figure 4.26 e). Nevertheless, it has to take into account that the contemplated cases 

(i.e. i, ii and iii) are ideal situations and, probably, the actual situations are a 

combination of all them but in different percentages depending on the anodization 

conditions. For this reason, these samples (i.e. S1.0-110 and S2.0-110) are considered as 

intermediate stages between case ii and iii (the values of ρp(HA)/ρFP(MA) 

corresponding to samples S1.0-110 and S2.0-110 in Table 4.10 are very close to case ii). 
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Figure 4.27 Schematic cross-section view of a BNAAT showing the three possible pore 

rearrangements that take place during the anodization regimen change. a) 

ρp(HA)/ρFP(MA) < 1 case i. b) ρp(HA)/ρFP(MA) = 1 case ii. c) ρp(HA)/ρFP(MA) > 1 case iii. 
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Sample 
ρp(HA) ·109 

(Pores·cm-2) 

ρFP(MA) ·109 

(Filled pores·cm-2) 

ρp(HA)/ρFP(MA) 

(Pores /Filled pores) 

Case 

S0.5 - 80 2.99 ± 0.18 2.69 ± 0.30 1.11 ± 0.19 ii 

S0.5 - 110 2.06 ± 0.11 2.04 ± 0.11 1.01 ± 0.11 ii 

S0.5 - 140 1.83 ± 0.25 1.24 ± 0.12 1.48 ± 0.34 iii 

S1.0 - 80 2.64 ± 0.12 2.30 ± 0.32 1.15 ± 0.21 ii 

S1.0 - 110 2.13 ± 0.16 1.77 ± 0.14 1.20 ± 0.19 iii 

S1.0 - 140 2.02 ± 0.08 1.30 ± 0.10 1.55 ± 0.18 iii 

S2.0 - 80 2.13 ± 0.19 2.30 ± 0.04 0.93 ± 0.10 ii 

S2.0 - 110 2.03 ± 0.08 1.72 ± 0.12 1.18 ± 0.13 iii 

S2.0 - 140 1.61 ± 0.11 0.96 ± 0.09 1.68 ± 0.27 iii 

 

Table 4.10 Comparison between the pore density values calculated from the HA side 

(i.e. ρp(HA) in Table 3.6) and the filled pore density values obtained after dividing the 

number of filled pores in the MA side by the area analyzed (i.e. ρFP(MA) = NFP/Area). 

 

Once the Ni-Nws arrays have been electrodeposited onto the BNAATs, the following 

step is to perform an atomic layer deposition (ALD) on the MA side of the 

electrodeposited BNAATs in order to fabricate Ni-Ntbs. In this process, the precursor 

(i.e. nickelocene (NiCp2)) is introduced into the ALD chamber in the gaseous state. So, 

a monolayer of NiCp2 covers the pore walls by adsorption. Subsequently, the spare 

NiCp2, which has not been deposited on the pore walls, is vented from the ALD 

chamber by vacuum. Then, a certain quantity of ozone (O3) is introduced into the ALD 

chamber in order to oxidize the monolayer of NiCp2 to nickel oxide (NiO). After this, the 

spare O3 is extracted from the ALD chamber by vacuum. In order to increase the 

thickness of the NiO layer, this process is repeated for several cycles, the exact 

number of which depends on the experimental conditions.  
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When the ALD is finished, a thermal treatment needs to be applied to reduce NiO to Ni 

under hydrogen (H2) environment. Finally, the MA side needs to be cleaned by reactive 

ion etching to remove the Ni deposited on the BNAAT surface. Nickel nanotubes      

(Ni-Ntbs) will thus be deposited into the empty pores of the electrodeposited BNAATs 

and, mosaic arrays of Ni-Nws and Ni-Ntbs will be fabricated at different ratios           

(i.e. Ni-Nws/Ni-Ntbs = NFP/NEP). In addition, the resulting Ni-Nws and Ni-Ntbs will be of 

the same length since the electrodeposition process was performed under controlled 

conditions (i.e. Ni-Nws length control by the V-t transient). 

 

Unfortunately, it has not been possible to present these results here since the 

experimental parameters of the ALD reactor are still being calibrated. Nevertheless, the 

final structures are expected to be fabricated in the coming months and the 

electromagnetic properties will be measured by a superconducting quantum 

interference device (SQUID). It will therefore be possible to study the magnetic 

properties of these nanostructures. A virtual example of a mosaic of nickel nanowires 

and nanotubes is shown in Figure 4.28.  
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Figure 4.28 ESEM top view of a virtual mosaic array of nickel nanowires and 

nanotubes using a BNAAT. Ni-Nws are denoted by light green light solid circles and Ni-

Ntbs by green empty circles.  

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STRUCTURAL ENGINEERING OF NANOPOROUS ANODIC ALUMINA AND APPLICATIONS 
Abel Santos Alejandro 
ISBN:978-84-693-9438-0/DL: T.71-2011  



4. Applications of Nanoporous Anodic Alumina Templates 

____________________________________________________________ 194

4.5. Linear silica nanosphere chains with a helical arrangement 

In recent decades, the chemistry of silica has been used and studied in industrial fields 

[254]. The optical behaviour of these nanoparticles depends on such characteristics as 

size, shape, surrounding material, interaction between particles, alignment and so 

forth. From the structural point of view, templating is one of the most suitable methods 

for obtaining one-dimensional nanostructures because of the versatility of templates 

such as nanoporous anodic alumina templates and its cost-effective processing. 

Taking into account that the optical properties of silica nanoparticles depend on their 

alignment inside the template, it would be interesting to study how different 

nanoparticle arrangements influence the optical response. For instance, helical 

ordering can be induced in the nanoparticle chains by selecting a suitable pore 

diameter and even different alignments of nanoparticles can be generated in the same 

chain by means of a graduated change in the pore diameter [199]. As was mentioned 

in section 3.2.6, high aspect ratio nanoporous anodic alumina funnels (NAAFs) can be 

fabricated in a well-controlled way. The geometric characteristics of these 

nanostructures (i.e. segment length and diameter) can be designed with a high degree 

of accuracy. Therefore, if these nanostructures are used as a template, a wide range of 

alignments could be induced in the resulting silica nanoparticle chains within the 

NAAFs and several alignments could even be combined in the same chain. 

 

This section discusses a method for fabricating aligned silica nanosphere chains by 

vacuum infiltration through nanoporous anodic alumina funnels.  
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In order to fabricate silica (Si) nanosphere chains, a solution of silica nanospheres was 

provided by Dr. Luís M. Liz-Marzán’s group (Universidade de Vigo) (Figure 4.29). This 

solution is composed of Si nanospheres dispersed in ethanol (23.5 mg·ml-1) (Figure 

4.29 a). According to TEM image analysis measurements, the average diameter of 

these silica nanospheres is 99.40 ± 6.84 nm (Figure 4.29 b and c). With the objective of 

fabricating silica nanosphere chains with a nominal diameter of 200 nm and a length of 

5 μm, a nanoporous anodic alumina funnel is designed and used as a template. To 

generate a “funnel effect”, the NAAF is designed in two segments: the first one 

accumulates the nanospheres (i.e. the stacking segment) and the second one 

evacuates the liquid by vacuum suction and provides the NAAF with mechanical 

stability (i.e. the retaining segment). The stacking segment has to present a nominal 

diameter that is slightly larger than 200 nm (e.g. 210 nm) and the retaining segment a 

nominal diameter that is shorter than that of the nanosphere diameter (i.e. 100 nm). 

Taking this into account, the NAAFs fabricated under the anodization conditions 

applied in section 3.2.6 cannot be used since the as-produced pore diameter of these 

templates is about 112 nm. So other anodization conditions are required if the segment 

is to have a diameter shorter than 100 nm. The best strategy is considered to be the 

use of a NAAF fabricated under hard anodization conditions with oxalic acid (H2C2O4), 

since the as-produced pore diameter of these templates is about 60 nm. Furthermore, 

the large interpore distance enables the pore diameter to be increased to values higher 

than 200 nm. So, the NAAF is designed with a stacking segment that has a nominal 

diameter of 210 nm and a length of 5 μm, and a retaining segment with a nominal 

diameter of 60 nm and a length of 5 μm. In order to satisfy these geometric 

characteristics, as was carried out in section 3.2.6, the pore widening process is 

calibrated as a function of the pore widening time (i.e. Figure 4.30). In this case, the 

pore length does not need to be calibrated as a function of the anodization time, since 
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other studies have already reported the relationship between the anodization time and 

the pore length [146]. 

 

 

 

Figure 4.29 Silica nanospheres provided by Dr. Luís M. Liz-Marzán’s group. a) 

Schematic cross-section view of a silica nanosphere. b) TEM image analysis of silica 

nanospheres. c) Particle diameter distribution obtained from TEM image analysis. 
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First, an annealed and electropolished Al substrate is anodized in H2C2O4 0.3 M at 0ºC 

using our electrochemical cell under potentiostatic conditions at 40 V for 5 min. Then, 

an anodization voltage ramp is applied at 0.5 V·s-1 until the hard anodization voltage is 

reached (i.e. 140 V). This voltage is maintained constant for about 30 min. When the 1st 

anodization step finishes, the Al2O3 film with the protective layer on the top and ordered 

pores on the bottom is dissolved by wet chemical etching in a mixture of H3PO4 0.4 M 

and H2CrO7 0.2 M at 70ºC for 1 h. Then, the 2nd anodization step is conducted by 

directly applying the hard anodization voltage for 5 min. The acid electrolyte 

concentration is modified in the course of the anodization process. For the first minute, 

the acid solution used consists of H2C2O4 0.05 M in a mixture of ethanol and water 

(EtOH:H2O 1:3 (v:v)). Subsequently, the acid electrolyte concentration is increased to 

0.3 M. The stirring rate is increased to 500 r.p.m. throughout the anodization process 

and the electrolyte temperature is maintained below 0ºC without freezing (i.e. -4ºC). 

After the second anodization step, a pore widening step is applied to increase the 

segment diameter to 210 nm. This step, in accordance with the results of the 

calibration process, is conducted by wet chemical etching in 5 wt % aqueous 

phosphoric acid at 35ºC for 70 min (Figure 4.30). Once the stacking segment has been 

fabricated, a 3rd anodization step is performed under the same anodization conditions. 

The first minute of anodization is conducted with an ethanol-water solution of H2C2O4 

0.05 M and for the following 4 min the solution concentration is increased to 0.3 M. 

Finally, when the anodization process has finished, the NAAF is detached from the Al 

substrate and the pores are opened at the same time by using a mixture of ethanol 

(EtOH) and perchloric acid (HClO4) with poly(ethylene glycol) ((EtOH:HClO4):PEG 

(1:1):0.25 ((v:v):v)) at very low temperature (i.e. about -10ºC). During this step, a 

voltage of 163 V is applied for 3 min. In this way, a NAAF with open pores is produced. 

Figure 4.31 shows a set of ESEM images of the resulting NAAF after the fabrication 

process. 
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Figure 4.30 Pore widening calibration process for samples fabricated by the two-step 

hard anodization process with H2C2O4 at 140 V. a) Experimental relationship between 

pore diameter (dp) and pore widening time (tpw). b) Set of ESEM images of the top view 

of samples at different lengths of pore widening time. c) Gaussian fits and pore 

diameter distributions of the different samples used in the calibration process. 
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The experimental set-up used to infiltrate the NAAF with the Si nanosphere solution is 

shown in Figure 4.32. In this device, the NAAF is placed on a commercial filter holder 

for syringes. The stacking segment side faces the top of the holder and the retaining 

segment side the bottom. The top of the holder is connected to a syringe and the 

bottom to an Erlenmeyer equipped with a vacuum nozzle, which is connected to a 

vacuum pump. Then, a vacuum of -1 bar is generated and 1 ml of the Si nanosphere 

solution pours into the syringe. The vacuum pressure thus forces the Si nanosphere 

solution to flow through the NAAF and it is filtered as a result of the “funnel effect” at 

the end of the stacking segment. Subsequently, 6 ml of double-deionised water 

(Purelab Option-Q 18.2 MΩ-cm) is poured into the syringe to dissolve the surrounding 

EtOH from the surface of the Si nanospheres. Once the Si nanosphere chains have 

been fabricated inside the NAAF, 0.2 ml of a chloroform (CH3Cl) solution of polystyrene 

(PS) 0.2 wt % is poured and filtered through the infiltrated NAAF. Afterwards, a thermal 

treatment is applied to cure the polymer (i.e. 100ºC for 30 min). Therefore, the Si 

nanosphere chains inside the NAAF are covered by a thin layer of PS, which makes 

the Si nanosphere chains more mechanically stable and adheres adjacent Si 

nanospheres. Finally, the NAAF is dissolved by wet chemical etching in a mixture of 

H3PO4 0.4 M and H2CrO7 0.2 M at 45ºC without stirring for 3 h. Finally, the resulting 

solution with dispersed Si nanosphere chains is filtered and cleaned with double-

deionised water through a polyamide filter with a nominal filter size of 200 nm. The 

resulting Si nanosphere chains are inspected by ESEM and a set of images is shown in 

Figure 4.33. It can be seen that the silica nanosphere chains are relatively broken 

owing to the filtrating and cleaning steps (Figure 4.33 a). Nevertheless, well-defined 

chains can be distinguished. A certain helical alignment can also be detected, induced 

by means of the “stacking effect” inside the stacking segment, the diameter of which 

was designed previously (Figure 4.33 b).  
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In summary, it has been demonstrated that the template design is a crucial factor in the 

fabrication of well-defined silica nanosphere chains. The use of NAAFs as a template 

turns out to be a cost-effective and accurate fabrication technique for this type of 

nanostructures. They also make it possible to generate chains with a wide range of 

morphologies, configurations and helical alignments. To this end, different types of 

NAAFs need to be used. Some examples of these possible morphologies and 

configurations of Si nanosphere chains are shown in Figure 4.34. Furthermore, 

considering the considerable experience of the Colloid Chemistry Group (Universidade 

de Vigo), it may be possible to fabricate these nanosphere chains using a wide variety 

of materials (gold, silver, iron oxide, nickel, cobalt, etc) [255-259].  

 

Figure 4.31 Set of ESEM images of the NAAF used to fabricate the Si nanosphere 

chains. a) Top view. b) Bottom view after detachment and pore opening. c) Cross-

section view. d) Magnified view of the red square in (c). 
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Figure 4.32 Experimental set-up used to carry out the infiltration of the NAAF with Si 

nanospheres. a) General view of the experimental set-up. b) Sample holder. c) 

Magnified view of the sample holder cover. d) Magnified view of the sample holder 

base.  
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Figure 4.33 Set of ESEM images of the resulting silica nanosphere chains. a) Silica 

nanosphere chains on the polyamide filter after filtrating and cleaning. b) Magnified 

view of the red square in (a). 

 

 

Figure 4.34 Virtual configurations of Si nanosphere chains using different types of 

NAAFs. a) Two-segments with one and two Si nanospheres. b) Two segments with 

one and three Si nanospheres. c) Three segments with one, two and three Si 

nanospheres. 
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4.6. Summary 

In this chapter, several nanostructures have been fabricated using both typical and 

innovative nanoporous anodic alumina templates. The versatility of these templates 

makes it possible to produce a wide range of nanostructures based on a wide variety of 

materials. 

 

First, magnetic nanopillar arrays of cobalt and nickel were fabricated by DC 

electrodeposition on aluminium substrates using NAATs without an oxide barrier layer. 

The resulting nanostructures could be used as electrofilters or electrostatic 

precipitators. Second, quasi-ordered nanopillar-nanocap structures with controlled size 

based on P3HT were produced using as template hierarchical nanoporous anodic 

alumina templates. The replicated nanostructure presents the same hierarchical 

structure as the template, which can be fabricated with a wide range of geometric 

characteristics. This could provide a way of improving the efficiency of organic bulk-

heterojunction solar cells. Third, it has been demonstrated that there is an improvement 

of the electrical properties (i.e. conductivity) in the course of the template synthesis of 

high-density nanopillar arrays of P3HT on ITO/glass substrates. The nanoconfinement 

of the polymer chains inside the pores generates a π-π stacking of the P3HT chains 

along the nanopillar axis and orthogonal to the substrate, which improves the charge-

mobility. Fourth, the first stage in the fabrication of mosaic arrays of nickel nanowires 

and nanotubes using bilayered nanoporous anodic alumina templates (i.e. nickel 

nanowires electrodeposition) was presented. Using these nanostructures, the 

behaviour of pores has been studied when the anodization conditions change from MA 

to HA. A systematic study has been made to quantify the relationship between filled 

and empty pores (i.e. nanowires and nanotubes, respectively). This study has shown 

that the anodization voltage ramp does not have a significant effect on pore 

rearrangement when the anodization regime changes from MA to HA.  
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The mosaic arrays of nickel nanowires and nanotubes are expected to have interesting 

magnetic properties, which can be tuned by modifying the ratio between nanowires and 

nanotubes. Finally, silica nanosphere chains have been fabricated using nanoporous 

anodic alumina funnels as a template. It has been demonstrated that vacuum 

infiltration through this type of template is a cost-effective method for producing such 

nanostructures. Furthermore, chains of nanospheres can be fabricated with a wide 

range of morphologies and materials just by adjusting the geometric characteristics of 

the NAAFs. This could become a way of modifying the optical properties of such 

nanostructures for optoelectronic applications. 
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In the course of this PhD thesis, several anodization techniques have been used to 

develop typical and innovative nanostructures based on nanoporous anodic alumina. 

Subsequently, various types of nanostructures made of different materials have been 

replicated from these nanoporous anodic alumina templates using a variety of 

functionalization techniques. 

 

First, typical nanoporous anodic alumina templates were developed using such well-

established fabrication techniques as the two-step anodization process under mild 

conditions and the one-step anodization process under hard conditions:  

 

i) Four typical types of self-ordered nanoporous anodic alumina templates 

were fabricated using acid electrolyte solutions of sulphuric (H2SO4), oxalic 

(H2C2O4) and phosphoric (H3PO4) acid.  

ii) Self-ordered nanoporous anodic alumina templates were produced using 

the one-step anodization process under hard conditions using oxalic acid as 

electrolyte.  

 

Second, several innovative templates based on nanoporous anodic alumina were 

fabricated using various anodization strategies: 

 

i) The two-step anodization technique was applied under hard conditions to 

develop nanoporous anodic alumina templates without protective layer. So, 

it is possible to fabricate templates with a large pore lattice constant (i.e. 

interpore distance) in a cost-effective way since expensive laboratory 

equipment is not required to remove the protective layer.  
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ii) Using these templates fabricated by the two-step process under hard 

anodization conditions and applying a re-anodization step under 

galvanostatic conditions, the oxide barrier layer was removed from the pore 

bottom tips without eliminating the aluminium substrate or detaching the 

nanoporous anodic alumina template.  

iii) Using an asymmetric two-step anodization (i.e. modifying the anodization 

conditions between the 1st and 2nd anodization steps), hierarchical 

nanoporous anodic alumina templates were produced with multiple 

configurations (i.e. combinations of concavity and pore diameters).  

iv) Bilayered nanoporous anodic alumina templates were produced by 

combining mild and hard anodization regimes. Furthermore, a systematic 

study was made of how the main anodization parameters affect the pore 

density on the HA side. 

v) Monodomain nanoporous anodic alumina templates were fabricated by 

nanoimprinting followed by one direct anodization step. Moreover, perfectly 

ordered nanoporous anodic alumina templates with an extraordinary pore 

arrangement (i.e. pore lattice constant shorter than the master stamp lattice 

constant) were developed from nanoimprinted aluminium substrates by 

adjusting the anodization conditions. 

vi) High aspect ratio nanoporous anodic alumina funnels were produced by 

sequentially combining anodization and pore widening steps. By means of 

several previous calibration processes, the accuracy degree of the 

geometric characteristics (i.e. segment length and diameter) can be 

fabricated with high degree of accuracy. An electrochemical pore growth 

model was also developed and certified experimentally under the same 

anodization conditions. 
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Third, the nanoporous anodic alumina templates were used to produce nanostructures 

made from different types of materials: 

 

i) Cobalt and nickel nanopillar arrays were fabricated by DC electrodeposition 

on aluminium substrates. Nanoporous anodic alumina templates without 

oxide barrier layer produced by the two-step anodization process under 

hard conditions were used for this purpose. 

ii) Quasi-ordered nanopillar-nanocap arrays made from P3HT were replicated 

from hierarchical nanoporous anodic alumina templates. 

iii) High-density nanopillar arrays of P3HT were transferred from a nanoporous 

anodic alumina template fabricated by the two-step anodization process 

under mild conditions to an ITO/glass substrate. The electrical properties of 

the polymeric nanostructure improved thanks to the nanoconfinement effect 

inside the pores during the fabrication process. 

iv) The first step in developing mosaic arrays of nickel nanowires and 

nanotubes was successfully achieved by using bilayered nanoporous 

anodic alumina templates (i.e. fabrication of Ni nanowires by 

electrodeposition). In addition, pore development when the anodization 

regime changes from MA to HA was systematically studied by applying a 

design of experiments. To this end, nickel electrodeposition was used as an 

indirect way of quantifying the effect of the main anodization parameters 

(i.e. hard anodization voltage and anodization voltage ramp) on the 

relationship between filled and empty pores (i.e. nanowires and nanotubes, 

respectively). In this way, the ratio between nanowires and nanotubes in the 

future mosaic arrays can be controlled and the magnetic properties of these 

nanostructures studied as a function of this ratio.  
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v) Silica nanosphere chains were fabricated by vacuum infiltration through a 

previously designed nanoporous anodic alumina funnel. It was 

demonstrated that by means of a suitable template design, a helical 

alignment can be induced in the nanosphere chains. In the future, it is 

thought that nanoparticle chains can be fabricated with a large number of 

morphologies and configurations by using several types of nanoporous 

anodic alumina templates. 

 

It is envisaged that the results presented here will be the starting point for developing 

new nanodevices such as organic nanostructured solar cells, magnetic materials for 

data storage platforms, nanostructures with tuneable optic properties for optoelectronic 

applications, selective filters and so forth. 

 

So far, the fabrication of nanoporous anodic alumina templates has been a bottleneck 

for developing new nanostructures. To solve this problem, various upgrades of the 

experimental set-up have been proposed in an attempt to increase the fabrication 

efficiency of templates. This PhD thesis has mainly focused on developing nanoporous 

anodic alumina templates with different morphologies and geometric characteristics. 

Nevertheless, from now on, it would be more interesting to focus on the development of 

new nanostructures replicated from these templates, which could be integrated in a 

wide range of nanodevices.  
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A.1. Environmental Scanning Electron Microscopy (ESEM)        

In this PhD thesis, an environmental scanning electron microscope (ESEM FEI Quanta 

600) has been used to acquire images of different types of samples. Furthermore, this 

microscope is equipped with an energy dispersive X-ray spectroscope (EDXS) to 

perform chemical analysis. In this microscope, a focused high-energy electrons beam 

generates a diversity of signals at the sample surface. These signals are derived from 

the interactions between electrons and sample and include secondary and 

backscattered electrons. These electrons reveal information about the sample 

properties such as the external morphology and crystal structure. The secondary 

electrons show the morphology and topography of the sample and the backscattered 

electrons give contrasts in composition in multiphase samples. 

The essential components of an ESEM are: 

i) Electron source (i.e. gun) 

ii) Electron lenses 

iii) Sample stage 

iv) Detectors for the different types of signals 

v) Display-data output devices 

vi) Infrastructure requirements (i.e. power supply, vacuum system, cooling 

system, vibration-free floor and room-free of ambient magnetic and electric 

fields) 

A minimal sample preparation is required before ESEM observations and this process 

depends on the nature of each sample. For instance, the most electrically insulating 

samples are coated with a thin layer of conducting material (e.g. gold or carbon). 

However, it is possible to work at low vacuum mode in order to analyse some insulating 

samples. 
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Figure A.1 Environmental scanning electron microscope FEI Quanta 600 located at 

the SRCiT in the URV. Supervised by Dr. Lukas Vojkuvka. 
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A.2. Transmission Electron Microscopy (TEM)        

In this PhD thesis a transmission electron microscope (TEM JEOL 1011) has been 

used. In this microscope, a beam of electrons is transmitted through the sample, 

generating interactions electrons-sample. For this reason, ultra thin samples are 

needed. Therefore, depending on the nature of the sample, it is needed a suitable 

treatment such as microtome cross-section. By means of this microscope, it is possible 

to obtain images at smaller magnifications than by ESEM. The contrast in TEM images 

is due to absorption of electrons in the sample for characteristics such as thickness and 

chemical composition. Furthermore, modulations in the chemical identity, the crystal 

orientation and the electronic structure of the sample can be identified as well.  

The basic elements of a TEM are: 

i) Electron emission source (i.e. tungsten filament) 

ii) Electromagnetic lenses and electrostatic plates for guiding the electron 

beam 

iii) Sample stage (i.e. support mesh grid) 

iv) Detectors for the different signals 

v) Display-data output devices 

vi) Infrastructure requirements (i.e. power supply, vacuum system, cooling 

system, vibration-free floor and room-free of ambient magnetic and electric 

fields) 

The bright field imaging mode is the most commonly used in TEM observations. In this 

mode, the contrast is generated by occlusion and absorption of electrons in the 

sample. In the TEM images, these thicker areas of the sample and these areas with a 

higher atomic number are dark, while areas without sample are bright.  
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By means of other modes (i.e. diffraction contrast, electron energy loss and phase 

contrast), it is possible to extract a high quantity of information about the sample (e.g. 

detection of crystal defects, elemental composition, crystal structure, etc). 

 

Figure A.2 Transmission electron microscope TEM JEOL 1011 placed at the SRCiT in 

the URV. Supervised by Mercé Moncusí and Dr. Rita Marimon. 
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A.3. Atomic Force Microscopy (AFM)        

In this PhD thesis, an atomic force microscope (AFM Agilent 6400) has been used to 

carry out several characterizations. This microscope consists of a cantilever with a tip 

(i.e. probe) at its end which scans the sample surface. The principle of this microscope 

is that, when the tip is placed near to the sample surface, certain forces are generated 

between the tip and the sample surface, what implies a deflection of the cantilever (i.e. 

Hooke’s law). These forces, which depend on the operation mode, are mechanical 

contact, van der Waals, capillary, chemical bonding, electrostatic, magnetic, Casimir, 

solvation and so on. Usually, the generated deflection is measured by a laser spot 

reflected from the top surface of the cantilever to a position sensitive detector 

consisting of two close-spaced photodiodes, the output of which is collected by a 

differential amplifier. An angular displacement of the cantilever generates a difference 

of the collected light between both photodiodes and the output signal (i.e. difference 

between the photodiode signals normalized by their sum) is proportional to the 

cantilever deflection. So, it is possible to detect cantilever deflections shorter than 10 

nm.  

There are three main AFM operating modes: 

i) Contact mode (the force between the tip and the sample surface is kept 

constant during the scanning by a constant deflection) 

ii) Non-contact mode (the tip of the cantilever does not contact the sample 

surface and the separation distance between the cantilever tip and the 

sample surface is measured) 

iii) Tapping mode (the cantilever is oscillated up and down at a frequency near 

to the resonance frequency by a small piezoelectric element mounted in the 

tip holder) 
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Figure A.2 Atomic force microscope AFM Agilent 6400 located at the SRCiT in the 

URV. Supervised by Dr. Mariana Stankova. 
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A.4. Micro-X-Ray Diffraction (μ-XRD)        

In this PhD thesis, the micro-X-ray diffraction (μ-XRD) measurements have been 

performed using a Bruker-AXS D8-Discover diffractometer equipped with a parallel 

incident beam (i.e. Göbel mirror), a vertical θ-θ goniometer, a XYZ motorized stage and 

a general area diffraction system (GADDS). In this equip, the samples are placed 

directly on the sample holder and the area of interest is selected with the aid of a video-

laser focusing system. An X-ray collimator system allows analyzing areas of 500 μm. 

The X-ray diffractometer is operated at 40 kV and 40 mA to generate Cukα radiation. 

The GADDS detector is 30 x 30 cm with a 1024 x 1024 pixel CCD sensor. It is 

collected one frame (2D XRD patterns) covering the 2θ from 7 up to 41º at a distance 

of 15 cm between the sample and the detector. The exposition time is 900 s per frame 

and it is chi-integrated to generate the conventional 2θ-I diffractogram. 

 

In this technique, first, the X-rays interact with electrons of the sample atoms. When the 

X-ray photons collide with these electrons, some photons from the incident beam are 

deflected away from the direction where they originally travel. If the wavelength of 

these scattered X-rays does not change (i.e. the X-ray photons do not lose any 

energy), the process is called elastic scattering (i.e. Thompson scattering) and only 

momentum is transferred in the scattering process. These are the X-rays that are 

measured in the diffraction experiments and the scattered X-rays carry information 

about the electron distribution in materials. In addition, in the inelastic scattering 

process (i.e. Compton scattering), some X-ray energy is transferred to the electrons 

and the scattered X-rays have different wavelength than the incident X-rays. 
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The diffracted waves from the different atoms can interfere with each other and the 

resultant intensity distribution is strongly modulated by this interaction. If the atoms are 

periodically arranged (e.g. in crystals), the diffracted waves consist of sharp 

interference maxima (i.e. peaks) with the same symmetry as in the atoms distribution. 

Therefore, by measuring the diffraction pattern, it is possible to deduce the distribution 

of atoms in a given material. The peaks in the X-ray diffraction pattern are directly 

related to the atomic distances.  

 

Figure A.4 Micro-X-ray diffractometer Bruker-AXS D8-Discover located at the SRCiT in 

the URV. Supervised by Dr. Francesc Gispert i Guirado. 
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A.5. Four-Point Probe        

In order to validate conductivity measurements, a four-point probe from Lukas lab has 

been used. In this equipment, separated pairs of current-carrying and voltage-sensing 

electrodes are used to perform more accurate measurements than with traditional two-

point probe technique since almost no current flows in the sense wires and, thus, the 

voltage drop is extremely low. The sense wires are the inside pair and the force wires 

are the outside par. This equipment is commonly connected to a power supply and to a 

multimeter of high resolution to measure the different electrical characteristics. 

It has to take into account that the application of a metal to a semiconductor forms a 

schottky diode rather than an ohmic contact. For this reason, the electrical 

measurements in this type of materials are directly performed in the four-point probe. In 

addition, for these samples with very high or very low resistivity, it is required an 

adjustment of the drive current to reach a reliable reading. These samples with a rough 

surface are easier to measure than these with polished surfaces.  

 

The four-point probe is placed in a special covered-room to perform electrical 

measurements in the dark. 
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Figure A.5 Four-point probe Lukas Lab located at the optical characterization 

laboratory in the URV (DEEEiA). 
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A.6 Image Analysis Software (ImageJ) 

In order to extract accurate measurements from ESEM, TEM and AFM images, it has 

been used the public domain software ImageJ. This is a Java-based image processing 

program developed at the National Institute of Health. ImageJ is designed with an open 

architecture that provides extensibility via Java plugins and recordable macros and can 

be developed by means of ImageJ’s built-in editor and a Java compiler. Among its 

functions, by ImageJ it is possible to display, edit, process, save, analyze and print 8-

bit, 16-bit and 32-bit images in many formats such as TIFF, PNG, GIF, JPEG, BMP, 

DICOM, and FITS. Furthermore, some statistics functions such as density histograms 

and line profile plots are provided. Distance measurements and angles can be 

performed together with other functions such as logical and arithmetical operations 

between images, contrast adjustments, convolution, Fourier analysis, sharpening, 

smoothing, edge detection and median filtering. 
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