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ABSTRACT

Interactions between proteins give rise to many functions in cells. In the last
decade, high-throughput experiments have identified thousands of protein inter-

actions, which are often represented together as large protein interaction networks.
However, the classical way of representing interaction networks, as nodes and
edges, is too limited to take dynamic properties such as compatible and mutually
exclusive interactions into account. In this work, we study protein interaction net-
works using structural information. More specifically, the analysis of protein inter-
faces in three-dimensional protein structures enables us to identify which interfaces
are compatible and which are not. Based on this principle, we have implemented
a method, which aims at the analysis of protein interaction networks from a struc-
tural point of view by (1) predicting possible binary interactions for proteins that
have been found in complex experimentally and (2) identifying possible mutually
exclusive and compatible complexes. We validated our method by using positive
and negative reference sets from literature and set up an assay to benchmark the
identification of compatible and mutually exclusive structural interactions. In ad-
dition, we reconstructed the protein interaction network associated with the G
protein-coupled receptor Rhodopsin and defined related functional sub-modules
by combining interaction data with structural analysis of the network. Besides its
established role in vision, our results suggest that Rhodopsin triggers two additional
signaling pathways towards (1) cytoskeleton dynamics and (2) vesicular trafficking.
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RESUMEN

Las funciones de la proteı́nas resultan de la manera con la que interaccionan entre
ellas. Los experimentos de alto rendimiento han permitido identificar miles de

interacciones de proteı́nas que forman parte de redes grandes y complejas. En esta
tesis, utilizamos la información de estructuras de proteı́nas para estudiar las redes
de interacciones de proteı́nas. Con esta información, se puede entender como
las proteı́nas interaccionan al nivel molecular y con este conocimiento se puede
identificar las interacciones que pueden ocurrir al mismo tiempo de las que están
incompatibles. En base a este principio, hemos desarrollado un método que permite
estudiar las redes de interacciones de proteı́nas con un punto de vista más dinámico
de lo que ofrecen clásicamente. Además, al combinar este método con minerı́a de
la literatura y los datos de la proteómica hemos construido la red de interacciones
de proteı́nas asociada con la Rodopsina, un receptor acoplado a proteı́nas G y
hemos identificado sus sub-módulos funcionales. Estos análisis surgieron una novel
vı́a de señalización hacia la regulación del citoesqueleto y el tráfico vesicular por
Rodopsina, además de su papel establecido en la visión.
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CHAPTER

ONE

INTRODUCTION

Proteins achieve their function by binding to other molecules. Depending on their
localization in the cell, they can bind other proteins, DNA or RNA molecules,

metabolites, intracellular and extracellular ligands, small nucleotides or lipids. These
interactions are highly specific and usually involve the formation of a set of non-
covalent bonds (i.e. Van der Waals, electrostatic and hydrophobic interactions).
Protein interactions can be stable or transient, specific or nonspecific, form homo-
and hetero-oligomers, binary or part of larger protein assemblies. At the molecular
level, protein interaction interfaces can involve either globular domains or short
linear motifs.
The knowledge of protein interactions is crucial to understand how a cell works and
interacts with its environment.

1.1 Large-scale analysis of protein interactions

1.1.1 Understanding protein interactions through Systems Biol-
ogy

The technical progress made in genome sequencing and high-throughput exper-
iments has initiated a major paradigm shift in biomedical research. Before the
development of these “-omics” methods, molecular biologists were investigating
individual genes and proteins belonging to complex biological processes. In the
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past decade, the enormous amount of data that has been (and is still being) gener-
ated has opened the exciting possibility of reaching a better understanding of the
various systems that are being studied for decades. However, if these approaches
changed the way one looks at these systems, they have not made them less com-
plex. And the famous statement made by Aristotle in the ancient times : "The whole
is more than the sum of its parts", summarizes well the challenges and current focus
of the system-wide approaches. Indeed, it has become clear that knowing the genes
and proteins of a given cell is not enough to understand how a gene gets activated in
response to a signal received by the cell. Similarly, knowing the mutations involved
in a disease offers only partial information of the whole disease mechanism while
understanding these mechanisms as a whole is crucial to treat diseases.
The protein interaction maps generated by large-scale analysis, usually graphically
represented by networks, have been the subject of many analyses with the objective
of deriving the properties inherent to the various systems. In this section, the main
experimental methods to detect protein-protein interactions (PPIs) are described.
We also briefly review the main existing repositories and resources available.

1.1.2 Identifying protein interactions
Yeast Two-Hybrid assay

The principle of the yeast two-hybrid system (Y2H) is based on the fact that many
eukaryotic transcription activators have at least two distinct domains, one that
binds to a promoter DNA sequence (BD) and another that activates transcription
(AD)(Figure 1.1). These domains are modular and can function independently. It has
been shown that if BD and AD are dissociated, the transcription gets inactivated.
The modular property of these domains makes their concerted function possible
even if the two domains are not covalently bound to each other, as long as they are
physically associated to each other (Fields & Song, 1989). This subtlety has been
the basis for the development of the Y2H method: transcription would get initiated
if the two domains get close in space via an interaction of proteins X and Y. In
practical, protein X is fused to BD (bait) and protein Y is fused to AD (prey). These
chimeric proteins are cloned into expression plasmids and then transfected into a
yeast cell. If X and Y physically interact, the reporter gene is activated.
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Figure 1.1: Description of the Yest Two-Hybrid method. - Figure from Grünenfelder
& Winzeler (2002). The yeast two-hybrid technique measures protein-protein interactions
by measuring transcription of a reporter gene. If protein X and protein Y interact, then their
DNA-binding domain (BD) and activation domain (AD) will the transcription of the reporter
gene.

However, this method can generate false positives when the transcription is ac-
tivated but the interaction between bait and prey does not take place in vitro. Also, it
can fail at detecting proteins that interact with each other (e.g. false negatives) if the
fusion to BD or AD makes the interaction surface unavailable for binding with the
tested interacting partners. Additionally, one has to take into account that a protein
interaction can be detected by Y2H but, according to their sub-cellular localization,
this interaction may not occur in vivo. One advantage of Y2H assays is they can
identify interactions mediated by post-translational modifications. Moreover, these
assays can detect many interactions in parallel. This method has indeed been ap-
plied to whole organisms since 2000 (Uetz et al., 2000; Ito et al., 2001; Stelzl et al.,
2005; Rual et al., 2005; Giot et al., 2003), by systematically testing all pairwise
combinations of all the predicted proteins of an organism to derive the “binary”
interactome. However, it has been pointed out that the unprecedented amount of
data generated by these various large-scale Y2H experiments show a small overlap
(Parrish et al., 2006). This can be explained by different factors: the differences
in protein interaction sampling, Y2H bias towards nonspecific interactions (Deeds
et al., 2006), and limitations of the Y2H method itself e.g. the transcription factors
that cannot be targeted by this method and the potential change of protein struc-
ture conformations due to sequence chimera, which impedes a proper folding or
interaction.
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Tandem affinity purification method

A Tandem Affinity Purification (TAP) tag (Rigaut et al., 1999) involves the fusion
of two affinity modules to the protein of interest and the introduction of the con-
struct into the host cell or organism (Figure 1.2). In a first affinity step, the first tag
(e.g., protein A) binds to a first affinity column (e.g., IgG beads). The contaminant
proteins coming from the cell extract are then washed out and a protease cleaves
the link between the two tags. A second affinity purification involves for example
calmodulin-coated beads that are incubated together with the eluate in presence of
calcium. The target protein complex is finally released. The fragments resulting from
the cleavage of the complex components by proteases are identified by Mass Spec-
trometry (MS). The advantage of using two tags significantly reduces non-specific
background, as compared to a single tag approach. Many proteins can be associated
with the bait protein, but this method does not provide any information about the
arrangement of the complex components. In contrast to the Y2H method, the TAP
tag approach allows the identification of in vivo protein complexes. The interactions
identified by TAP tag are more likely part of large and stable molecular machines
rather than transient interactions which are less stable and consequently leads to
the proteins to be washed away. In addition, the identified complexes could be
biased towards abundant proteins (von Mering et al., 2002). This method has also
been applied in a large-scale fashion in yeast (Gavin et al., 2002; Krogan et al., 2006)
and more recently in human (Ewing et al., 2007), to generate a “co-complex” inter-
actome. A big advantage of this approach is that it preserves the biological context
of the complexes. However, because of the large number of proteins that can be
found to be associated with a given bait protein, it is most likely that more than one
complex is associated with a given bait protein. Additionally, the overexpression of
the bait can result in the association of the bait protein with chaperones and can
lead to improper intracellular localization.
The data generated by TAP tag approaches usually requires extra analyses in order to
determine which of the identified components of a complex are physically interact-
ing with each other. For this purpose, two models are commonly used to elucidate
a complex topology: the ‘spoke’ model and the ‘matrix’ model (Bader & Hogue,
2002). The spoke model supposes that the bait protein interacts directly with each
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component of the complex, excluding a physical association between any of the
latter. The matrix model assumes that all the proteins identified within a complex
form binary interactions with each other. To reach a more functional understanding
of the co-purified protein associations, a socio-affinity index measuring the propen-
sity of proteins to form partnerships has been further developped by Gavin et al.
(2006).

Although Y2H and TAP tag approaches are complementary, it is important to note

Figure 1.2: Description of the Tandem Affinity Purification method, followed by
Mass Spectrometry. - Figure from Grünenfelder & Winzeler (2002). Affinity Purification
methods can isolate a protein complex associated to a tagged protein. The components of
the complex are ths separated and identified by mass spectrometry.

their differences, especially when it comes to define what “protein-protein interac-
tion” refers to. The Y2H method identifies binary physical interactions while a TAP
tag approach provides a list of the components belonging to one or more com-
plexes. There has been confusion among the scientific community partly because in
co-complex experiments, the term“interaction” has been used to describe the rela-
tionships between proteins in a complex and not binary direct interactions (Gavin
et al., 2002; Krogan et al., 2006).
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Resources for protein interaction data

The recent large-scale determination of protein interaction data has led to the de-
velopment of databases in an attempt to organize, classify and easily access this
information. Table 1.1 provides an overview of the available resources. Some of
these databases contain data coming exclusively from experiments, while others
combine experimental and predicted data. In addition to encompassing the main
large scale experiments that have aimed at providing a nearly complete catalogue of
the interactions for many organisms (Uetz et al., 2000; Ito et al., 2001; Gavin et al.,
2002; Giot et al., 2003; Rual et al., 2005; Stelzl et al., 2005; Krogan et al., 2006),
much effort has been made for implementing literature mining tools to include pre-
viously published interaction data. However, these databases have been subject to
debate about the quality of the data (Mackay et al., 2007; Chatr-Aryamontri et al.,
2008). In fact, it has been pointed out that many proteins identified in co-complex
experiments were annotated as pairwise protein interactions. Moreover, automated
literature mining methods may associate by mistake two proteins based on wrongly
annotated names. In research articles, authors usually use gene or protein names
which are different from the name used in databases. To facilitate the integration
of diverse data from millions of articles, and increase the quality of interaction data
annotation, Ceol et al. (2008) have suggested the use of structured abstracts where
authors would provide their findings in an organized way, making it easy to integrate
in the existing resources.
In addition, many of these databases provide a score that typically takes into ac-
count the number, type and size of experimental evidence. In these calculations,
data coming from high-throughput experiments are usually assigned a low weight
while interactions which have been observed multiple times get a higher score.

1.1.3 Global properties of protein interactions networks

A logical first approach to analyze protein interaction networks has been to de-
scribe their global properties. Since the sets of interactions are usually represented
as nodes connected by edges in a graph, the first network analyses have naturally
borrowed characteristics traditionally used in the field of network theory. The ubiq-
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Database Type of data Reference
APID Meta Hernandez-Toro et al. (2007)
BIND Exp Bader et al. (2003)
BioGRID Exp Stark et al. (2011)
DIP Exp Xenarios et al. (2002)
HPRD Exp Keshava Prasad et al. (2009)
IntAct Exp Aranda et al. (2010)
MiMI Exp,Pred Jayapandian et al. (2007)
MINT Exp Ceol et al. (2010)
MIPS-MPact Exp Güldener et al. (2006)
MIPS-MPPI Exp Pagel et al. (2005)
MPIDB Meta Goll et al. (2008)
OPHID Exp,Pred Brown & Jurisica (2005)
PINA Meta Wu et al. (2009)
PIPs Exp,Pred McDowall et al. (2009)
STRING Meta Szklarczyk et al. (2011a)
UniHI Exp,Pred Chaurasia et al. (2007)

Table 1.1: Main resources for Protein interaction data - The type of data indicates if
the database contains experimentally identified interactions (Exp) or predicted interactions
(Pred), or if the database is a meta-database (Meta).

uitous identification of scale-free networks described by Barabási (1999), based on
their analysis of the World Wide Web, and the simultaneous increase of large scale
PPI data have initiated the interest in topological properties of biological networks.
Since then, numerous studies showed that PPI networks often exhibit a scale-free
behavior, which means that they have many nodes with small degrees (e.g. with
few connections) and allow nodes with high degrees (e.g. with many connections)
with decreasing probability. Network topologies have then been linked to a variety
of biological implications. For example, it has been shown that the most highly con-
nected proteins in the cell, also called “hubs”, are essential for its survival (Jeong
et al., 2001). Also, an important property of scale-free networks is their robustness:
if the network is disturbed by random events (e.g. node failures) there is a high
probability that an essential node will not be affected and therefore the network
could still be functional. In addition, the topology of PPI networks varies according
to the type of experiment producing the data. Figure 1.3 shows that a “binary” inter-
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Figure 1.3: Network representation of interaction data - Figure from Yu et al. (2008).
The protein interactions networks generated by Yeast Two-Hybrid assays (left), Affinity
Purification followed by Mass Spectrometry (middle) or from literacture data (right) exhibit
different topologies.

actome coming from Y2H assays contains few hubs in contrast with a “co-complex”
interactome generated by TAP tag experiments.

In addition to large scale experiments exploring all putative protein-protein in-
teractions in a cell (Uetz et al., 2000; Ito et al., 2001; Stelzl et al., 2005; Rual et al.,
2005; Giot et al., 2003; Gavin et al., 2002; Krogan et al., 2006), computational tools
have been developed to predict protein interactions. The objective of these meth-
ods is to increase the usually low coverage observed in the experimental interaction
datasets but also to infer physical interactions from the protein complexes. Some of
these predictors are based on comparative genomics (Pellegrini et al., 1999; Enright
et al., 1999; Goh et al., 2000; Huynen et al., 2000), others infer the interactions
using orthology (Lehner & Fraser, 2004) or are based on functional features, e.g
the expression levels of transcripts encoding the proteins (Jansen et al., 2003) and
sub-cellular localization (Deane, 2002; Gandhi et al., 2006). Finally, another type
of predictors exploits the observation that some pairs of sequence motifs, domains
and structural families tend to interact preferentially.

The large amount of interaction data produced by high-throughput experiments
and data-mining approaches enabled the construction of PPI networks. This way
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of representation is convenient to analyze global properties of a system but they
depict a rather static picture of highly dynamical and regulated processes.

1.2 Protein interactions from a structural point of view

1.2.1 The role of structural data for the study of protein interac-
tions

Following genomics projects, post-genomics projects have aimed at providing the
full list of proteins and their interactions within an organism. The tremendous
amount of data they produced gives insights about the global properties of biolog-
ical systems. However, represented together in PPI networks, it provides a rather
static image of highly dynamical events taking place in the cell.
The function of a protein often relies on the way it interacts with its partners. In gen-
eral, protein-protein interactions involve a proportionally small surface compared to
the number of its interacting partners. As a result, a protein could interact with many
others using different surfaces, but also in many cases, two proteins could compete
for the same surface. Structural data can thus help improving our understanding
of complex systems, by adding the important missing feature of competition into
protein interaction networks. If proteins compete, they cannot bind at the same
time and therefore the time differences regarding when they are expressed, or their
localization is essential to know which interactions will take place.
The characterization of “hubs” within PPI networks shows that proteins can have a
large number of partners and it is therefore obvious that they cannot simultaneously
physically interact with this “hub”. The knowledge of 3D structures can be used
to identify the interactions that can occur simultaneously and the ones that are
mutually exclusive.
The characterization of competing interfaces at the structural level was first explored
by Kim et al. (2006a). They used structures of domain interactions to investigate
whether hubs interact using many interfaces (multi-interface hubs) or a single in-
terface (singlish-interface hubs). They observed that multi-interface hubs evolve
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more slowly than the others. Additionally, the multi-interface hubs were found
to be more closely correlated with their partner expression levels compared with
singlish-interface hubs. These findings provided a structural explanation of expres-
sion dynamics for hubs and their interacting partners.
The concept of time dimensionality in protein interaction networks has also been
applied by Tuncbag et al. (2009) on the p53 network. They built a structure-based
network of p53 and, by analyzing the protein interactions that could co-exist, they
predicted four distinct binding sites on the DNA-binding domain, involving 12 in-
teracting proteins (Figure 1.4).

Figure 1.4: Predicted partners for the p53 DNA binding domain. - Taken form
Tuncbag et al. (2009). The p53 DNA Binding Domain (orange, center) engaged interac-
tions through four interfaces (B1,B2,B3,B4). The structural information makes possible the
identification of competing binding for three of the surfaces.

These studies illustrate well the importance of using structural information at
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the network level, since it has the ability to convert two-dimensional networks into
functional pathways and can help gain insight into the understanding of dynamical
and regulated processes.

In addition, knowing the interfaces through which proteins interact allows to derive
the molecular phenotypes associated with disease mutations: if these are located
at the protein surface, they are more likely to affect a specific interaction by ei-
ther decreasing the binding affinity or completely impeding the binding, while the
interactions occurring through another part of the surface can remain unaffected.
Recently, Zhong et al. (2009) investigated the effect of mutations at the network
level, by mapping 3664 mutations at the surface of 249 protein structures and they
suggested two distinct network perturbations for human inherited disorders: “node
removal”, which results from the loss of gene products, and “edgetic perturbation”,
altering specific molecular interactions. Following the same principle, the structural
knowledge of protein interactions can also serve as a basis for computational protein
design, if one wants to mutate specific residues at a protein surface to selectively
disable a downstream pathway.

Given three proteins A, B and C, they can interact following three possible con-
formations (Figure 1.5):

1. A-B-C-A: the three proteins form binary interactions (Figure 1.5, top row).

2. B-A-C: B and C physically interacting with A through a different interface
(Figure 1.5, middle row).

3. A-B/A-C: B and C physically interacting with A through the same interface
(Figure 1.5, bottom row).

The network representation derived from PPI detection methods for these three
cases can lead to a misinterpretation of their actual relationships, as shown in
columns 2 and 3 of Figure 1.5. In fact, except if the proteins follow the type 1
of interactions, both binary and co-complex determination methods fail at repro-
ducing the biological relationships between these three proteins. However, using
structural information, one can reach the real topology of the connected proteins.
This example, applied to the simplest case of interaction network, illustrates well
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Figure 1.5: Illustration of PPI networks derived from Binary, Co-Complex and
Structural Determination methods. - The left column illustrates the different ways
of interacting for three given proteins A, B an C. The three columns on the right show
the nodes-and-edges representation of these interactions according to Yeast Two-Hybrid,
affinity purification and structural determination methods.

how integrating structural data into PPI networks can be of great value.

In the following sections, we briefly describe the experimental methods used to
resolve protein structures and the computational approaches developed to cope
with the low structural coverage.

1.2.2 Protein structure determination

The most common experimental methods to study tertiary protein structure are
X-Ray crystallography and Nuclear Magnetic Resonance (NMR) spectrometry.
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X-Ray crystallography

X-Ray crystallography is a very powerful method to analyze protein structures. It can
provide the coordinates of the protein amino acids or DNA/RNA nucleotides at the
atomic level. It determines the position of atoms within a crystal through exposing
the crystal to a beam of X-rays. The atoms in the molecule cause the X-rays to diffract
into many different directions, which results in a diffraction pattern that is recorded
on photographic film. From the angles and intensities of these diffracted beams it
is possible to mathematically construct the three dimensional image of the electron
density in the crystal structure. Subsequently, from this electron density, the mean
positions of the atoms in the crystal can be determined, as well as their chemical
bonds and their disorder or order. All the resolved structures are gathered in the
Protein Data Bank (PDB) (Rose et al., 2011) and the coordinates and experimental
procedures are described in a PDB file, which is typically a text file with specific
fields that define the characteristics of the structure.
The growth of protein crystals of sufficient quality for structure determination is the
rate-limiting step in most protein crystallographic work. To facilitate this process,
proteins are often crystallized at high concentrations which may result in a non
native conformation for these proteins. In addition, the tight packing of molecules
can lead to the observation of contacts that are not related to the biological function
of the proteins. In fact, a crystal may contain multiple copies of a protein or a protein
complex so one should pay extra attention when working with this type of data. An
example of crystal packing is shown in Figure 1.6. Many methods have attempted
to identify these crystallographic artifacts by comparing the physical properties with
those of biologically relevant interfaces (Levy, 2007; Zhu et al., 2006; Bernauer
et al., 2008). The PDB itself has helped to cope with this issue by providing an
extra field within each entry describing the parts of the structure that belong to the
biological unit. In fact, the authors of the resolved structures have now provided
this information. Being familiar with the system they work on, they often conducted
additional biochemical experiments to characterize the biological unit.
X-Ray crystallography captures a rigid conformation of proteins, which impedes
the observation of structurally variable parts of proteins, such as loops, which can
change conformation according to their binding partners. Nevertheless, it is gen-
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erally accepted that this technique provides protein structures with the highest
resolution.

Figure 1.6: Illustration of crystal packing - The interface between the orange and the
blue domain is a crystallographic artifact while the interface between the orange and the
red domain is biologically relevant.

Nuclear Magnetic Resonance spectrometry

Nuclear Magnetic Resonance (NMR) spectroscopy can determine the three-dimensional
structure of small proteins in aqueous solution. Basically, a sample gets placed in
a magnetic field so that the spins of its protons are aligned. When radio-frequency
pulses are applied, the protons get excited and emit signals, whose frequency de-
pends on the molecular environment of the proton. From these signals it is possible
to derive the protein structure. In aqueous solution, protein structures are more
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flexible than in a crystal lattice. As a consequence, this conformational freedom re-
sults in an ensemble of NMR models. NMR spectroscopy often provides structures
with lower resolution than X-Ray crystallography.

The clear limitation of these approaches as a protein interaction detection
method remains the limited structural coverage at the network level. In human,
less than 10% of the protein interactions have structural data (Figure 1.7). This low
coverage has encouraged the development of computational tools aiming at bridg-
ing the gap between the low amount of structures available and the large number
of experimentally determined interactions.

Figure 1.7: Structural coverage of protein interactions. - Taken form Stein et al.
(2011b). For human and yeast, the use of domain-domain structural templates (red) can
increase the structural coverage (green).
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1.2.3 Protein interactions and modularity

Proteins are the most structurally complex and functionally sophisticated molecules
known. They execute nearly all the cell’s functions and are present in all forms of
life. It is clear that the key for understanding protein function relies on the careful
analysis of its structure. Depending on its conformation, a protein can uncover
parts of its surface that can engage in the interaction with another protein. This
could consist in the rearrangement of its globular domains or a loop moving out of
the rest of the globular structure. Before analyzing the mechanisms of interactions,
we take a closer look at the features that confer a protein its function.

Domains are the functional units of proteins

Protein domains are regarded as functional units of a protein. They are able to
fold and evolve independently from the rest of the polypeptide chain they belong
to (Ponting & Russell, 2002). If a protein consists of several domains, its function
may be achieved either through one the individual domains or by a combination of
domains, relying on their spatial arrangement. Domains can have structural roles if
they are part of large assemblies or play a catalytic and/or regulatory role. The fact
that domains have the ability to fold independently from the rest of the protein has
permitted molecular and functional studies to focus on these subunits rather than
full-length proteins. This is of great value to cope with technical limitations that are
related to handling large proteins. Throughout evolution, domains have been dupli-
cated, recombined, inserted and depleted within proteins, leading to new proteins
with novel functions (Orengo & Thornton, 2005).

There are many domain resources available. Some are based on the analysis of
repeatedly occurring folds while other resources are based on the sequences de-
rived from observed and classified folds. In the first category of domain resources,
the Structural Classification Of Proteins (SCOP) provides a detailed and compre-
hensive description of the structural evolutionary relationships of proteins. The
classification hierarchically groups structures by fold, class, superfamily and family
(Murzin et al., 1995; Andreeva et al., 2004). Similarly, the CATH database (Orengo
et al., 1997; Greene et al., 2007) classifies the structures according to the follow-
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ing hierarchy: Class, Architecture, Topology and Homologous Superfamily. These
classifications are the results of the combination of manual and automated pro-
cedures, which allows the comparison and/or clustering of structures even if they
exhibit low sequence similarity. The second category of domain resources provides
a sequence-based definition of domains. PFAM (Sonnhammer et al., 1997; Finn
et al., 2010a) and SMART (Schultz et al., 1998a; Letunic et al., 2009) are among the
largest protein domain databases. Their families are derived from multiple sequence
alignments from which Hidden Markov Models (HMMs) are built and can be used
to search matches to domain families in sequence databases. The increasing number
of sequences generated within the last decade by genomics projects has permitted
the domain family definition to be improved and refined.

At the protein interaction network level, the organization in domains confers pro-
teins an important modular property, which has been found to play an important
role in regulatory and signal transduction pathways (Pawson & Nash, 2003; Seet
et al., 2006). Additionally, the fact that they are often engaged in transient and stable
interactions with other domains or short linear motifs is an important feature for
these types of pathways.

Domain-domain interactions

The structures of domain-domain interactions (DDIs) have been intensively studied,
according to their type (interchain or intrachain), their topology, their interface and
their binding sites. The resulting classifications are available in databases, such as
iPfam (Finn et al., 2005), 3did (Stein et al., 2009), SCOPPI (Winter et al., 2006),
PRISM (Ogmen et al., 2005), SNAPPI-DB (Jefferson et al., 2007), and PIBASE (Davis
& Sali, 2005). However, this information about structural DDIs only gives a hint
about the availability of 3D data for a given pair of domain. The classification of the
domain interaction interfaces by Kim et al. (2006b) has shown that about 60% of
the domain family pairs have a single interaction topology, whereas the remaining
40% show multiple ways of interacting. These results indicate that focusing on the
domains alone is not sufficient to elucidate the molecular mechanism of interac-
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tions. The use of extra information about the domain families or the analysis of their
interface properties could help narrowing down the number of possible interfaces
and finally provide a more suitable template for the interaction.

Nevertheless, these resources represent a valuable tool to extend the structural
knowledge of domain interactions to family members that lack a resolved structure.
Aloy & Russell (2004) estimated the number of protein interactions to be limited to
10000 in Nature. In another study, they showed that pairs of interacting domains
belonging to the same family tend to interact in a similar way (Aloy et al., 2003).
Taken together, these findings suggest that structural information of interacting do-
mains can be exploited by computational approaches to provide relatively accurate
models for protein interactions.

Domain-motifs interactions

Linear motifs or peptides are between 4 and 40 amino acids long and perform a
wide range of functions both in cell-to-cell and intracellular communication: they
are important mediators in many signaling pathways and regulatory networks (Ne-
duva & Russell, 2006). In general, these short segments are characterized by local
flexibility. Many of them, such as phosphorylation sites (Iakoucheva et al., 2004),
SH3 interaction motifs (Beltrao & Serrano, 2005) or recognition elements of 14-3-3
proteins (Bustos & Iglesias, 2006), have been found in locally disordered regions of
their parent proteins. Known motifs are catalogued by several resources, including
the eukaryotic linear motif (ELM) database (Gould et al., 2010), SCANSITE (Obe-
nauer, 2003) and PROSITE (Sigrist et al., 2010). Many of the best-known motifs,
such as those interacting with SH2 (Src Homology 2), PTB (phosphotyrosine bind-
ing) and 14-3-3 domains, recognize sites of post-translational modification made
during signal transduction.
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Post-translational modifications

Proteins are subjected to many reversible post-translational modifications (PTMs),
such as the covalent addition of a phosphate or an acetyl group to a specific amino
acid side chain. The addition of these modifying groups is used to regulate the
activity of a protein, changing its conformation, its binding to other proteins and/or
its location inside the cell. A striking example is the tumor suppressor protein
p53: in its active form, p53 is subject to a complex and diverse array of covalent
post-translational modifications, which influence the expression of p53 target genes
(Toledo & Wahl, 2006). In fact, p53 is reported to bind to 380 proteins, according to
the STRING database (Szklarczyk et al., 2011b), and the specificity for each of them
seems to be dependent on the many possible combinations of its various PTMs. The
available resources for PTMs include Phospho.ELM (Dinkel et al., 2011), netPhorest
(Miller et al., 2008) and SCANSITE (Obenauer, 2003).

1.2.4 Bridging the gap: using computational structural biology to
model protein interactions

Structural information regarding proteins is very low compared to the sequence
data that is being generated. This gap increases dramatically regarding protein in-
teractions. Similarly to the numerous methods that attempt to predict the structure
of a protein, the exponential increase of interaction data has encouraged the de-
velopment of methods aiming at modeling protein interactions. A large number of
predictors use observations and patterns derived from studying different protein
interaction mechanisms at different levels of resolution (from low to high):

Protein docking
Docking procedures use surface complementarity and electrostatics to predict
structural complexes from single structures of proteins, fitting together two or
more known structures of reliable 3D structural models via their interacting
surfaces (Katchalski-Katzir et al., 1992). Docking programs usually comprise
two steps: generation of thousands of alternative poses to sample all possible
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interaction modes, followed by scoring these poses using a ‘pseudo-energy’
function. Approximately correct solutions are generated by the first step, but
scoring functions often fail to rank them properly, as evaluated by the Critical
Assessment of PRedicted Interactions (CAPRI,(Janin, 2005)). However, Wass
et al. (2011) recently showed that a standard docking program can distinguish
the true interactors from a background of 922 non-redundant potential inter-
actors. Hence, despite the limitations of docking algorithms, they can still be
useds to distinguish between binding and non-binding partners.

Comparative modeling-based method
The goal of comparative modeling - or homology modeling - is to build a
structural model of a protein on the basis of close sequence similarity to a
template protein of known structure. This principle can be extrapolated to the
prediction of protein interactions, since it has been shown that homologous
pairs of proteins tend to interact in the similar way (Aloy et al., 2003). Aloy &
Russell (2002) have exploited this property to develop a method based on the
homology between interacting pairs. In addition, the contacts between the
amino acids at the interface are being assessed using empirical potentials to
determine the suitability of the template.

Protein interface modeling
Protein interface modeling restricts the focus to the residues directly involved
in the interaction. For a given interaction, all the elements (i.e. secondary struc-
ture elements and loops) that are not involved in the complex formation are
excluded from the template. The side chains of the remaining residues in the
template are then substituted in silico by the side chains of the corresponding
residues in the sequence of the proteins to be modeled. Kiel et al. (2007) used
this approach to predict 20 Ras proteins in complex with 50 Ubiquitin-like
domains with FoldX (Guerois et al., 2002; Schymkowitz et al., 2005), an all-
atom empirical force-field (see Box). The resulting network showed very high
accuracy for distinguish between binders and non-binders when compared to
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pull down experiments. This methodology can be applied to the prediction
of binding partners in other domain families, if enough structural information
is available. However, the quality of the results depends on the quality of
the structural templates and on correct structure-based sequence alignments.
Thus this method requires a careful manual inspection of the structures and
alignments and could not be applied in an automated process.

Estimation of the interaction energy using all-atom force fields
The stability of proteins and the strength of interacting proteins can be measured
by diverse experimental methods but when working with structures of proteins
instead of the actual protein one needs what is commonly called a ‘force field’
in computational structural biology. The ‘FoldX’ software is an example of such a
force field that can be used for rapid evaluation of folding and binding energies
or effects of mutations based on the three-dimensional coordinates of a structure
(Schymkowitz et al., 2005). FoldX makes a quantitative estimation of the stability
of a structure or a complex by summing the positive and negative intramolecular
forces (see table 1.2) and weighing their contribution based on empirical data from
protein engineering experiments. The predictive power of the force field was tested
on a large set of wild-type and mutated structures covering many different folds and
environments (Guerois et al., 2002).

1.3 From protein interaction networks to the “3D in-
teractome” 1

The techniques used to determine protein interactions typically identify binary in-
teractions (i.e. Y2H) and protein complexes (i.e. TAP tag). The latter identify protein
complexes whose components are not necessarily physically interacting with each
other and the large number of protein co-purified with a bait suggests that more
than one functional complex could be associated with this bait protein. The main
advantage of these methods is that they can be applied in a high-throughput manner,
leading to a large catalogue of interactions at the organism level. The representa-
tion by PPI networks of the data generated by these high-throughput approaches
have enabled the characterization of “hub” proteins, which usually have more in-
teracting partners than available surface for binding. Thus, it is obvious that the

1. the term 3D interactome has been introduced by Stein et al. (2011c)
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Force type Description

van der Waals
interactions

Attractive or repulsive forces between adjacent
molecules. The attractive forces cone from electron
density fluctuations between adjacent uncharged non-
bounded atoms. The repulsive forces are generated
when the distance between two atoms is lower than
the sum of their van der Waals radii.

Hydrogen
bonds

Two electronegative groups (N− or C = O−) com-
pete for the same hydrogen atom which is cova-
lently attached to one of them (donor).

Hydrophobic
interactions

Aggregation of non-polar compounds when sur-
rounded by polar water molecules.

Electrostatic
interactions

Long distance cohesive forces between negatively
and positively charged atoms.

Entropy Amount of disorder lost by forming bonds or re-
stricting a conformation.

Table 1.2: Non-covalent forces contributing to interaction energy

interacting proteins will undergo competition for binding to this highly connected
node. Stein et al. (2011c) recently evaluated the structural coverage for proteins
and protein interactions for several organisms and showed that using 3D structures
of domain interactions can increase the structural coverage to around 50 % for the
human interactome. This number can be explained by the fact that domain folds are
more conserved than their sequences. If one wants to model a protein, searching
a potential template in the PDB for this protein sequence might not provide any
structure suitable for modeling if they share less than 30% sequence similarity. The
large number of sequence data used to generate HMM profiles in domain family
databases has enabled the access to more remote members and thus possibly more
potential structural templates.
This has encouraged the development of computational techniques to elucidate the
molecular mechanisms of protein interactions. They range from docking to compar-
ative modeling, with hybrid approaches falling in between (see above). However,
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these techniques may be computationally expensive or require a detailed manual
inspection of the data, which is a limiting factor to their application at the interac-
tome level.

Structure-based classifications of domain interactions have demonstrated that a
pair of interacting domains could exhibit multiple interaction topologies (Kim et al.,
2006b). In order to select the most appropriate structural template as a model for a
protein interaction, it is essential to combine this data with an extra source of data,
such as information about the interface.

To summarize, the knowledge of interacting interfaces provided by structural
information can help determining the binary interactions taking place within ex-
perimentally characterized protein complexes and contribute to the elucidation of
competition between binding proteins, by discriminating compatible and mutually
exclusive interactions. We proposed to integrate this information in protein interac-
tion networks by visually representing it using the logic gates “AND” (compatible)
and “XOR” (mutually exclusive) (see Campagna et al. (2008), in section 1.4). Addi-
tionally, predicting interactions using DDI structures can help increasing the struc-
tural coverage. The sequence-based annotation of domains can additionally reduce
the computation time for these predictions, which would thus make a domain-based
structural approach to interaction modeling suitable to be automatically applicable
to large protein interaction sets.

1.4 Appendix
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CHAPTER

TWO

OBJECTIVES

The main idea developped in this thesis was to propose structural information
as very important to be combined with protein interaction networks. We first

reasoned that if a central “hub” protein interacts with many partners using a similar
structural interface, the binding proteins would compete with each other, if this hub
is in sub-stoichiometric concentration expressed in a given biological system or cell
type. Second, interaction data derived from Co-immunoprecipitation experiments
are not necessarily all binary interactions, which means proteins could be found
experimentally in complex without directly binding to the bait proteins; however,
information on binary interactions combined with the knowledge of domains and
linear motifs mediating the interaction and the interfaces that are used is crucial if we
want to analyze the role of competition. In contrast to the field of in silico predictions
of protein-protein interactions, which is limited by a low structural coverage and
is highly error prone, we here propose something conceptually new: combining in
silico predictions of domain and linear motif interactions with experimental informa-
tion. We hypothesize that the prediction success could be improved if proteins were
already found experimentally to be in one complex. Third, we wanted to analyze
whether the structural and competition information, combined with protein inter-
action networks and signaling pathways could gain biological insights; therefore,
we have tested this hypothesis on the rhodopsin signal transduction pathway.

1. Rhodopsin signal transduction pathway as a test case to gain biological
insights when combining experimental interaction data with structural
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information

Here, the objective was to combine structural information with Co-immunoprecipitation
experiments that were performed in a defined cellular region: the rod outer
segment (ROS). We aimed to get an estimate of the structural coverage, to
develop a scoring system, and finally to find an objective way to establish an
“exclusion criteria” to decide whether two proteins are compatible (“AND”)
or mutually exclusive (“XOR”) for binding to a common third partner pro-
tein. Finally, we aimed to understand whether the information on AND and
XOR interactions relates to the biological function of certain modules in the
network.

2. Developing a web server that combines structural information with net-
works, and proposing a way of visualizing the competing interactions

Here, the aim was to develop an automated pipeline that predicts domains
and linear motifs that could mediate direct binary contacts within proteins
that were found experimentally to form a complex. Further, we aimed to per-
form structural superimpositions automatically and to determine a threshold
allowing the distinction between mutually exclusive or compatible interaction.
Lastly, we aimed to find a good way of representing the results.

Very importantly, all steps in this work should be accompanied by an exten-
sive validation, improving previously described scoring systems and meth-
ods which thus would also contribute to increase the scientific community
methodological knowledge.
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CHAPTER

THREE

RESULTS

3.1 Structural and functional protein network analy-
sis predicts novel signaling functions for the G-
protein coupled receptor Rhodopsin

Rhodopsin, a G protein-coupled receptor (GPCR), is the major visual pigment in
rod photoreceptor cells, responsible for the vision in dim light. Its activation by a
photon of light triggers a signal transduction cascade which eventually leads to a
hyperpolarization of the cell and then the transmission of the signal to the neural
network of the retina. Rods are highly specialized cells. Phototransduction takes
place in the rod outer segment (ROS) where a large number of disc membranes are
tightly packed. These disc membranes contain many molecules of rhodopsin orga-
nized in dimeric conformation. These discs undertake an important turn over: they
are being removed at the distal end by phagocytosis while new discs are generated
at the base of the ROS. The core vision pathway is triggered by the activation of
Rhodopsin by light. In this study, we were interested in exploring other pathways
that could also be triggered by light-activated Rhodopsin.

We combined structural information with literature mining and proteomics data
to construct the protein interaction network associated with rhodopsin. The pro-
teomics data was of great value, since it provided all the components located in
the highly specialized outer segment region of the rod photoreceptor and permitted
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to restrict the literature mining and interaction information to this specific set of
proteins. We further annotated the proteins according to their predicted functions,
which allowed the decomposition of the network into functional sub-modules. We
applied a structural analysis in a similar approach as described in section 3.2. This
allowed us to annotate the connections among and between sub-modules using
logical gates “AND” and “XOR”, for compatible and mutually exclusive interactions
respectively (Campagna et al., 2008), involving 84 protein interaction structures
from close homologs and 107 structurally predicted interactions using domain
interaction structures significantly scored by InterPreTS. The annotation of these
modules according to their physiological functions completed the process of build-
ing a high confident and comprehensive network with different levels of detail. We
observed that “AND” gates are often occurring within stable molecular machines in
the cell (typically involved in housekeeping, structure and polarity and metabolism
pathways), whereas “XOR” gates are enriched within proteins involved in vesicle
trafficking. The fact that proteins involved in vesicle trafficking can bind a limited
number of protein simultaneously suggests a highly regulatory mechanism for pro-
tein transport and renewal of the ROS components. Interestingly, the vision pathway
was connected to the other modules of the network by “XOR” gates, suggesting the
local changes in concentration, resulting from the translocation of the vision protein
between the outer and the inner segment (Reidel et al., 2008), could be important
for the transduction of the signal received by Rhodopsin.
Taken together, these results show that combining data sources are of great value
to derive new insights from protein interactions network. Despite a low structural
coverage in the Rhodopsin protein interaction network, we were able to gain insight
about potential new routes activated by rhodopsin. This has been possible by the
combination of data sources.

The article included in this section has been accepted for publication inMolecular
Systems Biology.
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3.1.1 Contributions

My contributions to this article are the following:

1. Comparison of the proteomics data sets.

2. Structural analysis of the protein interaction: structural modeling using 3DiD
and InterPreTS, annotation of crystallographic artifacts, validations of the pre-
dictions.

3. Partial functional annotation of the proteins within the network.

4. Participation to the network reconstruction.
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Abstract  

Orchestration of signaling, photoreceptor structural integrity, and maintenance needed for 

mammalian vision remains enigmatic. By integrating three proteomic datasets, literature 

mining, computational analyses, and structural information, we have generated a 

multiscale signal transduction network linked to the visual G protein-coupled receptor 

(GPCR) rhodopsin, the major protein component of rod outer segments. This network 

was complemented by domain decomposition of protein-protein interactions and then 

qualified for mutually exclusive or mutually compatible interactions and ternary complex 

formation using structural data. The resulting information not only offers a 

comprehensive view of signal transduction induced by this GPCR but also suggests novel 

signaling routes to cytoskeleton dynamics and vesicular trafficking, predicting an 

important level of regulation through small GTPases. Further, it demonstrates a specific 

disease susceptibility of the core visual pathway due to the uniqueness of its components 

present mainly in the eye. As a comprehensive multiscale network, it can serve as a basis 

to elucidate the physiological principles of photoreceptor function, identify potential 

disease-associated genes and proteins, and guide the development of therapies that target 

specific branches of the signaling pathway.  

 



Introduction  

The work of many different groups over the past decades has led to a detailed 

understanding of the molecular mechanisms underlying the initial steps of the vision 

process in photoreceptor cells (Palczewski, 2006; Kwok et al, 2008, reviewed in Ridge et 

al, 2003). Rod photoreceptor cells are neurons capable of converting light into electrical 

signals. They possess a specialized structure consisting of five principal regions (Figure 

1A): (i) the rod outer segment (ROS) composed of ~800 closed membrane discs where 

phototransduction takes place; (ii) the connecting cilium (CC) that joins the outer 

segment to the rest of the cell and regulates the traffic of proteins and other components 

in both directions; (iii) the rod inner segment (RIS), responsible for general cell 

metabolism, housekeeping, and protein production; (iv) the cell body with the nucleus 

(N); and (v) the synaptic region (SR) that makes the electrical connections to the neurons 

in the retina. Protein activity and turnover in the ROS are highly dynamic: about 10% of 

all discs are generated each day at the base of the segment, while older discs are removed 

at the distal end by phagocytosis of the neighboring retinal pigment epithelium cells 

(Boesze-Battaglia and Goldberg, 2002). To replenish, the components of the ROS and the 

vesicles synthesized in the RIS compartment need to be transported through the CC 

region, either actively or by diffusion (Reidel et al, 2008).  

Rhodopsin is the major visual pigment in rod photoreceptor cells. It is a prototypical 

seven transmembrane-spanning G protein-coupled receptor (GPCR) that contains 11-cis-

retinal as its intrinsic chromophore ligand, and it is highly concentrated in the ROS discs 

(Liang et al, 2003; Nickell et al, 2007). Due mainly to its high endogenous expression, 

rhodopsin was the first structurally resolved mammalian GPCR (Palczewski et al, 2000). 

In disc membranes, rhodopsin is tightly packed into paracrystalline dimer arrays, 

enabling optimal association with the heterotrimeric G-protein transducin as well as with 

additional regulatory components (Ciarkowski et al, 2005; Filipek et al, 2004; Fotiadis et 

al, 2004). Photon-activated rhodopsin promotes the activation of the associated G protein 

transducin, which in turn activates phosphodiesterase 6 (PDE6), leading to hydrolysis of 

cGMP and closure of the cGMP-gated channels. This initiates ultra-fast 

phototransduction (Hamer et al, 2005), translating light energy first into a biochemical 

signal, followed by an electrical cue that is transmitted through the neuronal network of 



the retina. Adaptation to different light conditions, and regeneration of rhodopsin, is 

regulated at multiple levels, including through differential phosphorylation, differential 

calcium concentrations, and regulated enzymatic cycles, for example when regenerating 

11-cis-retinal (Lamb and Pugh, 2004). Disruption of these highly organized structures 

and processes by germ line mutations can cause severe blinding diseases, such as retinitis 

pigmentosa, rod-cone dystrophies, and congenital stationary night blindness (Berger et al, 

2010).  

Proteomic analyses of purified ROS has identified about 500 proteins (Figure 1B) that 

include metabolic enzymes, transport proteins, cytoskeleton elements, regulatory 

proteins, scaffolds, and housekeeping components, providing a detailed description of the 

outer segment protein repertoire (Kwok et al, 2008) (Figure 1C). In addition, the relative 

abundance has been determined for 150 proteins (Kwok et al, 2008). Finally, studies have 

demonstrated that some of these proteins, such as arrestin, transducin, guanylate cyclase, 

and RhoA, localize differentially in the outer and inner segment in response to light/dark 

cycles (Hallet et al, 1996; Reidel et al, 2008; reviewed in Artemyev, 2008). To date, 

however, this wealth of data has not been fully analyzed nor integrated on a functional 

proteome-wide scale. It is anticipated that a large part of ROS proteins, and a core of the 

functional modules, will be common to all cells, while others will be photoreceptor-

specific (Hofmann et al, 2006). Yet, similar to an assembly of music instruments, 

proteins organized as molecular machines can function in different, context-dependent 

ways. Connectivity, as well as the timing and tuning of different modules, appears to be 

crucial for the proper orchestration of signal transduction as well as for parallel signal 

processing in a concerted fashion: at the systems level, this results in the music of life. 

Although many details of the core phototransduction processes have been established, 

and mathematical models have been proposed (Dell'Orco et al, 2009), the overall 

orchestration of the outer segment functions, which include processes like disc shedding 

and renewal, protein transport along cilia, and light adaptation, are far from being 

understood. Further, how a variety of mutants of proteins primarily localized in the outer 

segments can cause visual impairment by perturbing the function of this organelle can 

only be speculated. For instance, a mutation could impair not only the proper folding of 

the protein but also its interactions with its partners within the physiologically functional 



protein networks. Identifying protein interactions and their networks is therefore an 

important step toward improving our understanding of the molecular defects that underlie 

genetically-inherited and age-related blinding diseases, and may directly lead to 

identifying novel disease-associated genes.  

There are several aspects that cannot be clearly determined through large-scale 

studies, such as the network dynamics, the simultaneous regulation of several distinct 

higher order biological outputs by one network, and the possibility that interactions 

detected for a particular protein might not be compatible simultaneously (Ho et al, 2002; 

Gavin et al, 2002; Gavin et al, 2006; Rual et al, 2005; Ito et al, 2001; Stelzl et al, 2005). 

As a consequence, information about the dynamics and the tempo-spatial resolution of 

networks has been limited to smaller signaling modules, such as receptor-initiated signal 

transduction (Olsen et al, 2006; Becker et al, 2010). Structural information can help 

discriminate between direct and indirect interactions in a given complex. More 

importantly, it can add a dynamical value to the classical interaction networks by 

determining if two or more predicted partners of any given protein or complex can 

simultaneously bind to a target, or if they instead compete for the same interaction 

surface (Kim et al, 2006; reviewed in Campagna et al, 2008 and Kiel et al, 2008). 

Integrating interaction data with protein expression information may assist in adding a 

dynamic dimension, and therefore a more realistic view, to the abstract “organism 

interactome” (Hofmann et al, 2006). 

Here, we have combined experimental data, literature mining, and structural 

information to provide a comprehensive view of the signal transduction network centered 

on rhodopsin (see the flowchart in Figure 2). Integrating structural information with the 

relative estimates of expression levels allowed us to distinguish between mutually 

compatible or mutually exclusive interactions, enabling us to structure a network of 

nodes and edges towards sub-networks and functional modules. The resulting network 

offers an unprecedented view of signal transduction in vision and suggests a light-

dependent orchestration of the core vision pathway to functions that have so far not been 

related to this pathway, such as cytoskeleton dynamics, vesicle transport, and energy 

metabolism. The specific light-dependent connectivity of rhodopsin to these functions is 

likely to be conferred by small GTPases and their regulators and interacting proteins, 



such as the prenyl-binding protein PDEδ and other prenylated proteins. This would 

establish a dynamic and light-dependent mode of regulating the localization (to the 

membrane or cytosol), and thus the activity, of these GTPases.  



Results  

ROS proteome determination and contaminant removal 

In order to determine the proteomic content of photoreceptor outer segments, dark-

adapted porcine ROS and outer segments discs were isolated as previously described 

(Swiatek-de Lange et al, 2008; see Materials and methods). Proteins were then resolved 

by one-dimensional gel electrophoresis (1DE) and identified by mass spectrometry (MS). 

In three independent experiments, a total of 50 proteins were identified by MALDI-TOF 

from both ROS and ROS discs, and 434 proteins by the more sensitive Orbitrap-LC-

MS/MS (Supplementary Table S1). The union of the two datasets resulted in a total of 

444 proteins, of which 410 could be mapped to the human proteome. Comparing our 

dataset to a recent proteomic study that identified 516 proteins from bovine ROS (of 

which 487 mapped to the human proteome; Kwok et al, 2008) resulted in an overlap of 

217 proteins (Figure 1B). We then created a unified dataset consisting of 680 human 

proteins, defined as our “initial experimental ROS proteome”. 

To further refine the protein list presented in the initial experimental ROS proteome, 

we applied heuristic filtering procedures to remove proteins that might have 

contaminated the ROS fraction in either experiment (from the surrounding cells or from 

other cellular domains of the rod photoreceptor). First, we looked at the functional 

annotations of the initial experimental ROS proteome to identify annotations that 

contrasted with the expected properties of a ROS protein (such as transcription factors, 

nuclear proteins, and mitochondrial proteins), based on GO terms from the UniProt 

database (Supplementary Table S2). Second, we performed a detailed manual functional 

analysis based on UniProt, the KEGG database, and relevant literature. This revealed 81 

putative contaminants (Supplementary Table S2); of these, 68 were found in only one of 

the two experimental datasets (e.g., ours and that from Kwok et al, 2008), further 

supporting their classification as contaminants. The 13 proteins identified in both sets are 

synaptic proteins and G proteins believed to be expressed only in cones (Kwok et al, 

2008). We thus retained 605 proteins after these analyses. 

We next removed all proteins for which there was no interaction data or further 

experimental evidence about their presence in ROS (protein group 1; Supplementary 

Table S2); this information was compiled from the literature and databases such as MINT 



(for details, see Materials and methods and http://mint.bio.uniroma2.it/mint/) (Zanzoni et 

al, 2002; Chatr-aryamontri et al, 2007; Ceol et al, 2010; Supplementary Table S3). A 

total of 347 proteins passed this filter. From the analysis of published information, eight 

additional proteins that lacked associated protein-protein interactions were nevertheless 

considered to be bona fide ROS proteins with important functional and/or structural roles 

and were thus retained in the ROS proteome; these were the retinal-specific ATP-binding 

cassette transporter ABCA4, the cellular retinaldehyde-binding protein RLBP1, the 

photoreceptor outer segment all-trans-retinol dehydrogenase RDH8, peripherin-2 

(PRPH2), the ROS membrane protein ROM1, Rab11B, retinitis pigmentosa 1 (RP1), and 

fascin 2 (FSCN2). This filtering procedure left us with 355 bona fide ROS proteins, or 

proteins that are dynamically localized to ROS (protein groups 2 and 3, respectively in 

Supplementary Table S2). These proteins represent the “core ROS proteome”. 

 

Functional modules of the core ROS proteome 

We next classified the core ROS proteome into six functional groups based on the above 

information, and we annotated lipid modifications, such as prenylation and geranylation 

(Supplementary Table S2 and Figure 1C): (1) vision, signaling, transporters, and 

channels: 56 proteins have functions that are either directly associated with vision or 

support visional functionality (i.e., visual cycle, protein homeostasis, or energy 

production). This module contains well-known members of the phototransduction 

pathway, including the core signal transduction of light (Dell’Orco et al, 2009) and the 

visual cycle involved in regenerating 11-cis retinal necessary to complement 

photosensitive rhodopsin after photo-bleaching (Lamb and Pugh, 2004). We further 

included here proteins involved in Ca2+-dependent signaling and proteins associated with 

ion channels that regulate photoreceptor membrane conductance and polarity; (2) outer 

segment structure and morphogenesis: the seven proteins in this group are those 

implicated in outer segment structure and disc morphogenesis (Molday et al, 1987; 

Poetsch et al, 2001), and those that link the cytoskeleton to the extracellular matrix 

(ECM), such as alpha and beta catenin; (3) housekeeping: in this group of 73 proteins, we 

consider protein-folding chaperones and heat shock proteins, members of the 

ubiquitination/degradation-proteasome machineries, scaffold proteins such as the 14-3-3 



family members, and proteins involved in oxidative stress, cell redox homeostasis, and 

apoptosis regulation (De La Paz and Anderson, 1992; for review, see Wenzel et al, 

2005); (4) cytoskeleton and polarity (67 proteins): this group contains cytoskeleton 

proteins, such as actin and tubulin, as well as their respective binding proteins and 

molecular motors, proteins involved in regulating cytoskeleton dynamics including 

GTPases, and intermediate filaments. Many of these are associated with the connecting 

cilium and the axoneme of ROS and might therefore be present at low concentrations 

(reviewed in Adams et al, 2008). Proteins that are known to function in axon guidance 

were also added to this class; (5) vesicles formation and trafficking: we included here 60 

proteins involved in Golgi function, protein and vesicle transport, and fusion, as well as 

the annexins that function in exocytosis and phagocytosis; (6) metabolism: we included 

here 92 proteins related to metabolism, in processes such as glycolysis, ATP synthesis, 

nucleotide, and fatty acid and carbon metabolism. Interestingly, we found that several of 

these are metabolic proteins involved in energy production (about 50% of the enzymes 

detected in this group are involved in glycolysis, and about 20% in the tricarboxylic acid 

pathway), including ATP synthase, the activity of which has recently been demonstrated 

in intact discs (Panfoli et al, 2009). This suggests that the ATP used in vision signaling is 

indeed produced within ROS and is probably fueled by glucose transported along the 

cilium. Indeed, this study identified a glucose transport protein, SLC2A1, as a ROS 

protein, supporting this hypothesis. High energy demands of ROS, and a capacity of only 

limited diffusion through the interconnecting cilium, may require on-site production of 

ATP.  

 

Network reconstruction and structural modeling of the ROS interactome  

Information about the protein-protein interactions (PPI) among the core ROS proteome 

was mined from protein interaction databases to assemble a ROS protein network 

(Supplementary Table S3); (Zanzoni et al, 2002; Chatr-aryamontri et al, 2007; Ceol et al, 

2010; Kerrien et al, 2007). The protein interaction degree ranges from 1 to 179, with the 

highest number of interaction partners for actin, tubulin, 14-3-3 family members, heat 

shock protein members, and ERK (Supplementary Figure S1A).  



Overall, the complete core ROS proteome PPI network consists of 5337 interactions 

among its members (Supplementary Table S3). The experimental evidence for most of 

these interactions (5047) was based on co-immunoprecipitation or pull-down 

experiments, which offers little support for their direct nature (Supplementary Figure 

S1B). In addition, many of the edges in the network are supported by single experimental 

pieces of evidence (> 85% of the PPI), often derived from high-throughput approaches. 

Thus, we refer to this network, which represents all the interactions that we could retrieve 

from published data, as a “fuzzy ROS interactome”, since it contains many interactions 

supported by only one non-binary piece of evidence.  

Next, we aimed at increasing the information content of the network by structural 

modeling. Pairs of interacting proteins often share common structural features with other 

interacting pairs of known structure (domains and linear motifs). We use structural 

information, combined with computational tools, to support low-confidence experimental 

interaction evidence and to determine whether two interactions involving a common 

partner are compatible or mutually exclusive (see Supplementary Material 1). We 

considered two levels of structural evidence that may support any given interaction. First, 

for each pair of members of the core ROS proteome, we searched the PDB database 

(http://www.pdb.org) for protein complexes of known structures whose elements share at 

least 70% homology with the query proteins. By this approach, we identified 84 

complexes in the ROS core network whose structures could be confidently modeled on 

homologous structures (Supplementary Table S4). Most of the interactions for which 

there are X-ray structures, or structures from close homologs, are found between the 

connecting proteins in the modules 1 or 4 (vision, signaling, transporters, and channels 

and cytoskeleton and polarity) as well as among proteins involved in interactions 

connecting these two modules (Supplementary Figure S2). 

Next, using a lower level of structural detail and confidence, we exploited the notion 

that similar domain pairs are likely to interact in a similar way (“nature repeats itself”) 

(Aloy and Russell, 2002). For example, members of the Ras family and proteins 

containing a Ras-binding domain (RBD) are likely to use the same interaction surface 

when they interact (see Kiel and Serrano, 2006). To overlay a domain-level model on the 

ROS network, we represented each of the 355 nodes as a stack of Pfam domains 



(http://pfam.janelia.org/) (Supplementary Table S5). We then searched the 3Did database 

(http://3did.irbbarcelona.org/; Stein et al, 2005; Stein et al, 2009) for structural evidence 

of pair-wise interactions between any of the domains in our database (for details, see 

Supplementary Material 1). Structural evidence was found for 352 pair-wise interactions, 

excluding pairs that had already been identified by comparison with homologous 

crystallized complexes (Supplementary Table S4). A confidence “interaction score” of ≥ 

2.3 for the identification of the interacting pairs was obtained by interrogating the 

InterPReTS server (http://www.russelllab.or/cgi-bin/tools/interprets.pl/; Aloy and 

Russell, 2003). This score was validated using a yeast two-hybrid positive and negative 

binding data set described by Vidal and co-workers (Rual et al, 2005). We found a 

confidence of over 70% that two proteins containing the target domains will interact in a 

two-hybrid experiment when the InterPReTS score was above 2.3 (see Supplementary 

Material 1). Of the 352 interactions that had a hit in the 3Did database, 107 had 

InterPReTS scores higher than our chosen threshold and were therefore annotated as 

“supported by structural evidence”. A total of 191 interactions supported by structural 

evidence (that is, the 84 interactions with known or closely related structures, and the 107 

with significant InterPReTS scores) were merged with the literature-based interaction 

network. Interactions that could be annotated with structural evidence were mainly found 

within the functional modules (Supplementary Figure S2). 

To increase the confidence in the resulting network, edges that were only supported 

by a single piece of evidence from any type of experiment except yeast two-hybrid 

experiments were removed (Supplementary Table S6), with the exception of interactions 

for which there was also structural information available (that is, a three-dimensional 

structure of the complex itself or of a highly homologous complex). This curated static 

network (“high-confidence ROS interactome”) comprises 660 edges and links the 

majority of the nodes (with 266 proteins, as indicated in Supplementary Table S2; Figure 

3A) that were present in the original network. The missing nodes are equally distributed 

among the proteins with respect to their GO terms, although an enrichment for proteins 

assigned to the classes retinol recycling and metabolism was observed (of 80% and 50%, 

respectively). 



By considering only edges supported by at least one evidence of direct binary 

interaction, we obtained a “high-confidence binary ROS interactome” that contains 222 

nodes (note that most of the nodes that were not captured by this network are annotated 

with metabolism ontology terms), linked by 349 edges (indicated as binary in 

Supplementary Table S6). Except for reactions involving guanylate kinase (GK) and 

nucleoside diphosphate kinase (NDPK), a nucleotide and cyclic nucleotide modifying 

enzyme, all interactions of the core vision pathway (Dell’Orco et al, 2009; Ridge et al, 

2003; Wensel, 2008) are represented in our PPI network as true binary interactions. 

Thirty-five nodes have more than 10 interaction partners, with a maximum degree of 55. 

Only two proteins in the vision category have more than 10 interaction partners (CALM1 

and CAMK2A). Most of the interactions involve the heat shock proteins, 14-3-3 family 

members, ERK (MAPK1), tubulins, and actin. More than 10 interaction partners were 

found in the metabolism branch for glyceraldehyde-3-phosphate dehydrogenase 

(GADPH) and for the two ATPase subunits.  

Additionally, 109 direct binary interactions connected the defined functional 

modules, and 240 binary interactions connected proteins within modules (Figure 3B; for 

a detailed description of the connections between the modules, see the Supplementary 

Material 2). Out of those 240, 188 are classified within sub-boxes/sub-functions. The 

observation that roughly two-thirds of the interactions were found within functional 

modules, and only a third between modules, provides confidence to our module 

classification and manual functional annotation. Interestingly, the most highly connected 

modules are module 1 (vision) and module 4 (cytoskeleton), illustrating the important 

crosstalk between the core vision pathway and the cytoskeleton. The less connected 

modules are the ones involved in the structure of the discs and in metabolism. As 

expected, the housekeeping module, despite having fewer connections, is linked to all 

other modules. 

 

The high-confidence ROS interactome suggests new functional links 

Using our curated high-confidence binary ROS interactome as a basis, we decided to 

analyze in more depth the core vision pathway, which is probably one of the best-studied 

biochemical pathways (Ridge et al, 2003; Wensel, 2008; Dell’Orco et al, 2009). We 



extended the published core vision pathway (Dell’Orco et al, 2009) using evidence from 

our high-confidence network and indicated structural coverage and outputs to different 

functional cellular processes emanating from the proteins in the pathway (Figure 4; for a 

detailed description, see Supplementary Material 2). Of these, we decided to validate the 

link to the GTPases RhoA and Rac1 (Figure 4 link A and Figure 4 link D), which 

suggests a link between vision activation and cytoskeleton reorganization.     

 

1) Rho-Rac1 and the cytoskeleton connection 

Previous work has demonstrated functional links between rhodopsin, certain GTPases 

(Mitchell et al, 1998) (most prominently transducin), and the cytoskeleton. S-arrestin 

specifically binds to activated and phosphorylated rhodopsin, inhibiting activation of 

transducin and terminating phototransduction (Kühn et al, 1978, Kühn et al, 1984, 

Wilden et al, 1986). Nair et al. have shown interactions between S-arrestin and 

microtubules (Figure 4, link G) (Nair et al, 2004).  

We were able to confirm that small GTPases Rac and the GTP-bound form of RhoA 

bind rhodopsin, as has been previously described (Balasubramanian and Slepak, 2003; 

Wieland et al, 1990a; Wieland et al, 1990b; Gray et al, 2008) (Figure 4, link A). For this, 

we performed co-segregation/co-sedimentation experiments to reveal proteins within 

large complexes, as described previously to analyze the light-harvesting complex of 

photosystem II in plants (Swiatek-de Lange et al, 2008) (Supplementary Figures S3 and 

S4A). These experiments indicated that Rac1, Rho, and CRMP-2 were present in a large 

complex that also contained cytoskeletal proteins, rhodopsin, and components of the 

vision pathway. Although the low resolution of the technique, and the complexity of the 

patterns, preclude using these experiments to add new binary interactions to the ROS 

network, it can be used to corroborate interactions supported by further experimental 

evidence or from literature (Supplementary Tables S3 and S6). Using BN-PAGE 

(Schägger and von Jagow, 1991; Nijtmans et al, 2002; Camacho-Carvajal et al, 2004) or 

immunoprecipitation experiments in combination with either mass-spectrometry or 

subsequent immunoblotting, we obtained further evidence for the existence of large 

complexes containing rhodopsin that also included the cytoskeletal proteins actin and 



tubulin as well as its specific regulators such a RhoA, Rac1, and CRMP-2 (Figure 5, 

Supplementary Figure S4B). 

We next isolated the protein partners of the glycosylated N-terminus of rhodopsin by 

using concanavalin A affinity purification (De Grip, 1982; Plantner and Kean, 1976). The 

interactions between rhodopsin, RhoA, and CRMP-2 were confirmed by these 

concanavalin A pull-down experiments, and in part by additional co-immunoprecipitation 

experiments in which we detected rhodopsin associated with the core signaling 

complexes of the visual pathway including transducin and, again, with Rho, Rac1, and 

CRMP-2 (Supplementary Figure S4C and D). To confirm that CRMP-2, Rac1, and 

ROCK II are indeed bona fide ROS proteins rather than contaminants, we performed 

immunohistochemistry for these proteins. Indeed, all 3 proteins were constituents of ROS 

on cryosections of porcine retina (Figure 6). Despite considerable efforts, we were not 

able to confirm the presence of RhoA due to a lack of selectivity of various antibodies 

against RhoA in retinal sections. 

 

2) Functional analysis of the PDEδ-Rac1 complex 

PDEδ has been reported to bind to prenyl-modified proteins, such as several small 

GTPases and rhodopsin kinase (Hanzal-Bayer et al, 2002; Zhang et al, 2004), and it 

appears as an important node within our network (Figure 4, link D). PDEδ could thus 

play a critical regulatory role both in facilitating the transport of prenylated target 

proteins along the cilia together with Arl3 (Figure 4, link C) (Veltel and Wittinghofer, 

2009) and in serving as an effector or guanine nucleotide dissociation inhibitor (GDI) for 

many GTPases, such as Arf, Rac1, RhoA, and Rab, all of which are expressed in 

photoreceptors (Figure 4, link D). Therefore, we tested whether PDEδ functions as a GDI 

for Rac1 in ROS. First, we demonstrated that PDEδ and Rac1 are colocalized in ROS 

using immunohistochemistry (Figure 6). Second, we showed that PDEδ and Rac1 

colocalize in ROS in native protein complexes, by using dark-adapted ROS separated by 

BN-PAGE (Figure 7A). In dark-adapted ROS, PDEδ was part of distinct complexes that 

ranged from high molecular weight complexes of 660 kDa to smaller complexes of 

around 90 kDa, and interestingly, Rac1 colocalized with PDEδ within different 

complexes between the soluble and membranous fractions. Third, we tested whether 



PDEδ could dissociate Rac1 from ROS membranes in vitro (see Materials and methods). 

Indeed, adding recombinant human (rh) PDEδ led to the solubilization of Rac1 from the 

ROS membranes (Figure 7B). Solubilization occurred in a dose-dependent manner with 

increasing amounts of rhPDEδ. As a positive control, we verified that PDEδ solubilized 

PDEβ from ROS membranes, as previously described (Florio et al, 1996). Thus, PDEδ 

can solubilize Rac1 from ROS membranes, a feature characteristic of GDIs. 

 

All of the interactions determined here—with the exception of the ones identified by 

co-sedimentation, as this method is considered as weak evidence for physical 

interactions—were added as supporting evidence to our network (Supplementary Table 

S6). In total, co-purification and co-elution experiments supported 60 interactions that 

had been included in our network based on literature, and new evidence for 175 

interactions from our co-immunoprecipitation results was added. Additionally, our results 

supported five interactions that had structural evidence (with INTERPRETS score ≥ 2.3).  

Restricted to a single new pathway (Rac1/RhoA–PDEδ−CRMP-2) our experimental data 

support the physiological relevance of our network. It should be noted, however, that this 

data cannot be considered to be complete or free of false positives, since the number of 

interactions tested and validated was small when considering the extent and complexity 

of the network. 

 



Discussion 

 
In this work, we investigated the protein interaction network in a highly specialized 

cellular region of the mammalian photoreceptors, the rod outer segment (ROS). Graphs 

representing protein interactions are idealized descriptions of all the interactions that can 

possibly occur in an organism. The realization that, in any given cell type, only a fraction 

of these interactions can possibly occur prompted the development of approaches to 

combine different genome-wide information to build interaction networks that are either 

specific for a cell type (Bossi and Lehner, 2009) or that change dynamically, such as 

during the cell cycle or after specific pathways have been induced. Here, we take this one 

step further and propose a protein interaction network for a structurally very distinct and 

functionally highly specialized region of the mammalian photoreceptors: the rod outer 

segment (ROS). In addition to proposing novel interactions, we present a structural model 

that allows us to discriminate between protein interactions that are compatible and those 

that are mutually exclusive.  

 

A curated and structure-based PPI network central to rhodopsin  

We first generated a ROS-specific protein interaction network by combining 

proteomic expression levels in ROS with interaction information, which we mined from 

the literature and then subsequently supplemented with our new data pertinent to the 

description of protein complexes in their physiological context. We next performed 

structural analysis of the curated network by decomposing proteins within this network 

into domains. This step allowed us to validate interactions at a domain level and to 

thereby increase the confidence in the network. By reassembling the decomposed 

network based on structural constraints into structure-functional modules, we were able 

to define logical relationships between the network nodes, and to define sub-networks 

that physically and functionally fit into molecular machines. Last, we annotated these 

functional modules according to their respective physiological processes, to derive a 

network of pathways and processes. Based on a compilation of experimental evidence 

and several layers of expert as well as automated curation, filtering, and modeling, the 

resulting network represents a multiscale description of wiring and physical connectivity 



in the ROS of photoreceptors. The extended core pathway shows how rhodopsin 

activation-deactivation leads to other possible functional effects in addition to its primary 

function of signaling for closing the cGMP-gated cation channel. Thus, in addition to its 

relationship with the module of (1) vision, signaling, transporters and channels, wiring 

rhodopsin to (2) outer segment structure and morphogenesis, (3) housekeeping, and (4) 

cytoskeleton and polarity suggests a regulation of cytoskeleton assembly-disassembly 

and dynamics, vesicle and Golgi trafficking, and transport along the interconnecting 

cilium of photoreceptors by rhodopsin. Connections between active rhodopsin and Arf4 

(Deretic et al, 2005; Mazelova et al, 2009), and between PDEδ and Rab13 and the GTP-

bound form of Arl3 (Hanzal-Bayer et al, 2002), also link the vision cycle to vesicle 

trafficking and structure (Figure 4B and C). We experimentally validated two of the 

proposed new functional links. Our results suggest a link between rhodopsin, Rac1, 

RhoA, ROCK II, and CRMP-2. This points to a second, not yet experimentally tackled 

pathway that is influenced by light, which appears to be a delineation of an archetypical 

G-protein–regulated pathway known to be active in growth cone dynamics and collapse 

(Liu and Strittmatter, 2001). RhoA binds to CRMP-2 (gene name DPYSL2, Figure 5), a 

scaffold protein involved in actin cytoskeleton dynamics in neurons that regulates growth 

cone dynamics. CRMP-2, working through the GPCR lysophospatidic acid receptor, has 

been described as a crucial molecule in axon guidance, where it dynamically regulates the 

antagonistic effects of RhoA and Rac1. Regulated by a Rho-associated kinase (ROCK), 

CRMP-2 promotes either outgrowth or collapse in response to active RhoA or Rac1, 

respectively (Hall et al, 2001). When RhoA-GTP levels are high, more CRMP-2 is 

phosphorylated by the Rho-effector kinase ROCK, and thus less non-phosphorylated 

CRMP-2 is complexed with Rac1, leading to cytoskeleton collapse (reviewed in Liu and 

Strittmatter, 2001). CRMP-2 can bind directly to tubulin heterodimers to promote 

microtubule assembly (Fukata et al, 2002). This presents the exciting possibility that 

GPCR rhodopsin autoregulates its own axonal/dendritic guidance and possibly regulates 

outer segment growth via the archetypical mechanisms of axon guidance. Based on this 

scenario, the outer segment would function as a continuously extending growth cone, 

autoregulated by light and other as-yet unidentified guidance cues that may be produced 

in other retinal cells, most notably in the retinal pigment epithelium. 



We additionally provide experimental evidence that PDEδ could act as a GDI for the 

small GTPase Rac1. PDEδ could thus play a very crucial regulatory role: (a) in 

transporting prenylated target proteins (Zhang et al, 2004) along the cilia, together with 

Arl3 (Veltel and Wittinghofer, 2009), and (b) as an effector or GDI for many GTPases 

(Hanzal-Bayer et al, 2002), such as Arf, Rac1, RhoA, and Rab, by keeping them GDP-

bound and inactive. This is important since we did not find the conventional RhoGDI in 

ROS, suggesting that PDEδ could indeed substitute for this function in ROS (similar to 

that demonstrated for the small GTPase Rab13 in ROS; Marzesco et al, 1998). However, 

despite the structural similarity of the PDEδ and RhoGDI domains (Scheffzek et al, 2000; 

Hanzal-Bayer et al, 2002), we learned by superimposing the Rac1-RhoGDI with the 

Arl2-PDEδ structure that these two interactions depend on different moieties for binding 

(Supplementary Figure S6). We provide experimental evidence in this work that PDEδ 

could act as a GDI for Rac1. We did not find any GEFs or GAPs for small GTPases in 

our network but only GDIs (ARHGDI for RhoA, PDEδ for Rac1, and GDI1 and GDI2 

for Rab proteins). Interestingly, this could suggest that these are not regulated by the 

usual switch-like mechanism of GTPase regulation, but rather by a gradient activation, in 

which the activity of active RhoA is determined only by the concentration of RhoGDI, 

keeping RhoA in the inactive form. 

 

The role of Ca
2
 in vision cycle, phototransduction, and actin cytoskeleton changes  

Intracellular Ca2+ concentrations influence the activities of numerous kinases, such as 

different PKC isoforms, the PKA kinase, Ca2+/calmodulin-dependent kinases, and the 

two CaMK-II isoforms, all of which are integral to the network. Predicted kinase 

phosphorylation sites from CaMK-II, PKA, PKC, MAPK, and PKD are summarized in 

Supplementary Table S7. Several Ca2+-regulated kinases phoshorylate cytoskeletal target 

proteins, such as actinin and myosins, and small GTPases and their regulators. This opens 

the intriguing possibility that the nucleotide state and the dynamic spatial cellular 

distribution of several small GTPases are controlled by Ca2+. As perturbed Ca2+ 

homeostasis is a consequence of the activity of a perturbed visual pathway in specific 

forms of retinitis pigmentosa (Paquet-Durand et al, 2010), this is likely to affect a variety 

of critical pathways and thus generate a systemic perturbance of ROS physiology. Our 



network reveals several direct binary connections between Ca2+-regulated proteins and 

cytoskeleton proteins: CaMK2A with actinin, calmodulin with GAP43 (neuromodulin) 

and S1008 (tubulin polymerization initiation), and PKC with 14-3-3 family members. 

Calmodulin is known to have a wide range of effector binding specificity, which 

dynamically changes with Ca2+ binding. Calmodulin 1 and 3 were linked to about 10 

proteins from the two modules, cytoskeleton and vesicle transport. Calmodulin (CALM3 

or CALM1) can bind to the cytoskeleton regulator spectrin alpha, actinin (ACTN2 and 

ACTN4), and the myosin motor protein MYO6. Therefore, calmodulin proteins could 

provide an important link between Ca2+-signaling and regulation of the actin 

cytoskeleton, with spectrin playing a critical role in organizing and maintaining 

membrane sub-domains that harbor rhodopsin (Berghs et al, 2000). Further, a Ca2+-

dependent kinase, CaMK2A, was found to directly contact actinin-1, -2, and -4, and to be 

in a ternary complex with densin, a synaptic adhesion molecule (Walikonis et al, 2001), 

which is not present in our network (as it was not taken into consideration). Another link 

appears between calmodulin and RalA and RalB, both of which are involved in 

trafficking: RalA plays a role in exocytosis regulating exocyst assembly, while RalB 

interacts with EXOC8 (a part of the exocyst complex); RALBP1 is an effector of both 

RalA and RalB. Ca2+ activity is also likely to regulate metabolic activities through 

IHD3A, recoverin, and neurocalcin: the hippocalcin-like protein 1 is a recoverin-like 

protein that was suggested to have an anti-apoptotic function and might protect 

photoreceptors from Ca2+-induced cell death (Krishnan et al, 2009). 

Finally, Ca2+ could play an important role in the light-dark cycle by affecting PKA 

activity. Phosphorylation of RGS9-1 by PKA (Balasubramanian et al, 2001) is regulated 

by light and Ca2+, and results in the reduction of RGS9-1 GAP activity: with light, RGS9-

1 causes rapid Tα-GTP inactivation and photoreceptor recovery, while in the dark, PKA 

is activated by rising concentrations of Ca2+ and cAMP, which in turn phosphorylates 

RGS9-1. In this way, GAP activity is reduced, the active transducin lifetime is prolonged, 

and the photoresponse is strengthened (Balasubramanian et al, 2001).  

While it remains to be seen how all of these connections are orchestrated, and to 

which degree they impact vision homeostasis, there is no doubt that Ca2+ plays a crucial 

role in ROS functionality. 



 

Structural information, structural coverage, and “AND” and “XOR” gates 

Structural information allows the confidence of any independent interaction evidence to 

be tested and at the same time can add topological information to the molecular level by 

defining sites or interaction domains. When several proteins can bind to a single protein, 

the various interactions can occur simultaneously or can be mutually exclusive (reviewed 

in Santonico et al, 2005; Kim et al, 2006). If two or more proteins compete for the same 

binding site, it seems unlikely that binding can occur simultaneously, whereas binding to 

topologically distinct sites may occur at the same time. At the level of graph 

representations within a network, structural information can thus support logical 

constraints. Here, it is important to mention that interactions were defined as exclusive or 

compatible from a structural point of view, and that this cannot be directly translated to 

biological terms in all cases (i.e. for competition to occur, the target protein should be at 

lower concentration than the competing ones). When both competitors are present at the 

same place and time, changes in concentration levels or additional regulatory constraints 

(for example, those introduced by post-translational modifications) could regulate 

competition.  

Structurally superimposing domains onto interactions allowed us to define ternary 

complex formation and, importantly, to model both the composition of macromolecular 

assemblies and its dynamic dissection into mutually exclusive complexes (Supplementary 

Figure S7). With this information, we can add dynamics to the network, using the 

following “AND” and “XOR” (“XOR” = exclusive OR) logical gate symbols: if three or 

more proteins can interact at the same time, they are compatible (indicated with “AND”), 

while if three or more proteins cannot interact simultaneously, they are mutually 

exclusive (indicated with “XOR”) (Figure 8). Competitors are frequently found in highly 

dynamic processes or may dynamically connect a given protein to different signaling and 

functional modules. The structural and interaction analyses of the core vision pathway 

and its cytoskeleton branch show several examples of non-compatible (“XOR”) 

interactions (Figure 8). For example, rhodopsin may interact with transducin, arrestin, or 

rhodopsin kinase (in the core vision pathway). It may also interact with Rac1 or RhoA 

(which are antagonists in cytoskeletal dynamics) or with Arf4 (involved in trafficking). 



Changes in rhodopsin activation, concentration, and localization, or in its activation 

states, may therefore switch signaling into different pathways. Further, rhodopsin 

localization during ciliary transport and disk formation, and dynamic changes in 

concentrations and activation states in response to light, can alter the array of rhodopsin 

binding partners, since these are determined by the phosphorylation state of rhodopsin on 

the one hand and the availability or concentration of binding proteins on the other hand. 

Interestingly, “AND” gates are mainly found in the housekeeping, structure and polarity, 

and metabolism branches, e.g. within large functional complexes, such as the T-complex, 

the proteasome, tubulin, and the ATP synthase machinery. “XOR” gates, which are 

mainly prevalent in the vesicle structure and trafficking branch, indicate switch behavior 

or redundant protein functions, such as for Rab GTPases (Del Conte-Zerial et al, 2008). 

In the vision branch, both “AND” and “XOR” gates synergize. This may allow dynamic 

tuning of light and dark states. However, all connections from the vision module to other 

modules are “XOR” connections, suggesting that competition, together with local protein 

concentration changes, could be important for transmitting signals from the core vision 

module.  

 

The vision network and disease  

A large fraction of retinopathies involve the degeneration of rod photoreceptors; these 

include retinitis pigmentosa (RP), syndromes incorporating retinal degeneration with 

different associated phenotypes (such as Usher syndrome and Bardet–Biedl syndrome), 

and Leber congenital amaurosis (LCA), a congenital form of retinal degeneration. An 

increasing number of genes and proteins has been implicated in these pathologies 

(http://www.sph.uth.tmc.edu/Retnet/). These proteins include: components of the visual 

transduction cycle; structural components of the cytoskeleton, rod and/or cone 

photoreceptor outer segment disc membranes; components of synthesis and recycling of 

the retinoid; transcription factors (including CRX and NRL) and splicing factors; those 

involved in signaling and cilium maintenance, phagocytosis of the outer segment discs of 

the photoreceptors, and trafficking of intracellular proteins; and those with functions in 

pH maintenance in the retina, in metabolism, and as chaperones. The protein with by far 

the largest number of mutations is rhodopsin (>100 mutants), while the others range 



contain from 40 mutations (for the retina-specific crumbs homolog 1 [CRB1]) to 1 (for 

transducin alpha) (see Supplementary Material 3). Structural analyses of the different 

mutations mapped on the available structures or homology models (156 mutations) 

indicated that the majority of these are within the hydrophobic core of the corresponding 

proteins and are therefore likely to cause misfolding (see Supplementary Material 3). 

Mapping all proteins involved in vision-related diseases into the network made it 

apparent that the core visual pathway is the most susceptible to disease, and that the other 

functional modules are relatively robust. Out of 36 proteins considered here to be 

involved in retinal degeneration, the majority (20 proteins) are localized in ROS (the 

remaining are found in other regions of the rod cells or in other cells involved in retina 

homeostasis [pH control], retinal recycling, or phagocytosis of the ROS discs). We found 

two cases of a ROS protein also expressed in other tissues, with no other apparent 

phenotype; for example, isocitrate dehydrogenase NAD-dependent subunit B is found in 

many cell types besides rod cells.  

The prevalence of proteins from the core visual pathway in disease may have several 

explanations: first, mutations in other modules central for cellular function may result in a 

systemic all-or-nothing behavior, affecting the overall viability or proper development of 

an organism and thereby causing early death. This may be true for critical cytoskeletal 

proteins and GTPases, as for example those involved in vesicle trafficking and 

maturation, and for proteins involved in metabolic activity. Second, the lack of 

redundancy for the very specific functions within the visual pathway might cause it to be 

more susceptible. Here, evolution may have favored high-end functional properties over 

the robustness of the pathway. Thus, lack of redundancy may have been accepted by 

evolution even though it interferes with robustness as a pay-off for the high-end 

performance that is achieved in photoreceptors with single photon detection and with 

multi-color vision. 

 

Conclusions 

Taken together, this work suggests that rhodopsin is able to trigger several distinct 

physiological activities in addition to its primary function of closing and opening the 

camp-gated cation channel. Considering protein interactions as a result of domain 



interactions has allowed us to increase the resolution, define discrete functional modules, 

and add a spatial dimension to this network. Based on this study, we obtained a novel 

biological insight that offers new testable hypotheses, which have been partially validated 

through the experiments performed here, namely, of the connectivity of rhodopsin to 

small GTPases involved in cytoskeleton assembly/disassembly and dynamics, and to 

vesicle and Golgi trafficking. This suggests a role for rhodopsin in self-regulating and 

fine-tuning the structural and functional integrity of photoreceptors. Cytoskeleton 

changes, such as microtubule assembly reorganization, are likely to affect protein 

transport between the inner and outer segments during light-to-dark changes (reviewed in 

Reidel et al, 2008), as well as to regulate cell polarity and disc development. The 

involvement of rhodopsin in regulating intracellular Ca2+ levels suggests its role in an 

overarching Ca2+-dependent regulatory network that determines dynamic changes in 

kinase activity and protein complex assembly. This in turn results in higher-order 

physiological behavior, such as cytoskeletal dynamics and vesicular trafficking tuned by 

light. At a systems level, these network relationships imply a concerted regulation of 

outer segment structure, polarity, and vesicular trafficking orchestrated via GTPase-

guided signaling pathways activated by light, Ca2+-regulated processes activated by 

cGMP gated channel activity (and thus also by light), and cytoskeletal and ciliary 

dynamics (which may also be fine-tuned by light). With respect to disease, we can 

conclude that, among at least four pathways driven or regulated by rhodopsin, the visual 

pathway is the only one highly associated with disease, whereas all others are relatively 

unaffected. Conceptually, our work presents a general approach applicable to the analysis 

of any cellular pathway. The resulting comprehensive multiscale “vision network” can 

serve as a basis for elucidating physiological principles of photoreceptor function and 

may help to identify potential disease-associated proteins and to guide signaling branch-

specific therapy development.  



 

Materials and methods 

Isolation of ROS and ROS discs 

Porcine eyes were obtained from a local slaughterhouse. After the retinae were dissected, 

two approaches for ROS isolation were compared: that to Molday (Molday et al, 1987) 

with that of Papermaster (Papermaster and Dreyer, 1974). Briefly, for the Molday 

protocol, ROS were detached from the retinal tissue by gentle mechanical 

homogenization in cold isolation medium (20% [w/v] sucrose, 20 mM Tris, 2 mM 

MgCl2, 130 mM NaCl, at pH 7.2) and separated from the homogenate by loading onto a 

27-50% linear sucrose density gradient. Alternatively, fresh retinae were homogenized by 

shaking in cold isolation medium (34% [w/v] sucrose, 65 mM NaCl, 2 mM MgCl2, and 5 

mM Tris-acetate buffer, pH 7.4). ROS were then pelleted by centrifugation, and the 

remaining retinal tissue was re-homogenized with a teflon homogenizer. Supernatants 

from both homogenization steps (crude ROS) were combined and loaded onto step-

density gradients of 1.15, 1.13, and 1.11 g/ml sucrose. After cold centrifugation in a 

Beckman SW40-rotor for 1 h at 38 000 rpm, purified ROS were collected from the 

surface of a 1.11-1.13 g/ml sucrose gradient, and the protein content was determined by 

Bradford assay (BioRad). Osmotically intact discs were isolated from ROS according to 

Smith (Smith et al, 1975). ROS were ruptured by osmotic shock and intact discs were 

separated by flotation in 10% Ficoll (Sigma). After centrifugation (120 000 × g, 2 h, 4°C) 

intact discs were harvested from the Ficoll surface. The purity of the ROS preparations 

was either checked optically by microscope (Figure 1A inset) or by immunoblot analysis 

for RIS markers (BIP and Tom20) (Supplementary Figure S8). 

 

Sucrose density gradient centrifugation  

ROS or intact discs were ruptured by osmotic shock, and the membranes were separated 

from soluble fraction by centrifugation. An amount of membrane equivalent to 1 mg 

protein was solubilized in 1% (w/v) β-dodecylmaltoside (Sigma) as described (Mueller 

and Eichacker, 1999), loaded onto linear 0.1-1.0 M sucrose gradients, and centrifuged for 

17 h at 230 000 × g at 4°C. Individual gradient fractions were either loaded directly for 



SDS-PAGE or were precipitated with methanol/chloroform as previously described 

(Wessel and Flügge, 1984). 

 

SDS-PAGE and immunoblotting  

SDS-PAGE and subsequent immunoblotting on PVDF membranes (Amersham) were 

carried according to standard procedures. Antibody-antigen complexes were visualized 

using enhanced chemiluminescence detection (ECL+, Amersham) on Hyperfilm 

(Amersham). Immunoblots were incubated with the following antibodies: anti-RhoA 

26C4 and anti-ROCK II H-85 (Santa Cruz), anti-visual arrestin, anti-transducin alpha, 

and anti-rhodopsin (Affinity BioReagents), anti-rhodopsin (Acris Antibodies), anti-

CRMP-2 (C4G, a generous gift from M. Morishima and Y. Ihara, University of Tokyo, 

Japan), anti-Rac1 (BD Transduction Laboratories), anti-RhoABC (Sigma), anti-BIP (BD 

Bioscience), and anti-Tom20 (BD Bioscience). HRP-coupled secondary goat-anti-rabbit 

and goat-anti-mouse antibodies were obtained from Jackson ImmunoResearch.  

 

Immunoprecipitation  

Immunoprecipitation (IP) was performed with anti-RhoA-agarose- or anti-Rac1-agarose-

conjugated antibodies (Santa Cruz) or anti-rhodopsin (Acris Antibodies). An amount of 

ROS equivalent to 500 µg protein was ruptured by osmotic shock in lysis buffer (50 mM 

NaCl, 1 mM EDTA, 20 mM Tris-HCl, pH 6.8) and centrifuged to separate the membrane 

and soluble fractions. The membrane fraction was solubilized in 1% (w/v) β-

dodecylmaltoside (DM), and the soluble fraction was directly subjected to IP. For anti-

rhodopsin IP, solubilized ROS (1% DM) was directly subjected to IP. Nonspecific 

protein binding to agarose beads was prevented by pre-incubation of the fraction with 

25% protein G-agarose (Santa Cruz). For IP, the ROS fractions were incubated with 5-10 

µg of antibody conjugate/antibody at 4°C for 3 h or overnight with rotation. As a control 

for nonspecific antibody binding species, specific IgGs (Sigma Aldrich) were used.  

 

Immunohistochemistry 

Porcine eyes were obtained from a local slaughterhouse, fixed in 4% paraformaldehyde 

in 0.1 M phosphate buffer (PB) for 4 h, and rinsed in 0.1 M phosphate-buffered saline 



(PBS). Cornea, lens, and vitreous body were removed, and the retina was cut in 1.5 × 1.5 

cm pieces. The fixed tissue was cryoprotected at 4°C step-wise in 10%, 20%, and 30% 

sucrose in PBS, for 1 h for the first two steps and overnight for the last step. Retina was 

then embedded in tissue-freezing medium (LeicaMicrosystems) and frozen in liquid 

nitrogen. 12 µm sections were prepared, mounted on Superfrost glass slides, and air dried 

at 37°C. Retinal sections were rinsed in PBS and then non-specific binding sites were 

blocked with PBS containing 10% normal goat serum (NGS), 1% bovine serum albumin 

(BSA), and 0.3% Triton X-100 for 1 h at room temperature. Sections were incubated 

overnight at 4°C with the following primary antibodies diluted in blocking solution: 

rabbit anti-CRMP-2 (1:300; Abcam), rabbit anti-Rac1 (1:100; Sigma), rabbit anti-ROCK 

II (1:300; Abcam), rabbit anti-PDE6δ (1:200; ABR), or mouse anti-rhodopsin (1:200; 

Millipore). Sections were then washed in PBS and incubated with the appropriate 

fluorescent-labeled secondary antibody (goat anti-rabbit IgG-Alexa 568 or goat anti-

mouse IgG-Alexa 568; Molecular Probes) diluted 1:500 in PBS for 1 h at room 

temperature. Nuclei were counterstained with Sytox Green Nucleic Acid Stain 

(Molecular Probes). After three final washes in PBS, sections were mounted with Mowiol 

4-88 (Polysciences). As negative controls, the primary antibodies were also omitted; in 

these cases, no staining was observed. Stained cryostat sections were analyzed and 

scanned with a confocal laser scanning microscope (Zeiss LSM510 META, Jena, 

Germany), using an argon laser at 488 nm and a He/Ne laser at 543 nm excitation with 

appropriate filter sets. Images were taken sequentially to assure that only one channel was 

detected at a time. The Sytox Green nuclear stain was allocated to the blue color channel 

for convenient viewing. Transmitted light images with DIC optics (Nomarski) were 

recorded simultaneously. Control sections without primary antibody incubation were 

scanned with the same laser and detection settings. 

 

Concanavalin A pull-down  

For concanavalin A pull-down experiments, an amount of ROS equivalent to 300 µg 

protein was ruptured by osmotic shock in lysis buffer. The membrane ROS fraction was 

solubilized in 1% (w/v) β-dodecylmaltoside (Sigma Aldrich), and the soluble fraction 

was directly subjected to concanavalin A pull-down. The ROS fractions were incubated 



with 50 µl of concanavalin A sepharose (Amersham Biosciences) conjugate for 3 h at 

4°C. Nonspecific protein binding of the rhodopsin-associated protein to concanavalin A 

was prevented by performing the pull-down in the presence of 0.2 mM α-

methylmannoside (as the presence of α-methylmannoside lowers the affinity of proteins 

for the beads). 

 

Blue-native PAGE  

Membranes from either ROS or intact discs corresponding to 300 µg protein were 

suspended in 60 µl buffer containing 750 mM ε-aminocapronic acid, 50 mM bis-Tris, pH 

7.0, and 0.5 mM EDTA, and then solubilized in 1% (w/v) β-dodecylmaltoside. The 

solubilized membrane samples were added to a buffer containing 5% (w/v) Serva Blue G 

in 750 mM ε-aminocapronic acid, loaded onto 4-12% PAA gradient gels, and 

electrophoresed (Schägger and von Jagow, 1991). To separate in the second dimension, 

gel lanes were incubated for 20 min in solubilization buffer containing 2% (w/v) SDS, 66 

mM DTT, and 66 mM Na2CO3, and loaded onto denaturing PAA gels. 

 

MS–MALDI-TOF 

Selected spots were excised from dried silver-stained gels, destained (Gharahdaghi et al, 

1999), dehydrated in 40% acetonitrile (100 µl), and subjected to tryptic proteolysis in 

1 mM Tris-HCl, pH 7.5, and 0.01 µg/µl trypsin. In parallel studies, proteins excised from 

dried gels were subjected to SDS removal by ion-pair extraction prior to in-gel tryptic 

proteolysis as described (Zischka et al, 2004). MALDI-TOF PMFs were obtained on a 

Bruker Reflex III mass spectrometer (Bruker Daltonics, Bremen). Aliquots from each 

tryptic digest were co-crystallized with a matrix composed of 2.5-dihydroxybenzoic acid 

(20 mg/ml in 20% acetonitrile, 0.1% trifluoroacetic acid [TFA]) and 2-hydroxy-5-

methoxybenzoic acid (20 mg/ml in 20% acetonitrile, 0.1% TFA) in a 9:1 ratio (v/v) on 

400 µm AnchorChipTM targets (Bruker Daltonics). Alternatively, PMF and MS/MS 

spectra were measured on AB4700 mass spectrometer (Applied Biosystems, Darmstadt, 

Germany), and aliquots from each tryptic digest were co-crystallized with a matrix 

comprised of 5% cyanohydroxycinnamic acid (in 70% acetonitrile, 0.1% TFA) on steel 



targets (Applied Biosystems). Database searches were performed using the Mascot 

software (Perkins et al, 1999).  

 

MS–Orbitrap 

LC-MS/MS analysis was performed on an Ultimate3000 nano-HPLC system (Dionex) 

coupled to a LTQ OrbitrapXL mass spectrometer (Thermo Fisher Scientific) by a 

nanospray ion source. Tryptic peptide mixtures were automatically injected and loaded 

with a flow rate of 30 µl/min in 95% buffer C (0.5% TFA in HPLC-grade water) and 5% 

buffer B (98% actetonitrile, 0.1% formic acid in HPLC-grade water) onto a nanotrap 

column (100 µm i.d. × 2 cm, packed with Acclaim PepMap100 C18, 5 µm, 100 Å, 

Dionex). After 5 min, peptides were eluted and separated on an analytical column (75 µm 

i.d. × 15 cm, Acclaim PepMap100 C18, 3 µm, 100 Å, Dionex) by a linear gradient from 

5% to 40% of buffer B in buffer A (2% acetonitrile, 0.1% formic acid in HPLC-grade 

water) at a flow rate of 300 nl/min over 90 min. The remaining peptides were eluted by a 

short gradient of 40% to 100% buffer B over 5 min. Eluting peptides were analyzed by 

the LTQ OrbitrapXL. From the high resolution MS pre-scan with a mass range of 300 to 

1500, the ten most intense peptide ions were selected for fragment analysis in the linear 

ion trap if they exceeded an intensity of at least 200 counts and if they were at least 

doubly charged. The normalized collision energy for CID was set to a value of 35, and 

the resulting fragments were detected with normal resolution in the linear ion trap. The 

lock mass option was activated, and a background signal of a mass of 445.12002 was 

used for the lock mass. Every ion selected for fragmentation was excluded for 30 seconds 

by dynamic exclusion. The raw data was analyzed using Sequest (Thermo Fisher 

Scientific) and Scaffold (Proteome Software) as described previously (Gloeckner et al, 

2009) against a non-redundant pig, human, mouse, rat, and bovine protein sequence 

database derived in-house from Uniref100, due to a insufficient number of entries for 

porcine proteins in the databases. Proteins were considered to be specific when they 

displayed two or more peptides (with a peptide probability >95%) in at least two out of 

four experiments. The protein probability threshold was set to 99%. Contaminants such 

as keratins were removed. 

 



Comparison of different proteomic data sets determined in ROS 

All proteins identified in the three different proteomic datasets were mapped to their 

corresponding human ortholog gene IDs by sequence comparison (using the default 

BLAST value of 10) and then compared. Since the proteomic analysis of Liu et al (Liu et 

al, 2007) also contains part of the cilium, our “near-to-complete” proteomic data set was 

defined as the union of the protein set identified by Kwok et al (2008) with the one 

determined here (Figure 1B). 

 

Protein interaction network analysis  

All the results described in our studies were uploaded into Supplementary Tables S3 and 

S6 according to standard database curation rules (Ceol et al, 2010; Zanzoni et al, 2002). 

Results from pull-down and co-immunoprecipitation experiments were resolved as binary 

protein interactions, in which each bait protein was linked to all identified preys. Co-

sedimentation and complex-purification experiments that unambiguously identified 

protein complexes but lacked sufficient detail to determine their exact interaction 

topology are represented in the database as a list of interactors (complex members). A 

comprehensive literature mining and database curation effort was also carried out in order 

to include as exhaustively as possible the set of rhodopsin/vision related interactions 

already described in the scientific literature. The curated interaction sets were represented 

and analyzed by the Cytoscape visualization and analysis software (Shannon et al, 2003). 

PPI data from databases included interactions determined from ROS extracts (by co-

sedimentaion or affinity chromatography). However, in the majority of cases, interaction 

information was derived from in vitro experiments, such as large-scale yeast two-hybrid 

screens, or tandem-affinity purifications in artificial cell systems. Additional, low-scale 

PPI data from literature include data determined with quantitative affinity methods, such 

as isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic 

resonance, and peptide arrays (using purified proteins), or PPI data from non-quantitative 

methods, such as affinity chromatography (GST pull-down), crosslinking, and enzyme 

assays. According to the MINT curation rules, interactions were considered to be direct if 

they were supported with evidence obtained with one of the following methods, as 

described in the PSI MI controlled vocabulary: two-hybrid, enzymatic studies, two-



hybrid pooling approach, two-hybrid array, beta lactamase complementation, surface 

plasmon resonance, fluorescence resonance energy transfer, biochemical, biophysical, 

protein arrays, protease assays, bimolecular fluorescence complementation, far-western 

blotting, cross-linking studies, electron paramagnetic resonance, two-hybrid fragment 

pooling approach, protein kinase assay, GTPase assay, enzyme-linked immunosorbent 

assays, peptide arrays, isothermal titration calorimetry, bioluminescence resonance 

energy transfer, competition binding, fluorescence technologies, antibody arrays, 

saturation binding, fluorescence polarization spectroscopy, protease accessibility 

laddering, affinity technologies, protein cross-linking with a bifunctional reagent, 

ubiquitin reconstruction, fluorescence microscopy, beta galactosidase complementation, 

biochemical activity, classical fluorescence spectroscopy, fluorescence technology, 

phosphatase assay, and reconstituted complex. 

 

Structural information and interaction modelling 

Structural information was derived by a combined approach of comparing different 

domain interaction types, as listed in the 3Did database (http://3did.irbbarcelona.org/; 

Stein et al, 2005; Stein et al, 2009), between two interacting proteins for which there was 

experimental evidence that they could form a complex. The 3DID database was improved 

by analyzing all structures for crystallographic artifacts, using: (i) the interaction 

annotation of the author, or, if this was not available (ii) the protein quarternary structure 

(PQS) method (Henrick and Thornton, 1998). The confidence of two domains to mediate 

the interaction was then assessed using the InterPreTS (http://www.russelllab.or/cgi-

bin/tools/interprets.pl/; Aloy and Russell, 2003) scoring system, which evaluated 

sequence similarity and amino acid propensities in the interface. We further screened for 

all X-ray and NMR complex structures and homologs (with a sequence similarity 

threshold of 70%) among all 360 proteins of the network. For further details, see the 

Supplementary Material 1. 

 

PDEδ subunit activity assay 

Recombinant PDEδ protein (rhPDEį) was obtained from GenWay Biotech at a 

concentration of 0.7 ȝg/ȝL in storage buffer (10 mM Tris, pH 8.0, 0.1% Triton X-100, 



0.002% NaN3, and 10 mM dithiothreitol). An amount of ROS (in isolation medium) 

corresponding to 100 µg protein was ruptured by three freeze-thaw cycles in liquid 

nitrogen and centrifuged at 4°C for 30 min at 100 000 g (Beckman Optima 

ultracentrifuge; Rotor TLA110). The resulting pellet, containing the membranous 

fraction, was resuspended in 100 µL incubation buffer (25 mM Hepes, 20 mM Tris-HCl, 

pH 7.5, 1 mM dithiothreitol, 1 mM MgCl2, 5 mM EDTA, 150 mM NaCl, and protease 

inhibitor cocktail [Roche]) and then incubated with different amounts (0, 0.5, 1, 2, 4, 6 or 

8 µg) of rhPDEδ for 1 h at 37°C in a horizontal shaker. To rule out that the Triton X-100 

in the storage media affected the recombinant PDEδ, all samples were adjusted to the 

same volume (volume of the sample with the highest PDEδ concentration used) with 

storage buffer. Samples were separated into membrane and soluble fractions by 

centrifugation at 4°C for 30 min at 100 000 g and analyzed by SDS-PAGE and Western 

blot using anti-Rac1 antibodies and anti-PDEδ antibodies. 
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Figure legends 

Figure 1 Proteomic description of the retina ROS inventory and GO analysis. (A) 

Schematic model of a rod photoreceptor cell (left) and its corresponding location within 

the retina (depicted in the micrograph to the right). Segments labeled in the model are: 

rod outer segment (ROS) with enclosed stacks of discs membranes containing the visual 

pigment molecules rhodopsin; connecting cilium (CC); rod inner segment (RIS) 

containing mitochondria, Golgi, and ER membranes, and vesicles in which opsin 

molecules are assembled before transported to the outer segment; and the cell body 

containing the nucleus and a synaptic termini, where neurotransmission to second-order 

neurons occurs. The micrograph depicts the vertical porcine retina with its 

cytoarchitectural organization labeled as: photoreceptor outer segments (OS); the outer 

nuclear layer (ONL) containing cell bodies of rods and cones; the outer plexiform layer 

(OPL); the inner nuclear layer (INL); the inner plexiform layer (IPL), and the ganglion 

cell layer (GCL). The retinal pigment epithelium (RPE) is localized above the 

photoreceptor cell layer (for details, see http://webvision.med.utah.edu). Retinal cells 

nuclei were stained with DAPI (magnification 40×). Insets show micrographs of the OS 

immunolabeled with anti-rhodopsin with an FITC-conjugated secondary antibody 

(magnification 40×; top inset), and of the OS preparation (magnification 40×; bottom 

inset). (B) Comparison of different proteomic data sets determined in ROS, based on 

proteins and the protein overlap identified in the proteomic analysis from this work and 

that of Kwok et al (2008). The union of the two datasets was defined as the initial 

experimental ROS proteome. (C) Functional modules and GO analyses of the filtered 

core ROS proteome. By performing an automatic and a manual gene ontology (GO) 

search (based on the UniProt and KEGG databases), we characterized the 355 proteins 

(see Supplementary Table S2) to be involved in: vision, signaling, transport, and channels 

(56), disc structure and morphology (7), housekeeping functions (73), cytoskeleton and 

polarity (67), vesicle, structure, and trafficking (60), and metabolism (92). Sub-

modules/sub-functions of the GO terms are indicated as described in Supplementary 

Table S2 (1A, phototransduction/ channels (33); 1B, retinol recycling (5); 1C, calcium 

signaling (18); 2A, disk morphology (2); 2B, link to ECM (5); 3A, protein folding (8); 

3B, chaperones/ heat shock (25); 3C, ubiquitination/degradation/proteasome (10); 3D, 



scaffolds/adaptor proteins (7); 3E, oxidative stress/cell redox homoestasis (9); 3F, 

apoptosis (2); 3G, others (2); 3H, signaling (10); 4A, regulation of cytoskeleton (34); 4B, 

cytoskeleton proteins (21); 4C, motor proteins (7); 4D, protein transport (1); 4E, axon 

guidance (4); 5A, endocytosis (10); 5B, exocytosis (8); 5C, Golgi endosome (11); 5D, 

vesicle transport/fusion (12); 5E, Golgi/ER/trafficking (19); 6A, glycolysis (20); 6B, 

tricarboxylic acid (5); 6C, ATP synthesis (25); 6D, lipid/fatty acids metabolism (9); 6E, 

amino acid metabolism (9); 6F, one-carbon metabolism (4); 6G, nucleotide metabolism 

(6); 6H, glucose/lipid/phosphate/amino acid/ion transport (8); 6I, pentose phosphate 

shunt (1); 6J, mevalonate (1); and 6K, others (4). 

 

Figure 2 Experimental and computational workflow. The flow charts of experimental 

(yellow boxes) and bioinformatic (green boxes) methods used in this work are shown. 

The initial ROS proteome was generated based on the union of proteins identified in 

bovine ROS in this work and those from a proteomic analysis of porcine ROS (Kwok et 

al, 2008). After filtering, a high-confidence ROS proteome was defined. A static ROS 

interactome was compiled by literature mining. In addition, new experiments were 

performed in ROS in this work (co-sedimentation and co-immunoprecipitation). Further, 

we performed structural analyses and homology modeling, to distinguish between 

compatible and mutually exclusive interactions. This enabled us to break the network of 

nodes and edges into functional machines or sub-networks and modules. The 

comprehensive multiscale network highlights new predicted links and functions. Lastly, 

disease-associated genes were identified and modeled into available structures. 

 

Figure 3 The high-confidence ROS interactome and the high-confidence binary ROS 

interactome. (A) The high-confidence ROS interactome. The 660 higher confidence 

interactions of the ROS interactome are listed (Supplementary Table S6). The size of the 

nodes indicates the number of interaction partners for a given protein (of >10 or >20). 

Edges with binary evidence are indicated with blue, while edges supported by more than 

one piece of evidence are indicated in grey. Proteins are colored according to their 

function. (B) The high-confidence binary ROS interactome. Modules and sub-modules 

are shown, and only the interactions of proteins from two different modules are indicated 



(see Supplementary Material 2). The number of proteins implicated in diseases in each 

category is indicated. 

 

Figure 4 Structural coverage of the core vision pathway and its links to other functional 

modules. The published core pathway (Dell’Orco et al, 2009) was extended using 

evidence from our high-confidence network. Outputs to different functional cellular 

processes emanating from the proteins in the pathway are indicated, and the available 

structures are displayed by ribbon representation (see the main text, and Supplementary 

Material 2). Proteins are colored according to their function. 

 

Figure 5 Graphical representation of experiments performed in this work and its 

comparison with interactions described in the literature. Protein complexes that were 

obtained using Rac1, RhoA, or Rac1 as the bait protein are displayed within orange, blue, 

and yellow circles, respectively (see legend). The Rac1 and RhoA complexes were 

identified by Western blot, and the Rac1 complex, by Orbitrap. The overlap of the three 

circles indicates the proteins that were identified in the same complex in one of the three 

experiments. Connecting lines between proteins indicate either binary or co-

immunoprecipitation interactions from the literature, or from BN-PAGE or co-

sedimentation interactions as determined in this work. Proteins are colored according to 

their function.  

 

Figure 6 Immunohistochemical analyses of porcine retina. Cryostat sections of the retina 

were stained with primary antibodies (red) against indicated proteins, and nuclei were 

counterstained (blue). The images on the left were taken from the outer retina [outer 

segments (OS), inner segments (IS), outer nuclear layer (ONL) and outer plexiform layer 

(OPL)]. Images in the middle are an overlay of antibody staining, nuclei staining, and 

DIC optics (Nomarski). Images on the right were taken with higher magnification, to 

focus on the OS and IS. All indicated proteins were unambigiously identified as 

constituents of ROS. Control sections without primary antibodies showed no staining 

(Supplementary Figure S5). 

 



Figure 7 Experimental evidence that PDEδ acts as a GDI for Rac1 in ROS. (A) PDEδ 

and Rac1 colocalize in ROS in native protein complexes. After solubilization with β-

dodecylmaltoside, native ROS protein complexes from soluble and membranous fractions 

of light- and dark-adapted ROS were separated by BN-PAGE. Components of the native 

protein complexes were separated by SDS-PAGE for second-dimension electrophoresis. 

Western blots with anti-Rac1 and anti-PDEδ antibodies showed that PDEδ and Rac1 

colocalized but were in different complexes in ROS depending on the dark-adapted state 

of the retina. Colocalization of PDEδ and Rac1 seemed to be stronger in the dark-adapted 

state, where both proteins colocalized to the soluble and membranous fractions. In light-

adapted ROS, colocalization of PDEδ and Rac1 was detected only in the membranous 

fraction but not in the soluble fraction. (B) In vitro solubilization of Rac1 GTPase from 

light- and dark-adapted ROS membranes. Membranes isolated from light- or dark-

adapted ROS were incubated for 1 h at 37°C with different amounts of recombinant 

human PDEδ (rhPDEδ) or buffer alone, and the unsolubilized material was recovered by 

ultracentrifugation. Immunoblots with anti-Rac1 or anti-PDEδ antibodies showed that 

PDEδ solubilizes Rac1 from ROS membranes in a dose-dependent manner. Since it has 

been previously determined that PDEδ solubilizes PDEδ from ROS membranes in a 

dose-dependent manner (Florio et al, 1996), this was used here to demonstrate the 

functional activity of the rhPDEδ protein. 

  

Figure 8 Network representations distinguishing mutually exclusive from compatible 

interactions, based on structural information. All protein-protein interactions for which 

structural information was available (Supplementary Table S4), and for which structural 

superimpositions were performed (Supplementary Figure S6), are represented here. 

Mutually exclusive complexes are indicated with “XOR”, and compatible interactions are 

indicated with “AND”. Proteins are colored according to their function (see Figure 3B). 
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Supplementary Figure S1 Characteristics of the initial low confidence interactome ( fuzzy ROS 

interactome ). (A) Frequency of number of interaction partners for the 431 proteins in the interactome. All 

interactions and evidences are summarized in Supplementary Table S3. (B) Literature evidences for 5335 

protein protein interactions among the 676 proteins of the initial ROS proteome. We divided the evidences 

for every PPI, as stored in the MINT database, into three categories, and their combinations: (i)  very weak 

evidence for true binary interactions (Co-Sedimentation), (ii) weak evidence for binary interaction (Co-

Immunoprecipitation), and (iii) true binary interactions (Binary). For details see Material and Methods.  
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Supplementary Figure S2 

Supplementary Figure S2 Results from structural modeling. Summary of protein-protein interactions 

supported by structural modeling. In total 436 evidences were found, with 84 are from x-ray or close 

homolog structure, and 107 have a significant score when assessed using InterPreTS. A further 96 

interactions have an insignificant score, 149 interactions could possibly be interact through the similar 

domain-domain based on the 3DID database, but they could not be scored using InterPreTS. (B) The high 

confidence ROS interactome. The 694 higher confidence interactions of the ROS interactome 

(Supplementary Table S6). Proteins are colored according to function. 
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Supplementary Figure S3 Identification of native ROS membrane protein complexes by sucrose density 

gradient centrifugation and BN PAGE. Solubilized porcine ROS membrane proteins were subjected to 

sucrose density gradient centrifugation (0.1-1M). Fractions were collected from sucrose density gradient 

and analyzed by SDS–PAGE (9-15%). Inset: Section of BN PAGE (4-12%) of solubilized porcine ROS 

membrane proteins. Silver-stained SDS-PAGE bands were cut out and proteins were identified by mass 

spectrometry. Proteins co-migrating in the same fraction could belong to the same native protein complex. 

For a comprehensive list see Supplementary Table S6.  
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Supplementary Figure S4 Validation of protein interactions by immunostaining and affinity methods. (A) 

Colocalization of selected proteins was confirmed by immunoblot analyses of sucrose density gradient 

fractions. Antibodies used are indicated on the right; fraction number (from bottom to top) is indicated on the 

top of the panel. (B) Immunocoprecipitation with RhoA and Rac1 agarose-conjugated antibodies. Proteins 

from membranes (M) or cytosolic (soluble: S) fractions were preincubated with protein G-agarose and 

incubated with RhoA or Rac1 agarose-conjugated antibodies. Eluted proteins were resolved by SDS-PAGE 

and tested for the presence of Rhodopsin, RhoABC, Rac1, CRMP-2, ROCKII. (C) Concanavalin A pull-

down of rhodopsin-associated proteins. Proteins from solubilized ROS membranes were incubated with 

Concanavalin A in the presence (+) or absence (-) of 0.2 mM AMM. Eluted proteins were resolved by SDS-

PAGE and identified by immunoblotting, as indicated by the individual antibodies utilized on the right. (D) 

Immunoprecipitation (IP) of rhodopsin-associated proteins. Proteins from solubilized porcine ROS were 

immunoprecipitated with a rhodopsin-specific antibody (IP) or incubated with IgGs as a control (Cont). 

Eluted proteins were resolved by SDS-PAGE and identified by immunoblotting, as indicated by the 

individual antibodies utilized on the right. Additionally solubilized ROS lysate used for the IP was checked 

for b-tubulin as a control for using equal protein amounts. 
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Supplementary Figure S5 

Supplementary Figure S5. Immunohistochemical analyses of porcine retina (controls). Cryostat sections of 

the retina were either stained with primary and secondary antibodies (red) against indicated proteins or only 

with secondary antibodies (mouse or rabbit) used throughout immunohistochemistry. Control sections 

omitting primary antibodies show no unspecific staining. Nuclei were counterstained (blue). For details please 

refer to Materials and methods. 
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Supplementary Figure S6. Superimposition of the RhoGDI-Cdc42-GDP complex with Arl2-GTP/PDEdelta 

complex. 
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Supplementary Figure S7. Superimposition of complex structures. Interacting domains from complex 

structures were extracted and superimpositions were done, if similar domains are involved in more than one 

interaction. Superimpositions were analyzed manually using the SwissPdb Viewer Software, and if two 

partner domains for the same domain were non overlapping, assigned as compatible (“AND’), and if 

overlapping, assigned as mutually exclusive (“XOR”).  
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Supplementary Figure S8 Analysis of ROS preparation purity. Porcine ROS and retina lysate (RL) (20 g 

each) were resolved by SDS-PAGE, immunoblotted and tested for the presence of specific endoplasmatic 

reticulum (BIP) and mitochondrial (Tom20) proteins, generally only found in inner segments (RIS). 

 



3.2 SAPIN: Structural Analysis of Protein Interaction
Networks

Proteins are involved in all the biological processes taking place inside the cell. They
can assemble to form stable and large molecular machines or bind to each other
in a more dynamical way. The high-throughput identification of protein interactions
initiated a decade ago has produced an unprecedented large amount of data, usually
represented by networks, where proteins are shown as nodes and the interactions
between them as edges. Although these networks have helped to derive important
characteristics inherent to biological systems, they do not represent the information
on competition between proteins binding to a similar central ‘hub’ node. Since many
proteins have many more interaction partners than surface available for binding, it is
obvious that no all interacting proteins can bind at the same time, and that there will
be competition among them. Thus, the knowledge of protein interfaces contained
in 3D structures can add this missing information into protein interaction networks.
However, the structural coverage at the interactome level remains low (there is a
structure only for less than 10% of protein interactions in human), due to the current
limitations of protein structure determination methods.
To overcome this limitation, many computational approaches, like comparative
modeling and docking methods, have been developed with the objective of ex-
tending the knowledge of protein interfaces to a larger amount and to unravel the
molecular mechanisms of protein interactions. However, these approaches can be
computationally expensive and time consuming and may consequently be difficult
to apply on large data sets. In addition, they often deal with pairs of proteins or do-
mains, without taking into account the context in which they occur at the network
level.
Here, we implemented an automated method, SAPIN, to analyze protein interactions
from a structural point of view. Our approach is based on the modular property of
proteins organized in domains and the observation that similar domain pairs usually
interact in a similar way (Aloy et al., 2003). Given a set of protein interactions and
its related sequences, SAPIN first predicts structural interactions, using structures
of domain-domain and domain-peptide interactions. Using 3D structures of domain
interactions is valuable since it has recently been observed that they can increase
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the structural coverage of around 50 % for the human interactome (Stein et al.,
2011c). However, the classification of domain interaction interfaces has shown that
in many cases, a given pair of domain interaction could show multiple possible ori-
entations (Kim et al., 2006b). So the knowledge of protein domains is not enough
in these cases and the potential templates need to be further analyzed in order to
select the most suitable one. To cope with this issue, SAPIN embeds InterPreTS
(Aloy & Russell, 2002), which evaluates an interface based on empirical potential
of the interacting residues. Once the structural interactions have been predicted
within the network, SAPIN identifies in a third step protein interactions that are
compatible and mutually exclusive. This is particularly relevant, as it provides an
important missing feature to protein interaction networks: competition for binding.
We developed SAPIN as fully automated procedure, which has been tested on a
large number of cases. Based on these results, we were able to predict correctly the
compatible interactions tested in 99% of the cases at a reasonably low threshold of
clashing residues at the interface (i.e. 15%).
Finally we made SAPIN available through a web server to be shortly accessible
through the URL: http://sapin.crg.es. The following manuscript is ready for submis-
sion to Bioinformatics, as an application note.
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ABSTRACT 

Summary: Protein interaction networks are widely used to depict the relationships 

between proteins within a cell or a sub-cellular compartment as nodes connected with 

edges. These networks often lack dynamic information and do not inform if there is 

incompatibility between binding partners. The three-dimensional (3D) structures of 

proteins remain the most valuable source for understanding the molecular details of 

binding. Here we present a web server, SAPIN, which is dedicated to the structural 

analysis of protein interactions (between globular domains or domain-peptide 

interactions), ranging from a single pair to larger networks. It first identifies the parts of 

the proteins that could be involved in the interaction (i.e. domains or linear motifs) and in 

a second step brings these data together with available structural information to provide 

a template for the interaction. Finally, the algorithm performs the analysis of compatible 

and exclusive interactions among the previously structurally characterized interactions, 

adding an important missing feature into classical networks: the competition for 

interacting partners. Finally, the results are displayed in Cytoscape Web.  

Availability: The SAPIN server is available at URL http://sapin.crg.es.  

Contact: anne.campagna@crg.eu; christina.kiel@crg.eu 

Supplementary information: Supplementary data are available at Bioinformatics 

online. 



1    INTRODUCTION  

In the past decade, an important effort has been made to identify all proteins and their 

interactions within many species. It is now clear that the majority of the proteins exercise their 

functionality not in isolation but as part of protein complexes with stable or transient interactions 

(Nooren and Thornton, 2003). Thus both, experimental and computational methods have become 

of increasing importance to understand which proteins are involved in a biological process and, 

how they interact with each other to form complexes and achieve their function. Experimental 

methods, applied in a high-throughput fashion, have produced large catalogues of interactions 

(Gavin et al., 2002; Ho et al., 2002; Rual et al., 2005). Whereas such networks are convenient to 

provide a global view of the content of a given cell or sub-cellular compartment, they give a 

rather static picture of complex behaviors and highly dynamical events that occur within the cell. 

The final result is that one protein could have almost one partner per amino acid, i.e. p53 is 

reported to have 380 partners, according to the STRING database (Szklarczyk et al., 2011) at the 

highest confidence, while it is made of 392 amino acids; it is obvious that not all interaction 

partners can bind at the same time. In addition, part of the data deposited in these databases do 

not come from binary interaction detection methods but from co-immunoprecipitation (co-IP) or 

TAP-TAG methods (reviewed in Drewes and Bouwmeester 2003), which provide purified 

fractions of proteins associated with a bait protein. At the moment, only statistical 

approximations, such as the socioaffinity index (Gavin et al., 2006) are used to decide which of 

the putative interactions detected in a co-IP or TAP-TAG experiments are direct. 

These two problems could be partly solved by using 3D structures of proteins and protein 

complexes. 3D information can determine competing interactions and combined with protein 

interaction data, it can support weak pieces of evidence for binary interactions. Moreover, based 

on the observation that homologous pairs of binding proteins tend to use the same interaction 

topology (Aloy et al. 2003), the structural knowledge of protein interactions can be extended to 

the interactions whose structure has not been resolved and thus contribute to filling the gap 

between the low number of structures and the large collection of sequences available.  

Here we introduce SAPIN, a framework dedicated to the Structural Analysis of Protein 

Interaction Networks. It encompasses many features allowing (i) a full analysis of the protein 

sequence for the identification of the parts potentially involved in an interaction, (ii) a mapping 



of the available structural data involving the previously identified parts, and (iii) the 

identification of compatible and mutually exclusive interactions at the network level. 

 

2    SAPIN WORKFLOW 

SAPIN has been implemented using Python programming language. Figure 1 provides an 

overview of the method, which consists of three main parts: 

a. Sequence analysis and sequence-based interactions 

The objective of this part is to predict the domains and linear motifs of a protein and which could 

mediate the interaction with binding partners. The applications used here require the protein 

sequences as input and return as output: (i) the predicted domain composition using HMM 

collection from PFAM (Finn et al., 2010)); (ii) the possible phosphorylation sites and motifs that 

potentially can bind to globular domains, derived from experimental data  (Phospho.ELM; 

Dinkel et al., 2011) or from prediction methods (Scansite; Obenauer, 2003) and NetPhorest; 

Miller et al., 2008); (iii) predictions that identify disordered regions (Disopred; Ward et al., 

2004); and (iv) secondary structure element composition complete sequence analyses (Jones, 

1999; Bryson et al., 2005). Identifying disordered regions in proteins is particularly relevant in 

combination with predicted phosphorylation sites or binding motifs, as these are usually located 

in unstructured parts of the protein (Dyson and Wright, 2005). 

b. Search for structural templates of domain-domain or domain-motifs interactions 

Here, we search for structural information for an interaction, which could be an original x-ray 

structure or we provide a model. First, the Protein Data Bank (Rose et al., 2011) is searched 

based on sequence similarity (using BLAST; Camacho et al., 2009). For a given pair of proteins, 

both sequences are searched independently. If the search identifies a pair of homologous proteins 

in interaction within a PDB entry, the corresponding domain interaction is then derived using the 

domain composition of the proteins. Structural templates for the interaction are selected when the 

sequence identity for both proteins is above 70 %, which is a reliable threshold for interaction 

architectures according to Aloy et al., (Aloy et al., 2003). If the search against the PDB does not 

provide any result, the 3DID database (Stein et al., 2005; Stein et al., 2009) (filtered for crystal 

packing artifacts, see Supplementary data) is further searched for a potential structure of domain-

domain or domain–motif interactions that could model the interaction. The resulting matches are 



then evaluated using InterPreTS (Aloy and Russell, 2002; Aloy and Russell, 2003) in order to 

select the most relevant domain interaction.  

c. Identification of compatible and mutually exclusive complexes. 

Finally, the structural information is used to identify the compatible and mutually exclusive 

interactions within the network. At this level, we are looking at each protein and its structurally 

identified interacting partners. Thus, a protein needs to have at least two partners for which there 

are structural data to determine whether their binding is compatible or not with the protein of 

interest. To this end, all the domain-domain and/or domain-motif interaction structures are 

structurally aligned on their reference domain in the input protein using the pairwise structural 

comparison tool DaliLite (Holm and Park, 2000). The interacting domains are then analyzed 

pairwise for backbone van der Waals clashes (above 1kcal/mol) using the empirical force field 

FoldX (Schymkowitz et al. 2005). If less than 15% of the residues involved in the interface have 

clashes, the interactions are compatible, and two interfaces are assigned to the protein (see 

Supplementary data; and see website for more detailed information of how to interpret the 

results). If there are more than 15% of residues with clashes at the interface, the interactions are 

mutually exclusive, and one interface is assigned to the protein. All the interacting proteins are 

analyzed in this iterative process, and assigned either to an existing interface or to a new one, if 

they are found to be compatible with any of the analyzed interacting domain. At the end of the 

process, each protein is defined by its domains (or linear motifs) and each of these domains has 

one or several interfaces, depending on the interacting proteins. 

 

3    THE SAPIN WEBSERVER 

SAPIN is accessible through a web portal at http://sapin.crg.es. The portal is built on the open –

source Drupal Content Management System for full flexibility. The required input is an 

“interaction file”, in tab-separated two-column format, where each line refers to a pair of proteins 

and a fasta-formatted file containing the protein sequences from the whole dataset that has to be 

analyzed. The identifier line in the fasta file needs to correspond to the interaction file. The 

pipeline is designed to deal preferably with UNIPROT (The UniProt Consortium 2011; Jain et 

al. 2009) accession numbers, as all the resources used in the pipeline have been converted into 

UNIPROT accession numbers to facilitate the process.  



For each pipeline step described above, we provide a user-friendly interface to visualize the 

results. The sequence features for each protein can be browsed by simply clicking on a residue to 

display the detailed results from the different predictions. The structural analysis can be viewed 

through different tables, which summarize the output of the search against the PDB, the mapping 

from the 3DID database and the corresponding InterPreTS scores and the identified domain-

motif interactions. Further, the structural analysis identifying compatible and mutually exclusive 

interactions is showed in a table and in an interactive network browser (Lopes et al. 2010). 

Finally, we represent the structural information by adding extra nodes: in addition to the classical 

nodes representing the proteins, we show the domain with an extra node and the different 

interfaces to which the interacting partners are binding with another node linked to the domain. 

 

4    DISCUSSION AND CONCLUSION 

Protein interaction detection methods applied in a high-throughput way have provided large 

catalogues of valuable data. However, these data contain false positives and it is not 

straightforward to extract binary interactions from co-purified protein complexes. SAPIN is a 

framework that brings together protein interaction networks and structural data, with the 

objective of reaching a better understanding of how proteins interact with each other. It predicts 

structural interactions based on sequence data from proteins that have been experimentally co-

purified within a complex. It then uses the knowledge of interaction interfaces to identify 

compatible and exclusive interactions. However, this approach is based on single domain-

domain interactions, without taking into account the conformational arrangement of the full-

length proteins. This method highlights the principle of competition, which could be important in 

signal transduction pathways. Further, it could be combined with statistical approaches (e.g. 

socio affinity index) in order to describe more accurately the organization of protein complexes. 
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FIGURE LEGEND 

Fig. 1. Overview of the SAPIN webserver. As an input, the pipeline takes a network, in the 

example shown, with three proteins (A, B, C), and two interactions (A-B, A-C), and the related 

protein sequences. First, the sequences are analyzed to determine the domain composition, 

secondary structure elements (SSEs), disordered regions, binding motifs and phosphorylation 

sites. Then, the available structural data is mapped to identify a potential structural template for 

each interaction. Finally, if a protein has at least two structural interacting partners, the 

interactions are superimposed on the reference domain (in this case the domain from protein A, 

in blue) and the interacting domains are analyzed for clashing. This is showed in a final 

structural interaction network by adding nodes for the domains involved in the interactions, and 

for the interfaces through which the binding takes place. 
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SAPIN:	
  Structural	
  Analysis	
  for	
  Protein	
  Interaction	
  Networks	
  

Supplementary	
  material	
  and	
  methods	
  

	
  

Filtering	
  of	
  3DiD	
  database	
  

The	
  database	
  of	
  3D	
   Interacting	
  Domains	
  (3DID)	
   (Stein	
  et	
  al.	
  2011)	
   is	
  a	
  collection	
  of	
  

domain-­‐domain	
   and	
   domain-­‐peptide	
   interactions	
   in	
   proteins	
   for	
   which	
   high-­‐

resolution	
  three-­‐dimensional	
  structures	
  are	
  known.	
  It	
  results	
  from	
  the	
  Protein	
  Data	
  

Bank	
   being	
   mapped	
   with	
   PFAM	
   domains,	
   and	
   the	
   corresponding	
   structures	
   have	
  

been	
   extracted	
   and	
   organized.	
   We	
   have	
   observed	
   that	
   3DID	
   database	
   contains	
  

crystal-­‐packing	
   contacts,	
   especially	
   regarding	
   the	
   interactions	
   of	
   homodimers.	
   In	
  

order	
  to	
  improve	
  the	
  quality	
  of	
  the	
  results	
  provided	
  by	
  our	
  method,	
  we	
  filtered	
  out	
  

the	
  structures	
  coming	
  from	
  3DiD	
  containing	
  crystal-­‐packing	
  contacts.	
  From	
  the	
   last	
  

major	
  release	
  of	
  the	
  PDB	
  (Rose	
  et	
  al.	
  2011),	
   the	
  authors	
  of	
  the	
  resolved	
  structures	
  

are	
   now	
   providing	
   the	
   information	
   on	
   the	
   biological	
   units	
   contained	
   in	
   the	
   PDB	
  

entries.	
   We	
   parse	
   all	
   the	
   PDB	
   file	
   headers,	
   extract	
   the	
   information	
   of	
   biological	
  

interactions	
  and	
  use	
  it	
  to	
  analyse	
  3DiD.	
  The	
  resulting	
  filtering	
  made	
  the	
  total	
  number	
  

of	
  structures	
  decrease	
  of	
  40%	
  (Figure	
  S1)	
  and	
  around	
  20%	
  of	
  the	
  domain	
  interactions	
  

from	
   3DID	
   are	
   not	
   present	
   in	
   our	
   filtered	
   version.	
   In	
   the	
   cases	
   where	
   the	
   author	
  

annotation	
  was	
  not	
  available,	
  we	
  used	
  the	
  Protein	
  Quaternary	
  Structure	
  server	
  (PQS)	
  

(Henrick	
  1998).	
  

	
  

	
  

Estimation	
  of	
  the	
  superimposition	
  error	
  

In	
   order	
   to	
   evaluate	
   the	
   threshold	
   of	
   clashing	
   residues	
   for	
  which	
  we	
  decide	
   if	
   the	
  

interactions	
   are	
   compatible	
   or	
   mutually	
   exclusive,	
   we	
   designed	
   the	
   following	
  

experiment	
  (see	
  Figure	
  S2	
  for	
  an	
  overview):	
  we	
  selected	
  complexes	
   involving	
  three	
  

domains	
  belonging	
  to	
  three	
  different	
  polypeptide	
  chains.	
  We	
  set	
  one	
  the	
  domains	
  as	
  



a	
  reference	
  domain,	
  and	
  split	
  the	
  complex	
  into	
  two	
  binary	
  domain	
  interactions,	
  both	
  

containing	
   the	
   reference	
  domain	
  and	
  one	
  of	
   the	
   two	
  other	
  domains	
   (Figure	
   S2-­‐A).	
  

We	
  have	
  thus	
  two	
  pairs	
  of	
  interacting	
  domains	
  that	
  are	
  compatible	
  and	
  we	
  want	
  to	
  

see	
   if	
   superimposing	
   them	
  on	
  homologous	
   domains	
   can	
   affect	
   relative	
   position	
   to	
  

each	
  other,	
  and	
  generate	
  clashes	
  that	
  would	
  make	
  them	
  incompatible.	
  A	
  first	
  round	
  

of	
   superimpositions	
   is	
  done	
  by	
   structurally	
  aligning	
   independently	
   the	
   two	
  domain	
  

interactions	
  on	
  a	
  set	
  of	
  structures	
  of	
  domains	
  homologous	
  to	
  the	
  reference	
  domain	
  

(Holm	
  and	
  Park	
  2000)	
  (figure	
  S2-­‐B,	
  part	
  1).	
  We	
  then	
  substitute	
  the	
  reference	
  domain	
  

by	
  each	
  one	
  of	
   the	
  homologues	
   (figure	
  S2-­‐B,	
  part	
  2)	
  and	
  perform	
  all	
   the	
  pair	
  wise	
  

superimpositions	
   of	
   the	
   hybrid	
   domain	
   interactions	
   (figure	
   S2-­‐B,	
   part	
   3).	
   The	
  

interface	
   of	
   the	
   domains	
   interacting	
   with	
   the	
   reference	
   domain	
   if	
   then	
   analyzed	
  

using	
  the	
  empirical	
  force	
  field	
  FoldX	
  (Schymkowitz	
  et	
  al.	
  2005)	
  (figure	
  S2-­‐B,	
  part	
  4).	
  

In	
  particular,	
  the	
  Van	
  der	
  Waals	
  clashes	
  (above	
  1kcal/mol)	
  involving	
  the	
  backbone	
  of	
  

the	
  residues	
  located	
  at	
  the	
  interface	
  of	
  the	
  domain	
  interaction	
  are	
  evaluated.	
  Figure	
  

S3	
  shows	
  the	
  results	
  for	
  five	
  tests	
  carried	
  out	
  on	
  five	
  complexes	
  (see	
  details	
  in	
  tables	
  

S1).	
  For	
  one	
  of	
  these	
  complexes	
  (Complex1),	
  all	
  the	
  different	
  combinations	
  result	
  in	
  

no	
  clashes	
  at	
  all.	
   For	
  Complex4	
  and	
  Complex5,	
  most	
  of	
   the	
  combinations	
   show	
  no	
  

clashes,	
   as	
   the	
   median	
   and	
   quartiles	
   are	
   very	
   close	
   to	
   zero	
   on	
   the	
   boxplot	
  

representation	
  (figure	
  S2-­‐A).	
  For	
  Complex2	
  and	
  Complex3,	
  the	
  distributions	
  exhibit	
  a	
  

similar	
  trend,	
  with	
  most	
  of	
  the	
  combinations	
  having	
  no	
  clashes.	
  The	
  distributions	
  in	
  

these	
  cases	
  are	
  more	
  spread	
  but	
  the	
  majority	
  of	
  the	
  cases	
  do	
  not	
  exhibit	
  more	
  than	
  

15%	
  of	
  residue	
  clashing	
  in	
  the	
  interface.	
  Finally,	
  taken	
  all	
  together,	
  the	
  results	
  show	
  

that	
  2.7%	
  of	
  the	
  complexes	
  are	
  analyzed	
  as	
  not	
  compatible	
  at	
  a	
  threshold	
  of	
  1%	
  of	
  

clashing	
   interface	
   residues	
   (Figure	
   S4).	
   According	
   to	
   these	
   results,	
   we	
   set	
   the	
  

threshold	
  for	
  clashing	
  residues	
  at	
  15%	
  since	
  at	
  this	
  value,	
  99%	
  of	
  the	
  reconstructed	
  

complexes	
  are	
  correctly	
  evaluated.	
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Figure	
  S1	
  

Representation	
   of	
   crystal	
   packing	
   in	
   3DiD	
   database.	
   The	
   biological	
   interfaces	
   are	
  

shown	
  in	
  blue	
  (as	
  provided	
  by	
  the	
  author	
  annotation	
  from	
  the	
  PDB	
  entries)	
  and	
  dark	
  

orange	
   (as	
   provided	
   by	
   PQS).	
   The	
   interactions	
   considered	
   as	
   crystal	
   packing	
   are	
  

shown	
  in	
  light	
  orange.	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  

	
  

Table	
  S1	
  

Details	
   of	
   the	
   complexes	
   used	
   to	
   analyze	
   the	
   superimposition	
   error.	
   Each	
   of	
   the	
  

complex	
   consists	
   of	
   a	
   trimer	
  with	
   three	
   domains	
   in	
   interaction	
   belonging	
   to	
   three	
  

different	
  polypeptide	
  chain	
  from	
  a	
  PDB	
  entry.	
  

Complex	
   PDB	
  
Id	
  

Reference	
  Domain	
   Interacting	
  domains	
  

Domain	
  Name	
   Chain	
   Residue	
  
Start	
  

Residue	
  
End	
  

Domain	
  Name	
   Chain	
   Residue	
  
Start	
  

Residue	
  
End	
  

1	
   1A3F	
   Phospholip_A2_1	
   A	
   1	
   118	
  
Phospholip_A2_1	
   B	
   1	
   118	
  

Phospholip_A2_1	
   C	
   1	
   118	
  

2	
   1JSU	
   Cyclin_N	
   B	
   181	
   307	
  
CDI	
   C	
   30	
   80	
  

Pkinase	
   A	
   13	
   286	
  

3	
   1JSU	
   Pkinase	
   A	
   13	
   286	
  
Cyclin_N	
   B	
   181	
   307	
  

CDI	
   C	
   30	
   80	
  

4	
   1WEJ	
   Cytochrom_C	
   F	
   3	
   102	
  
V-­‐set	
   H	
   1	
   115	
  

V-­‐set	
   L	
   1	
   106	
  

5	
   1WEJ	
   V-­‐set	
   H	
   1	
   115	
  
V-­‐set	
   L	
   1	
   106	
  

Cytochrom_C	
   F	
   3	
   102	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



Figure	
  S2	
  

Workflow	
   for	
   the	
   analysis	
   of	
   the	
   superimposition	
   error.	
   A.	
   One	
   domain	
   from	
   the	
  

complex	
   is	
  set	
  as	
   the	
  “reference	
  domain”	
   (grey).	
  The	
  complexes	
  are	
  then	
  split	
   into	
  

two	
  domain	
  interactions,	
  each	
  of	
  them	
  containing	
  the	
  reference	
  domain	
  (grey)	
  and	
  

the	
  interaction	
  domains	
  (orange	
  and	
  blue).	
  B.	
  Each	
  domain-­‐domain	
  interaction	
  (ddi1	
  

and	
   ddi2)	
   is	
   superimposed	
   using	
   their	
   reference	
   domain	
   onto	
   a	
   selection	
   of	
  

structures	
   of	
   homologous	
   domains	
   (1).	
   Each	
   one	
   of	
   these	
   homologous	
   domains	
   is	
  

then	
   used	
   to	
   build	
   a	
   hybrid	
   domain-­‐domain	
   interaction	
   (2)(ddi1bis	
   and	
   ddi2bis).	
  

Theses	
   two	
   domain	
   interactions	
   are	
   then	
   superimposed	
   on	
   each	
   other,	
   based	
   on	
  

their	
   substituted	
   reference	
   domain	
   (3).	
   Finally,	
   the	
   interface	
   of	
   the	
   interacting	
  

domains	
  is	
  analyzed	
  for	
  backbone	
  clashes	
  for	
  residues	
  located	
  at	
  the	
  interface	
  (4).	
  	
  



	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



Figure	
  S3	
  

Analysis	
   of	
   backbone	
   clashes	
   for	
   residues	
   at	
   the	
   interface.	
   A.	
   Distributions	
   of	
   the	
  

analyzed	
   complexes.	
   The	
  upper	
   limit	
   of	
   the	
  box	
   indicate	
   the	
  upper	
   quartile	
   of	
   the	
  

distributions	
   and	
   the	
   end	
   of	
   the	
  whiskers	
   shows	
   the	
   higher	
   data	
   point	
  within	
   one	
  

interquartile	
   range	
   of	
   the	
   upper	
   quartile	
   of	
   the	
   distributions.	
   B-­‐E.	
   Histograms	
   of	
  

values	
  obtained	
  for	
  the	
  percentage	
  of	
   interface	
  residues	
  with	
  backbone	
  clashes	
  for	
  

Complex	
  2,	
  3,	
  4	
  and	
  5.	
  	
  



	
  

	
  



Figure	
  S4	
  

Evaluation	
  of	
  the	
  superimposition	
  error.	
  According	
  to	
  the	
  different	
  thresholds	
  for	
  

interface	
  clashing	
  residues,	
  we	
  show	
  the	
  percentage	
  of	
  reconstructed	
  complexes	
  

being	
  filtered	
  out.	
  At	
  the	
  lowest	
  threshold	
  (1%	
  of	
  clashing	
  residues),	
  	
  2.8	
  %	
  of	
  all	
  the	
  

cases	
  are	
  evaluated	
  as	
  being	
  mutually	
  exclusive.	
  

	
  

	
  

	
  





3.3 Assessing structural interaction predictions

3.3.1 Introduction

There is an increasing gap between the amount of biochemical interaction data
produced and the number of crystal structures of complexes that are being

solved. In this project, we are aiming at filling this gap by extrapolating the detailed
information provided by three-dimensional structures of proteins to large assem-
blies that constitute the protein interaction networks. In addition to describe the
protein interactions at the atomic level, using structural data at the network level
would add the important feature of competition and hence dynamics into the clas-
sical and static edges-and-nodes way of depicting protein interaction networks, by
stating which interactions could happen at the same time and the ones that could
not. We have developed SAPIN, a pipeline to analyze protein interaction networks
from a structural point of view which consists of two main steps: first, pairwise
protein interactions are treated to find a suitable structural template, and second
the structurally predicted interactions are analyzed to identify the compatible and
mutually exclusive interactions at the network level. The first step includes a direct
search in the Protein Data Bank (PDB), to retrieve the structural data of a protein
interaction when available or a structure of close homologous interacting proteins
(i.e. sharing 70% of sequence identity). Additionally, based on the fact that globular
proteins usually interact through domains and that similar domains usually interact
in the same way (Aloy et al., 2003), we integrated in our pipeline the search of
potential structures of domain domain interactions (DDIs), provided by the 3DiD
database (Stein et al., 2011a). However, a given pair of interacting domains can
exhibit multiple topologies of interaction (Kim et al., 2006b) and the selection of the
most appropriate template among the possible ones was consequently required.
A first approach to tackle this issue has been to develop a scoring system taking
into account the structural variability among domain families. As described in sec-
tion 1.2.3, sequence-based domain classifications are usually derived from multiple
sequence alignments and their members can exhibit low sequence identity. At the
structural level, while the secondary structure elements arrangements are usually
conserved in the domain folds, there can be more variation in loops or disordered
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regions. This variability can thus affect a binding interface by making it prone or not
available to form interactions.
Another strategy to select the most suitable template within a set of DDI structures
was to use InterPreTS, which evaluates the pairwise contact between the interface
residues base on empirical potentials (Aloy & Russell, 2002).
Structural data provided by the PDB may contain interactions that are actually ar-
tifacts generated at the crystallization step of the structure determination process
(i.e. crystal packing) and are consequently not biologically relevant. As described in
section 3.2, we have processed the structures of DDIs from 3DiD to filter out these
non-biological contacts. Surprisingly, in some cases InterPreTS scores a crystallo-
graphic interface higher than a biological interface.
We have compiled positive (i.e. interacting proteins) and negative (i.e. non-interacting
proteins) data sets to evaluate the performance of (1) our scoring system based on
the structural variability of domains and (2) the version of InterPreTS which disre-
gards the crystallographic artifacts.

3.3.2 Benchmarking structural templates as model for protein
interactions

To benchmark our structural predictions of protein interactions, we compiled several
reference sets with data from various resources: large-scale and low-scale experi-
ments, structural predictions based on interface modeling and literature. They are
summarized in table 3.1. For each type of data, there is a set of binding proteins
and a set of non-binding protein, corresponding to a positive and negative control,
respectively.

Yeast Two-Hybrid Data
Protein interactions can typically be identified by two types of experimental
methods: Tandem Affinity Purification tag (TAP tag) and Yeast Two-Hybrid
(Y2H) assays, capturing either stable protein complexes or binary physical
interactions, respectively (these methods are discussed in section 1.2). The
fact that Y2H assays capture binary interactions makes the protein interaction
data coming from such experiments eligible to assess structural modeling.
Another advantage of such data is the large amount of protein interactions
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Binding Set Non Binding Set Reference
Yeast Two-Hybrid 1500 1500 (X5) Rual et al. (2005)
Ras-Effector Pre-
dicted Interactions 99 336 Kiel et al. (2007)

Ras-Effector Exper-
imentally Tested
Interactions

28 16 Kiel et al. (2007)

Literature 92 92 Braun et al.
(2009)

Table 3.1: Data sets used to evaluate the structural predictions -

identified due the use of this technique a high-throughput fashion. We data
provided by Rual et al. (2005). They tested pairwise interactions among the
products of around 8100 human open reading frames (ORFs), and detected
around 2800 interactions. Out of this data, we generated a first dataset, made
of the interactions identified in this study (named “y2h_binding”) contain-
ing 1500 interactions. Moreover, we extracted ‘negative’ sets from this data,
by randomly extracting sets of 1500 interactions out of the ORFs that have
been tested in the assay but for which no interaction has been detected. This
is in fact another advantage of using Y2H data for benchmarking dataset,
because it provides negative interactions. We generated 5 datasets (named
“y2h_nonbinding”) out of this negative data to ensure that the randomization
had as a low effect as possible on the results. The advantages of using this
data are 1) the identified interactions are binary, physically interacting with
each other and 2)the negative set is made of proteins that have been tested in
the system and have been found not to interact.

Ras-Effector interaction data
Kiel et al. (2007) used a structural approach which restricts the focus to the
residues directly involved in the interaction. For a given interaction, all the
elements (i.e. secondary structure elements and loops) that are not involved
in the complex formation are excluded from the template. The side chains of
the remaining residues in the template are then substituted in silico by the
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side chains of the corresponding residues in the sequence of the proteins to
be modeled. They predicted 20 Ras proteins in complex with 50 Ubiquitin-like
domains, and the resulting network showed very high accuracy in distinguish-
ing between binders (in 78% of the cases) and non-binders (in 83% of the
cases) when compared to pull down experiments and binding affinities from
literature. We used this binding and non binding data as a dataset, by distin-
guishing on one hand the predicted interactions (named “ras_pred_binding”
and “ras_pred_nonbinding”, containing 99 and 336 interactions, respectively)
and on the other hand the interactions that have been experimentally tested
(named “ras_exp_binding” and “ras_exp_nonbinding”, containing 28 and 16
interactions, respectively).

Literature-based data
Braun et al. (2009) compiled a positive reference set (PRS) out of interactions
for which there was more than one peer-reviewed publication in manually cu-
rated databases. They also generate a random reference set (RRS) considered
as a negative set, since two proteins picked randomly among the proteome are
less likely to interact with each other. These sets (“PRS_vidal” and “RRS_vidal”
) both contain 92 interactions. Interaction data contained in databases can be
considered as valuable especially in the cases where there are several pieces of
evidence, and when the experimental method used is a “low-scale” approach.

The advantage of using several sources for benchmarking sets is that it allows
to compensate for biases inherent to a given type of data. For example, Y2H data
is often seen as noisy because it is estimated to contain false positives and false
negatives, but it is convenient for our purpose because it contains binary interactions
and provides a large amount of data. Given the low coverage when dealing with
structural interactions, a reasonably sized dataset is thus of great statistical value.
Conversely, the literature-based datasets are rather small, and even if it is considered
as being of higher quality, it could result from the mining of the research article
potentially describing a crystal structure. The Ras-Effector data sets are similarly
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small for the predicted interactions and even smaller for the experimentally tested
interactions, but the latter are considered of high quality, because they result from
experimentally validated predictions.

3.3.3 Selection of an interaction template based on the structural
variability of domains

Domain database classifications and structural similarity

The diversity of classification methods of protein sequences into domain families has
led to a large variability of the description of a given sequence in a given database. For
example, some methodologies perform a simple sequence similarity search, while
others are based on HMM profiles generated from multiple sequence alignments
and some take into account functional features. At the structural level, a domain is
characterized by the fact that it can form a stable fold independently from the rest
of the protein. Overall, the sequence-based domain classifications agree with the
fold definition, but their domain signatures can differ. A striking example is the Ras
domain family. To study the structural variation of the Ras domain, we performed
a pairwise structural alignment of its members as classified by PFAM (Finn et al.,
2010b) (Figure 3.1). We identify structurally similar subfamilies which correspond
to four families described in the sequence-based SMART database (Schultz et al.,
1998b), i.e. Rho, Ras, Ran and Rab.
InterPro is a meta-database that integrates protein domain families from diverse
databases sources (Hunter et al., 2009). In this integration effort, InterPro also indi-
cates the family/subfamily relationships between the various database entries. For
example, regarding the previously described example of the Ras family, InterPro
classifies the SMART Rho, Ras, Rab and Ran families as subfamilies of the PFAM Ras
domain family. The tree covering the relationships derived from all the integrated
databases in InterPro for the Ras domain family is shown in figure 3.2 A.

A score based on the functional annotation of protein domains

The different domain classification methods can reflect a structural variability among
the members of a domain family. This structural variation between domain families
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Figure 3.1: Pairwise structural alignment of the Ras family members - The Ras
family members from PFAM have been structurally superimposed using Dali (Holm & Park,
2000). A high score (blue) indicates that the pairs are structurally similar, while a low score
(red) is obtained the tested pairs that present a structural variability.

implies a different conformation and can consequently have an effect on the way
an interaction between two domains is mediated. This principle served as a basis
for implementing a scoring system, which objective is to select the most appro-
priate template out of a pool of interacting domain pairs. The several steps for the
implementation of the scoring system are the following:

1. The domain interaction structures from 3DID are mapped on the InterPro
classification: each domain is assigned with the lowest database entry in
the InterPro classification tree previously described. Similarly, the protein
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Figure 3.2: Relationships between the domain classification methods as defined
by InterPro - (A) Representation of families/subfamilies relationships for the Ras family,
according to InterPro. (B) Illustration of the InterPro tree-based scoring method. Given
two domains, if the first domain corresponds to a given InterPro entry (black arrow), the
algorithm searches how far from this entry the second domain is in the classifiaction tree: in
the same group (blue), in another group of the same level (green), in another group of the
same family (yellow) or in a higher branch of the tree (red). A score is assigned accordingly
to 1, 2, 3 or 4 respectively.
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sequences from the interaction to be modeled are assigned with InterPro
entries.

2. We group the parts of each family tree to implement the scoring system:
entries belong to the same group if all of them are dead ends and none of
them have a child. If, at a given level in the tree, one of the entries has the
child, then all the entries of this level with no child belong to a different group.
The algorithm then searches the tree to identify how far a domain assigned to
the query protein is from the domain assigned to the structural template: in
the same group, in another group of the same level, in another group of the
same family or in a higher branch of the tree. The score is assigned accordingly
to 1, 2, 3 or 4 respectively (Figure 3.2 B).

3. Finally, we compute the score evaluating the domain interaction template.
The resulting score takes into account the number of families encompassed
in a given InterPro tree. It ranges from 0 to 1 and the higher the score, the
better the template, i.e. the domains from the structural template are close to
the domains from the interaction query.

Evaluation of the scores

We used the positive and negative reference sets generated from Y2H data (see
section 3.3.2) to evaluate the biological relevance of this score. As not all the In-
terPro entries have family/subfamily relationships, we performed the evaluation by
(1) taking into account all the domain families regardless of their organization in
trees in InterPro and (2) leaving out the domain families for which no relationships
have been described (i.e. containing only one InterPro entry). Figure 3.3 shows
the distributions of the scores obtained for the positive set and the negative set
(namely “y2h_binding” and “y2h_nonbinding”, respectively) in these two tests. In
both cases, the distributions for the negative and positive sets are very similar, and
centered at the score of 0.7. These results suggest that this approach does not
allow an accurate evaluation of domain interaction structures, and that the informa-
tion provided by the various domain classification methods and their relationships
remains insufficient to distinguish correctly between binding and non-binding pro-
teins.
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Figure 3.3: Evaluation of the score based on the InterPro classification - The
positive (in red) and negative (in blue) reference set coming from Y2H data are scored
according to the InterPro tree-based method, taking into account all the InterPro families
(A) and excluding the families for which there is no relationships (B).

Despite the structural variability observed among the diverse domain families,
this information alone can not help selecting a favored way of interacting.

3.3.4 Selection of a structural template using InterPreTS

Another strategy to evaluate and select a structural template is to take into con-
sideration the interaction interface. We used InterPreTS (Aloy & Russell, 2003), a
method that uses empirical potentials, to describe how well two sequences fit into
a structural template of an interaction between homologous proteins. This method
has been applied successfully to predict the specificities of large domain families
(Aloy & Russell, 2002). An InterPreTS Z-score above or equals to 2.3 indicates a
significance of the prediction of 99%. However, InterPreTS sometimes gives a low
score to a biological interface and could score highly an interface known to be
a crystallographic artifact. Such an example is shown in figure 3.4, where Inter-
PreTS scores better a crystallographic artifact than the two biological units. In our
framework SAPIN (described in section 3.2), we cope with these potential cases by
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filtering out the non biologically relevant interfaces.

Figure 3.4: Example of InterPreTS scoring - The PDB entry 1fqk contains two copies
of the alpha subunit of the G Protein transducin in complex with RGS9.

Effect of randomization and crystallographic artifacts on InterPreTS scores

We further evaluated the prediction performance of InterPreTS, using the positive
and negative reference sets from Y2H data, under different conditions.

1. As InterPreTS scores are based on randomly generated sequences, the result-
ing score for a given pair of sequences can vary from one run to another. We
thus ran InterPreTS ten times for each interaction and computed the average
and standard deviation. When compared to a one-run InterPreTS, we could
observe a slight variation in the distribution of the scores for both positive and
negative sets, but this effect does not seem to affect the separation between
the two distributions (Figure 3.5 A and B), and thus the distinction between
binding and non-binding data.
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2. We further evaluated the influence of disregarding the results of predictions
using interfaces have been annotated as being crystallographic artifacts. The
resulting distributions exhibit a clearer separation between binding and non-
binding data, especially the score distribution for the negative set being shifted
towards lower values, whereas the distribution for the positive set remains at
the same level than the distribution obtained previously (Figure 3.5 C).

3. We performed an extra test taking into consideration the interactions for
which we could identify at least one domain interaction in 3did. The result-
ing distributions are equivalent to the previous ones, in terms of separation.
This corresponds to our approach of combining the search in 3DiD and the
scoring by InterPreTS (Figure 3.5 D). The distributions in this case are more
homogeneous for both sets and suggest a slight improvement in distinguish-
ing between binding and non-binding proteins.

Evaluation of InterPreTS predictions

To extensively evaluate the predictions provided by InterPreTS, we used the refer-
ence sets described in 3.3.2 and summarized in table 3.1.

The structural coverage varies for each type data in the reference sets (Figure 3.6).
The interaction sets coming from Y2H data are the ones with the lowest coverage
(10% for the positive set and around 1% for the negative sets, figure 3.6 A). The
structural coverage for the positive set is in agreement with the estimated number
of structural interactions for the human interactome (Stein et al., 2011b). InterPreTS
predicts an interaction for more than 50% of the interactions from the Ras-Effector
interaction positive data sets (predicted and experimentally tested) and for 45% for
the negatively predicted Ras-effector interactions (Figure 3.6 B). Surprisingly, up
to 80% of experimental non-binding Ras-Effector interactions are found to have a
structural template (Figure 3.6 C). As for the literature-derived interaction set, the
coverage reaches 30% for the positive set and no structural template has been found
for the negative set (Figure 3.6 D).
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Figure 3.5: Distributions of InterPreTS scores for Yeast Two-Hybrid reference
sets - InterPreTS predictions have been evaluated under diverse conditions for the positive
reference set (orange) and negative reference set (blue). (A) InterPreTS has been ran once on
each interaction. (B) The predictions have been repeated ten times for each interaction and
the the average scores are computed. (C) The crystallographic artifacts have been filtered
out. (D) InterPreTS has be used only on interactions for which there is an available structure
of domain interaction.

The distributions of InterPreTS Z-scores for the eight reference sets tested are
shown in figure 3.7 (top). Except for the literature derived sets (because no structural
template has been found for the negative set), all the distributions exhibit a similar
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Figure 3.6: Structural coverage of the different reference sets used - The structural
coverage for the positive and negative reference sets are shown in blue and orange respec-
tively for the four types of data: (A) Yeast Two-Hybrid (B) Ras-effector predicted interactions
(C) Ras-effector experimentally tested interactions (D) Literature-derived interactions.
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trend: the distributions of scores for the positive and negative sets are clearly shifted,
which suggests that the scores allow the distinction between binding and non-
binding data. Interestingly, the variation observed in terms of structural coverage
(i.e. a low coverage for the Y2H data and a high coverage for the Ras-Effector
interaction data) does not affect the score distributions.
The sequence identity between the structural templates and protein queries seems
to have a relatively limited effect on the score distributions (3.7, bottom). In fact,
most of the proteins from the various negative sets share less than 50% identity
with their structural template. In contrast, many proteins from the positive set share
higher sequence identity with their templates, which is often associated with a high
InterPreTS score. This only applies to a limited number of cases, as the majority of
proteins sharing between 30 and 50% have a relatively high score.

Figure 3.7: Distribution of InterPreTS scores for each type of reference set -
InterPreTS predictions have been evaluated using positive references sets (orange) and
negative reference set (blue). The distirbutions of InterPreTS scores are shown at the top
and the sequence identity between query and template sequences are shown at the bottom
for the four types of data: (A) Yeast Two-Hybrid (B) Ras-effector predicted interactions (C)
Ras-effector experimentally tested interactions (D) Literature-derived interactions.

The receiver operating characteristics (ROC) curves of the reference sets illus-
trate the tradeoff between true and false positive rates. The ROC curves for results
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from the predictions for the Y2H and Ras-Effector interaction data are shown in
Figure 3.8. The prediction performance is higher for the Ras-Effector predicted in-
teractions. This suggests that both prediction methods seem to be in agreement.
The performance on the Y2H data is similar to the one observed for the Ras-Effector
experimentally tested interactions.

Figure 3.8: Evaluation of the prediction performance - The receiver operating char-
acteristics (ROC) curve shows the tradeoff between true and false positive rate for the Y2H
(A), Ras-Effector predicted (B) and exprimentally tested (C) interaction reference sets.

InterPreTS has been successfully used to predict protein interactions (Aloy &
Russell, 2002). However, it can give high scores to interfaces that are actually crys-
tallographic artifacts. Filtering out such non biologically relevant interactions from
3DiD has shown that around 27% of the domain interaction interfaces were consid-
ered as being non functional interactions. Using our reference sets, we evaluated
InterPreTS predictions we could (1) improve the structural predictions made by In-
terPreTS and (2) validate the use of InterPreTS to select the most suitable template
out of a pool of structures of interacting domains.
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CHAPTER

FOUR

DISCUSSION

The objective of this dissertation is to focus on one of the most challenging
aspects in systems biology: truly understand protein interaction networks on

a functional level. Classical networks represent a rather static picture of biologi-
cal processes and therefore we proposed a more dynamical view by introducing
the missing feature of compatible and mutually exclusive interactions. We argued
that knowledge of interacting interfaces provided by structural information can not
only help determining the possible binary interactions taking place within large
complexes but can also contribute to the elucidation of competition between bind-
ing proteins, by discriminating compatible and mutually exclusive interactions. We
focused our effort on combining domain-domain and domain-peptide interaction
predictions with experimental information, and proposed an automated method to
facilitate such a structure-based dynamic view of protein interaction networks.

In section 3.1, we combined structural information with literature mining and
proteomics data to construct the protein interaction network associated with rhodopsin.
The further annotation of proteins according to their physiological functions permit-
ted the decomposition of the network into functional sub-modules. We applied a
structural analysis to predict compatible and mutually exclusive interactions, which
allowed the annotation of the connections among and between sub-modules using
logical gates “AND” and “XOR”, respectively (Campagna et al., 2008). This func-
tional and structural analyses suggested two novel links from rhodopsin towards (1)
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cytoskeleton dynamics regulation and (2) vesicle trafficking in order, which were
partially supported by experimental data.
Taken together, these results showed structural information combined with ex-
periemtal data is useful to derive new functional insights. Despite a low structural
coverage in the Rhodopsin protein interaction network, we were able to gain insight
about potential new routes activated by rhodopsin.
Using the structures of domain interactions as template to model protein interac-
tions, we were able to increase the structural coverage of the rhodopsin-associated
network by 50%. These results encouraged the automatization of this structural ap-
proach to facilitate its application to other systems, where experimental information
is available.

In section 3.2 of this thesis, we have developed a pipeline, SAPIN, for the struc-
tural analysis of protein interaction networks in an automated way. The objectives
of this framework were: (1) to structurally predict binary protein interactions within
protein complexes and (2) to identify the possible mutually exclusive and compati-
ble interactions.

Our approach assumes a rigid backbone, without any conformational change
between the unbound and bound forms of the proteins involved. This corresponds
to the lock-and-key principle first observed in enzymatic reactions by Fischer in
1894 (Fischer, 1894). Stein et al. (2011d) have recently measured the flexibility of
protein domains upon association and showed that in 65% of the cases the inter-
action indeed did not lead to any conformational change. In 13% of the cases the
interactors followed a conformation selection model (Goh et al., 2004), where their
bound conformation is encountered at regular intervals during exploration of the
unbound state. Therefore, structural protein interaction methods could benefit from
using flexible backbone methods, which is computationally more exepensive but
becomes nevertheless more feasible with the constant increase in computational
power. Recently, another protocol was proposed to structurally predict protein in-
teractions at a large-scale level (Tuncbag et al., 2011). This method is based of the
fact that there is a limited number of naturally occurring architectural motifs. The
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authors use PRISM (Ogmen et al., 2005), a resource containing these structural
motifs, which is searched by structural superimposition in order to identify the hot
spots of the target proteins and then for potential complementary between them.
This approach is complementary with ours since it performs a flexible docking for
monomeric structures of proteins. Since each method covers a distinct interaction
type model (i.e. the lock-and-key model and the conformational selection model),
we can speculate that combining these approaches would lead to an increase of the
structural coverage.

We have focused our structural approach on domain interactions rather than
protein interactions with the objective of increasing the structural coverage. How-
ever, the domain interactions predicted as being compatible might not reflect the
reality in the case of multi-domain proteins. In fact, the spatial arrangement of one or
several domains from the same peptide chain can impede the simultaneous binding
of a third protein. Structures of full-length proteins if available could thus help to
predict more accurately the compatible binding of domain-based interaction mod-
els. Integrating the structural neighborhood of a domain interaction, for example
by superimposing the structure of the full-length protein, could thus improve the
accuracy of compatibility predictions. This would in principle be limited to the cases
in which proteins have been structurally resolved, but the fact that the structural
coverage is higher for proteins than for protein interactions (Stein et al., 2011c)
is encouraging even though this would increase the complexity of computational
approaches and their execution time.

Moreover, our domain-based approach does not take into account the fact that
domains can be repeated within a protein. This could lead to a misinterpretation
of interactions predicted as mutually exclusive. Indeed, if two domains A and B are
predicted to bind to the same surface of a third domain C and if the latter is repeated
(i.e. C1 and C2), then A and B might actually be able to bind simultaneously to re-
spectively C1 and C2 and vice versa. This complex problem is difficult to address
within the scope of our approach, and would require a careful manual inspection
combined with extra contextual information about the interactions.

Once the interactions have been established to be mutually exclusive, a logical
step would be to push the analysis towards the concept of conditional interactions.
Post-translational modifications can act as switches, allowing or impeding the bind-
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ing of proteins. Thus, if two proteins are predicted to bind a common surface, the
knowledge of such switches can help establish the order in which they should bind.
This could add a time dimensionality into networks, but in turn would increase the
complexity.

It is obvious that competing interactions can be identified based on the knowl-
edge of interacting interfaces. However, this information needs to be completed
with quantitative data about the concentration of proteins competing for the same
interface. Given two proteins A and B competing for binding with a third protein
C, protein A is present in a concentration 100-fold higher than protein B, the in-
teraction between A and C will be preferred. Similarly, the localization is important
to take into account. For example, in the human interactome, some proteins being
expressed in tissue-specific manner may never have to compete with proteins ex-
pressed in different tissues.

In section 3.3, we described the strategies we used to cope with the two main
issues related to the use of 3D structures of interacting domains: (1) the atom co-
ordinates, as provided by the PDB, often contains interface that are non biologically
relevant as they result from the crystallization process and (2) a pair of interacting
domains can exhibit multiple topologies of interactions.

First, we annotated crystallographic artifacts and biological interfaces among
the interfaces within the structural data coming from 3DiD. We found that a non
negligible portion (around 27%) of the interactions were actually considered as non
biologically relevant by our filtering. Further, the evaluation of InterPreTS scoring
showed that the predictions were improved after the interfaces considered as crystal
packing had been filtered out.
Second, we implemented a scoring system aiming at selecting the best template out
of a pool of domain interaction structures exhibiting different interaction topologies.
This was based on the observation that domains could have a relatively important
structural variability within a domain family and that domain classifications can
provide different domain definitions. We used the family/subfamily relationships
between these domain signatures to try and explain the diverse topologies ob-
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served by the structural variability of domains. However, this approach did not
allow relevant structural prediction, as it gave similar scores to binding and non-
binding data, which could be partly explained by the fact that a vast majority of
domain families are not interconnected, thus the relational approach was limited to
a small number of cases.
An crucial step when developing a prediction method remains the validation. To
test our methodology, we have used four data sources to generate positive and neg-
ative reference sets: Yeast Two-Hybrid data, predicted and experimentally tested
Ras-effector interactions and data from literature. With these various datasets, we
could cover many properties of interaction data: binary physical interactions, pre-
dicted and experimentally identified interactions, large- and low-scale experiments,
high and low structural coverage. The evaluations carried out on the different sets
showed similar trends in terms of predictions, with a slightly better performance on
the predicted Ras-Effector interactions suggesting that InterPreTS predictions were
in agreement with the interface modeling approach used to generate this data. How-
ever, the diverse reference sets exhibited different structural coverages. In particular,
Ras-Effector interaction data had a surprisingly high coverage for the negative sets
(up to 80% for the predicted interactions), while Y2H negative data coverage was
in contrast extremely low. Yet, this had no effect on the distinction of binding and
non-binding data. Taken together, these results suggest that the methods we used
are robust to distinguish between binding and non-binding proteins, independently
from the type of data.

Despite the initiative of structural genomics projects to produce 3D structures
more effectively, the global coverage at the interactome level remains very low
(around 10% for the human interactome as estimated by Stein et al. (2011b)) in
comparison to the large number of sequence and interaction data. This lack of valu-
able data provided by structures represents the main limiting factor when dealing
with protein structure modeling. Yet, the various computational methods available
will be gradually improved as more structures become available. However, we have
shown that even at a low structural coverage, the combination of experimental data

145



with structural information can help to gain functional and biological insight within
a protein interaction network.
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CHAPTER

FIVE

CONCLUSIONS

1. We built a comprehensive protein interaction network associated with the
GPCR rhodopsin by combining structural information, proteomics data and
literature mining and identified functional sub-modules. The approach used for
the network reconstruction could be applied to any other cellular pathway.
Further it opens the possibility of further experimental testing by scientists
working on vision and vision-related diseases.

2. The protein interaction network we constructed served as a basis for the anal-
ysis of compatible and mutually exclusive interactions, based on previously
structurally predicted interactions. This functional and structural interaction
network suggested two novel routes, linking rhodopsin to (1) cytoskeleton
dynamics and (2) to vesicle trafficking regulation, which were validated ex-
perimentally. This could serve a basis to explore further hypotheses of light-
regulated dynamics involved in the protein transport in the ciliary region of
Rods.

3. By mapping the mutations known to be involved in diseases on the structural
models, we identified the core vision pathway as being more susceptible to
be affected by diseases, suggesting that the high-end functional properties
of the visual pathway may have been preferred over robustness throughout
evolution, enabling single photon detection and multi-color vision.

4. We developed SAPIN, a tool to analyze protein interaction networks using
structural information in an automatized way. SAPIN combines a classical
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approach of comparative modeling with the search of more remote homolo-
gous structures as templates by using 3D structures of domain-domain and
domain-peptide interactions. In addition, we integrated prediction methods of
binding motifs and phosphorylation sites. SAPIN contains an algorithm which,
given a set of structurally characterized or predicted interactions, evaluates if
they are compatible or mutually exclusive. This method highlights the prin-
ciple of competition, which is known to be important in signal transduction
pathways.

5. We tested the structural prediction results provided by our framework, by
using diverse positive and negative reference sets and evaluated the compat-
ibility analysis by testing our algorithm on a large number of cases. These
results enabled us to validate our methodology, since the structural predic-
tion could distinguish between interacting and non-interacting data and could
confidently predict the the mutually exclusive interactions.

6. SAPIN will be shortly accessible through a web server, where one will be able
to submit a set of interactions and its related sequences. The results from the
structural analysis are displayed in an interactive visualization tool, to facilitate
the browsing of the predicted interactions and their compatibilities. Thus, our
framework could be used to automatically analyze any protein interaction
network.
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