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Abstract

In this thesis, a set of some prevailing rate-based models for bistable perception
have been considered in order to find the implications of the novel results reported
in Pastukhov & Braun (2011). These authors have quantified not only salient
aspects of bistable perception (mean and dispersion of dominance distributions),
but also some hidden hysteresis effects ignored up to now.

Extensive computational simulations of different prevailing models rigorously
demonstrate that the history-dependence of the perceptual process shown by Pas-
tukhov & Braun (2011), effectively constrains the region of the parameter space
able to replicate the empirical data. Concretely, that just small regions residing
inside a bistable or two-attractor region of the whole parameter space are actually
adequate to reproduce the experimental results, both for BR and KDE displays.
Remarkably, the results remain valid across all the different classes of models
considered, regardless the details of the neuronal implementation.

The biological plausibility of the parameter region found for each of the models
considered, is further tested with respect to the widely known Levelt’s proposi-
tions. To that end, we make use of weighted sums across the parameter regions
computed for each subject in the first part of this manuscript, an algorithm that
constitutes an important improvement to the methodology proposed by Shpiro
et al. (2007) to fit behavioral data by rate-based models.

It is shown how different neuronal mechanisms clearly differ in their suitabil-
ity to replicate Levelt’s propositions. For instance, models with a slow fatiguing
process given by spike-frequency adaptation Wilson (2003); Shpiro et al. (2007),
no matter if they are being described by linear Shpiro et al. (2007) or nonlin-
ear Curtu et al. (2008)) functions of the activity, replicate quite well Levelt’s
second law. Oppositely, a notable discrepancy between model and empirical re-
sults is found when such negative feedback is described as a long-term depression
affecting the synapses between the competing neurons representing the two al-
ternative interpretations Laing & Chow (2002); Shpiro et al. (2007).

The present work finishes with a study about the capability of the mentioned
models to reproduce the resonance effects happening when varying external fre-
quencies, as shown by Kim et al. (2006). Importantly, a resonance respect to
the noise dispersion (i.e., a true stochastic resonance ) is clearly demonstrated
here for the first time. Previous estimations of noise dispersion (20− 30% of the
input) and its locus (adaptation variables) are questioned. It is demonstrated
that increased sensitivity to even weak signals of the order of less than 10% can
be obtained with the models considered, with the noise variable simply entering
as part of the net input feeding the neuron.
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Resumen

En este trabajo, son considerados una serie de modelos para frecuencia neuronal
ampliamente aceptados en percepción bi-estable, con el objetivo de evaluar las
implicaciones de los resultados recientemente reportados en Pastukhov & Braun
(2011). Estos autores han cuantificado no solamente aspectos más conocidos so-
bre el fenómeno (media y dispersión de las distribuciones de dominancia), sino
también efectos de historia que habían sido ignorados hasta el presente.

Por medio de simulaciones computacionales, se demuestra rigurosamente que
la dependencia de la historia del proceso perceptual encontrada por Pastukhov
& Braun (2011) efectivamente restringe la región válida de parámetros que es
adecuada para reproducir los datos empíricos. Concretamente, que solamente pe-
queñas regiones del espacio de parámetros disponible, y que se encuentran dentro
de una región dinámica bi-estable caracterizada por dos atractores, son realmen-
te adecuadas, tanto para rivalidad binocular (BR) como para estímulos de es-
tructura por movimiento (KDE). Resulta importante destacar que los resultados
permancen válidos de un modelo a otro, independientemente de los detalles de
implementación neuronal.

La plausibilidad biológica de la región de parámetros encontrada para cada
modelo es entonces considerada, en el contexto de las ampliamente conocidas
proposiciones de Levelt. Con tal objetivo, hacemos uso de un algoritmo de suma
pesada para extraer valores medios de la regiónes de parámetros correspondientes
a cada sujeto. Este algoritmo constituye una importante mejora a la metodología
propuesta por Shpiro et al. (2007) para ajustar modelos de frecuencia neuronal a
datos comportamentales de percepción bi-estable.

Es entonces mostrado como cada mecanismo neuronal considerado es clara-
mente diferente en su capacidad para reproducir las proposiciones de Levelt. Por
ejemplo, modelos conteniendo procesos lentos de retroalimentación negativa da-
dos por adaptación de frecuencia de disparo Wilson (2003); Shpiro et al. (2007),
sin importar si están descritos por funciones lineales Shpiro et al. (2007) o no
lineales Curtu et al. (2008)) de la actividad, consiguen reproducir de modo razo-
nable la segunda proposición de Levelt. Por el contrario, una notable discrepancia
entre modelo y resultados empíricos es encontrada cuando tales procesos están
dados por la presencia de depresión sináptica de larga duración.

El presente trabajo culmina con un estudio sobre la capacidad de los men-
cionados modelos para reproducir los efectos de resonancia que ocurren al variar
la frecuencia externa de modulación Kim et al. (2006). Es de destacar que en
nuestro caso, un efecto de resonancia es encontrado respecto a la dispersión del
ruido, lo cual indica la presencia de una verdadera resonancia del tipo estocástico.
Este efecto es claramente demostrado para estos modelos, por primera vez, en el
presente trabajo. Previas estimaciones de la dispersión del ruido (20− 30 % de la
señal de entrada) y su localización (variables de adaptación) son analizadas. Se
demuestra que un incremento de la sensibilidad a incluso muy pequeñas señales
de menos del 10 % puede ser encontrada en estos modelos, con sólo incluir la
variable de ruido como parte de la corriente neta que alimenta la neurona.
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1 Introduction

Any person is constantly immersed in a flow of sensations, mental images and
thoughts. The whole set of them, intermingled with each other through complex
unknown relations, conforms the internal world that accompanies any individual
every day. Such a subjective world, which is rich in events and evolves in time, is
sometimes referred as a ’stream of consciousness’ James (1981). For instance, a
subject frequently interchanges a current idea with any other compatible thought
or personal appreciation, when confronted with heterogeneous information.

Such unstoppable flow of consciousness, although private, is however accessi-
ble to experimental research, by confronting an observer with simpler and am-
biguous (uncompleted) sensory information that allows various possible, although
compatible, interpretations to compete for awareness Crick (1996); Cosmelli &
Thompson (2007). A common situation that illustrates the complexity of such
an internal world can be found in the continuous entrance and disappearance
of multiple interpretations that a given visual stimulus scene can suggest to our
brain.

Visual awareness constitutes a valuable candidate showing significant char-
acteristics which probably reflects more general properties of the subjective ex-
perience in any individual Crick & Koch (1990, 1998). A classic psychophysical
paradigm used to study spontaneous switching is binocular rivalry. This term
refers to what happens when the visual system is dichoptically stimulated, i.e.,
when each eye receives different images (e.g., by means of a mirror stereoscope
or color filters): after some time the perception is trapped in a continuous se-
quence of spontaneous switches back and forth between the rivaling stimuli that
(in general) can not be fused in a single percept. For instance, a pair of sinu-
soidal gratings differing in orientation difference (> 20◦) Brascamp et al. (2006),
the images of a house and a face Tong et al. (1998) or of a sunburst-like pattern
and a butterfly Sheinberg & Logothetis (1997) have been proven to induce visual
rivalry.

With the exception of special situations (see below), the perception does not
vacillate between any of the incongruent stimuli and the observer invariably re-
ports a series of flip-flop changes in which a percept remains stable for a while
and then finally fades, when the alternative representation comes into aware-
ness Wheatstone (1838). Amazingly, the dynamics of this phenomenon seems to
remain the same whether or not images are stabilized on the retina Logothetis
et al. (1996), although it has been demonstrated that this holds only within a lim-
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2 CHAPTER 1. INTRODUCTION

  

Figure 1.1: Common examples of ambiguous or reversible figures. Reprinted
from Long & Toppino (2004).

ited range of spatial and temporal parameters of the stimuli and the experimental
design Lee & Blake (1999).

Showing the subject a pair of dissimilar images to each eye is not the only one
way to induce rivalry. Other kind of visual stimuli can also generate a perceptual
conflict. Such is the case of the reversible figures, in which some degree of ambi-
guity can be introduced by uncompleted cues to avoid favoring any of the possible
interpretations of the image shown. Significant examples of such kind of stimuli
are Rubin’s vase/face (that involves figure-ground reversals), the Necker cube or
the Schroeder staircase (perspective inversions) and Boring’s wife/mother-in-law
(changes in meaning), among many others (see figure 1.1).

Monocular rivalry is also possible, by using two objects optically superimposed
that are presented to a unique eye, although in this case the alternations become
significantly slower Andrews & Purves (1997). Additionally, it is interesting to
note that multi-stability has been observed in other sensory modalities, such as
in the tactile and auditory systems (see for instance Box 1 of Sterzer et al. (2009)
and references therein).

Rilvary’s alternation cycles show a very rich dynamics. For example, the per-
ceptual experience is characterized by a set of dominance durations that cannot be
predicted at any time on the basis of the previous dominance evolution Borsellino
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et al. (1972); Fox & Herrmann (1967); Walker (1975). According to the conven-
tional point of view, such lack of correlation in the perceptual trace supports the
idea of a pure stochastic-like behavior. No evidence of deterministic chaos has
been found neither Lehky (1995), based not only on the usual autocorrelation
techniques but on unsuccessful dimensionality reduction and unfruitful forecast-
ing analysis of the percept durations series as well. However, previous reported
measurements of such intrinsic correlations appear to be contaminated by du-
ration impurities caused by reaction times, uncommon transitions and blinks,
among other factors van Ee (2009).

The distribution of the dominance durations typically experienced by an ob-
server, regardless of the the kind of ambiguous stimulation shown (binocular
rivalry or ambiguous figures), has been found to be unimodal and right-skewed
shaped with a long tail. It has traditionally been fitted by a Gamma function Fox
& Herrmann (1967); Levelt (1967); Logothetis et al. (1996); Kovacs et al. (1996);
Rubin & Hupé (2004)

f(x) =
λrxr−1e−λx

Γ(r)
,

although other mathematical formulae are possible, such as a log-normal distri-
bution Lehky (1995)

f(x) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 ,

or even a Weibull function Zhou et al. (2004)

f(x) = rλrxr−1e−(λx)
r

.

Although a bi-parametric function seems to be necessary to obtain a satisfac-
tory fitting of empirical intervals distributions, a strong linear correlation between
the two parameters describing the Gamma distribution of experimental data for
the Necker cube and the Schroeder staircase has been reported by Borsellino
et al. (1972). Additionally, is has been shown that the standard deviation σTdom
and mean < Tdom > of the dominance intervals are related by an average fac-
tor of 2 Levelt (1967); Walker (1975). Given the known mathematical relations
between these statistical quantities and the parameters λ and r of the Gamma
distribution Borsellino et al. (1972); Walker (1975):

λ =
< Tdom >

σ2
Tdom

r =
< Tdom >2

σ2
Tdom

,

one obtains λ = r/ < Tdom > and an average value r = 4. Finally, if all the
interval values are previously normalized by < Tdom > as in Levelt (1967), the
corresponding Gamma distribution obtained for the given observer should satisfy
λ = r. A case of normalized dominance durations that has been fit by a Gamma
distribution function can be seen in figure 1.2.

Interestingly, a Gamma distribution seems to describe the temporal dynamics
of the bistable phenomenon induced by apparently distant stimulation conditions.
Two remarkable examples are dichoptic masking (the two images are presented



4 CHAPTER 1. INTRODUCTION

Figure 1.2: The successful fit of a Gamma distribution (f(x) =
λr/Γ(r)xr−1 exp(−λx)) to the Logothetis et al. (1996) data. The ordinate axis
shows relative phase durations, that is, phase durations expressed as a fraction
of the mean dominance duration. The value n = 3 is the number of subjects
whose data was used to create the histogram; N denotes the number of phases
recorded from all observers; R2 is the coefficient of determination (R2 equals the
ratio of the explained sum of squares of the frequency variable to the total sum of
squares of this variable); and σ is the standard deviation of the relative durations.
Reprinted from Logothetis et al. (1996).

in rapid succession, what leads to the perception of only one of them) van Boxtel
et al. (2007) and motion-induced blindness (the continuous phenomenal appear-
ance and disappearance of a small but salient object surrounded by a global
moving pattern) Carter & Pettigrew (2003).

Other authors argue that a better characterization of the temporal dynamics
of bistable perception can be obtained by fitting the perceptual alternation rates
(i.e., the inverse of each dominance duration value) instead the times spent in each
percept Brascamp et al. (2005). In that work six subjects were presented with
three kind of dichoptic stimuli and a classic perspective-reversible figure (Necker
cube). In all the cases, the set of empirical instantaneous rate values showed
less deviation to a Gamma function than the set of durations values, although a
quotient of two Gamma functions (known as a Beta’ distribution) was proven to
be a reliable option. A combination of two Gamma functions (a Beta distribution)
has been invoked previously by Borsellino et al. (1972) to mathematically model
the set of predominance values (fraction of dominance time in each oscillation
cycle) shown by any of the two possible interpretations of ambiguous figures.

On the other hand, although phenomenal changes in reversible figures are
often experienced as sudden transitions from one compatible interpretation to
the other, the case of dichoptic stimulation (i.e., binocular rivalry) can generate
a more complex perceptual behavior. For example, when the stimuli comprises a
zone of about 1◦ or larger, each cycle of dominance can be followed by substantial



5

transition periods during which a compound of both (entire) original images is
seen Bossink et al. (1993) or parts of the both images can emerge in different
parts of the perceived pattern (piecemeal transitions). Besides, some of them can
end up with dominance returning to the previously dominant eye (return or failed
transitions) Mueller & Blake (1989) 1.

Finally, a set of empirical findings on binocular rivalry were early presented in
a unified framework by Levelt (1966). Based on previous psychophysical studies
and his own work, Levelt was able to enunciate various important propositions,
concerning the perceptual behavior resulting from the manipulation of one or
both external images. The central concept is the one of stimulus strength, a term
that refers to the combined effect of stimulus parameters such as contrast, spatial
frequency or amount of contour per area.

In his seminal work, Levelt presented four basic propositions. The first three
laws concern the perceptual behavior when just one of the two stimuli is varying,
while the other is held fixed. The fourth proposition describes the effect of a
simultaneous (symmetrical) manipulation of both images:

(I) Increasing the strength of the image presented to one eye increases the
predominance (fraction of total time) of that stimulus.

(II) Increasing the image strength presented to one eye does not affect the dom-
inance duration of that stimulus.

(III) Increasing the image strength presented to one eye increases the rivalry
alternation rate.

(IV) Simultaneous increasing of the stimulus strength decreases the average dom-
inance duration of the percepts.

The first three Levelt’s propositions can be summarized in a unique statement
that can be derived from them; namely, that the decrease of the stimulus strength
in only one eye just increases the dominance duration of the image presented to
other eye. Such a statement is frequently refers in the literature as the Levelt’s
second proposition, and is the object of most of the analyses together with the
fourth proposition. These psychophysical laws continue being the subject of cur-
rently active investigations to date, that in some cases have lead to important
precisions of the basic Level’s statements Brascamp et al. (2006) and in others to
the extension of its validity to ambiguous figures Klink et al. (2008); Moreno-Bote
et al. (2010).

The noise as an essential factor in bistable visual perception

The general theoretical framework usually used to explain some of the seemingly
paradoxical results revised above consists of two (average) neuronal populations
representing the possible perceptual outcomes, which compete for dominance in a

1In some contrast conditions, such uncompleted transitions to the other image may reach
up about one half of all the transitions happened Brascamp et al. (2006).
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process of mutual inhibition. Another essential ingredient is some kind of slow ’fa-
tigue’ process (e.g., in the form of an adaptation current or a long-term synaptic
depression) that acts as a negative feedback over the currently dominant popula-
tion. Such a slow process shifts the balance from the currently dominant stimu-
lus to the suppressed one every time some saturation level is reached. Examples
of these models can be found elsewhere Mueller (1990); Laing & Chow (2002);
Wilson (2003). Concerning the well known stochastic-like nature of bistable per-
ception, this aspect is typically implemented by directly incorporating a source of
noise in the equations for activities (firing-rates) of the simulated average neural
units.

The adequate behavior of the models is frequently verified by successful fits
of the dominance durations resulted from simulations to positively skewed fre-
quency distributions Lehky (1988); Kalarickal & Marshall (2000); Laing & Chow
(2002); Stollenwerk & Bode (2003). The resulting set of equations are then usu-
ally tested against the empirical behavior given by Levelt’s propositions. That is,
the non-monotonic curves that should describe the relation between the average
dominance time and the current input strength (e.g., contrast) shown in each eye
or the common value impinging on both eyes Laing & Chow (2002); Shpiro et al.
(2007); Curtu et al. (2008).

Nevertheless, neither the shape of the spontaneous dominance-duration dis-
tributions nor the profile of the mean phase duration as a function of the input
strength provide sufficiently rigorous constraints to make a precise modeling. The
unspecific character of many of the prevailing models can be seen in the fact that
finding a convenient set of parameters representing adaptation (or depression), in-
hibitory interactions and noise, which reproduces appropriately positively skewed
dominance-duration distributions with a given dispersion around a mean, is not
a difficult task Shpiro et al. (2009). Fortunately, new empirical constraints have
been obtained with innovative experimental procedures recently designed to col-
lect more subtle aspects of the rivalry’s dynamics Kim et al. (2006); Brascamp
et al. (2006); Pastukhov & Braun (2011).

For instance, Brascamp et al. (2006) extensively studied the dominance and
perceptual alternations characteristic of binocular rivalry by using a matrix of
left-eye and right-eye contrast combinations, spanning the entire range from near
the detection threshold to the theoretical maximum. Their results significantly
extended the quantity and precision of data concerning dominance and transition
durations and included new measures about the frequency of occurrence of the
paradoxical return transitions (FRT). The transitions (as the dominance phases)
showed to last for intervals of the order of seconds instead of being almost “in-
stantaneous” events (as it is frequently treated in current models), and FRT, in
some conditions, reached up about one half of all transitions starting from a given
eye. Interesting tests with some current models for binocular rivalry concluded
that all the present approaches exceed in the possible role that the slow adapta-
tion variable might play during transitions, underestimating a potentially more
fundamental role of fluctuations.

Additionally, Kim et al. (2006) also actively probed the dynamics of bi-stable
perception by using a novel experimental paradigm in binocular rivalry, aimed
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to uncover subtle relations between the deterministic (adaptation, inhibition)
and stochastic forces involved. The experimental design was conceived to verify
whether the timing of the perceptual switches could be explained by the presence
of a special coupling between noise and the changing landscape created by the
dynamics of the deterministic factors.

More specifically, these authors tried to prove the presence in bistable per-
ception of a phenomenon already familiar in some physical and even biological
systems: stochastic resonance Gammaitoni et al. (1998). The phenomenon is
typically considered as a purely noise-mediated one in which the sensitivity of a
system to a relatively weak external periodic signal increases when the intrinsic
average switching rate of the system is matched by the frequency of that signal.

Based on Levelt’s proposition II (section 1.1.1), the luminance contrast was
used as an image parameter able to alter the presumably existent landscape en-
ergy created by the deterministic factors and, consequently, the two perceptual
states. By periodically changing in opposite phase the two image contrasts across
a wide range of modulating frequency values, the authors successfully demon-
strated resonance at the average (intrinsic) rate of the unperturbed perceptual
switching. As additional signatures of resonance, Kim and co-workers also found
higher-order resonance peaks (when modulation frequencies were appropriate) in
the dominance-durations distributions at the odd-integer multiples of the mod-
ulating half-period Gammaitoni et al. (1998). More importantly, these authors
made an interesting estimation of the magnitude of the relevant internal noise in
terms of the contrast-modulation amplitude needed, a value between 20%−30%.
Additionally, their work suggests that the magnitude of such a noise scales lin-
early with contrast, varying only with relative changes in the external stimuli, an
observation that suggests the existence of some kind of gain control-type mecha-
nism in bi-stable perception.

New intriguing effects have also been reported in Pastukhov & Braun (2011),
who were able to measure subtle but significant correlation effects previously
ignored in time series of bistable perception. In that work, a novel statistical
measure - cumulative history - is proposed to account for the possible fatigue
factors that modulate the temporal evolution of the perceptual process, by a sum
of the past dominance and mixed phases that are weighted towards the most
recent states. It is shown in binocular rivalry and ambiguous figures as well, that
such a measure significantly correlates with the immediately next dominance
period, in such a way that longer (shorter) dominance phases generally appear
after shorter (longer) sequences of previous dominance periods. The correlations
found are approximately twice larger than serial correlations between successive
dominance phases, consistently revealing the presence of adaptation effects.

Nevertheless, Pastukhov & Braun (2011) also report that the time-scale of the
relevant cumulative history correlates only loosely with the average dominance
period shown by each observer. Additional evidence that fatiguing process do
not determine solely the average perceptual behavior comes from the analysis of
mixed (“patchy”) phases during binocular rivalry. It is proven that both com-
plete and failed (return) transitions can be dramatically affected by the eventual
balance of the adapting states. That is, when no history bias exists between the
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two competing percepts, patchy transitions last longer and the probability that
return transitions occur notably increases. These findings concerning the tran-
sitional states, frequently ignored in the computation of sequential correlations
(see van Ee (2009) as a rare exception), strongly suggest that perceptual rever-
sals are fluctuation-driven in the absence of adaptive bias. Indeed, by computing
the mutual information between past history and future dominance periods, Pas-
tukhov & Braun (2011) have shown that adaptive forces could not explain more
than 10% of the observed variability in reversal timing.

Taken together, the results reported in Pastukhov & Braun (2011), Brascamp
et al. (2006) and Kim et al. (2006) impose new stringent model constraints and
allow to make new inferences on the mechanisms supporting bistable perception.

1.1 The neural substrate of multistable visual perception

The way that visual perceptual rivalry occurs remains a mystery, although signif-
icant advance has been made by means of diverse techniques. On the one hand,
psychophysical studies permit to obtain simple but very easy to reproduced be-
haviors such the mathematical form of the dominance intervals distribution Lehky
(1995); Borsellino et al. (1972); Fox & Herrmann (1967); Brascamp et al. (2005)
and the Levelt’s propositions, that are valid not only for binocular rivalry but
in ambiguous patterns as well Klink et al. (2008); Moreno-Bote et al. (2010),
proving to be of extreme generality.

At the same time, many hypotheses can be evaluated about the mechanisms
that the neural substrate uses in multistable visual perception. As it was men-
tioned above, two of the most prominent proposals are (i) that exclusivity of
dominance is mediated by mutual inhibition between the neurons responding to
the resulting percepts, and (ii) the presence of a fatigue or adaptation process
which is responsible of eventually curtailing the current dominance of a given
percept, then shifting the balance to the suppressed one.

On the other hand, non-invasive neuroimaging techniques with high spatial
precision (fMRI) or better temporal resolution (EEG, ERP, MEG) can be used
to locate the neural site where the percepts are neurally represented and the
winning (suppressed) interpretation emerges to (fades from) awareness. This
issue is the field of an intense debate that initially leaned in the direction of pure
sensory processes taking place at the early stages in the visual pathway (e.g.,
monocular neurons in the lateral geniculate nucleus (LGN) of the thalamus and
primary visual cortex (V1)) Blake (1989); Tong (2001). The alternative position
that considers the ambiguity being resolved by the intervention of higher-level
processes is followed in single-cell studies Logothetis (1998); Leopold & Logothetis
(1999).

However, an intermediate view is currently dominating the scientific research,
where no bottom-up or top-down approaches are valid solutions for the problem of
perceptual rivalry. Indeed, the ambiguity initially introduced by the nonexistence
of clear cues in the sensory input could be successfully interpreted with the help
of many levels of processing stages, but between the sensory regions and the
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cognitive ones Long & Toppino (2004); Tong et al. (2006). Below, we succinctly
revise most general experimental evidences in favor of either point of view.

1.1.1 Psychophysical studies

Until the application of the modern neuroimaging techniques, most of the work
in multistable perception was empirical in nature. DuTour was among the first in
studying the characteristic alternations of binocular rivalry when the two stimuli
differ only by their colors ( DuTour (1760), English translation by O’Shea (1999)).
This author thought that the brain is actually able to capture only one image at
a given time, being the other one inevitable suppressed from awareness.

Such a hypothesis has come to be known as the ’suppression theory’, and
was posteriorly examined by Wheatstone, who discovered the binocular contour
rivalry by using a mirror stereoscope Wheatstone (1838). Nevertheless, his work
also demonstrated that, in some cases, a pair of images with shifted local fea-
tures may be perceived as a unique (stable) pattern with a fused impression
of stereoscopic depth. Hence, our mind might experience a combination of the
information received on the two retinae by means of an organic (physiological)
mixture of them. Notably, Wheatstone also found that some degree of voluntary
attention, although incapable to influence the appearance of any of the images,
did seem to increase the time during which the perception stabilizes.

Suppression theory later received a strong support by Levelt’s work who con-
sidered binocular rivalry as the direct result of reciprocal inhibition between
monocular channels Levelt (1965). Additionally, such a cross-inhibition adapts
over time, allowing the eventual recovery of the currently suppressed eye. This
notion was later implemented in several mathematical models for bistable visual
perception Sugie (1982); Blake (1989); Lehky (1988); Mueller (1990), being able
to reproduce a known Levelt’s result: increasing the strength (e.g., contrast) of
one monocular image has no effect on its predominance in perception but, in-
stead, decreases the predominance of the stimulus presented on the contralateral
eye Levelt (1965, 1966). Modeling works also propose that phenomenal fusion of
the two inputs Liu et al. (1992) would occur when inhibition is low Lehky (1988).

Subsequent psychophysical investigations further supported the idea of inte-
rocular competition. For instance, the sudden exchange of two orthogonal dichop-
tic gratings does not change the currently dominant eye, but instead exchanges
the dominance between the two stimuli Blake et al. (1980). Eye-specific effects
can be derived from other works where the sensitivity to detect non-related probes
was studied. For instance, Wales & Fox (1970) demonstrated that suppression
operates non-selectively during rivalry of two foveally located 1◦ disks, by using
brief monocular flashes whose detectability was significantly reduced during sup-
pression than during dominance of the probed eye. Similar elevation of detection
thresholds had been previously found for moving contours Fox & Check (1968),
and even the independence of such effect on the suppression duration was shown
in Fox & Check (1972).

Psychophysical experiments with ambiguous or reversible figures (e.g., Necker
cube), although more susceptible to cognitive influences (see Long & Toppino
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(2004) for a review of related work) than dichoptically presented images, also
offer strong evidence in favor of passive sensory mechanisms. That is the case,
for instance, of the work demonstrating the presence of neural adaptation or
fatigue effects2. During the perception of such figures, the observer systematically
reports a progressive shortening of the dominance periods for each percept over
a presentation period of a few minutes, that invariably leads to an asymptotic
rapid rate of alternations. These effects often show a localized character, strongly
depending on the retinal region that is being stimulated, that further indicates
a passive neural process Toppino & Long (1987). These authors demonstrated
that changing the position in the visual field and/or the size of a Necker cube
produced a return to baseline in the response pattern.

Another related fact is the possibility to induce the reversal in a desired di-
rection, by just previously exposing the subject to an unambiguous version of the
reversible figure. The basic assumption behind this procedure is that the prior
stimulus adapts the neuronal channel that contributes to the perception of the
same interpretation, allowing the unadapted neurons to then dominate. Consis-
tently, the observer frequently reports to perceive the alternate version when the
standard ambiguous figure is shown.

However, Brascamp and colleagues have recently found, in binocular rivalry
with two orthogonally oriented gratings, that a prior unambiguous stimulus can
sometimes generate a pronounced facilitation effect rather that satiation to the
presented pattern Brascamp et al. (2007). The final result actually depends on
the arithmetic product of the contrast and the duration of the prior stimulus, a
quantity termed as its ’energy’. That is, higher probe-energy does cancel initial
dominance, but can be facilitated with low contrast and/or short expositions to
the prior pattern. Additionally, the authors showed that practically the same
holds when the probe stimulus was eye-specific (i.e, unrelated with the two di-
choptical gratings) and when one of the gratings was used as the test pattern
for both eyes, making impossible to discard a pattern competition as a possible
explanation.

It is worth mentioning that these mixed effects found by Brascamp and co-
workers can only be observed, if a blank interval is used before presenting the
standard stimulation. Shorter blanks weakens facilitation, and only suppression of
the initial pattern is experienced by the observer, in agreement with the adapting
effects found by previous researchers. Notably, that stabilization in the same
percept increases with longer delays (in the order of seconds), has been also
reported in discontinuous presentation of the ambiguous stimulus Brascamp et al.
(2008), a finding that supports the existence of some memory trace in bistable
perception Leopold et al. (2002); Maier et al. (2003); Pearson & Clifford (2004).

Nevertheless, the interocular competition hypothesis fails to explain some in-
triguing adapting effects that have been shown during binocular rivalry. Contrary
to the intuition, visual after-effects Kohler & Wallach (1944) probably caused by
cortical mechanisms (i.e., binocular neurons in later stages of visual processing),
can be created independently of whether the monocular adapting stimulus co-

2Sometimes also termed as satiation processes.
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incides with dominance of suppression phases of rivalry. Rivalry is unable to
influence (e.g., detection threshold) spatial frequency shifts after-effects Blake
& Fox (1974), tilt after-effects Wade & Wenderoth (1978) or motion after-effects
Lehmkuhle & Fox (1975). Suppression is neither able to reduce inter-ocular trans-
fer phenomena of motion after-effects O’Shea & Crassini (1981), suggesting again
that rivalry is resolved after the first site of binocular convergence (V1) in the
visual pathway.

Clearly, another related phenomenon that is difficult to explain in terms of
the suppression theory is monocular rivalry. Two low contrast patterns optically
superimposed and presented to a unique eye (or dioptically, i.e., the two eyes
receive identical stimulation), can indeed show a weaker form of perceptual rivalry
(with less frequent and sometimes uncompleted transitions) Andrews & Purves
(1997). Interestingly, the alternation rate of the mixed pattern behaved similarly
as in conventional rivalry, when changing specific figures parameters (e.g., spatial
frequency and size of each stimulus and difference in hue and orientation between
them). The fact that only one monocular channel is needed to induced rivalry
may reflect the functioning of a stimulus or pattern competition mechanism, apart
from the existence of competition between monocular neurons.

1.1.2 Neuroimaging techniques

The first studies that addressed the problem of finding direct evidence of the
neural substrate underlying multistable perception used scalp electrodes at the
occipital lobe to record (if any) the electrical activity related with the observer’s
reports of dominance and suppression phases Lansing (1964); Cobb et al. (1967).
Although most of them found a significant reduction in the amplitude of the
collected responses that could be associated to the suppressed stimulus, such
electrical signals hid the origin of such modulations (i.e., eye or stimulus) because
they were obtained by time-averaging the signals pooled over both eyes.

The study by Brown & Norcia (1997) was probably the first that demonstrated
a clear correlation between the fluctuations in visual evoked potentials (VEPs)
at occipital areas and the usual cycles of dominance and suppression reported
by observers exposed to binocular rivalry. Four active electrodes were positioned
over the occipital pole of eight subjects to detect the electrical signals at the scalp.
By continuously modulating the contrast of two orthogonally oriented gratings at
slightly different rates (5.5 and 6.6 Hz ), they were able to ’tag’ the signal corre-
sponding to each percept. The luminance of each rivaling stimuli was previously
adjusted to produce dominance phases no shorter than the filter’s time-constant
of the recording device. Then, a significant ’physiological rivalry’ was demon-
strated by a pair of VEPs waveforms oscillating in counter-phase and notably
phase-locked to the subject’s reports of dominance and suppression (significant
correlations larger than 0.37).

The fundamental drawback of using scalp electrodes resides in its poor ca-
pability to locate the exact place where such signals coupled with perceptual
fluctuations might be originated. Both the dimensions usually accessed (in the
order of mm) and the folded structure of the occipital cortex make the task
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difficult. In the last decades, fMRI techniques, which provide a higher spatial
resolution, have contributed to better clarifying the source of such signals.

For instance, Lumer et al. (1998) reported that blood oxygen level dependent
(BOLD) signals were modulated at multiple cortical areas, in synchrony with per-
ceptual alternations between a face and a grating stimuli dichoptically presented.
Such event-related hemodynamic signals were detected at the extrastriate areas
of the fusiform gyrus (a brain region implicated in face recognition), but they
were absent in the striate cortex. Remarkably, Lumer et al. (1998) also reported
rivalry-modulated hemodynamic activity outside the visual system, in frontopari-
etal areas of the right hemisphere that participate in spatial attention, a finding
that demonstrated for the first time that areas traditionally associated with cog-
nitive abilities may also be involved in multistable viewing. Unfortunately, Lumer
et al. (1998) focused on brain activations correlating with the perceptual reversals
and not in the sequence of successive rivalry states (dominance or suppression of
the face and grating stimuli). Given the nature of the rivaling stimuli, it seems
unjustified to discard a determinant role of early visual areas and to assume that
such fluctuations might be instigated by the mentioned cognitive areas.

A subsequent study by Tong and colleagues investigated the involvement of
a pair of functionally specialized extrastriate areas in bistable perception: again
the fusiform face area (FFA), but in conjunction with the parahippocampal place
area (PPA) Tong et al. (1998). The latter region selectively responds to indoor
and outdoor scenes, such as houses. The brain of various observers where scanned
with fMRI techniques, while viewing a house and a face dichoptically presented
to induce binocular rivalry. Higher signals were then detected at the FFA (PPA)
when the face (house) was perceived and the other stimulus faded from percep-
tion. More importantly, the strength of the BOLD signals appeared to be as
strong as those measured when the house and the face were intermittently in-
terchanged externally to mimic the conventional rivalry, which suggests that the
neural representations of both the dominance and suppression events are already
completed at these stages of processing. Consequently, the conflict in perception
induced by the dichoptic stimulation might have been already resolved before the
time the BOLD signals arose at FFA and PPA.

Subsequent work has given a strong support to the hypothesis that the neural
events associated with dominance and suppression cycles of rivalry might indeed
be happening within the boundaries of V1. That is the case of Polonsky et al.
(2000), who were able to tag the activity corresponding to each image in a pair
of orthogonally oriented gratings of different contrasts, by noting that BOLD
signals increase monotonically with stimulus contrast. Then, the hemodynamic
signal decreased when the subject perceived the image with lower contrast and
increased with the entrance in perception of the higher one, leaving a clear trail
of consecutive periods of dominance and suppression. The sensory input changed
over time, by moving the gratings or reversing their contrasts, in order to avoid
adaptation effects. During rivalry, BOLD signals in four subjects were found to
be 45−83% as large as those evoked by the physical alternation of the monocular
images. Similar results were obtained by electrodes that monitored the activity
at nearby visual areas (V2, V3 and V4), although it was not demonstrated by
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complete data sets from all the observers. However, such findings by Polonsky
et al. (2000) could suggest that neuronal events related with the subjective rivalry
could indeed be initiated at V1 and then propagated to later areas, where the
neuronal representations of the coherent percepts may be reinforced.

Soon after, another study firmly demonstrated the importance of monocular
neurons in the brain’s selection of the conscious visual inputs. Tong & Engel
(2001) addressed this relevant problem by first isolating the V1 blind-spot rep-
resentation, a relatively large region of around 10 mm × 5 mm containing only
monocular neurons that represent a retinal area of approximately 4 × 6◦ with
no photoreceptors. Each V1 blind-spot representation exclusively receives direct
input from the ipsilateral eye (what also excludes the blind-spot part of the con-
tralateral eye), and is large enough to elicit measurable hemodynamic signals if
the immediate blind-spot’s surround is stimulated.

The experiment then consisted of showing the subject a red vertical grat-
ing and a green horizontal grating superimposed in the visual location of the
right eye’s blind spot, but permitting to stimulate cortical areas of the ipsilateral
eye (through the contralateral retina). The two stimuli could be independently
viewed by each eye through red and green filter glasses. V1 was scanned during
both rivalry and pseudo-rivalry (i.e., physical alternation of the gratings) con-
ditions. Consistent with predictions of interocular suppression, Tong and Engel
found increased activity in the V1 blind-spot region when a subject perceived
a grating in the ipsilateral eye, and negligible hemodynamic activity when the
competing stimulus was seen. All the observers showed statistically comparable
BOLD signals fluctuations during rivalry and direct monocular stimulation, what
suggests that the perceptual conflict could be entirely resolved among monocular
neurons in V1.

Magnetoencephalography (MEG) studies have also been carried out to relate
subjective rivalry and neural activity signals distributed across a large number of
brain regions Tononi et al. (1998), presumably reflecting the synchronous spiking
activity of large populations of cortical neurons involved in the process. As Brown
& Norcia (1997), Tononi et al. (1998) used orthogonal gratings that flickered at
slightly different frequencies (between 7 − 12 Hz ) with the aim to identify the
neuromagnetic responses corresponding to each reported percept. A dense multi-
channels design (148 electrodes ) allowed to detect significant activity related
with both dominance and non-dominance of a particular percept that appeared
at occipital but also at temporal and frontal areas. However, whenever any of
the stimulus became suppressed from awareness, a reduction of 50− 85% in the
amount of power at the associated tagging frequencies was found in the spectra of
the signals recorded, relative to the signals measured during pseudo rivalry (i.e.,
physical stimulus alternation) trials.

Another MEG study by the same group later demonstrated that dominance
phases are reflected by marked increases of neuromagnetic responses arising in
widely distributed regions such as the occipital, temporal, parietal and frontal
lobes, the latter showing the larger levels of synchronization Srinivasan et al.
(1999).
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1.1.3 Single-cell recordings

Some of the first neurophysiological studies addressed to find the site of rivalry
were focused in early visual processing stages: the lateral geniculate nuclei (LGN)
of the thalamus and the primary visual cortex (V1). The laminar structure of
LGN is particularly suitable to investigate the existence of interocular (inhibitory)
competitions, since the retinal terminals from each eye project to different lami-
nae in this subcortical center. Sengpiel et al. (1995); Sengpiel (1997) recorded the
response of neurons in LGN and (simple and complex, monocular and binocular)
cells in V1 of anesthetized cats, for drifting gratings of different orientation, spa-
tial frequency and contrasts. However, only binocular cells in V1 showed reduced
responses (compared to the one during monocular stimulation) to a grating pre-
sented to one eye when another (optimally) oriented grating was shown to the
other eye, and over a wide range of spatial frequencies. Almost half of the LGN
neurons studied exhibited modest inhibitory effects, but always irrespective of
the orientation between the two gratings, what made them unlikely to serve as
a neural basis for competition between differently oriented stimuli. However,
a possible inter-inhibition in V1 between binocular neurons was not discarded,
which might take place place at the level of their corresponding (adjacent) ocular
dominance columns.

Subsequent single-cell recordings in the LGN of alert monkeys confirmed the
Sengpiel et al.’s results, providing no empirical evidence for rivalry suppression
at such subcortical level Lehky & Maunsell (1996). Those authors recorded the
activity of (52) parvocellular and (27) magnocellular neurons and used the same
kind of stimuli (drifting gratings at 2.0 Hz ) under rivalry, congruent and monocu-
lar stimulation conditions. Both peri-stimulus time histograms (PSTHs) and the
power spectra of the neuronal responses were analyzed. No significant differences
were apparent among the distinct studied conditions.

More complete investigations were carried out by Logothetis and coworkers
with behaving monkeys presented with bistable displays (see Logothetis (1998);
Leopold & Logothetis (1999) for reviews). They investigated the neuronal activity
elicited in single neurons located at several levels of the hierarchical organization
of the brain, including V1, the extrastriate areas V2 and V4 Leopold & Logothetis
(1996), as well as nervous cells in the superior temporal sulcus (STS) and the
middle-temporal (MT) Logothetis & Schall (1989) and inferior temporal (IT)
cortical regions Sheinberg & Logothetis (1997).

Their first attempt to uncover the neural substrate of bistable perception
concerned the study of the middle temporal area (MT or V5), a region that shows
pronounced motion direction selectivity Logothetis & Schall (1989). Three rhesus
monkeys were trained to discriminate between two vertically drifting gratings
dichoptically presented through a stereoscope. The mixed stimulus could be seen
as moving in upward or downward directions. After replacing the rivaling stimuli
by two spots on the left and on the right, the monkey reported the direction
perceived by a saccadic movement to the left spot (for downward motion) or
to the right one (for upward motion). Half of the trials consisted in congruent
stimulations (i.e., the two gratings drifting in the same direction) in order to
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evaluate the directional selectivity of the cells.
In their joint work, Logothetis and Schalls found distinct unexpected neu-

ronal behaviors that could mediate the phenomenon of binocular rivalry. Firstly,
32% of the recorded neurons that seemed to receive no inhibition connections,
showed significant directionality in the vertical axis during non-rivalrous condi-
tions, and continued responding wherever their preferred stimulus was present
during rivalrous trials. Secondly, other 21% of the cells displayed (dynamic)
vertical directionality during rivalry, although presenting a clear preference for
horizontal or oblique directions of motion during standard stimulation. Finally,
the activity of 22% of the recorded cells did appear to be modulated during ri-
valry. However, half of these neurons discharged only on those trials in which the
monkey reported to perceive the motion in the cell’s preferred direction, while
the other half responded when its optimal stimulus was present in the suppressed
eye Logothetis & Schall (1989).

Despite the complex scenario of interactions and information transmission sug-
gested by Logothetis & Schall (1989), the presence of rivalry-modulated neurons
could indicate that the perceptual conflict can be fully resolved at MT. However,
the participation of lower/higher visual centers can not be discarded, given that
such neuronal responses typically appear earlier than the monkeys reports. A
subsequent study addressed the same problem, by recording neuronal activity
from the areas V1/V2 and V4, while other two animals experience the binocu-
lar rivalry induced by two orthogonal gratings Leopold & Logothetis (1996). The
(binocular) cells of these cortical areas differ in orientation preference and in their
ocular dominance (i.e., the extent to which the neuron is driven by each eye) as
well.

As a typical behavior of cells of V1/V2 and V4, PSTHs aligned to the an-
imal’s reports showed that the firing rate of many neurons recorded increases
immediately before the onset of dominance of the cell’s preferred orientation,
and decreases before the report of the orthogonal grating(for instance, see Fig.
3 of Leopold & Logothetis (1996)). Besides, other PSTHs demonstrates the ex-
istence of some neurons in V4 behaving in the reverse manner, discharging more
with the onset of the suppression of its preferred orientation during congruent
stimulation, a behavior resembling the one found in some cells of MT Logothetis
& Schall (1989), and that may explain the presence of after-effects during rivalry
(see subsection 1.1.1).

The proportion of neurons (all but one binocular cells) that showed rivalry-
modulated activity was lower in V1/V2 (∼ 18%) than in V4 (∼ 38%), with around
the half of them firing more in association with the suppression of the rivalrous
orientation (only in V4). Such a high percent of modulated cells makes unlikely
that competition could be explained by the interocular suppression theory (i.e.,
competition of monocular channels at the striate cortex - V1). Importantly, some
of them were non-selective neurons during congruent stimulation and just became
selective during rivalry, as in Logothetis & Schall (1989).

A third study, Sheinberg & Logothetis (1997) has shed more light on the
neural bases of visual awareness during rivalry, by analyzing the activity of single
neurons at regions specialized in representation of visual objects: the superior
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temporal sulcus (STS) and the inferior temporal cortex (IT). Binocular rivalry
was instigated in the visual system of two macaques by presenting effective and
ineffective stimuli to a different eye through a stereoscope, that were chosen from
a set of hundred of visual images (for example a sunburst-like pattern, images of
humans, monkeys, apes, butterflies, reptiles, among others)

Data collected in their work during a flash suppression paradigm, that en-
sures the onset of a not previewed pattern after being adapted to the competing
stimulus, yielded an activity temporal profile very similar to the one recorded
during rivalrous stimulation. The neurons discharged before and during the pe-
riod that monkey reported seeing the effective stimulus, and ceased firing when
the competing (ineffective) pattern become dominant.

In general, different activity patterns were found across the populations of
neurons analyzed, such as a sustained discharging, a periodic burst or a clear
transient response. Consequently, not only a conventional counting of spikes
within a specified time window was used to characterize the cells responses, but
complemented with dimensionality reduction techniques and statistical tests to
reliably compare the cell’s response two ineffective and effective stimulus. Never-
theless, 90% of the recorded cells in STS and IT were found to reliably predict the
subjective state of the monkey in non-rivalrous, rivalrous and flash-suppression
conditions.

1.2 Outline of the thesis

The present work is structured as follows. Next chapter provides a revision of
some of the very recent experimental findings that conform the current view of
bistable visual perception. Special attention receive those psychophysical works
intended to uncover the neural mechanisms underlying the subjective experience
of subjects presented with ambiguous sensory inputs. Specifically, we present
in some detail the recent psychophysical results reported in Pastukhov & Braun
(2011); Kim et al. (2006) and Brascamp et al. (2006), that provide new insights
into the nature of bistable perception. All the studies refute current models
which overestimate the role of the slow self-adaptation in deciding the occurrence
of switches and of the cross-inhibition in abruptly precluding the dominance of
the both images at the same time. Oppositely, these works point to a system in
which the fluctuations could play an important role in determining the kind and
the duration of transitions, as well as the periods of dominance for the perceived
image. Chapter 2 ends with a succinct description of some of the prevailing
models used in bistable perception, making emphasis in those previously tested
against the recent experimental findings described in the chapter, and the ones
that are considered in this thesis.

Chapter 3 contains the first block of results of this work. The methodology
of Shpiro et al. (2009) is extended to fit various rate models to the experimental
results of Pastukhov & Braun (2011), who have recently quantified the existence
of hysteresis effects in unprecedented detail. The preference from among other
modeling choices is based on the interest to evaluate dissimilar neuronal mecha-



1.2. OUTLINE OF THE THESIS 17

nisms that could support the phenomenon of bistable perception. Consequently,
different situations are considered, such as the presence of a slow fatigue process
given by (linear and nonlinear) spike-frequency adaptation currents or a long-term
synaptic depression, different architectures and activation functions.

The suitability of the parameter region found for each of the models consid-
ered in Chapter 3 is subsequently examined in Chapter 4. Then our results are
further tested against known constraints given by behavioral responses found in
experiments. That is, the biological plausibility is considered with respect to
Levelt’s propositions Levelt (1966) and the stochastic resonance effects reported
by Kim et al. (2006).

The most important conclusions of this work, together with a brief digression
about some possible directions of future research, are provided in Chapter 5.





2 State of the Art

In the following, the intense debate concerning the neural site where the percep-
tual conflict could be resolved is briefly revised, taking into account the most
recent empirical evidences that favor either sensory or higher order processing
stages. Then, we present in some detail the recent psychophysical results re-
ported in Pastukhov & Braun (2011); Kim et al. (2006); Brascamp et al. (2006),
that provide new insights into the nature of bistable perception. All the studies
refute current models which overestimate the role of the slow self-adaptation in
deciding the occurrence of switches and of the cross-inhibition in abruptly pre-
cluding the dominance of the both images at the same time. Oppositely, these
works point to a system in which the fluctuations could play an important role
in determining the kind and the duration of transitions, as well as the periods of
dominance for the perceived image.

2.1 Where the perceptual ambiguity is resolved:
interocular versus patterns competition

According to the results of the latest single-cell studies on the neural basis of
multistable visual perception (subsection 1.1.3), the percent of neurons whose
activity changes significantly correlate with the subject’s phenomenal experience
notably increases from lower to higher level of processing stages in the brain of
behaving monkeys. In such scenario, only a limited role could be associated to
the primary visual cortex, where just about 10% of the cells may participate
in the characteristic successive cycles of suppression and dominance of multiple
interpretations that are compatible with a unique physical stimulus Leopold &
Logothetis (1996). In the same work, the authors have reported that later areas
in the visual pathway (V2,V4) contain a larger percent (∼ 20% and ∼ 40%, re-
spectively) of neurons whose firing-rate is significantly modulated by the course
of rivalry. Similarly, it was found in an early work that the activity of approxi-
mately 40% of the recorded cells in MT (or V5) appeared to be correlated with
the perception of rivaling moving stimuli Logothetis & Schall (1989).

Subsequent primate single-unit recording studies by Logothetis and colleagues,
have strongly suggested that temporal areas could indeed be the neural site where
the phenomenal suppression of compatible interpretations could occur Sheinberg
& Logothetis (1997). Then, when an alert behaving monkey was presented di-
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choptically with an irrelevant and a preferred stimulus (a face), approximately
90% of the recorded cells from IT and the superior temporal sulcus (STS) were
found to reliably predict the subjective state of the animal. These works further
support a view of competition between incongruent interpretations of a given sen-
sory input (i.e., a pattern rivalry) rather than competition between monocular
channels Leopold & Logothetis (1999).

Nevertheless, some neuroimaging studies provide important new findings sup-
porting the conventional view of the suppression theory (section 1.1.2). For in-
stance, the fMRI study by Tong & Engel (2001) clearly demonstrated the in-
volvement a monocular neurons of V1 in the resolution of the perceptual conflict
instigated by a pair of orthogonal gratings. Consistent with the view of interoc-
ular competition, Tong and Engel found increased activity in the V1 blind-spot
region when a subject perceived a grating in the ipsilateral eye, and negligible
hemodynamic activity when the competing stimulus was seen. All the observers
showed statistically comparable BOLD signals fluctuations during rivalry and di-
rect monocular stimulation, what suggests that the perceptual conflict could be
entirely resolved among monocular neurons in V1.

Many factors have been indicated to explain the clear discrepancies between
these neuromaging studies in humans and the single-unit recordings in behaving
monkeys by Logothetis and co-workers. These include smaller neuronal samples
in single-cell studies than in fMRI scanning, the unknown sequence of events
that relates neuronal firing-rates and BOLD signals (that could also include sub-
threshold synaptic activity), anatomical differences between the two species; the
reduced transients during possible blended states (transitions) that could be con-
founded with state-related signals recorded in single-cell studies with monkeys,
but that were excluded in the neuroimaging studies; and ultimately the effects
of inevitable eye movements in the signal recorded from neurons in V1/V2 with
smaller receptive fields than the spatial window used in monkey’s fixation Polon-
sky et al. (2000); Tong & Engel (2001).

An interesting proposal have been made by Polonsky and colleagues in order
to reconcile the evident differences between the two kind of studies Polonsky et al.
(2000). The idea consists of a reanalysis of the data obtained by electrophysio-
logical studies in behaving monkeys, based on the fact that fMRI signal depends
not only on the number of neurons but also on their firing rates. Specifically, a
more reliable estimation of the strength of rivalry modulations can be obtained
by comparing the neuronal activity during (physical) stimulus alternation with
the absolute value of the responses during rivalry. An estimation of each response
magnitude is defined in single-unit studies by a “firing-rate modulation index”,
which is computed as (Rp − Rn)/(Rp + Rn), where Rp and Rn stand for the
response to the preferred and the non-preferred stimulus, respectively. Accord-
ingly, a percentage of rivalry modulation may be given by the ratio of the two
response indexes during rivalry and pseudo-rivalry conditions averaged across the
given visual area Polonsky et al. (2000), a measure that is also termed as “rivalry
modulation index” in Tong (2001).

Using these relative values of neuronal responses, Polonsky and collabora-
tors have concluded that previous single-neuron measurements reported by Lo-



2.2. PSYCHOPHYSICAL FINDINGS SUPPORTING A FUNDAMENTAL
ROLE OF NOISE 21

gothetis’s group might have underestimate the average activity at early visual
areas. In contrast to these studies, the average rate modulation in V1 was found
to be 33% as large as that evoked by physical alternation of the two rivaling im-
ages. Moreover, comparable values of modulation indexes of 23% and 27% were
obtained for V2 and V4, respectively, in agreement with roughly similar fMRI
(relative) measures of 56%, 42% and 51% across the same areas. It is worth to
say that, however, both hemodynamic characterization and the reanalysis of the
electrophysiological data reported in Polonsky et al. (2000) did not distinguish
among the subpopulations of neurons with different responses patterns found
during the primate single-cell studies Logothetis & Schall (1989); Leopold & Lo-
gothetis (1996); Sheinberg & Logothetis (1997).

2.2 Psychophysical findings supporting a fundamental
role of noise

Noise in activity levels associated with both percepts causes a random distribution
of dominance intervals Levelt (1967); Logothetis et al. (1996). The histogram of
dominance durations shows a unimodal and skewed distribution, with a long
tail at long durations. Fits to the data of a Gamma function are commonly
found Logothetis et al. (1996); Kovacs et al. (1996), but other kind of functions
fit the experimental data well Laing & Chow (2002). Another important aspect
concerning the stochastic nature of binocular rivalry is the lack of any strong
correlation beyond zero lag Logothetis et al. (1996).

Stochastic resonance behavior - Kim et al. (2006)

Perceptual bistability can be thought of as a sequence of multiple spontaneous,
apparently random, switchings between two marginally stable perceptual states.
Such a dynamical framework can be more clearly conceptualized as a motion
across an energy landscape J. Hertz & Palmer (1991). Under this theory, the
evolution reported by a subject to a new perceptual state is considered to be
analogous to the dynamical development of a physical system towards its minima
of energy. Once they are reached, the time of residence in such stable fixed points
(attractors) can be corresponded to a given dominance time. Additionally, some
quantity of noise could eventually allow the system to overcome the energy barrier
limiting the basin of attraction of the currently occupied state, making possible
the occurrence of stochastic incursions to the empty well related with the next
perceptual outcome.

In the framework explained above, slow neuronal fatigue processes (e.g. adap-
tation, synaptic depression), stimulus strength and cross-inhibition would play a
secondary role as direct causes for the switches between the possible interpreta-
tions available for the stimuli presented. However, these deterministic factors do
actively participate in the conformation of the energy landscape of the system,
forming or even continuously modifying aspects that define its final structure,
such as the position of the minima in the state space, the relative location be-
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tween them and the energy depth of their attraction basins Moreno-Bote et al.
(2007).

In order to test such an intriguing hypothesis, Kim et al. (2006) intensely probe
the dynamics of bi-stable perception by using a novel experimental paradigm in
binocular rivalry, aimed to uncover subtle relations between the deterministic
and stochastic forces involved. The experimental design was conceived to ver-
ify whether the dynamics of the perceptual switches could be explained by the
presence of a special coupling between noise and the changing landscape created
by the dynamics of the deterministic factors. Concretely, these authors tried to
demonstrate the presence in bistable perception of a phenomenon already familiar
in some physical and even biological systems: stochastic resonance Gammaitoni
et al. (1998).

Based on the Levelt’s proposition II (section 1.1.1), the luminance contrast
was used as an image parameter able to alter the presumably existent energy
landscape. Due to the inverse relation between the increase of the contrast of one
image and the dominance duration of the competing percept, a counter-phase
periodic modulation of the contrasts of both images could be assumed to change
accordingly the depth of the corresponding wells in opposite phase. This is,
increasing (decreasing) the contrast of one image should make shallower (deeper)
the well representing the other stimulus.

A pair of incongruent stimuli (Fig. 2.1) were then presented to three human
subjects, with an additional weak periodical modulation of its contrasts, taking
as reference a higher fixed contrast (baseline), and spanning a wide range of fre-
quencies (0.28− 2.48 Hz) within the range of spontaneous alternation rates. The
procedure was expected to alter the underlying structure of the energy surface
and, consequently, to affect the perceptual dynamics dramatically. If succeeded,
a visible change in the probability distribution of dominance durations should be
obtained when the frequency of the periodic perturbation matches the natural
alternation rate, with an increased concentration of the probability around the
modulation half-period (HP), a well known signal of stochastic resonance Gam-
maitoni et al. (1998).

Concerning the modulation of the contrast of the stimuli, a square-wave mod-
ulation was preferred to keep the impacts of the rising and falling components
of the external signal constant across the range of frequencies tried 1. The
higher contrast is taken as the baseline reference for the modulation, being the
lower contrast a variable parameter to obtain different contrast modulations. To
calculate the contrast C of a given stimulus, the authors used the definition
C =

LStimulus−LBackground
LStimulus+LBackground

, where L stands for luminance. A percent contrast
modulation is then defined as M = CBaseline−CLower

CBaseline
× 100%. The interval of

frequencies examined were considered either in the ascending or descending order
across sessions, keeping fixed the baseline contrast and the relative percent of
modulation.

1For more details about this choice, see the explanation given in the footnote at page 396
of Kim et al. (2006)
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Figure 2.1: The stimuli used to detect stochastic resonance in binocular rivalry
were presented dichoptically using a four-mirror stereoscope. A high-contrast
texture frame was added to help in stable binocular alignment, and the rivaling
patterns (a dark ”+” shape and a light ”x” shape) were presented along with a
non-rivaling grating on the right side to balance the overall stimulus configura-
tion and help also stabilize fixation. The rivaling shapes were chosen to be small
(< 1 ◦ visual angle) to avoid perception of mixed patterns. The luminance con-
trasts of the rivaling stimuli were additionally modulated in opposite phase at
several frequencies intending to find evidences of stochastic resonance. Adapted
from Kim et al. (2006).

One of the authors and other two observers that were naïve to the purpose of
the experiment, were presented dichoptically with a pair of small dissimilar stim-
uli, that facilitate exclusive dominance of only one pattern each time (Fig. 2.1).
In general, no blinking was allowed to all observers during continuous stimulus
presentation, but one of them was also tested permitting normal blinking in or-
der to establish the independence of the results of such factor. The trials in this
case lasted for 60 sec for that subject, and 16 secs with a short break in between
for all the subjects in the no-blink condition. Finally, CBaseline = 0.50 was al-
ways used in the blinking allowed sessions, with either M = 40% or M = 20%.
CBaseline = 0.50 and CBaseline = 0.25 were tested in the no-blink conditions (all
observers), with both M = 30% or M = 20% in each case, in order to study the
dependence of the results on the values chosen for those control parameters.

Additionally, a control condition was considered, i.e., the dominance-duration
distribution in the absence of an effective contrast modulation and at a frequency
value slower than the maximum spontaneous switching rate (HP = 6 sec in the
blink-condition, and HP = 8 sec otherwise). The static image contrast matched
the baseline used in the given experimental condition under study. Each session
lasted 1-2 h with at least 2-min break between trials, to allow the visual system
to safely recover from adaptation.

Figure 2.2 (lower half) shows the resulting dominance duration distributions,
when the contrast of rivaling shapes were subjected to a periodic modulation at a
given frequency. Notably, a (primary) peak at the modulation HP grows in size as
the frequency of modulation is increased, reaching a maximum at about 0.50 Hz,
around the value of resonance. Higher-order peaks with diminishing gains turn
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also to be visible at odd-integer multiples of HP when the frequency is increased
beyond the resonance value, a quantitative result that is erroneously identified in
this work as a characteristic signature of stochastic resonance. Actually, this fact
must be considered as a less specific kind of input-output synchronization Gam-
maitoni et al. (1998). Such peaks would also reflect the tendency of the perception
to oscillate in phase with the driving periodic signal incorporated in the images
and consequently with the potential wells. But such peaks at odd multiples of
HP (so longer than HP) can be explained as the intend of the perceptual state to
switch at the next moments in time when the landscape energy offers the same
favorable situation as at t = HP, once it failed to make the transition the first
time.

Because the results were very similar across individual cases and distinct ex-
perimental conditions, although noisier due to smaller quantity of data points, all
of them were averaged across the three subjects, the values 0.50 and 0.25 used for
the baseline contrast, and the blink and no-blink conditions. The percent con-
trast modulation was M = 30 − 40%, since a lower value (20%) was ineffective
to induce stochastic resonance (see explanations below, related with Figure 2.3).

To estimate accurately the resonance frequency, Kim and co-workers used the
coefficient of variation (CV), another index typically used to demonstrate the
presence of stochastic resonance Pikovsky & Kurths (1997). Also known as the
noise-to-signal ratio, since it is computed as the quotient between the dispersion
and the mean of the dominance-duration distribution, it can easily indicate a
high grade of periodicity by lower values of CV when plotted as a function of the
driving frequency. Consequently, the presence of resonance is usually shown by
a sharp dip at the natural frequency of the system.

Figure 2.3, showing the data corresponding to different observers and in vari-
ous experimental conditions, clearly demonstrates that the spontaneous alterna-
tion rate (located at the vertical gray bands) is being successfully matched with
the external frequency that produces the greatest periodicity. As before, the re-
sults remain valid for all observers and no matter the baseline contrast that is
used in the modulation signal. However, a sharp dip in the CV profile is evident
when the percent modulation was M = 30% (primary graphs), but visibly re-
duced or absent for M = 20% (insets in the first and second rows). The strength
of the resonance, quantified by the the size of the dips, seems to be independent
on the baseline contrast, given that the percent modulation is the same. The
presence of such a kind of divisive normalization of the system to the baseline
contrast was verified for a wide range of values M ∼ 0− 100%.

Further quantitative analyses by using the P1 index of the dominances distri-
bution 2 was made in Kim et al. (2006), that definitely confirmed that 30% and
40% contrast modulation were effective to induce stochastic resonance, whereas
the value of M = 20% was not.

The last finding lead the authors to make an intriguing estimation of the
relevant noise underlying the perceptual switches: a value between 20% − 30%.

2P1 is defined as the proportion of probability between HP ± 1/2 HP. For more details, the
reader is referred to Gammaitoni et al. (1998).
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Figure 2.2: Distributions of perceptual dominance durations when the contrasts
of the competing stimuli were modulated in opposite phase, sweeping the fre-
quency in a range of 0.28-2.48 Hz (the corresponding driving half-periods (HP)
are also shown). The bottom graphs show the presence of a primary peak at HP
(indicated by the vertical lines) growing in size as the frequency approaches the
spontaneous alternation rate, a signature of stochastic resonance. Higher-order
peaks at peaks in the probability distributions at the odd-integer multiples of HP
appears beyond resonance, as part of the synchronization between the system
underlying binocular rivalry and the periodic signal. In the top half, the gain due
to the periodic perturbation is isolated, by subtracting a control distribution from
the lower plots (see text for more details). The distributions have been averaged
across observers and experimental conditions to obtain smother curves. Adapted
from Kim et al. (2006).

That speculation would be based in the following assumptions. The amplitude
of the external modulation must be finely tuned to the amount of noise involved
in the perceptual switches. Neither lower nor higher modulation signals could
be adequate to elicit resonance, being the first case insufficient to influence the
system dynamics and the second too high thus completely defining the rivalry
dynamics. Then, finding the appropriate level of external signal eliciting stochas-
tic resonance, would be equivalent to find an estimation of the magnitude of the
internal noise participating in the perceptual switches.

Additional insights about the nature of the neural system underlying binocu-
lar rivalry were obtained in Kim et al. (2006), by attempting to reproduce theirs
results with three of the current models mainly designed to reproduce statistical
properties of bi-stable perception ( Lehky (1988); Wilson (2003); Mueller (1990)).
Intriguingly, only the first one, characterized by linear interactions among stim-
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Figure 2.3: Coefficient of variation (CV) of the dominance-durations data as a
function of the driving modulation frequency. The data shown correspond to
baseline contrasts of 0.50 (left panels) and 0.25 (right panels) for three subjects
(SS, YS and ET). The primary graphs show the results for M = 30% contrast
modulation and the insets (observers SS and YS) refer to the results with M =
20% of percent modulation. The resonance (indicated by the sharp dips in the
profiles) clearly happens at the spontaneous switching rate (located at the gray
bands), but only when the modulation contrast is high enough, being M = 20%
ineffective. Adapted from Kim et al. (2006).

ulus strength, adaptation, cross-inhibition and noise was able to fit the experi-
mental data as in Figure 2.2. Importantly, this model also clearly differs from
the others two, in a threshold mechanism to implement exclusive dominance of
one of the competing images, and failed to reproduce the data if it is substituted
to a winner-take-all algorithm 3 as is the case of Wilson (2003); Mueller (1990)
(see section 2.3 for a brief presentation of some of these models). Curiously,
the Lehky (1988) model is based on a Schmitt trigger, a model system that is

3See the footnote at page 404 of Kim et al. (2006).
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known to exhibit stochastic resonance Melnikov (1993).
In summary, Kim and collaborators designed a novel experimental paradigm

that proved for the first time the possibility that the machinery responsible of
binocular rivalry can also produce stochastic resonance. Besides, they made a
quantitative estimation of the quantity of noise that seems to be involved in the
perceptual reversals, and demonstrated that the magnitude of such a noise scales
linearly with contrast, varying only with relative changes in the external stimuli
which points to the presence of some kind of gain control-type mechanism in
bi-stable perception.

Next we continue with the exposition of another important work where the
perceptual system is subjected to new stringent conditions, this time by pre-
senting the subjects with images whose contrast spanned the whole range from
detection threshold to maximum. This work allows to analyze the findings of Kim
et al. (2006) from a new perspective, since it offers the first opportunity in more
than thirty years to precise Levelt’s work, which is the theoretical basis of the
experimental design made by those authors to elicit stochastic resonance in binoc-
ular rivalry.

The time course of binocular rivalry - Brascamp et al. (2006)

In line with the notion of a nonlinear flip-flop is the finding that interactions
between rivalrous percepts are strongly asymmetrical. Increasing the contrast in
one eye may have a large effect on the duration of the percept associated with the
other eye, whereas it does not affect durations for the ipsilateral percept (Levelt’s
second proposition) Levelt (1965, 1966). More recent work demonstrated small
changes in the eye with the variable contrast as well Bossink et al. (1993).

Brascamp et al. (2006) contributed to a more complete view of the dynam-
ics of binocular rivalry. In their work, the phenomenon was extensively studied
by using a matrix of left-eye and right-eye contrast combinations spanning the
entire range from near the detection threshold to the theoretical maximum transi-
tions. The authors aimed to get a more precise frame on the contrast dependence
of dominance and transition durations and that of the occurrence of return
transitions; i.e., occasions when an eye loses and regains dominance without
intervening dominance of the other eye.

In their experiments, Brascamp and co-workers used as stimulus a pair of
sine-wave gratings, orthogonally oriented rightward tilted (45◦) for one eye and
leftward (−45◦) for the other. Four subjects reported percepts by pressing and
holding either of two buttons corresponding to exclusive visibility of either eye’s
image or releasing all keys in case of a transition. A third button was pressed
when the observer was not sure about the perceived percept (e.g., due to tem-
porally unaligned eyes), because releasing the keys is also a natural response in
such cases. Contrast conditions were distributed randomly over trials. Sessions
consisted of four 5-min experimental trials. Each observer was presented with
a 4 × 4 matrix of contrasts values spanning the full domain of left-eye/right-eye
contrast combinations. Each subject produced an average of about 180 domi-
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Figure 2.4: Dominance durations, transition durations, and the FRT as a func-
tion of the two eyes contrasts, for one subject (A) and averaged over all four (B).
Ipsilateral (ips.) and contralateral (cont.) refer to the eye whose dominance dura-
tions are plotted and to the other eye, respectively. Contrasts were customized for
each subject, with “Min” meaning near detection threshold and “Max” meaning
100%. See the text for further details. Reprinted from Brascamp et al. (2006).

nance durations per contrast condition per eye and the accompanying transition
durations.

Figure 2.4 shows the results for a typical subject (Panel A) and averaged over
all four (Panel B). The top and middle charts show dominance and transition
durations; the bottom ones show the fraction of return transitions (FRT), that
is the fraction of transition phases after which dominance returned to the previ-
ously dominant eye, remaining suppressed the image presented to the other eye.
All durations in Panel B were normalized per subject relative to his/her domi-
nance duration in the 100%/100% contrast condition; thus obtaining proportional
relations between dominance and transition durations.

Since none of the observers showed a significant eye preference, the data was
pooled over eyes. As a result, concerning dominance durations, contrasts are
shown respect to an ipsilateral eye (the one whose dominance durations are being
plotted) and its contralateral one (the other eye). Concerning transitions, the
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terms “departure” and “destination” contrast refer to the eye that was dominant
before that blended state and the other, respectively.

Figure 2.4 shows the surprising results that dominance and transition dura-
tions are both on the order of seconds and that the FRT varies between about
0 and as much as 0.5, depending on condition. All three quantities show a sys-
tematic dependence on contrast, which is similar for dominance durations and
the FRT but different for transition durations. In the first case, both quantities
increased (decreased) with the ipsilateral/departure (contralateral/destination)
contrast. On the contrary, transition durations (middle) behaved differently, with
the roles of departure and destination contrast being largely equivalent. Conse-
quently, transition durations became longer when both contrasts are minimal.

Brascamp and co-workers carried out some computational experiments trying
to reproduce their novel results. They used three prevailing models mainly based
on adaptation and cross-inhibition to mainly reproduce the well known non-linear
characteristics and stochastic properties of rivaling behavior. They used the Wil-
son’s approach Wilson (2003) and the Kalarickal and Marshall’s model Kalarickal
& Marshall (2000) to account for superposition transitions and the Stollenwerk’s
model Stollenwerk & Bode (2003) in the attempt to reproduce picemeal-kind
mixed phases, as this model present an spatial dimension (see section 2.3).

Figure 2.5 show the computational results. Apart from the contrast ranges
in which Levelt’s 2nd proposition is verified (white bars), the panels A-C present
an important deviation from the experimental data (figure 2.4), predicting, for
instance, too much short transitions and underestimating the FRT. Panel D
presents the results of just one parameters region for the Kalarickal & Marshall’s
model in which it was able to (qualitatively) fit the original data. In this case,
the noise is directly applied to the habituation variables, instead to its rates as
in the original formulation.

Nevertheless, at these conditions it is verified that the model loses its capa-
bility to produce suitable Gamma-like time dominance distributions, because the
dynamics is then determined by only one attractor of intermediate activity levels
(figure 2.6), which is continuously driven exclusively by noise without the inter-
vention of deterministic factors (adaptation and mutual inhibition). The authors
concluded that all the present approaches exceed in the possible role that the slow
adaptation variable might play during transitions, underestimating a potentially
more fundamental role of fluctuations (noise).

Regarding dominance durations, Brascamp et al. shows that the widely
accepted rule known as Levelt’s second proposition is only valid in a limited
contrast range; outside this range, the opposite of the proposition is true. Then, it
should be replaced by the more precise statement that unilateral contrast changes
mainly affect dominance durations of the eye presented with currently higher
contrast stimulus.
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Figure 2.5: Validation of three prevailing models by using the Brascamp et al.
(2006) data. From left to right the charts show the simulated dominance and
transition durations and the FRT, respectively. Duration are given in arbitrary
units for some models. For a limited range of inputs, the models are in agreement
with the Levelt’s 2nd proposition (white bars). Wilson’s model is unable to
produce return transition. A marked discordance with the experimental data
can be seen in Panels A-C. Panel D display the behaviour of the Kalarickal &
Marshall’s model in a limited zone of the parameter space where a qualitative
agreement with the data was do found. The nomenclature used is the same as in
figure 2.4. Adapted from Brascamp et al. (2006).
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Figure 2.6: Analysis of the Kalarickal & Marshall’s model in the conditions of the
Panel D - figure 2.5. (A) The null-clines (black and grey lines) intersect in only
one (fixed) point, to which the system tends to evolve (arrows) after eventual
incursions of the noise ( i.e., that point is actually an attractor). (B) The model
behaves purely as a stochastic system, yielding exponential-like distribution for
the dominance durations, instead the characteristic Gamma functions of bistable
perception. Reprinted from Brascamp et al. (2006).

History-dependence in bistable perception - Pastukhov & Braun
(2011)

More recently, van Ee (2009) has reconsidered the problem of serial correlations in
the perceptual time series. Positive values for this statistical measure were found
by these authors, but differently to previous works that discarded the presence of
such adaptation-related effects Borsellino et al. (1972); Walker (1975), impurities
sources in the dominance durations such as transitions and reaction times were
considered this time. Comparable results were reported for an ambiguous pattern
(illusory rotating spheres) and for the classic stimulus of two orthogonal gratings
as well.

Below we discuss in some detail the related work by Pastukhov & Braun
(2011), who have examined the problem for the same stimuli, but in the context
of the novel concept of cumulative history. The modeling implications of their
results are considered in the next chapter of this manuscript.

Nineteen observers (including author AP) with normal or corrected-to-normal
vision participated in the experiments. The subjects were shown two kind of
bistable stimulus. A binocular rivalry (BR) display consisted of a pair of or-
thogonal (red/green) sinusoidal gratings viewed trough anaglyph glasses. The
contrast of each grating was conveniently adjusted before the sessions, in order
to cancel a possible innate perceptual preference for any of them. Viewing the
BR display lead to a perception of clear percepts (each of the two differently ori-
ented/colored gratings), but also the subjects reported the phenomenal appear-
ance of two kinds of mixed percepts: ones that were ‘fused’ (i.e., both gratings
appear superimposed) and others consisting of fragments of both external stimuli
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(i.e., ‘patchy’ percepts characteristic of ‘piecemeal’ transitions).
The second stimulus was an illusory rotating sphere: an orthographic projec-

tion of hundred of dots distributed on a sphere surface that rotated around the
vertical axis with a period of 4 s, giving an appearance of a three-dimensional
structure (i.e., a kinetic-depth effect (KDE)). Ambiguous perception of the sphere
was created by the lack of cues (diameter and luminance of “closer” and “farther”
dots) differentiating the front surface from the rear one. Such a procedure gave
the impression that the structure perceived spontaneously switched, provoking
that subjects reported its apparent rotation in depth as either ‘front left’ or
‘front right’.

Time, seconds
0 5 10 15 20 25 30

a c

db

Figure 2.7: Multi-stable displays and reversals of visual appearance. (a) Ob-
servers view the two-dimensional projection of a rotating cloud of dots: phenom-
enally, they experience rotation in depth, with the front part moving at times to
the left and at times to the right (“kinetic depth effect”, KDE). (b) With each
eye, observers view a grating of different color and orientation: their visual expe-
rience is dominated at times by one grating and at times by the other (“binocular
rivalry”, BR). Less often, a patchwork of red and green areas is experienced as
well. (c), (d) Example series of reversals of visual appearances, for KDE and
BR displays. The black traces indicate the reported visual appearance (‘left’ or
‘right’ for KDE; ‘green’, ‘red’, or ‘patchy’ for BR). The colored traces illustrate
hypothetical ‘cumulative histories’, computed with τH = 0.5 < Tdom > (see text
for details). Extracted from Pastukhov & Braun (2011).

Presentation sessions consisted of 12 blocks of 5 min each per observer for
KDE stimulus and 18 blocks per subject for BR display. On average alternation
rates showed an initial decaying transient lasting about 1 min before a stationary
phase is reached, thus only the last four minutes of each observation block is an-
alyzed (excluding the last incomplete percept). Average number of clear percepts
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per block was 36 for KDE and 110 for BR, because spontaneous reversals were
much less frequent with the KDE displays leading to longer dominance phases.

Following the standard analysis, the average dominance time < Tdom > and
the coefficient of transition Cv is then computed from the sequence of dominance
periods Ti of each presentation block:

< Tdom >=
1

N

N∑
i=1

Ti Cv =

∑N
i=1 (Ti− < Tdom >)2∑N

i=1 Ti
(2.1)

Additionally, overall values for the mean and standard error of Tdom and Cv were
obtained by combining all blocks.

More importantly, a novel concept is also used in Pastukhov & Braun (2011) to
characterize the perceptual dynamics in unprecedented detail. Namely, a measure
of cumulative history as a function of time, Hx(t), is defined in terms of the
previous phenomenal experience. Let Sx(t) be a record of one of the possible
perceptual outcomes x, defined as unity while percept x dominates, 0.5 during a
mixed or patchy percept (only for BR), and zero when percept x is suppressed.
The cumulative history Hx(t) is then given by a linear exponential convolution
of Sx(t):

τH
dHx

dt
= −Hx(t) + Sx(t) ⇔ Hx(t) =

1

τH

∫ t

0

Sx(t′) exp

[
− (t− t′)

τH

]
dt′, (2.2)

where τH is a constant that has to be determined empirically, corresponding to
the optimal time window that best explains the observed perceptual variabil-
ity. This definition excludes the possible cross-influence between the competing
(clear) percepts, although the combined effect of the two resulting interpreta-
tions is do accounted for. Due to the presence of the exponential-kernel, the
cumulative history Hx(t) reflects both how long and how recently a given percept
has dominated in the past. Two representative series of dominance reports, the
time courses of Sx(t) and Hx(t) are illustrated, respectively, by the black and the
colored traces in figure 2.7 (c)-(d).

The computation of the τH constant is then made as followed. Let Hl(t)
and Hr(t) be the history measures computed for the two alternative percepts
produced by the given display (e.g., left- or rightward rotation, left- or right-eye
grating). Subsequently, linear correlation coefficients cH between the individual
dominance durations (Tl and Tr) and the values of both histories up to the onset
of such experienced phases are calculated, for all the possible combinations of
history and percept: Hl × Tl, Hl × Tr, Hr × Tr, and Hr × Tl.

An interval of possible values of τH ranging from 0.01 s to 60 s was consi-
dered. In general, negative values cH < 0 are found when history and dominance
periods of the same interpretation are combined (for instance, Hl and Tl), what
suggest some relation of the concept of cumulative history and the adaptation of
neurons representing the currently dominant percept. Indeed, this observation
constitutes the first direct evidence that neural adaptation does modulate rever-
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sal probabilities. Strikingly, a non-monotonic profile for the average (absolute)
correlation cH as a function of τH is found(see Figure 2.8).
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Figure 2.8: Individual dominance periods depend on dominance history. (a) and
(b) Dominance periods T (normalized mean ± standard error) of a percept, as a
function of the cumulative history H of the same (blue) or other (red) percept,
taken at the time of the initial reversal. (c) and (d) Pearson correlation coefficients
cH (mean absolute values) between dominance duration and history, as a function
of the decay constant τH . The colors identify different observers (see inset). For
most observers, the maximal correlation is obtained when τH ≈ 0.5 < Tdom >.
After Pastukhov & Braun (2011).

Similarly to the case of the observables Tdom and Cv, overall values for the
mean and standard error for the maximal correlation cH and its associated time-
scale τH were obtained by combining all presentation blocks. In this way, it
is demonstrated that optimal values of τH are approximately half the average
dominance time < Tdom > experienced by the subject (τH = 0.54±0.21 < Tdom >
for the KDE stimulus, τH = 0.56±0.28 < Tdom > for the BR display). Significant
values of maximal correlations cH are found (see table 2.2), being cH = 0.24±0.10
for the rotating sphere and cH = 0.30± 0.08 for the dichoptic gratings.

Based of these remarkable significant findings, Pastukhov & Braun (2011)
have proposed to use such history-related quantities as complementary measures
to characterize the statistics of the dynamics of bistable perception. That is, the
statistics of the perceptual data can be better described by a set of four psy-
chophysical observables: the mean < Tdom > of the dominance durations data
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and its coefficient of variation (Cv), the maximal linear correlation between per-
ceptual history and immediate next dominance period (cH) and its corresponding
time-scale constant (τH). The values of the four psychophysical measures deter-
mined for each observer and display (mean and standard error, and the level of
significance p associated with cH) are listed in tables 2.1 and 2.2.

Stimulus Subject < Tdom >, s Cv
ap 3.69± 0.10 0.46± 0.02
cth 16.31± 1.00 0.58± 0.05
em 23.85± 3.09 0.84± 0.11

KDE klu 9.40± 0.62 0.76± 0.05
kt 9.49± 0.67 0.63± 0.08
lp 8.22± 0.44 0.58± 0.05
vb 13.79± 0.92 0.68± 0.05
vv 5.42± 0.13 0.62± 0.02
ap 2.69± 0.06 0.49± 0.02
cs 3.27± 0.14 0.69± 0.07
cth 3.58± 0.10 0.60± 0.02
ia 1.26± 0.02 0.54± 0.01
jn 2.27± 0.02 0.24± 0.01

BR kt 2.68± 0.03 0.44± 0.02
lf 1.43± 0.02 0.41± 0.01
np 1.36± 0.02 0.51± 0.01
sk 1.69± 0.02 0.56± 0.01
ss 4.53± 0.18 0.53± 0.03
tl 2.67± 0.03 0.32± 0.01

Table 2.1: Psychophysical observations obtained in the study by Pastukhov &
Braun (2011). Durations-related measures are shown with their mean and stan-
dard error.

To facilitate a direct comparison of the results reported in Pastukhov & Braun
(2011) with statistical analyses typically carried out in previous studies, a fifth ob-
servable is included. That is, the serial linear correlation (cT ) between successive
dominance intervals Ti of the same percept:

cT =

∑N
i=1(Ti− < Ti >)(Ti+1− < Ti+1 >)

σTiσTi+1

(2.3)

Correlations between successive dominance periods of the same percept were
weak (cT = −0.04 ± 0.1 for KDE and cT = 0.02 ± 0.02 for BR) and reached
significance only with the KDE display (table 2.2). Such absence of clear se-
quential correlations is in agreement with previous works that have considered
multi-stable perception to be a stochastic phenomenon Fox & Herrmann (1967);
Levelt (1967); Walker (1975); Borsellino et al. (1972).

Remarkably, the values of correlations with cumulative history were generally
not only more significant than but also twice as large sequential correlations of
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dominance periods. Thus, contrary to the conventional view, the perceptual
trace experienced by an individual do contains a subtle but significant level of
hysteresis that affects the duration of the next dominance phase. In average, a
consistent trend was observed, where shorter (longer) residence times in the same
percept was preceded by larger (lower) values of cumulative history values (see
Figures 2.8 (a)-(b)).

However, further statistical analyses based on the concepts of entropy and
mutual information, demonstrated that past history and future dominance peri-
ods, are only loosely correlated, showing that adaptive forces could not explain
more than 10% of the observed variability in reversal timing Pastukhov & Braun
(2011). This fact clearly suggests that adaptive processes do not trigger percep-
tual reversals directly, but merely modulate reversal probability.

Additionally, the inferred decay time-constant τH , which presumably reflects
neural fatigue processes, also correlates poorly with the average dominance pe-
riod < Tdom > (Figure 2.9-a). For both displays and all observers, the linear
correlation coefficient was 0.82 (p < 0.001) . Nevertheless, when the two kinds
of stimuli are analyzed separately, this correlation value dramatically decreases,
falling to 0.64 (p = 0.09) for KDE and to 0.36 (p = 0.28) for BR. Hence, con-
trary to the conventional view Laing & Chow (2002); Wilson (2007), dominance
durations seems to be only slightly determined by adaptation rate.

Stimulus Subject cH p(cH) τH , s τH
<Tdom>

cT p(cT )

ap 0.31± 0.05 0.01 4.53± 1.65 1.23 0.29 0.01
cth 0.39± 0.08 0.01 3.57± 1.30 0.22 0.31 n.s.
em 0.11± 0.14 n.s. 35.16± 31.17 1.47 0.05 n.s.

KDE klu 0.36± 0.08 0.01 1.72± 1.19 0.18 0.08 n.s.
kt 0.08± 0.08 n.s. 6.18± 5.81 0.65 −0.11 n.s.
lp 0.26± 0.08 0.01 3.72± 2.08 0.45 0.15 n.s.
vb 0.17± 0.10 0.05 6.25± 5.75 0.45 0.07 n.s.
vv 0.16± 0.04 0.01 9.58± 5.72 1.77 0.15 0.05
ap 0.37± 0.05 10−4 0.64± 0.27 0.24 0.18 0.01
cs 0.27± 0.09 10−4 0.94± 0.29 0.29 0.02 n.s.
cth 0.36± 0.06 10−4 0.72± 0.60 0.20 0.21 0.01
ia 0.30± 0.03 10−4 0.90± 0.15 0.71 0.09 n.s.
jn 0.37± 0.07 10−4 2.32± 0.55 1.02 0.16 0.01

BR kt 0.30± 0.05 10−4 0.77± 0.13 0.29 0.24 10−4

lf 0.40± 0.03 10−4 2.31± 0.38 1.61 0.27 10−4

np 0.40± 0.03 10−4 0.97± 0.16 0.71 0.22 10−4

sk 0.20± 0.02 10−4 0.92± 0.15 0.54 0.10 0.05
ss 0.48± 0.17 10−4 0.76± 0.39 0.17 0.22 n.s.
tl 0.15± 0.04 10−4 0.84± 0.14 0.32 0.10 n.s.

Table 2.2: Psychophysical observations obtained in the study by Pastukhov &
Braun (2011). Correlations-related measures are shown with their mean and
standard error.
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Figure 2.9: (a) Correlation between average dominance periods < Tdom >
(mean ± standard error) and decay time-constant τH (mean ± standard error),
for 8 observers KDE and 11 observers BR. (b) Transition duration (mean ±
standard error), in units of < Tdom >, as a function of history difference ∆H ≡
Hred − Hgreen. For ∆H ≈ 0, transition durations increased 73% above their
average value (black line). (c) Probability of return transitions (red→red or
green→green) as a function of history difference ∆H. For ∆H ≈ 0, return
probability rose 217% above its average value (black line). After Pastukhov &
Braun (2011).

A possible explanation to these unexpected results can be find in the experi-
ment with BR displays, consisting of two gratings that apart from being perceived
as clear percepts, could also eventually experienced by the subject as ‘patchy’
patterns. Then, patchworks of red and green regions can be seen, that can not
exclusively be followed by a complete transition to the other alternative interpre-
tation, but also the subjective experience can afterwards resume to the previous
uniform appearance (return or failed transition). Both kinds of transitions were
profoundly affected by the balance of cumulative histories (see Figure 2.9 (c)-
(d)): transitions lasted longer and the return probability was far higher, when
the two cumulative histories were approximately balanced: ∆H ≈ 0. Thus, in
the absence of any adaptive bias, perceptual transitions appear to be driven by
spontaneous activity fluctuations.

In summary, the work of Pastukhov & Braun (2011) clearly demonstrates, for
the first time, the presence of low but statistically significant correlation values
of correlation between past perceptual history and dominance durations. Fur-
thermore, fatigue processes do not seem to be the only factor that affects the
timing of perceptual reversals, but acts together with fluctuations sources whose
role turn more evident when no adaptation bias is present. Spontaneous fluc-
tuations are able to enlarge transtion phases and even be the cause of frequent
failed transitions to the competing percept, a result that strongly resembles the
conclusions stated by Brascamp et al. (2006).
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2.3 Current models for bistable visual perception

Existing computational models have been successful in explaining the time-avera-
ged behavior of bistable perception. Two distinct classes of models have been
proposed, according to the way in which the dominance of some percept is defined:
following a threshold criterion or a winner-take-all rule. In the first case, an image
becomes dominant when the activity of the neurons encoding the competing
image falls until crossing certain threshold Lehky (1988).

The more recent proposals appeared in Wilson (2003); Laing & Chow (2002)
and other works belong to the second kind of models. The all-or-none charac-
teristic of perceptual switching between the competing images is implemented by
comparing the activity levels of the corresponding populations.

Regarding the quantity of processing stages, hybrid models of rivalry Tong
et al. (2006) have also been proposed in the last years, in order to account for
the accumulating evidence for a multi-level network architecture underlying the
perception of multistable patterns Lumer (1998); Dayan (1998); Grossberg et al.
(2008). However, in general any model typically contains a basic modeling block,
whose neurons representing the competing percepts, interacts by general mech-
anisms such variable (synaptically modulated) inhibition, and/or whose activity
decrease by self-adaptation during dominance.

Below we present some of the prevailing models, that were partly designed to
reflect the neurophysiology of the visual system and use an elaborated form of
the self-adaptation and competitive inhibition. The all-or-none characteristic
of perceptual switching is implemented by a winner-take-all rule: perceptual
dominance is determined by the relative level of the activities of a pair of pools;
e.g., image 1 is perceptually dominant when the neuronal firing-rates satisfy r1 >
r2.

A mean field bi-stage approach: Wilson’s model

Wilson (2003) proposed a two-stage competitive neural model, to take into ac-
count the importance of monocular and binocular neurons in binocular rivalry Lo-
gothetis et al. (1996). The mathematical form of a processing stage (one popula-
tion) is given by the following equations:

τr
dr1
dt

= −r1 +
Rmax[I1 − βi2]2+

(θ + a1)2 + [I1 − βi2]2+
, τr = 20 ms

τi
di1
dt

= −i1 + r1, τi = 11 ms

τa
da1
dt

= −a1 + φar1, τa = 900 ms. (2.4)

Here r1 is the firing rate of an excitatory neuron responding to one of the pos-
sible interpretations of the bistable stimulus, I1, and Rmax = 100 Hz is the
maximal discharging frequency. The asymptotic firing rate is determined by a



2.3. CURRENT MODELS FOR BISTABLE VISUAL PERCEPTION 39

Naka-Rushton function f(x) for positive values of the argument x = (I − βi)+,
with a semi-saturation or threshold value θ = 10, such that:

f(x = θ + a1) = Rmax/2. (2.5)

This excitatory neuron drives an inhibitory cell, i1, which is described by a linear
equation for simplicity. The same excitatory neuron receives inhibition of strength
β from another similar inhibitory neuron i2. Finally, a1 describes the very slow
self-adaptation of this neuron by an after-hyperpolarizing potential current, that
contributes with a threshold increment.

The noise is directly added to the input variables. Nevertheless, Kim et al.
(2006) have shown that the slow self-adaptation might be a better locus for the
noise since Wilson’s model simulated their data reasonably well when the noise
was added to the adaptation equations.

Remarkably, Wilson’s model distinguishes from others by a divisive kind of
adaptation effect Shpiro et al. (2007). That is, the slope of the activation (Naka-
Rushton) function, which is given by the first derivative at the (variable) threshold
point θ + a:

f ′(x = θ + a) =
2Rmax
θ + a

, (2.6)

explicitly depends on the temporal evolution of the slow negative feedback pro-
cess.

Laing and Chow’s reduced model

Laing & Chow (2002) presented a biologically plausible model for binocular rivalry
consisting of a network of Hodgkin-Huxley type neurons, in which a given percept
is represented as a localized focus of active neurons. The reader interested in
implementation details is referred to the appendix A of the mentioned reference.
Here we present the reduced description derived from the spiking network model:

dr1
dt

= −r1 + f(g1αr1 − g2βr2 − a1 + I1)

τa
da1
dt

= −a1 + φaf(g1αr1 − g2βr2 − a1 + I1)

τd
dg1
dt

= 1− g1 − g1φgf(g1αr1 − g2βr2 − a1 + I1) (2.7)

r1, r2 represent the spatially averaged net excitatory activity of each localized
population, I1, I2 are the input variables, a1 and g1, g2 are the population adap-
tation and synaptic depression variables, respectively. The parameter α describes
recurrent excitation, β stands for the strength of mutual inhibition and φa for
adaptation strength. For simplicity the gain function f was chosen as the Heav-
iside step function, i.e., f(x) = 1 for x ≥ 0 and f(x) = 0 for x < 0. The
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constants τa and τd are the time constants of the adaptation and synaptic depres-
sion, respectively. Analogous equations are formulated for the other competitive
population, exchanging the variables describing the pools.

Synaptic depression was included in both the excitatory and inhibitory con-
nections, since while depression is thought to occur only in excitatory synapses,
the inhibitory neurons in the full spiking model are largely driven by the excita-
tory populations whose activity is influenced by such slow negative feedback.

Laing & Chow (2002) used such simplified version of the original model to
obtain explicit non-linear expressions for the dependence of the dominance du-
rations on input strengths, providing a simple explanation for Levelt’s second
proposition. Besides, an expression for the distribution of dominance durations
was analytically calculated, a one different from the familiar description by a
Gamma function (see Eq. 12 and appendix C of Laing & Chow (2002), for the
analytical derivation).

Two simpler variants of Laing and Chow’s model are presented in Shpiro et al.
(2007):

Laing and Chow model with only adaptation (adaptation-LC)

dr1
dt

= −r1 + f(−βr2 − φaa1 + I1 + n1)

τa
da1
dt

= −a1 + r1 (2.8)

where n(t) is introduced here for the fluctuations variable, being modeled as a
filtered version of a white noise χ(t):

dn(t)

dt
= −n(t)

τn
+ σn

√
2

τn
χ(t), (2.9)

and f(x) is a sigmoid function with threshold θ and slope proportional to 1/k:

f(x) =
1

1 + exp(−(x− θ)/k)
. (2.10)

Laing and Chow model with only depression (depression-LC)

dr1
dt

= −r1 + f(−βg2r2 + I1 + n1)

τd
dg1
dt

= 1− g1 − φdg1r1 (2.11)

Kalarickal & Marshall (2000) model

The authors proposed a model with noisy habituating reciprocal inhibitory synap-
ses between the neurons encoding the possible interpretations of the input. Known
empirical results such as Levelt’s propositions and the lack of serial correlations
are successfully reproduced in Kalarickal & Marshall (2000). A recent applica-
tion of this model is reported in Brascamp et al. (2006) and briefly discussed in
section 2.2 of this manuscript.
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The equations defining the Kalarickal & Marshall (2000) model are as follows:

ṙi = −ri + (1− ri)W+
i Ii − (ci + ri)W

−
ji gjimax(rj , 0)

ġji = c2[(1− gji)− c3max(rj , 0)W−ji gji] + b(t) (2.12)

where W+
i denotes the synaptic efficacy of the excitatory input to neuron i, W−ji

characterizes the inhibition coming from neuron j and affecting the cell i, and
gji is the corresponding habituation variable (i 6= j). c1, c2 and c3 are additional
constants to be fit to empirical data.

A stochastic ingredient is given by the dynamic variable b(t), that takes the
values s if rij(t) < p and −s otherwise, where rji(t) is a uniformly distributed
random variable in [0, 1). p ∈ [0, 1] and s is a small positive constant (s = 0.0025
in the original version of the model).

Stollenwerk & Bode (2003) model

This approach is useful when considering more realistic sequences of suppression
and dominance phases happening during binocular rivalry. A mixed percept can
consist of parts of the images presented to the two eyes (spatial or piecemeal
phases), that eventually accompanies a failed transition or a reversal to the al-
ternative stimulus Bossink et al. (1993); Mueller & Blake (1989). The approach
consists of a two-dimensionally extended model formed by basic blocks coupled
with each other representing neighboring positions in the visual field.

In the basic block (see Fig. 2 of Stollenwerk & Bode (2003)), it is the output
(O1, O2) of the Φ-neurons what is associated with the current perception, and
cross-inhibition is implemented by the χ-neurons. The possibility of destabilizing
the currently dominant image is based on negative feedback fed through the Ψ-
neurons, characterized by a phase delay in any rivalry scenario which is quantified
by τs.I .

The output of Φ− and Ψ− neurons in the pathway 1 of each block 4 is de-
scribed by a sigmoid-type gain function

f(x) =
1

1 + exp(−4α(x− V ))
. (2.13)

The time evolution of Ψ cells is modeled by the following differential equation

τs.IΨ̇1 = −Ψ1 + f(Φ1), (2.14)

where τs.I indicates the time-scale of the slow “self-inhibition”. Besides, Φ−neurons
evolve according to

Φ̇1 = −Φ1 + I1 + k
∑

Neighbours
n

knf(Φn1 )− εf(Ψ1)− ηf(Φ2) + S, (2.15)

4As in other models, the corresponding equation for the other pathway can easily be ob-
tained by exchanging the indices 1 and 2
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Figure 2.10: Network architecture of Moreno-Bote et al’s model, 2007. Reprinted
from Moreno-Bote et al. (2007).

being I1 the external stimulus signal, k is some constant that scales the sum over
the neighbours of the cell, and kn represents a weighting factor of the output
signal f(Φn1 ) of a given neighbour, that directly depends on the inverse of its
distance to the Φ1-cell. ε and η indicates the self-inhibition and cross-inhibition
strengths, respectively, and S describes and intrinsic activation not related with
the input signal. Finally, the output of the χ-inverter neurons is set equal to the
one of the Φ-neuron, thus considering its activation very fast.

Moreno-Bote et al. (2007) model

This model mainly distinguishes among all the others in two aspects. Firstly, the
derivation of the rate equations is explicitly based on an energy function intended
to account for some well-known properties of bistable perception such as Levelt’s
propositions II and IV. Secondly, it proposes a network architecture that can be
easily extended to generate the typical multi-stable behavior observed when the
external stimulus allows more than two competing percepts be inferred by the
brain.

Two alternative architectures are proposed in Moreno-Bote et al. (2007). A
simpler one consists of a pair of average populations of excitatory neurons directly
connected by (inhibitory) interneurons 5, so resembling the classical view imple-
mented in previous models. However, a significant difference is given by the fact
that the response of both populations of inhibitory neurons rely on information
about the total strength of external stimulation (see Fig. 2.10-A).

A second architecture contains more novel ingredients that made it more in-
teresting to be included in this thesis. Specifically, the information of the total
external stimulation is provided by a unique (global) excitatory subpopulation
that feeds the inhibitory populations (Figure 2.10-B). These last neurons, in
turn, convey local signals to the respective excitatory cells representing the com-

5Hence sometimes called the DIRI version of this model Shpiro et al. (2009).
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peting percepts 6. Finally, a feedback through the global excitatory subpopula-
tion implements some level of mutual-inhibition between the primary excitatory
populations, an idea that can make such a circuitry also suitable for modeling
multi-stable perception of complex stimuli.

The basic equations of one of the populations are as follows:

ṙ1 = −r1 + f
(
αr1 − β

{
Θ
(
ϕ(r1 + r2) + I1 + I2

)
+ ηr1

}2

− a1 + I1 + n1

)
ȧ1 = −a1 + φar1, (2.16)

where Θ(x) is a Heaviside step function and ϕ and η are constants. A non-null
value of α = 0.75 is chosen for the self-excitatory connections in Moreno-Bote
et al. (2007); Shpiro et al. (2009). Differently to the previous approaches, one can
note the presence of a nonlinear inhibition term, proportional to the inhibition
strength β.

6Hence sometimes called the GELI version of the model Shpiro et al. (2009); Seely & Chow
(2011).





3 Fitting models to the empirical
data: a noise-driven regime

In this chapter, various prevailing models for bistable perception are fitted to
the experimental results of Pastukhov & Braun (2011), which are summarized in
section 2.2. These authors measured not only salient aspects of bistable percep-
tion (i.e., mean and dispersion of dominance distributions), but also some hidden
hysteresis effects ignored up to now.

As it was shown in section 2.3, most of the existing models include two ba-
sic mechanisms: (i) a slow negative feedback that precludes a population from
dominating forever (e.g., spike-frequency adaptation or synaptic depression) and
(ii) mutual inhibition between the two populations whose activities represent the
competing percepts. Such cross-inhibition avoids long periods of simultaneous
dominance. Our selection of a determined model, from among other existing
choices, is based on the interest to evaluate the plausibility of dissimilar neuronal
mechanisms as a possible physiological basis for the phenomenon of bistable per-
ception. That is the reason to start with two different versions of Laing and
Chow’s model, firstly studied in Shpiro et al. (2007): a former one whose slow
feedback mechanism is just a spike-frequency adaptation and a second version
with only long-term depression. In other cases, the selection is motivated by
more recent studies assessing the biological plausibility of the models respect to
the Levelt’s propositions Curtu et al. (2008); Seely & Chow (2011). This explains
that a model with a more complicated architecture like Moreno-Bote et al. (2007)
is also studied, as well as a third version of the Laing and Chow’s model with
nonlinear adaptation Curtu et al. (2008). The model by Wilson (2003) is the
fifth choice of interest, due to its peculiarity of containing an activation function
with both threshold and slope being dependent on the slow evolution of adap-
tation. For a brief summary of such models, the interested reader is referred to
section 2.3.

Extensive computational simulations of these models give strong evidence that
the history-dependence effects shown by Pastukhov & Braun (2011) effectively
constrain the region of the parameter space able to replicate the empirical data.
Concretely, that just small regions residing inside the bistable or two-attractors
region of the whole parameter space are actually adequate.

Preliminary and more elaborated results obtained with the adaptation-LC
model have been already presented in several international conferences Pastukhov
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et al. (2011); Rodríguez et al. (2010); Pastukhov et al. (2009a); García et al.
(2009); Pastukhov et al. (2009b); García-Rodríguez et al. (2009). The same work
has lead to a joint article with our collaborators at Magdeburg University, which
is currently under review at the PLoS Computational Biology journal Pastukhov
et al. (2012).

3.1 Fitting models to dominance and history
measurements: general methodology

As a starting point of the analysis, the experimental data obtained by Pastukhov
& Braun (2011) are fitted with one of the reduced versions of the Laing & Chow
(2002) model. Only spike-frequency adaptation currents are retained in order
to simulate a fatigue effect on the currently dominant population. This model,
known as the adaptation-LC case, was firstly studied numerically in Shpiro et al.
(2007). Subsequently, it has also been studied in a considerable numerical Shpiro
et al. (2009) and analytical Curtu et al. (2008) detail as well.

The methodology followed in this thesis to fit both the adaptation-LC case
and other models extends the work previously reported in Shpiro et al. (2009).
In that paper, aiming at fitting a range of observable values characterizing a
typical population of subjects, the authors explored a three-dimensional param-
eter space formed by the mutual inhibition strength (β), the common value of
input (I1 = I2 = I0) feeding both populations and the noise dispersion (σn). In
this manuscript, two additional dimensions of the parametric space are explored,
namely the ones corresponding to the strength of adaptation or depression vari-
ables (φa or φd) and the time-scale characterizing such slow dynamics (τa or
τd).

The whole set of examined parameters then conforms a 5D parametric space
to be explored. The time constants characterizing the firing rate evolution (τr)
and the temporal correlation of the noise (τn) remain fixed across all the studies
at τr = 10 ms and τn = 100 ms, respectively. In order to guarantee that the
averaged values of observables Tdom and Cv can be fitted by the model, within a
noise range of σn ∈ {0.01, 0.22}, a search for the optimal values of the activation
function parameters (slope ∼ 1/κ and threshold θ) always precedes the study at
the mentioned 5D-hyperspace. Consequently, our study explores a total quantity
of seven parameter dimensions, differently to the work of Shpiro et al. (2009).

More importantly, the experimental data collected from each observer is inde-
pendently fitted, instead of a range of observable values characterizing the entire
sample. Finally, we incorporate the recent data obtained by Pastukhov & Braun
(2011), who have quantified for the first time the subtle hysteresis effects present
in bistable perception.

In general, the dynamical regime exhibited by the free-noise system depends
only on three parameters: φa (or φd), β and I0, while it is not sensitive to pa-
rameters standing for time-scales (e.g., τa or τd). Such regimes characterize the
capacity of the model to alternate between different states (Figure 3.1). That is,
an oscillatory behavior refers to the case of a continuous exchange of dominance
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Figure 3.1: One-dimensional bifurcation diagrams of the adaptation-LC model
(free-noise). The variable in the vertical axis represents fixed points or extreme
values of periodic orbits, as a function of a control parameter (horizontal axis). A
unique stable fixed point corresponds to a SIM-state (in green), a stable isolated
periodic orbit (i.e., limit cycle) corresponds to an OSC-regime (blue), while an
ATT-state is associated to a pair of stable fixed points (red). Also shown are
unstable fixed points (black) and unstable periodic orbits (dotted lines). (A)
φa-dependence of the model, revealing bi-stability (low values of φa), oscillatory
regimes (moderate φa) and SIM-states (for high values of φa). A pair of su-
percritical Andronov-Hopf bifurcation points are labeled as φHB and φhb. (B)
Bifurcation diagram in the I0 control parameter, showing a bistable region flanked
by two oscillatory regimes. (C) Dependence on β, revealing a behavior that qual-
itatively consists of a mirror image of the φa diagram shown in (A): fusion states
(green line) given by a unique stable fixed point at low values of β, a set of
limit cycles for moderate values of the control parameter, and finally a pair of
attractors (red lines) and an unstable fixed point (black) when the value of β is
relatively high. Base parameter set: I0 = 0.5, β = 1.75, φa = 0.25, θa = 0.9,
ka = 0.14, τn = 100 ms, τr = 10 ms.

between the two populations due to a presence of a limit cycle attractor for the
dynamics (we will call it the OSC -state from here on). A bistable regime (some-
times also called winner-take-all behavior or ATT -state) indicates the evolution
from the initial conditions to one of two attractor states where one population
dominates, whereas the other one is permanently suppressed by virtue of the ex-
isting level of cross-inhibition. Finally, a third case is possible, where the rates
representing the two dissimilar images/interpretations stay at approximately the
same value all over the time, therefore called a fusion or simultaneous activity
state (SIM -state). The appearance of such monostable behavior is based on the
existence of a unique attractor, and has been demonstrated to happen in the
context of many of the models studied throughout this thesis, for some specific
set of parameters (e.g., see Figure 2 of Shpiro et al. (2007)).

In order to predict the psychophysical observables reported by Pastukhov &
Braun (2011), 10− 30 blocks of five minutes each were simulated with the model
in a 3D grid of the relevant parameter space: (φa (or φd), β, I0). Each of such
triplets was combined with specific values of noise dispersion σn ∈ {0.01, 0.22}
and time-scales τa ∈ {0.7, 10.0} s) (or τd).

Exclusive dominance was defined as in the modeling study included in Bras-
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camp et al. (2006): a percept is said to dominate whenever its associated activity
is 25% larger than the firing-rate of the neurons associated to the other percept.
Otherwise, a mixed (transition) state is considered to occur. As it was shown
by Brascamp et al. (2006), this “third percept" rarely lasts for a long time in
many of the existing models, a fact likely related with the steep sigmoid func-
tions often used in the firing-rate equations.

To compute the perceptual statistics, the first minute of each block was dis-
carded as in experiments, in order to avoid typical transients before stationarity.
Then, the obtained values for the observables < Tdom >, Cv, τH , and cH were
compared with the empirical values for each observer and kind of display (ta-
bles 2.1 and 2.2). If all four predictions fell within two standard-errors of the em-
pirical values 1, the corresponding combination of model parameters was marked
as a “match".

Simulations were performed on a Linux cluster (Ubuntu 10.04.3 LTS, Matlab
R2010b, C++ compiler gcc 4.4.3, http://betz.upf.edu/ganglia/) with eight
server machines each with 2 processors Quad-Core AMDOpteronTM CPU 2384 @
2.70 GHz, and other two nodes each with processors Intel(R) Xeon(R) CPU E5630
@ 2.53GHz. These nodes each have between 12 and 24 GB of RAM, although this
aspect was not important while running simulations, since the resulting data was
continuously saved to the hard disk. Generally, the simulation of a psychophysical
experiment with 10 blocks of 5 min each in a 62 × 62 × 62 parameter grid of a
conventional model 2, takes around 20 hours of computing time.

3.2 Fitting the adaptation-LC model: a noise-driven
regime

The adaptation-LC model, a simple variant of the original Laing & Chow (2002)
model where the slow negative feedback is reduced to a spike-frequency adapta-
tion current, is the first model considered (see section 2.3 for the corresponding
mathematical equations). Results obtained when fitting this rate-based model
to the data related with the two kind of displays used in Pastukhov & Braun
(2011) (orthogonal gratings for BR and apparent rotating spheres for KDE), are
shown in Figures 3.2 and 3.3, respectively. The behavior in the hyper-space
(φa, β, I0, τa, σn) is illustrated at a fixed value for the common input strength
I0 = 0.90 and taking planar slices at distinct values of the time constant param-
eter τa. The position of each valid set of relevant parameters (φa, β) is located
respect to the dynamical regimes that appear in the absence of noise (free-noise
case).

Some characteristic behaviors of general applicability to other models studied
in this work are visible in both figures. A weak level of mutual inhibition β gener-

1That means, assuming that the Central Limit theorem is valid, a 95% confidence interval
in a Gaussian distribution of the observable.

2Differently to cases such as the Wilson (2003) model, the one by Moreno-Bote et al.
(2007) studied in the subsection 3.4 contains more equations due to its more complex network
architecture (section 2.3).

http://betz.upf.edu/ganglia/
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Figure 3.2: Fitting BR-experimental results with the adaptation-LC model (pla-
nar τa-subspaces). The matching regions correspond to specific values of τa, after
combining the valid points in a range of dispersion noise σn ∈ [0.01, 0.22]. Each
observer’s region is outlined by a different color (legend on the left). Most of
the matching points are inside the ATT-regime, just over the oscillatory one (in
blue). A few exceptions are evident for less plausible (larger) values of τa. The re-
gion below the blue zone is clearly unreachable, and represents monostable states
(SIM-states). Base parameter set: I0 = 0.90, θ = 0.0, k = 0.14, τn = 100 ms,
τr = 10 ms.

ally yields a simultaneous activity state in the free-noise system, with both rates
remaining stable at equal values (a SIM -state). A sufficiently strong adaptation
is, however, the cause of the emergence of an oscillatory dynamics (OSC -state),
where the activities oscillate in counter-phase between low and high values, even
if no noise is present. Finally, a combination of a high inhibition and a low adap-
tation results in bistable behavior between two attractors (ATT -state), where
the dominance switches are provoked exclusively by stochastic fluctuations.

It can be seen in Figure 3.2 that most of the matching points that replicate BR
data are inside the ATT-regime, just over the oscillatory one (in blue), suggesting
that only a noise-induced mechanism may explain the perceptual trace statistics,
characterized this time by dominance descriptors (< Tdom > and Cv) and hystere-
sis measures (τH , and cH) as well. However, a few exceptions are evident for less
plausible (larger) values of τa McCormick & Williamson (1989); Sanchez-Vives
et al. (2000), this pointing to an additional adaptation-driven mechanism that
could produce the reversals in perception. However, a so slow negative feedback
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might indicate a somehow ’frozen’ system where the noise plays again a signifi-
cant role in the observed switches. In contrast, for the case of the KDE display
(figure 3.3), just the noise seems to be the cause of the reversals in perception
that all the subjects report during the experiments.

As reported in Pastukhov & Braun (2011), an important difference between
the perception of the two bistable stimuli (BR and KDE) is a high frequency of
occurrence of return (failed) transitions and also the presence of long transitions
(mixed states) in the BR perceptual traces (Figure 2.9 (b)-(c)), but absent when
viewing illusory rotating spheres. These results correspond to the presentation of
subjects with balanced inputs, but similar conclusions were previously reported
in Brascamp et al. (2006), where also asymmetrical stimulation of the two eyes
was studied (see section 2.2 for a summary).

In such work, the authors suggest that the presence of returned transitions in
BR experiments could give strong support to a noise-driven mechanism underly-
ing bistable perception. Brascamp et al. (2006) found no success in fitting their
empirical data by many of the prevailing models, indicating that their results
could unlikely be replicated by deterministic effects like the one of an adapta-
tion dynamics. However, none of the models studied in this thesis was neither
adjusted to take into account such frequent failed transitions in BR.

On the other hand, the existence of long intervals of mixed dominance as the
ones reported in Pastukhov & Braun (2011) and Brascamp et al. (2006) may
give support also to the presence of the counterpart of the fatiguing effects like
adaptation or long-term depression, that continuously destabilize the dominance
for both populations. However, another alternative mechanism of noise-induced
transitions based on a model system with three stable states (attractors) could
also be invoked to explain such intriguing results Brascamp et al. (2006); Martí i
Ortega (2008).

Surprisingly, in most of the cases the perceptual statistics of the observers,
no matter the kind of stimuli (KDE or BR), can be replicated by points lying
on the ATT-region of the parameter space, thus explaining the low correlation
values cH reported in Pastukhov & Braun (2011). Moreover, such regions are
generally more or less parallel to the bifurcation boundary with the oscillatory
regime. This latest observation seems to support once again the importance of
the additional destabilization effect produced by the adaptation currents over the
dominance periods.

In contrast, in the previous work by Shpiro et al. (2009) small regions inside
the OSC-regime are also predicted to be able to reproduce the bistable perception
phenomena. Specifically, a balance between adaptation and noise-driven regimes
is proposed there to explain the dominance data, because the matching regions
contained the bifurcation boundary (see, for instance, Figure 4(a) in Shpiro et al.
(2009)). Our results show that the inclusion of history-dependence measures (τH
and cH) rule out oscillatory behaviors as a plausible biological basis for bistable
visual perception.

An additional information about the previous results can be gained by “un-
folding" the volume (φa, β, I0) associated to an intermediate value of τa = 1 s
onto planar subspaces at increasing values of the common input parameter I0.
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Figure 3.3: Fitting KDE-experimental results with the adaptation-LC model
(planar τa-subspaces). The matching regions correspond to specific values of τa,
after combining the valid points in a range of dispersion noise σn ∈ [0.01, 0.22].
Each observer’s region is outlined by a different color (legend on the left). The
matching points are inside the ATT-regime, just over the oscillatory one (in blue).
Base parameter set: I0 = 0.90, θ = 0.0, k = 0.14, τn = 100 ms, τr = 10 ms.

Figure 3.4 shows the projection onto such planes of the valid volumes found for
each subject who was presented with BR stimuli. Note that more observers can
be fitted with the adaptation-LC model when the input is fixed at a pair of values
I0, a result that will re-appear in some of the subsequent studied models.

The reason for such a general behavior can be explained by the 1D-bifurcation
diagram of the free-noise model when the control parameter is I0 (see Figure 3.1-
B). Two Andronov-Hopf critical points actually exist when the common input
is varied while the other parameters are kept fixed. Such a pair of values shall
determine then the existence of two OSC-regions flanking the bistable region
on either side, and consequently two possible available regions inside the ATT-
region where to adequately fit a perceptual time-series with relatively low values
of correlation cH . Similar diagrams for this and other models can be found in
other studies Shpiro et al. (2007); Curtu et al. (2008), where this characteristic
dynamical behavior is shown to be deeply related with the capacity of a given
model to fulfill Levelt’s propositions Levelt (1965, 1966); Brascamp et al. (2006).
This important issue is analyzed afterwards in section 4.2.

Below we continue the current analysis by examining other prevailing options
in bistable perception modeling. The second case included in this study is the
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Figure 3.4: Fitting BR-experimental results with the adaptation-LC model (pla-
nar I0-subspaces). The matching regions correspond to a fixed value of τa = 1 s
and various values of I0, after combining the valid points in a range of dispersion
noise σn ∈ [0.06, 0.22]. Each observer’s region is outlined by a different color
(legend on the left). Most of the matching points are inside the ATT-regime,
just over the oscillatory one (in blue). Base parameter set: τa = 1 s, θ = 0.0,
k = 0.14, τn = 100 ms, τr = 10 ms.

depression-LC model, i.e., when the slow deterministic process that destabilizes
the dominance is given by a long-term depression among neurons Shpiro et al.
(2007). Then we continue with a more complex architecture that could be gen-
eralized to multi-stable stimuli with more than two possible interpretations: the
Moreno-Bote’s model with global excitation Moreno-Bote et al. (2007). Three-
dimensional visualizations of the fitting results for these two models are provided
in the following subsections, to help evaluating the validity of the conclusions
derived above in the framework of the adaptation-LC model, which possesses a
simpler architecture and time-independent connections between the two popula-
tions.

3.3 The depression-LC model

Next goal is assessing the robustness of our results by testing different neural
mechanisms that may underly the bistable phenomenon happening when a sub-
ject is presented with ambiguous visual information. Under depression, one of
these neural mechanisms, the current dominance of a given population can be cur-
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Figure 3.5: Fitting BR-experimental results with the depression-LC model (pla-
nar τa-subspaces). The matching regions correspond to specific values of τa, after
combining the valid points in a range of dispersion noise σn ∈ [0.01, 0.22]. Each
observer’s region is outlined by a different color (legend on the left). Most of
the matching points are inside the ATT-regime, just over the oscillatory one (in
blue). A few exceptions are evident for less plausible (larger) values of τa. Base
parameter set: I0 = 0.50, θ = 0.0, k = 0.04, τn = 100 ms, τr = 10 ms.

tailed by the presence of a time-dependence in the synaptic connections between
the two averaged neurons. Specifically, the cross-inhibition terms are multiplied
by a long-term depressing variable described with a time-constant τd ∼ 1s. For a
brief review of such a model, the reader is referred to section 2.3 and references
therein.

The problem is tackled first in Figures 3.5 and 3.6, where the case of the
sinusoidal gratings (BR) and that of the randomly rotating sphere (KDE) displays
are, respectively, examined. Similarly to Figures 3.2 and 3.3, they offer a first view
of the results obtained in the larger hyper-space (φa, β, I0, τd, σn). A planar slice
is made at a specific value of the common input I0 = 0.5 and posteriorly unfolded
in various sheets with a fixed τd value. First of all, note that as in the adaptation-
LC model, the value of the time-scale characterizing the slow dynamics (τd) does
not affect the location of the bifurcation line, and consequently of the dynamical
regimes, of the free-noise system.

Intriguingly, despite the rather different negative feedback mechanism, the
depression-LC model seems to have a behavior akin to the one already seen in
the adaptation-LC model. That is, the matching dynamics that reproduces the
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Figure 3.6: Fitting KDE-experimental results with the depression-LC model (pla-
nar τa-subspaces). The matching regions correspond to specific values of τa, after
combining the valid points in a range of dispersion noise σn ∈ [0.01, 0.22]. Each
observer’s region is outlined by a different color (legend on the left). The match-
ing points are inside the ATT-regime, just over the oscillatory one (in blue). Base
parameter set: I0 = 0.50, θ = 0.0, k = 0.04, τn = 100 ms, τr = 10 ms.

traditional dominance measures (< Tdom >, Cv), combined with the more subtle
hysteresis factors reported in Pastukhov & Braun (2011), is largely described
by a two-attractors system (i.e., points in ATT-region) for the BR data, and
exclusively reduces to the same kind of dynamical regime for KDE data. Thus,
the noise seems to play an essential role in generating the observed reversals in
perception, when a highly realistic ingredient as synaptic depression in the neural
substrate is considered.

Further insight into the results obtained with the depression-LC model can be
gained from Figure 3.7. Here a 3D visualization of the hyper-dimensional volume
under study is presented. The right panel contains various subfigures that put into
a more general context other 2D-graphs that could be shown as in the previous
subsection. Some of them depict the dynamical regimes that characterize the
behavior of the system in the absence of noise (first and second subfigures). Given
that three dimensions are shown here, the bifurcation lines turn to be surfaces
separating the fusion (green), oscillatory (blue) and bistable regions (red). The
last subfigures of the left panel illustrate the location of the matching regions that
mimic the original experimental data reported in Pastukhov & Braun (2011) for
BR (brown) and KDE (yellow) stimuli. Similarly to the results discussed in the
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Figure 3.7: Fitting the experimental results with the depression-LC model. Left
panel: (a) Bifurcation analysis of the noise-free system where a green volume
indicates the parametric region that corresponds to a SIM-regime, and a blue
color represents the OSC-regime. (b) The ATT-regime is shown in red color. (c)
and (d) Regions matching the perceptual dynamics of human observers for BR
displays (brown volume) and for KDE displays (yellow volume). The matching
regions seem to lie mostly within the bistable regime and more or less parallel the
oscillatory regime (blue). Right panel: (first row) The dynamic region defined by
the BR distribution descriptors < Tdom > and Cv only (left) is largely constrained
when combined with the history-dependence quantifiers cH , τH (right). (second
row) The large experimental uncertainty in the KDE data collected, makes diffi-
cult to constrain the dynamic region defined by the KDE distribution descriptors
only (left) when combined with the hysteresis measurements (right). Base pa-
rameter set: θ = 0.0, k = 0.04, τn = 100 ms, τr = 10 ms. For more details see
the text.

previous subsection, a depression-LC model should be set with parameters that
visibly lie inside the bistable zone of the free-noise system.

At this point, it is useful to make a brief digression about the importance that
the hysteresis phenomenon recently highlighted by Pastukhov & Braun (2011)
could have to establish a modeling framework for bistable perception. In a pre-
vious study, Shpiro et al. (2009) has already made use of the most salient feature
of the perceptual trace, i.e., the descriptors of the distribution of dominance pe-
riods: < Tdom > and Cv. In that paper the authors proved that these descriptors
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notably reduce the regions in the parameters space that could replicate the gen-
eral statistics characterizing a population of subjects. The basic result, tested
in three theoretical frameworks (adaptation- and depression-LC models, apart
from the Moreno-Bote et al. (2007) model with global excitation), consisted of
detecting that the matching points were located in a small region near by the
brink of the oscillatory regime, but spanning to either sides, thus considering
both bistable and oscillatory dynamics as possible operating regimes.

An important issue that motivated the present study was to know whether
the new data reported in Pastukhov & Braun (2011) could additionally constrain
a given theoretical approach under study. The results presented above in sub-
section 3.2 give a first support to a positive answer to this question. Namely,
Figures 3.3 and 3.4 show that most of the observers, no matter the kind of dis-
play presented with, can be fitted within a region that is near the bifurcation
boundary between oscillatory and bistable regimes, but inside the ATT-region.

The second panel of figure 3.7 increases the evidence in favor of the hypothesis
that the hysteresis data included in this work does constrain as well the case of
the depression-LC model. The reduction of the possible regions in the parameters
space is notable when the dominance distribution and history-dependence descrip-
tors for the BR display are combined (first row). Different to this situation, the
hysteresis data collected in Pastukhov & Braun (2011) does not visibly constrain
the region supported by just the statistics of the dominance traces reported by
the subjects viewing the illusory rotating sphere (second row). However, this fact
can be explained by the large experimental uncertainty existent in the reported
values of the four observables for many of the subjects (tables 2.1 and 2.2). The
problem is more evident in the case of slow “switchers", i.e., with larger values of
average dominance time < Tdom >, due to the dramatic reduction of dominance
periods that are available for analysis in the blocks of 5 min each.

3.4 An attractor network model with global excitation

Among the recent theoretical proposals to model multi-stable perception, the
work by Moreno-Bote et al. (2007) occupies a privileged position as the first se-
rious attempt to explain it through a purely attractor network approach. Need-
less to say that such a modeling option was slightly considered by other authors
(e.g., Wilson (2003)), but it seems that the complexity of the challenge per se over
and over tilted the balance to the more intuitive image of a pseudo-deterministic
periodic dynamics continuously perturbed by stochastic fluctuations. For in-
stance, it is not self-evident that a biologically plausible bistable network, where
any switch between the stable states is induced exclusively by noise, can pro-
duce the required perceptual dominance periods whose durations are well fit by
Gamma or Log-normal distributions Lehky (1995); Borsellino et al. (1972); Fox
& Herrmann (1967); Brascamp et al. (2005).

As it was explained in section 2.3, the Moreno-Bote et al. (2007) model mainly
distinguishes among all the others in two aspects. Firstly, the derivation of the
rate equations is explicitly based on an energy function intended to account for
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some well-known properties of bistable perception such as the Levelt’s proposi-
tions II and IV. Secondly, the basic architecture of the model network can be
easily extended to generate the typical multi-stable behavior observed when the
external stimulus allows more than two competing percepts be inferred by the
brain.

Two alternative architectures are proposed in Moreno-Bote et al. (2007). Here
we will consider only the GELI architecture that contains more novel ingredients
that made it more interesting to be included in this thesis. Specifically, the
information of the total external stimulation is provided by a unique (global) ex-
citatory subpopulation that feeds the inhibitory populations. These last neurons,
in turn, convey local signals to the respective excitatory cells representing the
competing percepts. Finally, a feedback through the global excitatory subpopu-
lation implements some level of mutual-inhibition between the primary excitatory
populations, thus preventing the value of such a circuitry from being limited to
just bistable stimuli.

For more details of the more interesting GELI-architecture of the Moreno-
Bote et al. (2007) model, the reader can resort to the brief presentation made in
section 2.3, or go directly to the related papers cited above. In the following, we
continue by evaluating the suitability of this theoretical proposal to replicate the
dynamics of the perceptual process, given the recent data reported in Pastukhov
& Braun (2011).

A 3D visualization of our results for this case can be seen in figure 3.8. The left
panel is similar to the one of figure 3.7 and can be useful for a rapid comparison
between the behavior of the two models. The first thing that becomes glaringly
obvious resides in the enormous difference between the bifurcation diagrams of
their free-noise versions. In contrast to the depression-LC model, the GELI-case
of the Moreno-Bote et al. (2007) model exhibits a bistable or ATT-region that
is now visibly surrounded by oscillatory (blue) and simultaneous activity (green)
behaviors in mostly all the planes parallel to the coordinates (φa, β) plane, when
a transversal cut at some specific I0 value is made. Moreover, when the planar
slice is taken being parallel to the other coordinates planes including the I0 axis
((φa, I0) or (I0, β) ), the ATT-region is rarely flanked on either side by two OSC-
regimes in the free-noise bifurcation diagram of the system (Figure 3.9).

As it was early pointed out in Shpiro et al. (2007), a model whose bifurcation
diagram in the I0 direction shows a slightly different behavior, can not accomplish
with Levelt’s propositions. Specifically, just the presence of a small oscillatory
region at the left of the ATT-region in such a planar subspace (i.e., at low values
of I0) can preclude the model system from fulfilling Levelt’s propositions Curtu
et al. (2008); Seely & Chow (2011).

Interestingly, despite the notable differences with the bifurcation diagrams of
the models examined in the previous sections, once again the combined data of
dominance and hysteresis measurements yield a matching region that entirely
resides within the attractor regime of the free-noise system (last two subfigures
of left panel in figure 3.8). Concerning the second panel, the use of the history-
related observables cH and τH visibly undeniably contributes to constrain the
parameter region that can successfully replicate the whole set of data for BR
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Figure 3.8: Fitting the experimental results with the Moreno-Bote (2007) model.
Left panel: (a) Bifurcation analysis of the noise-free system where a green volume
indicates the parametric region that corresponds to a SIM-regime, and a blue color
represents the OSC-regime. The ATT-regime is not shown. (b) and (c) Regions
matching the perceptual dynamics of human observers for BR displays (brown
volume) and for KDE displays (yellow volume). The matching regions seem to
lie mostly within the bistable regime and more or less parallel the oscillatory
regime (blue). Right panel is similar to the one of Figure 3.7. Base parameter
set: α = 2.00, θ = 0.0, k = 0.03, τn = 100 ms, τr = 10 ms.

display. However, they apparently do not contribute to reduce the KDE re-
gion obtained by the sole use of the observables < Tdom > and Cv, the data
used in Shpiro et al. (2009). This effect is closely related with similar results
already obtained with the depression-LC model (compare to the second panel
of figure 3.7), and can be explained by the larger relative errors associated to
the average values collected in KDE observers, specially for slow switchers (thus
providing with a rather small sample data).

Finally, note that differently to the adaptation- and depression-LC models, a
strong level of excitatory recurrence α is needed to accurately simulate behavioral
data 3. Concretely, in order to reproduce most of the detailed psychophysical
measurements listed in tables 2.1 and 2.2, such parameter is increased to the

3In fact, it is only in this case among to the rest of the models considered throughout the
present manuscript, that some degree of excitatory recurrence is needed.
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Figure 3.9: Two-dimensional bifurcation diagrams of Moreno-Bote et al’s model
for different φa values. Each β vs. I0 plane shown corresponds to a particular
planar slice at the 3D bifurcation diagram of Figure 3.8.

value α = 2.0, in contrast to the smaller level α = 0.75 published with the
original paper Moreno-Bote et al. (2007), which successfully replicated the less
detailed (dominance-related) data analyzed in Shpiro et al. (2009).

A possible reason why the original parameters of this model can not replicate
the more complete set of data reported in Pastukhov & Braun (2011), could be the
low values of correlation cH between history and dominance periods. The study
presented above (sections 3.2 and 3.3) by using two simpler versions of the Laing
& Chow (2002) model, could convince the reader that such a data definitely fa-
vor the bistable region over the oscillatory one, a result that better precises the
conclusions derived in Shpiro et al. (2009), which located the matching parame-
ter’s region at the bifurcation line. However, the ATT-region of the Moreno-Bote
et al. (2007) model would result to be rather small for a value α = 0.75 (see, for
instance, Figure 5-(a) of Shpiro et al. (2009)), to allocate the more complete set
of data shown in tables 2.1 and 2.2. Such a data set corresponds to about 20
subjects presented with two kind of stimuli and that quantifies for the first time
the subtle hysteresis effects hitherto ignored but present in bistable perception.

How our fitting results obtained with the GELI-version of Moreno-Bote et al.
(2007) model behave, when the time constant τa varies, is an issue that can
be assessed by examining the figure 3.10. As in the 3D graphs, the bifurcation
diagram over which the fitting data appear superimposed, clearly contrasts with
the ones describing the two versions of the Laing and Chow’s model studied
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Figure 3.10: Fitting BR-experimental results with the Moreno-Bote (2007) model
(GELI architecture) (planar τa-subspaces). The matching regions correspond to
specific values of τa, after combining the valid points in a range of dispersion
noise σn ∈ [0.01, 0.22]. Each subject’s region is indicated by a different color
(legend on the left). Most of the matching points are inside the ATT-regime, just
over the oscillatory one (in blue). A few exceptions are evident for less plausible
(larger) values of τa. Base parameter set: I0 = 0.08, α = 2.00, θ = 0.0, k = 0.03,
τn = 100 ms, τr = 10 ms.

above. Notably, these bi-dimensional diagrams are clearly in accordance with
their volumetric counterpart shown in figure 3.8.

Figure 3.10 shows once again that the OSC-region is suitable to fit just a few
of the huge set of behavioral data shown in tables 2.1 and 2.2. Nevertheless, such
(essentially) adaptation-driven dynamics would be characterized by relatively
larger values of the adaptation time-scale τa associated with Ca2+-dependent
K+-channels, thus consequently with less biological plausibility McCormick &
Williamson (1989); Sanchez-Vives et al. (2000). A similar unrealistic situation
was obtained with the adaptation-LC model (e.g., see figure 3.2), a result that
would be emphasizing the relevance of a noise-driven mechanism in comparison
to a somehow ‘frozen’ oscillatory system, to replicate low values of correlations
cH .

A similar 2D-view of our attempt to fit Moreno-Bote et al.’s model to the
behavioral data reported by subjects viewing a KDE display is presented in fig-
ure 3.11. As in the case of the adaptation-LC model, the data associated to this
kind of stimuli exclusively supports the hypothesis of a neural substrate where
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Figure 3.11: Fitting KDE-experimental results with the Moreno-Bote (2007)
model (GELI architecture) (planar τa-subspaces). The matching regions cor-
respond to specific values of τa, after combining the valid points in a range of
dispersion noise σn ∈ [0.01, 0.22]. Each observer’s region is represented by a dif-
ferent color (legend on the left). The matching points are inside the ATT-regime,
just over the oscillatory one (in blue). Base parameter set: I0 = 0.08, α = 2.00,
θ = 0.0, k = 0.03, τn = 100 ms, τr = 10 ms.

the switches would not occur in the absence of noise.

3.5 A model with a Naka-Rushton activation function

The model by Wilson (2003) can be mainly distinguished from the other ones
by the kind of activation function used for the steady state in the firing-rate
equations. The characteristic sigmoid-like behavior of the neuron’s rate in re-
sponse to a net input is described by a Naka-Rushton function. Then, as it was
shown in section 2.3, an increasing adaptation elevates the threshold (located at
the denominator of the function), thus exerting the expected fatigue effect over
the firing-rate. However, this choice also creates a time-dependence that affects
the slope of the sigmoid function at the threshold point, rather differently to
most of the prevailing models used in bistable perception. Such double action of
the adaptation in the Wilson (2003) model has been termed as a divisive effect
by Shpiro et al. (2007).

This double time-dependence adds an additional handicap to fit bistable em-
pirical data by the Wilson’s model. Indeed, a pronounced sensitivity of the
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firing-rate to even tiny changes in the net input is expected in the vicinity of
the threshold value. Consequently, the possibility for occurring induced-noise
reversals in the dominance of the corresponding neuron should be accurately
coupled with such more complex dynamics created by the adapting currents. In
fact, to our knowledge, no numerical simulations of the Wilson (2003) model have
been published up to date, where the neural noise had been incorporated. The
works by Kim et al. (2006) and Brascamp et al. (2006) appear to be rare excep-
tions, where the authors intended to fit their behavioral data by the first stage
of Wilson’s model. However, neither any methodology is presented nor explicit
equations and parameters for the noise dynamics are provided. In contrast, nu-
merical and analytical studies of the free-noise version of such a model can be
found in several works Shpiro et al. (2007); Wilson (2007); Curtu et al. (2008).

To circumvent this problem, we have carried out extensive computational sim-
ulations before proceeding to fit the results reported in Pastukhov & Braun (2011)
by this model, in order to test the validity of the noise range σn ∈ [0.01, 0.22] that
was used in the rest of the models. As a direct consequence, a re-calibration of
the main parameters of the model was needed, in relation to the original version
appeared in Wilson (2003). More precisely, the maximal rate was adjusted from
Rmax = 100 Hz to Rmax = 1.0 (i.e., dimensionless, as in the rest of models) and
the threshold value reduced from θ = 10 to an effective value of θ = 0.03.

Some of our simulation results with the (first stage of) the Wilson (2003)
model, are shown in figures 3.12 and 3.13. A planar slice at I0 = 0.5 made at the
hyper-space (φa, β, I0, τa, σn) is in turn unfolded in several planar subspaces taken
at distinct τa values. In a quick glance, it turns clear that the Wilson’s model
offers less chances to fit behavioral data. Differently to the other models studied
above, which permitted to find suitable parameter points for each of the 11 set
of the (more precise) BR measurements, here only 9 of the 11 BR subjects could
be fitted by the model. This is probably a direct consequence of the increased
complexity introduced by the divisive effect of the adaptation in this model. Such
a variable acts here over the saturating function’s threshold and slope as well,
making more difficult the adequate coupling with the noise dynamics contributing
to reversals in dominance.

Nevertheless, similarly to the three models analyzed above in the previous
sections, just a really small amount of the available data shown in the table 2.1
and 2.2 leave some chance that an adaptation-driven regime settled at the OSC-
region could explain the empirical results from different observers and displays.
Further agreement with the previous sections can be found in figure 3.14. It
shows the “unfolding" of the hyper-dimensional parametric space associated to
an intermediate value of τa = 1 s onto planar subspaces at increasing values
of the common input I0 that feeds both populations. The projection onto such
planes of the valid volumes found for each subject demonstrates that the BR-data
can be fitted with the Wilson (2003) model around two different values of the
input strength I0. As it was pointed out above, this behavior is related to the
existence of two oscillatory regions flanking a unique bistable region Shpiro et al.
(2007); Curtu et al. (2008). Once again, the matching regions reside within the
noise-driven zone.
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Figure 3.12: Fitting BR-experimental results with the (1st stage of) Wilson
(2003) model (planar τa-subspaces). The matching regions correspond to spe-
cific values of τa, after combining the valid points in a range of dispersion noise
σn ∈ [0.01, 0.22]. Each observer’s region is represented by a different color (leg-
end on the left). Most of the matching points are inside the ATT-regime, just
over the oscillatory one (in blue). A few exceptions are evident for less plausible
(larger) values of τa. Base parameter set: I0 = 0.50, θ = 0.03, τn = 100 ms,
τr = 10 ms.

3.6 The case of a nonlinear adaptation

In previous sections, two simplified versions of the Laing & Chow (2002) model
were analyzed in the context of the detailed data recently reported by Pastukhov
& Braun (2011): the adaptation-LC model (section 3.2) and the depression-LC
model (section 3.3). In the first case, the slow process that conveys informa-
tion about the dominant state of a given population is assumed to be given by
a hyper-polarizing Ca2+-dependent K+-current that subsequently reduces the
spike-frequency of the same neurons. In the case of the depression-LC model,
the long-term depression present in the inhibitory synapses between the pair of
competing (average) excitatory neurons acts as a slow negative feedback that
eventually curtails the dominance of any of them.

To conclude our analysis of the implications of the experimental work by Pas-
tukhov & Braun (2011) for future modeling approaches to bistable perception,
in this part we study a third interesting form of the Laing and Chow’s model: a
one where the slow negative process is again described by an adapting current,
but whose steady state is expressed by a nonlinear function, as originally pro-
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Figure 3.13: Fitting KDE-experimental results with the (1st stage of) Wilson
(2003) model (planar τa-subspaces). The matching regions correspond to specific
values of τa, after combining the valid points in a range of dispersion noise σn ∈
[0.01, 0.22]. Each observer’s region is represented by a different color (legend on
the left). The matching points are inside the ATT-regime, just over the oscillatory
one (in blue). Base parameter set: I0 = 0.50, θ = 0.03, τn = 100 ms, τr = 10 ms.

posed in Laing & Chow (2002) where a Heaviside function is used. In a recent
work Curtu et al. (2008), such an additional saturating function is improved to
a sigmoid-like one, similar to the function utilized in the firing rate equations of
the adaptation- and depression-LC models. That is, a nonlinear function for the
adaptation variables is used that adds two new parameters: θa, standing for the
threshold, and κa related with the slope of the function at that point.

Interestingly, Curtu and co-workers argue both analytically and numerically
that this variant of the Laing & Chow (2002) model can easily hold Levelt’s
proposition IV by just a simple manipulation of the adaptation saturating func-
tion. Choosing a value of θa larger than 0.5 and close to 1 would replicate the
desired behavior, whereas the contrary could yield unrealistic increasing branches
in the < Tdom > plot as a function of the common value I0. We postpone the
assessment of this assertion to section 4.2; here, we limit ourselves to the fitting
of such a variant of Laing and Chow’s model (with a value of θa = 0.9) to the
data reported in Pastukhov & Braun (2011), which also appears tabulated in the
tables 2.1 and 2.2 of the present manuscript.

Our results for the measurements related with the BR display are shown in
figures 3.15 and 3.16. They correspond to planar subspaces at different values



3.6. THE CASE OF A NONLINEAR ADAPTATION 65

Figure 3.14: Fitting BR-experimental results with the (1st stage of) Wilson
(2003) model (planar I0-subspaces). The matching regions correspond to a fixed
value of τa = 1 s and various values of I0, after combining the valid points in a
range of dispersion noise σn ∈ [0.01, 0.22]. Each observer’s region is outlined by
a different color (legend on the left). Most of the matching points are inside the
ATT-regime, just over the oscillatory one (in blue). Base parameter set: τa = 1 s,
θ = 0.03, τn = 100 ms, τr = 10 ms.

of the time constant τa (with the I0 value kept fixed) and at various values of
I0 (with τa unchanged), respectively. It can be observed that, despite the clear
difference with the linear adaptation-LC model analyzed in section 3.2, the model
shows results that are similar not only to the ones obtained with such a simpler
variant, but also with the depression-LC version of the Laing and Chow’s model
(section 3.3) and Wilson’s model (section 3.5), among others. The matching
regions replicating the perceptual traces reported by individuals viewing the KDE
display (rotating spheres) can also be fitted just with points that reside inside
the bistable region (not shown).

The results presented in this chapter give strong support to the fact that the
psychophysical measurements collected in Pastukhov & Braun (2011), effectively
reduce the feasibility of many prevailing models for bistable perception, limiting
the working regime to a one where the noise is indispensable and plays an essential
role in generating the usual perceptual reversals experienced by a subject, and
would be absent without it: the ATT-region. Our work refines the previous study
by Shpiro et al. (2009), where a fine balance between adaptation- and noise-
driven regimes is invoked to explain averaged dominance data (i.e., described by
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Figure 3.15: Fitting BR-experimental results with the nonlinear adaptation-
LC model (planar τa-subspaces). The matching regions correspond to specific
values of τa, after combining the valid points in a range of dispersion noise
σn ∈ [0.01, 0.22]. Each observer’s region is outlined by a different color (leg-
end on the left). Most of the matching points are inside the ATT-regime, just
over the oscillatory one (in blue). A few exceptions are evident for less plausible
(larger) values of τa. Base parameter set: I0 = 0.90, θ = 0.0, k = 0.14, θa = 0.9,
κa = 0.14, τn = 100 ms, τr = 10 ms.

< Tdom > and Cv quantifiers) in bistable perception.
Indeed, the combination of such more salient data characterizing the phe-

nomenon, but measured at the individual level, and the subtle hysteresis effects
(i.e., described by τH and (low but significant) cH values) demonstrated by Pas-
tukhov & Braun (2011), definitely rules out the possibility that the underlying
neural system could produce the usual switches statistics purely by a fatigue
(adaptation or depression) process, and where the noise role would be reduced
to generate eventual deviations around a “limit cycle"-based deterministic dy-
namics. Such point of view has been adopted by many of the authors to explain
the characteristic Gamma-like distribution widely accepted to describe the set of
dominance durations of a subject, regardless the kind of display Lehky (1995);
Borsellino et al. (1972); Fox & Herrmann (1967); Brascamp et al. (2005) and even
of the way of stimulation Logothetis et al. (1996).
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Figure 3.16: Fitting BR-experimental results with the nonlinear adaptation-LC
model (planar I0-subspaces). The matching regions correspond to a fixed value
of τa = 1 s and various values of I0, after combining the valid points in a range of
dispersion noise σn ∈ [0.01, 0.22]. Each observer’s region is outlined by a different
color (legend on the left). Most of the matching points are inside the ATT-regime,
just over the oscillatory one (in blue). Base parameter set: τa = 1 s, θ = 0.0,
k = 0.14, θa = 0.9, κa = 0.14, τn = 100 ms, τr = 10 ms.





4 Validation of psychophysical
properties

In the previous chapter we have seen how the history-dependence of the per-
ceptual process shown by Pastukhov & Braun (2011), effectively constrains the
region of the parameter space able to replicate the empirical data. Concretely,
that just small regions residing inside the bistable or two-attractors region of the
whole parameter space are actually adequate. Here we continue the analysis by
examining these constrains imposed by the experimental results of Pastukhov &
Braun (2011) in the context of Levelt’s propositions, a study in the same spirit
of the recent work by Curtu et al. (2008); Seely & Chow (2011).

The present chapter finishes with a study about the capability of the men-
tioned models to reproduce more empirical data related with bistable perception.
That is, the resonance effects happening when varying external frequencies, as
shown by Kim et al. (2006) and summarized in Section 2.2 of this thesis. Impor-
tantly, a resonance respect to the noise dispersion (i.e., a true stochastic resonance
) is clearly demonstrated here for the first time, in contrast to the methodology
followed in Kim et al. (2006).

4.1 Optimizing the fitting results for each observer: a
weighted sum algorithm

In the previous chapter, we have exhaustively explored a hyper-dimensional pa-
rameter space of several models, in order to find any point that replicates that
detailed statistics of the perceptual process that happens in individual observers
presented with two different displays (BR and KDE). The data collected from
each observer is independently fitted, by the application of the methodology re-
ported in Shpiro et al. (2009) to much more parameters. Altogether, a five-
dimensional parameter set is examined, formed by (1) the common value of the
input strength (I1 = I2 = I0), (2) the strength of mutual inhibition (β), (3) the
strength of adaptation (φa) (or depression, (φd), in the case of the depression-LC
model), (4) the associated time-scale (τa) for such a fatigue process (or τd when
synaptic depression is considered) and (5) the dispersion of the noise variable
(σn).

Additionally, a searching for effective values of the activation function pa-
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rameters (slope ∼ 1/κ and threshold θ) always precedes the study of the men-
tioned 5D-hyperspace, in order to guarantee that average values for observables
< Tdom > and Cv can be fitted within a noise range that is kept fixed within a
noise range σn ∈ [0.01, 0.22].

However, till this point our procedure tends to give a major importance to the
range of the observables reported in tables 2.1 and 2.2, and consequently assigns
the same value to any set of parameters yielding a simulated value that lies within
the desired interval. For instance, no distinction is made between two different
sets of parametric points (I
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0 , β(1), φ

(1)
a , τ

(1)
a , σ

(1)
n ) and (I

(2)
0 , β(2), φ

(2)
a , τ

(2)
a , σ

(2)
n ),

regardless their outcomes when used as parameters in computational simulations
of the model. That is, no greater importance is given to the former point if it
generates closer values to the average data of the four observables correspond-
ing to the subject, whereas the second one just simulates values situated at the
extremes of the range permitted by the reported statistics.

Consequently, each subject has been associated to a spot in the parameter
space of each model that forms a “matching" region, but no attention has been
paid to the “quality" of the fitting provided by each individual point of the match-
ing region. Besides, this approach does not allow to make model predictions for
each individual separately, due to the possibility to opt for many 5D-vectors of
parameters among all the ones contained into the matching zone. It is then rec-
ommendable to include some strategy in our procedure to overcome this problem.
In fact, any serious attempt to fit a set of experimental data to a function or a set
of equations normally includes some optimization stage aimed to minimize the
(error) difference between the original data and the obtained simulated values 1.

The idea proposed here relies on the assumption that the Central Limit the-
orem is applicable to the measurements collected in Pastukhov & Braun (2011).
More precisely, that the size of the data sample used to compute the averaged
values summarized in tables 2.1 and 2.2 is large enough (i.e., with 30 or a higher
number of observations). In such a case, it is reasonable to assume that the
possible outcomes X of a measurement of the average value of any of the four
observables (< Tdom >, Cv, cH and τH) can be drawn from a normal probability
density which may be approximated as follows:

P (X) ≈ 1

σX
√

2π
exp

[
− (X −X)2

2σ2
X

]
. (4.1)

Here X represents the average value of the observable obtained from the finite
sample of observations, and σX is the sample standard deviation, which are used
as estimators of the corresponding parameters (mean and standard deviation) of
the whole (unknown) population of the possible outcome values X.

Note that the exponent in the Gaussian distribution of equation (4.1) is noth-
ing else than the quadratic difference between the outcome value X and the
expected average value X, relative to the square of the measurement error σ2

X .
The equation therefore allows for the calculation of probabilities of outcomes of

1For instance, the Least Squares method, the Steepest Descent algorithm and Newton’s
method, among others.
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a concrete set of perceptual traces, by combining in a single number the contrary
effects given by the absolute difference between X and the population mean (nu-
merator ) and the one coming from the unavoidable variability of the measurement
process (denominator).

Since the possible outcome value of a particular measurement of any of the
four observables < Tdom >, Cv, cH and τH , obtained from a set of perceptual
traces, constitutes a statistical independent event, the joint probability describing
the complete set of observables is given by the product of the corresponding four
marginal probabilities 2:

P (< Tdom >,Cv, cH , τH) ≈
∏
X∈X

1

σX
√

2π
exp− (X −X)2

2σ2
X

, (4.2)

where X = {< Tdom >,Cv, cH , τH}. This equation gives the frequency of occur-
rence of a combined set of particular (i.e., before averaged) values that might
be used later to obtain the averaged values collected in tables 2.1 and 2.2. Con-
sequently, it can be used to evaluate the relevance of a specific 5D vector of
parameters v = (I0, β, φa, τa, σn) (or v = (I0, β, φd, τd, σn) when depression is
considered) contained in a subject’s matching region. To that end, a weight fac-
tor may be assigned to the vector v according to its simulated values X for each
observable, and its relative difference to the empirically found average X:

wv(X) = exp

[
− (X −X)2

2σ2
X

]
, X ∈ X = {< Tdom >,Cv, cH , τH}. (4.3)

Subsequently, an overall weighting factor characterizing the current vector v can
be constructed by taking the product of these four numbers:

Wv = Wv(< Tdom >,Cv, cH , τH) = wv(< Tdom >)wv(Cv)wv(cH)wv(τH). (4.4)

The usefulness of the last definitions can be easily explained as follows. Let
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...
v(m) = (I
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a , τ (m)
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n ) (4.5)

be the m points in the parameter space that constitute the matching region of
a given observer, and Wv(i) , i = 1, 2, . . .m their associated weights. Then, the
relevance of each of the m available 5D points can then be easily quantified by

2Note that it is not argued an statistical independence between the average observable
outcomes of different perceptual traces. In fact, the average values of τH and < Tdom > seem
to be correlated, as clearly pointed out in Pastukhov & Braun (2011) (see Figure 3-C).
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using the expression (4.4) and finally compute an overall weighted average that
reduces the whole matching region to a unique point v

v =
Wv(1)v

(1) +Wv(2)v
(2) + . . .+Wv(m)v(m)

Wv(1) +Wv(2) + . . .+Wv(m)

, (4.6)

with its corresponding variance:

σ2
v =
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(2) − v)2 + . . .+Wv(m)(v(m) − v)2
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. (4.7)

Similar averages across the matching zone of the subject can be computed
over the predicted values for the observables X ∈ {< Tdom >(i), C
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with its corresponding variance:
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(2) −X)2 + . . .+Wv(m)(X(m) −X)2
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. (4.9)

To further facilitate the understanding of the methodology explained above, such
averages were computed taking the adaptation-LC model as example. These
values obtained from the modeling study can then be compared with the averaged
values computed from the experimental data (tables 2.1 and 2.2). The results
are shown in Figures 4.1

Importantly, the unique parameter point v defined by expressions (4.6) and
(4.7) and the average vector of observables X determined by equations (4.8)
and (4.9), now characterize the given subject in the scope of the model under
analysis. This fact allows to run additional computational experiments to make
new predictions subject by subject. We make use of this advantage in the next
sections, making possible to study the classical problem of Levelt’s propositions
(Section 4.2). Lastly, in Section 4.3 we will be able to use our fitting results to
study the challenging topic of stochastic resonance, and evaluate some interesting
conclusions stated in the experimental study by Kim et al. (2006).

4.2 Testing the fitting: Levelt’s propositions

The propositions stated by Levelt (1965, 1966) form a set of well established
psychophysical laws in bistable visual perception, a topic where the experimental
research have continued up to date Brascamp et al. (2006); Klink et al. (2008);
Moreno-Bote et al. (2010). Particularly, a compact version of the first three
propositions enunciated by Levelt has been the object of investigation in many
different conditions: that the effect of decreasing the stimulus strength in the
image presented to one eye is limited to increase the dominance duration of the
competing image, while (intriguingly) no change is detected in the perception of
the unchanged stimulus. Such surprising effect has been demonstrated not only in
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Figure 4.1: An example of the application of the weighted sum algorithm defined
by equations (4.8) and (4.9). A reasonable agreement between empirical and
simulated data is typically found.

(conventional) experimental designs where the ambiguous stimulus is presented
continuously, but also when the pair of incongruent images are discontinuously
presented with interleaved blank periods and even swapped between the eyes Lo-
gothetis et al. (1996).

Theoretical work has frequently tackled the problem of evaluating a prevailing
model in bistable perception, in order to determine its capability to replicate the
related Levelt’s results Shpiro et al. (2007); Seely & Chow (2011); Moreno-Bote
et al. (2010). For instance, recent attempts have been made to replicate the more
general behavior shown in Brascamp et al. (2006); Klink et al. (2008) respect
to the compact version of Levelt’s law II, namely: when an unilateral contrast
change takes place, it mainly affects dominance durations of the eye presented
with currently higher contrast stimulus. Specifically, Moreno-Bote et al. (2010)
has hypothesized the normalization of the inputs as a possible explanation of this
strange phenomenon.

As part of this effort, here we evaluate the plausibility of our findings presented
in section 3.1, in the context of the Levelt’s propositions. We make use once again
of the parameter points computed for each subject by using the equation 4.6,
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limiting ourselves to the observers presented with the pair of orthogonal sinusoidal
gratings (BR display). KDE subjects are not taken into account due to the larger
uncertainty present in their reported measurements. Needless to say, nevertheless,
that such type of stimuli indeed admit the manipulation of the contained clues
that influence the possible interpretation outcome Klink et al. (2008). These
authors clearly demonstrate that the validity of Levelt’s propositions extends
to the rather different structure-from-motion patterns like the rotating spheres
(KDE display) used in Pastukhov & Braun (2011).

Levelt’s fourth proposition

The possibility to replicate Levelt’s fourth proposition in the context of the non-
linear adaptation-LC model is illustrated in figure 4.2. The profile of the average
dominance duration < Tdom > as a function of the common input I1 = I2 = I0
is shown, for each BR subject. In contrast to the expected decreasing curve
predicted in Curtu et al. (2008) for a threshold value θa = 0.9, it is primarily
the global presence of a characteristic non-monotonic behavior that jumps out
at the reader. Similar non-monotonic profiles in the context of several models
(including the adaptation-LC variant) have been reported in a previous modeling
study Shpiro et al. (2007). The authors verify the occurrence of such a behavior
in computational simulations of the noisy systems (as an example, see Figure 6A
of Shpiro et al. (2007), for the depression-LC model), and in the less realistic
free-noise cases as well (figures 3C, 4D and 5B in the same reference).

The explanation of the undesired non-monotonic profile of < Tdom > can
be found in the behavior of the associated free-noise system. According to Sh-
piro et al. (2007), such profile can be observed for high values of the inhibition
strength parameter β, a situation that favors the presence of a bistable region
in the bifurcation diagram of the free-noise system. Additionally, such region of
attractors should be flanked by two oscillatory regimes. As we have discussed in
subsection 3.6, this is precisely what one can see in the 1D bifurcation diagram of
the adaptation-LC model, obtained when the common input I0 is varied while the
other parameters remain unchanged (Figure 3.1-b): two Andronov-Hopf critical
points exist, giving rise to a pair of limit cycles on either side of the ATT-region.

Before continuing, a brief digression is necessary. The work by Shpiro et al.
(2007) clearly warns on an important difference between the noisy and the unper-
turbed system. That is, that the appearance of a non-monotonic behavior in the
< Tdom > vs. I0 graph of the free-noise system is limited to intermediate values
of the inhibition parameter β, but below some critical value βc. This is because
higher values of inhibition make the ATT-region in the middle unreachable by
definition 3. On the contrary, the presence of noise may certainly generate non-
monotonic profiles of < Tdom > for values of β ≤ βc, as is shown in figure 6A
of Shpiro et al. (2007). The influence of some ”ghost” presence of the ATT-regime
for values of β ∼ βc in the free-noise regime is then invoked by the authors.

3Actually, the situation demands the consideration of the other dimension of the parameter
space given by the input strength I0
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Figure 4.2: The average dominance time < Tdom > for BR observers being mod-
eled as an nonlinear adaptation-LC system each, is plotted as a function of the
common input strength I0. A non-monotonic profile is typically found, in spite
of the characteristic decreasing curve found empirically (Levelt’s proposition IV).
Each observer is described by a unique 4D vector of parameters (β, φa, τa, σn),
which is obtained by a (weighted) average (Eq. (4.6)) over the whole matching
region found in subsection 3.6.

As it was commented in the mentioned subsection, the existence of two bifur-
cation boundaries delimiting the bistable region from the oscillatory ones, opened
a double possibility to fit the model to the behavioral results of Pastukhov &
Braun (2011) (see comments related with figure 3.4, page 52). This fact suggests
that an alternative (mathematical) explanation for the non-monotonic behavior
observed in the < Tdom > profile could be in the I0 component of the average
vector v of parameters obtained from equation 4.6. Namely, that the average I0
value necessarily lies in the middle of the bistable region, at approximately the
same distance from both bifurcation boundaries.

Note that the average indicated by Equation (4.6) to obtain a 5D vector v
of parameters defining each subject in the parameter space (β, φa, τa, σn), is not
actually independent in each parameter direction. In fact, only the simulated
values of the observables (< Tdom >, Cv, τH and cH) matter in the computation
of the weights given by the expression (4.4). Nevertheless, the average in any
parameter dimension along which the matching region is divided in two feasible
sets of points, will contribute with equal weights in the final averaged parameter.

Another model of interest to be analyzed in relation with Levelt’s proposi-
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Figure 4.3: The average dominance time < Tdom > for BR observers being mod-
eled as a Moreno-Bote(2007) system each, is plotted as a function of the common
input strength I0. A non-monotonic profile is rarely found, in agreement with the
characteristic decreasing curve found empirically (Levelt’s proposition IV). Each
observer is described by a unique 4D vector of parameters (β, φa, τa, σn), which
is obtained by a (weighted) average (4.6) over the whole matching region found
in subsection 3.4.

tions is the Moreno-Bote (2007) model. As it was mentioned in section 3.4, it
distinguishes from the others because its dynamical equations are explicitly based
on an energy function intended to account for Levelt’s propositions (see, for in-
stance, figures 2 and 10 of Moreno-Bote et al. (2007)). The numerical results of
our attempts to reproduce Levelt’s fourth proposition by the Moreno-Bote (2007)
model are shown in Figure 4.3. It can be seen that in most of the cases, such a
model does hold this empirical law for bistable perception.

Levelt’s second proposition

In contrast to the careful scrutiny that in many modeling studies has usually
received the fourth law early enunciated by Levelt, his second proposition has
just started to be examined in recent works Seely & Chow (2011); Moreno-Bote
et al. (2010). To our knowledge, neither a rigorous theoretical study about the
suitability of prevailing models respect to such empirical behavior exists to date,
comparable to the excellent analytical study reported in Curtu et al. (2008) with
respect to the Levelt’s law IV.

As it has been mentioned elsewhere, Levelt’s second proposition describes the
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effect of the monocular manipulation of the images on the subjective experience
of a subject presented with two incongruent sensory inputs (chapter 1). It states
that the effect of decreasing the stimulus strength in the image presented to one
eye is limited to the increment of the dominance duration of the competing image,
while no change is detected in the perception of the unchanged stimulus Levelt
(1965, 1966). However, it is already known that the validity of this statement is
limited to relatively low values of the input strength.

A more rigorous psychophysical study of binocular rivalry by Brascamp et al.
(2006), where the contrasts values examined spanned the entire range from near
the detection threshold to the theoretical maximum, has shown that the original
version of Levelt’s second proposition is only valid in a limited contrast range
(the mentioned work is summarized in section 2.2). Outside this range, the
opposite is true. Thus, it is necessary to replace it by the more precise statement
that unilateral contrast changes mainly affect dominance durations of the eye
presented with currently higher contrast stimulus.

Below we discuss our modeling results with regard this other Levelt’s propo-
sition. Note, that the updated version of Levelt’s second law leads to a more
complete picture about the behavior of the average dominance time < Tdom >
of each percept as a function of the unilateral change of the input strength, let’s
say I2: a pair of monotonic curves that intercept at the intermediate value of no
input bias I1 = I2.

Figures 4.4 and 4.5 show the simulated results with the Wilson’s model and the
non-linear version of the LC-adaptation model, respectively for the BR subjects.
A reasonable agreement with the lasted version of the proposition can be seen in
both cases, with most of the subjects being described by two monotonic < Tdom >

profiles: a one with increasingly long dominant phases with mean < T
(2)
dom >

(green) that correspond to the variable stimulus, and another decreasing curve
describing the behavior of the average dominance durations < T

(1)
dom > (blue) of

the unchanged monocular stimulus.
A different situation occurs when the subject’s perceptual experience is sim-

ulated by a depression-LC model (Figure 4.6). Then a pair of monotonic curves
intercepting when no input bias exists (I1 = I2) is rarely found, in clear contra-
diction with Levelt’s second proposition. Specifically, the average value of the
intervals when the variable stimulus (with input strength I2) dominates shows an
unexpected non-monotonic profile (green). These numerical results confirm the
necessity of additional (analytical/numerical) studies concerning the suitability
of the depression-LC model, in the same spirit of the existing work that has been
done in the scope of the fourth proposition of Levelt Seely & Chow (2011); Curtu
et al. (2008). Obtaining the corresponding bifurcation diagrams of the free-noise
system when only one input strength changes while the other remains constant
may be an interesting starting point, similarly to the analyses made when the
two inputs variables simultaneously vary (I1 = I2).

To end this section, we would like to remark also the case of Moreno-Bote
et al.’s model, similarly as it was done above for Levelt’s proposition IV. A first
inspection of figure 4.7 clearly suggests that this model fails to replicate the sec-
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Figure 4.4: The average dominance time < Tdom > for the BR percepts by using
the Wilson (2003) model, is plotted as a function of the variable input strength I2
(I1 is kept fixed). A pair monotonic curves is found in most of the observers inter-
cepting when no input bias exists, in agreement with Levelt’s second proposition.
Each observer is described by a unique 4D vector of parameters (β, φa, τa, σn),
which is obtained by a (weighted) average 4.6 over the whole matching region
found in subsection 3.4.

ond law enunciated by Levelt, for the BR subjects. Contrary to the expected
behavior, the dominance of the two stimuli are almost equally affected by the
unilateral manipulation of just one of them, being described by curves with the
same trend, i.e., a decreasing profile of the mean duration of their presence in-
tervals on awareness when the variable input strength increases.

Unlike the case of the depression-LC model, for which no analytical or nu-
merical study exists to date suggesting a possible solution for the unexpected
behavior shown in figure 4.6, Moreno-Bote et al. (2010) has proposed a minor
modification to the original model that may resolve the conflict between theory
and experiment shown in the previous figure. Concretely, a preprocessing stage in
their external inputs I1 and I2 of the two populations can be added, by replacing
them by a normalized value:

Ii = s
Ii

Ii + Ij + Ibg
, i 6= j (4.10)

where Ibg denotes a background or baseline activity, and s is a scaling coeffi-
cient introduced in order to produce similar alternation rates for the models with



4.3. STOCHASTIC RESONANCE IN BISTABLE PERCEPTION 79

Figure 4.5: The average dominance time < Tdom > for the BR percepts by using
the non-linear LC-adaptation model, is plotted as a function of the variable input
strength I2 (I1 is kept fixed). A pair of monotonic curves is found in most of the
observers intercepting when no input bias exists (I1 = I2), in agreement with
Levelt’s second proposition. See text for more details.

and without input gain normalization. Consequently, the value of this scaling
parameter should be irrelevant to the qualitative behavior of the model.

The numerical results of our second attempt to replicate Levelt’s law II are
shown in figure 4.8. Following Moreno-Bote et al. (2010), the values s = 0.182
and Ibg = 0.01 have been used for the scaling coefficient and the background
current, respectively. It can be observed that now approximately six of eleven
of the simulated results reasonably match the expected behavior. However, as
in the case of the LC-depression model, further analysis is needed to uncover
the dynamical factors determining the notable disagreement with the empirical
behavior contained in the second proposition of Levelt.

4.3 Stochastic resonance in bistable perception

As it was shown in section 2.2, the experiments carried out by Pastukhov & Braun
(2011) precise, in unprecedented detail, the statistics inherent to the phenomenon
of bistable perception. The authors demonstrated the existence of subtle hys-
teresis effects in the perceptual traces of individuals, that were largely ignored
in previous experimental studies. A couple of new observables, the correlation
between a cumulative history and the dominance periods (cH) and the time-scale
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Figure 4.6: The average dominance time < Tdom > for the BR percepts by using
the LC-depression model, is plotted as a function of the variable input strength
I2 (I1 is kept fixed). A pair of monotonic curves intercepting when no input
bias exists (I1 = I2) is rarely found, in clear contradiction with Levelt’s second
proposition. The non-monotonic profile (green) obtained for the mean dominance
duration T (2)dom of the changing stimulus is clearly incorrect. See text for more
details.

(τH) of such history, are proposed to described such history-dependence which
has been hitherto unnoticed until today.

On the other hand, in section 3.1 of this thesis we have shown in the context
of several prevailing models, that the data reported in Pastukhov & Braun (2011)
strongly support the existence of some kind of noise-driven bistable system that
could serve as neural substrate for the overall process. This contradicts the
widely extended opinion that a limit cycle-based behavior, contaminated with
noise Laing & Chow (2002); Wilson (2003), or some balance between fatiguing
feedbacks (adaptation, depression) and noise Shpiro et al. (2007), may explain
the phenomenon.

In this section we further stress the above idea, in the scope of the phenomenon
of stochastic resonance Gammaitoni et al. (1998). A purely noise-driven bistable
system typically shows a switching time given by the inverse of the escaping-rate
rk as stated by Kramer’s formula (valid in a weak noise regime Kramers (1940)):

rk =
1√
2π

exp(−∆V/D), (4.11)

where ∆V stands for the potential barrier that defines the currently system state
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Figure 4.7: The average dominance time < Tdom > for BR observers being mod-
eled as a Moreno-Bote(2007) system each, is plotted as a function of the common
input strength I0. Two decreasing curves are typically found, in clear contradic-
tion with Levelt’s second proposition. See text for more details.

(i.e., the well or basin of attraction of the occupied fixed point) and that may
be overcome by the intervention of fluctuations with dispersion D. Then, a high
degree of synchrony between the external modulation and the system dynamics
is typically found when modulating frequency matches the value of the reversal
rate given by equation (4.11).

In the models studied in this thesis, however, the effect of the noise is combined
with the one of the deterministic factors (adaptation, depression, cross-inhibition)
that dynamically change the associated energy landscape. Hence, equation (4.11)
is not longer applicable. They could facilitate a transition by raising the currently
active well until some saturation level is reached, but without the complete an-
nihilation of the intrinsic bi-stability, as it was demonstrated in section 3.1. This
must lead to the reduction of the potential barrier ∆V needed to hop to the
still empty well, although just the noise would be able to complete a new transi-
tion Moreno-Bote et al. (2007).

Following the methodology reported by Kim et al. (2006) to investigate the
presence of stochastic resonance in visual bistable perception, the two inputs
parameters values, I1 and I2, were modulated in anti-phase by adding a square-
wave signal of variable frequency value. As it was explained in subsection 2.2, this
empirical procedure is expected to dynamically modify the depth of the two-well
energy landscape characteristic of a bistable system, an analysis based on the
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Figure 4.8: The average dominance time < Tdom > for the BR percepts by using
the Moreno-Bote et al. (2007) model with gain normalized currents (eq. (4.10)),
is plotted as a function of the variable input strength I2 (I1 is kept fixed). A pair
of monotonic curves is found in most of the observers intercepting when no input
bias exists (I1 = I2), in agreement with Levelt’s second proposition. See text for
more details.

Levelt’s second proposition. A high degree of synchrony between the perturbed
system and the external signal could turn to be visible in a notable change in
the probability distribution of dominance durations, when the frequency of the
periodic perturbation matches the natural alternation rate (see Fig. 2.2). Then,
a large concentration of the probability around the modulation half-period (HP)
should be observed Gammaitoni et al. (1998).

Equivalently, such increment in synchrony between the system and the ex-
ternal signal should be visible in the coefficient of variation , Cv, of the new
perceptual trace. Figures 4.9 and 4.10 show the results obtained with Wilson’s
and the LC-depression models, respectively. In both cases, a noise-dependence of
the degree of synchrony between the external signal and the modulated system
is observed. The effect can be seen in more detail by taking some planar slices at
different modulation values ∆I (Figure 4.11).

Importantly, it is shown that a true stochastic resonance can be obtained in
this kind of models by varying the noise dispersion instead of the modulating
frequency as done in Kim et al. (2006). Moreover, the effect is not limited to a
narrow range of modulation percent ∆I, but it exists for even very weak signals
to which the system develops an extreme sensitivity. These results are in dis-
agreement with the predictions made in the same work, based on the empirical
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Figure 4.9: Variation coefficient (CV ) of Tdom variable when the system is per-
turbed by an external periodic signal: Wilson (2003) model. The presence of
stochastic resonance is shown by a dip in the CV surface along the σn disper-
sion axis. Notably, even for very weak modulation percents the phenomenon is
observed.
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Figure 4.10: Variation coefficient (CV ) of Tdom variable when the system is per-
turbed by an external periodic signal: Depression-LC model. The presence of
stochastic resonance is shown by a dip in the CV surface along the σn dispersion
axis. Remarkably, even for very weak modulation percents the phenomenon is
observed.

finding that resonance can be obtained for 20% − 30% of external modulation
when the frequency is used as control parameter.
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Figure 4.11: The profile of the variation coefficient (CV ) of Tdom at different
modulation values ∆I, corresponding to the observer np of Figure 4.10. Notably,
even for very weak modulation percents the phenomenon of stochastic resonance
is observed.





5 Conclusions and future work

In this thesis, a set of some prevailing rate-based models for bistable perception
have been considered in order to find the implications of the novel results reported
in Pastukhov & Braun (2011). These authors have quantified not only salient
aspects of bistable perception (mean and dispersion of dominance distributions),
but also some hidden hysteresis effects ignored up to now. Their experimental
report includes a classic binocular rivalry (BR) display (two orthogonal gratings)
together with illusory rotating spheres created by a structure-from-motion or
kinetic-depth-effect (KDE). The different characteristics of the models considered
here allow to evaluate the biological plausibility of distinct explanations for the
neural substrate underlying the phenomenon.

As a common feature, the models treated in the present work include two
basic mechanisms: (i) a slow negative feedback that precludes a population from
dominating forever (e.g., spike-frequency adaptation or synaptic depression) and
(ii) mutual inhibition between the two populations whose activities represent the
competing percepts, that permit exclusive dominance. However, various new
situations are considered, such as the presence of a slow fatigue process given by
linear Shpiro et al. (2007) and nonlinear Curtu et al. (2008) functions, complex
architectures Moreno-Bote et al. (2007) and a non-symmetric neuronal activation
functions Wilson (2003).

Extensive computational simulations of these models rigorously demonstrate
that the history-dependence of the perceptual process shown by Pastukhov &
Braun (2011), effectively constrains the region of the parameter space able to
replicate the empirical data. More precisely, that just small regions residing
inside a bistable or two-attractor region of the whole parameter space are actually
suitable to reproduce the experimental results, both for BR and KDE displays.
Remarkably, the results remain valid across all the different classes of models
considered, regardless the details of the neuronal implementation.

Such dynamical regime is typically defined by a combination of a high inhi-
bition and a low adaptation level, where the dominance switches are provoked
exclusively by stochastic fluctuations, and would be absent without it. Our results
strongly support the novel hypothesis that neural noise could play an essential
role in bistable perception Brascamp et al. (2006), and clarifies the previous mod-
eling study by Shpiro et al. (2009) who proposed a balance between deterministic
(fatigue) and stochastic forces to explain the observed timing of perceptual re-
versals.

87
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The biological plausibility of the parameter region found for each of the models
considered, is further tested with respect to the widely known Levelt’s proposi-
tions, a study in the same spirit of the recent work by Curtu et al. (2008); Seely
& Chow (2011). To that end, we make use of weighted averages across the pa-
rameter regions computed for each subject in the first part of this thesis. The
mentioned weighted sum algorithm proposed here accounts for the relevance of
each parameter point, according to its capability to replicate the whole set of
experimental data reported by Pastukhov & Braun (2011), and constitutes an
important improvement to the methodology proposed by Shpiro et al. (2007).

Our analysis of Levelt’s propositions is limited to the observers presented with
the pair of orthogonal sinusoidal gratings (BR display). KDE subjects are not
taken into account, due to the larger uncertainty present in their reported mea-
surements. Computational simulations of the rate-based models considered allow
to discover how different neuronal mechanisms clearly differ in their suitability to
replicate additional behavioral data. For instance, models with a slow fatiguing
process given by spike-frequency adaptation Wilson (2003); Shpiro et al. (2007),
no matter if they are being described by linear Shpiro et al. (2007) or nonlin-
ear Curtu et al. (2008)) functions of the activity, replicate quite well Levelt’s
second law.

Conversely, a notable discrepancy between model and empirical results is
found when such negative feedback is described as a long-term depression affect-
ing the synapses between the competing neurons representing the two alternative
interpretations Laing & Chow (2002); Shpiro et al. (2007). Then, only realistic
(increasing) profiles for the mean dominance duration as a function of an uni-
lateral manipulation is obtained for the unchanged stimulus, while unexpected
non-monotonic curves corresponded to the varying stimulus.

Future directions of research could include an analytical treatment of Levelt’s
second law aimed to uncover the dynamical factors that determine an unexpected
non-monotonic profile in some of the models treated in this thesis. Such a study
should concern the suitability of the depression-LC model, in the same spirit of
the existing work that has been done in the scope of the fourth proposition of
Levelt Seely & Chow (2011); Curtu et al. (2008). Obtaining the corresponding bi-
furcation diagrams of the free-noise system when only one input strength changes
while the other remains constant may be an interesting starting-point, similarly
to the analyses made when the two inputs variables simultaneously vary (Levelt’s
fourth law).

The interesting proposal by Moreno-Bote et al. (2007) is also analyzed with
respect to Levelt’s law II, a study that confirmed that the absence of a prepro-
cessing of the inputs could be a shortcoming in the original version of this model.
Their simple replacement by gain normalized currents Moreno-Bote et al. (2010)
easily makes the model show the expected behavior. Concerning Levelt’s fourth
proposition, however, this theoretical proposal (even in its original form) was the
only one among the five models treated that showed realistic behaviors. Specifi-
cally, all but one of eleven subjects whose behavioral data reported by Pastukhov
& Braun (2011) were successfully fitted by this model, showed a decreasing pro-
file of the average dominance interval, when the input strength of the two inputs
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were simultaneously varied. In contrast, a non-monotonic curve was found in all
the other cases, as previously predicted for noise-driven regimes in the excellent
study of Shpiro et al. (2007).

The present work finishes with a study about the capability of the mentioned
models to reproduce more empirical data related with bistable perception. That
is, the resonance effects happening when varying external frequencies, as shown
by Kim et al. (2006). Importantly, a resonance respect to the noise dispersion
(i.e., a true stochastic resonance ) is clearly demonstrated here for the first time,
in contrast to the methodology followed in Kim et al. (2006) where a maximal
degree of synchrony is shown as a function of the modulating frequency. It is
also considered their estimations of noise dispersion (20− 30% of the input) and
its locus (adaptation variables), by demonstrating that increased sensitivity to
even weak signals of the order of less than 10% can be obtained with the models
considered, with the noise variable simply entering as part of the net input feeding
the neuron.

Interesting lines of research regarding the work by Kim et al. (2006) could
include an analytical treatment of the problem, based on the reduction of dimen-
sions (usually four dynamical variables, plus two time-dependent noise sources).
Besides, more numerical work may be addressed to study the role of the time-
correlation of the colored noise in stochastic resonance, in the scope of bistable
perception models working in a noise-driven regime. Furthermore, it is important
to understand how our numerical results depend on the temporal structure of the
fluctuations. Namely, different degree of noise color (correlation) could create
further history dependence in the simulated perceptual trace, and finally change
our conclusions respect to the fit of the behavioral data reported in Pastukhov &
Braun (2011).
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