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Si viviéramos en un planeta donde nunca cambia nada, habria poco
que hacer. No habria nada que explicarse. No habria estimulo
para la ciencia. Y si viviéramos en un mundo impredecible, donde
las cosas cambian de modo fortuito o muy complejo, seriamos
incapaces de explicarnos nada. Tampoco en este caso podria existir

la ciencia. Pero vivimos en un universo intermedio...

CARL SAGAN, Cosmos

-No esta muy claro -dijo Etienne.

-No puede estar claro, si lo estuviera seria falso, seria cientificamente
verdadero quiza, pero falso como absoluto. La claridad es una
exigencia intelectual y nada mas. Ojald pudiéramos saber claro,
entender claro al margen de la ciencia y la razéon. Y cuando digo
"ojala”, anda a saber si no estoy diciendo una idiotez. Probable-
mente la Unica ancora de salvacién sea la ciencia, el uranio 235,
esas cosas. Pero ademas hay que vivir.

-Si, dijo la Maga, sirviendo café-. Ademas hay que vivir.

JuLio CORTAZAR, Rayuela
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Chapter 1

Introduction

The first time someone reads the title of this thesis and just has a quick look at
the contents of the index it may wonder why spend such amount of effort and time
investigating about the axisymmetric version of the numerical technique known as
smoothed particle hydrodynamics (SPH). That is a reasonable concern because the
technique was originally devised to work in cartesian three dimensions, Gingold
and Monaghan [25] and Lucy [37]. Nowadays the technique is in a mature stage
and 3D simulations of astrophysical scenarios are routinary conducted worldwide.
As the time went on SPH has progressively been applied to other scientific areas,
including engineering where two-dimensional (cartesian) simulations using SPH are
very common (see for example [40], [49]). Little attention (in comparison) was paid
to the development of no cartesian SPH formalisms, and in particular to build a
coherent axisymmetric SPH code.

Still, it is surprising the diversity of topics which we were able to model using
the novel scheme for the axisymmetric SPH that we present in this thesis. Among
them: (1) The growth of hydrodynamic instabilities during the stagnation phase of
a microcapsule in Inertial Confinement Fusion (ICF) experiments. (2) Simulations
concerning the formation of jets induced by the collision of two streams of gas or
by two metallic plates. (3) The head on collision of a pair of white dwarf stars
giving birth to a supernova explosion. These are a few examples but the number
of applications of an axisymmetric SPH code could be much larger (for instance an
axisymmetric code is able to handle rotation around a fixed axis, a topic of great

interest to astrophysics and probably to fluid dynamics).
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But let’s go back for a while to the beginning of this work, many years ago, when
we tried to apply the 3D-SPH currently used by our astrophysics group to ICF [66].
Then, we became aware of the difficulties to model the compression process of the
capsule even using a very simplified physics. One of the difficulties was the limited
resolution of our simulations because even though we manage to follow the compres-
sion phase and roughly reproduce the grow of the Rayleigh-Taylor (RT) instability
during the stagnation stage the results of the simulations were a bit desappointing
because the lack of low scale structure seen in our simulations. There are a lot of
physical phenomena involved in standard ICF, perfectly summarized by Nakai and
Takabe [51] for the case of confinement by direct laser irradiation (see Fig. 1.1).
The flow along the central line of the chart goes through stages that can be handled
in spherical symmetry using one-dimensional codes. On the right there are shown
the main physical process operating at each stage. Finally multi-dimensional hy-
drodynamic effects which make the simulation of the phenomena more complicated
are depicted on the leftmost part of the diagram. In this thesis we have studied
the hydrodynamics during the stagnation phase, using the axisymmetric SPH code
with a resolution much higher than that of our previous work [66] and focussed the

attention on the quantitative analysis of the RT instability.

Although the spatial and temporal scales of ICF and astrophysics are completely
different they share many things. They involve, for example, similar physical pro-
cesses such as the equation of state (EOS) of dense matter, nuclear reactions, particle
transport and convection. The numerical approaches used to study the hydrody-
namics of supernova explosions keep many resemblances to that of ICF. Generally
speaking the hydrocodes used in ICF studies are grid based codes (such as the adap-
tive mesh refinement (AMR) or the piecewise parabolic method (PPM)) while in
astrophysics the zoo is more varied because we find also SPH codes in many applica-
tions. Roughly speaking SPH are used wherever there is a large deformation of the
bodies and there is needed a good level of conservation of linear and angular mo-
mentum, as in many astrophysical scenarios. On the other hand adaptive Eulerian
hydrodynamics (AMR codes for example) give, in many cases, more precise results,
as for instance in the treatment of instabilities or shock waves. Nevertheless both
family of methods lead to similar results provided a similar resolution is achieved
([30], [80]) but sometimes that would imply a very large number of particles in the
case of SPH codes.

Each method has advantages and disadvantages and the choice depends, among
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Figure 1.1: The laser fusion physical scenario. The central line is the spherically sym-

metric implosion and burn scenario (one dimension). The right-hand-side represents the
importance of transport issues and high-energy electron production. The processes on the
left-hand-side are related to multi-dimensional effects.[Source: Nakai and Takabe(1996)
[51]]

other things, on the particular problem to be solved. In SPH the fluid is divided in
a set of particles whose motion follows the Lagrangian dynamics in a similar way
molecular dynamics work but incorporating forces derived from pressure. In AMR
the fluid is modeled by a series of hierarchical meshes in a Eulerian fixed frame. In
SPH the fluid properties are calculated at each particle position as a weighted aver-
age of the magnitudes attached to the closest particles. SPH can study free-surface
flow fenomenae where Eulerian metods can be difficult to aply (see for example [16]).
In AMR the fluid properties are calculated evaluating the flow between cells in a
rather sophisticated manner. As mentioned AMR based codes have comparatively

more resolution in the treatment of shocks and discontinuities because of the im-
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plementation of the Riemann solver technique to handle with these problems and
because its good adaptive properties. SPH relies in the artificial viscosity formalism
to solve shocks and to avoid the numerical oscillations of the rarefaction tail behind
the shock. Although there have been notorious improvements in the formulation of
that technique ([44],[5]), current implementations of artificial viscosity still smooths
in excess the velocity field in regions of strong shear even if they are far from the
shock surfaces. Still the artificial technique works reasonably well even in adverse
conditions. For example, even though Agertz et al. [1] highlighted the difficulties
of SPH to correctly model the Kelvin-Helmholtz instability arising from small per-
turbations and large density contrasts it was shown that the phenomenon can be
simulated by simply adding an artificial heat conduction term to smooth the pres-
sure field [60]. Recently [23] managed to correctly reproduce the KH instability with
an alternative formulation of SPH. Another negative point of the SPH formalism
is that resolution is proportional to the cubic root of density so that high density
regions are better described than rarefied regions. This last point can be overcame
by a) increasing the total number of particles to keep the resolution of diluted re-
gions at good level and b) increasing the number of particles only in the low-density

regions and using variable mass for them.

Among the virtues of SPH we can cite: (1) Its Lagrangian mesh-free nature
(ideal to describe complex geometries). (2) It is fully conservative by construction,
(linear an angular momentum and mass are perfectly conserved and energy is also
perfectly conserved in isentropic flows). (3) Numerical diffusion is much lower than
in Eulerian codes, making it ideally suited to study reactive fluxes. In addition the
formulation of SPH and its practical implementation is remarkably simple. That
explains why Eulerian codes evolved naturally from two to three dimensions while

SPH codes were written in 3D from the beginning and evolved to 2D later.

Axisymmetric hydrocodes takes advantage of the axial symmetry displayed by
many processes in nature. Therefore these codes are able to describe three-dimensional
phenomena working within any plane which contains the line of symmetry (see
Fig. 1.2). This allows to model full 3D phenomena using a 2D-hydrocode with
the subsequent enhancement in resolution ( sometimes people refer to them as 2 %
codes). There are a lot of Eulerian codes written using the axisymmetric hypothe-
sis, many of them of AMR type ([47],[86],[53]). In comparison the number of SPH
codes which makes use of that approximation is much lower. Moreover, with very

few exceptions ([28],[57],[7]), axisymmetric SPH codes have not been used to study



realistic scenarios in both astrophysics, laboratory of astrophysics and ICF. As a
consequence we could said that there is still lacking a formulation of SPH subjected
to the axisymmetric hypothesis good enough to be applied to realistic complex sce-
narios. The main goal of this work is to build and test a coherent axisymmetric SPH
scheme which can be applied to model realistic physical processes and can compete
with the existing Eulerian codes. The first study carried out using that recently
developed code called AxisSPH has already been published (see [21]) whereas a

preliminary version was used in [84].

Many interesting astrophysical processes can be simulated using a set of hy-
drodynamic equations termed as Euler equations. These equations come from a
restricted lecture of the Navier-Stokes equations of a fluid in the approximation of
zero viscosity and zero heat conduction

%:—pv-v, (1.1)
Y- ye, (1.2
%:v, (1.3)
Z—?:—%V v, (1.4)

where p is the density, r and v are the position and velocity vectors respectively,
u is the internal specific energy, P is the pressure and g is the gravitational force
per unit of mass. In these equations the nature of the coordinate system chosen to
describe the hydrodynamics constrains the form in which the V operator is written.

For instance, in cylindrical coordinates we preferably write VP and V - v as

OP__ 0P

VP = ET + EZ, (15)
v, Ov, Ov,
Vo=t e T (16)

where r = /22 4+ y2. These expressions are basically the same as those obtained
using cartesian operators but with the additional term v, /r in the divergence of
velocity. The importance of v,./r depends on the spatial profile of v, and is therefore

problem dependent.
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Given the central role played by density in the formulation of the SPH technique
it is of crucial importance to have in mind that two different definitions of density are
needed in the axisymmetric approach. First we have the two-dimensional density,
71, which is the density estimated using the standard SPH interpolation technique

in the plane where the simulation runs

n= ijWl'j(r, z), (1.7)

where m; is the mass of the particle and W;; a weighting function called the kernel
(see chapter 2 for a precise explanation of these magnitudes). But, secondly, we
also have to compute the value of the three-dimensional density p because we need
it to calculate the pressure and internal energy of the fluid via the EOS. The usual

procedure is to deduce p from the calculated value of n using

this simple relationship comes from the bizarre nature of particles in the axisym-
metric geometry which are not mathematical points but rings or hoops with radius
r centered around the z-axis (see Fig. 1.2). Therefore the projection of the mass of
one of these 3D-rings (with density p) into the 2D-working plane of the simulation
directly leads to Eq. 1.8.

Using Eq. 1.8 and neglecting the v, /r in the SPH equations Herant and Benz
28] studied the growth of hydrodynamical instabilities during the early stages of
the explosion of supernova SN1987A in an attempt to understand the unexpected

observed high-velocity wings of the iron line.

Nevertheless the v, /r term must be part of the formulation, being of great im-
portance for imploding systems because of the inverse dependence on the distance
to the z-axis. Therefore the axisymmetric hypothesis demands the inclusion of that
term in the continuity and energy equations (Eqs. 1.1 and 1.4). But the momentum
equation has also to be modified to host a similar term. A 2D particle approaching
the z-axis can be understood as a string of particles in 3D which forms a converging
hoop. As the hoop shrinks its density rises because the ring surface goes down while

its mass remains constant. Then the increase of the pressure by this geometrical



A j

X‘F

Figure 1.2: Schematic representation of the 2D axisymmetric coordinates (left) and
2D cartesian coordinates (right). A 2D simulation solves a thin film problem of a 3D
evolution. In the sketch there are represented three particles my,my and ms in the plane
IT and the same equivalent particles m},m/, and mj in the plane II’. In the axisymmetric
approximation all the planes contain the symmetry line (the z-axis) and the particles
become 3D loops or hoops. In the cartesian approximation the set of planes are parallel

and the particles become slender unlimited cilinders.

mechanism translates to an outward force on the hoop or, equivalently, onto the 2D
particle that represents the whole hoop. That force, which is a particular signa-
ture of the axisymmetric hypothesis, is usually called the hoop stress. Including the
hoop stress in the axisymmetric Euler equations not only leads to a much better
description of the dynamics but also improves substantially the conservation of the
energy. As we will see the hoop stress force is reflected in the r-component of the
acceleration equation as a new term 27 P/n ([8],[57]). Notice that the hoop stress
can also be a source of numerical troubles because it becomes divergent near the

symmetry axis where 1 — 0.

To circumvent the singularity problems introduced by the hoop stress and the
v./r terms Omang, Borve and Trulsen [54], suggested a different formulation for
axisymmetric SPH. They propose to write the Euler equations using standard 2D
cartesian coordinates but to change the geometry of the interpolating kernel such

as it keeps information about the axisymmetric nature of the simulation. Therefore
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in Omang et al. formulation the Euler equations remain simple but the geometrical
complexity of interpolations increases. The scheme of Omang et al. has the practical
inconvenient that several elliptical integrals have to be computed numerically for

each particle at each time step.

In this thesis we extend the formulation of Brookshaw [8] for axisymmetric SPH
but incorporating analytical correction functions to avoid divergence problems in the
hoop stress related terms when particles move close to the singularity z-axis. These
correction terms were obtained from reasonable physical and geometrical statements
and are straightforward to implement with no penalty in computer time (see Sec. 2.3,
2.4 and 2.6). Additionally we have also improved many pieces of physics which are
necessary to apply the method to solve problems in the real world. Among them
we have developed a more exact expression for heat conductive transport, we have
completed the artificial viscosity formalism with a hoop-stress related term (never
taken into account before) and devised a novel scheme to implement gravity in the
calculations [24]. Other minor contributions will be also highlighted as the reading

of text progresses.

Hot plasmas with high temperature gradients efficiently conduct or diffuse heat
because of the large conductivity and diffusivity coefficients typical of the interior of
the stars or in ICF experiments. In particular conductive heat transport demands

a new term in the energy equation, (Eq. 1.4)

(%)md — %v (kVT) (1.9)

where k is the conductivity coefficient, often a complex function of the thermo-
dynamic variables and chemical composition. In the axisymmetric approach the
divergence of the temperature gradient must also contain geometric corrections in
the same line as the divergence of velocity. Our approach (see Sec. 2.7) to the con-
duction term includes, for first time, these corrections that are especially relevant
when the heat flux takes place in the axis neighborhood. On another note the cor-
rect implementation of that term could also be of interest to smooth the excess of
internal energy which appears during the so called wall shock conditions, that is
during the supersonic impact of streams of gas. Wall shock conditions are not rare
in axisymmetric geometry because many problems of interest which follows that

geometry involve strong convergent fluxes of plasma (ICF, stellar collapse, several



types of jets).

The use of the artificial viscosity formulation in SPH is needed to handle with
shocks and also to stabilize the scheme by limiting the level of numerical noise. In
this work we have implemented the standard recipe of Monaghan [42] for the carte-
sian part of the gradient of viscous pressure. Nevertheless a coherent formulation
of artificial viscosity in the axisymmetric paradigm demands again the inclusion of
a new term o v,/r arising from cylindrical geometry. The ability of the complete
formulation, given in Sec. 2.9, to handle with strong converging shocks has been

demonstrated in many simulations described in different chapters of this thesis.

Self gravity is of course not important in ICF or Laboratory Astrophysics but it
can not be neglected in many astrophysical situations. Being a long range force the
major difficulty to obtain the gravitational force acting on a particle belonging to a
system of N particles is that the number of calculations scales as N2. In standard 3D
SPH gravity is often obtained by combining the multipolar expansion of the gravi-
tational force with the hierarchical organization of the particle sample in clusters of
particles of different size. These hierarchical tree methods (Hernquist and Katz [29])
reduces the computational overload to NlogN. Unfortunately the ring-like nature
of particles in axisymmetric geometry precludes the application of hierarchical tree
methods to this case. We have developed a novel and practical procedure to com-
pute gravity by direct particle to particle interaction (see Sec. 2.10). The task is not
straightforward, however, because particles are in fact rings of different size which
have to be taken into account to describe the interaction. Although the computa-
tional overload of the algorithm scales as oc N? the calculation is affordable because
the relatively low number of particles required in 2D to carry out simulations with
good accuracy. Moreover a modified scheme which uses the gravitational poten-
tial to calculate the force has also been developed which reduces the computational
overload. Several test specifically addressed to check the gravitational module of

the code are given in Subsec. 2.10.3 and Sec. 3.5.

The basic tests devised to check the behavior and consistency of the hydrocode
have been completed with three more realistic applications taken from different
fields of the physics. The goal of these applications is to validate the code in real
scenarios where there are present hydrodynamic instabilities (stagnation phase of a
ICF capsule), strong shocks (chapter devoted to jets) and complex physics (head on

collision of two white dwarfs).
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In the first complex application we have carried out a simulation of the stagna-
tion phase of the implosion of a ICF pellet using the same initial conditions as in
Sakagami and Nishihara [70]. Although the calculation is still far from the state of
art of today numerical simulations it contains worthy pieces of physics such as a more
complete equation of state consisting in ions, electrons treated as a partially degen-
erated gas and radiation. The conductive heat transport was also incorporated. In
these simulations we were able to measure the growth rate of the Rayleigh-Taylor

instabilities for different wavenumbers.

Collision of supersonic flows of gases, fluids or solids can produce collimated
jets, an ubiquitous phenomenon present in many fields of physics, astrophysics and
engineering. In the second application we analyze the capability of the proposed
axisymmetric SPH code to handle with jets. We report on several simulations of
jets born after the geometrical convergence of two conical streams of gas onto the
symmetry axis. The results of the tests have been compared to the theoretical
model developed by Canté et al. [11]. Depending on the angle of incidence of the
converging flows one or two jets can be observed. For small angles of incidence only
one jet appears but above a critical angle 6. it is possible to have two jets moving
along the z-axis in opposite directions. The value of 8. obtained in our simulations
and the general behaviour of the jets is in reasonable agreement with the analytical
theory. In addition we have been able to qualitatively reproduce the structure of

jets born from the collision of metallic plates using a stiffened gas equation of state.

Finally we present an astrophysical application, the head on collision of two white
dwarf stars, which incorporates a good deal of physics. Nowadays this simulation is
of considerable interests because the collision of two white dwarfs has been recently
invoked as a potential mechanism to explain the origin of some Type Ia supernova
explosions ([69],[64]). All simulations done so far were carried out using three di-
mensional SPH hydrodynamics [63] with limited resolution. However an interesting
extreme case can be studied using axisymmetric hydrodynamics: the head on colli-
sion of two white dwarfs, and the results compared with a full 3D-SPH simulation
to seek for convergence. For this particular calculation we have chosen a couple of
0.7M5+0.7M white dwarfs whose total mass just equals the Chandrasekhar-mass
limit. The included physics consists of gravity, a complex EOS (ions with Coulomb
corrections, partially-relativistic partially-degenerate electrons and radiation) and
nuclear reactions involving a nuclear network of 14 species from helium to zinc. As

shown in Sec. 4.3 the axisymmetric SPH is able to successfully cope with this sce-
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nario, providing interesting information concerning various observables such as the
kinetic energy of the explosion and the approximate chemical composition of the

ejected material.

The material included in this work is organized as follows. In Chapter 2 we
deduce and write the basic Euler equations in the axisymmetric paradig (they are
summarized in Sec. 3.1). In this chapter there is also a lot of discussion concerning
the implementation of the necessary physics needed to carry out meaningful realistic
simulations (heat conduction, shock handling, gravity). Chapter 3 is devoted to
describe and discuss five basic tests aimed at validating the axisymmetric scheme.
Three complex applications involving very different scenarios (ICF, jets, and the
collision and explosion of twin white dwarfs) are presented in Chapter 4 . Finally,
the main conclusions of this thesis as well as the principal lines of future work are
outlined in Chapter 5. Additional information concerning technical details of the
implementation of the code can be found in the two Appendices at the final pages

of the manuscript.
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Chapter 2

Axisymmetric SPH

Many times it is possible to assume that the phenomenon to be studied has cylin-
drical symmetry and use a 2D axisymmetric code to simulate the hydrodynamical
evolution of the system. A variety of axisymmetric codes have been successfully
used to simulate astrophysical phenomena such accretion discs, rotating stars, and
explosive episodes like novae o supernovae (see for example [77], [38]). In inertial
confinement fusion scenarios they have been used to study direct-drive implosions,
and also in the so called fast ignition provided the heating laser goes along the

symmetry axis (see for example [79], [4], [81], [85]).

Although it is very easy to reduce a 3D Cartesian SPH code to a 2D Cartesian
SPH code, the resulting nature of the particles (infinite cylinders) is very difficult to
conciliate to real astrophysical scenarios. Thus if we want to improve the resolution,
changing the dependence of this magnitude from the cube root to a square root of
the number of interpolation points, the best solution is to implement a 2D SPH

axisymmetric code.

2.1 3D SPH

Before explaining our 2D SPH code in the axisymmetric version, we first review the
basic formalism of the SPH technique, a method that was designed from its origins

to work in three dimensions by Lucy [37] and Gingold and Monaghan [25] in 1977.

13
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SPH is a gridless lagrangian method, initially introduced in astrophysical simu-
lations to study gas dynamical processes involving large deformations of the bodies,
and important spatial changes of physical magnitudes. The gridless nature of SPH
avoids the problems associated with mesh tangling and distortion. It is easy to re-
produce scenarios with void spaces, or without boundary limits avoiding the waste
of unnecessary mesh points. On the other hand, the mathematical formalism of

3D-SPH is conceptually much simpler than grid based methods.

In SPH method the fluid is divided into a sample of N mass points m;, usually
called particles that move according to the hydrodynamic equations. Any continuum
property of the fluid, A(r), function of the position r, is reconstructed at every step

of time, by means of an interpolation procedure

Alr) = /A(r/)5(|r’ ), (2.1)

where ¢ refers to the Dirac delta function.

For numerical calculations the integral of Eq. 2.1 can be approximated by the

summation

N

SHOEDD f—jAAr)W(rij, h)., (2.2)

where m; and p; are the mass and the density of particle j. The Dirac delta is
substituted by a smooth function, W (r;;, h) called the interpolator kernel with r;; =
|r; —r;| and h is the spatial range of the interpolator, known as the smoothing-length

parameter. Two properties have to be demanded to the interpolating kernel

lim W(r' —r,h) =6(r' —r), (2.3)

h—0

/W(I" —r,h)dr' =1, (2.4)

the first one implies that the kernel must reproduce a Dirac delta function when
h — 0 and the second is a normalization condition. There is a wide family of

interpolator kernels, for example the Gaussian kernel
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W(ry, h) = ﬁe(ﬂhr)i (2.5)

but probably the most used kernel in the SPH technique is the cubic spline kernel
which was initially applied to SPH calculations by Monaghan and Lattanzio [46]

1—%1}24—%1)3 0<ov<l1
K
Wi(v,h) =355 2~ v) l<v<?2, (2.6)
0 v > 2

where v = 7;;/h is a dimensionless distance scaled over the smoothing length, and
d is the number of dimensions. K = %, ;—?r and }r for one, two and three dimensions
respectively. The polynomial nature of this kernel makes it computationally efficient.
Another important advantage is that the kernel becomes zero for distances between
particles larger than two times the smoothing-length parameter, so the contribution
to summations in Eq. 2.2 is reduced from the total number of particles N to a

discrete sample of the nearest points, usually called neighbors particles.

Therefore an important feature of any SPH code is to include an efficient al-
gorithm to find the neighbors of a given particle. A method that has been widely
used to perform this task, and the one we have used in our code, was developed by

Hernquist and Katz [29] being based on a hierarchical tree structure.

Although the early SPH simulations used a fixed smoothed-length for all par-
ticles, it is more accurate to use a variable smoothing length for each particle at
each time step, h = h(r,t). If a constant value of h is used, isolated particles could
have not enough interpolator points and the large number of interpolator particles
in zones of high density would smooth the magnitudes in excess. In practice, the
procedure to find the value of h for each particle is to choose a constant number of
neighbors particles, so that when the density rises, h becomes smaller (see Fig. 2.1).

For that reason h is a good parameter to estimate resolution.

In order to improve the results in some situations, as for example when there
are intense shocks, several alternative kernels have been proposed. For example
Owen et al. [56] used kernels that change the domain from a sphere to an ellip-

soid with the minor axis oriented in the shock direction. Recently we proposed
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Figure 2.1: Schematic representation of the particles m; and m; and its neighbors
particles, each particle has the same number of neighbors, thus when the density is

larger, the radius 2h is lesser.

[10] a one-parameter family of interpolating kernels, with compact support based
on harmonic-like functions that covers the whole range of kernels in a continuous
manner by simply varying a leading parameter in the adaptive kernels. The shape of
the harmonic kernel range from more extend to more centrally condensed profiles as
the parameter n increases in order to enhance the local resolution when necessary.

The family of interpolators W/ (v, h) is written

1 v=>0
Bn sin| Zv "
W0, h) = 7% ( ,[;]> 0<v<2, (2.7)
2
0 v>2

where B,, is a normalization factor. The parameter n can be dynamically modi-
fied during the simulation as a function of hydrodynamic local properties (see the
Appendix B for details). We have used W2 (v, h) in some applications of Chapter 4.

In SPH the continuity equation takes a particularly simple form putting A;(r) =

p; into the summation interpolation equation Eq. 2.2

N
pi = Z m;Wij (2.8)
J
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where W;; = W (r;;, h). This equation conserves mass exactly.

One powerful feature of SPH relies in its simplicity for calculating the fist deriva-
tives of any magnitude A; because the derivative acts on the kernel, which is a

differentiable function, and not on the grid as in other methods.

04 iv: A oW,

ailfi -

T (2.9)

However, it is possible to build other expressions for the derivative (see [45])

using the following identity

0A 1 [0(PA) 0P
—_— == — A— 2.1
or @ ( Ox 8m> ’ (2.10)
which, for ® =1 and ® = p leads to
OAi _gmmy 4y Wy 2.11
j
04; 1 & oW
5% = o > mi(A; - A)) ot (2.12)
7 7 ] (2
The Euler equation in absence of gravity
dv VP
—_ = —— 2.13
= (213)

can be translated in SPH formalism using Eq. 2.9, 2.11 or 2.12, but it is more useful

to consider the following identity

P P P
V— = V (—) + —2V,0, (2.14)
P P p

therefore, using Eq. 2.9 we can express the momentum equation as
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N
dv; P, P
J v J

where V;W;; denotes the gradient of IW;; with respect to the coordinates of particle i
and with perfect linear and angular momentum conservation because the forces

between particles ¢ and j are equal and opposite.

The energy equation can be derived from the first law of thermodynamics in an

isolated system

du PdV _ Pdp

du _ _pav._ Fdp 2.16
dt dt  p2dt’ (2.16)

where u refers to the specific internal energy. Using the continuity equation

AV 2.17
the energy equation can be expressed as

d P

M_ _Tv.v, (2.18)

dt P

the translation of this equation to SPH can be done in different ways. For example,

using the Eq. 2.12 for each component of the divergence of the velocity

du; P
% = ? ijvij . VZW” y (219)
v

were v;; = v; — v;. Again we make use of the following identity

%V-v:v-(gv)—v-V(g), (2.20)

to derive a second expression for the energy equation
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du al
' = Zm] 7 VAL (2.21)

Finally, it is possible to obtain a symmetric version of the energy equation by
taking the average of Eq. 2.19 and Eq. 2.21

duzz_z (

) Vij - Vi VVU (222)

J

In SPH, however, hydrodynamic equations have to include some sort of viscosity,
to avoid unphysical oscillations which appear downstream of shocks. In this respect,
several different formulations can be used, but one commonly used (see [45]) is to
add an artificial viscosity term II;; to the momentum and energy equations (Eq. 2.15

and Eq. 2.22) in the following manner

dz Z

v = mj (— —+H”) VZ'VVij, (223)
Pi J

du@'_l S M E+Q+H.. Vi W (2.24)

a2 gt v Vil |

this new term is evaluated as

acpij+BuZ; .
— 4 1fVij “Ti < 0,

Hij — Pii (225)
0 IfVZJI'UEO7
and
hijvij - Tij
= e, 2.26
% J r?j + VQ ( )

where hy; = $(h; + h;), pij = 2(p;i + p;) and &; = 3(¢; + ¢;) are the averaged
smoothing length, density and speed of sound between particle ¢ and its neighbor j
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respectively. The linear part of j1;; represents a bulk viscosity while the quadratic one
is the von Neumann-Ritchmeyer viscosity, which prevents particle interpenetration
in collisions with high Mach number. The v = 0‘17%' helps to avoid divergences

when r;; — 0 (see Sec. 2.9 for more details).

2.2 Axisymmetric SPH: existing formulations

Since the first applications, (see [37] and [25]) SPH codes have been preferently used
to solve 3D problems in physics and engineering. However the first attempts to work
with a consistent 2D-axisymmetric SPH method [28] began around 1990.

In these approximations the equations were based on the standard Cartesian ker-
nel function (the spline kernel, see Eq. 2.6) renormalized by a factor 1/(27r), which
is needed to transform the 2D density 1 (the "natural” density in a 2D distribution
of points) in a 3D density p (the "real” density, with "real” meaning for example
that used to compute EOS). The hydrodynamic SPH equations given by Eq. 2.2,
Eq. 2.8, Eq. 2.23 and Eq. 2.24 can be translated to their axisymmetric form. They
can be found in the Appendix B of [28] are

N A
<A>=)"m=LWy, (2.27)
=1
N
n=) mWy, (2.28)
j=1
N
dv m; |:Pz' P; }
dt ]Zl 27 pg p? ! ! ( )
N
du; P \£ \}
dt p? ;m] (27T7”¢ 27rrj> !
N
1 V; V;
- I —— — 2 VW 2.30
* 2 ;m] J (27rrj 27?73) ! ( )

for an interpolated function A(s), and for mass, momentum and energy conservation.
Benz and Herant [28] use this approach to simulate the Rayleigh-Taylor instabilities
of the postexplosion of a supernova (SN 1987A).
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The most important difficulty in the expressions above is that they involve the
factor 1/(27r) which becomes singular in the proximity of the z-axis, when r — 0.
To avoid this situation they only modelled a 60° wedge with periodic boundary

conditions, therefore reducing the number of particles close to the z-axis.

A good attempt to improve the above formulation was proposed by Petschek
and Libersky in 1993 [57]. In their paper they start from a three dimensional
Cartesian representation of SPH. After integrating the angular component they
present a coherent description in cylindrical coordinates where particles were treated
as if they were a torus. The deduction was extended to include the entire stress
tensor. Unfortunately, the formulation was only able to work with a Gaussian
interpolation kernel (Eq. 2.5) with an arbitrary cut-off at finite range. The method
included the hoop stress and therefore was able to handle with the z-axis but still
it had some difficulties to solve impact problems such as the well known wall shock
problem [52].

In year 2005, Omang, Bgrve & Trulsen proposed a new kernel function adapted
for cylindrically symmetric problems in the context of SPH, and derived the modi-
fied equations of motion using the Lagrangian formalism (see [55]). They obtained
satisfactory results in test problems that need good resolution near the z-axis, as for
example the Noh infinite shock problem. The underlying problem of that approach
is the numerical difficulty (in terms of computational speed) of calculating elliptical
integrals at each integration step and for each particle, that are needed to evaluate

this new kernel function Wscs

arcsin(min(1l,/(4—A)/B))
Waea(r', 2/ 1, 2, h) = 4 / Wess(v/ (4 + Bsin?v))dv,  (2.31)

0

where A = ((2/ — 2)? + (v’ — r)?/h?, B = 4r'rTh? and Wg3 represents the B-spline
function in three dimensional space (the cubic-spline). The equations of motion

derived using this formulation are
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N
pi = Z m;iWses (2.32)
j=1
dv ﬁ: r%+H+H}DW/ (2.33)
T mj|—5 T35 ij | YiV¥Vscz .
dt = g
N
du; P 1 0 0 0
L = = _Hi' riA riN i 4% ’ 2.34
dt jzlmj (p?+2 J> (”Jarjﬂj 87‘i+v azi> e (2.34)
where D; = (%, %). Later on the same authors improved the formalism using an

alternative generic kernel (called Wasc) with analytical solutions (see [54]).

We have also to mention the contribution made by Leigh Brookshaw in 2003,
who derived the axisymmetric SPH equations from the minimal action principle. He
showed how the hoop-stress terms appear naturally from the relationship between
the 2D and 3D densities, n = 27rp.

The corresponding equations are

N
n; = Z ijij ’ (2.35)
j=1
P N Pr, P.r:\ oW,;
=2 — 27 m; ”+]J) ”y (2.36)
n glj(ﬁ ) Ori
al Pr;  Pir;\ OW,;
5=-21) m;| — + -2 ]> 2 (2.37)
du; P P ri
dtz = —2m—" 4+ 2 —— ij(vi —vj) - D Wi, (2.38)
T i =
7j=1

where s = (r, z) are the cylindrical coordinates treated as if they were cartesian and
W (s — s'; h) is the cartesian interpolating kernel. The proposal of Brookshaw was
easier to be implemented but again it was difficult to handle points in the vicinity

of the line of symmetry when r» — 0.
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2.3 Approximating the density

Given the difficulties of the above schemes to correctly represent the gas dynamics
in axis converging flows we have derived a new formalism which preserves many of
the virtues but avoids the disadvantages of these methods. Firstly, in our scheme it
is not necessary to modify the interpolation kernel as in Omang et al. Therefore it
is possible to use any of the existing kernels. We have used mainly the cubic spline
kernel as well as the adaptive kernel (Eq. 2.7) proposed by Cabezén et al. [10]. But
it would be also possible to make use of other kernels, as for example, elliptic kernels
(see [56]).

Another important feature of our approximation is the use of reflective particles.
That is, each ring is divided in two identical parts, one moves with the radial coor-
dinate r > 0 and the other, the symmetric one (denoted by a s superindex) moves

as the specular image of the first

r®=—r,

2’ =z,

m’=m,

vy = =0,

vl =w,. (2.39)

Notice that only those symmetric particles moving near the z-axis at distance
lesser than 2h are relevant to the calculation of the density. In this case the particle
can have neighbors with » > 0 and r < 0. This method avoids the underestimation
of the neighbors particles located near the z-axis. Using this scheme we have a

continuous and isotropic distribution of particles when r — 0.

The addition of these particles is complemented with a correction factor f; that
only affects particles moving at a distance lesser than 2h from the z-axis. This factor
reduces the value of n; when ¢; = ;+ < 2 to ensure that n — 0 when r — 0. In the

following section (Sec. 2.4) we show that the corrected density 7; can be written as
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Figure 2.2: Schematic representations of the particle m; and its neighbors particles. In

the first sketch some neighbors particles have » < 0 while in the second one all neighbors

are "real” particles which leads to a larger value of ; and an anisotropic distribution of

the density near the z-axis.

N
hi=>_ mWi; x fi=mnx fi.

j=1

The expression of f{ for the cubic spline kernel (Eq. 2.6) is

_ -1 .
[15¢ + 3G — ¢ + 561 ifo<G<1
Q= [HG —5+56 -3¢ +5¢ — ¢! if1<G<2.

A plot of the function f{(¢) can be seen in Fig. 2.6.

At this point it is useful to introduce a couple of algebraic rules
~ A,
r 1j

nA; = fi ZmJ‘AJ’WU ’
J

(2.40)

(2.41)

(2.42)

(2.43)



2.3. Approximating the density 25
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Figure 2.3: Sketch of our 2D axisymmetric approximation. The green ring represents the
real nature of a particle in cylindrical axisymmetric coordinates. The ring is "splitted”
in two semicircumferences. The first is in the plane Z-R and the second represents the
reflected particle (yellow particle). Also it is denoted in red those particles that need a
correction factor (near the z-axis, ( < 2) and the uncorrected particles because { > 2
(blue particles).

which are valid as long as the magnitude A has a weak dependence in the r-
coordinate in the axis vicinity. In particular, setting A = 1 in equation Eq. 2.43
leads to Eq. 2.40.
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2.4 Calculation of the correction factor f! for the

density

In axisymmetric SPH, the interpolation particles are rings centered in the z-axis.

The relation between the real 3D density p and the 2D density 7, is

N
Pi

— 2.44
2mr; ( )

so taking r; — 0 may give rise to singularity problems near the z-axis.

We start taking a linear expansion of the 3D density p for particles near the

z-axis where  — 0:

ronN @ ! @
o =00+ (55) w0+ (55)

due to the symmetry around the z-axis (p is a even function) we have

ap B

SO we can write

0
i) =02+ (55) (=), (2.47)
On the other hand, the SPH estimation of any magnitude A in 2D is

|s = &

- )ds', (2.48)

< A(s) >= / A(s) W20

2D

[s—s']

h

where s = (r, 2) is the position vector in cylindrical coordinates and W?2P( ) is

the interpolating kernel. Taking A(s) = n(r, z) and using Eq. 2.44 we have
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|s = ¢

<n(r,z) >= / /27T|T,|,0(T,,Z/)WQD(T)dT’/dZ,. (2.49)

—00 —00

Hereafter we denote < n(r,z) > simply by n. To compute the 2D density we
select an interpolation kernel that can be expressed as a product of two functions

depending on only one variable, thus it is possible to write

o
WD (%) = K2PW, (u, )W, (u,) (2.50)
where K?P is the normalization constant of the kernel in two dimensions, u, = Lhﬂ'
and u, = % These features are fulfilled by the Gaussian Kernel
op (15— _ 72D —[r =7 —|z =2
W (T>gauswn = K*" exp P (2.51)

Using the approximation given by Eq. 2.47 for particles near the z-axis the

Eq. 2.49 is written as

0= [ oEWw)as [ 2alv0, )
2D s 00
=KD KlD/p(Z’)Wz(uz)dz’ -/QW\T’\WT(ur)dr', (2.52)

where the expression inside the parenthesis represents p(z).

It is well known that for the Gaussian kernel the relation between the normal-

1zation constants is

KéD (\/7_Th>2 _ KlD
- G

= 2.53
K = Jh (259

Y

and for the cubic spline
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K20 LR g5

_ ~ Jc1D
71D — 2k _7~7T_K5 , (2.54)

s 3

with a difference around 2-3 % from K.
Thus with a reasonable accuracy Eq. 2.52 can be expressed as follows
n=2rK"%p(z) / 7| W (w,)dr’
KlD 3

=n(z) - "] / I |W, (u,)dr' | (2.55)

T

defining a new variable ( = r/h the expression inside the parenthesis can be con-
sidered a function f;(¢) that can be calculated analytically. Thus finally we express
Eq. 2.55 as

~

Ui

n= 70 (2.56)

where 77 = 27mrp(z) is the corrected two-dimensional density. Hereafter a hat over
any magnitude represents the corrected quantity. The brackets of any magnitude, as
for example, the two-dimensional density < n(r, z) > is calculated in the standard
way of SPH. Implementing the integral as a summation over the neighbors particles

we get the following expression

N

= f1(C) - Y myWlsi —sjl, ). (2.57)

J=1

Finally it is necessary to know the analytical expression of the function f;((),
that can be obtained from its definition Eq. 2.55

Y S :
m = ‘Tl_/ |7’ \Wr(ur)dr . (258)

e}
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| INTEGRATION LIMITS | || | |r —+'| | W, (u,) |
(r —2h,r —h) ' =7 W
(r — h,0) ' = W,
(0,7) ol r—r W,
(r,r+h) o= W,
(r+ h,r + 2h) = W

Table 2.1: Integration intervals, and interpolation functions when 0 < ;- <1 needed to
calculate f; in Eq. 2.58. W, and W, are defined in Eq. 2.61 and Eq. 2.62. See also
Fig. 2.4.

Because its simplicity and efficiency an useful choice for W,.(u,) is the cubic-spline
kernel in 1D

2-u)  l<u <2. (2.59)

Notice that to evaluate the integral of Eq. 2.58, the dependence of the kernel on

the absolute value of the distance |r — 7|

W,(u,) = W, (LhT') , (2.60)

has to be into account. To solve the integral we must consider two intervals. First
for points close to the z-axis, 0 < ; < 1, the integral of Eq. 2.58 can be expressed as
a sum of integrals with the intervals of integration and the interpolation functions
W, (u,) summarized in Tab. 2.1. An sketch of the different intervals can be seen in
Fig. 2.4 where W, and W}, represent the first and second parts of the cubic spline of
Eq. 2.59, that is

e
2 h? 4  h3 7

wy— Lo =TTy (2.62)
Ty h ’ '

W,=1

(2.61)




30 Chapter 2. Axisymmetric SPH

r-2h r-h r+h r+2h
! ! 1 | ) |

Figure 2.4: Strategy for integrating Eq 2.58 in the interval 0 < ; < 1. The blue line
represents the kernel function (cubic spline). The integral in Eq 2.58 can be divided in

the five intervals shown in Tab. 2.1.

INTEGRATION LIMITS | || | |r — 7| | Wi(u,)
(—2h +1,0) —r' | =1 W,
(0,—h+7) o= W,
(—h+rr) =7 W,

(ryr+h) o= W,
(r+ h,r + 2h) | —r W

Table 2.2: Integration intervals, and interpolation functions when 1 < 7 < 2 needed to
calculate f; using Eq. 2.58. W, and W, are defined in Eq. 2.61 and Eq. 2.62. See also
Fig. 2.5.

The second case to be considered is when the normalized distance is in the range
1 < 4 < 2. In this case, the new intervals of integration are summarized in Tab. 2.2
and the corresponding diagram can be seen in Fig. 2.5.

Finally, after some algebra the expression of f1({) given by Eq. 2.41 is obtained.
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r-2h r-h r r+h r+2h
1 1 1

Figure 2.5: Strategy for integrating Eq. 2.58 in the interval 1 < ; < 2. The blue line
represents the kernel function (cubic spline). The integral of Eq. 2.58 can be divided in

the five intervals shown in Tab. 2.2.

2.5 The momentum equation modified by the cor-

rected density

We express now the momentum equation modified by the corrected density (see

Eq 2.40). The r-component of the momentum equation is

= (2.63)

or +T87" r

o(rP) oP or % (8(TP) B p) | (2.64)

d (rP 1o(rP) 1 _0n 1o(rP) 0 (rP rP on
gy oA 2 pdt - A L )
or ( n ) n or 7]270 ar n or or * (2.65)

and using the corrected 2D density 7 we can express Eq. 2.63 as

(2.66)

7,0,_2_7r P_(?(?”P) 5 P 2rrPOR 0 (2mrP
5 o |~ "% m o ar\ 7 )
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When » — 0 the particle approaches the z-axis where symmetry enforces the
last term on the right side to vanish for spherically symmetric kernels. The first term
on the right hand side is the hoop stress term which should be exactly balanced by
the central term when » — 0, because the r-component of the acceleration should be
zero at the symmetry axis. Nevertheless, this does not happen unless the correction

factor fi(¢) is taken into account during the calculation of the gradient of 7

o _ 90 £i(Q)

dn  0f1(¢)
or or +

n———=, (2.67)

=f1(5)% o

and applying the standard SPH procedure to make derivatives

dn; 3Wz'j
= : 2.
d?”i Z mJ 87’@' ’ ( 68)
8 (27’(’/“7,]31) N 27T’I"j]3j 6I/VZ]
or; M ; ’ 77]2 or; ( )

finally the expression of the corrected momentum equation for the r-coordinate

P, Pr; ) Pir:\ oW,.
Fp=2r= —2r ) |m; #Xf’ngi])—”]
0 — [ ! ( 02 16 7 ) or
2m P i\ dfi(G)
— : . 2.70
(ﬁz’ X ff) dr; (270)

Similarly, we can obtain the z-component, but this time considering that there

is no hoop stress term and

on

_ iy n
5, = h(Q7 (2.71)

thus, the expression for the z-component of momentum equation can be written as

N

Pir; 4 Pir;\ OW,;

Zi= =21y my, (% x f1(G) + %) < (2.72)
; J 771'2 1 77]2 azi
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For particles far from the symmetry axis f; = 1 and df =L =0 (see Fig. 2.6) and
momentum equations (Eq. 2.70, and Eq. 2.72) became the same as those proposed
by Brookshaw (Eq. 2.36, and Eq. 2.37). In order to evaluate the pressure at each
time step the 3D-density has to be calculated

.0
= — 2.73
p 2rr ( )

Notice that close to the z-axis the components of momentum equation (Eq. 2.70,
and Eq. 2.72) are non symmetric against the exchange of indexes ¢ and j. Nev-
ertheless, the r-component of the momentum is preserved owing to the reflexive
boundary conditions. Hence, only the z-component is affected but it affects a very

tiny amount of mass.

Using the Lagrangian formulation and assuming isentropic flow it is possible to
derive the r-component of the momentum equation which takes into account the
correction factors to density. The total kinetic and thermal energies in SPH are

calculated directly from the N particles of the system,

L= ij( r? - z —E(@)) : (2.74)

so the Lagrangian equation for the r-component can be written

mai; + Z ar =0, (2.75)

and expanding the summation

P, op: P, 0p;
m,n—i—m, opi +Zm~—j Pi =0, (2.76)

J =2
o

now it is necessary to calculate the partial derivatives of the corrected density, taking

into account the dependences on r expressed in Eq 2.73 and Eq. 2.40
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9% 11
or; _27TTZ277 t o 21r; Or; (fl 1)
Lm0 Wy
__ s , 277
27?7“1-277 + 2mr; Or; 27r7‘, fi Z M or; (2.77)

the corrected density of the particle j has a simple expression

o _ 10 1. oW,

_— fIm.
(fl /’7]) - 27T7"jf1ml (97”7; )

(2.78)

or;  27r; Ory

finally, replacing the expressions Eq. 2.77 and Eq. 2.78 in Eq. 2.76 and after some

algebra, the final expression for the r-component of the equation of motion is written

_%__szlmj ( X FiG) + Jﬁ(@)) g ]
2P i\ dfi(G)
-(557) o

Following the same procedure for the z-component, the ensuing equation is

oW,

i

(2.80)

_ _zﬁzmj (55 % st + 23 < &) G

i 7]]

Despite the non-symmetric structure of Euler equations, conservation laws were

fulfilled to a large extent, as shown in the test described in the next chapter.
2.6 The energy equation modified by the corrected
density

We are now ready to deduce the modified energy equation including effects of axis

correction factors. The energy equation can be expressed as
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du P
—_— = —— 2.81
AL (281)

if we transform it using the continuity equation

£ = Vv, (2.82)

vy _19p_ 2w 0 (L) _

pOt  n Ot \2nmr
T (9 (1Y Loy
R o \ 7 rot)
v, 10n
_ v 1o 2.
r  not’ (2:83)

putting the last expression of these identities in Eq. 2.81, and using the corrected

2D density 7), we can write the energy conservation as

du P Prdn
i) W SR Al 2.84
o 7r77 v + 7r?72 7 (2.84)

At this point it is necessary to know the temporal evolution of the corrected 2D
density 7. Using Eq. 2.83 and Eq. 1.6 we get

& _ (- vv) =i (avr + avz> , (2.85)

and using

(2.86)

we can rewrite Eq. 2.85 as
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@[ o ) [ o1 oum)
it {UT&" or | T %9: " Tas |- (2.87)

to complete the deduction of the energy equation it is necessary to calculate the
magnitudes labeled with a widehat. The corrected density, 7 can be expressed as
n=mn X fi (see Eq. 2.40) where the expression f; (Eq. 2.41) has been calculated in
Sec. 2.4. To evaluate the expressions v, and v, we proceed in a similar way as in
the deduction of the function f;.

Expanding the components of the velocity of a particle near the z-axis as linear

functions

8UZ aUz
v.(r',2") = v,(0,2) + (8r’)r,:0 (r'—0)+ (82/>Z/:Z (2 —2), (2.88)
if v, is a weakly depending function of the r-coordinate we can write

v (', 2) = v,(0, 2) + (ZZf)Z/:Z (2 — 2) ~ v.() (2.89)

redoing the same calculations we can exchange 1 by v, and derive a similar equation
as Eq. 2.56

nv

fiQ)”

< nu, >= (2.90)

The r-component of the velocity needs a new correction function that we call f5.

Returning to the Taylor series we write

v v
//: s I T I 21
o) =0+ (55) w0+ (5) E-a. e

symmetry enforces the radial velocity to be zero at the z-axis close to the axis the

radial velocity can be expressed as v, = Cr where
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ov,
C= (0r’>WZO , (2.92)

using this approximation and proceeding as in the deduction of Eq. 2.55 we easily

arrive to the following expression

KlD

< nur >=n(2)o, / PV )| (2.93)

—0o0

thus we can express

i
< nu, >= , 2.94
RO 29
where ( = r/h and defining f; as
1 KlD

/ |7 | W () dr' (2.95)

—00

200

As in the case of magnitude f, this integral can be evaluated analytically for

the cubic-spline kernel, leading to

(Mt dg— Loy L™ if 0<¢ <1
BO= [5G+ 8G -1+ 301G+ ¢ - 5G] ifl<G<2.
(2.96)

Going back to Eq. 2.87 and using @ = (nv,) x f1 (Eq. 2.90), (?1;) = (nv,) X f2
(Eq. 2.94) and noticing that f; and f, are independent of the z coordinate

dn
dt

0 d(nv, 0
B LT L R

d(nv.
+ |:f1vza_z —fi (g;} ) ; (2.97)
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Figure 2.6: Correction factors f; and f, and their derivatives as function of ( = r/h.

and, writing the different terms on the right side as a finite summations

N
N = ijWz‘j : (2.98)
=1
N
(nivri) = ijvrjvvij ; (2.99)
j=1
on: N oW,
T ] iJ
= 2 Mg (2.100)
d(n;vr,) al OW...
iUr;) ij
o= ;mjvﬁ—am : (2.101)

therefore the continuity equation finally writes

O "~ o NOWy o~ (0fi 0 0fh
o ;m]‘ (fﬂ)ri - fgvrj) or: + ;mj (a—mvm - a—ﬁvr]) VVij

N
- oW,

+ Y my (v, = vs) o (2.102)
j=1 i
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Note that fi, fi and their derivatives are only function of the current radial coor-
dinate of the particle and its smoothing length. Thus, they can easily be computed
and stored in a vector without introducing any significant computational overload.

Eq. 2.102 is used to evaluate the energy equation, using Eq. 2.84 for each particle ¢

du; b Pyr; d;
Y = —27T7 (S =+ 27 A,’; 1 .

(2.103)

2.7 An approach to the conduction term

Including a heat conduction term in the energy equation is necessary to solve two
kind of problems. Firstly, to account for real physical heat fluxes arising from
sources or sinks of energy (for example the energy released by nuclear reactions,
absorption or emission in processes of excitation or deexcitation, etc). We can find
interesting examples in astrophysics as for example in cosmological simulations of
cluster formation (see for example [31], [74]). In the Inertial Confinement Fusion and
Laboratory Astrophysics context it is necessary to include at least the electron heat
flux which is the most dominant energy transport term before the nuclear reactions
take over ([6],[18]).

An additional benefit of including a conduction term in the energy equation has
to do with the artificial smoothing of the excess of heat introduced by the artificial
viscosity known as "wall heating” (see ([52]). For example when two streams of
gas collide it is usual to find an artificial spike in the internal energy which can be
smoothed including a conductivity coefficient adequately scaled to spread the excess
of heat (see the wall heating shock and the collision of two jets tests in Sec. 3.3 and
Sec. 4.2).

In both cases the equation which has to be solved is

d 1

) =2V VD), (2.104)
dt cond P

where k is the conductivity coefficient which is a function of the thermodynamical

variables and chemical composition of the material or a function of the local sound

velocity and of the local velocity gradient in the context of wall heating.
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As we can see Eq. 2.104 requires the calculation of a second derivative to compute
the heat flux. Although in SPH it is possible to calculate second derivatives by

simply differentiating the kernel twice, as for example (in one dimension)

&*T N Ty d2W;
) =Y e 2.105
(d:cz)i pll dz? ( )

it is not a good choice because usually it is too sensible to the numerical noise present
in disordered systems. Also the above procedure can lead to unphysical results (i.e.
heat flux from low to high temperature regions) because the sign of the second
derivative can change depending on the distance of the particles. An alternative
expression has been proposed, for example by Brookshaw or Monaghan ([8],[45]),
using an integral expression that relies in the first derivative of the interpolation

kernel (see for example [31]). In cartesian coordinates it leads to

(v), -2y

J=1

m; ¥; — Y

, 2
Pi Ty

ri;- ViWij s (2106)

where r;; = r; — r;. To adapt this expression to 2D cylindrical coordinates we can
use the following expression

Y
2y _v.(vyy = Lor) O (V) 9 (O
VY =V (VY) = . +8r(87“ +@z 5 ) (2.107)

Since the Laplacian of a scalar magnitude is the same as the divergence of the
gradient of the magnitude it is clear that a term depending on 1/r must appear.
As we will see in the next section, this first term on the right is important to
reproduce the detailed evolution of a thermal wave. This new term has not been
considered in past 2D axisymmetric approximations (see for example the artificial

thermal conduction proposed by Brookshaw in [8]).

Now, for simplicity, we can rewrite the above expression as

oY

VY =V - (VY) = (('fr—) + D%, (2.108)
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where the operator D has the same expression as the Cartesian one

o 0

Now let us introduce an useful relationship

V- (kVT) = = [V*(kT) = TV?k + kV°T] | (2.110)

1
2
where the three terms on the right hand can be expressed using Eq. 2.108 and
Eq. 2.106 as

1 0(k;T5) N ki Ty — kT,

VikT) = ———— 42y L0 s .D,W;, 2.111
(/f ) e Or + ; 7 5223 J J ( )

T; O(k;) N kT — kT,
TV (k) = == 42y L2t s . . D,Wi 2.112
(2) ri Or; Z nj s2. ! 7 ( )

_]:1 ()

ki O(T) N ki Ty — kT
VAT = 22222 49 Ly te DWW 2.113
ki V(T}) r Or: + jzl 7 S?j Sij Jo ( )

where s = (r, 2) is the position vector in cylindrical coordinates. Using the following

equality

kil — kiTy + kT — KTy = (ki + k) (T = Tj) (2.114)

and adding the three contributions above, we can express the Eq. 2.104 as

At ) ona  20i LT dr; 7“_1 or; r; Or;
N
- (mj—ﬁ ir (T, - Tj>s_2] . DZ-W@-J-) : (2.115)
pl j:1 77] Sij
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The part inside the brackets are the new terms related to the hoop stress. Ac-

cording to Monaghan [45] we can express the derivative of a function, A, as

o= Z#(Aj — Ay) 07’-] : (2.116)
7 j ¥ 7

which guarantees that a constant function has zero derivative. After a little algebra

we can express the final form of the conduction term as

= 175
=1 i Sij

where the first term on the right is the one related to the hoop-stress. The factor
(T; — T;) of both terms of Eq. 2.117 ensures that there is not heat flux between
different parts of an isothermal system. Although the presence of the r; multiplier in
the second term of the right side of Eq. 2.117 does not ensure complete conservation
of the heat flux, the total energy losses in the numerical test simulating a thermal
wave evolution (see Sec. 3.2) were negligible. Of course Eq. 2.117 can be symmetrized
by taking the arithmetical mean 7;; = 0.5(r; 4+ r;) instead of r; but in that case we

found that the evolution of the thermal wave was not so well reproduced.

2.8 Entropy equation in AxisSPH

We are ready to deduce the variation with time of the total entropy S of a system
in axisymmetric coordinates. For a group of N particles we can evaluate the total

variation of entropy as (see [45])

N
ds ds; m; dg;
_ asj N 495 2.118
PRI T, dt (2.118)

J=1 Jj=1
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where s; represents the entropy/mass, ¢; represents the heat content/mass of parti-

cle j and T} is the temperature.

For the sake of simplicity it is better to express the change of entropy in two parts
(as in Eq. 2.117) one related to the hoop stress involving d/0r, which is important
for particles near the z-axis, and another related to the Cartesian operator D (see
Eq. 2.109)

dS dS dS
E N <E> aris " (E) cartesian . (2119)

Now considering the first term of Eq. 2.117 we can write

dS N | mlm] oW
— T, —1T; 2.120
( dt )azzs - ; ]Zl ﬂ nlnj + sz)( ) a,rl ’ ( )

if we interchange the indexes in the above expression, and using the antisymmetry
properties of 0W;;/0r; we get a similar expression as Eq. 2.120 for the entropy

change. Then, averaging both expressions we obtain

as T o o 1 1\ OW.,
I 5 i T; = T; —. 2.121
(dt>m 222_: A, ) ><T+T> or, - (212D
We can do the same deduction for (?j—f)car tesian JUSt changing
oW, DWW
L — =2 (S] 2 ]> ) (2.122)
8r,~ Sij

in Eq. 2.120 and noticing that the factor in brackets on the right term of the above

expression is symmetric we can write

N N
dS mam i T] D VV?,]
<E)CaTt€Sian = WZ Z ,;']\ﬁ Ff/z + KJ)(T - 7}) (T - T) 8—2 . (2123)

i=1 j=1
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Putting Eqgs. 2.121 and 2.123 into Eq. 2.119 the final expression for the variation

of the total entropy of a system of N particles is written

T Nmm 1 oW,
=--Z J ij
QZZ (ki + 1) (T: — Ty) (T T) or, +

i=1 j=1 0l
N N
Ty i1y si - DiWi;
T Y = (it k) (T; — Tj) (T - 1—3) JS—QJJ (2.124)
=1 j=1 9,

As in the entropy equation devised by Monaghan [45] using cartesian coordinates,
the Eq. 2.124 also predicts entropy increasing but the existence of the negative term
on the right makes the demonstration less trivial. However, a sufficient condition

for entropy increasing is that

> (2.125)

which is fulfilled in a large domain of the system. The exception could be the axis
vicinity where r; — 0. Nevertheless close to the z-axis symmetry enforces the heat
flux to be negligible and entropy would remain unchanged. Therefore, in general,
entropy is expected to increase although it is not excluded a marginal decrease if
resolution is poor and strong heat fluxes were present close to r = 0. We have
monitored the evolution of total entropy in the numerical test simulating a thermal
wave evolution (see Sec. 3.2) and found no indications of entropy decreasing during

the simulation.

2.9 Artificial viscosity

A feature shared by all SPH hydrocodes is that they incorporate the artificial vis-
cosity (AV) formalism to handle with shocks. Because SPH has some similarity
with Monte Carlo methods the inclusion of the AV also helps to control the level
numerical noise inherent to these statistical methods. Artificial viscosity is an old
topic of fluid mechanics. It was devised around 1940 by John von Neumann at Los

Alamos National Laboratory to simulate the propagation of strong shocks which
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appear during atomic explosions. It is basically a simple algorithm which converts
kinetic energy into heat in regions with size close to the resolution achieved by
the hydrocode. Although still in use, it has been progressively replaced by other
more efficient (and sophisticated) schemes based on Riemann-solvers, especially in
multidimensional calculations using Eulerian codes. Nevertheless because of the
similarities of SPH and molecular dynamics AV is still currently being used in most
of SPH applications where such sort of viscosity acts mimicking the real viscosity
among atoms and molecules. Although there exists a formulation of artificial vis-
cosity developed in a Riemann-solver style [44] we have adapted the most standard
formulation of AV, as given for instance in Rosswog 2009 [68] to the peculiarities of
AxisSPH

First, a phenomenological viscosity term () is added to the true pressure, P, in
the momentum equation. That ”viscous” pressure is a function of the divergence of
velocity so that it becomes high during compressions. To better handle with strong
shocks and smooth the post-shock oscillations of the fluid it is usual to define also
a quadratic viscous pressure (), proportional to the square of velocity divergence.

The artificial viscous pressure is then

Q = Qouk + Qg (2.126)

where
Qoute = —aple, Vv, (2.127)
Qq = Bpl* (Vv)* (2.128)

where «, ( are free adjustable parameters of order unity, ¢, is the sound speed and
[ is the typical length scale over the shock is spread, [ ~ h. To incorporate () into
the standard SPH equations of momentum and energy a term Hf’jp is usually defined

(see for instance Hernquist & Katz [29])

Qi i3
S+ ifvyor; <0

mp =5 (2.129)
0 if Vij - T > 0

o
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where

o lclhz Vv|; + lh? VVZ2 lfVZI'Z <0
0 if Vij - Tyj Z 0

where the value of |Vv|; is borrowed from the continuity equation, expression
Eq. 2.131 to obtain

N
1

Vvl = —; ijvij Vil (2.131)
Cg

This form represents a combination of bulk and quadratic viscosity. Note that
for divergent flows @); = 0. Although this formulation of viscosity has proven use-
ful it still leads to numerical oscillations in the post shock region during strong
shocks. The most used version of the artificial viscosity substitutes the calculation
of Eq. 2.131 by an estimation of the velocity divergence closest to that of molecular

dynamics

Hij = ﬁ (2.132)
ij
and the magnitude II3” is then expressed as,
aciipi g .
———4 jfv;i-r;; <0
3D » ij ij
P = Pij ' , (2.133)
0 if Vij - T Z 0

where h;; = +(hi+h;), pi; = 3(pi+p;) and &; = 3(c;+c;) are the averaged smoothing
length, density and speed of sound between particle ¢ and its neighbor j respectively.
The above expression Eq. 2.133 can be used in any SPH code with independence
of the dimensionality of the problem provided it is written in cartesian coordinates.
The v = 0.17%- helps to avoid divergences when r;; — 0 and the parameters «
and ( are of order unity. With this expression of the artificial viscosity the viscous

acceleration is
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N
j=1

and the momentum and energy conservation are rewritten as in Eq 2.23 and Eq 2.24.
This viscosity has some advantages: it is Galilean invariant, conserves total linear
and angular momenta and it vanishes for rigid body rotation. Nevertheless it can
generate spurious viscosity, specially in pure shear flows or in regions with large

vorticity. Balsara [5] proposed a modification to Eq. 2.132 in the form

higvijTi; fitfy if vi; -1 <0

g =4 a2 : (2.135)
where f; is defined by
|VV|Z
i = ) 2.136
fE Vv < (2156)
where |Vv|; is given by Eq. 2.131, and
| X
‘V X V|2' = p_ ijvij X VZWZJ , (2137)
b

The Balsara viscosity has the advantage that dissipation in shear layers is sup-
pressed, because f; acts as a switch. If compression dominates in the flow (|Vv|; >

|V x v|;), fi — 1 and the expression Eq. 2.132 is recovered.

On the other hand, f; — 0 when the compression in the fluid is low and the

vorticity is high (|Vv|; < |V x v|;) and the viscosity is suppressed.

Because H?JD given by Eq. 2.133 implicitly contains the divergence of the veloc-
ity we can adapt it to the axisymmetric geometry just by adding an extra term

accounting for the geometrical convergence of the flux towards the symmetry axis,

2P =1 + (2.138)

i ij
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The term HS) is accounting for the cartesian part of viscosity whereas HZ(?) de-
scribes the convergence of the flux towards the symmetry axis in cylindrical coordi-

) has to be proportional to v,/ (the non cartesian part of

nates. This new term, Hg
velocity divergence in cylindrical coordinates) and it has not been included in the
existing formalisms of axisymmetric SPH insofar. Due to its inverse dependence on
r its inclusion may be crucial to handle implosions or any application involving axis
converging fluxes.

(1)
ij

to the momentum and energy equations in an axisymmetric code is by changing the

The easiest way to write the Cartesian contribution of the artificial viscosity 11

mass of the particles according to their distance to the z-axis, m — m/2mr. The

viscous acceleration becomes

N
vis(2D) =y —LII3PD,W;, , 2.139
az ( ) ; 27rfij 1) J ( )
where 7;; = (r; +7;)/2. In particular taking p;; = 7;;/(277;;) in equation Eq. 2.133

removes the explicit dependence on r;; in the viscous acceleration formula, which

now reads
N
j=1
where ngl-) is
—aoCijij 2.
1) %ﬁ@ou” if Vij - Sy < 0
0 if Vij * Sij > 0
where f1;; is now written
hijvij - sij
= 2.142
M J S?j + VQ ( )

)

An explanation about the origin of Hg and its dependence on hv,/r can be

drawn on simple geometrical basis. Any particle with mass m in axisymmetric
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Figure 2.7: Schematic representation of a 2D Axisymmetric SPH particle of mass m
(red particle) approaching to the z axis with radial component velocity v,.. The blue
hoop represents the real nature of this particle seen in 3D dimensions, that could be
"divided” in a set of 3D particles, two symmetric ones are represented in blue color dm;
and dmj. On the left is represented the projection of the right sketch in plane XY. The

green vector represents the projection of v, on r;; =r; —r;.

geometry represents a hoop in 3D which can be imagined as a string of k particles
carrying a mass m/k. When a 2D particle (the red colored particle m in Fig. 2.7)
moves toward the z-axis with radial velocity v,, the hoop reduces its radius which
is equivalent to a convergent flow of 3D particles. The contribution of a symmetric
pair of these 3D particles belonging to the hoop (labeled as dm; and dm; in Fig. 2.7)
to the artificial viscosity can be calculated using Eq. 2.132

hiivii -tii  hi 208100
by = JVT; iy _ Mg :Sm , (2.143)
i )

where r;; = r; —r; are 3D vectors. Writing the above expression in terms of the

cylindrical coordinate r leads to

(2.144)

Therefore the interpretation above supports the inclusion of a term propor-

tional to ﬁijvr /r in Hg). Therefore we propose the following expression for the
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axis-converging part of the artificial viscosity

where

St G iy <0 A v, <0
m® — i " ? (2.145)
i 7 |
0 other cases
1 (hi“r- hjvr.)
g = L (Pt haon (2.146)
T2\ Tj

This form of Hg) has several interesting properties:

(1)

For homologous contractions the viscous acceleration associated to this term

is negligible because v, o< 7, thus ¢;; >~ const and the gradient vanishes.
It conserves momentum because it is symmetric with respect particles ¢ and j.

Far enough from the axis it becomes much lower than the cartesian part of

the artificial viscosity Hg).

It vanish for those particles with v, > 0 (i.e. divergent fluxes), and only the
cartesian part of the viscosity matters. Therefore constants g and 3y of HS-)
should remain close to their standard values ag ~ 1 and Gy ~ 1. For the
axis converging part the simplest option is to take o« = ag and 3 = [y (all

simulations presented in this thesis were carried out using oy = ap = 1 and

B =B =2).

The resulting viscous acceleration writes

N
a*(2D) = Y m;IIZPD,W; . (2.147)
7=1

Each component of Eq. 2.147 has to be added to the momentum equations
Eq. 2.79 and Eq. 2.80.

The Eq. 2.147 is formally similar to that used in 3D-SPH. Thus one can benefit

from the well known features of the artificial viscosity in 3D, which can be directly
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translated to the axisymmetric version. For example we have used the corrections
to the AV of Balsara [5] in various simulations of the stagnation phase of the ICF
capsules (see Subsec. 4.1.4) with good results. Alternative formulations of AV such
as that proposed by Monaghan [44] inspired in Riemann solver schemes can be easily
accommodated in AxisSPH. The similarity of cartesian and cylindrical formulations

also allows to write a suitable energy equation for the artificial viscosity contribution

N
du, 1
( CZ ) ) > ALy (vi = vy) - D (2.148)
vls ]

which has to be added to the right-hand side of Eq. 2.103.

2.10 Self-gravity in AxisSPH

In many astrophysical applications self-gravity can not be ignored. In principle, to
calculate the gravitational force related to the particle ¢ it is necessary to sum the
contributions of the all the remaining particles, leading to a N? calculation that it
is not feasible when the number of particles is high, as in current SPH astrophysical

simulations.

To make the calculation feasible several interesting approaches have been devel-
oped. One of the most used, based in hierarchical-tree methods, was developed by
Hernquist and Katz [29]. This method preserves the gridless nature of SPH and re-
duces the time calculation from oc N2 to oc NlogN. Basically it works by grouping
the neighbors particles to clusters, neigbors clusters to clusters of clusters, and so
on. Then forces of distant particles are approximated by a multipole expansion of
the force of the cluster where these particles are located.

Unfortunately that method does not work well in the two-dimensional axisym-
metric approach because particles are, in fact, rings of different sizes. For the ma-
jority of particles the ratio between the radius of these rings and the distance to the
point where the force needs to be calculated is too large to permit the multipolar

approximation. Therefore a different approach has to be taken.
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2.10.1 Direct gravitational force calculation

The good resolution achieved in two dimensions using a low or moderate number of

particles NV, makes the direct calculation of gravity affordable in many cases.

The gravitational force per unit of mass in a point P created by any distribution

of mass is

g = P w (2.149)

where w represents the vector connecting the point P to the differential element in

the volume integration.

Placing the point P in the plane ZY with coordinates (0, y,, 2,), and considering
that the differential elements of volume are rings with symmetry around the Z axis,
we can reduce the integration to the azimuthal ¢ angle. So, according to Fig. 2.8

we can express w = R — 8’ and g, can be rewritten as

gp = 0 (R2 + §2 — Qpr sin @)3/2 Y = Yp)) D , .

where j and k are the Cartesian orthogonal unit vectors and because

(R? + ¢ — 2y, Rsin )% = (R? + §*)*2 [1 — 7sing]*?* | (2.151)
the denominator can be expressed in terms of the parameter 7

2yiRj

R; +¢';

So we can write the gravitational force acting onto the i**-particle as

N
G m; .

g = E s < (B = yida)j + (25 — zi) K] (2.153)
2m = (R +877)%/°
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Figure 2.8: Schematic representation of the 2D-cylindrical coordinate system. The torus
represents the actual 3D shape of the particles in this axisymmetric system. Point P

belongs to the YZ-plane.

where 2 = y2 + (2; — %)% and m; is the mass of the particle associated to the

jt-ring. Integrals I, and I, are defined by

2 :
sin pdp
I, = 2.154
=] T 210

Y
12_/0 ( (2.155)

1 —7singp)3/2’

in terms of the parameter 7 defined by Eq. 2.152.

Unfortunately, the elliptical integrals I; and I (Eq. 2.154 and Eq. 2.155) can
not be solved analytically. It can be shown, however, that the value of 7 is always

inside 7¢€[0, 1), although for 7 — 1 the integrals I; and Iy become divergent.

A practical procedure to compute gravity using the direct force calculation which

we have successfully used in the simulations is the following:

(1) Build a table for I; and I, as a function of 7. A table with 10* rows with
values 0 < 7 < 0.9999 evenly spaced is sufficient. In the left panel of Fig. 2.9

we have represented these values.
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(2) To increase the speed do not interpolate from that table but take just the row

which is closest to the actual value of 7 calculated using Eq. 2.152.

(3) Note that parameter 7 is symmetric with respect to any pair of particles,
7; = 7, thus I;(7;) = I;(7;) and similarly for I,. Therefore only a half of the
interactions have to be calculated and hence the computational load scales as

N(N —1)/2.

If the algorithm is well optimized, this scheme is able to provide the exact value of
the self-gravity for several dozens of thousand particles in today desktop computers.
In many applications using & 50, 000 particles in 2D is enough to guarantee a good

resolution.

2.10.2 Calculation of gravity using the gravitational poten-
tial

Taking the gradient of the gravitational potential is another route to calculate the
gravity. It is more efficient that the evaluation of the Eq. 2.153 because calculating
the potential V' involves a lower number of operations. As gravity is calculated
taking the SPH gradient of V' it can be computed in the same loop used to calculate
density. Additionally this method avoids undesirable numerical divergences when
a pair of particles becomes too close, due to the smoothing effect of the kernel

interpolation.

The contribution of the j-ring with mass m; in the position of the i-particle to

the gravitational potential is

21 Rd
Vi:_g/ plide
0

w
2m
pRdyp
= -G 2.156

/0 (R? + s"* — 2y, Rsinp)/2’ ( )

we can rewrite the denominator in the same way as in Eq. 2.151, but now the angular

contribution is related to I3 defined as
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Figure 2.9: Values of the integrals /; (Eq. 2.154), I, (Eq. 2.155) and I3 (Eq. 2.157) as
a function of the parameter 7 (Eq. 2.152).

Y
13_/0 ( (2.157)

1 —7sinp)l/2’

In the right panel of Fig. 2.9 it is represented the value of the definite integral
I3 in function of the parameter 7 (Eq. 2.152), taking values from 0 to 1 in intervals
of A7 =10~*. Then we can write the potential of the i-particle as
N
G m;
Vi =N . 2.158
o 2 R+ o7 @159

7j=1

The gravitational energy U, of the system can be evaluated in the usual way as

N
U=3Y mV;, (2.159)

Jj=1

DN | —

which is useful to check total energy conservation.

Having V', we compute the gravitational force per unit of mass as
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gi=—(DV);, (2.160)

which can be obtained using Eq. 2.116, the corrected density 7, and the operator
D; (Eq. 2.109)

N

g=Y 9V, V;) DWy, (2.161)

v

or (see also subsection ”First derivatives” of [45])

N
1
g =— > m; (Vi —V;) D;Wy;, (2.162)
ni <
7j=1

We have obtained the value of the derivative using one of the ”golden rules” of SPH

that recommends to make the derivative with the density placed inside the operator.

1 —_—
DV; = — [Di(niVi) - ViDidi | (2.163)
T

and using the following approximation (see Eq. 2.43)

N
nVi= 1) miV;Wy, (2.164)
j=1

before applying the operator D;, where f; is the correction factor given by Eq. 2.41.
To obtain the first component % of the corrected density 7; we must remember

Eq. 2.67 that includes the derivative of f;. After easy algebra we can write

fix (%)
dr
g == m(Vi = Vy)DiWy; +

N
= = m;(V; = V))Wij - u, (2.165)
i ni =

Jj=1 J

where u, represents the unit vector in the r-axis.
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Notice that when particles are far from the z-axis, f; — 1, %}i — 0 (see Fig.2.6),

and the above equation becomes Eq. 2.162.

2.10.3 The free fall collapse with and without rotation

In order to check the ability of Eq. 2.165 to evaluate the gravitational force we
present a simple test with analytical solution: the free fall collapse of a uniform
sphere of mass M, and radius Ry for which pressure and viscosity forces were set to
zero, and the momentum equation is just governed by the gravitational force. The
evolution during the free-fall is highly non-linear, so it has become a standard test

to check the ability of any algorithm devised to compute the gravitational force.

The solution (see for example [15]) gives the radial position r(t) of any fluid

element as a function of its radial position at =0 s

9 3 3 3
b2 {sin_l [(L) ] - (ﬁ) (1 . L) } , (2.166)
Lyr ™ 70 70 )
where ;¢ is the free-fall time defined as
T R3 2
tep=— [ —9_ 2.1
=7 (QGMO) ’ (2.167)

We have taken My = My and R = R and 15,396 particles, initially placed in a

square lattice.

In Fig. 2.10 it is depicted the evolution of a particle placed at ry = %R@ fromt =10
until ¢ ~ ¢;¢. The analytical solution given by Eq. 2.166 is very well reproduced.

As it is well known, rotation is present in many real scenarios, particularly in
the astrophysical context: stars, planets and similar bodies spin around their axes,
and sometimes, it is possible to idealize them as rigid bodies (for example rotating
neutron stars). Other times rotation involves a more complex dynamics as for exam-
ple accretion discs around stars or stellar remnants belonging to a compact binary
system, or black holes in the center of spiral galaxies where the orbiting material

loses angular momentum and fall onto the central massive object. Generally there
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Figure 2.10: Evolution of a particle ( 7o = 2/3R; , 2o = 0) in a free fall test in three
cases: for a non rotating sphere and a rotating and non rotating cylinder (dots). The

analytical solution is represented with full triangles.

is differential rotation due to the coupling effect of viscosity. Nevertheless if the
characteristic dynamical time is much shorter than the viscous coupling time the

effect of viscosity can be neglected.

In the 2D axisymmetric codes rotation can be easily implemented by adding
a centrifugal force to the r-component of the gravity. The viscous term is set to
zero and the time-dependent angular velocity of each particle can be inferred just

applying angular momentum conservation.

For this viscosity free case we have chosen a slender rotating cylinder of uniform
density represented with N = 70,000 particles spread in a square lattice which
rotates with the same initial angular velocity. The total mass is M., = My, and
size Reyi = Re, Zey = 20R.,;. We study the radial evolution of a particle at z ~ 0,

and initial distance to the z-axis, 7o = 2/3Rg.

The specific angular momentum conservation implies L,(rg) = L.(r,t) and the

centrifugal acceleration of the particle can be expressed as
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L2(r,t)  Lg
r3 3

a. = (2.168)
where Ly = L.(r9). On the other hand, the Gauss law guarantees that the radial
gravitational acceleration g depends only on the mass m enclosed by the cylinder
defined by the radial position of the particle, . The relation of g with its initial

value gq is

g _ o (2.169)

9o mor 7

because of m = mg (particles does not change their mass), and adding both contri-

butions to the radial acceleration, we finally write

, ro L3
i=—gtac=—g > +3

0, (2.170)
.

Integrating, and using 7|,—o = 0, we obtain the radial velocity of the particle

1
. r 1 1Y]2

Integrating again we get the radial evolution of the particle. However this second

integral has to be solved numerically once ry and Ly are specified

r r 1 1 -
t(r) = — -2 In(— )54 e — dr' . 2.172
(1) /TO [ goTo In <To> + Lj (rg 70,2)} r (2.172)

Such semianalytical solution is depicted in Fig. 2.10 (full triangles, ”Homoge-
neous rotating cylinder”) for ro = 2/3R.,; and Ly = \/0.5g07§, so that the cen-
trifugal force at rq its a half of the gravitational force. A comparison to the SPH

N

simulation with pressure and artificial viscosity set to zero can be seen in the same
figure. The agreement is not as good as in the spherical case for ¢ > ¢;¢. This is not
surprising because the boundary effects at cylinder edges progressively affect gravity
at current particle test position and its evolution is very sensible to small variations

of gravity force.
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Because pressure forces were set to zero the cylinder is initially compressed by
the gravity action. As collapse ensues the angular velocity must be increased to
preserve angular momentum, resulting in a increase of the centrifugal force. When

t ~ 5ty the two forces become similar and r tends to a constant value.

The effect of rotation can be better understood by comparing the evolution of the
same cylinder without angular velocity. The analytical solution and the simulated
positions are also depicted in Fig. 2.10 ("homogeneous cylinder”). In this case the
match of both curves is not as good as in the previous case because the particle
evolution is only driven by gravity, which is sensible to the finite size of the cylinder

and is not smoothed by the centrifugal term.



Chapter 3

Basic Tests

The formalism developed in the precedent chapters needs to be validated using dif-
ferent tests. These tests were carefully chosen to check one or a few pieces of physics
included in the algorithm of calculation. In some cases the tests have an analytical
solution to directly compare with the output of AxisSPH. Other tests cases corre-
sponds to situations for which there is not an avalaible analytical solution but the
system has spherical symmetry so that the output of the SPH code can be com-
pared to the results of standard 1D lagrangian hydrodynamics. Tests belonging to
the first group are the evolution of a thermal continuity, aimed at checking the heat
conduction equation, and the wall heating shock test intended to check the ability
of the code to handle with strong shock waves. For the second group we have cho-
sen the implosion of a homogeneous capsule induced by the ablation of its surface,
a simplified problem related to interesting applications, and the gravitational col-
lapse of a polytrope. This last case is obviously oriented to check the gravitational
module included in AxisSPH. Finally an intrinsic 2D test with axial symmetry, the
supersonic collision of two streams of gas, was discussed. In this case the study was
focussed on the detailed evolution of momentum and energy of the two bubbles.

A summary of the main features of many of the calculated models is provided in
Tab. 3.1.

Once AxisSPH has successfully passed these basic tests it will be applied to a

more sophisticated (and realistic) systems in Chapter 4.

61
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3.1 Summary of equations

Hereafter the Euler equations used in the different tests and applications are:

(1) Mass conservation.

N
= mWi; x fi=mx fi. (3.1)
j=1

(2) Momentum conservation.

Pr; Pir; ow;
- 27T_ - 272 {my ( =) x f1(Gi) + 72 ’ H2D> o J}
7 (3

ni X fi dr;
N
y Pir; Pir; op\ OWij
Z; = _277sz ( 772 fl((l) ﬁ\; =+ H,L] ) a—ZZJ . (33)
7=1
(3) Energy conservation.
dui P@ Prl dnz 2D
= —2T— 2m 113 —v;) - D;W;,. 3.4
dt Wﬁi ot n2 dt T3 Z vj) J (3.4)
A _ N, (i - 8f _ o
j:1 j=1 i
oWi;
+f12m] Vs, — V) 8zj' (3.5)
j=1

(4) Correction factors for the cubic spline kernel (for the one-parameter family of
interpolating kernels W (v, h) see Appendix B)

(LG +2¢ -3+ £¢ if0<¢<l1
AQO=S[8¢G" =144 -2+ 13 - L] ift<¢g<2. (36)
1 if ¢ > 2
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_ -1 )
(156" + 56 — ¢ + ¢ if0<G<l
i _ _ -1,
L= [5G+ 8G —5+56—5G +5¢ — ¢ fl<G<2.
(3.7)
(5) Artificial viscosity.
2D _ 17D (2)
—aocl‘j#ij-ﬁ-ﬁoﬂf- . el
o] Hversy <0 (3.9)
i . ) .
0 if Vij . Sij Z 0
where
hijvij - i
= 3.10
lu J 5% + 1/2 ( )
_ O 2.
o | TR g, <0 A v, <0
Hij = Nij (3.11)
0 other cases
where
1 hﬂ)r, hjvrj

== —+—2]. 3.12
q] 2 ( T + ’I"j ( )

3.2 Thermal wave

As in the r-component of the momentum equation (Eq. 3.2) the heat transfer equa-

tion in the axisymmetric approach includes an additional term which accounts for

the geometrical convergence of the flux towards the symmetry axis (Eq. 2.117). Such

new term is relevant to simulate heat fluxes in the axis neighborhood as it could be

the case of heat diffusion from a pointlike region. In the following test we describe

the evolution of a thermal discontinuity initially seeded at the center of a two di-

mensional distribution of 57,908 particles until the initial thermal content has been
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considerably smeared by diffusive conduction. The evolution of the internal energy

was compared to the analytical prediction.

The initial model was obtained by setting the particles evenly in a square lattice.
The mass of the particles was conveniently adjusted to reproduce a previously cho-
sen density profile. For example, to obtain the distribution with constant density
po = 1 g/cm? considered in this test it was necessary to give the particles a mass
proportional to their r-coordinate. During the calculation we left the particles at
rest so that the energy equation, Eq. 3.4, reduces to the heat transport equation
Eq. 2.104. The initial pointlike discontinuity in energy was smoothed using a sharp
Gaussian of characteristic width a few times the smoothing length parameter. Such
delta-like jump in internal energy originates a thermal wave front which evolves

according to'

2, L2
u(r, z,t) = e ) + ug, (3.13)

(47at)? ( 4ot

where « is the thermal diffusivity, k is the thermal conductivity £ = ac,p and ¢, is
the specific heat capacity. The following set of values were taken A = 10° erg cm?/g,
up = 10% erg/g and a = 1 cm?/s. The initial internal energy profile was that given
by Eq. 3.13 for ¢t = 1 s, which was taken as the initial time (to = 0 s) for the SPH
simulation. The evolution of the thermal signal is then uniquely controlled by the

heat conduction equation.

In Fig. 3.1 (left) it is depicted the profile u(r) of the specific internal energy at
several times. As we can see the profiles obtained using AxisSPH fit the analytical
solution almost perfectly. As times goes on the peak of the signal and its slope
decreases due to heat diffusion. The initial discontinuity is rapidly smeared out
by thermal diffusion and soon a thermal wave is born which moves to higher r-
coordinates, equalizing the internal energy of the system. At ¢t = 5 s the profile of
the internal energy is rather flat and the system is approaching thermal equilibrium.

At t =5 s the total internal energy was conserved up to |AE|/Fy ~2-107°.

In Fig. 3.1 (right) we show the evolution of the internal energy profile obtained
when the first term on the right side of Eq. 2.117 is removed. In this case the

T would like to take this opportunity to correct a typographical error which appears in Eq. (52)
of [24] where the factor ¢,k has to be «a as in Eq. 3.13
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Figure 3.1: Evolution of a thermal discontinuity initially seeded around the symmetry
axis. The profile of the internal energy at different times is well reproduced by the SPH
when the hoop-stress term is included (left). However when that term is neglected the

result does not match the analytical solution represented by the continuum line (right).

deviation from the analytical solution is large. Therefore it is important to include
that new term, especially in those calculations dealing with strong thermal gradients,

at or near, the symmetry axis.

3.3 The Wall Heating shock Test

The so called wall heating shock test, [52], was especially devised to check the abil-
ity of hydrocodes to handle with strong shocks. In this test a sphere or a cylinder
implode by conveniently setting a converging initial velocity profile to the compu-
tational cells. For these geometries, simulations can be compared to the predictions
of an analytical approach to the evolution of thermodynamical variables as a func-
tion of the initial conditions. Although the gross features of the event are correctly
captured by SPH simulations it is well known that schemes which rely in artificial
viscosity have difficulties to give a detailed description of the wall heating test. The
reason is that artificial viscosity spreads the shock over several computational cells,
inducing an unphysical rise of internal energy ahead the shock. For converging flows
a large artificial spike in internal energy is observed around the convergence region.

As a consequence a pronounced dip in the density profile appears to keep the pres-
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sure field smooth. Both, the dip and the spike are numerical artefacts which can be
smoothed with an adequate level of heat conduction to spread the excess of internal
energy on the adjacent computational cells (or particles). On the other hand the

inclusion of a good amount of artificial viscosity is mandatory to handle the shock.

The wall heating shock is of particular relevance to check AxisSPH because:

(1) The implosion impels material just towards the singularity axis and therefore
the inclusion of both, the hoop-stress terms and corrective f; and f5 terms in
Eq. 3.5 and Eq. 3.4 become crucial to handle the shock.

(2) The inclusion of the axis-converging part of artificial viscosity, Eq. 3.11, is also

necessary.

(3) Heat conductive diffusion, Eq. 2.117, has to be kept in the energy equation
to reduce the extent of the artificial spike in internal energy, especially for

particles which move close to the singularity axis.

As in the previous test we have spread N = 50, 334 particles in a square lattice
with their mass conveniently crafted to reproduce an homogeneous system with
initial radius Ry = 1 em. The initial conditions were taken from Noh [52]: p(s,0) =
1 g/em?; v(s,0) = —1 em/s; u(s,0) = 0 erg/g. The exact solution at time ¢t = 0.6 s
for v = 5/3 is shown in Fig 3.2 (dashed lines). The analytical profile is characterized
by a constant post state until distance s = 0.2 ¢m, followed by a rapid decrease in
density and internal energy. In the shocked zone the density achieves a rather high,
though constant, value of p = 64 g/cm? while the internal energy was u = 0.5 erg/g.
The simulation of the implosion using AxisSPH without including heat diffusion
leads to the density and energy profiles depicted in Fig. 3.2 (left). As we can see,
the resulting profiles compare poorly with the analytical estimation in the shocked
region. The error bars in the plot give the 1o dispersion for these variables with
respect to its main value in the shell. The dispersion is high, especially at low
radius, a clear signature for the presence of numerical noise. Close to the axis
we see the typical, but artificial, combination of a density dip and internal energy
spike. The maximum density value was p ~ 58 g/cm?, which is around 10 per cent
lower than the exact value. The quality of the simulation is clearly improved when
heat conduction is included in the energy equation, Fig. 3.2 (right). Recipes to set
the artificial viscosity in SPH to better handle the wall heating test were given by
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Monaghan [43] and Brookshaw [8]. We have used the recipe of Monaghan after
adapting it to the particular features of the axisymmetric SPH defining an artificial

conductivity for the i-particle

Ki = ﬁijéuij(ﬁij@'j + 4| i) (3.14)

where ¢,;; = %(cvi + ¢y;) is the symmetrized specific heat and p;; is the artificial
viscosity parameter given by Eq. 2.142. Notice that expression Eq. 3.14 is symmetric
so that x; = ;. As shown in Fig. 3.2 (right) the inclusion of the artificial heat
conduction term leads to a significant improvements of the results. The dip in
density is considerably reduced and the profiles, in density and internal energy, show
a much lesser dispersion. Nevertheless the maximum peak in density still remains
below the analytical expectation. In this respect, the only secure way to improve the
results is to increase the number of particles, although the use of adaptive kernels

(Owen et al. [56]; Cabezén et al. [10]), may also help to enhance the results.

3.4 Implosion of a homogeneous capsule

Another test which demands a careful handling of physics in the neighborhood of
the symmetry axis is the implosion of a sphere induced by the ablation of its surface.
This is a similar problem as the above described wall heating shock test but probably
of greater interest because its close relation to ICF studies. Thus our third test deals
with the implosion of a homogeneous spherical capsule of size Ry = 1 ¢m and density
1 g/em?, induced by the ablation of its surface. The ablation of the capsule was
triggered by the instantaneous deposition of energy in the outermost layers of the
capsule. The added external energy was supposed to be totally stored as internal
energy of the gas. The energy deposition profile was taken linear from s = 0.8 cm to
s = Ry = 1 em so that the ratio of internal energies at these two fiducial points was
Ei(s =1)/Ey(s = 0.8) = 10*. Below s = 0.8 cm a flat profile of internal energy was
assumed. The rocket effect caused by the evaporation of the surface layers forms a
strong shock wave which compresses the interior of the capsule. The convergence of
the shock at the central region of the sphere increases the density and internal energy
in a large factor. In Fig. 3.3 we show the density and radial velocity profiles at four

different times resulting from the SPH calculation. These profiles are compared with
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Figure 3.2: Results of the Noh test at t = 0.6s. Upper left-and right-hand side: averaged

density profiles without and with the artificial heat conduction. Bottom-left and right-

hand side: same but for internal energy. Dispersion around the averaged values is given

by the error bars. The analytical solution is represented with dashed lines.

those obtained using a standard onedimensional lagrangian hydrocode [15] in the
same figure (solid lines). A summary of the evolution of the capsule is as follows.
Shortly after the initial energy deposition a pair of shock waves moving in opposite
directions show up. Both waves are clearly visible in the profile corresponding to
a time t = 0.0044 s. As the reverse shock approaches the center it gains strength
owing to the spherical convergence (profiles at ¢ = 0.0087 s in Fig. 3.3). A maximum
compression of the central region with p,,., = 32 g/cm? is achieved at ¢ = 0.0111 s,
and then the wave reflects. Afterwards the decompression of the capsule is fast. At
t = 0.0150 s, the density peak has already dropped to 7 g/ecm?® and most of the
material of the capsule is expanded homologously. At ¢t = 0.0264 s the material of
the capsule has undergone a severe dilution, p(r) << 1 g/cm? and the radial velocity
profile consists of two homologously expanding zones separated by a transition region
at s ~ 1 ecm. When the elapsed time was t = 0.0264 s the outermost layer of the

sphere has expanded until s = 10 ¢m, ten times the original size of the capsule. The
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Figure 3.3: Density profile (left) and radial velocity (right) during the implosion and
further rebound of a small capsule at different times. The black continuum line is the

profile calculated using a one-dimensional hydrocode of similar resolution.

calculation carried out with AxisSPH matches quite well the one-dimensional results.
The value of the central density at the moment of maximum compression is almost
the same in both calculations (see Tab. 3.1). The conservation of momentum is very
good, close to machine precision (Columns 5 and 6 in Tab. 3.1), while total energy
was preserved better than 1% (last column in Tab. 3.1). On the negative side we see
in Fig. 3.3 that there is a slight loss of the spherical symmetry, probably because of
the initial distribution of particles in a regular lattice, which acts as a source of the
so called hour-glass instability. Such instability arise from the preferred directions
along the grid through which the stress propagates. The strong deceleration of the
capsule during the compression phase amplifies the size of the hour-glass instability.
Another point of small discrepancy between 1D and 2D calculations is that the
SPH calculation is a bit delayed with respect its one-dimensional counterpart. For
instance, the times at which the maximum central densities are achieved are t1p =
0.01095 s and top = 0.0111 s, so that the relative difference was around 1-2 per
cent. Such percent level of discrepancy remained approximately constant during
the calculation.
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Test Particles <%) . <%)2D \A_Rfl IAREI \%f\
Polytrope 51,408 2.43 2.49 5-107% | 1071 |5.1073
Capsule implosion | 30,448 29 32 4-107% | 107" | 8.107°3
Noh test 50,334 647 58 6-1071413.107%|2-1073

f Analytical value

Table 3.1: Main features of test models described in Sections 3.5, 3.4 and 3.3. Con-
servation of momentum is given by the displacement of the center of mass components
A7 = [(F(t) — 7o) — 0°t] and Az = [(2(t) — Zo) — v°¢] divided by the radius of the config-
uration at that time (columns 5 and 6). Momentum and energy conservation correspond
to the last calculated model shown in Figures 3.6, 3.3, 3.2.

3.5 Gravitational collapse of a polytrope

The free fall test discussed in Subsec. 2.10.3 was devised to specifically check the
algorithm implemented to calculate gravity. It is time now for a more complete
test of AxisSPH by including the reaction of pressure forces against the collapsing
gravity force. A spherically symmetric Sun-like polytrope was suddenly unstabilized
by removing the 20% of its internal energy so that the structure implodes under the
force of gravity. At some point the collapse in the central zone is halted and an
accretion shock forms which moves through the incoming material to ultimately
eject the surface layers of the polytrope. Several episodes of recontraction followed
by mass loss ensued until the star sets in a new equilibrium state (see Fig. 3.4).
Even though the scenario is not realistic, it contains several pieces of physics of
great interest because accretion shocks and pulsational instabilities are very common
in astrophysics. Conservation of the spherical symmetry after the first rebound is
also a rather good test for the code. An additional advantage of considering an
spherically symmetric initial model is that the evolution calculated with AxisSPH

can be checked using standard Lagrangian hydrodynamics in one dimension.

The initial model was a 1M spherically symmetric polytrope of index n = 3.
The radius was set equal to 1R so that the central density was p. = 77 g/cm?. The
one-dimensional equilibrium model was built by integrating the corresponding Lane-
Endem equation of the polytrope [14]. The spherically symmetric density profile was

then used to set the appropriate two-dimensional distribution of particles to be used
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Figure 3.4: Temporal evolution of the position of different layers of a sun-like polytrope
when 20% of its internal energy is removed. The calculation was carried out using a
one-dimensional hydrocode.

in the SPH calculation. A sample of N = 51,408 particles was evenly distributed
in a square lattice with their mass conveniently adjusted to reproduce the density
profile of the polytrope. The EOS was that of an ideal gas with pu; = 0.7. In
Fig. 3.5 there are shown the density (top) and gradient of pressure (bottom) profiles
at t=0 s for all the mass points (dots) used in the simulation. These magnitudes
have been calculated with and without the corrective term f;, given by Eq. 2.41,
in the AxisSPH code respectively. As we can see, the inclusion of the corrective
term is crucial to get satisfactory profiles of gravity and gradient of pressure forces,
enhancing the stability of the initial model. Only a handful of particles, representing
a very small amount of mass, located at the surface of the star do not follow the

one-dimensional profile.

Once the initial model was built it was perturbed by reducing the temperature
everywhere in a 20% of its equilibrium value. Afterwards the evolution was fol-
lowed with AxisSPH, from the implosion to the first pulsation, and compared to
that obtained with the one-dimensional Lagrangian hydrocode [15]. In Tab. 3.1 and
Fig. 3.6 there are shown the most relevant features of the evolution of the model.
Soon after the model was destabilized, the polytrope started to collapse. The max-

imum compression of the central zone took place at ¢t = 960 s with a density peak
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Figure 3.5: Density, gravity and pressure gradient profiles of the polytrope. Upper-left
and right: density profile without and with axis corrections respectively. Bottom-left and
right: the same but for the pressure gradient. The absolute value of gravity computed
using the gradient of the gravitational potential calculated using Eq. 2.165 is marked with
full triangles (bottom-right). All mass points of the polytrope have been represented.

Neglecting axis corrections leads to a much larger dispersion in the profiles.

1D
mazx

of pmaz = 192.8 g/em3. A slightly lower value, pl2 = 187.1 g/cm? was obtained
using the 1D code. The profiles of density and radial velocity at different times
are depicted in Fig. 3.6. As we can see, the evolution calculated in one and two
dimensions is very similar and, in general, both profiles are in good agreement. At
the last calculated time, t = 1,545 s, the shock is already breaking out the surface of
the polytrope. Shortly after that time, some mass is ejected from the surface and,
as the one dimensional calculation shows, the star embarks in a long pulsational

stage (see Fig. 3.4).

Therefore we conclude that the numerical scheme is able to handle with this sort
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Figure 3.6: Density profile (left) and radial velocity (right) during the implosion and
further rebound of the polytrope at different times. The black continuum line is the
profile calculated using a one-dimensional hydrocode of similar resolution. At t=1,545s
the shock wave is breaking the surface of the star. In the figure all particles used during

the calculation are shown.

of scenarios. The algorithm devised to calculate gravity, Eq. 2.165, was working
adequately. The artificial viscosity module was also able to keep track with the
shocks although, at some stages, the post-shock region showed a small amount of
spurious oscillation (see the radial velocity profile at ¢ = 1,545 s in Fig. 3.6). On
the other hand there is an excellent momentum conservation, close to machine pre-
cision, whereas the conservation of energy was more modest, |[AE|/Ey ~ 0.5%. The
spherical symmetry was well preserved during the calculation. As in the implosion
of the homogeneous capsule (Sec. 3.4) we found a small time-delay between the one
and two-dimensional calculations (for example the maximum density is not achieved
exactly at the same elapsed time in both codes). The relative shift in time remained
approximately constant, around a 1.5 per cent, during the evolution. For the sake
of clarity, the elapsed times shown in Fig. 3.6 were that of the SPH simulation and
the times of the 1D simulation were conveniently shifted to better fit the density

and radial velocity profiles.
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3.6 Collision of two streams of gas

The supersonic collision of two bubbles of gas of different size and mass is a test
specifically addressed to check momentum conservation in a very anisotropic situa-
tion. It is also a true multidimensional problem in the sense that the problem has
neither spherical nor cylindrical symmetry. It can, however, be handled with Axis-
SPH in the special case of head on collision of the bubbles because the problem has
the adequate symmetry around the line of impact joining the center of both bubbles.
A similar, but much complex, situation will be analyzed in the chapter of this Thesis
devoted to study the collision of a pair of white dwarfs stars (Sec. 4.3). Therefore
the results presented in this section have a great interests for astrophysics because

the head on collision of streams of gas is a limiting case of collision of astronomical

bodies.

The homogeneous spherical clouds of gas have different radius and masses R; =
1 em, Ry =3 em, My = 4rw/3 g and M, = 367 g respectively, so that they have
the same density p; = ps = 1 g/cm®. The initial thermal content of the bubbles
was supposed to be negligible, u{ = uJ = 107 erg/g. The biggest sphere is at rest
with its center located at the coordinate origin (0,0) ¢m while the center of the
smaller one was located at (0, —5) ¢m and moves towards the bigger with velocity
v? = 10 em/s. The EOS of both clouds obeys an ideal gas law with adiabatic
index v = 5/3. The number of particles in each sphere is N; = 5,480 and N, =
50,334, respectively, settled in a square lattice. With that initial conditions the
Mach number is M? = 300, thus the impact is highly supersonic.

In Fig. 3.7 there is depicted a color map of the evolution of density during the
collision. In the second image we see the high increase in density due to the face on
impact of the two clouds. The impact is so strong that it becomes difficult even to
distinguish the shape of the smaller sphere in the last snapshot. Therefore the large
mass contrast leads to the complete deformation of the smaller sphere which, in the
end transfers most of its initial linear momentum to the larger bubble. In order to
better understand the evolution of momentum and the balance between the kinetic
and thermal energies of both structures the whole process can be roughly divided

in three stages, represented in Fig. 3.7 and Fig. 3.8:

(1) For 0 <t < 0.5 s, the incoming smaller cloud deforms while a large fraction of
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Figure 3.7: Density color map of the collision of two streams of gas at times ¢ =
0,0.31,0.69 and 1.41 s. Axis units are in cm.

its kinetic energy is deposited as internal energy around the collision region.
A shock wave is launched into the larger bubble.

(2) Between 0.5 <t <1 s, the total internal energy does no change so much. At
t = 1 s, the velocity of the center of mass of both structures was practically
the same.

(3) Fort > 1 s, the energy stored as internal energy is again restored to the system.
At larger times, the velocity of the smaller bubble became negative while the

bigger cloud acquired a positive velocity to preserve total momentum.

Although the entire phenomenon produces big changes in the velocities of the
spheres the velocity of the center of mass of the whole system remains practically
unaltered, as it can be seen in Fig. 3.8. The last calculated model shows acceptable
values of conservation of momentum and energy. The level of conservation of these
magnitudes is, however, worse than in the previous tests. At the final time, t = 1.4s,
the deviation of the z-coordinate of center of mass position with respect to the
value expected from %t was ~ 1072 (see Tab. 3.1), while conservation of the radial

component was several orders of magnitude better.

In order to understand the origin of the discrepancy relative to momentum con-
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Figure 3.8: Evolution of total kinetic energy Ey;, and internal energy E;,; of two homo-
geneous spherical clouds of gas of different size and mass in a supersonic collision. It is
also plotted the evolution of the z component of the velocity of the center of mass of

the system, Ugystem, Of the smaller cloud, ¥y, and of the larger one, ¥s.

servation in the z-direction, we can analyze in detail the symmetry of the momentum
equation Eq. 3.3. Near (but not at) the z-axis the correction factor f; in Eq. 3.6 is
not zero. Therefore the z-component of momentum is not symmetric by exchanging
particles ¢ and j. On the other hand total momentum is exactly preserved in the ra-
dial direction because of the imposed reflective particles across the z-axis. One may

thing that a possible cure is to symmetryze Eq. 3.3 multiplying the term P]r]/ﬁj2 by
f,

N
. Pir; ; Pir; ; oW,
5=—21) m, (A—Q X fi(G) + =L x f{(gj)) L. (3.15)
) i TU 321

There was no significant changes. We then conclude that strict total momentum
conservation in the z-direction is not possible because of the interaction between
real and reflected particles. Such interaction takes place in a small band around
the symmetry axis, acting as an external force which modifies momentum of real

particles. However, that force cannot be balanced by an opposite force acting in
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the left semiplane because, in the z-direction, reflected particles are obliged to move
exactly as real particles do. Therefore, if strong directional anisotropies appear in
the vertical displacements of the mass points we can not expect a perfect momentum
conservation. Eventually, momentum conservation should improve as the number of
particles increase because the amount of mass localized in the axis neighborhoods

is lower.
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Chapter 4

Applications

In the previous chapter we have presented several basic tests aimed at checking the
general validity of AxisSPH and to be sure that the several routines representing
pieces of physics were properly working. Now time is ripe to check the robustness
of the code in more real and complex situations which demands also the implemen-
tation of a more sophisticated physics. We have chosen three different scenarios of

undoubtable interest in many areas of physics, astrophysics and engineering;:

(1) The growth of hydrodynamic instabilities during the final phase of the com-

pression of a microcapsule subjected to ICF.

(2) The formation of jets arising from the collision of two streams of gas. Jets

born after the impact of metallic plates were also considered in this section.

(3) The numerical simulation of the collision of two white dwarfs, as a possible

scenario to explain the origin of type la supernova explosions.

4.1 Simulating the stagnation phase of ICF cap-

sules

One of the most important difficulties to achieve a good compression of the pel-
let in standard confinement fusion is the existence of hydrodynamic instabilities

during different stages of the process. The growth of several kinds of instabilities:

79
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Rayleigh-Taylor (RT), Kelvin-Helmholtz (KH) or Ritchmyer-Meskov (RM) leads to
the degradation of the spherical symmetry and, therefore, to the viability of an

efficient ignition.

We have focussed our attention on the simulation of the final stages of the ICF
implosion, where the growth of the RT instability has been recognized as one of
the biggest difficulties to achieve a healthy ignition ([3],[34],[50]). Given the mul-
tidimensional nature of hydrodynamic instabilities the one-dimensional simulations
only provide a qualitative description of these phenomena. Therefore, to understand
the details of the ICF process it is obliged to carry out the simulations in more than
one dimension. Nowadays all hydrocodes devised to study ICF are grid based codes,
some of of them including a rather complete physics (for an extensive report of differ-
ent ICF codes see [58]). In particular two-dimensional axisymmetric codes have been
around since 1990, (for example the ILESTA-2D [79] and MULTI-2D [62] codes).
Efficient 3D-codes have been developed roughly since 2000 (for example [39] and
[65])-

Despite the success of SPH to study stellar explosions ([22] on type Ia SN, [19],
[20], [17] on SNII) there have been very few attempts to adapt the SPH technique to
conduct studies of ICF ([66], [67]). As it has been remarked SPH is a fully lagrangian
method, free of numerical diffusion, which avoids the problems associated to mesh
tangling an distortion due to its gridless nature. Therefore SPH is especially suited
to handle dynamical processes involving large deformations of the bodies and the
quick changes of scale associated to implosions/explosions. It also avoids to waste
a large number of mesh points to cover very diluted regions, such as those found

during the evolution of ICF targets.

4.1.1 Physics of ICF

In the standard inertial confinement fusion scheme the nuclear fusion of deuterium
and tritium of a small pellet can be achieved [3] when, in a short lapse of time
(~ 10719 s), very high densities are achieved (~ 10% particles cm™2) during the

final steps of the implosion.

The high compression is produced by the shockwave launched into the inner

material of the capsule. The strong shockwave moves inward to conserve momentum,
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Figure 4.1: Sketch of the drive concept and capsule design for both direct- and indirect-
drive ignition targets. [Source: [73]].

as a reaction to the ablation of the outer part of the capsule.

There are different mechanisms and drivers to inject the energy required to ablate
the surface of the capsule (intense laser or beams of ions, see Fig. 4.1). In the direct
drive implosion the capsule is directly irradiated while in the indirect-drive implosion
the driver energy is first converted to soft x-rays and absorbed on the surface of the

fuel to generate ablation pressure.

The configuration and design of the capsule depends on the direct or indirect
scheme and to the particular driver used to deliver the energy, but it is basically
a spherical shell filled with a deuterium-tritium (D-T) equimolar gas. The shell is
composed by solid D-T (the main fuel layer or the pusher) and coated by the capsule

ablator (examples can be seen in Fig. 4.1).

Different ignition schemes have been proposed to achieve high gain implosions.
In the conventional or standard approach the fuel achieves an isobaric configuration
after the initial adiabatic compression. Such isobaric configuration is basically made
of two regions: a central hot spot or spark region at low density surrounded by a cold
dense main fuel region (see Fig 4.2). Once this configuration is achieved the fusion
begins in the spark region and the a-particles produced in the fusion of the deuterium
and tritium carry its energy to the main fuel producing a nuclear detonation wave

that burns the remaining of the shell. This configuration is possible with a tailored
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Figure 4.2: Initial profiles of the velocity and the density at the beginning of the stag-
nation phase obtained with a one-dimensional hydrocode.

deposition of energy which keeps the increase of entropy as low as possible.

In the 90’s, an new ignition scheme was proposed [78] called the fast ignition,
in which once a central compressed region forms, a fast heating ultra intense pulse
is injected to produce the ignition, this time in a off-center hot spark. For this
mechanism to work the pulse length must be shorter than the expansion time of the
compressed region (t < 107'' s). One of the most remarkable advantages of this

approach is that the compression and the fast heating can be performed separately.

4.1.2 Hydrodynamic instabilities

The Rayleigh-Taylor (RT) and Kelvin-Helholtz (KH) hydrodynamic instabilities [12]
can appear in two critical moments during the ICF process. The first one during
the ablation of the surface of the pellet and the second during the stagnation phase
when the shell is decelerated by the hot spot.

As it is well known the RT instabilities grow when a denser fluid with density ps
is accelerated by a lighter fluid with density p;, p1 < po, that is when the pressure
and density gradients satisfy VP -Vp < 0. In these conditions a small perturbation
do at the interface will grow exponentially, § = &y exp(yt) with a classical growth
rate [12]
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v = Akg, (4.1)

where A; = (p2 — p1)/(p2 + p1) is the Atwood number, k is the wave number of the

perturbation and g is the acceleration of the interface.

At the beginning the RT instabilities are produced in the ablation front where
the implosion of the denser and cold shell is accelerated inwards by the hot and low-
density plasma produced by the laser beam or by the x-ray irradiation. The small
initial irregularities of the target finish and the non-uniformity of the deposition of

energy can break the spherical symmetry inducing the grow of the RT instabilities.

Afterwards the shell reaches its maximum velocity and the acceleration becomes
zero. During this in-flight stage, the capsule is not unstable but, later on, when the
shock produced by the ablative implosion is reflected at the center of the target and
the stagnation phase begins there is a second chance for hydrodynamic instabilities.
The hot spot decelerates the incoming denser shell, so the fuel-pusher interface is
again subjected to the RT instabilities. The amplification of small irregularities in

the denser shell can lead to its break up reducing the viability of the ignition.

Several experimental and numerical simulations (see for example [72] and [2])
have shown that the classical growth rate (Eq. 4.1) has to be modified at the ablation
front, because it neglects corrections due to density gradients, thermal conduction
and ablation. Several different expressions have been proposed, but one of the most
used is

Y
v=a T hL Bkv,, (4.2)

which is known as the modified Takabe expression. L,, is the minimum of the
density scale-length L at the ablation front (L = p/Vp), v, is the ablation velocity
and « and [ are numerical parameters (o ~ 0.9;5 ~ 1 — 4) fitting experiments.
Notice that an increase of v, or L,, produce a reduction effect of RT growth rate
7. Some authors ([75],[35]) have shown that Eq. 4.2 can also be applied during the
stagnation phase. In this stage, the dense and cold material of the shell is ablated
by the energy flux carried by electron conduction and by diffusion of a-particles

generated in the hot spot, producing beneficial reduction of the linear growth rate.
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Figure 4.3: Hydrodynamical evolution during the stagnation phase for the mode pertur-

bation m = 16. Color represents density in g/cm?.
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Once the amplitude of the perturbation, §, grows enough to become similar to
the wavelength A of a single mode perturbation (6 ~ A) the instability enters in the
non-linear regime characterized by the rising of light bubbles and falling spikes of
dense matter. During this stage the amplitude of the perturbation grows in time
following a free-falling law & oc ngt? where n is the free-falling coefficient which

remains almost constant.

During this non-linear phase the KH instability can also appear driven by the
shear flow between the asymmetric large-bubble and thin-spike evolution. The pres-
sure gradient is due to the shock wave front while the density gradient is normal
to the contact surface, with different directions. The effect of this instability is the

apparition of the roll-up of the spike tips.

The complete evolution of a single mode perturbation can be approximated as
[70]

dp exp(~yt) if 6 < A/2

5= ,

(4.3)

where the subindex 1 of §; and ¢; are the values of § and ¢t when § ~ \/2. Nev-
ertheless, in real devices instabilities are not generated as a single mode and many
modes can grow simultaneously increasing the possibility of generate turbulence.
The modelization of the whole sample of unstable modes with different amplitudes

is beyond the scope of this work but could be an interesting objective in the future.

4.1.3 The stagnation phase using 2D axisymmetric SPH

In this subsection we present the study of the development of the RT hydrodynamic
instability during the stagnation stage of the implosion of an ICF implosion using
the AxisSPH code.

The results of our simulations are compared with those carried out by other
authors who made use of different hydrocodes (Sakagami and Nishihara use a 2D
fully Eulerian Code, [70]) or 3D codes ([83],[71]).

The initial conditions of our simulations are similar to those used by Sakagami
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‘ ‘ Radius(cm) ‘ Density(g/cm?) ‘ Pressure(Mbar) ‘ Velocity(cm/s) ‘

Fuel < 0.013 0.5 10 0
Pusher | 0.013 —0.19 5.0 10 1.5-107
Ablator > 0.19 0.5 10 1.5-107

Table 4.1: Initial conditions for the 1D simulation.

and Nishihara ([70], or [83]), that is, the fuel is at rest and the pusher and the
ablator have the same constant velocity (see Tab. 4.1). We first made use of a
one dimensional hydrocode to simulate the conditions of the ICF capsule before the

beginning of stagnation.

The one-dimensional profiles (see Fig. 4.2) are used to create a 2D-distribution
of 177,120 mass-particles (similar profiles were obtained using the initial conditions
of Tab. 4.1 using 2D-SPH code from the beginning ). To do this, first we create an
angular mesh dividing in sectors the Y-Z plane. Secondly, for each shell, particles
are distributed randomly along the intersections following the previous mass profile.
Finally the system is relaxed to reduce the unbalanced lateral pressure gradients

due to the random distribution (see details in Appendix A).

Different single mode perturbations were seeded at the beginning of each 2D
simulation. They were centered at s. = 0.0469cm (distance to the center of the
capsule), the region where the value of VP - Vp becomes most negative and the
Rayleigh-Taylor instability is stronger. At ¢ = 0 s the 1D velocity profile was
perturbed by adding a small perturbation dv to the spherically symmetric radial

profile. This is done according to the following recipe

v =vy+ v, (4.4)
v =A-vg-sin(mb), (4.5)

A= Ay-exp (- (5250)2) , (4.6)

where m is the spherical mode number, related with the location of the contact

surface through the wave number k£ = m/s.. Ay, and ¢ are parameters which

control the initial amplitude of the perturbation and the width of the Gaussian



4.1. Simulating the stagnation phase of ICF capsules 87

function around the s. where the perturbation is applied. Similar simulations but

seeding the perturbation in the density profile can be found in [67].

The set of conservation equations for mass (Eq. 3.1), momentum (Eq. 3.2 and
Eq. 3.3) and total energy (Eq. 3.4) are solved using a two-step centered scheme
with second order accuracy. Self-gravity and nuclear reactions are not included in
this test. The equation of state includes the contributions of an ideal gas of ions, a
partially degenerate electron gas and radiation in thermal equilibrium at a unique
temperature 7. The one-parameter family of interpolating kernels W (v, h) are

used to run these simulations (see Appendix B for details).

In several tests the electron thermal conduction was included in the energy equa-
tion by adding the conduction term Eq. 2.117 where k; is the well known form of

Spizer-Harm thermal conductivity [76].

In order to test the influence of the artificial viscosity, we have run various
simulations using the artificial viscosity (Eq. 3.8); reducing the viscosity parameters
ap and [y of Eq. 3.9 and a1, and f3; of Eq. 3.11, and also using the form function f;
(Eq. 2.136) proposed by Balsara [5] which suppress the artificial viscosity wherever

strong shear flow is present.

4.1.4 Results of the simulations

We have analyzed the hydrodynamic evolution of the stagnation phase for different
modes, m, and with different conditions of viscosity, conduction and initial ampli-
tude, Ag. In Table 4.2, there are summarized the initial conditions, the numerical

growth rate v, obtained using AxisSPH and the theoretical value Ve

The viscosity parameters are set to ag = a1 = 1, 5y = 51 = 2 for those simula-
tions labeled with ” yes” in the second column of Table 4.2. For the ” Less” cases the

viscosity parameters are reduced to an a half. In all cases ¢ = 5-10~%cm (Eq. 4.6).

An example of the hydrodynamics of a representative simulation is depicted
in Fig. 4.3, where all particles are represented at different evolutive times (color
represents density in units of g/cm?3). The initial values of the perturbation are
m = 16, Ag = 0.25, without electronic conduction. In this case the initial amplitude

is quite large and the linear regime quickly saturates. In the first snapshot (¢t =
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‘ m ‘ Viscosity | Conduct ‘ A ‘ v(ns™h) ‘ Yineor(n5™1) ‘

6 yes no 0.1 4.74 4.97
8 yes no 0.1 5.78 5.74
10 yes no 0.1 5.83 6.42
12 yes no 0.1 6.51 6.93
14 yes no 0.1 7.01 7.03
16 yes no 0.1 7.05 8.12
20 yes no 0.1 7.14 9.08
20 Less no 0.1 7.64 9.08
20 | Balsara no 0.1 791 9.08
12 yes no 0.05 6.26 6.93
12 yes no 0.2 6.61 6.93
6 yes yes 0.1 4.75 -

12 yes yes 0.1 6.14 -

20 yes yes 0.1 6.87 -

Table 4.2: Growth rate numerical results v and theoretical classical growth rate vincor
calculated with Eq 4.1 under different conditions of viscosity, with or without electronic

thermal conduction and with different initial amplitudes of the perturbation.

0.05 ns) is already evident how the effect of the perturbation in the velocity field
affects the density and it is clear its sinusoidal nature. For ¢ > 0.20 ns the asymmetry
of the dense spikes and the less dense bubbles is already marked. For ¢ > 0.35 ns
the effect of the Kelvin-Helmholtz instability can be seen on the sides of the bubbles

which tangle and roll up into vortices.

We have made quantitative measurements of the development of the RT instabil-
ities in order to make a comparison with the results of other authors ([70],[71],[83],
[4]). Because of the large initial perturbation it has been possible to measure the
growth rate by measuring the distance, AR, between the tip of the bubble and
the bottom of their nearest spike. Such distance was taken as the arithmetic mean
of the distance between the center of the target and those particles whose density
is 1/4,1/2 and 3/4 of the maximum density respectively, as shown in Fig. 4.4 for
m = 14, t = 0.15 ns. In that figure it is depicted the density profile along the radial
direction for both, bubbles and spikes, and also includes a color map of density in

the rightmost part of the figure. In the same figure the particles located at the



4.1. Simulating the stagnation phase of ICF capsules 89

140

120 +

100 +

80

density (glcm?)

0 0.001 0.002 0003 0004 0005 0006 0007 0.008 0.008 001

distance (cm)

Figure 4.4: Density profiles of particles along the radial direction of a tip (blue) and a

bubble (green) for m = 14 and t = 0,15 ns. The selected particles are the blue and

green particles of the small slide in the rightmost part. The circles mark the position of
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the nearest particle with densities 7, 5 and % of the maximum of each profile.
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Figure 4.5: Time evolution of AR, distance from top of bubble to bottom of spike for
mode m = 12. Solid line fits the numerical points with an exponential function in the
first stage, t < 0.35 ns of the hydrodynamical evolution when the perturbation grows

with the classical linear growth rate.

selected values to measure AR are also shown (circles).

An example of the temporal evolution of AR for m = 12 is shown in Fig. 4.5.
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Figure 4.6: Trajectory of the contact surface fitted with a parabolic curve (solid line).

The evolution of the contact surface was obtained using a one-dimensional simulation.

As we can see there is an initial stage of exponential growth until ¢ ~ 0.35 ns, that
corresponds to the classical growth rate in the linear regime. Fitting the evolution
of the numerical results of AR using an exponential function leads to the value
v = 6.51 ns~1, for the grow rate, (see in Tab. 4.2 for different values of m). This
value can be compared with 7o calculated with Eq 4.1 (because conduction and
nuclear reactions are switched off) for the following values A; = 0.73 (py = 160 g/cm?
and p; = 25 g/cm?®) and s, = 0.0034 cm at the moment of maximum compression.

2

The value of the deceleration g = 0.024 cm - ns™=, was calculated fitting a parabola

with the values of the trajectory of the contact surface (see Fig. 4.6). The theoretical

1

rate was Yineor = 6.93ns " in reasonable agreement (6 per cent) with the numerical

simulation.

In Fig. 4.7 there are represented (diamonds) the numerical values of the growth
rate versus time obtained using the standard viscosity, without electronic conduction
and Ayp = 0.1. They compare well with the theoretical curve in red obtained with
Eq. 4.1, especially for small values of the mode numbers m (less than 9 per cent
for m < 14) but a larger value for m = 20 (20%). This worse values of v at
high modenumbers, could be due to the reduction of resolution and the increase
of vorticity. If we increase m we have more mode perturbations with the same
total number of particles, which represents a local reduction of resolution. Secondly,
the increase on vorticity can produce large amounts of spurious shear viscosity due
to the artificial viscosity. Better results have been obtained reducing the artificial
viscosity parameters to an a half, and using the functional correction of Balsara (see

" Less Viscosity” and ” balsara™ in Tab 4.2 and in Fig 4.7 the values represented with
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Figure 4.7: Linear dispersion relation (linear growth rate versus mode number m). Dif-
ferent measures are compared: standard viscosity, without conduction and Ay = 0.1
(diamonds); with Jess viscosity (asterisk); using the Balsara formula (square); with the
standard viscosity but changing the initial amplitude to Ay = 0.05 (circles) and Ay = 0.2
(triangles); the electronic conduction is included in the measures represented with in-

verted triangles and green line. The red solid line represents the Eq. 4.1.

asterisk and square, respectively).

On the other hand we have not seen relevant differences in the growth rate ~ for
m = 12 when the parameter Ay was changed to an a half or to the double of its

original value. The differences were less than 4% and 2% respectively.

Finally we have carried several tests for modes m = 6, 12, 20 including the effect
of electronic conduction. The effect of the conduction is to reduce the rate of growth.
This is in qualitative agreement with Eq 4.2 where the classical growth rate is
reduced by the term (kv,, as can be seen in Fig 4.7 with inverted triangles and

green line.
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4.2 (Gaseous and metallic jets

As in the case of RT and KH instabilities discussed above the hydrodynamic of jets
belongs to a broad family of phenomena which are present in many areas of physics
ranging from engineering to astrophysics. Jets play a similar role as laser light does
but involving particles (or ions) instead of radiation. Usually a jet is the result of the
collimation of an already existing hydrodynamic flow. Under several circumstances
such collimation leads to a stable structure consisting of an elonged region possessing
a high energy and momentum concentration which moves supersonically. There are
many scientific and engineering applications of jets: they are used to cut thick
metals, propulse aircrafts or enhance the ability of ICF devices. In astrophysics
they are an essential part of the mechanism behind cosmic gamma ray bursts and
Herbig Haro objects. Recently jets have become an important part of so called
Astrophysics Laboratory where scaling relationships are used to link jets produced
in laser and z-pinch facilities to nature [13]. In this chapter we analyze the capability
of the proposed axisymmetric SPH to handle jets resulting from the collision of two
specular streams of gas along its symmetry plane as well as from two colliding
metallic plates. Such kind of jets are very common and they were among the first
which were studied either analytically or by using computer simulation means. They
have the advantage that a number of analytical relationships can be made assuming

a perfect gas EOS, so that they can be used as as test for hydrocodes.

4.2.1 Basic theory of jets

A number of useful relationships can be built assuming several simplificative hy-
pothesis (see [11] and Fig. 4.8):

(1) A conical stream of gas collides incides onto the z-axis with an angle 6 so that

the process is axisymmetric.

(2) The incident gas obeys a perfect gas EOS law P = (7 — 1)p u being u the
specific internal energy of the gas, P the pressure and we take v = 5/3 typical

of monoatomic gasses.

(3) The refraction of the flux going through the shocked zone is at the origin of
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Figure 4.8: Sketch depicting the basic geometrical parameters of a jet.

the jet. The jump of physical variables across the shock front can be described

using the classical theory of strong shocks.

According to Fig 4.8, it is easy to show that flux conservation of the gas stream
leads to
po vo sin(f+ ) = py vysina, (4.7)

where pf) is the density of the gas right before crossing the shock surface. Nevertheless
ph and py are related by strong shock conditions p; = ¢p, where ¢ = 1/£ is the

compression factor, being &,

-1

which for v = 5/3 gives £ = 0.25. Equation 4.7 becomes

Evpsin(f + o) = vy sina. (4.9)
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On the other hand imposing conservation of tangential components of velocity

across the shock plane leads to

vy cos(f +a) = v cosa. (4.10)

Equations (4.9) and (4.10) can be combined to get «, v; as a function of the

usually known magnitudes 6 and vy. For instance

(1—®iK1—@?ﬂ£mﬁﬂ%.

4.11
2tan 6 ( )

tana =

It can be shown that only the solution associated with the negative sign is phys-
ically correct and is also in agreement with numerical simulations. According to
equation (4.11) only those solutions satisfying the the following inequality are pos-
sible

(1 —¢)*> 4&tan?0. (4.12)

Depending on the adopted value for 6 one or two jets moving in opposite direc-
tions could appear. For # < 6. there is only one jet, the one moving upwards in
Fig 4.8. Otherwise a second jet in the opposite direction is also seen (see Fig. 4.9).

The value of the critical angle is

1-¢
22

N

=02 -1)

(4.13)

tanf, =

For v = 5/3 the the critical angle is 6. = 36.87°. Therefore reproducing 6, is an

interesting test for any axisymmetric hydrocode.

It is straightforward to find (see [11]) other interesting parameters characterizing
the jet, also shown in Fig. 4.8. The uncompressed material of the stream initially
placed at position (r,, z,) with mass density pg, becomes a shocked material in the

jet after crossing the shock front, with coordinates (s, z5) and mass density p;

17,
1= hos (4.14)
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Figure 4.9: Simulations of conical stream of supersonic gas converging onto z-axis for

different angles of incidence 6 at the same elapsed time. Depending on the collision angle

one or two jets (going in different senses along the z-axis) are formed. Color represents

density in logarithmic scale.

O | o | @ | CGireor | v | Gineor | o | Tulem) | 7s(em) | z5(cm)
10° | 3.41° | 4.14° | 097 |098| 1919 | 1811 | 0.086 | 0.0180 | 0.249
20° | 7.38° | 10.76° | 0.90 |0.88| 32.73 |31.31| 0.171 | 0.0209 | 0.110
30° | 13.22° | 17.69° | 0.75 | 0.73 | 41.99 |41.13 | 0.251 | 0.0238 | 0.075
35° | 18.97° | 21.76° | 0.62 | 0.55 | 46.82 |45.44 | 0.287 | 0.0245 | 0.061

Table 4.3: Theoretical and measured jet parameters for several angles of incidence

0 <4..

that has the contributions of the geometric factor of convergence r,/rs and the

compression factor across the shock (% =4 for a monoatomic ideal gas). Notice that

the geometric factor can lead to a rather high densities near the z-axis.

The component of the velocity of the jet in the axis direction is

Vjy = Vo

cosc

cos(f + «)

(4.15)

Table 4.3 contains the theoretical and measured parameters of the jet, for differ-

ent angles of incidence lesser than the critical angle 6. = 36.87°.
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4.2.2 Numerical setting and results for ideal gas jets

We have studied the jet formation caused by the convergence of a conical stream of
supersonic ideal gas for several angles of incidence 6 using AxisSPH. To represent
the incoming flux of gas we have uniformly spread a sample of ~ 8 - 10* particles
(the exact number depends on the incidence angle) in a rectangular band of length
1 em and width 0.1 em (see the first snapshot in Fig. 4.10 or Fig. 4.13). The mass of
the particles was conveniently crafted to get a constant initial density py = 1 g/cm?.
The initial specific internal energy of the gas was set to ug = 10~* erg/g more much
lower than the internal energies which will be achieved during the jet formation.
Finally a constant initial converging velocity of vy = 1 em/s (see Fig. 4.8 for the
definition of vy) was given to each particle of the system. The set of SPH equations
expressing mass conservation (Eq. 3.1), momentum (Eq. 3.2 and Eq. 3.3) and total
energy (Eq. 3.4), with the inclusion of the artificial viscosity (Eq. 3.8), are solved

using a two-step centered scheme with second order accuracy.

As in other simulations where strong shocks are present (see for instance Sec. 3.3)
the inclusion of an artificial heat conduction term is crucial to improve the quality
of the simulations. The effect of including or not such term in the energy equation
can be seen in Fig. 4.11 where it is represented a color map of density once the
jet is well formed. Both panels in Fig. 4.11 represent the impact of the supersonic
conical flow for an angle of incidence 8 = 30°. In the leftmost panel the artificial
heat conduction was not included leading to the inhomogeneities which are clearly
seen in the figure while in the rightmost picture the inclusion of that term manages

to erase the inhomogeneities.

In Fig. 4.10 there are shown six snapshots describing the hydrodynamic evolution
of the jet at different times (the color intensity denotes the logarithm of the density).
As the initially homogeneous cold stream of gas approaches the coordinate origin
its density rises due to the geometrical convergence of the flow. Soon the incoming
flow collides with the specular stream of gas arriving from the negative part of the
r-axis and a localized high pressure zone is born close to the symmetry axis. A
steady state is achieved consisting in a high pressure zone with high temperature
and density separated from the incoming supersonic flow of gas by a discontinuity.
Such discontinuity marks the location of a strong shock wave through which the
incoming flow of gas is passing. The nearly steady state has already been achieved

in the second snapshot in Fig. 4.10. The cold supersonic (¢, ~ 0.05 ¢m/s and
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Figure 4.10: Hydrodynamical evolution of the conical stream of supersonic ideal gas for

the incidence angle # = 60°. Color represents density in logarithmic scale.

vo ~ 1 em/s) impacting gas is practically undisturbed until it crosses the shock
front and it is diverted in one or two jets depending on the incidence angle. When
the flow goes through the shock front a high pressure bubble forms which rapidly
expands along the z-axis giving rise to the jet/s. For angles larger than the critical
angle 6. (as that shown in Fig. 4.10) two jets show up separated by a stagnated
zone made of particles with very low velocity, as it can be seen in the fourth panel
of Fig. 4.12.

As the angle of incidence decreases there is observed a reduction in the distance
from the shock to the z-axis, a reduction in the amount of material in the jet
moving towards the z < 0 region and also a lesser amount of stagnated particles
(see Fig. 4.12). Ideally for incidence angles lesser than 6, one side of the shock would

remain attached to the origin of the z-axis, leading to the total suppression of the
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Figure 4.11: Density color map of the late time configuration for an ideal gas jet without
(right) and with (left) the inclusion of the artificial heat conduction.
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Figure 4.12: Velocity color-map of the same late time configuration for different angles
of incidence 6 of jets produced by the convergence of ideal supersonic conical gas flows.

jet in the lower quadrant. These cases would correspond to the theoretical model
discussed in SubSec. 4.2.1.

It is difficult to get a precise value of the critical angle from the numerical
simulations because the suppression of the second jet is not completely abrupt as the

angle of incidence of the incident gas decreases. For example, for an incidence angle
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Figure 4.13: Hydrodynamical evolution of the conical stream of supersonic ideal gas for

the incidence angle # = 30°. Color represents density in logarithmic scale.

of 8 = 30°, as depicted in Fig.4.13, there still remains a small amount of particles
moving with low but negative vertical velocity, v,. Nevertheless the critical angle
obtained from the simulations, 6. ~ 30°, is in reasonable agreement with the basic

theory of jets exposed above.

Several things must be considered to explain the differences between the simu-
lation and the theoretical model. Firstly, there is a small lateral expansion of the
gas stream as it moves towards to the z-axis. Therefore the physical conditions of
the gas when it crosses the shock front are not exactly the same as those considered
in the analytical model. Secondly, the shock front has not a perfect plane geometry
because it has a slight curvature produced by the weakening effects of the lateral
rarefaction fans. This effect can be seen clearly in our simulations (see for instance

the right panel in Fig. 4.11) and in the simulations made by other authors (as in Fig.
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Figure 4.14: Left panel: Evolution of density and z-component of the velocity of a
particle initially placed in the center of the jet, with angle of incidence § = 30°. Right
panel: Trajectory of the selected particle (blue line) superposed to the density color-map
fort = 0.8 s.

3ain [41]). Under this conditions it become difficult to measure the angle o between

the conical shock and the z-axis (see Fig. 4.8).

For each incidence angle 6, we have tracked the trajectory and evolution of the
mass density and the velocity of a selected particle from its initial position (placed
in the center of the jet through the shock front, see Fig.4.14). In order to measure
the jet parameters we have chosen two fiducial points of the trajectory. The first one
is in an unshocked position (7, z,) at the center of the initial jet, and the second
placed after the shock front (7, z5). The jet parameters were estimated just at
the point where the particle gets its maximum density. The measured « values of
Table. 4.3 have been calculated as a = arctan(rs/zs) and there are sketched by the
blue lines in Fig. 4.15. In general, we obtain values for the angle « slightly higher
than those predicted by the theory but, given the uncertainties stated above, the
agreement is not bad. According to Table. 4.3 the computed velocity and the mass

density of the jet is in rather good match to the theory.

4.2.3 Simulation of metallic jets

There are a number of engineering applications where a pair of metallic plates are
bring together at supersonic velocity (for example with an explosive charge). Under

several circumstances a jet is born at the region of collision. To correctly study
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Figure 4.15: Straight blue lines give a estimation of the angle «, between the shock
front and the z-axis (see Table 4.3). The lines are superposed to the density color-map

for several incidence angles 6.

these jets it is necessary to implement a rather sophisticated EOS. However much
insight about the physics involved in the formation of metallic jets can be gained by
using simple analytical equations of state. Among them probably the simplest one
comes from the use of the so called stiffened gas, whose properties resemble those
of metals, but whose EOS is still almost as simple as that of an ideal gas. In the

stiffened approach the pressure is calculated using the following expression [26]

P=(y—1)pu+a*(p—po), (4.16)

where v and a, are state constants which depend on the type of metallic material
considered whereas pq is the density of the material at normal ambient conditions.
The first term in Eq. 4.16 is the ideal gas EOS while the second one contains in-
formation concerning the metallic nature of the material. The positive constant
a is especially relevant because it is the sound speed of the material at ambient
conditions (p = pp and u = 0). In the limit, as p — 0, the pressure approaches a
value independent of the internal energy u, P — —a?py, meaning that pressure can
become negative, as in real metals. Therefore an stiffened gas is able to support

tension.

In a isolated system, the specific internal energy u of an stiffened gas can be

obtained integrating
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P
du = —PdV = ;dp, (4.17)

and using Eq. 4.16 to give

P\ 1 Po
u=K (—) —a (— - —) : (4.18)
Po y—1 9p
where K is an integration constant depending on the initial conditions. Substituing
Eq. 4.18 in Eq. 4.16 gives

p\? @
P = Kpy(y—1) (—) ——po- (4.19)
Po Y

In the stiffened gas EOS, P = P(u, p) so the sound speed must be calculated as

@HE), e

using again Eq. 4.16 yields

2= “Duta (y— (-1 .
¢ =7(y—Du+ (v (v 1)p>, (4.21)

finally substituting Eq. 4.18 in the previous expression we obtain another expression

for ¢?

2= Ky(y—1) (ﬁ)ﬂ . (4.22)

Although both equations for ¢? are equivalent it is recommended to use the last
expression in hydrocode calculations. The reason is that, according to Eq. 4.21, the
sound speed is achieved after a balance of terms that become large and positive and
large and negative as p — 0. In some cases, these terms may not cancel exactly and
produce unphysical negative values of ¢? in numerical calculations. On the other

hand Eq. 4.22 does not pose a problem because ¢? is always positive.
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Figure 4.16: Comparison of the hydrodynamical evolution for an ideal gas jet (upper
row) and for a stiffened gas (bottom row) at same elapsed times t3 = 2.7-107% s,t5 =

4.6-107% s,t; = 6.4-107% 5. Color represents density in logarithmic scale.

In order to qualitatively study the peculiarities of jet formation coming from the
supersonic collision of a pair of plates we have implemented the stiffened EOS given
by Eq. 4.16 in AxisSPH. We have used the following set of parmeters: incidence
angle 6 = 60°, py = 2.7 g/cm? (aluminum density), initial impacting velocity vy =
5.5+ 10°% e¢m/s, initial specific internal energy u = 8 - 10% erg/g, v = 2.5 and a =

5.5-10% em/s. For comparative purposes a model was also run setting a = 0 cm/s
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so that the EOS reduces to a pure ideal gas with v = 2.5. Both simulations were

carried out using the same number of particles N = 82, 530.

In Fig. 4.16 there is depicted the evolution of density for the ideal gas EOS (upper
row) and for the stiffened gas EOS (lower row). Because the angle of incidence is
large we see the propagation of two jets moving in opposite directions in each case.
The main qualitative difference is in the lateral amplitude of the jets because the
jets born from the stiffened gas were much laterally confined than those coming
from the ideal EOS. Such behavior is especially marked in the jet pointing to the
negative region of the z-axis. That is the correct behavior [26] because as the shocked
material expands it reduces its density. Eventually the density becomes lower than
the ambient density (i.e. p < py) and the stiffened part of Eq. 4.16, a®(p — po) takes
over. The pressure turns to negative values preventing the expansion of the beam
which remains much confined than in the case of having an ideal gas with the same
adiabatic index . Another effect of the stiffened term is the reduction in the speed
from non steady flow at the jet tip, as it can also seen in Fig. 4.16, increasing the
sharpness in the jet shape. A similar behavior was described in [26]. In consequence
metallic jets show much better collimation properties than jets arising from the

impact of ideal streams of gas.

Although it could be very interesting to numerically investigate more properties
of materials described by an stiffened EOS, for instance the calculation of the critical
angle 6. for different materials or the thickness of the jets as a function of the type
of colliding metals, these calculations are out of the scope of this thesis. The main
conclusion of this section is that AxisSPH can be used to describe the relevant
features concerning the jet formation and evolution no matter what EOS is used to

describe the nature of the materials.

4.3 Simulating the collision of two white dwarfs
using AxisSPH

The explosion of a white dwarf star giving rise to a supernova of type Ia is one of
the most spectacular and striking phenomenon in the cosmos. Because its extreme
brightness it has also acquired particular cosmological significance as a tool to mea-

sure the geometry of the universe. These explosions are frequent, occurring at a rate
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of about 0.2 per century for elliptical galaxies. However, despite the relevance of
these explosions there is not a firmly established model for the progenitor system.
In the most commonly studied progenitor of type la supernova a massive white
dwarf with mass ~ 1 — 1.1M; made of carbon an oxygen accretes material from
a nearby companion star until the Chandrasekhar-limit mass is reached. Then the
white dwarf destabilizes while the temperature at its center becomes high enough to
ignite carbon. The nuclear combustion spreads all along of the white dwarf and in a
couple of seconds practically the entire star is burnt leading to its total disruption.
Other studied scenario involves the coalescence of two CO white dwarfs located in a
compact binary system. In this case the mass of the exploding object is the sum of
the masses M; and M, of the two white dwarfs, therefore allowing for a wider variety
of explosions from sub-Chandrasekhar M; + M, < 1.4M to super-Chandrasekhar,
My + My > 1.4M,.

An interesting variant of the double degenerate scenario has been recently sug-
gested and studied by Rosswog et al. (2009) [69], Raskin et al. (2009 [64] , 2010 [63])
and Loren et al. (2009) [36]. In that proposal the supernova display is produced by
the direct encounter of a pair of white dwarfs with mass 0.4M, < Mg < 0.9M in
the core of a globular cluster. A rough estimation of the collision rate in a typical
globular cluster is 5—20-1071? events per comoving Mpc? per year which corresponds
to a 10-100 collisions per year in the universe at redshifts z < 1 [64]. Although the
rate is much lower than that of the observed supernova it is not negligible. Therefore

the direct collision channel to type Ia supernova merits consideration.

The most complete study of double-degenerate white dwarf collision was carried
out by Raskin et al. [63] using a 3D SPH code which typically used 2 - 10° particles
(although in one case they did use 2 - 10° particles). In that work different white
dwarf masses, 0.5—0.81 M and impact parameters (the vertical separation between
the cores of both white dwarfs at the moment of impact given as the fraction of the
radius of the primary white dwarf), b = 0,1 and 2, were considered. The main
conclusion of the study was that for a reasonable choice of the parameters it is not

difficult to get 0.3 — 0.8 M, of *Ni, high enough to power the explosion.

Therefore our final and, probably most complete test, to AxisSPH is devoted to
simulate the head-on impact (i.e. with impact parameter set to b = 0) of two twin
white dwarfs with 0.7 + 0.7M and radius R,q = 8,000 km. The same calculation

was carried out using an standard 3D-SPH code with exactly the same physics for
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comparative purpose.

4.3.1 Astrophysical scenario and numerical setting

The physics included in AxisSPH is now much more complex than in the precedent
tests. The EOS consists of a mixture of ions, treated as an ideal gas with coulomb
corrections, partially degenerate electrons and radiation. Gravity was calculated
using the algorithm explained in Subsec. 2.10.2. The energy release due to nuclear
combustion was taken into account using an alpha network of 14 species [9]. The
nuclear network also includes the binary reactions **C+'2C and *O+41°0. A crucial
ingredient of this algorithm devised by Cabezén et al. [9] is that the chemical
evolution of nuclear species is calculated implicitly with the temperature evolution.
That feature allows to handle all the combustion stages of the mixture from the
nuclear statistical equilibrium regime to normal combustion, including the quasi-
statistical equilibrium and final freeze out of the species. Networks of similar size
but without implicit temperature coupling were used by Rosswog et al. [69] and
Loren et al. [36]. Raskin et al. [63] used an hybrid method explicit-implicit to
compute the nuclear combustion being, therefore, closer to our implementation.
Conductive diffusion was neglected because it remained very small compared to the

pdV term in the energy equation.

During the most intense phase of combustion, at densities ~ 4 - 107 g/cm? and
temperatures ~ 6 - 10° K, the time-step becomes very small §¢ < 10~7 s making
the calculation difficult. In these cases the combustion algorithm allows to decouple
the nuclear network from the dynamics until the current hydrodynamical time is
recovered. Still, it was necessary to run more than a one hundred thousand models
to completely follow the event from the stage where the pair of white dwarfs were
approaching to the moment where the nuclear combustion becomes negligible after

the explosion.

Both white dwarfs have the same mass 0.7M so that the total mass equals the
Chandrasekhar-mass limit. Models in 3D and 2D were built and relaxed to ensure
good mechanical equilibrium before collision. The twin stars were then placed with
their centres separated by 4 R, and a velocity v, = 1,700 km/s was given to each
star (see first snapshot of Fig. 4.17 and Fig. 4.18). The number of particles used
in the 3D calculation, N3p = 200,000 was similar to that used by Raskin et al.
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[63] in many of their simulations. For the axisymmetric simulations we have taken
Nsp = 88,560 particles. Therefore there is factor two of enhancement in resolution,

large enough to explore convergence issues of the models.

4.3.2 Description of the collision

As soon as we let both stars free to move their velocity begins to rise and the head
on approach starts. The sequence of events is summarized in the series of snapshots
depicted in Fig. 4.17. As the stars get close their shape is tidally distorted, as
shown in the second image of Fig. 4.17 corresponding to ¢t = 3.30 s. Nevertheless
tidal deformation is not strong because of the short time available before the contact.
At the third image, t = 4.66 s, the surface of the stars has already come into contact
and the collision starts. At that time the relative velocity of the white dwarfs is v =
4,800 km/s, higher than the sound speed at the center of the star, ¢; ~ 4,000 km/s.
Therefore we are clearly facing a supersonic event where shock waves will soon or
later take over. As a consequence of the brutal impact there is a strong deformation
of the white dwarfs along the line joining their centers. As the volume occupied by
each white dwarf shrinks the density increases to conserve the total mass. This leads
to an increase of the pressure in the central region which provokes the expansion
of the plasma along the equatorial plane, giving rise to a ring of material clearly
visible in the three last snapshots of Fig. 4.17. When temperature exceeds one
billion degrees the binary reaction '2C+?C starts along the collision plane and
intermediate elements begin to be synthesized at ¢ > 5 s (see Fig. 4.20). The
morphology of the merged white dwarfs looks that of a pair of pseudo-semispheres
joined by a disc made of burnt material. A detonation propagates through the
infalling, still unburnt, material. As carbon and oxygen pass through the shock
front, clearly visible in the three lasts snapshots of Fig. 4.17, the fuel compresses,
heats and finally ignites. At t > 6 s the combustion is rapid enough to synthesize
nuclei of the iron group (see Fig.4.20) and the rate of nuclear energy release jumps
to around 10°? erg/s. The temperature rises to about 5-6 billion degrees in the
shocked zone. In spite of that the burnt region does not expand because of the ram
kinetic pressure exerted by the fresh infalling material. Therefore the combustion
region remains confined during a time ¢ >~ 1 s, large enough to allow the synthesis
of ~ 0.36 My, of **Ni. At some point the release of nuclear energy in the confined
region is large enough to outpower gravity and the kinetic pressure of the infalling

matter (two last snapshots in Fig. 4.17). Afterwards the burnt zone expands and
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Figure 4.17: Hydrodynamical evolution of the head-on collision of two identical white

dwarfs of 0.7 My, in 2D. Color represents the logarithm of density, given in g/cm? at
t=0s1t=330s,t=4.66st=0627s t=06.80sandt=12.95 s respectively.
Axes are scaled to 1,000 km. Image obtained using the SPLASH visualization tool [59].
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| | 3D (M) | 2D (M,) |
a |1.33-107320-10°
2C | 5.20-1072 | 5.50-1072
160 | 1.25-107' | 1.52- 107"
20Ne | 1.28-10"* | 3.20-107°
Mg | 2.45-1072 | 2.86 - 102
8Gi | 3.76-107! | 4.08- 1071
328 12.43-107 | 2.30- 1071
36Ar | 6.94-1072 | 6.10- 1072
0Ca | 9.50-1072 | 8.20- 1072
“Ti | 4.85-107* | 4.20- 1074
8Cr | 4.34-1073 | 3.80-1073
2Fe | 2.26-1072|1.90-1072
5Ni | 3.91-107" | 3.62- 107"
60Zn | 3.48-10~* | 4.02-10*

Table 4.4: Final abundance of the 14 nuclei for the 3D simulation (¢ = 11 s) and 2D

simulation (¢ = 12s).

cools leading to the rapid freeze-out of nuclear abundances.

The evolution of chemical species is depicted in Fig. 4.20 and a detailed account
of the final abundance of the 14 nuclei is given in Tab. 4.4. We see that the heaviest
Fe-elements are synthesized in, roughly, a half of a second. We also see that for
t > 6.8 s the abundance of all elements have been frozen by the expansion. The final
amount of °Ni, ~ 0.4 M and the total energy of the gas, E,,; ~ 1.6-10°! erg after

freezing is plenty compatible with a type Ia supernova event.

4.3.3 Comparison to a 3D-Model

The direct comparison between the above calculation and a full three-dimensional
simulation of the same phenomena using the same initial setting and physics will be

very valuable because:

(1) It will serve to validate AxisSPH.
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Figure 4.18: Hydrodynamical evolution of the head-on collision of two identical white

dwarfs of 0.7 Mg in 3D. For comparison with Fig. 4.17 it is represented a section in
plane Y'Z with y > 0 (axes are scaled to 1,000 km). Color represents the logarithm
of density in g/cm3 att =05, ¢t=29 s, t =450s,t=0631s,t=06.74s and
t = 10.7 s. Image obtained using the SPLASH visualization tool [59].
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Figure 4.19: Evolution of total internal energy (Int), kinetic energy (kin) and gravita-
tional energy (Grav) for the AxisSPH (with dotted lines) and 3D-SPH (with solid lines)
simulations.

(2) It will also be useful as a convergence study for the 3D model.

For the 3D setting of the problem we have used N = 200,000 particles with
equal mass and N = 88, 560 particles with equal mass for the 2D calculation. There

is, therefore, a factor ~ 5 of enhancement in resolution.

The evolution of the 3D model is summarized in Fig. 4.18, depicting the color
map of density at different times. The evolution of various energies and chemical
species are shown in Fig. 4.19 and Fig. 4.20 respectively. Quantitative data of the
abundances of the 14 nuclei considered in our nuclear network is given in Tab. 4.4.
Despite the different code conception and resolution the outcome of the simulations
in 2D and 3D are strikingly similar. Very minor differences can be seen in the evo-
lution of abundances shown in Fig. 4.20. Production of intermediate-mass elements
(IME, from *Ne to 1°Ca) is a bit delayed in the axisymmetric calculation. This
can be due to the lower value of the smoothing length parameter in AxisSPH which
delays the contact between both stars in about 6t ~ 4h/v,. being v, the relative
velocity at the impact moment . A little more elements belonging to the iron group
are synthesized in the three-dimensional calculation while the total amount of IME
is practically equal in both calculations (see Tab. 4.4, and Fig. 4.20). The energetics

of both simulations is consistent with the nucleosynthetic trend: the 3D event dis-
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Figure 4.20: Comparison of the abundances (of three isotopes groups: 2C+1°0,
intermediate-mass elements (IME, from 2’Ne to “°Ca) and Fe-group (from #Ti to %Zn)

evolution for the AxisSPH and 3D calculations.
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Figure 4.21: Density vs. temperature for all particles of one of the white dwarfs. Left:
for the AxisSPH simulation when t=6,27 s. Right: for the 3D simulation when t=6,31s.

plays a slightly larger total energy after the freezing out than that computed with
AxisSPH. The amount of synthesized *°Ni is 0.39 M, (3D) and 0.36 M, (2D) re-

spectively (Tab. 4.4) but a precise estimation of the final abundance of the elements

would need the postprocessing of the model using a much larger nuclear network.
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Calculation ‘ Masses (M) ‘ Code | Particles ‘ Ni (M) ‘
Rosswog et al.(2009)[69] | 0.60+0.60 | 3D-SPH | 2-10° 0.32
Raskin et al.(2009)[64] | 0.60+0.60 | 3D-SPH | 8- 10° 0.34
Raskin et al.(2010)[63] 0.64+0.64 | 3D-SPH | 2-10° 0.51
Raskin et al.(2010)[63] 0.64+0.64 3D-SPH | 2-10° 0.53
This work (2012) 0.70+0.70 3D-SPH | 2-10° 0.39
This work (2012) 0.70+0.70 2D-SPH | 88,560 0.37
Raskin et al.(2010)[63] | 0.81+0.81 | 3D-SPH | 2-10° 0.84

Table 4.5: Comparison of simulation *’Ni yields of a head-on white collision for different
initial mass combinations and number of SPH particles next to those used in this work.

4.3.4 Comparison to other authors

There are few studies devoted to the WD+WD collision channel to type Ia super-
nova. Basically those by Rosswog et al. (2009) [69], Raskin et al. (2009) [64], Loren
et al. (2009) [36] and Raskin et al. (2010) [63]. With the exception of the paper by
Rosswog et al., who simulated only head on collisions, the other ones also included
simulations with different impact parameters. The report by Loren et al. especially
focussed on orbital aspects of the scenario, from the initial approach of the stars by
gravitational focussing to their tidally-induced final collision at several impact pa-
rameters. In Tab. 4.5 we summarize the main available information about the head
on collision of twin white dwarfs with masses as close as possible to that considered
in this thesis (0.7 My).

The most remarkable difference between the models shown in Tab. 4.5 affects the
final mass of synthesized 5°Ni. For a pair of colliding 0.6 M. white dwarfs Rosswog
et al. get around 0.32 M, of 5°Ni after postprocessing the hydrodynamic output.
A similar amount of °°Ni was reported in Raskin et al. (2009) using an a-network
of 13 nuclei. A larger amount of radioactive Nickel, 0.51 M, was, however, found
in Raskin et al. (2010), this time with a pair of 0.64 M white dwarfs. The high-
est amount of nickel obtained in the latter work is the consequence of the different
method of integration of the a-network chain with 13 nuclei used to represent the nu-
clear combustion [82]. They made use of a semi-implicit integration method called
hybrid-burning scheme which, depending on a parameter called f,, progressively

handle reactions implicitly as the photodisintegration regime approaches ([48], [9]).



114 Chapter 4. Applications

The abundances shown in Tab.4.4 were calculated using the fully implicit method
described in Cabezén et al. (2004) [9] which is more akin to the hybrid-burning
method than to standard methods of integration. For the pair 0.7 + 0.7 M, white
dwarfs we obtain similar amounts of nickel as in Rosswog et al. (2009) and but less
than in Raskin (2010), a discrepancy which deserves further investigation. Neverthe-
less the precise amount of synthesized radioactive °Ni can only be estimated after
postprocessing the output of the hydrodynamic model using a much larger nuclear

network.

A convergence study was also carried out in Raskin et al. (2010). They concluded
that above N ~ 2-10° particles there is a convergence in the final amount of *Ni (see
their Figure 11) and other magnitudes. That conclusion is in fair agreement with

our own results which were summarized in Figs. 4.19 and 4.20.
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Conclusions

A two-dimensional axisymmetric implementation of the smoothed particle hydro-
dynamics (SPH) technique, called for short AxisSPH, has been described in the
precedent pages, along with a number of basic tests and realistic applications. The
main goal of this work was to fill a gap on a topic which has been scarcely addressed
in the published literature concerning SPH. Although the application of AxisSPH
to the simulation of real problems is restricted to those systems which display the
appropriate symmetry there are, however, many interesting examples of physical
systems which evolve following the axisymmetric premise. These examples belong
to a variety of scientific and technological areas such as, for example, astrophysics,
laboratory astrophysics or inertial confinement fusion. Additionally AxisSPH can
be also useful in convergence studies of the standard 3D-SPH technique because the
higher resolution achieved in 2D can be used to benchmark the three-dimensional
codes. To do that it is enough to build an initial 3D configuration related to the
problem at hand but with revolution symmetry around an axis. A direct comparison
between these three-dimensional and 2D-axisymmetric simulations often sheds light

on resolution issues affecting the full 3D calculation.

Old algorithms dealing with axisymmetric SPH were rather crude because they
were built simply by taking the mass of the particles m?? = % where 7 is the cylin-
drical coordinate, [28]. Therefore the hoop-stress effects were neglected and conser-
vation of energy was poor. Petscheck & Libersky [57] and more recently Brookshaw
[8] gave a formulation of axisymmetric SPH which incorporated the hoop-stress
term expected to appear in the Euler equations in cylindrical coordinates. The

hoop-stress force arise from the toroidal nature of particles in axisymmetric codes.

115



116 Chapter 5. Conclusions

When a particle approaches the symmetry axis it suffers a net outward force derived
from the difference of radius between the inward and the outer surface of the torus.
Quantitatively the hoop-stress force is proportional to the inverse to the distance
to the z-axis (Chapter 2). Such 1/r dependence is not rare in cylindrical geometry
where there are other magnitudes with the same behavior, especially those related
to the divergence operator. Unfortunately the 1/r dependence leads to numerical
troubles when a particle gets very close to the symmetry axis and r — 0. The
problem is difficult and there have been several attempts to handle or, at least to
bypass, the problem in axisymmetric SPH. The most simple of them was to keep
the system far enough from the z-axis just by constraining the hydrodynamics to
take place in a wedge with its apex at the coordinate origin. Using that approach
the singularity is reduced from a line to an unique point which can be handled using
special conditions [27]. Nevertheless that procedure has the inconvenient that it
needs from artificial boundary conditions at both sides of the wedge. A better ap-
proach was proposed by Omang, Bgrve and Trulsen [55] who derive an interpolating
kernel that embeds the main features of the cylindrical geometry so that the user
works in cartesian coordinates and the modified kernel translates the information to
cylindrical coordinates. The formulation of Omang et al. is able to cope with the
singularity problem but the price to pay in an increase of in the computational load
because an elliptic integral has to be solved numerically for each particle at each

time-step.

Given the above difficulties to implement an efficient axisymmetric SPH code
which incorporates the hoop-stress terms and, at the same time, is free of singulari-
ties we have developed a new scheme based on a formulation which includes all the
relevant features of axisymmetric geometry but includes a number of, physically mo-
tivated, corrective terms to avoid divergences close to the singularity axis [24]. The
main improvements implemented in AxisSPH with respect existing axisymmetric

SPH formulations are summarized as follows:

e We have derived simple analytical expressions for the correction factors fi
(Eq. 2.41) and fi (Eq. 2.96) which largely improves the calculation of density
and velocity in the vicinity of the z-axis. These expressions and their deriva-
tives were given as a function of the adimensional parameter ( = r/h and do

not increase the computational load of the scheme.

e We have obtained the appropriate expression of the fluid Euler equations con-
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taining the new correction functions and their derivatives (see Sec.3.1). Far
enough from the singular axis, once r > 2h, the scheme reduces to the standard

formulation discussed by Brookshaw [8].

A novel expression for the heat conduction term (Eq. 2.117), which has to be
added to the energy equation Eq. 3.4, was devised and checked. This new
term improves the description of the heat flux for those particles located at
the axis neighborhoods. It was probed that the new equation leads to the
adequate increase of entropy for those systems where conductive (or diffusive)

heat transport controls the energy equation.

Until now axisymmetric SPH hydrocodes handle artificial viscosity using a
crude approach because it was treated as a simple restriction of the standard
3D cartesian viscosity to 2D. Here we propose to calculate the viscous pressure
as a combination of two terms, IT;” = HS) + HE?), where HS) (Eq. 2.141) and
HZ(?) are the (standard) cartesian part and the axis-converging part of the
viscosity respectively. As expected the value of HZ(-?)(Eq. 2.145) is proportional

to v,./r (v, > 0), being of special relevance to simulate implosions.

We have developed an original method to incorporate gravity into AxisSPH.
First the direct ring to ring force was found as a function of the Euclidean dis-
tance between the 2D particles (Eq. 2.153). In second place the gravitational
force on a given particle was obtained by summing the contributions of all par-
ticles. Although the ensuing algorithm scales as N? instead of the N logN be-
havior typical of hierarchical methods, as for instance the TREESPH [29] the
performance is good because: a) a good resolution can be achieved in 2D with
less than 105 particles, which makes the direct calculation affordable, b) the
algorithm can be easily parallelizable, c) it was demonstrated that ring inter-
action is symmetric so that the real computational load is N?/2, d) the gravity
force calculated that way leads to perfect linear and angular momentum con-

servation.

A more efficient scheme to obtain the gravitational force can be done if the
potential of the ring, instead the force, is calculated because it involves lesser
algebraic operations. The force is then evaluated taking the gradient of the
potential in the usual SPH manner. Not only the calculation is around two
times faster but the potential route has the advantage of being more compat-
ible to the momentum equation because both, gravity and pressure forces are

calculated using the nabla operator. However, one inconvenient of using the
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potential is that the resulting scheme is not totally conservative but neither it

is in the hierarchical tree methods.

e The scheme has been checked using a large number of tests cases. These
tests range from very specific, oriented to check a particular algorithm or a
piece of physics, to a rather complex ones intended to analyze the behavior
of the scheme in potential real applications (ICF, jets, astrophysics). At least
in one case, the head on collision of a pair of white dwarfs, the results of
the simulations carried out using AxisSPH brings new, unpublished, scientific

material.

Future work, from immediate to a more distant future, should cover two areas
of development: a) The improvement the code, b) Its applications to interesting
problems.

Improvements of AxisSPH:

e Include the VA terms in the equations which have been proved that generally
leads to an improvement in the conservation of energy. An expression for these
Vh terms naturally arise from the Lagrangian description of the dynamics [68]

and is straightforward to implement.

e [t has been mentioned that the calculation of gravity using the gradient of the
potential energy is, in its present form (Eq. 2.165), no totally conservative. A
future improvement could be to find a symmetric form for VV' which conserve
energy by construction. Probably it would need to work out the axisymmetric

SPH from a Lagrangian which include the gravitational potential energy.

e [t would be extremely useful for astrophysics to include the transport of an-
gular momentum due to the viscous coupling between particles. This would
allow to study many astrophysical problems where rotation can not be ne-

glected (such as differential star rotation or accretion discs).

Applications of AxisSPH:

Several applications of the code to astrophysics are going on. For example Axis-
SPH made feasible to calculate the long term evolution, At ~ 1,000 yr of a su-

pernova remnant hosting an axisymmetric void created during the interaction of
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the supernova with the secondary star ~ 1 hour after the explosion [21]. Another

potential scenarios are:

e Head on collision of stellar bodies: stars, planets, asteroids etc... In this
respect the simulation of the collision of two white dwarfs described in Sec 4.3

is representative of these kind of simulations.

e Advanced states of stellar evolution including rotation: type I and II super-
nova explosions, gamma-ray bursts, rotating compact objects (white dwarfs,

neutron stars, cores of giant stars).

e Laboratory of astrophysics and ICF. There are many terrestrial devices built
in axisymmetric geometries which involve very dynamical processes. Among
them we can cite the production of jets using Z-pinch devices [33] and the
direct and indirect methods to achieve the ignition of deuterium in ICF. How-
ever, to properly handle with these kind of problems the hydrocode should in-
clude particle and radiative diffusion, many times in the optically thin regime.

Therefore this is a difficult task and a challenge for the future.
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Appendix: Initial Models

One practical difficulty, of SPH is how to generate suitable initial models mapping
from the one-dimensional profile of a physical magnitude to a multidimensional dis-
tribution of particles. Some magnitudes as internal energy, temperature or velocity
can be easily reproduced just assigning the corresponding value to each particle as
a function of its position. Nevertheless, this is not the situation for the density
because its value is determined by the contribution of the neighbor particles with

different weights as a function of its masses and distances.

In this work we have used different techniques to construct the initial 2D-
axisymmetric models. The easiest way to generate an initial model with constant
density is to set the particles in a square lattice and give to them a mass propor-
tional to their initial r-coordinate, rq. Notice that real nature of the 2D interpolation

points in the square lattice are 3D rings so taking dm o< ry produce

Ui
= = cte. Al
P 27T7"0 > 2’/T7"0 “e ( )

This procedure can be extended to arbitrary spherically symmetric density pro-
files p1 = pi1(s) taking m o< 7o - pi(s). Using this technique we have obtained the
initial 2D-cylindrical models used in Chap. 3 devoted to validate AxisSPH. Never-
theless this technique implies working with particles of variable mass, that in the
case of large initial density gradients or under mixing conditions, can lead to large
mass contrasts inside the kernel domain. This situation may lead to numerical arte-

facts in the interpolation of the physical magnitudes. On the other hand, the square

121



122 Chapter A. Appendix: Initial Models

initial angular relaxation free movement
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Figure A.1: Spatial distribution (top) and density profile (bottom) of the tree steps
procedure to obtain the initial model of one white dwarf used in Sec. 4.3, before (left)
and after (center) the angular relaxation process, and after the particles were allowed to

move freely (right).

lattice distribution can produce numerical irregularities that arise from preferred
directions for the strain propagation. This phenomenon is known as hourglass in-
stability [32]. This undesirable effect can be reduced using an initial mesh with polar

symmetry and a random distribution.

In order to minimize these problems it is better to use random distributions of
particles with the same mass, dm. Thus, in the simulations of the ICF implosion
capsule (Sec. 4.1) and in the head-on collision of two dwarfs (Sec. 4.3) we have built
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initial models mapping from spherically symmetric profiles, p;p, into a distribu-
tion of particles in a plane, that in fact are loops around the z-axis. Notice that
we have to be careful with the distribution of particles respect to the zenith angle
0. For example, to construct a sphere of constant density the mass of each parti-
cle has to be proportional to the volume element, dV = s?sinfdsdfdy, expressed
in spherical coordinates, where s is the distance from the origin, s = /12 + 22.
Due to the symmetry around the z-axis, dm o< 2ms?sinfdf. Therefore to maintain
dm=cte, df = sinfdf has to be constant too, meaning that an uniform distribu-
tion in f € (0,1] implies a angular mesh following an arcosinus distribution. For
arbitrary 1D density profiles we have mapped the particles in that angular arcos-
inus distribution placing randomly the particles from the origin in such way that
total accumulated mass must reproduce the theoretical 1D profile. The resulting
distribution of particles and the radial density profile are shown in the left panels of
Fig. A.1. Note the lower concentration of particles when the values of the angle are
0 =~ 0,7 due to the arcosinus distribution. As it can be seen there are local artificial
clumps of particles producing noise in the density profile. Allowing the particle to
move angularly in € (what it is called angular relaxation) we get smoothed profiles
(see the central panels of Fig A.1). In a third step we let the system evolve without
any constraint. After several hundreds models the system achieves the adequate
configuration to be used as an initial model. The spatial distribution of particles
and radial density profile after this third stage are shown in the rightmost panels of
Fig A.1.
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Appendix: Adaptive Harmonic

Kernel

As it has been mentioned one of the most important challenges of the SPH technique
is to adequately capture the physical discontinuities that appear in some situations,
for example in those were shocks or thermal discontinuities are present. In these
cases the nature of the kernel becomes relevant to reduce the errors associated to

interpolations which can especially affect the calculation of gradients.

Occasionally, it can be helpful to use a more centrally peaked kernel to better
reproduce the maximum value of sharp profiles. For example, it is well known that
strong shocks moving through a perfect gas with v = 5/3 do present a jump in
density pmaz/po = 4. Such jump is difficult to achieve in more than 1D because of
the limited resolution of simulations. A possible way to improve the description of
discontinuities is to modify the profile of the kernel in the neighborhood of a shock
wave or any kind of discontinuities. In this respect Price [61] found that using the
quintic M6 polynomial interpolator leads to more satisfactory results than using the
standard M4 cubic-spline kernel. A more sophisticated approach was proposed by
Owen et al [56] who used highly adaptive kernels which change their geometry from
the standard spherically symmetric to an ellipsoid in the presence of a shock (with

its minor axis oriented in the shock direction).

Recently we proposed [10] a one-parameter family of interpolating kernels, with
compact support based on harmonic-like functions that covers the whole range of the

spline kernels in a continuous manner by simply varying a leading parameter n. The
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Figure B.1: Profiles of W x h in 1D for integer values of n in the range 2 < n < 8.
Superposed are also depicted the profiles of various of the most common kernels used
in SPH: M, (cubic spline), Mg (quintic spline) and truncated Gaussian.

different shapes of the kernel range from more extend to more centrally condensed
profiles as the parameter n increases in order to increase the local resolution when

it is necessary. This set of functions W (v, h) is defined as

1 v=>0
B sin| Zv "
Wf(v,h)—h—; ( l;]) 0<v<2, (B.1)
0 v > 2

where B, is a normalization factor. In Fig B.1 is plotted the different profiles of
WH (v, h) for values of n from 2 to 8, as it can clearly seen the resulting profile for
n = 3 is very close to that of the cubic spline ( Eq. 2.6, represented with diamonds
in Fig B.1), as well as the profile for n = 5 that matches very well the quintic M6
polynomial interpolator profile (renormalizated for 0 < v < 2 [10] and plotted with
circles in Fig B.1).

An interesting feature is that contrary on the cubic spline, whose second deriva-
tive is not smooth in several points, the set of functions W/ (v, h) is infinitely deriv-

able, with continuous an well-behaved derivatives (see Fig B.2).
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Figure B.2: First (left) and second (right) derivatives of W (v, h) for n = 3;5;6 and
splines M4 ; MG6.

Another well-known problem of SPH related with the use of the cubic spline an
other bell-shaped kernels is the pairing or tensile-instability. As we can see in the
left figure of Fig B.2 those kernels have a minimum vy for the first derivative of the
kernel OW/0v (vy = 2/3 for the cubic spline My). For a pair of particles that get
closer and v < wvg, the gradient of the kernel will decrease and, because the direct
dependence of the force to the gradient of the kernel, it can produce the undesir-
able effect that the normal repulsive force between particles diminishes and tends
to zero. The net result is that the pair of particles get stuck. Usually the distance
from particles is around h so v ~ 1 and v > vg. When the particles get closer the
smoothing length decreases to keep the number of neighbors approximately constant
and v remains v ~ 1. Under some anisotropic conditions, like in strong shocks, h
decreases but particles along the shock direction get too close, and the reduction
of h may be not enough to prevent v < vy, producing pair instability. Although
some authors [61] do not consider the pairing instability particularly problematic,
we have had some difficulties in our 2D axisymmetric simulations related with this
instability when the cubic spline kernel was used. When the particles get too close
sometimes they acquire unphysical velocities large enough to move particles to nega-
tive r-coordinates, making it impossible to continue the simulation. Fortunately we
overcame the problem using the family of kernels W (v, h). The higher the index
n in WH (v, h) is, the closer is vy to the origin (vg = 0.5039 for n = 5, see [10] for

details), making harder for a couple of particles to get stuck. The parameter n is dy-
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Figure B.3: Plot of n;, the leading parameter of the family of kernels W as a function
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of v™, the minimum scaled distance of each particle to its closest neighbor (v is

in ¥ units, see text).

namically modified during the simulation as a function of the local fluid properties.
However, the choice of kernels with a large exponent n is limited by the increase
in the numerical noise being therefore restricted to the cases discussed above, that
is to track discontinuities and to avoid the pairing instability. The enhancement in
resolution is not monotonic as n rises. For n > 6 any further increase in resolution
is moderate but the noise increases significantly. So in practice we have restricted
the values of n to the range 3 < n < 6, increasing n using the following functional
relation between n and the minimum scaled distance of each particle to its closest

neighbor v/"

3 %17 <!
Jp— 300,.,0 (,,min)2 _ 900 0,,min 1038 1~ min 35
T Tor 1 (V") 21 VIl t 5 CSEHELSE (B.2)
6 < %T)

where o is the scaled distance between neighbors © = 2/n? assuming that nY neigh-
bors are homogeneously distributed within a circle of radius 2h. In Fig. B.3 it is

min
i .

depicted n; as a function of v

Notice that the analytical corrections f; (Eq. 3.6) and f; (Eq. 3.7) that appear in

the fluid equations (see Sec. 3.1) have been derived using the cubic spline kernel (see
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1.2

Axis correction factors

Figure B.4: Correction factors f; and f5 as a function of ¢ = r/h, calculated using the
kernels WH for n=6, 5 and 3 (squares and inverted triangles respectively). The solid
lines represent the fitting obtained using Eq. B.3.

Sec. 2.4 and Sec. 2.6). To be consistent with the introduction of the adaptive har-
monic kernels in the simulations, the correction functions must be also recalculated
substituting the cubic spline kernel for the W (v, h).

For the values of n = 3,4,5,6 the correction functions f; and f, have been
numerically calculated using the kernels W (v, h). The results are plotted in a
diagram (see Fig. B.4) where it can be seen that the numerical results can be fitted

with the analytical functions fk,n

fk,n(C) = Ak . tcmh(B;m . C:) s (BS)

where ¢ = r/h is the distance to the z-axis, Ay and By, are different constants,
k =1 and k = 2 refers the approximated functions f; and fy respectively, for the
different values of the kernel parameter n = 3,4, 5,6. The values of By, ,, are provided
in Tab. B.1 and A; = 1.0 and Ay = 0.944289

For any real value of n the parameters By, (k = 1,2) have been approximated

by a polynomial function
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| Bin | Baw | 1] b bz,

1.88965 | 0.94581 1.09342 - 10 © 5.45570 - 1071
2.20552 | 1.10549 4.70213 - 1071 2.35557 - 1071
2.48501 | 1.24723 —4.26621 - 1072 | —2.09781 - 1072
2.73767 | 1.37563 3.59250 - 1073 1.77301 - 1073
2.96962 | 1.49357 —1.42917-10* | —7.18333-107°

S Ok W N B
U =)

Table B.1: Values of B, and By, for integers values of n, and fitting coefficients to

By, and By, for non integers values of n (see Eq.B.4).

Bk,n = bk74 . n4 + bk73 . n3 + bkg . TL2 + b/ﬁl -n—+ bk70 k‘ = 1, 2 s (B4)

where the values of the fitting coefficients b;; are provided in Tab. B.1. Once the
parameters By, are calculated for any real value of n the approximated correction

functions fkn of f1 and fy are estimated using Eq. B.3.

The values of df;/0r needed to evaluate the energy equation (Eq. 2.103) can be

easily calculated just making the derivative of fkn

O frn _ O frn Jdc ApBin 1
or o¢ dr h cosh?(BinC)




Appendix C

Abbreviations and acronyms

In the following, we include a list with the abbreviations and acronyms used in the
text.

AMR Adaptive Mesh Refinement

AV Artificial Viscosity

D-T Deuterium-Tritium

EOS Equation Of State

ICF Inertial Confinement Fusion
IME Intermediate-Mass Elements
KH Kelvin-Helmholtz

PPM Piecewise Parabolic Method
RM Richtmyer-Meshkov

RT Rayleigh-Taylor

SN Supernova

SPH Smoothed Particle Hydrodynamics
WD White Dwarf
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