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Abstract:

An in depth look at the Astrometric Global Iterative Solution (AGIS). This
document details the algorithms in AGIS and examines them from several per-
spectives. It is argued that they are adequate and probably the best, if not only,
approach to making an astrometric solution for Gaia data. Translation of the
system of equations to an actual computer infrastructure is a non trivial task.
This is the area the author has most experience in and is dealt with in some
detail forming the main original content of this thesis. Some initial results us-
ing simulation data are presented to demonstrate how the system operates and
removes specific effects from the data set within an acceptable time frame.
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Resumen de la tesis: Implementación
de AGIS

Esta tesis presenta el marco numérico y computacional para la solución astrométrica
Gaia. También cubre las consideraciones astrofı́sicas relativas a la solución y los aspec-
tos relacionados con la gestión de la implementación de un sistema tan complejo. Cada
uno de los siguientes apartados es un resumen del correspondiente capı́tulo de la tesis.

La misión Gaia y su procesamiento de datos

La astrometrı́a es uno de los objetivos más antiguos de la ciencia. La medición de las
posiciones y subsecuentes movimientos de los cuerpos celestes nos ha ocupado durante
milenios. El primer catálogo se lo debemos a Hiparco de Nicea (∼ 190 aC - 120 aC)
cuyo nombre, por supuesto, se honra en la misión Hipparcos (AEE, 1997). Gaia con-
tinúa esta antigua tradición utilizando las técnicas más modernas.

En 2013, la AEE lanzará el satélite Gaia, de unas dos toneladas de peso, en un cohete
Soyuz-Fregat. Consta de dos instrumentos astrométricos, además de instrumental fo-
tométrico y de velocidad radial que le permitirán crear un mapa del espacio fásico de
nuestra galaxia. Se podrı́a trivializar Gaia afirmando que no es más que una segunda
parte de Hipparcos, pero en realidad es mucho más que eso. Hipparcos observó con pre-
cisión ciento cuarenta mil fuentes, mientras que Gaia observará más de mil millones de
fuentes galácticas y extragalácticas. La exactitud que se espera de Gaia tampoco tiene
precedentes: en el rango de microarcosegundos, observará fuentes menos luminosas que
Hipparcos hasta una magnitud de G=20 (en la que G es la banda pasante del instrumento
astrométrico). La inclusión del espectrógrafo de velocidades radiales subsana una defi-
ciencia de la misión Hipparcos y permitirá calcular las velocidades tridimensionales de
los objetos. Los potenciales beneficios de Gaia para la ciencia son casi innumerables,
sin embargo, la capacidad de procesamiento de datos necesaria para producir el catálogo
Gaia a partir del que se extraerán estos beneficios cientı́ficos no es trivial. Este docu-
mento se centra sólo en la solución astrométrica, aunque en las áreas espectrográfica y
fotométrica serán necesarias labores de procesamiento igualmente complejas.

Gaia se ubicará en una órbita de tipo Lissajous alrededor del punto de Lagrange L2 en
el sistema Sol-Tierra, donde orbitará durante al menos cinco años, observando todo el
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cielo y llevando a cabo un censo de mil millones de fuentes, cada una de las cuales será
observada unas ochenta veces en promedio. En la figura 1 la cobertura de cielo estimada
para los telescopios astrométricos de Gaia, mostrando un mı́nimo de cincuenta tránsitos
para la mayor parte del cielo. En el contexto de Gaia, tránsito se refiere a cada vez que
una fuente cruza el plano focal.

Figure 1: Durante su vida operativa, Gaia escaneará el cielo continuamente, aproxi-
madamente en grandes cı́rculos, siguiendo una ley de escaneo predefinida y elegida
cuidadosamente. Las caracterı́sticas de esta ley, en combinación con la dimensión AC
(across-scan) de los campos astrométricos, produce el patrón que aparece en la ima-
gen para a distribución del número predicho de tránsitos en el cielo en coordenadas
eclı́pticas. (Imagen J. De Bruijne)

El autor se ha interesado desde hace mucho tiempo por la solución global de proce-
samiento (O’Mullane & Lindegren, 1999) y ha contribuido con una sección al libro
blanco de Gaia sobre el tema (ESA-SCI(2000)4). El sistema de procesamiento de Gaia
difiere del de otras misiones astronómicas por el propio diseño de la misión; es decir,
porque proporciona astrometrı́a global absoluta. Para conseguir la exactitud en microar-
cosegundos de arco necesaria para obtener la recompensa cientı́fica que se esboza en
(ESA-SCI(2000)4) es necesario llevar a cabo un procesamiento de los datos bastante
complicado, tal y como se describe en el capı́tulo 2.

Principios de la astrometrı́a Gaia

El catálogo Hipparcos (ESA, 1997, Volumen 3 Capı́tulo 23) formula el principio gene-
ral de una misión de astrometrı́a global de manera sucinta en el siguiente problema de
minimización:
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min
a,n‖gobs−gcalc(a,n)‖M (1)

Aquı́ a es el vector de incógnitas que describe el movimiento baricéntrico de una es-
trella. Estos parámetros se extraen a partir de un número de observaciones de una es-
trella. Las observaciones de una estrella se expresan en las coordenadas del detector
denominadas G y H. Por lo tanto, la observación en el tiempo tk se representa mediante
el vector de mediciones gk = (Gk,Hk)′ y sus estadı́sticas asociadas. gobs representa el
vector de todas las mediciones y gCALC representa el vector de coordenadas de detector
calculadas a partir de los parámetros astrométricos. n es un vector de los parámetros 1

que no resultan de interés para el problema astronómico, pero necesarios para dar forma
a los datos de manera realista. La norma se calcula en una métrica M definida por las
estadı́sticas de los datos, lo que se denomina comúnmente ponderación de errores. En
el capı́tulo 2 se analizan los detalles matemáticos de la solución iterativa por bloques
para este problema en el caso de Gaia.

Implementación de AGIS

La implementación eficaz en algún tipo de código de la solución iterativa por bloques
resulta todo un reto y durante el procesamiento de datos de Hipparcos se abandonó
un primer intento de alcanzar dicha solución. En (O’Mullane & Lindegren, 1999). se
presentó una prueba básica del concepto, más bien una pseudoimplementación, en la que
se utilizaron de nuevo los datos y el sistema de gestión de base de datos de Hipparcos.
Se realizó un gran esfuerzo para adaptarlo a las dimensiones de Gaia hasta que el grupo
ESAC (O’Mullane et al., 2006) lo consiguió. Este último marco de trabajo es el que se
presenta en el capı́tulo 3.

AGIS no es sino una de las muchas partes que componen el sistema de procesamiento
de datos de Gaia, sin duda una parte fundamental, pero tan solo una parte. En la
Fig. 2 se presenta una descripción general aunque simplificada de AGIS. Cada uno de
los componentes de la imagen puede ejecutarse en cualquier máquina independiente,
salvo el Attitude Update Server que requiere un poco más de memoria. El
DataTrain, como mediador, se puede observar en el centro del cuadro de la izquierda.
Los algoritmos y compiladores se describen en la sección 5 del capı́tulo 3.

El sistema AGIS se despliega en una máquina multiprocesador local dedicada a Gaia.
El marco utiliza funciones de lenguaje Java como RMI (Remote Method Invocation,
Invocación Remota de Métodos). Por supuesto, el acceso a los datos es uno de los
principales problemas para AGIS y en la sección 2 del capı́tulo 3 se analiza con bastante
detalle. Se trata de un sistema de software único, diseñado y optimizado para realizar la
reducción de datos astrométricos de Gaia y constituye la principal contribución original
del autor.

1 Llamados parámetros de perturbación.
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Figure 2: Este diagrama simplificado pretende mostrar una perspectiva de la lógica
general de AGIS. AGIS ejecuta el mismo número de procesos en muchas máquinas,
que no se muestran aquı́. El cuadro grande de la izquierda representa el tren de datos,
aunque puede haber un gran número de ellos ejecutándose. A la derecha se encuentran
los servidores de actualización, de los que puede haber solo uno ejecutándose en todo
el sistema. Todos estos procesos están basados en una base de datos.
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Consideraciones astrofı́sicas

En el capı́tulo 4 se tratan algunos de los fenómenos fı́sicos y astrofı́sicos sobre los que
AGIS debe rendir cuenta. Lo que aquı́ se presenta, por supuesto, es solo un subconjunto
de esos fenómenos. En efecto, se trata de un amplio rango de efectos cuya descripción
en el catálogo final ocupará, sin duda, varios volúmenes. El propio AGIS solo se ocupa
de una parte de todos los fenómenos conocidos que tienen efecto en el ámbito de µas.
Muchos de estos temas se han tratado ya en profundidad en (Lindegren, 2005) donde
se describen los principios astrométricos de Gaia. No cabe duda de que el simposio
de Parı́s (Turon et al., 2005) constituyó un foro incomparable para todas ramas de la
astrofı́sica relacionadas con Gaia.

Resultados

En el capı́tulo 5 se explican algunos de los resultados experimentales que nos hacen
confiar en que AGIS es capaz de abordar los fenómenos astrofı́sicos. El software AGIS
ha estado funcionando con datos simulados desde 2005. De hecho, los datos simulados
proporcionan la única prueba posible de que AGIS no introduce errores sistemáticos en
la solución, ya que se conocen las fuentes y observaciones auténticas y se pueden re-
alizar comparaciones. Tı́picamente, la simulación añade ruido, que AGIS deberı́a elim-
inar; su eficacia en esta tarea se puede juzgar con precisión comparando la astrometrı́a
resultante con los valores reales. Muchos efectos en las observaciones de Gaia no son
distinguibles en los datos reales (p.ej. una aberración en un espejo o un leve desplaza-
miento de un CCD se calibran de la misma manera), por lo que debemos estar seguros
de que AGIS no introduce errores sistemáticos propios.

Los conjuntos de datos de simulación han mejorado AGIS y han demostrado que puede
recuperar o suavizar la clase de efectos esperada en el instrumento astrométrico de Gaia.
Y lo que es, quizás, de más importancia, los tests han demostrado que es viable una
solución iterativa global y que ésta resulta de utilidad para la astrometrı́a de Gaia. Con
el sistema AGIS, tal y como ha funcionado en 2011, ejecutando una iteración de más de
50× 106 uentes en veinticuatro horas en un modesto sistema de multiprocesador serı́a
posible procesar 108 fuentes en unos tres meses, lo que se puede deducir sin riesgo, dado
que el tiempo de ejecución para AGIS es lineal respecto al número de fuentes incluidas.
No cabe duda de que los algoritmos se irán haciendo más complejos, pero también los
ordenadores serán cada vez más rápidos.
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Enfoque de desarrollo

El desarrollo de AGIS se llevó a cabo con bastante rapidez utilizando técnicas Agile2,
eXtreme Programming (1999) en particular. El enfoque seguido se explica brevemente
en el capı́tulo 6, ya que se considera que reunir y dirigir el equipo para crear el soft-
ware es un logro importante. El enfoque adoptado se nutre de numerosas fuentes y de
la experiencia personal obtenida a lo largo de muchos años de desarrollo de software
operativo.

Durante un año, el autor realizó un estudio sobre numerosos grandes avances cientı́ficos
(WOM-003), que resultó de lo más interesante y concluyó que el desarrollo del software
cientı́fico es diferente al del software tradicional debido a la estructura de financiación
y al enfoque general respecto al liderazgo. En cualquier caso, hay una gran diferencia
respecto a un proyecto de desarrollo de un satélite. Pese a este estudio y a múltiples
interacciones con ESA, esta parece decidida a imponer una estructura de gestión de
proyecto mucho más tradicional para el DPAC, una postura lamentable que hará que se
desperdicien esfuerzos. El enfoque de desarrollo dentro del DPAC consistente en el uso
de ciclos y en tener siempre algún software en funcionamiento se acerca mucho más a
las técnicas Agile aquı́ mencionadas que a la gestión de proyectos tradicional.

Los ciclos de planificación cortos del enfoque XP parecen ideales para la programación
cientı́fica que deberemos asumir en Gaia. Sin embargo, está claro que para emplear
dichas técnicas, el lı́der del equipo debe estar centrado y tener confianza en que la
técnica funciona. Cada equipo tendrı́a que establecer su propia manera de trabajar de
este modo. Se haga como se haga, el principio de un sistema en evolución que pase
siempre de ‘funcionando ’ a ’funcionando mejor’ es un buen enfoque para el DPAC.

Conclusión

AGIS (Astrometric Global Iterative Solution, Solución Iterativa Global Astrométrica)
constituye una parte fundamental en el procesamiento de datos de Gaia. En esencia, se
puede representar mediante unas pocas ecuaciones y, sin embargo, se han necesitado
muchos años para llegar a ver un sistema de software operativo capaz de resolver estas
ecuaciones en un tiempo razonable. La creación de un AGIS funcional ha sido uno
de los problemas de la astronomı́a que requieren una buena comprensión de la ciencia,
además de la informática necesaria para llegar a ella. Los intentos de concentrarse
únicamente en los aspectos computacionales e intentar hacer que AGIS se ajustase a un
marco ya existente han demostrado ser inútiles, por lo que se ha creado un marco más
sencillo pero potente, especialmente diseñado para el problema de AGIS.

Los capı́tulos iniciales de este documento intentan mostrar hasta qué punto es necesario
comprender en profundidad el problema de AGIS para poder llevar a cabo una imple-

2Agile es una palabra colectiva que se utiliza en la actualidad par alas técnicas de desarrollo it-
erativo e incremental (o desarrollo no en cascada) http://en.wikipedia.org/wiki/Agile_
development
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mentación eficiente de AGIS. El sistema, tal y como se encuentra en la actualidad, se
presenta en el capı́tulo 3. La creación de dicho sistema no es el trabajo de una persona,
sino de todo un equipo. Los aspectos de construcción de equipos necesarios para or-
ganizar un grupo de esas caracterı́sticas no se presentan con detalle aquı́, pero quizás
merecerı́an que se les dedicase un volumen completo. No es necesario decir que la con-
strucción y dirección de un equipo para que cree el sistema tampoco es una tarea trivial.
El enfoque Agile utilizado para AGIS, descrito en el capı́tulo 6, ha demostrado ser un
gran éxito y se ha ampliado al DPAC en general. El autor, por lo tanto, no ha escrito
todas las lı́neas de código de la implementación, pero ha su influencia está presente, sin
lugar a dudas, en cada una de las lı́neas escritas para AGIS y en muchas de las utilizadas
en todo el consorcio.

Para el autor, el viaje hacia un AGIS funcional comenzó en 1998, a partir su primer
contacto con la noción de una solución iterativa por bloques para datos astronómicos y
con el equipo cientı́fico de Gaia, en particular con el Dr. Lindegren. Del mismo modo
se familiarizó al equipo cientı́fico con partes de programas modernos, como el dominio
orientado a objetos y el lenguaje Java. No fue hasta 2005 que un esfuerzo coordinado
por el autor se centró en lo que entonces se denominó, y ası́ continúa llamándose, AGIS
y que se ha presentado aquı́ tal y como cristalizó en 2005 y se ha venido desarrollando
desde entonces. El trabajo del autor ha dado lugar a muchas publicaciones internas en
DPAC y a varias publicaciones en revistas internacionales con referee, que se incluyen
en el apéndice C como referencia para el lector.

Es posible que otro sistema sustituya a AGIS en el largo plazo que nos separa de 2021
y la producción del catálogo final, pero el trabajo en el marco de AGIS ya ha dejado
su influencia en muchos otros sistemas de procesamiento de Gaia. En la actualidad
VARI, IDT y First Look utilizan una versión modificada de AGIS en la ejecución de sus
tareas. Si AGIS fuese reemplazado, cosa muy poco probable, cualquier sistema que lo
sucediese ya se habrı́a beneficiado del marco de trabajo instituido por AGIS, por lo que,
en cualquier caso, se deben tratar todas las observaciones de manera global para obtener
la astrometrı́a absoluta que Gaia requiere.

No nos encontramos ante el final del camino de AGIS, pero sin duda es momento de
tomar un breve respiro. Se ha demostrado que AGIS es capaz de reducir observaciones
similares a las de Gaia para proporcionar el marco referencial necesario para los datos
de Gaia. Se ha desplegado un nuevo enfoque en la solución de un problema único y
aquı́ se han presentado las contribuciones del autor. Ha resultado difı́cil y gratificante
por igual. ¡Esperamos ansiosos los datos de Gaia!
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Chapter 1

Introduction and Background

Great discoveries and improvements invariably involve the cooperation of
many minds. I may be given credit for having blazed the trail but when I
look at the subsequent developments I feel the credit is due to others rather
than to myself.

Alexander Graham Bell (1847-1922)

1.1 Layout and Organisation

As is the way with books in general this document is presented in the form of chap-
ters (seven in number) devoted to individual topics relating to the overall topic of Gaia
astrometric data processing. We progress logically from the satellite to the equations
for the astrometry to the implementation of a software system to process Gaia obser-
vations. After this we look at a few key astrophysical issues for Gaia and explain tests
which have been carried out, using the implementation, concerning these effects. A few
appendices provide additional information.

Here an overview paragraph is provided for each of the chapters:

This introductory chapter Section 1 provides an overview of the work as well as an
overview of the satellite hardware for the reader unfamiliar with Gaia.

In Section 2 the equations underpinning the astrometric solution are explained and de-
veloped toward the algorithms actually coded in the system.

Section 3 provides details of the Java software framework which hosts the equations
previously described. The framework itself has been tuned to effectively process Gaia
observations and is the main original content of the thesis. This system is known as the
Astrometric Global Iterative Solution or AGIS.

Having looked at the implementation, a few of the astrophysical effects and design
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decisions which influence the solution are described in Section 4.

Although no data has yet been received from Gaia, extensive simulations have been
performed in the Gaia community. Some of the AGIS tests relating to the astrophysical
phenomena described in Section 4 are reported in Section 5. In this manner a demon-
stration of the effectiveness of AGIS is presented.

A discussion and overview of the development approach adopted for AGIS is presented
in Section 6. The eXtreme programming approach is particularly suited to science de-
velopment and worked well for this project in the form presented.

Brief conclusions are drawn in Section 7.

Appendix A provides a primer on Quaternions which are used for attitude modelling.

A complete list of the mind boggling acronyms used in this document appear in Ap-
pendix B.

Finally some published papers are included in Appendix C.

1.2 The original thought and acknowledgement

It should be clear in reading this thesis the Astrometric Global Iterative Solution (AGIS)
as presented is and has always been the work of Dr. L. Lindegren. The author has had
the good fortune to work with Dr. Lindegren over many years and hopes to have at
least sometimes aided the evolution of AGIS. A certain grasp of what AGIS needs to
do is required to actually implement the system and the Gaia community in general
has always been willing to explain what the intention is without which there would
have been no advancement on the implementation. Here again Dr. Lindegren has been
endlessly patient to what, at times, must appear to be bumbling attempts of computer
scientists. Dr. X. Luri was encountered within a similar time frame during the early
years of the Gaia project. Some initial collaborations on simulations in the University
of Barcelona and continued Gaia interaction led to the notion of submitting a PhD thesis
with Dr. Luri as supervisor. Many thanks are due to Dr. Luri for encouragement,
explanation and suggestions. None of this would have come about and none of these
people would have been encountered were it not for Dr. M. Perryman. He laid down
the challenge to understand and make AGIS work, many thanks to him for explaining
astrometry in very simple terms1 to the author on arrival at ESTEC.

A thesis needs an original thought and this is something the reader may find difficult to
pin down. The Gaia project is a highly collaborative undertaking with thoughts fixed
firmly on the common long term goal of the catalogue rather than near term develop-
ments. The words of Bell (at the start of the chapter) ring true completely for the author.
Hence it is not always clear if an idea has come from the author or from interaction with

1Reciprocation was in Java programming tutorials, the author got the better deal by far.
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another. This is not something which the author has held as important. For example the
notion of executing all AGIS algorithms in parallel was arrived at seemingly simultane-
ously - it does not advance our goal to know who came up with this idea, it simply must
be done.

It is a little more clear on the implementation side of AGIS. The framework for running
the equations in a distributed manner has always been the realm of the author. The use
of Java for AGIS, and its use in Gaia processing in general, are solely attributable to
the author for better or for worse. Even here however after 2005 with a team working
on this in ESAC the system has grown and changed not always due to the influence of
the author, although all involved would certainly still identify a single architect of the
original system. These days the single architect is more likely to be seen as Dr. U.
Lammers.

Hence it is hoped the reader will accept that a key and important role in designing and
bringing AGIS to operation has been played by the author. That the original contribution
of the author is definitely in the area of implementation and has greatly influenced AGIS
and indeed Gaia processing in general. Finally it is hoped the reader grasps the aesthetic
of AGIS and understands that it is a collaboration where all have played an important
role and trying to pick the originality of one from the collective is not always easy.

In this vein the author would like to acknowledge the work of DPAC and especially the
work of the ESAC team without whom AGIS would not function. In particular the work
of John Hoar, Jose Hernandez, Paul Parsons and most of all Uwe Lammers was vital to
the initial version of AGIS.
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1.3 The Gaia Mission

Astrometry is one of the oldest pursuits in science. The measurement of positions and
later motions of celestial bodies has been an occupation for millennia. The first cata-
logue came from Hipparchus (∼190 BC - 120 BC) whose name is of course echoed in
the Hipparcos mission (ESA, 1997). Gaia continues in this ancient tradition using the
most modern of techniques.

ESA is due to launch the ∼2000kg Gaia satellite in 2013 on a Soyuz-Fregat rocket. It
consists of two astrometric instruments as well as photometric and radial velocity in-
struments allowing it to build a phase space map of our galaxy. One may trivialise Gaia
saying it is simply Hipparcos II, yet it is so much more. Hipparcos accurately observed
one hundred and twenty thousand sources whereas Gaia will observe in excess of one
thousand million galactic and extra-galactic sources. The accuracy predicted for Gaia
is also unprecedented, in the microarcsecond range, it will observe fainter sources than
Hipparcos down to G=20 magnitude (where G is the passband of the astrometric instru-
ment). The addition of the radial velocity spectrograph addresses a shortcoming2of the
Hipparcos mission allowing correct velocities in all three dimensions to be calculated.
The potential scientific benefits of Gaia are practically innumerable. The data process-
ing required to produce a Gaia Catalogue from which these scientific benefits may be
reaped is, however, non trivial. This document looks only at the astrometric solution -
equally difficult processing tasks exist within the spectrographic and photometric areas.

Gaia will be injected into a Lissajous orbit around the Sun-Earth Lagrange point L2,
where it shall spin for at least five years observing the whole sky, conducting a census
of one thousand million sources, observing each approximately eighty times. Fig. 1.1
plots the predicted sky coverage for Gaia’s astrometric telescopes showing a minimum
of fifty transits over most of the sky. A transit for Gaia means a source crossing the focal
plane.

2Radial velocities were measured from the ground for Hipparcos sources.
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Figure 1.1: During its operational lifetime, Gaia will continuously scan the sky, roughly
along great circles, according to a carefully selected pre-defined scanning law. The
characteristics of this law, combined with the across-scan dimension of the astrometric
fields of view, result in the above pattern for the distribution of the predicted number of
transits on the sky in ecliptic coordinates (Image J. De Bruijne)

1.3.1 Astrometric instruments

The satellite contains two astrometric telescopes 3 with a fixed angle of 106.5 degrees
between them. The viewing directions of both telescopes overlap on a common focal
plane. The entrance pupil is 1.4 m x 0.5 m and the focal length is 35 m 4 for each Tele-
scope. Fig. 1.2 shows the mirrors and the focal plane they eventually reflect onto. The
focal plane 5 functionally consists of five CCD strips (see Fig. 1.3): the Basic Angle
Monitor (BAM) and Wave Front Sensor (WFS), the Sky Mapper (SM), the Astrometric
Field (AF) and the Blue and Red Photometers (BP, RP) and the Radial Velocity Spectro-
graph (RVS). The mosaic contains 106 Charge Coupled Devices (CCDs) with pixels of
10 micrometers along scan x 30 micrometers across scan size (59 mas x 107 mas). The
first column contains the BAM and WFS CCDs, the next two columns of CCDs form
the SM, which works out the transits of sources crossing the focal plane, thus allowing
efficient read-outs of the CCDs in the main focal plane. The main astrometric measure-
ments are made in the AF in the next nine columns of CCDs. The next two columns
of CCDs are for the red and blue photometry, these are in fact spectrographs, providing
spectrophotometry, and not standard photometers. Finally, a little in front of the rest of
the CCDs, is a block of four by three CCDs for the radial velocity spectrograph. Fig. 1.3

3http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_astrometric_
instrument.pdf

4http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_
telescope.pdf

5http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_focal_
plane.pdf

Implementing the Gaia Astrometric Solution 5

http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_astrometric_instrument.pdf
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_astrometric_instrument.pdf
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_telescope.pdf
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_telescope.pdf
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_focal_plane.pdf
http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_focal_plane.pdf


CHAPTER 1. INTRODUCTION AND BACKGROUND

Table 1.1: Predicted end of mission astrometric accuracies for Gaia (ESA website)

B1V G2V M6V
V − IC [mag] -0.22 0.75 3.85
Bright stars 5-14 µas

(6 mag< V < 12
mag)

5-14 µas
(6 mag< V < 12
mag)

5-14 µas
(8 mag< V <14 mag)

V = 15 mag 26 µas 24 µas 9 µas
V = 20 mag 330 µas 290 µas 100 µas

depicts the Astro focal plane.

Figure 1.2: The Gaia science payload consists of two telescopes separated by a basic
angle of 106.5 degrees and sharing a focal plane. A beam combiner combines the images
from the two telescopes after the third of the six mirrors in the system. The focal plane
(see Fig. 1.3) is split between astrometric, photometric and radial velocity spectrograph
CCDs. (Image Astrium)

The predicted end of mission accuracies for Gaia astrometry are shown in Table 1.1. We
see it is a few microarcseconds to G≈12 dropping to 20-25 microarcseconds to G=15
and ranging to a few hundred microarcseconds at G=20. These accuracies are only
possible given the statistical effect of having ∼80 measurements per source, the focal
plane itself will not make such an accurate individual measurement.
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Figure 1.3: The two telescopes share the same focal plane with a mask in the beam
combiner ensuring that only light from Astro 1 falls on SM1 and only light from Astro
2 on SM2. Apart from the SMs, light from both telescopes crosses the entire focal plane,
the main part of which is dedicated to astrometry (AF1 - AF9 CCDs). After crossing the
AF CCDs light crosses the BP (Blue Photometer) and RP (Red Photometer). Occupying
a smaller area only some sources will cross the Radial Velocity Spectrograph (RVS). In
the picture we also see the Wave Front Sensors (WFS) and Basic Angle Monitoring
(BAM) CCDs in the focal plane. (Photograph Astrium)
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1.3.2 Photometric measurements

As mentioned above, following the AF CCDs is a column of CCDs for the Blue Pho-
tometer and another for the Red Photometer. Light from all sources seen in the AF will
be seen in the RP and BP giving ∼80 photometric observations of every Gaia source.
The light falling on these CCDs is first dispersed along scan by a fused-silica prism,
hence these are more like spectrographs than photometers. The BP disperser operates
in the 330-660 nm range while the RP is in the 650-1000nm range producing spec-
trophotometry. The photometric measurements are of interest in themselves and are also
essential for correcting systematic chromatic effects in the astrometric measurements.

1.3.3 Radial velocity spectrograph

Certain sources are selected in the RP for observation in the Radial Velocity Spectro-
graph (RVS). There are three CCD strips and four CCD rows for the RVS, hence not all
sources crossing the focal plane cross the RVS, at end of mission the RVS coverage is
estimated to be about 40 transits per source - considerably less than for the astrometric
instrument. The RVS CCD block is slightly in front of the other CCDs in the focal
plane. In its optical path is an optical module with grating and six spherical fused-silica
lenses to create the spectra which fall on the red enhanced CCDs. The RVS is operating
in the near-infrared (847-874 nm) 6.

RVS will provide radial velocities and about 40 individual spectra in the narrower 847-
874nm band for up to 150 million stars. This alone will make Gaia one of the largest
sources of spectra (Sloan will only have 1 million when it is finished).

1.3.4 Scientific Benefits

Gilmore et al. (2000) summarise the prime scientific possibilities with a thousand mil-
lion source photometric and kinematic survey:

• The history of our galaxy: test hierarchic formation theories, inner bulge/bar dy-
namics, disk/halo interactions, dynamical evolution, what is the warp, star cluster
disruption, weigh spiral structure, star formation history, chemical evolution, link
to high redshifts.

• Stellar evolution: detect rapid evolutionary phases, quantify pre-main sequence
evolution, complete census of local neighbourhood.

• Stellar formation: dynamics of star forming regions, luminosity function for pre-
main sequence stars.

6http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_RVS_
instrument.pdf
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• Brown dwarfs: census of brown dwarfs in binaries.

• Planetary systems: complete census of (Jupiter size) planets around 3×105 stars.

• The Local Group: rotational parallaxes for Local Group galaxies, kinematic sep-
aration of stellar populations, galaxy orbits to give cosmological history.

• Beyond the Local Group: parallax calibration of distance scale, zero proper mo-
tion QSO survey, photometry of 108 galaxies.

• The nature of matter: galactic rotation curve, disk mass profile from velocity
dispersions, internal dynamics of Local Group dwarfs.

• Fundamental physics: determine the space-curvature parameter γ to 10−6.

• Reference frames: define the local metric.

• Serendipity: the first all-sky, multi-colour, multi-epoch phase-space map.

A comprehensive scientific case (100 pages) for Gaia is laid out in the Concept and
Technology Study report (the white book ESA-SCI(2000)4). This is the document
which culminated Phase A of Gaia before it was chosen as ESA’s sixth cornerstone
mission. A more concise science case is available in (Perryman et al., 2001). Within
the science community the proceedings from the symposium The Three-Dimensional
Universe with Gaia (Turon et al., 2005) provide in-depth considerations of the scientific
benefits of Gaia.

1.4 General Gaia Data processing

The author has long been interested in the global processing solution (O’Mullane &
Lindegren, 1999) and contributed a section to the white book (ESA-SCI(2000)4) on the
topic. Gaia processing differs from other astronomy missions because of the mission
design i.e. optimised to provide absolute global astrometry. To achieve the microarcsec-
ond accuracies required to provide the scientific bounty outlined in (ESA-SCI(2000)4)
a rather involved statistical processing must be carried out on the data.

Consider that the field of view for Gaia is about 0.7 degrees 7 consisting of pixels 59x177
milliarcseconds in size. With centroiding capability of 100th of a pixel this gives a
rough accuracy of 1 milliarcsecond for the instrument. Add the positional uncertainty
of the satellite itself to this and it becomes clear there are issues to be addressed. Gaia
offers the community accuracies of about 24 microarcseconds for sources G=15 and
brighter. Each source will be observed about 80 times8 on average. By constructing a
model for the stars position based on the multiple positions observed over the mission

7http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_gaia_
telescope.pdf

8http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_astrometric_
instrument.pdf
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and the satellite pointing (and other factors) a more accurate estimation of the obser-
vational parameters may be computed. In a similar way the positions of the multiple
sources observed by the pair of astrometric telescopes over time may be used to build a
more accurate representation of the satellite attitude. This is a feedback system, where
improving one measurement improves the other; the intention is to iterate over these
solutions until convergence is reached. This is of course an iterative and distributable
solution for the otherwise intractable problem of solving millions of equations for the
astrometric parameters of millions of stars.

The iteration of the algorithms requires access to the data in the spatial and time domains
which is discussed further in Section 3.2.1. Some of the algorithms require access to
all observations of a given source (e.g. astrometry and photometry calculations), other
algorithms require all the data in time series (e.g. to reconstruct the satellite pointing
accurately or to calculate chromaticity 9 or other calibration values over time). This
process is referred to as the Astrometric Global Iterative Solution (AGIS).

After, or simultaneously with, the calculation of the astrometry the other parameters
must also be calculated. Expert groups around Europe will deal with photometry, bright
stars, variable stars and spectrometry to name but a few. Many of these tasks in turn
rely on output from the AGIS and each other. The organisation of this gargantuan task
is laid out in the response to ESA’s announcement of opportunity (FM-030) and a brief
overview was presented by the author at ADASS 2005 (O’Mullane et al., 2006). Fig. 1.4
shows the notion of a processing hub at ESAC in Spain which receives all new data as
well as updates from the other processing centres. AGIS is just one of many processes
occurring within one of many DPCs.

9http://www.rssd.esa.int/SA/GAIA/docs/info_sheets/IN_chromaticity.
pdf
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SOC
(ESAC, Madrid)
OPS, IDT,  AGIS

DPCC
(CNES, Toulouse)
Spectra, Objects, 

Astrophysical Params

DPCI
(IoA, Cambridge)

Photometry

DPCG
(ISDC, Geneva)
Variable Stars

DPCB
(BSC, Barcelona)

Sims, Reprocessing

DPCT
(OATo, Torino)

Astrometric 
Verification

MOC Users

Figure 1.4: ESAC forms a hub for the overall iterative processing of the Gaia data. New
data arrives to ESAC where Initial Data Treatment (IDT) and AGIS run. The processed
data is sent out to the other DPCs for their parts of the processing. The results are then
sent back to ESAC. This process will be repeated until the results meet the requirements
of the catalogue.
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Chapter 2

Gaia Astrometric Processing

The new reduction of the Hipparcos data, as presented in this book, differs
in a fundamental way from the old reduction.

Floor van Leeuwen, Member NDAC, Hipparcos and Gaia Science teams, DPAC CU5 leader (van Leeuwen, 2007, Chapter 1.4).

2.1 Introduction

Most of the material in this section comes from technical notes written by Lennart Lin-
degren, as cited in the text. The aim of the section is to present the reader with a com-
plete overview of the AGIS equations which was not available in any other single place
at the time of writing - a co-authored paper is now published on this topic (Lindegren
et al., 2012). This paper is included in Appendix C for the reader’s convenience and
provides a more recent formulation of the astrometric problem.

Section 2.2 goes back to the very high level and basic concepts of the global solution
as hinted at in the Hipparcos catalogue. The remaining sections introduce the AGIS
models and discuss the Global Iterative Solution. The quote from van Leeuwen at the
beginning of this chapter holds true for this text also. The Global Iterative solution is
more in line with van Leeuwen’s processing than the original great circle approach of
Hipparcos.

In this section many math variables are used, to assist the reader they are summarised in
Table 2.1.

2.2 Principles of Gaia Astrometry

A prescient view of the Gaia principle is provided in the Hipparcos catalogue (ESA,
1997, Volume 3 Chapter 23). With the great knowledge accumulated on Hipparcos a
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Table 2.1: A handy reference table of math variables used in the astrometric solution
description.

Var. Description Ref.
A Observation matrix Eq. 2.4
a The astrometric parameters Section 2.4
B Element of standard SVD Section 2.4.3
b Residuals, observed minus calculated Eq. 2.4
e Additional data such as ephemeris of satellite Eq. 2.3
f Function calculating position based on current estimate Eq. 2.5
f vector of field angles Eq. 2.17
G Detector coordinate Section 2.2
H Detector coordinate Section 2.2
h Set of uncorrelated observation equations Eq. 2.31
g The measurement vector, field angles of observation Eq. 2.1
i Subscript typically denoting some source Section 2.4
n Nuisance parameters Eq. 2.1
q Attitude quaternion Appendix A
R Element of standard SVD Section 2.4.3
S Element of standard SVD Section 2.4.3
tk An instant of time k Section 2.4
U Element of standard SVD Section 2.4.3
u Calculated direction of star CoMRS Eq. 2.3
V Element of standard SVD Section 2.4.3
W Down weight matrix Eq. 2.7
y Observed field angles of star Eq. 2.2
α Azimuthal angle of observation Section 2.4
δ Angular distance from the celestial equator Section 2.4
ϖ Annual parallax Section 2.4
µα∗ Proper motion in α scaled by δ Section 2.4
µδ Proper motion in delta Section 2.4
µr Motion in the line of sight direction Section 2.4
η Along scan local plane coordinate Section 2.6
ζ Across scan local plane coordinate (elevation) Section 2.6
λ Variable used for Lagrange multiplier Section 2.5.1
ω Angular velocity vector Eq. 2.25
σ Typically an error value Eq. 2.4
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view was cast to the future and the general principle of a global astrometric mission is
succinctly formulated as the following minimisation problem:

min
a,n‖gobs−gcalc(a,n)‖M (2.1)

Here a is the vector of unknowns describing a star’s barycentric motion (see Section
2.4). These parameters are extracted from a number of observations of the star. The
observations of a star are expressed in detector coordinates denoted G and H. The
observation at time tk is thus represented by the measurement vector gk = (Gk,Hk)′ and
associated statistics. gobs represents the vector of all measurements and gcalc represents
the vector of detector coordinates calculated from the astrometric parameters. n is a
vector of parameters1 which are not of interest for the astronomical problem but are
required for realistic modelling of the data. The norm is calculated in a metric M defined
by the statistics of the data, this is classically referred to as error weighting.

2.3 The Basic Gaia Problem

Fig. 2.1 formulates the problem very simply: which set of astrometric parameters best
predict the positions of the star images in the Gaia focal plane at the given observation
times? Therefore the derived question: what is the mapping (model, transformation or
relation) between astrometric parameters and the position in the focal plane at tobs?

The main goal of AGIS is the determination of the astrometry and the parameters defin-
ing this mapping that best reproduce the ensemble of Gaia observations.

It is pointed out in (ESA, 1997) that n in Eq. 2.1 is quite dependent on the instrument
in use. Like Hipparcos, Gaia is a scanning satellite. The mapping or modelling of the
observables g is done by three successive transformations:

1. from astrometric parameters to the celestial directions of a star at the instant of
observation, using an astrometric model (see Section 2.3.1);

2. from celestial to instrument frame directions using an attitude model (see Sec-
tion 2.3.2);

3. and finally from instrument directions to detector coordinates using an instrument
model (see Section 2.3.3).

This remains true for Gaia today - although the measurement vector is perhaps a little
more complex than previously considered. Gaia will operate in Time Delay Integration
(TDI) mode in a manner more complex than Hipparcos. However according to (Bas-
tian & Biermann, 2005) we may still use the same astrometric model, which assumes

1Termed nuisance parameters.
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Figure 2.1: The basic Gaia problem is to find the astrometric parameters best predicting
the focal plane observations of the source.

an instantaneous measurement, for Gaia provided we properly define and interpret the
quantities in the equations. Below, these models are expanded for Gaia but first we take
a higher level look at the scheme.

2.3.1 Astrometric parameters to apparent sky position

The six astrometric parameters (α δ ϖ µα µδ µr see Section 2.4) - catalogue data -
describe the positions and velocity of a source at a given reference time in the standard
reference system, the ICRS. This position is thus referred to as the barycentre of the
solar system.

This six parameter model implies a linear motion of the star in the ICRS and is in-
trinsically a 3D framework. When projected on to the 2D apparent sky it translates to
an angular quasi-linear motion in equatorial coordinates. This is quasi-linear if the so
called “perspective acceleration”, due to the fact that the motion is actually 3D with a
radial component, is ignored. This is depicted in Fig. 2.2.

The source is not, however, observed from the barycentre of the solar system but from
Gaia. The location of the spacecraft at L2 introduces a perspective effect into the appar-
ent motion of the star (parallactic effect) so that the motion is no longer quasi-linear but
reflects the global motion of Gaia around the Sun (see Fig. 2.3). In addition to this effect,
the apparent position of the source as seen from Gaia depends on other additional phys-
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Figure 2.2: A star’s motion projected into the 2D apparent sky translates to an angular
quasi-linear motion in the usual equatorial coordinates (the departure of the linearity,
only noticeable for very close and very fast stars, is the so-called perspective accelera-
tion). The left diagram depicts motion in 3D ICRS while the right shows the quasi-linear
motion in angular coordinates (proper motion).

ical effects: the finite velocity of light (stellar aberration) and the light bending by the
solar system bodies (relativistic corrections), etc. Taking into account these additional
effects the apparent position of the star as seen from Gaia (αapp,δapp) is obtained.

The full mapping chain combining all these effects maps the reference astrometric pa-
rameters into the apparent angular position at observation time. This is noted in this
thesis as Eq. 2.3. This is discussed further in Section 2.4.

2.3.2 Mapping celestial directions to the instrument frame

The second mapping takes into account the need to rotate the apparent position of the
source (αapp,δapp) to the view point of the Gaia instruments. The instruments (and
indeed the spacecraft itself) are not permanently aligned to the ICRS, Gaia is tumbling
and revolving in space and this dynamic behaviour must be captured. Consider the view
from inside Gaia, if we sat in there observing we would see objects passing by while
in fact the movement would be our own. This viewpoint is captured by the Scanning
Reference System (SRS). To translate from this to ICRS we would need to translate
and rotate our positions. The Centre of Mass Reference System (CoMRS) (BAS-003),
aligned with ICRS but centred on Gaia makes this a two step and simpler process. By
fixing Gaia as the center of the system we need only worry about the instantaneous
rotation of the SRS (instruments) relative to the CoMRS (almost ICRS).

Implementing the Gaia Astrometric Solution 17
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Figure 2.3: Observations at different times taken from Gaia contain parallactic effects
due to the motion of the satellite.

This rotation is given by the orientation of the spacecraft in CoMRS as a function of
time, that is the Gaia attitude (see Section 2.5). The attitude provides the transformation
(rotation) between the two reference systems at any time as depicted in Fig. 2.4.

SRS

CoMRS
ICRS

Figure 2.4: The apparent position of a source in the CoMRS may be transformed to a
SRS (Scanning Reference System) position through a rotation.

Thus the attitude allows the apparent coordinates of a source to be mapped into angular
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coordinates in the Scanning Reference System (see Fig. 2.4):

(αapp,δapp)
attitude−−−−→ (η ,ζ ).

This is expressed mathematically in Section 2.5 specifically in equation Eq. 2.17. in the
equations below the field angles of a specific observation i are referred to using yi:

yi = (ηi,ζi). (2.2)

while ui is used for the apparent coordinates.

2.3.3 Mapping SRS coordinates to pixel coordinates

The final mapping step involves translating the angular position in the SRS into the
fiducial position in the focal plane or, more accurately, the pixel coordinates of the
image in the focal plane CCDs.

This mapping is expressed in terms of calibrations (see Section 2.6) these calibrations
that vary with time summarise all the instrument effects determining the position of the
source image on the CCDs: optical projection, position of CCDs in the focal plane, intra
CCD effects, etc. The mapping that these calibrations describe is noted in Section 2.6.1
and expressed in equation Eq. 2.49. Fig. 2.5 depicts the projection of the source photons
on to the CCD within Gaia.

SRS




=>

 pixel coordinates

Figure 2.5: The apparent position of a source in the SRS must be transformed to pixel
coordinates on the CCD. The optical path is modelled by a set of time varying calibra-
tions.
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2.4 Astrometric model

In the Gaia model the satellitocentric direction to star i at time tk depends on six param-
eters:

αi azimuthal angle of observation a.k.a. right ascension
δi angular distance from the celestial equator (north or south)

a.k.a. declination
ϖi annual parallax, the apparent shift in angular position when

viewed from opposite sides of the sun
µα∗i µα∗i = µα cosδ proper motion in alpha
µδ i proper motion in delta
µri radial proper motion, motion in the line of sight direction

It should be noted that these simple parameters may only be used to model a subset of
Gaia sources. These sources, which shall be used in the global iterative solution, are
termed primary sources and are typically single stars with sufficient observations. The
addition of µr is not always necessary as discussed in Section 4.1.

Calculation of the observable direction (in CoMRS) to the star also requires some given
data e which includes for example the barycentric ephemeris of the satellite and is writ-
ten symbolically as:

uik = u(ai|tk,e) (2.3)

2.4.1 Source Update - Observation Equations

For Gaia each source transiting the focal plane is observed by each of the AF CCDs (see
Fig. 1.3), for the purposes of astrometry we may think of these observations as a time
and pixel coordinate on the CCD. To derive or update the astrometric parameters we
must fit them to these observations. This may be done with a robust least squares fit of
the n astrometric parameters where n = 5 or 6 as outlined in Section 2.4 to the multiple
observations (or focal plane transits) of the source during the mission. By mission end
most of the observed sources will have crossed the focal plane about 80 times which
implies an observation in the SM and each of the nine AF strips giving typically m≈ 800
observations. We are mainly interested in the centroid timings of the AF1-9. This may
be expressed in a standard least squares manner (also in GAIA-LL-055):

Ax∼ b±σ (2.4)

Where A is the design matrix (observation matrix in our case) of dimension m x n,
b is an m−vector of residuals (observed minus calculated) and σ is an m−vector of
measurement uncertainties (or noise), x is an n−vector of updates to the astrometric
parameters. Put more simply A contains a row for each observation with an evaluation
of the basis function for that observation (see Eq. 2.6) based on the observed timings
while b contains the difference from our current model for this source (a measure of
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how well or not we are doing). Adding updates (x on the LHS) and noise (σ on the
RHS) LHS and RHS should more or less agree but will never be exactly the same. Both
sides approach the noise level which we can never know precisely.

Put more mathematically this is an approximation (∼) since the system is very much
overdetermined i.e. m � n, hence general agreement is sought. As stated b is a matrix
of observed minus calculated such that ith element is:

bi = yi− fi(a,q) (2.5)

Where yi is the measured (‘observed’) field angle of the source and fi is the calculated
field angle based on the current best estimate of the astrometric parameters a and the
attitude q (see also Eq. 2.17). It should be noted here that fi is not quite the same thing
as gcalc(a,n) in Eq. 2.1, a little more work remains to be done.

The elements of A provide a measure of the sensitivity of bi to changes in parameter a j
and are given as follows:

Ai j =
∂ fi(a,q)

∂a j
(2.6)

Lindegren (GAIA-LL-055) points out several factors to be noted about the source update
in this form:

1. The m measurements are in general heteroscedastic (σi are not all the same), so a
weighted least-squares solution should be used.

2. A small fraction of outliers must be expected, so the solution should be robust
against errors of arbitrary size.

3. The model fi(a,q) is non-linear, so the updating process must be iterated until
convergence. Iteration is also needed to cope with outliers.

4. Depending on the type of source and on the number and distribution of observa-
tions, it may be desirable to update less than the maximum set of n = 6 astrometric
parameters. It is always desirable to solve for fewer parameters and perspective
acceleration is an important factor in very few solutions. In fact n = 5 will be
the normal case, but fewer may also be used (e.g. when there are insufficient
observations for parallax determination we may solve for positions only). This
corresponds to making solutions that are constrained to zero updates in some pa-
rameters.

5. On some sources the measurements may be degenerate, e.g. because there are too
few observations, resulting in a non-unique least-squares solution. The algorithm
should in such cases still produce a sensible update, if possible, and indicate that
it is unreliable.

6. The calculation of fi(a,q) and its derivatives is time-consuming and recomputing
them should be avoided when not strictly necessary.

7. Apart from the updated astrometric parameters, the algorithm should also supply
their variances and correlations, together with suitable statistics and diagnostics.
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8. The estimated variances should take into account error sources not included in the
formal observation uncertainties σ .

2.4.2 SVD solution

A singular value decomposition (SVD) may be used to solve for x in the above equa-
tions. First let us introduce the m x m weight matrix:

W0 = diag(σ−2
1 , . . .σ−2

m ) (2.7)

which may be used to obtain the normalised observation matrix:

Â = W1/2A (2.8)

and the normalised right hand side (residuals):

b̂ = W1/2b (2.9)

This leads to the weighted least squares solution, minimise |Âx− b̂|. We do not need to
solve the normal equations but may use an SVD approach using the null space.

The SVD of Â, following the notation of (Riley et al., 2006), is:

Â = USV† (2.10)

Where:

• S is a diagonal n x n matrix with the singular values of Â in descending order
(S = diag(s1 . . .sn);s1 ≥ s2 ≥ . . .≥ sn ≥ 0 ) as its entries - the singular values are
the square root of the eigenvalues of the normal equations matrix.

• U, an m x n matrix, is the basis for the data (observations) or the left singular
vectors of Â.

• V, an n x n matrix, forms the basis for the model containing the right singular
vectors of Â.

• U and V are orthogonal.

The hermitian conjugate † in Eq. 2.10 will simply become T , the transpose in the case
that V is composed of real numbers (which it is in our case).

Now define S+ = diag(s+
1 . . .s+

n ) where:

s+
j =

{
s−1

j i f s j ≥ εs1

0 otherwise
(2.11)

Here ε is a preselected tolerance level for the ratio between the smallest and largest
singular value (s).
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2.4.3 Using a basis of null space

Null spaces are used widely in physics and engineering for singular problems of this
nature from electronics (Castillo et al., 2005) to guidance and control (Psiaki, 2006).

The null space, or kernel, of B is the subspace N for which any vector n ∈ N satisfies:

Bn = 0 (2.12)

The null space solutions are homogeneous solutions. They may be used to express all
solutions for B since it may always be added to any solution i.e.

For some B(x) = h where x /∈ N (2.13)
B(x+n) = B(x)+B(n) (2.14)

= B(x)+0 = h (2.15)

For such solutions to exist B must be rank deficient, some columns must be liner com-
binations of others. In this case we shall have ≈ 800 observations and wish to extract
only six astrometric parameters.

The required solution is then given by (Riley et al., 2006, Section 8.19):

x = US+UT b̂ (2.16)

Such a solution is equivalent to solving the normal equations for the source. In the case
where the matrix is rank deficient (r < n where r, the rank, is equivalent to the number
of non zero rows in S+, a diagonal matrix defined in (2.11))2 Eq. 2.16 gives the unique
solution with the minimum norm |x|.

Such a solution will need to be iterated several times to convergence since fi(a,q) is non
linear. This means an estimation is made and plugged back in to the original equation
(e.g. Eq. 2.16) to find the residual - this is used to find an even better approximation.
This manner of updating is dealt with in a little more detail in the attitude section (Sec-
tion 2.5). Experience shows that such a system always converges in 4 or 5 iterations for
primary stars.

2.5 Continuous attitude model

The attitude specifies the instantaneous orientation of Gaia in the Centre of Masses Ref-
erence System (CoMRS) Frame. CoMRS is derived from ICRS and defined in the same

2 S+ is almost the same as S̄ in standard texts such as (Riley et al., 2006, Section 8.19) but with some
singular value suppression.
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manner but with the centre of mass of Gaia as the origin of the coordinate system instead
of the solar system barycentre, it is the local rest frame of Gaia (see Fig. 2.4). The axes
of CoMRS point in the same direction as the ICRS axes, for a detailed explanation see
(BAS-003).

Since Gaia is a scanning satellite we describe the attitude as a continuous function of
time; let cj represent this continuous attitude function for a time interval τ j, during
which the attitude is stable. Then the field angles, usually denoted (η ,ζ ), for a source at
tk ∈ τ j are given by:

fik = f (uik,c j|tk) (2.17)

where fik is the vector of field angles and uik is the observed direction as discussed above
in section 2.4.

The attitude may be modelled in a number of ways. In the case of Hipparcos the attitude
was described differentially to the Hipparcos Nominal Scanning Law by the NDAC
consortium, and to the great circles by the FAST consortium, using three Euler angles
(ESA, 1997, Vol. 3 Chapter 7). Within the Gaia community it is felt this differential
approach should not be taken due to problems it introduced in later processing stages
for Hipparcos 3. Hence we shall model the attitude directly.

Euler’s theorem on rotation (Kane et al., 1983) tells us that we need only three angles to
cover an arbitrary rotation. In flight dynamics these angles are generally termed roll (α ,
about X), pitch (β , about Y) and yaw (γ , about Z) 4. The vector c j in (2.17) could for
instance be the polynomials describing these three angles giving the rotation between
SRS and CoMRS as functions of t in the time interval τt .

The three Euler angles however have singularities (about the poles). If we expand it to
a rotation matrix removing the singularities we have nine parameters to model. How-
ever only three degrees of freedom remain, this leaves six difficult constraints to be
respected. William Rowan Hamilton introduced a fourth dimension, with the quater-
nion (Hamilton, 1847), alleviating these problems. Hamilton noted quaternions may be
used to model rotations in three dimensional space very efficiently and in many texts the
four components of quaternions used in this manner are referred to by the term Euler
parameters (Kane et al., 1983). For some further details on quaternions see Appendix A.

The quadratic sum of its components are constrained to unity since there remains only
three degrees of freedom. If we let e represent a unit vector (i.e. in ICRS for us) and φ

represent an angle of rotation around that vector the quaternion which may be used to
represent the instantaneous attitude (of Gaia) would be defined as follows:

3Problems with the differential modelling approach have been discussed in private communications
and have not apparently been documented.

4 It is noted that various other symbols are used for the Euler angles (Korn & Korn, 1961)
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e≡

e1
e2
e3

 (2.18)

q =


e1 sin(φ/2)
e2 sin(φ/2)
e3 sin(φ/2)
cos(φ/2)

 (2.19)

The direction cosine matrix, representing the attitude (Kane et al., 1983), in terms of
this quaternion is:

A =

 1−2q2
2−2q2

3 2(q1q2 +q3q4) 2(q1q3−q2q4)
2(q1q2−q3q4) 1−2q2

1−2q2
3 2(q2q3 +q1q4)

2(q1q3 +q2q4) 2(q2q3−q1q4) 1−2q2
1−2q2

2

 (2.20)

It should be noted that we still have a constraint on our quaternion that the sum of the
squares is unity hence q in (2.20) should be normalised or a normalisation factor should
be applied to the matrix.

Over time then we would be interested in A(t) and q(t). So in fact we would need to
model q(t) which is essentially the attitude curve with respect to time. To model such
a curve we need to choose an appropriate basis function, for Gaia the choice is to use a
B-spline5. B-splines afford a flexible modelling for continuous functions with some his-
tory between nodes but also allowing discontinuities to be correctly represented. Splines
are a standard way of tackling attitude modelling in spacecraft dynamics.

Hence in (2.17) c j would in fact be the four coefficients of the four spline knots rep-
resenting q(t); these coefficients may be determined by least squares fitting of the pre-
dicted values to the observed ones. q(t) may be calculated using:

• a set of known directions e.g. u (2.3)

• the CCD observations of these directions e.g. η ,ζ of the observations (2.17)

• a calibration of the instrument parameters e.g. d (2.49)

Each measurement associates a time instant t with certain field angles (η ,ζ ) in the
instrument frame (SRS) which relate to a direction u. Hence returning to (2.17) with
our quaternion we may write it as:

fik = f (uik,q(tk|c j)) (2.21)

5 the B stands for basis and was coined by Isaac Jacob Schoenberg
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Where c j are now the B-spline coefficients. The field angles (f) are known here for
given t, for the iterative process we need the differential w.r.t. q.

ḟ =
d f
dq

q̇⇔ d f
dt

=
d f
dq

dq
dt

Since q is non linear we must formulate a set of linear equations from which we may
derive an approximation of it. Consider q0 to be the current attitude estimate and fo to
be the observed field angles such that:

q = q0 +∆q (2.22)

yielding the next best estimate and:

∆f = fo− fc (2.23)

the observed minus calculated field angles. Then we may consider:

∆f =
d f
dq

∆q (2.24)

At this point it is worthwhile to introduce the angular velocity or inertial rotation vector
ω (Kane et al., 1983, Sect. 1.11), also written as AωB. This may be seen as an ‘operator’
which when operating on any vector fixed in B produces the time derivative of that
vector in A. Now ω may be expressed in terms of q (Kane et al., 1983, Sect. 1.11):

ω = 2q̇


q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

 (2.25)

if we multiply this out we find:

ω = 2∗ (q̇1q̇2q̇3q̇4)


q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

 = 2∗


q4q̇1 +q3q̇2−q2q̇3−q1q̇4
−q3q̇1 +q4q̇2 +q1q̇3−q2q̇4
q2q̇1−q1q̇2 +q4q̇3−q3q̇4
q1q̇1 +q2q̇2 +q3q̇3 +q4q̇4


(2.26)

But our quaternion is constrained |q|= 1 and hence:

q1q̇1 +q2q̇2 +q3q̇3 +q4q̇4 =
1
2

d
dt

(q1
2 +q2

2 +q3
2 +q4

2) = 0 (2.27)

If we then take (2.26) it is (in agreement with SAG-LL-030, eq 9):

ω = 2∗


q4q̇1 +q3q̇2−q2q̇3−q1q̇4
−q3q̇1 +q4q̇2 +q1q̇3−q2q̇4
q2q̇1−q1q̇2 +q4q̇3−q3q̇4

0

 = 2∗

 q4 −q3 −q2 −q1
q3 q4 q1 −q2
−q2 −q1 q4 −q3

 q̇ (2.28)
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We may then rewrite (2.24), including a conversion matrix C to convert from the unit
vector to actual field angles, as:

∆f =
[

∆η cosζ

∆ζ

]
= 2C

 q4 −q3 −q2 −q1
q3 q4 q1 −q2
−q2 −q1 q4 −q3

∆q (2.29)

where:

C =
[

sinζ cosη sinζ sinη −cosζ

−sinη cosη 0

]
(2.30)

Taking (2.29) and normalising by the detection errors ση cosζ and σζ we have two
uncorrelated observation equations for each direction observed at the same time. The
attitude model ties the two telescopes together, both are observing simultaneously and
it is the large angel between the telescopes which allows us to calculate absolute paral-
laxes since observations are made relative to different sources in different parts of the
sky during the mission. Here we must treat all observations in the same time period
(typically between 5 and 120 seconds) from both telescopes. Another way to think of
this is in terms of simple triangulation - we have two viewing directions with sources
at known positions in both directions, we use these simultaneously to work out the
orientation of Gaia. The observation equations represent these. Let:

h = B ·∆q (2.31)

be the full set of such equations. Then we wish to minimise |h−B ·∆q|2 subject to the
constraint q0 ·∆q = 0, the length of q must be preserved hence any change in q must be
orthogonal to it. Here the · denotes the scalar product6(Korn & Korn, 1961). The scalar
product of two vectors is in fact the equivalent of the product of the transpose of the
first times the second hence we may also write q0

T ∆q = 0 for the constraint. In the text
below XT will be used to denote the transpose of the matrix X which is in agreement
with the conventions document (BAS-003). Here two ways to minimise such a set of
functions are presented, the method of Lagrange multipliers Section 2.5.1 and using a
basis of null space Section 2.5.2.

2.5.1 The method of Lagrange multipliers

The method of Lagrange7 Multipliers is an appropriate way to minimise such a set of
functions with constraints (Korn & Korn, 1961, Chpt. 11.5-2). This involves adding an
unknown (denoted by λ ) times the constraint to our equation as follows:

S(∆q;λ ) = |h−B∆q|2 +2(q0
T

∆q)λ (2.32)

6See also http://mathworld.wolfram.com/DotProduct.html
7Also known as Lagrangian
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and then performing the unconstrained minimisation of this wrt. ∆q and λ . The La-
grange multiplier (λ ) then tells us how much the constraint should be emphasised in the
solution.

S = (h−B∆q)(h−B∆q)+2q0
T

∆qλ (2.33)
= hT h−2hT B∆q+B∆qB∆q+2q0∆qλ (2.34)

also note:
ST = hT h−2∆qT BT h+∆qT BT B∆q+2∆qT q0λ (2.35)

To minimise this we may set the partial derivatives w.r.t. ∆q and λ to zero:

d(ST )
d(∆q)

= −2BT h+2BT B∆q+2q0
T

λ = 0 (2.36)

d(S)
d(λ )

= 2q0∆q = 0 (2.37)

giving a system with five unknowns (∆q a quaternion, λ ):

BT B∆q+q0λ = BT h (2.38)
q0∆q = 0 (2.39)

Pre-multiplying by (BT B)−1:

∆q+(BT B)−1q0λ = (BT B)−1BT h (2.40)
=> ∆q = (BT B)−1BT h− (BT B)−1q0λ (2.41)

and using (2.41) in:

q0
T

∆q = 0 (2.42)
=> q0

T ((BT B)−1BT h− (BT B)−1q0λ ) = 0 (2.43)
q0

T (BT B)−1BT h−q0
T (BT B)−1q0λ = 0 (2.44)

q0
T (BT B)−1BT h

q0T (BT B)−1q0
= λ (2.45)

inserting this in (2.41):

∆q = (BT B)−1Bh− (BT B)−1q0
q0(BT B)−1Bh
q0(BT B)−1q0

(2.46)
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letting a = (BT B)−1Bh and b = (BT B)−1q0 thus an equation similar to SAG-LL-030,
eq 15 restated here in similar notation to the above:

(BT B)[a b] = [BT h q0] (2.47)

may be solved to find a and b and then 8:

∆q = a−bλ , where λ =
q0

T a
q0T b

(2.48)

One problem with this method is the introduction of an extra unknown parameter λ .

2.5.2 Using a basis of null space

Null spaces have already been discussed in Section 2.4.3. This approach is preferred
over the Lagrange Multipliers Section 2.5.1 since Lagrange Multipliers introduce an-
other variable to the system and require inversion of large or incomputable matrices.
Here for attitude it must be ensured the time steps are large enough to have many more
observations than unknowns. This is may be formulated in a manner analogous to (2.16)
and solved using SVD as described in Section 2.4.2 (LL-071).

2.6 Instrument model

Finally we must convert from field angles f to detector coordinates g i.e.G, H:

gik = g(fik,dl|tk) (2.49)

where d is the instrument parameter vector, geometric calibration parameters for the
CCDs such as orientation, scale and mechanical distortions. These parameters will be
defined on timescales of hours or months as needed or could be continuously modelled.
This transformation for Gaia is quite involved (Bastian & Biermann, 2005), yet for our
purposes we may consider an instantaneous position for the source in the field of view.

2.6.1 Calibration Model

Taking a further look at the d parameters of (2.49) we consider the calibration model.
The calibration model discussed here is the so called “geometric” calibration model
i.e. the mapping of CCD coordinates (pixels) to field angles (η , ζ ). Position shifts
may be introduced by a range of physical features of the instrument and the sources
themselves. Some of these are discussed in Section 4 and are not considered here, but

8 SAG-LL-030, eq 16 should have q0 as in (2.47)
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may be dealt with in a similar way. Calibration is considered to occur over different
time periods known as “calibration units”. Calibration units take into consideration all
observations during their time period, they may overlap and indeed many shorter units
may be contained inside a unit covering a longer period. In these cases of overlapping
an observation is considered in all units in which it falls.

The following index notation, as outlined in (LL-063), is used:

• l identifies the observation (the transit of one source across a single CCD chip)

• i identifies the source

• f identifies the FOV (Astro-1 or Astro-2)

• n identifies the CCD chip

• m identifies the pixel column on the chip

• j identifies a ‘short’ calibration time interval (e.g., one month)

• k identifies a ‘long’ calibration time interval (e.g., the whole mission)

Within the astrometric global solution all other indexes are known for any given ob-
servation (l). The nominal geometric calibration is given by the nominal along-scan
coordinate η0

n associated with each CCD chip (both for SM and AF), together with
the nominal basic angle, and the nominal across-scan coordinate ζ 0

n of each SM chip.
These nominal values are never changed. The actual calibration is expressed as small
corrections to these nominal angles.

2.6.1.1 Calibration parameters

As outlined in (LL-063) there are three types of calibration parameter to be considered.

1. Large-scale, along-scan geometric correction, ∆η . There is one such value for
each CCD in the SM and AF fields. Moreover, the values are in general different
in Astro-1 and Astro-2 (for the same CCD) due to optical distortion. The values
are assumed to be constant only on a short time scale (1 month). ∆η thus depends
on indices f, n and j.

2. Small-scale, along-scan geometric correction, δη . There is one such value for
each pixel column and CCD. For a given CCD and pixel column, however, the
same value applies in Astro-1 and Astro-2, since its physical origin is assumed to
be on the CCD chip itself. The values are also assumed to be constant on a long
time scale (whole mission). δη thus depends on indices n, m and k.

3. Large-scale, across-scan geometric correction, ∆ζ . There is one value per CCD
in the SM area, and different values apply in each field. Although the physical
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origin is the same as that of ∆η , the across-scan component is assumed to be
constant on a long time scale, since the calibration requirement is much relaxed
in the across-scan direction. ∆ζ thus depends on f, n and k.

Hence the field angles f of (2.49) are more precisely for some l:

ηl = η
0
n +∆η f n j +δηnmk (2.50)

ζl = ζ
0
n +∆ζ f nk (2.51)

There are a number of constraints enforced on these equations to ensure the parameters
are uniquely determinable, these are:

〈∆η f n j〉 j = 0 (for all j) (2.52)
〈δηnmk〉nk = 0 (for all n,k) (2.53)
〈∆ζ f nk〉nk = 0 (for all n,k) (2.54)

Here 〈Xabc〉ab is the unweighted mean of all values of Xabc over the whole applicable
range of the index c.

Constraint 2.52 concerns the origin of the along scan field angle per time interval j.
The different FOVs are not differentiated in this case rather the basic angle is used to
differentiate between them. This also means any detectable basic angle variation would
show up in this term.

Constraint 2.53 implies the mean small scale correction is zero. This ensures indepen-
dence between small and large scale calibrations.

Constraint 2.54 concerns the across scan field angle origin. Again this is for each time
interval j and each FOV f .

2.7 Resolving the astrometric measurements

Now we may put the three models together. Starting with the instrument model in
Eq. 2.49 and putting in attitude we get:

gik = g( f (uik,c j|tk),dl|tk) (2.55)

Next expanding the astrometric model we have:

gik = g( f (u(ai|tk,e),c j|tk),dl|tk) (2.56)

Which we may write as:
gik = h(ai,c j,dl|tk,e) (2.57)
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Hence the expanded version of the observation minimisation Eq. 2.1 looks like this:

min
a,c,d‖gobs−h(a,c,d|t,e)‖M (2.58)

The indices are dropped since the norm is over all indices.

2.7.1 Rotation of the solution

The Astrometric solution is self consistent and decoupled from real space. Hence the
entire solution may be rotated about an arbitrary axis relative to ICRS. This rotation is
clearly visible when looking at AGIS results (Section 5.6.1). Hence any solution must
be rotated back to the ICRS, the rotation will be worked out using a least squares fitting
of some list of reference sources, in principle a quasar catalogue.

2.7.2 Direct Solution

A direct solution for this data would be computationally intensive. Assuming the c j and
dl terms could be eliminated we would be left with a dense set of normal equations for
the astrometric parameters. Assuming that not all sources were used but only some well
behaved subset of one hundred million or so we would still have 6×108 unknowns. The
solution would require about n3/3 = 2× 1024 FLOPs the matrix would occupy about
n2/2 = 3×1016 doubles which is around 30 Petabytes of storage. For Hipparcos in its
time the direct solution was considered infeasible, for Gaia, even in the future, a direct
solution is most improbable. Bombrun has made an excellent study of this infeasibility
in (Bombrun et al., 2010).

2.7.3 Global Iterative Solution

The heart of the global iterative solution is to take each of the three models described
in the previous sections and treat the dependencies as given. Hence to solve for the as-
trometry of a star we assume some attitude, calibration and global parameters, then for
calibration we assume globals, attitude and astrometry and so on. The order in which
this is done should be arbitrary although solving for the astrometry for the individual
sources first seems intuitively correct. Hence the solution would involve four relatively
independent blocks of equations where each takes on the form of the general minimisa-
tion problem of Eq. 2.1.

The astrometry would be solved for each source and require as input all of the obser-
vations of the source as well as the relevant calibration, attitude and global parameters.
It would then require a minimisation of the observed less the expected parameters for
each source. Essentially the equation is not very different to Eq. 2.1:

min
ai
‖gik−h(ai,c j,dl|tk,e)‖M (2.59)
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In which the index i denotes a single source i and gik denotes all observations of the
source i. The calibration parameters c and instrument parameters d are taken as known
to some accuracy for this equation hence there are only dim(ai) unknowns to solve
for, in this case the six astrometric parameters. In fact the instrument and calibration
parameters could be combined in this equation to n and it also does not contain the
global parameters such as general relativistic light bending which we shall denote γ .
Hence the astrometric equation would look like:

min
ai
‖gik−h(ai,n j,γ|tk,e)‖M (2.60)

Assuming some values for astrometry and globals we may solve for the nuisance pa-
rameters:

min
n j
‖gik−h(ai,n j,γ|tk,e)‖M (2.61)

The system for global parameters is:

min
γ ‖gik−h(ai,n j,γ|tk,e)‖M (2.62)

The attitude modelling may be broken into several intervals. Realistically it will have to
be broken as continuous real attitude for the satellite will not always be available. But in
principle we may solve for attitude in the same way as for the other parameters above.

min
e ‖gik−h(ai,n j,γ|tk,e)‖M (2.63)

The solution of these equations would mean the organising or accessing of the obser-
vational data in both position order (all observations for source i) and time order (all
observations in time period j or k). The global parameters simply require all observa-
tions. Each solution requires iteration to convergence itself before its results may be
used in another step. The full set of solutions must also be iterated to convergence. This
iterative process is well described in (LL-071) and displays convergence after 40 or 50
iterations with very small updates after initial large updates. This is explained in terms
of a shift in the dominating error contribution. The larger error contributors are quickly
corrected for leaving the smaller error contributors to become dominant, and these take
longer to correct, it may take more than 100 iterations to really beat down the correla-
tions. Hence we typically see an initial rapid convergence tailing off in our convergence
plots as seen for parallax in the top of Fig. 3.13.

2.7.4 The number of sources in the solution

If we were to use all one thousand million Gaia sources even this global iterative solution
would prove quite difficult. Organising the 109 source and their 1012 observations for
access in both spatial and time order, although possible, would prove prohibitive in
terms of hardware cost today. This solution will work best for so called ‘well behaved’
stars which are apparently single. The process of selecting these stars is described in
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detail in Section 4.8.1. In principle a few stars could be iterated in this manner and the
resulting reference frame applied to all remaining sources in a single pass. This is the
intended approach - a discussion of the precise number of sources needed to make the
frame is given in (LL-093).

2.8 Conclusion regarding the astrometric solution

The astrometric reduction of the Gaia data is essential for the overall data reduction
task. This section has taken us through the fundamentals of the astrometric solution
and why we believe the Global Iterative solution is the best approach to follow. In this
section we have examined some of the mathematics involved in AGIS. In the following
chapters this chosen solution will be examined from the astronomical (Section 4) and
computational (Section 3) perspectives.
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Chapter 3

Implementation

Everything should be made as simple as possible, but not simpler.

Uwe Lammers quoting Albert Einstein, Nobel Laureate.

The contents of this chapter regarding AGIS have been published in a slightly modified
form as (O’Mullane et al., 2011a). In addition the discussion of Java as a language
was extended and published as (O’Mullane et al., 2011b). These papers are included in
Appendix C for the reader’s convenience.

The efficient implementation in some form of code of the block iterative solution, de-
scribed in Section 2, is challenging. A first attempt for such a solution during the
Hipparcos data processing was abandoned. A basic proof of concept, more a pseudo
implementation, using again Hipparcos data and a database management system was
presented in (O’Mullane & Lindegren, 1999). A good deal of effort went into scaling
this up to Gaia dimensions until finally a degree of success was gained by the ESAC
group (O’Mullane et al., 2006). It is this later framework which is presented here and
which will continue in development up to the Gaia launch. Hence at whichever point
one reads this summary the system will have evolved. The core ideas which have not
changed in the many years of development to date are presented here, this should give
a good understanding of the system as a whole. In our working solution we have taken
to heart the Einstein quote at the start of the section stripping complexity from our code
wherever possible - hence although what follows may look complex it is really as simple
as possible.

Terms such as DataTrain, Taker and other concepts presented in this chapter are be-
lieved to be uniquely associated with the author. The Store concept was introduced for
Planck and Gaia missions in ESTEC in 1998 and was first published in (O’Mullane &
Lindegren, 1999). The interface approach was also postulated in tech notes as a means
for defining sub contracts for specific code modules. The DataTrain framework was first
introduced for Gaia in 2005 and first mentioned in public at ADASS 2006 (O’Mullane
et al., 2006).
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In this section the reader should bear in mind that the word Object will be used in the
computer science or object oriented programming sense. It should not be confused with
astronomical object for which, in general, we use the term Source.

3.1 Overview of the AGIS system

AGIS is just one of many parts of the Gaia processing, a central or core part certainly
but still a part. In the overall design of the Gaia Processing System (JSH-004) the Main
Database (JH-004; JH-001) is the central repository of all information. Fig. 3.1 depicts
AGIS is this broader context with the Main database.

Figure 3.1: AGIS, like other Gaia processing systems, extracts data from the Main
database. Updated results are fed back to the main database for merger with results
coming from their processing systems.

A simplified overall AGIS picture is presented in Fig. 3.2. Each of the components
in the picture may run on any machine apart from the Attitude Update Server which
requires a little more memory. The DataTrain, as mediator, is seen in the middle of the
left box and is explained in some detail in Section 3.2.2.

It should be noted that the Oracle RAC (Real Application Cluster) may also run on
several machines (or nodes) in a cluster to improve data access performance. The data
access and storage is abstracted through the Store interface which is described in Sec-
tion 3.2.3.

The algorithms and collectors are described in Section 3.4.

The AGIS system is deployed on a local Gaia dedicated multi-processor machine. All
the classes are available on each node but objects will be run on specific nodes accord-
ing to the configuration specified in the agis.properties file. Objects on different hosts
communicate through Remote Method Invocation (RMI). In general a class with the
name SomeServer will only have one instance on the cluster while the DataTrains will
be numerous with one or several running on each node depending on the number of
processors/cores available.
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Figure 3.2: This simplified diagram attempts to show a logical overview of AGIS. AGIS
runs as many processes on many machines, the machines are not shown here. The large
box on the left represents the DataTrain of which there may be a great number running.
On the right are the update servers of which there may be only one running in the entire
system. An Oracle database underpins all of these processes.
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3.2 Data Access and Access Patterns

The key to an efficient implementation of the global solution is in data access. Even
with today’s machines accessing a large volume (tens of terabytes) in both spatial and
temporal order is demanding.

Looking at the four main blocks of the global solution we see each has a seemingly
unique data access pattern. These are the access patterns:

Source All observations of a given source - spatial.
Attitude All observations within a given time period - temporal.
Calibration All observations within a given time period falling on a

given CCD - temporal/spatial.
Global All observations any order.

The naive approach would be to go through the data once for each block, iterate them
internally, and then perform the next outer iteration. This is indeed the mathematical
formulation and is depicted in Fig. 3.3.

Source Source 

AttitudeAttitude

CalibrationCalibration

Global Global 

Database

All observations 
of each source

All observations 
any order

All observations 
in time period

All observations 
in time period per CCD

Outer Iteration     

Figure 3.3: Each block of the global solution has a slightly different data access re-
quirement. This could cause four passes through the data for each outer iteration. It is
immediately clear that some of these could be combined e.g. Calibration and Attitude
together and Source and Global.
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Running through the approximately ten terabytes of data four times per iteration is rather
daunting. Consider even ten iterations to convergence would yield thirty extra reads of
this large volume of data.

Immediately though we see that Calibration and Attitude are similar enough and perhaps
could be combined. Global is order independent and as such could be combined with
the data access of any of the other blocks for example Source. Indeed this was already
remarked in (O’Mullane & Lindegren, 1999) where the prototype made just two passes
through the data for each iteration rather than four.

The question after this is could one pass through the data per iteration be enough?

3.2.1 A Question of order

Let us assume that this could be executed in one pass then what would be the impact of
the ordering. There are two primary orderings we may choose: spatial or temporal.

3.2.1.1 Temporal Ordering

If we assume a temporal ordering then what would happen in each block? Clearly for
the Attitude we may read the data once and break it in time chunks suitable for attitude
processing - we may then process a time interval and finish with it. With a small buffer
we may accumulate the observations required for the Calibration and also finish with
calibrations in a timely manner during the same pass through the data. For Global the
order is immaterial.

The problem here comes with Source. Since all sources are observed many times over
the entire mission if we process in time order we must accumulate the data for each
source until we have all observations of it. This will not happen until we have seen all
of the data - only then can we be certain that no more observations of a given source
will show up. This would effectively mean all observation data would end up in memory
which is undesirable if not completely infeasible. The alternative is another pass through
the data in spatial order. Since we must wait until the end of the pass the updated
Calibration, Attitude and Globals could already be used for the Source update.

3.2.1.2 Spatial Ordering

If we assumed all observations of a source were clustered together, in a spatial ordering,
the story is quite different. Now we may process each source to find its new astrometric
solution which we may immediately write out to disk. Since that source is finished with,
the updated parameters may be used to find its contributions to the globals. The situation
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for Attitude and Calibration is however that all contributions from all observations must
be accumulated until the end of the pass through the data - only then may the calibration
and attitude updates be calculated. It is important to note it is not the observations which
must be held but their contribution to the matrices of attitude and calibration which is
much smaller than the accumulation of source matrices in Section 3.2.1.1. Hence in this
manner one pass may be made though the data for each outer iteration as depicted in
Fig. 3.4.

Source Source 

AttitudeAttitude

CalibrationCalibration

Global Global 

Database

Outer Iteration            

Observations and 
Updated Source  

All observations 
of each source

Figure 3.4: With a little accumulation in Calibration, Attitude and Global a complete
iteration may be made in one pass though the data. Hence the optimal ordering is spatial.
Furthermore the updated source may already be used in the other blocks.

This clearly represents a better approach to the ordering from a technical point of view.
Additionally, somewhat holistically perhaps, it is more natural to keep astronomical data
of the same part of the sky together and easily accessible. Hence the AGIS database has
observations of the same source sequentially grouped together on disk.

3.2.2 Getting data to algorithms, the DataTrain

Throughout the Gaia processing there are choices to be made concerning data access
patterns such as those outlined in Section 3.2.1. The ideal approach, for efficiency, is
a data driven approach whereby data is accessed in the sequential order in which it is
stored. Hence rather than algorithms requesting data they should be presented with data
by a mediator. The mediator pattern (Gamma et al., 1994) is a very powerful tool for
decoupling software modules. The implementation of the mediator for the astrometric
solution is called the ElementaryDataTrain.
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Figure 3.5: The DataTrain acts as a mediator between algorithms and data access (the
Store) thus leading to a less coupled system. The ElementaryDataTrain accesses As-
troElementarys in the fastest possible manner for the AGIS algorithms. The participat-
ing Algorithms must implement the Taker interface O’Mullane et al. (2006).

The generic notion of a DataTrain (see Fig. 3.5) is to access data in the fastest possible
manner, usually meaning sequentially, and call a given set of algorithms passing them
the data. The concept and code are quite simple. To enable the calling of the algorithms
in a generic manner they must implement the Taker interface. As one may see in Fig. 3.5
the Taker is an interface with a method to “take” some data. By implementing this the
algorithm has its input when the implementation is called.

More specifically for AGIS the ElementaryDataTrain accesses AstroElementary data
(see Section 3.2.5). The train decides which data to access by taking a Job (see Sec-
tion 3.3.2). It uses the Store to access a set of AstroElementarys each of which is then
passed to each registered ElementaryTaker e.g the Source, Calibration, Global and At-
titude algorithms. Each algorithm (see Section 3.4) must implement the Elementary-
Taker interface to allow the DataTrain to interact with it. The ElementaryDataTrain
has a method for registering the algorithms (see addElementaryTaker in Fig. 3.5). The
algorithms must then accumulate observations until it may process a source or a time
interval. An abstraction such as this forces the algorithms to accept data in the order
it is stored allowing the infrastructure to be built without fixing the data storage or-
der. Choosing spatial order Section 3.2.1.2 means all of the elementaries for a given
source are sequential. Any given train accesses complete sets of elementaries wrt. to
sources. The cartoon in Fig. 3.6 depicts how the AstroElementary is constructed by the
ObjectFactory from a GaiaTable which results from a query to the Database through the
Store interface. The AstroElementary is then passed to the algorithms attached to the
DataTrain.
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Optimised AGIS
Database

SourceAttitudeGlobalCalibration
SourceAttitudeGlobalCalibration

SourceAttitudeGlobalCalibration
SourceAttitudeGlobalCalibration

SourceAttitudeGlobalCalibration

ElementaryTakers 

ObjectFactoryStore GaiaTable

Data Access Layer

AstroElementary

Figure 3.6: Here the blue arrow shows the flow of data from the Database through the
Store and ObjectFactory to the algorithms attached to the ElementaryDataTrain. We
may think of the ElementaryDataTrain as driving through the database passing obser-
vations to the algorithms. We may have as many trains in parallel as we wish, typically
one per core or processor on the machine running AGIS.

3.2.3 Abstraction of Data Storage, the Store

To give a level of independence from the physical storage mechanism used it is normal
to use some abstraction. Java interfaces provide an excellent approach to provide such
insulation. Creation of an interface is a small coding overhead while in usage one gets
a real implementation i.e. there is no overhead. It is very important to realise that a
Java interface is a contract binding the using class and the providing class but does no
translation of any kind.

No algorithm code in the system interacts directly with the DBMS (DataBase Manage-
ment System) rather a query interface to the data is provided through the Store interface
(see Fig. 3.7). The implementation of the Store is hidden behind the interface, thus the
data store may be implemented in files or any database management system.

An implementation of the Store is requested from the AGISFactory, the actual imple-
mentation of the store is configured using the gaia.tools.dal.Store property in the
agis.properties file and thus can be changed at run-time (rather than at compile-
time). The store interface includes an explicit range query which returns all objects
within a certain id range, which is required to support the DataTrain.

As depicted in Fig. 3.7 there are multiple implementations of the Store. The FileStore
does not support the same level of querying as the JDBCStore but is sufficient for run-
ning the testbed on a laptop.
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Figure 3.7: The Store provides an interface for data access, in this way many Store
implementations may exist. In the figure we may see a JDBCStore and FileStore both
of which implement Store. With these implementations AGIS code may be switched
between FITS files or an Oracle Database for storage in a seamless manner.
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GaiaTable (in Fig. 3.7) represents an interface to tabular data. The assumption of deal-
ing only with tabular data is a major simplification for AGIS. This is a fair assumption
since use of an object oriented database is unlikely. Both files ( FITS, ASCII etc.) and
Relational Database tables may be represented as a GaiaTable. The interface defines
methods for retrieving the next row and for getting columns by name or index. The
whole row may be passed to the Algorithm or ObjectFactory and it may extract the
columns it requires. The DataTrain loads the entire row.

Figure 3.8: All data objects implement GaiaRoot which makes certain methods avail-
able to the Store. All data objects are interfaces not real classes - this allows them to be
easily replaced by different implementations.

The GaiaRoot UML is given in Fig. 3.8. If you are viewing this in colour, interfaces
are brown (they also are marked with a ◦) while implementations are blue. Any ob-
jects in the Gaia data model which use the Store (see also Fig. 3.7) and ObjectFactory
must implement this interface. A basic implementation is provided which most classes
may inherit from but in some cases, due to single inheritance in Java, this may not be
possible.

3.2.4 Access to Objects - ObjectFactory

The store deals essentially with tables but some code will require objects. The object
factory sits on top of the Store and returns objects implementing the data model inter-
faces. The object-from-table method of the interface is also exposed allowing code to
do this conversion exactly when it requires it. We do need to take care that not too many
pieces of code perform such a transformation - preferably it would be done once by the
DataTrain. Splitting this out allows for very direct measurement of the performance.
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This is implemented as a Generic class. The Factory is instantiated for a specific data
model interface and then provides a method returning that class of object only. Java
Generics are very nice for this and, although similar to C++ templates, should not be
confused as being the same. Generics provide type checking and safety but they do not
generate extra code with new types.

The factory relies on the populate method of the GaiaRoot to populate the fields of the
object from a GaiaTable. A generic implementation of this using a mapping from the
config file is provided in the GaiaRootImpl class. This provides a convenient mechanism
to read the data from the Store into a Java Object that can be used elsewhere in the
system.

The ObjectFactory also has caching capabilities. Whenever an Object is read from the
Store it may be cached in memory in order to avoid new reads when it is requested
again. Any object which is created by the Object Factory can be made cacheable just
by implementing the gaia.tools.dm.GaiaRootCacheable interface. The caching can also
be disabled by adding an entry to the property file. The interface contains a method to
determine the “validity” of the Object.

The factory also has the possibility to implement object pooling. The notion here is to
reuse objects by filling them with new data rather than reconstructing new ones. This
technique was very popular in early Java implementations to reduce garbage collection
time. Tests with the new JDK (1.5 and 1.6) show this is no longer beneficial. Still by
having all data object creation done through one class the possibility to change the way
it works later remains available.

3.2.5 The Data Model

As stated in Section 3.2.4 the algorithm’s work in terms of Java Objects such as Source
and AstroElementary. These objects form what is generally termed a Data Model for
the system. The AGIS Data Model is depicted in UML form in Fig. 3.9.

The data used for AGIS will be about 10% of the mission data; this will be selected and
put in the special AGIS database (see for example Fig. 3.6).

Each of the interfaces in Fig. 3.9 are described below. The data model is made in terms
of interfaces to allow easy substitution of multiple implementations. The ObjectFactory
(see Section 3.2.4) and Store (see Section 3.2.3) are used to construct real implementa-
tions of these interfaces but all code refers only to the interface. Hence all client code
may be compiled without any implementation if necessary. This is a technique used
throughout AGIS and indeed GaiaTools.
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Figure 3.9: The AGIS Data Model comprises several objects and is defined in terms
of Java interfaces. The interfaces allow multiple implementations which is sometimes
useful e.g. for testing purposes.
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3.2.5.1 AstroElementary

An object of this kind represents the transits of a celestial source over the first 11 strips
of the focal plane, namely, SM1/SM1 and AF1-9. Each AstroElementary in AGIS is
associated with a single Source.

3.2.5.2 Source

An object of this kind represents a celestial sources that follows the standard 6-parameter
astrometric model and are eligible for AGIS source processing.

3.2.5.3 Attitude

An object of this kind represents an interval of continuous attitude data. Attitude is
parametrised as quaternions and each of the four components is fitted by a B-spline of a
given order.

3.2.5.4 AstroGeomCalUnit

Calibrations are calculated in different time orders and for AC and AL (see Section 3.4.3).
This class hierarchy represents all of these calibrations.

3.3 Distributed Processing

Regardless of the ordering chosen in Section 3.2.1 the access of the data does not need
to be done serially. Indeed we require the data to be sequential on disk but multiple parts
of that sequence may be read simultaneously. In the case of sources we may simulta-
neously process each source, in terms of distributed computing this is “Embarrassingly
parallel” (Wilkinson & Allen, 1999) 1. We may theoretically gain a speed up of N by us-
ing N processors where N is the number of sources to be processed. We say theoretically
with reason as the data must still be read from disk and we are unlikely to actually put
in place 108 processors. Still tests have shown that the number of processors added to
the pool for AGIS indeed linearly decrease the amount of time spent processing. Some
numbers are given in Table 3.1.

1http://en.wikipedia.org/wiki/Embarrassingly_parallel
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Table 3.1: Evolution of AGIS performance during the development of the processing
framework. Data volumes are indicated by the number of observations (AstroElemen-
taries), depending on the number of sources and the length of the observation period.
The time is the processing time per AGIS iteration for the given number of processors.
The last column shows the throughput, in observations per processor per hour, as an
indication of the real performance.

Date Observations Processors Time (hr) Normalized Rate

2005 1.6×107 12 3 0.9×106

2006 8.0×107 36 5 0.5×106

2007 8.0×107 24 3 1.3×106

2008 8.0×107 31 1 3.2×106

2009 2.6×108 50 1.8 2.8×106

2010 4.0×109 68 9.5 6.2×106

Concerning Table 3.1 one should also note that the 2006 test for 60 months took longer
than expected i.e. the runtime did not remain the same. This required further opti-
misation - attitude appeared to be a bottleneck, in 2007 after several optimisations the
runtime was reduced by a factor of 2 such that the system was running one outer it-
eration on 24 processors in 3 hours for 5 years data. In 2005 it took 3 hours on 12
processors to do just one third of the data volume i.e. 18 months of simulated data.

3.3.1 Distributed Processing Frameworks

Many different approaches exits for distributed processing. The different approaches
are usually embodied in some library such as the Globus Toolkit 2. However since we
have an “Embarrassingly parallel” problem we also have little need for such a complex
and heavy library. In fact all that we require is already available within the standard Java
library namely:

• Communication Between Processing Nodes: The Remote Method Invocation
(RMI) framework in Java provides this.

• Access to a database or databases: The Java Data Base Connectivity (JDBC)
framework provides this.

• Some form of graphics library for GUIs: Java Swing library provides this.

Additionally, in this age of the web, Java provides easy support for dynamic web site
generation using Java Server Pages (JSP).

2http://www.globus.org/
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Hence an early feeling was to use the tools of Java directly rather than try to fit the
problem into one of the many distributed programing libraries each with their own as-
sumptions and problems. The modern programming languages of the day such as Java
are very sophisticated in the feature set and tools they provide. Looking for example at
JJPF (Danelutto & Dazzi, 2006) it provides some reliability on top of these tools while
also taking a much more process oriented view - each worker has a getData call to
pass back results. JJPF is also more coordinator oriented with a single server eliciting
support from available nodes to perform a computation. In the grid world the obvious
contender would be the Globus Toolkit (GTK) (Foster, 2006). Previous forays into GTK
by the author showed the system to by buggy and difficult to use. GTK has improved
dramatically over the years yet it still remains service oriented (our problem we believe
to be data oriented) and has a large security overhead which we do not see as necessary.
Indeed though (Demichev et al., 2003) is positive about GTK they introduce a resource
broker which seems similar to our whiteboard Section 3.3.2. Unfortunately (Demichev
et al., 2003) says little about the data intensive applications the title mentions.

The notion of just using the Java framework without some other layer was reinforced
by previous experiences with the Sloan Digital Sky Survey (SDSS). On the SDSS a
form of distributed query system was built using Web Services, the SQLServer database
and the C# 3 language, this was called CasJobs (O’Mullane et al., 2005). This was
done quite rapidly without using any special libraries beyond the facilities available
in the programming language. Within the same group at Johns Hopkins a typical Grid
application for Cluster finding within a catalogue was taken and quickly rewritten in C#,
this ran about ten times faster using a database system. This experiment was reported in
(Nieto-Santisteban et al., 2005).

A final justification, perhaps the ultimate and obvious one, for not taking on a library is
that of simplicity. Returning to the quote from Einstein at the beginning of this chapter
it was believed the distributed computing libraries would not make the system simpler
hence none were adopted.

3.3.2 A whiteboard for job distribution

There are at least two main approaches to controlling a grid of distributed processes,
the first to have “Agents” register with some central controller which then regulates the
entire process, the second to have a less centralised approach with more autonomous
processes.

The central controller approach is very appealing and generally the way many agent
based systems work. Generally these involve monitoring resources and farming out
jobs to particular processors which are not fully loaded. The central registering of agents
means the controller knows how many agents of which types exist on the system and
further more may reject agents from particular machines or of particular types. Such
systems deal well with uneven workloads and ad hoc jobs by many users. Often security
layers and user tracking are included.

3The # here is the musical sharp hence this is pronounced C sharp
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In contrast an AGIS iteration could easily occupy an entire cluster for some days. There
are no ad hoc programs only the entire AGIS chain running on all data. There are no
users, hence no particular need for a security overhead in terms of certificates etc.

In our data driven approach Section 3.2.2 we may consider the data as the distribution
mechanism. Everything hinges on the processing of some block of data be it a time
sequence Section 3.2.1.1 or a set of observations Section 3.2.1.2. All we really need to
know is if a particular part of the data set has been visited during a particular iteration.
If the data segments are chosen properly we may have as many DataTrains running
as we wish (one per source being the limit as pointed out above). This is very simply
and easily achieved through a whiteboard mechanism as depicted in Fig. 3.10.

Job 9
Job 8

Job 1

Job 4
Job 5

Job ..

Job N

*

*

*

Job 50
Job ..

Job 2
Job 3

Job 6 *Job 7

Whiteboard Numerous data trains which take and perform jobs

Figure 3.10: A set of Jobs corresponding to sequential sequences of data which cover
the entire data range may be posted on a whiteboard. The DataTrain may mark a job
as in progress when it starts it and complete when it is finished. When all jobs are done
all of the data has been seen once. The whiteboard itself has no special knowledge of
the jobs or the overall task - it is a simple mechanism to coordinate potentially hundreds
of processes.

The whiteboard is quite a simple concept for organising many processes of varying
types. Conceptually we may “post” jobs on a whiteboard and workers, in our case
“DataTrains”, may pick them up. The whiteboard may hold status information e.g.
when a job started, when it ended, was it all OK etc. In effect then the whiteboard be-
comes the central controller however it exercises no control as such. Perhaps the original
of the species in this respect is the OPUS pipeline from the Space Telescope Science
Institute (Rose et al., 1995). Indeed it is the OPUS blackboard 4 design pattern which
is employed here. It is noted that since its early beginning OPUS is itself going toward

4Whiteboard was elected as a more modern alternative to Blackboard.
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Java (Miller et al., 2003) but maintaining its heterogeneity through CORBA (Common
Object Request Broker Architecture). For the purposes of AGIS which is a pure Java
implementation a simple white board was coded directly in Java using a Database table
to hold the jobs. The latter providing also the ability to ensure no two trains ever get the
same job. The JDBC framework in Java makes the whiteboard seamlessly accessible
from any node on the network - hence no need for the overhead of CORBA or some
other message passing system here. The UML (Unified Modeling Language) interface
for the whiteboard is shown in Fig. 3.11.

Figure 3.11: The UML interfaces for the Whiteboard and the WhiteboardJob.
Note the “postJob” used to populate the whiteboard and “offerOpenJob” methods which
the DataTrains use to get jobs. The job itself has methods for status and messages etc.

Regardless of the jobs being done the whiteboard can give some information on the
general state of the system. A series of JSP pages present the whiteboard state on a
website. On this site, with little effort, we may show jobs completed/remaining and
(assuming uniform jobs) an estimate for the end time. We may also list statistics per
processor simply by querying the job table in the database.

3.3.3 Overall control RunManager and ConvergenceMonitor

The Whiteboard alone is not enough to converge an AGIS solution. Some other
entity must post the jobs on the board for the DataTrains to work on. The RunManager
has the task of coordinating iterations and the publishing of jobs as depicted in Fig. 3.12.
The RunManager uses the JobPublisher to publish appropriate jobs e.g. one for each
block of elementaries to be processed. The JobPublisher scans a table of bounds (a
list of identifiers of elementaries which are the last in a series belonging to a single
source) and creates a number of jobs based on blocks of elementaries. In general the
system is configured such that these jobs complete in a few minutes as this gives a better
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Figure 3.12: Communication diagram for the RunManager. This summarises the
RunManagers role in publishing jobs and checking for convergence.

indication of progress and failed jobs are detected in a timely manner for resubmission.
Hence there are typically thousands of jobs in a single run. Once posted the trains pick
them up and start working. The order in which the jobs are done does not matter and
indeed they may all be executed in parallel as outlined above (see Section 3.3). Jobs are
also published for the Calibration, Attitude and Global if these algorithms are attached
to the train. These jobs execute for the entire iteration.

The RunManager then periodically checks to see if the datatrain jobs have finished. If
they are done the main part of the iteration is done and the GisConvergenceMonitor is
told the iteration is at its end. The RunManager then asks the GisConvergenceMonitor
if the solution has converged and awaits the answer. At this point the attitude, global
and calibration servers still must perform their final calculations - when these are com-
plete the GisConvergenceMonitor replies as to the state of convergence. The normal
convergence criteria being that the median and width of the parallax update histogram
is 1µas or less which is configurable in the property file.

If convergence has not been reached the RunManager starts another run through the data
by publishing a new set of jobs. If it has converged the RunManager declares the cycle
ended and converged.
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3.4 Algorithms

There are effectively two types of algorithms in the system: those with a centralised part
and those which are completely distributable. Let us first look at the “source update”
algorithm which is completely distributed and afterwards at the others.

3.4.1 Source Update

The mathematical formulation of the source update as a least squares fit of the obser-
vations was presented in Section 2.4. The source update step is truly distributed. As
the DataTrain passes elementaries to the SourceCollector (the Taker registered with the
train for Sources) it accumulates all of the elementaries for a given source. Remember
that the elementaries are stored in such a manner that all elementaries for one source are
consecutive hence the collector knows when it has all of the elementaries for a given
source once the sourceId changes. Once it has a batch of elementaries the source update
is called. This is the least squares fit of observations to the source model as described
in Section 2.4.1. It is an iterative process itself typically taking three or four iterations.
When the new astrometric parameters are available they are passed to the SourceUp-
dateManager, this batches together several sources for efficient storage. Nothing in
AGIS is ever actually updated rather a new source row is written to the table with the
current runID. In this way a complete history of the updates is preserved. Inserting to
the Database is also more efficient than updating.

In fact the SourceUpdateManager does not write the sources until the entire job is done
- effectively a database transaction is held open until the job finishes. In this manner a
job is either completed or not since the transaction may be ’rolled back’ without conse-
quence if there is some problem.

Also when the job is finished the SourceCollector sends all of the updated sources to the
GisConvergenceMonitor. This call is made using RMI. Because the GisConvergence-
Monitor receives sources throughout the iteration, update histograms can be dynami-
cally generated. These are displayed on the associated AGIS website in real time. The
website is shown in Fig. 3.13.

3.4.2 Attitude Update

The continuous attitude model is explained in Section 2.5. In fact the attitude may be
divided into segments each of which may be solved simultaneously. There will be nat-
ural breaks in Gaia’s attitude in any case but this technique may be used to distribute
attitude further. Hence depending on the number of attitude segments there is a limit
to the distribution of attitude processing. Each segment may be solved on an individual
processor. In actual fact the final fitting of the attitude for five years data as a single
spline with knots every fifteen seconds took only 30 minutes on a Xeon processor with
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Figure 3.13: Update plots such as for the Source position update shown here are gen-
erated dynamically and displayed on the AGIS monitoring website while the system is
running. Historical plots may also be retrieved. Note also in this screen grab the overall
convergence is depicted in a single plot on top of the page. Other plots are grouped in
easy to use tabs.
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sixteen Gigabytes of memory. The solution is not the bottleneck, it is rather the gather-
ing of the observations. With a single attitude update server every source’s observations
must be passed to this server from every DataTrain. Once the system surpassed thirty
two DataTrains this became a limiting factor.

On each DataTrain an AttitudeCollector is registered. This gathers all of the elemen-
taries and passes them to the appropriate AttitudeUpdateServer. Appropriate here means
the attitude server dealing with the time bin in which the observation falls. In some
cases the segments overlap and an observation may be sent to two servers simultane-
ously. Again RMI is used for this passing and the observations carry the updated source
parameters with them.

The AttitudeUpdateServer(s) adds to the partial equations for each observation passed.
It must wait until the end of the run to ensure all observations have been seen before
doing the final computation. The end of the run is signalled, via RMI, by the RunMan-
ager. At this point the new spline coefficients are calculated and written to the Store.
The server then sends the updated attitude to the ConvergenceMonitor so it may be
plotted on the website.

3.4.3 Calibration Update

The geometric calibration model is described in Section 2.6.1. From the perspective of
distribution each time scale for calibration could be calculated on separate machines.
However one must consider that, unlike attitude, here an observation will end up going
to many calibration bins e.g. at least one short term and one long term calibration will
need to take account of each observation. Hence distribution is not as trivial as it might
seem. On the positive side, the processing for calibration is not a huge overhead, as for
attitude, the main bottleneck is the sending of all observations to the calibration server.
Unlike the attitude server the calibration server can process the incoming observations
more quickly as such it has not been an overall bottleneck in the system and remains to
date running on a single server.

The framework is similar to attitude. A CalibrationCollector is registered with each
DataTrain and collects the required observation information and sends it to the Cal-
ibrationUpdateServer via RMI. The server accumulates the equations during the run
and performs the final calculation when signalled by the RunManger that the run is
complete. It writes the updated calibrations to the Store and sends them to the GisCon-
vergenceMonitor for plotting on the website.

3.5 Conclusion

The overall AGIS architecture and many of the components have been described in some
detail. This is a software system designed and optimised to perform the Gaia Astromet-
ric data reduction. Advanced features of the Java language have been employed to make
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this system work well and remain very portable. Further work is needed in the coming
years but a very good system is already in place and well understood. As described in
Section 6 a solid team with a dynamic working method has built the system so far and
will continue to refine and test it up to launch and beyond.
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Chapter 4

Astrophysical considerations

Die Astronomie ist vielleicht diejenige Wissenschaft, worin das wenigste
durch Zufall entdeckt worden ist, wo der menschliche Verstand in seiner
ganzen größe erscheint, und wo der Mensch am besten kennen lernen kann,
wie klein er ist. 1

Georg Christoph Lichtenberg (1742-1799) physicist, philosopher

This chapter takes us through some of the astrophysical and physical phenomena which
AGIS must account for. Chapter 5 explains some of the experimental results which
give confidence that AGIS does indeed correctly deal with these phenomena. What is
presented here is of course a subset of the phenomena. Indeed, echoing Lichtenberg
above, the range of effects is belittling and it will surely take several volumes in the
final catalogue to describe them all. AGIS itself only deals with a subset of all known
phenomena which have effects in the µas realm. Many of these topics are well covered
in (Lindegren, 2005) which describes the astrometric principles of Gaia. Indeed the
Paris symposium (Turon et al., 2005) was a terrific forum for all parts of astrophysics
touched by Gaia.

4.1 Number of parameters in the astrometric solution

It is not clear that the inclusion of the sixth astrometric parameter µr increases the ef-
fectiveness of the solution. In (GAIA-LL-055) Lindegren points out that not all six
parameters need necessarily be updated in the solution. In most cases the five parameter
solution is sufficient and indeed in some cases even fewer parameters may be used e.g. if
there are too few observations it may only be possible to derive α ,δ ,ϖ . The conclusion
is that the Source update algorithm should be parameterised to allow for solving from
two (α δ ) up to all six astrometric parameters. This is how the current implementation
works.

1 Astronomy is perhaps the science in which the least is discovered by chance, in which the full
breadth of human understanding shines through, and in which man can best learn how small he is.

57



CHAPTER 4. ASTROPHYSICAL CONSIDERATIONS

4.2 The basic angle

For an astrometric measurement some standard or scale is needed. Often this is a rel-
ative scaling within a field of view e.g. a plate scale for a photographic plate, based
on known characteristics of the telescope. Already µas measurements have been made
from ground using radio astronomy e.g. for some pulsars (Vlemmings et al., 2005).
Fomalont describes the absolute and relative astrometric techniques for radio astrom-
etry in (J.A. Zensus, 1995, Chapter 19). In general these techniques involve such as
tropospheric refraction, ionospheric phase delays etc. Still if well modeled and with
sufficient observations radio astrometry can yield good positions.

Classical optical astronomical parallax measurements are always relative to some back-
ground sources in the same field of view; since in principle all sources in the field of
view will have some parallax shift, determination of the precise parallax of any single
source is impossible. For these we use the term relative parallaxes. Gaia will provide
absolute parallaxes.

For Gaia astrometry two telescopes observe, or connect, two distinct fields of view
simultaneously. The telescopes are separated by 106.5◦ which is known as the basic an-
gle and usually denoted γ . By essentially measuring parallax against many different and
widely separated backgrounds a true parallax may be derived. It has been shown math-
ematically that this Hipparcos/Gaia approach provides absolute parallaxes (Makarov,
1998) as long as the basic angle is between 30◦ and 150◦. A detailed discussion, from
the Hipparcos viewpoint, may be found in (ESA, 1997, Volume 3 Chapter 20) where
comparisons are made to other parallax measurements.

As the known positions of the observed sources improve the position of the satellite may
also be improved. Observing the sources of one FOV relative to a completely different
part of the sky at a later time would allow one to detect a variation in the basic angle.
Variations on a short time scale in phase with respect to the direction to the sun, however
will be indistinguishable from a global parallax shift (GAIA-LL-057) due to which great
pains have been taken to ensure its stability. Long period variations in the basic angle
will be solved for in AGIS.

4.3 The scanning law

The Earth Sun Lagrangian point (L2) has been chosen for Gaia. L2 is one of the five
libation points in the earth sun system where a small body, such as Gaia, could theo-
retically remain stationary relative to the two larger bodies. L2 is an excellent choice
for Gaia as the sun and earth are both on the same side of the satellite allowing the
antennae and solar panels to face them in one direction while the instruments face the
unobstructed coolness of space in the opposite direction. Of course Gaia could only
theoretically remain stationary at L2; in practice it will need regular thruster firings to
maintain its orbit.

58 William O’Mullane



4.4. THE NUMBER OF SOURCES NEEDED FOR AGIS

As a survey mission Gaia should try to cover as much of the sky as often as possible
over its five year life. An even distribution of observation time would be ideal. There
are of course several constraints on Gaia’s observing pattern. For example:

• minimize fuel usage e.g. not too many thruster firings.

• keep Sun shield pointing toward the Sun and antennae pointing toward Earth.

• maximise the solar aspect angle (ξ ); the greater ξ the greater the parallactic dis-
placement of the observations, however thermal stability and power requirements
limit ξ to near 45◦.

• maximise the uniformity of sky coverage over five years; repeated observations
should be well spaced out over the five years (e.g. for periodicity and proper
motion having 100 observations of a source in one year is not nearly as good as
20 each year over five years).

It is possible to describe how Gaia observes the sky over the five year period using a for-
mula which is generally referred to as the ‘scanning law’. This determines the rotation
in three-axis of the satellite at all times. Hipparcos also employed such a revolving scan-
ning law, originally proposed by Erik Høg in 1976, as noted and recapped by Lindegren
in (SAG-LL-014).

Gaia rotates around its spin (z) axis (see Fig. 4.1) at a constant speed of 60 arcsec s−1

while the axis precesses slowly on the sky at a fixed solar aspect angle (ξ ) of 45◦. The
precession speed is such that during the five years of operation the spin axis will perform
twenty nine revolutions around the solar direction, giving a precession period of sixty
three days. On average each source on the sky is observed astrometrically seventy times
and spectrographically forty times (assuming 20% deadtime, FM-030).

4.4 The number of sources needed for AGIS

The number of sources required for the Astrometric Global Iterative Solution is driven
by the calibration needs as discussed in Section 4.8. On the other hand not all sources
are suitable for AGIS and indeed having a very uneven distribution of sources is also
not very good (see Section 4.8.7)2.

Let us consider 106 sources observed over five years according to the nominal scanning
law. If these are evenly distributed then we may consider the fraction of sky seen in any
time period as an approximation of the number of sources. Gaia scans a complete swathe
of 0.7deg in 6 hours or 360×0.7 = 252deg2 in a day then Gaia covers 1008deg2 (there
is overlap but source are still seen even if some of them are the same sources multiple
times). So in a day this is about 1008/41253 = 2.44% of the sources or ∼ 24000.

2The Conjugate Gradient Solver seems to relax this demand
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Figure 4.1: Gaia’s two fields-of-view scan the sky according to a carefully prescribed,
‘revolving scanning law’. The constant spin rate of 60 arcsec s−1 corresponds to 6-hour
great-circle scans. The angle between the slowly precessing spin axis and the Sun is
maintained at 45◦. The basic angle is 106.5◦. Figure Karen O’Flaherty.

This is fine for large scale calibrations but if we take this down to the pixel column level
this must be further divided by 1966 giving only about 12 sources per pixel column.
This is insufficient for small scale calibration on the daily scale but perhaps would work
on the monthly scale. To make daily small scale calibrations we would probably want
about 100 transits per pixel column per day. By reversing the above this would mean
at least 107 sources in AGIS. To allow some margin AGIS is required to handle 108

sources.

Furthermore, as discussed in Section 4.8.1, 108 sources seem reasonable to have an
appropriate number of sources per magnitude and colour bin across the sky.

One should not forget that it is possible to run AGIS with fewer sources and disable
short term small scale calibrations. In this manner one may improve source positions,
large scale calibrations and attitude, after which a secondary update may be run. Using
the improved sources from the secondary update run one could then run AGIS with
considerably more sources to fit the small scale calibrations correctly - this of course
would then require another secondary source update.

4.5 Chromaticity

Due to the optical properties of the instrument the centroid of a monochromatic source
image is dependant on the wavelength of light from the source. For a polychromatic
image the dependency is on the spectral energy distribution (SED) (GAIA-LL-053).
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Hence within our astrometric solution we may expect to see small shifts depending on
the spectral type and colours of the source.

4.6 Charge Transfer Inefficiency(CTI)

CTI effects are caused by charge traps in the silicon holding electrons and releasing
them later (SAG-LL-025), (AS-009). This distorts the PSF centroid, width and height.
CTI will become worse as the CCDs are exposed to radiation at L2, resulting in large
apparent shifts in position. Most of these effects will be accounted for in IDT and IDU
processing. AGIS may provide small deltas to the CTI model parameters but this is not
confirmed.

4.7 General Relativity

Gravitational light bending will be a perceivable effect for Gaia observing in the µas
domain. Light bending of observations due to the gravitational field of the solar system
needs to be accounted for in all Gaia processing not just AGIS. Klioner suggests a model
based on so-called Parametrized Post-Newtonian (PPN) formalism for µas astrometry
in general and Gaia in particular. Work in this area continues, (Klioner, 2001) being
the first postulation of the model which was refined in (Klioner, 2003). The meaning
of relativistic astrometry and this model were discussed in the 2004 Paris symposium
(Klioner, 2005) as well as its refinement for Gaia (Klioner & Soffel, 2005). This later
refinement offered a few calculation savings for Gaia in effects which are sub µas.

In addition to using this model in all calculations AGIS may use the observations to cal-
culate selected PPN parameters, mainly β and γ which could show possible deviations
from General relativity where they should both equal unity. Calculating such parameters
provides an empirical check of general relativity.

4.7.1 Aberration of light

Already explained in 1727 (Bradley, 1727)3 due to the motion of the observer and the
finite speed of light the apparent position of a source varies from its true position. This
effect can be several 10s of arcseconds and as such must be accounted for in Gaia
observations. This means that knowledge of Gaia’s velocity must be taken into account
when calculating source positions. This effect is dealt with within the relativistic model
for Gaia observations. It is also described in (Klioner, 2001).

3Although the citation was found the article was not found and subsequently not read
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4.8 Photon density and relegation

For the DPAC reader this section is a modified version of the relegation note (WOM-
014). The current AGIS implementation uses simulations with a fairly uniform sky
density of primary sources (Fig. 4.2) - the results discussed in Section 5 use this distri-
bution. The actual star density on the sky is extremely non-uniform. Assuming that an
approximately constant fraction of all the stars can in principle be used as primary stars,
it follows that the astrometric weight (being roughly proportional to the photon flux per
unit area on the sky) is also extremely non-uniform. This is not a problem for the source
and calibration updates, but it is for the attitude update – and therefore, indirectly, also
for the other updates through the iterative nature of the AGIS. The cause of the problem
is the following: when the two fields of view (FOV) look at regions with very differ-
ent weight (photon) densities, the attitude tends to be almost completely determined by
the observations in the FOV with the higher density. This means that the astrometric
errors in high-density areas of the sky have little chance of being eliminated by direct
linking of the stars to other parts of the sky via the superposed fields. In other words,
the connectivity between the two FOVs is effectively lost, and therefore also the ability
to build a truly global system of astrometric data. The result may be strongly correlated
containing (quasi-systematic) errors within small regions of the sky. The importance of
this phenomenon was discovered by F. van Leeuwen during his AGIS-like re-reduction
of the Hipparcos data (van Leeuwen & Fantino, 2005).

For the calibrations there are other requirements on the primary sources, in particu-
lar that there are enough of them at various magnitudes and colours, while their sky
distribution is less important. Securing a sufficient number of primary sources for the
calibrations will tend to maximize the total number of primary sources in some areas
e.g. the galactic plane, resulting in very non-uniform weight distribution.

Thus we have somewhat conflicting requirements for the attitude (uniform weight) and
calibration (good distribution in magnitude and colour). It is proposed to handle this
by (1) selecting primary sources suitable for the calibrations, and (2) manipulate the
weights of the observations in the attitude updating to balance the fields of view. In
practice the second step means downweighting the data in the high-density field.

Both the selection of primary sources and the downweighting scheme based on the
relative photon densities in each Field Of View (FOV) are described below. The term
‘relegation’ for demoting a source to secondary was suggested by U. Bastian during
AGIS discussions in 2006.

In the pseudo code used below, a selection from Source implies a similar select from
Elementary for all observations of those sources.
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Figure 4.2: Uniform source density as requested from the CU2 simulations.

4.8.1 Source Relegation

Each source carries an attribute representing the ‘relegation factor’, named relFactor.
This is a floating point number ranging from about 1 to infinity. A relFactor near
unity implies the source is perfect for use in the astrometric solution. This then pro-
vides a continuous value for inclusion in the primary source selection process (see Sec-
tion 4.8.2).

4.8.1.1 Setting the Relegation Factor

The Unit Weight Error (UWE) calculated during the source update is a good first esti-
mate for the relegation factor. It is (or should be) close to 1 for a source that fits the
standard five-parameter astrometric model to within the formal observational errors. A
UWE much greater than 1 indicates some model mismatch, e.g., that the source is an
astrometric binary. The UWE can later be combined with other factors indicating for ex-
ample photometric variability, or some other potentially problematic property, so that in
general the relegation factor can be determined with some formula using a combination
of the source attributes.

For the first run with real data some selection should be made using the initial star cat-
alogue – the resulting source may have the relegation factor set to 1. This will reduce
the input to the first run of the astrometric solution. After the first run of the astrometric
solution the relegation factor will be updated by the source update step. The secondary
source update step runs on all sources not included in AGIS, hence this will set a rele-
gation factor for all sources observed by Gaia.
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4.8.2 Selection of primaries

The selection of primary sources is not as trivial as it seems at first glance. One may
consider that one simply decides to have some number of sources evenly distributed
over the sky. However the solution should also have at least some minimum number of
sources across the magnitudes and colours to ensure no bias in these quantities. Further-
more it is suggested that magnitudes should be represented fairly evenly over the sky.
We suggest a four phase selection process:

1. A relatively even sky/magnitude distribution of N sources where N is a number
close to the total number of sources required in the solution Section 4.8.3.

2. Ensure there are enough sources in each magnitude bin Section 4.8.4.

3. Ensure there are enough sources in each colour bin Section 4.8.5.

4. Ensure there are N sources fairly evenly distributed Section 4.8.6.

4.8.3 Sky/magnitude distribution

The first step in the selection process is to get a relatively even distribution over the sky
of some number of sources. Some sources are required in every part of the sky for the
attitude reconstruction: the attitude cannot be reconstructed without several sources in
each time bin (≈ 15s) in each FOV. In addition we need a representative set of magni-
tudes of sources across the sky. If we consider a histogram of the sources in magnitude
bins, it is felt that magnitude bins of order 0.1 mag in G should be sufficient.

At this point it is easiest to tessellate the sky. In principle of course any tessellation
scheme could be used for this selection but for statistical operations HEALPix (Górski
et al., 2005) has an advantage (O’Mullane et al., 2001). The Hierarchical Equal Area
Pixelisation scheme divides the sky first in twelve large pixels which are then divided
and subdivided according to the choice of a value known as NSIDE. Fig. 4.3 shows
this successive subdivision for NSIDE=0 2 4 and 8. NSIDE is always a power of 2
(representing the number of pixels on one side of the large zero pixel, and the total
number of pixels in the sphere is given by 12∗NSIDE2.

In the pseudo query (below) we cycle through each HEALPix pixel to retrieve the same
number of sources in each pixel per magnitude bin. Density variation then would only
be within pixels. Hence the choice of HEALPix NSIDE is important as it predicts the
level of homogeneity over the sky. For the photon density (see Section 4.8.7) a pixel
size of about 1/3 of the FOV is acceptable, this size should also work here and indeed
it should not be larger than this.

The Gaia FOV is about 0.66 deg2; hence we need a pixel size of approximately 0.22 deg2

or 42153/0.22 ' 187514 pixels. An NSIDE of 128 yields 196608 pixels and as such
provides a good granularity. The loop here would then be from 0 to 196607. If we wish
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Figure 4.3: The sphere is hierarchically tessellated into curvilinear quadrilaterals. The
lowest resolution partition is comprised of 12 base pixels. Resolution of the tessellation
increases by division of each pixel into four new ones. The figure below illustrates
(clockwise from upper-left to bottom-left) the resolution increase by three steps from
the base level (i.e., the sphere is partitioned, respectively, into 12, 48, 192, and 768
pixels). from HEALPix website - the author built and maintains the Java version of this library in collaboration with Gorski and others

Implementing the Gaia Astrometric Solution 65



CHAPTER 4. ASTROPHYSICAL CONSIDERATIONS

to have one hundred million sources we would choose nPerHeal to be 108/196608 '
508.

As discussed in Section 4.8.4 we have (20.1− 6) ∗ 10 = 141 magnitude bins. In this
case of one hundred million sources then we would want three sources in each bin in
each HEALPix. Let this be denoted nPerHealMag

The relFactor is used to sort the data in ascending order so we take the sources in
any given HEALPix pixel with the lowest relegation factor, i.e. those best suited.

Hence the system must allow us to perform a selection from the MainDB such as
(pseudo SQL):

for (idHeal = 0 ; idHeal < nHealMax; idHeal++) {
float magStart=6;

int count =0;
for (float b = magStart ; b <=20.1; b+=0.1 ){

rowset = select * from Source into AGIS.Source
where rowcount < nPerHealMag

and healpixid = idHeal and magnitude between b and (b+0.1)
order by relFactor ASC;

count += rowset.numRows;
}

}

It should be noted that for some tests where only a few million sources are used a larger
HEALPix, or larger magnitude bins, will be needed to make the magnitude binning work
i.e. thirty million is the smallest possible number of sources with NSIDE = 128 and 0.1
magnitude bins. If we choose the Timeline for the photon density the size of HEALPix
is not an issue, both numbers need to be input parameters and their compatibility should
be checked.

4.8.4 Magnitude distribution

Next we must histogram the resulting set of sources in magnitude bins over the entire
sky to make sure we have a minimum number of sources per magnitude bin. It is felt
that magnitude bins of order 0.1 mag in G should be sufficient. Each bin must contain
some minimum number of sources, let us call this variable minPerMagBin. Then for
each bin where the number of sources is less than minPerMagBin we should select
more sources in that bin:

int binNum =0;
float magStart=6;
float magEnd=20.1;
for (float b = magStart ; b <=magEnd; b+=0.1 ){

binNum=(int)((b -magStart)*10);
if (magBins[binNum] < minPerMagBin) {

select * into AGIS.Source from Source where
magnitude between b and (b+0.1)
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and (rowcount < (minPerMagBin - magBins[binNum])
order by relFactor ASC;

}
}

The variable magStart here may seem strange but Gaia only observes to G ≈ 6. It may
also be worth considering magEnd ≈ 19 as such sources add little weight and much
computing.

4.8.5 Colour distribution

Analogous to Section 4.8.4, a histogramming and minimum must be applied for the
colour bins to ensure that chromaticity effects may be correctly calculated. We assume
that a unique mean ‘colour’ (it could be the effective wavenumber) can be computed for
every source, and that the sources are binned according to this value. Let us consider
minPerColBin as the minimum number of sources required per colour bin. Then
assuming we have a histogram of sources per bin, binCount, we may do something
like this:

for (float bin = 0 ; bin < maxBins; bin++ ){
if (binCount[bin] < minPerColBin) {

select * into AGIS.Source from Source s where s.bin = bin
and (rowcount < (minPerColBand - binCount[bin])
order by relFactor ASC;

}
}

In addition it may be necessary to ensure this colour histogram is equalised over certain
time periods. Calibration parameters will be calculated in certain time intervals and we
need a representative set of colours for these calculations. The scheme above may not
yield such a distribution, the Gaia sky is certainly not evenly distributed in colour space,
nor does it need to be. But we see enough of the sky over some time interval that an
even distribution would be possible. This area requires some further thought.

4.8.6 Check overall coverage

Finally one should check if the overall coverage has been met i.e. that for each HEALPix
id the count of sources is at least nPerHeal. Assuming the above selections all ended
up in a database AGIS and AGIS.sources allowed us to access that table we would do
something like this:

int count =0;
for (idHeal = 0 ; idHeal < nHealMax; idHeal++) {

select count=count(*) from AGIS.source where healpixid = idHeal;
if (count < $nPerHeal$) {

select * from Source into AGIS.source
where rowcount < (nPerHeal- count)
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and healpixid = idHeal order by relFactor ASC
}

}

In actual fact this histogram (the count selected from AGIS.source) and the colour and
magnitude histograms may be built up as the sources are selected - they do not need
to be calculated afterwards. But this implementation optimisation will not be discussed
here.

4.8.7 Photon Density

Although the primary selection scheme Section 4.8.2 attempts to make a relatively ho-
mogeneous selection of sources across the sky some inhomogeneity is inevitable (about
10-20% of the sky will fail the criteria). This could be dealt with by reducing the number
of sources in each pixel to equal the pixel with the minimum sources, this however will
reduce the overall number of sources used. Not placing a constraint on this distribution
will greatly ease the selection of suitable sources for the astrometric solution. Since the
source distribution is non-uniform we must take account of this in the attitude solution.

When calculating the weight of observations in the attitude the total number of photons
in each FOV should be taken into account. In fact we need some estimator of 1/σ2 for
each FOV. There are at least two approaches to this:

1. Looking at all observations over time and binning them in the FOVs for short time
periods Section 4.8.7.1.

2. Constructing a Photon Density Map irrespective of time Section 4.8.7.4.

4.8.7.1 Photon Density Timeline

This is the superior approach in terms of correctness and the preferred approach to start
with. In this approach the actual observed flux at any given time is known.

4.8.7.2 Construction of the Timeline

One pass through all of the primary AstroElementaries is needed to construct a Timeline
for each FOV. A timeInterval must be chosen to sum the Photon counts over. The
attitude spline which has knots at 15 second intervals (and may be variable later) must
be considered here. Initially timeInterval = 15 seconds will be used, if necessary later
longer intervals may be investigated.

Then for each FOV for each timeInterval seconds of the mission the total Photon
Density should be calculated by summing the approximate photon count (e.g. 10−0.4max(G,Gsat),
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this may in fact ultimately be some non linear function of magnitude) over all the pri-
mary sources in that FOV during that time interval. Here G is the magnitude of the
source and Gsat the magnitude at which the central pixel of the image saturates.

This would then yield two arrays of numbers with the total observed photon density per
time bin. The order in which the data is read is immaterial as its time predicts which
bin it should be added to i.e. for the time of the observation t the bin is Floor((t −
startTime)/timeInterval)

Such Timelines may be constructed as data is loaded into the AGIS database or in one
pass through the data after it is loaded.

4.8.7.3 Using the Timeline

For the photon density at any given time one may simply pick the bin which that time
falls in as the photon density i.e. for time t the bin is f loor((t−startTime)/timeInterval)

4.8.7.4 A Photon Density HEALPix Map

This was originally considered the simpler approach but the Timeline approach Sec-
tion 4.8.7.1 is better and not necessarily more complex to construct.

4.8.7.4.1 Constructing the Photon Density HEALPix Map
A HEALPix map may be constructed which sums the photon counts from the sources
in the HEALPix pixel. This may, as a first approximation, be calculated by summing
a quantity like 10−0.4max(G,Gsat) over all the primary sources in a particular HEALPix
pixel. Here G is the magnitude of the source and Gsat the magnitude at which the central
pixel of the image saturates (or rather, where the first gate is activated). An NSIDE of
128 is chosen to give a pixel area of around 0.2 deg2 which is one third of the FOV. Since
we will be interested in neighbouring pixels this is best considered a map in the nested
scheme. Such a map may be constructed as the sources are loaded in the astrometric
database and is valid for the AGIS cycle as the magnitudes do not change in AGIS. As
each source is loaded the HEALPix library may be invoked as follows:

int nside = 128;
HealpixMapCreator mc = new HealpixMapCreator(nside);
HealpixMap m = mc.getMap();
m.setScheme(Scheme.NEST);
long pix =0;
double theta;
double phi;
for { Source s: primarySources } {

\\ check units and conventions on these very carefully.
theta = toRadians(s.getAlpha()) ;
phi = toRadians(s.getDelta()) ;
pix = Healpix.ang2pix_nest(nside,theta,phi);
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m.add(pix,GMath.pow(10,(Math.max(s.getG(),GSAT)*-.4));
}
\\now store m !

A map of this sort does not account for the case when a source is not observed in a FOV
at a particular time due to crowding, but this should be a small effect.

4.8.7.5 Using the Map

The HEALPix library allows one to select all pixels around a certain pixel or point on the
sphere. For our map above we would want the 10 pixels relating to each FOV and then
average these in each FOV. The HEALPix library provides a routine for this extraction.
If we consider m to be the map above then we may calculate the photon density in a
given FOV like this:

long pix = m.ang2pix(fovTheta, fovPhi);
int width = 3;
count = width * width;
//extract 3 pixel box centred on pix.
int [][] pixNums = m.box(pix, width,width);
// could use query_disc or polygon for this instead
double tot = 0;
int count = width * width;
for (int i =0; i < pixNums.length; i++){

for (int j =0; j < pixNums[i].length; i++){
tot += m.get{pixNums[i][j]};

}
}
double fovDensity= tot/count;

4.8.7.6 Using the Photon Density

Which ever approach is taken for calculating the Photon Density it is used to look up the
Photon Density in a given FOV which is then used to reduce the weight of observations
in one or other FOV.

Let dP and dF be the photon densities in the preceding and following FOV. Then if
dP/dF > R we apply a weight reduction factor of dF/dP to the observations in the P-
field (that is, we increase their formal errors by the factor

√
dP/dF). Conversely, if

dP/dF < R we apply a weight reduction factor dP/dF to the observations in the F-field.
Nominally R = 1, the procedure can be modified to allow a certain maximum weight
ratio R > 1 between the fields (where R may be of order 2–3) rather than strict balancing
of the weights. The optimum R remains to be determined, van Leeuwen used R = 2.7
in the Hipparcos reprocessing (van Leeuwen & Fantino, 2005).

It seems sensible to pre calculate the weight reduction factor
√

dP/dF since it will be
required in every attitude calculation for each iteration of AGIS. We could consider a
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two dimensional array where each row represents one timeInterval and consists
of two values: the first the weight reduction for the preceding FOV and the second for
the following. One of these numbers would always be one and the other containing the
weight reduction as outlined above. The actual look up would be as for the Timeline
outlined above Section 4.8.7.3.

4.8.7.7 Photon Density Ratio Server

We propose to present this Photon Density Ratio using a DataServer in a manner
similar to the Attitude and Calibration Data Servers. Hence the interface would have
a method getFovWeightReductions(GaiaTime t) which would return the
weight reduction factors for the two FOV at the given time. These numbers could then
simply always be used in the attitude calculations. A DefaultPhotonDensityRatioServer
could be created which simply returned a pair of ones to be used in case we do not wish
to use the weight reduction e.g. to test its effect.

The server would be instantiated by the AgisFactory in the same manner as the other
servers and could live without update for the entire AGIS cycle.

4.9 Conclusion

In this chapter the main phenomena and peculiarities of Gaia, which AGIS must deal
with, have been outlined. Some phenomena are dependant on magnitudes, colours or
spectral types of sources, Section 4.8.7 explains how it is intended to cope with this
in pre selecting “primary” sources for AGIS. The following chapter Section 5 outlines
some tests with simulated data showing how well AGIS already deals with some of
these cases.
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Chapter 5

AGIS results

Results! Why, man, I have gotten a lot of results. I know several thousand
things that won’t work.

Thomas Alva Edison (1847-1931) American inventor.

The AGIS software which has been described in Section 3 has been running on simu-
lated test data since 2005 with an Oracle Store as the back end. Simulated data in fact
provides the only possible proof that AGIS does not introduce systematic errors in the
solution since the true sources and observations are known to compare against. Typi-
cally the simulation adds noise which AGIS should remove, how well it removes this
noise may be precisely judged by comparing the resulting astrometry to the true values.
Many effects in Gaia observations are not distinguishable (e.g. an aberration in a mirror
or slight displacement of a CCD are calibrated in the same manner) in the real data so
we must be confident that AGIS does not introduce systematic errors itself.

In this chapter we present some of the initial tests carried out to verify that AGIS does
indeed provide the astrometric solution for Gaia observations. These results come from
many years of testing and many failures as well as successes - the Edison quote at the
beginning of the chapter echoing perfectly the sentiments on testing AGIS, there are
many things now known not to work. Perhaps more optimistically we find AGIS runs
both efficiently and correctly.

5.1 Test campaigns

The effort in running AGIS tests should not be underestimated. These are not the sort
of test which the author has run on his desktop machine of an evening. Rather it takes
a little more hardware (Section 5.2), time and planning. Hence it would scarcely be
possible to run these tests without the excellent Gaia team at ESAC.

The production of the high quality simulation data alone is a major task to which the
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entire processing consortium is indebted to CU2. The AGIS group has been fortunate
to have these simulations since the beginning of the development at ESAC in 2005.

The types of tests to be performed on AGIS are now outlined in the software test plan
(DH-001). A series of test campaigns are planed up to launch. Each individual test
introduces some particular noise in the data which AGIS should then remove. Other
tests (usually denoted T4) combine all the noise effects to make sure AGIS can remove
noise from attitude, astrometry and calibration. Many of these tests are very straight
forward, a few are however of particular interest and are discussed below.

5.2 The Machine

The machine used for the Gaia tests up to 2010 was purchased in instalments by ESA.
The initial machine for the first tests in 2005 consisted of twelve nodes each with 6 GB
of RAM and two processors (3.6GHz Xeon EM64T). An EMC storage area network
(SAN) with 5 TB of disk is attached to the nodes using fibre optic cable and the nodes
are also connected via Gigabit Ethernet cards in a local area network. AGIS has also
been tested, and shown to run as fast, using a cheap Rack Server Network Attached
Storage device of 6 TB. This cluster was upgraded to 18 nodes in 2006 and a further
4 nodes with quad core processors were added in 2007. The quad core processors
functioned very well for us providing the performance of 4 processors and in Table 3.1
the number of processors counts each core as a processor.

This is not a very special machine, it consists of standard Dell power edge blades with
standard Intel Xeon processors running Red Hat Linux. The blades are housed in a
standard DELL rack. There is no special HPC software used, a network of normal
Linux machines could work in the same manner. The blades tend to be tidier and more
power efficient for cluster computing.

Around 2008 ESAC also started running IDT and FL on a regular basis and the cluster
was no longer dedicated to AGIS. In 2010 a new IBM cluster was purchased with newer
Xeon multicore chips but very much in the previous vein. The total compute power at
ESAC in 2011 was bout 1.5 TFLOPS of which 0.5 TFLOPS was frequently used for
AGIS testing.

5.3 Result histograms

In all of the histograms in this section the text line at the top of each histogram has the
following structure:

N: X [a/b] - M: m - W: w
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with:

• X : Total number of values within the monitored and visible abscissa range

• a/b: a/b values less than the lower/larger than the upper bound of the visible
abscissa range

• m: Median of the distribution in µas calculated from the values within the his-
togram’s bounds - the position of the median is also shown in the histogram as a
vertical blue line

• w: Width of the distribution calculated as the difference between the 90th and
10th percentile

One should also note that the scale on the plots - varies with the distribution of values.

5.4 Initial results

The very first results from AGIS were published within DPAC early in 2006 (UL-015)
This was with one million sources simulated over just eighteen months of the mission.
This behaved very well making a major adjustment to noisy source positions already
in the first iteration. Fig. 5.1 shows the source position updates for this first published
AGIS test. This was actually the 373rd run of the AGIS system since work started at the
end of 2005. All updates in the cycle were in line with expectations from the simulation.
This was a very satisfactory initial result for AGIS.

Further test results in 2006 were mainly to show the system converged in a reasonable
time with five years data rather than just 18 months. Simple Gaussian noise was added
to the attitude, source and calibration parameters of a one million star five year data set.
The data consisted only of well behaved stars which would work in an AGIS solution.
This was published in detail in (UL-018). Most of this set of results went very well but
the update to the Z component of the attitude showed an unexplained spread as may
be seen in Table 5.2. This lead to an extensive investigation of the attitude update with
some errors discovered. Attitude update remained one of the AGIS weaknesses until the
attitude update code was eventually completely re-written in 2007.

5.5 Viability of the solution

Allowing for an increase in complexity in the AGIS system of a factor 10 from this
initial system the target machine assumed to be available at ESAC around launch could
perform an AGIS cycle on 100 million sources in about thirty days (UL-018). This
initial extrapolation was very pleasing. In 2008 AGIS was more complex with an im-
proved attitude reconstruction and more sophisticated calibrations yet it was three times
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faster than the original 2005 system (see Table 3.1. AGIS in 2011 is almost complete in
terms of functionality (but requires quite some work on robustness of the software for
operations) and has demonstrated ability to process 50 million sources in about eight
weeks on a subset of the IBM nodes spoken of in Section 5.2. Hence we remain confi-
dent that the final AGIS should complete on a reasonably sized machine in between four
and eight weeks. Here of course money will be the issue, how long may we wait for
the results - is one month acceptable considering the difference in price of the machine
needed to make it in two weeks?

5.6 More advanced tests

From testing the initial implementation in 2006 a basic confidence in the stability and
suitability of the system was gained. Next some more involved test campaigns were
designed to identify and fix other potential problems in the system. Each time a test
campaign was undertaken an initial test with noise free inputs was performed to ensure
no coding error had introduced some strange behaviour in the system. These tests will
not be presented here but should be considered when viewing more complex results.
Following the initial sanity check the perturbed simulation data is put through the system
- below a few of the tests are discussed.

5.6.1 Reference frame rotation

In all AGIS tests the true source positions are known from the simulator, hence plots of
the actual error on the source position are possible while testing. Thus while Table 5.1
shows the update in each iteration Fig. 5.1 shows the actual difference from the true
value or the absolute error which of course is only available when one uses simulations.
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Figure 5.1: Position error (diff from true) histograms for iterations 1 (top-left) to 39
(bottom right) of cycle 40. Notice that a relatively large error remains to the final itera-
tion which may be explained by a rotation of the reference frame one degree of freedom
exists in the solution. Note: not all iterations are shown.
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As may be seen from Fig. 5.1 even after convergence when the parallax update is less
than 1µas there remain errors or some hundreds of µas in very many source positions.
This is still a vast improvement over the initial errors, the error being reduced by three
orders of magnitude.

This is an expected manifestation of the fact that any AGIS solution is unique only up
to a rigid rotation and constant spin of the AGIS-internal reference frame with respect
to the true or simulated sky. Algebraically speaking, the problem has a rank defect of 6.

In fact this is immediately visible when we colour code the source position errors glob-
ally as depicted in Fig. 5.2, here the very low errors (blue in the figure) are seen around
the poles of the rotated reference frame.

Figure 5.2: Source position errors after AGIS convergence clearly showing a rotation of
the reference frame in the solution.

For the Gaia mission, quasars in the International Celestial Reference System (ICRS)
will be identified in the catalogue. These sources will be used to work out the pre-
cise rotation of the solution, for example by simple least squares minimisation. In the
simulations the correct source positions are known and so one hundred or so sources
scattered over the sky may be used to work out the rotation vector. This rotation may
then be applied to all sources to put them in the ICRS. The resulting rotated error map
is shown in Fig. 5.3 where it is clear the errors are at µas level and reflect a trace of the
scanning law as expected.

5.6.2 Basic Angle variation

The angle between the two Gaia telescopes is termed the ‘Basic Angle’ (see Sec-
tion 4.2). The rigidity of this angle is a primary design goal of the Satellite however
it is accepted that some variation will occur in the angle. The basic angle is so impor-
tant as it is the key to the absolute parallax measurements. A variation in the basic angle

80 William O’Mullane



5.6. MORE ADVANCED TESTS

Figure 5.3: Source position errors after rigid rotation of the coordinate system.

is indistinguishable from a global shift in parallax (GAIA-LL-057) on a short period of
time i.e. less than the spin period. Hence the Basic Angle Monitor (BAM) will be on
board the satellite to monitor this carefully. Variations over a longer period in principle
should be observed in the geometric along scan calibration.

The simulated data set GASS-LSS-1-C contains a variation in the basic angle with a
period of longer than six hours. The resulting AL calibration plot is shown in Fig. 5.4.
The variation is corrected for almost completely in the first AGIS iteration.

Figure 5.4: Large-scale AL calibration histograms for iterations 1 (left) and 8 (right)
of cycle 62. The basic angle variation in the data is quickly seen in the AL calibration
updates.

Lammers plotted this basic angle update more aesthetically in Fig. 5.5, here we clearly
see the periodicity of the variation in the basic angle and how well AGIS has modeled
it. The error is reduced to less than 1µas.
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Figure 5.5: Time-evolution of basic angle recovered in T1 (cycle 62). Top pane: Fi-
nal values of AL large-scale calibration parameters averaged over all AF CCDs as a
function of time for the two telescopes Astro-1 (black) cA1

0 (t) and Astro-2 (blue) cA2
0 (t).

Bottom pane: Differences cA1
0 (t)−1/2∆γ(t) (black) and cA2

0 (t)+1/2∆γ(t). So, the bot-
tom curves show how well the basic angle variation is recovered in the AL-large scale
calibration parameters. plot courtesy U. Lammers

5.6.3 Magnitude dependant centroid shift

The CU2 simulation data set GASS-LSS-1-D (XL-004) contained a magnitude depen-
dent along scan (AL) shift according to (5.1), this is done by changing the AL field
angle η :

∆η(t) = ∆ηre f +C0(G−G0) (5.1)

where G is the apparent magnitude of the source, G0 a constant chosen approximately
equal to the mean magnitude of the primary stars, and C0 a time-independent coefficient
chosen, for each CCD, from a uniform random distribution between 0 and +1mas/mag.

The test report (NB-001) contains the full details of the testing (89 pages). The report
concludes that adding a calibration parameter for linear magnitude shifts does not sig-
nificantly alter the convergence behaviour of the AGIS solution. As may be seen from
Fig. 5.6 AGIS recovers the C0 coefficients to sub µas level.
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Figure 5.6: Coefficient comparison between values recovered from AGIS last iteration
and simulation values in µas/mag as a function of the AF CCD number (from NB-001).

5.6.4 Spectrum dependant centroid shift

The simulation data set GASS-LSS-1-E (XL-004) contained an AL shift dependent on
the spectrum of the source as per Eq. 5.2:

∆η(t) = ∆ηre f +C1(W −W0) (5.2)

with W is the effective wavenumber of the source, W0 = 1.5 µm−1 and C1 is a coefficient
chosen, for each CCD/FOV combination, from a uniform random distribution between
−1 and +1mas ·µm, to remain constant over the mission.

Here the spectrum is represented by the effective wave number which is computed from
the five component (‘BBP’) fluxes fk, k = 0...4 according to (5.3):

W =
Σk fkλ

−1
k+1

Σk fk
(5.3)
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The full report (NB-002) contains many finer details of the test campaign. Fig. 5.7
shows the comparison between the AGIS-recovered values for the linear chromatic shift
parameters C1 and the corresponding true simulation values as a function of CCD num-
ber for both FOVs separately, all absolute values lie below 0.6 µas.

Figure 5.7: Coefficient comparison between values recovered from AGIS and simula-
tion values in µas · µm as a function of the AF CCD number for the two FOVs (from
NB-002).

5.6.5 More complex spatial calibration

The initial calibration model included in AGIS only dealt with the CCD position shifts
within the plane. Shifted Legendre polynomials L∗n in a coordinate µ̃ running from
zero to one along the trailing edge of each CCD were added as large scale calibration
parameters in 2007 (GAIA-ARI-BAS-011-05). The η equation (2.50) then becomes
slightly more complex, rather than a single ∆η term we have (removing the original
indexes):

ηl = η
0
n +∆η1L∗0(µ̃)+∆η1L∗1(µ̃)+∆η1L∗2(µ̃)+δη (5.4)

These polynomials account for rotations and stretching of the CCDs. The first order of
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this polynomial is equivalent to the original calibration. Hence running AGIS again on a
previous dataset with known outcome provided some assurance that the new parameters
did not introduce errors.

The GASS-LSS-1-F (UL-021) contains a polynomial derived term in the Across Scan
(AC) field coordinate (η). Fig. 5.8 shows the difference between the retrieved coef-
ficients and those actually used per CCD after 33 iterations of AGIS. The rather odd
alignment of the SM C0 values is due to the fact the SM CCDs are not included in the
calibration update. The C1 parameter is recovered to within 20µas which is accept-
able but could be better. The C2 parameters are recovered to less than 1µas. Clearly
some work remains to be done in this area but the current results are considered quite
acceptable at this stage.

Typically AGIS runs with a complete calibration model regardless of the input data -
only T4 tests have all effects included in the simulation.

Figure 5.8: Difference in coefficients of the Legendre polynomial per CCD from GASS-
LSS-1-F data, each FOV is shown as a separate data set with one panel per coefficient.
From (NB-003).
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5.7 Looking forward - AGIS during the mission

AGIS will run on one hundred million primary stars during the Gaia mission. Current
thinking has this occurring annually throughout the mission and once after all mission
data has been collected and reprocessed by the Intermediate Data Update. The results
presented here have been for only one million stars or one percent of the final number
of primaries. Tests are scheduled for larger numbers of stars, and 50 million have been
processed, but let us extrapolate here on the current set up first.

Currently AGIS requires forty iterations to reach convergence. On the present hardware
that requires about forty hours of computing time. Since sources processing time varies
little this time depends on the number of sources. It is speculated (but not proved) that
fewer iterations may be needed with more sources however let us assume we always
require forty iterations. If we then say the current sources are one percent of the final
number the final number should take one hundred times longer or about four thousand
hours or one hundred and sixty seven days. If we consider a processing cycle of one
year or even six months this would already be an acceptable run time.

AGIS is of course not finished and it will have additional processing added to it. Al-
though we have seen (in Table 3.1) that more complex processing has not caused an
increase in processing time to date, let us assume we are less fortunate in the future and
that AGIS is a factor five slower than today. This would mean on the current system
spending more than two years to process the one hundred million sources. Two years is
of course totally unacceptable.

So then let us look at hardware. The current hardware system would be a mere toy if
looked at retrospectively from mid mission say 2015. Even by today’s standards it is not
particularly powerful rating only about 140 GFLOPS (Giga Floating Point Operations
per Second). This machine has been built in parts since 2005 at a cost of around 200K.
It is hoped to have a 10 TFLOPS peak computing facility at ESAC during the Gaia mis-
sion. Here Moore’s law is heavily relied upon to make such a purchase feasible. Gordon
Moore (Moore, 1965) told the world (back in 1965) that component density (read pro-
cessor power) would double every year. His formula has only been slightly revised to
eighteen months rather than one year for fitting the last forty years of data. This trend
now seems set to last until at least 2017, the production of multi core processors (Intel
have hinted at a 64 core processor) leads one to have faith in this. Certainly the huge
variation in price will not diminish but the range outlined for the ESAC hardware in the
year 2017 would be between 70K and 2.6 Million1. Using a PERT costing on a num-
bers like this we get about 1.3 Million for the machine. These numbers are detailed in
Fig. 5.9.

FLOP estimates ignore I/O. We also have a relatively large volume of data which must
be operated upon. The volume is too large to consider holding it at all in any form of
shared memory so it will need to be repeatedly read from disk. The choice of hardware
architecture is therefore quite important in that a super fast machine with bad I/O will
probably not do the work. Indeed early work such as (GMV-GDAAS-RP-001) showed

1This pessimistic number also assumes Moore’s law does not hold true
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GFLOP/s needed ESAC 1.50E+04
TB Disk needed ESAC 1000

Year 2006 2011 2015 2016 2017
Optimistic Total Processor € 2,250,000.00 € 378,157.50 € 90,795.62 € 63,556.93 € 44,489.85
Pessimistic Total Processor € 7,500,000.00 € 4,428,675.00 € 2,905,653.67 € 2,615,088.30 € 2,353,579.47

Cost Estimate (Optimistic + 3*Pessimistic)/6 € 4,125,000.00 € 2,277,363.75 € 1,467,959.44 € 1,318,136.97 € 1,184,204.71

Optimistic Total Disk € 1,500,000.00 € 252,105.00 € 60,530.41 € 42,371.29 € 29,659.90
Pessimistic Total Disk € 15,000,000.00 € 2,521,050.00 € 605,304.11 € 423,712.87 € 296,599.01

Cost Estimate (Optimistic + 3*Pessimistic)/6 € 7,750,000.00 € 1,302,542.50 € 312,740.45 € 218,918.32 € 153,242.82

Total € 11,875,000.00 € 3,579,906.25 € 1,780,699.89 € 1,537,055.29 € 1,337,447.53

Figure 5.9: Cost projection using PERT analysis for SOC hardware. Here disk and
FLOP estimates are taken from the current setup where prices are known. A Moore’s
law scaling is then used to give a best price estimate at several future points. We see that
delaying the purchase of the final hardware to 2017 is highly cost-effective.

that I/O is a significant problem for Gaia processing. Furthermore in the AGIS develop-
ments it was seen that reorganising the data access has significant impact on the system.

Let us then return to AGIS of the future with one hundred times more data and five
times more processing to do. Hence we scale AGIS by five hundred. On the current 140
GFLOPS machine this scaled up AGIS would take about 1000 days. The 10 TFLOPS
machine however is 70 times more powerful than the current system so it could do the
scaled up AGIS in 15 days, assuming I/O is dealt with as efficiently as in the current
system. Even allowing another factor two for I/O slowdown and problems this would
lead us to around a 30 day run time for the final AGIS. This is a perfectly acceptable run
time. More recently in 2010 a 50 Million source five year run was performed confirming
these predictions, it took over a month but not on the final hardware using only about
0.5 TFLOPS of the Cluster. This AGIS is also the most complete yet and quite repre-
sentative of the final product. This version of AGIS was also used to produce the tests
for (Lindegren et al., 2012), in that paper applying some scaling factors to the runtime a
final solution is also predicted as not taking more than 60 days on the future hardware.

If we fail to make AGIS fast enough either by having computational problems or by fail-
ing to buy sufficient hardware we still have the possibility to run AGIS first on a subset
of primaries to work out large scale calibrations and only later include all primaries to
calculate the small scale calibrations. This was mentioned earlier in Section 4.4.
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5.8 Conclusion

The ESAC team have been busy testing AGIS with various simulation data sets for over
five years. Each set has improved AGIS and demonstrated that it can retrieve or smooth
out the sort of effects expected in the Gaia astrometric instrument. Perhaps most im-
portantly, the tests have proved a Global Iterative solution is both viable (Section 5.5)
and useful for the Gaia Astrometry. With the AGIS system as of 2011 running an iter-
ation over 50×106 sources in twenty four hours on a modest multiprocessor system it
would be possible to process 108 sources in about three months. We may safely deduce
this, as the time to completion for AGIS is linear with the number of sources included.
Undoubtedly the algorithms will become more complex but the computers will become
faster. It is in any case the intention to have a far more powerful machine for the final
system. No other approach to the Gaia astrometry has proved viable to the level demon-
strated by AGIS and briefly summarised here. The testing is by no means finished and
will continue for several more years to ensure the best astrometry may be extracted from
the Gaia data.
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Chapter 6

The development approach

The tree which fills the arms grew from the tiniest sprout;
the tower of nine storeys rose from a (small) heap of earth;
the journey of a thousand li commenced with a single step.

Lao Tzu (604-531BC) Chinese Philosopher (Tzu, 1994, Chapter 64).

The development presented in Section 3 was carried out quite rapidly using Agile1 tech-
niques in particular eXtreme Programming (1999). The approach followed is outlined
in this section as it is felt the building and directing of the team to build the software
is an important achievement. The approach followed borrows from many sources and
personal experience gained in developing operational software over many years. For
readers within DPAC this section is a revision of (WOM-006). Initially Section 6.1
posses a question which is argued frequently within ESA - is science development es-
sentially different to satellite development?

6.1 Is development of Science software different?

The author conducted a survey over a period of one year of many large science devel-
opments (WOM-003). This proved to be a most interesting study and concluded that
science software development is indeed different to traditional software development
due to the funding structure and general approach to leadership. This is in any case

1Agile is a collective word used today for iterative and incremental development techniques (or not
waterfall development) http://en.wikipedia.org/wiki/Agile_development
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quite different to a satellite development project. Despite this study and many interac-
tions within ESA they seem set to impose a much more traditional project management
structure on the DPAC. This is lamentable and will cause a loss of effort. The approach
to development within DPAC of using cycles and always having some working software
leans much more toward the Agile techniques discussed here than traditional project
management. A paper on this topic was presented at ADASS in 2006 (O’Mullane et al.,
2007). Indeed these days there are few if any software companies remaining who fol-
low the ESA waterfall approach to development. The most lamentable thing of all is
perhaps that Royce, attributed with inventing the waterfall model, showed the waterfall
approach in 1970 (Royce, 1970) Fig. 6.1 as an example of the flawed way to do software
development.

Figure 6.1: Royce’s waterfall model reproduced from (Royce, 1970). This is held to be
the original waterfall approach but it is a scheme which Royce’s paper claims is flawed.

Royce in fact makes many suggestions such as having more documentation than you
might expect, involving the customer, lots of testing and doing it twice Fig. 6.2. He
points out the flaw is that it takes a long time before implementation starts and real
problems are seen. These real problems may fundamentally change requirements. All of
these ideas are in line with Agile approaches. Our intention is to do it far more than twice
- about ten times for DPAC. Even the preliminary AGIS presented here (Section 6.6.7)
went through several iterations before it was ready.

6.1.1 Approach to Change and Risk

The perhaps fundamental difference between science software development and satellite
development is the risk element. Often for the software we may not know exactly how
a particular problem will be solved or indeed if it may be solved at all. It would be a
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Figure 6.2: Royce’s “do it twice” diagram reproduced from (Royce, 1970). Here he
suggests that once through the waterfall is not enough - one should, at least, do it twice.

huge mistake to discard certain solutions simply to make a good plan (which is after all
what most managers would like to see). Let us take some examples.

It is true certain things on the satellite have two solutions, the possible use of L3CCDs
for the spectrometer on Gaia provide a good example. Here is a technology which would
meet the science goals of the system but which was considered too immature at an early
juncture and so ruled out. This is a typical risk averse style of project management
and perhaps it is merited on a system which must be ready on time for launch. Much
of the science community would have preferred a more risk embracing approach even
if it possibly meant the spectrometer not working in flight. ESA in this respect is no
different now to any other funding agency - no one funds true experimentation where
there is a possibility of failure, failure simply can not be tolerated. In such a light of
course one takes the safe route even at the expense of scientific return. Somehow the
failure to meet the scientific requirements is seen as acceptable - the requirements are
simply changed and the new easier requirements are met. Success all round it seems.

On the software front similar decisions need to be made. The exact position and velocity
of Gaia are needed for the ephemeris reconstruction. Normal ranging from the ground
stations is not sufficiently accurate for data processing needs. A proposed solution to
this is to make ground based observations of Gaia on a daily basis. These observations
can significantly improve the positional accuracy. So we have a plan, in a traditional
approach we would look no further. In actual fact the Dresden group are pursuing a
mathematical modeling approach to determine Gaia’s velocity from the science data.
The ground based observations would then be a less accurate check on their result.
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On the software side even if we have a solution we must look for a better one. Practically
all of the data treatment uses some form of approximation which may be improved upon.
Even AGIS has a theoretically better solution which should be, and is, pursued at some
level. Such parallel investigations which may fail are essential to get the best results
from the Gaia data. On the hardware side parallel developments are avoided for cost
reasons - on the software side effort must be spent on essentially risky possibilities.

6.2 Global solution background

Satellite programs are large engineering activities carried out in a very programmatic
manner with several phases and checkpoints for feasibility of the project. The Gaia
hardware was no different with many special demonstration projects for mirrors, CCDs
etc. undertaken as a result of the initial feasibility studies. Perhaps unlike previous
space science missions, in 1995 the project scientist felt that the software for the data
processing itself was sufficiently complex to merit its own feasibility study.

In this section we look at some of the activities in the global solution field and also
set the AGIS achievement in context looking at a little Gaia history. In particular we
briefly describe GSR (Section 6.2.1), the Initial Hipparcos re-reduction (Section 6.2.2)
and GDAAS(Section 6.2.3).

6.2.1 Global Sphere Reconstruction (GSR)

The notion of a global solution is mentioned in the Hipparcos documentation and some
merit was given to pursuing this as a verification of AGIS in DPAC. The Torino group
have been working on this since the 90’s primarily from the perspective of relativistic
effects as in (de Felice et al., 1998). Although this paper speaks of an iterative solution
at the founding of DPAC they moved decidedly toward a direct solution i.e. with all
unknowns solved in one step unlike the block iterative approach of AGIS. As pointed
out by Bombrun (Bombrun et al., 2010) a direct solution such as this can not work for
a large number of sources and the aim of Torino was to do this for perhaps one million
sources. The current description is in a series of Technotes such as (AVE-002) for
astrometry. Between 2006 and 2011 some form of GSR has been run about ten2 times
on the hardware at DPCT. Currently a source solution with 100,000 sources is claimed
to work however the results have not been well demonstrated to the community. In spite
of repeated claims the solution has proved to be elusive - one may note on page 115 of
the DPAC response to the AO that GSR was almost finished in 2006 “Thus, a relatively
sophisticated GSR model is already available for the verification of the AGIS solution,”
while such verification has still not taken place in 2011.

Clearly this is a most complex problem to solve and implement even for one million
sources.

2private communication
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6.2.2 Hipparcos re-reduction

As early as 1995 while still finishing Hipparcos the project scientist started to explore
the feasibility of the Gaia data reduction. Even in Hipparcos the FAST consortium had
the engineering expertise and leadership of CNES for data processing. Gaia would be
even more complex. In 1997 the author came to assist in the final CDROM production
for Hipparcos and soon after engaged in many conversations on the Gaia processing. It
was clear the Global Iterative Solution was novel and required testing. An initial test
was agreed with Lindegren and initially coded by the author over about two months in
1998 (O’Mullane & Lindegren, 1999). Some weeks were spent running this distributed
system on colleagues’ solaris machines while they were out of the office. The idea was
to do a form of global iterative solution for chromaticity corrections in the Hipparcos
data. The system oscillated around some solution which was not scientifically very
interesting but did show that a database and distributed computing could be used for a
block iterative solution. This led the way to GDAAS.

6.2.3 Gaia Data Access and Analysis Study (GDAAS)

GDAAS was a study commissioned by ESA in 2000 (GAIA-SOW-001)3. The purpose
of the study was at least two fold. Primarily it was to establish the feasibility of the
Global Iterative Solution and thereby show some feasibility for the entire Gaia data
reduction. There was also a feeling that an engineering, rather than scientific, approach
to this task might be more appropriate given its scale and complexity. There was no
single group in the science community at that time with the discipline and expertise that
might be needed.

A funding source within ESA was used to fund a study to turn the prototype Global
Iterative Solution (O’Mullane & Lindegren, 1999), based on Hipparcos data, into some-
thing based on simulated Gaia data. The Gaia community were strongly behind this
study. Lindegren was prepared to provide algorithms, ESA were to provide simulated
data, others were ready to analyse results. Ultimately simulations were done by the Uni-
versity of Barcelona group who continue to successfully provide simulations for all of
DPAC. (GAIA-SOW-001) asked for many other specific technical points, for example
it already suggested Java and Objectivity be used (the prototype being in that combi-
nation) and requested some comparisons to C++ and endorsement or not of Java. It
also contained lower priority tasks such as looking at SCOS20004 and First Look which
were subsequently, and correctly, dropped during the study.

The winning bidder (a consortium consisting of GMV, CESCA and UB) proposed a
great team with experience in Java and project management from GMV, while scientific
expertise was to be provided by UB (Universitat Barcelona). The initial study period
was for two years and many progress reports were produced, understandably positive
while also mentioning many technical problems. Indeed for the first study the outcome

3This is written of with some authority as the statement of work was written by this author.
4Spacecraft Operations System - standard in the European Space Operations Centre.
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was sufficiently convincing to continue with a second study.

In 2002 a final report (GMV-GDAAS-RP-001) was delivered claiming success e.g. page
57 “system is working, albeit with certain limitations” although no actual converged so-
lution had been achieved for the six month dataset. In the contract GMV had managerial
control and were to provide the rigorous engineering and project management support
supposed not to be generally available in an academic environment. Somehow, between
GMV and ESA, there was a lack of appreciation of the gravity of problems reported by
GMV and accumulated by GDAAS. This is not strange in project management, people
involved in the project downplay problems, the customer and provider both want the
project to succeed after all. Harrison and Associates in management training seminars
use the analogy of boiling a frog: if you place the frog comfortably in a pot of water and
slowly heat it he may stay until he is actually cooked, if you throw him in hot water he
will immediately jump out. The slow accumulation of small problems can be potentially
catastrophic.

With the proposed launch date nearer by two years, and the feasibility of the Global
Iterative Solution still unproven, this remained a critical task for the project and there
was still no group in the community with the capability to demonstrate the feasibility of
Gaia data processing. It was decided to give GDAAS a further try with another contract.
However things got more complex. For example early pipeline processing (something
like today’s IDT) was included in the statement of work as well as many other points
of interest. This meant the main goal of showing the astrometric processing feasibility
seems to have been slightly overcrowded. During the project several major changes in
the Gaia design occurred and were included in the design of the processing system and
simulations. After two more years the system performed in a very poor manner with a
time close to infinity for one iteration.

In 2004, the Project Scientist was sufficiently concerned about the lack of progress of
GDAAS2 and instigated an independent review. This was conducted over a three week
period during which O’Mullane5 and Lammers6 co-located with the GDAAS team in
Barcelona to study the code and the system. Bastian7 joined for one week to look
specifically at astrophysical considerations. UB and GMV provided complete access
to their systems and code allowing detailed investigation to be done. The resulting
report (Lammers et al., 2004) pointed out many potential problems in the GDAAS2
system. It was too complex using many nice but impractical computer science ideas
and having serious I/O problems. The wrapping of Fortran in C to be called by JNI
was also cumbersome. The report provided several pointers on what to change and
how to change it to improve performance. This report was used by the ESAC team,
subsequently established by the Project Scientist to take full responsibility for the core
data processing, as a starting point for their work.

Later in 2005 the ESAC team commenced work and provided a convergent solution
5O’Mullane at this point in time was at JHU working on SDSS but with prior knowledge of the Global

solution and a member of the Gaia data processing working group.
6Lammers at this time was in the Space Science Department in ESTEC working mainly on XMM but

partially on Gaia.
7Bastian at this time was in the Gaia astrometry working group and also a leading figure in DIVA, a

German Astrometric satellite which was later cancelled. He was also deeply involved in Hipparcos.
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(from thence called AGIS) within just four months.

It should be noted that at this point the UB team also gained some success running seven
iterations of the system but not achieving convergence (UB-GDAAS2-TN-035) nor the
performance of the ESAC system. This later work was funded by UB beyond the scope
of the GDAAS2 contract and without GMV management. Another positive outcome of
GDAAS was the rather complete Gaia simulations which, in augmented form continue
to be used today.

6.2.3.1 Lessons learned

One must not forget the fact that the global solution is a difficult task and probably only
achievable if almost all of the project is carried out correctly. UB did a good job un-
derstanding the global solution and getting GMV information to implement algorithms.
Still there were some obvious weaknesses in the project as a whole.

From an academic perspective, much in the vein of the Edison quote in Chapter 5,
GDAAS may be seen as a success in highlighting many problems which could then
be avoided in later developments. From an industrial contract perspective it was less
successful.

Already at the kick off meeting GMV suggested removing the experienced project man-
ager. Although Java experience was scarce at that time GMV put people on the pro-
posal with Java experience. After some time the experienced Java programmers were
essentially moved off leaving one main programmer who at the time had little Java
experience.

On the ESA side it was difficult to find a suitable technical officer who truly understood
the problem in hand and the status of the project as it progressed.

Given the outcome on GDAAS1 it was probably not a good idea to significantly increase
the scope for GDAAS2. Even the scope of the original study was a little wide.

On a more technical note dropping the Fortran and JNI and going for pure Java against
some opposition was a good lesson taken from GDAAS and probably aided in the adop-
tion of Java in DPAC later.

It is clear that many technical companies work on the idea of interchangeable resources.
However to make something like AGIS work, one must spend time understanding the
intricacies of the system. It requires dedication, continuity and fruitful interaction with
the community. It is a common misconception on projects that one hundred people do
the job faster than one or two. This may be true for basic work but clearly for a complex
job you need the correct people to do the job.

By early 2006 it was clear in the Gaia community that AGIS would reside with the
ESAC team under the scientific and algorithmic guidance of Lindegren. It was set up as
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such in the DPAC responses to the Gaia Data Processing Announcement of Opportunity
(FM-030). GDAAS work was wound down.

6.2.4 Nano Jasmine

Just as a final note the Jasmine group in Japan will attempt to fly a small Hipparcos
like satellite named Nano Jasmine. It has a modest goal of producing a Gaia like cata-
logue but at Hipparcos accuracy. Since this is a TDI scanning instrument with no input
catalogue the Japanese group sought help from DPAC for their astrometric solution.
ESAC and Lund are assisting them with applying AGIS to their data. The fact that the
Japanese group sought the assistance of the Gaia AGIS team is a further indication of
the true complexity involved in implementing the Global Iterative Solution.

6.3 Clients, requirements and teams

In many projects it is conceivable that an individual working alone may implement an
entire system. It is equally clear in a project the size of Gaia’s DPAC that teams of
people will have to work closely together to achieve the final result. Decomposition to
sub-systems will of course help and the CU/DU decomposition of DPAC is the first step
in this direction. Such a decomposition still leads to relatively large sub-systems and
also to an integration problem. At some point a team is needed to achieve the task in
hand.

When putting a group of individuals in a team we lose effort. By this we mean that what
an individual may do in a week is not necessarily done by a team of five in one day.
This is clear to anyone who has worked in a team. What we must try to do is reduce
the team overhead and try to get our team output as close as possible to optimum. This
requires clear goals and a common understanding of how to achieve those goals. Goals
must be clearly agreed with the client, in the initial phase of AGIS development this was
the Project Scientist, in advance of any project preferably in the form of a requirements
document. Within DPAC now we see System Requirements Specifications (SRSs) for
all DPAC subsystems. Without an original goal a team may be in an endless loop of
developing to a moving target. This would mean the team never achieves anything in
both their own eyes and those of the client. Such a situation must be avoided.

The client issue for DPAC is rather tricky. Officially ESA is the client in that DPAC
agrees to produce a Star catalogue for ESA in 2020. From the point of view of the
software required to do the processing DPAC is effectively its own client. Hence the use
of “System Requirements Specifications” (SRS) from ECSS (ECSS-E-40-1B) rather
then “User Requirements Specifications” which would imply more something written
by a client. The SRS allows requirements to be mixed with more system design oriented
material which is frowned upon in a user requirements document. In one sense this
is a huge advantage of ECSS over the space agency’s older PSS05 standard which it
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replaces. The System Requirements and Specification (SSS) document (WOM-018)
provides top level requirements and ties all individual SRSs together.

Achieving a goal requires careful planning and tracking of the team performance. Time
and intermediate milestones must be carefully planned and tracked in order to know
if the desired result will be achieved within the desired time. If it seems impossible
to achieve the desired result in time, immediate action must be taken. This may be
de-scoping the milestone or increasing manpower. Increasing manpower introduces its
own problems, certainly more than doubling a team in over a short period will introduce
problems. Doubling over a few months should be possible if carefully planned. Agile
techniques such as eXtreme Programming (XP) (Beck, 1999) attempt to give better
planning and feed back on progress for projects. The use of these techniques by the
AGIS team are described below.

6.4 Risk

To paraphrase Jim Gray 8 there are only two things to fear: the first is failure, the second
is success. A successful software project will tend to see the software used more widely
and creatively than anticipated in the original design. Furthermore success leads to
higher expectations from the client. In many cases risk is avoided to achieve a goal e.g.,
the risk of a radical change in practise or design. It is difficult to decide when a project
is in such a state that a major risk should be taken. Often people ask if the change will
make the system work - perhaps the correct question is rather, is it more likely to fail
than staying as we are? We need to embrace change and learn to deal with it in a good
way. Indeed “embrace change” is one of th tenets of eXtreme programming (Beck,
1999).

6.5 The initial conditions

In September 2005 the initial ESAC team of O’Mullane, Lammers and Hoar (part time)
was formed. The ultimate goal of the ESAC team is to manage, develop where needed,
and operate all Science Operations Centre software within DPAC. The initial goal, how-
ever, was to get AGIS working by the end of the year. Perryman set a clear goal here
- the system was to complete one outer iteration in under three weeks on the machine
installed at ESAC. There was no indication that such a goal was achievable (see Sec-
tion 6.2.3) but all agreed that if we could not make progress with the Global Solution
serious questions would be asked about the overall feasibility of the Gaia processing.
Without the core astrometric solution Gaia would not achieve its science goals and as
such could have been dropped by ESA. Indeed there were many high level meetings in

8Jim was a Microsoft fellow and a founding designer of SQL during his time at IBM. Sadly he was
lost at sea on January 28th2007 the resulting search showed how well liked and influential he was http:
//www.theregister.co.uk/2007/04/30/jim_gray_tribute/
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ESA concerning the feasibility of the astrometric processing in 2006, fortunately AGIS
results were available to calm fears in this area.

6.6 General approach to the development

The first two weeks were spent in setting up machines and installing development tools
such as Eclipse (http://www.eclipse.org/). The first major decision was to
stick with Java, at least initially. During this period the GDAAS code was revisited
and a new Architecture (see Section 3) based on the Data Train crystallised. The second
major decision was to use this new architecture and not to use any GDAAS infrastructure
code. This meant taking and modifying only algorithm code from GDAAS. Many years
had been put into the GDAAS infrastructure and we had only a few months to produce
a better system, however the team agreed the risk was merited. We also felt it would
not be possible to improve the existing system sufficiently in the time allocated i.e. the
radical option was felt to have a slightly better chance of success. An overall Use Case
for the final system was drafted as a goal document. This document defined the bounds
of the system e.g. to only deal with AGIS not IDT and data loading.

6.6.1 Agile Techniques

Many IT companies are now employing so called ‘Agile’ techniques for team planning
and programming. The notion behind these ideas is to make the team more responsive
to change and to problems. A rapid development is presumed as are poorly defined re-
quirements. Rather than well defined requirements the client is supposed to be involved
in the definition of tests often extensions of use cases. Such approaches have existed in
IT in many guises since the beginning (Larman & Basili, 2003). Approaches such as Ra-
tional Unified Process (RUP) (Kruchten, 2003) follow some of the ideas presented here.
RUP is the commercial realisation by Rational of the unified design methodologies of
some of the great gurus of software design who finally gave up arguing about which way
was correct and settled on the Unified Approach (Jacobson et al., 1999). The Unified
Modelling Language (UML) (Booch et al., 2005) also springs from this collaboration
and is now the defacto standard for diagramming in object oriented systems.

In the second week of September 2005 the notion of using eXtreme programming (Beck,
1999) to organise the effort was discussed. The team were fairly open to this idea. The
facets employed are described in this section. Employment of a radical technique was
seen as a risk however no better alternative was on offer - a traditional waterfall approach
to AGIS would not work in the four month timescale allocated, a complete free for all
would also be too risky.

98 William O’Mullane

http://www.eclipse.org/


6.6. GENERAL APPROACH TO THE DEVELOPMENT

6.6.2 Collaborative development

The Concurrent Versioning System (CVS) was set up to hold the source code. The
repository was later replaced by the more sophisticated Subversion (SVN) system. In
principle any team member is allowed to modify any code which he feels is incorrect.
Also if a system wide change is planned nominally one person does this for all code or a
small group do it in unison while in the same office. This is quite different to traditional
developments where one team or individual may decide to change an interface and then
tell others they must fix their code to work with the new interface. Code should be
owned by the team not by individuals. Less up front design work is done in the eXtreme
approach but “pair programming” is encouraged. Hence for difficult or novel tasks two
team members will sit together to write the initial code - this again leads to better team
ownership of the code. Regular reviews of code should be organised about monthly.
The ESAC team now also organise large active code reviews where, for example, all
of the GaiaTools code is split between a team sitting in a meeting room. Each class is
examined, comments and coding standards compliance are checked as well as readabil-
ity. In these reviews, however, rather than just telling someone this is wrong small fixes
are done on the spot by the reviewers. Quick discussions may be held for any changes
a reviewer is not sure about. This sort of event leads to homogeneous code as well as
more homogeneous developers.

6.6.3 Testing and continuous integration

Cornerstones of eXtreme Programming are unit tests and continuous integration. It was
agreed to install Cruise Control and to employ JUnit for testing. The notion here is that
extensive tests should exist for each class, if something is changed and the tests pass the
team has confidence that the system should still work. Hence fear of change is reduced.
Ideally developers run all tests before checking their changes in. If there are merge
conflicts the developer must also fix these. This is already a good start but it is possible
for a developer to run all tests successfully and check in code and still cause a system
breakage. Cruise Control periodically checks out all code, builds it and runs all of the
tests. A second set of longer running “Integration Tests” are also run by Cruise Control,
the developer typically does not run these tests. In 2008 Cruise Control was replaced in
ESAC by Hudson.

Even if the system is not running it should always build - this is the responsibility of
every team member: Do not break the build. If a developer inadvertently breaks the
build they are supposed to fix the problem as quickly as possible.

6.6.4 Iterations and Stories

The notion of an iteration is to have a working system in a short period of time - the final
target is reached through a series of iterations. The system at the end of each iteration
does not have to be a final system but it should compile, pass all tests and show some
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more features than the previous iteration. Iterations are composed of stories. A story
is normally a short description of something the system should do - it is a form of Use
Case and should ideally be testable. In the ESAC case we include other stories in our
iterations such as writing documents and setting up systems.

This iterative approach has been expanded and incorporated in to the DPAC develop-
ment approach where ten cycles of six months have been defined for the entire DPAC
development. Here each cycle is similar in idea to an XP iteration. This should not
be confused with an AGIS cycle which is an attempt to run the AGIS software to con-
vergence. This approached was specified in (WOM-001) which is a DPACE approved
document. In the fun loving nature of XP, these cycles were given the names of the ten
highest mountains in the world.

6.6.5 Iteration planning and costing - points

At ESAC each iteration starts with a planning meeting. In this meeting the start date
(usually the next day) and end date of the iteration are agreed. At least one “big story” is
agreed e.g. Get get the Data Train infrastructure running. Next the whole team breaks
this down to smaller stories which should be less that a few days work. These are
written on post-it notes and stuck on a whiteboard 9. At this stage stories are grouped
mainly according to priority - what we must do (top of the board)- what may be done
later (bottom of the board). The initial AGIS iterations are briefly described below in
Section 6.6.7.

With a bunch of stories and a few developers how do we plan the work? Obviously
we need to cost stories. The approach we have taken here is exactly the XP approach.
The idea of a point is introduced, a point is a unit of work. It should not be considered
to exactly coincide with any time period but at ESAC a point may be considered to be
about half a day’s effort. The entire team then costs each of the stories in terms of points.
If a story is considered to be ten points it is broken down to stories of five points or less.
Ten points indicates too great an uncertainty on a short planning period. The important
thing here is that a manager is not saying how long it will take to do something but the
team collectively decides. Now we have stories with points, or costs, on them.

Next, points are allocated to developers. When points are allocated for an iteration
several factors need to be considered. First the actual number of available days in the
iteration are considered.

Next for each developer any leave or meetings must be discounted from the remaining
days. So finally we have a number of work days in the iteration. Using our half-day-
to-a-point rule we multiply this by two. This is the maximum this developer could do
in the iteration. As iterations continue we may calibrate this number against what a de-
veloper actually does i.e. some developers may do more than the theoretical maximum.
So this number needs to be tailored over time - new members may get less points for

9Here we depart from XP which uses index cards as they are more durable and they should be pinned
to a board. These days we do it on a projector with excel
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example. Furthermore there is supposed to be some collaborative programming - in XP
this number should be halved immediately as pair programming is to be the norm. In
the ESAC case we discount this by about thirty percent.

With the points allocated to each developer we know how much work we may do in the
iteration. At this point a quick sanity check must be done to see if the points on priority
stories exceed the available manpower and priorities need to be adjusted accordingly.
Now each developer is allowed to “buy” stories with the allocated points until all points
are used up. Leaving the room at this point is fatal as one ends up with all the worst
stories to do. With a short iteration period we may quickly asses our planning skills
and adjust the meaning of a point accordingly. It is for this reason we chose only two
weeks for our first iteration. We wished to try out the technique and asses our ability to
get a working system in place in the agreed time frame. Four weeks seems about the
longest an iteration should be. Bear in mind iteration end means ‘working system’. The
principle here is always working to working - we should not break the system.

Another advantage of short iterations is that a ten or even twenty percent overrun equates
to only a few days in real terms. In our planning we do not have iterations back to back
rather we have a few days unplanned between iterations. This allows a breathing space
to catch up on other work, run tests and investigate issues on an individual basis. This
unplanned time has been very good for the ESAC team.

6.6.6 XP Tracker

At ESAC we have used the XP tracker plug-in for Twiki. This is a web based tool
allowing iterations, stories and tasks to be entered easily. Each developer enters the
stories which they bought (hence the post-it is no longer important) and creates one
or more tasks in the story with the effort estimate (in points) associated with it. The
system then allows effort to be entered against each task as it progresses and generates
summary pages showing the percentage done at the present time. Here again rather than
a manager making a ‘Plan’ and trying to track it, the team maintains individual tasks
online and the status may be viewed at anytime. The team found this a little strange in
the beginning but quickly got used to the ability to see how we were doing in terms of the
iteration. Ideally team members update their tasks on at least a daily basis. Traditional
Work Package numbers may also be entered in the FEA field of the story - a script is
then used to produce effort per work package reports.

There are several quirks of XP tracker which make it inaccurate but since it is all only
an indication based on passed experience this is OK. However the overrun numbers in
Fig. 6.3 are not accurate (they are too low)10.

10 In 2011 ESAC switched to a Google Spreadsheet created by Gonzalo Gracia, this option was previ-
ously explored by Hassan Siddiqui in 2009 but not pursued at that time.

Implementing the Gaia Astrometric Solution 101



CHAPTER 6. THE DEVELOPMENT APPROACH

6.6.7 The AGIS iterations

The XP tracker gives a nice overview of the iterations which is reproduced here in
Fig. 6.3.

Figure 6.3: The iterations for the ESAC team are shown with the most recent on top.
Start and end dates are provided with a short textual summary. This is from February
2006 there are somewhat more iterations now.

If we total up the points from the AGIS iterations we get 204 points. Using our rough
guide to points this is 102 days of effort. Points are only a rough planning tool however.
If we take the available days in the period of time from the developers involved this is
maximum 225 days. If we take out meetings and other work 180 days is probably a
more realistic cost for the system. This is not a realistic cost for a polished system -
several corners were cut (see section 6.6.8) and no standards were adhered to.

The following sections briefly describe each of the iterations.
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6.6.7.1 Set Up Iteration

The first two weeks of loosely planed work was retrospectively put in the XP tracker
as a demonstration that the system worked. During this period Eclipse was selected for
development, XPtracker, Cruise Control, ant etc. were installed. The existing GDAAS
code was looked over by the team to decide how best to utilise it. The first proper
iteration was the Infrastructure Iteration.

6.6.7.2 Infrastructure Iteration

For the first ESAC iteration, called Infrastructure Iteration, a two week iteration was
chosen. The end date was chosen to coincide with the first visit of the Project Scientist
(our client).

The principle of the Infrastructure Iteration was to show all elementaries of the one mil-
lion sources could be read in a reasonable time. There was no intention to do anything
with them in principle, just see the data delivered by the DataTrain. See (WOM-004)
for complete information or Section 3 for an overview.

There were three developers in this iteration and only one (O’Mullane) had experience
of the XP approach. The XP tracker allows a summary of the iteration to be displayed,
it is too large for one page but the end of the summary is shown in figure Fig. 6.4.

The iteration goal of a running DataTrain was achieved on schedule. Figure 6.4 shows a
15% overestimate on this iteration which is not really true. Generally more was achieved
in a day than two points although it was still recorded as two points. Partially more than
two points were achieved by working longer hours - this is not the XP way. The notion of
making GDAAS work on our system was dropped which saved us some points. Figure
6.4 also shows that none of the developers achieved the full allocation of work - this
was mainly due to other issues needing to be dealt with.

At the end of this iteration the DataTrain was able to read all Astro Elementaries in 27
minutes. The use of small stories and a short iteration gave the team a good feeling of
achievement in a short period of time. Furthermore the principle of having a demon-
strably working system at the end of the iteration enabled the team to show the client
a good deal of progress at the first meeting. Most importantly a plan was followed and
the objective achieved on schedule. It was very important for the team to learn their
limitations, since in general people tend to underestimate tasks.

6.6.7.3 Algorithm Iteration

The two week iteration had gone well and for this iteration a small time frame was also
chosen, this time about three weeks so the end would coincide with a visit by Lindegren.
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Figure 6.4: The Infrastructure Iteration

104 William O’Mullane



6.6. GENERAL APPROACH TO THE DEVELOPMENT

We had a Data Train running, so this iteration was concerned with attaching algorithms
to the train. The decision was to concentrate on the Source Update. This was considered
to be the most difficult and time consuming of the algorithms. Achieving this Story
required considerable work from the entire team. At this point we also accreted a new
team member (Hernandez).

The new team member was introduces to the XP approach by including him in the
planning meeting at the beginning of the iteration. Hernandez came at 50% and had
his points further discounted because he was new to the team. He was already well
acquainted with the principles of AGIS. In true XP style the new team member was
writing part of the system on the first day of the iteration and achieved far more than the
allocated points over the iteration.

Some tasks were slightly underestimated while others were over estimated bringing the
team in only slightly ahead of the overall estimate. The iteration was finished on time
for the visitor. Source updating could be performed on half a million sources in about
five hours. It was clear from the previous iteration data access was about 30 minutes,
furthermore processors were seen to be running to over 80%.

Some collaborative programming was indulged in with our visitor also. Lindegren spent
an afternoon with Lammers looking at numbers flowing though the system. Several bugs
in the Source Update were discovered in this session which further reduced the time for
an iteration and saw sources converge. Because of the agile techniques it was possible
to include Lindegren’s changes in the system and run an iteration quickly enough to
send him away with the first few thousand updated sources. This is precisely how XP
should work.

At this point the team adopted the mantra “AGIS in a day”.

6.6.7.4 Integration Iteration

With Source Update running in record time the team was upbeat and the client was
happy. The next iteration was to integrate the Calibration and Attitude Updates. Global
had been de-scoped from the outset and was finally done in 2007.

Here there were two tasks which were similar in infrastructure requirements namely:
Calibration and Attitude updating. Although a common system could have been de-
signed for this it was rather decided to let the two developers do each in his own way.
Later the results were merged. Again with short iterations and stories it is ok to have
parallel effort like this - it doubles the chance of getting something working. In any case
the Calibration was started after Attitude and did indeed use some of the Attitude code.

Attitude turned out to be the most demanding of the algorithms in the end. As with
source updating, code was taken from GDAAS and some bugs were fixed. Lindegren
(remotely this time) looked over some of the attitude code and found several more bugs.
However it remained incredibly slow.
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At the end of this iteration the working system included Source, Calibration and Attitude
updating. Again there was some overrun particularly in attitude as there were problems.
Fig. 6.5 shows a 37% underestimate of the iteration in XPtracker. This is not accurate,
i.e. the underestimate was actually larger. The short iteration helps with this as in the
next iteration more time could be allocated to the problem area.

Figure 6.5: The Integration Iteration

6.6.7.5 Making it all work Iteration

The team was hoping to have the final system at the end of the Integration iteration
however the overrun ruled that out. In XP fashion, the iteration was not extended in this
case, rather another iteration with a new goal was started. It is important to refocus when
a goal is not met rather than blindly fight forward toward the missed goal. Everything
was running but there was no convergence monitor and it was not clear the system did
what it was supposed to do. This iteration was to produce some convincing output from
the system to show it really worked - iron out the kinks and write some documentation.
A process of investigative programming found a bug in the Sun JDK which caused the
attitude server to be ten times slower than it should be. A patch was available. More
interaction with Lindegren found further bugs in the constants - the result was indeed a
convergent system running in a remarkable three hours per iteration (UL-015).
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6.6.8 What should be different

The original team was too small and it was impossible to get new team members on
board as quickly as planned. This led to some corner cutting in the initial months which
have been ironed out. It remains difficult to add to a carefully balanced team and the
ESAC team remained understaffed compared to plans until 2008.

The code had not been reviewed as often as it might have been. The commenting had
not been checked as rigorously as it should - the Java Docs had noticeable holes in them.
These things have been remedied in the time since the “making it all work” iteration.
Code reviews are now more frequent and rigorous. Mantis is used to raise issues about
insufficient tests and documentation.

The team would have liked a little more time for code consolidation - this was done
in some cases e.g. merger of Calibration and Attitude Server code, and not in others
e.g. database writing. Again this has been subsequently handled with part of the RMI
server even going into GaiaTools, database writing was put into the store in 2007 and
all included in GaiaTools 4.0.

There was no detailed design documentation for the system. This is not simply to pay
service to ECSS but genuinely for maintenance and long term understanding of the
system it is necessary. Subsequently the Software Design Description (WOM-004) was
issued and reissued, it is a valuable document for anyone looking at the AGIS code.

The hours worked by the team had been excessive in the first six months which is alright
for a short challenge. For a long project, Gaia runs to 2020 so we are speaking of 15
years, and in accordance with XP, hours should not be excessive for the most part. Of
course it is a difficult balance to achieve sufficient goals while not over working - XP
relies a lot on self motivated team members.

6.7 Conclusion

The original proposition of the AGIS challenge to the newly formed ESAC team was
well met. The employment of novel coding and planning techniques helped the team
achieve their objective. In addition to achieving this important milestone the team as a
whole gained a good understanding of how the AGIS system should work.

The short planning cycles of the XP approach seem to be ideal for the scientific pro-
gramming we shall undertake in Gaia. It is clear however, to employ such techniques
the team leader needs to be focused and believe the technique works. Each team would
need to find their own way of working in this manner. However it is done, the principle
of an evolving system which is always going from ‘working’ to ‘working better’, is a
good approach for DPAC.

The risk of failure of the Gaia DPAC in the coming years is far too great to allow long
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planning cycles. In essence the development of science software does not always lend
itself to traditional waterfall approaches to software design. The iterative approach of
XP (Larman & Basili, 2003) with a lot of input from the scientists is clearly a better
approach.

Six monthly cycles were proposed to DPAC. Within that cycle at ESAC monthly, or
shorter than monthly, internal XP style planning is performed. Other groups will do this
in their own way. For a large DPAC planning cycles of less than six months would seem
too short while anything longer would allow almost a year to pass without a checkpoint
to return to if something goes wrong. These ideas have been expressed in (WOM-001)
and the six month cycles have been adopted by DPAC.

In the following year the AGIS added far more complexity and better monitoring while
maintaining a working system at all times. The ESAC team, and we believe DPAC, is
now convinced that AGIS will indeed work for the mission. Unfortunately Perryman
left the project in 2006 which was a blow to the team in terms of loosing leadership.
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Conclusion

The Astrometric Global Iterative Solution (AGIS) is a key part of the Gaia data process-
ing. In its essence it may be represented by a few equations and yet it has taken many
years to see an operational software system which has been able to solve these equa-
tions in a reasonable time. Making a functional AGIS has been one of the problems in
astronomy which requires a good understanding of the science as well as the computing
to achieve the science. Concentrating purely on the computing aspect and trying to fit
AGIS into some existing framework did not prove useful. Rather a simple but powerful
framework tailored to the AGIS problem has been built.

The initial chapters of this document attempt to show the depth of understanding of the
AGIS problem required to make an efficient AGIS implementation. The system as it
stands was presented in Section 3. Building such a system is not the work of one person
but rather a team. The aspects of team building required to put such a group together
have not been presented in detail here but perhaps merit a volume of their own. Needless
to say constructing the team and directing them to construct the system is also a non-
trivial task. The Agile approach used for AGIS is described in Section 6. This approach
has proved very successful and has been extended toward the DPAC in general. The
author then has not written every line of code in the implementation but has certainly
influenced every line of code written for AGIS and many lines of code throughout the
consortium.

For the author the journey to a working AGIS commenced in 1998 with first contact with
the notion of a block iterative solution for astronomical data and first contact with the
Gaia Science Team and in particular Dr. Lindegren. Reciprocally modern programming
constructs such as the object oriented domain and the Java language were introduced to
the Science Team. It was not until 2005 that a concerted effort by the author was put
into what was then, and remains now, named AGIS. This Astrometric Global Iterative
Solution, as crystallised in 2005 and in development ever since has been presented here.

Another system may replace AGIS in the long run up to 2021 and the final catalogue
production. The work on the AGIS framework has now influenced many of the other
Gaia processing systems. Currently Variability, Initial Data Treatment and First Look
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use a modified version of the AGIS framework for their tasks. Should AGIS be re-
placed, which is quite unlikely, any system coming after it would already benefit from
the framework put in place for AGIS, for in any case all observations must be treated in
a global manner to achieve the absolute astrometry required by Gaia.

It is not the end of the journey for AGIS but it is certainly a short moment of respite.
It has been demonstrated that AGIS is capable of reducing Gaia like observations to
provide the reference frame for the Gaia data. A novel approach has been employed in
the solution of a unique problem, the authors contributions to which have been presented
here. It has been equally difficult and rewarding, the Gaia flight data is eagerly awaited!
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Quaternion Primer

And how the one of Time, of Space the Three,
Might in the Chain of Symbols girdled be.

William Hamilton Rowan to John Herschel regarding Quaternions (Hankins, 1980).

When Hamilton presented quaternions to the Royal Irish Academy in 1843 it was with
no little shock to the community. It was, as we would say today “a bolt from the blue”
for Hamilton as he himself wrote:

I then and there felt the galvanic circuit of thought close; and the sparks
which fell from it were the fundamental equations between i,j,k; exactly
such as I have used them ever since. I pulled out on the spot a pocket-book,
which still exists, and made an entry, on which, at that very moment. I felt
that it might be worth my while to expend the labour of at least ten (or it
might be fifteen) years to come. But then it is fair to say that this is because
I felt a problem to have been at that moment solved - an intellectual want
relieved -which had haunted me for at least fifteen years before.

Hamilton to P.G Tait 1854 (Hankins, 1980).

Mathematicians had not thought that whole new algebra could be constructed with their
own rules. Today it is not so shocking, but you, dear reader, may still appreciate a
small overview of quaternion properties. Hamilton of course has a wealth of papers on
this topic in particular “On Quaternions, or on a new system of imaginaries in algebra”
(Hamilton, 1844) is an excellent compendium of the articles.

Quaternions form a four dimensional non commutative normed divisional algebra over
real numbers. Hamilton describes his quaternion as having one real and three imaginary
parts as follows:

H = a+bi+ c j +dk (A.1)

often the i,j,k are replaced with x,y,z to represent 3 dimensional coordinates and this is
perhaps the sense which best suits Gaia.
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Hamilton’s rules should also be noted, this is of course where he leads us away from
traditional algebra somewhat. The following are taken directly from (Hamilton, 1844):

i2 = j2 = k2 = i jk =−1 (A.2)

i2 = j2 = k2 =−1; (A.3)

i j = k, jk = i, ki = j; (A.4)

ji =−k, k j =−i, ik =− j; (A.5)

In fact the quaternion may be considered to be the sum of a scalar and vector, the scalar
here being a.

For simplicity we may consider our quaternion to be of four parts as follows:

a = a1 +a2i+a3 j +a4k (A.6)

We may represent the quaternion as a 4 vector. Using the T meaning transpose notation
we may denote this column vector as:

a =
[
a1 a2 a3 a4

]T (A.7)

It should be noted that in representing the quaternion as a vector there is a choice as
to whether the first or last value (e.g. a1 or a4) represents the scalar in the quaternion.
In Gaia the scalar is taken to be a4 the last rather than the first value. This is known
as the scalar last convention. In his papers Hamilton places the scalar first (A.6), since
he always expresses his work algebraically there is little confusion as he uses sums of
terms such as w,x,y,z. However when using vector or matrix rules this convention is of
consequence.

The similarity of vectors and quaternions is no great surprise since Gibbs, of Gibbs
and Heaviside those attributed with the invention of vector analysis, states it was a
simplification of Quaternion methods.

Quaternions may be added and subtracted just like vectors as follows:

a+b = [(a1 +b1)(a2 +b2)(a3 +b3)(a4 +b4)]T (A.8)

representing (a1 +b1)+(a2 +b2)i+(a3 +b3) j +(a4 +b4)k.

All scalar operations: addition, subtraction, multiplication and division are as for vec-
tors. For example:

s ·a =
[
s ·a1 s ·a2 s ·a3 s ·a4

]T (A.9)

Quaternion products however are slightly more involved although if looked at from the
vector perspective quite simple. It is the vector product of the two vector parts added to
the two scalar products. Let va denote the vector part of the quaternion a which in our
case is the vector [a1a2a3], then the product is as follows:
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ab = [vavb +a4vb +vab4,a4b4−va ·vb]T (A.10)

first the vector part:

=>

a2b3−a3b2
a3b1−a1b3
a1b2−a2b1

+

a4b1
a4b2
a4b3

+

a1b4
a2b4
a3b4

 (A.11)

then the scalar part:

a4b4−va ·vb = a4b4− (a1b1 +a2b2+a3b3) (A.12)

Which gives the following quaternion:
a2b3−a3b2 +a4b1 +a1b4
a3b1−a1b3 +a4b2 +a2b4

a1b2−a2b1 +a4b3a3b4
a4b4−a1b1−a2b2−a3b3

 (A.13)

Still using our scalar last convention we may express the product using the following
matrix which results in exactly the quaternion derived in (A.13):

c1
c2
c3
c4

 =


b4 b3 −b2 b1
−b3 b4 b1 b2
b2 −b1 b4 b3
−b1 −b2 −b3 b4




a1
a2
a3
a4

 (A.14)

This product is not commutative ab 6= ba it is worth noting however that unlike vector
cross products quaternion products are associative. Algebraically the vector product has
a fourth part which is not zero, vector analysis neatly throws this fourth part away. The
quaternion product above although using vectors and matrices is identical to Hamilton’s
algebraic formulation - the rules in (A.2) ensure that all other algebraic terms disappear.
The lack of commutativity of quaternions is perhaps what kept Hamilton from them for
nearly 15 years as he tried to obey all existing numerical laws.

The conjugate of a quaternion is defined as:

ā =
[
−a1 −a2 −a3 a4//

]
(A.15)

The inverse of a quaternion is given by:

a−1 =
ā
aā

(A.16)

A.1 Quaternion rotations

More of interest in Gaia terms is the property of the quaternion which allows a rotation
around a unit vector to be expressed as, again considering a vector and scalar part:

[v,s] = [vsin(1/2φ),cos(1/2φ)]T (A.17)
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These components are sometimes refereed to as Euler parameters. Hamilton implies we
should see the quaternion more as an operator and not an object. It is in this sense that
such a quaternion may be used to translate points in three dimensional space, this is what
makes them popular for computer games and problems such as attitude determination
and modeling. We may express any point for translation as [p,0]T thus setting the scalar
part to zero. The translation of the point is given by:

p′ = qpq−1 = qpq̄ (A.18)

Of course for any φ in (A.17) we could equally well have 2π = φ as an equivalent
angle. For any quaternion q an equivalent quaternion also exists which is its negative
i.e. q =−1q.

Another very useful feature of the quaternion is that a series of quaternions applied to
point may be expressed as the product of the quaternions, which gives a single quater-
nion to apply. In this case the original Hamilton convention is used in Gaia where rota-
tions are applied from right to left. This is perhaps counterintuitive to someone familiar
with matrix multiplication. A comprehensive overview of attitude representations may
be found in (Shuster, 1993).
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Appendix B

Acronyms used in this document

As for any large endeavour there are copious acronyms batted about in the Gaia realm.
Interestingly Gaia itself is no longer an Acronym! At one time it did stand for Global
Astrometric Interferometer for Astrometry - but not since around 1998 when the design
switched from interfometry.

The following table has been generated from the on-line Gaia acronym list:

Acronym Description
AC ACross scan (direction)
ADASS Astronomical Data Analysis Software and Systems
AEE Agência Espacial
AF Astrometric Field (in Astro)
AGIS Astrometric Global Iterative Solution
AL ALong scan (direction)
AO Announcement of Opportunity
ASC ASCending (in SQL command)
ASCII American Standard Code for Information Interchange
BAM Basic-Angle Monitoring (Device)
BC Before Christ
BP Blue Photometer
CCD Charge-Coupled Device
CDROM Compact Disc Read-Only Memory (also known as CD-ROM)
CESCA CEntre de Supercomputacı́o de CAtalunya
CG Conjugate Gradient
CNES Centre National d’Etudes Spatiales (France)
CORBA Common Object Request Broker Architecture
CTI Charge Transfer Inefficiency
CU Coordination Unit (in DPAC)
CVS Concurrent Versions System (obsolete)
CoMRS Centre of Mass Reference System
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DB DataBase
DBMS DataBase Management System
DIVA Deutsches Interferometer für Vielkanalphotometrie und Astrometrie

(cancelled)
DM Data Model
DPAC Data Processing and Analysis Consortium
DPACE Data Processing and Analysis Consortium Executive
DPC Data Processing Centre
DPCT Data Processing Centre Torino (ALTEC)
ECSS European Cooperation for Space Standardisation
EMC Electro-Magnetic Compatibility
ESA European Space Agency
ESAC European Space Astronomy Centre (VilSpa)
ESTEC European Space research and TEchnology Centre (ESA)
FAST Fundamental Astronomy by Space Techniques (Hipparcos)
FEA Field in XP tracker for work package tracking
FITS Flexible Image Transport System
FL First Look
FLOP FLoating-point OPeration
FOV Field of View (also denoted FOV)
FPA Focal Plane Assembly (Focal Plane Array)
GAP Gaia Archive Preparations (DPAC WG)
GB GigaByte
GDAAS Gaia Data Access and Analysis Study (obsolete)
GIS (Astrometric) Global Iterative Solution
GMV Spanish ‘business solutions’ company
GSR Gaia Sphere Reconstruction
GST Gaia Science Team
GTK Globus ToolKit
GUI Graphical User Interface
HEALPix Hierarchical Equal-Area iso-Latitude Pixelisation
HPC High Performance Computing
IBM International Business Machines
ICD Interface Control Document
ICRS International Celestial Reference System
IDT Initial Data Treatment
IDU Intermediate Data Update
IPC Industrial Policy Committee (ESA)
IT Information Technology
JDBC Java DataBase Connectivity
JDK Java Development Kit
JHU Johns Hopkins University
JJPF Java/Jini Parallel Framework
JNI Java Native Interface
JSP Java Server Page
L3CCD Low-Light-Level CCD (obsolete)
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LHS Left Hand Side
MDB Main DataBase
MPI Message Passing Interface
MainDB MAIN DataBase
NDAC Northern Data Analysis Consortium (Hipparcos)
NM Normal Mode (AOCS)
OO Object Oriented
OPUS Pipeline System from STScI - not an acronym
PERT Program Evaluation Review Technique
PPN Parametrised Post-Newtonian (formalism in gravitational physics)
PSF Point Spread Function
PhD Doctorate in Philosophy
QSO Quasi-Stellar Object
RAC Real Application Cluster
RAM Random Access Memory
RHS Right Hand Side
RMI Remote Method Invocation
RP Red Photometer
RUP Rational Unified Process
RVS Radial Velocity Spectrometer
SAG Science Advisory Group (obsolete; superseded by GST)
SAN Storage Area Network
SDSS Sloan Digital Sky Survey
SED Spectral Energy Distribution
SGC South Galactic Cap
SM Sky Mapper
SOC Science Operations Centre
SQL Structured Query Language
SRS System Requirement Specification
SSS System and Software Specification
SVD Singular Value Decomposition
SVN SubVersioN (Source code control system).
TB Tera Byte
TDI Time-Delayed Integration (CCD)
UB University of Barcelona (Spain)
UML Unified Modeling Language
UWE Unit-Weight Error
VARI VARIability processing
VPU Video Processing Unit
WFS WaveFront Sensor
WP Work Package
XMM X-ray Multi-mirror Mission (ESA; officially known as XMM-

Newton)
XP eXtreme Programming
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1 Introduction

Astrometry is one of the oldest pursuits in science. The measurement of
positions and later motions of celestial bodies has been an occupation for
millennia. The most famous, but now lost, star catalogue of the Antiquity was
compiled around 129 BC by Hipparchus [24], whose name is echoed in the
Hipparcos mission [8] which brought the first space-based astrometry. Gaia
continues in this ancient tradition using the most modern of techniques.

ESA is due to launch the ∼2000 kg Gaia satellite in 2013 on a Soyuz-
Fregat rocket to the L2 point some 1.5 million km from earth. It consists of
an astrometric instrument with two viewing directions, complemented by pho-
tometric and radial-velocity instruments providing astrophysical information
and allowing it to build a phase-space map of our galaxy.

Over its five-year mission Gaia will obtain astrometric and photometric
data for about a thousand million sources (stars, quasars, and other point-
like objects); a subset of about 250 million of the brighter sources will also be
observed spectrographically. Gaia will use a mosaic of CCD detectors operated
in a drift-scanning mode throughout the five years, producing an average of
approximately 700 individual CCD observations of each source and covering
the entire sky three-fold every six months. For more detailed overviews of the
Gaia project and its science goals we refer to, e.g., [13, 15, 16, 25] and [6].

A central part of the data processing for Gaia is the so-called Astrometric
Global Iterative Solution (AGIS), which transforms the ∼1012 individual
observations into an astrometric catalogue of unprecedented accuracy. The
full mathematical details of AGIS are given elsewhere [17] and are only briefly
referred to below. In the present paper we discuss the overall architecture of
the processing framework that is being set up to carry out this huge task, as
well as some details of the implementation.

When reading this paper it should be borne in mind that the word Object
will be used in the sense that is normal in computer science or object-oriented
programming. It should not be confused with an astronomical object, for
which, in general, we use the term Source. For improved clarity, names of
classes and methods are generally set in italics when they appear in regular text.

2 The Gaia Astrometric Global Iterative Solution (AGIS)

2.1 Astrometry as a minimization problem

In [8] the general principle of a global astrometric mission is succinctly
formulated as the minimization problem:

min
s,n

∥
∥gobs − gcalc(s, n)

∥
∥

M (1)
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where gobs is the vector of all the observations (measurements), gcalc the
corresponding calculated values, and the norm is calculated in some metric
M that takes into account the different weights of the observations.

The vector s represents the (unknown) astrometric parameters of the
sources. As described in detail in [17], each source i is modelled in terms of
six astrometric parameters, namely:

αi right ascension at a given reference time, i.e., the longitude-like
coordinate along the celestial equator

δi right ascension at a given reference time, i.e., the angular distance from
the celestial equator (positive towards north)

�i annual parallax, inversely proportional to distance from the sun
μα∗i (= μα cos δ) proper motion in right ascension, i.e., the annual change in

α times cos δ

μδi proper motion in declination, i.e., the annual change in δ

vri radial velocity, i.e., the rate of change of the distance to the source.

The radial velocity vri is best determined spectroscopically, using the Doppler
shift of spectral lines, and is not included among the unknowns to be de-
termined by the astrometric solution. The vector s therefore contains five
unknowns for each source. The astrometric solution will operate on a subset
of about 10% of the sources known as the primary sources (see Section 7.5),
so the total number of astrometric unknowns is some 5 × 108.

The vector n contains the nuisance parameters, i.e., all other parameters that
need to be determined simultaneously with s, using the same observations,
because they cannot be measured accurately enough by other means. These
include the satellite attitude, the geometric calibration of the instrument, and
a few global parameters. Their total number is of the order of 107.

2.2 Iterative solution

Equation (1) means that the model, encapsulated by the function gcalc, is fitted
to the observations by adjustment of the parameters s and n. To directly fit all
parameters is infeasible, considering their number in excess of n = 5 × 108.
A brute-force direct solution would require about n3/6 ∼ 2 × 1025 FLOPs
and the normal equations matrix would occupy about n2/2 ∼ 1017 doubles or
1 exabyte (1 million TB) of storage. Rather than a direct solution we take a
block iterative approach.

We model the effects of the source, attitude, calibration and global para-
meters independently, treating the dependencies as given. Hence to solve for
the astrometric parameters of a source we assume some attitude, calibration
and global parameters; then for calibration we assume the global, attitude and
astrometric parameters, and so on. The order in which this is done should in
principle not matter although solving the astrometry for the individual sources
first is logical and has some advantages (Section 7.5). Hence the solution would
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involve four relatively independent blocks of equations, where each takes the
form of the general minimization problem of (1), although only for a subset of
the parameters. The four blocks are referred to as the Source Update, Attitude
Update, Calibration Update, and Global Update.

The convergence properties of this kind of (simple) iterative solution were
essentially unknown when the Gaia data processing system was first planned.
Although it was felt that it should converge, there was no proof of even
that. The early work outlined in [20] was a first indication that convergence
in a few tens of iterations should be possible. Subsequent experiments have
shown that the iterations do indeed converge, although slowly, and that the
convergence speed can be improved considerably by modifying the updates
to take into account previous updates. The current solution method, based
on the conjugate gradients algorithm, converges and effectively removes all
systematic errors in the initial catalogue data in some 40–100 iterations, when
applied to simulated data [3]. In practice one must iterate until the updates
become very small, and further work continues to define an exact convergence
criterion.

The efficient software implementation of the block iterative solution is
challenging. A first attempt for such a solution during the Hipparcos data
processing was abandoned. A basic proof of concept, actually more a pseudo
implementation, using again Hipparcos data and a database management
system, was presented in [20]. A good deal of effort went into scaling this up
to Gaia dimensions until finally a degree of success was gained by the ESAC
group [22] in 2005. It is this ESAC framework which is presented here and
which shall continue to be developed up to and even after the launch of Gaia.

3 Overview of the AGIS data processing system

AGIS is just one of many parts of the Gaia processing, a central or core part
certainly but still a part. In the overall design of the Gaia processing system
the Main Database is the central repository of all information. Figure 1 depicts
AGIS is this broader context with the Main Database.

A simplified overall AGIS picture is presented in Fig. 2. Each of the
components in the picture may run on practically any regular machine apart
from the Attitude Update Server, which requires a little more memory (of the

Fig. 1 AGIS, like other Gaia
processing systems, extracts
data from the Main Database.
Updated results are fed back
to the Main Database and
merged with results coming
from other processing systems
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Fig. 2 Logical overview of AGIS. The many processes of AGIS run on many different machines
(not shown here). The large box on the left represents the DataTrain, of which there may be a
great number running. On the right are the update servers, of which there may be only one of each
kind running in the entire system. A database management system underpins all of these processes

order of 16 GB). The DataTrain, as mediator, is seen in the middle of the left
box and is explained in some detail in Section 4.3. The database systems—
currently InterSystems Caché, Oracle Real Application Clusters, or (for small
data sets) Apache Derby—may also run on several machines (or nodes) to
improve data access performance. The data access and storage is abstracted
through the Store interface which is described in Section 4.4. The algorithms
and collectors are described in Section 7.

The AGIS system is deployed on a local multi-processor machine dedicated
to Gaia. All the classes are available on each node but objects will be run on
specific nodes according to the configuration specified in the agis.properties
file. Objects on different hosts communicate through Remote Method
Invocation (RMI), although we actually use JBoss remote-method calls for
efficiency. This would be an ideal candidate for Enterprise Java Bean (EJB)
implementation but we found EJBs very inefficient. In general a class with
the name SomeServer will only have one instance on the cluster, while the
DataTrain may have numerous instances, e.g., one on each node in the cluster.
Internally the DataTrain makes use of multiple processors and cores available
in a node.
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4 Data access

The key to an efficient implementation of AGIS is in the data access. Even
with today’s machines, accessing a large volume (tens of terabytes) in both
spatial and temporal order is demanding.

4.1 Data access patterns

Looking at the four main blocks of AGIS we see that each has a seemingly
unique data access pattern, viz.:

Source All observations of a given source—spatial
Attitude All observations within a given time period—temporal
Calibration All observations within a given time period falling on a given

CCD—temporal/spatial
Global All observations—any order

(The ‘observations’ here refer to the AstroElementary objects described in
Section 5.) The naive approach would be to go through the data once for each
block, updating the parameters in turn and then repeating this for each itera-
tion. This is indeed the basic mathematical formulation of the block-iterative
solution method and the corresponding data access scheme is depicted in
Fig. 3(left).

Running through the approximately ten terabytes of data four times per
iteration is rather daunting, considering that many tens of iterations will be
needed. Immediately, though, we see that the calibration and attitude updates
are similar enough that the can perhaps be combined. The global update is
order-independent and as such could be combined with the data access of any
of the other blocks, for example source. Indeed this was already remarked

Fig. 3 Left Each block of the AGIS solution has a slightly different data access requirement. This
could cause four passes through the data for each AGIS iteration. However, it is immediately clear
that some of these could be combined, e.g., the calibration and attitude updates could run together,
and similarly the source and global updates. Right With a little in-memory accumulation in the
calibration, attitude and global update blocks, a complete iteration can be made in one pass though
the data. Hence the optimal ordering is spatial. Furthermore the updated source parameters may
already be used in the other blocks
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in [20], where the prototype made just two passes through the data for each
iteration rather than four. The question then is: could this be reduced to one
pass through the data per iteration?

4.2 A question of order

Let us assume that all four blocks could be executed in one pass; what then
would be the impact of the ordering of the data? There are two primary
orderings we may choose: spatial or temporal.

Temporal ordering If we assume an ordering based on the time of observa-
tion, then for the attitude we may read the data once, break it in time chunks
suitable for the attitude update, process each chunk in turn and finish with it.
With a small buffer we may also accumulate the observations required for the
calibration and similarly finish with calibrations in a timely manner during the
same pass through the data. For the global update the order is immaterial, so
it can be done in parallel with the attitude and calibration updates.

The problem here comes with the source update. Since any given source
is observed many times over the entire mission, if we process in time order
we must accumulate the data for each source until we have all observations
of it. This will not happen until we have seen all of the data—only then can
we be certain that no more observations of a given source will show up. This
would effectively mean that all observation data would end up in memory. For
a hundred million sources (with almost 1011 observations) and some clever
organizing this would be of the order of 5 TB of data, which is infeasible to
have in shared memory on our budget. The final solution may require five
times as many observations. The alternative is another pass through the data in
spatial order. Since we must wait until the end of the first pass for the updated
calibration, attitude and global parameters, these updated values could already
be used for the source update.

Spatial ordering If we assume a spatial ordering, i.e., that all observations of
a source are clustered together, then the story is quite different. Now we may
process each source to find its new astrometric solution, which can immediately
be written out to disk. Since we are finished with that source, the updated
parameters may be used to find its contributions to the global parameters.
The situation for the attitude and calibration updates is however that all
contributions from all observations must be accumulated until the end of the
pass through the data—only then may the calibration and attitude updates be
calculated. It is important to note that it is not the observations which must be
held but their contribution to the matrices of attitude and calibration, which
is much smaller than the accumulation of the source matrices in the temporal
ordering. The entire attitude accumulation for the five year mission data can
be done in 8 GB of memory. The size of the calibration matrix depends on
the number of calibration artifacts—currently it requires about 4 GB but is
estimated to need as much as 32 GB when additional calibration parameters
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are added in the coming years. Hence with spatial ordering one pass may be
made though the data for each AGIS iteration, as depicted in Fig. 3(right), and
a minimum amount of data needs to be held in memory.

This clearly represents a better approach to the ordering from a technical
point of view. Additionally, it is more natural to keep astronomical data of the
same part of the sky together and easily accessible. Hence the AGIS database
has observations of the same source sequentially grouped together on disk.

4.3 Getting data to the algorithms: the DataTrain and Taker

Throughout the Gaia processing there are choices to be made concerning data
access patterns such as those outlined in Section 4.2. The ideal approach, for
efficiency, is a data driven approach whereby data is accessed in the sequential
order in which it is stored. Hence rather than algorithms requesting data they
should be presented with data by a mediator. The mediator pattern [11] is a
very powerful tool for decoupling software modules. The implementation of
the mediator for the astrometric solution is called the ElementaryDataTrain.

The generic notion of a DataTrain (Fig. 4) is to access data in the fastest pos-
sible manner, usually meaning sequentially, and call a given set of algorithms
passing them the data. The concept and code are quite simple. To enable
the calling of the algorithms in a generic manner they must implement the
Taker interface, which has a method to ‘take’ some data. By implementing this
interface, the algorithm will have its input when it is called by the DataTrain.

More specifically, for AGIS the ElementaryDataTrain accesses Astro-
Elementary objects, which are effectively the observations of a given source.
The train decides which data to access by taking a Job (see Section 6.2).
It uses the Store to access a set of AstroElementary objects, each of which

Fig. 4 The DataTrain acts as a mediator between algorithms and data access (the Store) thus
leading to a less coupled system. The ElementaryDataTrain accesses AstroElementarys in the
fastest possible manner for the AGIS algorithms. The participating algorithms must implement
the Taker interface
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Fig. 5 Here the blue arrow shows the flow of data from the database through the Store and
ObjectFactory to the algorithms attached to the ElementaryDataTrain. We may think of the
ElementaryDataTrain as driving through the database, passing observations to the algorithms. We
may have as many trains in parallel as we wish

is then passed to each registered ElementaryTaker, i.e., the source, attitude,
calibration and global update algorithms. Each algorithm (see Section 7) must
implement the ElementaryTaker interface to allow the DataTrain to interact
with it. The ElementaryDataTrain has a method for registering the algorithms
(addElementaryTaker in Fig. 4). The algorithms must then accumulate ob-
servations until they can process a particular source or time interval. This
forces the algorithms to accept data in the order it is stored allowing the
infrastructure to be built without fixing the data storage order. Choosing
spatial ordering (Section 4.2) means that all of the elementaries for a given
source are sequential. Any given train accesses complete sets of elementaries
with respect to sources. The cartoon in Fig. 5 depicts this in a another
manner showing how the AstroElementary is constructed by the ObjectFactory
from a GaiaTable resulting from a query to the database through the Store
interface. The AstroElementary is then passed to the algorithms attached to
the DataTrain.

4.4 Abstraction of data storage: the Store

To give a degree of independence from the physical storage mechanism, it is
normal to use some abstraction. Java interfaces provide an excellent approach
to provide such insulation. Creating an interface is a small coding overhead,
while in usage one gets a real implementation, i.e., without overhead. It is very
important to realize that a Java interface is a contract binding the using class
and the providing class but does no translation of any kind. This should not be
confused with rooted persistence systems requiring all classes to inherit from
some root class. Here we simply have to implement a few methods implied by
the interface. They are more for our convenience than a design principle—we
also like to keep clear in our code which objects we will be storing and which
we will not. It is also useful in the ObjectFactory to have a base interface to
cast to, other than Object. We are not far from Java Persistence Architecture
(JPA) in both principle and implementation—this however was not mature
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when we started in 2005. More recently we have considered simply switching
to something like Hibernate but found the offerings far slower than our own
system. We could remove the restriction of having GaiaRoot but it has not
been a pressing issue to date. Having our own Store also made it easy to build
a CacheStore which took advantage of the Cache high speed interface, they do
not support JPA.

No algorithm code in the system interacts directly with the database man-
agement system; rather a query interface to the data is provided through the
Store interface (see Fig. 6). The implementation of the Store is hidden behind

Fig. 6 The Store provides an interface for data access, whereby many Store implementations may
exist. In the Figure we see a FileStore and a JDBCStore, both of which implement Store. With
these implementations of AGIS code we may switch between FITS files and a JDBC Database for
storage in a seamless manner
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the interface; thus the data store may be implemented in files or any database
management system.

An implementation of the Store is requested from the AGISFactory, the
actual implementation of the store is configured using the gaia.tools.dal.Store
property in the agis.properties file and thus can be changed at run-time (rather
than at compile-time). The Store interface includes an explicit range query
which returns all objects within a certain id range, which is required to support
the DataTrain.

As depicted in Fig. 6 there are multiple implementations of the Store. The
FileStore does not support the same level of querying as the JDBCStore but
is sufficient for running the testbed on a laptop. Most recently we have also
implemented a CacheStore over the InterSystems Caché database.

GaiaTable in Fig. 6 represents an interface to tabular data. The assumption
of dealing only with tabular data is a major simplification for AGIS. This is
a fair assumption dealing with astrometry data. Both files (be they FITS or
whatever) and relational database tables may be represented as a GaiaTable.
The interface defines methods for retrieving the next row and for getting
columns by name or index. The whole row may be passed to the algorithm or
ObjectFactory and it may extract the required columns. The DataTrain loads
the entire row.

The GaiaRoot UML (Unified Modeling Language) diagram is given in
Fig. 7. Color interfaces are shown in brown colour (and are also marked with
a ◦), while implementations are in blue. Any objects in the Gaia data model
which use the Store (see also Fig. 6) and ObjectFactory must implement this
interface. A basic implementation is provided which most classes may inherit
from, but in some cases, due to single inheritance in Java, this may not be

Fig. 7 All data objects implement GaiaRoot, which makes certain methods available to the Store.
All data objects are interfaces, not real classes—this allows them to be easily replaced by different
implementations
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possible. In fact practically all of the required functionality is in the Store or
ObjectFactory.

Interfaces were chosen for the data classes originally, since the first im-
plementations in 1998 used Objectivity/DB (from Objectivity, Inc.) which
was a rooted system, thus requiring the objects to actually inherit from
the Objectivity/DB base class. Even then the Store was working both with
Oracle Real Application Clusters and Objectivity/DB, which meant having
two implementations of the data objects. These days we usually only have
one implementation; however, there are instances where the interfaces are still
useful. For example higher-level classes such as AstrometricSource can have
multiple subclasses. These may not follow the same inheritance hierarchy but
can still be AstrometricSources since it is an interface; if it were only a class
there could be inheritance problems.

4.5 Access to objects: the ObjectFactory

The Store deals essentially with tables but some code will require objects. The
ObjectFactory sits on top of the Store and returns objects implementing the
data model interfaces. The object-from-table method of the interface is also
exposed, allowing code to do this conversion exactly when required. We need
to take care that not too many pieces of code perform such a transformation—
preferably it would be done once by the DataTrain. Splitting this out allows for
very direct measurement of the performance.

This is implemented as a Generic class. The Factory is instantiated for a
specific data model interface and then provides a method returning that class
of object only. Java Generics are very nice for this and, although similar to
C++ templates, should not be confused as being the same. Generics provide
type checking and safety but they do not generate extra code with new types.

The Factory relies on the populate method of the GaiaRoot to populate the
fields of the object from a GaiaTable. A generic implementation of this using
a mapping from the configuration file is provided in the GaiaRootImpl class.
This provides a convenient mechanism to read the data from the Store into a
Java object that can be used elsewhere in the system.

The ObjectFactory also has caching capabilities. Whenever an object is read
from the Store it may be cached in memory in order to avoid new reads when
it is requested again. Any object which is created by the ObjectFactory can
be made cacheable just by implementing the gaia.tools.dm.GaiaRootCacheable
interface. The caching can also be disabled by adding an entry to the property
file. The interface contains a method to determine the ‘validity’ of the object.

The Factory also has the possibility to implement object pooling. The notion
here is to reuse objects by filling them with new data rather than reconstructing
new ones. This technique was very popular in early Java implementations to
reduce garbage collection time. Tests with the new JDK (1.5 and 1.6) show
that this is no longer beneficial. Still, by having all data object creation done
through one class the possibility to change the way it works later remains
available.
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5 The data model

The algorithms work in terms of Java objects such as Source and Astro-
Elementary. These objects form what is generally termed a Data Model for
the system.

The data used for AGIS will comprise between 10% to 50% of the sources
(and their corresponding observations), corresponding to the so-called primary
sources briefly discussed in Section 7.5. The selection of the primary sources is
described in [17] and is implemented as several database queries. The selected
data will be put in the special AGIS database (see for example Fig. 5).

The data model is made in terms of interfaces to allow easy substitu-
tion of multiple implementations. The ObjectFactory (Section 4.5) and Store
(Section refsect:store) are used to construct real implementations of these
interfaces but all code refers only to the interface. Hence all client code may
be compiled without any implementation if necessary. This is a technique
used throughout AGIS and indeed also for GaiaTools, the common software
toolbox for all Gaia processing tasks. The most important interfaces are:

– AstroElementary: An object of this kind represents the transits of a ce-
lestial source over the first dedicated 10 CCD strips of the focal plane,
namely, SM1 or SM2 and AF1–9 (see [17], for an outline of the CCDs
in the focal plane). Each AstroElementary in AGIS is uniquely associated
with a Source.

– Source: An object of this kind represents celestial sources that follow
the standard astrometric model (thus modelled by the six astrometric
parameters described in Section 2.1) and are eligible for AGIS source
processing.

– Attitude: An object of this kind represents an interval of continuous
attitude data. Attitude is parametrized using B-spline coefficients of a
given order representing the four components of the attitude quaternion
(Section 7.2).

– CalibrationEf fect: The geometrical calibration of the instrument is made
up of multiple CalibrationEf fects (Section 7.3) all of which may be
configured in an XML file.

6 Distributed processing

Regardless of the ordering chosen (Section 4.2) the access of the data does not
need to be done serially. Indeed we require the data to be sequential on disk
but multiple parts of that sequence may be read simultaneously. In the case
of sources we may process simultaneously each source, in terms of distributed
computing this is ‘embarrassingly parallel’ [26].1 We may theoretically gain up

1http://en.wikipedia.org/wiki/Embarrassingly_parallel
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Table 1 Evolution of AGIS performance during the development of the processing framework

Date Observations Processors Time (hr) Normalized rate

2005 1.6 × 107 12 3 0.9 × 106

2006 8.0 × 107 36 5 0.5 × 106

2007 8.0 × 107 24 3 1.3 × 106

2008 8.0 × 107 31 1 3.2 × 106

2009 2.6 × 108 50 1.8 2.8 × 106

2010 4.0 × 109 68 9.5 6.2 × 106

Data volumes are indicated by the number of observations (AstroElementaries), depending on
the number of sources and the length of the observation period. The time is the processing time
per AGIS iteration for the given number of processors. The last column shows the throughput, in
observations per processor per hour, as an indication of the real performance

to a factor N in speed by using N processors, if N is the number of sources to be
processed. We say theoretically with reason, as the data must still be read from
disk and we are unlikely to actually put in place 108 processors. Still, tests have
shown that the processing time indeed decreases in proportion to the number
of processors used for AGIS. Some numbers are given in Table 1.

6.1 Distributed processing frameworks

Many different approaches exist for distributed processing, and they are
usually embodied in some library. However since we have an ‘embarrassingly
parallel’ problem we have little need for such a complex and heavy library. In
fact all that we require is already available within the standard Java library,
namely:

– Communication between processing nodes: the Remote Method Invoca-
tion (RMI) framework in Java provides this.

– Access to a database or databases: the Java Data Base Connectivity
(JDBC) framework provides this.

– Some form of graphics library for GUIs: Java Swing library provides this.

Additionally, in this age of the web, Java provides easy support for dynamic
web site generation using Java Server Pages (JSP).

Hence an early feeling was to use the tools of Java directly, rather than
try to fit the problem into one of the many distributed programming libraries,
each with their own assumptions and problems. The modern programming
languages of the day, such as Java, are very sophisticated in the feature set
and tools they provide. For example the Java/Jini Parallel Framework (JJPF;
[5]) provides some reliability on top of these tools while also taking a much
more process-oriented view—each worker has a getData call to pass back
results. JJPF is also more coordinator oriented with a single server eliciting
support from available nodes to perform a computation. In the grid world
the obvious contender would be the Globus Toolkit (GTK; [10]). Previous
forays into GTK showed the system to be buggy and difficult to use. GTK
has improved dramatically over the years, yet it still remains service oriented
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(we believe our problem to be data oriented) and has a large security overhead
which we do not see as necessary. Indeed though [7] is positive about GTK
they introduce a resource broker which seems similar to our whiteboard
(Section 6.2). Unfortunately say little about the data intensive applications
mentioned in the title of their paper.

The notion of just using the Java framework without some other layer was
reinforced by previous experiences with the Sloan Digital Sky Survey (SDSS).
On the SDSS a form of distributed query system known as CasJobs [21] was
built using Web Services, the SQLServer database and the C# language.2

This was done quite rapidly without using any special libraries beyond the
facilities available in the programming language. Within the same group at
Johns Hopkins a typical Grid application for finding galaxy clusters in a large
catalogue was taken and quickly rewritten in C#. As reported by [19], this ran
about ten times faster using a database system than the traditional file-based
Grid system.

A final justification, perhaps the ultimate and obvious one, for not taking on
a library is that of simplicity. It was believed the distributed computing libraries
would not make the system simpler hence none were adopted.

6.2 Job distribution: the Whiteboard

There are at least two main approaches to controlling a grid of distributed
processes. The first is to have ‘agents’ register with some central controller
which then regulates the entire process; the second is to have a less centralized
approach with more autonomous processes.

The central controller approach is very appealing and generally the way
many agent-based systems work. Generally these involve monitoring resources
and farming out jobs to particular processors which are not fully loaded. The
central registering of agents means the controller knows how many agents
of which types exist on the system, and furthermore may reject agents from
particular machines or of particular types. Such systems deal well with uneven
workloads and ad hoc jobs by many users. Often security layers and user
tracking are included.

By contrast, an AGIS iteration could easily occupy an entire cluster for some
days. There are no ad hoc programs, only the entire AGIS chain running on
all data. There are no users, hence no particular need for a security overhead
in terms of certificates, etc.

In our data driven approach (Section 4.3) we may consider the data as
the distribution mechanism. Everything hinges on the processing of some
block of data, be it a time sequence or a set of spatially ordered observations
(Section 4.2). All we really need to know is if a particular part of the data set
has been visited during a particular iteration. If the data segments are chosen
properly we may have as many DataTrains running as we wish. This is very

2The # here is the musical sharp; hence this is pronounced ‘See sharp’.
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Fig. 8 A set of jobs corresponding to sequential batches of data which cover the entire data range
may be posted on a whiteboard (left). The DataTrain marks a job as in progress when it starts it
and as completed when it is finished. There may be many DataTrains (right). When all jobs are
done all of the data have been seen once. The whiteboard itself has no special knowledge of the
jobs or the overall task—it is a simple mechanism to coordinate potentially hundreds of processes

simple and easily achieved through a whiteboard mechanism as depicted in
Fig. 8.

The whiteboard is quite a simple concept for organizing many processes
of varying types. Conceptually we may ‘post’ jobs on a whiteboard, and then
workers, in our case DataTrains, may pick them up. The whiteboard may
hold status information, e.g., about when a job started, when it ended, if all
was OK, etc. In effect then the whiteboard becomes the central controller,
although it exercises no control as such. Perhaps the original of the species in
this respect is the OPUS pipeline from the Space Telescope Science Institute
[23]. Indeed, it is the OPUS blackboard 3 design pattern which is employed
here. It is noted that since its early beginning, OPUS is itself moving toward
Java [18] but maintaining its heterogeneity through CORBA (Common Object
Request Broker Architecture). For the purposes of AGIS, which is a pure
Java implementation, a simple Whiteboard was coded directly in Java using
a database table to hold the jobs. The latter also provides the ability to ensure
that no two trains ever get the same job. The JDBC framework in Java makes
the whiteboard seamlessly accessible from any node on the network—hence
no need for the overhead of CORBA or some other message passing system
here. The UML interface for the Whiteboard is shown in Fig. 9.

Regardless of the jobs being done, the whiteboard can give some informa-
tion on the general state of the system. A Series of JSP pages present the
whiteboard state on a website. On this site with little effort we may show
jobs completed/remaining and (assuming uniform jobs) an estimate for the end
time. We may also list statistics per processor simply by querying the job table
in the database.

3Whiteboard was elected as a more modern alternative to Blackboard.
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Fig. 9 The UML interfaces
for the Whiteboard and the
WhiteboardJob. Note the
postJob method used to
populate the whiteboard and
the of ferOpenJob methods
which the DataTrains use to
get jobs. The job itself has
methods for status and
messages, etc

6.3 Overall control: the RunManager and ConvergenceMonitor

The Whiteboard alone is not enough to run an AGIS solution. Some other
entity must post the jobs on the board for the DataTrains to work on. The
RunManager has the task of coordinating iterations and the publishing of jobs
as depicted in Fig. 10. The RunManager uses the JobPublisher to publish
appropriate jobs, e.g., one for each block of sources to be processed. The
JobPublisher scans a table of bounds (a list of identifiers of elementaries which
are the last in a series belonging to a single source) and creates a number of
jobs based on blocks of elementaries. In general the system is configured such
that these jobs complete in a few minutes, as this gives a better indication of
progress and the need to redo a job, in case of a problem, is detected in a
timely manner. Hence there are typically thousands of jobs in a single run.
Once posted, the trains pick them up and start working. The order in which
the jobs are done does not matter. Jobs are also published for the calibration,
attitude and global updates if these algorithms are attached to the train. These
jobs execute for the entire iteration.

Fig. 10 Communication
diagram for the RunManager.
This summarises the
RunManagers role in
publishing jobs and checking
for convergence
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The RunManager then periodically checks to see if the DataTrain jobs have
finished. If they are done the main part of the iteration is done, and the
GisConvergenceMonitor is told the iteration is at an end. The RunManager
then asks the GisConvergenceMonitor if the solution has converged and
awaits the answer. At this point the attitude, global and calibration servers
still must perform their final calculations—when these are complete the Gis-
ConvergenceMonitor reports the state of convergence. The convergence crite-
rion is currently based on the typical size of the source updates in the current
iteration.

If convergence has not been reached the RunManager starts another run
through the data by publishing a new set of jobs. If it has converged the
RunManager declares the run ended and converged.

7 Algorithms

There are effectively two types of algorithm in the system: those with a central-
ized part and those which are completely distributable. Let us first look at the
source update algorithm which is completely distributed and subsequently at
the others. The mathematical formulation of the algorithms (or blocks) is given
in [17]. As explained in Section 2.2 the blocks are iterated until the solution is
considered converged.

7.1 Source update

The mathematical details of the source update are provided in [17]. Very
briefly, the update for source i is obtained by solving the overdetermined
system of equations

Aidi � hi , (2)

where di is the n-vector of updates to the astrometric parameters si of the
source (usually with n = 5, as described in Section 2.1), hi the m-vector of
residuals, where m � n is the number of observations of the source, and Ai the
design matrix. The problem is complemented by an m-vector of measurement
uncertainties, σi. The residual vector hi contains the observed minus the calcu-
lated values for the source, such that the jth element is h j = gobs

j − gcalc
j (si, n),

j = 1 . . . m, where gobs
j is the observed position of the source on the CCD and

gcalc
j the calculated position based on the current best estimate of the source

parameters si as well as the attitude, calibration and global parameters in n,
cf. (1). The elements of Ai are A jk = ∂gcalc

j /∂sk for j = 1 . . . m and k = 1 . . . n.
Each AstroElementary, consisting of up to 10 CCD transits, generates several
rows of design equations.

The least-squares solution of (2) is by itself an iterative process, in order to
have a self-adapting system of observation weighting (essentially by adjust-
ing σi) that is robust against outliers. Typically three or four such internal
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iterations are needed to compute the update di, after which the improved
source parameters are obtained as si + di. The solution of (2) is done in a very
standard fashion by forming normal equations [2], which is computationally
very efficient.

The source update step is truly distributed. As the DataTrain passes elemen-
taries to the SourceCollector (the Taker registered with the train for sources) it
accumulates all of the elementaries for a given source. Remember that the
data are stored in such a manner that all elementaries for one source are
consecutive; hence, when the sourceId changes, the collector knows that it has
all the data for a given source. Once it has a batch of elementaries, the source
update is called to compute the required update of the astrometric parameters.

Figure 11 provides a UML overview of some of the classes involved in
the source update. When the updated astrometric parameters are available
they are passed to the SourceUpdateManager, which batches together several
sources for efficient storage. Nothing in AGIS is ever actually updated, rather
a new source row is written to the table with the current runId. In this way a
complete history of the updates are preserved. Inserting to the database is also
more efficient than updating.

In fact the SourceUpdateManager does not write the sources finally until
the entire job is done. When all sources are updated a database transaction is
opened to write all the results—only when this is done is the job considered

Fig. 11 The SourceCollector is attached to each DataTrain and has a SourceUpdater associated
with it to update all sources on disk when a job is finished
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finished. In this manner a job is either completed or not, since the transaction
may be ‘rolled back’ without consequence if there is some problem.

When the job is finished the SourceCollector sends all of the updated sources
to the GisConvergenceMonitor. This call is made using RMI. Because the
GisConvergenceMonitor receives sources throughout the iteration, histograms
of the updates can be dynamically generated. These are displayed on the
associated AGIS website in real time. An example of the website is shown
in Fig. 12.

7.2 Attitude update

The attitude specifies the instantaneous orientation of Gaia in the same
celestial reference frame as used for the astrometric parameters—for Gaia this
is known as the Center-of-Mass Reference System (CoMRS). Being the local
rest frame of Gaia, the axes of the CoMRS are aligned with the International

Fig. 12 Update plots such as for the source position update shown here are generated dynamically
and displayed on the AGIS monitoring website while the system is running. The Conjugate
Gradients parameters such as ρ and |r̃| (see [17], for details) are also tracked as shown. Historical
plots may be retrieved from the system
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Fig. 13 The position of a source is initially given in the ICRS, centred on the solar-system
barycentre, and is then transformed to the Gaia-centred CoMRS by taking into account parallax
and relativistic effects. Finally the position may be transformed to the SRS (Scanning Reference
System), which is fixed to the spinning instrument, by means of a rotation given by the attitude
quaternion q

Celestial Reference System (ICRS; [9]), but with Gaia as the origin of the
coordinate system instead of the solar system barycentre (Fig. 13). While the
CoMRS is an inertial frame, the Scanning Reference System (SRS) rotates
with the satellite and the optical axes of the astrometric telescope are fixed in
the SRS. To a first approximation, the CCDs therefore measure the positions
of the sources in the SRS.

The CoMRS and SRS frames are related by a purely spatial rotation,
which defines the instantaneous attitude of Gaia. We use quaternions [12]
to represent the attitude, as is common practice for spacecraft (e.g., [14]).
The quaternion q is a 4-vector representing a direction in space (expressed in
either the CoMRS or the SRS) and an angle of rotation around that direction.
The four elements of the quaternion are continuous functions of time, here
denoted qk(t), k = 1 . . . 4, which allow a singular-free attitude representation
for arbitrary rotations. These functions are modelled as cubic splines, using
short-range B-splines Bn(t) as basis functions [4]; thus

qk(t) =
∑

n

ak
n Bn(t) , (3)

where ak
n are the attitude parameters, of which there are a few million in the

system (see [17], for details). The attitude update solves a linearised least-
squares problem similar to (2) but with the unknowns d now being the updates
to the attitude parameters ak

n and the partial derivatives in A being taken with
respect to these attitude parameters. The dimension m is however very much
greater in this case, since the attitude update in principle has to consider all
the observations throughout the mission. However, thanks to the short range
of the B-splines, the attitude normal matrix is band-diagonal, and the resulting
system can be stored and solved very efficiently.

In fact the attitude may be divided into segments each of which can be
solved simultaneously but separately. There will be natural breaks in Gaia’s
attitude that can be used to segment the data, but this technique may be used
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to distribute the attitude processing further. Hence, depending on the number
of attitude segments, there is a limit to the distribution of attitude processing.
Each segment may be solved on an individual processor. In actual fact the
final fitting of the attitude for five years data as a single spline with knots
every fifteen seconds took only 30 min on a Xeon processor with 16 GB of
memory. The solution itself is not the bottleneck, but rather the gathering of
the observations. With a single attitude update server all source observations
must be passed to this server from every data train. Once the system surpassed
32 DataTrains this became a limiting factor.

On each data train an AttitudeCollector is registered. This gathers all of
the elementaries and passes them to the appropriate AttitudeUpdateServer.
Appropriate here means the attitude server dealing with the time bin in which
the observation falls. In some cases the segments overlap and an observation
must be sent to two servers simultaneously. Again RMI is used for this passing
and the observations carry the updated source parameters with them (Fig. 14).

The AttitudeUpdateServer(s) adds to the partial equations for each observa-
tion passed. It must wait until the end of the run to ensure all observations have

Fig. 14 UML diagram for the distributed attitude update. The calibration update has similar
classes
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been seen before doing the final computation. The end of the run is signalled,
via RMI, by the RunManager. At this point the updated spline coefficients are
calculated and written to the Store. The server also now sends the updated
attitude to the ConvergenceMonitor so it may be plotted on the website.

7.3 Calibration update

The geometric calibration model deals with the precise placement and orien-
tation of the CCDs in the focal plane. Within the optical system light bounces
off six highly polished mirrors before hitting the CCDs in the Focal Plane
Assembly. Since there are no on-board calibration devices a distortion in a
mirror is indistinguishable from a displacement of a CCD. In both cases the
image centroid will not appear where it should be. This also means that any
such shift can be modelled in terms of CCD orientation, ignoring the mirrors
entirely, and this is precisely what we do in AGIS.

Geometric calibration parameters for the CCDs, such as orientation, scale
and mechanical distortions, are defined on timescales of hours or months as
needed and are know as CalibrationEf fects. This transformation for Gaia is
quite involved (see [1]), yet for our purposes we may consider an instantaneous
position ηobs for the source in the field of view. We define the astrometric
calibrations in the following generalised form:

ηobs
l = η0

n +
∑

r

Er(l) , (4)

where l is the observation index and each of the Er(l) represents one basic
CalibrationEf fect, being a linear combination of calibration functions 	rs(l):

Er(l) =
∑

s

crs	rs(l) . (5)

The coefficients crs constitute the whole set of calibration parameters. In the
calibration update we solve these coefficients by a least-squares system similar
to (2).

The functions 	rs receive the observation index l and it is assumed that
this index suffices to derive whatever dependencies are needed to evaluate
the corresponding function/effect for this observation. Examples of such
dependencies are: the telescope index (preceding/following field of view);
CCD row number; CCD strip number; pixel column within the CCD; time;
relevant astrometric, photometric, and spectroscopic source parameters; aux-
iliary parameters (e.g., optical background level, illumination history of the
pixel column). In this generic calibration scheme the dependencies are not
hardcoded, and we do not know exactly how many calibration parameters
there will be in the mission. Furthermore the calibration effects are all specified
in an XML file allowing for easy addition (or removal) of specific effects in an
AGIS execution.
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CalibrationConstraint

+getNullSubSpace( myEffect : AgisCalEffect ) : ArrayList<RealVector>
+getDescription() : String

CalibrationSolver

+CalibrationSolver()
+getMatElemMask()
+calculateAndUpdate(){JavaAnnotations = "@Override"}
+calculateKernelResult(){JavaAnnotations = "@Override"}
-solveNormals()
+prepareForRun(){JavaAnnotations = "@Override"}
-initAlProcessing()
-initAcProcessing()
+processElementary(){JavaAnnotations = "@Override"}
-printOut()
-processElementaryAl(){guarded}
-processElementaryAc()
-calcMatrixElements()
+getUpdateData(){JavaAnnotations = "@Override"}
+updateData(){JavaAnnotations = "@Override"}
+setServer(){JavaAnnotations = "@Override"}

AgisCalEffect

+getAgisConstraintHandler() : CalibrationConstraint
+isContributing( effTuple : short"[]", obsTuple : short"[]" ) : boolean

AlSmallScaleConstraints

+AlSmallScaleConstraints()
+getNullSubSpace(){JavaAnnotations = "@Override"}
+getDescription(){JavaAnnotations = "@Override"}

ConstraintsBase

#ConstraintsBase()
+getNullSubSpace(){JavaAnnotations = "@Override"}

AlLargeScaleConstraints

+AlLargeScaleConstraints()
+getNullSubSpace(){JavaAnnotations = "@Override"}
+getDescription(){JavaAnnotations = "@Override"}

Fig. 15 UML for Calibration Effects (AgisCalEf fect)

Following the terminology introduced in [17], the calibration parameters
can be grouped into calibration units that can be handled separately because
any given observation l can only belong to one calibration unit. Within a
calibration unit, on the other hand, each observation typically contribute to
many different effects, for example to irregularities both on a large scale
(e.g., between CCDs) and on a small scale (e.g., between pixel columns).
Our estimate is that no calibration unit will have more than about 10,000
parameters, which is negligible compared to the attitude parameters. Still, the
memory requirements in the calibration block are larger than in the attitude
update because there is no obvious way to exploit the sparseness of the normal
matrix within each calibration unit. The CalibrationEffects are depicted using
UML in Fig. 15.

From the perspective of distributed processing one must consider that,
unlike attitude, here an observation will end up going to many calibration
effects, e.g., both the large-scale and the small-scale calibration. We may
however process all effects for a row of CCDs on a separate machine. The
processing for calibration is not a huge overhead; as for attitude, the main
bottleneck is the sending of all observations to the calibration server(s). Unlike
the attitude, the calibration server can process the incoming observations more
quickly and it has not been an overall bottleneck in the system.

The framework is similar to that of the attitude update. A Calibration-
Collector is registered with each DataTrain, collects the required observation
information and sends it to the CalibrationUpdateServer via RMI. The server
accumulates the equations during the run and performs the final calculation
when signalled by the RunManager that the run is complete. It writes the
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updated calibrations to the Store and sends them to the GisConvergence-
Monitor for plotting on the website.

7.4 Global update

The global parameters, nominally some of the Parameterized Post-Newtonian
(PPN) relativistic parameters, are estimated using a robust least-squares algo-
rithm similar to (2) but now involving all the observations but only a (very)
small set of parameters. The treatment is practically identical to a calibration
parameter which spans the entire mission. As such it would be possible to
combine this with the calibration update in a later version of the system, but
for other reasons it is convenient to separate these terms, for example, to
more easily estimate their correlations. As in the case for the attitude and
calibration blocks we also have a GlobalCollector and a GlobalUpdateManager
functioning in the same manner as described previously.

We will have sufficient observations and full sky coverage to decouple
the global parameters from the astrometric parameters. Currently we only
calculate PPN-γ due to solar system body deflection, but other variants will
be added in the future, for example, separate and combined values of PPN-
γ due to deflection by the major planets. The calculation of additional global
parameters can provide a sanity check on the entire solution, i.e., a value wildly
departing from the nominal value in the simulation data can only mean we are
doing something very wrong somewhere.

7.5 Secondary source update

Nominally the entire data set could be put through AGIS, however we know
that many binary stars and other complex objects will not work well with
the simple observation model used. Hence only a fraction (between 10 and
50%) of the sources observed by Gaia are processed in AGIS. The selection
of these primary sources will be done partly based on information from other
parts of the processing chain (e.g., detected double stars), but mainly from the
goodness-of-fit statistics gathered while performing a trial source update. If the
fit is bad for the source, it is not accepted as a primary source but relegated to
secondary source status. The selection of primary/secondary sources is itself an
iterative process, which must be repeated after more accurate estimates have
been obtained of the attitude and calibration parameters.

The AGIS solution, thus based on a ‘clean’ subset of the sources, provides
an accurate celestial reference frame along with a correspondingly accurate
attitude and geometric calibration. These outputs will be used to update the
remaining fraction of the sources. This secondary star update is effectively
identical to the source update block described in Section 7.1 but must only
be run once over the data. This secondary solution will still not make sense for
all types of objects (e.g., resolved binaries), which will be picked up in other
parts of the processing chain.
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8 Results

Some run times for the system are given in Table 1. AGIS has been running
almost continuously since the end of 2005 on different simulated data sets. The
current system requires around 40 iterations to remove initial (random and
systematic) catalogue errors of about 100 milliarcseconds, based on the simu-
lated observations. This level of initial errors is well above expected mission
levels. After 40 iterations AGIS the source errors have been reduced to a level
that is consistent with the observational noise level, i.e., some microarcsec for
the brighter sources. Moreover, none of the systematic errors introduced in the
starting values remain in the converged solution. A more comprehensive study
of the results from AGIS will be provided in another paper.

9 Conclusion

The overall AGIS architecture and many of the components have been
described in some detail. This is a software system designed and optimised
to perform the Gaia astrometric data reduction involving the solution of a
system with hundreds of millions of parameters and hundreds of billions of
observations.

Advanced features of the Java language have been employed to make this
system work well and remain very portable. Despite skepticism we have found
Java reliable and robust, and sufficiently performant for our purposes. More
work is needed in the coming years to further optimise AGIS, but a very good
system is already in place and well understood.
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de la Cañada, Madrid, Spain
e-mail: Uwe.Lammers, William.OMullane, Jose.Hernandez@sciops.esa.int

3 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, DE-69120 Heidelberg,
Germany
e-mail: bastian@ari.uni-heidelberg.de

Received 17 August 2011 / Accepted 25 November 2011

ABSTRACT

Context. The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will
determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global solution
approach which must also include a large number of parameters for the satellite attitude and optical instrument. The accurate and
efficient implementation of this solution is an extremely demanding task, but crucial for the outcome of the mission.
Aims. We aim to provide a comprehensive overview of the mathematical and physical models applicable to this solution, as well as
its numerical and algorithmic framework.
Methods. The astrometric core solution is a simultaneous least-squares estimation of about half a billion parameters, including the
astrometric parameters for some 100 million well-behaved so-called primary sources. The global nature of the solution requires an
iterative approach, which can be broken down into a small number of distinct processing blocks (source, attitude, calibration and
global updating) and auxiliary processes (including the frame rotator and selection of primary sources). We describe each of these
processes in some detail, formulate the underlying models, from which the observation equations are derived, and outline the adopted
numerical solution methods with due consideration of robustness and the structure of the resulting system of equations. Appendices
provide brief introductions to some important mathematical tools (quaternions and B-splines for the attitude representation, and a
modified Cholesky algorithm for positive semidefinite problems) and discuss some complications expected in the real mission data.
Results. A complete software system called AGIS (Astrometric Global Iterative Solution) is being built according to the methods
described in the paper. Based on simulated data for 2 million primary sources we present some initial results, demonstrating the
basic mathematical and numerical validity of the approach and, by a reasonable extrapolation, its practical feasibility in terms of data
management and computations for the real mission.

Key words. Astrometry – Methods: data analysis – Methods: numerical – Space vehicles: instruments

1. Introduction

The space astrometry mission Gaia, planned to be launched by
the European Space Agency (ESA) in 2013, will determine accu-
rate astrometric data for about one billion objects in the magni-
tude range from 6 to 20. Accuracies of 8–25 micro-arcsec (µas)
are typically expected for the trigonometric parallaxes, positions
at mean epoch, and annual proper motions of simple (i.e., ap-
parently single) stars down to 15th magnitude. The astrometric
data are complemented by photometric and spectroscopic infor-
mation collected with dedicated instruments on board the Gaia
satellite. The mission will result in an astronomical database
of unprecedented scope, accuracy and completeness becoming
available to the scientific community around 2021.

The original interferometric concept for a successor mission
to Hipparcos, called GAIA (Global Astrometric Interferometer
for Astrophysics), was described by Lindegren & Perryman
(1996) but has since evolved considerably by the incorporation
of novel ideas (Høg 2008) and as a result of industrial studies
conducted under ESA contracts (Perryman et al. 2001). The mis-

sion, now in the final integration phase with EADS Astrium as
prime contractor, is no longer an interferometer but has retained
the name Gaia, which is thus no acronym. For some brief but
up-to-date overviews of the mission, see Lindegren et al. (2008)
and Lindegren (2010). The scientific case is most comprehen-
sively described in the proceedings of the conference The Three-
Dimensional Universe with Gaia (Turon et al. 2005).

In parallel with the industrial development of the satellite,
the Gaia Data Processing and Analysis Consortium (DPAC;
Mignard et al. 2008) is charged with the task of developing
and running a complete data processing system for analysing
the satellite data and constructing the resulting database (‘Gaia
Catalogue’). This task is extremely difficult due to the large
quantities of data involved, the complex relationships between
different kinds of data (astrometric, photometric, spectroscopic)
as well as between data collected at different epochs, the need
for complex yet efficient software systems, and the interaction
and sustained support of many individuals and groups over an
extended period of time.
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A fundamental part of the data processing task is the astro-
metric core solution, currently under development in DPAC’s
Coordination Unit 3 (CU3), ‘Core Processing’. Mathematically,
the astrometric core solution is a simultaneous determination of
a very large number of unknowns representing three kinds of
information: (i) the astrometric parameters for a subset of the
observed stars, representing the astrometric reference frame; (ii)
the instrument attitude, representing the accurate celestial point-
ing of the instrument axes in that reference frame as a function of
time; and (iii) the geometric instrument calibration, representing
the mapping from pixels on the CCD detectors to angular direc-
tions relative to the instrument axes. Although the astrometric
core solution is only made for a subset of the stars, the result-
ing celestial reference frame, attitude and instrument calibration
are fundamental inputs for the processing of all observations.
Optionally, a fourth kind of unknowns, the global parameters,
may be introduced to describe for example a hypothetical devia-
tion from General Relativity.

We use the term ‘source’ to denote any astronomical object
that Gaia detects and observes as a separate entity. The vast ma-
jority of the Gaia sources are ordinary stars, many of them close
binaries or the components of wide systems, but some are non-
stellar (for example asteroids and quasars). Nearly everywhere
in this paper, one can substitute ‘star’ for ‘source’ without dis-
tortion; however, for consistency with established practice in the
Gaia community we use ‘source’ throughout.

While the total number of distinct sources that will be ob-
served by Gaia is estimated to slightly more than one billion,
only a subset of them shall be used in the astrometric core so-
lution. This subset, known as the ‘primary sources’, is selected
to be astrometrically well-behaved (see Sect. 6.2) and consists
of (effectively) single stars and extragalactic sources (quasars
and AGNs) that are sufficiently stable and point-like. We as-
sume here that the number of primary sources is about 108, i.e.,
roughly one tenth of the total number of objects, although in the
end it is possible that an even larger number will be used.

In comparison with many other parts of the Gaia data pro-
cessing, the astrometric core solution is in principle simple,
mainly because it only uses a subset of the observations (namely,
those of the primary sources), which can be accurately modelled
in a relatively straightforward way. In practice, the problem is
however formidable: the total number of unknowns is of the or-
der of 5 × 108, the solution uses some 1011 individual observa-
tions extracted from some 70 Terabyte (TB) of raw satellite data,
and the entangled nature of the data excludes a direct solution. A
feasible approach has nevertheless been found, including a pre-
cise mathematical formulation, practical solution method, and
efficient software implementation. It is the aim of this paper to
provide a comprehensive overview of this approach.

Concerning notations we have followed the usual conven-
tion to denote all non-scalar entities (vectors, tensors, matrices,
quaternions) by boldfaced characters. Lower-case bold italics
(a) are used for vectors and one-dimensional column matrices;
upper-case bold italics (A) usually denote two-dimensional ma-
trices. Following Murray (1983) the prime ( ′) signifies both ma-
trix transpose (a′, A′) and scalar multiplication of vectors; thus
‖a‖ = (a′a)1/2 defines the magnitude of the vector a as well as the
Euclidean norm of the column matrix a. Angular brackets denote
normalization to unit length, as in 〈x〉 = x‖x‖−1. In this notation,
no special distinction is thus made between vectors as physical
entities (also known as geometric, spatial or Euclidean vectors)
on one hand, and their numerical representations in some coor-
dinate system as column matrices (also known as list vectors)
on the other hand. Moreover, list vectors can of course have any

dimension: a ∈ Rn. In the coordinate system whose axes are
aligned with unit vectors x, y, and z, the components of the ar-
bitrary vector a are given by ax = x′a, ay = y′a, and az =
z′a; if the coordinate system is represented by the vector triad
S =

[
x y z

]
, these components are given by the column matrix

S′a (cf. Appendix A in Murray 1983). This notation, although
perhaps unfamiliar to many readers, provides a convenient and
unambiguous framework for representing and transforming spa-
tial vectors in different coordinate systems. For a vector-valued
function f (x), ∂ f/∂x′ denotes the dim( f )×dim(x) matrix whose
(i, j)th element is ∂ fi/∂x j. Quaternions follow their own algebra
(see Appendix A for a brief introduction) and must not be con-
fused with vectors/matrices; quaternions are therefore denoted
by bold Roman characters (a). When taking a derivative with
respect to the quaternion a, ∂x/∂a denotes the 4 × 1 matrix of
derivatives with respect to the quaternion components; ∂x/∂a′
is the transposed matrix. Tables of acronyms and variables are
provided in Appendix E.

2. Outline of the approach

The astrometric principles for Gaia were outlined already in the
Hipparcos Catalogue (ESA 1997, Vol. 3, Ch. 23) where, based
on the accumulated experience of the Hipparcos mission, a view
was cast to the future. The general principle of a global astromet-
ric data analysis was succinctly formulated as the minimization
problem:

min
s, n
‖ f obs − f calc(s, n)‖M , (1)

with a slight change of notation to adapt to the present paper.
Here s is the vector of unknowns (parameters) describing the
barycentric motions of the ensemble of sources used in the as-
trometric solution, and n is a vector of ‘nuisance parameters’
describing the instrument and other incidental factors which are
not of direct interest for the astronomical problem but are never-
theless required for realistic modelling of the data. The observa-
tions are represented by the vector f obs which could for example
contain the measured detector coordinates of all the stellar im-
ages at specific times. f calc(s, n) is the observation model, e.g.,
the expected detector coordinates calculated as functions of the
astrometric and nuisance parameters. The norm is calculated in
a metric M defined by the statistics of the data; in practice the
minimization will correspond to a weighted least-squares solu-
tion with due consideration of robustness issues (see Sect. 3.6).

While Eq. (1) encapsulates the global approach to the data
analysis problem, its actual implementation will of course de-
pend strongly on the specific characteristics of the Gaia instru-
ment and mission as well as on the practical constraints on the
data processing task.

At the heart of the problem is the modelling of data repre-
sented by the function f calc(s, n) in Eq. (1). This is schemati-
cally represented in the shaded part of the diagram in Fig. 1. It
shows the main steps for calculating the expected CCD output in
terms of the various parameters. The data processing, effecting
the minimization in Eq. (1), is represented in the right part of
the diagram. In subsequent sections we describe in some detail
the main elements depicted in Fig. 1. The astrometric (source)
parameters are represented by the vector s, while the nuisance
parameters are of three kinds: the attitude parameters a, the ge-
ometric calibration parameters c, and the global parameters g.
The observables f are represented by the pixel coordinates (κ, µ)
of point source images on Gaia’s CCDs. (In the actual imple-
mentation of the approach, the minimization problem is formu-
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Fig. 1. Schematic representation of the main elements of the astrometric data analysis. In the shaded area is the mathematical model
that allows to calculate the position of the stellar image in pixel coordinates, and hence the expected CCD data, for any given set
of model parameters. To the right are the processes that fit this model to the observed CCD data by adjusting the parameters in the
rectangular boxes along the middle. This paper is primarily concerned with the geometrical part of the analysis contained in the
dashed box. However, a brief outline of the CCD data modelling and processing (bottom part of the diagram) is given in Sect. 3.5
and Appendix D.2.

lated in terms of the field angles η, ζ rather than in the directly
measured pixel coordinates κ, µ; see Sects. 3.3 and 3.4.)

The various elements of the astrometric solution are de-
scribed in some detail in the subsequent sections. Section 3 pro-
vides the mathematical framework needed to model the Gaia
observations and setting up the least-squares equations for the
astrometric solution. In the interest of clarity and overview we
omit in this description certain complications that need to be
considered in the final data processing system; these are instead
briefly discussed in Appendix D. In Sect. 4 we describe the it-
erative solution method in general terms, and then provide, in
Sects. 5 and 6, the mathematical details of the most important
procedures. Section 7 outlines the existing implementation of the
solution and presents the results of a demonstration run based
on simulated observations of about 2 million primary sources.
Appendices A to C provide brief introductions to three mathe-
matical tools that are particularly important for the subsequent
development, namely the use of quaternions for representing the
instantaneous satellite attitude, the B-spline formalism used to
model the attitude as a function of time, and a modified Cholesky
algorithm for the decomposition of positive semidefinite normal
matrices.

3. Mathematical formulation of the basic
observation model

3.1. Reference systems

The high astrometric accuracy aimed for with Gaia makes it nec-
essary to use general relativity for modelling the data. This im-
plies a precise and consistent formulation of the different refer-
ence systems used to describe the motion of the observer (Gaia),
the motion of the observed object (source), the propagation of
light from the source to the observer, and the transformations be-
tween these systems. The formulation adopted for Gaia (Klioner
2003, 2004) is based on the parametrized post-Newtonian (PPN)
version of the relativistic framework adopted in 2000 by the
International Astronomical Union (IAU); see Soffel et al. (2003).
In this section only some key concepts from this formulation are
introduced.

The orbit of Gaia and the light propagation from the source
to Gaia are entirely modelled in the Barycentric Celestial
Reference System (BCRS) whose spatial axes are aligned with
the International Celestial Reference System (ICRS, Feissel &
Mignard 1998). The associated time coordinate is the barycen-
tric coordinate time (TCB). Throughout this paper, all time vari-
ables denoted t (with various subscripts) must be interpreted as
TCB. The ephemerides of solar-system bodies (including the
Sun and the Earth) are also expressed in this reference system.
Even the motions of the stars and extragalactic objects are for-
mally modelled in this system, although for practical reasons
certain effects of the light-propagation time are conventionally
ignored in this model (Sect. 3.2).
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In order to model the rotation (attitude) of Gaia and the ce-
lestial direction of the light rays as observed by Gaia, it is ex-
pedient to introduce also a co-moving celestial reference system
having its origin at the centre of mass of the satellite and a coor-
dinate time equal to the proper time at Gaia. This is known as the
Centre-of-Mass Reference System (CoMRS) and the associated
time coordinate is Gaia Time (TG). Klioner (2004) demonstrates
how the CoMRS can be constructed in the IAU 2000 frame-
work in exact analogy with the Geocentric Celestial Reference
System (GCRS), only for a massless particle (Gaia) instead of
the Earth. Like the BCRS and GCRS, the CoMRS is kinemati-
cally non-rotating, and its spatial axes are aligned with the ICRS.
The celestial reference system (either the CoMRS or the ICRS
depending on whether the origin is at Gaia or the solar-system
barycentre) will in the following be represented by the vector
triad C = [X Y Z], where X, Y, and Z are orthogonal unit vectors
aligned with the axes of the celestial reference system. That is, X
points towards the origin (α = δ = 0), Z towards the north celes-
tial pole (δ = +90◦), and Y = Z × X points to (α = 90◦, δ = 0).

In the CoMRS the attitude of the satellite is a spatial ro-
tation in three dimensions, and can therefore be described
purely classically, for example using quaternions (Sect. 3.3 and
Appendix A). The rotated reference system, aligned with the
instrument axes, is known as the Scanning Reference System
(SRS). Its spatial x, y, z axes (Fig. 2) are defined in terms of the
two viewing directions of Gaia f P (in the centre of the preceding
field of view, PFoV) and f F (in the centre of the following field
of view, FFoV) as

x = 〈 f F + f P〉 , z = 〈 f F × f P〉 , y = z × x . (2)

(The precise definition of f P and f F is implicit in the geometric
instrument model; see Sect. 3.4.) The SRS is represented by the
vector triad S = [x y z].

For determining the orbit of Gaia and calibrating the on-
board clock, it is also necessary to model the radio ranging and
other ground-based observations of the Gaia spacecraft in the
same relativistic framework. For this, we also need the GCRS.
These aspects of the Gaia data processing are, however, not dis-
cussed in this paper.

3.2. Astrometric model

The astrometric model is a recipe for calculating the proper di-
rection ui(t) to a source (i) at an arbitrary time of observation
(t) in terms of its astrometric parameters si and various auxil-
iary data, assumed to be known with sufficient accuracy. The
auxiliary data include an accurate barycentric ephemeris of the
Gaia satellite, bG(t), including its coordinate velocity dbG/dt,
and ephemerides of all other relevant solar-system bodies.

For the astrometric core solution every source is assumed to
move with uniform space velocity relative to the solar-system
barycentre. In the BCRS its spatial coordinates at time t∗ are
therefore given by

bi(t∗) = bi(tep) + (t∗ − tep)vi (3)

where tep is an arbitrary reference epoch and bi(tep), vi define
six kinematic parameters for the motion of the source. The six
astrometric parameters in si are merely a transformation of the
kinematic parameters into an equivalent set better suited for the
analysis of the observations. The six astrometric parameters are:

αi the barycentric right ascension at the adopted reference epoch
tep

δi the barycentric declination at epoch tep
$i the annual parallax at epoch tep
µα∗i = (dαi/dt) cos δi the proper motion in right ascension at

epoch tep
µδi = dδi/dt the proper motion in declination at epoch tep
µri = vri$i/Au the ‘radial proper motion’ at epoch tep, i.e., the

radial velocity of the source (vri) expressed in the same unit
as the transverse components of proper motion (Au = astro-
nomical unit).

As explained in Sect. 3.1, the astrometric parameters refer to the
ICRS and the time coordinate used is TCB. The reference epoch
tep is preferably chosen to be near the mid-time of the mission
in order to minimize statistical correlations between the position
and proper motion parameters.

The transformation between the kinematic and the astromet-
ric parameters is non-trivial (Klioner 2003), mainly as a con-
sequence of the practical need to neglect most of the light-
propagation time t − t∗ between the emission of the light at the
source (t∗) and its reception at Gaia (t). This interval is typically
many years and its value, and rate of change (which depends on
the radial velocity of the source), will in general not be known
with sufficient accuracy to allow modelling of the motion of the
source directly in terms of its kinematic parameters according
to Eq. (3). The proper motion components µα∗i, µδi and radial
velocity vri correspond to the ‘apparent’ quantities discussed by
Klioner (2003, Sect. 8).

The coordinate direction to the source at time t is calculated
with the same ‘standard model’ as was used for the reduction
of the Hipparcos observations (ESA 1997, Vol. 1, Sect. 1.2.8),
namely

ūi(t) =
〈
ri + (tB − tep)(piµα∗i + qiµδi + riµri) −$ibG(t)/Au

〉
(4)

where the angular brackets signify vector length normalization,
and [pi qi ri] is the ‘normal triad’ of the source with respect
to the ICRS (Murray 1983). In this triad, ri is the barycentric
coordinate direction to the source at time tep, pi = 〈Z × ri〉, and
qi = ri × pi. The components of these unit vectors in the ICRS
are given by the columns of the matrix

C′[pi qi ri] =

− sinαi − sin δi cosαi cos δi cosαi
cosαi − sin δi sinαi cos δi sinαi

0 cos δi sin δi

 . (5)

bG(t) is the barycentric position of Gaia at the time of obser-
vation, and Au the astronomical unit. tB is the barycentric time
obtained by correcting the time of observation for the Römer
delay; to sufficient accuracy it is given by

tB = t + r′i bG(t)/c , (6)

where c is the speed of light.
In Eq. (4) the term containing µri accounts for the relative

rate of change of the barycentric distance to the source. This
term may produce secular variations of the proper motions and
parallaxes of some nearby stars, which in principle allow their
radial velocities to be determined astrometrically (Dravins et al.
1999). However, for the vast majority of these stars, µri can be
more accurately calculated by combining the spectroscopically
measured radial velocities with the astrometric parallaxes. Thus,
although all six astrometric parameters are taken into account
when computing the coordinate direction, usually only five of
them are considered as unknowns in the astrometric solution.

The standard model can be derived by considering the uni-
form motion of the source in a purely classical framework, using
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Fig. 2. The Scanning Reference System (SRS) [x y z] is de-
fined by the viewing directions f P and f F according to Eq. (2).
The instrument angles (ϕ, ζ) are the spherical coordinates in the
SRS of the observed (proper) direction u towards the object. See
Fig. 4 for further definition of the viewing directions. The field
sizes are greatly exaggerated in this drawing; in reality the astro-
metrically useful field is 0.72◦ × 0.69◦ (along× across scan) for
each viewing direction. The basic angle is Γc = arccos( f P

′ f F),
nominally equal to 106.5◦.

Euclidean coordinates and neglecting the light propagation time
from the source to the observer (except for the Römer delay).
To the accuracy of Gaia, relativistic and light-propagation effects
are by no means negligible, but it can be shown that this model is
nevertheless accurate enough to model the observations to sub-
microarcsec accuracy. It is adopted for this purpose because it
closely corresponds to the conventional interpretation of the as-
trometric parameters. However, when the astrometric parameters
are to be interpreted in terms of the barycentric space velocity of
the source, some of these effects may come into play (Lindegren
& Dravins 2003).

The transformation from ūi(t) to the observable (proper) di-
rection ui(t) involves taking into account gravitational light de-
flection by solar-system bodies and the Lorentz transformation
to the co-moving frame of the observer (stellar aberration); the
relevant formulae are given by Klioner (2003). This transfor-
mation therefore depends also on the global parameters g, for
example the PPN parameter γ which measures the strength of
the gravitational light deflection. The calculation uses some aux-
iliary data, not subject to improvement by the solution, and
which are here denoted h; normally they include for example
the barycentric ephemerides of the Gaia satellite and of solar-
system bodies, along with their masses. The complete transfor-
mation can therefore be written symbolically as:

ui(t) = u(si, g | t, h) , (7)

where the vertical bar formally separates the (updatable) param-
eters si and g from the (fixed) given data t and h. Strictly speak-
ing, the function u returns the coordinates of the proper direction
in the CoMRS, that is the column matrix C′ui(t). The source pa-
rameter vector s is the concatenation of the sub-vectors si for all
the primary sources.

3.3. Attitude model

The attitude specifies the instantaneous orientation of the Gaia
instrument in the celestial reference frame, that is the transfor-

mation from C = [X Y Z] (more precisely, the CoMRS) to
S = [x y z] (Sect. 3.1) as a function of time. The spacecraft is
controlled to follow a specific attitude as a function of time, for
example the so-called Nominal Scanning Law (NSL; de Bruijne
et al. 2010), designed to provide good coverage of the whole ce-
lestial sphere while satisfying a number of other requirements.
The NSL is analytically defined for arbitrarily long time inter-
vals by just a few free parameters.

However, the actual attitude will deviate from the intended
(nominal) scanning law by up to ∼ 1 arcmin in all three axes,
and these deviations vary on time scales from seconds to min-
utes depending on the level of physical perturbations and the
characteristics of the real-time attitude measurements and con-
trol law (cf. Appendix D.4). The CCD integration time of (usu-
ally) 4.42 s means that the true (physical) attitude cannot be ob-
served, but only a smoothed version of it, corresponding to the
convolution of the physical attitude with the CCD exposure func-
tion (Appendix D.3). This ‘effective’ attitude must however be
a posteriori estimable, at any instant, to an accuracy compatible
with the astrometric goals, i.e., at sub-mas level. For this pur-
pose the effective attitude is modelled in terms of a finite num-
ber of attitude parameters, for which it is necessary to choose a
suitable mathematical representations of the instantaneous trans-
formation, as well as of its time dependence. For the Gaia data
processing, we have chosen to use quaternions (Appendix A) for
the former, and B-splines (Appendix B) for the latter represen-
tation.

At any time the orientation of the SRS (S) with respect to the
CoMRS (C) may be represented by the attitude matrix

A ≡

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 = S′C =

x′X x′Y x′Z
y′X y′Y y′Z
z′X z′Y z′Z

 , (8)

which is a proper orthonormal matrix, AA′ = I, det(A) = +1.
This is also called the direction cosine matrix, since the rows
are the direction cosines of x, y and z in the CoMRS, and the
columns are the direction cosines of X, Y and Z in the SRS.

The orthonormality of A implies that the matrix elements
satisfy six constraints, leaving three degrees of freedom for the
attitude representation. Although one could parametrize each
of the nine matrix elements as a continuous function of time,
for example using splines, it would in practice not be possi-
ble to guarantee that the orthonormality constraints hold at any
time. The adopted solution is to represent the instantaneous at-
titude by a unit quaternion q, which has only four components,{
qx, qy, qz, qw

}
, satisfying the single constraint q2

x +q2
y +q2

z +q2
w =

1. This is easily enforced by normalization.
The attitude quaternion q(t) gives the rotation from the

CoMRS (C) to the SRS (S). Using quaternions, their relation is
defined by the transformation of the coordinates of the arbitrary
vector v in the two reference systems,{

S′v, 0
}

= q−1 {
C′v, 0

}
q . (9)

In the terminology of Appendix A.3 this is a frame rotation
of the vector from C to S. The inverse operation is {C′v, 0} =
q {S′v, 0}q−1.

Using the B-spline representation in Appendix B, we have

q(t) =
〈∑`

n=`−M+1 anBn(t)
〉
, (10)

where an (n = 0 . . .N − 1) are the coefficients of the B-splines
Bn(t) of order M defined on the knot sequence {τk}

N+M−1
k=0 . The

function Bn(t) is non-zero only for τn < t < τn+M , which is
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why the sum in Eq. (10) only extends over the M terms ending
with n = `. Here, ` is the so-called left index of t satisfying
τ` ≤ t < τ`+1. The normalization operator 〈 〉 guarantees that q(t)
is a unit quaternion for any t in the interval [τM−1, τN] over which
the spline is completely defined. Although the coefficients an are
formally quaternions, they are not of unit length. The attitude
parameter vector a consists of the components of the whole set
of quaternions an.

Cubic splines (M = 4) are currently used in this attitude
model. Each component of the quaternion (before the normal-
ization in Eq. 10) is then a piecewise cubic polynomial with
continuous value, first, and second derivative for any t; the third
derivative is discontinuous at the knots. When initializing the
solution, it is possible to select any desired order of the spline.
Using a higher order, such as M = 5 (quartic) or 6 (quintic),
provides improved smoothness but also makes the spline fitting
less local, and therefore more prone to undesirable oscillatory
behaviour. The flexibility of the spline is in principle only gov-
erned by the number of degrees of freedom (that is, in practice,
the knot frequency), and is therefore independent of the order.
One should therefore not choose a higher order than is warranted
by the smoothness of the actual effective attitude, which is dif-
ficult to model a priori (cf. Appendix D.4). Determining the op-
timal order and knot frequency may in the end only be possible
through analysis of the real mission data.

Equation (7) returns the observed direction to the source rel-
ative to the celestial reference system, or C′u = [uX , uY , uZ]′. In
order to compute the position of the image in the field of view,
we need to express this direction in the Scanning Reference
System, SRS (Sect. 3.1), or S′u = [ux, uy, uz]′. The required
transformation is obtained by a frame rotation according to
Eq. (9), {

S′u, 0
}

= q−1 {
C′u, 0

}
q , (11)

whereupon the instrument angles (ϕ, ζ) are obtained from

S′u ≡

ux
uy
uz

 =

cos ζ cosϕ
cos ζ sinϕ

sin ζ

 ⇔


ϕ = atan2

(
uy, ux

)
ζ = atan2

(
uz,

√
u2

x + u2
y

)
(12)

(Fig. 2), where we adopt the convention that −π ≤ ϕ < π. The
field index f and the along-scan field angle η are finally obtained
as

f = sign(ϕ) , η = ϕ − f Γc/2 , (13)

where the basic angle, Γc, is here a purely conventional value (as
suggested by the subscript). The field-of-view limitations imply
that |η| . 0.5◦ and |ζ | . 0.5◦ for any observation.

Given the time of observation t and the set of source param-
eters s, attitude parameters a, and global parameters g, the field
index f and the field angles (η, ζ) can thus be computed by appli-
cation of Eqs. (7), (10)–(13). The resulting computed field angles
are concisely written η(t | s, a, g), ζ(t | s, a, g).

3.4. Geometric instrument model

The geometric instrument model defines the precise layout of
the CCDs in terms of the field angles (η, ζ). This layout depends
on several different factors, including: the physical geometry of
each CCD; its position and alignment in the focal-plane assem-
bly; the optical system including its scale value, distortion and
other aberrations; and the adopted (conventional) value of the
basic angle Γc. Some of these (notably the optical distortion) are
different in the two fields of view and may evolve slightly over
the mission; on the other hand these variations are expected to be
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Fig. 3. Layout of the CCDs in Gaia’s focal plane. The star im-
ages move from right to left in the diagram. The along-scan (AL)
and across-scan (AC) directions are indicated in the top left cor-
ner. The skymappers (SM1, SM2) provide source image detec-
tion, two-dimensional position estimation and field-of-view dis-
crimination. The astrometric field (AF1–AF9) provides accurate
AL measurements and (sometimes) AC positions. Additional
CCDs used in the blue and red photometers (BP, RP), the radial-
velocity spectrometer (RVS), for wavefront sensing (WFS) and
basic-angle monitoring (BAM) are not further described in this
paper. One of the rows (AF3) illustrates the system for labelling
individual CCDs (AF3 1, etc). The nominal paths of two star
images, one in the preceding field of view (PFoV) and one in the
following field of view (FFoV) are indicated. For purely tech-
nical reasons the origin of the field angles (η, ζ) corresponds to
different physical locations on the CCDs in the two fields. The
physical size of each CCD is 45 × 59 mm2.

very smooth as a function of the field angles. Other factors, such
as the detailed physical geometry of the pixel columns, may be
extremely stable but possibly quite irregular on a small scale. As
a result, the geometric calibration model must be able to accom-
modate both smooth and irregular patterns evolving on different
time scales in the two fields of view.

In the following it should be kept in mind that the astrometric
instrument of Gaia is optimised for one-dimensional measure-
ments in the along-scan direction, i.e., of the field angle η, while
the requirements in the perpendicular direction (ζ) are much re-
laxed. This feature of Gaia (and Hipparcos) is a consequence
of fundamental considerations derived from the requirements
to determine a global reference frame and absolute parallaxes
(Lindegren & Bastian 2011). In principle the measurement accu-
racy in the ζ direction, as well as the corresponding instrument
modelling and calibration accuracies, may be relaxed by up to
a factor given by the inverse angular size of the field of view
(Lindegren 2005), or almost two orders of magnitude for a field
of 0.7◦. In practice a ratio of the order of 10 may be achieved, in
which case the across-scan measurement and calibration errors
have a very marginal effect on the overall astrometric accuracy.

The focal plane of Gaia contains a total of 106 CCDs
(Laborie et al. 2007), of which only the 14 CCDs in the skymap-
pers (SM1 and SM2) and the 62 in the astrometric field (AF1
through AF9) are used for the astrometric solution (Fig. 3). The
CCDs have 4500 pixel lines in the along-scan (AL, constant ζ,
decreasing η) direction and 1966 pixel columns in the across-
scan (AC, constant η, increasing ζ) direction. They are operated
in the Time, Delay and Integrate (TDI) mode (also known as
drift-scanning), an imaging technique well-known in astronomy
from ground-based programmes such as the Sloan Digital Sky
Survey (Gunn et al. 1998). Effectively, the charges are clocked
along the CCD columns at the same (average) speed as the mo-
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tion of the optical images, i.e., 60 arcsec s−1 for Gaia. The expo-
sure (integration) time is thus set by the time it takes the image
to move across the CCD, or nominally T ' 4.42 s, if no gate is
activated. At this exposure time the central pixels will be satu-
rated for sources brighter than magnitude G ' 12.1 Gate activa-
tion, or ‘gating’ for short, is the adopted method to obtain valid
measurements of brighter sources. Gating temporarily inhibits
charge transfer across a certain TDI line (row of pixels AC),
thus effectively zeroing the charge image and reducing the ex-
posure time in proportion to the number of TDI lines following
the gate. A range of discrete exposure times is thus available, the
shortest one, according to current planning, using only 16 TDI
lines (15.7 ms). Gate selection is made by the on-board soft-
ware based on the measured brightness of the source in relation
to the calibrated full-well capacity of the relevant section of the
CCD. Measurement errors and the spread in full-well capacities
make the gate-activation thresholds somewhat fuzzy, and a given
bright source is not necessarily always observed using the same
gate. Moreover, a quasi-random selection of the observations of
fainter sources will also be gated, viz., if they happen to be read
out at about the same time, and on the same CCD, as a gated
bright star. The skymappers are operated in a permanently gated
mode, so that in practice only the last 2900 TDI lines are used in
SM1 and SM2.

The skymappers are crucial for the real-time operation of
the instrument, since they detect the sources as they enter the
field of view, and allow determination of an approximate two-
dimensional position of the images and (together with data
from AF1) their speed across the CCDs. This information is
used by the on-board attitude computer, in order to determine
which CCD pixels should be read out and transmitted to ground
(Sect. 3.5). The skymappers also allow to discriminate between
the two viewing directions, since sources in the preceding field
of view (PFoV) are only seen by SM1 and sources in the follow-
ing field of view (FFoV) are only seen by SM2. In the astromet-
ric field (as well as in BP, RP and RVS) the two fields of view
are superposed.

Most observations acquired in the astrometric field (AF)
are purely one-dimensional through the on-chip AC binning
of data (Sect. 3.5). However, sources brighter than magnitude
G ' 13 are always observed as two-dimensional images, pro-
viding accurate information about the AC pixel coordinate (µ) as
well. Some randomly selected fainter images are also observed
two-dimensionally (‘Calibration Faint Stars’, CFS). The bright
sources, CFS and SM data provide the AC information neces-
sary for the on-ground three-axis attitude determination.

Because of the TDI mode of observation, AL irregularities of
the pixel geometry are smeared out and need not be calibrated,
and any measurement of the AL or AC position must effectively
be referred back to an ‘observation time’ half-way through the
integration. Correspondingly, the pixel geometry can be repre-
sented by a fiducial ‘observation line’

[
η(µ), ζ(µ)

]
traced out in

the field angles η, ζ as functions of the AC pixel coordinate µ
(Fig. 4). The AC pixel coordinate is defined as a continuous
variable with µ = 14 when the image is centred on the first
pixel column, µ = 15 at the second pixel column, and so on
until µ = 1979 at the last (1966th) pixel column. The offset by
13 pixels allows for the presence of pre-scan pixel data in some
observations.

1 G is the broad-band magnitude measured on Gaia’s unfiltered
CCDs. G ' V for unreddened early-type stars, while G ' V − 2 for
M stars. See Jordi et al. (2010) for a precise characterization of G.

! !
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observation line
nominal position of CCD centre
CCD outline

PFOVFFOV

apparent
path of 

an object
AF8_3

AF8_4

AF8_3

AF8_4

Fig. 4. Schematic illustration of how the field angles (η, ζ) are
defined in terms of the CCD layout in Fig. 3. For simplicity
only the projections of two CCDs, AF8 3 and AF8 4, into the
Scanning Reference System (SRS) are shown (not to scale). The
field angles have their origins at the respective viewing direction
f P or f F (Fig. 2), which are defined in relation to the nominal
centres of the CCDs (crosses); the actual configuration of the
detectors is described by fiducial observation lines according to
Eq. (15). The dashed curve shows the apparent path of a stel-
lar image across the two fields of view. Its intersection with the
observation lines define the instants of observations.

Nominally, the observation line corresponds to the (K/2)th
pixel line projected backwards through the optical instrument
onto the Scanning Reference System on the sky, where K is the
number of active AL pixel lines in the observation (normally
K = 4500).2 For a gated observation K is much smaller and
the observation line is therefore correspondingly displaced to-
wards the CCD readout register. A separate set of geometrical
calibration parameters is therefore needed for each gate being
used. In the calibration updating (Sect. 5.3) all the calibration
parameters are however solved together, with the overlap due
to the fuzzy gate-activation thresholds providing the necessary
connection between the different gates.

Let n be an index identifying the different CCDs used for as-
trometry, i.e., for each of the 76 CCDs in the SM and AF part of
the focal plane. Furthermore, let g be a gate index such that g = 0
is used for non-gated observations and g = 1, . . . , 12 for gated
observations of progressively brighter sources. In each field of
view (index f ) the nominal observation lines

[
η0

f ng(µ), ζ0
f ng(µ)

]
could in principle be calculated from the nominal characteristics
of the focal plane assembly (FPA) and ray tracing through the
nominal optical system. However, since the nominal observation
lines are only used as a reference for the calibration of the actual
observation lines, a very simplistic transformation from linear
coordinates to angles can be used without introducing approx-
imation errors in the resulting calibration model. The nominal
observation lines are therefore defined by the transformation

η0
f ng(µ) ≡ η0

ng = −YFPA[n, g]/F

ζ0
f ng(µ) = −

(
XFPA[n] − (µ − µc)pAC − Xcentre

FPA [ f ]
)
/F

 (14)

where XFPA, YFPA are physical coordinates (in mm) in the fo-
cal plane,3 XFPA[n] is the physical AC coordinate of the nom-

2 In reality the definition of the fiducial observation line is a bit more
complex, as some of the pixel lines are blocked out by an aluminium
mask.

3 For consistency with notations adopted by the ESA project team
and the industrial contractor, and extensively used, e.g., for on-ground
calibrations, +XFPA is oriented along −ζ and +YFPA along −η.
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inal centre of the nth CCD, YFPA[n, g] the physical AL coor-
dinate of the nominal observation line for gate g on the nth
CCD, and Xcentre

FPA [ f ] the physical AC coordinate of the nomi-
nal field centre for field index f . µc = 996.5 is the AC pixel
coordinate of the CCD centre, pAC = 30 µm the physical AC
pixel size, and F = 35 m the nominal equivalent focal length
of the telescope. While η0

ng is independent of f , in the AC di-
rection the origins are offset by about ±221 arcsec between the
two fields of view, corresponding to the physical coordinates
Xcentre

FPA [ f ] = (−37.5 mm) f .
It is emphasized that the nominal observation lines are purely

conventional reference quantities, and need not be recomputed,
e.g., once a more accurate estimate of F becomes available.

Because of possible changes in the instrument during the
mission, the actual observation lines will be functions of time.
The time dependence is quantified by introducing independent
sets of calibration parameters for successive, non-overlapping
time intervals. Different groups of parameters may develop on
different time scales, and the resulting formulation can be quite
complex. For the sake of illustration, let us distinguish between
three categories of geometric calibration parameters:

1. Large-scale AL calibration, ∆η. This may (minutely but im-
portantly) change due to thermal variations in the optics, the
detectors, and their supporting mechanical structure. These
variations could occur on short time scales (of the order of
a day), and would in general be different in the two fields
of view. They are modelled as low-order polynomials in the
across-scan pixel coordinate µ.

2. Small-scale AL calibration, δη. This is mainly related to
physical defects or irregularities in the CCDs themselves, for
example ‘stitching errors’ introduced by the photolithogra-
phy process used to manufacture the CCDs. These irregular-
ities are expected to be stable over very long time scales, pos-
sibly throughout the mission, and should be identical in both
fields of view. They require a spatially detailed modelling,
perhaps with a resolution of just one or a few AC pixels.

3. Large-scale AC calibration, ∆ζ. Although the physical origin
is the same as for ∆η, the AC components can be assumed
to be constant on long time scales, since the calibration re-
quirement in the AC direction is much more relaxed than in
the AL direction. They are modelled as low-order polynomi-
als in the field angles, separately in each field of view.

Let index j identify the ‘short’ time intervals needed for the
large-scale AL calibration, and index k identify the ‘long’ time
intervals applicable to the small-scale AL calibration and large-
scale AC calibration. That is, an observation at time t belongs to
some short time interval j and some long time interval k, where
j and k are readily computed from the known t and the corre-
sponding sequences of division times.4 Assuming that quadratic
polynomials in µ are sufficient for the large-scale calibrations,
and that full AC pixel resolution is required for the small-scale
AL calibration, the observation lines at time t are modelled as

η f ng(µ, t) = η0
ng +

2∑
r=0

∆ηr f ng jL∗r

(
µ − 13.5

1966

)
+ δηngkm

ζ f ng(µ, t) = ζ0
f ng(µ) +

2∑
r=0

∆ζr f ngkL∗r

(
µ − 13.5

1966

)


(15)

4 Technically, the use of independent parameter values in successive
time intervals represents a spline of order 1 (i.e., degree 0), the sepa-
ration times constitute the knot sequence, and j or k correspond to the
‘left index’ (Appendix B.2).

where L∗r (x) is the shifted Legendre polynomial of degree r (or-
thogonal on [0, 1]), i.e., L∗0(x) = 1, L∗1(x) = 2x − 1, L∗2(x) =

6x2 − 6x + 1, etc; ∆ηr f ng j are the large-scale AL parameters,
δηngkm the small-scale AL parameters (with m = round(µ) the
index of the nearest pixel column), and ∆ζr f ngk the large-scale
AC parameters.

In order to render all the geometric calibration parameters
uniquely determinable, a number of constraints are rigorously
enforced by the astrometric solution. Effectively, they define the
origins of the field angles, i.e., the viewing directions f P and f F,
to coincide with the average nominal field angles of the CCD
centres. The necessary constraints are:∑

f

∑
n∈AF

∆η0 f n0 j = 0 for each j, (16)

∑
m

δηn0kmL∗r

(
m − 13.5

1966

)
= 0 for each combination rnk, (17)∑

n∈AF

∆ζ0 f n0k = 0 for each combination f k, (18)

Note that g = 0 throughout in Eq. (16)–(18). That the constraints
are only defined in terms of the non-gated observations (g = 0)
implies that the observation lines for the gated observations must
be calibrated relative to the non-gated observations. This is pos-
sible since any given bright source will not always be observed
with the same gate.

Constraint (16) effectively defines the zero point of the AL
field angle η by requiring that ∆η = 0 when averaging over the
CCDs and between the two fields of view. Constraint (17) im-
plies that the small-scale AL corrections δη do not have any com-
ponents that could be described by ∆η instead; it therefore en-
sures a unique division between the large-scale and small-scale
components. Constraint (18) effectively defines the zero point of
the AC field angle ζ by requiring that ∆ζ = 0, separately in each
field of view, when averaged over the CCDs. The sums over n
in Eqs. (16) and (18) are restricted to the CCDs in the astromet-
ric field (AF), since the skymapper (SM) measurements are less
accurate.

The basic angle Γc introduced in Sect. 3.3 is a fixed reference
value, and any real variations of the angle between the two lines
of sight will therefore show up as a variation in ∆η with opposite
signs in the two fields of view. The offset of the actual basic
angle with respect to the conventional value Γc may be defined
as the average difference of ∆η between the two fields of view,
where the average is computed over the astrometric CCDs, for
gate g = 0, and over µ; the result for time period j is

∆Γ j =
1
62

∑
n∈AF

∑
f

f ∆η0 f n0 j . (19)

Although this is obviously a useful quantity to monitor, it does
not appear as a parameter in the geometric calibration model.
A number of additional quantities representing the mean scale
offset, the mean field orientation, etc., can similarly be computed
from the large-scale calibration parameters for the purpose of
monitoring.

Equation (15) encapsulates a specific formulation of the ge-
ometric instrument model, with certain assumptions about the
shape, dependencies, and time scales of possible variations.
While this particular model is currently believed to be sufficient
to describe the behaviour of the actual instrument to the required
accuracy, it is very likely that modifications will be needed af-
ter a first analysis of the flight data. Moreover, in the course of
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the data analysis one may want to try out alternative models, or
examine possible systematics resulting from the pre-processing
(location estimator). In order to facilitate this, a much more flex-
ible generic calibration model has been implemented. In the
generic model, the ‘observed’ field angles (representing the true
observation lines) for any observation l are written

ηobs
l = η0

ng +

NAL−1∑
r=0

EAL
r (l)

ζobs
l = ζ0

f ng(µ) +

NAC−1∑
r=0

EAC
r (l)


(20)

where each of the Er(l) (for brevity dropping superscript
AL/AC) represents a basic calibration effect, being a linear com-
bination of elemental calibration functions Φrs:

Er(l) =

Kr−1∑
s=0

crsΦrs(l) . (21)

NAL and NAC are the number of effects considered along and
across scan. The whole set of coefficients crs forms the calibra-
tion vector c.

In the generic formulation, the multiple indices f , n, g and
the variables µ and t are replaced by the single observation in-
dex l. This allows maximum flexibility in terms of how the cal-
ibration model is implemented in the software. The functions
Φrs receive the observation index l, and it is assumed that this
index suffices to derive from it all quantities needed to evalu-
ate the calibration functions for this observation. Examples of
quantities that can be derived from the observation index are:
the FoV index f , the CCD and gate indices n and g, the AC
pixel coordinate µ, time t, and any relevant astrometric, pho-
tometric or spectroscopic parameter of the source (magnitude,
colour index, etc.). Intrinsically real-valued quantities such as
t can be subdivided into non-overlapping intervals with differ-
ent sets of calibration parameters applicable to each interval.
The basic calibration model (15) can therefore be implemented
as a particular instance of the generic model, with for example
L∗r (x) (r = 0, 1, 2) constituting three of the calibration functions
(with µ derived from l). Once the calibration functions have been
coded, the entire calibration model can be conveniently specified
(and changed) through an external configuration file alone using,
e.g., XML structures.

Some elemental calibration functions may be introduced for
diagnostic purposes rather than actual calibration. An example
of this is any function depending on the colour or magnitude
of the source. The origin of such effects is briefly explained in
Appendix D.1 and D.2. Magnitude- and colour-dependent vari-
ations of the instrument response are expected to be fully taken
into account by the signal modelling on the CCD data level, as
outlined in Sect. 3.5 (notably by the LSF and CDM calibrations),
and should not show up in the astrometric solution. Thus, non-
zero results for such ‘non-geometric’ diagnostic calibration pa-
rameters indicate that the signal modelling should be improved.
In the final solution the diagnostic calibration parameters should
ideally be zero.

The parameters of the generic calibration model must satisfy
a number of constraints similar to Eqs. (16)–(18). These can be
cast in the general form

C′c = 0 , (22)

where the matrix C contains one column, with known coeffi-
cients, for each constraint. The columns are, by design, linearly
independent.

3.5. Signal (CCD data) model

As suggested in Fig. 1, the modelling of CCD data at the level of
individual pixels (i.e., the photon counts) is not part of the geo-
metrical model of the observations with which we are concerned
in this paper. However, the processing of the photon counts, ef-
fectively by fitting the CCD data model, produces the ‘observa-
tions’ that are the input to the astrometric core solution. In order
to clarify the exact meaning of these observations we include
here a brief overview of the signal model.

The pixel size, 10 µm ' 59 mas in the along-scan (AL)
direction and 30 µm ' 177 mas in the across-can (AC) direc-
tion, roughly matches the theoretical diffraction image for the
1.45 × 0.50 m2 telescope pupil of Gaia (effective wavelength
∼ 650 nm). Around each detected object, only a small rectangu-
lar window (typically 6–18 pixels long in the AL direction and
12 pixels wide in the AC direction) is actually read out and trans-
mitted to the ground. Moreover, for most of the observations in
the astrometric field (AF), on-chip binning in the serial register
is used to sum the charges over the window in the AC direction.
This effectively results in a one-dimensional image of 6–18 AL
‘samples’, where the signal (Nk) in each sample k is the sum of
12 AC pixels. The exact time tk when a sample was transferred
to the serial register, expressed on the TCB scale, is in princi-
ple known from the time correlation of the on-board clock with
ground-based time signals. Because of the known one-to-one re-
lation between the TDI period counter k and tk, we may use k as
a proxy for tk in subsequent calculations.

For single stars, and in the absence of the effects discussed in
Appendix D.2, the sample values in the window are modelled as
a stochastic variable (Poisson photon noise plus electronic read-
out noise) with expected value

λk ≡ E (Nk) = β + αL(k − κ) (23)

where β, α and κ are the so-called image parameters represent-
ing the (uniform) background level, the amplitude (or flux) of
the source, and the AL location (pixel coordinate) of the image
centroid. The continuous, non-negative function L(x) is the Line
Spread Function (LSF) appropriate for the observation. L(x) de-
pends, for example, on the spectrum of the source and on the
position of the image in the focal plane. The (in general non-
integer) pixel coordinate κ is expressed on the same scale as
the (integer) TDI index k, and may be translated to the equiv-
alent TCB t(κ) by means of the known relation between k and
tk. The CCD observation time is defined as t(κ − K/2), where
K is the number of TDI periods used for integrating the image
(see Appendix D.3). Formally, the CCD observation time is the
instant of time at which the centre of the source image passed
across the CCD fiducial line halfway between the first and the
last TDI line used in the integration (this will depend on the gat-
ing).

Fitting the CCD signal model to the one-dimensional sam-
ple values Nk thus gives, as the end result of observation l, an
estimate of the AL pixel coordinate κ of the image in the pixel
stream, which is then transformed to the observation time tl. The
fitting procedure also provides an estimate of the uncertainty in
κ, which can be expressed in angular measure as a formal stan-
dard deviation of the AL measurement, σAL

l . It is derived by
error propagation through the fitted signal model, taking into
account the dominant noise sources, photon noise and readout
noise.

For some observations, AC information is also provided
through two-dimensional sampling of the pixel window around
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the detected object. This applies to all SM observations, AF ob-
servations of bright (G . 13) sources, and AF observations
of Calibration Faint Stars (Sect. 3.4). The modelling of the
two-dimensional images follows the same principles as outlined
above for the one-dimensional (AL only) case, only that the LSF
is replaced by a two-dimensional Point Spread Function (PSF)
and that there is one more location parameter to estimate, namely
the AC pixel coordinate µ. The astrometric result in this case
consists of the observation time tl, the observed AC coordinate
µl, and their formal standard uncertainties σAL

l and σAC
l (both

expressed as angles).
The estimation errors for different images are, for the sub-

sequent analysis, assumed to be statistically independent (and
therefore uncorrelated). This is a very good approximation to the
extent that they only depend on the photon and readout noises.
However, modelling errors at the various stages of the processing
(in particular CTI effects in the signal modelling [Appendix D.3]
and attitude irregularities [Appendix D.4]) are likely to intro-
duce errors that are correlated at least over the nine AF observa-
tions in a field transit. The resulting correlations as such are not
taken into account in the astrometric solution (i.e., the weight
matrix of the least-squares equations is taken to be diagonal),
but the sizes of the modelling errors are estimated, and are em-
ployed to reduce the statistical weights of the observations as
described in Sect. 3.6. The AL and AC estimates of a given (two-
dimensional) image are roughly independent at least in the limit
of small optical aberrations.

3.6. Synthesis model

By synthesis of the models described in the preceding sections,
we are now in a position to formulate very precisely the core
astrometric data analysis problem as outlined in Sect. 2. The
unknowns are represented by the vectors s, a, c, and g of re-
spectively the source, attitude, calibration, and global parame-
ters. For any observation l the observed quantities are the ob-
servation time tl and, where applicable, the observed AC pixel
coordinate µl, with their formal uncertainties σAL

l , σAC
l . We then

have the global minimization problem

min
s,a,c,g

Q =
∑

l ∈AL

(RAL
l )2 wAL

l

(σAL
l )2 + (εAL

l )2
+

∑
l ∈AC

(RAC
l )2 wAC

l

(σAC
l )2 + (εAC

l )2
, (24)

where

RAL
l (s, a, c, g) = η f ng(µl, tl | c) − η(tl | s, a, g) , (25)

RAC
l (s, a, c, g) = ζ f ng(µl, tl | c) − ζ(tl | s, a, g) (26)

are the residuals in the field angles, taken as functions of the un-
knowns5, and l ∈ AL refers to observations with a valid AL com-
ponent, etc. The applicable indices f , n, g are of course known
for every observation l. In Eq. (24), εAL

l and εAC
l represent all AL

and AC error sources extraneous to the formal uncertainties; they
include in particular modelling errors in the source behaviour
(e.g., for unrecognized binaries), attitude and calibration, which
have to be estimated as functions of time and source in the course
of the data analysis process. wAL

l and wAC
l are weight factors, al-

ways in the range 0 to 1; for most observations they are equal to
1, but ‘bad’ data (outliers) are assigned smaller weight factors.
The determination of these factors is discussed in Sect. 5.1.2.

5 Note that in Eq. (25) the quantity µl is just a given value (observed
or computed); in the case of one-dimensional images the observed µl is
replaced by an approximate value derived from current knowledge on
the source and attitude.

For the sake of conciseness we shall hereafter consider the
AL and AC components of an observation to have separate ob-
servation indices l, so that for example Rl stands for either RAL

l
or RAC

l , as the case may be. This allows the two sums in Eq. (24)
to be contracted and written concisely as

Q(s, a, c, g) =
∑

l

R2
l wl

σ2
l + ε2

l

=
∑

l

R2
l Wl , (27)

where Wl = wl/(σ2
l + ε2

l ) is the statistical weight of the observa-
tion.

The excess noise εl represents modelling errors and should
ideally be zero. However, it is unavoidable that some sources do
not behave exactly according to the adopted astrometric model
(Sect. 3.2), or that the attitude sometimes cannot be represented
by the spline model in Sect. 3.3 to sufficient accuracy. The ex-
cess noise term in Eq. (27) is introduced to allow these cases to
be handled in a reasonable way, i.e., by effectively reducing the
statistical weight of the observations affected. It should be noted
that these modelling errors are assumed to affect all the observa-
tions of a particular star, or all the observations in a given time
interval. (By contrast, the downweighting factor wl is intended
to take care of isolated outliers, for example due to a cosmic-ray
hit in one of the CCD samples.) This is reflected in the way the
excess noise is modelled as the sum of two components,

ε2
l = ε2

i + ε2
a (tl) , (28)

where εi is the excess noise associated with source i (if l ∈ i,
that is, l is an observation of source i), and εa(t) is the excess
attitude noise, being a function of time. For a ‘good’ primary
source, we should have εi = 0, and for a ‘good’ stretch of attitude
data we may have εa(t) = 0. Calibration modelling errors are not
explicitly introduced in Eq. (28), but could be regarded as a more
or less constant part of the excess attitude noise. The estimation
of εi is described in Sect. 5.1.2, and the estimation of εa(t) in
Sect. 5.2.5.

Three separate functions are needed to describe the excess
attitude noise, corresponding to AL observations, AC observa-
tions in the preceding field of view (ACP), and AC observations
in the following field of view (ACF). We distinguish between
these functions by letting the subscript a in εa(t) stand for either
AL, ACP or ACF.

4. Solving the global minimization problem

Assuming 108 primary sources, the number of unknowns in the
global minimization problem, Eq. (24), is about 5 × 108 for the
sources (s), 4×107 for the attitude (a, assuming a knot interval of
15 s for the 5 yr mission; cf. Sect. 5.2.1), 106 for the calibration c,
and less than 100 global parameters (g). The number of elemen-
tary observations (l) considered is about 8 × 1010. However, the
size of the data set, and the large number of parameters, would
not by themselves be a problem if the observations, or sources,
could be processed sequentially. The difficulty is caused by the
strong connectivity among the observations: each source is ef-
fectively observed relative to a large number of other sources si-
multaneously in the field of view, or in the complementary field
of view some 106.5◦ away on the sky, linked together by the at-
titude and calibration models. The complexity of the astrometric
solution in terms of the connectivity between the sources pro-
vided by the attitude modelling was analysed by Bombrun et al.
(2010), who concluded that a direct solution is infeasible, by
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many orders of magnitude, with today’s computational capabil-
ities. The study neglected the additional connectivity due to the
calibration model, which makes the problem even more unreal-
istic to attack by a direct method. Note that this impossibility is
not a defect, but a virtue of the mathematical system under con-
sideration: it guarantees that a unique, coherent and completely
independent global solution for the whole sky can be derived
from the system.

The natural alternative to a direct solution is to use some
iterative method. This is in fact the standard way to deal with
large, sparse systems of equations. The literature in the field is
vast and a plethora of methods exist for various kinds of appli-
cations. However, the iterative method adopted for Gaia did not
spring from a box of ready-made algorithms. Rather, it was de-
veloped over several years in parallel with the software system
in which it could be implemented and tested. Originally based
on an intuitive and somewhat simplistic approach, the algorithm
has developed through a series of experiments, insights and im-
provements into a rigorous, efficient and well-understood pro-
cedure, completely adapted to its particular application. In this
section we first describe the approach in broad outline, then pro-
vide the mathematical background for its better understanding
and further development.

4.1. Outline of the iterative solution

The numerical approach to the Gaia astrometry is a block-
iterative least-squares solution, referred to as the Astrometric
Global Iterative Solution (AGIS). In its simplest form, four
blocks are evaluated in a cyclic sequence until convergence. The
blocks map to the four different kinds of unknowns outlined in
Sect. 3, namely:

S: the source (star) update, in which the astrometric parameters
s of the primary sources are improved;

A: the attitude update, in which the attitude parameters a are
improved;

C: the calibration update, in which the calibration parameters c
are improved;

G: the global update, in which the global parameters g are im-
proved.

The G block is optional, and will perhaps only be used in some
of the final solutions, since the global parameters can normally
be assumed to be known a priori to high accuracy.

The blocks must be iterated because each one of them needs
data from the three other processes. For example, when com-
puting the astrometric parameters in the S block, the attitude,
calibration and global parameters are taken from the previous it-
eration. The resulting (updated) astrometric parameters are used
the next time the A block is run, and so on. This iterative ap-
proach to the astrometric solution was proposed early on in the
Hipparcos project as an alternative to the ‘three-step method’
subsequently adopted for the original Hipparcos reductions; see
ESA (1997, Vol. 3, p. 488) and references therein. Indeed, the
later re-reduction of the Hipparcos raw data by van Leeuwen
(2007) used a very similar iterative method, and yielded signifi-
cantly improved results mainly by virtue of the much more elab-
orate attitude modelling implemented as part of the approach.

While the block-iterative solution as outlined above is in-
tuitive and appealing in its simplicity, it is from a mathemati-
cal standpoint not obvious that it must converge; and if it does
indeed converge, it is not obvious how many iterations are re-
quired, whether the order of the blocks in each iteration matter,

and whether the converged results do in fact constitute a solu-
tion to the global minimization problem. These are fundamen-
tal questions for the validity of the adopted iterative approach,
and we therefore take some care in the following subsections to
establish its theoretical foundations (Sects. 4.2–4.5). Section 5
then describes each of the S, A, C and G blocks in some de-
tail. In addition to these blocks, separate processes are required
for the alignment of the astrometric solution with the ICRS, the
selection of primary sources, and the calculation of standard un-
certainties; these auxiliary processes are discussed in Sect. 6.

4.2. Least-squares approach

Strictly speaking, Eq. (24) is not a least-squares problem, be-
cause of the weight factors wAL

l , wAC
l (as well as the excess

noises εAL
l , εAC

l ), which depend on the AL and AC residuals and
hence on the unknowns (s, a, c, g). In Eq. (1) this dependence is
formally included in the unspecified metricM, which therefore
is not simply a (weighted) Euclidean norm.

In principle, the minimization problem (24) can be solved
by finding a point where the partial derivatives of the objective
function Q with respect to all the unknowns are simultaneously
zero. In practice, however, the partial derivatives are not com-
puted completely rigorously, and the problem solved is therefore
a slightly different one from what is outlined above. In order to
understand precisely the approximations involved, it is neces-
sary to consider how different kinds of non-linearities enter the
problem.

The functions η f ng(µ, t | c) and ζ f ng(µ, t | c) appearing in
Eqs. (25)–(26) are strictly linear in the calibration parameters
c, by virtue of the basic geometric calibration model in Eq. (15)
or the generic model in Eqs. (20)–(21). On the other hand, the
functions η(t | s, a, g) and ζ(t | s, a, g) are non-linear in s, a, and
g due to the complex transformations involved (Sects. 3.2–3.3).
However, thanks to the data processing prior to the astromet-
ric solution, the initial errors in these parameters are already so
small that the corresponding errors in η and ζ are only some
0.1 arcsec (∼ 10−6 rad). Second-order terms are therefore typi-
cally less than 10−12 rad ' 0.2 µas, that is negligible in compar-
ison with the noise of a single AL observation (some 100 µas).
This means that the partial derivatives of the residuals RAL

l and
RAC

l with respect to all the unknowns do not change in the course
of the solution. (In practice they are in fact recomputed in each
iteration, although that is mainly done because it is more con-
venient than to store and retrieve the values; nevertheless, this
takes care of any remaining non-linearity, however small.) The
non-linearities of the underlying astrometric, attitude, calibra-
tion and global models are therefore not an issue for the mini-
mization problem as such.

The weight factors wl represent a different kind of non-
linearity, potentially much more important for the final solution.
These factors are introduced to make the solution robust against
outliers, by reducing their influence on Q and hence on the es-
timated parameter values (Sect. 5.1.2). Ideally, outlying obser-
vations should not contribute at all to the solution (by having
wl = 0), while ‘normal’ observations should receive full weight
(wl = 1). In reality there will however be a transition region
where the weight factors are between 0 and 1. Since the weight
factors are in practice determined by the normalized residuals,
R̂l ≡ Rl(σ2

l + ε2
l )−1/2, which in turn depend on the parameter

values (s, a, c, g), it follows that the partial derivatives contain
extra terms of the form R̂2

l ∂wl/∂s, R̂2
l ∂wl/∂a, etc., that are non-

zero for some observations. Analogous considerations apply to
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the excess noise terms εl: they too are estimated by means of
the residuals (Sects. 5.1.2 and 5.2.5), and therefore in principle
introduce additional terms in the partial derivatives.

We take the somewhat pragmatic approach of neglecting the
terms depending on the partial derivatives of wl and εl with re-
spect to the unknowns when seeking the solution to the global
minimization problem. The consequences of this approxima-
tion can be appreciated by observing that the down-weighting
(wl < 1) only kicks in when the absolute value of the residual
exceeds a few times the total standard uncertainty, or some 0.5–
1 mas for typical observations of bright sources. Similarly the es-
timated εl are only sensitive to changes of the residuals of a simi-
lar size. Experience with AGIS runs on simulated data show that
the typical changes of the residuals fall below this level already
in the first few iterations. Thereafter the weight factors and the
estimated excess noises do not change significantly. Neglecting
the derivatives of wl and εl in the global minimization problem is
therefore equivalent to solving the weighted least-squares prob-
lem with wl and εl fixed at whatever values they settle to after the
initial iterations. This is a reasonable assumption given that the
statistical weight of any observation, and the size of the mod-
elling errors, are not a priori expected to depend on the actual
values of the parameters. The precise solution does of course de-
pend on how wl and εl are estimated, but that is an unavoidable
consequence of any practical data analysis approach.

4.3. Normal equations

The minimization of Q in Eq. (27) is thus solved by the weighted
least-squares method, assuming fixed weights Wl that are how-
ever determined as part of the solution. The normal equations
for the sources are given by 1

2∂Q/∂s = 0, and similarly for
the other unknowns. Linearising around any reference point
(sref, aref, cref, gref) within the linear regime of parameter space,
i.e., setting s = sref + xs, and similarly for the other un-
knowns, and expanding to first order in the differential vector
x = (x′s, x′a, x′c, x′g)′, we find the normal equations as∑

l

∂Rl

∂x
∂Rl

∂x′
Wl

 x = −
∑

l

∂Rl

∂x
Rl(sref, aref, cref, gref)Wl . (29)

This can be written in matrix form as

N x = b , (30)

where N is a symmetric matrix. We now proceed to analyse the
structure of this linear system of equations in terms of the previ-
ously mentioned block updates S, A, C, G.

The matrix N and the vectors (column matrices) x, b can be
partitioned into sub-matrices and sub-vectors corresponding to
the different parameter vectors s, a, c, and g:

Nss Nsa Nsc Nsg
Nas Naa Nac Nag
Ncs Nca Ncc Ncg
Ngs Nga Ngc Ngg



xs
xa
xc
xg

 =


bs
ba
bc
bg

 , (31)

where Nas = N′sa, etc. Of importance here is that Nss and Naa
have a particularly simple structure. Since s is sub-divided into
vectors si of length 5 for the individual primary sources (i), it
is natural to sub-divide Nss into blocks of 5 × 5 elements. From
Eq. (29) it follows that the (i, j)th such block is given by

[Nss]i j =
∑

l

∂Rl

∂si

∂Rl

∂s′j
Wl =


∑
l ∈ i

∂Rl

∂si

∂Rl

∂s′i
Wl if i = j,

0 if i , j,
(32)

where l ∈ i signifies that the sum is taken over the observations
of source i. The result for i , j follows because no observa-
tion l is associated with more than one primary source. Nss is
consequently block-diagonal, and N−1

ss bs can trivially be com-
puted for arbitrary vector bs by looping through the sources and
solving the corresponding 5 × 5 system for each source.6 This is
exactly what is done in the source update block (S).

The vector of attitude unknowns is naturally sub-divided into
vectors an of length 4, containing the elements of the quater-
nions an that serve as coefficients in the B-spline representation,
Eq. (10). If Naa is correspondingly sub-divided into blocks of
4 × 4 elements, it follows from Eq. (29) that the (n,m)th such
block is given by

[Naa]nm =
∑

l

∂Rl

∂an

∂Rl

∂a′m
Wl . (33)

With ` denoting the left index of tl (Sect. 3.3), we have
∂Rl/∂an = 0 whenever n < ` − M + 1 or n > `, where M is the
order of the spline. It follows that [Naa]nm = 0 if |n−m| > M − 1
(cf. Appendix B.1). The non-zero blocks in Naa are therefore
confined to the diagonal and M − 1 blocks above and below the
diagonal (Fig. 5). Thus, N−1

aa ba can be efficiently computed for
arbitrary ba since the Cholesky decomposition of the matrix does
not produce any additional fill-in (Appendix C). This system is
solved in the attitude update block (A).

In the geometric instrument model (Sect. 3.4), each
CCD/gate and time interval combination (index ngk for example
in Eq. 15) has its own set of unknowns. Moreover, a given ob-
servation l can only refer to one CCD/gate combination. By the
same reasoning as above, the sub-matrix Ncc is therefore block-
diagonal, and N−1

cc bc can be computed for arbitrary bc by looping
over the CCD/gates combinations. This is done in the calibration
update block (C). Although the number of calibration parame-
ters per CCD/gate combination can be fairly large (∼ 104), the
resulting systems are well within the bounds that can readily be
handled by direct matrix methods, even without taking into ac-
count their sparseness.

By definition all the global parameters affect each observa-
tion, and the sub-matrix Ngg is therefore full. However, since the
number of global parameters is never large, N−1

gg bg can easily be
computed, which is done in the global update block (G).

In the description above we have implicitly assumed that
each of the diagonal blocks Nss, Naa, Ncc, and Ngg is non-
singular, and even well-conditioned in order to avoid numeri-
cal instability. This is equivalent to the statement that each of
the blocks S, A, C and G is a well-posed problem: for exam-
ple, that the determination of the source parameters is ‘easy’ if
we assume that we know the attitude, calibration and global pa-
rameters. This will in practice be guaranteed by the choice of
primary sources (which will make [Nss]ii well-conditioned for
every i) for the S block, and by the adopted attitude, calibration
and global parametrizations, including the constraints necessary
to render the updates unique – in particular the quaternion length
normalization in Eq. (10) for the attitude model, and Eq. (22) for
the calibration model.

Turning now to the off-diagonal sub-matrices of N, it is nat-
ural to sub-divide for example the sub-matrix Nas into blocks of
4× 5 elements corresponding to the 4 components of the quater-

6 Here, and elsewhere in this paper, an expression like A−1 b is short-
hand notation for solving the system Ay = b. The inverse matrix A−1 is
(usually) not computed, but only the solution vector y = A−1 b itself.
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nion and the 5 astrometric parameters. The (n, i)th block,

[Nas]ni =
∑

l

∂Rl

∂an

∂Rl

∂s′i
Wl , (34)

is non-zero only if source i was observed in the time interval
[τn, τn+M], which is the support of the B-spline Bn(t). Nas is
therefore very sparse, but it also has no simple structure because
the distribution of the non-zero blocks is linked to the scanning
law. Fortunately, as will be explained in Sect. 4.5, there is no
need to explicitly compute, much less store, this sub-matrix, nor
any of the other off-diagonal sub-matrices in Eq. (31).

4.4. Rank of the normal equations

From the nature of the astrometric observations, which are in
effect differential within the (combined) field of view, and the
modelling of the primary sources, which does not assume that
any of their positions or proper motions are known a priori, it is
clear that there is no unique astrometric solution to the problem
as outlined above. The fundamental reason for this is that any
(small) change in the orientation of the celestial reference sys-
tem, as well as the introduction of a (small) inertial spin of the
system, would leave all observations invariant. In principle the
non-uniqueness of the solution is not a problem as such, since the
resulting system of positions and proper motions are afterwards
aligned with the ICRS by a special process (Sect. 6.1). However,
it does imply that the normal matrix N is in principle singular,7
which may have consequences for the numerical solution of the
normal equations. We say singular ‘in principle’ because arith-
metic rounding errors will in practice prevent it from becoming
truly singular, although it remains extremely ill-conditioned.

More precisely, we expect N to have rank n−6, if n = dim(N)
is the total number of unknowns. The null space of the matrix,

N(N) = {v ∈ Rn | Nv = 0} (35)

therefore has rank six. Indeed, it is easy to find six linearly in-
dependent vectors v0, . . . , v5 that span the null space: the first
three are found by introducing small changes in the orientation
of the celestial reference system around each of its principal
axes, and deriving the corresponding changes in s and a (c and
g being independent of the reference system); the last three are
correspondingly found by introducing a small inertial spin of the
reference system around each axis (see Sect. 6.1.5 for details).
Introducing the n × 6 matrix V = (v0, . . . , v5) we have

NV = 0 . (36)

The singularity can in principle be removed by adding the six
constraints V′x = 0, but in practice that is not necessary. It suf-
fices to derive one particular solution x̃ to the normal equations,
then the whole solution space can be written x̃ + Vz for arbitrary
z ∈ R6. The vector z is effectively determined by the frame rota-
tor (Sect. 6.1), yielding the unique solution that best agrees with
the adopted definition of the ICRS.

Quite apart from numerical rounding errors, it is not com-
pletely true that N is mathematically singular. Stellar aberration
and parallax introduce some absolute knowledge about the ref-
erence system via the barycentric ephemeris of Gaia, which is
expressed in ICRS and is not part of the adjustment process.
However, since stellar aberration is at most 10−4 rad, the ori-
entation error would have to be of the order of 1 mas for the

7 More precisely, N is properly semidefinite, so that x′Nx ≥ 0 for all
x , 0, with equality for some x , 0.

aberration effect to change by 0.1 µas (say). So, although absent
in principle, the indeterminacy of the reference frame orienta-
tion and spin exists in practice. Since the orientation can be de-
termined to much higher accuracy than 1 mas (by means of the
optical counterparts of radio sources), the contribution of stellar
aberration to the absolute frame knowledge can be neglected in
practice. The same holds, a fortiori, for the much smaller paral-
lax effect.

4.5. The simple iteration step

Consider the system

Kd = b , K =


Nss ∅ ∅ ∅

Nas Naa ∅ ∅

Ncs Nca Ncc ∅

Ngs Nga Ngc Ngg

 . (37)

where b is the same right-hand side as in Eq. (30), and each
∅ stands for a zero-filled sub-matrix of the appropriate dimen-
sions. Although this system is of the same size as Eq. (30), is it
fundamentally different in that it can be directly solved through
a sequence of smaller systems,

Nssds = bs

Naada = ba − Nasds

Nccdc = bc − Ncsds − Ncada

Nggdg = bg − Ngsds − Ngada − Ngcdc

 (38)

where each sub-system is of the form S, A, C, G described
above, allowing it to be solved with relative ease. (Naturally, the
resulting solution d is also quite different from the x in Eq. 30!)
By means of Eqs. (29) and (34) the right-hand side in the second
sub-system becomes

ba − Nasds = −
∑

l

∂Rl

∂a

[
Rl(sref, aref, cref, gref) +

∂Rl

∂s′
ds

]
Wl

= −
∑

l

∂Rl

∂a
Rl(sref + ds, aref, cref, gref)Wl , (39)

where the linearity of Rl(s, a, c, g) has been used in a Taylor ex-
pansion around the reference values. This shows that the off-
diagonal matrix Nas is not needed in order to compute the right-
hand side of the second sub-system in Eq. (38), if only the resid-
uals are computed after the source parameters have been updated
by the solution of the first sub-system. Similarly, we find that the
right-hand side in the third sub-system can be obtained from the
residuals after updating both the source and attitude parameters,
and so on. The off-diagonal sub-matrices in K are therefore not
needed, provided that the sub-vectors of unknowns are succes-
sively updated before the new right-hand sides are computed.

From the above it is clear that a single AGIS iteration, con-
sisting of the successive application of the four update blocks S,
A, C and G, is mathematically equivalent to an updating of the
unknowns by d = K−1b. In the context of iterative solution al-
gorithms, the matrix K is referred to as the preconditioner of the
normal equations system (Axelsson 1996).

As previously noted, we assume that the block-diagonal ma-
trices Nss, Naa, Ncc, Ngg are all non-singular, and in fact pos-
itive definite, for a proper formulation of the S, A, C, and G
blocks. This ensures that the preconditioner K is non-singular,
even though N is not.

In the course of the iterations, new right-hand sides of the
normal equations will be computed, while the matrix remains
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essentially unchanged. From now on, let us express the residuals
Rl not as functions of the parameter values s, a, c, g but in terms
of the differential parameter vector x relative to the reference
values. The original right-hand side, denoted b(0), corresponds
to the initial differential parameter vector x(0) = 0. If x (without
a superscript) denotes the exact solution of Eq. (30), the initial
error vector is e(0) = x(0) − x = −x. Although this vector is of
course not known, we do know −Ne(0) = Nx = b(0). Solving
the preconditioner system (37) gives d(0) = K−1b(0) and the up-
dated parameter vector x(1) = x(0) + d(0). The new error vector
e(1) = x(1)−x is again not known, but −Ne(1) = b(0)−Nd(0) = b(1)

is obtained by inserting the updated parameters in the right-
hand side of Eq. (29), by the same argument as in Eq. (39).
Generalizing, we have the so-called simple iteration scheme

b(k) = −
∑

l

∂Rl

∂x
Rl(x(k))Wl

d(k) = K−1b(k)

x(k+1) = x(k) + d(k)


k = 0, 1, . . . (40)

For the successive right-hand sides we find by recursion

b(k+1) = b(k) − Nd(k) = (I − NK−1)b(k) = B̃k+1b(0) , (41)

where
B̃ = I − NK−1 . (42)

For the successive updates and errors we find

d(k+1) = K−1b(k+1) = (I − K−1N)d(k) = Bk+1d(0) , (43)

e(k+1) = e(k) + d(k) = (I − K−1N)e(k) = Bk+1e(0) . (44)

where
B = I − K−1N (45)

is called the iteration matrix (Axelsson 1996). Equations (41)–
(45) are of great theoretical interest, as explained below, al-
though none of them is used in the actual computations.

The convergence behaviour of the simple iteration scheme
can largely be understood by means of these relations and espe-
cially in terms of the properties of the iteration matrix B gov-
erning the sequence of updates d and errors e, and the adjunct
matrix B̃ governing the sequence of right-hand sides. It is well
known (e.g., Axelsson 1996) that the simple iteration scheme in
Eq. (40) converges (that is x(k) → x) for arbitrary starting ap-
proximation if and only if ρ(B) < 1. Here, ρ(B) is the spectral
radius of B, i.e., the largest absolute value of its eigenvalues.
Under this condition we have d(k) → 0 and e(k) → 0 for k → ∞.
Also the right-hand side b(k) = Kd(k) → 0 under the same con-
dition.8

As discussed in Sect. 4.4, the normal matrix N is singular
and its null space spanned by the n × 6 matrix V. Therefore,

BV = V − K−1NV = V (46)

which shows that B has a six-fold eigenvalue equal to 1, with the
corresponding eigenvectors spanning N(N). The spectral radius
of B is therefore not less than 1, and the simple iteration scheme
does not converge for arbitrary initial errors.

8 B and B̃ = KBK−1 have the same spectral radius; indeed, their
eigenvalues are the same, as can be seen from the characteristic polyno-
mial det(zI − B) = det(K)(zI − B) det(K−1) = det(zI − KBK−1) being
the same for the two matrices (A. Bombrun, private communication).

This is not a real problem, for the following reason. First, let
us note that B is not a full-rank matrix. Indeed, a direct calcu-
lation of Eq. (45) using the expression for K in Eq. (37) shows
that the first ns columns of B are zero.9 Thus (at least) ns of its
eigenvalues are identically zero. A corresponding set of orthog-
onal unit vectors is given by the columns of the n × ns matrix

Z =

[
I
∅

]
} ns rows
} n − ns rows

, (47)

so that BZ = 0. We assume that the remaining n − ns − 6 eigen-
values satisfy 0 < |λ| < 1. Thus, if Λ is the diagonal matrix con-
taining these eigenvalues and U a matrix of size n × (n − ns − 6)
whose columns are made up of the corresponding eigenvectors,
we have BU = UΛ. The columns of Z, U and V together span
Rn, and it is therefore possible to decompose the solution vector
as

x = Zxs + Uy + Vz (48)

where xs ∈ R
ns is the ‘source’ part of x, y ∈ Rn−ns−6 and z ∈ R6.

Since −e(0) = x we find

− e(1) = −Be(0) = BZxs + BUy + BVz = UΛy + Vz , (49)

and by recursion

− e(k) = UΛk y + Vz . (50)

The first term clearly vanishes for k → ∞ if ρ(Λ) < 1, as we
have assumed. The second term, which is the projection of x on
the null space of N, remains unchanged by the iterations. The
update vector can be written

d(k) = e(k+1) − e(k) = UΛk(I − Λ)y , (51)

which vanishes under the same condition. The same is then true
for the right-hand side b(k) = Kd(k). Effectively, this means
that we can ignore the singularity of N in the simple iteration
scheme; it will converge to some valid solution of the (singular)
normal equations, and the convergence process can be monitored
by means of the vectors d(k) and b(k). After convergence, the re-
quired null-space components can be found and added by means
of the frame rotator.

To summarize, we have shown that the simple iteration
scheme converges in the desired way, provided that the spectral
radius of B, not counting the eigenvalues related to the null space
of N, is less than 1. It is well known (e.g., Golub & van Loan
1996) that this condition is satisfied for any symmetric positive
definite N, using the Gauss–Seidel preconditioner. However, the
spectral radius may be very close to 1, implying very slow con-
vergence. In the case of AGIS the situation is more complex,
and convergence is in practice demonstrated through simulations
(Sect. 7), but the theoretical background outlined above is of
great help when interpreting the results.

9 That the first ns columns in the iteration matrix are zero means that
the results of the next iteration are independent of the current source
parameters x(k)

s . This may seem surprising at first, but is a simple conse-
quence of the fact that each iteration starts with the source update block
(S). In this block, the updated source parameters depend on the previ-
ous attitude, calibration and global parameters, but not on the previous
source parameters.
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4.6. Order of the block processes

In the preceding sections we have assumed that the four blocks
are always executed in the sequence SACG, and that the updated
parameters resulting from each block is used in the subsequent
blocks. The particular preconditioner K in Eq. (37) incorporates
these assumptions. We will now discuss variants of this scheme
and show that they can be mathematically represented by differ-
ent preconditioners.

Each AGIS iteration always starts with the source update
block (S). The main reason for starting with S rather than A,
for example, is that the observations can be inspected and anal-
ysed one source at a time in order to estimate the quality of the
data, identify possible outliers, and check whether the source is
suitable as a primary source. The identification of outliers, in
particular, requires several ‘inner’ iterations of the source obser-
vation equations (Sect. 5.1.2), which can be done with relative
ease because of the small number of data points involved.

The order of the remaining blocks ACG adopted in the pre-
ceding sections is more or less arbitrary. It is easy to see through
an analogy with Eqs. (37)–(38) that the sequence SCAG (for ex-
ample) is mathematically represented by the alternative precon-
ditioner

K =


Nss ∅ ∅ ∅

Nas Naa Nac ∅

Ncs ∅ Ncc ∅

Ngs Nga Ngc Ngg

 , (52)

and that other permutations of the sequence are similarly ob-
tained by transposing the corresponding off-diagonal blocks.
Changing the preconditioner means changing the iteration ma-
trix (45) and therefore possibly also its eigenvalues, which in
turn govern the rate of convergence.

From a mathematical viewpoint, the choice of the start-
ing block (S in our case) determines the initial update d(0)

(cf. footnote 9) and therefore influences all subsequent updates.
However, this particular choice is not expected to have much
influence on the convergence rate after a number of iterations,
since the S block has no special status in the periodically re-
peated sequence . . . SACGSACGSACGSA. . . . Thus we may
surmise that the different iteration matrices for the cyclically
permuted sequences SACG, ACGS, CGSA and GSAC do in
fact have the same set of eigenvalues. For symmetry reasons it
can also be surmised that the reversed sequences GCAS, SGCA,
ASGC and CASG have the same eigenvalues as the original se-
quences. Thus, there are in fact only three sets of sequences with
possibly distinct convergence behaviour, represented by SACG
(or SGCA), SAGC (or SCGA), and SCAG (or SGAC) if we take
S to be the starting block. There is no obvious way of knowing
a priori which of the three possibilities is to be preferred, or even
if they are significantly different.

Apart from the various permutations discussed above, there
is another way to modify the AGIS iteration scheme, which can
also be described in terms of the preconditioner. This modifica-
tion is related to the practical organization of the flow of data to
the different block processes. The current implementation of the
simple iteration scheme differs somewhat from the description in
Sect. 4.5, and the block updates are in fact practically organized
as follows:

1. Initialize the iteration counter, k = 0
2. Choose starting values for all unknowns: s(0), a(0), c(0), g(0).
3. Estimate s(k+1) using a(k), c(k), g(k).
4. Estimate a(k+1) using s(k+1), c(k), g(k).
5. Estimate c(k+1) using s(k+1), a(k), g(k).

6. Estimate g(k+1) using s(k+1), a(k), c(k).
7. Increment k and go to Step 3.

The crucial difference compared with Eq. (38) is that the C block
in Step 5 does not use the updated attitude but the old one, and
that the G block in Step 6 similarly uses the ‘old’ attitude and
calibration parameters. This has the practical advantage that the
A, C and G blocks can be carried out in parallel, with big sav-
ings in terms of the amounts of data that have to be exchanged
between the processes (see Sect. 7). Schematically, this can be
represented as S[ACG], where the blocks in brackets are (or can
be) executed in parallel (and so the order of the bracketed blocks
does not matter). The corresponding preconditioner is

K =


Nss ∅ ∅ ∅

Nas Naa ∅ ∅

Ncs ∅ Ncc ∅

Ngs ∅ ∅ Ngg

 . (53)

Yet other variants may be considered, for example S[AC]G,
where Step 6 uses the updated attitude and calibration param-
eters, with preconditioner

K =


Nss ∅ ∅ ∅

Nas Naa ∅ ∅

Ncs ∅ Ncc ∅

Ngs Nga Ngc Ngg

 , (54)

and [SACG], for which

K =


Nss ∅ ∅ ∅

∅ Naa ∅ ∅

∅ ∅ Ncc ∅

∅ ∅ ∅ Ngg

 . (55)

This last case is known as the (block) Jacobi method, while the
use of a full triangular preconditioner as in Eq. (37) is known as
the (block) Gauss–Seidel method (Axelsson 1996). As we have
seen, the currently implemented simple iteration scheme is in-
termediate between the Jacobi and Gauss–Seidel methods.

Intuitively, we expect the Gauss–Seidel method to converge
more quickly than the Jacobi or any intermediate method, simply
because each block then uses the most recent (and, presumably,
best) estimates of the parameters. However, our practical expe-
rience with AGIS shows that the ‘difficult’ part of the problem
is to disentangle the source and attitude parameters. For exam-
ple, the calibration parameters are generally found to converge
much faster than the source and attitude parameters. Thus it does
not seem to matter much if Step 5 above uses a(k+1) or a(k), i.e.,
whether the sub-matrix Nca is included or not in the precondi-
tioner. A similar argument can be made concerning the G block,
provided some measures are taken to decorrelate the global pa-
rameters from the source parameters (Sect. 5.4). Thus, the var-
ious intermediate methods are probably nearly as good as the
Gauss–Seidel method, in terms of the convergence rate, and the
precise scheme may then rather be determined by practical con-
siderations. With the present data processing architecture, the
favoured scheme is S[ACG] as described above.

4.7. Accelerated iteration, conjugate gradients and the hybrid
iteration scheme

The ‘simple iteration’ (SI) scheme described above was the start-
ing point for a long development towards a fully functional
scheme with much improved convergence properties. The main
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stages in this development were the ‘accelerated simple itera-
tion’ (ASI), the conjugate gradients (CG), and finally the fully
flexible ‘hybrid scheme’ (A/SI-CG) to be used in the final im-
plementation of AGIS. As much of this development has at most
historical interest, only a brief outline is given here.

Already in the very early implementation of the simple iter-
ation scheme it was observed that convergence was slower than
(naively) expected, and that after some iterations, the updates
always seemed to go in the same direction, forming a geometri-
cally (exponentially) decreasing series. With the hindsight of the
analysis in Sect. 4.5 this behaviour is very easily understood: the
persistent pattern of updates is roughly proportional to the eigen-
vector of the largest eigenvalue of the iteration matrix, and the
(nearly constant) ratio of the sizes of successive updates is the
corresponding eigenvalue. From this realization it was natural to
test an acceleration method based on a Richardson-type extrap-
olation of the updates. The idea is simply that if the updates in
two successive iterations are roughly proportional to each other,
d(k+1) ' λd(k), with |λ| < 1, then we can infer that the next up-
date is again a factor λ smaller than d(k+1), and so on. The sum
of all the updates after iteration k can therefore be estimated as
d(k+1) + λd(k+1) + λ2d(k+1) + · · · = (1 − λ)−1d(k+1). Thus, in iter-
ation k + 1 we apply an acceleration factor 1/(1 − λ) based on
the current estimate of the ratio λ. This accelerated simple it-
eration (ASI) scheme is seen to be a variant of the well-known
successive overrelaxation method (Axelsson 1996). The factor λ
is estimated by statistical analysis of the parallax updates for a
small fraction of the sources; the parallax updates are used for
this analysis, since they are unaffected by a possible change in
the frame orientation between successive iterations. With this
simple device, the number of iterations for full convergence was
reduced roughly by a factor 2.

Both the simple iteration and the accelerated simple itera-
tion belongs to a much more general class of solution methods
known as Krylov subspace approximations. The sequence of up-
dates d(k), k = 0 . . .K − 1 generated by the first K simple itera-
tions constitute the basis for the K-dimensional subspace of the
solution space, known as the Krylov subspace for the given ma-
trix and right-hand side (e.g., Greenbaum 1997; van der Vorst
2003). Krylov methods compute approximations that, in the kth
iteration, belongs to the k-dimensional Krylov subspace. But
whereas the simple and accelerated iteration schemes, in the kth
iteration, use updates that are just proportional to the kth basis
vector, more efficient algorithms generate approximations that
are (in some sense) optimal linear combinations of all k basis
vectors. Conjugate gradients (CG) is one of the best-known such
methods, and possibly the most efficient one for general symmet-
ric positive-definite matrices. (e.g., Axelsson 1996; Björck 1996;
van der Vorst 2003). Its implementation within the AGIS frame-
work is more complicated, but has been considered in detail by
Bombrun et al. (2011). As it provides significant advantages over
the SI and ASI schemes in terms of convergence speed, this algo-
rithm has been chosen as the baseline method for the astrometric
core solution of Gaia (see below however). From practical expe-
rience, we have found that CG is roughly a factor 2 faster than
ASI, or a factor 4 faster than the SI scheme. Like SI, the CG
algorithm uses a preconditioner and can be formulated in terms
of the S, A, C and G blocks, so the subsequent description of
these blocks remains valid. In the terminology of Bombrun et al.
(2011) the process of solving the preconditioner system Kd = b
is the kernel operation common to all these solution methods,
which only differ in how the updates are applied according to
the various iteration schemes.

The CG algorithm assumes that the normal matrix is con-
stant in the course of the iterations. This is not strictly true if
the observation weights are allowed to change as functions of
the residuals, as will be required for efficient outlier elimina-
tion (Sect. 5.1.2). Using the CG algorithm together with the
weight-adjustment scheme described below could therefore lead
to instabilities, i.e., a reduced convergence rate or even non-
convergence. On the other hand, the SI scheme is extremely sta-
ble with respect to all such modifications in the course of the
iterations, as can be expected from the interpretation of the SI
scheme as the successive and independent application of the dif-
ferent solution blocks. The finally adopted algorithm is there-
fore a hybrid scheme combining SI (or ASI) and CG, where SI
is used initially, until the weights have settled, after which CG
is turned on. A temporary switch back to SI, with an optional
re-adjustment of the weights, may be employed after a certain
number of CG iterations; this could avoid some problems due to
the accumulation of numerical rounding errors in CG.

5. Updating processes

In this section we describe in some detail each of the updating
blocks S, A, C and G that form the basis (or kernel process) for
the AGIS iteration loop.

5.1. Source updating (S)

5.1.1. The normal equations

The astrometric model for the sources is given in Sect. 3.2. In the
source update block (S) the source parameters s are improved
by solving the first line in Eq. (38). According to Eqs. (29) and
(32) this can be done for one source (i) at a time by solving
the following system of equations for the update di of the five
astrometric parameters in si:∑

l ∈ i

∂Rl

∂si

∂Rl

∂s′i
Wl

 di = −
∑
l ∈ i

∂Rl

∂si
Rl(si)Wl . (56)

Here Wl = wl/(σ2
l + ε2

l ), with σl denoting the given formal stan-
dard uncertainty of observation l, expressed as an angle. wl and
εl are, respectively, the downweighting factor and excess noise
introduced in Sect. 3.6. In Eq. (56) the dependence of Rl on a, c
and g has been suppressed, since the system is solved with these
parameters fixed.

In matrix notation, the normal equations (56) can be written

A′iWi Ai di = A′iWihi , (57)

where

Ai =

[
−
∂Rl

∂s′i

]
l∈i

(58)

is an ni × 5 matrix with ni =
∑

l∈i 1 the number of observations
of source i (typically ni ∼ 800),

hi = [Rl(si)]l∈i (59)

is a column matrix of length ni, and Wi is a diagonal matrix con-
taining the weight factors Wl. Although the residuals Rl are in
principle non-linear functions of si, this non-linearity can be ne-
glected if the parameters are close enough to the final solution,
i.e., if the resulting update di is small enough. The partial deriva-
tives in Ai can then be regarded as fixed throughout the updating
process, and Ai and hi can immediately be computed when en-
tering the source updating. The weight matrix Wi, on the other
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hand, depends on wl and εl, which are modified as part of the
process as explained below.

For given Wi the system of equations (57) is solved using
the Cholesky algorithm (Appendix C). At the end of the source
updating, the full (5 × 5) inverse matrix is computed, providing
a first-order estimate of the covariance of the astrometric param-
eters in si (see Sect. 6.3).

We note that Eq. (57) corresponds to the overdetermined sys-
tem of observation equations

Ai di ' hi (weight matrix Wi) . (60)

After solution, the updated residuals are contained in the vector
Ri = hi−Aidi, and the contribution of the source to the objective
function Q is given by

Qi = R′iWiRi . (61)

5.1.2. The inner iteration: identifying outliers and estimating
the excess source noise

Since the weight matrix Wi depends on the downweighting fac-
tors wl and the excess noises εl, which in turn depend on the
updated residuals Ri, the normal equations (57) are non-linear
and must be solved by iteration. We refer to this as the inner
iteration of the source update, to distinguish it from the AGIS
iteration discussed in Sect. 4.5.

Using Eq. (28) we can write

Wl =
wl

σ2
l + ε2

a (tl) + ε2
i

=
wl

σ̃2
l + ε2

i

, (62)

where σ̃l =
[
σ2

l + ε2
a (tl)

]1/2
is the formal standard uncertainty

of the observation adjusted for the excess attitude noise, which,
when entering the source update, is assumed to be known from
a previous attitude update (Sect. 5.2.5). In the very first source
update the excess attitude noise must be set to the mean errors
of the pre-AGIS attitude parameter estimates which are used for
starting up the iterations. The downweighting factors depend on
the normalized residuals, i.e.,

wl = w

 Rl√
σ̃2

l + ε2
i

 , (63)

where the function w(z) is such that w(z) = 1 for |z| . 3 and
gradually decreasing to 0 for larger |z| (see Eq. 66).

The inner iteration actually consists of two nested proce-
dures: an outer one which determines the downweighting factors
wl, and an inner one which determines the excess source noise
εi for a fixed set of wl. We begin by considering the inner proce-
dure.

For fixed downweighting factors, the source update aims to
minimize Qi in Eq. (61) with respect to the unknown di and εi.
But it is immediately seen that Qi can be made arbitrarily small
just by making εi large enough. Consequently, we cannot use
unconstrained minimization to solve this problem. The neces-
sary constraint is provided by the condition that Qi, under the
assumption that the excess noises have been correctly estimated
and the outliers properly removed, should follow the chi-square
distribution with ν = ni − nout − 5 degrees of freedom. Here ni is
the number of observations of source i, nout the number of out-
liers and 5 the number of astrometric parameters estimated. In
particular, the expected value is E(Qi) = ν. The number of out-
liers nout is estimated by counting the number of observations

with wl < 0.2. This limit was empirically found to give a rea-
sonable estimate of the actual number of outliers in a variety of
simulated cases.

For given εi the weight matrix is now known, Eq. (57) can be
trivially solved and the residuals Ri computed. We thus define
the function Q(ε2

i ) = R′iWiRi. The excess source variance is then
taken to be

ε2
i =

{
0 if Q(0) ≤ ν,
solution of Q(ε2

i ) = ν otherwise.
(64)

In the second case, the non-linear equation Q(y) = ν is iteratively
solved by a series of improvements ∆y = (1−Q(y)/ν)Q(y)/Q′(y),
starting from y = 0. Typically, 2–3 iterations are sufficient.10

This procedure returns a positive εi as soon as Q(0) > ν. If
the resulting εi is much smaller than the typical σl of the source,
it is probably not significant. The significance of the εi can more
easily be judged from an auxiliary statistic that can be computed
almost for free. Under the null hypothesis (εi = 0) we know that
Q(0) ∼ χ2

ν , so the expected value is ν and the variance 2ν. Thus
we may take

D =
Q(0) − ν
√

2ν
(65)

as a measure of the significance of the estimated εi, with D > 2
indicating a probably significant value.

Having determined εi, and a corresponding set of residuals
Ri, the downweighting factors can immediately be computed
from Eq. (63). However, having changed the downweighting fac-
tors (and possibly ν) it is now necessary to repeat the estimation
of εi and di with the new set wl. Typically, four such iterations
are found to be sufficient. The only remaining problem is how
to start the iterations, that is the initial selection of the down-
weights wl. It is not possible to start by assuming wl = 1 for
all the observations, since we must take into account that some
small fraction of the data could be utterly wrong. Such gross out-
liers, if not removed already from the start, would severely slow
down or even prevent the convergence of the inner iterations.
The adopted solution is to make an extremely robust estimation
of the standard deviation of the initial residuals (contained in hi),
from which the initial downweightings are obtained. This robust
standard deviation ςi is calculated as half the intersextile range
of the elements in hi, whereupon the initial wl = w(hl/ςi).

After convergence of the inner iteration, the statistical weight
of the source Wi is computed according to Eq. (119). This quan-
tity, together with εi and the magnitude, are the most important
indicators for the selection of primary sources (Sect. 6.2.2).

The weight function w(z) currently used is the following:

w(z) =


1 if |z| ≤ 2
1 − 1.773735t2 + 1.141615t3 if 2 ≤ |z| < 3
exp(−|z|/3) otherwise,

(66)

where t = |z| − 2 and the numerical constants have been chosen
to make a smooth transition at |z| = 3. The exponential decay for
|z| > 3 provides a dramatic weight reduction for large residuals;
e.g., at 10 sigmas we have w(10) ' 0.036, while at 100 sigmas
we have w(100) ' 3 × 10−15.

10 This iteration formula can be derived by matching the rational ap-
proximation Q(y) ' a/(b + y) to the value and derivative of Q(y) at the
current point y. Compared with the standard Newton–Raphson method,
which uses a linear approximation around the current y, the present for-
mula converges much quicker due to the more reasonable behaviour of
the rational approximation especially for large y.
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Among the many different weight functions proposed in the
literature, the so-called Huber estimator (Huber 1981) using

wH(z) =

{
1 if |z| ≤ c
c(2|z| − c)z−2 otherwise

(67)

has been considered as an alternative to Eq. (66), e.g., with c = 2.
This gives a much slower weight decay for large residuals, e.g.,
wH(10) = 0.36 and wH(100) = 0.0396. Future experiments may
decide which weight function will finally be used for AGIS.

5.1.3. Calculation of partial derivatives

The calculation of the partial derivatives in Eq. (58) is done as
follows. From Eqs. (25) and (26) we have, by means of (13),

−
∂RAL

l

∂s′i
=
∂ϕl

∂s′i
, −

∂RAC
l

∂s′i
=
∂ζl

∂s′i
. (68)

In analogy with Eq. (5) we introduce the auxiliary vectors ml =
〈z×ul〉 and nl = ul×ml, which together with ul form the normal
triad [ml nl ul] with respect to the SRS; its components in the
SRS are given by the columns of the matrix

S′[ml nl ul] =

− sinϕl − sin ζl cosϕl cos ζl cosϕl
cosϕl − sin ζl sinϕl cos ζl sinϕl

0 cos ζl sin ζl

 . (69)

By differentiation of the last column we obtain

∂ul

∂s′i
= ml

∂ϕl

∂s′i
cos ζl + nl

∂ζl

∂s′i
, (70)

and thus

−
∂RAL

l

∂s′i
= m′l

∂ul

∂s′i
sec ζl , −

∂RAC
l

∂s′i
= n′l

∂ul

∂s′i
. (71)

These expressions can be evaluated in any coordinate system,
but perhaps most conveniently in the SRS using S′ml and S′nl
from Eq. (69), and{

∂(S′ul)
∂s′i

, 0
}

= q−1
l

{
∂(C′ul)
∂s′i

, 0
}

ql (72)

from Eq. (11). To compute the partial derivatives of C′ui, we first
obtain from Eq. (4) the derivatives11 of the coordinate direction
as:

∂ūl

∂α∗i
= pi ,

∂ūl

∂δi
= qi ,

∂ūl

∂$i
= −(I − rir′i)bG(tl)/Au ,

∂ūl

∂µα∗i
= piτl ,

∂ūl

∂µδi
= qiτl ,

∂ūl

∂µri
= (I − rir′i)bG(tl)$iτl/Au − (piµα∗i + qiµδi)τ2

l , (73)

where τl = tBl−tep for brevity, and we have used the normal triad
in the celestial reference system, Eq. (5). Although usually only
the first five derivatives are needed (see however Sect. 6.3), the
last equation gives, for completeness, the derivative with respect
to the sixth astrometric parameter µri: the first term corresponds

11 As indicated by the asterisk in the first derivative in Eq. (73), the
differential in right ascension is a true arc, thus: ∂α∗i ≡ (∂αi) cos δi. The
corresponding update in right ascension, i.e., the first element of the di
obtained by solving (57), is therefore ∆αi cos δi.

to the secular change in parallax and the second to the perspec-
tive acceleration.

The rigorous transformation from ūl to ul is quite complex,
but by far the largest difference (∼10−4 rad) is due to stellar aber-
ration. By comparison, gravitational light deflection by the Sun
is ∼ 2 × 10−8 rad. While the rigorous transformation is required
to compute the vector ul itself, some simplifications can be ac-
cepted when computing the partial derivatives. Indeed, for this
purpose it is sufficient to consider the classical stellar aberration
formula,

ul ' 〈ūl + vG(tl)c−1〉 , (74)

accurate to first order in vG/c, where vG = dbG/dt is the barycen-
tric coordinate velocity of Gaia and c the speed of light. To a
relative precision better than 10−6 we then have

∂ul

∂s′i
'

[(
1 −

ū′lvG

c

)
I −

ūlv′G
c

]
∂ūl

∂s′i
, (75)

where I is the 3 × 3 identity matrix.

5.2. Attitude updating (A)

5.2.1. The normal equations

The attitude model using B-splines to represent the components
of the attitude quaternion as functions of time is described in
Sect. 3.3. (For reference purposes, conventions for notation and
some important properties of splines and B-splines are explained
in Appendix B.1.) In the attitude update process (A) the attitude
parameters a are improved by solving the second sub-system in
Eq. (38). Recalling that a is divided into sub-vectors of length
4, representing the quaternions an in Eq. (10), the nth set of four
equations can be written, using Eqs. (29) and (33),

n+M−1∑
m=n−M+1

 ∑
l ∈ Ln∩Lm

∂Rl

∂an

∂Rl

∂a′m
Wl

 dm = −
∑
l ∈ Ln

∂Rl

∂an
Rl(s, a, c, g)Wl .

(76)
Here Ln stands for the set of observations occurring within the
support of Bn(t), i.e., Ln = {l | τn ≤ tl < τn+M}, where M is
the order of the spline. On the right-hand side, it is understood
that the residuals Rl are calculated for the most recent source
parameters s (i.e., from the preceding source updating), while
the attitude, calibration and global parameters are the not-yet-
updated ones, as explained in Sect. 4.6. The weights Wl are the
ones calculated in the source updating.

The structure of the symmetric matrix Naa is shown in Fig. 5.
If each quaternion component is represented by a spline of order
M with N degrees of freedom (so n = 0 . . .N−1), the total num-
ber of unknowns is 4N and the average bandwidth of Naa (count-
ing non-zero elements from the diagonal up) is 4(M − 1) + 2.5.
Including the right-hand side, the total number of reals that need
to be stored for the normal equations is therefore ' (16M − 2)N
or 62N for cubic splines. With a knot interval of about 15 s,
about 3 MB is required to store the attitude normal equations
for one day of observations. Thus it is completely realistic to
store the attitude normal equations for the entire mission in pri-
mary memory. Cholesky factorization of the normal equations
does not produce any more non-zero elements in the matrix; the
factorization and solution can therefore use the same storage as
the normal equations. Moreover, since the number of arithmetic
operations grows only linearly with N, it is computationally fea-
sible to solve the normal equations for any stretch of data.
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Fig. 5. Structure of the attitude normal equations matrix Naa for
a cubic spline (order M = 4). The blocks of size 4 × 4 are in-
dexed by (n,m) as in Eq. (33). The grey cells represent non-zero
elements. Since the matrix is symmetric, the elements below the
diagonal (in lighter grey) need not be stored.

t

tlast tfirst

τn τn+1 τn+M τm−M+1 τm τm+1... ...

last B-spline to which
observation at tlast 

contributes: Bn(t )

first B-spline to which
observation at tfirst 

contributes: Bm−M+1(t )

no data here

Fig. 6. A natural break in the definition of the attitude spline oc-
curs if there is a gap in the observations containing at least M
knots, where M is the order of the spline. tlast is the time of the
last observation before the gap, tfirst the time of the first observa-
tion after the gap.

5.2.2. Segmentation of the data

Even though it is feasible to treat the complete set of normal
equations for the attitude updating as a single system, it is desir-
able for several reasons to divide up the data temporally. This
allows one to set up a very straightforward and efficient dis-
tributed attitude updating, simply by handing out the processing
of different time segments to different computing nodes. Also
the inspection of residuals in order to detect stretches of bad fit
(caused, for example, by micrometeoroid impacts), and the sub-
sequent reprocessing of these stretches, is greatly facilitated if it
can be done on shorter data segments.

The spline model is capable of interpolating sensibly (if not
accurately) over short data gaps. However, if the data gap con-
tains at least M knots (with M = 4 for cubic splines), the two
splines on each side of the gap become completely disconnected.
This is illustrated in Fig. 6, where n and m are the left indices of,
respectively, the last observation before the gap (tlast) and the
first observation after the gap (tfirst). Bn(t) and Bm−M+1(t) are the
last and first B-splines whose coefficients depend on the obser-
vations before and after the gap. Clearly the two segments of the
attitude spline are disconnected if n < m − M + 1 or m − n ≥ M.
We call this a natural attitude break.

In the absence of natural breaks, artificial ones can be in-
troduced at suitable intervals by a simple method and without

t

tbeg(K+1)

tend(K)

τx−Lτx-L−M+1

τx+L+M−1τx+L

anterior 
knots for
segment 

K+1

τx τx+1τx−1

...

...

Segment K

Segment K+1 

posterior 
knots for
segment 

K

Fig. 7. Illustrating the assignment of knots for the attitude update
solutions in two consecutive segments K and K+1, with a break-
point at knot index x and using 2L overlapping knot intervals.

any significant loss of accuracy. The idea is to make separate so-
lutions for overlapping segments, as illustrated in Fig. 7. The
segments use a common knot sequence {τk} that may extend
over the whole length of the mission. Each segment K defines
an attitude spline in the interval [tbeg(K), tend(K)], based on data
with observation times in that same interval. The endpoints co-
incide with certain knots in such a way that tend(K) = τx+L and
tbeg(K + 1) = τx−L, where τx is the cross-over knot between seg-
ments K and K + 1 and 2L the number of overlapping knot inter-
vals. The anterior and posterior knots for each segment are also
taken from the common knot sequence. The local character of
the splines means that the resulting fit around τx is practically
the same for the two segments, provided L is large enough. For
cubic splines (M = 4) it is found that L = 12 is sufficient.

Each segment gives a system of normal equations (76) for
the updates dn to the attitude parameters an for a certain range
of index n. For example, with reference to Fig. 7, in segment K
updates are computed up to and including n = x + L−1, while in
segment K+1 updates are computed starting with n = x−L−M+
1. At least in the middle part of the overlap region, the updates
for a given n should be essentially the same in the two segments.
It therefore does not matter much which of the results is chosen.
The mid-point is at index n = x − M/2 if M is even, or half-way
between x − (M + 1)/2 and x − (M − 1)/2 if M is odd. We may
therefore agree to use the solution from segment K to update an
up to and including index n = x − bM/2c, while the solution
from segment K + 1 is used starting with n = x − bM/2c + 1.
The important thing is that no n is missed by the updating, nor
updated twice.

Once all the coefficients an have been updated from the dif-
ferent segmented solutions, the segmentation loses its meaning
and can in principle be forgotten. For example, when evaluating
the attitude at a specific time t, it does not matter to which seg-
ment that instant belonged. In the next iteration of the attitude
update, a different segmentation can in principle be used.

The overlapping segments mean that a fraction of the obser-
vations need to be processed twice in the attitude updating. The
fraction equals the ratio of the overlap length to the mean length
of the segment, and increases the shorter the segments are made.
For example, with a segment length of one day (it would not
seem reasonable to have shorter segments) and a mean knot in-
terval of 15 s, the fractional overlap for L = 12 is only 0.4%.

5.2.3. Calculation of partial derivatives

For the partial derivatives we obtain in analogy with Eq. (71)

−
∂RAL

l

∂ql
= m′l

∂ul

∂ql
sec ζl , −

∂RAC
l

∂ql
= n′l

∂ul

∂ql
, (77)
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where the derivatives with respect to the attitude quaternion
should be interpreted componentwise. Differentiating Eq. (11)
and using that d(C′ul) = 0, we have{

d(S′ul), 0
}

= 2
{
S′ul, 0

}
q−1

l dql , (78)

which after some manipulation gives

−
∂RAL

l

∂ql
= −2 sec ζl ql

{
S′nl, 0

}
, −

∂RAC
l

∂ql
= 2ql

{
S′ml, 0

}
.

(79)
The derivatives with respect to the spline coefficients an are ob-
tained after multiplying the above expressions by Bn(tl), assum-
ing that the normalization factor in Eq. (10) is close to unity
(Sect. 5.2.4).

5.2.4. Constraining the attitude updating

Since the attitude is represented by a unit quaternion, its compo-
nents should at all times satisfy q2

x + q2
y + q2

z + q2
w = 1. All four

components are nevertheless needed, for while the magnitude of
any of them can be inferred from the other three components,
its sign cannot. The redundancy of the representation manifests
itself in that the length of the quaternion cannot be determined
from the observations. Indeed, as can be seen from Eqs. (11)–
(12), applying an arbitrary non-zero scale factor to the attitude
quaternion q has no effect on the computed instrument angles,
and is therefore unobservable. The attitude parameters an are
therefore also undefined with respect to a certain scale value. As
a consequence, the normal matrix Naa computed from Eq. (76)
is singular, and constraints are needed for computing a unique
solution.

The normalization in Eq. (10) was introduced to guarantee
that the calculated quaternion is always of unit length, although,
as we have seen, this is not strictly necessary for some of the
subsequent calculations.12

Naively, one might expect that the coefficients an could be
scaled independently for each B-spline, i.e., that different scale
factors could apply to each index n. This is not the case, how-
ever. At any time, the (non-normalized) attitude quaternion is a
linear combination of M adjacent coefficients an, and unless all
four coefficients are scaled by exactly the same factor, the result
will not be a simple scaling of the quaternion.13 Applying this
argument to every observation time tl, it is readily seen that the
same scaling factor must be used for all the coefficients in any
attitude segment without natural or artificial breaks. In principle,
therefore, the attitude normal matrix for such a segment has a
rank defect of 1 (that is, the rank is one less than the number
of attitude parameters), and would only need a single constraint
equation to become non-singular.

Numerical experiments, using Singular Value Decomposi-
tion (SVD; see, e.g., Golub & van Loan 1996) of the matrix Naa
computed from simulated observations over successively longer
time intervals, indeed show the expected rank defect of 1 for
intervals up to several hundred knots. That is, there is a clear
gap (of several orders of magnitude) between the smallest singu-
lar value and the second smallest one. For longer time intervals

12 On the other hand we have implicitly assumed ‖q‖ = 1, for example
in deriving Eq. (79).

13 Note that the normalization in Eq. (10) is effected by applying a nor-
malization factor that is a continuous function of time. Since any given
spline coefficient an is used in a finite time interval (namely, the support
of the corresponding B-spline), one cannot obtain a correct normaliza-
tion for all t by scaling the spline coefficients by some value depending
on n.

the gap gradually closes and the problem thus becomes ill-posed
(Hansen 1998). Thus, any reasonably long time interval will in
practice require some form of regularization rather than the ap-
plication of just a single constraint.

The adopted solution method is a variant of the well known
Tikhonov regularization (Hansen 1998). The objective function
in Eq. (27) is modified to include a term depending on the devi-
ation of the normalization factor in Eq. (10) from unity for each
observation. We write the deviation as

Dl ≡ 1 −

∥∥∥∥∥∥∥ ∑̀
n=`−M+1

anBn(tl)

∥∥∥∥∥∥∥
2

(80)

and the modified objective function as

Q(s, a, c, g) =
∑

l

(
R2

l + λ2D2
l

)
Wl , (81)

where λ is a small but non-zero regularization parameter. We
have found that λ = 10−3 to 10−2 gives a solution that is always
numerically stable, and quite insensitive to the precise value of
λ. As a result, the normal equations (76) become

n+M−1∑
m=n−M+1

 ∑
l ∈ Ln∩Lm

(
∂Rl

∂an

∂Rl

∂a′m
+ λ2 ∂Dl

∂an

∂Dl

∂a′m

)
Wl

 dm

= −
∑
l ∈ Ln

(
∂Rl

∂an
Rl + λ2 ∂Dl

∂an
Dl

)
Wl . (82)

The required partial derivatives, obtained from Eq. (80), are

−
∂Dl

∂an
= 2

∑̀
m=`−M+1

amBm(tl)Bn(tl) ' 2q(tl)Bn(tl) , (83)

where the approximation makes use of the fact that the normal-
ization factor in Eq. (10) is close to unity.

5.2.5. Estimating the excess attitude noise

The excess attitude noise εa(t) introduced in Eq. (28) accounts
for modelling errors in the attitude representation. Such errors
could be caused for example by (unmodelled) micrometeoroid
impacts, ‘clanks’ due to sudden redistributions of satellite iner-
tia, propellant sloshing, thruster noise, or mechanical vibrations
(Appendix D.4). Due to the cubic spline representation, any lo-
calized effect that cannot be fitted by the spline will result in
systematic residuals that span over a few consecutive knot in-
tervals. Indeed, discontinuities in the rate (e.g., from micromete-
oroid impacts) or angle (e.g., from clanks) produce characteristic
patterns of residuals that can be used to identify such events. A
significant effort will be devoted to the possibly semi-manual
and interactive process of finding these events. When identi-
fied, they can be handled for example by modifying the knot
sequence (Sect. 5.2.6). But even after this process, the model
will be imperfect due to for example high-frequency thruster
noise.14 Similarly, there will be a large number of impacts that
are too small to be individually recognized; collectively they
add some unmodelled attitude errors, which εa(t) may account
for. However, it should be noted that εa(t) does not include any

14 ‘High-frequency’ here means roughly the range 1/2∆τ ' 0.03 Hz
to 0.2 Hz, where ∆τ is the typical spline knot interval (∼15 s); lower
frequencies are absorbed by the spline and higher frequencies are
smoothed out by the integration across the CCD.
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component of the observation noise (principally from CCD pho-
ton noise), nor is it an estimation of the attitude uncertainty (cf.
Sect. 6.3).

Three components of the excess noise, designated εAL(t),
εACP(t), and εACF(t), need to be derived independently of each
other, representing modelling errors in the AL attitude, the AC
attitude of the preceding field of view, and the AC attitude in the
following field of view. The three components are statistically
nearly independent thanks to the way the attitude measurements
are made, and the fact that the basic angle is not far from 90◦.

The algorithm to estimate εa(t) (for a = AL, ACP or ACF)
is based on a simple statistical processing of the residuals Rl
derived in the source updating. The time line t is divided into
‘buckets’ [t j, t j+1) such that each bucket ( j) will contain a suffi-
cient number of observations, also in the AC direction. The size
(duration) of a bucket should be several knot intervals for the
attitude spline, but the boundaries t j need not in any other way
be related to the attitude knot sequence. One set of buckets is
needed for each attitude component (AL, ACP, ACF). Let l ∈ ja
signify that observation l belongs to bucket j and attitude com-
ponent a. After having completed the source updating for all pri-
mary sources, the excess attitude noise in bucket j is estimated
as

ε2
a (t j ≤ t < t j+1) = max

(
0, F0.68

l∈ ja
(R2

l − σ
2
l − ε

2
i )

)
, (84)

where F0.68() is the 68% quantile (68th percentile) of the argu-
ment values. It is important to note that the downweighting fac-
tors wl determined during the source updating are not used here
to eliminate possible outliers; this function is instead taken care
of by using the quantile to compute a robust estimate of the typ-
ical excess variance in the attitude bucket. This means that if
the ‘outliers’ detected by the source update were actually caused
by a stretch of bad attitude, then this will be recognized by a
large value of the quantile in Eq. (84), and consequently by an
increased ε2

a .
In the subsequent attitude update, the downweighting fac-

tors wl are re-computed based on the residual from the previous
source update but with a value for the total variance, σ2

` +σ2
i +ε2

a ,
using the newly estimated ε2

a . Thus, only the ‘true’ outliers – that
are not due to the bad attitude – are now downweighted. The data
may thus contribute to the attitude updating even if they had been
flagged as outliers in the preceding source updating.

The functions εa(t) are obviously an extremely useful diag-
nostic for the progress of the AGIS iterations as well as (after
convergence) for the quality of the attitude modelling and data.
They can be plotted as a function of time, and the quantity of data
is such that human inspection is feasible. They are also needed
for setting the detection threshold for micrometeoroid impacts.

The accumulation of statistics in the buckets is best done in
parallel with the source updating, when the residuals are readily
at hand. One remaining problem is how to compute the quantile
in Eq. (84) in an efficient way, without having to store billions of
residuals. Indeed, exact calculation of quantiles would require to
store all the values R2

l − σ
2
l − ε

2
i in a bucket before the quantile

can be computed. However, if we are content with an approxi-
mate estimate of the quantile, there are a number of sequential
estimation algorithms available that only need to store a much
smaller amount of data per bucket, see for example Greenwald
& Khanna (2001), Gilbert et al. (2002) and references therein.
We have chosen to use the Incremental Quantile estimation al-
gorithm due to Chambers et al. (2006).

5.2.6. Initialization of the attitude parameters

An approximate estimate of the attitude is already provided by
the initial data treatment (IDT) preceding the astrometric solu-
tion. This may be given as a discrete time series, for example
one quaternion every second of time. The first time the attitude
update is executed for a certain time interval, a regular knot se-
quence is set up and the B-spline coefficients an in Eq. (10)
are determined by a least-squares fit. For a given time series
of attitude estimates, this is a linear problem and therefore eas-
ily solved. The resulting initial attitude a(0) is used in the first
source update (S) and subsequently improved by the attitude up-
date process (A) as part of the AGIS iteration scheme.

By default, a regular knot sequence is adopted, i.e., the knot
interval ∆τ = τn+1−τn is taken to be more or less constant. Given
the endpoints tbeg, tend of a data segment, the knots are set up at
regular intervals respecting a given maximum value of ∆τ (of the
order of 5 to 20 s). The assignment of knots must also take into
account the need for anterior and posterior knots, as discussed in
Appendix B, and in the case of segmented data, the overlapping
knots as discussed in Sect. 5.2.2.

Occasionally the knot sequence needs to be redefined as a
result of the adjustment process. Possible causes could be:

– If the spline is not flexible enough to accurately model the
data, it may be necessary to decrease the maximum allowed
∆τ.

– Conversely, overfitting of the data may require the maximum
allowed ∆τ to be increased.

– Locally, a scarcity of accurate data or a short gap could make
it necessary to remove some knots or introduce a natural
break in the attitude representation (Sect. 5.2.2).

– Very locally, a bad fit may result from a micrometeoroid hit
causing an almost instantaneous change in the angular ve-
locity of the satellite. This may be dealt with by introducing
multiple knots at the appropriate instants (Appendix D.4 and
B.3).

Having redefined the knot sequence, it is necessary to re-
initialize the spline coefficients an, which must now refer to the
new knot sequence. This is most easily done by evaluating q(t)
for a regular time series, with a sampling interval much smaller
than ∆τ (e.g., 1 s), and fitting the new spline to the time series.

5.3. Calibration updating (C)

The geometric instrument model is given in Sect. 3.4. We as-
sume here the generic calibration model in Eqs. (20)–(21), in
which the parameters are indexed by rs. In the calibration update
block (C) the calibration parameters c are improved by solving
the third sub-system in Eq. (38), i.e., the normal equations∑

l

∂Rl

∂c
∂Rl

∂c′
Wl

 dc = −
∑

l

∂Rl

∂c
Rl(s, a, c, g)Wl . (85)

The residuals in the right-hand side are computed from the pa-
rameters values in the current or preceding iteration according
to the discussion in Sect. 4.6. Because the calibration model is
linear, the partial derivatives are uniquely determined by the ob-
servation index l,

∂Rl

∂crs
=
∂ηobs

l

∂crs
=

{
Φrs(l) if l ∈ rs,
0 otherwise.

(86)

In the normal matrix, the element with subscripts (rs)1 and (rs)2
is non-zero only if there is at least one observation l such that
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l ∈ (rs)1 and l ∈ (rs)2. Depending on how the calibration param-
eters are grouped into sets with no common observations (for
example according to the CCD/gate combination; cf. Sect. 4.3),
the normal matrix will therefore be block-diagonal, which the
calibration updating takes advantage of in order to save compu-
tations. It also facilitates distributed processing.

Since the weights Wl are fixed from the preceding source
and attitude updating processes, the update dc can be calculated
in a single direct solution, using the robust Cholesky decomposi-
tion (Appendix C). However, due to the degeneracy between for
example the large-scale and small-scale AL calibration param-
eters, this will produce an arbitrary feasible solution d̃c, which
does not necessarily satisfy the constraints in Eq. (22). The con-
strained update is obtained as

dc = d̃c − C(C′C)−1C′ d̃c , (87)

whereupon the updated c can be computed.
The above-mentioned degeneracy among the calibration pa-

rameters means that the normal matrix calculated according to
Eq. (85) is singular, which seems to contradict our assumption
(Sect. 4.3) that Ncc is positive-definite. However, if C spans the
null space of Ncc, as it should for a properly formulated set of
constraints, then it can be seen that Eq. (87) gives the same
result as solving the updates with the modified normal matrix
Ncc + λ2CC′, which is positive definite for any λ , 0. Thus, the
procedure outlined above is equivalent to solving the constrained
system with positive-definite matrix.

5.4. Global updating

An arbitrary number of global parameters may be solved for in
the AGIS system. Global parameters should be defined in such
a way that their default values, equal to zero, correspond to the
baseline solution. By not solving for the globals, we implicitly
set them to zero, resulting in the baseline solution. For example,
we have a very high confidence in General Relativity, which in
the parametrized post-Newtonian (PPN) formalism implies the
parameter γ = 1. The global parameter related to the gravita-
tional deflection of light should therefore not be γ itself, but for
example the parameter g0 in

γ = 1 + g0 . (88)

That is, g0 = 0 corresponds to the baseline case of General
Relativity. The global parameter vector is g = (g0, g1, . . . )′.

The normal equations for the update dg to the global param-
eter vector are∑

l

∂Rl

∂g
∂Rl

∂g′
Wl

 dg = −
∑

l

∂Rl

∂g
Rl(s, a, c, g)Wl , (89)

where the sums are taken over all the observations l, and the sta-
tistical weights Wl follow from the preceding source and attitude
updates. The partial derivatives in Eq. (89) are computed in exact
analogy with Eqs. (71)–(72) for the source updating, only with
g replacing si. The calculation of ∂ul/∂g′ is not detailed here.

In the simple iteration scheme (Sect. 4.5), the inclusion of
g0 representing the PPN parameter γ considerably slows down
the convergence of the astrometric solution. As explained by
Hobbs et al. (2010), this behaviour is caused by the relatively
strong correlation between the gravitational light deflection by
the Sun (proportional to 1 + γ, and directed away from the Sun)
and trigonometric parallax (directed towards the solar-system
barycentre, never far from the Sun). Hobbs et al. (2010) found

that the convergence rate could be restored by the introduction
of a pseudo-parameter g1 representing a global shift of all par-
allaxes. (The update to this parameter is solved in each iteration
but never applied – its value remains at zero and the converged
values of all the other parameters are unaffected; hence the prefix
‘pseudo’.) It was later found that this artefact is not needed when
using the conjugate gradients scheme, which gives roughly the
same rate of convergence whether or not g1 is included.

6. Auxiliary processes

In this section we describe some auxiliary processes that are not
necessarily part of the astrometric solution as such, but neverthe-
less needed in order to construct the astrometric catalogue. They
concern the definition of the reference system for the source
positions and proper motions by means of the frame rotator
(Sect. 6.1), the selection of primary sources (Sect. 6.2), and the
computation of the standard uncertainties and correlations of the
astrometric parameters (Sect. 6.3).

6.1. Frame rotator

As explained in Sect. 4.4, the measurement principle of Gaia
results in a system of positions and proper motions that is essen-
tially undefined with respect to an arbitrary (small) offset in the
orientation and spin of the reference frame. As a consequence,
the normal matrix N is in principle singular with a rank defect
of 6.

While the solution of rank-deficient problems in general
requires special attention to the singularities, for example by
adding constraints to avoid numerical instability, no such com-
plication arises here because of the way AGIS works. Basically,
a solution is found by iterating between the source and atti-
tude updatings (the calibration and global updatings play no role
here because they are to first order independent of the reference
frame). When the sources are updated, the reference frame is in
reality set by the (then assumed) attitude; similarly, when the at-
titude is updated, the frame is set by the (then assumed) source
parameters. In terms of the matrix formulation of Sect. 4.5 this
is equivalent to the statement that the preconditioner K is non-
singular. The end result is that AGIS converges to a solution with
both the source and attitude parameters expressed in the same,
but largely arbitrary, reference frame.

The intention is however that the final source parameters
(positions and proper motions) shall be expressed in a celes-
tial reference frame that represents, as closely as possible, the
International Celestial Reference System (ICRS). For consis-
tency, it is moreover necessary that the attitude parameters are
expressed in exactly the same frame as the source parameters.
It is the task of the frame rotator to accomplish this. A similar
process was used to align the Hipparcos Catalogue with the ex-
tragalactic reference frame (Lindegren & Kovalevsky 1995).

In the following we start with the rigorous definition of the
rotation correction, then derive a linear approximation applica-
ble to the small corrections that we have in practice. Finally, we
discuss the determination of the rotation parameters and their
application in the AGIS iteration scheme.

6.1.1. Relation between the ICRS and AGIS frames

Ideally, the astrometric solution should result in parameters that
are expressed in the BCRS (Sect. 3.1), whose axes are aligned
with the ICRS here represented by C = [X Y Z]. However, due
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to the in principle undefined reference frame of AGIS, the as-
trometric solution is in effect expressed relative to a slightly dif-
ferent triad, which we denote C̃ =

[
X̃ Ỹ Z̃

]
. The two reference

systems, which for simplicity will be referred to as the ICRS and
AGIS frames, are related by a time-dependent spatial rotation
given by the quaternion f(t); thus the coordinates of the arbitrary
(fixed) vector v are transformed according to the frame rotation
formula {

C′v, 0
}

= f(t)−1 {
C̃′v, 0

}
f(t) (90)

(cf. Eq. A.15). Due to the kinematical constraints of the AGIS
solution, f(t) describes a uniform spin motion of the two frames
with respect to each other.

For consistency with Lindegren & Kovalevsky (1995) we
parametrize f(t) by means of two vectors ε and ω represent-
ing corrections to the orientation and spin of the AGIS frame.
More precisely, the parameters of the frame rotator are the six
coordinates of the vectors in the AGIS frame at some adopted
frame rotator epoch tfr (not necessarily the same as the reference
epoch tep of the astrometric parameters). These coordinates are
denoted εX̃ , εỸ , εZ̃ ,ωX̃ ,ωỸ , andωZ̃ ; according to our kinematical
assumption they are strictly constant numbers. For the arbitrary
epoch t the frame rotator quaternion is, therefore,

f(t) = Q
[
(t − tfr)C̃′ω

]
Q

(
C̃′ε

)
, (91)

where Q is the function introduced by Eq. (A.12). Equations (90)
and (91) provide the basis for the rigorous transformation of
any data between the two frames, given the rotation parameters
C̃′ε =

[
εX̃ εỸ εZ̃

]′ and C̃′ω =
[
ωX̃ ωỸ ωZ̃

]′.
While the above expressions are strictly valid for arbitrarily

large rotation parameters, we have in practice ‖ε‖, ‖(t − tfr)ω‖ <
20 mas ' 10−7 rad, at least in the final iterations of AGIS.
This means that second-order terms are completely negligible
(< 0.002 µas). To first order we have

f(t) ' Q
[
C̃′ε + (t − tfr)C̃′ω

]
, (92)

and the vector part of Eq. (90) becomes, to the same approxima-
tion, vX

vY
vZ

 =

vX̃
vỸ
vZ̃

 +

 0 −vZ̃ +vỸ
+vZ̃ 0 −vX̃
−vỸ +vX̃ 0


εX̃ + (t − tfr)ωX̃
εỸ + (t − tfr)ωỸ
εZ̃ + (t − tfr)ωZ̃

 . (93)

6.1.2. Transformation of the astrometric parameters

Let α̃, δ̃, µ̃α∗, µ̃δ be the position and proper motion parameters
for a source as derived in AGIS, that is referring to C̃. For brevity
we omit here the source index (i), and do not consider the par-
allax $i and radial proper motion µri which are independent of
the frame orientation. In analogy with Eq. (5) we have the nor-
mal triad [ p̃ q̃ r] with respect to the AGIS frame, where r is the
barycentric direction to the source at time tep, p̃ = 〈X̃ × r〉 and
q̃ = r × p̃; its coordinates in the AGIS frame are given by the
columns of the matrix

C̃′
[
p̃ q̃ r

]
=

− sin α̃ − sin δ̃ cos α̃ cos δ̃ cos α̃
cos α̃ − sin δ̃ sin α̃ cos δ̃ sin α̃
0 cos δ̃ sin δ̃

 . (94)

At the source reference epoch tep the direction cosines of r are
related by the frame rotation in Eq. (91); thus{

C′r, 0
}

= f(tep)−1 {
C̃′r, 0

}
f(tep) . (95)

From C′r = [rx ry rz]′ the position parameters in the ICRS frame
are obtained as

α = atan2(ry, rx) , δ = atan2
(
rz,

√
r2

x + r2
y

)
. (96)

The transformation of the proper motion components is a bit
more complicated, as they are expressed with respect to axes that
are physically (slightly) different in the two frames, viz., p̃, q̃ in
the AGIS frame, and p, q in the ICRS frame. However, the time
derivative (at epoch tep) of the barycentric direction to the source
is a fixed vector in space, known as the proper motion vector. In
a kinematically non-rotating system it can be written

µ = pµα∗ + qµδ = p̃µ̃α∗ + q̃µ̃δ − ω × r , (97)

where the last term is the correction for the spin of the AGIS
frame. The coordinates of the proper motion vector in the two
frames,

C′µ = C′ pµα∗ + C′qµδ (98)

and
C̃′µ = C̃′ p̃µ̃α∗ + C̃′ q̃µ̃δ −

(
C̃′ω

)
×

(
C̃′r

)
(99)

are related by a frame rotation analogous to Eq. (95),{
C′µ, 0

}
= f(tep)−1 {

C̃′µ, 0
}
f(tep) . (100)

From Eq. (97) the proper motion components in the ICRS frame
are then

µα∗ = p′µ =
(
C′ p

)′ (C′µ) , µδ = q′µ =
(
C′q

)′ (C′µ) . (101)

For given (α̃, δ̃, µ̃α∗, µ̃δ) and (C̃′ε, C̃′ω), the sequence of cal-
culations is therefore:

1. Calculate f(tep) by Eq. (91);
2. Calculate C̃′[ p̃ q̃ r] by Eq. (94);
3. Calculate C′r by Eq. (95) and C′µ by Eq. (100);
4. Calculate α and δ by Eq. (96) and C′p and C′q by Eq. (5);
5. Calculate µα∗ and µδ by Eq. (101).

As we have not employed the approximations in Eqs. (92)–(93),
these transformations are rigorous.

6.1.3. Transformation of the attitude parameters

In analogy with Eq. (9) the attitude quaternion q̃(t) derived in
AGIS defines the transformation from the AGIS frame C̃ to the
SRS S as a function of time; thus for the arbitrary vector v{

S′v, 0
}

= q̃(t)−1 {
C̃′v, 0

}
q̃(t) . (102)

Solving
{
C̃′v, 0

}
and inserting into Eq. (90) yields{

C′v, 0
}

= f(t)−1q̃(t)
{
S′v, 0

}
q̃(t)−1f(t) . (103)

Comparison with Eq. (9) shows that the corrected attitude is
given by

q(t) = f(t)−1q̃(t) . (104)

In practice the AGIS attitude q̃(t) is expressed in terms of B-
splines by means of coefficients ãn as in Eq. (10). The result of
the time-dependent transformation by f(t)−1 in Eq. (104) can-
not, in general, be exactly represented by means of B-splines.
However, since the transformation is changing extremely slowly
in comparison with the duration of the support of each B-spline
(∼ 1 min), and also the changes of a from knot to knot are very
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small, we make a negligible error by transforming the coeffi-
cients instead of the attitude quaternion. Thus we use

an = f(t̄n)−1ãn , (105)

where
t̄n =

1
2

(τn + τn+M) (106)

is the time half-way through the support of Bn(t).

6.1.4. Determination of the frame rotator parameters

The parameters C̃′ε =
[
εX̃ , εỸ , εZ̃

]′ and C̃′ω =
[
ωX̃ , ωỸ , ωZ̃

]′
are determined by a weighted least-squares solution, using as in-
put the differences in positions and proper motions, for a subset
of the sources, between the AGIS results and a priori data. Three
kinds of sources may be used for this purpose:

– A subset S NR of the primary sources can be assumed to de-
fine a kinematically non-rotating celestial frame. Typically
this subset will contain some 105 to 106 quasars and point-
like galactic nuclei, mainly identified from ground-based
surveys and photometric criteria. This subset effectively de-
termines ω.

– A subset S P of S NR in addition have positions (α̂, δ̂) accu-
rately determined with respect to the ICRS by means that
are completely independent of Gaia. Typically it will contain
the optical counterparts of extragalactic objects with accu-
rate positions from radio interferometry (VLBI). Due to the
cosmological acceleration effect described below it is neces-
sary to assign an epoch tP to each such position. This subset
effectively determines ε.

– The third subset S PM consists of primary sources that do not
a priori belong to the non-rotating subset, but have positions
and/or proper motions that are accurately determined with
respect to the ICRS independent of Gaia. This could include
radio stars observed by VLBI, or stars whose absolute proper
motions have been determined by some other means. The as-
trometric parameters of a source in this subset are denoted α̂,
δ̂, µ̂α∗, µ̂δ and refer to the epoch tPM (the parallax is irrelevant
here, as it is identical in both frames). It is not expected that
this subset will contribute very significantly to the determi-
nation of ε and/or ω, but they are included in the discussion
below since they may provide important consistency checks.

In the following we derive the appropriate observation equations
for the different kinds of sources. The derivation assumes that the
frame rotator parameters are numerically small so that the lin-
ear approximation in Eq. (93) applies. For the (weighted) least-
squares estimation of the frame rotator parameters it is, further-
more, necessary to assign the appropriate statistical weights to
the observations and to have procedures for identifying and han-
dling outliers. These issues are however not discussed here.

In the frame rotator solution, the six parameters must be
complemented by three more parameters aX , aY , aZ taking into
account the acceleration of the solar-system barycentre in a cos-
mological frame (Bastian 1995; Gwinn et al. 1997; Kopeikin &
Makarov 2006). Such an acceleration, by the vector α, will cause
a systematic ‘streaming’ (dipole) pattern of the apparent proper
motions of extragalactic objects, described by

µ0 = (I − rr′)a . (107)

Here r is the direction to the source and a = α/c to first order
in c−1, where c is the speed of light. The galactocentric acceler-
ation of the solar-system barycentre by ‖α‖ ' 2 × 10−10 m s−2 is

expected to produce a proper motion pattern with an amplitude
of ‖a‖ ' 4 µas yr−1, which Gaia should be able to detect given a
sufficient number of quasars among the primary sources.15 The
additional parameters introduced in the frame rotator solution
are the components of a in the ICRS, or [aX aY aZ] = C′a; they
may be expressed in the same unit as the proper motions.

Observation equations for a source in S NR. A kinematically
non-rotating source should only have an apparent proper motion
due to the cosmological acceleration. Equating µ in (97) with
µ0 from Eq. (107) and taking the scalar products with p̃ and q̃
results in the two observation equations

p̃′a + q̃′ω = µ̃α∗

q̃′a − p̃′ω = µ̃δ

 , (108)

where we have used the scalar triple product rule16 for the terms
including ω. These equations are linear in the unknown accel-
eration and spin parameters, and the coefficients are the known
coordinates of p̃ and q̃ in either C̃ or C (to the adopted approxi-
mation the coefficients are the same in the two frames).

Observation equations for a source in S P. In order to com-
pare positions it is necessary to choose an epoch at which to
make the comparison. At the chosen epoch of comparison, t, the
barycentric coordinate direction of the source is, to first order in
the proper motion,

ūB(t) = r(tP) + (t − tP)µ0

= r(tep) + (t − tep) ( p̃µ̃α∗ + q̃µ̃δ − ω × r) . (109)

In the first equality we have made the assumption that the source
has the apparent proper motion µ0 when observed in the ICRS
frame; the second uses the same proper motion vector derived
from the AGIS data according to Eq. (97). If we now compute
the coordinates of ūB(t) in C (using the first equality) and C̃
(using the second equality), they must be related according to
Eq. (93). Resolving the coordinate differences along α and δ we
obtain the observation equations

(t − tP) p̃′a + q̃′
(
ε + (t − tfr)ω

)
= ∆α∗

(t − tP)q̃′a − p̃′
(
ε + (t − tfr)ω

)
= ∆δ

 , (110)

where[
∆α∗

∆δ

]
=

[
p̃X̃ p̃Ỹ p̃Z̃
q̃X̃ q̃Ỹ q̃Z̃

] cos δ̃ cos α̃ − cos δ̂ cos α̂
cos δ̃ sin α̃ − cos δ̂ sin α̂

sin δ̃ − sin δ̂

+ (t− tep)
[
µ̃α∗
µ̃δ

]
.

(111)
The observation equations in proper motion are of course the
same as in Eq. (108).

Returning to the choice of comparison epoch t, it is clear
that the result in terms of the estimated frame rotator parameters
should in principle not depend on this choice. However, that will
only be the case if the statistical correlations among the data are

15 The expected acceleration due to, for example, the Andromeda
galaxy or the Shapley Supercluster (Proust et al. 2006) are at most
∼ 10−3 of the galactocentric acceleration. On the other hand, nearby
massive galactic objects and large-scale deviations of the galactic po-
tential from axisymmetry could conceivably produce a larger deviation
in the direction of the total acceleration.

16 a′(b × c) = b′(c × a) = c′(a × b)
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taken into account in the least-squares estimation. Otherwise one
should choose t to minimize these correlations. From Eq. (111)
it is seen that the right-hand sides of Eq. (108) and (110) are
uncorrelated if t = tep, provided that the position and proper
motion errors in AGIS are also uncorrelated (which is generally
the case if tep is appropriately chosen, i.e., close to mid-mission).
Consequently we suggest using t = tep.

Observation equations for a source in S PM. Here it will be
necessary to distinguish two cases depending on how the proper
motions have been measured. If µ̂α∗, µ̂δ are the proper mo-
tion components of a source measured relative to background
quasars, then the observation equations are simply

p̃′a + q̃′ω = µ̃α∗ − µ̂α∗

q̃′a − p̃′ω = µ̃δ − µ̂δ

 . (112)

As expected, the equations simplify to Eq. (108) in case the mea-
sured proper motion is zero. The observation equations obtained
from the comparison of positions are the same as in Eq. (110),
but with right-hand side

[
∆α∗

∆δ

]
=

[
p̃X̃ p̃Ỹ p̃Z̃
q̃X̃ q̃Ỹ q̃Z̃

] cos δ̃ cos α̃ − cos δ̂ cos α̂
cos δ̃ sin α̃ − cos δ̂ sin α̂

sin δ̃ − sin δ̂


+ (t − tep)

[
µ̃α∗
µ̃δ

]
− (t − tP)

[
µ̂α∗
µ̂δ

]
. (113)

If, on the other hand, the proper motion is not measured rel-
ative to the local extragalactic background, but in a global non-
rotating frame, then it already includes a contribution from µ0
and the appropriate observation equations are obtained by delet-
ing the terms depending on a:

q̃′ω = µ̃α∗ − µ̂α∗

− p̃′ω = µ̃δ − µ̂δ

q̃′
(
ε + (t − tfr)ω

)
= ∆α∗

− p̃′
(
ε + (t − tfr)ω

)
= ∆δ


. (114)

6.1.5. The null space vectors

In Sect. 4.4 we introduced the n × 6 matrix V whose columns
span the null space of the normal matrix N. For completeness
we give here the explicit expressions for one such set of null
vectors. Any small change in the unknowns x, by a linear com-
bination of the columns in V, will leave the calculated residu-
als unchanged. Applying the frame rotator for arbitrary ε and ω
obviously leaves the residuals unchanged, and we can therefore
compute the columns of V as the partial derivatives of x with re-
spect to the six frame rotator parameters. Since we are concerned
with infinitesimal changes, the distinction between the AGIS and
ICRS frames is no longer necessary. If V is partitioned similarly
to x and b in Eq. (31), or V =

[
V′s, V′a, V′c, V′g

]′, we find by
means of Eq. (114),

[V s]i =


qX qY qZ τqX τqY τqZ
−pX −pY −pZ −τpX −τpY −τpZ

0 0 0 0 0 0
0 0 0 qX qY qZ
0 0 0 −pX −pY −pZ

 , (115)

where τ = tep − tfr and we have omitted the source index i on
the matrix elements. The order of the astrometric parameters is

(α∗, δ, $, µα∗, µδ). From Eqs. (92) and (105) we similarly ob-
tain for the attitude parameters an =

{
ax, ay, az, aw

}
,

[Va]n =
1
2


−aw −az ay −τnaw −τnaz τnay

az −aw −ax τnaz −τnaw −τnax
−ay ax −aw −τnay τnax −τnaw

ax ay az τnax τnay τnaz

 , (116)

where τn = t̄n− tfr. The calibration and global parameters are not
affected by the frame rotator, so Vc = 0 and Vg = 0.

Let d̃ be a vector of small changes to the unknowns x, as for
example the update computed in one of the AGIS iterations. In
some situations it is desirable to remove from d̃ its component
in the null space, i.e., to project it on the row space of N. This
will for example ensure that the orientation and spin of the AGIS
frame is not, on the average, changed by the update. In principle,
we could achieve this by a process analogous to Eq. (87):

d = d̃ − V(V′V)−1V′ d̃ , (117)

where d is the projection of the update on the row space of N.
This is equivalent to solving the unweighted least-squares prob-
lem Vz ' d̃, yielding the orientation and spin components as
ẑ = (V′V)−1V′ d̃, followed by the subtraction of the null space
component Vẑ. In practice, this can equivalently be achieved by
means of the frame rotator, without the need to compute V ex-
plicitly.

6.1.6. Role of the frame rotator in AGIS

The frame rotator process consists of the three steps: (i) de-
termine the frame rotator parameters according to Sect. 6.1.4;
(ii) correct the astrometric parameters for all sources according
to Sect. 6.1.2; (iii) correct the attitude parameters according to
Sect. 6.1.3. In principle, this process only needs to be run after
convergence of the AGIS iterations; nevertheless, there may be
a case for running it after each AGIS iteration, preventing a pro-
gressive deviation from the ICRS in the course of the iterations.

In particular, for the simulation experiments described in
Sect. 7 it was found necessary to run the frame rotator after
each iteration, in order to be able to compare the results of each
iteration with the ‘true’ astrometric parameters (used as input
to the simulations). Without this correction, the differences be-
tween the ‘estimated’ and ‘true’ parameters for the source posi-
tions and proper motions would have been grossly distorted by
frame errors originating from the starting values of the attitude
parameters. In this case all the primary sources were treated as
belonging to the subset S PM, for which Eq. (114) is appropriate.

6.2. Selection of primary sources

The astrometric core solution does not use all the sources ob-
served by Gaia, but only a subset of them known as the primary
sources. The selection of this subset is made iteratively, based
on the results of earlier astrometric solutions and other processes
such as double-star and variability analysis (not discussed in this
paper). The main criterion for a primary source is that its proper
direction, at all times when it is observed by Gaia, is adequately
modelled by the standard astrometric model outlined in Sect. 3.2.
Examples of sources that should be excluded based on this cri-
terion are solar-system objects, short-period astrometric binaries
with a significant size of the photocentre orbit, long-period as-
trometric binaries with a significant curvature of the photocentre
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orbit, certain unresolved binaries where one or both of the com-
ponents are variable, and active galactic nuclei (AGNs) with sig-
nificant variation of their photocentre positions. Variable stars,
long-period resolved binaries, eclipsing and spectroscopic bi-
naries need not be excluded a priori from the set of primary
sources, although many of them are potentially problematic from
an astrometric modelling viewpoint (e.g., a variable star might be
part of an unresolved double or multiple star, resulting in a vari-
able photocentre position). On the other hand, partially resolved
double/multiple stars and other extended sources will be prob-
lematic even if their photocentres strictly adhere to the basic as-
trometric model, Eq. (3), because technically the determination
of the photocentre becomes more difficult and less precise.

For the calibrations there are other requirements on the pri-
mary sources, in particular that there are enough of them at var-
ious magnitudes and colours, while their sky distribution is less
important. Securing a sufficient number of primary sources for
the calibrations will tend to include many more primary sources
in some areas, such as the galactic plane, resulting in a very non-
uniform distribution across the celestial sphere.

6.2.1. The number of sources needed for AGIS

The number of sources required for the Astrometric Global
Iterative Solution is driven by the calibration needs of having
representative numbers of sources of different magnitudes, and
the attitude needs of having a sufficient number of sources in
every knot interval.

Let us consider first the requirements for the geometric
small-scale calibration of the CCDs (Sect. 3.4). The angular ex-
tent of a single CCD in the across-scan direction is about 0.1◦.
It scans the celestial sphere at a rate of 1◦ min−1 and there-
fore covers about 2000 deg2 per week, if both fields of view are
counted. Since there are 1966 pixel columns across the CCD, we
have the convenient rule of thumb that each pixel column covers
1 deg2 per week. Thus, if the average density of suitable primary
sources is D deg−2 and we require a minimum of N observa-
tions of such sources per pixel column for its calibration, then
the minimum time needed is N/D weeks. For example, with 108

primary sources we have D = 2400 deg−2, and it is then reason-
able that the small-scale calibration can be made, at a resolution
of one or a few pixels, in a matter of weeks. However, for the
gated observations of bright sources (G . 12 mag), the available
numbers are much smaller and it will be necessary to sacrifice
resolution in time, number of pixels, or both in order to have a
sufficient number of observations per calibration cell. For exam-
ple, the gate used for the brightest sources will perhaps mainly
be used for G ' 5.7 to 8.8; the total number of such stars is
about 130 000 (from the Tycho-2 Catalogue; Høg et al. 2000) or
D ' 3 deg−2, of which only a fraction will be suitable as pri-
mary sources. Thus, even over the whole five-year mission there
will only be a few hundred observations per pixel column. From
these considerations it is clear that as many as possible of the
bright stars should be selected as primary sources.

Consider next the requirements for the attitude determina-
tion. The minimum reasonable knot interval is of the same or-
der as the transit time over a CCD, or about 5 s. Since we re-
quire both along-scan and across-scan measurements, and the
latter are normally only provided by the SM and some of the
AF1 observations, we assume conservatively one observation in
each coordinate per field-of-view transit. There are seven CCDs
across the width of the field of view; the area scanned is there-
fore 1000 deg2 per day in each field of view, or 0.06 deg2 per
5 s interval. If we require, say, 100 transits per knot interval for a

reliable attitude determination, then the minimum density of pri-
mary sources is D = 1700 deg−2, or some 70 million sources in
total. To achieve this density in the galactic pole regions requires
that stars as faint as G ' 19 are included among the primary
sources. Thus it is clear that the design aim of ' 108 primary
sources is quite reasonable, and that these will have to include
both very bright and very faint stars, as well as many quasars
down to G = 20 for the extragalactic link.

Apart from these minimum requirements, it must be main-
tained that the quality of the solution will only improve, the
more (good) primary sources are included. Stated in the neg-
ative sense, the solution quality cannot improve by removing
good-quality primary sources. From this viewpoint one should
aim to include as many primary sources as possible in the final
solution.

On the other hand, one should not forget that it is possible to
run AGIS with much fewer primary sources by disabling short-
term small-scale calibrations and using longer knot intervals for
the attitude. This will increase modelling errors, which however
is acceptable for initial runs where the input data have not yet
been properly calibrated.

6.2.2. Selection criteria

As outlined above a source has to pass several tests, derived from
different processes, in order to qualify as a primary source. The
most important test is derived from the AGIS solution itself, and
is based on how well the standard astrometric model (Sect. 3.2)
fits the data. However, if initially we want to limit the number of
primary sources, a somewhat more sophisticated selection pro-
cedure is needed to guarantee the minimum requirements.

Each source carries an attribute representing the ‘relegation
factor’ U, which is a floating-point number ranging from about
1 to infinity. U ' 1 implies the source is perfect for use in the as-
trometric solution, while successively larger values indicate less
suitable sources. The relegation factor may incorporate the re-
sults of several different tests, and therefore provides a continu-
ous variable for use in the selection process. The name derives
from the need to ‘relegate’ a primary source into a secondary
one when U exceeds a predefined value, which may happen for
example in the course of the AGIS iterations, or from one so-
lution to the next. On the other hand, a secondary source may
be promoted to a primary if its U value decreases below the set
threshold. This suggests that all potential primary sources should
be processed through the source update (Sect. 5.1), after which
its status as primary/secondary may be decided.

The excess source noise εi estimated during the source up-
dating (Sect. 5.1.2) may be a good starting point for calculating
the relegation factor, e.g.:

Ui =

√
1 + [εi/e(Gi)]2 , (118)

where e(G) is a normalization factor depending on the magni-
tude. The choice of the function e(G) determines the balance be-
tween absolute and relative contributions to the modelling error
budget. With the choice e(G) ' σAL

l (the formal along-scan ob-
servational standard uncertainty for a source of magnitude G),
Ui approximates the RMS normalized residual of the source.
Selecting sources based on this Ui tends to discriminate against
bright stars where modelling errors may dominate over photon-
noise errors. On the other hand, choosing e(G) = constant means
that only sources with the smallest εi are accepted; this may re-
move too many of the faint sources, where εi is still small in com-
parison with σAL

l . A reasonable compromise between these two
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extreme cases should be found. The value from Eq. (118) can
later be combined with other factors indicating for example pho-
tometric variability, or some other potentially problematic prop-
erty, so that in general the relegation factor can be determined
with some formula using a combination of the source attributes.

Apart from the relegation factor, which indicates whether a
source is at all suitable as a primary source, the general principle
should be to maximize the total weight of the primary sources.
The weight of a source i is defined as

Wi =
1
ni

∑
l∈i

wl

σ2
l + ε2

i

, (119)

where the average is taken over the ni =
∑

l∈i 1 accepted AL
observations of the source. Note that we do not use the more
obvious definition Wi =

∑
l∈i Wl with Wl from Eq. (62), since

we do not want to penalize a source by the excess attitude noise
in some of its observations, nor favour a source because it is
observed many times due to the scanning law.

Having defined the relegation factor and weight per source,
the selection of primary sources can be made to maximize the
total weight with due regard to sky uniformity (for attitude de-
termination) and magnitude distribution (for instrument calibra-
tion). A possible procedure is the following.

We start by specifying the minimum density Dmin (deg−2)
required for the attitude determination, the targeted total number
Ntot of primary sources, with Ntot ≥ (129600/π)Dmin, and the
maximum acceptable relegation factor Umax. For the geometric
calibration of gated observations we may also specify minimum
numbers {Ng} for several intervals in G. Then:

1. Using a coarse-grained tessellation of the celestial sphere
(see below), select in each pixel the Np sources with the
largest Wi that satisfy Ui ≤ Umax, where Np is the minimum
number per pixel that will ensure Dmin.

2. For each magnitude bin with a required minimum number
Ng, count the actual number of primary sources already se-
lected; if it is less than Ng add sources with Ui ≤ Umax based
on Wi.

3. If the total number after Step 1 and 2 is less than Ntot, add
sources with Ui ≤ Umax based on Wi. If the total number
exceeds Ntot, reduce Umax and repeat the process.

If the required number cannot be reached in a particular pixel or
magnitude bin, then it is necessary to increase Umax locally for
that pixel or bin.

For the tessellation in Step 1 in principle any reasonable way
to divide up the sphere into cells of approximately the same area
could be used, but for statistical operations the HEALPix scheme
(Górski et al. 2005) has some advantages (O’Mullane et al.
2001). The cell size is determined by the choice of HEALPix
parameter NSIDE and is important as it predicts the level of
homogeneity over the sphere. A cell area of about 1/3 of the
field of view might be close to optimal, and is achieved with
NSIDE = 128 yielding 196 608 cells.

For the first run with real data some selection must be made
using the initial star catalogue. In this case the relegation factor
may be set to 1 for all sources and the selection based entirely
on their spatial distribution and magnitudes. This will reduce
the input to the first run of the astrometric solution, after which
the relegation factor will be updated as described above. The
secondary-source update step runs on all sources not included
in AGIS; hence this will set a relegation factor for all sources
observed by Gaia.

6.3. Computation of standard uncertainties and correlations

It is mandatory that the catalogue of astrometric parameters re-
sulting from the astrometric core solution includes complete and
reliable information about the expected error statistics. The most
important quantity is the estimated standard uncertainty of each
astrometric parameter. However, the statistical correlation be-
tween the different astrometric parameters – both between the
different parameters of the same source and between the param-
eters of different sources – is also important and should be quan-
tified. Such correlations are produced both by attitude modelling
errors (Sect. 5.2.5) and the statistical uncertainty due to the finite
astrometric weight of the sources contributing to the attitude de-
termination. More generally, we need a method to estimate the
5×5 covariance matrix Cov(si, s j) of the astrometric parameters
of any two sources i, j (including the case i = j). In princi-
ple, these are sub-matrices of the upper-left ns × ns part of N†,
the pseudo-inverse of the complete normal equations matrix in
Eq. (30). (The pseudo-inverse should be used since the matrix is
singular.) Although there are methods to compute selected ele-
ments in N† that may be feasible even for a system as large as
this, it is utterly impossible to produce any significant fraction of
the covariances by a direct computation. Instead, it will be nec-
essary to rely on approximations and statistical estimates. A first
approximation is obtained by ignoring the statistical uncertainty
contributed by the errors of the attitude, calibration and global
parameters; in this case we can ignore all parts of N in Eq. (31)
except Nss and find

Cov(si, s j) ≡
[(

N†
)

ss

]
i j
'

 [Nss]−1
ii if i = j,

0 if i , j,
(120)

where the inverse of [Nss]ii = A′iWi Ai is regularly computed as
part of the source updating using Eq. (57). However, in this ap-
proximation we clearly cannot estimate the covariance between
sources (i , j), which is unacceptable; moreover, we underes-
timate the within-source covariance (i = j) because of the ne-
glected attitude and calibration errors. Refining this estimate is a
very important problem which however is addressed elsewhere
(Holl et al. 2010, 2012).

A somewhat related problem is the need to be able to trans-
form the astrometric results, without loss of information, to an
arbitrary epoch different from the tep used in the astrometric so-
lution. The standard model in Eq. (4) allows the astrometric pa-
rameters to be transformed in a completely reversible manner,
based on the assumption of uniform space motion relative to the
solar-system barycentre. In this process it is necessary to include
the sixth astrometric parameter µri, even if it is (partially) de-
rived from a spectroscopic radial velocity. Similarly, the trans-
formation of the covariance matrix must consider all six param-
eters. The relevant formulae are given in Vol. 1, Sect. 1.5.5 of
The Hipparcos and Tycho Catalogues (ESA 1997) and are not
repeated here.17 Indeed, the normal equations for the six param-
eters contain the full information of the Gaia observations of a
particular source with respect to the standard astrometric model,
and for this reason it is desirable to compute and store these nor-
mals even if only a subset of them is used in the actual source
update (cf. Sect. 5.1.3).

17 The sixth parameter µr is denoted ζ in ESA (1997).
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Fig. 8. Simplified architectural design diagram of AGIS. The
rounded boxes are independent Java processes running in par-
allel on different nodes of a multi-CPU processing cluster. The
arrows indicate main data exchanges between the various pro-
cesses. Input/output-related data flow from/to the storage system
is not shown, and likewise some important but conceptually ir-
relevant interactions between some elements (e.g., the Servers
and the RunManager).

7. Software implementation and demonstration
solutions

The practical realisation of the AGIS scheme as outlined in the
preceding sections is contained in software that is being devel-
oped, since early 2006, jointly by teams at the European Space
Astronomy Centre (ESAC) and Lund Observatory within the
Gaia Data Processing and Analysis Consortium (DPAC). It is a
central software module embedded into a complex, overall data
processing system (O’Mullane et al. 2007), whose ultimate goal
is the creation of the final Gaia catalogue with a targeted release
date around 2021.

This section gives a concise overview of the architectural
design of the AGIS software (Sect. 7.1) on the one hand, and
on the other presents some selected results from a recently
(June–November 2011) conducted large-scale astrometric solu-
tion (Sect. 7.2) using as input simulated data for more than 2 mil-
lion sources. While this number is still a factor 50 smaller than
the number of primary sources foreseen in the final AGIS runs
(around 2018–2020), and the present simulations are much sim-
plified especially with respect to the attitude modelling, we be-
lieve that this proof-of-concept run demonstrates the practical
validity and correctness of the key theoretical concepts described
in this paper. Future tests will involve simulated data sets that
are both larger and more realistic, with a parallel further devel-
opment of the algorithms and software in view of the added new
complexities.

7.1. AGIS software overview

The term AGIS is subsequently often used to refer to the actual
software implementation of the scheme. Like virtually all Gaia
data processing software, AGIS is entirely written in the object-
oriented Java programming language (O’Mullane et al. 2010).

The implementation has been briefly outlined in Lammers et al.
(2009) and more comprehensively in O’Mullane et al. (2011), to
which the interested reader is referred for more details. In this
section, some key classes are briefly described; following Java
naming conventions their names (given in italics) are concate-
nated capitalized nouns, as in RunManager.

Owing to the number of sources and the associated large
data volumes that have to be handled (see Sect. 1) it is clear
that a well-performing system must be distributable on mod-
ern, multi-node, multi-core processing hardware environments
and make optimal use of parallelism as far as permitted by the
AGIS scheme. Another elementary consideration is that inher-
ently slow disk input-output operations should be minimized and
never allowed to be a bottleneck for any of the computing pro-
cesses.

These basic requirements have led to the system schemati-
cally depicted in Fig. 8 with its main components and data flow.
The central elements are DataTrains, Servers, a RunManager,
and a ConvergenceMonitor. When an AGIS run starts the
RunManager splits the entire processing task of the first itera-
tion into separate and independent jobs which are then taken and
executed in parallel by DataTrains that have been started on the
different CPUs of the processing system. Each such job involves
the processing of all observations for a group of sources (with
typically 100–1000 sources per group), which is done by loop-
ing over the sources, one at a time. Before the loop is entered all
the data that are needed for the processing (observations, as well
as all source, attitude, and calibration data) have been loaded
into memory and are passed on to the core algorithms. This is
a key design aspect which, together with a suitable grouping of
the data on the storage system, ensures that the system is never
input/output limited and that it has a constantly high utilization
of the CPUs (typically at the 90% level).

Each AGIS iteration starts with the updating of the respec-
tive sources (see Sect. 5.1). Computed provisional updates are
then written to the storage system and, finally, the observations
together with the updated source data are sent to attitude, cal-
ibration, and global servers via the CPU-interconnecting net-
work. The servers themselves are distributed in different ways
(see, e.g., Sect. 5.2.2 for attitude), but all are similar in that
they accumulate normal equations by adding observation equa-
tions as outlined in Sects. 5.2.1, 5.3, and 5.4, respectively. When
all DataTrain jobs are finished, the RunManager signals to the
servers that all observations have been sent. This triggers that
a Cholesky decomposition (Appendix C) is made of the accu-
mulated normals matrices in every server, that the partial results
on different servers are combined where necessary (e.g., the at-
titude segments are joined), and finally that the results are per-
sisted in the storage system. That marks the end of an iteration.
Subsequent iterations are then started in the same manner as the
first one, viz., through the creation of a set of processing jobs.

Iteration k uses the computed updates from iteration k−1 and
generates updated parameters for use in the following iteration
k + 1. This progress is monitored by the ConvergenceMonitor
through the accumulation of a selected list of statistical quanti-
ties in the form of graphical plots (e.g., histograms of the up-
dates of all the astrometric parameters) accessible in real time
through a web interface. Naively, one may expect that the sys-
tem can be considered converged if the updates become smaller
than a pre-defined limit; however, finding an unambiguous and
automatically verifiable convergence criterion has proven to be
a surprisingly complex problem (see Sect. 4.4 in Bombrun et al.
2011). We believe now that human inspection is indispensable
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Table 1. Characteristics of the simulated input data and demon-
stration solution.

Quantity Value

Duration of science mission 5.0 yr
Number of sources 2 256 222
Number of along-scan (AL) observations 1.625 × 109

Number of across-scan (AC) observations 1.805 × 108

Standard uncertainty per AL / AC observation (representative):
G ≤ 13 92 µas / 520 µas
G = 15 230 µas / 1350 µas
G = 17 590 µas / 4000 µas
G = 18 960 µas / 7600 µas
G = 19 1600 µas / 16000 µas
G = 20 2900 µas / 38000 µas

Number of astrometric parameters 1.128 × 107

Number of attitude spline knots 6.575 × 105

Number of attitude parameters 2.630 × 106

Number of calibration parameters 7 812
Number of global parameters 1

to assess the convergence status of the system reliably and, ulti-
mately, decide on the termination of the iterative loop.

An important feature of the RunManager is the ability to use
different algebraic solution methods by selecting among differ-
ent available iteration schemes. The description above explains
the ‘kernel’ computation of provisional updates to the unknowns
employing the Gauss-Seidel-type preconditioner approximation
(Eq. 53 in Sect. 4.6) to the full normal matrix of the system
(Sect. 4.5). How these provisional updates are actually com-
bined at the end of an iteration to form the final updates to the
unknowns depends on the chosen iteration scheme. AGIS can
use all four schemes outlined in Sect. 4.7, viz., the simple itera-
tion (SI), accelerated simple iteration (ASI), conjugate gradients
(CG), and hybrid scheme (A/SI-CG). The previous description
essentially refers to SI; in the other schemes there are a few ex-
tra steps which however are immaterial for understanding the
software system.

AGIS is controlled through a list of a few hundred key–
value parameters (‘properties’) which are configured before a
run starts. Examples are: the numbers of servers and threads,
the size of DataTrain jobs, the starting values for the unknowns,
and the employed solution method. Also, which update blocks
are active during a run is controlled via properties. Any com-
bination that involves at least a source update is possible, e.g.,
SACG, SA, SCG.

The optimum number of data trains in a run is a complex
trade-off between the available number of CPUs and memory,
usable network bandwidth (more trains create more inter-CPU
traffic), and the given maximum storage system throughput. By
design of the system, the run time should scale inversely with the
number of data trains (assuming there are enough CPUs), i.e.,
doubling the number of DataTrains should halve the run time.
In the tests done until now, the run times are very satisfactory;
however, more work remains for achieving the desired optimal
scaling behaviour. A first AGIS run using simulated data for a
5 yr mission with 50 million primary sources was successfully
completed in June 2011. This being only a factor 2 less than
the baseline 100 million sources envisaged in the final AGIS run
towards the end of the mission, it marks an important milestone
in the development of the operational system.

Fig. 9. All-sky projections of (from top to bottom) the total stel-
lar density in the input data to the demonstration solution, the
number of AL observations per source, and the resulting spatial
density of AL observations. These and all subsequent sky maps
use the Hammer–Aitoff equal-area projection in equatorial coor-
dinates, with α running from −180◦ to +180◦ right to left. Top:
The simulated sky contains some 2 million single stars cover-
ing the Gaia magnitude range 6 ≤ G ≤ 20. The density ranges
from less than 1 deg−2 around the galactic poles to a maximum
of about 4800 deg−2 near the galactic centre in the bottom-right
quadrant of the map. Middle: The number of along-scan obser-
vations per source reflects the scanning law of Gaia, which is
roughly symmetric around the ecliptic plane and gives an over-
abundance of observations at ecliptic latitudes ±45◦. Bottom:
The combination of the source density and the scanning law
gives the displayed density of along-scan observations.

7.2. Demonstration solution

7.2.1. Data simulation and model assumptions

Since the start of the development in early 2006, AGIS has
been tested continuously using simulated datasets of varying
complexity and size generated by the Gaia System Simulator
(Masana et al. 2005) created by DPAC’s dedicated coordina-
tion unit for Data Simulations (CU2; Mignard et al. 2008; Luri
& Babusiaux 2011). In the following we present the results of
a test solution using 5 years of simulated astrometric observa-
tions for about 2 million well-behaved (single) stars with a re-
alistic distribution both in magnitude and coordinates, based on
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Fig. 10. Map of the parallax errors in iteration 1. The iterative
astrometric solution starts off with spatially correlated errors in
the astrometric parameters, generated as described in the text.
These (initial) parallax errors have amplitudes of a few tens of
mas. The number at the top-right corner of this (and subsequent)
maps is the maximum value of the displayed range in µas.

the Besançon galaxy model (Robin et al. 2003). Figure 9 (top)
shows the spatial source density of the data set in equatorial co-
ordinates. Of particular interest for the AGIS run is the stark
density contrast between ∼ 1 and 5000 deg−2 mainly depending
on galactic latitude, resulting in similarly high ratios in the total
astrometric weight of the sources in Gaia’s two fields of view.
In Bombrun et al. (2011) it was shown (using simulations on
a smaller scale) that a high weight contrast tends to reduce the
convergence rate of the astrometric solution compared to a situa-
tion where the weights are more balanced; however, the solution
always converges to the correct solution provided that enough
CG iterations are carried out. We will show that this key result is
confirmed in the demonstration solution.

The input data were generated using a fully-relativistic
model of the observed (proper) directions ui(t) in Eq. (7), includ-
ing gravitational light deflection for PPN parameter γ = 1, as-
suming the Nominal Scanning Law (Sect. 3.3), the nominal geo-
metrical instrument model (Sect. 3.4) and nominal performance
of the instrument (in particular the centroiding accuracies σAL

l ,
σAC

l as functions of G; see Table 1). However, in order to test the
capability to recover a varying basic angle, a step-wise pertur-
bation was introduced corresponding to the sinusoidal variation
of ∆Γ j in Eq. (19) with a period of 2.5 yr and an (unrealisti-
cally large) amplitude of 500 µas. In the astrometric solution, the
large-scale AL calibration interval was set to 30 days, matching
the step width of the perturbation signal. The solution used only
one global parameter, viz., g0 = γ − 1 as described in Sect. 5.4.
Table 1 lists some statistics of the data and solution, while the
middle and bottom maps in Fig. 9 show how the number of ob-
servations varies across the sky.

Not all elements of the numerical algorithms described in
this paper have as yet been integrated into the running software
system which otherwise implements the basic model described
in Sect. 3. In particular, the estimation of source and attitude
excess noise (Sects. 5.1.2 and 5.2.5) were not activated in the
present solution. This was not a problem for the demonstration
run, as the applied observation noise is well-behaved, purely
Gaussian. Further development of the AGIS software will to a
large extent focus on making the solution robust against all kinds
of unexpected input data.

The demonstration solution was run with all four update
blocks (S, A, C, G) enabled, using starting values for the atti-
tude, calibration and global parameters that were erroneous on
the mas level. (As explained in Sect. 4.5 and footnote 9, the re-

sults of the subsequent iterations are independent of the initial
values for the source parameters, because the updating always
starts with the source block.) These initial values were created
by adding Gaussian, uncorrelated errors to the true attitude pa-
rameters, with a standard deviation of 50 mas, using the nominal
calibration parameters (i.e., excluding the sinusoidal modulation
of the basic angle), and a value of g0 ≡ γ − 1 = 0.1 (Sect. 5.4).
An attitude knot interval of 240 s was used in order to have a
sufficient number of observations per degree of freedom even at
the galactic poles. This interval is short enough that the attitude
splines are able to represent the true attitude (i.e., the analytical
nominal scanning law) with an RMS error of less than 9 µas.
Although this is larger than the modelling errors aimed at in the
real data analysis, it is sufficiently small in comparison with the
typical attitude estimation errors (≥ 20 µas; see Fig. 11) to have
a negligible impact on the overall astrometric accuracy of the
present solution.

During the source update in the very first iteration, the ini-
tial errors in the attitude, calibration parameters and γ propagate
to the sources, creating astrometric errors of a few tens of mas
(Fig. 10) that are spatially correlated on a scale comparable to
the attitude knot interval (∼ 4◦). These errors are quite hard to
remove in subsequent iterations, but may be representative of the
situation encountered by AGIS when processing the real mission
data based on a fairly uncertain initial attitude and instrument
calibration.

With these starting conditions, 135 iterations were car-
ried out using the conjugate gradients (CG) scheme. A re-
initialisation of the CG scheme was made after the first 40 it-
erations to avoid the development of a much slower convergence
phase observed in some previous runs; after this, no further re-
initialisation was made. At iteration 135 the typical updates of,
for example, the parallaxes and the along-scan attitude were at
or below a level of 5 × 10−4 µas (Fig. 11). This is still slightly
above the numerical noise floor set by the double-precision arith-
metic (∼ 10−16 rad or ∼ 10−5 µas). As discussed by Bombrun
et al. (2011), truncating the iterations before the numerical noise
floor has been reached implies the presence of spatially corre-
lated ‘truncation errors’ having an amplitude of a few times the
typical updates, or ∼ 10−3 µas in the present case. We now pro-
ceed with a more detailed analysis of the results.

7.2.2. Source results

In this section we focus on the results for the parallax ($), which
is arguably the most interesting parameter from an astrophysical
viewpoint; moreover, as a scalar quantity independent of epoch
and reference frame, its statistics can be summarized compactly
and without ambiguity. However, the behaviour of the position
and proper motion parameters is qualitatively similar, and some
results are given in Table 2 and Fig. 14.

The top diagram in Fig. 11 shows the typical sizes of the er-
rors and updates in parallax versus iteration number, as measured
by the Robust Scatter Estimate18 (RSE). The parallax errors set-
tle relatively quickly (around iteration 25) at a level of 146 µas
and remain stable till the end of the run with updates becoming
successively smaller, reaching the level of 10−3 µas around itera-
tion 120. The actual error distribution is symmetric but strongly
non-Gaussian (in fact more like a Laplace distribution) due to

18 The RSE is defined as 0.390152 times the difference between the
90th and 10th percentiles of the distribution of the variable. For a
Gaussian distribution it equals the standard deviation. The RSE is used
as a standardized, robust measure of dispersion in CU3.
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Fig. 11. Top: Evolution of the typical parallax error (crosses)
and parallax update (circles) as functions of the iteration number.
The typical error settles at around 146 µas. Bottom: Evolution of
the typical attitude error (crosses) and update (circles) as func-
tions of the iteration number, for the three principal SRS axes
x (red), y (blue), and z (black). The errors settle at around 167,
224, and 20 µas, respectively. In both these plots the typical er-
rors and updates are given by the Robust Scatter Estimate (RSE),
similar to an RMS value (see footnote 18).

the variation of star numbers and observational standard uncer-
tainties with magnitude (cf. Tables 1 and 2). The overall parallax
error RSE of ∼ 150 µas is therefore representative for the median
magnitude, G ' 19, in good agreement with current accuracy
predictions (Lindegren 2010). The overall sizes of the errors and
updates shown in Fig. 11 should however be complemented by
more detailed statistics as functions of coordinate and magni-
tude.

Figure 12 shows the spatial distribution of the parallax errors
at a few selected iterations. The left column shows the median
error in each cell, while the right column shows the median ab-
solute value of the error. These quantities serve as robust proxies
for the mean and RMS values (the RSE is not used for the lat-
ter as many cells have too few sources for this measure), and
therefore may suggest the levels of systematic and random er-
rors as function of position. Figure 13 shows the corresponding
maps for the parallax updates. After a few iterations, when the
overall parallax errors are already below the 1 mas level, very
significant systematic (i.e., spatially correlated) errors of a few
mas remain, especially in the high-density areas of the galactic
plane. These are damped in the subsequent iterations, but still
remain at a level of several hundred µas in the galactic centre
region around iteration 20, when the overall parallax errors start

to settle at their final value according to Fig. 11. At iteration 135
the regional errors have virtually disappeared, and the error map
shows a characteristic pattern with the solution being seemingly
better around the galactic equator than in the polar regions. This
is purely an effect of number statistics: in the galactic pole areas
the cells contain rather few sources (often just a single source, in
which case the displayed values are simply the individual paral-
lax errors), while closer to the galactic plane the scatter from one
cell to the next is reduced by the median-averaging over many
sources.

The sequence of error maps for iterations 5, 20, and 135 cor-
roborates a key result of Bombrun et al. (2011), viz., that by
iterating long enough the system can cope with large spatial im-
balances in the astrometric weights, provided that the minimum
source density allows a good attitude determination at all points.

The median absolute values of the parallax errors shown in
the right column of Fig. 12 quickly settle in a large-scale pattern
that mainly reflects the expected variation of parallax accuracy
with ecliptic latitude (see, e.g., Table 3 in Lindegren 2010). This,
in turn, depends on the scanning law, i.e., on a combination of
the number of observations per source (see Fig. 9, middle) and
the geometric configuration of the scans – for example, the over-
density of observations at ±45◦ ecliptic latitude does little to im-
prove the parallaxes, which are then mainly producing shifts in
the AC direction, while Gaia is primarily sensitive to the AL
displacement. Number statistics reduce the between-cell scatter
of the median absolute values as well, which accounts for the
smoother appearance along the galactic equator.

The update maps in Fig. 13 conform with expectations and
the preceding discussion. Of particular interest from a diagnos-
tic viewpoint is the observation that the amplitude and spatial
distribution of the median updates in the non-converged solution
give a fair indication of the (systematic) truncation errors. This
is obviously useful for assessing the state of convergence, as the
update maps can be constructed for the real mission data as well
(whereas the error maps are of course unknown). For example,
based on the median updates in iteration 20 (middle left map of
Fig. 13) one might correctly conclude that truncation errors of
a few hundred µas remain, especially in the galactic centre re-
gion, as shown in the middle left map of Fig. 12. By the same
reasoning it appears that truncation errors at iteration 135 should
be well below 1 µas.

In tests using other datasets with lower density contrasts we
have seen a more rapid convergence. A similar slowdown in con-
vergence for a non-uniform weight distribution was observed
and discussed in Bombrun et al. (2011) based on small-scale
simulations. A likely mechanism for this slowdown is related to
the weight contrast problem discussed by van Leeuwen (2005)
in connection with the new reduction of the Hipparcos data. Any
of the fields of view scanning through a high-density area (or an
area with many bright stars) creates a strong astrometric weight
imbalance between the two viewing directions, as the other field
usually points to an area of the sky with much lower source
density (or fainter stars). Errors in the along-scan attitude cre-
ate correlated errors in the parameters of all sources observed at
that time, whether they are in the preceding or following field of
view. If these source parameters are then used to correct the atti-
tude, with little counterbalancing effect from the (relatively few)
sources in the other field, the attitude may get only marginally
improved, with the net effect of slowing down the damping and
de-correlation of the errors in the high-density areas. Thus, more
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Fig. 12. Maps (in equatorial coordinates) of the parallax errors in the three selected iterations k = 5, 20, 135 (top to bottom). The
left column shows the median of the parallax error $(k) − $true, while the right column shows the median of the absolute error
|$(k) −$true|; each map cell (of about 0.84 deg2) shows the colour-coded value computed for the sources located in that cell. Empty
cells are shown in black. On every map plot the top left label indicates the iteration number and the top right label is the maximum
value of the displayed range in µas. See text for further details.

iterations are needed compared to a more weight-balanced situ-
ation.19

Figure 14 shows the error and update maps of the proper mo-
tions at iteration 135. Since proper motions are vectors, the dis-
played quantities are the median lengths of the vectorial differ-
ences, which are non-negative by definition. The maps are in ex-
pected agreement with the corresponding parallax ones concern-
ing visible patterns and structures. A prominent feature absent in
the case of the parallaxes is the lighter bands of relatively smaller
proper motion errors around ecliptic latitudes±45◦ caused by the
oversampling of these parallels by the scanning law (cf. Fig. 9).
In contrast to the parallax case, these observations do contribute
to the determination of the proper motion, especially for the
component in ecliptic longitude.

All spatial maps in Figs. 12–14 show median values com-
puted from distributions with stars of all magnitudes. A lot more
information is contained in the magnitude-resolved versions of

19 In the new reduction of the Hipparcos data by van Leeuwen (2007)
the weight ratio was artificially damped in order to improve the con-
nectivity between the two fields of view in high-contrast situations. We
have found that this is not required for Gaia provided that the solution
is iterated to convergence; see Bombrun et al. (2011).

the maps, which are not presented here for brevity. Instead,
Table 2 shows the RSEs (see footnote 18) of the errors and nor-
malized errors (see below) of all the astrometric parameters in
iteration 135, subdivided according to magnitude. The normal-
ized error is defined as the error (in the case of right ascen-
sion, ∆α∗ ≡ ∆α cos δ) divided by the corresponding formal stan-
dard uncertainty obtained from the inverse of the source normal
matrix, i.e., by using the approximation in Eq. (120). As dis-
cussed in Sect. 6.3 this approximation underestimates the true
standard uncertainties of the astrometric parameters by neglect-
ing the contribution from the attitude uncertainty, which may be
particularly important for the bright stars where the photon noise
is relatively less important.

The RSE of the errors in Table 2 are in reasonable agree-
ment with recent mission accuracy assessments. For example,
compared with Eqs. (5.2)–(5.5) in Lindegren (2010) the present
values are a few per cent larger for G < 15, and up to some 20%
smaller for the fainter stars. This suggests a more conservative
photon-statistical error budget in Lindegren (2010), combined
with a larger-than-nominal contribution from the attitude uncer-
tainty in the present solution. The latter effect, further discussed
in Sect. 7.2.3, is indeed to be expected in the present demonstra-
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Fig. 13. Same as Fig. 12 but showing the updates in parallax, i.e., the median values of $(k) −$(k−1) (left column) and |$(k) −$(k−1)|

(right column).

Fig. 14. Maps of the error (left) and update (right) in proper motion for iteration 135. Each cell shows the colour-coded median
error/update in units of µas yr−1, where the individual error/update is computed in terms of the equatorial components as (∆µ2

α∗ +
∆µ2

δ)
1/2.

tion solution using far fewer primary stars than planned for the
real mission.

A more stringent test of the quality of the solution is obtained
by considering the RSE of the normalized errors (i.e., after di-
vision by the formal standard uncertainties as described above),
which is here denoted %. Ideally we should have % ' 1 for any
parameter and any magnitude. As shown in Table 2, this is very
nearly the case in all parameters for G > 15, meaning that the
actual errors are roughly consistent with the standard uncertain-

ties computed from Eq. (120). For the brighter stars % becomes
progressively larger, supporting the interpretation that the atti-
tude uncertainty has a significant impact on the accuracy of the
bright stars in this solution. For example, the value % = 1.369 ob-
tained for the parallaxes of stars brighter than G = 13 suggests
a quadratic attitude contribution to the parallax errors for these
stars of [7.52−(7.5/1.369)2]1/2 = 5.1 µas, while a similar compu-
tation for the next three magnitude bins gives 5.7, 5.1 and 5.4 µas
(with a rapidly increasing uncertainty). Thus it appears that the
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Table 2. RSE of the errors in the astrometric parameters and of the normalized errors (i.e., after division by the formal standard
deviations) for different magnitude ranges. The asterisk in α∗ indicates that the errors are true arcs on the sky; cf. footnote 11. See
text for further explanations.

Magnitude range No. stars
RSE of error [µas and µas yr−1] % = RSE of normalized error [unitless]

α∗ δ $ µα∗ µδ α∗ δ $ µα∗ µδ

G < 13 18 253 6.6 5.7 7.5 4.5 4.0 1.507 1.470 1.369 1.443 1.425
13 ≤ G < 15 70 355 12.4 10.6 14.9 8.7 7.5 1.112 1.100 1.082 1.098 1.100
15 ≤ G < 16 88 116 20.2 17.3 24.9 14.3 12.3 1.024 1.024 1.022 1.032 1.024
16 ≤ G < 17 151 639 30.8 26.7 38.4 21.8 19.0 1.010 1.010 1.010 1.014 1.008
17 ≤ G < 18 272 424 49.4 42.8 61.8 34.8 30.4 1.004 1.006 1.003 1.002 1.003
18 ≤ G < 19 489 253 83.3 70.7 104.1 58.9 50.8 1.001 1.001 1.002 1.003 1.002
19 ≤ G 1 166 182 167.9 140.0 207.6 118.5 100.2 1.001 1.000 1.000 1.001 1.000

all G 2 256 222 116.8 98.7 145.6 82.4 70.6 1.009 1.009 1.007 1.009 1.008

values % > 1 found for the parallaxes of the brighter stars can be
accounted for by assuming a constant contribution, by about 5–
6 µas RMS, to the parallax errors from attitude and/or calibration
errors. For the other astrometric parameters we similarly find a
constant RMS contribution to the positional errors of about 4–
5 µas, and to the proper motion errors of about 3–4 µas yr−1. It
will be shown below that these numbers are consistent with the
actual attitude errors found in the solution.

It should be noted that the reference epoch for the astromet-
ric parameters was set to exactly half-way into the mission, i.e.,
te = 2014.5 for the simulated mission interval 2012.0–2017.0.
This is optimal in the sense that the positional uncertainties are
minimized for approximately this epoch, and that the errors in
position and proper motion are nearly uncorrelated. A reference
epoch half-way through the mission was also assumed for the ac-
curacy assessment in Lindegren (2010), with which the present
results have been compared.

In this solution, the median value of the parallax errors of
all the 2.2 million sources was not significantly different from
zero (the actual value was +0.004 µas). This shows that, in the
absence of systematic observational errors, the astrometric solu-
tion is able to determine the absolute parallaxes of the sources,
as could be expected from the basic principles of the mission. It
is especially worth noting that this was achieved while simulta-
neously determining the PPN γ parameter, known to be strongly
correlated with the parallaxes (cf. Sect. 5.4).

7.2.3. Attitude results

The bottom diagram in Fig. 11 shows the RSE attitude errors and
updates as a functions of the iteration number, where the small
differences of the attitude quaternions have been transformed
into small rotations along the SRS axes (x, y, z) according to
Sect. A.6 and expressed in µas. The error component around the
z axis corresponds to the AL attitude error, while the x and y
components are linear combinations of the AC attitude errors in
the PFoV and FFoV.20 The z (AL) errors settle at an overall level
of 20 µas around iteration 60, while the updates continue to de-
crease in a similar manner as for the parallaxes (Fig. 11, top).
The RSE values of the x and y errors converge to 167 µas and
224 µas, i.e., an order of magnitude larger than in z, reflecting
the larger observational errors in the AC direction (Table 1) and

20 The attitude errors discussed here must not be confused with the
excess attitude noise εa introduced in Sect. 3.6. The latter represents
modelling errors, which are practically absent in the demonstration so-
lution.

the smaller number of AC observations. The ratio of the errors
about y and x, 224/167 ' 1.34 is in perfect agreement with the
value expected from the geometry of the observations (Fig. 2),
viz., tan(Γc/2) ' 1.34 for a basic angle of Γc = 106.5◦.

The converged AL attitude error of 20 µas is completely con-
sistent with the previously inferred constant RMS contribution,
by 5–6 µas, to the parallax errors (see Sect. 7.2.2), as can be seen
from the following considerations. For most stars, the propaga-
tion of random observational errors from individual AL observa-
tions to the parallaxes (say) is largely governed by geometrical
factors and the total number of observations per star, and can be
statistically described by a ‘coefficient of improvement’ which
can be estimated to 207.6/2300 ' 0.09 using the RSE of the
parallax errors for the faintest bin in Table 2 combined with the
typical AL observational error at G ' 19.6 (cf. Table 1). This
factor assumes that the individual observational errors (at each
CCD) are uncorrelated, which is a very good approximation for
the photon-statistical centroiding errors, but not for the attitude
errors, which have a correlation length determined by the knot
interval of the attitude spline. In the demonstration solution, the
knot interval was 240 s, which is much longer than the time it
takes an image to cross the nine CCDs in the astrometric field
(' 40 s). Therefore it is a much better approximation to assume
a constant attitude error for the whole field crossing, correspond-
ing to nine AL observations. As a result, the coefficient of im-
provement relevant for the attitude error should be a factor three
larger, or ' 0.27. The AL attitude uncertainty of 20 µas therefore
corresponds to 20 × 0.27 ' 5.4 µas in the parallax, in very good
agreement with the empirical result of 5–6 µas. For the other as-
trometric parameters a corresponding calculation yields a contri-
bution of about 4 µas in position and 3 µas yr−1 in proper motion.
Although these numbers are somewhat smaller than the empir-
ical estimates in Sect. 7.2.2 (possibly indicating an additional
contribution from the calibration errors), the overall agreement
is striking.

The attitude errors obtained in the solution ultimately come
from the observational errors of the individual observations,
through the process of fitting the attitude spline functions to
these observations. If more observations (of the same quality)
are added, the attitude errors are expected to diminish inversely
with the square root of the number of observations (as long as
the modelling errors are not a limiting factor). The present AL
attitude error of 20 µas is roughly what can be expected from the
density and magnitudes of primary sources in the demonstration
solution, as can be seen from the following simple calculation.
The AL attitude has essentially one degree of freedom per knot
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interval (240 s). The average number of AL observations per
degree of freedom is therefore about 2500 (Table 1). From the
magnitude distribution in Table 2 and the AL observational un-
certainties in Table 1 one can estimate that the average AL obser-
vation carries a statistical weight (σ−2

AL) corresponding to an AL
standard uncertainty of σAL ' 650 µas (taking into account the
weight reduction by %−2 for the bright stars). The mean flow of
observations therefore should allow the AL attitude to be pinned
down with an uncertainty of about 650 × 2500−1/2 ' 13 µas.
However, this rough calculation assumes uniform distribution of
the stars across the sky, with the same mean density (55 deg−2)
as in the demonstration run. Considering that large parts of the
sky have a much lower density (typically 5–10 deg−2; see Fig. 9,
top), which implies a less precise attitude at the corresponding
times, and that we have also neglected the attitude modelling er-
rors, which here amount to at most 9 µas RMS (Sect. 7.2.1), it is
not unreasonable that the overall AL attitude uncertainty is about
50% larger than according to the above calculation.

The demonstration run uses only 2% of the stars envis-
aged for the final AGIS solution, and the majority of them are
faint, whereas the real primary stars are preferentially selected
among the brighter stars when possible (cf. the discussion in
Sect. 6.2.2). For a model distribution of 108 primary sources
similar to the one described by Hobbs et al. (2010), the AL
observational uncertainty corresponding to the average statisti-
cal weight is more like 200 µas, rather than the 650 µas in the
present data. On the other hand, the attitude knot interval will
also be much shorter than the 240 s used in the present run, per-
haps even as short as 5 s, which is about the shortest knot in-
terval that can reasonably be used in view of the normal CCD
integration time of 4.42 s. Combining these numbers we esti-
mate that the final AGIS run on the real Gaia data might obtain
an AL attitude uncertainty, due to the photon noise, of about
(20 µas) × (200/650) × [0.02 × (240/15)]1/2 ' 6 µas. To this
should be added the attitude modelling error (i.e., how well the
spline can represent the effective attitude), which is difficult to
estimate without more reliable information about attitude irreg-
ularities (Appendix D.4). Generally speaking, the optimum knot
interval will roughly balance the estimation and modelling un-
certainties, so that the total uncertainty is less than twice the esti-
mation uncertainty. Assuming a total AL attitude error of 12 µas
RMS, this would give less than 4 µas RMS to be added quadrat-
ically to the parallax uncertainties. Thus, the attitude contribu-
tion to the final astrometric parameters appears to be relatively
small even for the bright stars. However, this does not take into
account the additional complications caused by the gated obser-
vations (Appendix D.3) and residual calibration errors due to,
for example, CTI effects (Appendix D.2).

7.2.4. Calibration results

The calibration model used for the run merely contained one ef-
fect (NAL = 1 in Eq. 20), viz., the large-scale calibration ∆η in
Eq. (15) accounting for geometric distortions of the CCDs and
optical effects which are indistinguishable from geometric irreg-
ularities of the focal plane. On this account, we expect the simu-
lated basic angle signal (see beginning of Sect. 7.2) to manifest
itself through a corresponding time-dependence of the AL large-
scale calibration parameters ∆η0 f n0 j. The asterisks in Fig. 15
show, for f = PFoV and for each time interval j, the calibration
parameter values of the demonstration solution averaged over
the 62 CCDs (n). The solid line depicts the step-sinusoidal input
basic-angle signal applicable for PFoV. As anticipated, the esti-
mated calibration parameters are in very good agreement with
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Fig. 15. Variation of the AL large-scale calibration parameters
(averaged over all CCDs) in the preceding field of view (PFoV),
as a function of the time since the beginning of the mission. The
step-sinusoidal curve is the expected variation due to the simu-
lated basic-angle variation having a period of 2.5 yr and an am-
plitude of 500 µas, but constant within each 30 day interval. The
asterisks show the results of the solution (one value per 30 day
interval), and the circles show the differences on the magnified
scale to the right. Thanks to the constraint in Eq. (16), the mean
calibration parameters in the following field of view (FFoV) ex-
actly mirror the displayed ones, and are therefore not shown.

the input signal: the RMS value of the differences is 0.20 µas,
corresponding to an RMS error of 0.40 µas for the basic an-
gle offsets ∆Γ j per calibration time interval (cf. Eq. 19). This
is reasonably consistent with the expected precision of the large-
scale calibration based on the total weight of the observations,
as shown by the following calculation. The mean number of AL
observations per calibration time interval and field of view is
1.33 × 107 (cf. Table 1). Assuming, as we did in Sect. 7.2.3, that
an AL observation of average weight corresponds to a standard
uncertainty of σAL ' 650 µas, the expected precision of the ba-
sic angle determination is 21/2 × (650 µas) × [1.33 × 107]−1/2 '

0.25 µas. The observed scatter, 0.40 µas, is larger by roughly the
same factor as found for the AL attitude errors.

The good agreement between the input calibration signal and
the recovered parameters demonstrates the correct functioning
of the generic calibration model (see Sect. 3.4) in this simple
case. We expect that many more validation runs will be needed
to confirm this result in more complex circumstances, i.e., with
more calibration effects of different functional compositions and
dependencies. A further important aspect is the practical study
of possible hidden correlations and degeneracies of calibration
with source, attitude, and global parameters which may not be
fully obvious at the mathematical level.

7.2.5. Global results

Starting the iterations from a PPN γ value of 1.1, the purpose
of running with the Global block was to see how such a grossly
wrong initial value would affect the (overall) convergence rate
and to what level the correct value could be recovered (recall
that the input data were simulated using γ = 1).

Figure 16 presents the evolution of g0 = γ − 1 during the
run. In iteration 135 the parameter had settled on the value g0 =
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Fig. 16. Evolution of the estimated global parameter g0 = γ − 1
(where γ is the PPN parameter) as a function of the iteration
number. g0 settles at a level of 2.6×10−5 from a starting value of
g0 = 0.1. The formal uncertainty of g0 in this solution is 2.15 ×
10−5. Note that a linear scale is used for |g0| < 10−4 (the grey
area), while a logarithmic scale is used outside of this interval.

2.62× 10−5, with a formal standard uncertainty21 of 2.15× 10−5.
At +1.2 standard deviations, this value of g0 is not significantly
different from 0. The run shows that the system is capable of
recovering the ‘correct’ value with an error compatible with the
statistical uncertainty, which in this case is set by the photon
noise of the individual observations.

The total astrometric weight of the AL observations in the
demonstration run is ' 4000 µas−2. According to Hobbs et al.
(2010) this should yield an RMS uncertainty in γ of about
3 × 10−5, in reasonable agreement with the formal standard un-
certainty given above and the parameter value obtained in the
solution.

7.3. Processing times

The demonstration solution was run on an IBM cluster at ESAC
using 14 nodes (out of 32 available), each node having two pro-
cessors22 with four cores each; thus in total 112 CPUs were en-
gaged. This configuration of 14 nodes is estimated to have a total
floating point performance of 0.65 Tflop s−1 (0.65×1012 floating
point operations per second). One iteration took about 1 hr (with
high CPU occupancy, typically 90%), so the total run time for
135 iterations was nearly 6 days, corresponding to about 3×1017

floating point operations (flop).
Scaled up to the projected 108 primary sources of the final

AGIS run this would amount to 1.5 × 1019 flop. Using a more
conservative estimate of 5 × 1019 flop to account for additional
features not included in the demonstration run, this will require
some 60 days on a typically targeted 10 Tflop s−1 machine. On
the other hand, there could also be a significant saving in com-
puting time due to the fact that the final solution will start off

21 The formal uncertainty of g0 was calculated as N−1/2
gg (Eq. 31) times

the factor (1 − ρ)−1/2 = cot(ξ/2) = 2.414, where ξ = 45◦ is the con-
stant angle between Gaia’s spin axis (z) and the direction to the Sun;
as explained by Hobbs et al. (2010), this factor takes into account the
statistical correlation (ρ) between PPN γ and the parallaxes. The cor-
rection factor would not have been required, had the solution included
the pseudo-parameter g1 (Sect. 5.4).

22 Intel Nehalem EP Xeon (quad-core, 2.93 GHz), with 32 GB RAM

from a previous solution, already very close to the final one;
a smaller number of iterations might therefore suffice. In sum-
mary, the estimated processing time is clearly within the feasible
range.

8. Conclusions

A fundamental part of the scientific data processing for the Gaia
mission is the astrometric core solution, which will be run during
and after the mission (ca. 2013–2020) with successively larger
datasets and eventually encompassing at least some 100 million
primary sources. This solution is central to the performance of
the mission as a whole, since it not only provides the astrometric
results for these primary sources, but also the reference frame
(in the form of the instrument attitude as a function of time) and
the geometric calibration of the instrument, for use by a large
number of other processes in the overall scientific reduction of
the Gaia data.

In order to accomplish the astrometric core solution, a
software system known as AGIS (Astrometric Global Iterative
Solution) is being built within Coordination Unit 3 (CU3) of
the Gaia Data Processing and Analysis Consortium (DPAC). As
detailed in this paper, the necessary mathematical models and
numerical algorithms are well understood, and have been de-
veloped with sufficient rigour to allow the potential accuracy of
Gaia to be fully exploited. Most critical parts of this system have
been implemented, and numerous test runs have demonstrated
the theoretical validity of the global iterative approach, as well
as its practical feasibility in terms of data management and com-
putations. While a number of additional features will have to be
included in the software before it can be considered ready for
the flight data, and many more complications will undoubtedly
be discovered during the actual analysis of these data, all the
fundamental parts of AGIS are already in place.

In 2011, with roughly two years left until the launch of the
satellite and time to mature the concepts and software presented
here into a robust operational system, we have no reason to doubt
that AGIS will be able to compute an accurate astrometric solu-
tion, consistent with the ambitious goals of the Gaia mission.
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Appendix A: Quaternions

Quaternions form a non-commutative algebra in R4. Invented by
W. R. Hamilton in 1843 as an extension of the complex num-
bers (Hamilton 1843), their most common usage today is for
representing spatial rotations in a particularly compact and con-
venient way, with applications for example in computer graphics
and spacecraft attitude control. Quaternions can be introduced
and understood in many different ways, with a correspondingly
confusing multitude of notations and conventions. Here we give
just a brief introduction to the subject, stating only the minimum
results needed for our applications. For more details, see for ex-
ample Wertz (1978) and Kane et al. (1983).

A.1. Quaternion algebra

A quaternion is a quadruple of real numbers for which the fol-
lowing algebraic operations are defined. For any quaternions
a =

{
ax, ay, az, aw

}
and b =

{
bx, by, bz, bw

}
we have addition

a + b =
{
ax + bx, ay + by, az + bz, aw + bw

}
, (A.1)
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multiplication

ab =
{

axbw + aybz − azby + awbx,

−axbz + aybw + azbx + awby,

axby − aybx + azbw + awbz,

−axbx − ayby − azbz + awbw

}
,

(A.2)

and scalar multiplication

sa =
{
sax, say, saz, saw

}
(A.3)

for scalar s. Subtraction is analogous to addition, as derived from
a − b = a + (−1)b. The conjugate of a is

a∗ =
{
−ax, − ay, − az, aw

}
, (A.4)

the norm (length) is

‖a‖ = (a2
x + a2

y + a2
z + a2

w)1/2 , (A.5)

and the inverse (provided ‖a‖ > 0) is

a−1 = ‖a‖−2 a∗ . (A.6)

We have
(ab)∗ = b∗a∗ , (ab)−1 = b−1a−1 . (A.7)

Any non-zero quaternion can be normalized to unit length. In
analogy with the notation for vector normalization, we use an-
gular brackets for this operation:

〈a〉 = ‖a‖−1a . (A.8)

The triplet of real numbers (ax, ay, az) can be regarded as the
coordinates of the vector a in some reference system S = [x y z]
(where x, y, z is a right-handed set of orthogonal unit vectors).
Thus, we can write a =

{
S′a, aw

}
, where S′a = [ax ay az]′

constitutes the so-called vector part of the quaternion, and aw
the scalar part. Both scalars and vectors (in R3) can thus be
seen as special cases of quaternions, namely, when the vector
or the scalar part is zero. This allows us to write for example
‖a‖2 = aa∗ = a∗a. In terms of the usual vector-scalar operations
the quaternion multiplication can also be written as

ab =
{
S′ (a × b + abw + baw) , awbw − a′b

}
. (A.9)

Note that the vector part of a quaternion only makes sense when
expressed in some coordinate system (S in this example); a phys-
ical vector cannot be part of a quaternion.

A.2. Spatial rotations

Unit quaternions (of unit length) are convenient for repre-
senting orientations and spins of objects in three-dimensional
space. This is compacter, numerically more stable and requires
fewer arithmetic operations than the use of rotation matrices.
Compared with the use of Euler angles, much fewer or no
trigonometric functions need to be evaluated, and singularities
are avoided.

According to Euler’s rotation theorem any change in the ori-
entation of an object can be described as a rotation by a certain
angle around some fixed axis. Let this axis be represented by
the unit vector u and the rotation angle by φ, reckoned in the
positive sense around the vector. In the given reference system

S = [x y z], the rotation is then represented by the unit quater-
nion

q =

{
S′u sin

φ

2
, cos

φ

2

}
. (A.10)

The useful property here is that a sequence of rotations is repre-
sented by the product of the corresponding unit quaternions (see
Sect. A.3).

From Eq. (A.6) it follows that the inverse of a unit quaternion
equals its conjugate, so

q−1 = q∗ =

{
−S′u sin

φ

2
, cos

φ

2

}
, (A.11)

which represents a rotation by −φ around u.
A rotation by the angle 2π around any axis is represented

by the unit quaternion
{
0, 0, 0,−1

}
. Since this operation is phys-

ically equivalent to no rotation at all, it implies a sign ambiguity
in the quaternion representation of any given rotation (modulo
2π). This is potentially a problem only when the quaternion is
used to represent a continuously changing orientation as a func-
tion of time, as is the case for the Gaia attitude (Sect. 3.3). It
is then necessary to ensure that no sign flips occur, e.g., when
converting from some other representation of the orientations.

Equation (A.10) suggests an alternative, non-redundant, way
of representing spatial rotation, namely by means of the compo-
nents of the vector φ = uφ. For any continuous rotation the three
components could be continuous functions of time. This formal-
ism is mainly useful for small rotations (‖φ‖ � 1); when applied
for example to a spinning satellite the length of the vector may
grow indefinitely, causing unacceptable numerical errors in fi-
nite arithmetic. For the arbitrary vector φ we nevertheless intro-
duce the special notation Q(S′φ) for the unit quaternion, in the
reference system S, representing a spatial rotation by the angle
φ = ‖φ‖ about an axis parallel to φ:

Q(S′φ) =


{
S′〈φ〉 sin

φ

2
, cos

φ

2

}
if φ > 0,

{0, 0, 0, 1} if φ = 0.
(A.12)

This notation is here only used when discussing the small rota-
tional offset between the ICRS and AGIS frames in Sect. 6.1.1.

A.3. Vector and frame rotations

Vector rotation and frame rotation are not standard notions in
vector or quaternion calculus, but we have found them helpful in
order to clarify the relations between vectors and their represen-
tations in different reference systems.

Vector rotation. Let
{
S′r0, 0

}
be the quaternion representation

in the reference system S of the arbitrary vector r0. Rotating the
vector an angle φ around unit vector u results in a new vector
r1, whose coordinates in S can be calculated by two successive
quaternion multiplications,{

S′r1, 0
}

= q
{
S′r0, 0

}
q−1 , (A.13)

where q is given by Eq. (A.10) and q−1 = q∗. We call the opera-
tion in Eq. (A.13) for the vector rotation of r0 by the quaternion
q. This calculation requires the use of a particular reference sys-
tem (S in this example) in which to express the vectors and the
quaternion; the resulting physical vector r1 is however indepen-
dent of the reference system.
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Applying n successive vector rotations, specified by the
quaternions q1, q2, . . . , qn, gives the vector rn in{

S′rn , 0
}

= qn · · · q2q1

{
S′r0 , 0

}
q−1

1 q−1
2 · · · q

−1
n . (A.14)

This is equivalent to a single vector rotation by q = qn · · · q2q1.
All the quaternions are here expressed in the fixed reference sys-
tem S, and the order of multiplication is from right to left.

Frame rotation. A more common application in astrometry is
where the reference system itself is rotated, say from S0 =
[x0 y0 z0] to S1 = [x1 y1 z1], by the quaternion q. Given the
coordinates S′0r of the arbitrary vector r in reference system S0,
we want to compute the coordinates S′1r of the same physical
vector in the rotated reference system. By applying a vector ro-
tation to each of the basis vectors we find{

S′1r, 0
}

= q−1
{
S′0r, 0

}
q , (A.15)

which we refer to as the frame rotation of r by the quaternion q.
It is important to note that the numerical representation of the

quaternion q, representing a frame rotation from S0 to S1, is the
same in the two frames. This follows because the components of
the vector u are invariant under a frame rotation about the vector
itself, i.e., S′1u = S′0u. In Eq. (A.10) the vector part of q can
therefore be expressed in either of the two reference systems,
i.e., we may take S = S0 or S = S1. The scalar part cos(φ/2) is
of course independent of the reference system.

Successive frame rotations can therefore be accomplished by
referring each rotation to the current set of axes, which is usually
precisely what is needed. Let q1, q2, . . . , qn be a sequence of
frame rotations, from S0 to S1, and then from S1 to S2, etc.; here
q1 is expressed in S0 (or S1), q2 in S1 (or S2), and so on. The
corresponding transformation of the coordinates of the vector r
is given by{

S′nr, 0
}

= q−1
n · · · q

−1
2 q−1

1

{
S′0r, 0

}
q1q2 · · · qn , (A.16)

equivalent to a single frame rotation by q = q1q2 · · · qn. The
quaternions are here expressed in the concurrent reference sys-
tem, and the order of multiplication is from left to right.

A.4. Angular velocity

Let q be a unit quaternion, expressed in the non-rotating refer-
ence system C, and let us assume that q is a differentiable func-
tion of time. The angular velocity Ω associated with the time-
dependent vector rotation by q is the same for all vectors, and
given by {

C′Ω, 0
}

= 2q̇q−1 , (A.17)

where the dot signifies the time derivative. This result can be de-
rived by taking the time derivative of the vector rotation formula
for arbitrary vector r, using ṙ = Ω × r and Eq. (A.9).

Let S be the reference system obtained after rotation by q.
The coordinates of the angular velocity vector in the new system
are found by performing a frame rotation of Eq. (A.17) by q;
thus {

S′Ω, 0
}

= q−1
{
C′Ω, 0

}
q = 2q−1q̇ . (A.18)

These expressions show, for example, how the instantaneous an-
gular velocity of Gaia can be calculated either in the celestial
reference system (CoMRS), using Eq. (A.17), or in the instru-
ment system (SRS), using Eq. (A.18), from a knowledge of the
attitude q and its time derivative q̇.

Algorithm A.1 For given A = [Axx Axy Axz; Ayx · · · ], this al-
gorithm returns a unit quaternion q = {qx, qy, qz, qw} such that
Eq. (A.19) is satisfied.
1: s← Axx + Ayy + Azz
2: for i = x, y, z do
3: |qi| ← [(1 − s)/4 + Aii/2]1/2

4: end for
5: qw ← [(1 + s)/4]1/2

6: if |qx| ≥ max(|qy|, |qz|) then
7: i← x, j← y, k ← z
8: else if |qy| ≥ max(|qx|, |qz|) then
9: i← y, j← z, k ← x

10: else
11: i← z, j← x, k ← y
12: end if
13: qi ← |qi| sign[A jk − Ak j]
14: q j ← |q j| sign[qi(Ai j + A ji)]
15: qk ← |qk | sign[qi(Aik + Aki)]

A.5. The attitude matrix

For completeness, we give here the full relations between the
attitude matrix defined in Sect. 3.3 and the quaternion represen-
tation of the attitude. Let C = [X Y Z] be the celestial reference
system (CoMRS; Sect. 3.1) and S = [x y z] the instrument sys-
tem (SRS). The attitude matrix A is defined by Eq. (8). The at-
titude quaternion q =

{
qx, qy, qz, qw

}
gives the rotation from the

CoMRS to the SRS, i.e.,
{
C′x, 0

}
= q

{
C′X, 0

}
q−1, etc. Then

A =

1 − 2(q2
y + q2

z ) 2(qxqy + qzqw) 2(qxqz − qyqw)
2(qxqy − qzqw) 1 − 2(q2

x + q2
z ) 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz − qxqw) 1 − 2(q2
x + q2

y)

 . (A.19)

The conversion from A to q is less straightforward if we
want to avoid numerical problems for certain attitudes. A sta-
ble algorithm was given by Klumpp (1976). In our nota-
tion, using pseudo-code, it is given by Algorithm A.1. Note
that

{
qx, qy, qz, qw

}
and

{
−qx, −qy, −qz, −qw

}
correspond to the

same A, while the algorithm always returns a quaternion with
qw ≥ 0; a reversal of the signs may therefore sometimes be re-
quired to ensure the temporal continuity of the quaternion com-
ponents.

A.6. Differential rotation

Up until now, the quaternion formulae given in this Appendix
hold rigorously for arbitrary rotations. We now derive a useful
result, which however is only valid to first order in the (small)
rotation angles. It can be used, for example, to compute the atti-
tude error angles about the SRS axes, as was done in Sect. 7.2.3.

Let q0 and q1 be given unit quaternions, representing the two
nearly co-aligned reference systems S0 = [x0 y0 z0] and S1 =
[x1 y1 z1] with respect to some third (common) reference system
such as the ICRS. It is required to express the difference between
S1 and S0 by means of three small angles φx, φy, φz representing
rotations about the axes in either system. More precisely, let φ =
[φx φy φz]′ be the spatial rotation that brings S0 into coincidence
with S1. Assuming that ‖φ‖ � 1 and neglecting terms of order
‖φ‖2, we have S1 ' S0 + φ × S0, or

S′1S0 ' I + (φ × S0)′ S0 =

 1 φz −φy
−φz 1 φx
φy −φx 1

 . (A.20)

According to Eq. (8) this matrix describes the orientation of S1
with respect to S0. If d is the quaternion representing a frame
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rotation from S0 to S1, we have (Sect. A.3) q1 = q0d and hence

d ≡ {dx, dy, dz, dw} = q−1
0 q1 . (A.21)

Given that ‖φ‖ is small, dx, dy and dz are also small quantities,
while |dw| ' 1. Due to the sign ambiguity of the quaternion
representation (Sect. A.2), dw could however have either sign.
Comparing Eqs. (A.19) and (A.20) we find, to first order in the
small quantities,

φx ' 2dxdw , φy ' 2dydw , φz ' 2dzdw , (A.22)

where the factor dw (being close to ±1) guarantees that the angles
obtain their correct signs. Equations (A.21)–(A.22) provide the
required transformation from (q0, q1) to (φx, φy, φz).

Appendix B: Splines

A spline is a piecewise polynomial function S (t) defined on
some interval [tbeg, tend]. That is, if the interval is divided into
K > 0 sub-intervals by means of the instants tk (called knots),
such that tbeg = t0 < t1 < · · · < tK = tend, then in the sub-interval
tk ≤ t < tk+1 the spline function S (t) equals some polynomial
Pk(t), k = 0 . . .K − 1. The splines of interest here consist of
polynomials of some fixed order M (or degree M − 1); typically
M = 4, corresponding to cubic splines. Moreover, the splines are
usually maximally smooth, i.e., S (m)(t) ≡ dmS/dtm is continuous
for tbeg < t < tend and m = 0 . . . M − 2.

The K polynomials of order M require KM coefficients
for their specification. For a maximally smooth spline, there
are M − 1 continuity conditions for each interior knot, namely
S (m)(tk−) = S (m)(tk+) for m = 0 . . . M − 2 and k = 1 . . .K − 1;
thus a total of (K−1)(M−1) constraints. The spline consequently
has KM − (K − 1)(M − 1) = K + M − 1 degrees of freedom.23

In the context of least-squares fitting, this equals the number of
unknowns (parameters to fit), which we denote by N. In the fol-
lowing we take N and M to be the characteristic numbers of the
spline, rather than K and M. For a maximally smooth spline we
have K = N − M + 1.

B.1. B-splines

There are many different ways in which a spline could be rep-
resented (parametrized). The approach taken here is to consider
S (t) as a linear combination of some basis functions Bn(t),

S (t) =

N−1∑
n=0

cn Bn(t) , (B.1)

where cn are coefficients to be determined. Choosing the basis
functions to have minimal support (see below) for the given or-
der and smoothness leads to the so-called B-splines (de Boor
2001).

The B-splines are uniquely defined by the adopted knot se-
quence. In the following we shall use τn (rather than tn) to denote

23 When the spline is used for interpolation, it is typically chosen to
go exactly through the K + 1 values S (tk) for k = 0 . . .K. This leaves
(K + M − 1) − (K + 1) = M − 2 degrees of freedom. Thus, for a cubic
spline (M = 4), two more conditions must be imposed for the spline
to become unique. The most common choice is to make the second
derivative vanish at tbeg and tend. This defines the ‘natural’ interpolating
spline. By contrast, when splines are least-squares fitted to data, as in
the attitude determination problem, there are typically many data points
per sub-interval, and no need for special endpoint conditions.

B0(t)

B1(t)

B2(t)

B3(t)

B4(t)

B5(t)

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
Coordinate  t

Fig. B.1. The first six B-splines of order M = 4 (cubic) defined
on the regular knot sequence τ0, τ1, . . . . For better visibility,
each B-spline is vertically displaced by one unit, and the non-
zero parts are drawn in thick lines.

the knots associated with the B-splines. The reason is that the
knot sequence for the B-splines has a slightly more general in-
terpretation than just the simple division of [tbeg, tend] considered
above. Moreover, when fitting the spline to given data points,
this allows us to use tk (for example) to denote the time associ-
ated with the kth data point, without ambiguity.

The knot sequence must be non-decreasing, τ0 ≤ τ1 ≤ τ2 ≤

· · · , and at least two knots must be different. Very often we use a
regular knot sequence in which τn+1 = τn + ∆τ for some ∆τ > 0
(the knot interval). Figure B.1 shows the first six cubic B-splines
defined on a regular knot sequence. Note that the non-zero part
of each B-spline, shown in heavy line, stretches over M consec-
utive knot intervals. We use the convention that the B-splines are
labelled with the same index as the left-most knot of its non-zero
part; therefore, the support of Bn(t) is (τn, τn+M).

It is not possible to construct a maximally smooth spline
function of order M that is non-zero over less than M consec-
utive knot intervals. This is what we mean by the statement that
B-splines have minimal support: they could not be shortened
without loosing some smoothness. This is an important property
for the least-squares fitting, as shown by the following consider-
ation. Least-squares fitting of (B.1) to a given set of data points
(tk, zk) (where tk ∈ [tbeg, tend] for each k) will be done by forming
normal equations. The normal equations matrix N is a symmet-
ric, positive definite matrix of dimension24 N × N. Since N may
be very large, it is desirable that the matrix is sparse, i.e., that
most elements are zero. It is easy to see that element Ni j will be
non-zero as soon as Bi(tk)B j(tk) , 0 for some data point k. To
make the matrix maximally sparse, we should therefore choose
basis functions with minimal support. B-splines have minimal
support and are therefore ideal for least-squares fitting using
sparse matrix algebra.

Since the support of a B-spline of order M extends over at
most M consecutive knot intervals, we have Ni j = 0 for |i −

24 In the attitude determination problem, each of the four components
of the quaternion is represented by a spline, so the number of param-
eters is actually 4N and the normal matrix is of dimension 4N × 4N.
Alternatively, we may take the elements of N to be sub-matrices of
dimension 4 × 4. The indices i and j used below refer to these sub-
matrices.
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Algorithm B.1 For given spline order M, knot sequence {τn},
time t, and left index ` (such that τ` ≤ t < τ`+1), this algorithm
returns {b0 . . . bM−1} such that b0 = B`−M+1(t), . . . , bM−1 = B`(t).
1: b0 ← 1
2: for i = 0 to M − 2 do
3: Ri ← τ`+i+1 − t
4: Li ← t − τ`−i
5: s← 0
6: for j = 0 to i do
7: u← b j/(R j + Li− j)
8: b j ← s + R j × u
9: s← Li− j × u

10: end for
11: bi+1 ← s
12: end for

j| > M − 1. This shows that N is a symmetric banded matrix
with (half-) bandwidth equal to M − 1. Cholesky decomposition
preserves the band structure of the matrix and is therefore ideal
for solving the normals; it is also numerically very efficient.

B.2. Calculation of B-splines

At any given point t there are at most M non-zero B-splines,
namely B`−M+1(t), B`−M+2, . . . B`(t), where ` is the ‘left index’ of
t, such that τ` ≤ t < τ`+1. They can be computed simultaneously
in a numerically stable way by means of de Boor’s algorithm
(de Boor 2001), which is given as pseudo-code in Algorithm B.1.
If needed, the derivatives of the B-splines with respect to t can
be computed simultaneously with little additional effort.

By inspection of the algorithm it is found that the knots used
for computing the B-spline values in the interval [τ`, τ`+1) are
τ`−M+2 through τ`+M−1. For example, with reference to Fig. B.1
(with M = 4), the B-splines between τ3 and τ4 (i.e., for left
index ` = 3) depend on {τ1, τ2, . . . , τ6}, but not on τ0 or τ7,
even though B0(t) in general depends on τ0 and B3(t) depends
on τ7.

B.3. Use of multiple knots

Algorithm B.1 works also in the case when several consecutive
knots are placed at the same t coordinate. Having a knot of mul-
tiplicity m (i.e., m knots at the same t) removes the continuity
for derivatives of order M − m and higher. The normal situa-
tion is that the knots have multiplicity 1, which means that the
spline is continuous at the knots up to and including its (M−2)th
derivative, but discontinuous in its (M − 1)th derivative. By in-
serting multiple knots at some specific instant, one allows the
spline to become less smooth at this point. For example, in a cu-
bic spline (M = 4) a triple knot (m = 3) allows the first derivative
to become discontinuous at that point, while leaving the spline
function itself continuous. In the Gaia attitude processing, mul-
tiple knots will be used for modelling the effects of microme-
teoroid impacts, which cause (almost) instantaneous changes in
the angular velocity, corresponding to discontinuities in the first
derivative of the attitude spline.

Multiple knots may also be used at the endpoints of the
spline interval [tbeg, tend]. At any point in this interval, there must
be exactly M non-zero B-splines in order that a linear combina-
tion of them should to be able to represent an arbitrary spline of
order M. Again, with reference to Fig. B.1 (for M = 4), we see
that this is the case to the right of τ3 (or τM−1 in general). Thus
we should put τM−1 = tbeg. The first M − 1 knots can in princi-

t

tbeg tend

”spline interval”
(only observations in this interval are used,

and the fitted spline is only valid here)

τ0 τ1 τM−1 τM τM+1 τN−2 τN−1 τN τN+1 τN+M−1... ...

these M−1 anterior knots 
can be placed anywhere

these M−1 posterior knots 
can be placed anywhere

”knot interval”

N−M interior knots
(including any multiplicity)

first B-spline
B0(t)

last B-spline
BN−1(t)

Fig. B.2. Illustration of the knot placement for a spline of order
M (e.g., M = 4 for a cubic spline) with N degrees of freedom.
[tbeg, tend] is the spline interval over which the spline is fitted to
given data points. The end knots τM−1 and τN are at the endpoints
of the spline interval. The N−M interior knots are chosen to give
the spline the desired flexibility, including multiple knots where
required. The placement of the anterior (τ ≤ tbeg) and posterior
knots (τ ≥ tend) is in principle arbitrary: it does not change the
fitted spline in [tbeg, tend], but may affect the condition number of
the least-squares fit. The parameters of the fitted spline are the
coefficients c0, . . . cN−1 of the B-splines B0(t) through BN−1(t).

ple be placed anywhere, as long as τ0 ≤ τ1 ≤ · · · ≤ τM−1: any
such arrangement will produce M non-zero B-splines in the next
sub-interval (τM−1, τM), and although the B-splines are different
depending on the arrangement of the knots, they are always lin-
early independent and therefore can be used as a basis for the
spline. In particular, it is possible to put the first M knots at the
same point, i.e., τ0 = τ1 = · · · = τM−1 = tbeg.

Corresponding considerations apply to the right limit of the
spline interval: with N degrees of freedom, the support of the
last B-spline BN−1(t) extends from τN−1 to τN+M−1. The spline
interval must end at τN = tend, and the remaining M−1 knots can
be placed anywhere provided that τN ≤ τN+1 ≤ · · · ≤ τN+M−1. In
particular, it is possible to have an M-fold knot at the endpoint
of the spline interval, i.e., tend = τN = τN+1 = · · · = τN+M−1.
Figure B.2 summarizes the placement of knots in relation to a
given spline interval for given order M and degrees of freedom
N (number of spline coefficients).

Although the placement of the first and last M−1 knots is ar-
bitrary, and does not change the resulting spline between tbeg and
tend, their placement does affect the numerical stability of the re-
sulting least-squares system. Butkevich & Klioner (unpublished
technical note) has pointed out that collapsing the anterior and
posterior knots into the end knots, so that τ0 = τ1 = · · · = τM−1 =
tbeg and tend = τN = τN+1 = · · · = τN+M−1) results in a system
with much smaller condition number than a regular sequence
extending beyond the endpoints. For a cubic spline (M = 4)
the spline interval then begins and ends with 4-fold knots as il-
lustrated in Fig. B.3. However, the use of data segmentation, as
described in Sect. 5.2.2, may not permit this device.

Appendix C: A robust Cholesky algorithm for
positive semidefinite matrices without pivoting

C.1. The use of normal equations

The least-squares problems considered in this paper are solved
by the method of normal equations (here denoted Nx = b), us-
ing the Cholesky algorithm to decompose the symmetric normal
matrix N. This method is known to be computationally efficient
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tbeg tend
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 =τ1

 =τ2

 =τ3

τ4 τ5 τN−2 τN−1  τN
=τN+1

=τN+2

=τN+3

N−4 interior knots

∆τ

Fig. B.3. Definition of a regular knot sequence for fitting a cubic
spline (order M = 4) in the interval [tbeg, tend]. The spline interval
is divided into N − 3 knot intervals of equal length ∆τ = (tend −

tbeg)/(N − 3).

and accurate for well-conditioned problems (e.g., Stewart 1998),
and is moreover well adapted to in-place manipulation of sparse
matrices such as the band matrix obtained when fitting B-splines
(Fig. 5)

The method of normal equations for the general least-squares
problem is usually discouraged in the literature, due to the much
superior stability and accuracy of alternative methods operating
directly on the observation equations Ax ' h (where N = A′A
and b = A′h), e.g., using Householder orthogonal transforma-
tions (e.g., Björck 1996). However, when working with very
large problems that are inherently well-posed, thanks to a good
design of experiment and reduction model, our experience is that
the method of normal equations is nearly always adequate in
terms of accuracy, and then has the edge over other methods in
terms of speed, storage and simplicity of the code. Moreover, in
these problems, iterative improvement of the solution is usually
required for other reasons (non-linearity, elimination of outliers),
which partly compensates for the loss of precision when forming
the normal equations.

C.2. The Cholesky algorithm

The standard Cholesky algorithm (e.g., Björck 1996; Golub &
van Loan 1996) requires that N is positive definite, which is
always the case for a well-conditioned least-squares problem.
Given N and b, the solution of the system Nx = b proceeds in
three steps:

C1. Use the Cholesky algorithm to find the unique upper-
diagonal matrix U, with positive diagonal entries, such that
N = U′U.

C2. Solve the lower-triangular system U′y = b.
C3. Solve the upper-triangular system Ux = y.

The matrix U (or its transpose) is known as the Cholesky factor
or square root of N. As all the computations can be made in-
place, we have symbolically

[ N | b ]
C1
−−→ [ U | b ]

C2
−−→

[
U | y

] C3
−−→ [ U | x ] . (C.1)

The extension to an arbitrary number of right-hand sides (to
the right of the vertical line) is trivial. For example, the in-
verse N−1 can be obtained by inserting the identity matrix for
b. We also note that C1 and C2 are mathematically equivalent to
pre-multiplying the matrix and right-hand side, respectively, by
(U′)−1. Performing C2 on the unit vector ei = [0, 0, . . . , 1, . . . , 0]′
(with 1 in position i) thus produces ẽi = (U′)−1ei such that
ẽ′i ẽ j = e′iU

−1(U′)−1e j = e′i N
−1e j = (N−1)i j. Selected elements

or sub-matrices of N−1 can thus be obtained without computing
the full matrix.

Algorithm C.1 Returns upper-triangular U such that U′U = N,
where N ∈ Rn×n is symmetric and positive semidefinite. Also
computes an estimate d of the rank defect of N.
1: U ← N, d ← 0
2: for j = 0 to n − 1 do
3: for i = 0 to j do
4: s←

∑i−1
k=0 UkiUk j

5: if i < j then
6: if Uii > 0 then
7: Ui j ← (Ui j − s)/Uii
8: else
9: Ui j ← 0

10: end if
11: else
12: if U j j − s > 0 then
13: U j j ←

√
U j j − s

14: else
15: U j j ← 0, d ← d + 1
16: end if
17: end if
18: end for
19: for i = j + 1 to n − 1 do
20: Ui j ← 0
21: end for
22: end for

Algorithm C.2 Returns y such that U′y = b, where U ∈ Rn×n is
upper-triangular and b ∈ Rn.
1: y← b
2: for i = 0 to n − 1 do
3: if Uii > 0 then
4: yi ← (yi −

∑i−1
k=0 Ukiyk)/Uii

5: else
6: yi ← 0
7: end if
8: end for

The above three steps are accomplished by Algorithms C.1–
C.3 for arbitrary symmetric positive definite N. (Actually, these
algorithms include the non-standard modification discussed be-
low in order to handle semidefinite matrices gracefully.) A few
remarks should be made concerning its practical implementa-
tion. First, the matrices U and N in C1, y and b in C2, and x
and y in C3 can share the same memory if it is acceptable that U
overwrites N, etc (in-place calculation). Second, since N is sym-
metric, only the upper-diagonal part of it (Ni j for i ≤ j) is used
in C1, and similarly for U. For large systems one can therefore
save roughly half the memory by storing only the upper-diagonal
parts of N and U, e.g., as one-dimensional arrays. The code in
lines 19–21 of Algorithm C.1 is then irrelevant. Third, if N is a
‘skyline matrix’ with envelope E j (i.e., Ni j = 0 for i < E j) then
U has the same envelope: the Cholesky decomposition gives no
fill-in above the envelope. This allows to store and decompose
certain sparse matrices very efficiently, such as the band matrix
in Fig. 5.

C.3. Application to semidefinite systems

In several of our applications the normal matrix is however
not positive definite, either from a lack of observations (e.g.,
data gaps in the attitude spline representation) or by design
(e.g., for the calibration parameters). Application of the stan-
dard Cholesky algorithm in such cases results in an exception
which may be non-trivial to handle (for example, by changing
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Algorithm C.3 Returns x such that Ux = y, where U ∈ Rn×n is
upper-triangular and y ∈ Rn.
1: x← y
2: for i = n − 1 to 0 do
3: if Uii > 0 then
4: xi ← (xi −

∑n−1
k=i+1 Uik xk)/Uii

5: else
6: xi ← 0
7: end if
8: end for

the knot sequence of the attitude spline) and which may leave the
partially solved system in an undefined state. However, that the
Cholesky algorithm fails does not mean that there is no solution
to the normal equations: on the contrary, there is an infinitude of
solutions and the problem is rather which one to pick. Indeed, in
many situations we could in principle accept any valid solution;
for example, when the null space of the problem is known a pri-
ori, and we are prepared to handle the associated non-uniqueness
of the solution (cf. Sect. 6.1). For these and several other rea-
sons it is advantageous if the computation can be continued in
some sensible way, while of course noting the detected rank de-
ficiency.

A number of methods are available to handle rank-
deficient or ill-conditioned least-squares problems. Singular
Value Decomposition (SVD; e.g., Björck 1996; Golub & van
Loan 1996; Press et al. 2007) is the method often recom-
mended; it provides the unique ‘pseudo-solution’ with the small-
est Euclidean norm. However, SVD is computationally expen-
sive and the pseudo-solution is not necessarily better than any
other valid solution to the singular least-squares problem.

By construction, the normal matrix N = A′A is positive
semidefinite: x′Nx = ‖Ax‖2 ≥ 0 for any x (cf. footnote 7). A
modification of the standard Cholesky algorithm allows the de-
composition in C1 to be made also for such matrices, although
U is no longer unique; similarly C2 and C3 can be modified to
produce a valid (if non-unique) solution to the normal equations
Nx = b. For example, the LINPACK routine xCHDC (Dongarra
et al. 1979) implements a robust version of the Cholesky algo-
rithm, using complete pivoting (i.e., a simultaneous permutation
of the rows and columns of N) to generate the unique square root
with non-zero elements only in the first r rows, if r < n is the
rank of the matrix (for a detailed analysis, see Higham 2002).
Other modifications of the Cholesky algorithm (e.g., Schnabel
& Eskow 1999) also uses pivoting.

Permuting the rows and/or columns of the matrix is highly
undesirable in the present applications. For example, when ap-
plied to a band matrix (such as Fig. 5) it likely destroys the band
structure, and in general prevents the envelope-based storing of
the sparse matrices N and U outlined above. While pivoting is
never needed for the Cholesky factorization of a positive defi-
nite matrix, it is thought to be an essential ingredient in mod-
ified algorithms aimed at more general symmetric matrices. A
simple modification of the Cholesky algorithm, which makes
it applicable to the semidefinite case without pivoting was de-
scribed by Lawson & Hanson (1974, Eq. 19.5); see also Golub
& van Loan (1996, Eq. 4.2.11), who however warn that “it may
be preferable to incorporate pivoting”. Nevertheless we have im-
plemented the corresponding modifications in Algorithms C.1–
C.3 without pivoting, and find that they work quite well in our
applications. Algorithm C.1 includes a rough estimation of the
rank defect d = n − r.

The numerical accuracy of the decomposition in
Algorithm C.1 was tested in MATLAB for a range of
rank-deficient random positive semidefinite matrices N
(patterned after Higham 1990) by computing the quantity
ρN = ‖N − U′U‖F/(u‖N‖F) as a measure of the rela-
tive error in units of the floating point precision. Here
‖N‖F = [trace(N′N)]1/2 is the Frobenius norm of N, and
u = 2−52 is the unit roundoff (Golub & van Loan 1996) of the
double precision floating point arithmetic used. We find that
the present algorithm, without pivoting, performs almost as
well as LINPACK’s xCHDC with complete pivoting, as judged
from the statistics of our ρN compared with the corresponding
quantity ρk reported by Higham. However, C.1 is much less
useful as a rank-revealing algorithm – the estimated rank defect
is often much too small.

Similarly, in order to check the numerical validity of the so-
lution to the rank-deficient normal equations computed by C.1–
C.3, we made the following experiments, using the same matri-
ces as above. For random vectors x we first computed b = Nx,
then used C.1–C.3 to recover a solution x̃ (usually very different
from x). Finally we computed ρb = ‖b − Nx̃‖F/(u‖b‖F). We find
that our algorithm performs almost as well as MATLAB’s ba-
sic solution xtilde = N\b, and much better than the minimum
norm solution xtilde = pinv(N)*b (with default tolerance).
For example, the 99th percentile of ρb was ∼104 for C.1–C.3,
∼103 for MATLAB’s backslash (\) operator, and ∼1011 (!) when
using pinv.

We conclude from these limited experiments that the present
version of the Cholesky algorithm is a useful, simple and effi-
cient substitute for much more sophisticated algorithms appli-
cable in the semidefinite case. Since it does not use pivoting,
it preserves the envelope of the matrix and is therefore espe-
cially suited for banded matrices and envelope-based sparse ma-
trix methods. It provides an estimate of the rank of the matrix,
which however is rather unreliable. In the positive definite case
the algorithm is equivalent to the standard Cholesky method.

Appendix D: Complexities beyond the basic
modelling

Section 3 describes a set of baseline models for the sources, atti-
tude, and geometrical instrument, which are believed to be real-
istic enough to serve as an acceptable first-order approximation
of the actual data for primary sources. Due to the many complex-
ities of the real satellite and its operation, as well as the physical
environment in space, there are however many additional effects
that may affect the astrometric results at the µas level, and which
have to be considered in the final modelling. In this Appendix
we discuss some of the known effects that will be addressed in
future versions of the astrometric solution.

D.1. Chromaticity

Although the Gaia telescopes are all-reflective, with no refrac-
tive elements in the optical paths to the astrometric field, they
are nevertheless not completely achromatic. In the presence of
odd wavefront errors, such as coma, the centroids of the opti-
cal images do in fact depend on the wavelength, and hence on
the spectral energy distributions of the observed sources.25 For
the typical wavefront errors expected in the astrometric field of

25 ‘Centroid’ should here not be understood as the centre of gravity
of the optical image; rather, it is a non-trivial function of the light dis-
tribution, similar to the estimation of the image location κ in Sect. 3.5.
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Gaia (about 50 nm RMS), the AL centroid shift from an early-
type star to a late spectral type could amount to several mas.
This systematic effect, known as chromaticity, can therefore be
many times larger than the photon-statistical uncertainty of the
estimated image location (cf. Table 1). It is thus essential to have
a very good calibration of the chromaticity, for which it is neces-
sary to know the spectral energy distribution of every observed
source. This is obtained from the photometric observations in the
BP and RP fields (see Fig. 3).

Chromaticity is eliminated in the CCD signal analysis by us-
ing a Line Spread Function (LSF), L(x) in Eq. (23), which is cor-
respondingly shifted depending on the (known) spectrum of the
source. The resulting AL pixel coordinate κ is therefore in prin-
ciple achromatic, and the effect need not be further considered
in the astrometric solution. However, as mentioned in Sect. 3.4,
it is envisaged to have diagnostic colour-dependent terms in the
geometric instrument model of the astrometric solution. These
calibration parameters should obtain negligible values in the so-
lution if the chromaticity has been correctly accounted for in the
calibration of L(x). Conversely, non-zero values can be used to
improve the LSF calibration in the next processing cycle.

D.2. Charge Transfer Inefficiency of the CCDs

The CCD signal model in Eq. (23) assumes a perfectly linear
detector, which is not exactly the case for the real detectors and
especially not in the presence of radiation damage on the CCDs.
Traps in the silicon substrate, produced by particle radiation in
the space environment, will capture charges during the TDI oper-
ation of the CCDs, and release them with delays ranging from a
fraction of the TDI period to minutes. The charge capture and re-
lease processes introduce a number of phenomena, collectively
referred to as Charge Transfer Inefficiency (CTI = 1 − CTE,
where CTE is the Charge Transfer Efficiency; Janesick 2001).
CTI will affect all kinds of observations in Gaia (astrometric,
photometric, spectroscopic). The most important phenomena for
the astrometric observations are the apparent charge loss (be-
cause part of the charges are released outside the observed win-
dow) and centroid shift (because some charges are released with
a delay of one or a few TDI periods). These and more general ef-
fects of the radiation damage are the subject of extensive theoret-
ical and experimental studies within the Gaia community (e.g.,
Seabroke et al. 2009; Prod’Homme et al. 2010; Prod’homme
et al. 2011). The adopted method to handle these effects in the
Gaia data processing is by means of forward modelling using a
so-called Charge Distortion Model (CDM; Short et al. 2010). In
the context of the CCD signal model of Sect. 3.5, the CDM may
be represented by the (non-linear) operator D:

λk ≡ E (Nk) = D
[{
λ0

k′
}
k′≤k

∣∣∣ Ψ]
, (D.1)

where λ0
k is the signal model at sample k in the absence of

radiation-damage effects, e.g., according to Eq. (23). The vari-
able Ψ represents the state of the CCD, e.g., in terms of how
much radiation damage it has suffered. Note that the expected
value of sample k depends on the CCD illumination history up
to and including sample k, which is expressed by the CDM tak-
ing as input the (undamaged) value not only for sample k but
also for the preceding samples (k′ ≤ k).26 One of the methods

For the sake of illustration, the centroid could for example be the point
obtained by fitting a Gaussian PSF to the image.

26 A further complication is that most AF observations are binned in
the AC direction before read-out, while the CTI effects operate indepen-

employed for mitigating CTI effects in Gaia is through a peri-
odic (e.g., once per second) electronic injection of charges in a
few consecutive TDI lines. As the lines of charges travel across
the CCD, most of the harmful traps are temporarily filled, thus
reducing the CTI of subsequent charge transfers (Laborie et al.
2007). The method has the additional benefit of periodically re-
setting the illumination history of the pixels, so that in Eq. (D.1)
only the samples since the previous charge injection need to be
considered (Short et al. 2010).

The CDM depends on a moderate number of parameters that
will be estimated in parallel with the LSF (or PSF) calibration
prior to the astrometric solution (the ‘Instrument response pa-
rameters’ in Fig. 1). In principle, the subsequently estimated im-
age location κ should then not only be achromatic, as discussed
in Appendix D.1, but also free of CTI effects, so that the astro-
metric solution can use a purely geometric instrument model,
as required by the primary source model. Although this is ob-
viously a highly idealised condition, it it nevertheless what the
final data analysis must aim to achieve.

For the simple image of a primary source, the centroid shift
due to the CTI depends mainly on the magnitude of the source,
the time since the previous charge injection, and the accumu-
lated radiation dose experienced by the CCD (Prod’homme et al.
2011). It is expected that imperfections in the CDM calibration
will likewise show up in systematic shifts depending primarily
on these (known) quantities, and can be represented by a set of
diagnostic calibration functions in the generic calibration model
of Sect. 3.4. Non-negligible values of the diagnostic parameters
in the astrometric solution indicate that the CDM is not doing its
job properly, and they can then be used to improve the model.
The reader is referred to the cited papers for quantitative infor-
mation on the expected level of CTI effects in Gaia data, the ef-
fectiveness of different mitigation strategies, and the associated
performance degradations.

D.3. Effects of the finite CCD integration time

Up until now we have regarded the astrometric observations
of Gaia as instantaneous measurements of the crossings of the
source images over the fiducial ‘observation line’ (Fig. 4) at the
centre of the CCD (or of the gated portion of the CCD) in the
AL direction. In reality, due to the finite integration time (T ) of
the CCD observations, any measurement clocked into the CCD
readout register at time t actually depends on the average attitude
and source position over the preceding integration time interval,
[t − T, t]. The time delay is, to first order, taken into account by
associating the measurement with the observation time t − T/2
(Sect. 3.5). Following Bastian & Biermann (2005) we should,
more precisely, assume that the observed location κ of the image
centre in the pixel stream is a weighted mean of the instanta-
neous location κ∗(t) of the optical image relative to the charge
image during the preceding integration interval:

κ =

∫ T
0 e(τ)κ∗(t − τ) dτ∫ T

0 e(τ) dτ
, (D.2)

where e(τ) is the (nominally flat) ‘exposure function’ for look-
back time τ, i.e., the rate at which electrons are produced, and

dently on each pixel column. Thus the CDM should ideally be applied to
the two-dimensional charge image, and the distorted charge image then
binned for comparison with the one-dimensional data. This requires the
use of a PSF replacing the LSF in Eq. (23).
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transported to the read-out register, for constant illumination.
The instantaneous location is given by

κ∗(t) = s
[
η∗(t) − η f ng

]
+ k(t) , (D.3)

where s is the local scale factor (pixels per radian), η∗(t) the in-
stantaneous AL field angle of the optical image centre, and η f gn
the AL coordinate of the fiducial observation line for the appro-
priate AC coordinate, field of view, etc. The function k(t) is the
inverse of tk, relating the time coordinate to the TDI period in-
dex k. For the present discussion k(t) is regarded as a continuous
function, ignoring the step-wise transportation of the charge im-
age in TDI mode.27

Recalling that η∗(t) is decreasing with time (cf. Fig. 3), while
k(t) is increasing, it is seen that κ∗(t) remains approximately con-
stant throughout the integration. Let us denote by tc the exact
time when the centre of the optical image crosses the fiducial
observation line, so that η∗(tc) = η f ng, and let κc = k(tc) be the
corresponding pixel coordinate. If the speed of the optical image
exactly matches the speed of the charge image, or sη̇∗ + k̇ = 0,
it is seen that κ∗(t) is indeed constant and equal to κc. Let us
now consider what happens if there is a mismatch between the
speeds. This could be caused by (i) a deviation in the local scale
value s due to optical distortion; (ii) a non-nominal local scan
rate; and (iii) that the object itself has significant motion (e.g.,
an asteroid). Assuming that k̇ is constant and adopting a Taylor
series expansion for the AL field angle over the exposure time,
we have

k(t) = κc + (t − tc)k̇ , (D.4)

η∗(t) = η f ng + (t − tc)η̇∗ +
1
2

(t − tc)2η̈∗ + · · · . (D.5)

Inserting in Eq. (D.3), and assuming that s is constant across the
section of the CCD in question, we obtain by means of Eq. (D.2)

κ = κc + (sη̇∗ + k̇)e1 +
1
2

sη̈∗e2 + · · · , (D.6)

where

em =

∫ T
0 e(τ)(T/2 − τ)m dτ∫ T

0 e(τ) dτ
, m = 1, 2, . . . (D.7)

are the normalized moments of e(τ) relative to the exposure mid-
time at τ = T/2. For a constant and matching image speed we
recover κ = κc as expected. In the general case of imperfect
speed matching and non-constant scan rate there is a difference
which should be taken into account in the astrometric solution.
If we assume that s is known, the speed mismatch sη̇∗ + k̇ can
be computed for every observation, and the factor e1 can then
be estimated as an instrument calibration parameter using the
generic calibration model in Sect. 3.4. e1 will depend (at least)
on the CCD and gate used; but due to the accumulating radiation
damage it is likely to evolve with time and could possibly have a
magnitude-dependent component as well. In the next (quadratic)
term we may know η̈∗ (from the attitude) and e2 ' T 2/12 (for
constant exposure function) to sufficient accuracy that it might

27 The corresponding expression in Bastian & Biermann (2005) is
their Eq. (6), in which k(t) is the (integer) index of the last TDI clock
stroke before time t. Thus their κ∗(t) oscillates with an amplitude of
±0.5 unit for every TDI period. The continuous approximation adopted
in our Eq. (D.3) is acceptable since we are always considering integrals
covering a whole number of oscillations.

be applied as a correction to the observed κ. However, since most
observations are ungated (giving maximum T ), it may be bet-
ter to adopt the uncorrected κ for this maximum T as defining
the effective attitude,28 and only correct the gated observations
for the difference in e2; hence they, too, will refer to the effec-
tive attitude. A complication is that η̈∗ in Eq. (D.6) should be
computed from (unknown) physical attitude, but to first order
it can be obtained from the effective attitude. Attitude irregu-
larities on time scales shorter than T add further complications
(see Appendix D.4), but it is unlikely that higher-order terms in
Eq. (D.6) can profitably be accounted for.

D.4. Attitude irregularities

The basic attitude model described in Sect. 3.3 uses a spline rep-
resentation which is (normally) continuous in the angles spec-
ifying the instantaneous orientation of the instrument, as well
as in the first M − 2 derivatives of the angles, where M is the
order of the spline (typically cubic splines are used, for which
M = 4). The actual (physical) attitude is much more complex
and in particular there may be discontinuities and irregularities
on time scales that are too short to be adequately represented
by a spline with the knot separations considered in the basic
model. Low-frequency perturbations (. 0.01 Hz) are of no con-
cern here, as they can be perfectly represented by splines. The
most important contributors to perturbations at higher frequen-
cies are thruster noise in the micro-propulsion system used for
the attitude control; the discrete and partially stochastic nature
of the control system (for example that the commanded thrusts
are updated once per second); micrometeoroid impacts on the
satellite; and various dynamical effects such as fuel sloshing and
structural vibrations.

The high-frequency perturbations due to the thruster noise
and control system generate angular jitter of the physical attitude
that has a significant amplitude relative to the astrometric accu-
racies ultimately aimed at, but still small in comparison with the
AL pixel size (' 59 mas). Thanks to the TDI integration this
high-frequency jitter is largely removed from the effective atti-
tude by the averaging over the exposure time T . As a result, the
shortest knot interval needed to accurately represent the effec-
tive attitude is also of the order of the exposure time, or about
5 s. The optimum knot interval may be longer, depending on the
number and magnitudes of the primary sources available for the
attitude determination, and on the actual level of perturbations.

The expected frequency of micrometeoroid impacts of var-
ious sizes can be predicted from the known velocity and mass
spectrum of interplanetary particles. Each impact produces a
quasi-instantaneous change in the angular velocity of the satel-
lite, while the attitude angles are continuous across the impact
time. It is expected that a few hundred impacts will occur ev-
ery year producing a change in the AL angular velocity exceed-
ing 1 mas s−1 (which should be easily detectable), with the fre-
quency roughly inversely proportional to the minimum change
considered. Discontinuities in the physical attitude rate can be
represented in the spline model by inserting multiple knots at the
estimated times of impact, ti (Sect. 5.2.6). However, the effective
attitude will instead see a linear change in the attitude rates over
an interval equal to the exposure time T , centred on ti, which re-
quires that multiple knots are inserted both at ti−T/2 and ti+T/2.
(This treatment becomes more problematic in connection with

28 The effective attitude is then the physical attitude convolved with
the (average) exposure function for maximum T . It corresponds closely
to the ‘astrometric attitude’ introduced by Bastian & Biermann (2005).
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gated observations, when T is non-nominal.) Impacts will be de-
tected by inspecting the observation residuals in connection with
the attitude updating (Sect. 5.2.5).

The detailed re-examination of the Hipparcos attitude by van
Leeuwen (2005, 2007) revealed numerous discontinuities of the
along-scan attitude angle (scan phase) of several tens of mas. A
large fraction of them could be linked to the beginning or end
of eclipses experienced by Hipparcos in its highly elliptic orbit
around the Earth. A likely cause is thermal re-adjustment of the
solar-panel hinges, following a sudden change in temperature.
As there is no change in the net angular momentum, but only
a re-distribution of inertia, the attitude rates are the same be-
fore and after a discontinuity. For Gaia it is estimated that such
‘clanks’ will be negligible, but the attitude processing should
nevertheless be capable of identifying instances, should they oc-
cur, and to take appropriate measures. Due to the finite CCD in-
tegration time, the apparent effects of a clank will be two discon-
tinuities in the attitude rates, equal but of opposite sign, and sep-
arated by the integration time T . Again, this can be handled by
suitable modification of the knot sequence of the attitude spline.
Like the micrometeoroid impacts, clanks will be detected during
the attitude updating by means of the characteristic patterns that
they generate in the observation residuals versus time.

Appendix E: Tables of acronyms and variables

Table E.1 is a list of acronyms used in the paper. Table E.2 lists
the most important variables, with a short description and a ref-
erence to where it is introduced or explained.

Table E.1. List of acronyms

Acronym Description

AC ACross scan direction (Fig. 3)
ACF ACross scan coordinate in the Following FoV
ACP ACross scan coordinate in the Preceding FoV
AF Astrometric Field
AGIS Astrometric Global Iterative Solution
AGN Active Galactic Nucleus
AL ALong scan direction (Fig. 3)
ASI Accelerated Simple Iteration
BAM Basic-Angle Monitor (Fig. 3)
BCRS Barycentric Celestial Reference System
BP Blue Photometer (Fig. 3)
CCD Charge-Coupled Device
CDM Charge Distortion Model
CFS Calibration Faint Star
CG Conjugate Gradient
CPU Central Processing Unit
CoMRS Centre of Mass Reference System
CTE Charge Transfer Efficiency (of a CCD)
CTI Charge Transfer Inefficiency (of a CCD)
CU2 DPAC Coordination Unit 2, ‘Data Simulations’
CU3 DPAC Coordination Unit 3, ‘Core Processing’
DPAC Data Processing and Analysis Consortium
EADS European Aeronautic Defence and Space company
ESA European Space Agency
ESAC European Space Astronomy Centre
FFoV Following Field of View (Fig. 2)
FPA Focal Plane Assembly (Fig. 3)
FoV Field of View
GCRS Geocentric Celestial Reference System
HEALPix Hierarchical Equal-Area iso-Latitude Pixelisation
IAU International Astronomical Union
ICRS International Celestial Reference System
LSF Line Spread Function
NSL Nominal Scanning Law
PFoV Preceding Field of View (Fig. 2)
PPN Parametrised Post-Newtonian (relativity formalism)
PSF Point Spread Function
RMS Root-Mean-Square
RP Red Photometer
RSE Robust Scatter Estimate (footnote 18)
RVS Radial Velocity Spectrometer (Fig. 3)
SI Simple Iteration
SM Sky Mapper
SRS Scanning Reference System (Fig. 2)
SVD Singular Value Decomposition
TB TeraByte
TCB Barycentric Coordinate Time
TDI Time-Delayed Integration (CCD operation mode)
VLBI Very Long Baseline Interferometry
WFS WaveFront Sensor (Fig. 3)
XML eXtensible Markup Language
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Table E.2. List of mathematical variables

Var. Description Ref.

Au the astronomical unit Sect. 3.2
A attitude matrix Eq. (8)
a galactocentric acceleration vector Sect. 6.1.4
a attitude parameters Sect. 3.3
an quaternion coefficient for Bn(t) Eq. (10)
Bn(t) B-spline function Sect. B.1
B iteration matrix Sect. 4.5
b right-hand side of normal equations Eq. (30)
bG(t) barycentric coordinate of Gaia at time t Eq. (4)
C celestial reference system Sect. 3.1
C constraint matrix for the calibration parameters Eq. (22)
c calibration parameters Sect. 3.4
D non-linear Charge Distortion Model Eq. (D.1)
d update vector Sect. 4.5
E expectation operator Eq. (23)
e(t) CCD exposure function Appendix D.3
e error vector Sect. 4.5
f field index (±1 for preceding/following) Eq. (13)
f detector coordinates Eq. (1)
f P, f F preceding, following viewing direction Fig. 2
G Gaia broadband magnitude Sect. 3.4
g gate index Eq. (13)
g global parameters Sect. 3.4
h auxiliary data, e.g., ephemerides Eq. (7)
I the identity matrix Sect. 4.5
i subscript denoting some source Sect. 3.2
j ‘short’ calibration time interval index Eq. (15)
K no. of TDI periods for CCD integration Sect. 3.5
K preconditioner matrix Sect. 4.5
k TDI index in CCD pixel stream Sect. 3.5
k ‘long’ calibration time interval index Eq. (15)
k iteration index Eq. (40)
L Line Spread Function Eq. (23)
L∗r shifted Legendre polynomial of degree r Eq. (15)
l subscript denoting some observation Sect. 3.6
` left index in a knot sequence Sect. B.2
M spline order – M = 4 for cubic spline App. B
N number of degrees of freedom for a spline App. B
N normal equations matrix Eq. (30)
n attitude parameter index Eq. (10)
n CCD index Eq. (14)
n dimension of the normal matrix N Eq. (35)
n nuisance parameters Eq. (1)
pi normal-triad component Eq. (5)
Q objective function to be minimized Eq. (24)
q attitude quaternion Eq. (10)
qi normal-triad component Eq. (5)
r degree of the small-scale calibration polynomial Eq. (15)
ri normal-triad component Eq. (5)
Rl residual of observation l Sect. 3.6
S Scanning Reference System Sect. 3.1
s local scale factor Eq. (D.3)
s astrometric (‘source’) parameters Sect. 3.2
si the astrometric parameters for source i Sect. 3.2
T light integration (exposure) time on CCD Sect. 3.4, D.3
tk time for sample k Sect. 3.5
tl time for observation l Sect. 3.5
tep reference epoch for astrometric parameters Sect. 3.2
tfr reference epoch for frame rotator Sect. 6.1
tP reference epoch for non-rotating ICRS sources Sect. 6.1.4
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Table E.2. List of mathematical variables (continued)

Var. Description Ref.

tPM reference epoch for moving ICRS sources Sect. 6.1.4
U relegation factor for primary-star selection Sect. 6.2.2
ui proper direction to source i Sect. 3.2
ūi geometric direction to source i Sect. 3.2
V nullspace of the normal matrix Sect. 4.5
Wi weight matrix for source i Eq. (57)
wl downweighting factor for observation l Sect. 3.6, 5.1.2
Wl statistical weight of observation l Sect. 3.6
x differential parameter vector Sect. 4.3
[X Y Z] celestial reference system (ICRS or CoMRS) Sect. 3.1
[x y z] Scanning Reference System (SRS) Fig. 2
α flux (image parameter) Eq. (23)
αi right ascension of source i at tep Sect. 3.2
β background level (image parameter) Eq. (23)
Γc (conventional) basic angle Eq. (13)
γ PPN curvature parameter Eq. (88)
δi declination of source i at tep Sect. 3.2
εa excess attitude noise Eq. (28)
εi excess source noise (for source i) Eq. (28)
εl excess noise in observation l Eq. (28)
ε orientation correction (frame rotator) Sect. 6.1
ζ across-scan (AC) field angle Eq. (12)
η along-scan (AL) field angle Eq. (13)
κ along-scan (AL) pixel coordinate (image location) Eq. (23)
λ regularization parameter for the attitude update Eq. (81)
λk intensity for CCD sample values Eq. (23)
µ across-scan (AC) pixel coordinate (image location) Sect. 3.4
µα∗i proper motion in α (× cos δi) for source i Sect. 3.2
µδi proper motion in δ for source i Sect. 3.2
µri radial proper motion for source i Sect. 3.2
µ0 proper motion due to galactocentric acceleration Sect. 6.1.4
ν number of degrees of freedom Sect. 5.1.2
$i parallax for source i Sect. 3.2
% normalized RSE error of astrometric parameters Sect. 7.2.2
σl formal standard uncertainty for observation l Sect. 3.6
τn attitude spline knot n Sect. B.1
ϕ along-scan instrument angle Eq. (12)
ω spin correction (frame rotator) Sect. 6.1



1 23

Experimental Astronomy
Astrophysical Instrumentation
and Methods
 
ISSN 0922-6435
 
Exp Astron
DOI 10.1007/
s10686-011-9241-6

Using Java for distributed computing in
the Gaia satellite data processing

William O’Mullane, Xavier Luri, Paul
Parsons, Uwe Lammers, John Hoar &
Jose Hernandez



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Exp Astron
DOI 10.1007/s10686-011-9241-6

SHORT COMMUNICATION

Using Java for distributed computing
in the Gaia satellite data processing

William O’Mullane · Xavier Luri · Paul Parsons ·
Uwe Lammers · John Hoar · Jose Hernandez

Received: 27 October 2010 / Accepted: 4 July 2011
© Springer Science+Business Media B.V. 2011

Abstract In recent years Java has matured to a stable easy-to-use language
with the flexibility of an interpreter (for reflection etc.) but the performance
and type checking of a compiled language. When we started using Java for
astronomical applications around 1999 they were the first of their kind in
astronomy. Now a great deal of astronomy software is written in Java as are
many business applications. We discuss the current environment and trends
concerning the language and present an actual example of scientific use of
Java for high-performance distributed computing: ESA’s mission Gaia. The
Gaia scanning satellite will perform a galactic census of about 1,000 million
objects in our galaxy. The Gaia community has chosen to write its processing
software in Java. We explore the manifold reasons for choosing Java for
this large science collaboration. Gaia processing is numerically complex but
highly distributable, some parts being embarrassingly parallel. We describe
the Gaia processing architecture and its realisation in Java. We delve into the
astrometric solution which is the most advanced and most complex part of the
processing. The Gaia simulator is also written in Java and is the most mature
code in the system. This has been successfully running since about 2005 on the
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supercomputer “Marenostrum” in Barcelona. We relate experiences of using
Java on a large shared machine. Finally we discuss Java, including some of its
problems, for scientific computing.

Keywords Distributed computing · Java · Astrometry ·
Cloud computing · Mathematics

1 Introduction

1.1 The Gaia mission

The Gaia satellite is destined for the Lagrange point L2 early in 2013 after
launch from French Guiana aboard a Soyuz Fregat Rocket. Gaia is the
European Space Agency’s (ESA) sixth cornerstone mission. Its goal to make
a phase space map of our galaxy. Spinning around its own axis in a Lissajous
orbit around L2 for five years Gaia will continually scan the sky observing
more than one thousand million (109) celestial sources, on average eighty times
each. The scientific goals of the experiment are manifold and covered in detail
in [12], the data will help key research in the composition and formation of our
galaxy.

Gaia contains two astrometric telescopes at a fixed angle of 106.5◦ as
well as a radial velocity spectrograph and two photometers. The astrometric
design allows true parallaxes (distances to stars) to be obtained [7] after
careful data processing. A least-squares fitting scheme named the Astrometric
Global Iterative Solution (AGIS) (Lindegren et al. 2011, in preparation) is
currently foreseen to perform the astrometric data reduction. Equally involved
processing is required for photometry and spectroscopy.

Gaia processing software is being written by the Gaia Data Processing and
Analysis Consortium (DPAC). DPAC is a pan-European federation of insti-
tutes comprising of over four hundred astronomers, physicists and program-
mers. The consortium is led by eleven members of the community who form
the DPAC Executive (DPACE). DPAC not only has the responsibility to write
the processing software but also to run and maintain it until the final Gaia
catalogue is produced around the year 2020. The software will be run in six
data processing centres—each responsible for a different facet of the overall
processing. An overview of DPAC and the processing is provided in [11].

1.2 Computing

Simulations of Gaia data have been in production at the University of
Barcelona (UB) since about 1998. Some of these simulations require consider-
able computing power and are discussed in Section 3. Initial AGIS experiments
have been conducted using simulation data from UB in the past few years. The
AGIS efforts are discussed in Section 2. By nature the data processing must
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be distributed. If one considers that there are ≈1012 (low resolution cutout)
images downlinked from Gaia, at one millisecond per image that is over
30 years of processor time. Massive distribution is the only possibility to deal
with this data. At this point the Gaia community has quite some experience
with large software and computing efforts, which is not unusual in the science
community. What some consider quite unusual is that all Gaia software is
written in the Java language. We discuss the choice of Java in Section 4.

2 AGIS–a complex computing problem

The Astrometric Global Iterative Solution (AGIS) provides the rigid frame-
work for all of the Gaia measurements. Gaia is spinning freely and making
observations which relate only to other observations made by Gaia. It is
an absolute instrument–there is no list of input stars such as there was for
Hipparcos [2], the predecessor of Gaia. What this means is that the Gaia
data must be reduced in a self-consistent manner such that all individual
observations of celestial sources, the model of each source’s position and
motion, Gaia’s own attitude, orbit and velocity must be in harmony. Later the
entire system will be aligned with the International Celestial Reference System
(ICRS).

The complete mathematical formulation for AGIS is presented in Lindegren
et al. (2011, in preparation) while the computational framework is described
in O’Mullane et al. (2011, submitted). Here we recap these aspects briefly in
Section 2.1 before discussing results (Section 2.2) and performance/manpower
trade offs (Section 2.3).

2.1 AGIS overview

AGIS is a block-iterative solution for the Gaia astrometry. It consists of at least
four blocks which may be calculated independently. Each block is however
dependent on the result of the other blocks. We term one step through all
blocks an outer iteration, although the term outer is frequently dropped. This
is simplistically formulated in the following equations:

S = A + G + C (1)

A = S + G + C (2)

G = S + A + C (3)

C = S + A + G (4)

which are discussed further below.
The vast majority of Gaia sources (1) may be described by a six parameter

astrometric model. These parameters and their derivation are fairly standard
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in modern astrometry [8] and describe the position and motion of the source
in three dimensions. The parameters are:

α azimuthal angle of object a.k.a. right ascension
δ angular distance from the celestial equator (north or south) a.k.a.

declination
π annual parallax, the apparent shift in angular position when viewed

from opposite sides of the sun
μα∗ μα∗ = μαcos(δ) proper motion in α direction
μδ proper motion in δ direction
μr radial velocity, motion in the line of sight direction

From the ≈80 observations of each source made by Gaia a least-squares
fitting of the observations to the model may be made. The fit must include
several intricacies namely:

– the orientation of Gaia in space (or attitude, (2))
– the path of light through the instrument (or calibration, (4))
– global parameters such as relativistic numbers (Section 3)
– light bending according to general relativity (see [6])

Current best estimates for attitude, calibration and global parameters are
used for any given fit of the source. This fit must be performed on all sources
but to make the problem tractable a subset of sources may be treated first.
Around 108 sources are needed to make the global reference frame but it could
be as many as 5 · 108. Once this solution has converged the source calculation
(using the final attitude etc.) may be performed on all remaining sources. This
is an important efficiency improvement. A direct solution for a large number
of sources has been shown to be intractable [1].

The application of the source equation (known as source update) requires
the gathering of all observation of the source and the current attitude, calibra-
tion and global parameters. The application of the relativistic model requires
precise ephemerides of the planets and of the satellite. Our current approach
is to group observations together on disk for easy loading, since there is no
cross talk between the source equations i.e. all sources may be processed in
parallel if we wish. The other data required is sufficiently small (order of a
few hundred MB) that it may be loaded once in memory and used to process
multiple sources, typically batches of several thousand sources per job on a
processor.

Attitude and calibration on the other hand require all observations in given
time periods. We do not need to hold on to the observations but may add
their contributions to partial equations. Hence as each source is updated
the updated parameters and the observations are used to update the partial
solutions for the attitude and calibration. The system has been run with up
to 100 computing nodes and 1,400 Java threads. We constantly encounter
bottlenecks usually in the calibration and attitude processes for the obvious
reason that they need to see all sources. The processing of several thousand
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sources in a job makes the communication more efficient—we send fewer large
messages rather than millions of small ones.

2.2 Results

AGIS has been running at ESAC since early 2006 with increasing numbers of
sources and observations. This is discussed briefly in O’Mullane et al. (2011,
submitted) from which we reproduce Table 1 below. Since the entire system is
designed for AGIS and we have few interconnects between processes we did
not find it necessary to use any HPC library nor GRID software. Effectively
jobs are taken from a Whiteboard by numerous DataTrains which load the
appropriate data and process it writing the results back to a database. The
Whiteboard may simply be considered as a table in a database where jobs are
written an updated. DataTrain is a term coined within DPAC for a process
which runs through a set of data passing it to a series of algorithms. It provides
an abstraction layer between algorithm and data access.

The machine used for the Gaia tests so far has been purchased in install-
ments by ESA. The initial machine for the first tests in 2005 consisted of twelve
nodes each with 6 GB of RAM and two processors (3.6 GHz Xeon EM64T).
An EMC storage area network (SAN) with 5 TB of disk is attached to the
nodes using fibre optic cable and the nodes are also connected via Gigabit
Ethernet cards in a local area network. AGIS has also been tested, and shown
to run as fast, using a cheap Rack Server Network Attached Storage device of
6 TB. This cluster was upgraded to 18 nodes in 2006 and a further four nodes
but with quad core processors were added in 2007. The quad core processors
functioned very well for us providing the performance of four processors and
in Table 1 the number of processors counts each core as a processor.

This is not very special machine, it consists of standard Dell power edge
blades with standard Intel Xeon processors running Red Hat Linux. The
blades are housed in a standard Dell rack. There is no special HPC software
used, a network of normal Linux machines could work in the same manner.

Table 1 AGIS run times decrease as more processors are added

Date Observations Procs Time (h) Normalised (obs/h)

2005 1.6 × 107 src 12 3 0.9 × 106

2006 8 × 107 36 5 0.5 × 106

2007 8 × 107 24 3 1.3 × 106

2008 8 × 107 31 1 3.2 × 106

2009 2.6 × 108 50 1.8 2.8 × 106

2010 4 × 109 68 9.5 6.2 × 106

Note that the data volume increased from 2005 to 2006 from 18 months to 5 years, the processor
power also increased but the run time went up. This was dramatically improved in 2007. In 2010
we have implemented a new math frame work around Conjugate gradient—this provides a better
solution at some cost. The normalised column shows throughput per processor in the system (total
observations/processors/hours) e.g. an indication of the real performance
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As such this machine perhaps does not merit the term HPC but we will move
toward 10 Teraflops in the coming years.

Various different types of astronomical test have been performed to show
AGIS produces the correct solution for Gaia. For this paper we are mainly
interested in performance however, which is best presented by Table 1. We
see that AGIS has been slow in 2007 but finally it was made much faster
in 2008 with a prospect of more improvement to come. It should be noted
that more functionality has also been introduced each year—a more complete
source model, a more complex calibration scheme etc. but the efficiency has
been increased. Some speedups are due to profiling while others are due
to mathematical methods. Between the Lund group and the ESAC group
finally the problem is being tackled from both math and computing side with
competence. Early work on AGIS was not so fruitful as it treated the problem
as something to just be run on a computer rather than a problem for which
a system needed to be designed to make it efficient. In that system math
and computing techniques have been questioned and varied to arrive at the
efficient implementation we have today.

2.3 Performance vs manpower

We know we could write some parts of AGIS to run perhaps two or more
times faster than Java. We could get a little more performance by utilising
special machines and rewriting our code again for example toward a cell
processor hybrid such as the Roadrunner. Speed of code is indeed an issue
for Gaia in general but manpower is perhaps a bigger issue—we have a great
deal of processing software to write. The estimated manpower in man years
for the Gaia processing is around 2,000. Granted this includes operation but
development alone pre launch is estimated at 1,000 man years. In the case of
the astrometric solution we have good records. The initial working AGIS in
ESAC was done in about 180 man days so just over half a man year. It was
clear to us that this was only possible in Java—in C or C++ this would have
taken far longer. This claim is of course difficult to quantify, as a programming
collective we have decades of experience with C and C++ projects and it is
our opinion that coding in Java is cleaner and faster. Even in Java the problem
is difficult. The previous solution which AGIS replaced was worked on for
four years by various people; to be modest lets say only eight man years went
into it, but it was more like 12. To date on AGIS we have spent about 15
man years and we estimate to finish AGIS in Java we need another ten man
years with probably more after launch. There is also post launch maintenance
to consider—we feel Java maintenance will be lower cost than say C, and we
have eight years of operations to consider—we have 27 man years in the plan
for this.

Of course it is difficult to calculate but we would need far more manpower
to manage code in C and more still if we were to customise for a particular
computer system (especially as it would become obsolete during our opera-
tions). Again just for AGIS we are talking of over 50 man years of effort which
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in today’s monetary terms is around 5 million euro. Even 20% more effort
to code in another language would be a considerable sum. We think we can
buy the hardware we need to run AGIS for around a million euro. It has been
observed on other space programs than manpower typically ends up costing
more than machines and apparently we are no different. Our intention is also
to buy the most common and cheap processors—these are the the chips Java is
usually running fastest on as well because of their ubiquity. Hence a special
more super computer oriented machine would probably cost more. Finally
there is power consumption if we could make AGIS four times faster we could
save 25% on power. Energy costs may well go up but probably not faster than
manpower costs since the saving on energy requires spending on manpower
to customise code for our “hard to code” problem these will cancel each
other out.

3 Gaia simulations—use of shared computing resource

The development of the Gaia simulator has been an integral part of the Gaia
data processing. This software tool is designed to provide realistic simulations
of the Gaia observations, closely mimicking the format and content of the data
that Gaia will send to ground. The main purpose of this simulated data has
been the feeding of the data processing chain in order to test and validate it,
although it has also been used for other purposes, for instance to evaluate some
satellite design options and to prepare the mission scientific case.

As mentioned above, the simulator has been running at the University
of Barcelona since 1998. Its initial development was closely tied to the first
attempts to develop a viable Global Iterative Solution but now it has become
a mature tool able to simulate a wide variety of celestial objects, physical and
instrumental effects and data formats for the multiple data processing modules
developed by the Gaia DPAC.

In this section we will first review our experience with the development
in Java, the advantages and drawbacks we found, and then discuss a specific
(and extreme) example of Java versus C performance found during this
development.

3.1 Java, a new kid on the block

When the development of the simulator was started the first choice to be made
was the programming language to use. The team undertaking this task was
at the time (1998) mainly (and almost exclusively) composed of scientists,
with few software engineering expertise. The obvious choice, based on the
programming experience of the team, would have been FORTRAN with
perhaps C as a second, but somewhat frowned upon, choice. Furthermore,
astronomical and numerical libraries were available in FORTRAN, and in
most cases also in C, but not in Java.
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However, Java was finally chosen for two main reasons:

1. The ongoing Global Iterative Solution development contract was going
to be implemented in Java by requirement of ESA. Given that the two
projects were closely tied at the time using a common language was natural.

2. The advice of professional software engineers from ESA and some mem-
bers of the team with software engineering background pointed towards
the use of an Object Oriented language, strongly advising against FOR-
TRAN for a large collaborative project. This left the choice between C++
and Java.

At the end Java was chosen, but not without frequent second thoughts
in the coming years. The widening scientific community that was becoming
involved in the project was reticent for some time to adopt the new language,
specially given the accumulated experience in FORTRAN and C and the lack
of libraries in Java.

However, eleven years later the landscape has much changed, and now Java
has been even more widely (almost completely) adopted as a viable program-
ming language for scientific programming in the Gaia simulator community.
Furthermore, the project has become large and complex, involving develop-
ment teams distributed around Europe. The management of the project has
at this stage adopted many professional software development tools (UML,
Hudson, PMD, Checkstyle, etc.) that would not have been available had a
language like FORTRAN been chosen, making the coding much more robust
and reliable. Also, like the team developing AGIS and based on previous ex-
periences, they feel that the development has been quicker and more seamless
than it would have been using C++. The motives for this feeling are varied, but
one of the big reasons is that thanks to the garbage collection implemented
in the JVMs memory leaks are less of an issue. Since the simulator is quite
intensive in memory usage, not having to worry about this problem is seen as
a great advantage.

In short, the initial reticences on the use of Java for scientific programming
in Gaia have vanished, to the point that one of the managers of the simulator
development has changed the teaching of programming for first year physics
students from FORTRAN to Java.

3.2 The blessing of portability

One of the advantages of Java not mentioned in the previous section is its
portability. As said, the simulator has been running for eleven years and during
this time it has been ported to several machines, and in the process Java has
shown that its portability is real and practical.

Due to its intensive computation needs the Gaia simulator has mostly been
run at supercomputing centers, using significant amounts of computation time
It was initially run at the Centre de Supercomputació de Catalunya (CESCA)
were several medium-sized clusters were used: an IBM SP2, a Compaq
HPC320, an HP RX2600 and an SGI ALTIX 3700. In all cases the migration
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from one cluster to the next was seamless, the only serious complication being
the adaptation of the execution to the different queue systems in each machine.
Later on, in 2005, the simulator was moved to the Barcelona Supercomputing
Center (BSC) where the Mare Nostrum supercomputer had been just installed.
Again, the migration was quite simple, with the major complication being
how to adapt the execution to the new distributed environment and queue
system. Today the simulator is still running there, having cruised through a
Mare Nostrum upgrade in 2006 without needing any significant change and
having consumed a some millions of CPU hours and generated many terabytes
of simulated data.

In these years the portability of Java has therefore been a major advantage,
saving time and resources that otherwise would have been devoted to adapting
the code to the new environment. Furthermore, the portability of Java has
also allowed the running of the simulator on other environments like local
clusters for testing and development and a cluster at CNES for tailored small
simulations through a web page manager.

3.3 Performance in scientific computation

In the initial years of the project the performance in numerical computing of
Java was discussed many times. Not having previous experience on its use for
scientific computation there was some worry that the language could prove
to be too slow at some point of the development. However, some initial tests
with a set of some often-used numerical algorithms showed that Java was not
much slower that C in solving these problems, thanks to the Just In Time (JIT)
compilation in the Java virtual machines.

In the next years the JIT virtual machines steadily improved, and the first
working code was developed in the project, showing in practice that the
implementation in Java was not producing any of the feared bottlenecks.
Nowadays, Java has become part of the landscape in scientific programming
in Gaia, and although worries about performance are still occasionally an
element of resistance, given the accumulated experience and clear savings in
development time performance is no longer an issue.

Furthermore, the development model in DPAC is based on six-month
development cycles; at the end of each cycle an improved version is produced
and tested, leading to further requirements, corrections and improvements
for the next cycle. In this framework the optimisation of the system is not
as important as the maintainability and flexibility of the code to allow such
a quick production. The robustness and clarity of Java helps a lot in such a
process, and as mentioned before has probably saved a significant amount of
money in programming resources.

A real example encountered during the simulator will illustrate this point. A
key piece of the Gaia astrometry is the calculation of the so-called “relativistic
corrections”, the changes on the apparent position of the objects in the sky
deriving from relativistic effects: aberration, gravitational light bending, etc.
This is a complex calculation taking into account the ephemeris of the major

Author's personal copy



Exp Astron

solar system bodies and requiring (for a μ as accuracy) to reach the limit of the
numerical precision of variables of the “double” type (64 bit floating point).

An initial (legacy) implementation of these calculations was available from
S. Klioner in the form of C code and was used in the simulator until 2008
through JNI calls. At that time, in order to avoid the inconveniences of mixing
two languages in the simulator, the same author developed for DPAC a
new implementation coded in Java. Both implementations were thoroughly
compared and results matched at sub-μ as level. However, during the testing it
was found that the computation times differed substantially between the two
versions, the Java version being between four and ten times faster than the
C version! Possible external sources of this difference (like overheads of the
JNI calls) were ruled out and it was concluded that the difference was actually
intrinsic to the code.

It is possible, even likely, that an optimisation of the C code would make
it much more efficient, to at least the level of the Java code. However, this
example clearly shows how the same developer did a quicker and better job in
Java (a language that, unlike C, he was unfamiliar with). On the other hand,
the difference possibly comes also from the excellent refactoring afforded
by the new JITs virtual machines that now automatically makes many of
the performance fixes which previously had to be manually implemented—in
C of course all optimisations must be done by the coder.

Finally, the optimization work on the Java code has continued. The team
is now exploring the increasing possibilities of the options for aggressive
optimization and garbage collection tailoring available in some Java virtual
machines (especially the IBM one, used in the MareNostrum supercomputer)
that will possibly lead to further improvements in the performance of the
simulator.

4 Java, Gaia and commercial uses

When [10] was presented at the Astronomical Data Analysis and Software
Systems (ADASS) conference in 1999 most people in that community did
not know what Java was and this was the only paper mentioning Java. Two
years later about half of the astronomy related projects at ADASS involved
Java. Some project must take the first step, in this case Gaia and Planck were
experimenting with Java. These experiments possibly made it easier for the
Integral SOC and the entire Herschel Science Ground Segment to be written
in Java [14]. Gaia and Java go back many years, the initial prototype for the
Global Iterative Solution was already in Java in 1999 [9].

Java in the late 90s was not the same as it is today but already then it was
seen to have potential for science development. For a project like Gaia we
were faced with a life span of over 20 years for our software and an entrenched
Fortran community. It was clear already back then, as discussed earlier, that
Gaia processing software would not be written in Fortran but needed to be
in a more modern, preferably OO, language, C++ being the obvious choice.
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The transition for some scientists from Fortran to C++ was seen as difficult
or impossible. Java simply worked more easily and was chosen and eventually
accepted by all.

4.1 Negative aspects

We do not claim Java is the silver bullet [3] and we have several problems
which we live with especially in numerical coding. As already mentioned
especially when we started, there were no good numerical libraries. The
situation improved from about 2000 onwards when Java started to become
really usable for scientific computing in terms of robustness and performance.
A number of promising numerical library developments took place (e.g.
JAMA—a Java Matrix Package) but until around 2005 most of them had
stopped, leaving the distributions and code available but largely unmaintained.
A positive exception is the Apache Common Math library which is still in
active development and in extensive use in almost all of Gaia’s data processing
software. Early versions of Apache Common Math were missing linear algebra
functionality needed by us but that has improved with time.

In parallel with diminishing efforts for developing numerical libraries we
observed a general decline in support for Numerics in Java. For instance the
Numerics Working Group of the Java Grande Forum,1 initially a driving force
behind many positive developments around Java Numerics, has effectively
ceased to exist. This is a bit worrying along with a general perceived lack of
support for Java in the traditional conservative supercomputing scene that in
terms of languages remains to be dominated by Fortran and C until today.

In 1998 W. Kahan, one of the key persons behind the IEEE 754 Standard for
Binary Floating-Point Arithmetic, delivered a keynote “How Java’s Floating-
Point Hurts Everyone Everywhere” [5] at a Java HPC workshop. In this
contribution Java gets harshly criticized for for a number of IEEE non-
compliances which could and should have been avoided by the language
designers. In subsequent years Sun was repeatedly asked to rectify the known
deficiencies but chose to ignore all complaints and even today those issues
raised more than 10 years ago are, to our knowledge, still present in all existing
Java implementations. With Java now under Oracle’s control it seems unlikely
that the situation will change in the foreseeable future. Fortunately, in our
view most of the points are fairly subtle in nature and are unlikely to show up
as perceivable flaws in “ordinary” numerical application code. We can confirm
this for all of Gaia’s software and in particular for the AGIS system described
here in more detail (Section 2) with one exception: Java does not provide any
means to use what IEEE 754 calls ’trap-handlers’ for capturing and dealing
with numerical exceptions like division by zero. Every arithmetic operation
in Java always delivers a valid result and that can make the debugging of

1http://math.nist.gov/javanumerics/
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numerical code extremely difficult and time consuming. As an example, there
was a coding error in the AGIS attitude update that caused the introduction
of an NaN value into a large matrix of equations which then propagated
and spread through the matrix before eventually leading to NaN in an end
result much later. Without the option to have an exception raised at the first
occurrence of an NaN condition the only way to find the problem is to check
explicitly every intermediate result for NaN (Double.isNaN(x)). For obvious
reasons this is not a viable option in a large numerical code.

4.2 Features

One of the things which made java work well for us was its built in features. We
were especially happy to have multi threading and distributed programming
such as RMI (Remote Method Invocation—allows calling a method on an
object on another machine) built in to the language.

4.3 Rise of Java in industry

At the same time (back in the late 90’s) we saw in industry a surge of Java pro-
gramming as it pushed from the the Web language clearly into the back office.
Enterprise Java Beans were starting to appear behind web pages accessing
databases and wrapping legacy applications to make them network available.
Java was no longer an “applet” language for making more interactive web
pages—it was handling credit cards and transactions and doing serious work.
The fact that Java is 100% portable to all O/Ss where the JVM has been ported
to and backward compatible means that using libraries is no longer a painful
issue.

Companies such as IBM, Oracle, BEA, Sun and many open source vendors
have created Java application servers that support the Java standards in
JavaEE produced by Sun.

Since then frameworks to further aid productivity in the development of
Java software such as Spring and Hibernate have appeared on the scene and
these have helped with the adoption of Java as the technology of choice for
developing software. In addition the fact that there are thousands of open
source libraries available to use in Java projects has also helped the spread
of Java.

4.4 Maintainability, robustness and performance

When developing software there are a number of key issues that have to be
addressed including but not limited to Maintainability, Robustness, Scalability.

Addressing maintainability first, Java compared to other languages such
as C++ and Fortran offers a number of advantages. The defacto editor for
Java, Eclipse, provides a number of features that makes creating and main-
taining Java code easier; Graphical syntax highlighting, Refactoring wizards to
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improve the design of the application; Plugins to produce documentation. Java
was also one of the first languages to have a really good implementation of
the xUnit testing frameworks with the widely adopted JUnit. With Java 1.5
and the introduction of Generics and Annotations and with techniques such as
Aspect Oriented Programming (AOP—not currently used on Gaia) we have
the possibility of developing software with less code and the less code there is,
the more maintainable it is.

Java is more robust than C++, primarily because the C++ component of all
Java programs, the JVM itself, is the same for all Java programs and therefore
tried and tested millions of times.

Many people believe that Java is not as scalable as other languages be-
cause of the overhead of the Java bytecode interpretation. However the Java
Hotspot server compiler, especially the one in Java 1.6, is incredibly efficient
at optimising code that is called very frequently.

4.5 Portability and the cloud

Although there are minor problems with Java portability this is usually in
Graphical User Interfaces rather than in the type of code forming the majority
of the Gaia environment. As stated in Section 3 our simulation code has
been ported over many years to many platforms with little effort. Currently
development is done on MacOs, Linux and windows systems without issue.
Such portability lead us to consider using the Amazon E2C for the Astrometric
solution (Section 2). We, unlike CERN [13] are not yet tied in to one architec-
ture. Although these days even CERN use some cloud resource.

With about two person weeks of effort part of our team (Parsons and Olias)
got AGIS running on the cloud. Some problems were encountered with the
database configuration, although at least Amazon already hand a VM with
Oracle on it. Also a scalability problem in our own code was found and
remedied—prior to this we had no opportunity to run 1,400 threads. It worked
well, at least as well as our cheap in house cluster. Hence we agree with the
detractors of the Cloud—it is not a supercomputer with super fast interconnect,
but then one is not paying super prices either.

In fact although our intention is/was to build a cheap cluster (around
1M euro) for AGIS we estimate all AGIS mission processing for 100 million
stars could be done for about 400K euro. When energy is factored in this
makes Amazon look very attractive. It largely depends on idle time however—
and we in any case would not go without an in house cluster for testing and
development. It also appears we now may need to process 500 million sources
to counteract possible spatial error correlations (as presented by Berry Holl in
Heidelberg in 2009). This would bring the saving close to zero—but one must
question if the likes of Amazon can do a cheaper job of maintaining a cluster.

The availability of a much larger number of nodes than we can buy is very
interesting both for testing and for production. By using Amazon we could
perhaps do our processing faster by using more nodes and still have it cost less
than an in house machine. We shall continue to experiment and evaluate this
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option—in any case the final machine at ESAC for the processing will not be
purchased until we are a couple of years into the mission around 2015.

4.6 Virtualisation—non uniqueness

The real power of Java comes from the notion of running on a virtual machine.
This should not be, but often is, confused with interpretation such as done
in LISP and Smalltalk. This virtue is not shared by many new languages or
schemes perhaps the most all encompassing of which is the Microsoft .NET
framework in which many languages are compiled to the same virtual machine.
We are not trying to say Java is the only language with this feature. In fact with
virtualisation suddenly any particular machine/OS/langugae configuration can
be equally portable with its own virtual machine. Suddenly putting those legacy
apps in a cloud may not be such a hard decision.

4.7 Future of Java

The rise of Java in industry and positive experience we had we Java compared
to C++ reinforced our choice of Java as the language for Gaia. This choice was
reaffirmed within the Gaia community in 2006 [4]. Indeed at the time of writing
all science development missions at ESAC are using Java as their programming
language.

We predict that Java will be the language of choice for the foreseeable future
because of all the advantages outlined earlier, although we believe that within
the Java Virtual Machine, we will see more use of dynamic languages such as
Ruby and Groovy for areas of the application that will need to be changed very
frequently.

5 Conclusion

One may argue about the definition of High Performance Computing but
within the Gaia project since the late 90s we have certainly be doing numeri-
cally intensive computing and handling increasingly large amounts of data in a
highly distributed manner. All of this is done using Java. We argue that this is
a good option for long running projects where portability and maintenance
are possibly more important than squeezing the last FLOP from a specific
processor.

The portability of Java has served us well in the last decade allowing code to
move from SPARC station to Linux boxes, WinTel and even the Marenostrum
super computer. Of late we have also leveraged Amazon’s E2C resources.

We are not alone in the astronomy world, many other projects are using
Java or other high level languages. The ESA missions Herschel, Planck and
many archives are Java users. Others such as Spitzer and JWST mentioned
using Java at least in part. Other higher level languages such as C# and Python
are also in use.
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Appendix: Acronyms used in this paper

The following table has been generated from the on-line Gaia acronym list:

Acronym Description

ADASS Astronomical Data Analysis Software and Systems
AGIS Astrometric Global Iterative Solution
BSC Barcelona Supercomputing Centre
CERN Centre Europénne pour la Recherche Nucléaire
CESCA CEntre de Supercomputacío de CAtalunya
CNES Centre National d’Etudes Spatiales (France)
CPU Central Processing Unit
DPAC Data Processing and Analysis Consortium
DPACE Data Processing and Analysis Consortium Executive
ESA European Space Agency
ESAC European Space Astronomy Centre (VilSpa)
FLOP FLoating-point OPeration
GB GigaByte
HPC High-Performance Computing
ICRS International Celestial Reference System
IEEE Institute of Electrical and Electronic Engineers
JIT Just In Time Compiler
JNI Java Native Interface
JVM Java Virtual Machine
JWST James Webb Space Telescope (formerly known as NGST)
MB MegaByte
OO Object Oriented
PMD Software tool to detect software problems
RAM Random Access Memory
RMI Remote Method Invocation
SAN Storage Area Network
SOC Science Operations Centre
TB TeraByte
UB University of Barcelona (Spain)
UML Unified Modeling Language
VM Virtual Machine
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