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Abstract

Problem solving based on the Propositional Satisfiability Problem (SAT) is an active

research area in Artificial Intelligence, and has been successfully applied to solve both

academic and industrial decision problems. The success of SAT-based problem solving

has in turn contributed to explore extensions of SAT such as Satisfiability Modulo

Theories, Quantified Boolean Formulas, Many-Valued Satisfiability, Pseudo-Boolean

Optimization, and Maximum Satisfiability.

In this thesis we focus on the Maximum Satisfiability Problem (MaxSAT), which is

an optimization variant of SAT. Given a CNF formula φ, MaxSAT consists in finding

a truth assignment that satisfies the maximum number of clauses of φ. Usually,

we focus on the MaxSAT extension that associates weights with clauses, and where

each clause is declared to be either soft or hard. In this case, known as Weighted

Partial MaxSAT, an optimal solution is a truth assignment that satisfies all the hard

clauses, and maximizes the sum of the weights of the satisfied soft clauses. Weighted

Partial MaxSAT is called Weighted MaxSAT when all the clauses are soft, and Partial

MaxSAT when all the soft clauses have the same weight.

Given the recent and promising results on MaxSAT, the main objective of this the-

sis is to contribute to develop appropriate MaxSAT technology for solving challenging

NP-hard optimization problems by first reducing them to a MaxSAT formalism, and

then finding a solution with a state-of-the-art MaxSAT solver. More specifically, our

goal is twofold: firstly, improve the modeling of decision and optimization problems

by defining original and efficient encodings from the Constraint Satisfaction Problem

(CSP) into SAT, and extending them to map the Maximum Constraint Satisfaction
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ii Abstract

Problem (MaxCSP) into MaxSAT; and secondly, create MaxSAT instances genera-

tors of adjustable hardness to help identify potential enhancements and weaknesses of

MaxSAT solvers, and assess the impact of individual and combined solving techniques.

Concerning encodings from CSP into SAT, we present two new encodings from

CSP into SAT: the minimal support encoding and the interval-based support encoding.

The minimal support encoding reduces the size of the support encoding, and the

interval-based support encoding is the first support encoding containing only regular

literals in which the size of the derived encoding does not grow exponentially in the

worst case.

Concerning encodings from MaxCSP into Partial MaxSAT, we define and analyze

a number of novel encodings that extend variants of the direct and support encodings

from CSP into SAT. We identify the clauses that must be declared as hard and

the clauses that must be declared as soft, and determine whether it is necessary to

introduce auxiliary variables for producing encodings in such a way that the minimum

number of falsified clauses in the generated Partial MaxSAT encoding is the same as

the minimum number of violated constraints in the encoded MaxCSP instance.

Concerning the creation of MaxSAT instance generators of adjustable hardness,

we describe generators that encode into MaxSAT the following combinatorial opti-

mization problems: Max1+pSAT, Partial Max2SAT, MaxCut, and rectangular bin-

packing.

The conducted empirical investigation provides evidence that the new encodings

from CSP into SAT are particularly good for SAT solvers with conflict clause learning,

the proposed encodings from MaxCSP into MaxSAT are well-suited for modelling

optimization problems, and the created generators produce challenging benchmarks

for MaxSAT solvers.
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Chapter 1

Introduction

1.1 Motivation and objectives

Solving combinatorial decision problems by first reducing them to the Propositional

Satisfiability Problem (SAT), and then finding a solution with a state-of-the-art SAT

solver, is considered to be a powerful generic problem solving approach. It has

proven to be highly competitive in a variety of domains, including hardware verifica-

tion [eSSMS99, MMZ+01, VB01, BK02, KSHK07], bioinformatics [LMS06b, LMS06a],

planning [KS96, Kau06], and scheduling [BM00, ZLS04].

The success of SAT-based problem solving has in turn contributed to ex-

plore extensions and variants of SAT such as Satisfiability Modulo Theories

(SMT) [BSST09], Quantified Boolean Formulas (QBF) [BB09, GMN09], Many-Valued

Satisfiability (Many-Valued SAT) [BMC+07, BHM00], Pseudo-Boolean Optimization

(PBO) [RM09], and Maximum Satisfiability (MaxSAT) [LM09]. Nowadays, the theo-

retical and empirical study of all the mentioned formalisms is an active research line

in Artificial Intelligence (AI).

New logical and complexity results, novel solving techniques, highly optimized

implementations, comprehensive benchmark libraries, and solver competitions bear

witness of the interest and efforts that the AI community has devoted, over the last

decade, to the formalisms that originated in the area of Satisfiability Testing.

The first assumption of this thesis is that any generic problem solving approach

1



2 Chapter 1. Introduction

consists of two interrelated components: the modeling component and the solving

component, and in practice it is decisive to devise both good models and fast solvers.

Nevertheless, in the Satisfiability Testing community, most efforts have focused on

designing and implementing fast solvers, and the definition of efficient and effective

encodings has not yet evolved as much as the development of solvers, despite of the

fact that encodings have a significant impact on performance.

The second assumption of this thesis is that a decisive aspect for designing and

implementing fast solvers is to have access to a suitable benchmark test suite. Bench-

marking helps designers and developers identify potential enhancements, determine

under which circumstances the solvers underperform, and assess the impact of in-

dividual and combined solving techniques. Ideally, the benchmark test suite should

contain instances which are easy to generate, of adjustable hardness, and of as much

diverse problems as possible [Mat09].

The third assumption of this thesis is that MaxSAT-based problem solving is

becoming a competitive alternative for computing optimal solutions in combinatorial

optimization problems. Contemporary MaxSAT solvers incorporate advanced and

powerful solving techniques, and are able to deal with the variants of MaxSAT that

are best suited for representing and solving problems with soft and hard constraints,

as well as problems with preferences among the constraints [LM09].

Given the recent and promising results on MaxSAT, the main objective of this the-

sis is to contribute to develop appropriate MaxSAT technology for solving challeng-

ing combinatorial optimization problems by defining efficient and effective MaxSAT

encodings, and creating MaxSAT instance generators of tunable hardness. More pre-

cisely, the specific objectives can be summarized as follows:

• Study the most popular encodings from the Constraint Satisfaction Problem

(CSP) into SAT, and define original encodings that both reduce the space com-

plexity and show a better performance profile on relevant problem classes. The

focus on CSP is due to the fact that it provides a suitable framework for repre-

senting and solving combinatorial decision problem.
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• Study how existing and new encodings from CSP into SAT can be extended to

encode the Maximum Constraint Satisfaction Problem (MaxCSP) into MaxSAT,

and identify which encodings perform better on representative MaxSAT solvers.

Since MaxCSP provides a suitable framework for representing and solving com-

binatorial optimization problems, we aim at improving the modeling component

of MaxSAT-based problem solving.

• Design and implement original MaxSAT instance generators of adjustable hard-

ness of both random and structured instances, evaluate the generators on rep-

resentative MaxSAT solvers, and identify under which circumstances the gener-

ated instances become harder.

1.2 Contributions

The main contributions of the thesis can be summarized as follows:

• Our first original contribution is the definition of two new encodings from CSP

into SAT: the minimal support encoding and the interval-based support encod-

ing. The minimal support encoding reduces the size of the support encoding,

and the interval-based support encoding is the first support encoding contain-

ing only regular literals in which the size of the derived encoding does not grow

exponentially in the worst case.

• Our second contribution is the study of encodings from MaxCSP into Partial

MaxSAT that extend the existing encodings from CSP into SAT. We focus

our attention on the variants of the direct and support encodings that use

monosigned and/or regular literals, identify the clauses that must be declared

as hard and the clauses that must be declared as soft, and determine whether

it is necessary to introduce auxiliary variables for producing encodings in such

a way that the minimum number of falsified clauses in the generated Partial

MaxSAT encoding is the same as the minimum number of violated constraints.
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• Our third contribution is an empirical analysis of the existing and new en-

codings from CSP into SAT, and from MaxCSP into Partial MaxSAT. The

obtained results provide empirical evidence of the good performance profile of

the new encodings on SAT solvers such as MiniSat and PrecoSAT that in-

corporate conflict-clause learning, as well as of the good performance profile

when they are used to encode MaxCSP into Partial MaxSAT, and are solved

with MaxSAT solvers such as MSUnCore [MSP08], SAT4J-Maxsat [LP10] and

WMaxSatz [LMMP10, LMP07a].

• Our fourth contribution is the design and implementation of MaxSAT instance

generators of tunable hardness. The generators encode into MaxSAT the fol-

lowing combinatorial optimization problems: Max1+pSAT, Partial Max2SAT,

MaxCut, and bidimensional bin-packing. The conducted experimentation pro-

vides empirical evidence that the created generators produce challenging bench-

marks for MaxSAT solvers.

1.3 Publications

Some of the results presented in this thesis have already been published in journals

and conference proceedings. The list of publications, in chronological order, is the

following one:

– Ramón Béjar, Felip Manyà, Alba Cabiscol, Cèsar Férnandez, and Carla P.

Gomes. A Many-Valued Approach to Solving Combinatorial Problems. Dis-

crete Applied Mathematics, 155 (12): pages 1613–1626, 2007.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Encoding MaxCSP

into Partial MaxSAT. In 38th International Symposium on Multiple-Valued

Logic, ISMVL-2008, Dallas, Texas, pages 106–111, IEEE-CS Press, 2008.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Modelling MaxCSP

as Partial MaxSAT. In 11th International Conference on Theory and Applica-
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tions of Satisfiability Testing, SAT-2008, Guangzhou, P. R. China, pages 1–14,

Springer LNCS 4996, 2008.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Sequential Encod-

ings from MaxCSP into Partial MaxSAT. In 12th International Conference on

Theory and Applications of Satisfiability Testing, SAT-2009, Swansea, Wales,

United Kingdom, pages 161–166, Springer LNCS 5584, 2009.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Regular Encod-

ings from MaxCSP into Partial MaxSAT. In 39th International Symposium on

Multiple-Valued Logic, ISMVL-2009, Okinawa, Japan, pages 196–202, IEEE-CS

Press, 2009.

– Ramón Béjar, Alba Cabiscol, Jordi Planes and Felip Manyà. Generating Hard

Instances for MaxSAT. In 39th International Symposium on Multiple-Valued

Logic, ISMVL-2009, Okinawa, Japan, pages 191–195, IEEE-CS Press, 2009.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. New Insights into

Encodings from MaxCSP into Partial MaxSAT. In 40th International Sympo-

sium on Multiple-Valued Logic, ISMVL-2010, Okinawa, Japan, pages 46–52,

IEEE-CS Press, 2010.

– Josep Argelich, Alba Cabiscol, Inês Lynce and Felip Manyà. Efficient Encodings

from CSP into SAT, and from MaxCSP into MaxSAT. Journal of Multiple-

Valued Logic and Soft Computing, 19: pages 3–23, 2013.

1.4 Outline of the thesis

This section provides an overview of the thesis. We briefly describe the contents of

each of the remaining chapters:

Chapter 2: The SAT Problem. We provide an overview of the most relevant tech-

niques for solving SAT. First, we introduce some basic concepts commonly used
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in SAT. Second, we present the resolution method, which applies an inference

rule that provides a refutation complete inference system. Third, we describe

DP, the first effective method for producing resolution refutations. Fourth, we

present the DLL procedure, implemented in the majority of state-of-the-art com-

plete SAT algorithms, and review the main solving techniques that have been

incorporated into DLL in order to devise fast SAT solvers. Finally, we describe

some representative local search algorithms for SAT.

Chapter 3: The MaxSAT Problem. We introduce MaxSAT formalisms, and re-

view the solving techniques that have proved to be useful in terms of perfor-

mance. First, we introduce some background definitions in MaxSAT. Second,

we present the branch-and-bound schema, which is the one of the most com-

monly used approach to exact MaxSAT solving, and explain how this schema

can be improved with good quality lower bounds. Third, we describe how to

solve MaxSAT by solving a sequence of SAT instances, and finally review the

most representative SAT-based MaxSAT algorithms.

Chapter 4: Encoding CSP into SAT. We present an overview of the existing en-

codings from CSP into SAT, and define two new encodings: the minimal sup-

port encoding and the interval-based support encoding. First, we introduce

some background definitions in CSP. Second, we review the different ways of

encoding CSP variables into SAT. Third, we present the direct encoding and

the support encoding, which are the most frequently used encodings from CSP

into SAT. Then, we present the log encoding. Fourth, we define the minimal

support encoding and its variants. Next, we define the interval-based support

encoding, which is the first polynomial size support encoding containing only

regular literals. Finally, we report on an experimental investigation, and analyze

the impact of the encodings on the performance of SAT solvers.

Chapter 5: Encoding MaxCSP into Partial MaxSAT. We extend the encod-

ings from CSP into SAT, described in Chapter 4, for encoding MaxCSP into
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MaxSAT. First, we extend the standard encodings from CSP into SAT: the di-

rect, support, minimal support and interval-based support, obtaining its Partial

MaxSAT versions. We prove their correctness, as well as some properties of

the encodings. Second, we report on an empirical comparison of the defined

encodings using both branch-and-bound and SAT-based MaxSAT solvers.

Chapter 6: Generation of Hard MaxSAT Instances. We describe and empir-

ically evaluate MaxSAT instance generators of adjustable hardness for testing

MaxSAT solvers. The generators encode into MaxSAT the following combina-

torial optimization problems: Max1+pSAT, Partial Max2SAT, MaxCut, and

rectangular bin packing. The empirical evaluation of the proposed generators

shows that they produce challenging and suitable benchmarks for both branch-

and-bound and SAT-based MaxSAT solvers.

Chapter 7: Conclusions. We briefly summarize the main contributions of the the-

sis, and point out some open problems and future research directions that we

plan to tackle in the near future.
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Chapter 2

The SAT Problem

In this chapter we define the SAT problem and present an overview of solving tech-

niques frequently used in SAT. In Section 2.1, we define the syntax and semantics

of CNF formulas. In Section 2.2, we review the most relevant methods for solving

SAT. In Section 2.2.1, we describe the most popular complete algorithms: the res-

olution method [Rob65], the Davis-Putnam procedure (DP) [DP60], and the Davis-

Logemann-Loveland procedure (DLL) [DLL62]; and in Section 2.2.2, we describe two

well-known local search algorithms: GSAT [SLM92] and WalkSAT [SKC94].

In some parts of this chapter we follow closely the presentation of [Arg08]. The

aim of including this chapter is to have a self-contained document, but not provide a

scientific contribution.

2.1 Satisfiability preliminaries

Given a finite set of Boolean variables {x1, . . . , xn}, a variable xi may take values 0

(for false) or 1 (for true). A literal `i is a propositional variable xi or its negation ¬xi.
The complementary of a literal `, denoted by ¯̀, is x if ` = ¬x and is ¬x if ` = x.

A clause is a disjunction of literals, and a CNF formula is a conjunction of clauses.

A CNF formula is often represented as a set of clauses.

The size of a clause C , denoted by |C|, is the total number of literal occurrences

in the clause. A clause with one literal is called unit clause, with two literals is called

9
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binary clause, and with three literals is called ternary clause. The size of a CNF

formula φ, denoted by |φ|, is the sum of the sizes of all its clauses.

A truth assignment I is a mapping that assigns to each propositional variable

either the value 0 or the value 1. A truth assignment satisfies a literal xi if xi takes

the value 1, and satisfies a literal ¬xi if xi takes the value 0; satisfies a clause if it

satisfies at least one literal of the clause; and satisfies a CNF formula if it satisfies all

the clauses of the formula. A CNF formula is satisfiable if there exists an assignment

that satisfies the formula; otherwise, it is unsatisfiable. When an assignment does not

satisfy a literal (clause, CNF formula), we say that it is falsified.

A CNF formula is a tautology if it is satisfied by any truth assignmet. An empty

clause, denoted by �, is a clause with no literals. An empty clause is unsatisfied by

any truth assignment. Two CNF formulas are equivalent if they are satisfied by the

same set of assignments.

A truth assignment is complete if all the variables ocurring in the CNF formula φ

have been assigned; otherwise, it is partial.

In a partial truth assignment for a CNF formula, there exits three kind of clauses:

the satisfied clauses, these clauses contain at least one satisfied literal; the unsatisfied

clauses, in which all the literals in the clause are falsified, and the unresolved clauses,

the clauses that the partial assignment makes them not to be decided. The unassigned

literals of a clause are referred to as its free literals. In a search context, an unresolved

clause is said to be unit if the number of its free literals is one. Similarly, an unresolved

clause with two free literals is said to be binary, and an unresolved clause with three

free literals is said to be ternary.

The Satisfiability Problem (SAT ) for a CNF formula φ is the problem of deciding

if there is a truth assignment that satisfies φ.

Example 2.1 Let us consider a CNF formula φ having three clauses c1, c2 and c3:

c1 : x1 ∨ ¬x2

c2 : x1 ∨ x3

c3 : ¬x1 ∨ x2 ∨ x3
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Suppose that the we have the following partial truth assignment {I(x1) = 0, I(x2) =

0}. This means that clauses c1 and c3 are satisfied and clause c2 is unresolved. Notice

that clause c2 is also unit because x3 is the only free literal. Therefore, the CNF

formula is unresolved.

Suppose now that this assignment is completed by adding I(x3) = 0. Then, clause

c2 becomes unsatisfied. Finally, if we have the assignment {I(x1) = 1, I(x2) =

0, I(x3) = 1}, all the clauses are satisfied.

2.2 Satisfiability algorithms

We review the solving techniques which are frequently used in SAT. First, we describe

some well-known complete algorithms, and then some local search algorithms. Com-

plete algorithms perform a search through the space of all possible truth assignments,

in a systematic manner, to prove either a given formula is satisfiable (the algorithm

finds a satisfying truth assignment) or unsatisfiable (the algorithm explores the en-

tire search space without finding any satisfying truth assignment). By contrast, local

search algorithms usually do not explore the entire search space, and a given truth

asssignment can be considered more than once.

Concerning complete algorithms, Section 2.2.1 starts by presenting the resolution

method, which applies an inference rule that provides a refutation complete inference

system. Then, it describes DP, the first effective method for producing resolution

refutations. Finally, it presents the DLL procedure, implemented in the majority of

the state-of-the-art complete SAT algorithms, and reviews the main solving techniques

that have been incorporated into DLL in order to devise fast SAT solvers. Concerning

local search algorithms, Section 2.2.2 describes basic solving techniques of local search

algorithms for SAT, including a description of GSAT and WalkSAT.
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2.2.1 Complete algorithms

Resolution Method

Resolution is one of the complete methods used to solve SAT. It is based on the

resolution rule, which provides a refutation complete inference system [Rob65].

Given two clauses c1, c2, called parent clauses, then r is a resolvent of c1 and c2 if

there is one literal ` ∈ c1 such that ¯̀∈ c2, and r has the form

r = (c1 \ {`}) ∪ (c2 \ {¯̀}).

. .

. .

c1 c2

r

Figure 2.1: Resolution rule: r is a resolvent of the parent clauses c1 and c2

The resolution step for a CNF formula φ, denoted by Res(φ), is defined as follows:

Res(φ) = φ ∪ {r | r is a resolvent of two clauses in φ}

The resolution procedure consists in computing resolution steps to a formula φ until

the empty clause is derived or no more new resolvents exist. Then, the formula

is unsatisfiable if � ∈ φ; otherwise, φ is satisfiable. Algorithm 2.1 describes this

procedure [Sch89].

The Davis-Putnam procedure

The first effective method for producing resolution refutations was the Davis-Putnam

procedure (DP) [DP60]. DP is based on iteratively simplifying the formula until the

empty clause is generated or until the formula is empty. It consists of three rules:

1. Unit Propagation (UP), also referred to as Boolean constraint propaga-

tion [ZM88], is the iterated application of the Unit Clause (UC) rule (also
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Algorithm 2.1: Resolution(φ): Resolution based SAT algorithm

Output: Satisfiability of φ

Function Resolution( φ : CNF formula) : Boolean

repeat

φ′ ← φ

φ← Res(φ)

until � ∈ φ ∨ φ = φ′

if � ∈ φ then return false

else return true

referred to as the one-literal rule) until an empty clause is derived or there are

no unit clauses left. If a clause is unit, then its literal must be assigned the value

true. If {`} is a unit clause of a CNF formula φ, UC consists in deleting all the

clauses of φ with literal ` and removing all the occurrences of literal ¯̀.

2. Pure literal rule (also referred to as monotone literal rule ). A literal is pure

if its complementary literal does not occur in the CNF formula. The satisfiability

of a CNF formula is unaffected by satisfying its pure literals. Therefore, all

clauses containing a pure literal can be removed.

3. Resolution is applied in order to iteratively eliminate each variable from the

CNF formula. In order to do so, DP applies a refinement (a restriction) of

the resolution method, known as variable elimination: Let C` be the set of

clauses containing ` and C¯̀ the set of clauses containing ¯̀, the method consists

in generating all the non-tautological resolvents using all clauses in C` and all

clauses in C¯̀, and then removing all clauses in C` ∪ C¯̀. After this step, the CNF

formula contains neither ` nor ¯̀.

The pseudo-code of DP is given in Algorithm 2.2. The algorithm selects a variable

to be eliminated among the shortest clauses. The worst-case memory requirement

for DP is exponential. In practice, DP can only handle SAT instances with tens of

variables because of this exponential blow-up [Urq87, CS00]. The procedure stops
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Algorithm 2.2: DavisPutnam(φ) : Davis-Putnam procedure for SAT

Output: Satisfiability of φ

Function DavisPutnam(φ : CNF formula) : Boolean

UnitPropagation(φ)

PureLiteralRule(φ)

if φ = ∅ then return true

if � ∈ φ then return false

`← literal in c ∈ φ having c the minimum length

R` ← all possible non-tautological resolvent clauses between all clauses in

C` and all clauses in C¯̀

return DavisPutnam(φ ∪R` \ (C` ∪ C¯̀))

applying resolution when the CNF formula is found to be either satisfiable or unsatis-

fiable. It is declared to be unsatisfiable whenever a conflict is reached, detected while

applying rule UC. If no conflict is reached, the CNF formula becomes empty and is

declared to be satisfiable.

Example 2.2 Given the following CNF formula, we demonstrate its satisfiability us-

ing algorithm DP:

x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x3 ∨ x5) ∧ (¬x1 ∨ ¬x3 ∨ ¬x5)

We show the steps applied by algorithm DP using a table. In the first column, the

input formula is displayed, where each line represents a different clause. The rest of

the columns represent the result of applying UC. The table below shows the application

of the rule to literal x1. Removed clauses are marked with a ’×’ and modified clauses
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are displayed in bold.

φ x1

(x1) ×
(x1 ∨ x2) ×
(x2 ∨ x4) (x2 ∨ x4)

(¬x1 ∨ x3 ∨ ¬x4) (x3 ∨ ¬x4)

(x3 ∨ x5) (x3 ∨ x5)

(¬x1 ∨ ¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

In a second step, DP applies the pure literal rule. The table below shows the application

of the rule to literal x2, and then to literal ¬x4.

φ′ x2 ¬x4

(x2 ∨ x4) ×
(x3 ∨ ¬x4) (x3 ∨ ¬x4) ×
(x3 ∨ x5) (x3 ∨ x5) (x3 ∨ x5)

(¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

Finally, DP applies resolution. The table below shows the elimination of variable x3.

Observe that a tautological clause appears, and is removed by the method.

φ′′ x3

(x3 ∨ x5) ×
(¬x3 ∨ ¬x5) (x5 ∨ ¬x5) ×

At the end, the CNF formula becomes empty. Thus, the original CNF formula is

satisfiable.

The Davis-Logemann-Loveland procedure

The vast majority of state-of-the-art complete SAT algorithms are built upon the

backtrack search algorithm of Davis, Logemann and Loveland (DLL) [DLL62]. DLL

replaces the application of resolution in DP by the splitting of the CNF formula into

two subproblems. Given a literal ` occurring in φ, the first subproblem (φ¯̀) is the
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application of UC over φ with ¯̀, and the second subproblem (φ`) is the application of

UC over φ with `. Then, φ is unsatisfiable if and only if φ` and φ¯̀ are unsatisfiable.

This method is shown in Algorithm 2.3.

Procedure DLL essentially constructs a binary search tree in a depth-first manner.

The leaf nodes not containing empty clauses represent complete assignments (i.e., all

variables are assigned) while internal nodes represent partial assignments (i.e., some

variables are assigned, the rest are free). The DLL procedure explores the search tree

and determines that there exists an assignment that satisfies the input formula if the

empty formula is derived, and that there exists no assignment that satisfies the input

formula if all the branches of the search tree contain the empty clause.

DLL incorporates Unit Propagation and Pure Literal Rule in order to avoid

the explicit exponential enumeration of the whole search space. Using a variable

selection heuristic, the branching variables are selected to reach a dead-end as early

as possible.

Example 2.3 The search tree for the CNF formula below is displayed in Figure 2.2.

Γ0 = φ : (x1 ∨ x5) ∧ (x1 ∨ ¬x6) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x4)∧
(¬x2 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ x6)

Solid lines are for splitting assignments, and dashed lines are for unit propagation and

monotone literal assignments. Black nodes mark reached conflicts.

The subproblem associated with each internal node are as follows:
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Algorithm 2.3: DavisLogemannLoveland(φ) : DLL procedure for SAT

Output: Satisfiability of φ

Function DavisLogemannLoveland(φ : CNF formula) : Boolean
UnitPropagation(φ)

PureLiteralRule(φ)

if φ = ∅ then return true

if � ∈ φ then return false

`← literal in c ∈ φ having c the minimum length

return ( DavisLogemannLoveland(φ`) ∨ DavisLogemannLoveland(φ¯̀))

Γ10 = Γ0(¬x1) : (x5), (¬x6), (¬x2 ∨ x4), (x2 ∨ ¬x4), (¬x2 ∨ ¬x4 ∨ ¬x5), (x2 ∨ x4 ∨ ¬x3),

(x2 ∨ x3 ∨ x6)

Γ11 = Γ0(x1) : (¬x2 ∨ ¬x4 ∨ ¬x5), (x2 ∨ x4 ∨ ¬x3), (¬x2), (x2 ∨ x3 ∨ x6)

Γ20 = Γ10(x5) : (¬x6), (¬x2 ∨ x4), (x2 ∨ ¬x4), (¬x2 ∨ ¬x4), (x2 ∨ x4 ∨ ¬x3), (x2 ∨ x3 ∨ x6)

Γ21 = Γ11(¬x2) : (x4 ∨ ¬x3), (x3 ∨ x6)

Γ30 = Γ20(¬x6) : (¬x2 ∨ x4), (x2 ∨ ¬x4), (¬x2 ∨ ¬x4), (x2 ∨ x4 ∨ ¬x3), (x2 ∨ x3)

Γ31 = Γ21(x4) : (x3 ∨ x6)

Γ40 = Γ30(¬x2) : (¬x4), (x4 ∨ ¬x3), (x3)

Γ41 = Γ30(x2) : (x4), (¬x4)

Γ50 = Γ40(x3) : (¬x4), (x4)

Figure 2.2 shows that the input CNF formula is satisfiable because all the variables

have been assigned and the empty formula is reached.

The authors in [DLL62] identified three advantages of DLL over DP:

1. DP increases the number and length of the clauses rather quickly. DLL never

increases the length of clauses.

2. Many redundant clauses may appear after resolution in DP, and seldom after

splitting in DLL.
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. .

..

Γ0 = φ

Γ10 = Γ0(¬x1)

¬x1

Γ20 = Γ10(x5)

x5

Γ30 = Γ20(¬x6)

¬x6

Γ40 = Γ30(¬x2)

¬x2

Γ50 = Γ40(x3)

x3

x4

Γ41 = Γ30(x2)

x2

x4

Γ11 = Γ0(x1)

x1

Γ21 = Γ11(¬x2)

¬x2

Γ31 = Γ21(x4)

x4

x3

√

Figure 2.2: Search tree for DLL applied to Example 2.3.

3. DLL often can yield new unit clauses, while DP not often will.

Solving techniques for improving DLL

In this section we focus on important solving techniques that should be taken into

account when developing SAT solvers that implement the DLL procedure: the variable

selection heuristic, the data structures, clause learning, application of restarts, and
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reasoning on special structures. Our description of clause learning follows closely the

presentation of [Zha03].

Among the most relevant complete algorithms developed in the last years based

on the DLL procedure, we highlight the following ones:

CryptoMiniSat [Soo09] by Mate Soos.

Glucose [AS09] by Gilles Audemard and Laurent Simon.

GRASP [MSS99] by João Marques-Silva and Karem Sakallah.

MiniSat [ES03] by Niklas Eén and Niklas Sörensson.

Plingeling [Bie10a] by Armin Biere.

PrecoSAT [Bie10b] by Armin Biere.

Satz [LA97b] by Chu Min Li and Anbulagan.

zChaff [MMZ+01] by Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao

Zhang and Sharad Malik.

Variable selection heuristics The variable selection heuristic is decisive for finding

as quick as possible a solution with the DLL procedure [MS99]. A bad heuristic

can lead to explore the whole search space, whereas a good heuristic allows to

cut several regions, and even not to traverse more than a single branch in the

best case.

The original variable selection heuristic in DLL selects a variable occurring in

clauses of minimum size. The variable is selected after applying unit propaga-

tion and the pure literal rule, and is used to split the CNF formula into two

subproblems.

Example 2.4 Let φ be the following CNF formula:

(¬x1∨x2)∧(¬x2∨x4∨¬x3)∧(x1∨¬x5)∧(x2∨x4∨x6)∧(¬x2∨x4∨x6)∧(x2∨¬x3∨x4)



20 Chapter 2. The SAT Problem

The shortest clauses in φ are (¬x1 ∨ x2) and (x1 ∨ ¬x5), hence the heuristic of

DLL chooses any of the following variables: x1, x2 or x5.

The MOMS (Maximum Occurrences in clauses of Minimum Size)[DABC93,

Pre93] heuristic is an improvement of the previous heuristic. It selects a vari-

able having the maximum number of occurrences in clauses of minimum size.

Intuitively, these variables allow to well exploit the power of unit propagation

and to increase the chances to reach an empty clause [Fre95].

Example 2.5 Let φ be the CNF formula of Example 2.4. The shortest clauses

in φ are (¬x1 ∨ x2) and (x1 ∨ ¬x5), hence MOMS heuristic chooses variable x1

because it occurs twice.

The two-sided Jeroslow-Wang (JW) heuristic [JW90, HV95] is based on the

same principle as MOMS. It gives priority to the variables that appear in the

shortest clauses. In contrast to MOMS, the number of occurrences in the rest

of clauses is also taken into account. The chances that a variable is selected by

JW is inversely proportional to the size of the clauses in which it appears. JW

uses a function J that takes as input a literal ` and returns a weight for such a

literal.

J(`) =
∑

{c∈φ|`∈c}
2−|c|,

where |c| is the number of literals in clause c. JW chooses a variable x that

maximizes J(x) + J(¬x).

Example 2.6 Let φ be the CNF formula of Example 2.4. With function J , one

can get: J(x1) = 0.25, J(¬x1) = 0.25,incomplete J(x2) = 0.5, J(¬x2) = 0.25,

J(x3) = 0, J(¬x3) = 0.25, J(x4) = 0.5, J(¬x4) = 0, J(x5) = 0, J(¬x5) = 0.25,

J(x6) = 0.25, J(¬x6) = 0. The variable x2 with J(x2)+J(¬x2) = 0.75 is chosen

by heuristic JW.
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Several heuristics based on unit propagation have been proved useful and al-

low to exploit yet more the power of unit propagation; e.g., the heuristics of

POSIT [Fre95], Tableau [CA96] and Satz [LA97a]. A unit propagation heuristic

works as follows: Given a variable x, it examines x by respectively adding the

unit clause x and ¬x to a CNF formula, and independently computes two unit

propagations. The real effect of the unit propagations is then used to weight x

and detect failed literals. A failed literal is a literal whose addition to a CNF

formula brings the empty clause after unit propagation.

Given a CNF formula φ, this heuristic requires propagating a literal x to count

the clauses reduced in the subproblem obtained, and to follow the same process

with the complementary literal ¬x. Let w(x) and w(¬x) be the number of

clauses reduced by x and ¬x respectively. This heuristic consist in choosing the

variable which maximizes at the same time w(x) and w(¬x), maximizing the

following function: F (x) = w(x)∗w(¬x)∗1024+w(x)+w(¬x). If literal x (¬x)

is a failed literal, then ¬x (x) is fixed. This approach makes possible to better

prevent the consequences that the choice of the literal will produce.

Example 2.7 Let φ be the CNF formula of Example 2.4. The application of

function w to each literal produces the following values: w(x1) = 3, w(¬x1) = 1,

w(x2) = 2, w(¬x2) = 4, w(x3) = 2, w(¬x3) = 0, w(x4) = 0, w(¬x4) = 4,

w(x5) = 4, w(¬x5) = 0, w(x6) = 0, w(¬x6) = 2. The variable x2 with w(x2) =

2, w(¬x2) = 4 is chosen by a unit propagation based heuristic.

However, since examining a variable by two unit propagations is time consuming,

two major problems remain open: should one examine all the free variable

by unit propagation at every node of a search tree? Otherwise, what are the

variables to be examined at a search tree node? In [LA97a], the authors try

to experimentally address these two questions in order to obtain an optimal

exploitation. They define a predicate PROPz at a search tree node whose
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meaning is the set of variables that will be examined at the node; i.e., variable

x is examined if PROPz(x) is true.

PROPz is defined as follows: if there are more than T (parameter empirically set

to 10) variables occurring both negatively and positively in binary clauses and

having at least 4 binary occurrences, then only all these variables are examined;

otherwise, if there are more than T variables occurring both negatively and

positively in binary clauses and having at least 3 binary occurrences, then only

all these variables are examined; otherwise all the free variables are examined.

Another approach consists in selecting a variable that is likely to be a backbone

variable [DD01, KSTW05]. A variable is a backbone variable if the variable

has assigned the same value in all the solutions. Given a CNF formula φ, this

heuristic tries first on variables that belong (or are expected to belong) to the

backbone of φ. If backbone variables are selected first, the algorithm searches

through fewer branches, speeding up the solver. The heuristic of Satz and the

heuristics based on the notion of backbone are quite effective on computationally

difficult random SAT instances.

The previous heuristics were created without the addition of learning techniques

into SAT solvers. The two following heuristics are thought for this kind of

solvers, focusing on a kind of locality rather than focusing on formula simpli-

fication [Mit05]. For the solver zChaff [MMZ+01, ZM02, Zha03], the authors

proposed a branching heuristic called Variable State Independent Decaying Sum

(VSIDS). This heuristic keeps a score for each literal. Initially, the score is the

number of occurrences of the literal in the initial problem. Because of the

learning mechanism, clauses are added to the formula as the search progresses.

VSIDS increases the score of a literal by a constant whenever an added clause

contains the literal. More than to develop an accurate heuristic, the motivation

was to design a fast and dynamically adapting heuristic.

The SAT solvers BerkMin [GN01] and siege [Rya04] have improved the VSIDS

heuristic. BerkMin also measures the age of the clauses and the activity for



2.2. Satisfiability algorithms 23

deciding the next branching variable, whereas siege gives priority to assigning

variables on recently recorded clauses.

Efficient data structures The performance of the DLL procedure critically de-

pends upon the care taken in the implementation. Solvers implementing DLL

spend much of their time applying unit propagation [Zha97, LMS02], and this

has motivated the definition of several proposals to reduce the cost of applying

unit propagation.

The simplest and more intuitive implementation of unit propagation is to keep

counters for each clause. This schema is attributed to Crawford and Au-

ton [CA93] by [ZS96]. Similar schemas were since then employed in many

solvers such as GRASP [MSS99], Relsat [BS97] and Satz [LA97a]. For example,

in GRASP each clause keeps two counters, one for the satisfied literals in the

clause and another for the unsatisfied literals in the clause. Each variable has

two lists that contain all the clauses in which that variable appears with positive

and negative polarity. When a variable is assigned a value, the counters of the

clauses that contain this variable are updated. If a counter of unsatisfied literals

becomes equal to the total number of literals in the clause, then the clause is

conflicting. If a counter of unsatisfied literals is one less than the total num-

ber of literals in the clause and the counter of satisfied literals is null, then the

clause is a unit clause. A counter-based unit propagation procedure is easy to

understand and implement, but this schema may be improved.

As it is pointed out in [ZM02], Zhang and Stickel [ZS96], in order to speed up

the application of unit propagation, created a new data structure in the solver

SATO: head/tail lists. In this data structure, each clause has two pointers

associated with it, called the head and the tail pointer. A clause stores all

its literals in an array. Initially, the head pointer points to the first literal of

the clause and the tail pointer points to the last literal of the clause. Each

variable keeps four linked lists that contain pointers to clauses. Each of these

lists contains the pointers to the clauses that have their head/tail literal in
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positive/negative polarity for a given variable. Whenever a variable is assigned,

only two of the four lists are examined. The head/tail list schema is faster than

the counter-based schema because when the variable is assigned the value true

(false), the clauses that contain the variable with positive (negative) polarity are

not visited. For both the counter-based algorithm and the head/tail list-based

algorithm, undoing a variable assignment during backtrack has about the same

computational complexity as assigning the variable.

The solver zChaff implements a unit propagation algorithm based on the so-

called 2-literal watching schema. Similar to the head/tail list schema, 2-literal

watching also has two special literals, called watched literals, for each clause.

Each variable has two lists containing pointers to all the watched literals con-

taining this variable in either polarity. In contrast to the head/tail list schema of

SATO, there is no imposed order on the two pointers within a clause, and each

of the pointers can move in either direction. In addition, no references have to

be kept to the just assigned literals, since pointers do not move when backtrack-

ing is applied. This data structure was also used in the solvers BerkMin [GN01]

and MiniSat [ES03].

The main problem of pointer-based data structures is that they cannot keep

precise information about clauses with more than two free literals. The inclusion

of additional literal references as a solution has been referred in [Gel02], and

techniques to rearrange the list of literals have been investigated in [LMS05,

Nad02].

Clause learning and non-chronological backtracking When a conflicting

clause is found, a SAT solver finds out the reason of the conflict and tries to

solve it by applying a conflict analysis procedure. This procedure tells the

SAT solver that there exists no solution in the search space with the current

partial assignment, and indicates a new search space to continue the search

for a solution. The assigned variables are categorized as decision variables

(i.e., picked using a variable selection heuristic) or propagation variables (i.e.,
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assigned using unit propagation). The decision level of variable x is the number

of decision variables in an assignment that were assigned before x. We call

conflict level at the decision level at which a conflict occurs.

The simplest conflict analysis procedure is known as chronological backtracking,

and is applied in the original DLL procedure. When a conflict is detected, the

search backtracks to the most recent decision level with a variable that has

not been flipped. Chronological backtracking has good performance on random

instances and is used in SAT solvers like Satz [LA97a].

Modern SAT solvers apply a more sophisticated conflict analysis procedure,

called non-chronological backtracking or conflict direct backjumping, that can

get more information about the conflict. This procedure detects the reason

of the conflict and often backtracks to a smaller decision level which produces

the conflict. Example 2.8 shows the difference between chronological and non-

chronological backtracking.

Example 2.8 Let us consider a CNF formula φ with the following clauses

among others:

c1 : x4 ∨ x8 ∨ x9

c2 : x4 ∨ x8 ∨ ¬x9

c3 : x4 ∨ ¬x8 ∨ x9

c4 : x4 ∨ ¬x8 ∨ ¬x9

... :
...

cm : . . .

and lexicographical order as variable selection heuristic. Suppose we assign all

the variables to false until decision level 7 without finding conflicts. When we

reach the decision level 8, we detect a contradiction when the variable x8 is set to

false between clauses c1 and c2, and between clauses c3 and c4 if we set variable

x8 to true. A chronological backtracking solver would backtrack to decision level 7

because it is the previous decision level with a variable that has not been flipped.

However, flipping variables at a decision level greater than 4 does not resolve
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the conflict. A non-chronological backtracking solver can analyze this particular

problem, determine the variable that produces the conflict, and backtrack to its

level. In this example, the conflict analysis procedure would resolve to backtrack

to level 4 and flip variable x4 to true.

During the conflict analysis process, the information about the current conflict

can be stored by means of redundancy [BS94, BGS99]. These redundant clauses

do not change the satisfiability of the original formula, and they help prune parts

of the search space with conflicts that involve variables of the learned conflict.

This technique is called clause learning or conflict driven clause learning, and

is used in solvers like BerkMin [GN01], Chaff [MMZ+01], GRASP [MSS99],

MiniSat [ES03] and siege [Rya04].

The implication relationships of variable assignments during the SAT solving

process can be represented in an implication graph. An implication graph is a

directed acyclic graph (DAG) in which each node represents a variable assign-

ment, and the incident edges of a vertex are the reasons that imply the variable

assignment. Figure 2.3 shows a typical implication graph. The incident edges

to node x5 are from x1 and ¬x4, which means that if x1 is true and x4 is false,

then x5 must be true. A decision vertex has no incident edge. In an implication

graph, a variable and its negation only appear when a conflict occurs. Such a

variable is called conflicting variable. The conflicting variable in Figure 2.3 is

x6.

In SAT solvers, clause learning can be applied by analyzing the implication

graph. For example, in Figure 2.3, by examining the incident vertex of the

nodes of the conflict variable, it is easy to see that the assignment of x2 and x4

to false, and x3 and x5 to true leads to the conflict between nodes x6 and ¬x6:

¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ⇒ conflict

If we want to avoid the conflict we could add the following clause:

¬(¬x2 ∧ x3 ∧ ¬x4 ∧ x5)⇔ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5
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As a result we get the conflict clause that is represented by the cut labeled as

conflict in the implication graph.

. .

. .

x1 ¬x2

x5

x6

¬x4

¬x6

x3

1-UIP conflict

Figure 2.3: Implication graph.

The example shows that we can generate a conflict clause doing a bipartition of

the implication graph. In the bipartition, we have decision variables on one side

(the reason side), and conflicting variables on the other side (the conflict side).

Each variable on the reason side with an edge to the conflict side belongs to the

learned clause. This bipartition is called a cut, and different cuts correspond to

different learning schemas.

Many learning schemas have been studied in the literature and L. Zhang com-

pares some of them in his Ph.D. Thesis [Zha03]. One of the learning schemas

with better performance, and used in modern SAT solvers, is 1-UIP (first Unique

Implication Point) [MSS99]. A UIP is a vertex that dominates both vertices cor-

responding to the conflicting variable. The UIP is not unique, and we can find

more than one in an implication graph. The 1-UIP learning schema picks the

UIP closer to the conflict and cuts just after it. In Figure 2.3, there is only one

UIP, represented by vertex ¬x4, and the 1-UIP learning schema is represented

by the cut labeled 1-UIP. The learned clause of this cut is ¬x1 ∨ x2 ∨ ¬x3 ∨ x4.
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The number of learned clauses can increase drastically the size of the database

of clauses. Several clause deletion strategies have been proposed [GN01, BS97]

but it is still an open topic.

Reasoning on special structures in SAT problems. Given that many problems

like pigeonhole or graph coloring involve a great deal of symmetry in their argu-

ments, there has been suggested to add so-called symmetry-breaking clauses to

the original formula [CGLR96, ASM06]; these are clauses that break the exist-

ing symmetry without affecting the overall satisfiability of the formula. Rather

than modifying the set of clauses in the problem, it is also possible to mod-

ify the notion of inference, so that once a particular conflict has been derived,

symmetric equivalents can be derived in a single step [Kri85].

Another explored deduction mechanism for special structured instances is equiv-

alence reasoning. Solver eqsatz [Li03] incorporated equivalence reasoning into

the Satz solver and found that it is effective on some particular classes of bench-

marks. In that work, the equivalence reasoning is accomplished by a pattern-

matching schema for equivalence clauses. In particular, finding equivalences of

the type x1 ↔ x2 can reduce the number of variables and clauses of the for-

mula, since variables x1 and x2 can be collapsed into one variable. A related

deduction mechanism was proposed in [LMS01]. There, the authors propose to

include more patterns in the matching process for simplification purposes in de-

duction. A more complex equivalence reasoning, with several steps, is performed

in [WvM98, HDvMvZ04] as a preprocessing.

2.2.2 Incomplete algorithms

Local search for SAT

Complete algorithms explore, in a systematic manner, the entire search space in order

to prove the satisfiability of a given formula. So, one of the problems of complete meth-

ods (e.g., DP and DLL),is their inability to solve hard random 3-SAT instances with
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more than 700 propositional variables within a reasonable amount of time [DD01].This

problem can be overcomed using incomplete methods. An incomplete method in SAT

can find a satisfying assignment, but cannot prove the unsatisfiability of a CNF for-

mula. If a solution is found, the formula is declared satisfiable and the algorithm

terminates successfully; but if the algorithm fails to find a solution, no conclusion can

be drawn. The most known local search methods in SAT are GSAT [SLM92] and

WalkSAT [SKC94]. By contrast, these procedures are able to solve hard instances

with more than 100,000 variables, though completeness is lost.

Local search methods start typically with some ramdomly generated complete

assignment and try to find a satisfying assignment by iteratively changing the as-

signment of one propositional variable. Each change of the assignment of a variable

is called a variable flip, and variables are selected heuristically. Such changes are

repeated until either a satisfying assignment is found or a pre-set maximun number

of changes is reached.This process is repeated as needed, up to a pre-set number of

times. This allows to explore the search space moving from one search space position

to a neighboring position. The decision on each step (change) is based on information

about local neighborhood only. Usually, local search algorithms do not explore the

entire search space, and a given assignment may be considered more than once.

The main difference among the different local search algorithms for SAT lies in

the strategy used to select the variable to be flipped next. Furthermore, local search

algorithms can get trapped in local minima and plateau regions of the search space,

leading to premature stagnation of the search. One of the simplest mechanisms for

avoiding premature stagnation of the search is random restart, which reinitializes the

search if no solution has been found after a fixed number of steps. Random restarts

are used in almost every local search algorithm for SAT.

A general outline of a local search algorithm for SAT is given in Algorithm 2.4.

The generic procedure initializes the search at some complete truth assignment, and

then iteratively selects a variable according to the input CNF formula and the current

assignment, and flips the selected variable. If after a maximum of maxSteps flips
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Algorithm 2.4: LocalSearch(φ) : General local search procedure

Output: Satisfying assignment of φ or ’no solution found’

for 1 to maxTries do

A← initAssign(φ)

for 1 to maxSteps do
if A satisfies φ then return A

else

x← chooseVariable(φ,A)

A← A with truth value of x flipped

return ’no solution found’

no solution is found, the algorithm restarts from a new randomly generated initial

assignment. If after a given number maxTries of such tries still no solution is found,

the algorithm terminates unsuccessfully.

We now focus on the GSAT and the WalkSAT algorithms, which have provided

a major driving force in the development of local search algorithms for SAT [SHR01,

HS04].

GSAT algorithm

The GSAT algorithm was introduced in 1992 [SLM92]. It is based on a rather simple

idea: GSAT tries to maximize the number of satisfied clauses by a greedy ascent in the

space of truth assignments. The variable selection in GSAT and most of its variants

is based on the score of a variable x under the current assignment A, which is defined

as the difference between the number of clauses falsified by the assignment obtained

by flipping x in A and the number of clauses falsified by A.

The basic GSAT algorithm uses the following instantiation of the procedure choo-

seVariable(φ, A): In each local search step, one of the variables with maximal score

is flipped. If there are several variables with maximal score, one of them is randomly

selected according to a uniform distribution.
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WalkSAT algorithm

The WalkSAT algorithm was described by Selman, Kautz, and Cohen in 1994 [SKC94].

It is based on a 2-stage variable selection process focused on the variables occurring

in currently unsatisfied clauses. For each local search step, in a first stage a currently

unsatisfied clause c′ is randomly selected. In a second step, one of the variables

appearing in c′ is then flipped to obtain the new assignment.

Thus, while the GSAT algorithm is characterized by a static neighborhood rela-

tion between assignments with Hamming distance one, the variable to be flipped in

WalkSAT is no longer picked among all the variables but from a randomly selected

unsatisfied clause [SHR01].

Other local search algorithms

Following the steps of GSAT and WalkSAT, the most relevant local search algorithms

developed in the last years are the following ones:

HSAT [GW93] by Ian Gent and Toby Walsh.

TSAT [MSG97] by Bertrand Mazure, Lakhdar Säıs and Eric Grégoire.

novelty [MSK97] by McAllester, Selman, Kautz.

novelty+ [Hoo99] by Holger Hoos.

SAPS [HTH02] by Holger Hoos et al.

g2wsat [LH05] by Chu Min Li et al.

Most of these techniques can be checked in solver UBCSAT [TH05], from the Univer-

sity of British Columbia (UBC).

Other local search algorithms developed recently are the following ones:

adaptg2wsat2011 [LWZ07] by Chumin Li, Yu Li and Wanxia Wei.

EBGlucose [Mat11a] by Bryan Matsuo.

EBMiniSat [Mat11b] by Bryan Matsuo.
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2.3 Summary

We have presented an overview of the solving techniques most commonly used in SAT.

Firstly, basic concepts in satisfiability testing have been introduced. Secondly, com-

plete algorithms for SAT solving such as the DP procedure and the DLL procedure,

as well as efficient techniques implemented in complete SAT solvers, are presented.

Finally, two of the most representative local search algorithms have been described.
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The MaxSAT Problem

In this chapter we introduce the MaxSAT problem and present an overview of the

solving techniques implemented in modern exact MaxSAT solvers. In Section 3.1, we

define basic concepts, and the extensions of MaxSAT known as Weighted MaxSAT,

Partial MaxSAT and Weighted Partial MaxSAT. In Section 3.2, we give a brief de-

scription of the MaxSAT solvers that participated in the 2010 MaxSAT Evaluation.

In Section 3.3, we describe how the branch-and-bound schema is adapted to solve

MaxSAT, and explain in detail the methods most frequently used to compute lower

bounds. In Section 3.4, we describe how to solve MaxSAT by solving a sequence of

SAT instances, and review the most representative SAT-based MaxSAT solvers. In

some parts of this chapter we follow closely the presentation of [LM09].

3.1 MaxSAT preliminaries

Given a finite set of Boolean variables {x1, . . . , xn}, a variable xi may take the value

0 (for false) or the value 1 (for true). A literal li is a variable xi or its negation ¬xi.
A clause is a disjunction of literals, and a CNF formula is a collection of clauses.

In SAT, a CNF formula is considered to be a set of clauses while, in MaxSAT,

a CNF formula is considered to be a multiset of clauses, because repeated clauses

cannot be collapsed into a unique clause. For instance, the multiset {x1,¬x1,¬x1, x1∨
x2,¬x2}, where a clause is repeated, has a minimum of two unsatisfied clauses. If we

33
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consider the set {x1,¬x1, x1 ∨ x2,¬x2}, where repeated clauses are collapsed, then it

has a minimum of one unsatisfied clause.

A weighted clause is a pair (C,w), where C is a clause and w is its weight. The

weight can be a natural number or infinity. Its meaning is the penalty (cost) for

falsifying the clause C. A clause is hard if its corresponding weight is infinity, otherwise

the clause is soft. A weighted CNF formula φ is a multiset of weighted clauses,

φ = {(C1, w1), . . . , (Cm, wm)}. The length of a (weighted) clause is the total number

of literal occurrences in the clause. A (weighted) clause with one literal is called unit,

with two literals is called binary, and with three literals is called ternary. The size

of a (weighted) CNF formula φ, denoted by |φ|, is the sum of the lengths of all its

clauses.

A weighted partial CNF formula φ is a multiset of weighted clauses φ =

{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+k,∞)}, where the first m clauses are

soft, and the last k clauses are hard. If the weight of the soft clauses of φ is 1,

then we say that φ is a Partial CNF formula.

A truth assignment I is a mapping that assigns to each propositional variable

either the value 0 or the value 1. A truth assignment I satisfies a literal xi if xi takes

the value 1 and satisfies a literal ¬xi if xi takes the value 0, satisfies a clause if it

satisfies at least one literal of the clause, and satisfies a CNF formula if it satisfies all

the clauses of the formula. A CNF formula is satisfiable if there exists an assignment

that satisfies the formula; otherwise, it is unsatisfiable. An empty clause, denoted by

�, contains no literals and cannot be satisfied. A tautology is a CNF formula that is

satisfied by any truth assignment.

A truth assignment I satisfies a weighted clause (Ci, wi) if it satisfies Ci, and

satisfies a weighted CNF formula {(C1, w1), . . . , (Cm, wm)} if it satisfies C1, . . . , Cm.

Given a CNF formula φ, the SAT problem consists in deciding whether there

exist a satisfying assignment for φ, and the MaxSAT problem consists in finding an

assignment that maximizes the number of satisfied clauses in φ, or equivalently, that

minimizes the number of falsified clauses.
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Example 3.1 Let us consider a MaxSAT instance φ with the following clauses:

c1 : x1 ∨ x2

c2 : ¬x1

c3 : ¬x1 ∨ ¬x2

c4 : ¬x2 ∨ x3

c5 : x1 ∨ ¬x2

c6 : ¬x3

An optimal solution for φ is the assignment {I(x1) = 1, I(x2) = 0, I(x3) = 0},
which satisfies 5 clauses. The clause falsified by this assignment is c2.

We will consider several extensions of the MaxSAT problem which are more well-

suited for representing and solving over-constrained problems: Weighted MaxSAT,

Partial-MaxSAT, and Weighted Partial MaxSAT.

The Weighted MaxSAT problem for a weighted CNF formula φ is the problem of

finding an assignment that minimizes the sum of weights associated with unsatisfied

clauses (or equivalently, that maximizes the sum of weights associated with satisfied

clauses) in φ.

Example 3.2 Let us consider a Weighted MaxSAT instance φ having the following

clauses:

c1 : (x1 ∨ x2; 4)

c2 : (¬x1; 3)

c3 : (¬x1 ∨ ¬x2; 5)

c4 : (¬x2 ∨ x3; 3)

c5 : (x1 ∨ ¬x2; 2)

c6 : (¬x3; 1)

An optimal solution for φ is the assignment {I(x1) = 0, I(x2) = 1, I(x3) = 1},
which maximizes the sum of weights of satisfied clauses or, equivalently, that mini-

mizes the sum of weights of falsified clauses. The maximum sum of weights of satisfied

clauses is 15, and the minimum sum of weights of falsified clauses is 3. This assign-

ment falsifies the clauses c5 and c6.
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The Partial MaxSAT problem for a Partial CNF formula φ is the problem of

finding an assignment that satisfies all the hard clauses and the maximum number

of soft clauses in φ. Hard clauses are represented between square brackets, and soft

clauses are represented between round brackets.

Example 3.3 Let us consider a Partial MaxSAT instance φ having the following

clauses:

c1 : [x1 ∨ x2]

c2 : [¬x1]

c3 : [¬x1 ∨ ¬x2]

c4 : (¬x2 ∨ x3)

c5 : (x1 ∨ ¬x2)

c6 : (¬x3)

c7 : (x1 ∨ ¬x2 ∨ ¬x3)

An optimal solution for φ is the assignment {I(x1) = 0, I(x2) = 1, I(x3) = 0},
which satisfies all the hard clauses and maximizes (minimizes) the number of satisfied

(falsified) soft clauses. The maximum (minimum) number of satisfied (falsified) soft

clauses is 2 (2), and the satisfied (falsified) soft clauses are c6 and c7 (c4 and c5).

The Weighted Partial MaxSAT problem is the combination of Weighted MaxSAT

and Partial MaxSAT. The Weighted Partial MaxSAT problem for a weighted partial

CNF formula φ is the problem of finding an assigment that satisfies all the hard

clauses and minimizes the sum of weights associated with unsatisfied soft clauses in

φ (or equivalently, that maximizes the sum of weights associated to satisfied soft

clauses).

Example 3.4 Let us consider a Weighted Partial MaxSAT instance φ having the
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following clauses:

c1 : [x1 ∨ x2]

c2 : [¬x1]

c3 : [¬x1 ∨ ¬x2]

c4 : (¬x2 ∨ x3; 3)

c5 : (x1 ∨ ¬x2; 2)

c6 : (¬x3; 1)

c7 : (x1 ∨ ¬x2 ∨ ¬x3; 5)

An optimal solution for the Weighted Partial MaxSAT instance is the assignment

{I(x1) = 0, I(x2) = 1, I(x3) = 0}, which satisfies all the hard clauses and maximizes

(minimizes) the sum of weights of satisfied (falsified) soft clauses. The maximum

(minimum) sum of weights of satisfied (falsified) soft clauses is 6 (5), and the satisfied

(falsified) soft clauses are c6 and c7 (c4 and c5).

The MaxSAT problem can also be defined as Weighted MaxSAT restricted to

formulas whose clauses have weight 1, and as Partial MaxSAT in the case that all

the clauses are declared to be soft. The Partial MaxSAT problem is Weighted Partial

MaxSAT when the weights of soft clauses are equal. Notice that the SAT problem is

equivalent to Partial MaxSAT when there are no soft clauses.

In SAT, two formulas φ1 and φ2 are equivalent if they are satisfied by the same

set of assignments. In MaxSAT, two formulas φ1 and φ2 are equivalent if both have

the same number of unsatisfied clauses for every assignment. In Weighted MaxSAT,

two formulas φ1 and φ2 are equivalent if the sum of the weights of unsatisfied clauses

coincides for every assignment.

Finally, we introduce the integer linear programming (ILP) formulation of

Weighted MaxSAT. Let φ = (C1, w1)∧· · ·∧(Cm, wm) be a Weighted MaxSAT instance

over the propositional variables x1, . . . , xn. With each propositional variable xi, we

associate a variable yi ∈ {0, 1} such that yi = 1 if variable xi is true and yi = 0,

otherwise. With each clause Cj, we associate a variable zj ∈ {0, 1} such that zj = 1 if

clause Cj is satisfied and zj = 0, otherwise. Let I+
j be the set of indices of unnegated



38 Chapter 3. The MaxSAT Problem

variables in clause Cj, and let I−j be the set of indices of negated variables in clause

Cj. The ILP formulation of the Weighted MaxSAT instance φ is defined as follows:

maxF (y, z) =
m∑
j=1

wjzj

subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ zj j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

If we consider the minimization version of weighted MaxSAT, we assume that,

with each clause Cj, we associate a variable zj ∈ {0, 1} such that zj = 1 if clause Cj is

falsified and zj = 0, otherwise. Then, the ILP formulation of the instance φ is defined

as follows:

minF (y, z) =
m∑
j=1

wjzj

subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) + zj ≥ 1 j = 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = 1, . . . ,m

Example 3.5 The minimization version of the ILP formulation for the Weighted

MaxSAT instance φ of Example 3.2 is as follows:

minF (y, z) = 5z1 + 4z2 + 3z3 + 2z4 + 4z5 + 1z6 + 2z7
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subject to

y1 + z1 ≥ 1

(1− y1) + y2 + z2 ≥ 1

y1 + (1− y2) + y3 + z3 ≥ 1

(1− y1) + (1− y2) + z4 ≥ 1

y1 + y2 + (1− y3) + z5 ≥ 1

(1− y1) + y3 + z6 ≥ 1

(1− y1) + (1− y2) + (1− y3) + z7 ≥ 1

yi ∈ {0, 1} i = 1, 2, 3

zj ∈ {0, 1} j = 1, 2, 3, 4, 5, 6, 7

An assignment that minimizes F (y, z) is: y1 = 1, y2 = 1 and y3 = 0. The variables

zi that must be assigned to 1 are z4 and z6.

The ILP formulation of the Weighted Partial MaxSAT instance

φ = [C1] ∧ · · · ∧ [Ck] ∧ (Ck+1, wk+1) ∧ · · · ∧ (Cm, wm)

is defined as follows:

maxF (y, z) =
m∑

j=k+1

wjzj

subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ 1 j = 1, . . . , k

∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ zj j = k + 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = k + 1, . . . ,m

If we consider the minimization version of Weighted Partial MaxSAT, then the

ILP formulation of the instance φ is defined as follows:

minF (y, z) =
m∑

j=k+1

wjzj
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subject to ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ 1 j = 1, . . . , k

∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) + zj ≥ 1 j = k + 1, . . . ,m

yi ∈ {0, 1} i = 1, . . . , n

zj ∈ {0, 1} j = k + 1, . . . ,m

Example 3.6 The minimization version of the ILP formulation for the Weighted

Partial MaxSAT instance φ of Example 3.4 is as follows:

minF (y, z) = 1z1 + 2z2 + 5z3 + 6z4 + 3z5

subject to

y1 + y2 ≥ 1

(1− y1) + (1− y2) ≥ 1

y1 + (1− y2) + y3 + z1 ≥ 1

(1− y1) + y2 + y3 + z2 ≥ 1

y2 + (1− y3) + z3 ≥ 1

(1− y2) + (1− y3) + z4 ≥ 1

y3 + z5 ≥ 1

yi ∈ {0, 1} i = 1, 2, 3

zj ∈ {0, 1} j = 1, 2, 3, 4, 5

An assignment that minimizes F (y, z) is: y1 = 0, y2 = 1 and y3 = 0. The variables

zi that must be assigned to 1 are z1 and z5.

The linear programming (LP) relaxation of the previous formulations is obtained

by allowing the integer variables to take real values in [0, 1].
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3.2 MaxSAT algorithms

A new generation of exact MaxSAT solvers has been developed in recent years, in

part due to the organitzation of an international evaluation of MaxSAT solvers since

2006 [ALMP08, ALMP11a, ALMP11c]. In the 2010 MaxSAT Evaluation, a total of

17 exact MaxSAT solvers were submitted by 18 researchers from different research

groups. Table 3.1 contains the list of solvers, the categories in which the solvers

participated (u: Unweighted MaxSAT, w: Weighted MaxSAT, p: Partial MaxSAT,

wp: Weighted Partial MaxSAT) and the name of the author(s).

solver category author(s)

akmaxsat [Kue10] u,w,p,wp A. Kuegel

akmaxsat ls [Kue10] u,w,p,wp

SAT4J-Maxsat [Ber] u,w,p,wp D. Le Berre

WPM1 [ABL09] u,w,p,wp C. Ansótegui

PM2 [ABL09] u,p M.L. Bonet

WPM2 [ABL10] w, wp J. Levy

QMaxSat p M. Koshimura , T. Zhang

IncMaxSatz [LSL08] u,w,p,wp H. Lin , K. Su, C.M. Li

IncWMaxSatz [LSL08] u,w,p,wp H. Lin , K. Su, C.M. Li

J. Argelich

Maxsat Power u,w,p,wp A. Bahrami

LS Power u,p S.R. Mousavi

WMaxsat Power u,w,p,wp M. Farshchian

LSW Power w,wp

wbo 1.4a [MMSP09] u,w,p,wp V. Manquinho

wbo 1.4b [MML10] w,p,wp J. Marques-Silva, J. Planes

WMaxSatz-2009 [LMP07a] u,w,p,wp C.M. Li, F. Manyà

WMaxSatz+ [LMMP10] w,p,wp J. Argelich

Table 3.1: Participating solvers in MaxSAT-2010.

Participating solvers can be classified into two main types: branch-and-bound

(BnB) solvers and satisfiability-based (SAT-based) solvers. In the first type, we

find 10 solvers: akmaxsat, akmaxsat ls, IncMaxSatz, IncWMaxSatz, Maxsat Power,

LS Power, WMaxsat Power, LSW Power, WMaxSatz-2009, and WMaxSatz+. In the
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second type, we find 7 solvers: SAT4J-Maxsat, WPM1, PM2, WPM2, QMaxSAT,

wbo 1.4a, and wbo 1.4b.

The next two sections contain an overview of the main solving techniques imple-

mented in the above solvers. Section 3.3 is devoted to BnB MaxSAT solvers, and

Section 3.4 is devoted to SAT-based MaxSAT solvers.

3.3 Branch-and-bound algorithms

Competitive exact MaxSAT solvers —as the ones developed by [AMP03, AMP04,

AMP05, AMP08, DDDL07, HL06, HLO07, LHdG08, LMP05, LMP06, LS07, PD07,

RG07, SZ04, XZ04, XZ05, ZSM03]— implement variants of the following branch-

and-bound (BnB) schema for solving the minimization version of MaxSAT: Given a

CNF formula φ, BnB explores the search tree that represents the space of all possible

assignments for φ in a depth-first manner. At every node, BnB compares the upper

bound (UB), which is the best solution found so far for a complete assignment, with

the lower bound (LB), which is the sum of the number of clauses unsatisfied by the

current partial assignment plus an underestimation of the number of clauses that will

become unsatisfied if the current partial assignment is completed. If LB ≥ UB, the

algorithm prunes the subtree below the current node and backtracks chronologically

to a higher level in the search tree. If LB < UB, the algorithm tries to find a

better solution by extending the current partial assignment by instantiating one more

variable. The solution to MaxSAT is the value that UB takes after exploring the

entire search tree.

Figure 3.1 shows the pseudo-code of a basic solver for MaxSAT. We use the fol-

lowing notation:

• SimplifyFormula(φ) is a procedure that transforms φ into an equivalent and

simpler instance by applying inference rules.

• EmptyClauses(φ) is a function that returns the number of empty clauses in φ.
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Algorithm 3.1: MaxSAT(φ, UB) : Basic BnB algorithm for MaxSAT

Output: The minimum number of unsatisfied clauses in φ

Function MaxSAT (φ : CNF formula, UB : upper bound) : Natural

φ← SimplifyFormula(φ)

if φ = ∅ or φ only contains empty clauses then
return EmptyClauses(φ)

LB ← EmptyClauses(φ) + Underestimation(φ)

if LB ≥ UB then
return UB

x← SelectVariable(φ)

UB ← Min(UB, MaxSAT(φ¬x, UB))

return Min(UB, MaxSAT(φx, UB))

• Underestimation(φ,UB) is a function that returns an underestimation of the

minimum number of non-empty clauses in φ that will become unsatisfied if the

current partial assignment is extended to a complete assignment.

• LB is a lower bound. We assume that its initial value is 0.

• UB is an upper bound of the number of unsatisfied clauses in an optimal solu-

tion. An elementary initial value for UB is the total number of clauses in the

input formula, or the number of clauses unsatisfied by an arbitrary interpreta-

tion. Another alternative is to solve the LP relaxation of the ILP formulation

of the input instance and take as upper bound the number of unsatisfied clauses

in the interpretation obtained by rounding variable yi, for 1 ≤ i ≤ n, to an

integer solution in a randomized way by interpreting the values of yi ∈ [0, 1] as

probabilities (set propositional variable xi to true with probability yi, and set

propositional variable xi to false with probability 1 − yi). Nevertheless, most

of the solvers take as initial upper bound the minimum number of unsatisfied

clauses that are detected by executing the input formula in a local search solver

during a short period of time.
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• SelectVariable(φ) is a function that returns a variable of φ following an heuris-

tic.

• φx (φ¬x) is the formula obtained by applying the unit clause rule to φ using the

literal x (¬x).

State-of-the-art MaxSAT solvers implement the basic algorithm augmented with

powerful inference techniques, good quality lower bounds, clever variable selection

heuristics, learning of hard clauses, non-chronological backtracking, and efficient data

structures.

3.3.1 Improving the lower bound with underestimations

The methods more frequently used to compute lower bounds are based on lower bound

UP [LMP05, LMP07a]. The underestimation of UP is the number of disjoint incon-

sistent subformulas that can be detected with unit propagation. UP works as follows:

it applies unit propagation until a contradiction is derived. Then, UP identifies, by

inspecting the implication graph, a subset of clauses from which a refutation can be

constructed, and tries to identify new contradictions from the remaining clauses. The

order in which unit clauses are propagated has a significant impact on the quality of

the lower bound [LMP06]. Shen and Zhang [SZ04] defined a lower bound computation

method, called LB4, which is similar to UP but restricted to Max-2-SAT instances

and using a static variable ordering.

Example 3.7 Given the MaxSAT instance φ = {¬x1, x1 ∨ x2, x1 ∨ ¬x2, x3 ∨ x4, x3 ∨
¬x4,¬x3∨x4,¬x3∨¬x4}, we can propagate ¬x1 and detect, with unit propagation, the

inconsistent subformula {¬x1, x1 ∨ x2, x1 ∨ ¬x2}, and increase the lower bound by 1.

Once UP cannot detect more inconsistent subformulas, it can be enhanced with

failed literal detection [LMMP10, LMP06] as follows: Given a MaxSAT instance φ

and a variable x occurring positively and negatively in φ, we apply UP to φ ∧ {x}
and φ ∧ {¬x}. If UP derives a contradiction from φ ∧ {x} and φ ∧ {¬x}, then the
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union of the two inconsistent subsets identified by UP is an inconsistent subset of φ.

UP enhanced with failed literal detection does not need the occurrence of unit clauses

in the input formula for deriving a contradiction. While UP only identifies unit

refutations, UP enhanced with failed literal detection identifies non-unit refutations

too. Since applying detection of failed literals for every variable is time consuming, it

is applied to a reduced number of variables in practice.

Example 3.8 Given the MaxSAT instance of Example 3.7, once UP detects the in-

consistent subformula {¬x1, x1∨x2, x1∨¬x2}, it cannot detect any other inconsistent

subformula from the remaining clauses (φ′ = {x3∨x4, x3∨¬x4,¬x3∨x4,¬x3∨¬x4}).

However, we can detect another inconsistent subformula using failed literal detection

as follows: we apply UP to φ′ ∨ {x3} and to φ′ ∨ {¬x3}, and then derive a contradic-

tion. The union of the two detected inconsistent subsets is an inconsistens subset of

φ formed by the clauses {x3 ∨ x4, x3 ∨¬x4,¬x3 ∨ x4,¬x3 ∨¬x4}. Observe that in this

case the lower bound is increased by 2.

Modern MaxSAT solvers like akmaxsat [Kue10], MaxSatz [LMP07a, LMMP10]

and MiniMaxsat [HLO07] apply either UP or UP enhanced with failed literal detec-

tion. Darras et al. [DDDL07] developed a version of UP in which the computation of

the lower bound is made more incremental by saving some of the small size disjoint

inconsistent subformulas detected by UP. They avoid to redetect the saved inconsis-

tencies if they remain in subsequent nodes of the proof tree, and are able to solve some

types of instances faster. A similar approach is implemented in IncMaxSatz [LSL08].

Another approach for computing underestimations is based on first reducing the

MaxSAT instance we want to solve to an instance of another problem, and then solve

a relaxation of the obtained instance. For example, two solvers of the 2007 MaxSAT

Evaluation, Clone [PD07] and SR(w) [RG07], reduce MaxSAT to the minimum car-

dinality problem. Since the minimum cardinality problem is NP-hard for a CNF

formula φ and can be solved in time linear in the size of a deterministic decompos-

able negation normal form (d-DNNF) compilation of φ, Clone and SR(w) solve the

minimum cardinality problem of a d-DNNF compilation of a relaxation of φ. The
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worst-case complexity of a d-DNNF compilation of φ is exponential in the treewidth

of its constraint graph, and Clone and SR(w) obtain a relaxation of φ with bounded

treewidth by renaming different occurrences of some variables.

Xing and Zhang [XZ05] reduce the MaxSAT instance to the ILP formulation of the

minimization version of MaxSAT (c.f. Section 3.1), and then solve the LP relaxation.

An optimal solution of the LP relaxation provides an underestimation of the lower

bound because the LP relaxation is less restricted than the ILP formulation. In

practice, they apply that lower bound computation method only to nodes containing

unit clauses. If each clause in the MaxSAT instance has more than one literal, then

yi = 1
2

for all 1 ≤ i ≤ n and zj = 0 for all 1 ≤ j ≤ m is an optimal solution of the

LP relaxation. In this case, the underestimation is 0. Nevertheless, LP relaxations do

not seem to be so competitive as the rest of approaches.

3.3.2 Improving the lower bound with inference

Another approach to improving the quality of the lower bound consists in applying

inference rules that transform a MaxSAT instance φ into an equivalent but simpler

MaxSAT instance φ′. In the best case, inference rules produce new empty clauses

in φ′ that allow to increment the lower bound. In contrast with the empty clauses

derived when computing underestimations, the empty clauses derived with inference

rules do not have to be recomputed at every node of the subtree below the current

node, so that the lower bound computation is more incremental.

A MaxSAT inference rule is sound if it transforms an instance φ into an equivalent

instance φ′. It is not sufficient to preserve satisfiability as in SAT; φ and φ′ must have

the same number of unsatisfied clauses for every possible assignment. Unfortunately,

unit propagation, which is the most powerful inference technique applied in DLL-style

SAT solvers, is unsound for MaxSAT as the next example shows: the set of clauses

{x1,¬x1∨x2,¬x1∨¬x2,¬x1∨x3,¬x1∨¬x3} has a minimum of one unsatisfied clause

(setting x1 to false), but performing unit propagation with x1 leads to a non-optimal

assignment falsifying two clauses.
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MaxSAT inference rules are also called transformation rules in the literature be-

cause the premises of the rule are replaced with the conclusion when a rule is applied.

If the conclusion is added to the premises as in SAT, the number of clauses that are

falsified by an assignment might increase.

The amount of inference performed by existing BnB MaxSAT solvers at each

node of the proof tree is poor compared with the inference performed in DLL-style

SAT solvers. The simplest inference enforced, when branching on literal `, is the

following: the clauses containing ` are removed from the instance and the occurrences

of ¯̀ are removed from the clauses in which ¯̀appears, but the new unit clauses derived

as a consequence of removing the occurrences of ¯̀ are not propagated as in unit

propagation. That inference is typically enhanced with MaxSAT inference rules as

the following one: If φ1={l1, l̄1 ∨ l̄2, l2} ∪ φ′, then φ2={�, l1 ∨ l2} ∪ φ′ is equivalent

to φ1. This rule is usually represented as follows:


l1

l̄1 ∨ l̄2
l2

 =⇒
 l1 ∨ l2

 (3.1)

Notice that the rule detects a contradiction from l1, l̄1∨l̄2, l2 and, therefore, replaces

these clauses with an empty clause. In addition, the rule adds the clause l1 ∨ l2 to

ensure the equivalence between φ1 and φ2. For any assignment I such that I(l1) =

0, I(l2) = 1, or I(l1) = 1, I(l2) = 0, or I(l1) = 1, I(l2) = 1, the number of unsatisfied

clauses in {l1, l̄1∨ l̄2, l2} is 1, but for any assignment such that I(l1) = 0, I(l2) = 0, the

number of unsatisfied clauses is 2. Notice that even when any assignment I such that

I(l1) = 0, I(l2) = 0 is not the best assignment for the subset {l1, l̄1 ∨ l̄2, l2}, it can be

the best for the whole formula. By adding l1 ∨ l2, the rule ensures that the number of

unsatisfied clauses in φ1 and φ2 is also the same when I(l1) = I(l2) = 0.

The set of rules implemented in MaxSatz is formed by the previous rule and the

following rules:
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 l1

l̄1

 =⇒
{ }

(3.2)

 l1 ∨ l2 ∨ · · · ∨ lk
l̄1 ∨ l2 ∨ · · · ∨ lk

 =⇒
{
l2 ∨ · · · ∨ lk

}
(3.3)



l1

l̄1 ∨ l2
l̄2 ∨ l3
. . .

l̄k ∨ lk+1

l̄k+1


=⇒



l1 ∨ l̄2
l2 ∨ l̄3
. . .

lk ∨ l̄k+1


(3.4)



l1

l̄1 ∨ l2
l̄1 ∨ l3
l̄2 ∨ l̄3


=⇒

 l1 ∨ l̄2 ∨ l̄3
l̄1 ∨ l2 ∨ l3

 (3.5)



l1

l̄1 ∨ l2
l̄2 ∨ l3
. . .

l̄k ∨ lk+1

l̄k+1 ∨ lk+2

l̄k+1 ∨ lk+3

l̄k+2 ∨ l̄k+3



=⇒



l1 ∨ l̄2
l2 ∨ l̄3
. . .

lk ∨ l̄k+1

lk+1 ∨ l̄k+2 ∨ l̄k+3

l̄k+1 ∨ lk+2 ∨ lk+3



(3.6)

The previous rules can be easily extended to deal with weighted clauses. We

illustrate how to do it with the first rule presented:
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
(l1, w1)

(l̄1 ∨ l̄2, w2)

(l2, w3)

 =⇒



(�, w)

(l1 ∨ l2, w)

(l1, w1 − w)

(l̄1 ∨ l̄2, w2 − w)

(l2, w3 − w)


(3.7)

where w = min(w1, w2, w3).

A more general inference schema is implemented in MiniMaxsat [HLO07]. It de-

tects a contradiction with unit propagation and identifies an unsatisfiable subset.

Then, it creates a refutation for that unsatisfiable subset, and applies the MaxSAT

resolution rule defined below if the size of the largest resolvent in the refutation is less

than 4.

Independently and in parallel, Bonet et al. [BLM06, BLM07], and Heras and Lar-

rosa [HL06] defined a MaxSAT resolution rule that preserves, for every possible truth

assignment, the number of unsatisfied clauses. Figure 3.1 shows the MaxSAT resolu-

tion rule. Applying the rule amounts to replacing the premises with the conclusion.

The tautologies concluded by the rule are removed, and the repeated literals in a

clause are collapsed into one.

Moreover, Bonet et al. [BLM06, BLM07] proved the completeness of MaxSAT

resolution: by saturating successively w.r.t. all the variables, one derives as many

empty clauses as the minimum number of unsatisfied clauses in the MaxSAT input

instance. Saturating w.r.t. a variable consists in applying the MaxSAT resolution rule

to clauses containing that variable until every possible application of the inference

rule only introduces clauses containing that variable (since tautologies are eliminated).

Once a MaxSAT instance is saturated w.r.t. a variable, all the clauses containing that

variable are not considered to saturate w.r.t. another variable. We refer to [BLM07]

for further technical details and for the weighted version of the rule.
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x ∨ a1 ∨ · · · ∨ as
x ∨ b1 ∨ · · · ∨ bt
a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt
x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
x ∨ b1 ∨ · · · ∨ bt ∨ a1

x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

Figure 3.1: The MaxSAT Resolution Rule

3.4 SAT-based MaxSAT algorithms

SAT-based MaxSAT solvers compute an optimal assignment of a MaxSAT instance φ

through the resolution of a sequence of SAT instances derived from φ by relaxing some

soft clauses and adding some cardinality constraints.

The first SAT-based approach was defined by Fu and Malik [FM06]. Given a Par-

tial MaxSAT instance φ = {(C1, 1), . . . , (Cm, 1), (Cm+1,∞), . . . , (Cm+m′ ,∞)}1 where

the cost of an optimal assignment is kopt, the algorithm iteratively solves a sequence of

SAT instances φ0, φ1, . . . , φk, . . . , φkopt such that φk is satisfiable iff φ has an assignment

of cost k. Since kopt is the optimal cost, φ0, φ1, . . . , φk, . . . , φkopt−1 must be unsatisfi-

able and φkopt must be satisfiable. Such instances are defined as follows: φ0 = φ, and

φk = (φk−1 \ φc) ∪ {(C ′1 ∨ b1, 1), . . . , (C ′s ∨ bs, 1)} ∪ enc(∑s
i=1 bi = 1), for 0 < k ≤ kopt,

where φc = {(C ′1, 1), . . . , (C ′s, 1)} are the soft clauses appearing in the unsatisfiable

core detected when proving that φk−1 is unsatisfiable, {b1, . . . , bs} are fresh auxiliary

1(Ci, 1) denotes a soft clause with weight 1, and (Cj ,∞) denotes a hard clause.
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variables, and enc(
∑s

i=1 bi = 1) is a valid SAT encoding of the cardinality constraint∑s
i=1 bi = 1, which is added as a hard constraint. Notice that the clauses in φc are

relaxed, the cardinality constraint prevents the solver to find the same unsatisfiable

core in the next iteration, and the underlying SAT solvers should return an unsat-

isfiable core on unsatisfiable instances. The algorithm terminates when either the

detected unsatisfiable core is formed only by hard clauses (i.e., there is no solution) or

φk becomes satisfiable (i.e., k is an optimal cost). This approach has been extended to

Weighted Partial MaxSAT in the solvers WPM1 [ABL09], and wbo 1.4a [MMSP09]

and wbo 1.4b [MML10]. The last two solvers use a pseudo-Boolean solver instead of

a SAT solver. In this case, enc(
∑s

i=1 bi = 1) denotes the Pseudo-Boolean constraint∑s
i=1 bi = 1 instead of a CNF formula. In Weighted Partial MaxSAT, the value of

k is updated adding the minimum weight of the soft clauses involved in the core.

Moreover, every involved soft clause is replaced by two copies: one extended with an

additional auxiliary variable, and weight equal to the minimum weight of the core;

and an unextended one with weight equal to the original weight minus the minimum

weight of the core.

In Fu and Malik’s approach, a soft clause appearing in more than one detected

core is extended with more than one auxiliary variable, and this may hamper the

efficiency of the SAT solver. Another alternative for solving Partia MaxSAT, which

consumes exactly one auxiliary variable per soft clause, is to define φ0 = φ, and

define φk = {(C1∨b1, 1), . . . , (Cm∨bm, 1), (Cm+1,∞), . . . , (Cm+m′ ,∞)}∪enc(∑m
i=1 bi ≤

k) ∪⋃k
r=1 enc(

∑
Ci∈Br

bi ≥ kr), for 0 < k ≤ kopt, where Bi, 1 ≤ i ≤ k, is the sequence

of soft clauses in the unsatisfiable core detected when solving φi−1, and kj is the

number of subformulas from B1, . . . , Bj which are contained in Bj. This solution is

implemented in the solver PM2 [ABL09]. Moreover, the weighted version of PM2,

WPM2 [ABL10], avoids to maintain two copies of every soft clause appearing in a

detected core.

The previous SAT-based MaxSAT solvers search from k = 0 to kopt (increasing

k while φk is unsatisfiable). They make a linear search on the lower bounds of the
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optimal cost. The solvers SAT4J-Maxsat [Ber] and QMaxSat, which make a linear

search on the upper bounds of the optimal cost, start with k =
∑m

i=1wi and decrease

this value until the SAT solver reports unsatisfiable. The latest model found is an

optimal solution, and the latest k is the optimal cost. Now, φk is defined as follows:

φk = {(C1∨b1, w1), . . . , (Cm∨bm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}∪enc(∑m
i=1wibi <

k).

QMaxSat only deals with Partial MaxSAT instances, and uses Minisat [ES03]

and the encoding of cardinality constraints defined in [BB03]. SAT4J-Maxsat, which

deals with all the MaxSAT formalisms, uses a pseudo-Boolean solver instead of a SAT

solver. Whenever the underlying pseudo-Boolean solver returns satisfiable it checks

the satisfying assignment and sets the next k equal to the sum of the weights of the

soft clauses with auxiliary variable set to true.

We wrote this chapter before celebrating MaxSAT-2011. In the 2011 edition of the

MaxSAT Evaluation, the participating solvers were improved versions of the solver we

have described. The only remarkable novelty was a MaxSAT solver based on answer

set programming, but its performance was, in general, poor compared with the rest

of solvers.

3.5 Summary

We have defined MaxSAT and its extensions: Weighted MaxSAT, Partial MaxSAT

and Weighted Partial MaxSAT. Then, we have given a brief description of the solvers

that participated in MaxSAT-2010. Finally, we have presented an overview of the

solving techniques implemented in both branch-and-bound MaxSAT solvers and SAT-

based MaxSAT solvers.
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Encoding CSP into SAT

In this chapter, we present existing and new encodings from CSP into SAT. In Sec-

tion 4.1, we define the CSP problem and, in Section 4.2, encodings of CSP variables

into SAT that allow to maintain a one-to-one mapping between CSP models and SAT

models. In Section 4.3 and Section 4.4, we present the well-known direct and support

encodings, respectively; and prove that the Exactly-One constraint is compulsory in

support encodings. In Section 4.5, we present the variant of the direct encoding known

as multivalued encoding. In Section 4.6, we present the log encoding. In Section 4.7,

we define the variants of the direct and support encodings that incorporate regular lit-

erals, and establish the relationship between the sequential encoding of the cardinality

constraint and the regular literals. In Section 4.8, we define a new encoding —the min-

imal support encoding— and its variants, prove its correctness and show that it does

not preserve arc consistency through unit propagation. In Section 4.9, we define an-

other new encoding —the interval-based regular encoding— and prove its correctness.

Finally, in Section 4.10, we report on an empirical comparison of the defined encodings

on realistic instances. Mappings from CSP into SAT have been investigated before

by several authors (see, for example, [BHW03, Gav07, GJ96, Gen02, Kas90, Wal00]).

53
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4.1 CSP preliminaries

A Constraint Satisfaction Problem (CSP) instance is defined as a triple 〈X ,D, C〉,
where X = {X1, . . . , Xn} is a set of variables, D = {d(X1), . . . , d(Xn)} is a set of

finite domains containing the values that the corresponding variables may take, and

C = {C1, . . . , Cm} is a set of constraints. Each constraint Ci = 〈Si, Ri〉 is defined as a

relation Ri over a subset of variables Si = {Xi1 , . . . , Xik}, called the constraint scope.

The relation Ri may be represented extensionally as a subset of the Cartesian product

d(Xi1)× · · · × d(Xik).

A CSP is node consistent iff, for every variable Xi, every value of the domain

of Xi is allowed for the unary constraints on Xi. Given a binary constraint with

scope {Xi, Yj}, the variable Xi is arc consistent relative to the variable Yj iff, for

all a ∈ d(Xi), there exists b ∈ d(Yj) such that (a, b) is in the constraint. A binary

constraint with scope {Xi, Yj} is arc consistent iff the variable Xi is arc consistent

relative to the variable Yj and the variable Yj is arc consistent relative to the variable

Xi. A binary CSP is arc consistent iff all its constraints are arc consistent.

An assignment v for a CSP instance 〈X ,D, C〉 is a mapping that assigns to every

variable Xi ∈ X an element v(Xi) ∈ d(Xi). An assignment v satisfies a constraint

〈{Xi1 , . . . , Xik}, Ri〉 ∈ C iff 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri. An assigment satisfies a CSP

if it satisfies all its constraints.

Given a CSP instance P , the Constraint Satisfaction Problem (CSP) consists in

deciding whether there exists an assignment that satisfies P . In the sequel, we assume

that all CSPs are unary and binary; i.e., the cardinality of all the constraint scopes is

at most two.

Example 4.1 Let P be the CSP instance defined by 〈X,D,C〉, where X =

{x1, x2, x3, x4} is the set of variables, d(x1) = {1, 2}, d(x2) = {0, 1}, d(x3) =

{0, 1, 2}, d(x4) = {0, 1}, and C = {〈{x1, x2}, x1 > x2〉, 〈{x1, x4}, x1 =

x4〉, 〈{x2, x4}, x2 < x4〉, 〈{x2, x3}, x2 6= x3〉} is the set of constraints. An assignment

that satisfies P is x1 = 1, x2 = 0, x3 = 1 and x4 = 1.



4.2. Encoding CSP variables into SAT 55

4.2 Encoding CSP variables into SAT

CSP instances contain variables whose domain size can be greater than 2 while the

variables occurring in SAT instances take either the value 0 or the value 1. Given

a CSP variable X over a domain d(X) = {i1, . . . , im}, the most frequent way of

encoding X into SAT is associating a Boolean variable xi with each value i ∈ d(X) in

such a way that xi is true iff X = i. Moreover, since CSP assignments assign exactly

one value of the domain to each variable, we have to encode that exactly one of the

Boolean variables {xi1 , . . . , xim} takes the value 1, and the other variables take the

value 0. This is the goal of the Exactly-One constraint, which allows to maintain a

one-to-one mapping between CSP models and SAT models.

In the sequel, we refer to Boolean variables of the form xi and with intended

meaning X = i as monosigned variables, refer to monosigned variables and negated

monosigned variables as monosigned literals, and refer to encodings only formed

by monosigned literals as standard encodings. We will present encodings based on

monosigned literals, but also encodings based on representing assignments of the form

X = i using a number of literals which is logarithmic in the domain size [Pre09], as

well as encodings based on the so-called regular literals [AM04].

The Exactly-One constraint is commonly expressed as the conjunction of the ALO

(At-Least-One) constraint, and the AMO (At-Most-One) constraint. The ALO con-

straint states that at least one of the variables is true, and the AMO constraint states

that at most one of the variables is true.

In Section 4.2.1 we describe several encodings of the ALO constraint, and in Sec-

tion 4.2.2 we describe several encodings of the AMO constraint.

4.2.1 SAT encodings of the ALO constraint

We present different encodings of the ALO constraint, also represented by

≥1 (x1, . . . , xn). The constraint is true iff at least one out of its n input Boolean

variables is true. This constraint is a particular case of the cardinality constraint



56 Chapter 4. Encoding CSP into SAT

≥k (x1, . . . , xn), which means that at least k variables are true.

Standard encoding of the ALO constraint

The standard encoding of the ALO constraint is formed by the following clause:

x1 ∨ · · · ∨ xn

This encoding requires exactly one n-ary clause for every ALO constraint.

Bitwise encoding of the ALO constraint

Given the ALO constraint ≥1 (x1, . . . , xn), assume that n is a power of 2. We define

k = log2 n new Boolean variables {b1, . . . , bk} in such a way that each possible assign-

ment to the variables in {b1, . . . , bk} is associated with one variable of {x1, . . . , xn}. If

{I i(b1), . . . , I i(bk)} is the assignment associated with xi, then the set of literals asso-

ciated with xi is {li1, . . . , lik} where, for 1 ≤ j ≤ k, it holds that lij = bj if I i(bj) = 1,

and lij = ¬bj if I i(bj) = 0.

In order to have a one-to-one mapping between assignments and variables, if n is

not a power of 2, then k = dlog2 ne1 and, for each assignment {I∗(b1), . . . , I∗(bk)} not

associated with a variable, a prohibited-value clause ¬l∗1 ∨ · · · ∨ ¬l∗k is added, where,

for 1 ≤ j ≤ k, it holds that l∗j = bj if I∗(bj) = 1, and l∗j = ¬bj if I∗(bj) = 0.

The bitwise encoding of ≥1 (x1, . . . , xn) is formed by the prohibited-value clauses

(if any), and the following clauses:

n∧
i=1

(
¬li1 ∨ · · · ∨ ¬lik ∨ xi

)
This set of clauses is a valid encoding for the ALO constraint: Since the encoding

represents all the possible assignments of the k auxiliary variables, there is exactly

one disjunction of the form ¬li1 ∨ · · · ∨ ¬lik which is falsified by any assignment. Any

satisfying assignment cannot falsify a prohibited-value clause. Therefore, there will

1We write dxe to denote the smallest integer that is greater than or equal to x.
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be one clause of the form ¬li1 ∨ · · · ∨ ¬lik ∨ xi in which ¬li1 ∨ · · · ∨ ¬lik is falsified and,

in order to have a satisfied clause, xi must be true.

The number of clauses required by this encoding is in O(n) , and the size of the

clauses is dlog2 ne+1, except for the prohibited-value clauses, which have size dlog2 ne.

Example 4.2 The bitwise encoding of ≥1 (x1, x2, x3) is defined as follows:

• As n = 3, two auxiliary variables (b2, b1) are needed.

xi b2 b1 literals

associated with xi

x1 0 0 ¬b2 ¬b1

x2 0 1 ¬b2 b1

x3 1 0 b2 ¬b1

x4 1 1 b2 b1

• The bitwise encoding clauses are:

(b2 ∨ b1 ∨ x1)

(b2 ∨ ¬b1 ∨ x2)

(¬b2 ∨ b1 ∨ x3)

prohibited-value clause

(¬b2 ∨ ¬b1)

4.2.2 SAT encodings of the AMO constraint

We survey several SAT encodings of the AMO constraint, also represented by

≤1 (x1, . . . , xn), which is true iff at most one out of its n input Boolean variables

is true. This constraint is a particular case of the Boolean cardinality constraint

≤k (x1, . . . , xn).
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The pair-wise encoding of the AMO constraint

The most well-known encoding for the constraint ≤1 (x1, . . . , xn) is the pair-wise en-

coding, also called näıve encoding in the literature. The encoding is formed by the

following clauses:

n−1∧
i=1

n∧
j=i+1

¬xi ∨ ¬xj

This encoding requieres n (n−1)/2 binary clauses, and does not need to introduce

auxiliary variables.

Example 4.3 The pair-wise encoding of ≤1 (x1, x2, x3, x4) is defined as follows:

(¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4)

The sequential encoding of the AMO constraint

The sequential encoding of the ≤1 (x1, . . . , xn) was introduced by [Sin05], and is based

on a sequential counter circuit, that consists in sequentially counting the number of

xi that are true. The clauses of the encoding are:

(¬x1 ∨ s1) ∧ (¬xn ∨ ¬sn−1)
∧

1<i<n

((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1))

where si , 1 ≤ i ≤ n− 1, are auxiliary variables.

This encoding requieres 3n− 4 binary clauses and n− 1 auxiliary variables.

Example 4.4 The sequential encoding of the ≤1 (x1, x2, x3, x4) is defined as follows:

• As n = 4, three auxiliary variables si are needed.

• The sequential encoding is the following CNF formula φ:

(¬x1 ∨ s1) ∧ (¬x4 ∨ s3) ∧ (¬x2 ∨ s2) ∧ (¬s1 ∨ s2)

∧(¬x2 ∨ ¬s1) ∧ (¬x3 ∨ s3) ∧ (¬s2 ∨ s3) ∧ (¬x3 ∨ ¬s2)
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The bitwise encoding of the AMO constraint

The bitwise encoding of ≤1 (x1, . . . , xn) uses k = dlog2 ne auxiliary variables as the

bitwise encoding of the ALO constraint [FP01]. It is formed by the prohibited-value

clauses (if any), and the following clauses:

n∧
i=1

dlog2 ne∧
j=1

(
¬xi ∨ lij

)
This is a valid encoding of the AMO constraint, because there is at most one set

of literals associated with a variable xi that is satisfied by an arbitrary assignment.

Therefore, at least n−1 variables of the form xi must be set to false. The prohibited-

value clause set is needed when the number of variables is not a power of two.

This encoding requieres ndlog2 ne binary clauses and dlog2 ne new auxiliary vari-

ables.

Example 4.5 The bitwise encoding of the ≤1 (x1, x2, x3, x4) is defined as follows:

• As n = 4, two auxiliary variables (b2, b1) are needed.

xi b2 b1 literals

associated with xi

x1 0 0 ¬b2 ¬b1

x2 0 1 ¬b2 b1

x3 1 0 b2 ¬b1

x4 1 1 b2 b1

• The bitwise encoding clauses are:

(¬x1 ∨ ¬b2) ∧ (¬x1 ∨ ¬b1)

(¬x2 ∨ ¬b2) ∧ (¬x2 ∨ b1)

(¬x3 ∨ b2) ∧ (¬x3 ∨ ¬b1)

(¬x4 ∨ b2) ∧ (¬x4 ∨ b1)
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4.3 Direct encoding

The direct encoding is probably the most popular encoding from CSP into SAT. The

idea of this encoding is to encode into clauses the conflicts among value assignments in

constraints. The standard direct encoding2 consists of the ALO and AMO clauses that

ensure that every CSP variable takes exactly one value of its domain. Moreover, for

each binary constraint with scope {X, Y }, there is a binary clause for every nogood.

Such clauses are called conflict clauses. For example, if X = 2 and Y = 1 is not

allowed, then the conflict clause ¬x2 ∨ ¬y1 is added.

Example 4.6 The standard direct encoding for the CSP 〈X ,D, C〉 =

〈{X, Y }, {d(X) = {1, 2, 3}, d(Y ) = {1, 2, 3}}, {X ≤ Y }〉 is as follows:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

AMO ¬x1 ∨ ¬x2 ¬x1 ∨ ¬x3 ¬x2 ∨ ¬x3 ¬y1 ∨ ¬y2 ¬y1 ∨ ¬y3 ¬y2 ∨ ¬y3

conflict ¬x2 ∨ ¬y1 ¬x3 ∨ ¬y1 ¬x3 ∨ ¬y2

4.4 Support encoding

In the standard support encoding3, the idea is to encode into clauses the support for

each value of X across a constraint instead of encoding conflicts. The support for a

value i of a CSP variable X across a binary constraint with scope {X, Y } is the set of

values of the variable Y which allow X = i. If v1, v2, . . . , vk are the supporting values

of the variable Y for X = i, we add the clause ¬xi ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk
. There is one

clause for each value of the variable X, and one clause for each value of the variable

Y . Such clauses are called support clauses. The support clauses on their own do

not provide a correct encoding from CSP into SAT. To complete an encoding using

support clauses we need to add the ALO and AMO clauses for each CSP variable to

ensure that each CSP variable takes exactly one value of its domain.

2The standard direct encoding is known as direct encoding in the literature.
3The standard support encodings is known as support encoding in the literature.
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Example 4.7 The standard support encoding for the CSP instance of Example 4.6

is as follows:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

AMO ¬x1 ∨ ¬x2 ¬x1 ∨ ¬x3 ¬x2 ∨ ¬x3 ¬y1 ∨ ¬y2 ¬y1 ∨ ¬y3 ¬y2 ∨ ¬y3

support ¬x2 ∨ y2 ∨ y3 ¬y1 ∨ x1

¬x3 ∨ y3 ¬y2 ∨ x1 ∨ x2

The support clause for X = 1 is missing because it is subsumed by y1 ∨ y2 ∨ y3, and

the support clause for Y = 3 is missing because it is subsumed by x1 ∨ x2 ∨ x3.

For the support encoding, ALO and AMO clauses are compulsory. Actually, if

AMO clauses are omitted, then the encoding becomes incorrect as we show in the

following example.

Example 4.8 Given the CSP instance 〈X ,D, C〉 = 〈{X, Y }, {d(X) =

{1, 2, 3}, d(Y ) = {1, 2, 3}}, {X = Y }〉, the standard support encoding without

AMO clauses is as follows:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

support clauses ¬x1 ∨ y1 ¬x2 ∨ y2 ¬x3 ∨ y3

x1 ∨ ¬y1 x2 ∨ ¬y2 x3 ∨ ¬y3

Assume that all the variables are set to true: x1 = x2 = x3 = y1 = y2 = y3 = true.

In this case, the encoding should be unsatisfiable because there are combinations such

as x1 = y3 = true which are not permitted. However, the encoding becomes satisfiable

when all the variables are set to true because each clause contains at least one positive

literal. This counterexample proves the incorrectness of the encoding. Hence, the ALO

and AMO clauses are compulsory in support encodings.

4.5 The multivalued encoding

In the literature, the direct encoding has a variant in which the AMO clauses can be

omitted. In this case, each CSP variable can take more than one value simultaneously.
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As pointed out in [Pre09], AMO clauses can be omitted in the direct encoding from

CSP into SAT in such a way that the CSP is satisfiable iff the resulting SAT encoding

is satisfiable. This variant is also known as the multivalued encoding, but it has not

an unique name and often is also referred as the direct encoding.

Example 4.9 The multivalued encoding for the CSP instance of Example 4.6 is as

follows:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

conflict ¬x2 ∨ ¬y1 ¬x3 ∨ ¬y1 ¬x3 ∨ ¬y2

4.6 The log encoding

Another alternative to encode a CSP instance into SAT is the log encoding, which

uses a base 2 encoding. Given a CSP variable X with domain d(X), the log encoding

requires kd(X) = dlog2 |d(X)|e auxiliary variables to encode each domain value of X,

as the bitwise encoding of the ALO and AMO constraints.

In the log encoding, the assignment X = i is encoded by the clause li1∧ . . .∧ likd(X)
,

where {li1, . . . , likd(X)
} is the set of literals associated with X = i (c.f. Section 4.2.1).

The log encoding is formed by the conflict clause set, which encodes the nogoods

of the constraints, and the prohibited-value clauses if there are domains whose size is

not a power of 2. Moreover, in contrast to the direct and support encoding, neither

ALO nor AMO clauses are required.

Given a nogood X = i and Y = j, the conflict clause that encodes this nogood is:

¬li1 ∨ . . . ∨ ¬likd(X)
∨ ¬lj1 ∨ . . . ∨ ¬ljkd(Y )

An advantage of the log encoding is that it can be easily extended to deal with

contraints of arity greater than two.

Example 4.10 Let us consider a simple graph colouring problem, consisting of two

adjacent vertices X and Y , where each vertex can be coloured with three colours

{0, 1, 2}.
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• CSP 〈X ,D, C〉 = 〈{X, Y }, {d(X) = {0, 1, 2}, d(Y ) = {0, 1, 2}}, {X 6= Y }〉

• For each CSP variable X (Y ) two auxiliary variables {xb0 , xb1} ({yb0 , yb1}) are

needed. The sets of literals associated with the possible assignments of X are as

follows:

value domain (i) b1 b0 literals

associates with X=i

X = 0 0 0 ¬xb1 ¬xb0
X = 1 0 1 ¬xb1 xb0

X = 2 1 0 xb1 ¬xb0
X = 3 1 1 xb1 xb0

It is similiar for the possible assignments of CSP variable Y .

The log encoding for that CSP contains the following conflict and prohibited-value

clauses:

conflict clauses

¬[X = 0 ∧ Y = 0] xb0 ∨ xb1 ∨ yb0 ∨ yb1
¬[X = 1 ∧ Y = 1] ¬xb0 ∨ xb1 ∨ ¬yb0 ∨ yb1
¬[X = 2 ∧ Y = 2] xb0 ∨ ¬xb1 ∨ yb0 ∨ ¬yb1
prohibited-value clauses

¬[X = 3] ¬xb0 ∨ ¬xb1
¬[Y = 3] ¬yb0 ∨ ¬yb1

The conflict clauses rule out any nogood, and the prohibited-value clauses prevent

the bit combination representing the value 3, which does not belong to the domain.

There exist alternatives to the prohibited-value clauses for encoding the values in

excess. As [Pre07] proposed, such values can be excluded adding extra conflict clauses

that interpret the values in excess as allowed domains values.
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Example 4.11 The log encoding for the CSP instance of Example 4.10 obtained by

adding extra conflict clauses is as follows:

conflict clauses

¬[X = 0 ∧ Y = 0] xb0 ∨ xb1 ∨ yb0 ∨ yb1
¬[X = 1 ∧ Y = 1] ¬xb0 ∨ xb1 ∨ ¬yb0 ∨ yb1
¬[X = 2 ∧ Y = 2] xb0 ∨ ¬xb1 ∨ yb0 ∨ ¬yb1
extra conflict clauses

¬[X = 3 ∧ Y = 3] ¬xb0 ∨ ¬xb1 ∨ ¬yb0 ∨ ¬yb1
¬[X = 0 ∧ Y = 3] xb0 ∨ xb1 ∨ ¬yb0 ∨ ¬yb1
¬[X = 3 ∧ Y = 0] ¬xb0 ∨ ¬xb1 ∨ yb0 ∨ yb1

The extra conflict clauses exclude the domain value in excess. In this example, the

value 3 is interpreted as the value 0, since colour 3 and colour 0 are considered to be

the same colour.

Interestingly, an encoding mixing the log and support encoding, called log-support

encoding, was defined in [Gav07].

4.7 Variants of the direct and support encoding

4.7.1 Regular encodings

The space complexity of the ALO and AMO constraints of the standard direct and

support encodings is in O(nd2), where n is the number of CSP variables and d is the

largest domain size. An alternative to reduce that complexity is to encode the ALO

and AMO constraints using both monosigned and regular literals [AM04, BHM01],

and leave the conflict and support clauses as in the standard direct and support

encodings, respectively. To this end, for every CSP variable X and every value i ∈
d(X), we associate a monosigned variable xi, and a Boolean variable x≥i , called regular

variable, in such a way that x≥i is true iff X ≥ i. We refer to regular variables
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and negated regular variables as regular literals. Regular encodings contain both

monosigned and regular literals.

The regular direct and support encodings replace the ALO and AMO clauses of

each CSP variable X with domain size m with the following clauses [AM04]:

x≥m → x≥m−1 x1 ↔ ¬x≥2
x≥m−1 → x≥m−2 x2 ↔ x≥2 ∧ ¬x≥3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x≥3 → x≥2 xi ↔ x≥i ∧ ¬x≥i+1

x≥2 → x≥1 · · · · · · · · · · · · · · ·
xm−1 ↔ x≥m−1 ∧ ¬x≥m
xm ↔ x≥m

(4.1)

The clauses on the left encode the relationship among the different regular literals of

a CSP variable while the clauses on the right link monosigned and regular variables.

Clauses on the right are also known as channelling constraints. Notice that x≥2 → x≥1

can be omitted. Actually, the clauses in (4.1) produce a better complexity encoding

of the ALO and AMO conditions. The space complexity of this encoding is in O(nd)

instead of O(nd2).

Interestingly, if in the sequential encoding [Sin05] (c.f. Section 4.2.2) of the AMO

constraint, we replace simultaneously x1 with xm, x2 with xm−1, . . ., xm with x1,

and s1 with x≥m, s2 with x≥m−1, . . ., sm−1 with x≥2 , we get the following encoding of

≤ 1(x1, . . . , xm):

(¬xm ∨ x≥m) ∧ (¬x1 ∨ ¬x≥2 )∧∧
1<i<m

(
(¬xi ∨ x≥i ) ∧ (¬x≥i+1 ∨ x≥i ) ∧ (¬xi ∨ ¬x≥i+1)

)
which is the regular encoding of the ALO and AMO conditions defined in Equation 4.1

without the ternary clauses. Therefore, in a sense, the popular sequential encoding

of ≤ 1(x1, . . . , xm) reinvented the regular encoding. Moreover, the encoding resulting

from eliminating the ternary clauses in the regular encoding is a valid encoding of the

AMO condition.
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Let us prove that the ternary clauses of the regular encoding provide an alternative

encoding of the ALO condition. Given the clauses

¬x≥2 → x1

x≥2 ∧ ¬x≥3 → x2

· · · · · · · · · · · · · · ·
x≥i ∧ ¬x≥i+1 → xi

· · · · · · · · · · · · · · ·
x≥m−1 ∧ ¬x≥m → xm−1

x≥m → xm,

(4.2)

we have that if x1 = x2 = · · · = xm = false, we get a contradiction by applying

unit propagation. Otherwise, if any variable xi is true, then we can build a satisfying

assignment by setting to true x≥j for j ≤ i and setting to false x≥k for k > i. So, these

ternary clauses encode the ALO condition.

Another consequence of this insight is that the sequential encoding is the encoding

resulting by replacing, in the regular encoding, the regular ALO condition by the

standard ALO condition.

Example 4.12 The regular direct encoding and regular support encoding for the CSP

instance of Example 4.6 are obtained by replacing, in the standard encodings of Ex-

ample 4.6, the ALO and AMO clauses with the following clauses:

¬x≥3 ∨ x≥2 ¬y≥3 ∨ y≥2
x1 ↔ ¬x≥2 y1 ↔ ¬y≥2
x2 ↔ x≥2 ∧ ¬x≥3 y2 ↔ y≥2 ∧ ¬y≥3
x3 ↔ x≥3 y3 ↔ y≥3

4.7.2 Full regular encoding

In the regular encodings, we used both monosigned and regular literals. Another

option is just to use regular literals for encoding CSP into SAT. We refer to such

encodings as full regular encodings. In this case, we omit the channelling constraints,
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and keep the clauses that encode the relationship among the regular literals of every

CSP variable. Moreover, we replace the monosigned literals occurring in the conflict

and support clauses with the regular representation that encodes the channelling

constraints. In a sense, full regular encodings instantiate the channelling constraints.

Example 4.13 The full regular direct encoding for the CSP instance of Example 4.6

contains the following clauses:

¬x≥3 ∨ x≥2 ¬y≥3 ∨ y≥2
conflict ¬x≥2 ∨ x≥3 ∨ y≥2 ¬x≥3 ∨ y≥2 ¬x≥3 ∨ ¬y≥2 ∨ y≥3

and the full regular support encoding contains the following clauses:

support ¬x≥2 ∨ x≥3 ∨ (y≥2 ∧ ¬y≥3 ) ∨ y≥3 y≥2 ∨ ¬x≥2
¬x≥3 ∨ y≥3 ¬y≥2 ∨ y≥3 ∨ ¬x≥2 ∨ (x≥2 ∧ ¬x≥3 )

Notice that, when distributivity is applied, the clause ¬x≥2 ∨ x≥3 ∨ (y≥2 ∧ ¬y≥3 ) ∨ y≥3
becomes ¬x≥2 ∨ x≥3 ∨ y≥2 , and ¬y≥2 ∨ y≥3 ∨ ¬x≥2 ∨ (x≥2 ∧ ¬x≥3 ) becomes ¬y≥2 ∨ y≥3 ∨ ¬x≥3 .

Regarding the space complexity, the advantage is that we eliminate the channelling

constraints, but the disadvantage is that conflict and support clauses become more

complex. In the full regular direct encoding, the space complexity is the same: we do

not have channelling constraints and have the same number of conflict clauses, but

now they can contain up to four regular literals per clause. The situation is worse

in the full regular support encoding because the number of support clauses can grow

exponentially due to the application of distributivity. For example, if d(X) = d(Y ) =

{1, 2, . . . , 10}, then the support clause ¬x1 ∨ y2 ∨ y4 ∨ y6 ∨ y8 of the standard support

encoding produces an exponential growth in the number of support clauses in the full

regular support encoding.

4.7.3 Half regular encoding

The half regular encoding was defined in [AM04], and is between the regular encoding

and the full regular encoding. As in the regular encodings, it uses both monosigned
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and regular literals. It represents the negative literals with regular literals and the

positive literals with monosigned literals.

The advantatge of the half regular encoding is that it avoids applying distribu-

tivity in the full regular support encodings. The blowup of the full regular support

encoding is due to the encoding of positive literals, and they are now represented

using monosigned literals instead of regular literals.

Example 4.14 The half regular direct encoding for the CSP instance of Example 4.6

contains the following clauses:

ALO and AMO ¬x≥3 ∨ x≥2 ¬y≥3 ∨ y≥2
x1 ↔ ¬x≥2 y1 ↔ ¬y≥2
x2 ↔ x≥2 ∧ ¬x≥3 y2 ↔ y≥2 ∧ ¬y≥3
x3 ↔ x≥3 y3 ↔ y≥3

conflict ¬x≥2 ∨ x≥3 ∨ y≥2 ¬x≥3 ∨ y≥2 ¬x≥3 ∨ ¬y≥2 ∨ y≥3
and the half regular support encoding contains the following clauses:

support ¬x≥2 ∨ x≥3 ∨ y2 ∨ y3 y≥2 ∨ x1

¬x≥3 ∨ y3 ¬y≥2 ∨ y≥3 ∨ x1 ∨ x2

4.8 Minimal support encoding

Our first original encoding from CSP into SAT is a new version of the standard support

encoding, which we call standard minimal support encoding. Our definition follows

from the observation that the support encoding contains redundant clauses. More

precisely, given a binary constraint Ck with scope {X, Y }, it is enough to add the

support clauses either for the values of X or for the values of Y ; it is not necessary

to add a clause in each direction. Despite of the number of papers dealing with the

support encoding, this fact has gone unnoticed so far.

Definition 4.1 The standard minimal support encoding is like the standard support

encoding except for the fact that, for every constraint Ck with scope {X, Y }, we add
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either the support clauses for all the domain values of the CSP variable X or the

support clauses for all the domain values of the CSP variable Y .

Example 4.15 A standard minimal support encoding for the CSP instance of Exam-

ple 4.6 contains either the support clauses ¬x2∨y2∨y3,¬x3∨y3 or the support clauses

¬y1 ∨ x1,¬y2 ∨ x1 ∨ x2.

Proposition 4.1 The minimal support encoding is correct.

Proof We assume, without loss of generality, that we add the support clauses for

all the domain values of the CSP variable X for every constraint Ck with scope

{X, Y }. Given a CSP assignment, we construct its corresponding Boolean assignment

by setting the variable xi to true if the CSP assignment assigns the value i to X;

otherwise, we set the variable xi to false. Given a Boolean assignment that satisfies the

minimal support encoding of a CSP, we construct its corresponding CSP assignment

by assigning to the CSP variable X the value i if xi is true. Note that there is exactly

one xi for each CSP variable X which is true because the minimal support encoding

contains the ALO and AMO clauses. So, it is a valid CSP assignment.

We prove first that if a CSP assignment satisfies all the constraints of a CSP

instance, then its corresponding Boolean assignment satisfies its minimal encoding.

Since a CSP assignment assigns exactly one value to each CSP variable, the Boolean

assignment satisfies the ALO and AMO clauses. For every constraint Ck with scope

{X, Y }, the CSP assignment assigns a value i to X and a value j to Y . Since (X =

i, Y = j) is an allowed combination, among the clauses encoding that constraint, there

is a clause of the form ¬xi∨yj∨· · · which is satisfied by the Boolean encoding because

yj is true. The remaining clauses are also satisfied by the Boolean assignment because

they are of the form ¬xl ∨ · · · , where l 6= i, and the Boolean assignment assigns the

value false to all variables xl with l 6= i.

We prove now that if a Boolean assignment satisfies the minimal support encoding

of a CSP instance P , then its corresponding CSP assignment satisfies P . Assume that

the CSP assignment does not satisfy P . Therefore, there exists a constraint Ck of P
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with scope {X, Y } which is violated because the CSP assignment assigns a value i

to X and a value j to Y which correspond to a forbidden combination. In this case,

there is exactly one support clause of the form ¬xi∨ yj1 ∨ · · · ∨ yjk among the support

clauses encoding Ck which is not satisfied by the Boolean assignment because xi is

true and yj1 6= yj, . . . , yjk 6= yj. The rest of support clauses encoding Ck are satisfied

by the Boolean assignment because it assigns the value false to all variables xl with

l 6= i. Therefore, the Boolean assignment falsifies the minimal support encoding.

Unlike the support encoding [Gen02, Kas90], the minimal support encoding does

not maintain arc consistency through unit propagation (i.e., an encoding of a binary

CSP into SAT is said to be arc consistent through unit propagation if, for every

partial assignment, unit propagation achieves at least the same propagation power on

the SAT encoding as enforcing arc consistency on the binary CSP). Recall that the

direct encoding does not maintain arc consistency too.

Proposition 4.2 The minimal support encoding does not maintain arc consistency

through unit propagation.

Proof We give a counterexample to prove the proposition. Given the CSP in-

stance 〈X ,D, C〉, where X = {X, Y }, d(X) = d(Y ) = {1, 2, 3}, C = {CXY } =

{{(1, 1), (2, 2), (3, 3)}} with the following minimal support encoding:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

AMO ¬x1 ∨ ¬x2 ¬x1 ∨ ¬x3 ¬x2 ∨ ¬x3 ¬y1 ∨ ¬y2 ¬y1 ∨ ¬y3 ¬y2 ∨ ¬y3

support ¬x1 ∨ y1 ¬x2 ∨ y2 ¬x3 ∨ y3

If x1 is set to false, then ¬y1 is not derived by unit propagation, and the domain of Y is

not arc consistent. Observe that if the support clauses are ¬y1∨x1,¬y2∨x2,¬y3∨x3,

then ¬y1 is derived by unit propagation, and the domain of Y becomes arc consistent.

However, if y1 is set to false, then arc consistency is not maintained in the last case.

The regular and full regular support encodings also admit a minimal version,

called regular minimal support encoding and full regular minimal support encoding,
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respectively. Such minimal versions are obtained by adding, for every constraint Ck

with scope {X, Y }, either the support clauses for all the domain values of X or the

support clauses for all the domain values of Y .

4.9 Interval-based support encoding

The support clauses of standard encodings are of the form ¬xj ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk
.

If we want to represent yv1 ∨ yv2 ∨ · · ·∨ yvk
using only regular literals, there may be an

exponential blowup due to the application of distributivity to (y≥v1 ∧ ¬y≥v1+1) ∨ (y≥v2 ∧
¬y≥v2+1) ∨ · · · ∨ (y≥vk

∧ ¬y≥vk+1). Note that ¬xj may be translated into the disjunction

¬x≥j ∨ x≥j+1 because it is a negative literal. So, the full regular support encoding and

the full regular minimal support encoding are not useful in practice.

A partial solution for avoiding that exponential blowup was given in [AM04], using

the so-called half regular encoding: negative literals are represented with regular

literals, and positive literals are represented with monosigned literals. This technique

increases the number of regular literals when most of the literals have negative polarity.

However, it is not useful for support clauses because most of their literals are generally

positive.

We propose a new full regular encoding, based on intervals, in which yv1 ∨ yv2 ∨
· · · ∨ yvk

is entirely represented by regular literals, and the exponential blowup is

avoided. In our encoding, for each support clause, we need m clauses having at most

four regular literals, where m is bounded by the domain size.

Given a support clause ¬xj∨yv1 ∨yv2 ∨· · ·∨yvk
, the idea behind our new encoding

is to represent with intervals the supporting values of variable Y for X = j, and then

encode, using regular literals, that the supporting variable Y has to take a value inside

one of the allowed intervals. We illustrate this idea with an example: Assume that the

domain of Y is {1, 2, . . . , 10}, and that the support clause is ¬x2∨y2∨y3∨y6∨y8∨y9.

Then, Y has to take a value in one of the following intervals: [2, 3], [6, 6], and [8, 9].
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The interval-based encoding for this clause is as follows:

x≥2 ∧ ¬x≥3 → y≥2 x≥2 ∧ ¬x≥3 ∧ y≥4 → y≥6

x≥2 ∧ ¬x≥3 ∧ y≥7 → y≥8 x≥2 ∧ ¬x≥3 → ¬y≥10

Definition 4.2 The interval-based (minimal) support encoding is the full regular

(minimal) support encoding from CSP into SAT but using the interval-based encoding

in the support clauses.

Example 4.16 An interval-based minimal support encoding for the CSP instance of

Example 4.6 is formed by the following clauses:

¬x≥3 ∨ x≥2 ¬y≥3 ∨ y≥2
support ¬x≥2 ∨ x≥3 ∨ y≥2 ¬x≥3 ∨ y≥3

We get the interval-based support encoding if we replace the previous support

clauses with: ¬x≥2 ∨ x≥3 ∨ y≥2 , y≥2 ∨ ¬x≥2 ,¬x≥3 ∨ y≥3 ,¬y≥2 ∨ y≥3 ∨ ¬x≥3 .

Proposition 4.3 The interval-based support encoding does not maintain arc consis-

tency through unit propagation.

Proof We give a counterexample to prove the proposition. Given the CSP instance

〈X ,D, C〉, where X = {X, Y, Z}, d(X) = d(Y ) = d(Z) = {1, 2, 3}, and C has the

constraints X 6= Y and X = Z, the interval-based support encoding for this CSP

instance is formed by the following clauses:

¬x≥3 ∨ x≥2 ¬y≥3 ∨ y≥2 ¬z≥3 ∨ z≥2
x≥2 ∨ y≥2 x≥2 ∨ ¬z≥2
¬x≥2 ∨ x≥3 ∨ ¬y≥2 ∨ y≥3 ¬x≥2 ∨ x≥3 ∨ z≥2 ¬x≥2 ∨ x≥3 ∨ ¬z≥3
¬x≥3 ∨ ¬y≥3 ¬x≥3 ∨ z≥3
y≥2 ∨ x≥2 z≥2 ∨ ¬x≥2
¬y≥2 ∨ y≥3 ∨ ¬x≥2 ∨ x≥3 ¬z≥2 ∨ z≥3 ∨ x≥2 ¬z≥2 ∨ z≥3 ∨ ¬x≥3
¬y≥3 ∨ ¬x≥3 ¬z≥3 ∨ x≥3
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If y≥2 and ¬y≥3 are set to true (i.e., we set Y = 2) and unit propagation is applied,

then ¬z≥2 ∨ z≥3 (i.e., Z 6= 2) is not derived. Therefore, arc consistency through unit

propagation is not maintained.

Proposition 4.4 The interval-based minimal support encoding does not maintain arc

consistency through unit propagation.

Proof Since the interval-based support encoding does not maintain arc consistency

through unit propagation and the interval-based minimal support encoding is sub-

sumed by it, the proposition holds.

The counterexample used to prove Proposition 4.3 produces the same encoding

for both the full regular support encoding and the interval-based support encoding.

Therefore, it also proves that the full regular support encoding does not maintain arc

consistency through unit propagation.

4.10 Experimental results

This section reports on the empirical investigation conducted to compare the previous

encodings. Experiments were performed on a cluster with 160 2 GHz AMD Opteron

248 Processors with 1 GB of memory, and the cutoff time was 30 minutes per instance.

In the minimal encodings of a binary CSP, for each constraint with scope {X, Y },
we must include the support clauses either for X or for Y . In the sequel, the support

clauses for the variable that produces smaller size clauses are included. To this end,

we give a score of 16 to unit clauses, a score of 4 to binary clauses and a score of 1 to

ternary clauses and, at the end, choose the variable with the higher sum of scores.

In the tables, we denote the number of instances in each category by # (the

number of solved instances is displayed in brackets), the minimal support encoding by

supc, the regular minimal support encoding by reg-supc, the interval-based minimal

support encoding by int-supc, the standard support encoding by supxy, the regular

support encoding by reg-supxy, the interval-based support encoding by int-supxy,
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the standard direct encoding by dir, the regular direct encoding by reg-dir, and the

full regular direct encoding by freg-dir.

The experiments were designed to compare the encodings from CSP into SAT. We

used the solvers MiniSat [ES03] (version 2.2.0), PrecoSAT [Bie10b] (version 236), and

Satz [LA97a] (version 215.2). The solved benchmarks were the random binary CSP

instances and the graph coloring instances used in [AM04] to compare standard and

regular encodings.

The binary CSPs instances were obtained with a generator of uniform random

binary CSPs4 —designed and implemented by Frost, Bessière, Dechter and Regin—

that implements the so-called model B: in the class 〈n, d, p1, p2〉 with n variables

of domain size d, we choose a random subset of exactly p1n(n − 1)/2 constraints

(rounded to the nearest integer), each with exactly p2d
2 conflicts (rounded to the

nearest integer); p1 may be thought of as the density of the problem and p2 as the

tightness of constraints, and belong to the hard region of the phase transition described

in [SD96]. The difficulty of the instances depends on the selected values for n, d, p1

and p2.

The graph coloring instances are flat graphs created with Culberson’s graph gen-

erator [Cul]. Instances are named < n, p, k >, where n is the number of vertices, p

is the edge density, and k is the number of colors. The parameter settings were de-

signed to sample across the phase transition following the recommendations given by

Culberson5.

Tables 4.1, 4.2 and 4.3 show the results for binary CSPs with Minisat, PrecoSAT

and Satz, respectively. Satz’s results indicate that, using this solver, the standard

support encoding is superior to the direct encoding on binary CSPs, and reveals that

the regular support encoding outperforms the standard support encoding. Our new

minimal and interval-based encodings are not so competitive for a classical solver as

Satz which does not incorporate conflict-driven clause learning. On the other hand,

we observe that interval-based encodings are particularly good in more modern solvers

4http://www.lirmm.fr/˜bessiere/generator.html
5http://web.cs.ualberta.ca/ joe/Coloring/Generators/setting.html
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such as Minisat and PrecoSAT, which incorporate clause learning, as well as variable

selection heuristics based on the activity of variables or literals, and restart strategies.

Besides, the minimal support encodings are better than the non-minimal encodings

despite the fact that they do not maintain arc consistency through unit propagation.

For example, Minisat (PrecoSAT) with the interval-based and interval-based minimal

support encodings solves 35 (8) instances more than Minisat (PrecoSAT) with the

standard support encoding. Moreover, the interval-based minimal support encoding

is always better than the interval-based support encoding. For Minisat and PrecoSAT,

all the variants of the direct encoding have a similar behaviour. For Satz, the standard

direct encoding is better than the other variants.

Tables 4.4, 4.5 and 4.6 show the results for the graph coloring problem with Min-

isat, PrecoSAT and Satz, respectively. For Minisat and PrecoSAT, the regular and

full regular direct encodings are the best performing, and the best performing support

encodings are the interval-based encodings. In this case, we do not observe signifi-

cant differences between the minimal and non-minimal variants. For Satz, the regular

direct encoding is the best performing, solving 83 more instances than the standard

direct encoding and 205 more instances than the full regular direct encoding. Among

the different variants of the support encoding, the regular support encoding is the

best performing, solving 39 more instances than the regular minimal support encod-

ing, 142 more instances than the standard support encoding, and 143 more instances

than the interval-based and interval-based minimal support encodings.

The results of the experiments provide evidence that our new encodings are well-

suited for modern SAT solvers such as Minisat and PrecoSAT, which incorporate

the most recent SAT technology. On the other hand, the results indicate that the

introduction of regular literals may produce substantial gains, and that the fact of

maintaining arc consistency through unit propagation is not decisive for getting an

efficient encoding. Actually, a recent work by Petke and Jeavons [PJ10] shows that

CSPs encoded using the direct encoding and solved with a SAT solver with clause

learning can achieve levels of local consistency that cannot be achieved with a SAT
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solver without clause learning.

4.11 Summary

We have presented an overview of existing encodings from CSP into SAT, and have

defined two new encodings: the minimal support encoding, and the interval-based sup-

port encoding. The minimal support encoding reduces the number of clauses of the

well-known support encoding, although it does not maintain arc consistency through

unit propagation. The interval-based support encoding is the only existing support

encoding with regular literals that has polynomial size complexity. The experimental

investigation provides empirical evidence that the new encodings have a good per-

formance profile on SAT solvers incorporating clause learning, as well as that the

use of regular literals produces significant speedups on some classes of combinatorial

problems.
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M
inisat

Instance
set

#
supc

reg-supc
int-supc

supxy
reg-supxy

int-supxy
dir

reg-dir
freg-dir

200
0.13

5
100

65.93(99)
129.77(100)

0.62(100)
4.28(100)

4.67(100)
0.76(100)

0.82(100)
0.77(100)

0.58(100)

400
0.02

3
100

0.02(100)
0.03(100)

0.02(100)
0.03(100)

0.04(100)
0.03(100)

0.02(100)
0.03(100)

0.01(100)

50
0.5

8
100

615.48(32)
551.00(30)

265.89(84)
528.85(44)

374.15(36)
266.03(84)

407.16(76)
370.38(86)

265.81(84)

60
0.5

8
100

695.31(23)
687.51(40)

51.22(98)
430.09(89)

383.92(78)
68.78(99)

135.38(100)
56.05(99)

68.61(99)

70
0.5

8
100

738.96(36)
573.33(54)

2.61(100)
133.49(100)

138.05(100)
2.75(100)

19.89(100)
7.79(100)

2.56(100)

80
0.5

13
100

63.54(99)
65.85(97)

23.78(98)
48.12(95)

47.08(95)
24.47(98)

21.58(100)
18.54(100)

23.71(98)

T
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Satz
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set
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200
0.13

5
100
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0.00(0)
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Chapter 5

Encoding MaxCSP into Partial

MaxSAT

In this chapter, we define original encodings from MaxCSP into Partial MaxSAT that

extend a number of variants of the direct encoding and (minimal) support encoding

from CSP into SAT in such a way that, given a MaxCSP instance P , they produce

a Partial MaxSAT instance φ in which the minimum number of violated constraints

in P is the minimum number of falsified clauses in φ. In Section 5.2, we define direct

encodings and prove their correctness. In Section 5.3, we define minimal support

encodings and prove their correctness. In Section 5.4, we define support encodings,

prove their correctness, and prove that a BnB MaxSAT solver does not need to branch

on the auxiliary variables of the encoding. In Section 5.5, we define interval-based

support encodings. In Section 5.6, we report on an empirical comparison, on realistic

instances, of all the defined encoding from MaxCSP into Partial MaxSAT.

As said above, our encodings from MaxCSP into Partial MaxSAT verify that the

minimum number of violated constraints in the MaxCSP instance is the same as

the minimum number of falsified soft clauses in the Partial MaxSAT instance. Since

there is exactly one falsified soft clause for every violated constraint, our encodings

can be easily extended to Weighted MaxCSP: Given a constraint C with an associated

weight w, we just need to associate the weight w to all the soft clauses encoding C.

Interestingly, the planning instances solved in the empirical investigation are Weighted

83
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MaxCSP instances that are encoded as Weighted Partial MaxSAT instances. For the

sake of simplicity, we focus our description on the unweighted case in the rest of the

chapter, but we would like to remark that our results are also applicable to Weighted

MaxCSP.

5.1 MaxCSP preliminaries

The MaxCSP problem is an optimization version of the CSP problem1. Given a CSP

instance P , the MaxCSP problem consists in finding an assignment that minimizes

(maximizes) the number of violated (satisfied) constraints in P .

Example 5.1 Let P be the CSP instance defined by 〈X,D,C〉, where X =

{x1, x2, x3} is the set of variables, d(x1) = d(x2) = d(x3) = {1, 2, 3}, and C =

{〈{x1, x2}, x1 < x2〉, 〈{x2, x3}, x2 < x3〉, 〈{x1, x3}, x1 6= x3〉} is the set of constraints.

An assignment that minimizes the number of violated constraints of P is x1 = 1,

x2 = 2 and x3 = 3. The number of violated (satisfied) constraints with this assign-

ment is 1 (2).

In Weighted MaxCSP, each constraint has an associated weight, and the goal is

to minimize the sum of the weights of the violated constraints.

5.2 Direct encodings from MaxCSP into Partial

MaxSAT

The standard direct encoding from MaxCSP into Partial MaxSAT is defined by adapt-

ing the standard direct encoding from CSP into SAT:

Definition 5.1 The standard direct encoding of a MaxCSP instance 〈X ,D, C〉 is the

Partial MaxSAT instance that contains as hard clauses the corresponding ALO and

1For basic concepts on CSPs we refer the reader to Section 4.1.
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AMO clauses for every CSP variable in X , and a soft clause ¬xi ∨ ¬yj for every

nogood (X = i, Y = j) of every constraint of C with scope {X, Y }.

Example 5.2 The standard direct encoding for the MaxCSP instance 〈X ,D, C〉 =

〈{X, Y }, {d(X) = {1, 2, 3}, d(Y ) = {1, 2, 3}}, {X ≤ Y }〉 is as follows:

ALO [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]

AMO [¬x1 ∨ ¬x2] [¬x1 ∨ ¬x3] [¬x2 ∨ ¬x3] [¬y1 ∨ ¬y2] [¬y1 ∨ ¬y3] [¬y2 ∨ ¬y3]

conflict (¬x2 ∨ ¬y1) (¬x3 ∨ ¬y1) (¬x3 ∨ ¬y2)

Proposition 5.1 Solving a MaxCSP instance is equivalent to solving the Partial

MaxSAT problem of its standard direct encoding.

Proof The hard clauses ensure that exactly one of the Boolean variables that encode a

CSP variable is true, and the rest are false in any feasible assignment. Therefore, there

is a one-to-one mapping between the set of CSP assignments and the set of feasible

assignments of the Partial MaxSAT instance and, moreover, at most one of the conflict

clauses that encode a certain constraint can be falsified by a feasible assignment. If

the CSP assignment satisfies a constraint, then the corresponding Boolean assignment

also satisfies the conflict clauses that encode that constraint because there is no clause

forbidding allowed values. If the CSP assignment violates a constraint, then the

corresponding Boolean assignment does not satisfy the conflict clause that encodes

the forbidden values of the two variables involved in the constraint, and satisfies the

remaining clauses.

The direct encoding can be easily extended to constraints of higher arity. Given a

nogood (X1 = i1, . . . , Xm = im), we should add the soft clause ¬xi1 ∨ . . . ∨ ¬xim .

There are other options for defining the direct encoding which amount to intro-

ducing auxiliary variables. For example, we could add all the clauses representing

nogoods as hard clauses by adding an auxiliary literal ci to every clause encoding a

nogood of every constraint Ci ∈ C, and adding the unit clause ¬ci as a soft clause.
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Nevertheless, we do not consider this encoding because we realized that its perfor-

mance profile is worse than the performance profile of the direct encoding (at least

for the benchmarks considered in our empirical evaluation).

The regular direct encoding and the full regular direct encoding from MaxCSP

into Partial MaxSAT are defined as the corresponding encodings from CSP into SAT

where the clauses encoding nogoods are soft and the rest of the clauses are hard.

5.3 Minimal support encodings from MaxCSP into

Partial MaxSAT

The standard minimal support encoding from MaxCSP into Partial MaxSAT is de-

fined by adapting the standard minimal support encoding from CSP into SAT:

Definition 5.2 The standard minimal support encoding of a MaxCSP instance

〈X ,D, C〉 is the Partial MaxSAT instance that contains as hard clauses the corre-

sponding ALO and AMO clauses for every CSP variable in X , and as soft clauses the

support clauses of the standard minimal support encoding from CSP into SAT.

Example 5.3 A standard minimal Partial MaxSAT support encoding for the

MaxCSP problem of the CSP instance from Example 5.2 is as follows:

ALO [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]

AMO [¬x1 ∨ ¬x2] [¬x1 ∨ ¬x3] [¬x2 ∨ ¬x3] [¬y1 ∨ ¬y2] [¬y1 ∨ ¬y3] [¬y2 ∨ ¬y3]

support (¬x2 ∨ y2 ∨ y3) (¬x3 ∨ y3)

Proposition 5.2 Solving a MaxCSP instance is equivalent to solving the Partial

MaxSAT problem of its standard minimal support encoding.

Proof Proposition 4.1 proves that there is one unsatisfied clause for every violated

constraint. Since the standard minimal support encoding is correct, and the hard

clauses ensure a one-to-one mapping between MaxCSP and feasible Partial MaxSAT
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assignments, the optimal solutions of MaxCSP are exactly the same as the optimal

solutions of Partial MaxSAT.

The regular minimal support encoding from MaxCSP into Partial MaxSAT is

defined as the regular minimal support encoding from CSP into SAT where the support

clauses are soft and the rest of the clauses are hard. We do not consider the full regular

minimal support encoding because it is not useful in practice.

5.4 Support encodings from MaxCSP into Partial

MaxSAT

The standard support encoding from MaxCSP into Partial MaxSAT is defined by

adapting the standard support encoding from CSP into SAT:

Definition 5.3 The standard support encoding of a MaxCSP instance 〈X ,D, C〉 is the

Partial MaxSAT instance that contains as hard clauses the corresponding ALO and

AMO clauses for every CSP variable in X , and contains, for every constraint Ck ∈ C
with scope {X, Y }, a soft clause of the form SX=j∨ck, where ck is an auxiliary variable,

for every support clause SX=j used to encode the support for every value j of X, and

contains a soft clause of the form SY=m ∨ ¬ck for every support clause SY=m used to

encode the support for every value m of Y .

We introduce an auxiliary variable for every constraint because otherwise there

are two unsatisfied soft clauses for every violated constraint of the MaxCSP instance.

It is particularly important to have one unsatisfied clause for every violated constraint

when mapping weighted MaxCSP instances into weighted MaxSAT instances. In this

case, all the clauses encoding a certain constraint have the weight that is associated

to that constraint. When a constraint is violated with weight w, this guarantees that

there is exactly one unsatisfied clause with weight w.
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Example 5.4 The Partial MaxSAT support encoding for the MaxCSP instance from

Example 5.2 is as follows:

ALO [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]

AMO [¬x1 ∨ ¬x2] [¬x1 ∨ ¬x3] [¬x2 ∨ ¬x3]

[¬y1 ∨ ¬y2] [¬y1 ∨ ¬y3] [¬y2 ∨ ¬y3]

support (¬x2 ∨ y2 ∨ y3 ∨ c1) (¬y1 ∨ x1 ∨ ¬c1)

(¬x3 ∨ y3 ∨ c1) (¬y2 ∨ x1 ∨ x2 ∨ ¬c1)

Proposition 5.3 Solving a MaxCSP instance is equivalent to solving the Partial

MaxSAT problem of its standard support encoding.

Proof By introducing auxiliary variables we ensure that the optimal solutions of

MaxCSP are exactly the same as the optimal solutions of Partial MaxSAT. The aux-

iliary variables allow to violate exactly one clause for every violated constraint.

In the following proposition we assume that Partial MaxSAT solvers incorporate

the rule that replaces any two complementary unit clauses with an empty clause.

Actually, most of the BnB solvers implement such a rule.

Proposition 5.4 When solving a MaxCSP instance with a Partial MaxSAT BnB

solver, using the standard support encoding, it is not necessary to branch on the aux-

iliary variables.

Proof For every violated constraint Ck with scope {X, Y }, there is exactly one

unsatisfied support clause of the form ¬xi∨ yj1 ∨ · · · ∨ yjk and one unsatisfied support

clause of the form ¬yl ∨ xm1 ∨ · · · ∨ xms in the support encoding from CSP into

SAT. Therefore, these clauses will produce the derivation of the two complementary

unit clauses in the support encoding from MaxCSP into Partial MaxSAT: ck (from

¬xi∨yj1∨· · ·∨yjk∨ck) and ¬ck (from ¬yl∨xm1∨· · ·∨xms∨¬ck). The solver will then

derive a contradiction from these two clauses. If Ck is satisfied, both support clauses

are satisfied and the fact of adding an extra literal does not affect their satisfaction.
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On the solved benchmarks we did not observe significant differences between

branching including auxiliary variables and branching without including them. So, we

only report results for branching including auxiliary variables. However, there may

exist differences on other types of instances and solvers.

The regular support encoding from MaxCSP into Partial MaxSAT is the standard

support encoding from MaxCSP into Partial MaxSAT but using the regular encoding

of the ALO and AMO clauses.

5.5 Interval-based support encodings from

MaxCSP into Partial MaxSAT

The interval-based support encoding has exactly one violated clause for each direc-

tion of each violated constraint. Therefore, the interval-based minimal support en-

coding from MaxCSP into Partial MaxSAT does not need auxiliary variables, and the

interval-based support encoding needs an auxiliary variable for every constraint.

Definition 5.4 The interval-based minimal support encoding of a MaxCSP instance

〈X ,D, C〉 is the Partial MaxSAT instance that contains as hard clauses the clauses

that link the different regular literals for every CSP variable in X , and contains as

soft clauses the support clauses of the interval-based minimal support encoding from

CSP into SAT.

Definition 5.5 The interval-based support encoding of a MaxCSP instance 〈X ,D, C〉
is the Partial MaxSAT instance that contains as hard clauses the clauses that link

the different regular literals for every CSP variable in X , and contains, for every

constraint Ck ∈ C with scope {X, Y }, a soft clause of the form SX=j ∨ ck, where ck

is an auxiliary variable, for every support clause SX=j used to encode the support for

every value j of X in the interval-based support encoding from CSP into SAT, and

contains a soft clause of the form SY=m ∨ ¬ck for every support clause SY=m used to
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encode the support for every value m of Y in the interval-based support encoding from

CSP into SAT.

Example 5.5 The Partial MaxSAT interval-based support encoding for the MaxCSP

instance from Example 5.2 is as follows:

[¬x≥3 ∨ x≥2 ] [¬y≥3 ∨ y≥2 ]

support (¬x≥2 ∨ x≥3 ∨ y≥2 ∨ c1) (y≥2 ∨ ¬x≥2 ∨ ¬c1)

(¬x≥3 ∨ y≥3 ∨ c1) (¬y≥2 ∨ y≥3 ∨ ¬x≥3 ∨ ¬c1)

Note that we get a Partial MaxSAT interval-based minimal support encoding re-

placing the soft clauses with either (¬x≥2 ∨ x≥3 ∨ y≥2 ), (¬x≥3 ∨ y≥3 ) or (y≥2 ∨ ¬x≥2 ),

(¬y≥2 ∨ y≥3 ∨ ¬x≥3 ).

5.6 Experimental results

This section reports on the empirical investigation conducted to compare the previous

encodings. Experiments were performed on a cluster with 160 2 GHz AMD Opteron

248 Processors with 1 GB of memory, and the cutoff time was 30 minutes per instance.

In the minimal encodings of a binary MaxCSP, for each constraint with scope

{X, Y }, we must include the support clauses either for X or for Y . In the sequel, the

support clauses for the variable that produces smaller size clauses are included. To

this end, we give a score of 16 to unit clauses, a score of 4 to binary clauses and a

score of 1 to ternary clauses and, at the end, choose the variable with the higher sum

of scores.

In the tables, we denote the number of instances in each category by # (the

number of solved instances is displayed in brackets), the minimal support encoding by

supc, the regular minimal support encoding by reg-supc, the interval-based minimal

support encoding by int-supc, the standard support encoding by supxy, the regular

support encoding by reg-supxy, the interval-based support encoding by int-supxy,

the standard direct encoding by dir, the regular direct encoding by reg-dir, and the

full regular direct encoding by freg-dir.
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The experiments of this section were designed to compare the defined encodings

from MaxCSP into Partial MaxSAT. The solvers used were the last publicly avail-

able versions of WMaxSatz [LMMP10, LMP07a], SAT4J-Maxsat [LP10] and MSUn-

Core [MSP08]. The benchmarks solved were the clique tree instances with different

constraint tightness (kbtree) used in [ACLM09a, ACLM09b], and the planning in-

stances from the Soft CSP repository. 2 All these benchmarks are also used in the

MaxSAT Evaluation [ALMP08].

Table 5.1, 5.2 and 5.3 show the results for kbtree with WMaxSatz, and planning

instances with WMaxSatz and MSUnCore, respectively. For kbtree, we show the

results for WMaxSatz and observe that the minimal support encoding is the best per-

forming (174 instances solved) and then the interval-based minimal support encoding

(156 instances solved, some of them not solved by any other encoding). The non-

minimal version only solves 50 instances. The third best performing encoding is the

standard direct encoding. We do not show the results for SAT4J-Maxsat and MSUn-

Core because there are no significant differences. For planning, we show the results

for WMaxSatz and MSUnCore, because SAT4J-Maxsat solves the same number of

instances (72) for all the variants except for the regular direct encoding (53). Among

the direct encodings, the performance depends on the solver. Among the support

encodings, the minimal variants are the best performing ones.

The reported results provide evidence that our new encodings are well-suited for

branch and bound MaxSAT solvers such as WMaxSatz, and SAT-based MaxSAT

solvers such as MSUnCore and SAT4J-Maxsat. In particular, the use of minimal

variants and the introduction of regular literals may produce substantial gains. The

interval-based approach depends on the solver and the class of instances to be solved.

Moreover, we observe that the standard support encoding is not competitive with the

new encodings.

2http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS.
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5.7 Summary

We have defined a number of original encodings from MaxCSP into Partial MaxSAT,

which are the extension of a number of encodings from CSP into SAT. Firstly, we

have defined the direct, support and the minimal support encodings from MaxCSP

into Partial MaxSAT, and have proved its correctness. Moreover, we have proved

that a BnB solver does not need to branch on the auxiliary variables introduced in

the support encodings. Secondly, we have extended the interval-based encodings from

CSP into SAT, obtaining its Partial MaxSAT version: the interval-based support

encoding and the interval-based minimal support encoding. Finally, we have reported

on an empirical investigation that we have conducted to compare the performance of

all the defined encodings from MaxCSP into Partial MaxSAT.
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Chapter 6

Generation of Hard MaxSAT

Instances

MaxSAT solvers have made tremendous progress in terms of performance in recent

years. Nowadays, we count with fast exact solvers but there has not been parallel

progress in the generation of challenging benchmarks for studying the scaling behav-

ior of solvers, and comparing their performance. Most experimental investigations

only include, besides random MaxkSAT instances, the sets of individual instances

submitted to the MaxSAT evaluations held so far [ALMP08, ALMP11a, ALMP11c].

The problem with many of the latter instances is that they are becoming easy for

modern solvers, and do not allow to analyse the scaling behavior. To cope with that

problem, we propose several generators of MaxSAT instances of adjustable hardness.

The first generator produces random (unweighted) MaxSAT instances with unary

and binary clauses. It mixes the polynomially solvable problem Max1SAT and

the NP-hard problem Max2SAT. The second generator produces random Partial

Max2SAT instances with a variable number of soft clauses. Notice that Partial

Max2SAT without soft clauses is polynomially solvable, but becomes NP-hard when

soft clauses are added. In both cases, in which we consider pure random instances,

we show that modern solvers interpolate smoothly from a polynomial optimization

problem to one which is NP-hard.

The third and four generators produce structured instances. The third one pro-

97
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duces MaxSAT instances that encode the problem of finding a maximum cut in graphs

which have been generated from a bipartite graph by randomly adding a variable

number of edges. The fourth one produces Weighted Partial MaxSAT instances that

encode a variant of the rectangular bin packing problem, in which the objective is

to maximize the number of rectangular pieces of different size which can be placed

in a rectangular bin containing obstacles. In both cases, we provide a testbed whose

computational difficulty may be adjusted by a parameter.

The chapter is structured as follows. In Section 6.1, we describe the generators

we have developed and the used MaxSAT encodings. In Section 6.2, we report on

the empirical investigation which allows to assess the computational difficulty of the

instances produced by the new generators. In Section 6.3, we present some concluding

remarks.

6.1 Problems and generators

We have considered four different problems for creating MaxSAT instance gener-

ators: Max1+pSAT, Partial Max2SAT, MaxCut and rectangular bin packing.

The goal of comparing MaxSAT algorithms with different problems is to try to

understand some basic characteristics of the instances that affect the performance of

the algorithms, so that the results of this analysis can be used to help selecting the

most appropriate algorithm for solving other problems with hard and soft constraints.

6.1.1 Max1+pSAT

The first generator produces random (unweighted) MaxSAT instances with unary

and binary clauses. It mixes the polynomially solvable problem Max1SAT and

the NP-hard problem Max2SAT. It is a generator of random instances for the

Max1+pSAT problem [SW02], where a fraction of p clauses are binary and the rest

are unary. Both unary and binary clauses are selected uniformly at random from the
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set of all possible set of unary and binary clauses, respectively, that can be created

from a given set of Boolean variables.

6.1.2 Partial Max2SAT

The second generator produces random Partial Max2SAT instances with a variable

number of soft clauses. Each clause is selected uniformly at random from the set of all

possible binary clauses that can be created from a given set of Boolean variables. No-

tice that Partial Max2SAT without soft clauses is polynomially solvable, but becomes

NP-hard when soft clauses are added.

6.1.3 MaxCut

The third generator produces MaxSAT instances of the MaxCut problem. The

MaxCut problem consists in finding a maximum cut in a graph G(V,E), where

V = {v1, . . . , vn} and E = {(vi, vj)|vi, vj ∈ V } are the vertex set and the edge set,

respectively.

Before explaining the generator, we define some preliminary concepts: let G =

(V,E) be an undirected graph. A cut is a partition of the vertices in V into two

disjoint subsets S and T . Any edge (u, v) ∈ E with u ∈ S and v ∈ T is said to be

crossing the cut, and is a cutting edge. The size of the cut is the number of cutting

edges. A maximum cut (MaxCut) is then defined as a cut of G of maximum size.

A bipartite graph G is a graph whose vertices can be partitioned into two disjoint

subsets V1 and V2 such that every edge connects a vertex in V1 to one in V2. They are

denoted by G(V1∪V2, E), where V1 is the left partition and V2 is the right partition of

the set of vertices, and E ⊆ V1×V2 is the edge set. The MaxCut problem is essentially

the same as the problem of finding a bipartite subgraph with the maximum number

of edges.

The generator produces MaxSAT intances of the MaxCut problem for graphs with

m edges that have been generated as the union of a bipartite graph with (1− p) ·m
edges and a randomly selected set of p ·m edges, where p is the fraction parameter
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that varies from 0 to 1. The bipartite subgraph is generated following the algorithm

defined in [ABFM08], in such a way that the graph has a high expansion.

The expansion of a subset X from the vertices of G(V1 ∪ V2, E) is defined to be

the ratio |N(X)|/|X|, where N(X) = {w ∈ (V1 ∪ V2)\X|∃v ∈ X, (v, w) ∈ E} is the

set of outside neighbours of X. A set is considered to be high expanding when its

expansion is greater than 1, that means that the set of different outside neighbors of

X is larger than X, so it is well connected with the rest of the graph.

Observe that, in a bipartite graph, one can always determine an optimal cut in

polynomial time by simply finding the bipartition of the graph. However, in our

case, as the fraction p of random edges is greater than zero, the whole graph is not

necessarily bipartite. Thus, the optimal solution may be different from the bipartition

of the bipartite subgraph. Moreover, we use the high expanding bipartite graphs

from [ABFM08] because this way we increase the chances to have many sub-optimal

partitions, given that every high expanding subset of vertices is connected to a big

subset of vertices, so that the cut they define is of big size.

In order to encode MaxCut into MaxSAT, we used the encoding in [Yan94]: Given

a graph with m edges, we create, for each edge (vi, vj), exactly two binary clauses

(xi ∨ xj) and (¬xi ∨ ¬xj). The intended meaning of xi (xj) is that it takes the value

1 if vi (vj) belongs to the set S of the vertex set partition, and takes the value 0 if vi

(vj) belongs to the set T of the vertex partition. If φ is the collection of such binary

clauses, then the MaxCut instance has a cut of size k if, and only if, the MaxSAT

instance has an assignment under which m+ k clauses are satisfied.

Example 6.1 Given a graph G = (V,E), with a vertex set V = {v1, v2, v3, v4, v5}
and with an edge set E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v2, v3), (v4, v5), (v3, v4)}
(see Figure 6.1). The MaxCut problem is encoded as a MaxSAT instance as follows:

(i) We define a set of propositional variables {x1, x2, x3, x4, x5}; the intended mean-

ing of variable xi is that vertex vi ∈ S if xi = 1 and vi ∈ T if xi = 0.
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(ii) There are two clauses for every edge (vi, vj) ∈ E:

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)∧
(x1 ∨ x3) ∧ (¬x1 ∨ ¬x3)∧
(x1 ∨ x4) ∧ (¬x1 ∨ ¬x4)∧
(x1 ∨ x5) ∧ (¬x1 ∨ ¬x5)∧
(x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)∧
(x4 ∨ x5) ∧ (¬x4 ∨ ¬x5)∧
(x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

An optimal solution for this MaxSAT instance is the assignment {I(x1) =

1, I(x2) = 0, I(x3) = 1, I(x4) = 0, I(x5) = 1}. Notice that, S = {v1, v3, v5} and

T = {v2, v4}. Since this assignment satisfies 12 clauses and the graph has m = 7

edges, the MaxCut instance has a maximum cut of size 5. The double lines of Fig-

ure 6.1 represent the cutting edges.

v1

v2

v3v4

v5

Figure 6.1: A maximum cut of size 5.

6.1.4 Rectangular bin packing

The fourth generator produces Weighted Partial MaxSAT instances of the rectangular

bin packing problem. We are given a set of n rectangular pieces of different size which
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Figure 6.2: Example of bin packing instances

must be placed in a finite rectangular bin of height H and width W . We divide such a

bin in H+1 rows and W+1 columns, taking as origin the position (0, 0) (i.e.; rows are

named 0, 1, . . . , H, and columns are named 0, 1, . . . ,W ). Each piece i is characterized

by its height hi (hi < H) and width wi (wi < W ), and may not be rotated. We will

say that a piece is in position (i, j) if the left upper corner of the piece is in row i

and column j. Moreover, we assume that some cells are filled and, therefore, no piece

can be located there; in other words, there are some obstacles. The generator has

a parameter that allows to adjust the number of cells which are filled; the location

of such cells is randomly selected following a uniform distribution. The problem we

want to solve is to locate as much rectangular pieces as possible in the bin taking

into account the size of the pieces. That is, to maximize the sum of the sizes of the

located pieces in the bin. Figure 6.2 shows a bin of height 4 and width 4 containing 9

filled cells representing obstacles (left), and a bin which represents an optimal solution

(right). This optimal bin locates 3 pieces, whose sizes are 2 × 2, 2 × 1, and 1 × 1.

There is one piece of size 1× 1 which cannot be located.

Next, we present the different encodings of the rectangular bin packing produced

by the generator. We defined two different encodings, called BP1 and BP2.
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Encoding BP1

We define the Weighted Partial MaxSAT encoding BP1 for the rectangular bin packing

problem. For each rectangular piece k with height hk and width wk, we have the set

of propositional variables {rki , ckj |hk ≤ i ≤ H, 0 ≤ j ≤ W − wk} ∪ {xk}. Variable rki

(ckj ) is true if the left upper corner of piece k is located in row i (column j). Variable

xk is true if piece k is located in the bin.

The first block of hard clauses ensures that the left upper corner of piece k in the

bin is just in one row. So, for each piece k, we first add the clause:

¬xk ∨ rkhk
∨ rkhk+1 ∨ · · · ∨ rkH (6.1)

Since hard clauses must be satisfied in any optimal solution, variable xk is false if

piece k is not in an allowed row.

Then, for every two rows i, j such that hk ≤ i < j ≤ H, we add the clause:

¬xk ∨ ¬(rki ∧ rkj ) (6.2)

The second block of hard clauses ensures that the left upper corner of piece k in

the bin is just in one column. Otherwise, xk should be false. First, we add the clause

¬xk ∨ ck0 ∨ ck1 ∨ · · · ∨ ckW−wk
(6.3)

Then, for every two columns i, j such that 0 ≤ i < j ≤ W − wk, we add the clause:

¬xk ∨ ¬(cki ∧ ckj ) (6.4)

The third block of hard clauses ensures that pieces do not overlap with the location

of the obstacles. For every piece k and every cell (i, j) filled with an obstacle, we add

the clauses:

¬rkl ∨ ¬ckm (6.5)

where i ≤ l ≤ i+ hk − 1 and j − wk + 1 ≤ m ≤ j.

The fourth block of hard clauses ensures that any two pieces s and k do not overlap:

for every allowed position (i, j) (hs ≤ i ≤ H and 0 ≤ j ≤ W − ws) of piece s, we add
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the following clauses:

¬(rsi ∧ csj) ∨ ¬(rkl ∧ ckm) (6.6)

for each allowed position (l,m) (hk ≤ l ≤ H and 0 ≤ m ≤ W − wk) of piece k, and

where i− hs + 1 ≤ l ≤ i+ hk − 1 and j − wk + 1 ≤ m ≤ j + ws − 1.

Finally, there is a block of soft clauses. If we just would like to maximize the

number of pieces in every bin, we should add the unit clauses {x1, . . . , xn}, where n

is the total given number of rectangular pieces, but as we want to take into account

the size of the pieces, we add the area of the piece as weight. So, the block of soft

clauses is formed by the following weighted unit clauses:

(x1, h1 × w1), . . . , (xn, hn × wn) (6.7)

Notice that the set of clauses 6.2 ensures that if a piece k is in the bin, it must

be located in at most one row, and the set of clauses 6.4 ensures that if a piece k

is in the bin, it must be located in at most one column. So, these sets of clauses

are encoding the at-most-one (AMO) constraints. If these clauses are removed in the

encoding described above, a new valid variant of the encoding is obtained. Removing

the AMO clauses is valid because it does not change the value of the optimal solutions.

To see the reason, consider an optimal solution found with the variant without AMO

clauses that contains a piece located in more than one position. Then, if it would

be possible to eliminate any of the repeated positions of that piece to incorporate an

additional piece, then the solution could be improved and it would not be an optimal

solution. However, it could be the case that the AMO clauses help solvers to rule

out these non-improving solutions during search. So, we will consider two variants.

Encoding BP1 without AMO clauses (BP1-NAMO) and encoding BP1 with AMO

clauses (BP1-AMO).

Encoding BP2

The Weighted Partial MaxSAT encoding BP2 for the rectangular bin packing problem

is defined as follows: for each rectangular piece k with height hk and width wk, we have
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the set of propositional variables {ckij|hk ≤ i ≤ H, 0 ≤ j ≤ W − wk} ∪ {xk}. Variable

ckij is true if the left upper corner of piece k is located in row i and in column j, i.e.,

in the cell (i, j). Variable xk is true if piece k is located in the bin.

The first block of hard clauses ensures that any piece k in the bin is just in one

cell. So, for each piece k, we first add the clause:

¬xk ∨
( ∨

(i,j)∈V
ckij

)
(6.8)

where V = {hk, . . . , H} × {0, . . . ,W − wk}. Notice, that this first set of clauses

ensures that a piece k must be located in at least one cell. Since hard clauses must

be satisfied in any optimal solution, variable xk is false if piece k is not in an allowed

cell.

Then, for every two cells (i, j), (m, l) such that hk ≤ i ≤ m ≤ H and 0 ≤ j, l ≤
W − wk, we add the clause:

¬xk ∨ ¬(ckij ∧ ckml) (6.9)

This second set of clauses ensures that a piece k is located in at most one cell.

Otherwise, xk should be false.

The second block of hard clauses ensures that pieces do not overlap with the

location of the obstacles. For every piece k and every cell (i, j) filled with an obstacle,

we add the clauses:

¬cklm (6.10)

where i ≤ l ≤ i+ hk − 1 and j − wk + 1 ≤ m ≤ j.

The third block of hard clauses ensures that any two pieces s and k do not overlap:

for every allowed position (i, j) (hs ≤ i ≤ H and 0 ≤ j ≤ W − ws) of piece s, we add

the following clauses:

¬(csij ∧ cklm) (6.11)

for each allowed position (l,m) (hk ≤ l ≤ H and 0 ≤ m ≤ W − wk) of piece k, and

where i− hs + 1 ≤ l ≤ i+ hk − 1 and j − wk + 1 ≤ m ≤ j + ws − 1.
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Finally, as in encoding BP1, there is a block of soft clauses. As we want to

maximize the number of pieces in every bin taking into account the size of the pieces,

we add the area of the piece as weight. So, the block of soft clauses is formed by the

following weighted unit clauses:

(x1, h1 × w1), . . . , (xn, hn × wn) (6.12)

In encoding BP2, the set of clauses 6.9 encode the AMO constraint, since they

ensure that if a piece k is in the bin, it is located in at most one cell. We also distinguish

between two variants, the first one, called BP2-AMO, is encoding BP2 with the AMO

clauses, and the second one, called BP2-NAMO, is encoding BP2 without the AMO

clauses.

6.2 Experimental Investigation

We report on the experimental investigation conducted to analyse and compare

the scaling behaviour of our generators with the Weighted Partial MaxSAT solvers

WMaxSatz [LMP07b], MSUnCore [MSP08] and SAT4JMaxSAT [LP10]. All the ex-

periments were performed on a Linux Cluster where the nodes have a 2GHz AMD

Opteron processor with 1Gb of RAM.

6.2.1 Max1+pSAT

We present experimental results for the average complexity of solving random in-

stances of Max1+pSAT. The number of clauses (C) of the instances has been set to

depend on the number of variables (V ) with the formula C = 2 · V ln(V ). Such a

formula has been chosen to coincide with the size of the instances that we use for the

MaxCut problem in Subsection 6.2.3, in which the number of edges has been set to

the minimum possible that allow a random graph to be connected. The aim of having

instances with the same, or similar, number of variables and number of clauses from



6.2. Experimental Investigation 107

mean
median

150 variables - 1503 clauses (WMaxSatz)

tim
e 

(s
ec

on
ds

)

0

100

200

300

400

p
0 0.2 0.4 0.6 0.8 1

mean
median

160 variables - 1624 clauses (WMaxSatz)

tim
e 

(s
ec

on
ds

)
0

200

400

600

800

p
0 0.2 0.4 0.6 0.8 1

Figure 6.3: Random Max1+pSat solved with WMaxSatz.

different problem generators is to compare the complexity of instances of similar size,

in such a way that only the structure of the problem can make a difference in the

computational difficulty of solving an instance.

Figure 6.3 shows the mean and median time for solving random Max1+pSAT

instances with 150 and 160 variables with WMaxSatz. We have generated sets of 100

instances for each different value of p, starting with p = 0.1 and ending with p = 0.9

and increasing it in steps of 0.1. Along the horizontal axis is the value of p in the

instances, and the vertical axis shows the mean, or median, time needed to solve each

set of 100 instances. We observe a clear exponential increase in time as the percentage

of binary clauses increases. Interestingly, it seems that around the value p = 0.7 is

where there is an abrupt change in the complexity of solving the instances.

A similar experiment was performed in [SW02], but the authors did not observe

any exponential increase. We believe that this was due to the fact they used a MaxSAT

solver that did not incorporate a good quality lower bound.

Figure 6.4 shows the results of solving random Max1+pSAT instances with MSUn-

Core. In this case, the results are for a number of variables equal to 25 and 28, because
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Figure 6.4: Random Max1+pSat solved with MSUnCore.

MSUnCore has a worse scaling cost than WMaxSatz, so the range of sizes we can solve

is smaller. We observe an analogous behaviour, that is, an abrupt change in complex-

ity around p = 0.7.

Finally, Figure 6.5 shows the results of solving random Max1+pSAT instances

with SAT4JMaxSAT. In this case, the results are for a number of variables equal to

28 and 29. We observe a behaviour similar to the behaviour of MSUnCore: there is

an abrupt change around p = 0.7, and the scaling cost is worse than the scaling cost

of WMaxSatz.

We have also performed more experiments increasing the number of variables to

study the scaling behaviour of the solvers. Table 6.1 shows the scaling of the mean and

median cost as the number of variables increases for WMaxSatz. We show the results

for both the hardest point (p = 0.9) and for the point p = 0.7, which is the point where

an abrupt change in the complexity occurs for all the solvers. In the table, a dash in

the column for the mean indicates that more than 20% of the instances were not solved

within the cutoff time we used (1800 seconds), and in the column for the median the

value > 1800s indicates than more than 50% of the instances were not solved within
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Figure 6.5: Random Max1+pSat solved with SAT4JMaxSAT.

the cutoff time. We observe a clear exponential increase in the mean and median time

as V increases for both values of p. Table 6.2 shows analogous results for MSUnCore

and SAT4JMaxSAT for the same values of p, but with a different range of values

for V . We also observe the exponential increase in mean and median time for both

values of p. Observe that the sizes that we can solve with WMaxSatz with respect

to the ones we can solve with MSUnCore and SAT4JMaxSAT are very different. Our

results are consistent with previous results obtained in MaxSAT evaluations where

BnB solvers outperform SAT-based solvers on pure random instances [ALMP11b].

6.2.2 Partial Max2SAT

We present experimental results for the average complexity of solving random in-

stances of Partial Max2SAT. As in the previous problem, the number of clauses (C)

of the instances has been set to depend on the number of variables (V ) using the

formula C = 2 · V ln(V ).

Figure 6.6 shows the mean and median time for solving random Partial Max2SAT

instances with 130 and 140 variables with WMaxSatz. As we observed that the change
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WmaxSatz

p = 0.9 p = 0.7

mean median mean median

V=140, C=1383 99 53.86 3.34 2.48

V=150, C=1503 363 204 8.27 6.00

V=160, C=1624 809 622 18.70 13.78

V=170, C=1746 - >1800 65.21 33.5

Table 6.1: Performance of WMaxSatz on hard instances for Max1+pSat. Time in

seconds.

MSUnCore SAT4JMaxSAT

p = 0.9 p = 0.7 p = 0.9 p = 0.7

mean median mean median mean median mean median

V=20, C=119 37 0.06 0.06 0.01 2.82 2.21 1.84 1.72

V=25, C=160 450 25 43.43 0.03 22.88 18.63 15.44 7.84

V=28, C=186 1054 1436 185 1.45 372 99.41 156 32.08

V=30, C=204 - >1800 442 19.33 - >1800 630 218

Table 6.2: Performance of MSUnCore and SAT4JMaxSAT on hard instances for

Max1+pSAT. Time in seconds.
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in complexity is driven by the ratio of number of hard clauses to number of variables,

we generated a set of 100 instances for each different ratio, starting with ratio 0.0

and ending with ratio 1.5. Along the horizontal axis is the ratio of number of hard

clauses to number of variables for each set of instances. The plots labelled as mean

and median show the mean and median time for each set of instances, with the scale

shown in the left vertical axis, and the plot labelled as % of SAT instances shows the

percentage of instances that are feasible (that have a solution that satisfies all the

hard clauses) for each set of instances, with the scale shown in the right vertical axis.

We observe that the higher the ratio of hard clauses to variables is, the lower the

average complexity of solving the instances. Observe that the decrease in complexity

is very abrupt up to approximetely the ratio 0.5, and then almost does not change.

It seems that, at such ratio, WMaxSatz is able to quickly prune many branches with

partial assignments inconsistent with the hard clauses. Observe that the plot for

percentage of satisfiable instances indicates that at the ratio 0.5 we are very near to

the beginning of the region where unsatisfiable instances begin to appear. So, it is

consistent with the idea of having an increase in the number of partial assignments

that are inconsistent with the hard clauses.

Figure 6.7 shows the results of solving random Partial Max2SAT instances with

SAT4JMaxSAT. In this case, the results are for a number of variables equal to 26 and

28, because SAT4JMaxSAT, as in the previous problem, has a worse scaling cost than

WMaxSatz, so the range of sizes we can solve is smaller. We observe an analogous

behaviour: the complexity decreases as the ratio of hard clauses to variables increases,

and the decrease is very abrupt up to to approximetely the ratio 0.5.

Finally, Figure 6.8 shows the results of solving random Partial Max2SAT instances

with MSUnCore. In this case, the results are for a number of variables equal to 21 and

22. Observe that, for this solver, the decrease in the complexity seems to be linear

with respect to the ratio of hard clauses to variables, in constrast to the previous

exponential decrease in the complexity, at least until we arrive to a higher ratio than
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Figure 6.6: Partial Max2SAT solved with WMaxSatz.

before (1.5 in this case). It seems that MSUnCore is not able to take advantage of the

sudden change in the characteristics of the instances that we observe with WMaxSatz

around the ratio 0.5.

As with the previous problem, we have also studied the scaling behaviour of the

solvers. Table 6.3 shows the scaling of the mean and median cost as the number of

variables increases for WMaxSatz. We show the results for the hardest point, which

is when almost all the clauses are soft. As before, we observe a clear exponential

increase in the mean and median time as V increases. Table 6.4 shows analogous

results for MSUnCore and SAT4JMaxSAT but for different ranges of values for V .

We also observe the exponential increase in mean and median time as V increases.

Again, we observe that the sizes that we can solve with WMaxSatz with respect to

the ones we can solve with MSUnCore and SAT4JMaxSAT are very different.
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WMaxSatz

mean median

V=120, C=1148 55 37.29

V=130, C=1265 254 150

V=140, C=1383 730 561

V=160, C=1624 - >1800

Table 6.3: Performance of WMaxSatz on the hardest instances for Partial Max2SAT.

Time in seconds.

MSUnCore SAT4JMaxSAT

mean median mean median

V=20, C=119 250 3.34 V=20, C=119 3.26 2.27

V=21, C=127 366 16.2 V=23, C=144 6.25 4.61

V=22, C=136 654 135 V=26, C=169 124 20.16

V=23, C=144 - 891 V=30, C=204 - >1800

Table 6.4: Performance of MSUnCore and SAT4JMaxSAT on the hardest instances

for Partial Max2SAT. Time in seconds.



114 Chapter 6. Generation of Hard MaxSAT Instances

%
 of SAT instances

0

20

40

60

80

100

mean
median
% of SAT instances

26 variables - 169 clauses (SAT4JMaxSAT)
tim

e 
(s

ec
on

ds
)

0

25

50

75

100

125

hard clauses/ variables
0 0.25 0.5 0.75 1 1.25 1.5

%
 of SAT instances

0

20

40

60

80

100

mean
median
% of SAT instances

28 variables - 186 clauses (SAT4JMaxSAT)

tim
e 

(s
ec

on
ds

)

0

100

200

300

400

500

600

hard clauses/variables
0 0.25 0.5 0.75 1 1.25 1.5

Figure 6.7: Partial Max2SAT solved with SAT4JMaxSAT.

6.2.3 MaxCut

We present experimental results for the average complexity of solving instances of

MaxCut with the generator of random graphs we have described in Subsection 6.1.3.

Recall that the generator creates a graph with V vertices, V always even, and m edges

by first building a bipartite graph with (1 − p) · m edges and high expansion, with

the algorithm presented in [ABFM08], and then adding a random set of p ·m edges

which may destroy the bipartition of the graph. The intention of the parameter p is

the following: when p = 0, the graph is bipartite so the maximum cut should be easy

to find once we discover that the graph is bipartite. As p increases, the bipartition

can disappear so the maximum cut may not be the same cut as the cut of the initial

bipartite graph. The idea is that if the original bipartite graph has high expansion,

it may still contain many sub-optimal cuts that are very close to the maximum cut,

so this may create difficulties when trying to find, and certify, the maximum cut.

In the generated instances, the number of edges m has been set to V ln(V ), so

the number of clauses (C) is 2 · V ln(V ). This number of edges is just to the right of

the phase transition for the connectedness of a random graph [Bol01]. In this way,
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Figure 6.8: Partial Max2SAT solved with MSUnCore.

we ensure that at least the graph will be connected when all the edges are randomly

generated (p = 1), and the problem will be not decomposable in smaller subproblems.

Figure 6.9 shows the mean and median time for solving random MaxCut instances

with 130 and 136 vertices with WMaxSatz. We have generated sets of 100 instances

for each different value of p, starting with 0.1 and ending with 1, and increasing it

in steps of 0.1. Along the horizontal axis is the value of p in the instances, and the

vertical axis shows the mean, or median, time needed to solve each set of 100 instances.

The results show clearly that, when the graphs are almost bipartite, WMaxSatz finds

easily the maximum cut, but as p increases the complexity increases, up to a point,

around p = 0.5, where the complexity seems to decrease but not very abruptly. We

believe that in the point of maximum complexity the graphs are not bipartite, but

still many suboptimal cuts are found in the original bipartite subgraph, due to its

high expansion. As p increases further, these suboptimal cuts are probably lost, so

the complexity of finding and certifying the maximum cut decreases.

Figure 6.10 shows the results of solving random MaxCut instances with 24 and

26 vertices with SAT4JMaxSAT. We observe an analogous behaviour: the complexity

increases up to approximetely the point p = 0.5, and then decreases.
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Figure 6.9: MaxCut solved with WMaxSatz.
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Figure 6.10: MaxCut solved with SAT4JMaxSAT.
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Figure 6.11: MaxCut solved with MSUnCore.

Figure 6.11 shows the results of solving random MaxCut instances with 18 and

20 vertices with MSUnCore, that are smaller sizes than for SAT4JMaxSAT because

its performance is much worse. In this case, even if the complexity also increases up

to approximetely the point p = 0.5, then the decrease is not so sharp. We believe

this is mainly due to the small size of the instances we have been able to solve with

MSUnCore with our cutoff time of 1800 seconds per instance.

As with the previous problem, we have also studied the scaling behaviour of the

solvers. Table 6.5 shows the scaling of the mean and median cost as the number of

vertices increases for WMaxSatz. We show the results for the hardest point, that is

always around the point p = 0.5. As before, we observe a clear exponential increase

in the mean and median time as V increases. Table 6.6 shows analogous results for

MSUnCore and SAT4JMaxSAT but for different ranges of values for V . We also

observe the exponential increase in mean and median time as V increases. Again, we

observe that WMaxSatz scales up better than MSUnCore and SAT4JMaxSAT when

the size grows, but in this case the scaling behaviour of MSUnCore is significantly

worse than the scaling behaviour of SAT4JMaxSAT.
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WMaxSatz

mean median

V=120, m=574 100 76.9

V=130, m=633 343 270

V=136, m=668 788 610

V=140, m=692 1013 951

Table 6.5: Performance of WMaxSatz for the hardest instances of MaxCut. Time in

seconds.

MSUnCore SAT4JMaxSAT

mean median mean median

V=16, m=44 8 0.05 V=18, m=52 1.67 1.58

V=18, m=52 100 1.91 V=20, m=60 2.54 2.4

V=20, m=60 540 111 V=24, m=76 25.01 11.76

V=22, m=136 - > 1800 V=26, m=84 424 71.56

Table 6.6: Performance of MSUnCore solver and SAT4JMaxSAT solver for the hardest

instances of MaxCut. Time in seconds.
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6.2.4 Bin packing

We present experimental results for the average complexity of solving instances of

bin packing with the generator of random instances described in Subsection 6.1.4.

In order to bound the number of parameters to set and control the complexity of

the instances, the pieces are always generated with a minimum height (width) 1 and

maximum height (width) 2. This way, the pieces are very similar in size, so we try to

avoid that the solver takes profit of big differences between piece sizes. Then, given

a bin size H ×W = A, the piece set is randomly generated bounding the sum of the

n piece areas to be in the range [0.95 ·A/2, 1.05 ·A/2]. With this aim, the number of

pieces (n) is always chosen in our experiments such that the expected value for the

sum of the areas (n · 1.5 · 1.5) to be as close as possible to the value A/2. We present

results for two different bin sizes: 7× 7 and 8× 8 in our experiments, given that 6× 6

instances are too easy and 9× 9 instances are too hard for our solvers.

First, we present the results obtained with WMaxSatz for 7 × 7 bin size and

number of pieces (n) 10. Figure 6.12 shows the mean time needed to solve test-sets

of 100 instances with the four variants of the encoding we have considered: BP1-

AMO, BP1-NAMO, BP2-AMO and BP2-NAMO. The results for the median time are

qualitatively similar to the mean, so in order to not present an excesive amount of

plots we only discuss results for the mean in this subsection. Each test-set considers

a different occupancy percentage of obstacles with respect to the total bin size area.

This occupancy percentage is the value shown in the x-axis of the plots, and the y-

value is the mean time needed to solve each set of 100 instances. For the encodings of

BP1 we observe that, as we increase the percentage of obstacles up to approximetely

the percentage of 70%, the mean time increases and then it starts to decrease slightly.

We believe that this behaviour is due to the fact that as the expected value for the

sum of the pieces areas is half the bin size area, when the percentage of obstacles

is far below half the bin size area (50% point) optimal solutions will tend to have

almost all the pieces and there will be many optimal solutions (different ways of

placing the pieces in the bin). Then, as the percentage of obstacles approaches the
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50% point, the number of pieces that can be placed will decrease, and it will increase

the difficulty of discovering the pieces of an optimal solution. When the percentage

of obstacles is far above the 50% point, optimal solutions will tend to have very

few pieces. To corroborate this possible relation between the hardness and the set of

possible solutions, we also show in the figure the mean of the optimal value normalized

by its maximum value, that is normalized by the sum of the piece areas of the instance.

We observe clearly that, for a low percentage of obstacles, almost all the pieces can

be located, but as more obstacles are placed, the number of pieces quickly descends

coinciding with the increase in the hardness of solving the instances. When we arrive

at the peak of hardness, we observe that the number of pieces in optimal solutions is

around half the total (considering that all the pieces have almost the same size as in

our experiments).

For the encodings of BP2, it seems that the behaviour is very different. Overall, the

complexity decreases with respect to BP1, and it seems to have a no clear intermediate

peak of hardness, but as we will see next the peak appears when the size increases.

We think that the performance of encoding BP2 is better than the performance of

BP1 because it helps prune many inconsistent assignments with unit propagation. In

encoding BP1, a piece k is located at position (i, j) by setting two variables (rki and

ckj ) to true. Consider a piece k such that no available position (i, j) in the bin can fit

the piece. In encoding BP2 this would generate a unit clause (¬xk) because all the

variables encoding possible locations for k would be propagated to be false thanks to

the non-overlaping clauses (¬csml ∨ ¬ckij) it has with other pieces s. But in encoding

BP1 the same situation will not necessarily generate the unit clause (¬xk), because

if for piece k there is at least one row variable rki available and at least one column

variable ckj available, even if they cannot be both true, then this will not generate

immediatly the unit clause (¬xk).

Next we present results for MSUnCore and SAT4JMaxSAT for the same prob-

lem instances. Figure 6.13 shows the results. Qualitatively, we observe a behaviour

analogous to WMaxSatz, although the existence of a peak in the mean time is more
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Figure 6.12: Bin packing problem, 7x7, 10 pieces. Results for WmaxSatz.

evident in SAT4JMaxSAT than in MSUnCore. Nevertheless, as we observe in the

next results, the peak is more clearly observed as the bin size increases. At the same

time, the performance difference between the encodings BP1 and BP2 is not so large,

so it seems that for these SAT-based MaxSAT solvers the advantatge in propagation

that BP2 gives is not as useful as with BnB solvers.

Finally, we present results for 8 × 8 bin size and number of pieces (n) 15 solved

with WMaxSatz, MSUnCore and SAT4JMaxSAT. Figure 6.14 shows the results for

these solvers when using the best encoding for each one. We observe that encoding

BP2 is in any case the best one, and that now we observe more clearly the peak of

hardness for an intermediate value of the percentage of obstacles. Observe that the

SAT-based algorithms perform better than WMaxSatz. These results are consistent

with previous results about the performance of SAT-based and BnB solvers for crafted

problems obtained in the MaxSAT Evaluation [ALMP11b].

6.3 Summary
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Figure 6.13: Bin packing problem, 7x7, 10 pieces. Results for MSUnCore (left) and

for SAT4JMaxSAT (right).
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Figure 6.14: Bin packing problem, 8x8, 15 pieces. Results for WMaxSatz, MSUnCore

and SAT4JMaxSAT with their best encodings.
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In this chapter we have presented two generators of instances for MaxSAT and

two for Weighted Partial MaxSAT. Our goal was to get new benchmark generators

that allow to produce many instances of increasing difficulty by easily tunning some

parameters, and without needing to scale to excessivily large sizes. We have per-

formed an experimental evaluation of the hardness of the instances obtained with

such generators.

For MaxSAT, the results obtained with the Max1+pSAT generator show an abrupt

increase in the difficulty of the instances as the parameter p reaches the value 0.7. This

happens with all the state-of-the-art MaxSAT solvers we have tried, so that we do not

need to go beyond instances with more than 160 variables, when using BnB solvers,

and with more than 30 variables, when using SAT-based solvers, to have mean solving

times greater than 600 seconds. The results obtained with the MaxCut generator show

an abrupt increase when its parameter p reaches the value 0.6, but beyond that value

it starts to softly decrease. Analogously to the Max1+pSAT generator, with BnB

solvers with instances with around 140 variables the mean solving times are around

800 seconds, and with SAT-based solvers with instances with around 30 variables

the mean solving times are around 500 seconds. It is worth noticing that the effect

of the parameter p seems to be slightly different in both problem generators. For

Max1+pSAT, the higher the value of p, the higher the percentage of binary clauses,

that are the ones that turn the problem NP-hard. By contrast, for our MaxCut

generator, increasing the value of p increases the randomness of the graph, in such a

way that some level of randomness increases the difficulty of the instances, compared

to the more structured ones with p = 0 (the high expanding bipartite graphs). But

as the random part of the graph starts to overtake the structured part, the mean

difficulty decreases. This is an interesting difference between both generators, that it

would be worth to investigate in more detail in the future.

For Partial MaxSAT, the results obtained with the Partial Max2SAT generator

show that the average complexity of solving instances depends on the ratio of hard

clauses to variables in the instance. In all the solvers we have tried, as this ratio
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increases, the average complexity of solving instances decreases. Both WMaxSatz and

SAT4JMaxSAT present an exponential complexity decrease. This decrease changes

abruptly approximetely up to the ratio 0.5. By contrast, in MSUnCore, the complexity

decrease is not so abrupt and it seems to be linear. Analogously to the previous

MaxSAT generators, with WMaxSatz with instances around 140 variables the mean

solving times are around 800 seconds, meanwhile with SAT-based solvers, we only are

able to solve instances having around 28 variables for the same mean solving times.

For the bin packing generator, the results obtained show that the complexity of

solving instances increases as we increase the percentage of obstacles up to approx-

imetely 70%, and then it starts to decrease slightly. Overall, this fact is observed for

both encodings, BP1 and BP2, although this behaviour is more clearly observed as

the size increases. With respect to the relative performance of the different encodings,

BP2 is the best for WMaxSatz, and as the size increases, it is also the best encoding

for the three solvers.

Finally, our results provide empirical evidence that SAT-based algorithms perform

better than WMaxSatz. This is consistent with previous results about the perfor-

mance of SAT-based and BnB solvers for crafted problems obtained in the MaxSAT

Evaluation. Our bin packing generator is a good option for a crafted problem gener-

ator of Weighted Partial MaxSAT instances, in case we need to test sets of instances

with always feasible solutions, and where the hardness of the instances comes from

the optimization part of the problem. Observe that in contrast to the other three

MaxSAT generators, with this crafted problem generator the size of the instances we

have solved with the solvers is considerably larger. For example, around 960 variables

for the 8x8 bin size instances with encoding BP2 and around 240 variables with en-

coding BP1. So, if one wants test sets of hard but small instances the best option

seems to be between the three first generators.
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Conclusions

In this thesis, we have defined original encodings from CSP into SAT, and have stud-

ied, for the first time, encodings from MaxCSP into MaxSAT. We have proved the

correctness of the new encodings, analyzed their properties, and performed an em-

pirical comparison that provides evidence of the good performing behaviour of the

defined encodings. Moreover, we have designed, implemented and evaluated four gen-

erators of MaxSAT instances, which are able to produce a large amount of instances

of adjustable computational difficulty.

The main contributions of our research work can be summarized as follows:

• The definition of two new encodings from CSP into SAT: the minimal support

encoding, which reduces the size of the support encoding, and the interval-based

support encoding, which is the first polynomial size support encoding containing

only regular literals.

• The definition of encodings from MaxCSP into Partial MaxSAT that extend

the existing direct and support encodings from CSP into SAT, as well as the

analysis of their properties.

• An empirical evaluation of the existing and new encodings from CSP into SAT,

and from MaxCSP into Partial MaxSAT. The obtained results provide empirical

evidence of the good performance profile of the new encodings on SAT solvers

such as MiniSat and PrecoSAT that incorporate conflict clause learning, as

125



126 Chapter 7. Conclusions

well as of the good performance profile when they are used to encode MaxCSP

into Partial MaxSAT, and are solved with MaxSAT solvers such as MSUnCore,

SAT4J-Maxsat and WMaxSatz.

• The design and implementation of MaxSAT instance generators of adjustable

hardness. The generators encode into MaxSAT the following combinatorial opti-

mization problems: Max1+pSAT, Partial Max2SAT, MaxCut, and rectangular

bin packing. The empirical evaluation of the proposed generators shows that

they produce challenging and suitable benchmarks for testing MaxSAT solvers.

Finally, we would like to point out some future research perspectives:

• In the weighted constraint programming community, different levels of soft local

consistency have been defined. It could be interesting to analyze the level of

soft local consistency that our encodings from MaxCSP into MaxSAT achieve

when they are solved with the modern branch-and-bound MaxSAT solvers that

apply MaxSAT resolution refinements at each node of the search space.

• The Minimum Satisfiability problem (MinSAT) has been recently used to solve

combinatorial optimization problems, and has shown to be superior to MaxSAT-

based problem solving on certain classes of problems [LMQZ10, LZMS12,

LZMS11]. We propose to define well-suited encodings from MaxCSP into Min-

SAT, as well as empirically compare their performance with the encodings of

this thesis.

• To promote and facilitate the research on MaxSAT, we plan to create a publicly

available repository of MaxSAT benchmarks including a description of the prob-

lems and their encodings, the optimal solutions, references to the papers that

have used the instances, and a collection of generators of random instances.
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menting with the instances of the MaxSAT evaluation. In Proceedings

of the 14th International Conference of the Catalan Association for Ar-

tificial Intelligence, CCIA-2011, Lleida, Spain, pages 31–40. IOS Press,

2011.
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