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I believe that every scientist who
studies music has a duty to keep
his or her love to music alive.

Exploring the musical mind
J. Sloboda, 2005, p. 175
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Abstract

Facing the rapidly growing amount of digital media, the need for an effective data management is
challenging technology. In this context, we approach the problem of automatically recognising mu-
sical instruments frommusic audio signals. Information regarding the instrumentation is among the
most important semantic concepts humans use to communicate musical meaning. Hence, know-
ledge regarding the instrumentation eases a meaningful description of a music piece, indispensable
for approaching the aforementioned need with modern (music) technology.

Nonetheless, the addressed problem may sound elementary or basic, given the competence of the
human auditory system. However, during at least two decades of study, while being tackled from
various perspectives, the problem itself has been proven to be highly complex; no systemhas yet been
presented that is even getting close to a human-comparable performance. Especially the problem of
resolving multiple simultaneous sounding sources poses the main difficulties to the computational
approaches.

In this dissertation we present a general purpose method for the automatic recognition of musical
instruments from music audio signals. Unlike many related approaches, our specific conception
mostly avoids laboratory constraints on the method’s algorithmic design, its input data, or the tar-
geted application context. In particular, the developed method models 12 instrumental categories,
including pitched and percussive instruments as well as the human singing voice, all of them fre-
quently adopted inWesternmusic. To account for the assumable complex nature of the input signal,
we limit the most basic process in the algorithmic chain to the recognition of a single predominant
musical instrument from a short audio fragment. By applying statistical pattern recognition tech-
niques together with properly designed, extensive datasets we predict one source from the analysed
polytimbral sound and thereby prevent the method from resolving the mixture. To compensate for
this restriction we further incorporate information derived from a hierarchical music analysis; we
first utilise musical context to extract instrumental labels from the time-varying model decisions.
Second, the method incorporates information regarding the piece’s formal aspects into the recog-
nition process. Finally, we include information from the collection level by exploiting associations
between musical genres and instrumentations.

In our experiments we assess the performance of the developed method by applying a thorough
evaluation methodology using real music signals only, estimating the method’s accuracy, generality,
scalability, robustness, and efficiency. More precisely, both the models’ recognition performance
and the label extraction algorithm exhibit reasonable, thus expected accuracies given the problem
at hand. Furthermore, we demonstrate that the method generalises well in terms of the modelled
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x Abstract

categories and is scalable to any kind of input data complexity, hence it provides a robust extraction
of the targeted information. Moreover, we show that the information regarding the instrumentation
of a Western music piece is highly redundant, thus enabling a great reduction of the data to analyse.
Here, our best settings lead to a recognition performance of almost 0.7 in terms of the appliedF-score
from less than 50% of the input data. At last, the experiments incorporating the information on the
musical genre of the analysed music pieces do not show the expected improvement in recognition
performance, suggesting that a more fine-grained instrumental taxonomy is needed for exploiting
this kind of information.



Resum

L’increment exponencial de la quantitat de dades digitals al nostre abast fa necessari alhora que
estimula el desenvolupament de tecnologies que permetin administrar i manejar aquestes dades.
En aquest context abordem el problema de reconèixer instruments musicals a partir de l’anàlisi
d’enregistraments musicals (senyals d’àudio). La informació sobre la instrumentació és una de les
més rellevants que els humans utilitzen per tal de comunicar significats musicals. Per tant, el con-
eixement relatiu a la instrumentació facilita la creació de descripcions significatives d’una peça mu-
sical, cosa indispensable per a respondre amb tecnologies musicals contemporànies a l’esmentada
necessitat.

Tot i que, donada la competència del nostre sistema auditiu, el problema pot semblar elemental o
molt bàsic, en les darreres dues dècades d’estudi, i a pesar d’haver estat abordat des de diferents per-
spectives, ha resultat ser altament complex i no existeix cap sistema que tan sols s’apropi al que els
humans podem fer quan hem de discriminar instruments en una mescla musical. Poder resseguir i
resoldre múltiples i simultànies línies instrumentals és especialment difícil per a qualsevol planteja-
ment computacional.

En aquesta tesi presentem un mètode de propòsit general per al reconeixement automàtic
d’instruments musicals a partir d’un senyal d’àudio. A diferència de molts enfocs relacionats, el
nostre evita restriccions artificials o artificioses pel que fa al disseny algorísmic, les dades propor-
cionades al sistema, or el context d’aplicació. Específicament, el mètode desenvolupat modelitza
12 categories instrumentals que incloent instruments d’alçada definida, percussió i veu humana can-
tada, tots ells força habituals en la música occidental. Per tal de fer el problema abordable, limitem el
procés a l’operaciómés bàsica consistent en el reconeixement de l’instrument predominant en un breu
fragment d’àudio. L’aplicació de tècniques estadístiques de reconeixement de patrons, combinades
amb grans conjunts de dades preparades acuradament ens permet identificar una font sonora dins
d’un timbre polifònic resultant de la mescla musical, sense necessitat d’haver “desmesclat” els instru-
ments. Per tal de compensar aquesta restricció incorporem, addicionalment, informació derivada
d’una anàlisi musical jeràrquica: primer incorporem context musical a l’hora d’extraure les etiquetes
dels instrument, després incorporem aspectes formals de la peça que poden ajudar al reconeixement
de l’instrument, i finalment incloem informació general gràcies a l’explotació de les associacions entre
gèneres musicals i instruments.

En els experiments reportats, avaluem el desemperni del mètode desenvolupat utilitzant només
música “real” i calculant mesures de precisió, generalitat, escalabilitat, robustesa i eficiència. Més
específicament, tan els resultats de reconeixement com l’assignació final d’etiquetes instrumentals a
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xii Resum

un fragment de música mostren valors raonables a tenor de la dificultat del problema. A més, de-
mostrem que el mètode es generalitzable en termes de les categories modelades, així com escalable
i robust a qualsevol magnitud de complexitat de les dades d’entrada. També demostrem que la in-
formació sobre la instrumentació de música occidental és altament redundant, cosa que facilita una
gran reducció de les dades a analitzar. En aquest sentit, utilitzant menys del 50% de les dades ori-
ginals podem mantenir una taxa de reconeixement (puntuació F) de gairebé 0.7. Per concloure, els
experiments que incorporen informació sobre gènere musical no mostren la millora que esperàvem
obtenir sobre el reconeixement dels instruments, cosa que suggereix que caldria utilitzar taxonomies
de gènere més refinades que les que hem adoptat aquí.



Kurzfassung

Angesichts der immer schneller wachsenden Menge an digitalen Medien ist eine effektive Datenver-
waltung für unsere moderne Gesellschaft unerlässlich. In diesem Zusammenhang widmen wir uns
dem Problem der automatischen Erkennung von Musikinstrumenten aus den Audiosignalen von
Musikstücken. Entsprechend der in dem jeweiligen Stück eingesetzten Instrumente verwendete Be-
griffe gehören zur Basis der menschlichen Kommunikation bezüglich dessen musikalischen Inhalts.
Die Kenntnis der Instrumentierung einer Komposition erleichtert daher deren aussagekräftige Bes-
chreibung – unverzichtbar für dieVerwirklichung der eingangs erwähntenDatenverwaltungmittels
moderner (Musik)-Technologie.

Ziehtmandie Fähigkeiten desmenschlichenGehörs inBetracht, erscheint das angesprocheneProb-
lem trivial. Nachmehr als zwei Jahrzehnten intensiverAuseinandersetzungmit dememahat sich
selbiges jedoch als hochkomplex erwiesen. Bis jetzt wurde noch kein System entwickelt welches
auch nur annähernd an die Leistungen des menschlichen Gehörs herankommt. Dabei bereitet vor
allem das Herauslösen von mehreren gleichzeitig klingenden Quellen aus dem Gesamtklang die
größten Schwierigkeiten für artifizielle Ansätze.

In dieser Dissertation präsentieren wir eine generelle Methode für die automatische Erkennung von
Musikinstrumenten aus den Audiosignalen von Musikstücken. Im Gegensatz zu vielen vergleich-
baren Ansätzen vermeidet unsere spezifische Konzeption vor allem Einschränkungen in Bezug auf
das algorithmischen Design der Methode, die Eingabedaten oder den speziellen Anwendungsbe-
reich. Die entwickelte Methode modelliert 12 Musikinstrumente, harmonische und perkussive In-
strumente sowie die menschliche Singstimme, welche hauptsächlich in der Musik der westlichen
Welt Verwendung finden. Um der Komplexität des Eingangssignals zu entsprechen, begrenzen
wir den grundlegenden Prozess der Methode auf die Erkennung des vorherrschenden Musikinstru-
ments aus einem kurzen Audiofragment. Die Anwendung von statistischen Mustererkennungs-
techniken in Zusammenhang mit dementsprechend gestalteten, umfangreichen Datenbanken er-
möglicht uns die Erkennung einer einzigen Quelle aus dem analysierten komplexen Gesamtklang
und vermeidet dabei die Trennung des Signals in die Einzelquellen. Als Kompensation dieser
Einschränkung integrieren wir zusätzliche Informationen aus einer hierarchischen Musikanalyse
in den Erkennungsprozess: erstens benützen wir den musikalischen Kontext des analysierten Sig-
nals um aus der zeitlichen Abfolge der Modellprädiktionen die entsprechenden Instrumentenna-
men zu bestimmen. Zweitens kombiniert die Methode Informationen über strukturelle Aspekte
des Musikstücks und bindet letztendlich Assoziationen zwischen musikalischen Genres und In-
strumentierungen in den Algorithmus ein.
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xiv Kurzfassung

Wir evaluieren die Leistung der entwickelten Methode in unseren Experimenten durch gründliche
Bewertungsverfahren, welche ausschließlich auf der Analyse von echten Musiksignalen basieren.
Wir bewerten dabei die Genauigkeit, Allgemeingültigkeit, Skalierbarkeit, Robustheit und Effizienz
der Methode. Im Speziellen erhalten wir sowohl für die Leistung der entwickelten Instrument-
enmodelle als auch des Erkennungsalgorithmus die erwartete und angemessene Genauigkeit an-
gesichts des vorliegenden Problems. Darüber hinaus zeigen wir, dass die Methode in Bezug auf die
modellierten Kategorien verallgemeinert und auf jede Art von Komplexität der Eingabedaten skali-
erbar ist, daher eine robuste Extrahierung der Information ermöglicht. Im Weiteren zeigen wir,
dass die Instrumentierung von Musikstücken eine redundante Information darstellt, wodurch wir
den Anteil an Daten, der für die Erkennung notwendig ist, erheblich reduzieren können. Unser
bestes System ermöglicht eine Erkennungsleistung von fast 0.7, anhand des angewandten F-Maßes,
aus weniger als 50% der Eingabedaten. Allerdings zeigen die Ergebnisse der Experimente mit mu-
sikalischen Genres nicht die erwartete Verbesserung in der Erkennungsleistung der Methode, was
darauf hindeutet, dass eine besser abgestimmte instrumentale Taxonomie für die Nutzung dieser
Art von Informationen erforderlich ist.



Contents

Abstract ix

Resum xi

Kurzfassung xiii

Contents xv

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 e problem – an overall viewpoint . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Applications of the presented work . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13
2.1 Human auditory perception and cognition . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Basic principles of human auditory perception . . . . . . . . . . . . . . . 18
2.1.2 Understanding auditory scenes . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Machine Listening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Music signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Machine learning and pattern recognition . . . . . . . . . . . . . . . . . 35

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Recognition of musical instruments 41
3.1 Properties of musical instrument sounds . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Physical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Perceptual qualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Taxonomic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.4 e singing voice as musical instrument . . . . . . . . . . . . . . . . . . 48

xv



xvi Contents

3.2 Human abilities in recognising musical instruments . . . . . . . . . . . . . . . . 49
3.2.1 Evidence from monophonic studies . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Evidence from polyphonic studies . . . . . . . . . . . . . . . . . . . . . 51

3.3 Requirements to recognition systems . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Methodological issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Conceptual aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Algorithmic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 State of the art in automatic musical instrument recognition . . . . . . . . . . . . 58
3.5.1 Pitched instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Percussive instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Label inference 71
4.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 Pitched Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.4 Percussive Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.1 Conceptual overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.5 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.6 Analysis of labelling errors . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4.1 Comparison to the state of the art . . . . . . . . . . . . . . . . . . . . . 130
4.4.2 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Track-level analysis 135
5.1 Solo detection – a knowledge-based approach . . . . . . . . . . . . . . . . . . . 136

5.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2 Sub-track sampling – agnostic approaches . . . . . . . . . . . . . . . . . . . . . 151
5.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3 Application to automatic musical instrument recognition . . . . . . . . . . . . . 160
5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3.3 Metrics and baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



Contents xvii

5.3.4 Labelling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.3.5 Scaling aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Interaction of musical facets 167
6.1 Analysis of mutual association . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1.3 Experiment I – human-assigned instrumentation . . . . . . . . . . . . . 170
6.1.4 Experiment II – predicted instrumentation . . . . . . . . . . . . . . . . 171
6.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Combined systems: Genre-based instrumentation analysis . . . . . . . . . . . . 173
6.2.1 Genre recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.2.2 Method I - Genre-based labelling . . . . . . . . . . . . . . . . . . . . . 176
6.2.3 Method II - Genre-based classification . . . . . . . . . . . . . . . . . . 178
6.2.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Conclusions 187
7.1 esis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2 Gained insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3 Pending problems and future perspectives . . . . . . . . . . . . . . . . . . . . . 191
7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bibliography 197

Appendices 215

A Audio features 217

B Evaluation collection 225

C Author’s publications 237





List of Figures

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Interdependency between science and engineering . . . . . . . . . . . . . . . . . . . 4
1.3 Distribution of musical instruments along time in two pieces of music. . . . . . . . . 7

2.1 A general model of human sound source recognition . . . . . . . . . . . . . . . . . . 16
2.2 Recognition as classification in a category-abstraction space . . . . . . . . . . . . . . 17
2.3 Processes involved in machine listening . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Different description layers usually addressed by MCP systems . . . . . . . . . . . . 37
2.5 Various approaches in statistical pattern recognition . . . . . . . . . . . . . . . . . . 39

3.1 Source-filter representation of instrumental sound production . . . . . . . . . . . . . 44
3.2 Temporal envelope of a clarinet tone. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Spectro-temporal distribution of a violin tone. . . . . . . . . . . . . . . . . . . . . . 45
3.4 Influence of dynamics and pitch on perceived timbre . . . . . . . . . . . . . . . . . . 46
3.5 A simplified taxonomy of musical instruments. . . . . . . . . . . . . . . . . . . . . . 48
3.6 General architecture of an instrument recognition system. . . . . . . . . . . . . . . . 57

4.1 Block diagram of the label inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Pattern recognition train/test process . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Principles of the support vector classification . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Distribution of pitched musical instruments in the classification data . . . . . . . . . 85
4.5 Time scale and data size experiments for pitched instruments . . . . . . . . . . . . . 86
4.6 Selected features for pitched instruments grouped into categories . . . . . . . . . . . 87
4.7 Accuracy of the pitched model with respect to the SVM parameters . . . . . . . . . . 89
4.8 Performance of the pitched model on individual categories . . . . . . . . . . . . . . . 90
4.9 Box plots of the 5 top-ranked features for pitched instrument recognition . . . . . . . 93
4.10 Box plots of the 5 top-ranked features for individual pitched instrument recognition . 97
4.11 Box plots of the 5 top-ranked features for individual pitched instrument confusions . . 101
4.12 Time scale and data size experiments for percussive timbre recognition . . . . . . . . 109
4.13 Selected features for percussive timbre recognition . . . . . . . . . . . . . . . . . . . 110
4.14 Accuracy of the percussive timbre model with respect to the SVM parameters . . . . 111
4.15 Box plots of the 5 top-ranked features for percussive recognition . . . . . . . . . . . . 112
4.16 Box plots of the 5 top-ranked features for percussive confusions . . . . . . . . . . . . 113
4.17 Tag cloud of instrumental labels in the evaluation collection . . . . . . . . . . . . . . 117
4.18 Histogram of the number of per-track annotated labels in the evaluation collection . . 117

xix



xx List of Figures

4.19 An example of the representation used for pitched instrument labelling . . . . . . . . 118
4.20 Distribution of labels inside the labelling evaluation dataset . . . . . . . . . . . . . . 120
4.21 Labelling performance of individual instruments . . . . . . . . . . . . . . . . . . . . 124
4.22 ROC curve of labelling performance for variable θ2 . . . . . . . . . . . . . . . . . . 125
4.23 Total and relative-erroneous amount of labels . . . . . . . . . . . . . . . . . . . . . 127
4.24 Labelling performance with respect to the amount of unknown sources . . . . . . . . 130

5.1 e general idea behind the track-level approaches . . . . . . . . . . . . . . . . . . . 136
5.2 Block diagram of the solo detection algorithm . . . . . . . . . . . . . . . . . . . . . 140
5.3 Genre distribution of all instances in the solo detection training collection . . . . . . . 141
5.4 Tag cloud of musical instruments in the Solo category . . . . . . . . . . . . . . . . . 141
5.5 Time scale estimation for the solo detection model. . . . . . . . . . . . . . . . . . . . 142
5.6 Accuracy of the solo detection model with respect to the SVM parameters . . . . . . 144
5.7 Frame recognition accuracy with respect to different parameter values . . . . . . . . . 148
5.8 Two examples of the solo detection segmentation . . . . . . . . . . . . . . . . . . . 149
5.9 Conceptual illustration of the agnostic track-level approaches . . . . . . . . . . . . . 152
5.10 Block diagram of the CLU approach . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.11 Performance of different linkage methods used in the hierarchical clustering . . . . . . 158
5.12 Scaling properties of the studied track-level algorithms . . . . . . . . . . . . . . . . . 163

6.1 Signed odds ratios for human-assigned instrumentation . . . . . . . . . . . . . . . . 171
6.2 Signed odds ratios for predicted instrumentation . . . . . . . . . . . . . . . . . . . . 172
6.3 Block diagram of combinatorial system SLF . . . . . . . . . . . . . . . . . . . . . . 177
6.4 Block diagram of combinatorial system SPW . . . . . . . . . . . . . . . . . . . . . . 177
6.5 Block diagram of combinatorial system SCS . . . . . . . . . . . . . . . . . . . . . . 179
6.6 Block diagram of combinatorial system SDF . . . . . . . . . . . . . . . . . . . . . . 180
6.7 Performance on individual instruments of all combinatorial approaches . . . . . . . . 183
6.8 Quantitative label differences between the respective combinatorial approaches and the

reference baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



List of Tables

2.1 Dependencies of various musical dimensions and their time scale . . . . . . . . . . . 38

3.1 Comparison of approaches for polytimbral pitched instrument recognition. . . . . . . 62

4.1 Selected features for the pitched model . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Recognition accuracy of the pitched model . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Confusion matrix of the pitched model . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Summary of the feature analysis for pitched instruments . . . . . . . . . . . . . . . . 104
4.5 Selected features for the percussive model . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Recognition accuracy of the percussive timbre model . . . . . . . . . . . . . . . . . . 111
4.7 Confusion matrix of the percussive timbre model . . . . . . . . . . . . . . . . . . . . 111
4.8 Genre distribution inside the labelling evaluation dataset . . . . . . . . . . . . . . . 116
4.9 Values of labelling parameters used in the grid search . . . . . . . . . . . . . . . . . 120
4.10 General result for the labelling evaluation . . . . . . . . . . . . . . . . . . . . . . . . 123
4.11 Confusion matrix for labelling errors . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Selected features for the solo detection model . . . . . . . . . . . . . . . . . . . . . 143
5.2 Recognition accuracy of the solo detection model . . . . . . . . . . . . . . . . . . . 144
5.3 Evaluation of the solo detection segmentation . . . . . . . . . . . . . . . . . . . . . 148
5.4 Evaluation metrics for the CLU’s segmentation algorithm . . . . . . . . . . . . . . . 158
5.5 Labelling performance estimation applying the different track-level approaches . . . . 161

6.1 Contingency table for an exemplary genre-instrument dependency . . . . . . . . . . . 169
6.2 Categories modelled by the 3 genre-specific instrument recognition models . . . . . . 178
6.3 Comparative results for all combinatorial approaches . . . . . . . . . . . . . . . . . . 181

A.1 Indexing and frequency range of Bark energy bands . . . . . . . . . . . . . . . . . . 218

B.1 Music tracks used in the evaluation collection. . . . . . . . . . . . . . . . . . . . . . 235

xxi





Acronyms

Acronym Description

ANN Artificial neural network
ANSI American national standards institute
ASA Auditory scene analysis
CASA Computational auditory scene analysis
BIC Bayesian information criterion
CFS Correlation-based feature selection
CL Complete linkage
CQT Constant Q transform
CV Cross validation
DFT Discrete Fourier transform
DWT Discrete wavelet transform
GMM Gaussian mixture model
FFT Fast Fourier transform
HC Hierarchical clustering
HMM Hidden Markov model
HPCP Harmonic pitch class profile
ICA Independent component analysis
ISMIR International society for music information retrieval
KL Kullback-Leibler (divergence)
kNN k-nearest neighbour
LDA Linear discriminant analysis
MCP Music content processing
MDS Multidimensional scaling
MFCC Mel frequency cepstral coefficient
MIDI Musical instrument digital interface
MIR Music information retrieval
MIREX Music information retrieval evaluation exchange
MP Matching pursuit
NMF Non-negative matrix factorisation
OAM Overlapping area matrix

continued on next page . . .

xxiii



xxiv Acronyms

Acronym Description

PCA Principal component analysis
PLCA Probabilistic latent component analysis
RA Regression analysis
RBF Radial basis function
ROC Receiver operating characteristic (curve)
SL Single linkage
SRM Structural risk minimisation
STFT Short-time Fourier transform
SVC Support vector classification
SVM Support vector machine
UPGMA Group average linkage
WPGMA Weighted average linkage



1

Introduction

To enjoy the music we like, we may walk in the street, move around dancing, converse with friends,
drive a car, or simply relax. Meanwhile, and independent of the aforementioned, our brains perform
a huge amount of complex processes to compile the auditory sensory input data into informative
structures (Patel, 2007). For instance, separating the passing car in the left rear from the electric gui-
tar solo and the driving drum pattern in your headphone, subconsciously. In everday’s music listen-
ing context the human mind decodes the incoming audio stream into elementary building blocks,
related to various acoustical and musical facets (Levitin, 2008). From this abstract representation
musical meaning is inferred, a process that involves factors such as musical preference and know-
ledge, memory, lifestyle, etcetera (Hargreaves & North, 1999). Without this meaning we could not
love music as we are used to do it, in some sense it would lose its value. Hence, music does not exist
outside the human mind, all leftover would simply be a variation in air pressure.

One of these building blocks corresponds to the identity of sounding sources; we can only under-
stand an acoustical scene if we are able to infer knowledge regarding the participating sound pro-
ducing objects. is is evident from an evolutionary point-of-view, since specific knowledge about
a particular source allows for a distinction between friend or foe, hence providing basic survival
means. In a musical context this problem is termed musical instrument recognition. One may claim
the simplicity of the problem, since every Western enculturated person is able to distinguish a violin
from a piano. However, the task is far more complex, involving the physical properties of musical
instruments, the rules imposed by the music system on the composition, as well as the perceptual
and cognitive processing of the resulting sounds. Modelling the problem in a general and holistic
manner still imposes a lot of difficulties to artificial systems. Besides, even humans exhibit clear
limits in their abilities in distinguishing between musical instruments.

In essence, this dissertation deals with the automatic recognition of musical instruments from music
audio signals. e aim is to identify the constituting instruments given an unknown piece of mu-
sic. e availability of this information can facilitate index and retrieval operations for managing

1
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trumpet

Figure 1.1: Illustration of the problem addressed in this thesis. Given an unknownmusical composition the task is to identify
the featured musical instruments.

big multimedia archives, enhance the quality of recommender system, can be adopted for educa-
tional purposes, or open up new directions in the development of compositional tools (see also
Section 1.5).

In this context, questions regarding the involved perceptual and cognitive mechanisms may arise; or,
how and to what extent can we teach a computer to perform the task? Hence, the problem is appeal-
ing from both an engineering and scientific point-of-view. Some of these questions are covered by
this thesis, others remain out of the scope of this work. is section serves as an introduction to the
thesis’ contents and provides the corresponding contextual links. Figure 1.1 depicts an abstraction
of the general problem addressed.

1.1 Motivation

Our habits in listening to music changed dramatically within the last three decades. Digitalisation
of raw audio signals and the ensuing compression of the resulting data streams was developed in line
with the emergence of personal home computer systems with their subsequently increasing storage
capacities, together allowing for the construction of music archives immensely extending the, by
then, usual dimensions. Internet technologies and the thereby initiated changes in the concept of
musical proprietaries, with all involved implications for the music industry, converted music con-
sumption and dissemination from a highly personal or within-small-groups phenomenon to a prop-
erty of (on-line) societies, at least in the view of social communities. Due to the facilities of modern
technology, which simplify music production and promotion processes as never before, a massive
amount of new, yet unknown music is created everyday. Nowadays, music is a service, with recent
digital communication devices always everywhere available, to a sheer unbounded extent. In this
context, technologies for managing this huge amount of music data claim for intelligent indexing
tools. From a user’s perspective, an automatic separation into relevant and irrelevant items in such
large archives is required. Music recommendation is more important than ever, since the enormous
assortment entails an inability to select the music to listen, paradoxically (Southard, 2010).
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Given these new dimensions in the availability of music and the way music is consumed, one of the
big challenges of modern music technology is to provide access to these data in a meaningful way. In
this respect, the precise personalisation of the recommendation process as well as the fusion of what
is calledmusical content and context, i.e. information directly extracted from the acoustical signal and
information inferred from user-assigned tags as well as collaborative listening data, respectively, will
be among the future objectives (Celma & Serra, 2008). e technology thereby acts as a compan-
ion, monitoring our listening habits in connection with our activities, profiling our diverse musical
preferences, supplying music on demand, providing both known and unknown music tracks with
respect to the given context, and ultimately shaping and improving our music intellects, purposely!
All this, however, may raise the question if it is ever possible to capture the essence of music, what
keeps us listening to music, with technology? And, if yes, are such technologies really able to make
us “better” music listeners? Or will they always remain artificial gadgets for nerdy technology-affine
people, only representing a vast minority among all music listeners? It is, however, not intended to
provide answers to these questions within this thesis, but they naturally arise in such technologically
driven conceptions involving any artistic origin.

e instrumentation¹ of a musical composition is one of the main factors in the perceptual and
cognitive processing of music, since it determines the piece’s timbre, a fundamental dimension of
sound perception (see Section 2.1.1.2). Timbre influences both the categorisation intomusical styles
and the emotional affect of music (Alluri & Toiviainen, 2009, and references therein), at which
humans are able to deduce this information within a very short amount of time, typically several
tenth of a second. Here, instrumentation shapes – togetherwith othermusical and acoustical factors
– the mental inference of higher-level musical concepts. Furthermore, at longer time scales, musical
instruments can exhibit very descriptive attributes, for instance in solo or voice-leading sections of
a music piece. In this context, the work of McKay & Fujinaga (2010) exemplifies the importance
of instrumentation in automatic classification of music. In this study the authors revealed features
derived from the instrumentation of a music piece to be most descriptive, among all tested features,
in terms of the piece’s musical genre. Moreover, humans usually use the aforementioned semantic
information to express, convey, and communicate musical meaning². In short, musical instruments
represent an essential part – implicitly and explicitly – in our description of music.

From an engineering point-of-view, information on the instruments featured in a givenmusical com-
position is therefore an important component in meeting the requirements of modern technology.
In this regard, the aforementioned applications for indexing and retrieval, or recommendation, can
only be applied in a meaningful way if the developed algorithms are able to extract those factors
from the data that define why we like or do not like certain pieces of music, at which instrumenta-
tion evidently plays a major role.

From a scientific perspective, understanding and modelling the physical world together with its per-
ception and cognition has always been the primary motivation for research. Here, questions re-

¹e combination of instruments used by musicians to play either a certain style of music, or a particular piece within
that genre (retrieved from http://www.louisianavoices.org/edu_glossary.html). Moreover, the new Grove dictionary of
music and musicians (Sadie, 1980) suggests that the term should be considered as inseparable from the notion of orchestra-
tion, see Section 3.2, page 53.

²In a typical on-line collection, instrumentation constitutes, along with genre and mood related information, the most
frequently used semantic dimension to describe music (Eck et al., 2008)

http://www.louisianavoices.org/edu_glossary.html
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Figure 1.2: Interdependency between the science and engineering after Drexler (2009). Scientific models may influence
practical realisations, while prototyped systems contribute to new or enhanced theories about the problem itself.

garding the timbral relations between musical instruments, as well as their mental processing and
representations – both in isolation and within musical context – arise. Which components of a
given musical instrument’s sound affects its identifiability among other instruments? What percep-
tual and cognitive principles enable the recognition of musical instruments playing simultaneously?
Furthermore, the notion of similarity may be exploited in a way of which attributes of perceived
timbre influence the relations between several musical instruments.

Finally, we want to point to the interdependency of the two perspectives outlined above. Here, both
domains share the basic concepts of a physical system, an abstract model, and the concrete descriptions
of one of the aforementioned (Drexler, 2009). In particular, scientific research (inquiry) describes
physical systems by collecting data via measurements, which results lead to the formulation of the-
ories regarding general models of the measured systems. Engineering research (design), by contrast,
designs concrete descriptions on the basis of a conceptualmodel, resulting in the construction of pro-
totype systems. Figure 1.2 illustrates this intimately interleaved nature of science and engineering
after Drexler (2009). In this regard, any scientific motivated modelling process may have practical
implications on the development of a proper system applicable in an engineering scenario. On the
opposite, empirical findings in the construction of engineering systems may lead to new or advanced
scientific theories (Scheirer, 2000). In the context of this thesis, we hope that the development of
our method for the automatic recognition of musical instruments from music audio data does not
only advance modern technology for a more accurate music indexing and recommendation, but also
contributes to a better understanding of human perception and cognition of perceived timbre.
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1.2 Context of the thesis

is thesis is written in the context of Music Information Retrieval (MIR), an increasingly popular,
interdisciplinary research area. In a very general sense, Kassler (1966) defines MIR as follows:

“[...] the task of extracting, from a large quantity of music data, the portions of that
data with respect to which some particular musicological statement is true.”

is classic definition, which arose from the roots of the discipline, was entailed by the goals of the
elimination of manual music transcription, the establishment of an effective input language for mu-
sic, as well as the development of an economic way for printing music (Lincoln, 1967). With excep-
tion of the latter, which appears slightly out-of-date, these general aims have been actively pursued
and still represent ongoing research topics inside MIR. However, the advent of digital media unfol-
ded new, additional perspectives for the research community. In this respect, the main functionality
of MIR is to provide basic means for accessing music collections. Here, the developed algorithms
and systems can target the recording industry or companies aggregating and disseminating music.
Furthermore, professionals such as music performers, teachers, producers, musicologists, etcetera
might be addressed; or simply individuals looking for services which offer personalised tools for
searching and discovering music (Casey et al., 2008).

e constant growing interest inMIR ismanifested by both attendances and publication statistics of
the annual International Society for Music Information Retrieval³ (ISMIR) meeting (Downie et al.,
2009), and the increasing popularity of related topics in typically not-music-focussed conventions
such as IEEE’s International Conference on Acoustics, Speech, and Signal Processing⁴ (ICASSP),
or the Digital Audio Effects⁵ (DAFx) conference. e ISMIR conference in particular provides a
proper platform for both research and industry, facilitating knowledge exchange and technology
transfer. Moreover, the simultaneously hold Music Information Retrieval Evaluation eXchange
(MIREX) competition offers an objective evaluation framework for algorithmic implementations
on standardized tasks (Downie, 2008).

In general, technologies based on MIR research enable the access to music collections by supplying
metadata information. Here, we can refer to any information related to a musical composition that
can be annotated or extracted, but being meaningful in any way (i.e. it exhibits semantic informa-
tion), with the term metadata⁶ (Gouyon et al., 2008). Since it represents the main motivation for
modern MIR systems, many of such systems are designed for simply providing metadata (Casey
et al., 2008).

In view of the aforementioned, content-based MIR, or Music Content Processing (MCP), aims
at understanding and modelling the complex interaction between humans and music by extracting

³http://www.ismir.net/
⁴e.g. http://www.icassp2012.com/
⁵http://www.dafx.de/
⁶Besides, metadata literally denotes data about the data.

http://www.ismir.net/
http://www.icassp2012.com/
http://www.dafx.de/
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information from the audio signal. Hence, the notion of content processing⁷ refers to the analysis, de-
scription, and exploitation of information derived from the raw audio data, in contrast to the term in-
formation retrieval in MIR, which corresponds to the gathering of any kind of information related to
music. e information provided by content processing is thought to complete themetadata derived
from other sources such as knowledge deduced from community analyses or editorial metadata.

In its interdisciplinary character, MCP represents a synergy of at least the areas of signal processing,
computer science, information retrieval, and cognitive sciences for both describing and exploiting
musical content (Gouyon et al., 2008). In doing so, it maps the musical content to concepts related
to the (Western) music system, thus providing an intuitive mean for data interaction operations.
However, the extraction of this high-level, i.e. semantically meaningful, information from content is
a very difficult task, beyond that of objective nature, thus requiring an explicit user modelling pro-
cess. Hence, MCP systems usually try to exploit several layers of abstraction of the aforementioned
semantic concepts in the description of the content, in order to meet the requirements of as many
people as possible (Casey et al., 2008).

1.3 The problem – an overall viewpoint

In general, the auditory scene produced by a musical composition can be regarded as a multi-source
environment, where different sound sources are temporarily active, some of them only sparsely.
ese sources may be of different instrumental type (therefore exhibiting different timbral sensa-
tions), may be played at various pitches and loudness, and even the spatial position of a given sound
source may vary with respect to time. Often individual sources recur during a musical piece, either
in a different musical context or by revisiting already established phrases. us, the scene can be
regarded as a time-varying schedule of source activity containing both novel and repeated patterns,
indicating changes in the spectral, temporal, and spatial complexity of the mixture. As an example,
Figure 1.3 shows the source activity along time of two tracks taken from different musical genres.

In this context, an ideal musical instrument recognition system is able to recognise all sound-
producing musical instruments inside a given mixture⁸. In practise, due to the aforementioned
multi-source properties of themusical scene, time and frequency interferences between several sound-
ing sources hinder the direct extraction of the source-specific characteristics necessary for recogni-
tion. Pre-processing must therefore be applied to minimise the interference effects for a reliable
recognition.

⁷In addition, Leman (2003) denotes musical content as a 3-dimensional phenomenon which exhibits cultural depend-
ency, represents a percept in the auditory system, and can be computationally implemented by a series of processes that
emulate human knowledge structure related to music.

⁸Note the consequences this universal claim involves by considering all possible sound sources such a recognition system
is confronted with. Apart from traditional acoustic instruments, which exhibit rather unique acoustical characteristics, elec-
tronic devices may produce sounds that vary to a great extent due to changes in their parameter values. Here, the question
arises of whether we can model and recognise an analogue synthesiser, or a DX7 piano synthetic patch? Besides, all sounds
not produced by any instrument, such as environmental or animal sounds, must be neglected by a musical instrument recog-
nition system, even though they act as essential elements in some musical genres.
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Figure 1.3: Distribution of musical instruments along time in two pieces of music. e upper track represents a rock piece
whereas the lower one is a classical sonata.

1.4 Scope of the thesis

As we have seen in the previous sections, the semantic information inherent to the addressed prob-
lem of automatic musical instrument recognition frommusic audio signals is important with respect
to the descriptive aims of MIR systems. In addition, the problem is strongly connected to other
MCP tasks, in particular to the fields studying music similarity and recommendation. However,
a lot of works conceptualized for automatic musical instrument recognition are not applicable in
any realistic MIR context, since the restrictions imposed to the data or the method itself do not
conform with the complexity of real world input data (see Chapter 3). Hence, we can deduce that
the handing of real-world stimuli represents a kind-of knowledge gap inside the automatic musical
instrument recognition paradigm. Moreover, the difficult endeavour of the problem and its situ-
ation at the crossroads of perception, music cognition, and engineering is challenging. erefore,
the primary objective and intended purpose in the initial development stages was the development
of a method for the automatic recognition of musical instruments from real-world music signals, in
connection with its integration in a nowadays MIR framework.

is focus on real-world stimuli involves three main criteria related to the functionalities of the
methods to develop. First and second, the algorithms must exhibit strong data handling abilities
together with a high degree of generality in terms of the modelled categories. Since the input data
to the developed methods is assumed to be of a real-world nature, the complexity of the data itself
and the involved variability in the properties of the musical instruments must be addressed properly
(e.g. a Clarinetmust be recognised in both classical and jazz music despite its possibly different con-
struction types and adoptions). ird, the extracted information has to persist meaningful among
several contexts, thus the abstraction of the semantic concepts in the modelling process and the
thereof derived taxonomy must be carefully designed to meet as many requirements as possible.
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We address the problem by modelling polyphonic timbre in terms of predominant instruments. In
particular, the presented approach focuses on timbre recognition directly from polyphonies, i.e. the
mixture signal itself. We construct recognition models employing the hypotheses that, first, the
timbre of a given mixture is mainly influenced by the predominant source, provided its existence,
and that its source-specific properties can be reliably extracted from the raw signal. Second, we
hypothesise that the instrumentations of a musical composition can be approximated by the in-
formation regarding predominant instruments. In doing so we purposely avoid the adoption of any
polyphonic pre-processing of the raw audio data, be it source separation, multiple pitch estimation
or onset detection, since the propagation of errors may lead to even worse results compared to the
information we are already able to gain without them. In order to meet requirements one and two
– the data handling and generality claims – we apply a sufficient amount of representative data in
the modelling process. However, given the complexity of the input data, we accept the noisy char-
acter of the approach but assume that even an imperfect inference based on these data can provide
meaningful means for a rough description of the instrumentation. To address the third criteria –
the preservation of meaning among several contexts – we concentrated the modelling on categories
able to cover most instrumentations found in Western music, which we pragmatically define as the
most frequently used in a typical collection of Western music. is guarantees a wide applicability
of the developed models to different kinds of MIR problems.

In general, we are not aiming at explicitly modelling human perception nor cognition of musical
instrument recognition, but we employ several related techniques in our computational implement-
ation of the method. In this regard, we can explain many of the applied algorithmic concepts with
perceptual and cognitive mechanisms. Moreover, the presented methods do not represent a holistic
solution towards the problem. We rather aim at deriving an optimal solution given the scope, the
context, and themethods at hand. Finally, we regard the presentedmethods at connecting the works
studying perceptual timbre recognition and the engineering-motivated demands for intuitive music
search and recommendation algorithms, where information regarding the instrumentation of music
pieces is crucial.

1.5 Applications of the presented work

In this section we point towards some of the main application fields of automatic musical instru-
ment recognition systems. From a MIR perspective, such a system can be implemented in any mu-
sic indexing context, or application of a general music similarity. Tag propagation, recommender,
or playlist generation systems – to name just a few – conceptually use the information regarding
the instrumentation of a music piece. Furthermore, music indexing opens possibilities for educa-
tional aspects beside the pure managing abilities of big archives. Music students may browse sound
archives for compositions containing a certain solo instrument; or search for the appearance of cer-
tain instruments or instrumental combinations in a musical recording.
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Moreover, information regarding the instrumentation of amusical composition is necessary for other
MCP algorithms acting on higher-level musical concepts. Typical artist or album classification sys-
tems can benefit from instrumental cues since these mainly exploit timbral dimensions. Moreover,
the assumable subjective notions of musical genre and mood are influenced by the adoption of cer-
tain musical instruments (see Chapter 6 and the work of McKay & Fujinaga (2010)).

Music signal processing in general benefits from the information regarding the identity of the sound-
ing sources within a music piece. From a holistic point-of-view, any information related to the mu-
sical scene, be it of low-, mid-, or high-level kind, contributes to the concept of what is called a
music understanding system (Scheirer, 1999). Here, we want to emphasize the notion of “complete
systems”, processing music as a perceptual entity. As a result of their mutual interdependencies no
single component of music can be analysed in isolation, both from a cognitive and a musical view-
point. Many transcriptive approaches of music contrarily focus on separating the individual signals,
irrespective of their perceptual and cognitive relevance (see Section 2.2 for a thorough discussion of
these conceptually opposed approaches towards the computational processing of music audio sig-
nals).

Finally, new compositional tools andmusical instrumentsworking on a high-level, semantic language
may take advantage of the provided information. Sample-based systems can directly select sound
units according to the query in terms of a particular musical instrument (e.g. audio mosaicing or
any other form of concatenative synthesis with instrumental constraints). Moreover, the concept of
musical instruments may be essential for a general description of timbre in such systems.

1.6 Contributions

We regard the presented work and the resulting outcomes related to the specific problem of auto-
matic musical instrument recognition from real-world music audio signals. e following lists our
main contributions:

1. edevelopment of a model for predominant source recognition from polyphonies and a cor-
responding labelling method. By directly modelling the polyphonic timbre we assure a max-
imum possible data complexity handling. Moreover, we provide simple labelling strategies
which infer labels related to the musical instruments from the predictions of the models by
analysing musical context. To our knowledge, this dissertation is the first thesis work exclus-
ively devoted to musical instrument recognition from polyphonies.

2. e incorporation of multiple musical instruments including pitched and percussive sources,
as well as the human voice in a unifying framework. is allows for a comprehensive and
meaningful description of music audio data in terms of musical instruments. To our know-
ledge, we present one of the few systems incorporating all three aforementioned instrumental
categories.
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3. e quantitative and qualitative evaluation of our presented method. In comparison to other
works we set a high value on the applied testing environment. We put emphasis on the devel-
opment of both the training and testing collections used in the evaluation experiments, and
use a great variety of different evaluation metrics to assess the performance characteristics of
themethod under the best possible conditions. Furthermore, we test themethodwith respect
to its robustness against noise, as defined by the amount of participating unknown sources.

4. We contribute to the understanding of sound categories, both in isolation and in mixtures,
in terms of the description of the raw acoustical data. e thesis provides several sections
analysing the applicability of different audio features to the problem, both in automatic and
manual processes.

5. We only use data taken from real music recordings for evaluation purposes, involving a great
variety of Western musical genres and styles. To our knowledge, this represents the less re-
stricted testing condition for a musical instrument recognition system ever applied in literat-
ure.

6. We further present and evaluate approaches for the labelling of entire pieces of music which
incorporate high-level musical knowledge. Here, we both exploit inter-song structures and
global properties of the music itself to develop intelligent algorithms to apply the aforemen-
tioned label inference algorithms. To our knowledge, no study in literature has addressed this
problem so far, since all methods pragmatically process all data of a given musical composi-
tion, neglecting the inherent structural properties and the thereby generated redundancy in
terms of instrumentation.

7. With this work we initialise both a benchmark for existing algorithms on real music data and
a first baseline acting as legitimation for more complex approaches. Only if the respective
methods are able to go beyond the presented performance figures, the application of heavier
signal processing or machine learning algorithms is justified.

8. We provide two new datasets for the research community, fully annotated for training and
testing musical instrument recognition algorithms.

1.7 Outline

is dissertation’s content follows a strict sequential structure, each chapter thus represents some
input for the next one. After two chapters reviewing background information and related relevant
literature, the main part of the thesis starts from the frame-level analysis for automatic musical in-
strument recognition in Chapter 4 and ends at the collection level where we explore interactions
between related musical concepts in Chapter 6. e following lists the topics involved in the re-
spective chapters.
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In Chapter 2 we present the basic scientific background from the fields of auditory perception and
cognition, music signal processing, and machine learning. We start the chapter with a brief intro-
duction to the functionalities of the human auditory system, which is followed by a more detailed
analysis of the perceptual and cognitive mechanisms involved in the analysis of complex auditory
scenes (Section 2.1.2). Section 2.2 introduces the basic concepts applied in the area of machine
listening, an interdisciplinary field computationally modelling the processes and mechanisms of the
human auditory system when exposed to sound. Here, Section 2.2.1 includes details about the in-
volved signal processing techniques and their relation to the perceptual processes, while Section 2.2.2
refers to the notions, concepts, and algorithms adopted from the field of machine learning.

Chapter 3 covers the related work specific to the problem of automatic musical instrument recog-
nition. We start by reviewing the general physical properties of musical instruments (Section 3.1)
and assess human abilities in recognising them (Section 3.2). Section 3.3 further formulates general
evaluation criteria for systems designed for the automatic recognition of musical instruments, which
is followed by an assessment of the most common methodological issues involved (Section 3.4). We
then examine the relevant studies in this field, concentrating on those works which developed meth-
ods for processing music audio data (Section 3.5) – in contrast to those works applying isolated
sample as input for the recognition algorithm. Finally, Section 3.6 closes this chapter by discussing
the main outcomes.

In Chapter 4 we present our developed method, termed label inference, for extracting labels in terms
of musical instruments from a given music audio signal. e introductory Section 4.1 covers the
main hypotheses underlying the presented approach together with their conceptual adoptions. e
first part of the chapter then describes the frame-level recognition, i.e. classification, for both pitched
and percussive musical instruments (Section 4.2). Here, we discuss the involved conceptual and ex-
perimental methodologies, along with all involved technical specificities. Both pitched and percuss-
ive analyses further contain an extensive analysis of the acoustical factors in terms of audio features
involved in the recognition process as well as a subsequent analysis of recognition errors. e second
part of the chapter describes the adoption of the developed frame-level recognition for the extraction
of instrumental labels from music audio signals of any length (Section 4.3). Here, we emphasise the
importance ofmusical context and show how a corresponding analysis leads to a robust extraction of
instrumental labels from the audio data regardless its timbral complexity. In particular, we present
and evaluate three conceptually different approaches for processing the output of the developed re-
cognition models along a musical excerpt. e chapter is finally closed by comparing the developed
method to state-of-the-art approaches in automatic instrument recognition and a general discussion
of the obtained results (Section 4.4).

In Chapter 5 we further present a conception, termed track-level analysis, for an instrumentation
analysis of entire pieces of music. We develop two conceptually different approaches for applying
the label inference method described in the preceding chapter for extracting the instrumentation
from music pieces. In the first part of this chapter we introduce an approach for locating those sec-
tions in a given music track, where robust predictions regarding the involved instruments are more
likely (Section 5.1). In the second part, several methods for exploiting the recurrences, or redundan-
cies, of instruments inside typical musical forms are presented, enabling an efficient instrumentation
analysis (Section 5.2). e following Section 5.3 then assesses the performance of all introduced
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track-level approaches in a common evaluation framework, where we focus on both recognition ac-
curacy and the amount of data used for extracting the labels. At last, Section 5.4 closes this chapter
by summarising its content and discussing the main outcomes.

Chapter 6 finally explores the relations between instrumentation and related musical facets. In par-
ticular, we study the associations between musical instruments and genres. In Section 6.1 we first
quantify these associations by evaluating both human-assigned and automatically predicted inform-
ation. In the following section we present and evaluate several automatic musical instrument recog-
nition systems which incorporate the information regarding the musical genre of the analysed piece
directly into the recognition process (Section 6.2). Section 6.3 then summarises the main ideas of
the chapter and critically discusses the obtained results.

At last, Chapter 7 presents a discussion of and conclusions on the thesis’s main outcomes. We first
summarise the content of this thesis in Section 7.2, which is followed by a list of insights gained via
the various obtained results. We then identify the main unsolved problems in the field of automatic
musical instrument recognition from multi-source music audio signals and provide an outlook re-
garding their possible approaches (Section 7.3). Finally, Section 7.4 closes this thesis by presenting
several concluding remarks.

Additionally, the Appendix provides a list of all applied audio features along with their mathemat-
ical formulations (App. A). Furthermore, a table containing the metadata information for all mu-
sic pieces of the music collection used for evaluating the presented methods is added subsequently
(App. B), which is followed by a list of the author’s publications (App. C).
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Background
Principles and models of human and machine sound perception

“In order to teach machines how to listen to music, we must first understand what
it is that people hear when they listen to music. And by trying to build computer
machine-listening systems, we will learn a great deal about the nature of music and
about human perceptual processes.”

(Scheirer, 2000, p. 13)

ese introductorywords taken fromEric Scheirer’s thesis summarise best the underlying principles
and purposes ofmachine listening systems. We regard this dissertationmainly positioned in the field
of machine listening, teaching a computer to extract human-understandable information regarding
the instrumentation of a given music piece. is chapter describes parts of those areas most relev-
ant to the main directions of the thesis. In particular, we will selectively review basic concepts from
the three research fields of psychoacoustics, music signal processing, and machine learning, all dir-
ectly connected to the methodologies presented later in this work. e here-provided background
information therefore serves as the foundation for the algorithms described in Chapters 4 - 6.

Although we have mentioned, in the previous introductory chapter, several, this thesis motivating
engineering goals, we begin this chapter with a review of the most relevant processes and mech-
anisms of the human auditory system for processing sound in general and, more specifically, re-
cognising sound sources. e motivation behind is that human auditory perception and cognition
is, after all, our touchstone for the domain of music processing with a machine, hence the here-
involved processes need some specific attention. More specifically, to develop a coherent machine
understanding of music – a quite general notion which we will refer to with the term of extracting
musical meaning – the mechanisms of the human auditory system and the thereof derived high-level
understanding of music are indispensable. Here, Wiggins (2009) argues, besides referring to the
so-called semantic gap that we introduce in Section 2.2, that

13
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“ […] the starting point for all music information retrieval (MIR) research needs to
be perception and cognition, and particularly musical memory, for it is they that
define Music.”

In other words, music, as a construct of the human mind, is per se determined by the processes of
auditory perception and cognition. With his viewpoint, Wiggins takes the matter of the importance
of human auditory and cognitive processes in automatic music processing further, as yet repeatedly
stated in relevant literature (e.g. Aucouturier, 2009; Ellis, 1996; Hawley, 1993; Martin et al., 1998;
Pampalk et al., 2005; Scheirer, 1996). Hence, Section 2.1.1 covers the basic perceptual concepts
and processes necessary for human sound source recognition. Subsequently, Section 2.1.2 takes a
closer look at the handling of complex auditory scenes by the auditory system.

We then review the broad area of machine listening, a field which main research line tries to under-
stand auditory scenes in general by means of a computer. Here, Section 2.2.1 introduces the basic
principles of music signal processing with an emphasis on different signal representations used for
music audio signals. In Section 2.2.2 we survey several basic concepts of machine learning and pat-
tern recognition. We first focus on the different semantic layers for extracting information from the
music audio signal in terms of audio features and derive the relatedmusical context. e second part
then addresses general aspects of learning algorithms typically applied in computational modelling.

2.1 Human auditory perception and cognition: From low-level

cues to recognition models

One of the most outstanding characteristics of our species is the creation, by processing diverse in-
formation sources, of complex and abstract internal representations of the outside world, together
with its transfer via communication by means of language and culture. Extracting information from
the physical signal of the acoustical environment represents only one part of thismulti-sensory, inter-
active mechanism. However, the human auditory system is able to infer, even when left in isolation,
an astonishingly accurate sketch of the conditions present in the surrounding world. In this process
the recognition and identification of sounding sources plays an evidently important role. Not much
is yet known about the variety of complex mechanisms involved in the task of sound source recog-
nition, but it is clear that it involves many different perceptual processes, starting from very basic,
“low-level” analyses of the acoustical input to “higher-level” processes including auditory memory.

e complex nature of the problem, alongwith the apparent ease of its handling by the humanmind,
has brought some theoretical debate into literature. How the perceptual system creates meaning
given the ambiguity in the sensory data itself, the loss of information at the periphery, and the po-
tentially lacking of memory representations, all of which are assumed to be involved in sound source
recognition (Lufti, 2008), is one of the essential questions raised here. In this regard, we can identify
three main theoretical approaches to the problem from literature:



2.1. Human auditory perception and cognition 15

1. Inferential approach. In the 19th century, von Helmholtz (1954)¹ introduced this earliest
perceptual theory, stating that the humanmind adds information based onprior knowledge to
the stimulus in order tomake sense of the raw sensory data. Since the sensory input data is per
se ambiguous and incomplete, the perceptual system performs inference from the knowledge
of its likelihood, which is determined innately or originates from experience.

2. Organisational approach. e second theoretical approach traces back to Gestalt psycho-
logy or gestaltism, which believes that perception is mainly determined by the extraction of
structure and order from the sensory input. Here, the notions of regularity, symmetry, and
simplicity play a fundamental role in the formation of objects (see Bregman (1990) for its
direct application to audition). ese views originate from the assumed operational principle
of the human brain’s holistic, parallel, and self-organising character. Similar to Helmholtz’s
inferential theory, the Gestaltists consider the sensory information to be ambiguous and in-
complete, at which the human mind processes these data by applying defined rules derived
from the aforementioned concepts of structure and order. ese two theoretical approaches
therefore share several commonalities since the most likely prediction from the data is often
equivalent to its organisational interpretation.

3. Ecological approach. is radically different theory founded by Gibson (1950) assumes that
perceptual stimuli exhibit so-called invariants which are perceived directly without the need
for any other information. Gibson emphasised the direct nature of perception, hence disreg-
arding any formof prior knowledge involved in the respective processes. Hence, this approach
relies on the ordered nature of the sensory information in opposite to the ambiguity claims
encountered in the former two.

Lufti (2008) further introduces a fourth, termed Eclectic, approach based on principles freely bor-
rowed from each of the three aforementioned theories. is approach has been applied in the most
remarkable computational models of listening (see e.g. Ellis, 1996; Martin, 1999). In these works,
the authors use an auditory-inspired sensory processing on top of which inferential, organisational,
and ecological principles extract the desired information. At last, Lufti (2008) argues that the ec-
lectic approach may be the most promising from all here-listed for an advancement of our under-
standing of human sound source identification.

Regarding the more specific problem of source recognition from auditory sensory data, McAdams
(1993) defines a general perceptual model by identifying the following mechanisms involved in the
identification of a single source. ese interactive processes start with the peripheral analysis of the
acoustical scene and lead to the mental descriptions of the sound source.

1. Sensory transduction. e first stage describes the representations of the raw auditory stim-
ulus in the peripheral auditory system. At this level the vibrations present as air pressure
differences are encoded into neural activity, which is then interpreted by higher-level percep-
tual processes.

¹e German scientist (*1821, †1894) published the first major study on physical attributes of complex tones, the
physiologicalmechanisms involved in their perception aswell as the sensation of timbre in particular. Due to the extensiveness
of this work and the validity of most of the presented findings up to now, von Helmholtz is often termed as one of the
pioneering researcher in hearing science and his influential work is still cited as major reference.
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Figure 2.1: A general model of human sound source recognition after McAdams (1993).

2. Feature analysis. Here, the extraction of invariants, i.e. properties that stay constant des-
pite the variation of other properties, which are the direct input representation to the actual
recognition process, takes place. In particular, we can differentiate between micro-temporal
properties such as structural invariants, which can be viewed – in an ecological sense – as
the physical structure of the source, and transformational invariants – the specific excitation
mechanism applied to the source from an ecological viewpoint. Moreover, McAdams also
mentioned the extraction of macro-temporal properties related to textual or rhythmic pat-
terns of the whole acoustic scene.

3. Access of memory representations. A matching procedure is performed either via a com-
parison process, where the nearest memory representation in terms of the used features is
selected, or by a direct activation process so that the memory representations are directly
accessed given a certain constellation of features in the perceptual description. Here, the
memory representation exhibiting the highest activation is selected.

4. Recognition and identification. Finally, the verbal lexicon, in case of an already availability of
language, is addressed and/or associated knowledge retrieved. At this stage, the processing is
no longer purely of auditory nature. Please note that recognition and identification may take
place in parallel.

e recognition process described above is by no means of a purely bottom-up kind; information
originating from later stages in the processing chain influence the peripheral auditory processing and
the extraction of source-specific characteristics. is top-down mechanisms of auditory organisa-
tion are accountable for the high interactivity between the different processes involved in auditory
perception. Figure 2.1 illustrates this interactive process.

Before entering the very basic concepts and processes of auditory perception, let us consider some
basic theoretical issues regarding the actual recognition process. In particular, we adopt a view-
point similar to Martin (1999, p. 11 et seq.) and Minsky (1988), who viewed recognition as a
process in a classification context. Recognition is thus taking place at different levels of abstraction
in a categorical space, a given sounding source may therefore be described at different layers of in-
formation granularity. us, each recognition level enables the listener to draw specific judgements
exhibiting a certain information content, or entropy, about the sounding object. Moving towards
less abstracted categorical levels will reveal more specific details about the object under analysis, at
the expense of a higher information need to classify the object into the respective categories. More
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Figure 2.2: Recognition as classification in a category-abstraction space after Martin (1999). Recognition is regarded as a
process which starts at a basic level of abstraction and evolves downwards towards a more specific description of the object,
depending on the information needs. Hence, the different layers of abstraction represent the information granularity, at which
less property information is needed for a recognition at higher levels of abstractionwhile accordinglymore object-specific data
is necessary for a more detailed recognition. e columns at the left and right margins indicate the changes involved when
moving in the corresponding direction of abstraction. e not addressed, small hexagons indicate other possible categories
in the recognition process such as “my favourite instrument”, “brown wooden thing”, or “seen live one year ago”, etcetera.

abstract levels accordingly require less source-specific information for recognition, but less details
about the sounding source are revealed. In this context, recognition is regarded as a process that
starts at a certain lower level of abstraction and may be continued according to the required gran-
ularity of the extracted information. us the process moves down the hierarchy and refines the
prediction strength by accumulating more sensory data. Figure 2.2 depicts the underlying ideas,
synthesised from drawings by Martin (1999). Minsky (1988) particularly argues that there is a
privileged, entry-level category representation for reasoning and recognition that occurs at an inter-
mediate level of abstraction, which has also been suggested by the experiments of Rosch (1978) on
category emergence and prototype establishment.

e next section describes, on one side, the main mechanisms involved in auditory processing and,
on the other side, its functional building blocks, from the sensory input to the recognition of the
source of a single stimulus. Hence, it discusses the perceptual processes and concepts involved in
the recognition of an arbitrary sound source based only on the sound it emits.
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2.1.1 Basic principles of human auditory perception

is section covers a review of several important processes involved in human auditory perception.
In particular, we first discuss the basic low-level mechanisms, which are common to all auditory
processing. At higher levels of the processing chain we focus more specifically on the mechanisms
necessary for sound source recognition. Hence, this section should serve as an overview of all related
perceptual processes and will build the basis for the understanding of the developed computational
approaches later in the thesis. However, we do not claim, in any respect, completeness regarding the
concerned concepts.

2.1.1.1 The peripheral auditory system

In general, the human auditory periphery can be regarded as a connected system consisting of suc-
cessive stages, each with an input and output (Moore, 2005a). Some of these devices behave in a
somehow linear (e.g. middle ear), while others in a highly non-linear manner (e.g. inner ear). e
following reconstructs the paths of an arriving sound through the different stages of the peripheral
auditory system. It should be noted that many of the described mechanisms were studied by experi-
mentation on animals or human cadavers, hence their real functionality in a living human organism
may differ from the experimental results. Moreover, many of the involved processes, mostly the
higher-level mechanisms, are still experimentally unexplored, thus the examination of their beha-
viour and functionality is largely of speculative nature.

First, the pinna modifies the incoming sound by means of directive filtering, which is mostly used
for determining the location of the sound-emitting source. e sound then travels through the
outer ear canal at which end it causes the eardrum to vibrate. Compensating for the impedance
mismatch between outer and inner ear, the middle ear then transforms the oscillation pattern to the
oval window, the membrane in the opening of the cochlea, the main part of the inner ear. Both outer
and middle ear again apply a filter to the sound, emphasising mid frequencies in the range of 0.5 to
5 kHz, important for speech perception, while suppressing very low and high ones.

e cochlea itself represents a conical tube of helical shape, which is filledwith almost incompressible
fluids. Along its length it is divided by two membranes, one of which is the Basilar membrane. A
vibrating oval window applies the respective pressure differences to the fluid, causing the Basilar
membrane to oscillate. Since the mechanical properties of the Basilar membrane vary along its
length, this transformation process acts as an effective frequency-to-place mapping; the location of
the maximum displacement only depends on the stimulus frequency. Hence, for complex sounds,
the Basilar membrane acts like a Fourier analyser, separating the individual frequency components
of the sound into distinct vibration maxima along its length (Plomp, 1964; von Helmholtz, 1954).
is Fourier behaviour is however no longer valid for close-in-frequency components, mostly due to
the limited frequency resolution of the Basilarmembrane; the patterns of vibration interfere, causing
a more complex movement of the membrane. We will later revisit this phenomenon by reviewing
the frequency selectivity and masking properties of the human auditory system.

e displacements of the Basilar membrane directly activate the outer hair cells and indirectly excite
the inner hair cells, which create action potentials in the auditory nerve. e functionality of the
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outer hair cells is believed to actively influence the mechanisms of the cochlea, controlling sensitivity
and fine tuning. It is further assumed that the outer hair cells are partly top-down controlled, since
many of the nerve fibres connecting the brain’s auditory system with the cochlea contact with the
outer hair cells. Here, Moore (2005a) remarks the following:

“It appears that even the earliest stages in the analysis of auditory signals are partly
under the control of higher centers.”

e aforementioned frequency-to-place mapping characteristics of the Basilar Membrane is pre-
served as a place representation in the auditory nerve. High frequencies are encoded in peripheral
parts of the nerve bundle while the inner parts are used for transmitting low-frequency information.
Hence, the properties of the receptor array in the cochlea represented as frequency, or tonotopicmap
are preserved up to the brain. Besides, this tonotopic representation is believed to play a fundamental
role in the perception of pitch (see the next section).

e physical properties of the incoming sound are directly translated to the neurons’ firing charac-
teristics. First, the stimulus intensity is encoded in the firing rate of the activated neurons. Second,
the fluctuation patterns of the nerve fibres are time-locked to the stimulating waveform. e fre-
quencies of the incoming sound components are additionally encoded in the temporal properties
of the neurons’ firing, which occur phase-locked, i.e. roughly at the same phase of the component’s
waveform.

Regarding the aforementioned frequency selectivity and masking properties of the human auditory
system, von Helmholtz (1954) already assumed that the behaviour of the peripheral auditory sys-
tem can be modelled by a filter bank consisting of overlapping bandpass, i.e. auditory filters. e
auditory system separately processes components of an input sound that fall in different auditory
filters, while components falling in the same filter are analysed jointly. is defines some of the
masking properties of the auditory system; concurrent components can mask each other, depend-
ing on their intensity and the frequency ratios (Moore, 1995). Experimentally determined masking
patterns reveal the shape of the auditory filters with respect to their masking properties. Moreover,
the form of theses auditory filters along the frequency axis also determines human abilities to resolve
components of a complex tone. Remarkable here is that only the first 5 to 8 partials of harmonic
sounds, as produced by most musical instruments, are processed separately (Plomp, 1964; Plomp
& Mimpen, 1968), the rest is perceived as groups with respective group properties (Charbonneau,
1981).

e subjective masking strength of a given stimulus strongly depends on the stimulus’s kind along
with the context at hand. Here, we can differentiate between informational masking, which occurs
if the same kinds of stimuli are involved in the masking process, e.g. masking speech with speech,
and energetic masking, attributed to no contextual dependencies between the participating sounds,
e.g. masking with noise (Yost, 2008). e former is evidently more difficult to process for the hu-
man auditory system since it is assumed that the brain performs a kind of segregation of the two
informationally similar sounds.
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2.1.1.2 The basic dimensions of sound

On top of the peripheral processing, the auditory system performs a computational analysis of its
input, concurrently extracting basic perceptual attributes from the incoming neural fluctuation pat-
terns (Levitin, 2008). In this context, literature usually emphasises the difference between the phys-
ical and perceptual qualities of a sound (Licklider, 1951; Scheirer, 2000). Physical sound properties
can be measured by means of scientific instrumentation, perceptual qualities are however defined
by human perception and thus highly subjective. Anyhow, we can identify the physical correlates of
these perceptual attributes, linking the physics with the perceptual sensation. Here, some relations
can be found quite easily, e.g. the frequency-pitch relation, while others exhibit a more complex rela-
tionship, e.g. the physical correlate of timbre sensation. Besides, the human auditory system extracts
these perceptual dimensions in a time span between 100 and 900 ms, depending on the respective
attribute (Kölsch & Siebel, 2005).

In what follows we review the most important perceptual dimensions of sound. ese include three
of the primary perceptual attributes of sound, namely loudness, pitch, and timbre. e auditory
system extracts these attributes, among others, in parallel, i.e. independently from each other, and
in a both bottom-up and top-down controlled manner (Levitin, 2008).

Loudness. Corresponds to the subjective sensation of the sound’s magnitude. e American Na-
tional Standards Institute (ANSI) defines it as “that attribute of auditory sensation in terms of
which sounds can be ordered on a scale extending from quiet to loud”. Loudness sensation is highly
subjective, hence difficult to quantify. Following several perceptual experiments, Stevens (1957)
suggested the perceived loudness to be proportional to the sound’s intensity raised to the power of
0.3. us, the loudness represents a compressive function of the physical dimension of intensity.
Moreover, Moore (1989) notes that the perceived loudness is related to the sound’s acoustic energy
it exhibits at the position of the listener, on the duration of the stimulus (up to a certain length
loudness increases with duration), and on the sound’s spectral content.

Pitch. Pitch is a perceptual dimension that describes an aspect of what is heard. e American
National Standards Institute (ANSI) formally defines it as “that attribute of auditory sensation in
terms of which sounds may be ordered on a musical scale”. In contrast to musical pitch, however,
pitch sensation is highly subjective, hence difficult to measure by scientific means. Since it forms
the basic element of musical melodies as well as speech intonation, pitch represent a musical and
perceptual key concept.

For a simple periodic sound pitch roughly correlates to its fundamental frequency. For complex, har-
monic sounds the pitch is merely defined by the lower harmonics than by the fundamental (Moore,
2005b; Schouten, 1970). is has been derived from studying the perceptual phenomenon called
missing fundamental (e.g. Ohm, 1873), stating that the pitch of a given sound is not determined by
the presence/absence of its fundamental frequency.

Hearing research derived two main theories for the perception of pitch. e first, so-called place the-
ory assumes that the auditory system determines the pitch of a sound by the location of the excita-
tion in the cochlea’s receptor array. On the contrary, the temporal theory attributes the phase-locking
mechanism of the auditory neurons to determine the pitch of an incoming sound. In recent years
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many researchers, however, believe that the actual pitch perception is based on principles borrowed
from both aforementioned theoretical approaches (Moore, 2005b).

Music psychology developed several models of pitch perception, among which the most famous is
probably the 2-dimensional representation proposed by Shepard (1964). His helical model differ-
entiates between the dimension pitch chroma and pitch height. It reflects the circular characteristics
of perceived pitch proximity and similarity, as observed in psycho-acoustical experiments. Here,
chroma represents the pitch in the 12-stage chromatic scale of Western music, while height refers to
its octave belongingness.

ere have been attempts to estimate a quantisation of pitch in terms of a perceptual scale based
on psycho-acoustical evidence. Stevens & Volkmann (1940) constructed a mapping of frequency
values in Hertz to values of units of subjective pitch, entitled mel², in tabulated form. e authors
evaluated comparative judgements of listeners on distance estimations of pitches, thereby assess-
ing the dependency of perceived pitch on frequency. e parametric representations of this scale
(see e.g. Fant, 1974) represents an approximation of the aforementioned experimental data. As
it roughly approximates the non-linear way human pitch perception changes as a function of fre-
quency, this scale has been incorporated into the Mel Frequency Cepstral Coefficients (MFCCs) to
measure the shape of a sound’s frequency spectrum, one of the most important descriptors for the
perceptual sensation of timbre (e.g. Jensen et al., 2009; Logan, 2000; Nielsen et al., 2007; Rabiner
& Juang, 1993).

Timbre. In this work, the concept of perceptual timbre obviously plays the most important role of
the here-considered basic dimensions of sound. It however exhibits themost complex relationship of
the sound’s physical attributes to its perception. In this regard, its formal definition by theAmerican
National Standards Institute (ANSI) leaves a rather big room for interpretation³:

“[Timbre represents] that attribute of auditory sensation in terms of which a listener
can judge that two sounds similarly presented and having the same loudness and
pitch are dissimilar.”

Bregman (1990) is further emphasising this rather imprecise conception by writing, with respect to
the definition of timbre⁴,

“This is, of course, no definition at all […] We do not know how to define timbre, but
it is not loudness and it is not pitch.”

²Besides, the name mel was literally derived from the word melody.
³An extensive list of various definitions of timbre throughout literature can be found at http://acousticslab.org/

psychoacoustics/PMFiles/Timbre.htm, substantiating the interpretative character of this perceptual concept.
⁴Due to its non-existing physical correlate, the adoption of the term “timbre” in scientific research brought much debate

into the discipline of hearing science. Timbre, as a purely perceptual quality, lacks any direct relation to a sound’s physical
parameter, hence a quantification in a scientific sense is impossible. In this regard, especially Martin (1999) criticises that
timbre “ … is empty of scientific meaning, and should be expunged from the vocabulary of hearing science”. In this thesis, we will
however frequently apply the term in order to refer to the corresponding perceptual sensation elicited by any sound stimulus.
Moreover, timbre exhibits a strong interrelation to the musical concept of instrumentation, which represents an important
consideration in the subsequent chapters.

http://acousticslab.org/psychoacoustics/PMFiles/Timbre.htm
http://acousticslab.org/psychoacoustics/PMFiles/Timbre.htm
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is difficulty in defining the concept is somehow rooted in the multidimensional character of
timbre – unlike loudness and pitch, which are unidimensional quantities. Furthermore, the per-
ceptual mechanisms behind the sensation of timbre are yet not clear. Handel (1995) suggests two
possible answers to the general perception of timbre; either timbre is perceived in terms of the ac-
tions required to generate the sound event, which would coincide with the ecological notion of the
production, or transformational invariants. is would allow us to recognise the object despite
large changes in other acoustical properties. e second possible perspective refers to the separate
perception of the underlying dimensions. In this case, the perceptual system learns the particular
connections of the different features to the respective auditory objects.

A lot of work has gone into the identification of the underlying dimensions of timbre perception.
Here, most works applied the technique of Multidimensional Scaling (MDS), evaluating perceptual
timbre similarities. One of the early researchers using this technique in timbre research, Grey (1977)
writes, explaining the underlying hypotheses of MDS studies:

“[The researcher] may start with the perceptual judgements of similarity among
a diverse set of (naturalistic) stimuli, and then explore the various factors which
contributed to the subjective distance relationships. These factors may be physical
parameters of the stimuli, which then would lead to a psychophysical model; yet,
multidimensional scaling techniques may also uncover any other factors involved
in judgement strategies.”

Up to now, many researchers studied the perceptual dimensions of timbre via MDS, using different
sets of stimuli and experimental conditions (e.g. Caclin et al., 2005; Grey, 1977, 1978; Iverson
& Krumhansl, 1991; Kendall & Carterette, 1993; Lakatos, 2000; McAdams et al., 1995). ese
works usually use short isolated sound stimuli, originating from natural or specially synthesised
sources⁵. e participants of the experiment are then asked to rate the similarity/dissimilarity of all
tone pairs from the set of stimuli. Upon these ratings, the MDS algorithm produces a geometrical
model of the “timbre space”, wherein the different stimuli are represented as points and the respective
distances refer to their dissimilarities. e space-spanning dimensions are later interpreted in terms
of acoustic, perceptual, or conceptual attributes and often related to computational descriptions of
the respective sounds.

Remarkably, the only dimension revealed in all of these studies relates to the brightness of the stim-
uli, which is attributed to the concept of the spectral centroid. Other attributes found in these
works refer to the attack and decay transients (e.g. Lakatos, 2000), the (time-varying) spectral shape
(e.g. McAdams et al., 1995) – here, the perceptual important amplitude and frequency modulation
may play an important role – or the spectrum’s fine structure (e.g. Caclin et al., 2005). Hence, from
this observation it is evident that the perceptual space revealed in MDS studies strongly depends
on the input stimuli. In this regard, the subjects’ similarity ratings seem to strongly depend on the
respective context (Hajda et al., 1997).

⁵McAdams et al. (1995), for instance, synthesised special artificial sounds to simulate timbres falling “between” natural
musical instruments, in order to further substantiate the validity of their results.
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erefore, these studies have met some criticism; first, due to the limited number of both stimulus
pairs and categories, together with the special conditions of the stimulus presentation applied in the
respective works, it seems hard to generalise the obtained results. In this context, the aforemen-
tioned studies completely neglected the contextual components of timbre perception, which gener-
ates, by no means, a realistic testing scenario. Furthermore, the technique only reveals continuous
dimensions, though timbre perception is assumed to be at least partially influenced by categorical
attributes, e.g. the hammer noise of the piano or the breathy characteristics of the flute. But one of
the main critics, however, arises from the conception of MDS studies itself. In this regard, Scheirer
(2000) writes, criticising the lacking re-evaluation of the identified dimensions with computational
models of timbre perception:

“The testable prediction that is made (often implicitly) by such a research model
is that it is these particular properties that are really used by a listener to identify
objects from their sounds. It is incumbent upon those researchers who wish to
assert the continued utility of the multidimensional-scaling paradigm for timbre
research to conduct such computational studies to confirm that these properties
contain sufficient information to support the behaviors imputed to them.”

To correct for the downsides of some of the aforementioned MDS studies, several authors respon-
ded to the potentially misleading insights obtained from too-constrained experimental settings. In
particular, both the acoustical properties of the stimuli related to the revealed dimensions and the
influence of musical context were subject to consideration.

Since most earlier MDS studies used very short sounds, i.e. mostly discarding the steady-state of
the stimulus, Iverson & Krumhansl (1991) evaluated the influence of the stimulus’s length and its
respective sub-parts on the similarity ratings. e authors found high correlations between the
results obtained from the attack part, the steady-state part, and the entire stimulus. is suggests
that the cues important for stimulus similarity, and thus presumably also for source recognition and
identification, are encoded independently of the traditional note segmentation. Each here-analysed
part of the signal, i.e. attack and steady-state, separately provides important acoustical information
for similarity rating and hence source recognition.

Kendall (1986) revealed the significance onmusical context on the categorisation abilities of humans
using sounds from musical instruments, which are regarded as a direct representation of timbre (see
also Chapter 3). e study compares the performance of a whole-phrase to a single-note context, at
which the former indicates phrases form complete folk-songs and the latter thereof extracted single
notes. Furthermore, the author explores the effect of transients and steady-state on the performance
in the respective context by editing the various stimuli. Results suggest that transient components
are neither sufficient nor necessary for the categorisation of the instruments in thewhole-phrase con-
text. Moreover, transient-alone stimuli led to the same results than full notes and steady-state-alone
settings in the isolated context. In general, Kendall identified the whole-phrase context to yield stat-
istically significant superior categorisation performance than the isolated-note context, emphasising
the importance of musical context in this kind of perceptual mechanisms.
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Sandell (1996) performed a musical instrument identification experiment in which he tested sub-
jects’ abilities in dependence on the number of notes presented from a recorded arpeggio. Here,
results indicate that the more notes are presented, the higher the identification performance of the
subject, hence emphasising the role of simple musical context for source identification (see also
Chapter 4 for its ubiquitous presence in our algorithmic implementation). In this context, Grey
(1978) notes with respect to the simplistic harmonic and rhythmic contextual settings used in this
early experiment, though already foreseeing the importance of musical context on the perception of
timbre,

“I hoped to begin to understand the effects of context on timbre perception. I be-
lieve that studies using musical contexts will have a greater relevance to normal
perceptual experience than those which merely concentrate on tones in isolation”

Furthermore, Grey also concluded that attacks are of minor importance compared to steady state
for timbre discrimination in a musical context.

To validate these results obtained from perceptual examination, Essid et al. (2005) performed an
automatic instrument recognition experiment with separated attacks and steady-states. eir first
note, however, relates to the non-triviality of extracting the attack portion of a sound even from
monophonic audio signal. e performed experiments show that in short isolated frames (45 ms
and 75 ms), the attack provides on average better estimates than the steady-state alone. A sys-
tem mixing both attacks and steady-state frames, again on a short time basis, then yielded nearly
the same performance as the attack-only system. However, systems using a much larger decision
window (465 ms and 1815 ms), not considering the distinction between attacks and steady-states,
performed by far best, yet another indication for the important role of musical context even for
automatic recognition systems.

e perception of polyphonic timbre was by far less studied in literature. Noticeable here are the
works performed by Alluri & Toiviainen (2009; in Press), exploring perceptual and acoustical cor-
relates of polyphonic timbre. In the first study, the authors performed MDS, correlation, and re-
gression analysis (RA) of similarity ratings obtained from Western listeners on polyphonic stimuli
taken from Indian music. Revealed acoustic dimensions include activity, brightness, and fullness of
the sound. Here, the sub-band flux, measuring the sound’s spectral difference in 1/3 octave bands,
represents the most important computational description of the timbral dimensions, highly correl-
ated to both the activity and fullness factor. e brightness dimension however does not reveal such
a evident correlation with one of the applied audio features. Surprisingly, the MFCCs showed no
significant correlation with the identified perceptual factors, suggesting a re-evaluation of the di-
mensions in subsequent computationally modelling experiments (see Scheirer’s criticism above on
the MDS paradigm).

In a follow-up study, Alluri & Toiviainen (in Press) followed the same experimental methodology
but using listeners from both Western and Indian culture, hence estimating the cross-cultural de-
pendencies of the perception of polyphonic timbre. e results suggest that familiarity with a given
culture, e.g. Indian listeners rating stimuli taken from Indian music, leads to a finer estimation of the
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dimension of the perceptual timbre space, here the authors found a value of 3 dimensions for both
settings. Cross-cultural ratings, however, revealed only 2 dimensions in the respective perceptual
space. Moreover, the interpretation of the identified dimensions coincide with the ones obtained
from the first study, both for intra- and cross-cultural testing (again, the dimensions activity and
brightness were the most explanatory in the different tests). Finally, one of the major insights of
these works is the overlapping of the dimensions identified in experiments using monotimbral data
and the here-obtained ones. is suggests that the timbre perception of multi-source sound mix-
tures is based on the analysis of the compound signal constituting of the involved sources. Source
recognition can therefore be seen as independent process, that happens concurrently or subsequently
to the initial timbre perception, i.e. the mixture is segregated and the individual sources recognised
successively.

2.1.1.3 Higher-level processing

Auditory learning. According to vonHelmholtz (1954), information obtained from the raw sens-
ory input is ambiguous and therefore complemented by cues taken from prior knowledge. Much
effort has been taken to identify the role of this prior knowledge, but not much has been gained
beyond the peculiarities of the individual studies (Lufti, 2008). Here, the difficulties arise from the
fact that recognition takes place at different levels of abstraction (see above), as well as the subjective
nature of the prior knowledge.

ere is a high consensus among researchers that auditory knowledge is acquired in an implicitman-
ner. It is believed that humans are highly sensitive to the stimuli’s contingent frequencies, i.e. probab-
ilities, which form the basis for anticipatory behaviour regarding the future. Hence, the perceptual
system learns properties of auditory objects and events by mere exposure (Reber, 1967). In this
context, the exposure allows for both the acquisition of an abstract representation of theses objects
and the formation of predictive expectations (Cont, 2008; Hazan, 2010).

Many works studied the implicit learning mechanisms inherent to human auditory perception. Saf-
fran et al. (1999) showed that humans already perform such learning schemes at the age of 8 month
by testing both adult and infant listeners in a grammar acquisition experiment using note triplets.
Loui & Wessel (2006) confirmed these results by using tonal sequences derived from non-Western
scales in the same experimental context. Both studies showed that subjects were able to learn the ex-
posed grammar by recognising thereof generatedmelodies. Similarly, Tillmann&McAdams (2004)
added timbral information to the tone triplets used in the aforementioned studies in order to estim-
ate the influence of factor dependencies on the implicit learning capabilities of humans. e authors
used timbral distances related to the statistical regularities of the tones by using different musical
instruments (i.e. high timbral similarity corresponds to intra-word transition, while low similarity
relates to inter-word transitions). Results revealed that subjects do significantly better in learning
the code words provided the respective timbral cues. is emphasises the importance of timbral
information in learning and recognition from music.

Moreover, Krumhansl (1991) showed that judgements about tonal “fit” are highly consistent among
subjects, indicating the learnt nature of these predictions. Participants of the experimentswere asked
to rate how well different tones fit within in a given tonal context, established by either a melody line
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or a harmonic progression. In this context, Serrà et al. (2008) pointed out that when analysing the
statistical distribution of automatically extracted tonal information in terms of pitch class profiles
(PCP) from large music collections, a remarkable analogy to the “tonal hierarchies” of Krumhansl
could be observed. Shepard & Jordan (1984) reported a similar effect regarding the statistical learn-
ing of musical scales; in their experiment subjects mapped heard scales exhibiting equidistant notes
to mental traces of acquired musical scales (i.e. major/minor), reporting perceived differences in the
interval sizes. Finally, Bigand et al. (2003) showed a comparable behaviour in a harmony context,
where listeners were able to identify spurious, “wrong” tones in a functional tonic chord in amore ac-
curate way than in a functional sub-dominant, which in general is less probable in the tested musical
context. See also the recent works by Hazan (2010) and Cont (2008) for a more detailed review.

e implicit character of learning is also manifested in the fact that for some experimental tasks,
music experts do significantly better than novices (Crummer et al., 1994; Kendall, 1986). Moreover,
explicit training of subjects leads to an improvement in performance compared to untrained subjects
(Jordan, 2007; Sandell, 1996).

e acquired knowledge forms the basis for creating, mostly subconsciously, expectations regard-
ing the acoustical environment ⁶. Many authors regard the process of evaluating these expectations
with the actual sensory information as a basic means for survival in a continuously sounding world.
Literature from research on music processing developed several theories about the nature and func-
tionality of this mutual process (e.g. Huron, 2006; Meyer, 1956; Narmour, 1990). Meyer (1956)
was one of the first acknowledging expectations to be the main source for the perceived emotional
qualities of music. Narmour (1990) expanded this theory, further constructing a computational
model for melodic perception. Finally, Huron (2006) takes it to the next level by stating that music
perception per se is a result of successively evaluating expectations by the auditory system. Moreover,
Huron notes that composers purposely guide listeners’ expectations by establishing predictability
or creating surprise in their works.

Similarity andCategorisation. Given a proper representation, or cue abstraction (Deliege, 2001),
of the sensory information related to the auditory event to identify, how does the auditory system
retrieve the relevant information from memory? As part of the above-introduced general model
of the auditory recognition process, the concepts of similarity, categorisation, and contextual in-
formation play an important role. Following Cambouropoulos (2009), the concepts of similarity
and categorisation are strongly linked. In a famous work, Rosch (1978) studied how the percep-
tual system groups similar entities into categories along with the resulting category prototypes. e
emerging categories represent partitions of theworld and are both informative and predictive, i.e. the
knowledge about an object’s category belongingness enables the retrieval of its attributes or features.

Literature derived three main theories of categorisation based on different assumptions on their
mental representation. e classical, or container theory assumes that categorisation is defined by a
set of rules derived from attributes which define the respective categories. e prototype theory uses
a model which estimated probability given the input data results in the respective category decision.

⁶In his influential work, Huron (2006) introduces four kinds of musical expectations. e veridical, schematic, and
dynamic-adaptive expectations corresponding, respectively, to the episodic, semantic, and short-term memory are of sub-
conscious kind. Conscious expectations of reflection and prediction constitute the forth one.
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Finally, the exemplar theory relies on a set of examples that resembles the mental representation of
the given category (see Guaus (2009) for a more detailed discussion).

On the basis of the performed categorisation, recognition and identification is accomplished. In
this context, identification describes the process of assigning a class label to an observation. e
specific taxonomy or ontology defines the respective verbal descriptions, or labels of the categor-
ies. Moreover, the retrieved associated knowledge positions the auditory object in the context at
hand and enables the evaluation of its significance. In conclusion, Cambouropoulos (2009) notes,
regarding the highly contextual, thus complex nature of the entire categorisation process:

“It is not simply the case that one starts with an accurate description of entities
and properties, then finds pairwise similarities between them and, finally, groups
the most similar ones together into categories. It seems more plausible that as hu-
mans organize their knowledge of the world, they alter their representations of entit-
ies concurrently with emerging categorizations and similarity judgments. Different
contexts may render different properties of objects/events more diagnostic concur-
rently with giving rise to certain similarity relationships and categorisations. If
context changes, it affects similarity, categorisation and the way the objects/events
themselves are perceived.”

2.1.2 Understanding auditory scenes

In general, the acoustical environment does not provide the sound sources in isolation. e thereof
obtained auditory sensory information rather involves multiple sound sources, presumably overlap-
ping both in time and frequency. e ability of human perception to resolve this acoustical mixture
forms the basis for the analysis of the acoustic scene. However, the perceptual mechanisms behind
are still not well understood (Carlyon, 2004). Since music represents, in general, a multi-source
acoustical environment (see Section 1.3), the here-described data properties indeed represent the
main complexity involved in this thesis.

Cherry (1953) coined the problem as the cocktail party problem by exemplifying a conversational
situationwhere several voices, overlapping in time, are embedded in a natural acoustical environment
including other stationary or dynamic sound sources. e listener, however, is able to focus on the
targeted speech stream and transform the acoustical data into semantic information. In particular,
Cherry writes:

“One of our most important faculties is our ability to listen to, and follow, one
speaker in the presence of others...we may call it the cocktail party problem.”
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Bregman (1990, p.29) draws an analogy to vision to emphasise the complexity of the problem. He
writes

“Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs
stretched across each one. Looking only at the motion of the handkerchiefs, you
are to answer questions such as: How many boats are there on the lake and where
are they?”

And also Levitin (2008) uses a metaphor for describing the cocktail party problem,

“Imagine that you stretch a pillowcase tightly across the opening of a bucket, and
different people throw Ping-Pong balls at it from different distances. Each person
can throw as many Ping-Pong balls as he likes, and as often as he likes. Your job is
to figure out, just by looking at how the pillowcase moves up and down, how many
people there are, who they are, and whether they are walking toward you, away
from you, or are standing still. This is analogous to what the auditory system has
to contend with in making identifications of auditory objects in the world, using
only the movement of the eardrum as a guide.”

In this context, automatic recognition of musical instruments from polytimbral music represents a
special variant of the cocktail party problem. ough in opposite to the classic example of different
human voices in a noisy environment, the involved sources are by no means independent in music.
Usually composers adopt the musical instruments following distinct rules, which, depending on the
current praxis in the respective period, may include voice-leading constraints, harmonically-rooted
specification, timbral conceptions of the composer to no rules at all. Hence, the musical instruments
act together to form the harmonical, timbral, and emotional affection– to name just a few–ofmusic.

Bregman (1990) describes the processes necessary for decoding the information provided by the
acoustical scene into understanding. is influential work, naming the field Auditory Scene Ana-
lysis (ASA), provides a theoretical framework for research in the field along with numerous exper-
imental evidence for the described auditory principles. e underlying approach towards auditory
perception is strongly influenced by the organisational principles of Gestalt psychology (see the very
beginning of this section), though Bregman argues that besides this bottom-up – he calls it primitive
– processing, top-down mechanisms – termed schema-based – must be involved in general auditory
perception.

ASA assumes the auditory system to order the incoming neural information in a primitive, low-
level manner, grouping and segmenting the data, composed of frequency, level, and time informa-
tion, into so-called auditory objects. Here the mechanisms follow gestaltism by applying the rules of
closure, similarity, proximity, symmetry, continuity, and common fate (Wertheimer, 1923). Hence,
the acoustical signal is transduced and transformed into grouped representations according to prin-
ciples of perceptual organization. e thereby occurring uncertainties in the interpretation of the
raw neural codes, resulting from the ambiguity of the sensory data, are resolved by learned pref-
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erence rules, which are continuously updated by stimulus information regarding register, timbre,
duration, dynamics, etcetera (Temperley, 2004).

is behaviour seems evident since our perception is, for instance, highly sensitive to commononsets
and modulations of different components across frequency, or to the frequency relation of partials
of harmonic sounds. Moreover, natural sounds vary slowly in time, hence proximity and continuity
play an important role in auditory perception. Here, Bregman introduces the notion of “old-plus-
new”, stating that an unknown auditory scene is first analysed in terms of the already-known; what
is left is then attributed to a “new” object. Also, the inferential character of the auditory system, as
demonstrated in the auditive restoration phenomenon as shown by Warren (1970), may be partially
explained by these rules.

In general, the auditory system is not able to analyse the properties of a sound event until its consist-
ent components are integrated as a group and segregated from those of other sound events. Hence,
auditory perception has to perform a kind of separation of meaningful events in both frequency and
time, a process that is commonly known as stream segregation or auditory streaming (Bregman, 1990).
In this context, the inherent limitations of the human brain in processing information are controlling
the amount of concurrent streams⁷. Moreover, the temporal ordering of the auditory objects and
events plays an important role (Hazan, 2010). Most acoustical cues are somehow correlated across
time insofar that they become redundant and substitutable to a certain extent. is property can
partially explain the effects of auditory restoration of masked sound events and therefore enables
robust source recognition in noise (Handel, 1995).

ose cues involved in the streaming process can be of different kinds. ey may be of low-level
nature as described by the gestalt principles or higher-level concepts such as timbre, pitch, loudness,
harmony, etcetera. At this stage, top-down processing is heavily involved in the formation of these
auditory streams. Given the sensory data, the most likely – across senses – constellation of auditory
objects will form the respective streams. Moreover, depending on the listening experience, those
cues which lead to the best performance are selected to control the formation process of the aud-
itory streams. Furthermore, selectivity, adaptation, and attention interactively control the process
(Carlyon, 2004; Yost, 2008). In this context, an auditory stream may – but not necessarily has to –
correspond to a single acoustic source.

It has been shown that this ability to form auditory streams from complex acoustical mixtures is
already partially present in newborns (Winkler et al., 2003). It therefore seems that most of the
low-level processes of the auditory systems are innate (Crawley et al., 2002), while the ability and
power of the schema-based control evolves with experience.

In the context of this thesis, streaming-by-timbre takes a special role. It describes the process of aud-
itory streaming based on timbral cues, hence it can be understood in the sense of how the perceptual
system segregates sound sources according to their sounding characteristics (Bregman, 1990). Re-
search put some effort in studying this perceptual mechanism, mainly driven by the question of
what factors influence the separability of sound sources (e.g. Singh, 1987; Wessel, 1979). Here,
mostly musical instruments were adopted to create different timbre sensations. It has been shown

⁷Wewill address these limitations inmore detail in Section 3.2.2, see also the works byMiller (1956) for a quite general,
and Huron (1989) for a music-specific assessment of human information processing capabilities.
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that especially both the static and dynamic spectral characteristics of the sound are decisive for the
streaming abilities of concurrent timbres. ese properties correspond to the formant areas and
small spectral variations inherent to musical instruments (Reuter, 2009) (see also Section 3.2.2).

Once the auditory system has segregated the sensory data, the perceptual streams are analysed.
Here, source recognition is based on the extraction of features describing the sounding object. In
this context, Martin (1999) notes that humans have to extract source-invariant information already
from the incoming, thus unresolved, audio stream to reliable segregate and categorize. It should be
kept inmind that the process of feature extraction, togetherwith the auditory attentionmechanisms,
is involved in both segregation of concurrent sources and the subsequent analysis after segregation
(Yost, 2008).

As already stated above, the process of auditory streaming is assumed to be based on both primitive,
i.e. bottom-up, and schema-based mechanisms. On the one side, low-level processes successively
transform the input into elementary symbolic attributes of the sensory stimulus. Here, the above-
described mechanisms of perceptual organisation take place (Bregman, 1990). is process also
conforms with the theory of visual perception by Marr (1982), who viewed the perceptual process
as a successive series of computational stages. Hence, the perceptual system performs a successively
abstraction of the input data, creating several levels of data representation. Each of these levels
encodes a different kind of information, atwhich higher levels contain amore semantic description of
the stimulus. e stages are assumed to be rather independent, each stage can therefore bemodelled
separably, at which the concrete processing can be accomplished locally, i.e. is not influenced by other
stages. Finally, the combination of all models of all stages yields the complete system.

On the other side, top-down processes take control of the various stages in the data processing chain.
Here, the auditory system compares, at each level in the hierarchy, a mental representation of the
acoustical environment to the actual sensory data. is mental representations are created by both
short-term and long-term prior knowledge regarding the data. According to the resulting match,
the perceptual system adapts both its low-level sensory processing and the mental representation.
is top-down control is most likely accountable for perceptual phenomena such as completion or
residual pitch. See the works of Slaney (1995) and Ellis (1996) for more detailed evidence of the
involved schema-based processes in audition.

2.2 Machine Listening

Machine listening represents the area of research that teaches computers to generate an abstract rep-
resentation of a sound signal. Hence, it involves the automatic analysis and description of the given
auditory scene for extracting meaningful information. Since we assume that the meaning of the in-
formation is defined by the human mind⁸, the performance of machine listening systems should al-
ways be evaluated against human abilities on the corresponding task at hand. However, engineering-

⁸As already mentioned earlier it is human perception and cognition that define music (Wiggins, 2009).



2.2. Machine Listening 31

Sound Action
Front-end

representation

Scene

organisation /

Separation

Object

recognition &

description

Memory /

Models

Figure 2.3: Processes involved in machine listening after (Ellis, 2010).

motivated criteria often define the evaluation context, since many applications, although inspired by
human behaviour, are neither interested in the perceptual abilities of humans nor on mimicking
them (Scheirer, 2000).

Tzanetakis (2002) identified the following stages involved in machine listening – he uses the term
computer audition – and connects them to the most relevant research areas:

1. Representation. Refers to the transformation of the time-domain acoustical signal into a
compact, informative description by simulating the processes of the auditory periphery. Here,
Tzanetakis exemplifies the time-frequency transformations usually applied inmachine listen-
ing systems for a proper representation of the frequency content of a given signal. e most
important area of research referring to these signal transformations is signal processing.

2. Analysis. An understanding of the acoustical environment is obtained from the given rep-
resentation. e processes applied here may include similarity estimation, categorisation, or
recognition, which include abstract knowledge representations and learning mechanisms for
both humans and machines. e main research area here is the field of machine learning.

3. Interaction. e user is actively involved in the process of the presentation and control of
the extracted information from the signal. Here, ideas and concepts from human-computer
interaction have major influence.

In this line, Ellis (2010) describes the processes involved in the representation and analysis stages
of machine listening as follows; a front-end processing transforms the signal into a proper repres-
entation for the analysis, on top of which an organisation, or scene analysis algorithm extracts the
relevant objects. en, recognition and description takes place by consulting memory representa-
tions, which store information on the objects, and moreover act as an adaptive, top-down control
for the scene analysis component. Figure 2.3 illustrates the processes involved.

In the context of this thesis, which addresses the problem of automatic recognition of musical in-
struments from music audio signals, the key process involved represents the scene analysis stage.
Here, literature in machine listening has developed two conceptually different approaches to resolve
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a complex mixture signal and extract the relevant objects. Scheirer introduced the terminology re-
lating to these different viewpoints on the problem and inspired many subsequent studies by his
influential works (e.g. Scheirer, 1996, 1999, 2000). In particular, the author defines the following
two general methodologies:

1. Separation for understanding. is approach assumes that a successful extraction of a mu-
sic understanding requires a central representation of the input data. It borrows the idea of
structuralism stating that cognitive processes are based on symbolic models of the sensory
data. In particular, the specific symbolic model of audition is rooted in music theory and
its fundamental concept of the score. e central representation is correspondingly a tran-
scription of the sensory data into a score-like description. In the machine listening field, this
entire conception is often termed the transcriptive model. Hence, a full understanding of the
acoustical environment requires a piano-roll-like representation of the input signal according
to music theoretical entities, which can be used to separate the mixture into the concurrent
sources. Typical systems either apply the cues obtained from the transcription to segregate
the entire signal into the sources or to directly synthesise the source signals. e isolated
signals can then be analysed separately in terms of the extracted features with respect to the
desired information.

2. Understanding without separation. In relation to human perception mechanisms this ap-
proach assumes that the lack of any structural representation of the sensory data leads to an
iterative abstraction of meaningful information directly from the input signal. Here, such
systems apply continuous transformations to the input signal until the desired information
is accessible. A completed transformation stage and its abstractions define the input to the
next, higher-level stage of meaning extraction. Typical implementations usually use simple
signal processing and pattern recognition techniques to directly infer judgements about the
musical qualities of the stimulus. is signal understanding approach can be regarded as a
class of sensor interpretation problems known from general artificial intelligence; the goal is
to abstract the signal into a symbolic stream so that the most meaningful elements are ex-
posed, while other agencies can operate on deeper qualities of the source (Hawley, 1993). To
emphasise the conceptual advantages of this approach, Scheirer (2000) writes

“In a separation-less approach, the required action is one of making feature
judgements from partial evidence, a problem that is treated frequently in the
pattern recognition and artificial intelligence literature. Rather than having to
invent a answer, the system can delay decision making, work probabilistically,
or otherwise avoid the problematic situation until a solution presents itself.”

Due to the apparently appealing challenge of constructing automaticmusic processing systems based
on the transcriptive model there is a vast amount of related approaches in literature. In recent years,
researchers paid specific attention to the problems of source separation (e.g. Casey, 1998; Smaragdis
et al., 2009; Vincent et al., 2010; Virtanen, 2006; Weintraub, 1986) and automatic music transcrip-
tion (e.g. Abdallah & Plumbley, 2004; Goto, 2004; Klapuri, 2003; Moorer, 1975; Smaragdis &
Brown, 2003). Alternative approaches towards music understanding however claimed the invalid-
ity of the approach with respect to the human processing of music signals and enforced the signal
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understanding approach (e.g. Ellis, 1996;Herrera et al., 2000; Scheirer, 1996, 1999). In this regard,
the authors argue that a simultaneous separation of the audio signal into the concurrent sources can-
not account for components of the signal that are masked or shared by different sources. Hence, the
process directly involves an information loss that is not present in signal understanding systems.
Moreover, most listeners do not transform the sensory data into a score-like representation. On
the contrary, the organism produces various output mechanisms related to the perceived qualities
of music such as foot-tapping, emotional responses, or high-level judgements about musical genre
or style (Levitin, 2008). Besides, Martin et al. (1998) argue that music transcription should only
be viewed as an engineering problem, possibly of interest for practical applications, rather than as a
prerequisite for music understanding. In this context, Scheirer (2000) writes

“if useful analyses can be obtained […] that do not depend on transcription or sound
separation, then for many purposes there is no need to attempt separation at all.”

Finally, Ellis (1996) notes, quite pessimistically concerning the limits of the transcriptive model

“The idea of a machine that can convert a recording of a symphony into the printed
parts for an orchestra, or a MIDI encoding for storage and resynthesis, remains
something of a phantasy.”

Since we approach the problem addressed in this work without applying automatic music transcrip-
tion and musical source separation techniques, this thesis is positioned in the signal understanding
field. In this respect, the developedmethodologies include inferring the characteristics of the objects
to recognise, i.e. the musical instruments, directly from the mixture signal without any form of poly-
phonic pre-processing (e.g. multi-pitch estimation, onset detection, transient reduction, etcetera).

2.2.1 Music signal processing

is section covers several basic concepts from signal processing necessary for machine listening
approaches. Wehere concentrate on the area of audio signal representationswhich usually comprises
the front-end processing stage of an automatic music processing systems. In what follows we shortly
review the most important representations of audio signals as applied in related literature. Similar
to the previous section, we however do not claim completeness in any respect.

2.2.1.1 Audio signal representations

In this section we survey the most common representations of audio signals as applied in automatic
music processing systems, due to their important role in the recognition process (see Figures 2.1
and 2.3). e most used signal representation is probably based on the Fourier decomposition of
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the sound signal due to the similarities to the analysis performed by the Basilar membrane (see
Section 2.1.1). In the context of this thesis, especially the Fourier Transform equivalent for finite
time-sampled signals, theDiscrete Fourier Transform (DFT), is applied extensively to transform the
input sound into a Fourier representation. e DFT represents a specific case of the additive ex-
pansion or decomposition models, which can be generally described by a weighted sum over a set
of particular expansion functions. Here, the expansion functions correspond to the pre-defined,
frequency-localised complex sinusoidal bases. One of the big advantage of such additive decompos-
ition models over conceptually different signal representations lies in their implementation of the
superposition principle; as a direct implication a transformation applied to the mixture signal equals
to the weighted sum of the transformations applied to the respective decomposition functions.

e DFT is frequency-, but not time-localised, hence providing no temporal information regarding
the applied sinusoidal decomposition. To overcome this shortcoming, the input signal is represented
as a sequence of short segments, or frames, on top of which the DFT is performed. Hence, the ana-
lysis is shifted along the time axis using a fixed step, or hop size. is process can be regarded as the
application of a time-localisedwindow function to the signal prior to the Fourier analysis. Moreover,
the specific formulation of including a special window additionally to the sinusoidal into the decom-
position function is known as Gabor expansion, the resulting expansion functions are called Gabor
atoms. is time-frequency representation is usually termed Short-Time Fourier Transform (STFT).
An in-depth study of the STFT and its various interpretations is given by Goodwin (1997).

Typical higher-level signal representation for music processing use the STFT as starting point.
Here, sinusoidal modelling techniques have been particularly applied widely across the field, due
to their usefulness for the analysis of harmonic sounds. e Sinusoid Transform Coder introduced
by McAulay & Quatieri (1986) extracts distinct sinusoidal tracks from the STFT, hence regard-
ing the mixture signal as a sum of partial tracks. e system picks spectral peaks from each STFT
frame, the entire mixture signal is therefore represented as a time-varying set of triplets includ-
ing amplitude, frequency, and phase information of the respective estimated partials. By using a
birth-death tracking algorithm the system extracts continuous frequency tracks, which correspond
to the sinusoidal components of the analysed sound. Serra (1989) extended this methodology by
explicitly considering transient and noise components in the signal model. e author suggested a
“deterministic-plus-stochastic” decomposition of the signal, where harmonic sounds are modelled
via sinusoidal tracks and the remainder of the spectrum by an autoregressive noise model.

In the context of music signal processing, the constant Q transform (CQT) represents a popular al-
ternative to the standard DFT. It has been introduced to avoid specific shortcomings observable
with the DFT and to conform the inherent properties of the Western tonal music system (Brown,
1991). In particular, the CQT adapts its frequency resolution to the one of musical scales, while
applying complex sinusoids as expansion functions; the subdivision of the octave into intervals of
equal frequency ratios in the equal-tempered tuning system results in a logarithmically spacing of the
successive notes, hence the CQT offers the corresponding logarithmic frequency resolution. is
is in opposite to the standard DFT formulation, which provides a linear spacing of its bins along
the frequency axis. More precisely, when viewed from a filter bank perspective⁹, this logarithmically

⁹In signal processing, the DFT is often regarded as a bank of band-pass filters. Here, each frequency bin represents a
single filter with a constant-length prototype impulse response.
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frequency spacing results in a constant frequency-to-bandwidth ratio of the filters. is, in turn, leads
to a good frequency resolution at lower frequencies together with a good time resolution for higher
frequencies. According to the uncertainty principle, which is inherent to any kind of time-frequency
decomposition (Burred, 2009), low frequencies thus exhibit bad temporal resolution, while high fre-
quencies provide bad frequency resolution. ese frequency-dependent properties of the CQT are
however in line with some general characteristics of music, since, inside this duality, high frequencies
usually offer strong temporal information while low frequencies only vary slowly in time.

Furthermore, the Wavelet Transform offers a more general multi-resolution frequency transform.
It provides the facility to use a large variety of expansion functions, such as Haar or Daubechies
wavelets (Mallat, 1999), hence the transform is not necessarily limited to complex sinusoids such
as the aforesaid. Since its frequency resolution can be related to the characteristics of the human
auditory system, the Wavelet Transform equivalent for sampled signals, theDiscrete Wavelet Trans-
form (DWT), has been applied for auditory modelling (Moore, 1989). In principle, it performs an
octave-band decomposition of the signal, hence providing good frequency resolution for low fre-
quency components and high temporal resolution in the upper regions of the spectrum.

Another frequently used approach is the signal’s decomposition via adaptive models using an over-
complete dictionary of time-frequency localised atoms. e main characteristic of decomposition
methods using overcomplete dictionaries is their inability to reconstruct the time signal from the
derived time-frequency representation. Such models select those atoms from the dictionary which
best match the analysed signal. e most common dictionaries consist of, e.g., Gabor atoms or
damped sinusoids. Some examples of overcomplete decomposition algorithms include the Basis
Pursuit (Chen et al., 1999) or Matching Pursuit (MP) (Mallat & Zhang, 1993). e latter iterat-
ively subtracts the best match of the dictionary from the signal until some stopping criterion has
been reached and has been applied for automatic music processing (e.g. Leveau et al., 2008).

Finally, we review those signal representation which model the auditory periphery processing. Such
representations are inherent to computational models of ASA in the field of Computational Audit-
ory Scene Analysis (CASA). In general, these models transform the acoustical signal into a pattern
of nerve firing activity. First, the signal is filtered according to the outer- and middle-ear frequency
transfer characteristics. Next, such models apply a filter bank consisting of overlapping gammatone
filters, simulating the frequency analysis performed by the cochlea. At last, a inner hair cell transduc-
tion model is used to account for the compression, rectification, and phase locking properties at this
stage of the auditory processing. e resulting time-frequency representation is termedCochleagram
(e.g. Brown & Cooke, 1994; Cooke, 1993; Godsmark & Brown, 1999). Often, authors apply an
additional autocorrelation analysis to the cochleagram, resulting in the 3-dimensional Correlogram,
used for the analysis of harmonic sounds (e.g. Ellis, 1996; Martin, 1999; Wu et al., 2003).

2.2.2 Machine learning and pattern recognition

Literature provides many different formulations regarding the definition of machine learning. Fol-
lowing Langley (1996), we suggest a formal, thus quite general attempt.
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“[Machine learning is] a science of the artificial. The field’s main objects of study are
artefacts, specifically algorithms that improve their performance with experience.”

Algorithms from machine learning and especially pattern recognition have been extensively applied
in automatic music processing systems. is is partially due to the aim of both pattern recognition
and the human cognitive system to determine a robust linkage between observations and labels for
describing the current environment. In this regard, Duda et al. (2001) phrases the following:

“[Pattern recognition is] the act of taking in raw data and taking an action based on
the category of the pattern”

Usually, an observation is represented as a n-dimensional feature vector, describing the properties of
the observation. is vector, or pattern, represents a point in a multi-dimensional space, in which
a machine learning algorithm models the inherent structure of the data in either a supervised or
unsupervisedmanner. e resultingmodel is able to present evidence for a given unseen observation,
according to the learnt criteria. In the following, we first take a closer look at different audio features
involved in the hierarchical semantic layers used to describe music, and subsequently review some
relevant learning algorithms typically applied in automatic music processing systems.

2.2.2.1 Audio features

In a very broad sense, a feature denotes a quantity or quality describing an object of the world. us,
it serves as a synonym for attribute or description of the object. Conceptually, it can be regarded as
an abstraction in a compact description of a particular information. Hence, it facilitates the handling
of noisy data, allows for compression, or can be used to suppress unnecessary details, thus enabling
a robust analysis (Martin, 1999)

Music Content Processing (MCP) typically differentiates between hierarchically structured descrip-
tion layers corresponding to broad feature categories – an analogy to the perspective of a hierarchical
ordering of information in human perceptual and cognitive system (Martin, 1999; Minsky, 1988).
In this regard, a representation addressing these general description layers can be derived, which
is depicted in Figure 2.4, showing a graphical illustration of the different levels of abstractions ad-
dressed by MCP systems, synthesised from drawings of Celma & Serra (2008).

In a machine listening context, and following the music understanding approach as introduced
above, the raw audio signal subsequently passes the three layers of abstractions, processed by the re-
spective transformations. First, such systems derive low-level features from the data which are com-
bined to so-calledmid-level descriptors. From these descriptors high-level, human-understandable¹⁰
information regarding the audio signal can be extracted. We can therefore group the extractable

¹⁰Here, the term human-understandable refers to the general case of listeners, hence musical novices which are unfamiliar
with most low- and mid-level musical concepts. Human experts, however, may be able to extract meaningful information
yet from the extracted mid-level representation.
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Figure 2.4: Different description layers usually addressed by MCP systems, after Celma & Serra (2008).

descriptors according to those 3 categories. e first category represents low-level features, describ-
ing the acoustic information by a numeric representation. Typical features at this level include de-
scriptions of the spectral content, pitch, vibrato/tremolo, or temporal aspects of the signal. ose
features form the class of signal-centered descriptions of the data. e next higher level corresponds
to the mid-level description of the signal, thus including tonality, melody, rhythm, or instruments,
to name just a few. Here, typical descriptors include the Harmonic Pitch Class Profile (HPCP) or
the Beat Histogram. We relate the term object-centered to this category of descriptors. Finally, music
semantics such as genre, mood, or similarity assessments, hence contributing to the “understanding”
of music, are grouped into high-level descriptions of the music; this information is usually regarded
as user-centered descriptors.

From Figure 2.4 we can also identify a conceptual and methodological problem, inherent to many
MIR algorithms, entitled semantic gap. It is manifested in a ceiling of machine performance when
addressing the extraction of high-level musical concepts such as genre or mood. In particular, the
semantic gap arises from loose or misleading connections between low- and mid-level descriptors
of the acoustical data and high-level descriptions of the associated semantic concepts, be it in music
classification or similarity assessment (Aucouturier & Pachet, 2004; Celma & Serra, 2008). How-
ever, it can be identified as methodological problem, namely treating a perceptual construct such
as music as pure, independent in it, data corpus, hence ignoring its inherent social, emotional, or
embodiment qualities. Moreover, there is a high consensus in literature that methods working in
a purely bottom-up manner are too narrow to bridge the semantic gap. erefore, Gouyon et al.
(2008) argues that the step from the mid- to the high-level description of music has to include a
user model. See Casey et al. (2008) and particularly Wiggins (2009) for a thorough discussion on
this phenomenon.

e here-considered audio features represent static descriptions of musical qualities. e descrip-
tion in terms of an HPCP vector, or pitch value, for instance, refer to, respectively, one single estim-
ate of the tonality, or one single value of the pitch for a given point in time. Temporal information is,
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Time scale Dimension Content

Short-term
Timbre Quality of the produced sound
Orchestration Sources of sound production
Acoustics Quality of the recorded sound

Mid-term
Rhythm Patterns of sound onsets
Melody Sequences of notes
Harmony Sequences of chords

Long-term Structure Organization of the musical work

Table 2.1: Dependencies of various musical dimensions and their time scale, after (Orio, 2006).

however, indispensable for the perception of musical qualities (Huron, 2006; Levitin, 2008). In this
regard, the auditory system extracts different musical attributes at different time scales, as indicated
by insights obtained from neural experimentation (Kölsch & Siebel, 2005). Moreover, Casey &
Slaney (2006) explicitly show that including temporal information is necessary for addressing the
modelling of several higher-level musical aspects. To account for these effects MCP systems usually
extract the low-level features on a frame-by-frame basis – frame sizes of around 50 ms are typically
applied – and, depending on the context and the modelled concept, accumulate this information
over longer time scales to extract the higher-level information. Hence, different musical facets, or
concepts, need different integration times, and can therefore be grouped according to their time-
scale. Table 2.1 shows an overview of the linkage between several musical dimensions and their
time-scale after Orio (2006).

2.2.2.2 Learning algorithms

Pattern recognition provides a vast amount of conceptually different learning algorithms. Typ-
ical methods include association learning, reinforcement learning, numeric prediction, clustering,
or classification. Figure 2.5 shows a hierarchical conceptual organisation of various approaches in
pattern recognition after Jain et al. (2000).

e figure illustrates the differences between supervised and unsupervised learning as well as gener-
ative and discriminative concepts. In this respect, unsupervised learning refers to techniques where
the distribution of categories emerges from the data itself, without prior knowledge concerning the
class membership of the instances. Contrary, supervised learning approaches rely on prior inform-
ation on the instances’ label or cost assignment. Such algorithms learn the relations between the
observations’ properties of the different pre-defined categories. Moreover, generative learning con-
cepts refer to algorithms thatmodel, for each class separately, the class conditional densities, i.e. like-
lihoods. On the other hand, discriminative approaches focus on the discrimination between classes
and directly model decision function, or posterior probabilities.

Since in this thesis we mainly apply algorithms for categorization and classification, we here shortly
review several methods typically found in related literature. Among unsupervised learning meth-
ods, clustering represents the most utilised approach. is technique includes k-means clustering,
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Figure 2.5: Various approaches in statistical pattern recognition after (Jain et al., 2000).

singleGaussian, orGaussianMixtureModels (GMMs). Recentlymore advanced techniques such as
Independent Component Analysis (ICA), Non-negative Matrix Factorisation (NMF), or Probabil-
istic Latent Component Analysis (PLCA) became popular. Regarding the supervised techniques, a
variety of algorithms have been applied. Here, methods such as Naïve Bayes classifiers or Decision
Trees, simple Nearest Neighbour (NN), Artificial Neural Networks (ANN), or Support Vector
Machines (SVM), which will be described in detail in Section 4.2.1, have been the most popu-
lar. Moreover, several systems use ensembles of combined classifiers by applying techniques such
as boosting or bagging. Finally, state models such as Hidden Markov Models (HMM) incorpor-
ating temporal information via transition probabilities represent another popular technique for the
modelling of frame-wise extracted features in automatic music processing systems.

2.3 Summary

In this chapter we provided the background information behind the methods developed and applied
in the remainder of this work. In particular, we entered those research fields mostly related to this
thesis, namely psychoacoustics, signal processing, and machine learning, reviewing some of their
basic notions and concepts. First, we put special emphasis on the mechanisms involved in human
auditory processing since we regard it the touchstone for addressing the problem at hand. Here,



40 Chapter 2. Background

we discussed the most essential psychoacoustic processes and concepts, including the controversial
notion of perceived timbre as well as the statistical nature of our internal learning processes. We
then reviewed human mechanisms to process and resolve multi-source environments, which form
the foundation for the analysis of polyphonic, multitimbral music in terms of source recognition.

e second part of the chapter concentrated on the area of machine listening, which combines the
aforementioned fields of music signal processing and machine learning. Due to the important role
of the signal representation in the process of automatic source recognition, we first discussed, from a
signal processing point-of-view, different audio signal representations as applied in related literature.
We then explored the different semantic layers for extracting information from music audio signals
and subsequently reviewed some of the basic concepts machine learning offers for the categorisation
and classification of music.
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Recognition of musical instruments
A state of the art review of human and machine competence

Historically, the task of classifying musical instruments deserved quite a lot of attention in hearing
research. From von Helmholtz (1954) onwards researchers utilised the instruments’ acoustical and
perceptual attributes in order to understand the processes underlying timbral categorization oper-
ations as performed by the human mind. In this regard, musical instruments provide a represent-
ation of timbral subspaces for experimental purposes, as they exhibit a kind-of objectively defined
taxonomy with a natural grouping into different categories, which can be related via timbre; the
description of the acoustical properties of musical instruments offer basic means to directly assess
timbral qualities of the sound. Moreover, musical instruments allow for the control of the sound’s
basic dimensions aside from timbre, i.e. pitch, loudness, duration. ese properties made instru-
mental tones popular for estimating the perceptual dimensions of timbre (see Section 2.1.1.2). e
resulting dimensions found in these studies are assumed to be involved in timbral decision tasks,
hence the respective acoustical correlates may play decisive roles in the specific problem of categor-
isation among different musical instruments.

With the availability of modern computer systems computational modelling of perceptual phenom-
ena became feasible. e first attempts toward automatic musical instrument recognition mostly fo-
cused on studying basic methodologies for computational modelling (e.g. Cemgil & Gürgen, 1997;
Kaminsky & Materka, 1995). Hence, these experiments were conducted on rather aseptic data –
mostly monotimbral material recorded under laboratory conditions – along with a limited set of
instrumental categories. e developed systems therefore exhibited by no means completeness in
the sense of covering a great variety of musical instruments or applicability to different types of in-
put data, but provided significant insights into the nature and value of different types of acoustical
features and classification methodologies, thus paving the way for more enhanced systems. Never-
theless, some of the first approaches offered a high degree of complexity and generalisation power
in terms of the applied concepts, see for instance the influential work of Martin (1999). In recent

41
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years, along with increasing computational power, more complex systems were developed, focussing
on a larger variety of instrumental categories even in complex musical contexts.

e basic problem, underlying all musical instrument identification systems – including the human
mind, is the extraction of the invariants specific to the considered categories as the foundation of
the classification process (see Section 2.1). us, the information that discriminates one category
from all the (modelled) others has to be encoded without ambiguities from the input data. Com-
putational realisations of such systems therefore usually extract features from the raw audio signal.
Monotimbral data offers a direct access to the acoustical properties of the corresponding musical in-
struments, hencemaking them ideally suited for the aforementioned perceptual studies. Real music,
however, is predominantly composed in polytimbral, and presumably polyphonic¹ form, complicat-
ing the automatic recognition of musical instruments (and sound sources in general) from this kind
of data. Since the different sources constituting the mixture overlap both in time and frequency,
the extraction of the acoustical invariants related to the respective sounding objects is not trivial.
us systems dealing with recognition from polyphonies demand for more complex architectures,
involving heavier algorithms for pre-processing the raw data, or need additional a priori knowledge
to perform the task.

is chapter is thought to be an introduction into the field of automatic musical instrument recog-
nition, hence covering all relevant areas related to the topic. It is organised as follows; to begin with,
we examine the main characteristics of musical instruments in terms of their acoustical properties
and show how they group together by reviewing well-established taxonomies of instruments (Sec-
tion 3.1). is is followed by the examination of human capabilities in recognising musical instru-
ments from both mono- and polytimbral contexts (Section 3.2). We then postulate requirements
for any musical instrument recognition system as a guidance for comparing their general perform-
ance (Section 3.3), and discuss the basic methodology common to most systems (Section 3.4). Sec-
tion 3.5 finally presents the review of the relevant literature, a subsequent discussion in Section 3.6
then closes this chapter.

3.1 Properties of musical instrument sounds

3.1.1 Physical properties

Any musical instrument can be regarded as a vibrating system, which oscillates, when set into excit-
ation by imposing a force, at distinct frequencies with certain strength (Fletcher & Rossing, 1998).
Furthermore, the underlying sound producing mechanism can be regarded as a two-component,

¹Polyphony connotes the rhythmical independence of simultaneous parts, or voices, of a musical composition with
respect to each other. Contrary, Homophony denotes the movement of multiple voices with the same rhythmic pattern along
time. In consequence, monophonic music consists from just one voice, but note that a single voice can be played by multiple
sources. We therefore want to emphasise the subtle differences between the two terms monophonic and monotimbral in
connection with music.
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interactive process; the first part being the actual sounding source, e.g. a string of the violin, which
resulting complex tone is further shaped by a filter, the so-called resonator, e.g. the wooden body of
the violin (Handel, 1995). When excited, the source produces an oscillation pattern which consists
of individual components, termed partials, generated by its different vibration modes. e resulting
frequencies and corresponding amplitudes of the partials are defined by the resonance properties of
the respective vibrationmode – the resonance frequency and its damping factor. Both are defined by
the physical and geometrical characteristics of the sounding source. ese frequencies may be loc-
ated at quasi integermultiples of a fundamental frequency, as characteristically produced by periodic
signals. e resulting spectrum is said to be harmonic², a typical property of instruments stimulat-
ing a strong sensation of pitch (“pitched” instruments). In contrast, the partials of aperiodic sounds
are rather spread across the whole frequency range, generating an inharmonic, noise-like tone, ob-
servable with most percussive sound sources³ (“unpitched” instruments). e damping influences
the time-varying strength of the partial, where a light damping exhibits high vibration amplitudes in
a narrow frequency region around the corresponding resonance frequency together a slow response
to temporal changes of the source, and vice-versa for a heavily damped mode.

is complex vibration pattern is then imposed to the resonator which acts as a filter, reshaping the
amplitudes of the individual frequency components. Since coupled to the source, the instrument’s
body vibrates accordingly in different modes, at which distinct frequency regions are activated by
the oscillation of the source. Which frequencies to what extent being affected again depends on
the physical and geometrical properties of the resonator. For many instruments several distinct fre-
quency regions are amplified, creating so-called formants, or formant areas. Being an effect of the
acoustic properties of the static resonator, their frequency location does not depend on the actual
pitch of the excitation pattern produced by the sounding source. As a consequence, formants are
paradoxically one of the reasons for the dependency of timbre on the pitch of many musical instru-
ments (see below). For some instruments the resonance of the filter even influences the geometrical
properties of the source, hence generating a direct interaction with the source vibration pattern.
Figure 3.1 shows a simplified illustration of this source-filter production scheme of instrumental
sounds. It can be seen that the process is equivalent to a multiplication of the source’s spectral excit-
ation pattern with the resonator’s transfer function in the frequency domain. e depicted abstrac-
tion of the resulting representation of amplitudes versus frequencies – the dashed line in Figure 3.1
– is usually denoted as spectral envelope.

Besides their distinct spectral distributions, tones produced by musical instruments exhibit strong
temporal patterns as well. e most evident are related to the sound’s temporal envelope, which can
be roughly divided into three different parts; the attack, sustain, and release (Figure 3.2). In addi-
tion to the attack and release phases, which are featured in all natural sounds – a consequence of
the excitation of the vibration modes – some instrumental sounds exhibit a strong sustain part, an
implication of the specific excitation method; strucked or plucked sources obviously cannot be sus-
tained anyway, hence their sounds enter the release directly after the attack phase of the tone (e.g. pi-
ano or guitar). Other instruments in opposite offer sustained parts of finite duration (e.g. blown
instruments) as well as possibly infinite duration (e.g. bowed string instruments). Besides these
macro-temporal properties, micro-temporal processes related to the spectral components addition-

²Accordingly, the frequency components (partials) of these spectra are usually termed harmonics.
³ere exist some in-between instrumentswhich are able to produce a clear pitch sensation but donot exhibit a harmonic

spectrum, e.g. bells.
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Figure 3.2: Temporal envelope of a short clarinet tone. Attack (A), Sustain (S), and Release (R) phases are marked.

ally shape the perception of instrumental sounds. Since the partials’ temporal behaviour is influ-
enced by the damping factors of the respective resonance modes, each components behaves differ-
ently with respect to changes of the source along time. Moreover, pitch-independent transients
during the attack phase and noise signals, artefacts of the excitation method (e.g. b(l)owing), are
part of the sound and consequently influence its temporal behaviour.

By considering these temporal aspects the concept of the spectral envelope can be extended by
adding a temporal dimension, resulting in the spectro-temporal envelope (Burred, 2009; McAdams
& Cunible, 1992). ere is a great consensus among hearing researchers that this representation
is best uniting the different timbral dimensions, since it captures most of the acoustical correlates
identified in the corresponding studies reviewed in Section 2.1.1.2. Figure 3.3 shows an example of
the spectro-temporal distribution of a single instrument tone played by a violin.
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Figure 3.3: Spectro-temporal distribution of a violin tone played with vibrato. Both the spectral and temporal characteristics
can be easily seen. Note, for instance, the anti-formant at the frequency position of the third partial.

3.1.2 Perceptual qualities

In general, the timbral sensation of a specific musical instrument’s tone is a result of several char-
acteristics, or variables, of the heard sound. First, spectral cues derived from the amplitude and
frequency ratios of the individual partials constitute the basis for timbral decisions. In particular,
they result from the product of the spectral characteristics of the vibrating source and the resonances
introduced by the filter of the instrument’s body. With respect to the latter, the absolute location
in terms of frequency of the main formants as well as the frequency relation of the respective com-
ponents having maximum amplitude between different formant areas seem to have a major influ-
ence on the timbral sensation of the tone (Reuter (2003) referring to Schumann (1929)). ose
spectrally related cues correspond to the spectral shape dimension identified in the aforementioned
MDS studies (e.g. brightness). Time-varying characteristics further influence the timbre of an in-
strument’s tone, since the individual spectral components do not follow similar temporal trajector-
ies along its duration (see above). Moreover, transients as well as noise components exhibit strong
discriminative power between tones of different musical instruments. Even with pitched, i.e. har-
monic, components removed from the signal, the remaining “noise” part showed high recognition
rates in experimental studies (Livshin & Rodet, 2006). e corresponding dimensions revealed by
the timbre similarity experiments are the attack characteristics as well as the temporal variation of
the spectrum (e.g. the spectral flux as identified by McAdams et al. (1995)).
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Figure 3.4: Influence of dynamics and pitch on perceived timbre. Part (a) shows the spectra of a low-pitched violin tone
played with piano and forte dynamics, while (b) depicts the spectra of a high-pitched violin tone played with the same two
dynamics. Note the differences in the harmonics’ relative magnitudes between the two figures due to the different pitches
played, and within each plot due to the different dynamics applied. All spectra are normalised to emphasise the relative
differences in the partials’ magnitudes.

Moreover, most instruments show dependencies of the timbral sensation on articulation and pitch.
Often changes in register are accompanied by strong changes in timbre. Due to differences in the
playing method (e.g. “overblowing” techniques are used with many wind instruments to change the
register) or the excitation source (e.g. different strings are played at different registers of the piano or
string instruments) the resulting timbre is evidently altered to a great extent. However, intra-register
factors play a distinctive, even though subordinate, role in the timbral sensation of an instrument’s
tone. First, the strength of the excitation is directly affecting the amplitudes of the source’s partials,
here a stronger excitation produces a richer spectrum by enhancing higher harmonics, generating
an overall brighter sound. Hence, depending on the place and intensity of the excitation, different
modes of both the source and the resonator are activated, the latter producing different formant
areas along the frequency spectrum. Furthermore, the formants might affect different partials at
different pitches played, resulting in slightlymodified spectral envelopes. Figure 3.4 exemplifies these
dependencies for two pitches played by a violin with different dynamics, i.e. excitation strengths. To
summarise, Handel (1995, p. 428) wrote:

“Each note of an instrument […] engages different sets of source and filter vibration
modes so that we should not expect a unique “signature” or acoustical property
that can characterize an instrument, voice, or event across its typical range. The
changing source filter coupling precludes a single acoustic correlate of timbre.”

Evidence from various experimental studies supports these indications; in a psychoacoustic study
Marozeau et al. (2003) showed that despite the observed intra-register dependency of timbre on
the fundamental frequency (intervals of 3 and 11 semitones were used in those experiments), the
different timbres of the same musical instrument stay comparable. e authors demonstrated that
the perceptual intra-instrument dissimilarities were significantly smaller than the cross-instrument
ones. Moreover the hypothesis of a general non-instrument-specific dependency of timbre on fun-
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damental frequency had to be rejected for intervals smaller than one octave, i.e. certain instruments’
timbres are more affected by changes in fundamental frequency than others. Furthermore, Handel
& Erickson (2004) suggested that humans use the timbral transformation characteristics across the
playing range of a particular instrument for identification purposes, since even human expert listen-
ers seemed to be unable to ignore timbral changes across different pitches of the same instrument
(here, intervals of one and two octaves were used). e authors further argued that these transform-
ation properties exist for both category and instrument-family level and are heavily involved in the,
presumably hierarchical, recognition process.

Nevertheless, by using an automatic instrument recognition algorithm Jensen et al. (2009) showed
that even a transposition of testing instances by more than 5 semitones with respect to the training
samples degrades the recognition performance significantly. ese results seem odd in comparison
to the perceptual evidence coming from the aforementioned studies. However, this low threshold
of 5 semitones may be explained by the transformation process the authors applied to generate the
different pitches for their experiment. By shifting the sound’s spectrum for generating the trans-
position, the timbre is altered since the formant areas are shifted as well, hence resulting in weaker
identification performance of the system.

In general, the information provided by the different timbral cues is highly redundant, hence in
real situations the human mind may assign weights dependent on the context. In essence, those
variables that gives the most confident estimate in the current acoustical situation are chosen for
label inference (see Section 2.1.2).

Finally, it should be noted that an instrument’s historical usage and development play a fundamental
role for its present sound characteristics. Orchestral instruments have always been continuously
modified and improved along centuries, hence to conform to the current composition methods and
performance practice at hand. ey therefore exhibit highly adaptation to the conventions imposed
by the Western music system, and reflect many properties of human auditory perception.

3.1.3 Taxonomic aspects

In general, a taxonomy characterises a field of (abstract) knowledge by describing, classifying, and
representing its elements in a coherent structure. For musical instruments, a certain taxonomy has
to reflect organology, “…the science of musical instruments including their classification and development
throughout history and cultures as well as the technical study of how they produce sound”⁴. Historically,
many different taxonomic schemes have been proposed, based on the instruments’ geometric as-
pects, material of construction (e.g. wood and brass instruments), playing method (e.g. blown or
bowed instruments), or excitation method (e.g. struck or plucked instruments). e most well-
known, however, was certainly defined by von Hornbostel & Sachs (1961), considering the sound
production source of the musical instruments. In particular, this taxonomy groups the instruments
into the basic classes aerophones (the instruments’ sounds are generated by the vibration of an air
column), chordophones (strings are set into oscillation to produce a sound), idiophones (these instru-

⁴Retrieved from http://www.music.vt.edu/musicdictionary/

http://www.music.vt.edu/musicdictionary/
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Figure 3.5: A simplified taxonomy of musical instruments, enhancing the classic scheme of von Hornbostel & Sachs (1961)
by the category of the electrophones.

ments are excited by imposing the force on its body), and membranophones (vibrating membranes
act as the sound source).

Since the development of electronic sound generators the classical taxonomies, including mostly or-
chestral instruments, have to be expanded by the category of the Electrophones. For instance, Olson
(1967) provides an additional category entitledElectric instruments, a diverse class grouping together
instruments like electric guitar, music box, metronome, and siren. Hence, it remains unclear how to
subgroup this extremely varied category, nevertheless it seems to be possible to roughly divide them
into Electric/Acoustic (e.g. the electric guitar) and Electronic instruments, whereas the latter can
be further separated into instruments using electromagnetic (e.g. analogue synthesizers) or digital
sound producing methods (e.g. digital or sample-based synthesis systems). Figure 3.5 shows a tree-
like structure of an enhanced taxonomy including the most prominent musical instruments based
on the classic scheme described above.

3.1.4 The singing voice as musical instrument

As singing voicewe consider all sounds that are “…produced by the voice organ and arranged in adequate
musical sounding sequences” (Sundberg, 1987). is definition covers a rich amount of timbral modi-
fications of the voice’s acoustical signal, a variety that goes far beyond the possibilities of most other
traditional musical instruments in altering the timbre of their sounds. Despite its evidently different
musical role compared to other instruments, in the context of this thesis, however, the singing voice
is regarded consistently with respect to the latter, in a sense that it contributes to the mixture in the
same way any other active source does.
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In general, the sound production mechanism of the human voice can be described in a similar way
to other musical instruments using the source-filter abstraction (Bonada, 2008); the vocal folds, or
cords, act as the voice source, which are set into oscillation by the air flow produced by the lungs. e
fundamental frequency of the generated sound mainly depends on the tension, length, and mass of
the folds. e filter, or resonator, consisting of the mouth and nose cavities, then shapes the source
signal according to its formant areas. Finally, the resulting sound is radiated through the air via the
lips.

However, the singing voice provides a much greater flexibility in terms of variation of the sound
spectrum than other musical instruments. First, the voice source is able to produce harmonic, in-
harmonic, and in-between sounds, enabling typically vocalisation styles such as pure singing, whis-
pering, and growling as well as any intermediate expressive mode. Second, the geometric properties
of the resonator are dynamic, hence formant areas can be created “on demand” by altering the mouth
and nose cavities. A well-known example is the singing formant of (male) opera singers who use a
distinct configuration of the resonator to produce a formant in the range around 3 kHz, allowing
for a better audibility in the context of orchestral accompaniment.

3.2 Human abilities in recognising musical instruments

Recognising musical instruments is an elementary, supposable subconscious, process performed by
the human mind in everyday’s music listening. But contrary to the common perception that instru-
ment identification is an easy task, several studies have shown clear limitations in the recognition
abilities of subjects (Martin, 1999). Moreover, humans tend to overestimate their performance in
comparative experimental settings, most noticeable when assessing the performance of automatic
recognition systems.

Almost all experiments examining human recognition abilities of musical instruments have been
performed on monophonic audio data, in order to exclude any perceptual or cognitive mechanism
not related to the recognition process itself. It is assumed that sound-source recognition from more
complex stimuli involves more sophisticated processing of the brain which acts as a kind-of pre-
processing for the actual recognition (see Section 2.1.2). Regarding the polytimbral context, only
very little research has been conducted for estimating human abilities to identify concurrent instru-
mental tones, and most of the existing sparse works concentrated on the laboratory condition of re-
cognition from tone pairs. However, we can spot some more general, thus related to source recogni-
tion, aspects of human brain processing of complex auditory stimuli in the respective literature. Due
to these conceptual differences, the following section is divided into two corresponding parts, sep-
arating experimental findings derived form studies using monotimbral and polyphonic/polytimbral
stimuli, respectively.
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3.2.1 Evidence from monophonic studies

Since the amount of conducted studies examining the ability of subjects in discriminating between
sounds from different musical instrument is sparse, a qualitative comparison among them is dif-
ficult. ough differences in the used experimental settings and methodologies often resulted in
heterogeneous conclusions. However, some commonalities between the respective results can be
identified which are presented here. In doing so, we mostly concentrate on the more recent exper-
iments carried out by Martin (1999), Srinivasan et al. (2002), and Jordan (2007), the latter being
the most exhaustive, accounting for factors such as register, dynamic, and attack-type differences in
the presented stimuli. What follows are the most important observations derived from literature:

1. e maximum recognition performance achived by expert human listeners, including pro-
fessional musicians, was 90% of accuracy in a 9 instrument, forced-choice identification task
(Srinivasan et al., 2002). Adding more categories degrades performance subsequently, repor-
ted values include 47% and 46% of accuracy for recognising, respectively, 12 out of 12 (Jordan,
2007) and 14 out of 27 instruments (Martin, 1999).

2. Confusions between instruments of the same instrument family (e.g. stings) aremore likely to
happen than confusions between instruments of different instrument families. Inside a fam-
ily, regular and coinciding confusions between certain instruments were found across studies
(e.g. French horn with Trombone, or Oboe with English horn), most probable resulting from
either overlapping formant areas or similar spectral fluctuations (Reuter, 1997). Hence, per-
formance in terms of recognition accuracy increases significantlywhen evaluated at the instru-
ment family level. Authors could observe an increase of 5 and 46 pp (!) for the 9 (Srinivasan
et al., 2002) and 14 (Martin, 1999) instrument recognition experiments, respectively.

3. Subjects extensively use musical context for timbral decisions. Experiments on solo phrases
showed better performance figures than studies using isolated sounds. Martin (1999) repor-
ted recognition accuracies of 67% on a 19 out of 27 recognition task, supporting previously
found evidence (Kendall, 1986).

4. Prior exposure to the sound sources improves accuracy. Hence, musical training is benefi-
cial for the recognition performance. In his experiments, Jordan (2007) found a significant
difference in the performance of identifying musical instruments between the groups of pro-
fessional and hobby musicians. Moreover, results reported for untrained listeners showed an
absolute difference in recognition accuracy of up to 21 pp when compared to the accuracies
obtained by testing trained musicians (Kendall, 1986).

5. Features derived from the attack portion of the signal are decisive for timbral decisions on
isolated note samples. Jordan (2007) found significant differences in recognition accuracy of
subjects when comparing isolated sounds with attacks replaced by a constant fade-in to the
unmodified versions. However, the influence of the attack is by far less important than the in-
fluence of the register the instrument is played in⁵. Comparisons of different registers showed
p values smaller 10−3, an indication of the importance of the formant areas in the recognition

⁵Besides, alterations in the dynamics of the stimuli (the study in question examined the dynamical forms of piano and
forte) revealed no effect on the recognition accuracy (Jordan, 2007).
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process. Since the identification performance significantly dropped for high pitched sounds
(fundamental frequencies ranging from 250 to 2100 Hz, depending on the instrument), the
author argued that the degradation of the recognition accuracy can be explained by the ab-
sence of the first formant; due to the high fundamental no partial falls into the frequency
range of the first formant. Moreover, there is evidence that, in musical context, features de-
rived from the attack phase are irrelevant and replaced by the analysis of the steady-state part
of the sound (Kendall, 1986). To conclude, Grey (1978) hypothesised:

“In that spectral differences are more continuous throughout the presentation
of tones, the extension of the context […] may amplify such differences, giving
the listener more of a chance to store and compare spectral envelopes. […]
Musical patterns may not let the listener take such care to store and model
for comparison the fine temporal details [i.e. the attacks], since information is
continuously being presented.”

3.2.2 Evidence from polyphonic studies

In a quite general regard, the perceptual and cognitive capacities of the human mind are limited.
Experiments on subjects’ channel capacities, i.e. the amount of information they are able to cap-
ture, showed that these limits exist in almost all areas of cognitive processing with a rather constant
magnitude. In this context, Miller (1956) presented the “magical number 7”, a numeric quantity cor-
responding to the information capacities of various, but supposedly unrelated, cognitive processes.
He identified, across the respective studies, quantities ranging from 4 to 10 categories (or roughly 7
± 2) the human mind is able to ambiguously process. Above this threshold, subjects are more likely
to produce errors in the respective tasks. In particular, Miller (1956) reported studies assessing sub-
jects’ abilities in absolute judgement (i.e. judging the order of magnitude of a certain set of stimuli),
the size of their attention span (i.e. the quantity allowing for a simultaneous focus), and the size of
their immediate memory (i.e. the number of symbols to remember instantaneously).

e results suggest that the amount of information a human can process in a given task seem to
be quite low, at least lower than expected. ese limitations certainly play a functional role in our
understanding of music as well. However, with respect to the stimuli used in the aforementioned
work, music is different in many respects; among others it provides massive contextual information
as well as meaning, and both short- and long-term memory is involved (see Section 2.1.1.3). Never-
theless, we can find noticeable analogies when reviewing literature studying human perceptual and
cognitive abilities in polyphonies.

But first, let us consider the related field of speech perception and cognition. Here, Broadbent (1958)
reported that inside a multi-speaker context, subjects were only able to attend to one single speaker,
not even able to correctly report on the spoken language of the concurrent speakers. at is, in the
cocktail party situation (see Section 2.1.2), attention mechanisms seem to be employed to capture
and convert the acoustical information of a single source into meaning, or switch between several
speakers. Sloboda & Edworthy (1981) noted that in addition social conventions, restricting the
number of voices in a typical conversational situation to one, may have an influence on this massive
restriction of the human brain.
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In case of music, literature reveals a slightly different picture. Huron (1989) conducted a study de-
termining human abilities in estimating the number of concurrent voices⁶ in polyphonic, but mono-
timbral music. Subjects had to continuously determine, along a fugal composition of Baroque com-
poser J. S. Bach, the number of active voices. Obtained results examined their abilities in estimating
voice entries and exits as well as their accuracy in spotting the amount of present voices. In general,
musicians showed a slightly more accurate performance than non-musicians, indicating the pres-
ence of mental images of timbral densities inherent to musicians. Moreover, a threshold of 3 con-
current voices could be observed, below which subjects responses reflected accurately the amount
of present voices. If the number of concurrent voices exceeded this value of 3, subjects showed both
slower and more inaccurate responses. But even more remarkable, subjects reported that below the
threshold they rather counted the number of voices whereas above they were only able to estimate
their amount⁷.

However, highly elaborated Baroque contrapuntal works exhibit up to 6 different, independently
from each other composed, voices. Here, harmony can play an additional role in a sense that it
provides contextual information to fuse the individual voices (Sloboda & Edworthy, 1981). In the
same work the authors committed that listeners are unable to actively attend to more than one voice
at a time, a link to the experimental findings from the speech domain.

Kendall & Carterette (1993) conducted one of the first studies examining subjects’ instrument iden-
tification abilities in polytimbral contexts. In the experiment listeners were asked to both estimate
the perceived blend of, and recognise the two different instruments constituting a dyad tone. Several
musical contexts were employed (isolated tones andmusical phrase, both in unison, major third, and
harmonic relation) to asses subjects’ abilities on 10 different instrumental combinations from the
brass and wind families, in a forced-choice task. In general, an inverse relation of blend and identi-
fiability was observed. An MDS analysis of the similarity rating of dyad pairs revealed the qualities
nasality and brilliance – in contrast to usually found attributes such as sharpness or brightness result-
ing from studies using single tones – as the primary two dimensions, which were re-encountered
by analysing the listeners’ blending ratings via MDS. is indicates that the perceptual qualities of
polytimbral sounds are directly related to the separability of the respective constituting sources. In
particular, identification abilities of sound combinations were found to be correlated to both con-
trast in stable spectral properties and time-varying spectral fluctuation patterns.

Similarly, Sandell (1995) examined the main factors for this kind of timbre blending. In his experi-
ments the author identified two main features of major importance; first the absolute difference in
spectral centroids of the tones, and second the position in terms of frequency of their compound
spectral centroid. Moreover, the tested intervals unison and minor third suggested no dependency
of the blending abilities on the fundamental frequency of the respective tones, thus emphasising
the stable spectral, i.e. formant, and time-varying characteristics identified by Kendall & Carterette
(1993).

⁶With the term voice we refer to a single “line” of sound, more or less continuous, that maintains a separate identity in a
sound field or musical texture (Huron, 1989).

⁷Given the fact that the author observed a beneficial influence of timbre on the estimation, i.e. a difference in timbre im-
proves the accuracy, we may speculate that in context of distinct timbres and the above presented evidences from information
theory, the threshold can be raised to 5, which would be perfectly in line with the experiments presented by Miller (1956)
on the attention span.



3.3. Requirements to recognition systems 53

In the more general scenario of polyphonic, multitimbral music, the human mind is assumed to re-
solve the problem of source identification by performing streaming-by-timbre, hence grouping the
different sound objects into separate streams, from which decisions regarding the timbral nature of
the sources are inferred (see Section 2.1.2). Hence, the ability to stream different timbres seems to
depend on the aforementioned blending tendencies of the involved sounds. Reuter (1997; 2009)
identified strong analogies between streaming and identification/blending abilities of concurrent
instrumental timbres. He determined two properties of musical instruments to be crucial for the
ability to stream, hence identify, multiple sources; the first relates to the formant areas of the in-
struments, the second – in absence of characteristic formants – corresponds to their spectral fluctu-
ations. Both enable the identification of concurrent timbres as well as their segregation into different
streams by the human mind. In a follow-up experiment the author showed that artificially manip-
ulating formant areas of musical tones directly affects their segregation tendencies in multi-source
contexts (Reuter, 2003). In this regard, it seems most probable that the underlying operations for
perceptual streaming are of primitive nature (i.e. low-level processes) which is further controlled,
adapted, and complemented by high-level contextual and top-down processes (Bregman, 1990).
See also the work of Crawley et al. (2002) for more evidence on the primitive nature of perceptual
grouping.

It should be emphasised that these mutual properties of individual instruments have been utilised
over centuries by composers to blend or separate timbres; from the Baroque period onwards spe-
cific combinations of instruments were used to create artificial, blended timbres. Hence, there exist
simple rules in the praxis of orchestration⁸ which pairs of instruments tend to blend and which not.
As expected, these rules are largely based on the parameters identified above. Finally, the concept
of the orchestra as an entity purposely includes the coexistence of contrasting families of timbres
(Kendall & Carterette, 1993).

At last, the number of not controllable parameters seems to complicate extensive experiments study-
ing human capacities when listening to real music. It is not clear how attention mechanisms, tem-
poral encoding, their interaction, and musical meaning itself influence the performance on various
tasks. Hence, conclusions with respect to the more general case of polytimbral music, derived from
the aforementioned studies, are at best of speculative nature.

3.3 Requirements to recognition systems

In his thesisMartin (1999, p. 23 et seq.) postulated six criteria for evaluating and comparing sound-
source recognition system. Due to their universality, we strictly follow them here, emphasising their
implications on the field of automatic musical instrument recognition:

⁸e art of arranging a composition for performance by an instrumental ensemble; retrieved from http://www.music.
vt.edu/musicdictionary/.

http://www.music.vt.edu/musicdictionary/
http://www.music.vt.edu/musicdictionary/
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1. Generalisation abilities. Generalisation in terms of modelled categories in the sense that
regardless of the instruments’ construction type, pitch, loudness, duration, performer, or the
given musical and acoustical context, the recognition accuracy of the system should be stable.
Hence, a successful recognition system has to capture the categories’ invariants independent
of the variability of the aforementioned parameters.

2. Data handling. e ability of the recognition system in dealing with real-world data, which
exhibit a continuous degree of temporal and timbral complexity. Similar to the first criterion,
recognition performance should not be affected by the variability of the real-world data. For
instance, systems designed for monotimbral data act poor in this respect, since they may fail
to produce reliable predictions when input a polyphonic sound. It should be noted that those
systems nevertheless might be useful in certain contexts, but this fact has to be taken into
account when comparing systems.

3. Scalability. Scalability in terms of modelled categories; a recognition system should exhibit
enough flexibility in a way that new categories can be easily learned. Furthermore, Martin
introduces the notion of competence of the approach to evaluate systems which limited know-
ledge. It addresses the system’s capabilities of incorporating additional categories and the
thereby generated impact on its performance.

4. Robustness. With increasing amount of noise the system’s performance should degrade
gracefully. In this context we can identify manifold definitions for noise, e.g. the number
of concurrent or unknown sources, the degree of reverberation, etcetera, which should affect
the recognition accuracy to an adequate, hence reasonable, amount.

5. Adaptivity. Adaptivity in terms of the employed learning strategy in the sense that both la-
belled and unlabelled data are incorporated in the learning process. Learning, as such defined
by the human mind, is a life-time process and includes supervised training by teachers as well
as flexible unsupervised processes for new input data. Hence, computational systems should
use semi-supervised learning algorithms and keep updating their repositories continuously
to guarantee the best possible abstraction of the categories’ invariances.

6. Real-timeprocessing. ere is strong evidence that the essential qualities ofmusic are defined
via time-varying processes (Huron, 2006). Martin argues that any music processing system
aiming at understanding the musical content is therefore required to mimic these real-time
aspects. However, the author admits that this would bear too many limits for computational
systems, hence he proposed to add the term in principle to the real-time requirement. Hence
the criterion is reduced to the sequential processing of the input data.

At last, in case of an equal performance of competing systems regarding all of the aforementioned
criteria, Ockham’s razor, or lex parsimoniae, should be applied, stating that the approach making the
fewest assumptions is to favour (Martin, 1999).
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3.4 Methodological issues

As an introduction to the status-quo of the related research, we first point towards common mod-
alities and shared methodologies among all developed approaches designed for identifying musical
instruments from audio signals. To begin with, this section starts with presenting several import-
ant methodological issues inherent to classification paradigms in order to provide the appropriate
context necessary to assess the pros and cons of the different works discussed in Section 3.5. is
is followed by a review of the general architecture of an automatic musical instrument recognition
system.

3.4.1 Conceptual aspects

When comparing different classification systems and their performance, it is of major importance
to consider the pre-conditions the respective systems were designed under. ese pre-conditions
may result from the intended purpose (e.g. a system designed for classical music only) and thereby
imposed system requirements, from the availability of resources (e.g. adequate data), or computation
facilities. In case of musical instrument recognition systems several parameters reflecting those pre-
conditions can be identified. e two most crucial parameters are certainly the type of data used
for evaluation and the number of categories covered by the developed recognition models. Other
factors – maybe less obvious but nevertheless of high relevance – include the variability of the used
data (e.g. the number of distinct musical genres covered), the number of independent data sources,
or any prior knowledge input to the system.

In practice, we can identify four main types of data that are used for building and evaluating sys-
tems for the automatic recognition of musical instruments. Most early approaches, but also studies
having a stronger focus on perceptual aspects, frequently applied sample libraries of in isolation re-
corded instrumental tones, among which the most popular being the MUMS⁹, IOWA¹⁰, IRCAM’s
studio online (SOL), and RWC (Goto et al., 2003) collections. ese sample libraries offer a rich
amount of different categories, thus allowing to investigate and reveal the complex perceptual and
acoustical correlates between instances of a wide range of musical instruments. On the other hand,
the generalisation and data handling capabilities of systems developed with this kind of data are
generally poor, since the data is not reflecting the complexity of real world stimuli (see Section 3.3).
Recognition performance of such systems usually degrades dramatically when applied to data of a
different type (Eronen, 2001; Martin, 1999), even though a different sample library is used (Livshin
& Rodet, 2003).

Monotimbral music audio data, often termed solo recordings, are usually applied to put the systems
in a more ecological context, as these data guarantee more “naturalness” such as reverberated signals,
noisy ambient backgrounds, different recording conditions as well as musical aspects related to ar-
ticulation and playing styles. Moreover, a quasi “clean” access to the sources’ parameters under real

⁹http://www.music.mcgill.ca/resources/mums/html/MUMS_dvd.htm
¹⁰http://theremin.music.uiowa.edu

http://www.music.mcgill.ca/resources/mums/html/MUMS_dvd.htm
http://theremin.music.uiowa.edu


56 Chapter 3. State of the art

conditions is possible, hence enabling amodelling of the instruments’ timbres insidemusical context.
However, a direct translation of the developed models to more complex signals is not straightfor-
ward, since such systems require “perfect” source separation a priori, which output is then used
for the actual classification process. Since the former is nearly impossible to achieve, at least from
nowadays perspectives, the whole thought experiment is to question.

To simulate real music signals researchers often revert to artificially created polytimbral data, either
by MIDI-directed or undirected, i.e. quasi-random, synthesis of isolated notes taken from sample
libraries. Since the acquisition of labelled polytimbral music is difficult, time consuming and some-
times even costly, synthesising data offers a simple strategy to mimic the complexity of real music.
However, these data are only partially reflecting the properties of music, lacking effects, reverbera-
tion, compression and other aspects of the mixing and mastering applied in the production process
of music. In general, these factors alter the spectro-temporal properties of sounds and accordingly
those properties of the musical mixture signal to a great extent. Moreover, in the case of a quasi-
random mixing of the data, all sort of musical context is neglected, since different sources are by no
means independent in music. ese generated sounds thus do not represent the intended approx-
imation of the targeted real-world conditions.

erefore, designing and testing an instrument recognition system with real music recordings is
the only remaining option in order to meet the requirements 1, 2, and 4 presented in Section 3.3.
Moreover, evaluation itself should be performed on a varied set of music audio data, covering dif-
ferent musical genres, in order to reliably estimate generalisation and data handling capabilities.
Paradoxically, only few works tested their approaches on such a varied set of data.

e number of incorporated categories has been identified as the second influential parameter for
evaluating and comparing systems designed for the automatic recognition of musical instruments.
A classification system, by definition, should cover the whole universe in terms of categories that it
attempts to describe. However, in computational modelling the amount of classes is primary con-
trolled by the scope of the study. Hence, systems accounting for an applicability in a real-world en-
gineering context (e.g. a query-by-example system) obviously incorporate different categories, both
in number and kind, than, for example, systems designed for examining the perceptual separability
of instances of the Wind instrument family. Moreover, restrictions in data size, model complexity,
or processing power control the amount of incorporated categories, further narrowing the respective
systems’ generalisation and scalability characteristics. e limitations in the number of categories
lead to a reduced categorical space wherein both training and evaluation is usually performed. us,
a direct comparison of different systems is evidently not possible due to the differences in the di-
mensions of the respective evaluation spaces.

e conclusion, however, that fewer categories lead to easier recognition problems is not always
valid; distinguishing between Oboe and English Horn is by far more difficult than, for instance,
constructing a recognition system for Violin, Piano, Flute and Trumpet. Hence, the taxonomic spe-
cificity applied in the classification system has to be taken into account when judging the complexity
of the system. In general, we can recapitulate that there is a certain trade-off between the number
of applied categories and the resulting recognition performance (see also the comparative analysis
of different perceptual identification experiments performed by Srinivasan et al. (2002)). at is,



3.4. Methodological issues 57

Extraction &

integration

Source

streaming
Unit

extraction

S
electio

n

Tran
sfo

rm
atio

n

Classification

A priori

knowledge

Trainingdata

Late

integration &

decision taking

ext.

knowledge

Selection &

transformation

matrices

n

n n n

n

piano
violin

guitar
trumpet

Acoustic signal

Figure 3.6: General architecture of an instrument recognition system. e signal is first pre-processed to extract the basic
acoustical units on which the further processing operates. en, features are extracted, selected, and transformed to form the
input to the actual classification step. e resulting model decisions are further corrected by post-processing strategies from
which resulting representation the labels are extracted. Note that depending on the respective approach, some components
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the fewer categories are learned, the less confusions the system should produce, generating higher
recognition accuracies. Contrary, a system incorporating many categories will exhibit a significant
lower identification performance, since the great amount of categories lead to higher confusion rates.

3.4.2 Algorithmic design

In what follows we examine a general approach for constructing a musical instrument recognition
system. Here, we take an engineering point-of-view and describe the building blocks of an artificial
system, abstracted from the approaches presented in the literature. e result is a modular system
architecture, where one may virtually plug different components together to accomplish the system
that best fits the requirements at hand. We want to emphasise the universality of the scheme, hence
it reflects the architecture of almost all systems that can be found in literature. Indeed, depending
on the specific approach, certain blocks are only partially included or even missing at all. Figure 3.6
illustrates this general scheme with all the involved modules for the design of an automatic musical
instrument recognition system.
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1. Pre-processing. First, any prior information concerning, for instance, the number of sources,
fundamental frequencies or onset times of the present notes is input to the system. is can be
realized via a manual insertion or by a corresponding algorithmic implementation, which acts
directly on the acoustic signal. Based on the information provided by the previousmodule the
audio is then segregated into timbral streams which itself are segmented into acoustical units.
ese units constitute the fundamental blocks on which the further processing operates.

2. Feature processing. e acoustical units are transformed into a vector of features describ-
ing the properties of the underlying sound. e features are initially chosen based on the
assumed characteristics of the categories’ invariances. is low-level information is typically
derived by framing the audio into small chunks, from which short-term features are extrac-
ted and integrated over the length of the unit by applying statistical measures. What follows
is either a transformation or a filtering of the generated feature vector according to a previ-
ously performed analysis of the training data. Both processes decrease the redundancy of the
information captured by the features and thereby reduce the complexity of the forthcoming
algorithms.

3. Classification. A previously trained model is applied to predict the class probabilities on the
input for each acoustical unit.

4. Post-processing. e classifier output is re-weighted by either globally estimated (e.g. struc-
tural or timbral information) or local contextual information (e.g. classifier decisions of neigh-
bouring units). From the resulting data the corresponding labels are finally extracted.

3.5 State of the art in automatic musical instrument recogni-

tion

is section covers a literature survey of approaches dealing with the identification of pitched and
percussive instruments from music audio data. Our main focus lies on methods developed for re-
cognising pitched instruments, the respective review is therefore by far more extensive than the cor-
responding one dealing with unpitched instruments. We nevertheless discuss some of the more re-
cent approaches towards the recognition of percussive instruments from polyphonies, additionally
providing a reference to an already existing literature overview. Due to the fact that these two groups
of musical instruments exhibit major differences in their sound characteristics (see Section 3.1), res-
ulting in partially great conceptual differences in the respective recognition approaches, they are of-
ten regarded as separate problems. Here, we will stick to this distinction and present the respective
approaches separately.
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3.5.1 Pitched instruments

Since the approach taken in this thesis is mainly motivated by an engineering point-of-view, i.e. the
design of an instrument recognition system for the analysis of real-world music audio signals, which
implies the handling of any music audio data at hand, the subsequent review focuses on related work
studying approaches inmusical context, be itmono- or polytimbral¹¹. Consequently, timbral studies,
which are primarily motivated to identify perceptual differences in the timbral sensation of musical
instruments, are not taken into considerations. Since a review of these kind of approaches is not
provided here, we refer the interested reader to the comprehensive overview presented by Herrera
et al. (2006). e following is again subdivided into two parts, covering, respectively, the approaches
designed for monotimbral and polytimbral music.

3.5.1.1 Monotimbral studies

Martin (1999) published the first large scale study examining the automatic recognition of musical
instruments. In this influential work the author evaluated the accuracy of his developed recognition
model and compared it to the performance of human subjects on the same task. Among others, a
corpus of music audio data comprising monophonic recordings of orchestral instruments was used
for evaluation in a 15 out of 27 recognition task. e author constructed a hierarchical classification
system on features calculated from a perceptually motivated representation of the audio. Context-
dependent feature selection and search strategies were additionally applied to adapt the system to
the complexity of the problem. Finally, a maximum likelihood decision was performed based on
an univariate Gaussian prototype for every instrument to obtain the class membership of an un-
known instance. Although his algorithm showed good performance on the experimental problems,
results revealed that for all requirements listed in Section 3.3, the computer was outperformed by
the human subjects.

Two years later Eronen conducted a similar study. In this work an even larger corpus of audio data
was analysed, including three sample libraries (MUMS, SOL and IOWA), output sounds of a syn-
thesizer and monophonic recordings taken from compact audio discs. e system used MFCCs in
combination with different other spectral features of the audio signal to train and test GMMs for
the 31 target instruments. Feature selection algorithms as well as hierarchical classification schemes
were applied to reduce dimensionality and enhance the performance of the system, respectively. Re-
ported results showed similar performance compared to the work of Martin (1999), identifying the
MFCCs as the best performing features in the recognition task.

In a follow-up work, Eronen (2003) used Independent Component Analysis (ICA) to transform
feature vectors of concatenated MFCCs and their derivatives. Via pre-trained basis functions the
testing data was mapped into a space where the mutual information of the dimensions should be
minimized. Furthermore, discriminatively trained HMMs were applied to capture the temporal
behaviour of the instruments’ timbre. Finally, classification was done by selecting the model which
provided the highest probability. e algorithm was tested on the same data as described in Eronen
(2001) and results showed that the transformation improves the performance consistently whereas

¹¹In the remainder we will refer with the term music audio data to any kind of audio data exhibiting any form of musical
context, in opposite to the term out-of-context data denoting all data lacking of musical context
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the use of the discriminative trained HMMs is only beneficial for systems using a low number of
components in the instrument prototypes.

Essid et al. (2006b) evaluated SVM classifiers together with several feature selection algorithms and
methods, plus a set of proposed low-level audio features. e system was applied to a large corpus
of monophonic recordings from 10 classical instruments and evaluated against a baseline approach
using GMM prototype models. Classification decisions were derived by performing a voting among
the classifiers’ predictions along a given decision length. Results showed that SVMs outperformed
the baseline system for all tested parameter variants and that both pair-wise feature selection and
pair-wise classification strategies were beneficial for the recognition accuracy. Moreover, longer de-
cision length always improved recognition performance, indicating the importance of the musical
context (i.e. the integration of information along several instances in time) for recognition, as sim-
ilarly observed in perceptual studies (see Section 2.1.1.2).

Joder et al. (2009) studied both early integration of audio features and late integration of classi-
fier decisions in combination with SVMs for instrument recognition from monotimbral recordings.
Early integration denotes the statistical evaluation of short-term features inside a texture window
prior to classification, while late integration refers to the combination of classifier decisions on sev-
eral texture windows for decision making (e.g. fusion of decisions or HMM). In this work the same
data was used as applied by Essid et al. (2006b). Reported results showed only slight improvements
over a baseline SVM system when early and late integration were combined. Interestingly, best early
integration resulted from taking the mean of the short-term feature values along a segment length
corresponding to the “basic” acoustical unit, a musical note. e authors concluded that early in-
tegration is mainly for smoothing feature values, i.e. removal of features’ outlier values, while late
integration should roughly capture temporal aspects of the music.

Finally, Yu & Slotine (2009) proposed a pattern matching approach for classifying monophonic in-
strument phrases. e technique, coming from image processing, treats spectrograms of musical
sounds as texture images. No specific acoustic features were used since in the learning stage of the
system only sample blocks of different scales were taken from the training spectrograms. ese
blocks are then convolved with the test spectrogram at each time-frequency point and the minimum
was stored at the corresponding position of a feature vector. is process was repeated for all blocks
and the final classification was obtained by applying a simple kNN rule in the feature space. Given
85.5% of average accuracy on a seven instruments plus drums classification task, the authors sug-
gested the technique as a promising tool for the separation of musical instruments in polyphonic
mixtures.

3.5.1.2 Polytimbral studies

As already stated above, a direct translation of the models reviewed in the previous section to more
complex data is not straightforward. Heavy signal processing is often required to adapt the data
in a way that the recognition approaches can be applied. In the course of our literature review of
polytimbral recognition approaches we identified three main classes of studied methodologies; first,
pure pattern recognition systems try to adapt to the more complex input by releasing the constraints
on either the data or the categories itself. Recognition is usually performed directly from the poly-
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phonic signal, identifying a single dominant instrument or a certain combination of instruments
from the mixture. Second, enhanced pattern recognition aims at combining signal-processing front-
ends with pattern recognition algorithms, introducing source separation or multi-pitch estimation
prior to the classification step. e pre-processing shouldminimise the influence of the source inter-
ference on the extracted features, which are input to the recognition algorithm. Finally, the class of
template matching algorithms derives classmemberships by evaluating distances to abstracted repres-
entations of the categories. Here, global optimisation methods are often applied to avoid erroneous
pre-processing resulting from, for instance, source separation.

Before presenting the works in detail, Table 3.1 lists all the reviewed approaches together with their
main properties with respect to the applied data, recognition algorithm, and evaluation results. It
can be seen that more recent studies already incorporate a sufficient number of categories (up to
25 different instruments) in real-world complex mixtures (polyphonies up to 10 concurrent instru-
ments), obtaining acceptable performance figures. A direct comparison between them, however, is
not possible due to the different data sources used (note the dominance of personal collections) and
differences in the applied categories. Moreover, only 3 studies tested their approaches on a sufficient
variety of musical styles, giving insights into their generalisation and data handling capabilities.

Pure pattern recognition. Many studies dealing with instrument recognition from polytimbral
audio data tried to directly apply the knowledge derived from the monophonic scenario. Although
some extensions had to be incorporated, the methodology and techniques remained the same in the
majority of cases. For instance, Simmermacher et al. (2006) approached the identification of four
classical instruments (Flute, Piano, Trumpet, and Violin) in solo passages from concerti and sonatas
by applying a classifier trained on isolated note samples (IOWA collection). e authors assumed
that in the test scenario, where the soloing instrument is accompanied by various other instruments,
the extracted features remain descriptive with respect to the target instrument, since it predominates
the mixture. Both perceptually motivated features and features from the MPEG-7 standard were
used in combination with classical MFCCs, at which feature selection was performed to reduce
dimensionality. Results showed an average classification accuracy of maximum 94% depending on
the respective set of audio features applied.

Essid et al. (2006a) presented a rather unconventional approach for identifying musical instruments
in polytimbral music. Unlike focussing on the individual instruments present in the mixture, the
signal was classified according to its overall timbre, which results from the individual sounds of
the concurrent instruments. e authors derived a suitable taxonomy by hierarchically clustering
the training data prior to the actual classification process. e obtained categories were labelled
according to the featured instrumentation and statistical models were built for the respective classes.
e approach seems promising for data containing a limited set of target instruments – the study
used instrumental jazzmusic – since it avoids all kind of preprocessing usually involved in the source
segregation of polytimbral data. On the other hand, it is to question whether the method can be
applied to more varied types of music with a greater number of instrumental combinations.

Little & Pardo (2008) used a weakly-labelled data set to learn target instruments directly from poly-
timbral mixtures. Here, weakly-labelled refers to the fact that in a given training file the target is not
assumed to be continuously present. Using 4 instruments from the IOWA sample collection, ar-
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tificial mixtures of a maximum polyphony of 3 were created for training and testing, in a random
manner at different mixing levels of target to background, in order to estimate the capabilities of
the approach. en, classifiers were constructed using instances taken from these training files. e
produced models showed superior performance compared to models trained on isolated notes only,
which indicates that sound mixtures exhibit many spectro-temporal characteristics different from
isolated sounds. Reported results included a recognition accuracy of 78%, in comparison to 55% of
the model trained with isolated tones.

An evolutionary method was applied by Kobayashi (2009) to generate an instrument detector. e
approach used genetic algorithms and feature selection along with a Linear Discriminant or Re-
gression Analysis (LDA/RA) to automatically generate the feature set and classification mapping
from a set of supplied basis functions. Moreover, foreground/background separation is applied
to the stereo signal to separate monaurally from binaurally recorded instruments (e.g. voice versus
string sections). e separated data is further transformed via the wavelet transform into a time-
pitch representation by applying mother wavelets corresponding to a semitone band-pass filter. Ten
broad instrumental categories were annotated in 100 music pieces taken from commercial record-
ings, which were cut into 1 second extracts, shuffled and split into train and test set. e author
reported excellent results in terms of recognition accuracy (88% on average), despite the absence of
a clear separation of training and testing data.

Another complete system for labelling musical excerpts in terms of musical instruments was presen-
ted by Fuhrmann & Herrera (2010), virtually combining the approaches of Little & Pardo (2008)
and Joder et al. (2009). Hence, statistical models (SVMs) for 12 instruments were trained by early
integrated low-level features which were extracted from weakly-labelled polytimbral music audio
data, whereas a late integration of the classifier decisions via contextual analysis of themusic provided
the final labels. Two separate classifiers for pitched and percussive instruments were employed, and
several strategies for the late integration examined. Moreover, the applied dataset was purposely
designed for containing both music pieces from various genres (even rather atypical styles such as
electronicmusic were used) and unknown, i.e. not trained, categories to estimate the performance of
the system under realistic conditions. Reported results of an F-measure of 0.66 for around 240 ex-
cerpts extracted from66 tracks indicate the potential of the approach aswell as some clear limitations
which cannot be overcome without the application of more enhanced signal processing techniques.

Enhanced pattern recognition. e studies presented here addressed the problem of source in-
terference from polytimbral audio by incorporating additional knowledge about the source signals
in the recognition process. Pitch and onset information were often used to determine the parts
of the signal which are unaffected by the interference. Furthermore, some authors applied source-
separation to pre-process the mix and apply pattern recognition techniques on the obtained source
signals.

Eggink& Brown published two studies dealing with instrument classification from polyphonicmix-
tures. In their first work the authors applied the missing feature approach to instrument recognition
from polyphonies in order to handle feature values corrupted by interfering frequency components
(Eggink & Brown, 2003). One composition of a Duet was analysed by first estimating the fun-
damental frequency using a harmonic sieve, which eliminates frequency regions not exclusively be-
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longing to the target source. Hence, all source interference was excluded prior to the classification
step. A statistical model (GMM) trained on solo performances and isolated tones for the five classes
Cello, Clarinet, Flute, Oboe, and Violin was then applied to obtain the class membership for each
instance. Results indicate that the models were able to recognise the instruments from the masked
signal, although the testing conditionswere quite limited (only 1 excerpt from1 recordingwas used).

In a subsequent study Eggink & Brown (2004) studied the identification performance of a slightly
modified recognition system for the same five instruments in a richer polyphonic context. Classical
sonatas and concerti were analysed by recognising the soloing instrument. e fundamental fre-
quency estimation algorithm based on the harmonic sieve was applied to locate the partials of the
predominant instrument. en, a statistical prototype (GMM) was trained with low-level features
extracted from the spectral peak data on isolated notes and monophonic recordings. e models
were created for every instrument and every fundamental frequency to account for the pitch de-
pendency of the instruments’ timbre. Finally, an unknown frame was classified according to the
model which returned the highest probability, integrating the decisions along the whole excerpt.
Evaluation on 90 classical pieces resulted in an average recognition accuracy of 86%.

Livshin & Rodet (2004) performed identification from duet compositions in addition to a conven-
tional monophonic study within a real time framework. eir approach estimated the frequency
components of the respective instruments, which were then input to a subtraction algorithm to isol-
ate the two sources. From each source, features, which had been selected from the monophonic
dataset by repeated LDA, were extracted and classified with a kNN rule. e performance of the
duet system showed promising recognition accuracy, although the evaluation scenario was quite
restricted.

A complete probabilistic approach for instrument identification in polyphonies was presented by
Kitahara et al. (2006). e system used a probabilistic fundamental frequency estimation module
based on the work of Goto (2004) for detecting melody and base lines in complex audio. Addition-
ally to the note probability an instrument probability was derived by computing the harmonic struc-
ture for every possible fundamental frequency and extracting 28 features to train 15-state HMMs.
To derive the final estimate the values for note and instrument probability were then multiplied
and a maximum likelihood decision returned the instrument for each time-frequency point. e
resulting representation was further post-processed by an additional HMM with limited transition
probabilities to derive the most probable instruments given the observed probabilities. An average
recognition accuracy of 83% on a 4 instrument identification task was reported from experiments
using music audio data generated with the RWC instrument samples, but limited to a polyphony of
three. Furthermore, neither drums nor vocal samples were used to test the robustness of the system.

Furthermore, Kitahara et al. (2007) presented a method to recognise musical instruments from arti-
ficial music audio data by eliminating unreliable feature data caused by the source interference. e
authors developed a weighting method that estimates to what degree a given feature is influenced by
overlapping frequency components of concurrent sources. LDA was used to minimise within-class
and maximize between-class variance, thus enhancing features which discriminate best the categor-
ies. e features were extracted from the harmonic structures of the corresponding instruments
using annotated fundamental frequencies and onset times. For evaluation the authors constructed
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a dataset with artificial mixtures up to a polyphony of four, generated from the RWC instrumental
library. Pitch-dependent Gaussian prototypes were trained for all instruments, and recognition was
derived by taking a maximum a posteriori decision. By additionally analysing musical context the
resulting class hypotheses were corrected and performance improved. Results of 71% of average
accuracy were reported for the maximum tested polyphony of four.

Heittola et al. (2009) built a recognition system integrating informed source separation prior to
the classification process. First, a polyphonic pitch estimator provided the values of the concurrent
fundamental frequencies in all frames of a polyphonic mixture. e pitch information was then
used to initialise a Non-negative Matrix Factorisation (NMF) separation algorithm which output
streams corresponding to the individual instruments. Features were extracted from the generated
source spectrograms and finally evaluated by pre-trained GMM models of the instruments. Poly-
phonic mixtures of 4 seconds length with a constant number of simultaneous instruments were
generated for training and testing in a quasi-random manner using the samples from the RWC lib-
rary. Reported results for the 19 instrument recognition problem included an F-measure of 0.59
for a polyphony of 6. Given these excellent performance figures, the approach, however, seems to
be preliminary since the number of sources is needed as input parameter and a constant number of
sources along the excerpt is assumed.

Fuzzy clustering algorithms were applied by Pei & Hsu (2009) to group feature vectors according to
the dominant instruments in a given piece of music. e features were derived by averaging short-
term values along beat-defined texture windows. From each resulting cluster the most confident
members were taken for classification using a SVM model trained on monophonic recordings of 5
instruments. Results showed an average accuracy of 85%, according to the authors a comparable
quantity with respect to literature. e presented algorithm requires the number of concurrent
instruments beforehand to work properly, since this parameter defines the number of the final in-
strumental labels.

Finally, Barbedo & Tzanetakis (2011) developed a simple strategy for instrument recognition from
polyphonies by extensively using voting and majority rules. e core system classifies isolated indi-
vidual partials according to the instrumental categories. By focussing on isolated partials only, the
authors purposely excluded ambiguous data caused by source interference. Hence, the systems is
working on a pre-processing which estimates the number of sources and the corresponding funda-
mental frequencies for each frame. For a given fundamental frequency partials are then found by
peak picking in the neighbourhood of their estimated positions and isolated by a filtering process.
en, features are extracted and pairwise classification for each instrument combination performed.
A firstmajority vote among all pairs’ decisions determines the instrument for the respective partial, a
second one identifies the instrument of the given fundamental frequency of the considered partials.
is is repeated for all simultaneous sources in a given frame. Finally, all instruments present in
more than 5% of the total amount of frames are taken as labels for the entire signal. Experimental
results for 25 instrument on music taken from several musical genres showed excellent recognition
performance (F-measure of 0.73), although the authors admitted that accuracy dropped signific-
antly when analysing music containing heavy percussive elements. is seems reasonable since the
broadband spectra of these instruments are likely to mask partials from pitched instruments.
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Templatematching. e last group of approaches covers methods based on evaluating predefined
templates related to the musical instruments on an unknown mixture signal. Similar to percussive
instrument detection, templates can be constructed, whose match quality gives an estimate regard-
ing the presence of the respective musical instruments. e match of a given instrument is usually
determined by a predefined distance metric, calculated between the template and the signal. Some
approaches rely on a single template per instrument, where classification is derived by evaluating a
single distancemeasure, whereas others constructmultiple instances per instrument and decompose
the signal via an optimization method involving all templates simultaneously.

Cont et al. (2007) used a NMF decomposition system to simultaneously estimate the pitches and
instruments of a given polyphonic recording. To capture the instrument specific information the
authors used the modulation spectrum as input to the NMF algorithm. Templates for each note
of each instrument were constructed in the training process as single basis function in the resulting
classification matrix. Prediction was then performed by matching an unknown input to the training
matrix, using additionally sparsity constraints to limit the solution space of the NMF decompos-
ition. e authors evaluated the system both subjectively and objectively, whereas the latter was
rather limited. Two mixtures of two different monophonic recordings were used but no average
performance figure given. e authors, however, argued that given the difficulty of the addressed
task, the results were satisfactory.

Sparse coding algorithms can further be considered as template matching processes. In particular,
dictionary based algorithms such as the MP algorithm match templates from a given dictionary to
the signal. Leveau et al. (2007) applied dictionaries containing harmonic atoms corresponding to
the individual pitches of differentmusical instruments to decompose a polyphonicmixture. e dic-
tionaries were trained with isolated notes and refined by further adapting them with monophonic
phrases. When decomposing a mixture signal the selected atoms indicate which instruments at
which pitches are present at a given time in the mix. At each time instance, the resulting atoms are
then grouped into ensemble classes, which salience depend on the salience of the containing atoms.
To derive labels for an entire segment of music, a probabilistic voting algorithm, which first maps the
saliences of the ensembles onto log-likelihoods and then sums the resulting values for each ensemble,
was applied to obtain the most likely ensemble. Evaluation was performed on a dataset consisting of
artificial signals which were generated by mixing monophonic phrases, extracted from commercial
recordings. Results of the evaluation on instrument recognition performance only showed satisfact-
ory results for rather small polyphonies (i.e. ≤ 3 concurrent sources), indicating that the technique
is not robust enough to process real music audio data containing more difficult source signals.

Finally, Burred et al. (2010) used source separation prior to a template matching algorithm in order
to apply prototypical, spectro-temporal envelopes for classification. ese timbre models were de-
rived by applying a Principal Component Analysis (PCA) on the spectral envelopes of all training
data of the respective instruments. e separation algorithm combined onset and partial tracking
information to isolate individual notes in a polyphonic mixture. e evaluation mixtures consisted
of simultaneous, quasi-random sequences of isolates notes from two octaves of the respective instru-
ments. e extracted notes were then directlymatched to the timbremodels of five differentmusical
instruments. Classification was finally derived by evaluating the probabilistic distances based on
Gaussian processes to all models and choosing the model which provided the smallest distance. Ac-
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curacy for instrument recognition yielded 56% in mixtures of a polyphony of three, for all correctly
detected onsets.

3.5.2 Percussive instruments

Since the focus of our presented instrument recognition approach lies on pitched instruments –
our algorithm roughly estimates the presence of the drumkit in a music signal – we only shortly re-
view some recent approaches to the classification of percussive instruments from polytimbral music.
Apart from the obvious differences in their spectral characteristics, percussive instruments generally
carry more energy in the mixture (e.g. consider the presence of the drumkit in pop or rock music)
than pitched sources. erefore, the application of proper onset detection algorithms allows for a
more robust localisation of the percussive events in time, as compared to pitched instruments. Fur-
thermore, percussive sounds exhibiting rather stable characteristics along time (i.e. the sound of a
Bass Drum will not change dramatically in a single piece of music) and their number is usually quite
limited inside a given musical composition. Due to these properties the problem of recognising per-
cussive instruments frompolyphonies gained some attention in theMIR research community. Since
an extensive overview of the relevant approaches is not provided here, we refer to the comprehensive
review presented by Haro (2008).

Gillet & Richard (2008) constructed an algorithm for drum transcription combining information
from the original polyphonic music signal and an automatically enhanced drum-track. In their
framework the authors evaluated two drum enhancement algorithms for cancelling pitched com-
ponents; the first used information provided by binaural cues, the second applied an eigenvalue
decomposition for a band-wise separation. e basic transcription approach consisted of an onset
detection stage, from which detected events a feature vector was extracted, both from the original
and enhanced track. After feature selection a pre-trained classification model (SVM with norm-
alised RBF kernels) was applied to predict the instruments in the respective events. To combine
the information of the two tracks, the authors evaluated early as well as late fusion strategies, which
refer, respectively, to the combination of the feature vectors prior to classification and the combin-
ation of classifiers’ decisions. Evaluation was performed on the publicly available ENST collection
(Gillet & Richard, 2006), which provides a full annotation of almost all percussive events as well
as separated drum and accompaniment recordings of the featured tracks. Besides evaluating the
separation accuracy of the respective algorithms, the authors reported the classification accuracies
obtained by the system for three instruments (Bass Drum, Snare Drum, and Hi-Hat). First, only a
slight improvement in recognition performance could be observed when comparing the results from
the enhanced to the original track. However, the late fusion of the classifier decisions improved the
results significantly, indicating that the two signals cover complementary information which can be
exploited for percussion detection.

Alongside their system for pitched instrument recognition, Fuhrmann et al. (2009a) used a similar
approach for percussive instrument classification. Here, the same methodology was applied as de-
scribed above; an onset detection algorithm detected percussive events in polytimbral music, from
which frame-wise extracted acoustic features were derived. ese features were integrated along
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a texture window placed at the respective onset and classified by a pre-trained recognition model
(again, SVMs were used). Besides reporting similar identification performance in comparison to
Gillet & Richard (2008), the authors additionally evaluated the importance of temporal aspects in
the feature integration step. Since it has been shown that temporal characteristics of timbre are es-
sential for human recognition, three levels of temporal encodingwere tested on their influence on the
recognition performance from polyphonic music. Experimental results showed that a coarse level of
encoding (i.e. using statistics on the derivatives of the respective features) is beneficial for accuracy,
whereas a fine-grained temporal description of the feature evolution in time is not improving re-
cognition performance, indicating that these characteristics are difficult to extract from polyphonies
given the assumable source interference.

Finally, Paulus & Klapuri (2009) approached the problem of transcribing drum events from poly-
timbralmusic by applying a neural network of connectedHMMs for time-located instrument recog-
nition. With this approach the authors argued to overcome the shortcomings usually encountered
when performing segmentation and recognition of the audio separately, as implemented by the sys-
tems reviewed above. e authors additionally compared a modelling strategy of instrument com-
binations to the common strategymodelling the individual sources independently. In their approach
the audio was first analysed by a sinusoidal-plus-noise model, which separated pitched components
from noisy portions of the signal. e tonal information was discarded and features were extracted
from the residual. MFCCs and their first derivatives were applied for training the individual sig-
nal models (4-state left-to-right HMMs), based on the information obtained from the annotation
data. Once the models had been trained the connection between them was implemented by concat-
enating the individual transition matrices and incorporating inter-model transition probabilities, all
deduced from the training data. In the recognition step, the connected models are then applied and
the Viterbi algorithm used to decode the obtained sequence. Results on the public available ENST
dataset, including 8 different percussive categories, showed superior performance for the individual
instrument modelling approach in combination with a model adaptation algorithm, which adapts
the trained models to the audio under analysis. Reported evaluation scores yielded an F-measure of
0.82 and 0.75 for isolated drums and full mixture signals, respectively.

3.6 Discussion and conclusions

In this chapter we identified the automatic recognition of musical instruments as a very active field
in the research community of MCP, which has produced a great amount of high-quality works – as
well as many noisy studies, too – related to the task. Many conceptually different approaches have
been presented to tackle the problem, incorporating knowledge derived from human perception and
cognition studies, and recent techniques from machine learning or signal processing research.

Perceptual studies have revealed the basic components of the timbral sensation of instrumental
sounds. Additionally, several mutual attribute have been identified which cause confusions among
certain groups of instruments or effect in a blending of their timbres when simultaneous active. is
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blending properties also hinder their segregation and consequentially the individual recognition of
the instruments. Hence, the physical characteristics of the instruments determine a kind-of upper
limit for musical instrument recognition, even for humans.

e fact that some of the developed systems for monophonic input sounds score close to the per-
formance of human recognition indicates that the problem itself can be regarded as solved to a cer-
tain extent. Since this kind of data allow for the best insights into the nature of the recognition
task, results suggest that machines are able to extract the timbre identifying properties of musical
instruments’ sounds and use them to build reliable recognition systems. In particular, studies on
feature applicability for musical instrument recognition showed that mainly the robust estimation
of the spectral envelope enables the successful recognition, and modelling the temporal evolution
of the sound improves results subsequently (Agostini et al., 2003; Lagrange et al., 2010; Nielsen
et al., 2007). Moreover, the applied methods from machine learning allow for the handling of com-
plex group dependencies in hierarchical representations and for reliable intra-family separation of
musical instruments.

However, multi-source signals still cause a lot of problems for automatic recognition systems. In
connection to the aforementioned it seems that the processing of the complex acoustical scene prior
to the actual identification step is of major importance. It is assumed that the human mind uses a
complex combination of attention mechanisms, auditory restoration and virtual pitch to perform a
streaming-by-timbre to segregate the individual perceptual streams and determine their timbres.
is process is presumably of mutual nature, thus recognition and segregation accompany each
other. Since hearing research is far away from understanding these complex operations, a compu-
tational modelling seems to be – at least from the current signal processing point-of-view – nearly
impossible. Up to now there exist no artificial system that can handle the interferences between
concurrent sources in an auditory scene in such a way that a robust source recognition is possible.

Nevertheless, some approaches towards the automatic recognition of musical instruments from
polyphonies assumed slightly simplified conditions to accomplish recognition systems that work on
even complex data. Focussing on parts of the signal where no or only slight source interference can
be observed allows for a robust extraction of the instruments’ invariances. In this way several systems
have been constructed that reach acceptable recognition performances even in complex polytimbral
environments.

Comparing the different approaches from literature remains a very difficult, nearly impossible, task.
Since most of the studies used their own dataset for training and testing, a direct comparison is not
possible (see also Table 3.1). Moreover, even if the number of classes and the source complexity
is the same, the employed music audio data may be extremely different. Furthermore, most works
still impose restrictions on the nature of their data and algorithms, which further complicates any
general comparison. us, the reported evaluation figures can only be partially used to assess the
recognition performance of the respective algorithms in a more general way. To conclude, the best
way to objectively estimate the performance of a musical instrument recognition algorithm is to
perform its evaluation on a rich variety of natural data, i.e. real music. In this context the number
of classes, the amount of noise, and the data complexity reach a realistic level on which the method
must perform. Only if tested at this scale, the real capacities of the approaches can be identified!
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Label inference
From frame-level recognition to contextual label extraction

What remains evident from the literature review presented in the previous chapter is that hardly
any of the examined approaches does not impose restrictions to the employed training and eval-
uation data, or to the algorithmic processing itself. Most methods applied narrow taxonomies in
terms of the modelled musical instruments, tested with a limited polyphonic complexity, i.e. num-
ber of concurrent sources, or evaluated with an inadequate data diversity in terms of musical genres.
Moreover, many studies used artificially created data lacking any kind of musical context for evalu-
ation. As a consequence, almost all of these approaches cannot be applied and exploited in systems
of a broader purpose, e.g. typical MIR applications such as search and retrieval or recommender
systems. Besides, the heavy restrictions involve only scant advances to models of listening, or more
general, machine listening systems. Hence, those approaches do not contribute to research in a sci-
entific sense. From this viewpoint, and as already pointed out in Section 1.4, the primary objective
of this thesis was to design a method without the aforementioned shortcomings in connection with
its embedding into a typical MIR framework.

In this chapter we present our method for assigning instrumental labels to an audio excerpt of any
finite length. Here, wewant to note the subtle difference we take when using the possibly ambiguous
terms classification and labelling. e former is used in connection with the raw frame-based estim-
ates predicted by the classificationmodule, while the latter connotes attaching a semantic label to the
entire analysed signal. Hence, whenever referring to classification we reside on a frame level, while
labelling comprises the integration of the signal’s entire temporal dimension. Consequentially, the
term label inference denotes the extraction of semantic information in terms of labels, or tags, from
a series of frame-based estimates, output by the classifier.

Conceptually, this chapter is divided into two parts which cover, respectively, the aforementioned
classification and labelling stages of the presented method. Before that, we first present the the-
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oretical methodology underlying the overall design process (Section 4.1). en, we present the
developed approach towards musical instrument classification in Section 4.2, which is further sub-
divided into the sections covering the pitched (Section 4.2.3) and percussive instruments (Sec-
tion 4.2.4). Here, we illustrate the respective taxonomic choices, the applied data, the experimental
settings, and the results of the corresponding classification problem together with a thorough ana-
lysis of the involved acoustical descriptions in terms of audio features and the resulting prediction
errors. Section 4.3 covers the strategies examined for integrating the frame-based classification out-
put to derive instrumental labels given an unknown music excerpt; we first introduce the underly-
ing conception (Section 4.3.1) and the constructed evaluation dataset (Section 4.3.2), followed by a
brief discussion of the applied evaluation methodology (Section 4.3.4) and all obtained results (Sec-
tion 4.3.5). Furthermore, Section 4.3.6 contains an analysis of the resulting labelling errors. Finally,
this chapter is closed by a comparison of the presented method’s performance to other state-of-the-
art approaches (Section 4.4.1) and a general discussion in Section 4.4.2.

4.1 Concepts

Prior to examining the methodological details, we want to illustrate our main assumptions that led
to the development of the presented method. ese assumptions, or hypotheses, refer to the basic
extraction and modelling approaches of the musical instruments’ sound characteristics from music
audio signals and are subsequently validated in the remainder of this chapter. ey can be stated as
follows:

1. e perceptual characteristics, or timbre, of a certain musical instrumental can be extrac-
ted from polytimbral music data, provided a certain amount of predominance¹ of the target
source.

2. Musical context provides basic means for label inference, as it is similarly utilised by the hu-
man mind.

3. is extracted information enables a meaningful modelling of musical instruments in con-
nection with MCP/MIR.

ad 1. Our approach towards extracting the instrument’s characteristics from the audio data re-
lies on a statistical pattern recognition scheme. is choice is perceptually and cognitively plausible
from the viewpoint of how the human mind organises knowledge (Section 2.1.1.3); moreover, the
approach is widely used in related literature (Essid et al., 2006b; Gillet & Richard, 2008; Heittola
et al., 2009; Kitahara et al., 2007; Martin, 1999). In this framework we generate statistical mod-
els of musical instruments and apply these models for prediction. In our particular conception,

¹In this thesis, we pragmatically define the predominance of an instrument as being perceptually clearly audible in, and
outstanding from, the context of other instruments playing simultaneously.
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modelling itself is performed directly on the presumably polytimbral data without any form of pre-
processing. In doing so we purposely avoid source separation and related techniques of polyphonic
music transcription, since their applicability cannot be fully guaranteed in the context addressed by
the developed method². We furthermore want to examine the potential of the presented approach
as a general method towards instrument recognition from musical compositions, concentrating on
its own peculiarities and specificities. In consequence, we limit the method to the modelling and re-
cognition of predominant sources from the music audio signal since we assume that the main char-
acteristics of these instruments, encoded in their spectro-temporal envelope, are preserved. us,
the polyphonic mixture sound is mainly affected by the spectral characteristics of the predominant
instrument.

ad 2. From the perceptual point-of-view it seems evident that musical context provides important
cues for sound source recognition (Grey, 1978; Kendall, 1986; Martin, 1999). However, only few
approaches towards musical instrument recognition in polytimbral environments incorporate this
general property ofmusic. Moreover, there is a broad consensus among researchers that the temporal
dimension provides necessary and complementary information for retrieval (Casey&Slaney, 2006).
Here, we exploit the property of stationary sources in music to reliably extract the labels from a
series of classifier predictions. We assume that musical instruments are played continuously for a
certain amount of time, thus their predominance along time can be used as a robust cue for the label
inference. Moreover, this approach enables the recognition of multiple predominant instruments in
a given musical composition.

ad 3. Statistical modelling requires, in general, a sampling of the target population. Since in the
majority of cases measuring all elements of the target population is impossible, the population is
approximated by a representative sample (Lohr, 2009). In this regard, representativeness denotes
the ability to model the characteristics of the population from the sample. us, the sample used
for training a statistical model has to reflect the properties of and their variabilities inside the target
population. In the context of this thesis, we can regard the above-defined problem as recognition
from noisy data, since the accompaniment of a predominant source can be simply considered as
noise. Here, the results obtained by Little & Pardo (2008) suggest that introducing “noise” in the
training process of musical instrument classifiers improves the robustness and thus the recognition
performance from polytimbral testing data. Hence, a meaningful modelling of musical instruments
from polyphonies is possible, if, and only if, the training data reflects the variability of the sampled
population. To guarantee this variety we emphasise the construction of the collections used to train
the classification models, comprising a great variety in musical genres and styles, recording and pro-
duction conditions, performers, articulation styles, etcetera. Moreover, the restriction of modelling
predominant instruments only is not impairing the applicability of the method to various kinds of
data; we can further assume that most of the targeted data, i.e. Western music compositions of
any kind, exhibit enough predominant information related to musical instruments from which suf-
ficient instrumental information can be gained. Finally, a meaningful modelling of the extracted
information implies that the used taxonomy reflects the system’s context. us, depending on the
problem at hand, a too fine-grained taxonomy can result in a model too complex with respect to
the observed data, causing a general performance loss. On the other hand, a too coarse taxonomy

²ere is, however, recent evidence that an incorporation of polyphonic pre-processing techniques is beneficial for re-
cognition systems under certain constraints, see e.g. (Barbedo & Tzanetakis, 2011; Haro & Herrera, 2009).



74 Chapter 4. Label inference

pitched
labelling

drumset
detection

11

raw audio

featu
re extractio

n
&

 in
teg

ratio
n

0

filter θ
1

fram
in

g

pitched
model

percussive
model

piano

drums

voice

trumpet

filter θ
2

filter θ
3

Figure 4.1: Block diagram of the presented label inference method. e audio signal is first chopped into chunks from which
short-term features are extracted and integrated. e signal is then split in two separate paths representing the recognition of
pitched instruments and the Drumset detection. Both branches apply a classification model to the feature vectors, at which
the models’ time-varying output is subsequently used for label inference. See text for more details.

may not satisfy the user’s information need, thus results in useless output. We therefore decided
on an abstract representation in the hierarchy of musical instruments³, valid across multiple use
cases and understandable by Everyman, incorporating pitched and percussive categories, as well as
the human singing voice. All three carry important semantic information which is necessary for a
sufficient description of the musical content in terms of instruments. Furthermore, pitched and per-
cussive instruments are modelled separately, due to their evidently different acoustic characteristics,
whereas the human singing voice is regarded as a pitched instrument and consequentially modelled
in conjunction with the latter (see also Section 3.1).

Before entering the theoretical and experimental playground behind our method, Figure 4.1 shows
a schematic illustration of the label inference process. Note the two separate branches in the classi-
fication and labelling stage, corresponding, respectively, to the pitched and percussive analysis.

4.2 Classification

4.2.1 Method

e most basic process executed by the presented method is the determination of the main instru-
ment, for both pitched and percussive categories, within a short time-scale. For this purpose we
employ a pattern recognition approach by following the typical notions of training and prediction;
in the former a statistical model is trained by applying the training collection, the latter uses the
trained model to predict class assignments for unseen input data. In both stages the basic methods
of feature extraction, feature selection, and classification are involved. Figure 4.2 shows a concep-
tual illustration of this train/test setup, which can be summarised as follows; first, the signal of a

³is applied coarse taxonomy of musical instruments can be regarded as the entry-level for reasoning and recognition
at an intermediate level of abstraction, as introduced by Minsky (1988) (see Section 2.1).
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Figure 4.2: Illustration of the pattern recognition train/test process as employed in the presented method.

single acoustical unit⁴ is partitioned into very short chunks, which are transformed into a low-level
feature representation of the raw audio. e time series of extracted audio feature vectors along the
unit is integrated into a single vector by taking statistical measures of the individual features. All
so-processed units of the training data are then passed to a feature selection algorithm to reduce the
dimensionality of the feature space. e resulting lower-dimensional representation of the data is
finally applied to train the classification model, which is further used for the prediction on unseen
instances. e next sections cover these structural building blocks of our classification system in de-
tail. Parts of the approaches described in this section have been previously published by Fuhrmann
et al. (2009a).

4.2.1.1 Audio features

Given an acoustical unit, the signal is weighted by an equal loudness filter (Robinson & Dadson,
1956), incorporating the resonances of the outer ear and the transfer function of the middle ear,
and framed into short fragments of audio, using a window size of 46 ms and an overlap of 50%.
For calculating the FFT a Blackman-Harris-92dB window function is applied to weight the data
accordingly. A total of 92 commonly used acoustical features, describing the temporal, timbral,
and pitch related properties of the signal are extracted. ese features can be roughly classified as
follows⁵:

Local energies. A great part of these features is based on the psycho-acoustical Bark scale (Zwicker
& Terhardt, 1980), an implementation of the frequency resolution of the cochlea’s Basilar
membrane in terms of critical bands. Additionally to these 26 energy band values⁶, we derive
four broader energy bands, dividing the spectrum into the regions corresponding to the fre-
quency limits of 20, 150, 800, 4 000, and 20 000 Hz. Finally, we introduce a global estimate
of the signal’s energy derived from its magnitude spectrum (Peeters, 2004).

Cepstral coefficients. We obtain MFCCs (Logan, 2000) by calculating the cepstrum of log-
compressed energy bands derived from the Mel scale, a psychoacoustic measure of perceived

⁴In this thesis the term acoustical unit denotes the quantity of audio data, or length of the audio, the recognition models
use to perform a single prediction.

⁵A complete mathematical formulation of all described features can be found in the Appendix.
⁶We expand the originally proposed 24 bands by replacing the lowest two by four corresponding bands, covering the

frequencies between 20, 50, 100, 150, and 200 Hz. For convenience we provide a table containing the complete list of all 26
bands numbered with the applied indexing scheme together with the respective frequency ranges in the Appendix.
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pitch height (see Section 2.1.1.2). In our implementation we extract the first 13 coefficients
from 40 Mel-scaled frequency bands in a frequency range from 0 to 11 000 Hz. ese fea-
tures are used to estimate the spectral envelope of a signal, since the cepstrum calculation
involves a source-filter deconvolution due to the logarithmic compression of the magnitudes
(Schwarz, 1998).

Spectral contrast and valleys coefficients. A shape-based description of spectral peak energies in
different frequency bands is used for capturing the spectral envelope characteristics of the
signal under analysis (Akkermans et al., 2009). We calculate 6 coefficients for both contrast
and valleys features, using the frequency intervals between 20, 330, 704, 1 200, 2 300, 4 700,
and 11 000 Hz. To the best of our knowledge this feature has not been used in the context
of automatic musical instrument recognition so far.

Linear prediction coefficients. ese features are further used to describe the spectral envelope of
the signal (Schwarz, 1998). Linear predictive coding aims at extrapolating a signal’s sample
value by linearly combining the values of previous samples, at which the coefficients repres-
ent the weights in this linear combinations. Since the coefficients can be regarded as the
poles of an corresponding all-pole filter, they also refer to the local maxima of the estimated
description of the spectral envelope. Here, we derive 11 coefficients from the linear predictive
analysis.

Spectral. Various features are extracted from the signal to describe its spectral nature. Many of
them are common statistical descriptions of the magnitude spectrum, including the centroid,
spread, skewness, and kurtosis – all 4 calculated both on the basis of FFT bin and Bark band
energies – spectral decrease, flatness, crest, flux, and roll-off factors (Peeters, 2004), high-
frequency content of the spectrum (Gouyon, 2005), spectral strongpeak (Gouyon&Herrera,
2001), spectral dissonance (Plomp & Levelt, 1965), and spectral complexity (Streich, 2006).

Pitch. Based on the output of a monophonic pitch estimator, we derive several features describing
the pitch and harmonic content of the signal. In particular, we calculate the pitch confidence
(Brossier, 2006) and its derived harmonic features inharmonicity, odd-to-even harmonic en-
ergy ratio, and the three tristimuli (Peeters, 2004), which all use the pitch extracted by the
monophonic estimator as input for the respective calculations. Additionally, we compute the
pitch salience feature as defined by Boersma (1993).

Temporal. Wecalculate the zero crossing rate as an estimate of the “noisiness” of the signal (Peeters,
2004). is feature simply counts the sign changes of the time signal, hence periodic signals
generally exhibit a lower value than noisy sounds.

4.2.1.2 Temporal integration

e framing process results in a time series of feature vectors along the unit, which are integrated
by statistical measures of the individual features’ distribution. is is motivated by the fact that
humans use information accumulated from longer time scales to infer information regarding the
instrumentation in a music listening context. Here, we apply the results obtained from a previous
work, where we studied the effect of temporal encoding in the integration process on the classi-
fication accuracy for both pitched and percussive instruments in polytimbral contexts (Fuhrmann
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et al., 2009a). We tested three levels of temporal granularity in this integration phase, showing that
temporal information is important, but its extraction is limited due to the complex nature of the
input signal. Hence, in this thesis we use simple temporal dependencies of feature vectors that are
incorporated by considering their first difference values. at is, the difference between consecutive
vectors is calculated and stacked upon the instantaneous values, thus doubling the size of the vector.
en, mean and variance statistics are taken from the resulting representation along time.

4.2.1.3 Feature selection

Creating highly dimensional feature spaces usually leads to redundancy and inconsistency in terms of
individual features (Jain et al., 2000). To reduce the dimensionality of the data alongwith themodels’
complexity we apply a feature selection algorithm. We use the Correlation-based Feature Selection
(CFS) method (Hall, 2000), which searches the feature space for the best subset of features, taking
the correlation of the features with the class and the intercorrelation of the features inside the subset
into account. More precisely, the goodness Γ of a feature subset S containing k features is defined
as follows:

ΓS =
kϱfc√

k + k(k − 1)ϱff
, (4.1)

where ϱcf denotes the average feature-class correlation and ϱff the average feature-feature intercor-
relation. If the problem at hand is classification, i.e. with discrete class assignments, the numerical
input variables have to be discretised and the degree of association between different variables is
given by the symmetrical uncertainty (Press et al., 1992)

U(X,Y ) = 2× [
H(Y ) +H(X)−H(X,Y )

H(X) +H(Y )
], (4.2)

where H(X) denotes the entropy of X . To derive the resulting subset of features in a reasonable
amount of computation time (in general, evaluating all 2k possible feature subsets is not feasible,
with k being the total number of features), the method utilises a Best First search algorithm (Witten
&Frank, 2005), implementing a greedy hill climbing strategy, to efficiently perform the search prob-
lem. is feature selection technique has been used widely in related works (e.g. Haro & Herrera,
2009; Herrera et al., 2003; Livshin & Rodet, 2006; Peeters, 2003).

If not stated differently, we perform feature selection in a 10-Fold procedure, i.e. we divide the data of
each category into 10 folds of equal size, combine them into 10 different datasets each consisting of
9 of each categories’ generated folds, and apply 10 feature selections. us each fold of each category
participates in exactly 9 feature selections. is results in 10 lists of selected features from which
we finally keep those features, which appear in at least 8 of the 10 generated lists. is procedure
guarantees amore reliable and compact estimate of themost discriminative dimensions of the feature
space, as the resulting set of features is independent of the algorithm’s specific initialisation and
search conditions.
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4.2.1.4 Statistical modelling

e statistical models of the musical instruments applied in this work are implemented via SVMs
(Vapnik, 1999). SVMsbelong to the general class of learningmethods building on kernels, or kernel
machines. e principal idea behind is to transform a non-linear estimation problem into a linear
one by using a kernel function. is function projects the data from the initially low-dimensional
input space into a higher-dimensional feature space where linear estimationmethods can be applied.
Furthermore, the SVM is regarded as a discriminative classifier, hence applying a discriminative
learning scheme (see Section 2.2.2.2), since it directlymodels the decision function between 2 classes
and is not relying on prior estimated class-conditional probabilities.

Support Vector Classification (SVC) applies the principle of Structural Risk Minimisation (SRM)
for finding the optimal decision boundary as introduced by Vapnik (1999). In short, SRM tries to
minimise the actual risk, i.e. the expected test error, for a trained learning machine by implementing
an upper bound on this risk, which is given by the learning method’s performance on the training
data and its capacity, i.e. the ability to learn from any data without error. Hence, SRM finds the set
of decision functions which balances best the trade-off between the maximal accuracy on the actual
training data and minimal overfitting to these particular data (Burges, 1998).

Given the training data pairs {xi, yi}, i = 1 . . . l,xi ∈ Rd, yi ∈ {−1,+1}, the SVC finds the
linear decision boundary that best separates the training instances xi according to the binary class
assignments yi. Hence, the objective is to determine the parameters of the optimal hyperplane in
the d-dimensional space denoted by

wTx+ b = 0. (4.3)

us, a decision function can be derived which assigns to any xi the class membership as follows,

wTxi + b > 0, for yi = +1, (4.4)

wTxi + b < 0, for yi = −1.

Hence, for constructing a SVC systemone has to determine the proper values forw and b that define
the decision boundary. However, for certain problems many possible ws and bs may be identified,
leading to the non-existence of a unique solution along with the risk of a low generalisation ability of
the resulting classifier. To overcome the aforementioned limitations the idea of the maximal margin
is introduced; instead of looking for a hyperplane that only separates the data, the aim is to determine
the hyperplane which additionally maximises the distance to the closest point of either class. is
concept of the maximal margin guarantees both better generalisation properties of the classifier and
the uniqueness of the solution (Friedman et al., 2001). Hence, the parallel hyperplanes that define
the maximal margin, which represents the optimal decision boundary, are, after scaling, given by
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Figure 4.3: Principles of the support vector classification. e optimal decision boundary is represented by the dashed line,
the corresponding hyperplanes framing the margin are dash-dotted. Note the dashed light grey hyperplanes which indicate
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wTxi + b > +1, (4.5)

wTxi + b < −1,

together with the corresponding width of the margin

2

∥w∥
=

2√
wTw

. (4.6)

Maximising this distance is equivalent to minimising its reciprocal, here resulting in a convex op-
timisation problem, i.e. a quadratic criterion together with linear inequality constraints (Friedman
et al., 2001), that can be formulated as follows,

ŵ, b̂ = argmin
w,b

1

2
wTw (4.7)

subject to yi(w
Txi + b) ≥ 1, i = 1 . . . l,

where the inequalities of Eq. (4.5) are merged by multiplying each with the corresponding value of
yi to form the inequality constraint. Since the decision function is linear, SVCbelongs to the class of
linear classification; moreover, as the objective is to maximise the margin, a SVM generally denotes
a maximum margin classifier. Figure 4.3 illustrates these geometric considerations for a separable
problem in two dimensions.
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Real world problems, however, only exhibit in rare cases the property of a perfectly linear separab-
ility of the data. To relax the constrain of a perfect separation, SVC allows for a certain amount
of training error, creating a “soft” margin. Hence a penalty term is introduced in Eq. (4.7) to com-
pensate for these errors while keeping the problem still linear. Moreover, many problems cannot be
solved by a direct application of linear estimation methods, thus the data is mapped from the input
space into a higher-dimensional feature space, where a general linear solution is more probable, via
a kernel function ϕ(·) (see above). is leads to the formulation of the standard SVM optimisation
problem as presented by Cortes & Vapnik (1995),

ŵ, b̂, ξ̂ = argmin
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (4.8)

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi, i = 1 . . . l, ξi > 0,

introducing, besides the kernel function ϕ(·), the cost, or regularisation parameter C and the slack
variable ξ.

Since the projected data may exhibit a very high, possibly infinite, dimensionality, the dual problem
is used to derive a solution forw. Solving the dual problem is simpler than than solving the corres-
ponding primal, and can be achieved with standard optimisation techniques (Friedman et al., 2001).
Here, the Lagrangian Dual simplifies the optimisation to a great extent since the dimensionality of
the problem, which can be infinite, is reduced to l. As a result, w is defined as a weighted linear
combination of the training instances. e weights, which are derived from the solution of the dual
problem, correspond to the scalar Langrange multipliers αi. Hence, the optimal ŵ can be written
as

ŵ =
l∑

i=1

αiyiϕ(xi). (4.9)

In case of the evaluation of the decision function, ŵ is substituted into the original decision function
wTx+b. However, the obtained equation exhibits the calculation of an inner product in the feature
space, which is difficult to achieve due to the high dimensionality of the data. Hence, special kernel
functions (symmetric and positive definite ϕ(·)) are applied that allow for a calculation of this inner
product directly in the low-dimensional input space. e resulting relation can then be elegantly
written as a kernel evaluation in the input space

ŵTϕ(x) + b =
l∑

i=1

αiyiϕ(xi)
Tϕ(x) + b =

l∑
i=1

αiyiK(xi,x) + b. (4.10)

By using this so-called kernel trick the high-dimensional vectorw is never explicitly used in both the
calculation and the evaluation of the decision function. e complex calculation of the inner product
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in the high-dimensional feature space is rather replaced by the kernel evaluation in the input space.
Moreover, many of theαis are zero, reducing the terms in the summation of Eq. (4.10). e training
instances xi with a corresponding αi ̸= 0 are therefore called the support vectors⁷. us SVMs
handle both forms of the so-called curse of dimensionality; moderate complexity is guaranteed while
overfitting is avoided by using only the most decisive instances in the construction process of the
decision function (Burges, 1998).

Additionally, many application scenarios need an estimate of the “class belongingness” of the testing
instances rather than a categorical label of ±1. Hence, the output of a SVM has to be transformed
into a probabilistic estimate, i.e. a real number between 0 and 1, by using methods such as the one
proposed by Platt (1999). Here the instances’ posterior can be approximated via a mapping of the
classifier’s output into probabilities using a sigmoid function.

As indicated above, SVMs are inherently binary classifiers. us, in a multi-class problem, indi-
vidual binary classifiers are combined into a single classification system. Basically, there exist two
distinct approaches, related to the nature of the classification problem (Manning et al., 2009), to
combine multiple categories in a SVM architecture. In an any-of situation a given instance can
belong to several classes simultaneously or none at all (one-vs-all architecture), while a one-of classi-
fication problem assumes that instances are only affiliated with a single category (one-vs-one archi-
tecture). Hence, the specific choice of the architecture depends on the mutual exclusiveness of the
classes.

A K-class one-vs-all classification system comprises K independent binary classifiers, each one
modelling the target category and its respective complement, i.e. the “rest” class. at is, evalu-
ation of one category is not influencing the decisions on all other classes. us a single prediction
includes the application of K classifiers to one single data instance.

In case of a one-vs-one scheme the classification system is built formK(K−1)/2 individualmodels,
with K being the number of classes. Here, category membership and probabilistic estimates for all
target classes of the given instance have to be derived from the combined raw output of the binary
classifiers. Several strategies such as voting (the class which scores the most binary votes wins) or
maximum likelihood decision (the class exhibiting the highest single probability value wins) output
the class label of the instance under analysis. However, in many situations class-wise probabilistic
estimates are desired for subsequent processing. enmethods for combining the class probabilities,
termed pair-wise coupling, can be applied (Hastie & Tibshirani, 1998; Wu et al., 2004).

In all subsequent experiments we use the SVM implementation provided by LIBSVM⁸. e library
provides two different versions of the classifier (C-SVC and nu-SVC) together with 4 different
kernel functions (linear, polynomial, RBF, and sigmoid kernel). Moreover, in case of an one-vs-
one architecture, pairwise coupling of the individual probabilistic estimates is applied to obtain the
class-wise values using the method presented by Wu et al. (2004).

⁷ose instances falling on the margin hyperplanes are furthermore used together with the corresponding α to derive
the constant b.

⁸http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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4.2.2 Evaluation methodology

Evaluating statistical pattern recognition systems refers to assessing its error on the target popu-
lation. Here, the error rate Pe generally captures this performance of such systems. In practice,
however, Pe cannot be determined directly due to finite sample sizes and unknown data distribu-
tions (Jain et al., 2000). As a result of these common limitations, Pe is usually approximated by the
error on the used sample of the target population. Typically, a split procedure is followed, which
divides the available instances into a training and test set, assuming mutual statistical independence.
en, a classifier is constructed using the training samples and the system’s error rate is estimated
via the percentage of misclassified test samples. Often, a single evaluation process provides only
poor insights into the generalisation abilities of the system, hence reflecting real world conditions
only weakly. However, given a single dataset, there exist numerousmethods for partitioning the data
into training and testing parts for near-optimal performance estimation, e.g. holdout, leave-one-out,
or rotation methods (Duda et al., 2001).

In our experimentswe apply a 10-FoldCVprocedure fromwhich the average accuracyA is obtained;
the data is divided into 10 Folds, at which 9 parts are used for training and one for testing the
respective model in a rotation scheme, averaging the accuracies A of the 10 different testing runs
as performance estimate. Here, A refers to the fraction of correctly predicted evaluation instances.
It is calculated by comparing the class estimates obtained from a maximum likelihood decision on
the probabilistic output of the respective model to the ground truth labels of the instances. To
further account for the initialisation and randomisation mechanisms in the fold generation process,
we perform 10 independent runs of the CV and average the resulting accuracies obtaining a robust
estimate of the overall recognition performance of the developed classification system.

Due to their particular conception – generalising from the sample to the target population – most
pattern recognition systems are highly sensitive to the distribution of samples among the respect-
ive categories. Under the constraint of minimising the amount of wrongly predicted samples, such
systems usually favour predictions for the majority classes. Common solutions for avoiding these
class-specific biases include adjusting the costs for misclassification in the respective categories, or
the artificial sampling of either the majority (down) or the minority (up) class (Akbani et al., 2004).
To avoid any bias towards more frequent categories we always use a balanced dataset, i.e. the same
amount of instances in all classes, in all upcoming classification experiments. In the case of an im-
balance we therefore limit the amount of instances per category to the amount of instances the class
with the fewest total amount exhibits. All categories comprising more than this value are randomly
downsampled to guarantee a flat class distribution.

Moreover, we introduce additional class-specific metrics for assessing the performance of the system
in recognising the individual categories. Here, we use standard metrics of precision and recall, as
formally defined by Baeza-Yates & Ribeiro-Neto (1999),

P =
|Retrieved ∩Relevant|

|Retrieved|
, and R =

|Retrieved ∩Relevant|
|Relevant|

, (4.11)

where |·| denotes the cardinality operator.
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In a classification context both metrics can be rewritten using the notions of true and false positives
plus negatives, i.e. tp, fp, tn, fn . en, P is defined as tp

tp+fp and R similarly as tp
tp+fn . Further-

more, we apply the balanced F-score, or F-measure, to connect the aforementioned:

F = 2
PR

P +R
. (4.12)

Finally, we estimate the performance of the classification system under the null hypothesis of no
learnt discrimination with respect to the modelled categories, i.e. a random assignment of the labels.
Anull is consequentially defined as 1/K , with K being the number of classes.

4.2.3 Pitched Instruments

e evaluation procedure for pitched instrument classification basically follows the concepts de-
scribed in the previous section. In what follows we give insights into more specific issues of the
specific recognition problem. In particular, we present the chosen taxonomy, introduce the used
dataset, and provide details about all conducted experiments. Finally we present the obtained results
for the proposed classification system along with a thorough analysis of the involved audio features
and the resulting recognition errors.

4.2.3.1 Taxonomy

Since we aim at imposing as few restrictions or limitations as possible on the presented method, the
applied taxonomy has to be able to reflect the instrumentations typically found in various genres
of Western music. More precisely, the specific taxonomic choice should allow for a sufficient de-
scription of a better part of Western music in terms of instrumentation, which can be used in a
MIR context. Hence, we agree on an abstract representation which covers those pitched instru-
ments most frequently found in Western music. In particular, we model the musical instruments
Cello, Clarinet, Flute, acoustic and electric Guitar, Hammond Organ, Piano, Saxophone, Trumpet, and
Violin. Additionally we include the singing Voice, since its presence or absence in a given musical
composition can carry important semantic information.

It should be noted that the chosen taxonomy allows for a great variety of musical instruments even
inside a given category (consider, for instance, the acoustic Guitar category containing instruments
such as the concert guitar, 6 and 12 steel string acoustic guitars, lap steel guitar, etcetera), which was
done thoroughly on purpose. is agrees to a consistent and clear semantic label output, under-
standable by Everyman, as well as keeping the complexity of the model at a low level. Furthermore,
in a perceptual and cognitive context the proposed taxonomy could serve as an intermediate level of
abstraction in the hierarchical model the human brain uses to store and retrieve sensory information
regarding musical instrument categories (see Section 2.1).
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4.2.3.2 Classification data

Statistical modelling techniques demand for quality and representativeness of the used training data
in order to produce successful recognition models. In the case of noisy data sufficient data instances
are needed to model both the target categories’ characteristics as well as their invariance with respect
to the noise (see Section 4.1).

In order to construct a representative collection we collected audio excerpts from more than 2 000
distinct recordings. ese data include music from the actual and various decades from the past
century, thus differing in audio quality to a great extent. It further covers a great variability in the
musical instruments’ types, performers, articulations, as well as general recording and production
styles. Moreover, each training file of a given category was taken from a different recording, hence
avoiding the influence of any album effect (Mandel & Ellis, 2005). In addition, we tried to maximise
the distribution spread of musical genres inside the collection to prevent the extraction of informa-
tion related to genre characteristics.

We paid two students to obtain the data for the aforementioned 11 pitched instruments from the
pre-selected music tracks, with the objective of extracting excerpts containing a continuous presence
of a single predominant target instrument. Hence, assigning more than one instrument to a given
excerpt was not allowed. In total, approximately 2 500 audio excerpts were accumulated, all lasting
between 5 and 30 seconds. e so-derived initial class assignments were then double-checked by a
human expert and, in case of doubt, re-determined by a group of experienced listeners.

Figure 4.4 shows the distribution of labels inside the training collection with respect to the mod-
elled pitched musical instruments and genres. As can be seen we neither were able to balance the
total amount of instances across categories nor come up with a flat genre distribution for each class.
Nevertheless, we think that the collection well reflects the frequency of the modelled musical instru-
ments in the respective musical genres, i.e. one will always find more electric guitars in rock than in
classical music.

4.2.3.3 Parameter estimation

In this section we present and evaluate the stages to be examined in the design process of the clas-
sification system. Here, most of the experiments are related to parameter estimation procedures.
In particular, we first determine, in terms of classification accuracy, the best-performing length of
the acoustical unit on which the classifier performs a single decision (“time scale”). Next, we study
the influence of the amount of audio instances taken from a single trainings excerpt on the classific-
ation performance (“data sampling”). We then estimate the best subset of audio features (“feature
selection”) and finally determine the optimal parameter settings for the statistical models (“SVM
parameters”).

Given the nature of the classification task, all pitched instrument classification experiments reported
in this section apply a one-vs-one SVM architecture. Since the problem at hand is the recognition
of a single predominant instrument from the mixture, this choice is plausible. Moreover, in all ex-
periments prior to the final parameter estimation via the grid search procedure, we use standard
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Figure 4.4: Distribution of pitched musical instruments inside the music collection used for extracting the training and
evaluation data of the instrumental models.

parameter settings of the used classifier as proposed by the library (Hsu et al., 2003).

Time scale. e objective of the experiment is to define the length of the acoustical unit, on which
a single prediction of the model is performed. Many approaches in literature use the entity of a mu-
sical note as a dynamic length for the basic acoustical unit (Burred et al., 2010; Joder et al., 2009;
Lagrange et al., 2010). ismakes sense from the perceptual and cognitive point-of-view, since onset
detection and harmonic grouping seems to be very basic operations of the auditory system, naturally
grouping the incoming audio stream into objects (see also Section 2.1.2). An accurate segregation
for complex signals is, however, almost impossible from nowadays signal processing point-of-view
(Liu & Li, 2009; Martin et al., 1998). Moreover, experiments with subjects showed that the human
mind accumulates the information extracted from several of these basic units for timbral decisions
(e.g. Kendall, 1986; Martin, 1999). e same effect could be observed in a modelling experiment
performed by Jensen et al. (2009); here, the incorporation of several notes of a given phrase played
by a single instrument in a single classification decision does not affect the performance of the re-
cognition system. Since the variation in pitch of a series of consecutive notes may not exhibit those
magnitudes which affects the timbre of the particular instrument (Huron, 2001; Saffran et al., 1999;
Temperley, 2007) (see also Section 3.1), these finding seem plausible. In our experiments we nev-
ertheless evaluate classification frames ranging from the time scale of a musical note to the one of
musical phrases. However, given the polyphonic nature of our recognition problemwe expect longer
frames to perform superior.

To compare the performance of the models on various lengths we build multiple datasets, each con-
taining instances of a fixed length. Here, we extract one instance of a given length, i.e. an acoustical
unit, at a random position from each audio training file. We then perform 10×10-Fold CV to es-
timate the model’s average accuracy in predicting the correct labels with respect to the annotated
data. Since the class distribution of the data is skewed (see the previous Section and Figure 4.4), we
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Figure 4.5: Results of the time scale and data size experiments for pitched instruments. Part (a) refers to the recognition
performance with respect to the length of the audio instances, while (b) depicts the mean accuracy for different number of
instances taken from the same training excerpt.

take, for each run of 10-Fold CV, a different flattened sample from the data. In each classification
turn we furthermore apply feature selection.

Figure 4.5a shows the results obtained for the time scale experiment. As expected, the recognition
performance improves with larger time scales as this probably results in a more reliable extraction
of the instrument’s invariant features; insensitivity to outliers in terms of feature values as well as to
corrupted or noisy signal parts increases by incorporating more data in the feature integration pro-
cess. According to these results, we use a length of 3 seconds for the audio instances in all upcoming
classification experiments.

Data sampling. Here we study the effect of data size on the recognition performance of the clas-
sification system. In general, increasing the amount of data results in better generalisation abilities
of the model, which leads to an improved recognition performance, assuming independence of the
samples. In our particular case, an increase in data size refers to the extraction of multiple instances
from a single audio excerpt in the dataset, hence violating the assumption of the independence of
the respective samples. However, the underlying hypothesis is that the assumable greater variety in
pitches, articulations, and musical context of the target instrument along a single training excerpt
improves the recognition performance of the system. We therefore test the influence of the number
of instances taken from a single excerpt in the dataset on the system’s recognition performance.

We employed the same experimental methodology and setup as described in the aforementioned
time scale experiment by constructingmultiple datasets, each containing a different number of fixed-
length instances randomly taken from each audio file in the training set. Furthermore, we kept
instances of the same file in the same fold of the CV procedure, in order to guarantee a maximum
independence of training and testing set. e increased variety in musical context and articulation
styles together with the dependency of most pitched instruments’ timbre on fundamental frequency
(see Marozeau et al., 2003) should result in a positive effect on the recognition performance when
increasing the number of instances taken from each audio file in the training dataset, although this
effect might be of limited nature.
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Figure 4.6: Selected features for pitched instruments grouped into categories, representing the acoustical facets they describe.

Figure 4.5b depicts the mean accuracyA, resulting from the 10×10-Fold CV, for different number
of instances extracted from a single audio excerpt. As can be seen, the identification performance
of the model can be increased to a certain extent by augmenting the size of the used data. It seems
that the ceiling of the mean accuracy results from the limited instrument’s variation inside the audio
training file. In consequence, we use the values of three instances per audio files for the pitched
models in all subsequent classification tasks.

Feature selection. Table 4.1 lists all features selected by the performed 10-Fold CV feature se-
lection procedure. In addition, Figure 4.6 shows this final set of selected features grouped with
respect to the acoustical facets they describe. In total, we can reduce the dimensionality of the data
by approximately 85% by selecting 59 out of 368 low-level audio features. For pitched instruments
the description of the spectral envelope seems to be of major importance – MFCCs and spectral
contrast and valleys features cover approximately 60% of the selected features. But also pitch and
harmonic-related features, which are derived from algorithms designed for monophonic music pro-
cessing, along with basic spectral statistics seem to be important. We note that the selected fea-
tures roughly resemble those that had been identified in different monophonic classification studies
(e.g. Agostini et al., 2003; Nielsen et al., 2007). is confirms our main hypothesis that with the
chosen methodology an extraction of the instrument’s relevant information from polytimbral music
audio signals is possible, given a certain amount of predominance of the target.

SVMparameters. In general, the performance of a SVM in a given classification context is highly
sensitive to the respective parameter settings (Hsu et al., 2003). e applied SVM library requires
several parameters for both classifier and kernel to be estimated a priori. Determining the parameter
values of the classifier in a given problem is usually arranged by applying a grid search procedure, at
which an exhaustive parameter search is performed by considering all predefined combinations of
parameter values. As proposed by Hsu et al. (2003), we estimate the respective classifier’s regular-
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Feature Statistic Index

Barkbands mean 3
Barkbands var 7, 8, 12, 23
Barkbands dvar 4, 6, 8
MFCC mean 2-6, 9-11
MFCC var 2, 3, 6, 12
MFCC dmean 6, 7
MFCC dvar 1, 2
Spectral contrast mean 0, 2-4
Spectral contrast var 2-5
Spectral contrast dmean 5
Spectral contrast dvar 3, 5
Spectral valleys mean 0
Spectral valleys var 5
Spectral valleys dmean 2, 5
Spectral valleys dvar 3-5
LPC mean 10
Tristimulus mean 0
Tristimulus var 0, 1
Barkbands spread dmean –
Barkbands skewness mean –
Spectral strongpeak mean –
Spectral spread mean –
Spectral spread dmean –
Spectral rolloff mean –
Spectral dissonance dmean –
Spectral dissonance dvar –
Spectral crest mean –
Spectral crest var –
Pitch salience mean –
Pitch confidence mean –
Pitch confidence dmean –

Table 4.1: Selected features for the pitched model. Legend for the statistics: mean (mean), variance (var), mean of difference
(dmean), variance of difference (dvar).

isation parametersC and ν, and the kernel parameters γ and d for the RBF and polynomial kernel⁹.
We furthermore perform the grid search in a two-stage process by first partitioning and searching
the relevant parameter space loosely for each combination of classifier and kernel types. Once an
optimal setup has been found, we use a finer division to obtain the final parameter values using a 10
× 10-Fold CV scheme. For illustration purpose, Figure 4.7 shows the parameter space spanned by
the classifier’s cost parameter ν and the RBF kernel’s parameter γ, evaluated by the mean accuracy
A on the entire dataset.

⁹As already mentioned before, the regularisation parameter controls the trade off between allowing training errors and
forcing rigid margins. e kernel parameter γ determines the width of the RBF’s Gaussian as well as the inner product
coefficient in the polynomial kernel. e parameter d finally represents the degree of the polynomial kernel function.
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Figure 4.7: Mean accuracy of the pitched model with respect to the SVM parameters. Here, the classifier’s regularisation
parameter ν and the RBF kernel’s γ are depicted.

Anull C4.5 NB 10NN MLP SVM*

9.1% 33% 37.1% 57.4% 57.9% 63%±0.64pp

Table 4.2: Recognition accuracy of the pitched classifier in comparison to various other classification algorithms; a Decision
Tree (C4.5), Naïve Bayes (NB), Nearest Neighbour (NN), and Artificial Neural Network (MLP). Due to the complexity
of the data, simple approaches like the C4.5 perform worse than more enhanced ones, e.g. the MLP. However, the proposed
SVM architecture is superior, demonstrating the power of its underlying concepts. e asterisk denotes mean accuracy
across 10 independent runs of 10 Fold CV.

4.2.3.4 General Results

Table 4.2 shows the result obtained from the 10×10-Fold CV on the full dataset. To illustrate
the power of the SVM on this kind of complex data, the recognition accuracy of other classifica-
tion methods, usually found in related machine learning applications, is added. It can be seen that
relatively simple methods such as Decision Trees (C4.5) or Naïve Bayes (NB) more or less fail to
learn the class specificities, while more enhanced algorithms such as the artificial neural network
(MLP) are coming close with respect to the recognition performance. We used the WEKA library
(Hall et al., 2009) to estimate the recognition accuracies of the additional classifiers. We mostly
apply standard parameter settings in a single 10-Fold CV experiment. Moreover, Figure 4.8 shows
the mean precision, recall, and F-measures for the individual instrumental categories, together with
the corresponding standard deviations. Additionally, we perform a single run of a 10-Fold CV and
construct the confusion matrix from all testing instances in the respective folds. Table 4.3 shows the
result.

In the following we qualitatively assess the performance of the developed model for pitched instru-
ment recognition on the basis of the presented quantitative results. e objective is to interpret
the model’s functionality in terms of the acoustical properties of the respective audio samples and
the thereof derived description in terms of audio features. is further helps for understanding the
acoustical dimensions primarily involved in the recognition task as well as the extracted character-
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Figure 4.8: Performance of the pitched model on individual categories. Mean values across 10 independent runs of 10 Fold
CV are shown, error bars denote the corresponding standard deviations.
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Cello 269 7 15 25 22 11 8 7 7 31 5

Clarinet 7 240 39 8 5 5 19 41 17 23 3

Flute 19 33 228 13 6 32 25 13 9 11 18

ac. Guitar 20 5 5 304 16 5 16 10 5 8 13

el. Guitar 6 5 3 21 223 39 19 23 12 28 28

Hammond 8 2 26 9 38 277 9 4 2 13 19

Piano 12 13 15 18 18 18 288 13 1 6 5

Saxophone 11 36 14 12 25 11 16 211 39 18 14

Trumpet 7 27 7 12 15 15 3 48 261 9 3

Violin 37 20 22 12 33 11 4 23 13 220 12

Voice 11 3 14 13 28 14 3 9 6 9 297

Table 4.3: Confusion matrix of the pitched model. e vertical dimension represents the ground truth annotation, while
the horizontal dimension represents the predicted labels of the respective instances.

istics of the individual instruments in the polytimbral context. Most of our analysis is based on the
distribution of instances in the confusion matrix shown in Table 4.3, thereby taking into account
both correct and confused instances as well as their differences. In doing so we identify and sub-
sequently compare the most prominent acoustical facets, captured by the audio features involved in
the developed model’s decision process, to the intrinsic acoustical properties of the respective mu-
sical instruments (Meyer, 2009; Olson, 1967). In particular, we first provide an analysis in terms
of the most decisive features by looking at the recognition task at a whole as well as focussing on
individual instrumental categories. is is followed by a qualitative analysis of the prediction errors.
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4.2.3.5 Feature analysis

Here we estimate the most important acoustical facets integrated in the classification model by de-
termining the amount of information a single audio feature carries within the current recognition
task. Even if the decision functions among the individual instruments in the audio feature space is
assumable of a highly non-linear kind, determining the most crucial audio features may give insights
into the basic acoustical analogies the model applies to discriminate between (groups of ) individual
instruments. Hence, in this first experiment we evaluate the cumulative degree of association of an
individual attribute to all target classes in order to qualitatively asses its informativeness for discrim-
inating among the 11 categories. In particular, we first normalize each of the 59 involved features
(see Table 4.1) similar to the SVM model and subsequently compute its χ2 statistic with respect
to the classes. e general idea behind this non-parametric hypothesis testing is to compare the
observed to the expected frequencies of two variables of a random sample to evaluate the null hypo-
thesis of no mutual association via contingency tables; for large sample sizes a large value indicates
large deviations of the observations from the expectations so as to reject the null hypothesis. Given
X , a discrete random variable, with xi possible outcomes, i = 1 . . .m, and n independent obser-
vations grouped by K = 1 . . . k classes, then the χ2 statistic is calculated as follows:

χ2 =
k∑

i=1

m∑
j=1

(ni,j − nP (K = i)P (X = xj))
2

nP (K = i)P (X = xj)
, (4.13)

where k andm denote, respectively, the number of classes and possible outcomes of a given feature,
ni,j the observation frequency of outcome xj given class i, P (K = i) the prior probability of class
i, P (X = xj) the probability of outcome xj .

Since the attributes to evaluate are of numeric kind, all features are discretised using the method
presented by Fayyad & Irani (1993) prior to the evaluation. We then rank all features according
to their calculated χ2 value. Figure 4.9 shows Box plots of the 5 top-ranked features, assumed to
carry the most discriminative power among all features in the classification task at hand. Note that
non-overlapping comparison intervals between categories correspond to a statistically significant
difference in sample medians at a significance level of 5% (i.e. p < 0.05). Here, the comparison
interval endpoints are given by the centres of the triangular markers.

It can be seen from the resulting figures that each of the 5 features carries information for discrim-
inating groups of instruments, but none of them is able to significantly separate one particular in-
strument from the rest. However, we are able to deduce some general acoustical characteristics that
separate groups of instruments from this depicted information; for instance, Flute and Trumpet are
well discriminated by the pitch salience feature (Figure 4.9a), since the sound of the former is noisy
due to the blowing technique while the one of the latter is the brightest of all modelled instruments.
Moreover, electric Guitar,Hammond organ, and the singing Voice are separated from all other instru-
ments via a measure of the spectral spread (Figure 4.9b), indicating that these sounds carry a higher
amount of high frequency components, most probably due to the applied distortion effects in case
of the former two and the unvoiced sibilants in case of the singing voice. Similarly, the 0th coeffi-
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Figure 4.9: Box plots of the 5 top-ranked features for pitched instrument recognition. See second part of the figure for a
detailed caption.

cient of the spectral valley feature discriminates the same groups of instruments¹⁰ (Figure 4.9c). e
3rd Bark band energy however exhibits similar separation abilities (Figure 4.9d), indicating that the
magnitude of frequency components between 150 and 200 Hz are important acoustic properties
for discriminating electric Guitar, Hammond organ, and the singing Voice in this context. Finally,

¹⁰Unfortunately this feature cannot be interpreted directly in terms of the acoustical properties it captures, since the
applied PCA linearly combines the information from each band by applying a transformation matrix calculated from the
data itself.



4.2. Classification 93

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

ce cl fl ga ge ha pi sa tr vi vo

V
a

lu
e

(d)Mean of 3rd Bark energy band.

−200

−150

−100

−50

0

50

ce cl fl ga ge ha pi sa tr vi vo

V
a

lu
e

(e) Mean of 2nd MFCC coefficient.

Figure 4.9: Box plots of the 5 top-ranked features for pitched instrument recognition. Despite the assumable non-linear
feature dependencies applied by the classification model for category decisions, several discriminative properties with respect
to groups of instruments can be observed from the depicted features. Legend for the instrumental categories plotted on
the abscissa: Cello (ce), Clarinet (cl), Flute (fl), Acoustic Guitar (ga), Electric Guitar (ge), Hammond organ (ha), Piano (pi),
Saxophone (sa), Trumpet (tr), Violin (vi), and singing Voice (vo).

the equal position of some boxes in Figure 4.9e, for instance the boxes corresponding to Clarinet
andTrumpet, may explain the mutual confusion that can be observed between these instruments in
Table 4.3.

In a further experiment, we assess, for a single instrument, the informativeness of the individual au-
dio features. at is, our aim is to identify the most discriminative features used by the developed
model for separating a given instrument from all others. In doing so we build, for each musical
instrument, a binary dataset from the instances falling on the diagonal of Table 4.3, grouping the
instances of the respective instrument against the rest. Next, we compute theχ2 statistic between all
features and the respective class in order to determine the dimensions captured by the features the
model uses for discrimination between the individual categories. We then rank the features accord-
ing to the obtained values. In other words, we only analyse these data which are perfectly recognised
by the trained model¹¹, avoiding any confused instances. In the course of the following analysis we
therefore also determine those acoustic characteristics of the individual instruments which enable

¹¹Although the instances in Table 4.3 are classified by slightly different models due to the CV procedure, we hypothesize
that the conclusion drawn from the forthcoming analyses does not cause any loss of generality. e small value of the standard
deviation – obtained by averaging the results of 10 different CV – in Table 4.2 is further suggesting this hypothesis.
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(c) Flute.

Figure 4.10: Box plots of the 5 top-ranked features for individual pitched instrument recognition. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

a successful discrimination among them. Figures 4.10(a)-(k) show the obtained Box plots for the
respective 5 top-ranked features.

Similarly, we examine, for a given instrument, which of the applied audio features are accountable
for misclassification. at is, we take all instances of a single ground truth category, as shown in one
single entire row in the confusion matrix of Table 4.3, and group them into correctly and incorrectly
recognised instances. Again, the χ2 statistic is calculated for all features in each binary scenario and
the resulting values are ranked. We hypothesise that those features ranked as most informative are
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(f ) Hammond organ.

Figure 4.10: Box plots of the 5 top-ranked features for individual pitched instrument recognition. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

accountable for the main confusion of the particular instrument. e here identified features will, to
a certain extent, resemble those found in the experiment described above, but also reveal additional
features only attributable to the instrument-specific confusions. In other words, the aim here is
to identify the saxophone qualities of a Clarinet instance recognised as Saxophone, rather than the
general qualities of Saxophone tones which separates the instrument from all others, as performed
in the previous experiment. Figures 4.11(a)-(k) show the obtained Box plots for the respective 5
top-ranked features. In what follows we discuss the outcomes of both aforementioned experiments
for each instrument separately and relate the respective features to the acoustic characteristics of the
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(h) Saxophone.
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(i) Trumpet.

Figure 4.10: Box plots of the 5 top-ranked features for individual pitched instrument recognition. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

particular instruments. At last we provide a summary of the obtained insights in Table 4.4.

Cello. In Figure 4.10a, theCello is most significantly defined in terms of audio features, compared
to all other instruments, by the description of its spectral envelope. e instrument’s intrinsic char-
acteristics are encoded in the 2nd and 3rd MFCCcoefficientsmost probably accounting for the strong
body resonances in the spectral envelope. e spectral slope properties of low-pitched sounds, more
common for this instrument, are further described by 1st MFCC coefficient. Also the 5th spectral
valleys coefficient seem to play an important role. Analogously, the 4th and 5th spectral contrast
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(k) Singing Voice.

Figure 4.10: Box plots of the 5 top-ranked features for individual pitched instrument recognition. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. e figure shows those features mostly correl-
ated with the respective binary classes, only consisting of instances correctly predicted by the developed recognition model.
Not surprisingly, many of the depicted features can also be found in Figure 4.9. Legend for the feature statistics: mean value
of instantaneous values (mean), variance of instantaneous values (var), mean value of first difference values (dmean), and
variance of first difference values (dvar).

and valleys coefficients in Figure 4.11a may explain the confusions with acoustic Guitar (see also
Figure 4.11d). Moreover, the appearance of the 23rd Bark energy band in the figure could indicate
the confusions of some distorted Cello instances with the electric Guitar, since those high frequency
components are rather atypical for “natural” cello sounds.

Clarinet. Remarkably, the most prominent property of the Clarinet – the attenuation of the even
harmonics for low- and mid-register tones – is described by the top ranked feature in Figure 4.10b;
the 2nd tristimulus (here ambiguously denoted tristimulus1 due to 0-based indexing) describes the
relative strength of the 2nd, 3rd, and 4th harmonic. Similarly, the spectral crest feature seems to
account for the lacking harmonics since it relates the spectrum’s maximum to its average energy
value. A source of both recognition and confusion are features accounting for pitch strength (pitch
salience and pitch confidence), since strong clarinet tones exhibit rich harmonics in the upper part of
the spectrum while very soft tones can produce spectra consisting of only 4 harmonics. e afore-
mentioned features directly account for the relative harmonics’ strength since they derive their value
from an autocorrelation of the signal. Moreover, the appearance of the 2nd MFCC coefficient in
Figures 4.11b and 4.10i may be an indicator for the mutual confusions between the instruments



98 Chapter 4. Label inference

0

0.2

0.4

0.6

0.8

1

scvalleys4.dvar scvalleys5.dvar sccoeffs5.dvar barkbands23.var sccoeffs5.dmean

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(a) Cello.

−1

−0.5

0

0.5

1

mfcc2.mean spread.mean scvalleys0.mean pitch_conf.mean mfcc6.mean

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(b) Clarinet.

−1

−0.5

0

0.5

1

dissonance.dmean pitch_conf.mean pitch_sal.mean crest.mean sccoeffs2.mean

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(c) Flute.

Figure 4.11: Box plots of the 5 top-ranked features for individual pitched instrument confusions. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

Clarinet and Trumpet. Further evidence for this assumption can be derived from the relative posi-
tion of the Clarinet and Trumpet boxes in Figure 4.9e, showing the distribution of the 2nd MFCC
coefficient’s mean statistic with respect to all categories.

Flute. e Flute is separated by the description of the pitch strength and the roughness of the tone.
is can be related to the uniform overtone structure attributable to the flute’s sound for almost all
pitches as well as the strong noise components incorporated in the signal due to the blowing (Fig-
ure 4.10c). Basically, this also applies for the confusions associated with flute sounds (Figure 4.11c),



4.2. Classification 99

0

0.2

0.4

0.6

0.8

1

strongpeak.mean sccoeffs5.var barkbands12.var barkbands8.dvar scvalleys4.dvar

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(d)Acoustic guitar.

−1

−0.5

0

0.5

1

dissonance.dmean scvalleys0.mean barkbands23.var scvalleys5.dmeanbb_skewness.mean

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(e) Electric guitar.

0

0.2

0.4

0.6

0.8

1

mfcc6.dmean mfcc7.dmean spread.dmean sccoeffs3.dvar bb_spread.dmean

          

N
o

rm
a

liz
e

d
 v

a
lu

e
s

(f ) Hammond organ.

Figure 4.11: Box plots of the 5 top-ranked features for individual pitched instrument confusions. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

where the same features indicate the most common sources of errors. Remarkably, due to the ab-
sence of a pronounced formant structure in the flute’s tones, features directly describing the spectral
envelope (e.g. MFCCs) are not listed in the respective Box plots.

Acoustic Guitar. Figure 4.10d shows those features best separating acoustic Guitars, including the
slope of the sound’s spectrum as represented by the 1st MFCC coefficient as well as additional spec-
tral envelope descriptions via the 4th and 5th spectral contrast and spectral valleys coefficients, most
probably to distinguish the acoustic Guitar from other stringed instruments, e.g. Violin and Cello.
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(h) Saxophone.
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(i) Trumpet.

Figure 4.11: Box plots of the 5 top-ranked features for individual pitched instrument confusions. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. See last part of the figure for a detailed caption.

ese latter features also appear in Figure 4.11d, showing those features primarily involved in con-
fusing acoustic Guitar sounds; here, the 12th Bark band seems to describe the instrument’s formant
around 1.5 kHz, while the variance in the change of the 8th band may cause the confusions with the
singing Voice (see also Figure 4.10k).

Electric Guitar. On the contrary, the electric Guitar behaves differently, since the instrument does
not exhibit prominent body resonances like the acoustic Guitar, but is frequently played with artifi-
cial sound effects – the most prominent the distortion. us, features capturing these effects seem
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(j) Violin.
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(k) Singing Voice.

Figure 4.11: Box plots of the 5 top-ranked features for individual pitched instrument confusions. e two boxes for each
feature correspond, respectively, to the target instrument and the “rest” class. e figure shows those features most account-
able for the main confusions of a given instrument since we compare the feature values of the correctly labelled instances to
the incorrectly labelled ones of each category. Legend for the feature statistics: mean value of instantaneous values (mean),
variance of instantaneous values (var), mean value of first difference values (dmean), and variance of first difference values
(dvar). See text for more details.

to have high discriminative power; dissonance directly accounts for the non-linearities involved with
distorted sounds, whereas rolloff captures the enriched high frequencies, being significantly higher
than for other instruments (Figure 4.10e). Moreover, energies between 150 and 300 Hz are de-
scriptive (3rd and 4th Bark energy band) as well as the 0th coefficient of spectral valleys, which can
also be deduced by looking at Figures 4.9(c) and (d). On the other hand, the aforementioned dis-
sonance feature also provides the greatest source for confusions, most probably with other distorted
instruments such as the Hammond organ (Figure 4.11e). Also noticeable is the appearance of the
variance of the 23th Bark energy band, which seems to cause the confusions with the singing Voice
(see also Figure 4.10k).

Hammond. e Hammond organ is best characterised in our model by spectral distribution fea-
tures. Probably due to the absence of any intrinsic spectral shape property – the timbre of the
instrument can be modified by mixing the generated harmonic components at different amplitudes
via the drawbars – the distribution of the frequencies around the spectrum’s mean carries most in-
formation to recognise the instrument (Figure 4.10f). is can also be observed from Figure 4.9b,
where the Box representing the Hammond organ instances takes the most extreme position. Other
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discriminative features are the pitch strength and the 0th spectral valleys coefficient. Source for con-
fusions are the change in higher-order MFCC coefficients, as well as features capturing the spectral
spread (Figure 4.11f).

Piano. e characteristics of the Piano are primary described by features addressing the distribu-
tion of the components in the generated spectrum (Figure 4.10g), likely due to the rapid decrease of
the amplitudes of higher-order partials, a result from the strucked excitation of the strings. Here,
thePiano shows significantly lower values when compared to all other instruments (e.g. Figure 4.9b).
Accordingly, Figure 4.11g determines spectral energy between 150 and 300 Hz (3rd and 4th Bark
energy bands) most important for confusions of Piano sounds, most probably with electric Guitars
(e.g. see Figure 4.10e). Moreover, the rolloff, which accounts for high frequency properties of the
sound may explain the frequent confusions with Hammond organ and again with electric Guitar.

Saxophone. Figure 4.10h shows the features top-ranked for the Saxophone category. Apparently,
the 3rd and 4th spectral contrast coefficients account for the instrument’s distinct resonance structure
which separates it best from all other instruments. e 2nd MFCC coefficient seems to describe
similar aspects of the instrument’s sound, while the 5th coefficient capture the higher frequency
modulations of the spectral envelope. Recognition errors are most importantly assigned to the 3rd

spectral contrast coefficient (Figure 4.11h), which explains the high confusion rate with Trumpets
(note the co-occurrence of the feature also in Figure 4.10i). Moreover, the pitch strength feature
points towards confusions with the Clarinet.

Trumpet. Since the sound of theTrumpet is characterised by a rich overtone spectrum along with
little noise components, salience of the pitch is the top-ranked feature in Figure 4.10h. Moreover, the
2nd MFCCcoefficient and the spectral contrast and valley coefficients describe the formant structure
of the sound. ese features may also be accountable for the strong confusion of Trumpet sounds
with Saxophone. Since the Saxophone combines both brass and woodwind characteristics, a confu-
sion on the basis of the formant properties of the sound is not so far off. Also, the amplitude of the
first 4 harmonics as captured by trisimulus0 and tristimulus1 seems to be important for the misclas-
sification ofTrumpet sounds (Figure 4.11i). Finally, the pitch strength may be again accountable for
the prominent confusions with the Clarinet.

Violin. e features important for discriminating sounds from the Violin are depicted in Fig-
ure 4.10j; here, both the spread feature and the 3rd Bark energy band are probably used to distinguish
the instrument from electric Guitar,Hammond organ, and the singing Voice (Figures 4.9(b) and (d)).
Moreover, the 4th spectral contrast coefficient seems to model the instrument’s formant regions. On
the other side, Figure 4.11j shows these features most important for confusing Violin sounds with
other instruments. e re-occurrence of the 3rd Bark energy band and the spread feature points to-
ward confusions with electric Guitar and the singing Voice. Finally, the 4th MFCC coefficient, which
captures the general formant structure of the sound, may be addressable to cause various confusions,
e.g. with Clarinet or Saxophone.

Singing Voice. Lastly, the singing Voice is best characterised in our model by various Bark energy
band features between 400 and 800 Hz (Figure 4.10k). is emphasizes the importance of the first
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formant in distinguishing the singing Voice from other instruments, whilst the second formant re-
gion is primarily used to differentiate different human voices. Moreover, the shown features account
for both variances in the instantaneous and first difference values of the energy bands, which may
refer to the vibrato used by professional singers. Since the used data set does not comprise audio
recordings of opera, the characteristic singing formant of opera singers is not captured by the model.
Moreover, the high order Bark energy (23rd band) in Figure 4.10k seems to address unvoiced sibil-
ants, which can reach up to 12 kHz. Similarly, confusions of singing Voice sounds can be attributed
to the same features (Figure 4.10k); here, the region of the first formant area is important as well as
the high frequency content extracted by the 23rd Bark energy band, which most probably produces
the confusions with the electric Guitar. Additionally, the 6th MFCC coefficient, capturing higher
order modulations in the spectral envelope, thus referring to the fine-grained formant structure of
the sound, may partially explain the confusions with instruments like acoustic Guitar.

Summary. Table 4.4 shows a summary of the instrument-wise feature analysis. Here, the left
half contains the analysis for the individual instrument recognition, while the right half refers to
the confusion analysis (see above for more details). We grouped the identified features into broad
categories, representing the acoustical facets they capture, at which we assign a group to a particular
instrument if we findmore than one feature of the given group in the respective 5 top-ranked features
of Figures 4.10 and 4.11. In particular, Bark denotes local spectral energies as typically described by
the Bark energy bands, while Env. corresponds to all features accounting for the spectral envelope
of the signal, such as MFCCs or spectral contrast and valleys. Furthermore, we group all features
describing statistical properties of the spectrum into the Spec. category, whilst Pitch finally addresses
the features capturing pitch-related characteristics of the analysed sound. It can be seen from the
table that the developed recognition model uses the audio features referring to those properties of
the musical instruments which describe their intrinsic acoustical characteristics for discriminating
the respective categories. In particular, spectral envelope descriptions are the most important for
those instruments exhibiting strong body resonances (e.g. Cello, Violin, or acoustic Guitar), while
pitch-based features are associated with blown instruments such as Clarinet orTrumpet. Moreover,
the recognition model relates instruments applying artificial audio effects to descriptions of their
spectral statistics, noticeable here are the electric Guitar and the Hammond organ, both frequently
using the distortion effect which influences the spectral characteristics of those instruments’ sounds
to a great extent. Remarkably, the singing Voice is mostly characterised by local spectral energies in
the frequency region of the first formant. Not surprisingly, similar feature-instrument combinations
can be found in the confusion analysis, at which the spectral envelope description, being the most
decisive timbral characteristic of instrument sounds, causes the most confusions throughout the
instrumental categories. But also other, more specific, descriptions cause frequent inter-instrument
confusions, see, for instance, the pitch category for Clarinet andTrumpet or the spectral features for
electric Guitar and Hammond organ, accounting most probably for the applied distortion effects.

4.2.3.6 Error analysis

In this section we perform a qualitative analysis of the recognition errors by perceptually evaluat-
ing the wrongly predicted instances from Table 4.3. We thereby group the respective instances of a
given confusion pair according to the observed perceptual correlates. Our aim is to find perceptual
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Cello ✓ ✓
Clarinet ✓ ✓

Flute ✓ ✓ ✓ ✓
ac. Guitar ✓ ✓ ✓
el. Guitar ✓ ✓ ✓ ✓
Hammond ✓ ✓ ✓

Piano ✓ ✓
Saxophone ✓ ✓
Trumpet ✓ ✓

Violin ✓ ✓ ✓
Voice ✓ ✓ ✓

Recognition Confusion

Table 4.4: Summary of the feature analysis for pitched instruments. e left half of the table shows those features important
for the recognition of the instruments by the developed model, while the right half contains the ones most probably involved
in the confusions of the particular instruments. Here, Bark denotes local energies in the spectrum as captured by the Bark
bands, Env. corresponds to those features describing the spectral envelope, e.g. MFCCs or spectral contrast and valleys
features. Furthermore, Spec. refers to features accounting for statistical characteristics of the spectrum such as the spectral
spread or skewness, and Pitch contains all features related to the pitch properties of the signal, e.g. salience or tristimuli.

regularities in the confusions between particular instruments and adjust the training data accord-
ing to these found criteria. As already mentioned in the previous section, the confusion matrix in
Table 4.3 contains many instrument pairs with strong mutual confusions, thus we expect to find
those aforementioned regularities for some instrumental combinations.

Our first observation is, for each instrument across its respective confusions, a constant amount of
“noise”. at is, there exist a certain amount of instances, which confusion cannot be attributed by
any perceptual explanation. is amount of “noise” instances lies between 3 and 10, depending on
the confusion rate of the given instrumental pair, and is quite evenly distributed across the confu-
sion matrix. Moreover, we identify a significant number of instances in which signal the confusion
instrument is clearly audible, representing kind-of “correct confusions” (e.g. an instance labelled as
Flute but labelledwith acoustic Guitar, wherein the accompaniment acoustic Guitar takes a prominent
part). e obvious reason for such instances is wrong annotation, which is natural for a dataset of
this size. Moreover, such instances can also contain two similarly predominant instruments. Since
only one label is attached to each training instance, the model may use the not-annotated sound for
classification. Or, those instances are artefacts of the data generation process – the random extrac-
tion of the acoustical units from the audio file in the training corpus. Although the target instrument
is supposed to be continuously playing, in a typical 30 second excerpt containing a single predom-
inant instrument plus accompaniment, it can be expected that small sections of the signal happen
to be without the target. If those sections are extracted by the random data generation process, the
instance is labelled with the wrong instrument.

Furthermore, some of the found groups of errors can be identified intuitively by considering the
sound producing mechanisms of the respective instruments (e.g. Cello instances recognised as Vi-
olin), some bymusical attributes (e.g. Saxophone instances recognised asClarinet due to the soft play-
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ing style of the instrument), while others can hardly be grouped by perceptual explanation (e.g.Violin
instances recognised as Saxophone).

We further observe, for all instruments, that unison lines played by two different instruments are
often sources for confusion. Here, either the instance is labelled with one instrument, but the model
predicts the other one. Or, the unison generates a complete different timbre ( “fusing of timbre”, see
Section 3.2.2) which is then recognised as none of the participating instruments. Moreover, we
identify several additional factors attributable to the main confusions as produced by the model.
Some of these produced errors are perceptually obvious, while others are difficult to discover, even
for awell-trained listener. In the followingwe describe the sources of themost significant regularities
in the confusions determined during this perceptual error analysis, and indicate the corrections we
applied to the training dataset.

Sound production. Well-established confusions, e.g. betweenCello andViolin, can be explained by
the similar sound producing mechanism. Also confusions between acoustic Guitar and Cello,
both string instruments, or between Clarinet and Saxophone, both Wind instruments, can be
attributed to the sound producing mechanism. Most of these cases also pose difficulties to
experienced listeners in a perceptual discrimination task. Here, factors such as register and
dynamics play an important role.

Register. Since different registers of the same instrument may exhibit very different timbral
sensations (see Section 3.1), instruments are more likely to be confused when played
in specific tone ranges. is happens, for instance, in the upper register of Clarinet
and Flute, where the perceptual difference between tones of these two instruments can
only be determined by the amount of noise in the signal (Meyer, 2009). But also high-
pitched sounds from the Piano are frequently confused with Clarinet or Flute, probably
due to the missing modelling of the hammer sound. Another example is the confusion
between Cello and Violin, and vice versa, as high-pitched Cello tones sound similar to
Violin, while theViolin can be easily confused with the Cello in the low register. Indeed,
many confusions between those instruments in ourmodel can be attributed to the pitch
range of the respective sound, a fact that similarly happens to humans (Jordan, 2007;
Martin, 1999).

Dynamics. Analogously, dynamic changes in the sound of a particular instrument may have
a significant effect on its perceived timbre. For instance, we can address parts of the
Saxophone’s confusions with Clarinet to the low dynamics of the respective Saxophone
sound, since the sounds of the two instruments become perceptually very similar. Also
Trumpet, when played with low dynamics, is often confused withClarinet in our model.

Since most of the above-described phenomena result in “natural” confusions, i.e. the sounds
of two instruments get perceptually hard to discriminate, we do not adapt the data accord-
ingly. Also one has to question if it is in general possible to account for this subtle differences
at this level of granularity, i.e. the extraction of instrumental characteristics directly from a
polytimbral mixture signal.

Distortion. Instances of several instruments use a distortion effect, causing regular confusions with
electric Guitar andHammond organ. ese latter two are frequently played with distortion so
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that this particular effect becomes part of the instrument’s sound characteristics. Since the
training data of these two instruments includemany distorted samples, other instruments ap-
plying the distortion effect can be easily confused; for many instances the audio effect causes
the sounds to become perceptually very similar to distorted sounds of electric Guitar orHam-
mond organ. We accordingly remove all distorted instances from the training data of all in-
struments except the two aforementioned in order to model the instruments’ characteristics
rather than the audio effect.

Recording Condition. We observe a correlation between confused instances exhibiting old record-
ing conditions and the instrument Clarinet. Probably due to the high amount of Clarinet
samples taken from sources with such recording conditions, instances from other categor-
ies showing the same recording style are frequently confused with Clarinet in the model.
Moreover, the overall sound characteristics of these instances, i.e. missing lower and upper
frequency components in the signal’s spectrum, seem to corrupt perceptual discrimination
abilities between the respective instruments (e.g. Clarinet and Piano sound more similar un-
der this recording conditions). We therefore remove most of such Clarinet samples from the
training dataset and replace them with proper instances.

4.2.3.7 Discussion

Given the results presented in Section 4.2.3.4 and the insights provided by the respective feature and
error analysis, we first can confirm the main hypotheses postulated in the beginning of this Chapter
(Section 4.1). at is, given a certain amount of predominance, the spectral envelope and its coarse
temporal evolution of the target instrument is preserved, which enables the extraction of the in-
strument’s characteristics for computational modelling. We also show that longer time scales of
several seconds are needed for a robust recognition, most probably due to the complex nature of the
data the features describing the instrumental characteristics are extracted from. Since in polytimbral
datamasking of the target or interference between several concurrent sources frequently occur, more
confident decisions can be derived by integrating the data of longer time spans. Moreover, similar
observations were reported from perceptual recognition experiments, where humans performed sig-
nificantly better at longer time scales (Kendall, 1986; Martin, 1999).

e figures in Table 4.2 demonstrate that the resulting recognition performance is far from random,
indicating a successful extraction of the instrument-specific characteristics. Moreover, the applied
SVM architecture is suitable for modelling the complex relationships between categories in terms of
audio features. Here, the model’s ability to handle highly non-linear data together with its general-
isation abilities seems to be a key aspects for its superiority against the other classification methods
shown in the table.

More evidence for the successful extraction of the instrument-specific invariants can be found in the
nature and importance of the applied audio features, as analysed in Section 4.2.3.5. In general, the
features selected in the construction process of the recognition model resemble those identified in
automatic recognition studies performed with monophonic data (e.g. Agostini et al., 2003; Nielsen
et al., 2007). Furthermore, the acoustical facets captured by these features correspond to those
acoustical characteristics known to be decisive between musical instruments’ timbres from musical
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acoustics research (Meyer, 2009) (see also Figures 4.9 and 4.10). Finally, the most prominent con-
fusions identified in a perceptual analysis of the recognition errors coincide with those usually found
in analogue experiments with human subjects. is suggests that similar features as applied by the
developedmodel could also be used by the human auditory system to discriminate between different
instrumental categories.

However, the limitation in recognition accuracy of around 65% indicates that certain acoustical or
perceptual attributes of the instruments’ timbres are not captured by the applied audio features and
are therefore not modelled in the current system. e perceptual analysis of the errors suggest that
additional features are needed to account for the persistent confusions, which can be observed in
Table 4.3. Here, more fine grained description of the spectral envelope characteristics would enable
the discrimination between instruments from the same instrumental family (e.g.Cello versusViolin).
In addition, the description of the attack portion of the soundsmay help in the extraction of intrinsic
characteristics not directly manifested in the spectral envelope. is can reduce confusions between
blown instrument such as Clarinet and Trumpet, or string instruments like Cello and acoustic Gui-
tar. Moreover, a better modelling of noise transients would improve the recognition performance,
for instance the noise introduced by the hammer mechanics of the Piano, or the breathy sound as
produced by the Flute. Most of those aforementioned characteristics are known to improve recogni-
tion accuracy (e.g. Lagrange et al., 2010), but cannot be directly extracted from the raw polytimbral
audio signal.

In conclusion, the developed model shows a robust recognition performance on a complex task –
the direct recognition of predominant pitched musical instruments from polytimbral music audio
data – but leaves much headroom for improvement.

4.2.4 Percussive Instruments

In ourmethodwe focus on the detection of a single percussive instrument, theDrumkit. is choice
is motivated by its predominance in almost all genres of Western music, except for classical compos-
itions. We therefore assume that its presence or absence in a given musical context carries important
semanticmeaning. Moreover, adding less frequently used percussive instruments (e.g. Bongos, Con-
gas, Timpani, etc.) would complicate the model and may not increase the overall information.

In what follows we present our approach towards the detection of the Drumkit in Western mu-
sic; it is based on the modelling of the overall timbre of the Drumkit, without focusing on its in-
dividual components. In previous works we used an instrument-based method for detecting the
presence of the Drumkit (Fuhrmann et al., 2009a; Fuhrmann & Herrera, 2010), accomplished via
individual percussive instrument recognition (Bass Drum, Snare Drum, and Hi-Hat), as developed
by Haro (2008). Onset detection was applied to locate the percussive events in the music signal and
pre-trained SVMs predicted the presence or absence of each individual instruments. e so-found
information was then aggregated by a simple majority vote among these decisions along the entire
audio to indicate the presence of the Drumkit.
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A quantitative comparison of the two approaches – which is not included in this thesis – showed
no significant differences with respect to the recognition accuracy, but clearly favoured the timbre-
based over the instrument-based approach in terms of computational complexity; additional to the
performed onset detection, the latter applies the recognitionmodels farmore frequently to the audio
signal, since each onset has to be evaluated for all three instruments. e former evaluates a single
model sequentially, similar to the process for pitched instrument recognition. What follows are
the methodological details of our timbre-based method for approaching the problem of Drumset
detection.

Conceptually, we assume that the timbral properties of music with and without drums differ signi-
ficantly. is is reasonable since the different percussive instruments of the Drumset exhibit distinct
spectral energy patterns, e.g. pulsed low-frequency excitation for the Bass Drum, compared to the
other instruments the Drumset usually plays along. e problem can therefore be regarded as a bin-
ary pattern recognition task, as described in Section 4.2.1. Moreover, the following shares several
commonalities with the process of the pitched instrument recognition.

4.2.4.1 Classification data

As data corpus the same collection as for the pitched instruments is used. at is, we labelled these
excerpts according to the presence or absence of the Drumkit. In the case of ambiguity, i.e. both
classes inside a single excerpt, the excerpt was skipped. In total, we accumulate more than 1.100
excerpts per category, i.e. Drums and no-Drums.

4.2.4.2 Parameter estimation

eparameter estimation experiments described here are similar to those performed for the pitched
instruments, as described in Section 4.2.3.3. We therefore only briefly review the underlying con-
cepts and present the respective results.

Time scale. Here, we estimate the length of the audio instance, i.e. the acoustical unit, required for
a robust recognition of the Drumkit’s timbre. Again, to evaluate the problem, we construct multiple
collections for different extraction length, at which we randomly extract one single audio instance
from a given excerpt, and measure the respective recognition accuracy. Evidence from perceptual
experiments suggests that pure timbral categorizations are done at short time scales (several few 100
ms) and serve by this means as cues for higher-level organization tasks related to genre and mood
(Alluri & Toiviainen, 2009; Kölsch & Siebel, 2005). In contrast to the pitched instruments, where
an increase in recognition performance with increasing extraction length is observed, we therefore
expect the performance of the percussive model to be quasi-independent of the audio length the
information is taken from. Figure 4.12a shows the obtained results. We observe a slight increase
in recognition performance with longer time scales, which may result from the improved outlier
removal in terms of feature values for longer windows. According to these results we use a length of
3 seconds¹² for the percussive acoustical units in all subsequent experiments.

¹²Note that this value is the same as for the pitched instrument recognition, thus enabling the prediction of both models
from the same basic feature extraction process, which simplifies the whole recognition system to a great extent.
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Figure 4.12: Results of the time scale and data size experiments for percussive timbre recognition. Part (a) refers to the
recognition performance with respect to the length of the audio instances, while (b) depicts the mean accuracy for different
number of instances taken from the same training excerpt.

Data size. Similar to the pitched instruments, we estimate the influence of multiple instances
taken from a single audio excerpt on the recognition performance. Since the timbre of the Drumkit
should be rather constant across a single excerpt, we expect no influence of the datasize. Again, we
build multiple datasets in which we alter the amount of instances taken from a single excerpt and
compare the respective mean accuracies. Figure 4.12b depicts the experimental results, at which no
dependency of the recognition performance on the data size can be observed. Given those results we
use one single instance from each audio excerpt for percussive models in all upcoming experiments.

Feature selection. Table 4.5 lists the features resulting from the selection process described in
Section 4.2.1.3. In addition, Figure 4.13 shows the relative amount of features selected with re-
spect to the acoustical facets they describe. In total, we reduce the initial feature set comprising
368 low-level audio features to 43, a reduction of approximately 90%. More precisely, we observe
the relative importance of local energy distribution, represented by the Bark band energies, for the
Drumkit’s timbre recognition. Particularly only very low and high bands were selected, indicating
the discriminative character of these frequency regions. is confirms the intuition that the pres-
ence of drums mainly adds significant components in both extrema of the audio spectrum, primary
due to the sounds of the Bass Drum and the Cymbals¹³.

SVM parameters. Here, we follow the same methodology as described for the pitched instru-
ments. at is, we perform a two-stage grid search procedure to optimize the parameter settings for
the SVM model. Again for illustration purpose, Figure 4.14 shows the mean accuracy with respect
to the classifier’s cost parameterC and the RBF kernel’s γ parameter evaluated for the entire dataset.

¹³e frequency regions where the Snare Drum and the Tom-toms are usually located seem to be very dense due to
overlapping frequency components of other instruments, e.g. guitars and singing voice around 500-800 Hz, which increases
the complexity of the recognition problem.
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Feature Statistic Index

Barkbands mean 0, 1, 24, 25
Barkbands var 1
Barkbands dmean 0, 1, 22
Barkbands dvar 1, 2, 8, 22
MFCC mean 1, 4-11
MFCC var 0
MFCC dvar 0
Spectral contrast mean 0
Spectral contrast dmean 0-2
Spectral valleys mean 0, 4, 5
Spectral valleys dmean 1, 2
Spectral valleys dvar 4
Barkbands spread var –
Barkbands spread dvar –
Pitch confidence var –
Pitch salience mean –
Spectral flatness mean –
Spectral kurtosis mean –
Spectral kurtosis dmean –
Spectral spread mean –
Spectral spread dmean –
Odd2even ratio dmean –

Table 4.5: Selected features for the percussive model. Legend for the statistics: mean (mean), variance (var), mean of differ-
ence (dmean), variance of difference (dvar).
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Figure 4.13: Selected features for percussive timbre recognition grouped into categories representing the acoustical facets
they describe.

4.2.4.3 General results

Table 4.6 presents the results after 10 independent runs of 10 Fold CV. Again, we compare the
performance obtained by the proposed SVMarchitecturewith several classification algorithms from
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Figure 4.14: Mean accuracy of the percussive timbremodel with respect to the SVMparameters. Here, classifier’s complexity
C and the RBF kernel’s γ are depicted.

Anull C4.5 NB 10NN MLP SVM*

50% 83.9% 81.8% 87.7% 87.2% 89%±0.27pp

Table 4.6: Recognition accuracy of the percussive timbre classifier in comparison to various other classification algorithms;
a Decision Tree (C4.5), Naïve Bayes (NB), Nearest Neighbour (NN), and Artificial Neural Network (MLP). Due to the
simplicity of the problem compared to the pitched instruments, the recognition performance of the shown classifiers lie
closer together. Hence, even conceptually simple algorithms such as the C4.5 score good accuracies. e proposed SVM
architecture is still superior, although its performance can be regarded as equivalent to the ones of 10NN and MLP, since the
proposed SVM is the only approach applying a grid search for parameter optimisation. e asterisk denotes mean accuracy
across 10 independent runs of 10-Fold CV.
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Drums 1026 128

no-Drums 136 1018

Table 4.7: Confusionmatrix of the percussive timbremodel. e vertical dimension represents the ground truth annotation,
while the horizontal dimension represents the predicted labels of the respective instances.

the software packageWEKA.As can be seen from the table even simple algorithms such asDecision
Trees (C4.5) or Naïve Bayes (NB) score high accuracy values. Since the recognition task at hand
is far more simple compared to the one of the pitched instruments, the gap to complex algorithms
such as the Artificial Neural Network (MLP) or the SVM is not that big. Since the proposed
SVM architecture applies parameter optimisation via grid search, its performance can be regarded
as equivalent to the MLP and 10NN algorithms, although it shows the highest value in recognition
accuracy. Additionally, Table 4.7 shows the confusion matrix obtained from a single 10-Fold CV.
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Figure 4.15: Box plots of the 5 top-ranked features for percussive recognition. e asterisk at the 5th spectral valleys coeffi-
cient indicates compression of the values in order to fit into the range of the Bark energy features for better visibility.

4.2.4.4 Feature analysis

In this sectionwe perform an analysis of themost important audio features involved in the percussive
recognition task, as similarly applied for the pitched instruments. We therefore perform a ranking
of all selected features based on their χ2 statistic with respect to the classes (Eq. 4.13). e top-
ranked features are assumed to carry the most information for discriminating the target categories.
Figure 4.15 shows the 5 top-ranked features resulting from this analysis.

efigure demonstrates the importance of low-energy spectral components between50 and100Hz,
as represented by the 2nd Bark energy band (again, note that in our zero-based indexing the 2nd Bark
band is denoted as barkbands1, see the Appendix for a listing of the Bark energy bands according
to the used indexing scheme). All statistical descriptions of the feature’s time evolution along the
3 second excerpt exhibit high discriminative power. is indicates the major importance of the
Bass Drum, which carries its main energy in the aforementioned frequency region. A perceptually
missing Bass Drum therefore often causes wrong predictions, as discussed in Section 4.2.4.5.

Next, we construct binary datasets by grouping the instances of each category into correct and in-
correct predictions, performing the same ranking procedure as described above. An analysis of the
top-ranked features reveals those audio features primarily involved in the confusions of the respect-
ive categories. Moreover, we can deduce the most prominent acoustical analogies involved in this
discrimination. Figure 4.16 shows the 5 top-ranked features of the respective dataset.

Interestingly, the figure reveals high frequency components – 22nd and 24th Bark energy bands –
to be of major importance in the misclassification of the respective categories. at is, missing high
frequency components cause instances labelled as Drums to be predicted as no-Drums. Vice versa,
given a considerable amount of energy in this frequency region, themodel predicts instances without
drums wrongly asDrums. is indicates that apart from low-frequency properties of the signal also
high-frequency characteristics are incorporated by the model in the decision process. Remarkably,
the former are mostly attributable for correct recognition, while the latter are prominently involved
in wrong predictions.
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(b)No-Drums.

Figure 4.16: Box plots of the 5 top-ranked features for percussive confusions. e asterisk indicates compression of the
feature values in order to fit into the range of the Bark energy features for better visibility.

4.2.4.5 Error analysis

In this section we perform a qualitative error analysis by perceptually evaluating the confused in-
stances in Table 4.7. We again group these confusions according to regularities of perceptual, acous-
tical, or musical kind, and subsequently describe the most prominent of these groups. is gives
some insights into the acoustical properties of the data involved in the most prominent confusions.

For both types of confusions, i.e.Drums recognised as no-Drums and vice versa, instances exhibiting
only a sparse amount of drums (e.g. a short drum fill) frequently produce wrong predictions. In the
case of confusions ofDrums as no-Drums, the only identified, but prominent regularity is the sound
of the Drumset when played with “Brush” sticks, as typically found in jazz performances. Here, the
Bass Drum is not audible any more, probably due to the soft playing style and the thereby involved
masking effects via other concurrent instruments, while the only remaining perceptual sensation is
the noise introduced by the Brushes in the mid and high frequency range. On the other hand, for
no-Drumswrongly predicted asDrums, the following can be observed; first, if the recording contains
a constant amount of perceptually important noise, it is predicted as Drums. e high frequency
components introduced by the noise seem to trigger theDrums decision in the model. Second, per-
cussively played pitched instruments, such as the acoustic Guitar and the electric or acoustic Bass, cause
confusions, most probably due to the impulsive character of the observed sound events (e.g. “Slap
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Bass”). Moreover, different other kinds of percussive instruments are spuriously predicted asDrums,
among which the most prominent are Shakers or Tambourines, producing high frequency compon-
ents, and percussion containing only Bongos and Congas. Remarkably, we found almost a double
amount of annotation errors in the no-Drums (24) category than in the Drums category (13). is
suggests that identifying the presence of drums is easier for a human than recognising its absence in
perceptually ambiguous situations.

4.2.4.6 Discussion

e observed recognition accuracy of almost 90%, presented in Table 4.7, suggests that the timbral
characteristics of the Drumset are captured by the developed recognition model. e conclusions
drawn from the feature analysis and the perceptual error analysis further indicate that the model
uses the corresponding acoustical characteristics for modelling the timbre of the Drumset. Further-
more, the acoustical properties extracted by the applied audio features resemble the properties of the
individual instruments of the Drumset; especially frequency regions in the lower and upper range
of the spectrum are decisive – and used by the model – for recognising the timbre of the Drum-
set. Moreover, the prominent presence of descriptions of the spectral envelope (e.g. MFCCs) in the
applied audio features can be assigned to the opposite category, i.e. sounds containing only pitched
instruments.

4.3 Labelling

4.3.1 Conceptual overview

In this section we describe the approaches taken to infer labels related to the instrumentation of a
given music audio signal of any length from the frame-based classifier estimates, described in the
previous section. Given the consecutive predictions of the models along time, context analysis is
used to translate the probabilistic output by the classifiers into instrumental labels and correspond-
ing confidence values. Due to the stationary character of predominant musical instruments inside
a musical context, i.e. when entering in a musical phrase the particular instrument will be active
for a certain amount of time and will not stop unexpectedly, labels are derived from longer time
scales by exploiting the statistical or evolutionary properties of those instruments therein. In this
course we avoid the direct inference of labels from sections containing unreliable classifier decisions,
i.e. exhibiting a great variability in the respective probabilistic estimates over time, since the context
analysis will rely on portions of the signal with rather unambiguous instrumental information. In
other words, sections containing instrumental confusions have less influence on the inferred labels,
while those sections with predominant instruments are the main source for label inference, since
strong tendencies of the probabilistic estimates towards these instruments are observable there.
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Moreover, context analysis with a focus on predominant instruments increases the method’s robust-
ness against all kinds of noise. Here, the most apparent noise is represented by musical instruments
that are not modelled by the classifiers. Since the categorical space of the system is rather lim-
ited – we only model 12 categories from the population of musical instruments – these unknown
sources will frequently appear in the input data. Given an unknown instrument at the input of the
model, its probabilistic output should ideally not indicate a preference for any modelled instrument.
Moreover, the temporal sequence of the classifier’s probabilistic estimates should exhibit a great vari-
ability, again showing no preference for any category along this dimension. Hence context analysis
prevents the method from labelling according to short-term predictions resulting from unknown
instruments. However, in case of strong confusions, even context analysis does not provide means
for filtering the spurious labels.

e label inference process itself is based on the temporal integration of the instrumental models’
probabilistic output. As a first step, a time-varying representation of “instrumental presence” is gen-
erated, starting with a frame-wise extraction of the information encoded by the classifiers. at is,
a texture window¹⁴ is applied, wherein audio features are both extracted and integrated, and the re-
spective SVM model evaluated. Label inference is then performed on the generated time series by
integrating the classifiers’ decisions along time. Due to their musically different adoptions, we derive
separate labelling approaches for pitched and percussive instruments, which outputs are combined
afterwards. Parts of the approaches described in this section have been published by Fuhrmann &
Herrera (2010).

4.3.2 Data

For evaluating our labelling approaches we constructed a dataset containing a total number of 235
pieces of Western music, composed of a diversity of musical genres and instrumentations. We asked
our lab colleagues – most of them music enthusiasts – to supply us with, at least, five pieces of their
favourite music. Additionally, we queried the platform allmusic.com¹⁵ with the modelled instru-
ments and gathered one randomly selected track from each artist of the resulting list. is data
gathering process resulted in a diversified set of music pieces, hence guaranteeing for a manifold
in musical genres, composition and production styles, and, most importantly, instrumentations.
Moreover, we excluded all tracks from the preliminary evaluation collection that were used in the
training process of the instrumental models. We applied the fingerprinting algorithm provided by
MusicBrainz¹⁶ to unambiguously compare both sets of music pieces. We identified 15 mutually
used tracks, resulting in an effective collection size of 220. Additionally, we assigned genre labels to
each track in the collection by evaluating the output of 5 human annotators to obtain a consistent
description of the musical genres involved in the collection (see Section 6.1.3 for more details and
some further remarks on this genre annotation).

¹⁴e size of this texture window is given by the results of the time scale experiments described in the previous sections,
i.e. 3 seconds for both the pitched and percussive labelling.

¹⁵http://www.allmusic.com
¹⁶http://musicbrainz.org/doc/PicardDownload

http://www.allmusic.com
http://musicbrainz.org/doc/PicardDownload
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jaz blu roc cla pop met cou reg dis

50 7 31 44 64 13 1 1 9

Table 4.8: Genre distribution inside the labelling evaluation dataset. e categories are derived from the genre dataset of
Tzanetakis & Cook (2002), see Section 6.1.2 for more details. Legend for the genre labels: Jazz ( jaz), Blues (blu), Rock
(roc), Classical (cla), Pop (pop), Metal (met), Country (cou), Reggae (reg), and Disco (dis).

Two subjects were paid for annotating the respective half of the collection. After completion, the
data was swapped among the subjects in order to double-check the annotation. Moreover, all so-
generated annotations were reviewed by a third person to guarantee maximum possible correctness
of the data.

Table 4.8 illustrates the distribution of the tracks in the collection with respect to their musical
genre according to the human annotations. Note the diversity in musical genres and the atypical dis
(i.e. Disco) category. Also note that due to the absence of an explicit Electronic class in this specific
genre taxonomy¹⁷, many electronic pieces are distributed among the Pop andDisco categories. ese
tracksmainly exhibit instrumentations involving instruments that are notmodelled by the classifiers.
Here, mainly synthesiser-based musical instruments are adopted by the composers, exceptionally
some pieces feature the modelled instruments singing Voice and Drums.

In every file the start and end times of nearly all instruments were marked manually, whereas no
constraints in the nomenclature were imposed. is implies that in addition to the 11 pitched in-
struments modelled and the labelDrums, every instrument is marked with its corresponding name.
Hence, the number of categories in the evaluation corpus is greater than the number of categor-
ies modelled by the instrumental classifiers. Moreover, if the subject doing the manual annotation
could not recognise a given sound source, the label unknownwas used. To illustrate the distribution
of labels inside this music collection, Figure 4.17 shows a cloud of the instrumental tags assigned
to the music tracks. As can be seen, all 12 modelled categories exhibit a certain prominence in the
cloud, which indicates their importance in Western music. Note especially the weight of the un-
known category; a statistical analysis of this “category” shows that each music track in the collection
contains, on average, 1.61 unknown instruments. Moreover, Figure 4.18 depicts the histogram of
the number of labels annotated per track, indicating the instrumental complexities covered by this
collection.

4.3.3 Approaches

In this section we present the respective algorithms developed for the extraction of labels from the
frame-based model decisions. Again, the following is divided into pitched and percussive instru-
ments.

¹⁷We here adopted the taxonomy proposed by Tzanetakis & Cook (2002). See Section 6.1.2 for the motivations behind
this adoption, a detailed analysis of the human genre ratings, and some further taxonomic issues.



4.3. Labelling 117

Figure 4.17: Tag cloud of instrumental labels in the evaluation collection. Font size corresponds to frequency. Note the
prominence of the 12 modelled categories.
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Figure 4.18: Histogram of the number of per-track annotated labels in the evaluation collection.

4.3.3.1 Pitched instruments

e inference of pitched instrumental labels is based on an analysis of the “instrumental presence”
representation, which is generated by applying the instrumental model sequentially to the audio
signal using a hop size of 0.5 seconds. e resulting multivariate time series is then integrated to
obtain the final labels and corresponding confidence values.

e first step consists of estimating the reliability of the segment’s label output; given the 11 gener-
ated probabilistic output curves, a threshold θ1 is applied to their mean values along time. is is
motivated by experimental evidence that segments with a high number of unknown instruments or
heavy inter-instrument occlusion show mean probabilities inside a narrow, low-valued region (note
that the instrument probabilities sum to 1 for every frame). If all mean probability values fall below
this threshold, the algorithm discards the whole segment and does not assign any pitched label to
it. A second threshold θ2 is then used to eliminate individual instruments showing low activity,
which can be regarded as noise. If the mean value of a given probability curve along the analysed sig-
nal falls below this threshold, the respective instrument is rejected and not included in the labelling
procedure. Figure 4.19 shows an example of the probabilistic representation together with the used
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Figure 4.19: An example of the probabilistic representation used for pitched instrument labelling, derived from a 30 second
excerpt of music. e main figure shows the probabilistic estimates for sources A-E, the right panel the mean values together
with the thresholds used for instrument filtering. e excerpt is used for labelling since A’s mean falls above θ1, and E is
rejected as its mean is below θ2. Note the sequential predominance of the instruments A, C, and B.

threshold parameters. Based on the resulting reduced representation, we derive three approaches
for label inference accounting for different granularities of the data’s temporal characteristics. ose
approaches are:

1. Mean Value (MV). e simplest of the considered approaches determines the respective la-
bels by selecting those nMV instruments with the highest mean probabilistic value. e
strategy neglects all temporal information provided by the classifier’s decisions and derives
its output by simply averaging the input. Moreover, it assumes that the predominance of
the respective sources is sufficiently reflected in the obtained mean values, e.g in the case of
two sequentially predominant sources the highest two mean values should indicate the cor-
responding instruments. e resulting label confidences are determined by the mean prob-
abilistic value of the respective instruments. Hence, the temporal information and thus the
musical context is only incorporated by the predominance of a given instrument with respect
to time.

2. RandomSegment (RS). Segments of length lRS are taken randomly from the reduced prob-
abilistic representation to account for variation in the instrumentation. Within each of these
segments, a majority vote among the instruments holding the highest probabilistic values
is performed to attach either one or – in the case of a draw – two labels to the signal under
analysis. e assigned confidences are derived from the number of the respective instrument’s
frames divided by both the length lRS and the total number of random segmentsnRS extrac-
ted from the input. All labels are then merged, at which the confidences of identical labels are
summed. Here, the temporal dimension of the music is not incorporated, since the inform-
ation is extracted locally without considering the evolution of the instruments’ probabilities
along the entire signal.
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3. Curve Tracking (CT). Probably the most elaborate and plausible approach from the percep-
tual point-of-view; labels are derived from regions of the excerpt where a dominant instru-
ment can be clearly identified. Decisions in regions where overlapping components hinder
confident estimations are inferred from context. e probabilistic curves of the determined
instruments are therefore scanned for piece-wise predominant sections. If an instrument is
constantly predominating (i.e. it holds the highest of all 11 probabilistic values) within a sec-
tion with a minimum length lCT , the instrument is added to the excerpt’s labels along with
a confidence defined by the relative length of the respective section. Moreover, we allow for
short discontinuities in these sections of predominance, in order to account for temporary
masking by other instruments. is process is repeated until all sections with predominating
instruments are identified. Finally, confidence values for multiple labels of the same instru-
ment are summed.

After the respective labellingmethodwe apply a final threshold θ3 to the estimated confidence values.
Labels holding confidences which fall below this threshold are rejected in order to discard unreliable
tags.

4.3.3.2 Percussive instruments

In order to determine the presence of the Drumkit, we use a simple voting algorithm working on
the classifier’s estimates; labelling is performed by accumulating the detected events and deciding on
the basis of their frequency. Similarly to the pitched labelling method the developed timbre model is
sequentially applied to the audio by using a hop size of 0.5 sec. We then threshold the frame-based
probabilistic estimates with a value of 0.5 to obtain a binary representation of classifier decisions.
Next, a simplemajority vote is performed to determine the presence of theDrumkit. at is, if more
than half of the binary decisions are positive, the audio is labelled with Drums and the respective
confidence is set to the fraction of positive votes.

4.3.4 Evaluation

4.3.4.1 Data

For evaluating the respective labelling methods we use 30-second excerpts, extracted randomly from
the music pieces of the evaluation collection described in Section 4.3.2. is strategy to reduce data
is common in MIR research, many genre and mood estimation systems use excerpts of 30-second
length to represent an entire piece of music ¹⁸ (Laurier et al., 2010; Scaringella et al., 2006; Tzane-
takis & Cook, 2002). Moreover, this length provides a sufficient amount of data for evaluating the
different labelling methods, involving time-varying instrumentations while excluding repetition of

¹⁸As subsequently discussed in Section 5.2.2.1 an excerpt of 30 seconds is not representative in terms of instrumentation
for the entire music piece. Contrary to the concepts of genre and mood, which are rather stable along a music track, instru-
mentations may vary to a great extent. However, for the purpose targeted here, this length exhibits enough information for
evaluating the labelling methods.
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Figure 4.20: Distribution of labels inside the labelling evaluation dataset. Part (a) shows the label frequency, while part (b)
depicts the histogram of annotated instruments per excerpt.

Acronym Value Description

θ1 [0.1, 0.15, 0.2, 0.25, 0.3] threshold to filter unreliable input
θ2 [0.1, 0.15, 0.2, 0.25, 0.3] threshold to filter non-active instruments
θ3 [0.1, 0.15, 0.2, 0.25, 0.3] threshold to filter low-confidence labels

nMV [1, 2, 3] number of top-ranked instruments used as labels
lRS [4, 5, 6, 7] length of the decision window in frames
nRS max.4 number of segments to use for labelling
lCT [5, 7, 9, 11] minimum length of the section in frames

Table 4.9: Acronyms and respective discrete values of the pitched labelling parameters used in the grid search. e right
column shows a short description of the parameter’s functionality. See text for more details on the parameters.

the instrumental information due to the musical form of the piece. Figure 4.20 shows the distribu-
tion of labels in this dataset together with the histogram of annotated instruments per excerpt.

4.3.4.2 Methodology

Since the three algorithms for the labelling of pitched instruments require a parameter estimation
step, evaluation is performed in a 3-Fold CV procedure. at is, in each rotation 2/3 of the data
is used for estimating the proper parameter values of the respective algorithms and the remain-
ing 1/3 for performance estimation. A one-stage grid search procedure is carried out during para-
meter estimation to determine the optimal values from a predefined sampling of the parameter space.
Table 4.9 lists all parameters to estimate along with the respective values evaluated during the grid
search. In consequence, all forthcoming experiments of this chapter report mean values and corres-
ponding standard deviations.
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4.3.4.3 Metrics

To estimate the performance of the label inference approaches we regarded the problem as multi-
class, multi-label classification (cf. Turnbull et al., 2008). at is, each instance to evaluate can hold
an arbitrary number of unique labels of a given dictionary. By consideringL, the closed set of labels
to evaluate, L = {li}, i = 1 . . . L, we first define the individual precision and recall metrics for
each label by

Pl =

∑N
i=1 ỹl,i · ŷl,i∑N

i=1 ỹl,i
, and Rl =

∑N
i=1 ỹl,i · ŷl,i∑N

i=1 ŷl,i
, (4.14)

where Ŷ = {ŷi}, i = 1 . . . N , and Ỹ = {ỹi}, i = 1 . . . N , with ỹi ⊆ L, denote, respect-
ively, the set of ground truth and predicted labels for the elements xi of a given audio dataset
X = {xi}, i = 1 . . . N . Here, ỹl,i (ŷl,i) represents a boolean variable indicating the presence of
label l in the prediction (ground truth annotation) of the instancexi. Furthermore, we derive the in-
dividual label F-metric by combining the aforementioned via their harmonicmean, i.e.Fl =

2PlRl

Pl+Rl
.

To estimate the cross-label performance of the label inference, we define macro- and micro-averaged
F-metrics (Fan & Lin, 2007). First, the macro-averaged F-measure Fmacro is derived from the in-
dividual F-metrics by calculating the arithmetic mean, resulting in

Fmacro =
1

L

L∑
l=1

Fl =
1

L

L∑
l=1

2
∑N

i=1 ỹl,i · ŷl,i∑N
i=1 ỹl,i +

∑N
i=1 ŷl,i

. (4.15)

Furthermore, we define themicro-averaged F-metricFmicro, taking the overall label frequencies into
account, hence

Fmicro =
2
∑N

i=1

∑L
l=1 ỹl,i · ŷl,i∑N

i=1

∑L
l=1 ỹl,i +

∑N
i=1

∑L
l=1 ŷl,i

. (4.16)

Moreover, to provide a global estimate of the system’s precision and recall, we introduce the micro-
averaged, i.e. weighted cross-label average, analogues as defined by

Pmicro =
1∑L

l=1

∑N
i=1 ỹl,i

L∑
l=1

N∑
i=1

ỹl,iPl =

∑L
l=1 tpl∑L

l=1 tpl +
∑L

l=1 fpl

, (4.17)

Rmicro =
1∑L

l=1

∑N
i=1 ŷl,i

L∑
l=1

N∑
i=1

ŷl,iRl =

∑L
l=1 tpl∑L

l=1 tpl +
∑L

l=1 fn l

, (4.18)

where tpl, fpl, and fn l denote, respectively, the true positives, false positives, and false negatives of
category l. Note that all micro-averaged metrics are weighted according to the instance frequency of
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the respective categories, hence more frequent categories have more impact on the respective met-
ric than less frequent ones. On the other hand, macro-averaged metrics apply a simple arithmetic
mean across categories, thus all classes contribute to the same extent to the metrics regardless their
frequency.

4.3.4.4 Baseline systems

To frame the experimental results we introduce a comparative baseline systems which incorporates
the label frequencies in the used evaluation collection. is null model is generated by drawing each
label from its respective prior binomial distribution and averaging the resulting performance over
100 independent runs (Ref prior).

4.3.5 General results

Table 4.10 shows the obtained results for all three considered approaches for labelling pitched in-
struments along with the prior-informed baseline. Note that the pitched and percussive labels are
evaluated jointly, thus the methods in the first column of the table only account for the labels of
pitched instruments, to which the estimated Drumset label is added. e depicted metrics are re-
lated to the amount of erroneous and correct predictions (Pmicro andRmicro)¹⁹, as well as the global
labelling performance based on the amount of instances (Fmicro) and categories (Fmacro).

First, it can be seen that the proposed labellingmethods are performingwell above the prior-informed
label assignmentRef prior. is substantiates the representativeness and validity of the recognition
models and confirms the hypothesis that the contextual information is an important cue for label
inference, at all levels of granularity exploited here. In total, the algorithms are able to extract al-
most 60% of all annotated labels correctly, which results in a F score across categories of 0.45. is
difference in the two applied F metrics reflects the imbalance of individual instrumental labels in
the applied testing collection. However, the models’ recognition performance is maintained (see
Section 4.2), but the here-evaluated labelling approaches are not limited to predominant sources;
all annotated labels are weighted equally in this evaluation.

Second, regarding the three different labelling methods for the pitched instruments, we can observe
that none of the proposed methods performs superior than the others. is is even more surprising
when considering the conceptual difference of taking just the mean probability of the instruments
along the analysed signal (MV) and scanning their output probabilities for piece-wisemaxima (CT).
On the contrary, we only observe a slightly better performance in terms of bothF metrics ofMVand
CT against RS. We may explain this observation by the fact that if an instrument is predominant it
is recognised by all three methods, since all account for the sources’ predominance inside the signal.
On the other hand, if the algorithm is faced with a too ambiguous scenario, the methods perform
similarly bad. e observed small differences between RS on the one side and MV and CT on the

¹⁹In case that a given instrument i is never predicted for any audio file to evaluate, its respective value of Pi is un-
defined. We therefore substitute the precision value with the instrument’s prior probability, as used for the baseline approach
Ref prior (cf. Turnbull et al., 2008).
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Method Pmicro Rmicro Fmicro Fmacro

Ref prior 0.4± 0.02 0.4± 0.02 0.4± 0.02 0.21± 0.02
MV 0.7± 0.083 0.58± 0.018 0.63± 0.03 0.045± 0.034
RS 0.61± 0.042 0.59± 0.087 0.6± 0.041 0.43± 0.005
CT 0.7± 0.083 0.57± 0.042 0.62± 0.031 0.45± 0.035

Table 4.10: General result for the labelling evaluation. Note that the output of the two distinct labelling modules is already
merged, even if the compared labellingmethod only apply for the pitched instruments. e results are, however, proportional.

other side however result from their different analysis “scopes”, since the latter two are incorporating
the entire instrumental information of the signal, thus are able to better account for the temporal
continuity of predominant information inside the signal. e former only applies local information
and may thereby extract more likely short-term spurious information, as manifested in the low value
of the precision Pmicro in Table 4.10.

Figure 4.21 furthermore shows the F score for the individual instrumental categories. Again, we
cannot observe any significant differences among the three examined pitched labelling approaches,
which emphasises the conclusions drawn above. Moreover, the noticeable spread in the standard
deviations of particular instruments is related to their annotation frequency inside the used eval-
uation collection; the higher the depicted standard deviation the less frequently the respective in-
struments appears in the dataset. What follows is a detailed examination of the performance of
individual instruments with respect to the applied evaluation metric. is will further reveal factors
influencing the performance of the developed labelling methodology. Moreover, by comparing the
here-presented individual performance figures to the metrics obtained in the evaluation of the re-
cognition models (Figure 4.8), we can derive conclusions about the nature of the data and the role
of the covered musical instruments therein.

First, we can observe that usually prominent instruments such as the singing Voice, the electric Gui-
tar, or the Saxophone show best performance among the evaluated pitched instruments. is pre-
dominance in opposition to the other modelled instruments is neither reflected in the training nor
the evaluation process of the recognition models, thus explaining the difference in the respective
performance figures. Especially the singing Voice improves with respect to the performance in the
model evaluation, an indicator for the influence of the context analysis for label inference in case of
highly predominant instruments. e same applies to the Saxophone, being the worst instrument in
the model examination (Figure 4.8). We may explain the here-observable performance with its pre-
dominant character in solo phrases, which are typical for this instrument. Moreover, the estimation
of the Drumkit performs satisfying, owing again to its predominance in the mixture, indicating that
the employed label inference method is appropriate for the task at hand. Besides, the mean value
of the resulting confidence values of the Drums label for all evaluated instances exceeds 80%, which
suggest that the applied methodology for label inference, based on the majority vote, is properly
suited.

Next, the worst performance can be observed for the instruments Clarinet and Flute. Here, the
combination of, on the one hand, their sparse appearance in the evaluation data (see Figure 4.20a)
and, on the other hand, the usual absence of a predominant character explains the algorithms’ low
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Figure 4.21: Labelling performance of individual instruments. Note that the legend is not applying for the Drums category,
since the compared labelling methods only account for the pitched instruments. Legend of the labelling approaches: mean
value (MV), random segment (RS), and curve tracking (CT). See Section 4.3.3 for details.

labelling performance for these two instruments compared to the other ones. In particular, the
Clarinet is never predicted correctly on a total of 6 instances containing the respective label (besides,
in only 3 of these 6 instances the instrument exhibits a predominant character). In this context,
theViolin, performing similar to the Flute, must by treated slightly different since its performance is
underestimated in this analysis. e instrument is often predicted for instances labelled with Strings
(see Table 4.11), resulting in a lower value of its precision value, hence degrading the corresponding
F score. Since we can regard aViolin label predicted for a string section as a correct prediction, these
“correct” decisions are not reflected by the applied statistical metrics.

At last, theworse performance of acoustic Guitar andPianowith respect to the correspondingmetrics
observed in evaluation of the recognition models (Figure 4.8) results from their accompaniment
character in most part of the considered musical scope. us, in many cases these instruments do
not exhibit a predominant character, which is reflected in their poor labelling performance. Note
also the close performance of the baseline in the case of the Piano; this particular combination of an
accompaniment instrument with a high annotation frequency (Figure 4.20a) further decreases the
gap to the simple prior-based performance.

4.3.5.1 A note on the parameters

By examining the combinations of parameters resulting in the best performance for the respect-
ive pitched labelling methods we observe that, for each method, several parameter combinations
lead to the same labelling performance. Noticeable here is the trade-off between the two filters θ2
and θ3, which determine, respectively, those instruments to be considered in the labelling process
and the threshold for discarding weak labels. In general, these parameters control the algorithm’s
precision and recall in a given range of values, while keeping the overall labelling performance rep-
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Figure 4.22: ROC curve of labelling performance for variable θ2. e plot shows the true positive against the false positive
rate for decreasing values of the parameter.

resented by the F-metrics the same. Best performance can be particularly observed if one of them
takes control of the algorithm’s precision while the other controls the recall value; a low value of θ2,
for instance, results in a high recall while the corresponding high value of the label filter θ3 causes a
high precision. Approximately the same performance figures can be accomplished by inverting the
two parameters’ values; a high value of θ2 guarantees the high precision and the low value of θ3 the
corresponding high value in recall. Moreover, the importance of a given parameter depends on the
labelling method; that is, θ1 is crucial for the RS method, while the other approaches, i.e. MV and
CT, control their performance with θ2 and θ3, setting θ1 to 0. is is reasonable since RS does not
incorporate all instrumental information but is rather acting on a limited time support; it is there-
fore more dependent on a prior elimination of possible spurious information, while MV and CT
can filter these locally appearing errors using the musical context. To demonstrate the influence of
a single parameter on the algorithm’s labelling performance, Figure 4.22 shows a Receiver Operat-
ing Characteristics (ROC) curve, depicting the resulting true and false positive rate at a variable θ2.
Usually ROC curves are used to graphically illustrate the trade-off between the hit and false alarm
rate of a machine learning algorithm, given a varying system parameter (Witten & Frank, 2005).
Hence, we bypass θ1 as well as θ3 and vary θ2 from 0.9 downwards to 0, processing all files in the
collection by applying the CT labelling method. Since the conception of the labelling methodology
does not allow for the entire range of both ordinate and abscissa in the figure, i.e. in practice it is not
possible to reach both 100% true and false positive rate, the range of the curve is limited. However,
it still can be seen that the composite of correct and incorrect predictions can be adjusted by different
settings of the parameter, at which the optimal trade-off is located around 50% of the true positive
rate²⁰.

Next we look at the approaches’ individual parameters, i.e. the number of top-ranked instruments
nMV for theMVapproach and theminimal length lCT for theCTmethod. e optimal parameter

²⁰e optimal performance is found at the particular point where the tangent to the curve exhibits the same slope as the
diagonal of the full-range plot.
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values for each rotation in the 3-Fold CV show a value of 2 for the first parameter. is suggest that
also the simple MV method is able to extract multiple predominant instruments from a single mu-
sic signal. Here we speculate that the method is even able to handle both the case of two sequential
predominant instruments and the case of simultaneous predominant sources. A value greater than
2 is however decreasing the labelling performance, indicating that the third mean value already com-
prises to a large part spurious information. e second individual parameter, the CT method’s lCT

parameter, leads to best labelling performance for small values, i.e. values of 5 to 7 consecutive classi-
fication frames. Since the labelling threshold θ3 is used to discard labels with low confidence values,
i.e. resulting from segments of short duration, it seems that the functionality of this small value for
the lCT parameter is primarily to enhance already found labels by increasing their confidence values
(recall that the confidence values of multiple identical labels are summed). A label derived from a
single predominant occurrence in the probabilistic representation of “instrumental presence” of this
short length would probably fall below θ3 and therefore be eliminated.

4.3.6 Analysis of labelling errors

Similar to the analysis of classification errorswehere performaqualitative analysis of labelling errors.
Again, we concentrate on the consistent confusions which show regularities across several instances
while trying to disregard noisy artefacts. Moreover, we focus on thewrongly predicted rather than on
missed labels; since the data used for evaluation is not providing evidence about the predominance
of the instrument inside the mixture, evaluating why a certain instrument has not been predicted is
more difficult than estimating why a certain label has been wrongly predicted. e latter can mostly
be deduced from a confusion with a perceptually predominant instrument, while the former may
simply result from the accompaniment character of the source. In particular, we first evaluate the
influence of the music’s timbral complexity on the labelling performance and then examine the inter-
instrument confusions by means of analysing a cross-confusion matrix. Finally, we concentrate on
the impact of not-modelled categories and their respective complexity on the output of the presented
method.

For the sake of simplicity, we perform all subsequent experiments with the CT labelling method
for the pitched instruments in the 3-Fold CV with the respective best parameter settings. us the
label output of the instance of all 3 evaluation folds is merged and used to perform the following
analyses of errors. Since all three labelling methods presented in Section 4.3.3 perform in the same
range of accuracy, we expect the here-derived conclusions to be valid for each of the methods.

To quantify the influence of the data’s timbral complexity, i.e. the number of concurrent annotated
sound sources, on the labelling performance, Figure 4.23a illustrates the efficiency in terms of ex-
tracted labels of the applied method. Hence, the number of extracted labels is plotted against the
number of annotated labels, showing a ceiling in the number of extracted labels of around 2.3 for
complexities greater than 3. is seems reasonable since in most cases only one or two predominant
pitched instrument together with the possible label Drums is extracted. Following the conventions
of theWesternmusical system it is very unlikely that within 30 seconds ofmusicmore than 2 pitched
instruments exhibit a predominant character.
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Figure 4.23: Total and relative-erroneous amount of labels attached with respect to the source complexity. Part (a) refers
to number of labels attached to an audio instance, while (b) depicts the relative amount of instances producing wrong pre-
dictions. Here, the extreme value of 1 at the 8th bar results from a single audio file containing 8 instruments, which the
algorithm labels with a wrong label.

e second part of the figure shows the relative amount of instances producing an erroneous pre-
diction, again with respect to the timbral complexity of the instance. It can be seen that there is
hardly any direct dependency between the algorithm’s error rate and the number of instruments in
the signal. e errors are rather uniformly distributed among all different complexities, when dis-
regarding the outliers at complexities of 3 and 8. Especially the high value at the 8th bar in the figure
can be neglected since it results from a single audio file containing 8 instruments²¹. is suggests
that predominant information of musical instruments is available across all levels of source density
to nearly the same extent (of course except for complexities of 1, where only predominant inform-
ation is present). Moreover, it indicates that the presented algorithm is able to handle all kinds of
source complexities with a reasonable constant error rate which is not directly dependent on the
number of concurrent sound sources.

Next, Table 4.11 shows a “confusion matrix” extracted from the error predictions of the algorithm’s
output in the 3-FoldCVprocedure. Here, modelled instruments are plotted against annotated ones,
resulting in the noticeable imbalance between the horizontal and vertical dimension. For a given
wrongly predicted label (column index) we augment the entries of all respective annotated instru-
ments (row index) in the matrix. As a result all diagonal entries of the modelled categories hold 0.
Note that an observed prediction error is affecting all musical instruments annotated in the analysed
instance, as the error cannot be attributed to a single acoustic source in the ground truth. Hence,
a given prediction error is contributing to multiple rows in the table, depending on the number of
annotated instruments of the given instance. Even though some of the instrumental combinations
shown in Table 4.11 are not informative – for instance the row containing the instances annotated
with the label Drums does not give any evidence about the confusions with pitched instruments, a
result from the universal adoption of the Drumset in the analysed music – this error representation
gives useful insights into the functionalities of the presented labelling method. We can particularly
deduce conclusions about the labelling performance on both the modelled and not-modelled cat-
egories.

²¹Unfortunately, we could not find a straightforward explanation for the increased value of the 3rd bar.
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Cello 0 0 0 0 0 0 0 1 0 0 0 0 0.11

Clarinet 1 0 1 0 0 0 0 1 1 0 0 0 0.67

Flute 1 1 0 0 0 3 1 0 0 2 0 2 0.83

ac. Guitar 1 1 3 0 0 2 3 1 0 5 0 9 0.58

el. Guitar 2 3 8 2 0 10 4 1 3 2 2 4 0.48

Hammond 1 1 6 1 0 0 3 0 1 1 0 3 0.57

Piano 4 4 8 3 2 4 0 7 5 3 3 7 0.68

verdammt.Saxophone 1 3 3 1 2 1 0 0 4 0 1 0 0.67

Trumpet 1 1 1 0 1 0 0 1 0 1 1 0 0.47

Violin 1 1 1 0 0 1 0 0 1 0 0 1 0.46

Voice 6 1 9 3 3 14 3 7 2 5 0 14 0.59

Drums 1 3 11 5 6 18 4 6 5 5 5 0 0.49

Strings 3 1 1 1 0 1 1 1 2 8 1 3 0.79

Brass 0 0 0 0 0 1 1 4 0 0 1 0 0.78

Bass 1 5 13 4 3 16 4 6 7 4 5 8 0.5

Unknown 2 1 10 5 5 6 3 0 1 4 1 3 0.73

Percussion 0 1 0 0 1 2 1 1 0 0 0 6 0.92

Trombone 0 0 0 0 0 0 0 2 1 0 0 0 1

Harmonica 0 0 1 1 0 0 0 0 0 0 0 0 1

Accordion 0 0 0 0 0 1 0 0 0 0 0 2 1

Bells 0 0 0 0 0 0 1 0 0 0 0 0 1

Oboe 0 0 0 0 0 0 0 0 0 1 0 0 1

Horn 0 0 0 0 0 0 0 0 0 0 0 0 0

Tuba 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.11: Confusion matrix for labelling errors. e vertical dimension represents the ground truth annotation, while the
horizontal one denotes the predicted labels. Note that only wrongly predicted labels are considered, i.e. missed labels are not
counted. Moreover, a given error is assigned to all instruments in the respective annotation, hence depending on the number
of instruments annotated in the respective audio file, appearing multiple times in the matrix. e last column represents the
relative weight of the categories’ errors.

Analysing themodelled categories, as indicated by the light-grey rectangle inTable 4.11, we can con-
firm several observations from our previous, “frame-based” error analyses, e.g. see Section 4.2.3.6;
for instance, the row containing instances labelled with acoustic Guitar shows a significant amount
of wrongly predicted labels Drums, a fact that has been already observed in Section 4.2.4.5. Simil-
arly, the confusions between electric Guitar and Hammond organ, attributed to the distortion effect
frequently applied by both instruments, or between Hammond organ and Flute can be found here.

e right-most column in Table 4.11, denoted with Σ, shows the relative amount of erroneous
instances of a given category. us, we can rank the modelled categories according to this quantity.
Similar to the results presented in Figure 4.21, Flute performsworst among allmodelled instruments
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with a total of 83% of wrongly labelled instances, followed by Piano, Saxophone and Clarinet. e
latter produces typical confusions with other blown instruments, i.e. Flute, Saxophone andTrumpet.
Also the Saxophone, albeit performing 2nd best of the pitched instruments in Figure 4.21, shows
a fraction of 67% wrongly labelled instances. Here, similar confusion patterns as in the analysis of
classification errors (Section 4.2.3.6) can be observed, particularly with the other blown instruments
Clarinet, Flute, andTrumpet. At last, the low performance of the Piano in this representation can be
again explained by both its usual accompaniment character and the fact that it is the only instrument
equally employed in all the covered musical genres.

Surprisingly, some of the previously encountered mutual confusions between certain musical instru-
ments are not represented in Table 4.11. We observe a good separation between acoustic and electric
Guitars, which cannot be found in Table 4.3. Correspondingly, Cello and Violin do not show those
strong confusions as illustrated in the confusion matrix of the classification performance. ese res-
ults may be explained by both the sparsity of some labels in the dataset used for this evaluation and
the different adoptions of the instruments depending on the musical context.

An analysis of those categories not modelled by the classifiers in Table 4.11 shows most instances
producing “natural” confusions, i.e. confusions expected when considering the acoustical properties
of those instruments. In particular, String and Brass sections are labelled in a large part with the
respective containing instruments, that is Cello and Violin labels for Strings, and Saxophone for the
Brass category. Also the instances annotated with Trombone exhibit these corresponding predic-
tions, i.e. labels Saxophone and Trumpet, an indication that the acoustical characteristics of those
instruments have been encoded properly by the models. Moreover, the Percussion category shows
strong confusions with the label Drums, as similarly observed in Section 4.2.4.5. Finally, and not
surprisingly, we identify the unknown category as frequent source for labelling errors. Here, conclu-
sions concerning the confusions with the modelled instruments are more than speculative, since the
acoustical properties of those unknown sources are not known beforehand.

Finally, we examine the labelling performance with respect to the number of unknown sources
present in the evaluation instances. at is, we group the output of the CV related to the amount of
not-modelled sources and calculate the evaluation metrics (Section 4.3.4.3) for all resulting groups.
Figure 4.24 shows the results in terms of the obtained F-metric Fmicro. It can be seen that for
numbers of 1 to 3 unknown sources the performance of the algorithm degrades gracefully, as stated
in the requirements for recognition systems presented in Section 3.3. However, the low value for
those instances containing no unknown instrument does not fully agree with this conclusion. We
may speculate that, on the one hand, the imbalance in instances between the different groups causes
this unexpected value (34, 113, 64, and 9 for numbers of 0, 1, 2, and 3 unknown instruments,
respectively). On the other hand, since the musical role of the not-modelled instruments is not
known beforehand – it may exhibit accompaniment or solo characteristics – their total amount is
only slightly influencing the system’s performance on average. Of course, the greater their number
the higher the probability a given unknown source exhibits a predominant character, thus causing
wrong predictions, which explains the degrading performance of higher-order groups in Figure 4.24.
Hence, we can conclude that the number of unknown instruments plays a subordinate role for our
recognition system, more important for the labelling performance is the predominance a certain
source – both known and unknown – exhibits.
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Figure 4.24: Labelling performance with respect to the amount of unknown sources.

4.4 Discussion

4.4.1 Comparison to the state of the art

Here, we shortly relate the presented method on the basis of the obtained results to the correspond-
ing literature in the field of automatic recognition ofmusical instruments. A reasonably fair compar-
ison is only possible to those studies using real music audio data for evaluation with a similar timbral
complexity to ours (in our experiments the maximum is 9 concurrent sources, see Figure 4.20b) and
not using any prior information regarding the data in the recognition process. Hence, from theworks
listed in Table 3.1, Barbedo & Tzanetakis (2011); Eggink & Brown (2004); Essid et al. (2006a);
Kobayashi (2009); Leveau et al. (2007); Simmermacher et al. (2006) fulfil the aforementioned cri-
teria. If we then consider the variety in musical styles and genres in the respective studies’ evaluation
data, we can only keep the works by Kobayashi (2009) and Barbedo & Tzanetakis (2011) for an
adequate comparison of recognition performance. Among those three – the two aforementioned
and the approach presented in this thesis – Kobayashi (2009), who applies a conceptually similar
approach, scores best with 88% of total accuracy for the 50 track evaluation collection. However,
this work is incorporating the fewest categories, which moreover include compound categories such
as string and brass sections. Here, Barbedo & Tzanetakis (2011), relying on multi-pitch estimation
rather than extensive machine learning, is ahead with 25 different categories, which strengthens the
impact of the obtained F-score of 0.73. e authors however included neither any “not-known”
instruments nor heavy percussive sources in the evaluation data (moreover, the authors note that
in the presence of heavy percussion the recognition performance drops to a value of around 0.6 in
terms of the F-score). is fact in turn hampers a direct comparison to both the work of Kobayashi
(2009) and the here-presented approach. Furthermore, the evaluation data of our method is the
most versatile of all three studies, thus incorporating a great amount of not-modelled sources along
with the greatest variety in musical styles and genres, including even electronic music.
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In conclusion, yet a reduction to the most similar approaches in literature does not guarantee a
direct and fair comparison between the respective works. Only in the presence of a general evalu-
ation framework, including a constant taxonomy together with a corresponding evaluation dataset,
a comparative analysis becomes possible. In the context of the above-mentioned we regard the per-
formance of our method as state-of-the-art, albeit the existence of a large head-room for improve-
ment of the labelling performance. In this course we want to contribute to the research community
with the public availability of the data used in this thesis and thereby hope to improve the compar-
ability of the different approaches in literature. e training data excerpts, the annotations of the
evaluation tracks along with an extensive list of the corresponding audio files can be found under
http://www.dtic.upf.edu/~ffuhrmann/PhD/data.

4.4.2 General discussion

In this chapter we have presented our approach towards the inference of labels related to musical
instruments frompolytimbralmusic audio signals of any length. We combine the frame-level output
of pre-trained statistical models of musical instruments (both pitched and percussive) with musical
knowledge, i.e. context analysis, to develop a method that robustly extracts information regarding
the instrumentation fromunknown data. Our focus thereby lies on the the development of a general
purpose method, i.e. a method that can be used without additional information²², thus reflecting an
everyday music listening situation. e resulting computational implementation is further thought
to be embedded into typical MIR systems performing operations such as music indexing or search
and retrieval. We therefore conceptualise the presented method under these constraints, i.e. we
adapt the algorithmic design, the taxonomy, and the resulting system’s complexity to the envisioned
task, i.e. the recognition of musical instruments from Western musical compositions in connection
with the integration inside a typical MIR framework.

In the beginning of this chapter we stated 3 hypotheses reflecting our main assumptions prior to the
design process of the presentedmethod (Section 4.1). We now are able to validate these 3 theoretical
claims by examining the results presented in the respective evaluation sections of this chapter. In
particular, we recapitulate the following from our observations and relate it to these hypotheses:

Hypothesis 1 – the ability of extracting instrument specific characteristics from polytimbral music
audio signals given a certain amount of predominance of the target – is clearly validated by a reflec-
tion on the results presented in Sections 4.2.3.4 and 4.2.4.3, and the corresponding analyses of the
involved acoustical features. e performance of both the pitched and percussive recognition model
is far in excess of the used null model Anull. Moreover, the presented algorithmic implementa-
tion outperforms or is equivalent to all other tested methods in the respective case, i.e. pitched and
percussive recognition. Next, the analyses of the most important descriptions in terms of audio fea-
tures revealed those acoustical dimensions that are widely known to define the different timbres of
the employed instrumental categories. In particular, the features selected by our feature selection
procedure resemble those features determined to be important in perceptual studies using mono-

²²We note that the inference process does not need any a priori information, thus the method can be applied to any piece
of music regardless of its genre, style, instrumentation, number of concurrent sources, etcetera.

http://www.dtic.upf.edu/~ffuhrmann/PhD/data
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phonic input data. In essence, the information extracted from the audio signal and subsequently
applied in the modelling process corresponds to the acoustical properties – or invariants – of the
respective instruments.

Hypothesis 2 – the importance of contextual information for label inference – is validated by the
results of the labelling algorithms presented in Section 4.3.5. Here, we compare 3 labellingmethods,
each incorporating a different amount of contextual information, at which all methods clearly out-
perform the comparative null modelRef prior²³, which is based on the prior distribution of the cat-
egories inside the used data collection. Moreover, we observe an advantage of increasing contextual
information for labelling performance; those methods which incorporate the full contextual scope
score slightly better than the method which uses only local context for label inference. Since the
data used to evaluate the labelling methods does not account for predominant instruments, i.e. the
ground truth annotations consider all instruments equally (see Section 4.3.2), the importance of
the context analysis is also apparent when considering the properties of the labelling approaches.
By focussing on those sections with the most confident classifier output while disregarding model
decisions on frames where overlapping sources are hindering reliable estimations, a robust label in-
ference is guaranteed. is is also substantiated by the maintenance of performance in comparison
to the frame-level evaluations of Sections 4.2.3.4 and 4.2.4.3.

Hypothesis 3 – the validity of the extracted information inside a typical MIR framework – is con-
firmed by the results obtained from the analysis of labelling errors in Section 4.3.6. Apart from
the noise that can be observed in the main confusion matrix of Table 4.11, the most prominent
confusions as well as the algorithm’s performance on the not-modelled categories can be identified
as reasonable. Mutual confusions between modelled categories can mainly be attributed to their
similar acoustical properties, while the algorithm mostly predicts acoustically similar instruments
on data containing prominent unknown categories, which are present in the evaluation data. Ad-
ditionally we show that neither the timbral complexity nor the amount of unknown categories is
affecting the method’s labelling performance to a great extent. is indicates that the method can
be used inside a typical MIR framework, since it is able to handle Western music pieces of all kind.
Hence, we can conclude that the extracted semantic information enables a meaningful modelling of
musical instruments, as assumed in the hypothesis.

Nevertheless, compared to the human ability of recognising sounds fromcomplexmixtures – still the
measure of all things – we notice a clearly inferior performance of the developed labelling algorithm,
although we are lacking a direct comparative study. is is however evident from the noise that can
be observed in all confusionmatrices presented in this chapter (Tables 4.3, 4.7, and 4.11), whichwas
never observed in perceptual studies including human subjects (e.g. Martin, 1999; Srinivasan et al.,
2002). Humans, in general, tend to confuse particular instruments on the basis of their acoustical
properties, a property that is also observable with the presented method.

²³We want to note the good performance of this baseline system as shown in Table 4.10. Even though the baseline
is using the same data for training and testing, which evidently results in an overestimation of its performance, the figures
suggest that a lot of the information is already covered in the prior distributions of the respective instruments. Hence, future
research in instrument labelling should incorporate this source of information, at least in the evaluation to properly estimate
the respective system’s performance.
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Recapitulating, we believe that the results of this chapter, including both the classification and the
labelling steps, not only suggest valuable information for automatic musical instrument recognition
research, but for MCP research in general. One of the evident findings in the course of this chapter
is that information on sound sources can be obtained directly from the mixture signal; hence a prior
separation of the concurrent streams is not implicitly necessary for modelling perceptual mechan-
isms such as sound source identification! erefore, our results support the music understanding
approach, introduced in Section 2.2, which combines information regarding the music itself with
perceptual and cognitive knowledge for music analysis. Analogously, our observations disapprove
the transcription model, where a score-like representation is regarded as the universal primary stage
for all music analysis systems. Moreover, given the results presented in Figure 4.23b, we can fur-
ther speculate that not the source complexity itself, but rather the noisy nature of the extracted
information is causing the model’s confusions. is again favours the music understanding model,
since a perceptually inspired modelling of the respective sources together with the provided context
should be able to reduce the noise and thereby increase the algorithm’s labelling performance. us
a context-informed enhancement of the source components together with an adequate modelling of
the sources – recall that for the human mind learning is a life-long process (see Section 3.3) – seems
to be sufficient for a robust recognition of musical instruments in the presence of concurrent sources
and noise.





5

Track-level analysis
Methods for an instrumentation analysis of entire music pieces

In the previous chapter we yet concentrated our efforts on processing music audio signals of any
length, by presenting a general methodology for automatic musical instrument recognition. e
thereby analysed music was not subjected to any convention with regard to formal compositional
rules, we particularly evaluated our system on randomly extracted musical excerpts of 30 seconds
length. In this chapter we want to exploit the properties that these formal aspects, typically found
in Western music, offer to guide the extraction of instrumental labels form entire pieces of music.
Like in the previous chapter, we here introduce our main hypotheses that lead to the developments
described in the course of this chapter. ese assumptions refer to the main criteria we consider
prior to the design process of the specific algorithms and will be validated subsequently. ey can
be stated as follows:

1. e instrumental information that can be extracted from predominant sources represents
an essential part of the composition’s instrumentation. erefore, most of the instruments
playing in a given music piece appear at any time in a predominant manner.

2. e recurrence ofmusical instruments, equivalent to the redundancy of instrumental inform-
ation, within a musical composition can be exploited for reducing the data used for the label
inference process, hence alleviating the total computational load of the system.

In particular, we hypothesise that using knowledge derived from the global characteristics of a given
music piece is beneficial for instrument recognition in several respects; we may only process those
sections where recognition is more reliable or reduce the overall amount of analysed data by exploit-
ing redundancies in the instrumentation. More precisely, the presented methods consider higher-
level properties of musical compositions such as structural and instrumental form. In general, this
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Figure 5.1: e general idea behind the track-level approaches; given an entire piece of music the respective track-level
method outputs a set of segments according to its peculiar specifications. We then apply the label inference algorithm to
these segments to derive the instrumental labels for the piece under analysis.

so-called track-level analysis supplies the subsequent instrument recognition with a list of segments,
which indicate where and how often the label inference algorithm has to be applied to extract the
most confident or representative instrumental labels. We then evaluate these approaches with re-
spect to the correlation between the obtained labelling performance and the amount of data used
for inference. Figure 5.1 illustrates the general idea behind the track-level analysis.

In the following we present two conceptually different approaches towards the recognition of in-
struments from entire music pieces; first, we describe a knowledge-based approach which identifies
sections inside a musical composition exhibiting a certain degree of predominance of one of the in-
volved musical instruments (Section 5.1). Second, we present several agnostic approaches to select
the most relevant sections in terms of the analysed track’s instrumentation, optimising the prob-
lem of both maximising the recognition performance and minimising the computational costs (Sec-
tion 5.2). esemethods are then evaluated in the instrument recognition framework (Section 5.3),
considering both the overall labelling accuracy in Section 5.3.4 and their performance with respect
to the amount of data used for processing (Section 5.3.5). We finally close this chapter with a dis-
cussion of the obtained results and concluding remarks (Section 5.4).

5.1 Solo detection – a knowledge-based approach

e key idea behind this first track-level approach is to locate those sections inside a given piece of
music that conform best with the assumptions we have taken in the design process of the label infer-
ence method. at is, the existence of a single predominant source, as incorporated in the training
data of the recognition models. Furthermore, we already identified the predominance of a single
musical instrument being a crucial factor for a successful label extraction. Hence, the developed
method explicitly looks for segments in the musical composition, where one single source is pre-



5.1. Solo detection – a knowledge-based approach 137

dominating the presumably polytimbral mixture. Due to the relatedness of our definition of the
predominance of a source in a musical context (see Section 4.1) and the musical concept of a Solo,
we derived the name Solo detection¹. In this context, we use the definitions of a Solo proposed by the
Grove Dictionary of Music and Musicians (Sadie, 1980):

“[. . .] a piece played by one performer, or a piece for one melody instrument with
accompaniment [. . .], and, [. . .] a section of the composition in which the soloist
dominates and the other parts assume a distinctly subordinate role.”

5.1.1 Concept

Our aim is to derive a segmentation algorithm which partitions the music audio signal into Solo
and Ensemble sections. Following the definition from above, we regard all sections of a musical
composition a Solo, which exhibit a single predominant instrument. In this context, the definition
also includes, apart from all possible pitched instruments², the singing Voice. In Western music the
singing Voice usually exhibits a strong predominance inside the music, a result from the common
mixing and mastering process.

We utilise general acoustical and perceptual properties related to the existence of such a predom-
inant source for segmenting the audio data into blocks of consistent information. e underlying
hypothesis is that given a sufficient amount of representative data together with a proper encoding
of the relevant information, we can apply a pattern recognition approach to learn the differences
that music audio signals with and without a single predominant source exhibit. ese learnt mod-
els can then be applied to identify, in a given piece of music, those section containing predominant
instrumental information.

From this it follows that one key aspect in this analysis involves determining the proper encoding
of the information that discriminates best the target categories. e main criterion thereby is to
describe the general characteristics of predominant instruments regardless of the instrument’s type.
Here, we rely on spectral and pitch related characteristics of the signal, described by low-level audio
features. Hence, we expect the signal of a predominant sound in general to be different from other
sounds not comprising such instruments in terms of these descriptions of the audio signal.

Stated differently, we look for sections in the signal of a given music piece, where instrument recog-
nition is “easier” than for other sections. Typical Solo sections exhibit less overlapping components
of concurrent musical instruments which simplifies the extraction of the instrument’s timbre from
the mixture signal. Parts of the here-presented work have previously been published by Fuhrmann
et al. (2009b).

¹We will use the term SOLO in the remainder of this chapter.
²Here, we are not directly considering percussive instruments since those instruments anyway show a predominant

character along the entire piece of music. us we assume that if percussive sources are present in the track under analysis,
the selected segments contain enough information for their successful recognition.
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5.1.2 Background

In this section we summarise the scarce works targeting the problem of detecting predominant in-
struments in music. e problem itself can be regarded as special variant of the general class of
supervised audio segmentation, i.e. partitioning the audio data in homogeneous regions and assign-
ing the corresponding class label to the respective segments.

Peterschmitt et al. (2001) used pitch information to locate solo phrases in pieces of classical music.
In this study the mismatch index of a monophonic pitch estimator, derived from the deviation of
the observed to the ideal harmonic series, indicates the presence of a predominant instrument. e
authors trained the pitch detector using examples of a given instrument and applied the developed
detection function to unknown data. Although the initial observations were promising, the overall
results did not satisfy the prospects of the research; the derived decision functionwas far too noisy to
discriminate between solo and ensemble parts and resulted in a percentage of 56% correctly assigned
frames.

Similarly, Smit & Ellis (2007) applied the error output of a cancellation filter based on periodicity
estimation for locating single voice sections in opera music. In particular, the output of an autocor-
relation analysis directed a comb filter, which cancelled the harmonic parts of the analysed signal.
en, a simple Bayesian model classified the error output of this filter and a final HMM extracted
the best label sequence from the resulting likelihoods. e final segmentation output of the system
showed superior performance over the baseline method, namely applying MFCC features in the
same Bayesian classification structure.

By adopting a methodology based on pattern recognition Piccina (2009) developed a system for
locating mainly guitar solos in contemporary rock and pop music. Similar to the here-presented
method a pre-trained model was applied sequentially to the audio data to assign, to each frame, the
proper class label. A subsequent post-processing stage refines the raw classifier-based segmentation
to obtain homogeneous segments. e author tested the system on 15 music pieces and reported,
among other performance measures, a classification accuracy of 88% correctly assigned frames.

In a previous study we applied parts of the here-presented methodology for detecting solo sections
in classical music (Fuhrmann et al., 2009b). We analysed a corpus consisting of excerpts taken from
recordings of various concerti for solo instrument and orchestra and identified 5 relevant audio fea-
tures to discriminate between the target categories. We then developed a segmentation and labelling
algorithm which combines the output of a local change detection function with the frame-based de-
cisions of a pre-trained SVM model. In this constrained scenario we could report acceptable results
for the overall segmentation quality of the system, including a classification accuracy of almost 77%
using an evaluation collection of 24 pieces.

Recently, Mauch et al. (2011) proposed a methodology combining timbre features with melodic
descriptions of the analysed signal. e authors aimed at detecting both instrumental solo and
voice activity sections from popular music tracks by combining 4 audio features. ese features
were extracted frame-wise and partially derived from a prior estimation of the predominant melody
using the technique of Goto (2004), the statistical learning of the respective categories was further
accomplished via a SVM-based HMM. e evaluation experiments, which applied a collection of
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102 music tracks in a 5-Fold CV procedure, showed that a combination of all tested features is
beneficial for the overall recognition performance. Moreover, compared to our results presented in
the aforementioned study as well as in the forthcoming section of this chapter, a similar performance
in terms of frame accuracy was reported.

5.1.3 Method

To derive a method for segmenting and labelling the input audio signal into the targeted categories
we apply a simple model-based approach (e.g. Lu et al., 2003; Scheirer & Slaney, 1997). In partic-
ular, we make use of pre-trained classifiers which model the difference between Solo and Ensemble
signals in terms of selected audio features. ese models are sequentially applied to the input data
and the resulting probabilistic output smoothed along time. We then binarize the resulting rep-
resentation and further post-process it by applying additional filtering. is final binary sequence
indicates the presence of a predominant source for each time frame.

As already mentioned above, the main assumption behind this approach implies that the relevant
properties of the data can be encoded in certain descriptions of the audio signal. Hence, we first
analyse our previously used large corpus of audio features (Section 4.2.1) to determine those features
which best separate the training data in terms of the two categories Solo and Ensemble. We then use
these selected features to train a statistical model using the training data.

Given these features we then construct an SVM classifier to model the decision boundary between
the two classes in the audio feature space. First, we extract the features frame-wise from the raw
audio signal of all instances in the training collection using a window size of 46 ms and an overlap
of 50%. We then integrate the instantaneous and first difference values of these raw features along
time using mean and variance statistics to derive a single feature vector for each audio instance. To
determine the optimal parameter values for the SVM classifier a two-stage grid search procedure is
applied as described in Section 4.2.3.3. Once the parameter values have been identified we train the
model using the data from the training collection.

We then use this model to assign the labels Solo or Ensemble to each classification frame of an un-
known music track. at is, we apply the model sequentially to the audio signal by using proper
values for the size and the overlap of the consecutive classification frames. is framesize is defined
by the results of the time scale experiment outlined below, hence 5 seconds of audio data, while
the overlap is set to 20%. We smooth the obtained probabilistic output of the classifiers along time
by applying a moving average filter of length lma, in order to remove short-term fluctuations in
the time series of classifier decisions. is time series is subsequently converted into a binary rep-
resentation by thresholding the values at 0.5, indicating, for each frame, the target categories. For
post-processing we finally apply morphological filters of kernel length lmo (Castleman, 1996) to
promote longer sections while suppressing shorter ones. ese filters have been previously applied
for music processing (Lu et al., 2004; Ong et al., 2006). Figure 5.2 shows a schematic illustration of
the processes involved in the presented algorithm.
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Figure 5.2: Block diagram of the presented track-level process for solo detection

5.1.4 Evaluation

In this section we evaluate the derived solo detection segmentation. We first describe the data used
in the design and evaluation process of the presented method, which is followed by a section cover-
ing the most important parameters and their respective estimation. We then introduce the metrics
applied for estimating the segmentation quality of the algorithm and subsequently asses the per-
formance of the entire system.

5.1.4.1 Data

Here, we outline the data we collected for this research. In particular, we constructed two sets of
data, one for training the statistical model, the other for evaluating the segmentation algorithm. It
should be noted that no tracks have been used in both training and evaluation collection.

For the training collection we gathered 15-second excerpts from polytimbral music audio signals,
containing either a single predominant source or an ensemble section. As already mentioned above
we include the singing Voice in the corpus of solo sounds due to its common predominant character
inside the mixture signal. Furthermore, the data account for various musical genres, hence maxim-
ising the generality and representativeness of the developed model. Since the overall goal is to apply
the developed algorithm in conjunction with our label inference method, the model has to cope with
a maximum variety in musical instruments and styles.

In total we accumulated around 500 excerpt for the Ensemble and more than 700 for the Solo cat-
egory, where parts of these excerpts are taken from the training data of the pitched instrument re-
cognition, described in Section 4.2.3. To avoid any bias towards one of the category we again always
work with balanced datasets by randomly subsampling the category with the greater amount of in-
stances to the level of the other one. To illustrate the diversity of this dataset, Figure 5.3 shows the
distribution of the instances with respect to their musical genre. Moreover, Figure 5.4 depicts a tag
cloud of the musical instruments contained in the Solo category of the collection.

We evaluate the presented method on entire pieces of music taken from classical, jazz, as well as
rock and pop music. In total, we collected, respectively, 24, 20, and 20 musical compositions from
the aforementioned musical genres, at which each piece is taken from a different recording. ese
tracks contain various predominant, i.e. solo instruments, and partially singing voice. We marked
the start and end points of all respective sections of Solo, Voice, and Ensemble in these music pieces.
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Figure 5.3: Genre distribution of all instances in the solo detection training collection.

Figure 5.4: Frequency of instruments in the Solo category of the collection used for training the solo detection model repres-
ented as a tag cloud.

5.1.4.2 Parameter estimation

In this section we describe the steps we have taken in the development of the solo detection model.
Hence, we apply the typical pattern recognition scheme involving training and testing as described
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Figure 5.5: Time scale estimation for the solo detection model.

in Section 4.2.1. e here-presented methodology is therefore similar to the process of developing
the instrument recognition models in the previous chapter.

Time scale. Similar to the instrument modelling the first step consists of identifying the optimal
time scale the model uses to predict the respective labels. at is, we want to determine the op-
timal amount of data, which corresponds to the audio signal’s length, from which a single prediction
is performed. We therefore build multiple datasets, each exhibiting audio instances of a different
length, taken from all excerpts in the training collection, and compare the average accuracies A res-
ulting from a 10×10-Fold CV using standard parameter settings. Figure 5.5 shows the obtained
graph, depicting the classification performance against the length of the audio instance. It can be
seen that longer time scales are beneficial for the recognition accuracy of the model. However, to as-
sure a reasonable temporal resolution of the final system, we chose the value of 5 seconds; it provides
a trade-off between good recognition performance and acceptable temporal resolution of the final
segmentation system.

It seems intuitive that the time scale to recognise pitched instruments and to determine solo activity
exhibits the same order of magnitude (cf. Section 4.2.3.3). Here, a stronger evidence for the pre-
dominance of a given sound source, which increases with longer time scales, enables a more robust
recognition. In this regard, longer time scales allow for more accurate sound source recognition.

Feature selection. Here we determine those out of our large set of audio features, which best
discriminate the target classes. We therefore employ the same 10-Fold feature selection procedure
as described in Section 4.2.1.3; Table 5.1 lists the resulting features. In total, the algorithm selects
30 features for modelling the data in the training collection. Contrastingly, in our previous work we
identified 5 features when studying the same problem but focusing exclusively on data taken from
classical music (Fuhrmann et al., 2009b). e here-observed excess in number of selected audio
features indicates that the problem is far more complex across musical genres. Hence, the distinct
recording and production styles employed in different musical genres complicate the extraction of
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Feature Statistic Index

Pitch confidence mean –
Pitch confidence var –
Pitch confidence dvar –
Spectral crest mean –
Spectral spread dmean –
Barkbands var 12
Barkbands dvar 8
LPC var 2
LPC dvar 3
MFCC mean 5, 9-11
MFCC var 3-12
Spectral contrast var 1-3
Spectral valleys dmean 3
Spectral valleys dvar 3,4
Tristimulus var 1

Table 5.1: Selected features for the solo detection model. Legend for the statistics: mean (mean), variance (var), mean of
difference (dmean), variance of difference (dvar).

a few significant characteristics that describe the acoustical and perceptual differences between the
targeted categories.

As can be seen from Table 5.1 the feature describing the pitch strength takes a prominent role in
the list. is seems intuitive since solo sections usually carry stronger pitch sensation than sections
without predominant harmonic sources. Hence, the corresponding pitch is easier to extract when
applying an estimator designed for monophonic processing. Consequentially, the corresponding
confidence scores higher in sections containing predominant instruments. Moreover, the descrip-
tion of the spectral envelope is important due to the relative frequency of MFCC and spectral con-
trast and valleys features in the table. It seems that ensemble sections exhibit general differences in
the spectral envelope than sections containing a soloing instrument that are encoded by these fea-
tures. Remarkably here is the strong presence of the higher-order MFCC coefficients’ variance –
in total 10 coefficients – which may describe the existence of a stable spectral envelope in sections
containing a predominant source. Furthermore, considering the results from the feature analysis in
Section 4.2.3.5, the variance of the first difference of the 9th Bark energy band (630 - 770 Hz, index
8!) seems to be primarily involved in the modelling of the singing Voice.

Classification. e statistical modelling part of the presented method is again realised via the
SVM implementation provided by the LIBSVM library. For assessing the recognition perform-
ance of the solo detection model, we fist determine the optimal combination of classifier and kernel
along with their respective parameters. Here, we follow the same 2-stage grid search process as de-
scribed in Section 4.2.3.3 to estimate the best values for classifier and kernel type together with their
relevant parameters. For illustration purpose, Figure 5.6 shows the parameter space spanned by the
classifier’s cost parameter C and the RBF kernel’s parameter γ, and the resulting mean accuracy A
on the entire dataset.
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Figure 5.6: Accuracy of the solo detection model with respect to the SVM parameters. Here, the classifier’s cost parameter
C and the RBF kernel’s γ are depicted.

Anull C4.5 NB 10NN MLP SVM*

50% 70.6% 70% 75.4% 74% 75.8%±0.86pp

Table 5.2: Recognition accuracy of the solo detection model in comparison to various other classification algorithms; a
Decision Tree (C4.5), Naïve Bayes (NB), Nearest Neighbour (NN), and Artificial Neural Network (MLP). e asterisk
denotes mean accuracy across 10 independent runs of 10-Fold CV.

We then estimate the classification performance of the trained model by evaluating the accuracy
in a 10×10-Fold CV process. Additionally, we compare the obtained results to the performance of
other classifiers typically found in related literature. Table 5.2 shows the results of all testedmethods
for the solo detection classification problem. As can be seen from the table the recognition accuracy
of the presented SVM architecture scores around 75%, hence well aboveAnull but far from perfect,
leaving a headroom for improvement. e performance of the nearest neighbour (10NN) and the
neural network classification (MLP) can be regarded as equivalent to the SVM model, conceptually
simpler approaches such as the decision tree and the Naïve Bayes however perform worse. Despite
this moderate performance in recognition accuracy we believe that the output of the model, though
not perfect, can be used in our instrument recognition framework by providing information regard-
ing the acoustical and perceptual prominence of musical instruments in certain sections of a given
composition.

5.1.4.3 Metrics

For a quantitative evaluation of the segmentation we use the notions of true and false positives re-
spectively negatives, thus tp, fp, tn , and fn , on a frame basis. In particular, we apply the true positive
rate tpr together with the true negative rate tnr ,
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tpr =
tp

tp + fn
, and tnr =

tn

tn + fp
. (5.1)

ese metrics account for the percentage of correctly assigned frames in each class, Solo and En-
semble, respectively. To avoid any bias towards one of the categories due to imbalances in the eval-
uation collection, we then use the arithmetic mean of the aforementioned to generate an overall
measure of classification accuracy, i.e.

Amean =
tpr + tnr

2
. (5.2)

Additionally, we introduce the overall accuracy Atot by considering the total number of correct
frame predictions across categories.

For a qualitative assessment of the segmentation we furthermore introduce performance measures
originating from image segmentation. In contrast to the aforementioned quantitative metrics these
capture the segmentation quality of the system by evaluating the intersections of the output and the
reference segments. Following Ortiz & Oliver (2006), we adapt measurement indices taking the
correct grouping of frames, under-, and oversegmentation into account. Here, undersegmentation
refers to the coverage of several ground truth segments by one single output segment. Accordingly,
oversegmentation results from the splitting of a single ground-truth segment into several output
segments. For qualitatively capturing these effects we first construct the overlapping area matrix
(OAM) (Beauchemin & omson, 1997), using, respectively, the output of our algorithm and the
ground-truth annotation. Every entry Ci,j of this matrix contains the number of frames that the
output segment j is contributing to the reference segment i. For perfect segmentation (i.e. same
number of segments in reference and output segmentation and no over- and undersegmentation)
the OAM contains non-null entries only on its diagonal, each representing the number of frames
of the corresponding segment. In the case of segmentation errors non-null off-diagonal entries can
be found, characterising the amount of error due to over- and undersegmentation. en,

∑
j Ci,j

denotes the number of frames in the ground-truth segment i, and
∑

i Ci,j is the number of frames
in the output segment j. From this matrix we derive three evaluation indices, according to Ortiz &
Oliver (2006):

Percentage of correctly grouped frames.

CG(p) =
100

nt

Nr∑
i=1

No∑
j=1

cr(Sref,i, Sout,j , p)Ci,j [%] (5.3)

with

cr(Sref,i, Sout,j , p) =

{
1 if Ci,j

n(Sout,j)
≥ p,

0 otherwise,
(5.4)

and

n(Sout,j) =

Nr∑
k=1

Ck,j , (5.5)
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where Nr and No denote the number of segments in the ground-truth and output segment-
ation, respectively, and nt the total number of frames in the analysed audio. Furthermore,
Sref,i refers to the reference segment i, Sout,j to the output segment j, while p represents
a penalty factor. Hence, CG accounts for those frames in a ground-truth segment Sref,i,
which are concentrated in a single output segment Sout,j . For perfect segmentation its value
is 100% and any single frame error would reduce it dramatically. We therefore introduce the
penalty factor p to relax the constraint of perfect segmentation to nearly perfect segmentation,
where the term nearly depends on the value of p. e parameter thus represents the amount
of segmentation error tolerated by the performance measures (a value of 1 indicates the most
restrictive scenario).

Percentage of undersegmentation.

US (p) =
100

nt

No∑
j=1

(1− ur(Sout,j , p)) n(Sout,j) [%] (5.6)

with

ur(Sout,j , p) =

{
1 if maxk=1,...,Nr (Ck,j)

n(Sout,j)
≥ p,

0 otherwise.
(5.7)

us,US represents the amount of frames, belonging to a single output segmentSout,j while
covering several segments of the ground truth Sref,i. e penalty factor p is similarly intro-
duced to tolerate a certain amount of output errors. Here, the function ur(Sout,j , p) works
over the columns of the OAM, taking those output segmentsSout,j into account which over-
lap with at least one reference region Sref,i is greater or equal than p× 100%.

Percentage of oversegmentation.

OS (p) =
100

nt

Nr∑
i=1

(1− or(Sref,i, p)) n(Sref,i) [%] (5.8)

with

or(Sref,i, p) =

{
1 if maxk=1,...,No (Ci,k)

n(Sref,i)
≥ p,

0 otherwise,
(5.9)

and

n(Sref,i) =

No∑
k=1

Ci,k. (5.10)

Hence, OS accounts for those output segments Sout,j splitting a single ground-truth seg-
ment Sref,i. e function or(Sref,i, p) works over the rows of the OAM, accounting for
those rows, represented by the reference segments Sref,i, exhibiting more than one non-null
entry. ese indicate the splits caused by the corresponding output segments Sout,j . Again,
we introduce the penalty factor p, tolerating a certain amount of segmentation error.

Since these evaluation metrics derived from the OAM consider the overlap between output and
reference segmentation, they capture the quality of the segmentation to a certain degree. Instead
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of working on a frame basis, these metrics – unlike many others – act on a segment basis; first,
those output segments meeting the specific criteria (correct grouping, under-, or oversegmentation)
are marked as erroneous, and second, all frames of these segments accumulated and related to the
total amount of frames in the analysed audio. us, the amount of error the segment contributes
to the metric depends on its size. Furthermore, the incorporation of the penalty factor p allows to
disregard small segmentation errors, which are common with this kind of problems.

In all our subsequent evaluation experiments we use a penalty factor of 0.8. is value was set ad
hoc, mostly to relax constraints in the evaluation metrics and maximize its meaningfulness. Here,
this specific value refers to the relaxed constraint that 80% of the data of the analysed segment has
to meet the measure-specific requirements. Exemplified, a segment of 10 seconds length must agree
in 8 of its seconds with the specific condition in order to be regarded as correct. e remaining 2
seconds represent an affordable error for many music audio description systems, and especially for
automatic segmentation methods.

5.1.4.4 Results

Here, we assess the performance of the developed solo detection algorithm in segmenting the entire
music pieces of the applied music collection with respect to the human-derived annotations. We
evaluate the presented segmentation algorithm in a 3-Fold CV procedure, using, in each rotation,
2/3 of the data for testing and the corresponding 1/3 for performance estimation. During testing
we perform a grid search in the relevant parameter space to determine the optimal values of the 2
parameters lma and lmo. We thereby uniformly sample the parameters between 0 and 20 seconds,
using a step size of 2 seconds. In this grid search, the performance of the system is estimated with
the mean accuracy Amean, hence averaging the performance on Solo and Ensemble sections³. As a
result of the CV, all reported performance figures denote mean values across the respective folds.

Table 5.3 lists the evaluation metrics for the presented supervised segmentation algorithm. It can
be seen that apart from the expected value for the total accuracy (76.6%), which is in line with the
observed classifier accuracy in Table 5.2, the mean accuracy Amean and especially the accuracy on
the Ensemble sections, i.e. tnr , show a lower performance. Due to the imbalance in the dataset –
note that the Solo category contains both instrumental solos and sections with singing Voice – the
respective values of the two system parameters lma and lmo , and accordingly the overall accuracy is
biased towards tpr . is consequentially leads to a low value in the correct grouping of framesCG ,
since many Ensemble segments do not meet the requirement in Eq. (5.4), hence do not contribute
their frames to the metric. Analogously, many short annotated Ensemble sections are likely to be
covered entirely by predicted Solo sections, resulting in the relative high value of 57.9% of the US
metric. Correspondingly, we observe a low value for the OS figures.

To emphasise the importance of the two system parameters lma and lmo , representing, respectively,
the length of the moving average filter and the length of the kernel of the morphological filter used
for post-processing, Figure 5.7 shows the mean accuracy with respect to varying values of the afore-

³As a result of the imbalance of categories inside the evaluation collections, the best overall performance Atot would
result in an assignment of every frame with the label Solo. us, we use the average of individual class accuracy to estimate
the performance of the system, avoiding any bias towards a particular category.
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tpr tnr Amean Atot CG US OS

87.7% 41.4% 70.1% 76.6% 40.4% 57.9% 15.1%

Table 5.3: Evaluation of the solo detection segmentation. e figures represent mean values resulting from the 3-Fold CV
procedure.
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Figure 5.7: Frame recognition accuracy with respect to different parameter values. e y and x axis cover, respectively, the
smoothing length lma and the filter kernel length lmo.

mentioned. It can be seen that while lma exhibit only minor influence, the value of lmo determines
the system’s segmentation accuracy, here a kernel length of 10 seconds leads to the best performance.
It should be noted that the choice of the metric used to evaluate the system’s performance heavily
influences the optimal values for the two parameters. Hence, depending on this metric the location
of the peak performance in the parameters’ value space may vary to a great extent.

5.1.4.5 Error analysis

Here, we perform a qualitative analysis of the segmentation output by perceptually evaluating the
resulting partition of all pieces in the used collection. First, the overall impression of the segmenta-
tion output’s quality is that the system fulfils its prospects by performing the task with a subjective
good performance. However, several regularities can be observed which we shortly outline in detail.

Given the nature of the task – a technological inspired implementation of a musical concept – we
observe several ambiguities in both the manual annotations and the output of the segmentation al-
gorithm. For instance, many ground truth ensemble sections exhibit one or several predominant
instruments which are therefore labelled with Solo. Hence, the mostly subjective decision of clas-
sifying a certain musical section into Solo or Ensemble is not only based on the presence of a single
predominant musical instrument; it rather involves higher-level contextual information. Applying
only low-level information sources cannot cope with this problem, thus we have to accept a certain
upper bound in the segmentation performance of the presented system.
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(a) Deep Purple - Smoke on the Water.

(b)W. A. Mozart - Clarinet concerto in A major - II. Adagio.

Figure 5.8: Two examples of the solo detection segmentation. Part (a) depicts a Rock piece while part (b) shows a concert for
solo instrument with orchestral accompaniment. e top bar in each figure represents the ground truth annotation, the lower
bar the segmentation output of the presented algorithm. e colours red, grey, and blue denote, respectively, the categories
of Solo, Ensemble, and singing Voice. Note that the segmentation output only contains the Solo and Ensemble classes, where a
section containing singing Voice is regarded as a Solo section.

Moreover, certain playing styles often lead to ambiguous values of the selected features, partially
producing wrong predictions; the system often recognises unison sections, where the same melody
is played by several instruments, as a Solo section. Here, the predominance of a single pitch may
bias the decision towards the Solo class. Next, Brass sections, which often consists of unison lines,
show a similar behaviour; it mainly depends on the mixture of the involved instruments whether the
section is classified as Solo orEnsemble. Finally, we observe that the employment of heavily-distorted
background instruments hinders the recognition of singing Voice or Solo sections.

Furthermore, we want to note that many pop, rock, and jazz pieces hardly contain any Ensemble sec-
tions, in case of regarding sections containing singing Voice as Solo. is, on the one hand, accounts
for the imbalance of the target categories in the evaluation collection. On the other hand, the fact
that most of the instrumental information exhibits predominant character partially confirms the 1st

hypothesis we stated in the beginning of this chapter, i.e. given a music piece, most of the involved
instruments appear at any time in a predominant manner. We will come back to this issue in the
second part of this chapter. For illustration purpose, Figure 5.8 shows two examples of the derived
segmentation with respect to the annotated ground truth.
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5.1.5 Discussion

In this section we presented a knowledge-based algorithm for segmenting a given piece of music
into parts containing predominant instrumental information. e method uses a trained model to
assign, to each analysis frame, the label Solo or Ensemble, indicating the presence of a single predom-
inant source. For capturing the intrinsic properties of the aforementioned categories the algorithm
applies selected audio features describing spectral and pitch-related properties of the signal. We
then evaluated the presented method on a specifically designed dataset in both a quantitative and
qualitative manner.

e figures presented in the preceding sections, assessing the performance of the solo detection
model itself as well as the overall segmentation system, show acceptable performances with respect
to the corresponding null models. e fact that the segmentation output deviates from perfect to a
certain extent illustrates the complexity of the addressed task. Anyhow, these figures seem reason-
able given the nature of the studied problem; as already mentioned above, the applied definitions of
the underlying musical concepts (Solo) are quite loose, hence leaving a great margin for (subjective)
interpretation, and are only partially represented by the here-employed description in terms of low-
level audio features. In addition, genre-related divergences in the target concept of a musical solo
complicate the development of a generalisingmodel. Due to the different adoption of soloing instru-
ments in the respective genres and the evident differences in the recording, mixing, and mastering
processes, the targeted concepts exhibit obviously different descriptions in terms of audio features
across musical genres. Here we speculate that by relaxing the aforementioned generality claims to
the model better performance can be achieved. For instance, a genre-dependent parameter selection
could already improve the segmentation quality, since the post-processing filter could be adapted to
the specific distribution of Solo and Ensemble sections in the respective genres.

In general, we hypothesise that the employed features are not fully able to describe the targeted
concepts, hence representing the main shortcoming of the method. Many short sections exhibiting
predominant instrumental combinations are labelled Solo by the presented supervised segmenta-
tion, which do not fall inside the applied definition of a Solo. Hence, the selected spectral and pitch
related descriptions of the audio signal partially carry ambiguous information related to the class
assignment. Here, descriptions of higher-level melodic aspects of the music can exhibit comple-
mentary information and help improving the performance of the system. Since the existence of a
consistent melody, played by a single instrument, is a perceptual key property of a Solo section, such
features should improve the robustness of the system by avoiding both spurious Solo and Ensemble
sections.

Nevertheless, this imperfect output of the segmentation algorithm can be used in the developed
instrument recognition framework. e conception behind the presented approach is to locate sec-
tions inside a music piece where a single instrument is predominating, in order to improve the ro-
bustness of the subsequent instrument recognition. e label inference is then applied to each of the
selected segments and the resulting labelsmerged (see Figure 5.1). Since the aforesaid label inference
method should be able to deal with sections not exhibiting predominant character, slight segmenta-
tion errors should not affect the performance of the label extraction to a great extent. Moreover, the
implemented contextual analysis can compensate for inconsistencies in the segmentation output.



5.2. Sub-track sampling – agnostic approaches 151

5.2 Sub-track sampling – agnostic approaches

In this section we develop knowledge-free methods to select relevant segments in terms of the in-
strumentation from an entiremusic piece. In general, the approaches presented here do not consider
the constraints we have introduced in the design process of the instrument recognition models. e
resulting output data is rather selected in terms of its representativeness with respect to the over-
all instrumentation of the music piece. is implies that the subsequent label inference works on
any data regardless its complexity. In the algorithms’ design process we additionally consider the
trade-off between recognition performance in terms of musical instruments and the amount of data
processed by the system. e overall aim is to guide the label inference stage with information
on where and how often the models have to be applied given the piece under analysis, in order to
provide a robust estimate of the piece’s instrumentation while keeping the computational costs low.
We thereby apply the concepts of local versus global processing of the data; here the ideal combina-
tion of localised extraction of the instrumental informations leads to a full description at the global
scope, i.e. the instrumentation of the entire track.

In this part of the chapter we consider several approaches which apply the aforementioned concept
of extrapolation of locally extracted information to the global scope. We compare their properties
in terms of data coverage and musical plausibility, and further evaluate their peculiar functionalit-
ies. In the subsequent part of the chapter we then employ these approaches – among others – in
the instrument recognition framework and compare the effects of the respective specificities on the
recognition performance. Parts of the here-presented have been published by Fuhrmann & Herrera
(2011).

5.2.1 Related work

e methods presented along this section partially incorporate information regarding structural as-
pects of the analysedmusic piece. Extracting the structure of amusical composition is a research field
on its own, hence a review of the related literature goes beyond the here-presented. We therefore
refer the interested reader to the recently published comprehensive state of the art overview of Paulus
et al. (2010). However, musical structure has been frequently applied in conjunction with several
other problems of MIR research. In this context, such works include audio fingerprinting (Levy
et al., 2006), music similarity estimation (Aucouturier et al., 2005), cover song detection (Gómez
et al., 2006), loop location (Streich & Ong, 2008), or chord analysis (Mauch et al., 2009), to name
just a few, all of them using the repetitiveness of the musical structure as a cue for approaching their
specific problem.

In general, two distinctmethodologies towards the estimation of themusical structure can be identi-
fied. e first one evaluates frame-to-frame distances in terms of a pair-wise similarity matrix, from
which repeating sequences of events are extracted. Foote (2000) introduced this technique which
has been used extensively in music structure research. e second class of approaches towards the
extraction of musical structure and its inherent repetitiveness estimates sections inside a givenmusic
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C3C2C1

30SEC

NSEG

CLU

Figure 5.9: Conceptual illustration of the presented agnostic track-level approaches; the green filled frames denote the re-
spective algorithm’s output data. Segmentation (red) and clustering (blue) are indicated for the CLU method, while NSEG
applies the values of lN = 10 (sec) and nN = 5. See text for details on the functionalities of the approaches.

piece wherein a certain parameter of interest, e.g. timbre, exhibits rather stable characteristics. is
corresponds to the detection of relevant change points in the temporal evolution of the parameter
under consideration. Hence, such systems apply change detection algorithms such as the Bayesian
Information Criterion (BIC) (Chen & Gopalakrishnan, 1998) or evaluate local frame-to-frame dis-
tances (e.g. Tzanetakis & Cook, 1999) to determine structural segments with a stable value of the
relevant parameter. To estimate the repetitions inside the musical structure, typical approaches then
use clustering techniques such as k-means to group the detected segments with respect to some rel-
evant parameters.

In this regard, our subsequently presented musical structure analysis follows the latter of the afore-
mentioned approaches. Here, we aim at detecting sections of persistent instrumentation and their
repetitions inside a given piece of music, hence applying a timbral change analysis in conjunction
with a hierarchical clustering analysis.

5.2.2 Approaches

In this section we present 3 conceptually different approaches, which output segments represent-
ative for the instrumentation of the analysed track, to pre-process an entire piece of music for label
inference. Since the instrumentation and its temporal evolution of a piece of music usually follows
a clear structural scheme, we expect, inside a given music track, a certain degree of repetitiveness of
its different instrumentations. e described methods exploit this property of music and the res-
ulting redundancy to reduce the amount of data to process. In short, the presented approaches are
accounting – some of them more than others – for the time-varying character of instrumentation
inside a music piece. Figure 5.9 depicts the underlying ideas.

5.2.2.1 30 seconds (30SEC)

is widely used approach assumes that most of the information is already accessible within a time
scale of 30 seconds. Many genre, mood, or artist classification systems use an excerpt of this length
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to represent an entire music track (e.g. Laurier et al., 2010; Scaringella et al., 2006; Tzanetakis &
Cook, 2002). e process can be regarded as an extrapolation of the information obtained from
these 30 seconds to the global scope, i.e. the entire piece of music. Since the aforementioned se-
mantic concepts are rather stable across one single piece, the data reduction seems not to affect the
significance of the obtained classification results. Instrumentations, however, usually change with
time, thus we expect the instrumentation of the entire piece to be poorly represented by the inform-
ation covered by this approach. In our experiments we extracted the data from 0 to 30 seconds of
the track.

5.2.2.2 Segment sampling (NSEG)

To extend the previous approach towards an incorporation of the time-varying characteristics of
instrumentation, we sample the track uniformly without using knowledge about the actual distri-
bution of musical instruments inside. is enables a distributed local extraction of the information
which is combined to a global estimate of the instrumental labels. In particular we extract nN ex-
cerpts of lN seconds length, at which we take a single segment from the beginning for nN = 1,
or one segment from the beginning and another from the end of the music track for a value of 2.
For nN > 2 we always take the segments from the beginning and the end and select the remaining
nN − 2 segments from equal distant locations inside the piece. e parameters nN and lN are kept
variable for the experiments to be conducted in Section 5.3.

5.2.2.3 Cluster representation (CLU)

Certainly the most elaborated approach from the perceptual point-of-view; we represent a given
piece of music with a cluster structure, at which each cluster corresponds to a different instrument-
ation. In general, composers use timbral recurrences, along with other cues, to create the musical
form of the piece (Patel, 2007), serving to guide listeners’ expectations by establishing predictabil-
ity or creating surprise (Huron, 2006). e here-developed structure representation is thought to
reflect the overall instrumental form of the piece where sections containing the same instruments
group together.

In particular, the presented approach applies unsupervised segmentation and clustering algorithms
to locate the different instrumentations and their repetitions. At the end, only one segment per
cluster is taken for further analysis. Hence, this approach directly takes advantage of the repetitions
in the instrumental structure to reduce the amount of data to process, while the local continuity of
the individual instruments is preserved to guarantee amaximum in instrument recognition perform-
ance. Moreover, it explicitly uses an estimate of the global distribution of the musical instruments to
locally infer the labels from a reduced set of the data by exploiting redundancies among the instru-
mentations in the piece of music. Finally, the method passes the longest segment of each resulting
cluster to the label inference algorithm. Figure 5.10 shows the schematic layout of this approach.

Segmentation. As a first step, the algorithm applies unsupervised change detection to the entire
music track to detect changes in the instrumentation. Since the instrumentation is directly linked
to timbre, we use MFCCs to represent it in a compact way. e features are extracted frame-wise



154 Chapter 5. Track-level analysis

change
detection

MFCC extraction

1.03

0.45

2.56

0.14

...

0.85

0.67

3.06

0.07

...

1.01

0.51

2.77

0.16

...

...

audiofile

segmentation

cluster
structure

Figure 5.10: Block diagram of the CLU approach. e method applies unsupervised segmentation and clustering to repres-
ent a given music piece by a cluster structure, where each cluster ideally contains one of the different instrumentations of the
piece. In doing so the algorithm exploits the redundancy inherent to the instrumental form of the music.

and analysed to detect local changes in their values (we again use a frame size of 46 ms with a 50%
overlap). A segmentation algorithm based on the Bayesian Information Criterion (BIC) processes
these data to find local changes in the features’ time series. Borrowed frommodel selection (Schwarz,
1978), a texture window is shifted along the data in order to find the desired changes within the local
feature context. erein the hypothesis is tested whether one model covering the entire window or
two models of two sub-parts of it, divided by a corresponding change point, better fit the observed
data⁴. If the latter hypothesis is confirmed an optimal change point is estimated. In particular, given
N the sample size and Σ the estimated covariance matrix, with indices 0,1, and 2 representing,
respectively, the entire, first, and second part of the window, the algorithm uses the likelihood ratio
test

D(i) = N0 log |Σ0| −N1 log |Σ1| −N2 log |Σ2|. (5.11)

to compare the hypotheses at split point i. e BIC value is then estimated as follows,

BIC (i) = D(i)− λ
1

2
(d+

1

2
d(d+ 1)) logN0, (5.12)

where λ denotes a penalty weight and d the dimensionality of the data. If BIC (i) > 0 the data is
better explained by two different models of the distribution while BIC (i) ≤ 0 indicates a better
modelling by a single distribution. In the former case, the optimal change point is found by the
maximum value ofBIC (i) (see the works by Chen & Gopalakrishnan (1998) and Janer (2007) for
details on the implementation).

Clustering. In order to group the resulting segments with respect to their instrumentations we
employ hierarchical clustering (HC) techniques to find their repetitions inside a given music track.
To represent the timbral content of a segment the system again applies the frame-wise extracted
MFCCs. We calculate the pair-wise distance matrix between all segments of the music piece by

⁴Here we fit the respective data to a single Gaussian distributionN (µ,Σ), withµ andΣ representing, respectively, the
mean vector and the covariance matrix.
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computing the symmetric KL divergence between the Gaussian distributions N (µ, σ), with µ de-
noting the mean vector and σ representing the vector containing the standard deviations, of the
respective MFCC frame vectors. An agglomerative HC then groups the segments using the gen-
erated distance matrix (Xu & Wunsch, 2008). e segments are merged iteratively according to
these distances to form a hierarchical cluster tree, a so-called dendrogram, where a specific linkage
method further measures proximities between groups of segments at higher levels. In particular, we
tested average (UPGMA), complete (CL) and single (SL), i.e. furthest and shortest distance, and
weighted average (WPGMA) linkage. e final clusters are then found by pruning the tree accord-
ing to an inconsistency coefficient, which measures the compactness of each link in the dendrogram.
e algorithm thereby applies a threshold ci to determine the maximum scatter of the data inside
the respective branch of the structure. We used the implementation provided by Matlab’s statistics
toolbox⁵.

5.2.3 Evaluation

In this section we evaluate the performance of the presented track-level approaches in terms of their
peculiar functionalities. Since only theCLU method exhibits algorithmic properties to evaluate, the
following covers the experiments for assessing the performance of this particular approach.

5.2.3.1 Data

For evaluating the CLU method’s segmentation and clustering steps we use the data described in
Section 4.3.2. Due to the annotations’ character these data contain both ground-truth change points
in the instrumentation and the resulting segments labelled with the respective instrumental com-
bination. Accordingly, we use the former for evaluating the segmentation quality of the presented
algorithm and the latter for assessing the performance of the HC.

A short analysis of the nature of the different instrumentations inside the data collection shows a
mean value of 7.9 different instrumentations along with 14.7 annotated segments per track on aver-
age, which indicates that already about 50% of the data explain all observed instrumental combina-
tions. Moreover, instrumentations usually do not change abruptly along a music piece; there rather
exists a particular set of musical instruments which determines the piece’s main timbral character-
istics, hence being active most of the time in the track. at is, we expect, at a given instrumentation
change point, a change in only few of the involved instrument. From this follows that most of the
aforementioned identified combinations are subsets of others, which implies that there exist an even
higher degree of redundancy in terms of individual musical instruments. is confirms the 2nd hy-
pothesis stated in the beginning of this chapter, concerning the repetitive nature of instrumentations
and the resulting redundancy of individual musical instruments in a musical composition.

⁵http://www.mathworks.com/products/statistics/

http://www.mathworks.com/products/statistics/
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5.2.3.2 Metrics

We estimate the performance of the segmentation algorithm by using the standard metrics of pre-
cision, recall, and F-score (P , R, and F , see Section 4.2.2), usually found in related works. In
particular, we regarded a computed change point as correct if its absolute difference from the next
annotated one is not greater than one second. Given the nature of the task, i.e. segmentingmusic into
parts of consistent instrumentations, this value seems to be appropriate since segment boundaries
are often blurred and cannot be assigned perceptually to a single time instance due to the overlap of
the instrumental sounds starting and ending in this particular point. However, even a greater value
could be accepted, although we did not want to overestimate the performance of the algorithm. In
addition, we use themetrics accounting for the segmentation quality, derived from theOAMmatrix,
as introduced in Section 5.1.4. We note that the evaluated segmentation is performed on a timbral
basis, which is not always reflecting the instrumentation. If the timbre of the same instrumentation
changes, the algorithm produces a change point which is not reflected in the ground truth annota-
tion. Consider, for instance, an electric Guitar in an accompaniment and solo context, where the
timbre of the instrument may exhibit strong differences. e same can apply for the singing Voice in
verse and chorus sections. Consequently, there exists an upper bound in the performance estima-
tion of the algorithm, which is difficult to assess in view of the aforementioned. However, this bias
is reflected in all parameters to evaluate, thus enabling a qualitative comparison.

For evaluating the performance of the HC stage we relate its output to the reference data from
the respective annotation. Hence, we input the audio segments taken from the annotation to the
algorithm and compare the resulting grouping to the ground truth segment labels. We thereby avoid
a propagation of the errors introduced by the segmentation algorithm into the evaluation of the
clustering quality. All reference segment boundaries with a mutual distance in time of less than one
second are merged to a single time instance in order to ensure the representativeness of the distance
estimation. We then assess the clustering quality by computing the normalised Hubert’s statistic
Γ̂ (Xu & Wunsch, 2008), which generally measures the correlation of two independently drawn
matrices. Given C and G, denoting, respectively, the generated cluster structure and ground-truth
derived grouping of a given trackX = {xi}, i = 1 . . . N , consisting ofN segments, we accumulate,
for all pairs of segments (xi, xj), the number of pairs falling into the same cluster for both C and G
(a), the number of pairs clustered into the same cluster but belonging to different reference groups
(b), the number of pairs falling into different clusters in C but having the same reference group (c),
and finally the number of pairs which neither belong to the same cluster in C nor G (d). We can
then write Γ̂ as

Γ̂ =
Ma−m1m2√

m1m2(M −m1)(M −m2)
, (5.13)

withM = a+ b+ c+ d,m1 = a+ b, andm2 = a+ c, resulting in a correlation of C and G with
a value between 0 and 1.

e metric considers all pairs of instances in both the reference and algorithmically derived tree
and relates their respective distributions. is leads to an objective assessment of clustering quality
by directly comparing the generated data representation to the ground truth. However, as already
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stated above, timbral changes do not always correspond to changes in the instrumentation. Hence,
the clustering algorithm generates a data representation solely relying on timbral qualities, while
the reference clusters are built upon the respective annotated instances of the musical instruments.
us, we have to reckon a similar upper bound in performance as discussed above.

5.2.3.3 Methodology

We perform all evaluation experiments in the 3-Fold CV process as similarly applied in the previous
evaluation sections. at is, for each CV rotation, we use 2/3 of the data for estimating the proper
parameter values by performing a grid search while reserving the remaining 1/3 for performance
estimation. In particular, we estimate the optimal values for the BIC segmentation’s parameters
wsBIC, ssBIC, and λBIC denoting, respectively, the size of the analysis window, the increment of
the change point hypothesis inside this window, and the penalty term in Eq. (5.12) along with the
linkage method and the inconsistency threshold ci for the HC⁶.

5.2.3.4 Results

is section covers the results related with the performance evaluation of the CLU method’s par-
ticular algorithms. We perform the quantitative and qualitative evaluation of segmentation and
clustering performance separately, hence dividing the following into two subsections.

Segmentation. Table 5.4 lists the evaluationmetrics for theBIC segmentation algorithm, depicted
as mean values across the folds of the CV. As can be seen from the table, the algorithm is working
far from perfect, but is performing comparably to state-of-the-art approaches on related problems
(e.g. Fuhrmann et al., 2009b; Goto, 2006; Ong et al., 2006; Turnbull et al., 2007). e problem
at hand is even more complex compared to the aforementioned references in terms of the variety of
the input data which requires the algorithm to operate on all kinds of musical genres.

Evaluation of the optimal parameter values indicates that a size between 5 and 10 seconds for the
BIC analysis windowwsBIC and a step size ssBIC of the change point hypothesis of approximately
1 second effects in the best performance across folds. Regarding the penalty term λBIC, the highest
tested value of 5 shows best performance in all 3 folds, suggesting that a high value of precision,
i.e. few false positives, leads to the best performance evaluation of the segmentation output in terms
of the F-score F . Hence, true change points show in general higher values in the log-likelihood
function D (Eq. (5.11)) than spurious ones.

By performing a subjective, i.e. perceptual, analysis of the segmentation output we observe that if
the timbre of the music track under analysis is compact, i.e. not subject to fluctuations in dynamics
on a short time scale, a good segmentation result is obtained. Moreover, clear changes in timbre
(e.g. starting of singing Voice) are perfectly hit, while small changes in instrumentation (e.g. starting
of a background String section) are obviously more problematic. In terms of musical genres good
performance is achieved for rock, pop, jazz, and electronic music, especially with tracks that show

⁶During the grid search, we evaluate the segmentation performance with the F-scoreF and the clustering quality using
Γ̂.
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P R F CG US OS

0.4 0.54 0.43 77.6% 20.5% 55.7%

Table 5.4: Evaluation metrics for the CLU’s segmentation algorithm.
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Figure 5.11: Performance of different linkage methods used in the hierarchical clustering algorithm. e figure shows the
resulting Γ̂ values against the inconsistency threshold ci for the whole dataset.

clear timbral changes in its structure. On the other hand, the algorithm fails on segmenting classical
music properly. is may results from the aforementioned fluctuations in dynamics and the thereby
caused small changes in timbre.

Additionally, we observed problemswith fade and crescendo sections, and sound textures (e.g. String
sections), which often behave similar, as the algorithm either misses the instrumental change at all
or creates a false positive based on the change in volume of the respective sound source. is points
towards a more general evaluation problem of this segmentation task; the overlapping instrumental
sounds in the transition between different instrumentations can last up to several seconds, which
poses difficulties in reflecting the instrumental change in the respective ground truth annotation.
In this case, deviations of the generated change point from the annotated one of several seconds
may be advisable, whereas other instrumental changes only require several hundreds of milliseconds
as parameter value. Nevertheless, the algorithm generally provides a useful segmentation output
since it always produces a couple of segments consistent in instrumentation with acceptable length,
i.e. greater then 10 seconds, which can be used in the subsequent labelling stage.

Clustering. Figure 5.11 shows the obtained performance estimation of the considered clustering
algorithms with respect to the used inconsistent threshold ci over the entire evaluation collection.
From theses results we can identify an optimal parameter range for the threshold; between values
of 0.5 and 1.25 the specific linkage method seems not to be decisive, i.e. all methods produce very
similar cluster structures. In general, small values of ci generate a greater number of clusters which
better reflects the ground truth grouping. e same behaviour can be observed when assessing the
best parameter values estimated for each training set in the rotations of the 3-Fold CV.
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Qualitatively, we conclude in a similar manner as in the evaluation of the BIC segmentation output;
tracks exhibiting a consistent timbre along time tend to group better with respect to the annotated
ground truth. On the other hand, confusions in the cluster assignments often arise for music pieces
with heavy fluctuations in the dynamics of the music. Hence, similar to the segmentation evalu-
ation, tracks from the Pop, Rock, Jazz, and Electronic genres show better figures in the clustering
performance estimation metrics presented above. is all let us speculate that, different than being
the respective algorithms responsible for the observed imperfect performance, it is rather that the
applied representation, used to encode the general acoustical properties, is not capturing the desired
information. Hence, the MFCC features seem to encode the timbre of the analysed music signal
properly for music exhibiting a consistent short-term timbre (e.g. rock music with heavy percuss-
ive elements exhibits these characteristics since the predominant sound components introduced by
these instruments show very consistent timbral evolutions), while the features fail at describing the
overall timbral sensation for pieces containing inconstancies in the dynamics such as classical music.
However, a much deeper analysis of the correlations between timbral encodings and the different
musical genres’ acoustical properties would be needed to derive stronger evidence for the aforesaid
hypothesis.

5.2.4 Discussion

is section covered the basics of three unsupervised approaches for partitioning a givenmusic piece
into relevant segments in terms of the piece’s global instrumentation. Two of them use a sampling
heuristic to derive these segments, hence they do not incorporate any information regarding the
underlying structure of the track. e third approach performs a timbral analysis to group parts
of the given musical composition with respect to the different instrumentations therein. Since the
former two do not exhibit any algorithmically parameters to evaluate, only the latter is evaluated in
terms of its performance in segmenting a piece according to timbral changes therein as well as its
ability to group segments of the same instrumentation into corresponding clusters.

e performed quantitative and qualitative evaluation suggests that the algorithm fulfils the require-
ments and groups the different instrumentations of a given music piece consistently into a musically
reasonable structure. However, like inmany other automaticmusic analysis approaches, themethod
is upper-bounded; it seems that the segmentation and clustering approach is limited by the under-
lying encoding of timbre. Subjective evaluation suggests that for certain types of music, e.g. classical
music, the applied MFCC features seem to fail in modelling the desired timbral properties. How-
ever, tracks from other musical genres exhibiting more consistent timbral sensations show a very
good performance in terms of both segmentation and clustering quality.

In the following section we now apply all presented track-level analysis methods as front-end pro-
cessing for automatic instrument recognition. We will then be able to estimate the influence of the
respective conceptual and musical characteristics of the approaches on the recognition performance
and the amount of data needed to maximise it.
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5.3 Application to automatic musical instrument recognition

In this section we apply the track-level approaches described above to the task of automatic musical
instrument recognition. at is, a particular track-level approach acts as pre-processing stage for the
actual label extraction in our recognition framework; it outputs a set of segments from which the
label inference method described in Chapter 4 determines labels related to the instrumentation of
the respective segment. We then combine the label output of all segments of a particular approach
to form the final labels for the track under analysis (see Figure 5.1). By using this kind of pre-
processing we are either able to select specific excerpts of the analysed piece which enable a more
reliable label inference, or, depending on the respective approach, exploit the inherent redundancies
in the structure of the track to reduce the amount of data used for extracting the labels.

In the evaluation of the different systems, we perform a quantitative estimation of the system’s per-
formance in terms of recognition accuracy as well as its efficiency. is will lead to an assessment
of the minimal amount of data needed to maximise the recognition accuracy of our label inference
method.

5.3.1 Data

In the experiments we evaluate all approaches using the music collection and corresponding annota-
tions described in Section 4.3.2, as already applied for evaluating theCLU method in Section 5.2.3.
Here, wemerge all annotatedmusical instruments of a particular track to represent the ground truth
for its overall instrumentation. More details about this collection can be found in Section 4.3.2.

5.3.2 Methodology

In order to provide a robust estimate of the methods’ performance with respect to the parameters
to evaluate, we again perform all our experiments in the 3-Fold CV framework. Hence, for each
rotation we use the data of 2 folds for estimating the optimal parameter settings and subsequently
test on the remaining fold. We then obtain mean values and corresponding standard deviations by
averaging the evaluation results of the respective predictions of all three runs. Parameter estima-
tion itself is performed in a grid search procedure over the relevant parameter space. For each of
the studied approaches described in this chapter the parameters are evaluated separately to guaran-
tee maximal comparativeness of the respective results. In all conducted experiments we apply the
CT labelling method as described in Section 4.3.3, at which the method’s specific parameters are
determined via the aforementioned grid search.
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metric Ref prior 30SEC 3SEG10 3SEG20 6SEG10 6SEG20 CLU SOLO Ref all

Pmicro 0.4 0.61 0.64 0.63 0.61 0.6 0.63 0.71 0.65

Rmicro 0.4 0.49 0.59 0.66 0.72 0.78 0.73 0.64 0.73

Fmicro 0.4 0.55 0.61 0.64 0.66 0.67 0.68 0.67 0.69

Fmacro 0.26 0.43 0.47 0.49 0.51 0.53 0.54 0.53 0.54

data – 0.12 0.12 0.25 0.25 0.5 0.66 0.62 1

Table 5.5: Labelling performance estimation applying the different track-level approaches.

5.3.3 Metrics and baselines

We evaluate the labelling performance of the presented approaches using the same metrics as intro-
duced in Section 4.3.4.3. at is, we apply the precision and recall metrics Pmicro and Rmicro, as
well as the F-scores Fmicro and Fmacro, working, respectively, on the instance and category level.

To establish an upper performance bound for the track-level approaches we introduce the Ref all
system; by processing all frames with the presented label inference method we perform a global ana-
lysis of the instrumentation of the track. However, no data reduction is obtainedwith this approach.
Since the method uses all data available it acts as an upper baseline both in terms of recognition per-
formance and amount of data processed, which all other methods using less data compete with.
Furthermore, we generate a lower bound by drawing each label from its respective prior binomial
distribution, inferred from all tracks of the collection, averaging the resulting performance over 100
independent runs (Ref prior).

5.3.4 Labelling results

e upper part of Table 5.5 contains the results (mean values) of the applied metrics in the CV
obtained for all studied algorithms. In particular, we generate 4 different systems from the NSEG
concept additionally to the 30SEC, CLU, and SOLO approaches, and the two baselines Ref prior
and Ref all; by setting nN and lN , respectively, to 3 and 6, and accordingly 10 and 20 seconds we
synthesise the systems 3SEG10, 3SEG20, 6SEG10, and 6SEG20. Additionally, figures regarding
the relative, with respect to the all-frame processing algorithmRef all, amount of data used for label
inference are shown in the lower panel.

efigures presented inTable 5.5 show that all considered approaches outperform the lower baseline
Ref prior, operating well above a knowledge-informed chance level. Moreover, we can observe sev-
eral apparent regularities in these results; first, the overall amount of data used for label inference
is correlated with the recognition performance to a certain extent, e.g. 3SEG10 → 6SEG10 →
Ref all. Here, the recognition performance steadily increases with a growing amount of data used
for label inference, at which at a given point a ceiling is reached; adding more data does not affect
the overall labelling accuracy. Second, we remark that the location of the data where the labels are
extracted from positively affects the recognition accuracy; both the local continuity of the instru-
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mentation and its global structure affect the extracted labels when keeping the amount of data fixed.
Here, even a uniform sampling introduces a greater variety in the instrumentation, which leads to
a higher recognition rate, e.g. 30SEC → 3SEG10. Remarkable is also the high value in precision
Pmicro the SOLO approach exhibits in comparison to the CLU method. Due to its explicit focus
on sections containing predominant instruments wrong predictions are less likely than in the other
approach. However, the amount of correctly predicted labels is correspondingly low, indicating that
the utilised parts of the signal contain only one single predominant source.

Furthermore, the similar performance figures of the CLU, SOLO and Ref all approaches suggest
that there exists aminimal amount of data fromwhich all the extractable information can be derived.
Hence more data will then not result in an improvement of the labelling performance. e next
section will examine this phenomenon in more detail, in particular by determining the minimum
amount of audio data required to maximise labelling performance.

5.3.5 Scaling aspects

e observations in the previous section suggest a strong amount of repetitiveness inside a music
piece. Additionally, many excerpts – even though differing in instrumentation – produce the same
label output when processed with our label inference method. To quantify those effects we use
the SOLO, CLU and NSEG methods to process the entire piece under analysis, as all three offer a
straightforward way to vary the amount of data used by the label inference algorithm. In particular,
we study the effect of an increasing amount of segments to process on the labelling performance. In
case of theNSEGmethodwe constantly increase the amount of segments used by the label inference,
thus augmenting the method’s parameter nN . Additionally, we perform the subsequent experiment
for two values of lN , namely 10 and 20 seconds. In case of the CLU method we sort the clusters
downwards by the accumulated length of their respective segments, start processing just the first
one, and iteratively add the next longest cluster. We then similarly rank the output of the SOLO
algorithm according to the length of the respective segments labelled with Solo, and apply the label
inference to an increasing amount of segments. For all methods we track the performance figures as
well as the amount of data used for inference. Figure 5.12 depicts both performance and amount of
data for the first 20 steps on the evaluation data (mean values of CV outputs).

As can be seen from the figure the performance of all tested systems stagnates at a certain amount
of segments processed. Due to the different conceptions behind the algorithms those values vary to
a great extent, ranging from 2 for the SOLO to 7 for the SEG20 approach. Accordingly, the “data-
blind” sampling approaches reach the stagnation point later than the CLU and SOLO systems. In
general, the latter two perform slightly better compared to the former, we speculate that the local
continuity of the instrumentation causes this minor superiority. However, the performance figures
of all approaches seem to be too close to identify one outstanding or discard any of them.

Regarding the recognition accuracy, incorporating global timbral structure, as implemented byCLU,
most benefits labelling performance at the expense of algorithmic pre-processing. Here, the timbral
variety has a greater positive impact on the recognition performance than, for instance, the presence
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Figure 5.12: Scaling properties of the studied track-level algorithms. Part (a) shows the obtained instrument recognition
performance in terms of the F-scoreFmicro, while part (b) depicts the relative amount of data, in relation to the total number
of frames, applied by the respective algorithms. Both graphs show the number of processed segments on the abscissa. Mean
values across CV-Folds are shown.

of a single predominant source, as implemented by the SOLO method. Analogously, contextual-
unaware methods such as the sampling approaches show the worst of all studied performances.
Moreover, with these samplingmethods, an increment in segment size is only constructive for a small
number of processed segments, since no difference between SEG10 and SEG20 can be observed
for greater values. In general, the results suggest that, on average, both timbre-informed clustering
and knowledge-based segmentation as performed by the Solo detection does not result in a significant
increase in performance, though they might be of advantage in specialised applications (e.g. working
on a single genre which exhibits clear recurrent structural sections).

In terms of the applied data amount, SEG10 is superior, reaching its ceiling at around 20% of the
data processed. is is followed by the CLU method, which already needs around 45% to show
its maximum value at 3 processed segments. en, SOLO yet processes around 60% of the data
in the first 2 segments, where the peak in recognition accuracy is observed. Finally, SEG20 shows
a similar performance in terms of the amount of data applied, since it processes around 55% of all
frames at the maximum in performance. It should be noted that both SOLO and CLU only exhibit
a maximum of 5-10 relevant segments on average, since no changes in the performance figures can
be observed for values greater than these.

5.4 Discussion and conclusions

In this chapter we introduced several track-level approaches which pre-process an entire piece of
music for automatic musical instrument recognition. We presented both knowledge-based and ag-
nostic methods to perform a prior segmentation of the audio signal; all approaches output a set of
segments from which label output we form the final set of instrumental labels. By applying this kind
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of pre-processing we can either restrict the automatic instrument recognition on portions of the ana-
lysed music piece, where a more robust extraction of the instrumental information seems possible,
or exploit the structural repetitions of the track to minimise the data amount used for processing.
Here, we first focused on the location of sections inside a given piece of music, which conform best
with the assumptions we have taken in the design process of the recognition models. More precisely,
we identify segments in the track which exhibit a single predominant source, in order to guide the
instrument recognition to reach a maximum in performance. Second, we aim at exploiting the re-
dundancy in terms of instrumentation – a result from the formal structures typically observed in
Western musical compositions – for instrumental label inference (we may extract just a few labels
from a thousands of audio frames). Here, we identify the most representative, in terms of the global
instrumentation of the piece, portions of the signal to reduce the amount of data processed while
maintaining the recognition accuracy. Lastly, we combine the two aforementioned aims and estim-
ate the minimum amount of data needed to reach the maximum in labelling performance

e obtained results suggest that all presented approaches perform comparably, hence we are not
able to identify a superior approach or discard any of them. Both the supervised and unsuper-
vised methods show similar qualities in the label output, at which the knowledge-based approach
outputs less wrong predictions whereas the knowledge-free algorithms produce a higher hit rate,
i.e. correctly extracted labels. is similar performance indicates that most of the extracted labels
are originating from predominant sources, which are highly redundant. erefore a given label may
be extracted from multiple locations in the signal, no matter which pre-processing has been applied.
Nevertheless, the presented approaches show an average recognition performance in terms of the
instance-based F metric of 0.7.

In a further experiment we analysed the dependencies between the labelling performance and the
amount of data processed by the different track-level approaches; here, we could observe a strong
correlation between the data amount and recognition accuracy for all tested systems. Up to a certain
point in data size the labelling performance improves with an increasing amount of data. However,
we also observe a subsequent stagnation for all methods. Remarkably, an additional dependency on
the location of the data from which we extract the information can be observed.

Furthermore, we can use the here-presented results to validate the two hypotheses stated in the be-
ginning of this chapter. First, from the performance of the SOLO approach, which is comparable to
all other approaches, we conclude that most of the instrumental information appears in a predom-
inant manner in Western music pieces, hence approving hypothesis 1. Moreover, we can observe
a great redundancy in the instrumentations of Western musical compositions, since our best per-
forming approach only needs 45% of the input data to reach its peak performance in recognition
accuracy⁷. is confirms hypothesis 2, stating that the redundancy of instrumentations can be ex-
ploited for automatic musical instrument recognition.

Recapitulating, a timbre-based analysis of themusical structure, as implemented by theCLUmethod,
seems to cope best the dilemma of maximising the recognition performance against minimising the
amount of data to process. Furthermore, the stagnation in labelling performance, observable for all

⁷Remarkably, the same factor of about 1/2 can also be observed when comparing the number of different instrument-
ations to the overall number of segments in the ground truth annotations of all files in the used music collection, see Sec-
tion 5.2.3.
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studied approaches, indicates a kind-of “glass ceiling” that has been reached. It seems that with the
presented classification and labelling methodology we are not able to extract more information on
the instrumentation from a given piece of music. Nevertheless, we can observe that predominant
instrumental information is highly redundant inside a given Western piece of music from which
around 2/3 of the labels can be correctly predicted along with a small proportion of spurious la-
bels. Moreover, this fact allows for a great reduction of the effective amount of data used for label
inference.
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Interaction of musical facets
Instrumentation in the context of musical genres

In this chapter we explore the influence of other musical facets on the automatic recognition of
musical instruments. Since the choice of a given music piece’s instrumentation is by no means inde-
pendent from other musical factors – musical genre or mood play an evident role in the composer’s
decision of adopting particular instruments – we aim at investigating these interdependencies inside
our instrument recognition framework. More precisely, we study the role of musical genre in detail,
since it is probably the most influential of all musical facets on the instrumentation of a given music
piece. Moreover, McKay & Fujinaga (2005) particularly argue that many music classification tasks
are subsets of automatic genre classification, hence, due to the difficulty of the problem, features
found to be important in the genre context are likely to be robust for general music classification,
i.e. being probably decisive in several other tasks involving music classification. A related analysis of
the interrelations betweenmusical genres andmoods has been recently presented by Laurier (2011).

ere is a high consensus among researchers that instrumentation is a primary cue for the recogni-
tion ofmusical genre in both humans andmachines (see e.g. Alluri&Toiviainen, 2009;Aucouturier
&Pachet, 2003, 2007; Cook, 1999;Guaus, 2009;Tzanetakis&Cook, 2002). Furthermore, McKay
& Fujinaga (2005; 2010) showed in two modelling experiments the importance of instrumentation
in a genre classification task. Moreover, Jensen et al. (2009) hypothesise that the information regard-
ing the two most salient musical instruments is enough to achieve an acceptable genre recognition
performance. Our main hypothesis here, however, relates to the reverse; to say that genre inform-
ation is an important cue for musical instrument recognition. Moreover, we hypothesise that by
integrating the information on musical genre in the automatic instrument recognition process of
our developed method we can improve its overall labelling performance. In the remainder of this
chapter we thus present experiments which evaluate the influence of musical genres on the instru-
ment recognition performance. Before that, in Section 6.1, we first analyse the mutual associations
among different categories of musical genre on the one hand, and musical instruments on the other
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hand. By using statistical tests we quantify the degree of relatedness between the aforementioned.
In the second part of this chapter we then use the information on the musical genre of a given mu-
sic piece to guide the extraction of labels related to its instrumentation (Section 6.2). We present
several combinatorial approaches, at which we apply both the initially developed instrument recog-
nition models and further develop new models based on the genre information provided by the
musical instruments’ training data.

6.1 Analysis of mutual association

In this analysis we aim at estimating the degree of relativeness between particular musical genres
and corresponding instrumentations. Hence, we quantify the association between the respective
categories of musical genres and instruments using statistical measures. In other words, given the
musical genre, we evaluate to which degree certainmusical instruments are statistically likely to form
the instrumentation of a given music piece.

According to literature, Aucouturier (2009) improved the similarity ratings between musical pieces
by learning the associations among musical facets, including instruments, in the employed dataset.
Besides evident relations such as Rock Band and Guitar, the author found several musical facets
associated with instruments, e.g. musical genre (Hip-Hop and Spoken Words) or mood (Transversal
Flute and Warm). Apart from that, we are not aware, to the best of our knowledge, of any other
works studying the dependencies between musical genres and instruments.

In the following we present a two-stage experiment analysing the aforementioned associations. In
the first part we estimate the degree of co-occurrence between musical instruments and genres from
entirely human-assigned data. We employ the dataset described in Section 4.3.2, applied for evalu-
ating the label inference, and attach a genre label to each track by evaluating the genre assignments
of 5 human experts. By means of statistical tools we then quantify the degree of association between
particular genres and instruments involved in these data. Hence, the analysis in the experiment’s
first part adopts information derived from human expert listeners for both musical genre and in-
strumentation. We then estimate, in the second part, the associations between human-assigned
musical genres and automatically predicted instrumentations. Here, we utilise the same genre in-
formation and predict the instrumental labels for each track by applying the methods developed in
Chapters 4 and 5. By comparing the outcomes of the two analyses we can assess the representative-
ness of the predicted instrumental information in terms of its associations with musical genres. We
then partially apply the results from these association studies for the automatic instrument recogni-
tion experiments in the second part of this chapter, where we combine the information on musical
genre and instruments.
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Table 6.1: Contingency table for an exemplary genre-instrument dependency. Here, the musical genre Jazz is depicted over
instrument Piano.

6.1.1 Method

To determine the hypothesised associations we relate the genre labels to the instrumentations of
the tracks in the applied music collection. In essence, we want study if we can observe a higher
occurrence of particular instrumental labels given a particular musical genre, compared to others. In
order to quantify these associations, we apply the odds ratio (Cornfield, 1951), a statistical measure
working on contingency tables. An illustration example of such a contingency table is shown in
Table 6.1 for the instrument Piano and the musical genre Jazz.

In particular, the odds ratio describes the magnitude of coherence between two variables. From the
contingency table it can be calculated as follows:

OR =
ad

bc
. (6.1)

A value close to 1 indicates independence between the data of the two variables, while increasing
deviations from 1 denote stronger associations. Since this value is bounded between [0 ∞], we
introduce the signed odds ratio by mapping the values for a negative associations, i.e. values between
[0 1[, to ]−∞ − 1[. Hence, the signed odds ratio is given by

SOR =

{
OR, if OR ≥ 1

− 1
OR , if OR < 1.

(6.2)

6.1.2 Data

As already mentioned above, we applied the music collection used for evaluating the label inference
(Section 4.3.2) in this analysis. For deriving the genre annotations we asked 5 expert listeners to as-
sign a single genre label to each of the 220 tracks in the collection in a forced-choice task. We applied
the genre taxonomy of the dataset collected byTzanetakis &Cook (2002), in order tomaintain con-
sistency with all following experiments. Hence, the particular genre categories were Hip-Hop, Jazz,
Blues, Rock, Classical, Pop, Metal, Country, Reggae, and Disco. We then simply applied a majority
vote among the annotators’ ratings to derive a genre label for each piece of music (in case of a draw
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we randomly assigned one of the genres in question). e distribution of the 10 annotated genres
inside the collection has already been shown in Table 4.8.

Analysis of inter-rater reliability showed a Krippendorff α of 0.56 (Krippendorff, 2004). is gen-
erally low agreement among the human annotators indicates the partial ambiguity of the used data in
terms of musical genre as well as some limitations of the applied, too-narrow taxonomy. Moreover,
personal communication with the annotators revealed that ambient and electronic music tracks
posed the most difficulties in the annotation process. In this respect, an additional category for
mostly electronically generated music was identified as missing. A further analysis of the prominent
ambiguities in the ratings of musical genres showed the pairs Rock – Pop, Pop – Disco, and Rock –
Metal as top-ranked, containing, respectively, 29, 9, and 8 ambiguous pieces. Here, we consider a
track as being ambiguous when observing a 3-2 or 2-2-1 constellation among rated genres, indicat-
ing a strong disagreement among judges. To exclude unreliable tracks from the subsequent analysis,
we furthermore rejected all pieces exhibiting no agreement on a single genre by at least three judges.
is let us discard 19 tracks, resulting in a collection of 201music pieces for the following association
experiments.

ese results indicate the conceptual difficultieswhich arisewhenworkingwith somemusical genres.
ese problems, resulting from the mostly socially and culturally grounded definitions of musical
genres, together with its adoption for computational modelling, have fuelled much debate in related
literature. See, for instance, Aucouturier & Pachet (2003) for the ill-defined nature of the concept
of musical genre, not founded on any intrinsic property of the music.

6.1.3 Experiment I – human-assigned instrumentation

Here, we analyse the co-occurrence ofmusical instruments and genres fromentirely human-assigned
data. Hence, we avoid all kinds of errors originating from imperfectly working computational sys-
tems in this experiment. We rather rely on the knowledge from expert listeners for both musical
genres and instruments.

Since an analysis of mutual association via the signed odds ratio is only meaningful for categories
with a certain minimum number of observations – those categories containing only few instances do
not form a representative sample of the target population –we limit the here-presented results to the
four prominent genres Jazz, Rock, Classical, and Pop, observable from Table 4.8. Hence, we discard
all remaining musical genres due to the lacking number of assigned tracks. Figures 6.1 (a) - (d) show,
for each consideredmusical genre, the signed odds ratio for allmusical instrument. Here, a particular
plot can be regarded as an “instrumentation profile” of the respective genre. Instruments exhibiting
large positive or negative magnitudes for the signed odds ratio indicate, respectively, frequently or
rarely observablemusical instruments in the particular genre. Values close to±1 accordingly suggest
that the given instruments does not occur statistically more, or less frequently than in other genres.

It can be seen fromFigures 6.1 (a) - (d) that the depicted chartsmatch the instrumentations expected
for the considered genres verywell. Apart from some few atypical associations, which result from the
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Figure 6.1: Signed odds ratios for human-assigned instrumentation. Note the differences in scaling of the respective or-
dinates. Also note that uncoloured bars with dashed outlines represent those instruments absent in the particular genre
(i.e. strong negative association). e respective values are set, for illustration purpose, to the negative maximum absolute
value of the remaining categories for a given musical genre. Legend for the abscissae: Cello (ce),Clarinet (cl), Flute (fl), acoustic
Guitar (ag), electric Guitar (eg), Hammond organ (ha), Piano (pi), Saxophone (sa), Trumpet (tr), Violin (vi), singing Voice (vo),
and Drums (dr).

peculiarities of the applied dataset, we can observe many intuitive genre-instrument combinations.
e Jazz category, for instance, exhibits prominent positive associations with the musical instru-
ments Clarinet, Saxophone, and Trumpet, while strong negative co-occurrences can be observed for
Cello and Violin. Similarly, we can see the typical positive associations with Cello, Clarinet, Flute,
and Violin for classical music, while electric Guitar, Hammond organ, and Drums exhibit the expec-
ted negative scores. However, we also observe the surprising negative association of the singing Voice
with the Classical and Jazz genres, resulting from the absence of Opera and jazz pieces containing
singing voice. Similar considerations apply for the Saxophone in the Pop figure (Figure 6.1 (d)).

6.1.4 Experiment II – predicted instrumentation

In this experiment we apply the output of the instrumentation analysis method developed in
Chapters 4 and 5 for the association analysis. In particular, we use the label inference approach
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(c) Classical.
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Figure 6.2: Signed odds ratios for predicted instrumentation. Note the differences in scaling of the respective ordinates.
Also note that uncoloured bars with dashed outlines represent those instruments absent in the particular genre (i.e. strong
negative association). e respective values are set, for illustration purpose, to the negative maximum absolute value of the
remaining categories for a given musical genre. Legend for the abscissae: Cello (ce), Clarinet (cl), Flute (fl), acoustic Guitar
(ag), electric Guitar (eg), Hammond organ (ha), Piano (pi), Saxophone (sa), Trumpet (tr), Violin (vi), singing Voice (vo), and
Drums (dr).

employing the Curve Tracking (CT) algorithm from Section 4.3.3, and the CLU track-level ap-
proach described in Section 5.2.2.3. Moreover, we process the first three clusters output by the
CLU method for label inference, following the results from Section 5.3.5.

e applied methodology corresponds to the one described in the first part of the experiment. Con-
sequently, we again use the 4 prominent genres fromTable 4.8 for the association analysis. Figure 6.2
shows the resulting odds ratios, plotted for each of the analysed musical genres, where prominent
positive and negative values indicate, respectively, frequently and rarely adopted musical instrument
given a particular genre. Values close to±1 indicate no association between the musical instrument
and the genre.

Again, fromFigures 6.2 (a) - (d) we can observe that the depicted information conforms with the ex-
pected co-occurrences of musical instruments and genres. A comparison with the figures obtained
for human-assigned information regarding the instrumentation of the tracks shows that most of
the information is overlapping. Although we can identify some deviations from the exact values in
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Figure 6.1, the basic “shape” of all genre-typical instrumentation profiles is preserved. is substan-
tiates the findings of the previous chapters related to the validity and informativeness of the extracted
instrumental information. Moreover, this result suggests that most of the errors are not resulting
from any characteristics of a given musical genre; the errors are rather equally distributed among
the different genres. To conclude, the predicted instrumentations using our developed instrument
recognition method generally reflects the typical instrument-genre associations.

6.1.5 Summary

In essence, the association analyses led to the expected results, namely that musical instruments and
genres are highly dependent, at which most of these dependencies are quite intuitive. Moreover,
the comparison of the experiments on human-derived and automatically predicted information re-
garding the instrumentation of the analysed music pieces suggests that the extracted instrumental
labels reflect those associations, hence providing meaningful information with respect to the mu-
sical genres inside the analysed music collection. However, the automatic instrument recognition
regularly propagates its errors into the association measure, which influences the co-occurrences of
musical instruments and genres to a certain extent. We will quantify this influence in the following
part of the chapter by partially applying the here-derived findings for the automatic recognition of
musical instruments.

6.2 Combined systems: Genre-based instrumentation analysis

e results of the previous section indicate that information regarding the musical genre of a given
music piece already contains a lot of information regarding the likelihood of its involved musical in-
struments. Hence, in this sectionwe examine towhat extent we can exploit the associations between
musical instruments and genres for automatic musical instrument recognition. We therefore con-
struct several systems, all of which incorporate the genre information in a different manner, and
comparatively evaluate them to asses their respective pros and cons with respect to the overall in-
strument recognition performance.

From an engineering point-of-view, we are aiming at improving instrument recognition by incor-
porating genre information. Our goal is to construct a system which uses, for a given piece of music,
its musical genre to re-evaluate either the intermediate stages or the entire output of the instrument
recognition algorithms presented in Chapters 4 and 5. On the one hand, this procedure allows us to
eliminate or attenuate spurious genre-atypical instrumental information by incorporating the out-
put provided by a pre-trained genre classifier. On the other hand, it may happen that correct, but
genre-atypical, instrumental information is neglected or re-weighted, depending on the respective
approach. Moreover, errors introduced by the, presumably, imperfectly working genre classification
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are propagated to the instrument recognition stages. In a nutshell, by using information regarding
musical genre, we have to accept dropping correctly-assigned labels not typical for the given genre; in
return, we can eliminate spurious instrumental labels and thereby increase the overall labelling per-
formance of the system. In the remainder of this chapter we study the influence of all these factors
identified by the aforesaid.

Given these considerations it is however to question if such a strategy for performance improve-
ment of an information retrieval system always benefits its user-oriented needs. Here, we may argue
that a user has only minor interest in retrieving the genre-typical musical instruments, e.g. querying
a given music collection for rock pieces containing electric Guitar. (S)he may rather be interested
in those instrumental information that is atypical for a given musical genre, e.g. finding classical
pieces adoptingDrums or the aforesaid electric Guitar. ese considerations are in line with general
information theory, which always regards the most infrequent data as being the most informative
(Cover & omas, 2006). On the other hand, we may also consider the situation where the user
is looking for music pieces with absent genre-typical instruments, e.g. querying a database for rock
pieces without electric Guitar. In this case, the above-presented strategy for labelling performance
improvement will not exhibit the aforementioned negative effects on the user’s needs.

In all following automatic instrument recognition experiments conducted in Sections 6.2.2 and 6.2.3
we apply the label inference algorithm using the Curve Tracking (CT) labelling approach (see Sec-
tion 4.3.3). Moreover, since we are analysing only entire pieces ofmusic, we apply theCLU approach
from Section 5.2.2 to pre-process the respective tracks in order to determine the most relevant in-
strumentations therein. We then use those segments originating from the three “longest” clusters
for extracting the instrumental labels (see Section 5.3.5).

6.2.1 Genre recognition

In this section we describe our approach towards the modelling of musical genre. We apply a stand-
ard statistical modelling approach as utilised in many related works (e.g. Aucouturier, 2006; Meng
et al., 2007; Pampalk et al., 2005; Tzanetakis & Cook, 2002). First, we describe the adapted data
used for building the recognition model, which is discussed in the following part of this section.
Finally, we shortly evaluate the constructed classifier on unseen data to assess its prediction abilities.

6.2.1.1 Data

We use the genre classification data collected by Tzanetakis & Cook (2002) for training our genre
recognition model. Originally, it covers the above-mentioned categoriesHip-Hop, Jazz, Blues, Rock,
Classical, Pop, Metal, Country, Reggae, and Disco, each of them represented by 100 music audio ex-
cerpts of 30-second length. e categoriesClassical and Jazz can be further divided, respectively, into
the subclasses Choir, Orchestra, Piano, and String quartet, and Bigband, Cool, Fusion, Piano, Quartet,
and Swing. For a previous application of this collection in MIR research see, for instance, the works
by Li & Ogihara (2005), Holzapfel & Stylianou (2008), or Panagakis & Kotropoulos (2009).
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For our specific needs we re-distribute the 10 categories into 3 super-classes, namely Classical,
Jazz/Blues, and Pop/Rock. at is, we directly adopt the original Classical category and merge the
original categories Jazz and Blues into the Jazz/Blues class. Finally, we unite all remaining original
categories to build the Pop/Rock class. is is motivated by the generally small differences in the
instrumentations that the sub-categories of a given super-class exhibit (e.g. one can find very sim-
ilar instrumentations in both jazz and blues music). A further reason for the choice of this rather
coarse genre taxonomy is that we can directlymap it to the labels of themusical instruments’ training
collection, as used in Section 6.2.3 (see also Figure 4.4).

For evaluation we use the tracks of our instrument recognition evaluation collection (Section 4.3.2),
merging the human-assigned labels similarly to the aforesaid into the super-classes Classical,
Jazz/Blues, and Pop/Rock. We then extract excerpts of 30-second length from the audio signal to
construct the genre evaluation collection. ese data therefore serve as independent test collection
for the genre recognition model.

6.2.1.2 Genre classifier

We computationally model the musical genres using a SVM classifier trained with pre-selected low-
level audio features. Here, we apply the same modelling methodology as described for the musical
instruments in Section 4.2. First, we extract all audio features, presented in Section 4.2.1, frame-
wise from each audio instance in the collection by using a window size of approximately 46 ms and
an overlap of 50%. e resulting time series of raw feature values are then integrated along time using
mean and variance statistics of both the instantaneous and first-difference values. en, a 10-Fold
feature selection procedure selects the most relevant of these audio features for the given task. Next,
we estimate the optimal values for the model’s parameters by conducting a two-stage grid search in
the relevant parameter space. Finally, we train the model using the determined parameters with the
pre-selected features extracted from the training collection. It should be noted that we use a flat
distribution among the respective musical genres in the dataset in all reported experiments, hence
the 3 target categories contain 100 audio instances each.

6.2.1.3 Evaluation

We report an average accuracy A following a 10 × 10-Fold CV of 88.4% ± 1.31 pp on the train-
ing dataset, along with average F values for individual classes of, respectively, 0.96, 0.84, and 0.85
for the Classical, Jazz/Blues and Pop/Rock categories. ese figures indicate that the Classical cat-
egory is bettermodelled than the remaining two classes, hencemost errors originate from confusions
between Jazz/Blues, andPop/Rock. Moreover, the evaluation on the external test set – the 220 tracks
from the instrument recognition evaluation collection – result in an accuracy A of 71%. is drop
in accuracy following the cross-database evaluation shows the high variability in the modelled mu-
sical concepts, a fact that has been previously pointed out by Livshin & Rodet (2003). Furthermore,
Guaus (2009) shows the limited generalisation capacities of this particular collection by performing
cross-database testing for musical genre classification. Moreover, these results also support the fact
that musical genre is by no means a well defined concept from the taxonomic point-of-view, since its
perception is highly subjectively and partially influenced by the cultural and social context (Aucou-
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turier & Pachet, 2003; Guaus, 2009). Many of the prediction errors may therefore result from these
categorical ambiguities. We note that this observed genre classification error is directly translated
to the label inference stage of the systems incorporating automatically inferred genre information
presented subsequently in this section, since all of these systems use the same data to evaluate their
recognition abilities.

6.2.2 Method I - Genre-based labelling

In this section we present combined systems which use the original instrument recognition models
as developed in Chapter 4. us, the genre information is affecting the output of these models.
More precisely, the first here-presented system uses the categorical genre information as a filter on
the output of the label inference algorithm. e second combinatorial approach exploits the prob-
abilistic estimates of the genre classifier as a prior to weight the output of the instrument recognition
models.

6.2.2.1 Label filtering

As already mentioned above, this approach (SLF) applies the categorical genre information to filter
the instrumental labels provided by the label inference algorithm developed in Section 4.3. Hence,
given the genre label of the analysed track, we simply reject those predicted labels which are atyp-
ical for the musical genre assigned to the piece. In particular, for pitched instruments, we regard
electric Guitar and Hammond organ atypical for the Classical genre, Cello, Flute, and Violin atypical
for the Jazz/Blues category, and finally Cello, Clarinet, and Violin atypical for the Pop/Rock genre.
We furthermore disregard a predicted label Drums for a piece from Classical music. is selection
of atypical instruments given a particular genre results from general considerations regarding the
expected instrumentations of the considered genre, together with the results from the association
experiments in the previous part of the chapter. We want to note that we purposely used only
those genre-instrument combinations for filtering which take part in both aforementioned sources
of consideration. In this regard, wewant to avoid any biasing or overfitting of the developedmethods
towards the applied music collection.

Figure 6.3 depicts the basic concept of this approach in the instrument recognition framework. Note
that the illustration is simplified by unifying the pitched and percussive recognition into a single,
general, recognition path.

6.2.2.2 Probability weighting

is method, denoted SPW, uses the original models for pitched and percussive timbre recogni-
tion and works on the respective output of the classifiers. Here, we directly apply the output of the
genre classifier as a prior for the labelling algorithm. In particular, we use the genre probabilities
to re-weight the probabilistic estimates of the instrumental classifiers. Figure 6.4 shows a graph-
ical illustration of this approach. Note again that the depiction unites the pitched and percussive
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Figure 6.3: Block diagram of combinatorial system SLF. e output of the label inference is simply filtered to suppress
genre-atypical instrumental labels. Note that the illustration is unifying the pitched and percussive recognition into a single,
general, recognition path.
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Figure 6.4: Block diagram of combinatorial system SPW . e probabilistic output of the instrument recognition models
are re-weighted according to the genre estimate. Note the unified recognition path for pitched and percussive instruments
for illustration purpose.

recognition into a single, general, recognition path.

In case of the pitched instrument recognition we first adapt the 3-valued genre probability vector
to the instruments’ 11 probabilistic estimates. Hence, we assign, to each instrument, its respective
genre probability according to the genre-instrument relations defined in the previous approach, and
re-normalise the resulting 11-valued genre probability vector so that the probabilities sum to one.
We then weight, i.e. multiply, the instrumental probabilities by the respective genre estimates and
again re-normalise the resulting vector, doing this for each classification frame. e resulting re-
weighted representation of instrumental presence is then passed to the labelling module without
any further changes.

We apply a similar procedure for the percussive timbre recognition. Here, we weight the corres-
ponding category with its genre probability, i.e. no-drums with Classical and Drums with the sum
of Jazz/Blues and Pop/Rock, and re-normalise the resulting representation for each classification
frame. Drumset detection is then performed via the method described in Section 4.3.3.
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Classical ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ×
Jazz/Blues × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓
Pop/Rock × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓

Table 6.2: Categories modelled by the 3 genre-specific instrument recognition models. Note that pitched and percussive
categories are represented by two different classifiers.

6.2.3 Method II - Genre-based classification

For the approaches presented in this section we develop new instrument recognition models con-
sidering the genre information of the respective training instances. In particular, we exploit the
genre labels of the instances in the training collections for the musical instruments (see Figure 4.4)
to construct genre-specific statistical models of the 11 pitched instruments¹. We then use the genre
information of the track under analysis to either choose one of the recognition models for prediction
(Classifier selection) or combine the information provided by the individual models with respect to
the genre estimate (Decision fusion).

By constructing genre-specific instrument recognition models we consider that certain musical in-
struments are adopted in a similar manner given a particular musical genre, but exhibit a rather
different contextual use across genres (e.g. violins play a predominant role in almost all classical mu-
sic while their adoption in pop and rock music is more of an accompaniment kind; moreover, in
jazz and blues music they appear very rarely). Furthermore, we can take advantage of the differ-
ent descriptions in terms of audio features a given instrument exhibits in different musical contexts
(e.g. an acoustic guitar may be described differently in classical and rock music.). However, the
genre-dependent training of the recognition models may add complexity to the overall label infer-
ence task, since the information from 3 models may be considered. is can lead to additional
spurious information which negatively influences the overall labelling performance.

We develop these new recognition models following the procedure described in Section 4.2.1. First,
we construct the 3 datasets according to the genre labels provided by the respective audio instances.
Following the distribution of labels and the results from the association analyses in Section 6.1, we
use, for constructing the Classical model, all available data except the categories electric Guitar and
Hammond organ. e Jazz/Blues model comprises all pitched categories except Cello, Flute, and Vi-
olin, while thePop/Rock classifier is built using all data aside the categoriesCello,Clarinet, andViolin.
Table 6.2 summarises the class assignments of the 3 developed genre-specific recognition models for
pitched instruments. We note that we mainly use data from the corresponding musical genres in the
training data of the respective recognition models (for some rare combinations, e.g. singing Voice and
the Classicalmodel, we had to use the training data from the other musical genres due to lack of rel-
evant instances assigned to the Classical genre). Moreover, we again use only flat class distributions
in the datasets for all upcoming experiments.

¹e drumset detection is modified similarly to the approaches in the previous section.
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Figure 6.5: Block diagram of combinatorial systemSCS. e categorical output of the genre recognitionmodel selects one of
the 3 instrumental classifiers for label inference. Note the combined recognition path for pitched and percussive instruments.

Next, we apply the 10-Fold feature selection to each of the 3 generated datasets, identifying the
genre-dependent optimal feature subsets for the respectivemusical instrument recognition task. We
then perform the same 2-stage grid search procedure as described in Section 4.2.3.3 to estimate the
optimal parameter values of the SVMs for the three classifiers. Finally, we train the 3 models using
the respective estimated best parameter settingswith the corresponding set of selected audio features
extracted from the particular training collection.

6.2.3.1 Classifier selection

is first approach (SCS) explicitly chooses the recognition model to apply considering the genre
estimate of the analysed music piece. Hence, it can be regarded as supervised classifier selection
(Kuncheva, 2004), where an oracle decides which of the 3 models to use given the data at hand.
Label inference for the pitched instruments is then performed by using the predictions of the selected
classifier. In case of the percussive labellingwe simply disregard the classifier decisions given the label
Classical for the musical genre. Figure 6.5 shows an illustration of the basic processes involved in the
presented approach. Note that the label inference is simplified by showing a combined recognition
path for pitched and percussive instruments.

6.2.3.2 Decision fusion

is last approach (SDF) uses the probabilistic genre information to combine the decisions of the
3 independent recognition models. In particular, we apply a weighted sum for decision fusion
(Kuncheva, 2004), where the genre probabilities represents the weights. e probabilities of the
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Figure 6.6: Block diagram of combinatorial system SDF. e system uses the probabilistic output of the genre model
to combine the probabilistic estimates of the 3 instrumental classifiers. Note that the illustration unites the pitched and
percussive recognition paths for simplification.

3 pitched instrument models are simply weighted and summed using the genre information², while
the weighting process for the percussive model output is implemented as described for the probabil-
ity weighting SPW in the previous section. Figure 6.6 depicts a block diagram of the decision fusion
approach SDF. Note that the pitched and percussive recognition paths are merged to simplify the
illustration.

6.2.4 Experiments and results

In the subsequent evaluation we perform all experiments in the 3-Fold CV procedure, as applied
in the previous chapters. at is, we use, for each rotation of the CV, 2/3 of the data for para-
meter tuning and the remaining 1/3 for assessing the labelling performance. To guarantee maximal
comparativeness we estimate the parameter values for each system separately. Hence, each combin-
atorial approach determines its best labelling parameter values using a grid search over the training
folds in each CV rotation. We use the metrics presented in Section 4.3.4.3 to evaluate the different
aspects of the labelling performance for the respective systems.

Furthermore, we establish three comparative baseline systems. e first, Ref Ch5, is the direct ad-
option of the CLU instrumentation analysis system presented in Chapter 5; identical to all com-
binatorial approaches, we use the CT track-level analysis to pre-process the entire piece of music,
and use the segments of the 3 “longest” determined clusters for label inference. e second baseline,
Ref prior, uses the prior probabilities of the modelled musical instruments together with the genre
information for label inference. More precisely, this null model is generated by drawing each la-
bel from its respective prior binomial distribution and applying the label filtering according to the

²We artificially set the probabilistic estimates of the not-modelled categories in the respective genre-specific models to
zero to enable a combination of their values.
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Metric Ref Ch5 SLF SPW SCS SDF Ref prior* Ref up

Pmicro 0.75 0.78 0.72 0.67 0.63 0.49 1.00
Rmicro 0.65 0.63 0.68 0.7 0.68 0.42 0.97
Fmicro 0.69 0.7 0.7 0.69 0.66 0.46 0.98
Fmacro 0.54 0.53 0.53 0.54 0.51 0.27 0.92

(a)Annotated musical genre.

Metric Ref Ch5 SLF SPW SCS SDF Ref prior* Ref up

Pmicro 0.75 0.76 0.73 0.64 0.66 0.49 1.00
Rmicro 0.65 0.6 0.65 0.64 0.65 0.41 0.91
Fmicro 0.69 0.67 0.68 0.64 0.65 0.44 0.95
Fmacro 0.54 0.53 0.53 0.51 0.5 0.26 0.9

(b) Predicted musical genre.

Table 6.3: Comparative results for all combinatorial approaches. Part (a) of the table shows the evaluation results using the
expert-based, i.e. annotated, genre information, while the systems in part (b) use the statistical model to predict the musical
genre of the analysed track. e table header includes a reference system fromChapter 5 (Ref Ch5), the label filtering (SLF),
probability weighting (SPW), classifier selection (SCS), and decision fusion (SDF) combinatorial approaches, as well as a
second and third reference system using, respectively, the prior distribution of the musical instruments and the expert-based
instrument annotations, along with the genre information of the respective track for label inference (Ref prior, Ref up).
e asterisk denotes average values over 100 independent runs.

musical genre, as described for the label filtering approach SLF (see Section 6.2.2). We estimate
its labelling performance by averaging 100 independent runs. Finally, we establish an upper bound
(Ref up) by filtering the expert-based annotations with the same label filtering approach.

6.2.4.1 General results

Table 6.3 shows the evaluation’s results for all considered systems. To assess the influence of the
genre recognition error, we perform the evaluation with both human-assigned and automatically
estimated genre information, hence splitting the table into two parts. In case of the expert-based
genre information, we use a 3-valued binary vector to represent the probabilistic estimates of the
respective genres for the SPW and SDF systems. Moreover, Figures 6.7 (a) and (b) show the meth-
ods’ performance on individual instrumental categories in terms of the class-wise F-score F . Again,
we split the figure into 2 parts, representing, respectively, the results for expert-based and compu-
tationally estimated genre. Finally, Figures 6.8 (a) to (h) depict the amount of added and rejected
labels in comparison to the output of the baselineRef Ch5, which uses no genre information for the
label inference (see above). In each figure the presented bars are grouped according to the ground
truth of the label, i.e. if the respective label does or does not appear in the annotation of the analysed
piece³.

To assess the influence of the genre information on our label predictions we first analyse the res-
ults obtained with the expert-based genre information (Table 6 (a)). Here, the upper boundRef up

³Weomit the respective performance of the upper boundRef up in Figures 6.7 and 6.8, since it does not provide relevant
information for assessing the performance of the presented combinatorial systems.
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hardly shows deviations from perfect performance, indicating a quite limited number of here-
considered genre-atypical labels in the annotations of the music pieces. Moreover, we see a clear
improvement in labelling performance for the prior-based reference system Ref prior compared to
the figures obtained for the approach using the same prior information but without the genre filter-
ing applied as presented in Section 5.3.4 (see Table 5.5). Since the filtering of genre-atypical labels
leads to an increase in the precision Pmicro by more than 20%, the F-score Fmicro is analogously
improved, namely by 15%. ese, however, are quite logical and intuitive results considering the
fact that this system’s label extraction mechanism is completely genre-blind.

Regarding the four presented combinatorial approaches, we observe no improvement in terms of
the overall labelling performance, represented by the two F-scores Fmicro and Fmacro, over the null
model Ref Ch5, which does not use genre information for label inference. Hence we have to draw
the general conclusion that we cannot improve our instrument recognition algorithm using the here-
applied genre context, even if we could apply a 100% accurate genre recognition model. A detailed
analysis of the performance of the respective combinatorial approaches further shows that the SDF

approach clearly performs worse compared to the other three. is suggests that the increase in
complexity – the approach combines 25 pitched instrumental probabilities in comparison to a max-
imum of 11 for all other approaches – degrades the overall labelling performance. All other three
systems perform equally in terms of both applied F-scores, being close to the figures of the reference
Ref Ch5. We do, however, observe large divergences in the precision and recall metrics Pmicro and
Rmicro for the different combinatorial approaches from this reference. In particular, we notice a de-
creasing precision and an increasing recall for the systems SLF, SPW, and SCS, respectively. Since
SLF just removes labels, it can only improve its precision but lowers, at the same time, its recall. e
SPW approach is less restrictive than the aforementioned and moreover able to predict additional
labels compared to the baseline Ref Ch5. Here, the re-weighting of the instrumental probabilistic
estimates seems to reveal masked genre-typical instruments, which is reflected in the increased value
of the recall. e same process, however, lowers the precision, since also spurious labels are added
due to the genre weighting. Finally, the highest value for the recall can be observed for the SCS ap-
proach, since it only predicts genre-typical instruments. is, in turn, confirms the findings of the
first part of this chapter, i.e. the strong associations between musical genres and instruments. On
the other hand, additional confusions are added from the similar acoustical context of the respect-
ive model’s training data – we trained each classifier with data mostly originating from the genre it
represents – resulting in the low value for the precision.

e same trends can be basically observed from the lower part of Table 6.3, which featured ap-
proaches apply the estimated musical genre resulting from the genre recognition model described
in Section 6.2.1. e figures for the combinatorial systems are proportional lower than the ones
from the upper part of the table, which is a result of the propagated genre recognition error. Con-
sequently, these figures are lower than the reference baselineRef Ch5, indicating that the imperfectly
working genre recognition model is degrading the recognition performance in the instrument recog-
nition system. Here, SCS is affected most, since the wrong selection of the classifiers may lead to
a series of spurious labels, whereas the genre error’s effect for weighting or filtering approaches is
more limited.
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(a)Annotated musical genre.
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(b) Predicted musical genre.

Figure 6.7: Performance on individual instruments of all combinatorial approaches. Part (a) shows the labelling performance
in terms of the categorical F-score for ground truth genre, while part (b) depicts the same metric for automatically predicted
genre labels. Legend for the different approaches: Label filtering (LF), Probability Weighting (PW), Classifier Selection
(CS), and Decision Fusion (DF). See text for more details on the compared combined systems and the baseline methods.

Furthermore, Figure 6.7 indicate that the modelled instruments are affected very differently by the
incorporation of the genre information. For instance, singing Voice and Drums show hardly any
variations when considering the depicted approaches. On the other hand, instruments such as the
Clarinet, Flute, or Saxophone exhibit strong variability with respect to the output of the different
systems. is observation may result from the highly skewed frequency of the instruments inside
the evaluation collection; more frequent categories are less likely to be affected to a large extent by
the genre information, while on less frequent instruments the additional informationmay have great
impact. Moreover, a similar behaviour of the individual F-scores can be observed for the application
of annotated and estimated genre information. Drums, singing Voice, Piano, or Saxophone show
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Figure 6.8: Quantitative label differences between the respective combinatorial approaches and the reference baseline. e
upper part of the figure ((a) - (d)) shows the results for expert-based annotated genre information, while the lower rowdepicts
the results for estimated musical genre ((e) - (h)). e “+” in the legend refers to labels added in comparison to the baseline,
while the “–” stands for rejected labels with respect to the output of the reference system. Moreover, the two groups assigned
to the abscissa represent whether or not the particular label is featured in the ground truth annotation of the respective track.

very similar patterns for the respective approaches in Figures 6.7 (a) and (b). Some instruments,
however, exhibit a contrary behaviour, in case of the Cello even benefiting from the error introduced
by the genre recognition model. is has to result from the genre-atypical adoption of the particular
instrument in several tracks of the used evaluation collection.

Finally, we analyse the quantitative differences in label predictions between the combinatorial ap-
proaches and the nullmodelRef Ch5, as shown in Figure 6.8. Here, an additional correctly predicted
label (“+”) increases the recall, while a lost correct label (“–”) decreases the recall of the respective
method. Analogously, an incorrectly added label (“+”) decreases the precision, while a removed in-
correct instrument (“–”) increases it. Interestingly, the amount of removed correct and incorrect
labels is approximately the same for all presented approaches, hence affecting the precision the same
way positively as the recall negatively. is indicates that the number of wrongly and correctly pre-



6.3. Discussion 185

dicted genre-atypical instruments is mostly the same. Hence, by only removing labels according to
the imposed genre-dependent rules – as implemented by theSLF approach–we cannot improve the
labelling performance of the presented approach towards the automatic recognition of musical in-
struments. Moreover, those approaches applying genre-specific recognition models (SCS and SDF)
exhibit the double amount of additional labels, both correctly and incorrectly predicted, which is in
accordance to the aforementioned findings. e genre-adapted classifiers encode different acous-
tical facets of the input audio, hence resulting in greater values for added as well as removed labels in
comparison to those approaches using the original recognition models as developed in Section 4.2.
Furthermore, the observable greater value in the incorrectly added compared to the correctly ad-
ded labels corresponds to the greater reduction of the precision in relation to the increase in the
corresponding recall.

6.3 Discussion

In this chapter we studied the interrelation between the musical facets of genre and instrumenta-
tion. In particular, we analysed the statistical dependencies between particular musical instruments
and genres and estimated its influence on the output of our developed instrument recognition ap-
proach. In the statistical analysis presented in the first part of the chapter we found strong associ-
ations between musical instruments and genres. More precisely, the applied test revealed that each
of the modelled instruments is strongly related to at least one of the analysed musical genres. Many
instruments, moreover, exhibit associations to several genres. Hence, we can confirm our first hy-
pothesis, stated in the beginning of the chapter, concerning the expected co-occurrences between
musical instruments and genres.

By reviewing the results obtained in the second part of the chapter we have to, however, reject the
second stated hypothesis – improving the labelling performance of the developed automatic mu-
sical instrument recognition method by integrating information on the musical genre. None of our
presented approaches combiningmusical instrument and genre recognition could score over the per-
formance of the null model, which is not using genre information for label inference. Nevertheless,
we can identify several reasons for this negative outcome; first, most of the aforementioned null
model’s prediction error results from genre-typical instruments⁴. Hence, eliminating the spurious
genre-atypical labels is not increasing the labelling performance to a great extent; moreover, an ad-
ditional error is introduced which compensates for this improvement. From a different viewpoint,
the information provided by the instrument recognition models and the genre recognition source
is not complementary but mostly entirely overlapping; they basically encode the same piece of in-
formation. Second, even in the light of the observed associations, many musical instruments – and
especially those modelled in this thesis – are adopted in several musical genres, which narrows the
prospects of controlling the label inference with genre-related information. Table 6.2 contains 5 out
of 12 instruments which are present in all 3 modelled musical genres. is fact may also be rooted

⁴From the initial 1039 labels predicted for all 220 tracks in the used evaluation collection, the categorical filtering ap-
proach SLF only removes around 50, indicating this amount of wrongly-predicted genre-atypical instrumental labels.
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in the generalising taxonomy chosen for modelling the musical instruments, which can be regarded
as a mid-level in the hierarchical taxonomic representation of musical instruments (see Section 4.1).
Many instruments further down the hierarchy would exhibit more genre-specific properties (e.g. a
concert Guitar is mainly adopted in classical music in contrast to the general class of acoustic Gui-
tar, which spans multiple musical genres), but at the expense of a higher confusion rate with other
instruments of the same family. And third, the error introduced by the imperfectly working genre
recognition directly translate to an additional instrument recognition error. Using automatically in-
ferred genre information actually degrades the performance of the labelling, when compared to the
null model which is not applying this information source.

ese results are rather disappointing when considering the results obtained by McKay & Fujinaga
(2005), where the instrumentation was found to be the most important cue for genre recognition⁵.
Since the descriptors in the aforesaid work are extracted from symbolic data, the authors could apply
fine-grained details about the instrumentation of the analysed pieces. A vector representing all 128
general MIDI musical instruments contained the total time in seconds of the particular instruments
in the processed track. Hence, in order to apply genre information for automatic instrument recog-
nition two requirements must be fulfilled; first, a detailed taxonomy of musical instruments must
be modelled. is has been already identified above. Second, the information regarding the detec-
ted instruments has to be accurate. e relative importance of the instrument in the analysed piece
seems to be of importance, given the results obtained by McKay & Fujinaga (2005). Both require-
ments, however, are only partially met by the presented approach towards the automatic recognition
of musical instruments, which explains the negative results in the second part of this chapter.

In this regard it seems plausible that the hypothesis stated in the beginning of the chapter – mu-
sical genre information acts as an important cue for musical instrument recognition – only applies
for specific genres adopting peculiar instruments. Hence, instruments such as particular percus-
sion instruments (e.g. Bongos,Congas), genre-typical electronic devices exhibiting distinctive sounds
(e.g. Roland’s TR-808 or TB-303), or other genre-idiosyncratic instruments such as the Mellotron
or the Steel guitar should be modelled. is consequently would lead to different kinds of model
conceptions and thus model architectures. Instead of the here-adopted multi-class models, simple
presence/absence models, i.e. one-vs-all, for both a particular musical genre and a particular instru-
ment would then better meet the requirements (e.g. modelling theMellotron for the genre of 1970’s
Progressive Rock as recently developed by Román (2011)).

⁵Here, we hypothesised, without loss of generality, the reverse, namely that musical genre is an important cue for in-
strument recognition. e results from the association analyses in the first part of this chapter further substantiate this
hypothesis.
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Conclusions
A recap, known problems, and an outlook into the future

After having reviewed the various approaches, implementations, and experimental results of
Chapters 4 - 6, we take a step back and reflect on the general outcomes of this work together with
their implications for the relevant research field. We motivated our work in Chapter 1 by stat-
ing the importance of instrumentation in general music listening; as the musical representation of
timbre sensation it strongly influences our mental inference of higher-level musical concepts (Alluri
& Toiviainen, 2009). Moreover, instrumentation represents one of the most important semantic
concepts humans use to communicatemusicalmeaning. From this viewpointwe identified twomain
directives of possible research lines; the first one, purely engineeringmotivated, uses the information
regarding the instrumentation of a music piece to provide accurate, i.e. musically meaningful, search
and retrieval facilities in large catalogues of multimedia items, as well as personalised music recom-
mendations. e second direction explores the areas of human auditory perception and cognition,
where hearing research still knows little about how our mind makes sense of complex acoustical
scenes (Yost, 2008). Here, the aim is to contribute to a deeper understanding of sound in general
and its processing inside the human brain.

Driven by these bifocal research perspectives, we asked questions such as “what kind of instrumental
information do we need for a meaningful description of the music from a user’s point-of-view?”, or
“which sound components of a givenmusical instrument affect its identifiability among other instru-
ments?”. Some of these questions which arose in the course of this thesis could be answered, while
others still remain unanswered and subject to future research. In what follows we first summarise
the content covered in this thesis (Section 7.1), reflect on the insights we gained from the various
experimental results (Section 7.2), point towards directions for future research (Section 7.3), and
close this thesis with some concluding remarks (Section 7.4).

187
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7.1 Thesis summary

To the authors’ knowledge, this dissertation presents the first thesis work designing approaches
for the automatic recognition of musical instruments specifically targeted at the processing of poly-
phonic, multi-sourcemusic audio data. We developed amodular, hierarchically constructedmethod
which incorporates, at each level, psycho-acoustical and musicological knowledge bits. We thereby
designed and evaluated the respective components in its corresponding musical context. Moreover,
this thesis offers the most extensive evaluation framework, compared to related works in the field,
up to now, assessing the method’s accuracy, generality, scalability, robustness, and efficiency.

In particular, in Chapter 4 we started at the level of a musical phrase (typically in the range of sev-
eral seconds), which is known to be the fundamental building block in the human source recognition
process (Kendall, 1986; Martin, 1999). Here we developed statistical recognition models which are
able to predict the presence of a single predominant musical instrument in a musical mixture (Sec-
tion 4.2). An in-depth analysis of low-level audio features involved in the decision process showed
how the specific acoustical characteristics of the modelled instruments are inherent in the identi-
fication process, hence bridging the gap to both perceptual and psycho-acoustic research. In the
subsequent thorough error analysis we furthermore identified many prediction errors to be similar
to those found in recognition studies using human subjects.

In the second part of Chapter 4 we used an analysis of musical context on top of the models’ predic-
tions to infer knowledge regarding the instrumentation of a given music audio signal (Section 4.3).
We thereby showed that the applied context analysis allows for a reliable extraction of the instru-
mental information together with a robust handling of unknown sources. Moreover, we proved the
usefulness of the information resulting from predominant sources in the instrument recognition
paradigm and showed how to incorporate this information into a multiple instrument recognition
system.

Chapter 5 covered the next level in the hierarchy, namely the processing of entiremusic pieces. Here,
we described and compared several approaches, both knowledge-based and agnostic ones, for a com-
plete instrumentation analysis of music tracks. We identified the capacities as well as the limitations
of the presented methods and showed how the redundancy in the instrumentation of a given music
piece can be exploited to reduce the amount of data used for processing. In short, the approaches
were able to correctly extract around 2/3 of the instrumental information along with a low amount
of spurious labels by using only a fraction of the available input data. We however identified a ceil-
ing in the recognition performance that could be explained by the constrains applied in the design
process of the recognition models.

Finally, in Chapter 6 we even entered a global contextual level by linking the instrumentation of a
music piece with its musical genre. We first quantified the statistical dependencies between musical
instruments and genres by applying proper measures. In the second part of the chapter we then
developed automaticmusical instrument recognition systemswhich integrate the information on the
musical genre in the decision process. We could generally conclude that a context-adaptive taxonomy
of musical instruments is needed to fully exploit the information provided by the musical genre.
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Recapitulating, in this thesis we have taken several fundamentally different paths compared to re-
lated works in the field. From a perceptual viewpoint, we directly translated – yet imposing proper
constraints to the modelling process – the underlying problem from its very general monotimbral
nature into a polytimbral context. Moreover, many “transcriptive” approaches view the problem as
inseparable from automatic music transcription, hence performing instrument recognition either
simultaneous or subsequent to an estimation of multiple pitches or onsets. Most related studies on
automatic instrument recognition further rely on a strict frame-by-frame processing. Our method,
on the contrary, infers the information regarding the instrumentation from portions of the signal
exhibiting themost confidentmodel predictions. Next, the observed redundancy of the information
led us to discard more than half of the available input data, with no reduction of the recognition ac-
curacy. e results presented here – along with various findings from psycho-acoustic and machine
listening research – suggest that both, the “transcriptive” viewpoint as well as the strict frame-wise
processing, are by no means required for a successful and detailed description of the instrumenta-
tion of a musical composition. Furthermore, we strictly evaluated our approaches only against real
music data of any timbral and musical complexity in order to assess its recognition performance in
a general context, a procedure which is still not standardised in related works. At last, we contex-
tualised the problem by exploiting apparent associations between high-level semantic concepts that
are inherent to the analysed music, which, to the best of our knowledge, has not been done before
inside the instrument recognition paradigm.

In the light of the aforementioned, we can now draw the connection from the presented approach to
the general evaluation criteria for recognition systems presented in Section 3.3. First, the developed
method meets criteria 2, 4, and 1 by exhibiting, respectively, good performance in the handling of
data complexity and noise, as well as acceptable generalisation capabilities. In corresponding ex-
periments we showed that the recognition error is neither dependent on the complexity nor the
amount of unknown sources in the data. Moreover, the generalisation capabilities were revealed by
themethod’s performance on the independent, constraint-free dataset used in Section 4.3 and there-
after. Furthermore, the presented method meets criterion 3 insofar that the applied architecture of
the statistical models – we use SVM classifiers – allows for a flexible management of the modelled
categories, thus new classes can be added easily provided the necessary labelled data. Finally, the
presented algorithm also confirms with criterion 6 since the basic label inference presented in Sec-
tion 4.3 is based on a sequential analysis of time-series, confirming with the content understanding
notion of any music processing systems (Martin, 1999). Hence, only criterion 5 – the adaptivity
of the employed learning strategy – is not met, but the need for such a flexible, semi-supervised
architecture is apparent. However, we leave this issue open for future research directions.

7.2 Gained insights

In this thesis, we developed and evaluated an algorithm for the automatic recognition of musical
instruments from music audio signals. Even if our method is working imperfectly, the various eval-
uation results provide valuable insights into the problem. ey can be stated as follows:
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1. We do not see a need for complex signal processing, especially source separation, in order
to extract high-level cues from music signals. Admittedly, the results provided by this thesis
along with several examples from literature (see e.g. Barbedo & Tzanetakis, 2011; Haro &
Herrera, 2009) suggest that a certain amount of adaptive pre-processing benefits machine
perception. Nevertheless, research has shown that even very untrained human listeners can
accurately fulfil tasks such as musical genre or style, emotive character, timbre, or rhythm
perception without effort (Martin et al., 1998). In this regard, we may further speculate that
those musical instruments, which can only be recognised using perfect source separation as
pre-processing, may by no means be important for the description of the musical compos-
ition; the given source cannot be perceived by the listener in a way that it would bear rel-
evant descriptive information. We therefore believe – and will state it more explicit in the
subsequent section – that studying human auditory processing and its extensive inferential
character provides enough information for an accurate modelling of the acoustical scene, in-
cluding source recognition. In this context, we may cite Hawley (1993), who wrote, referring
to an experiment teaching pigeons to differentiate between music composed by J. S. Bach and
I. Stravinsky (Neuringer & Porter, 1984) – that

“…the pigeon reminds us that even without much general intelligence a ma-
chine can glean enough from an audio signal to draw conclusions about its
content.”

In this context, we can assume that the discrimination inside the pigeons’ brains relied on
timbral cues, and not on more musical aspects such as structure or tonality.

2. In our developed framework the predominance of a source is the most important cue for
recognition. is is not surprising since we constrained the whole approach to the modelling
of predominant sources. However, the presented results further suggest that a certain amount
of predominance enables the robust extraction of the source’s invariants. Remarkable here is
also the amount of informationwe can explain by concentrating only on predominant sources.
Besides, this makes sense from an evolutionary viewpoint since stronger acoustical signals
always imply a stronger possible threat. Now let us think think further, if we are able, by
means of signal processing, to “predominatise” non-predominant sources, we may boost the
accuracy of recognition systems to a great extent (in this context, see also the provided link to
the auditory attention mechanisms in the next section).

3. e applied acoustical description of the input signal in terms of low-level audio features and
the approach towards the statistical modelling work reasonably well within their respective
limitations. We indeed identified the need for a better description of various acoustical as-
pects of the musical instruments and a more flexible learning environment. However, the
observed recognition performance together with the results of both feature and error ana-
lyses indicate that not the applied techniques of pattern recognition are the primal source of
error, but the data representation itself. at is to say, given the perfect representation, we
should be able to increase the performance of the current system to a great extent.

4. Context, in general, plays a pervasive role for recognition systems. Even if the presented ap-
proach incorporates musical context only in a very rough manner, we could show very prom-
ising directions (see also the work of Barbedo & Tzanetakis (2011), where the contextual
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analysis is simplistically incorporated via successive majority votes). Moreover, the results of
Chapter 6 suggest that yet a much broader context is needed for an in-depth description of
music in terms of musical instruments.

5. eevident recurrence ofmusical instruments inside themusical compositions requiresmuch
more attraction of interest in the algorithmic processing (see again the results presented in
Chapter 5 and by Barbedo & Tzanetakis (2011)). Given the conventions of Western music,
it is far more likely that an already identified instrumentation continues playing than the oc-
currence of a sudden major change therein. Hence, knowing where the instrumentation is
changing is much more important than the knowledge of the entire instrumentation in each
analysis frame. A subsequent label extraction can than be mainly guided by probabilistic in-
ference inside regions of persistent timbre.

6. ere is no universal approach towards an instrumentation analysis forWesternmusic pieces.
Our results suggest that, although the phrase-level instrument recognition itself has shown
to be robust across different genres, different types of music require specialised algorithms to
analyse their timbral properties. is is apparent from the outcomes of Section 5.2.3, where
the proposed timbre analysis by means of segmentation and clustering of MFCCs showed
good performance on structured rock, pop, or jazz music, but failed on pieces from classical
music. is further indicates that we have not yet fully understood the underlying processes
of music, here especially timbre, in order to describe it in a way for a reliable exploitation of
its characteristics to infer higher-level musical concepts (McAdams, 1999).

7. A meaningful description of music in terms of instrumentation, with an envisioned applica-
tion in MIR systems, goes far beyond the here-presented. One key aspect still remains the
identification of the user’s need – maybe the most important aspect in our understanding
of music. A successful recognition system then fully adapts to this need to return valuable
information.

7.3 Pending problems and future perspectives

It goes without saying that the approaches presented in this thesis only represent the beginning in
an exhaustive research line towards automatic source recognition from complex auditory scenes.
Moreover, many initial goals of this work have only been partially met and the amount of research
questions regarding the topic has merely increased than declined. Remarkably, many of the sub-
sequently listed yet appeared in the respective section in Martin’s thesis (1999), more than 10 years
ago. However, we here identify several (still-) open issues and point towards possible answers for
their handling in forthcoming studies.

From our viewpoint, the main effort of future approaches has to be taken to understand, from a
signal processing point-of-view, the complex auditory scene. We have presented evidence – along
with numerous studies from related literature (Essid et al., 2006a; Fuhrmann et al., 2009a; Haro
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& Herrera, 2009; Little & Pardo, 2008; Martin, 1999) – that the recognition process itself can
yet be performed in an accurate, reliable, generalising, scalable, and efficient manner, even from
complex, i.e. non-monophonic and polytimbral, data. Hence, most unsolved issues originate from
the front-end processing of recognition systems for multi-source audio signals. We therefore see a
strong need to develop a deeper understanding of complex auditory scenes and its perception, and
its incorporation into the algorithmic architecture. More precisely, source recognition from poly-
timbral data includes – per definition – auditory scene analysis (ASA). us, except in some very
rare cases, which can mostly be simulated under laboratory conditions, these two areas are inextric-
able. erefore, one has to approach both in order to achieve an accurate solution for the problem,
e.g. a human-comparable recognition performance. e here-presented approach – mainly apply-
ing techniques originating from MIR-related research – only represents a single building block of a
complete recognition system, and has to be complemented by algorithms that analyse the auditory
scene more in detail.

From a perceptual point-of-view, much of the recognition process is assumed to be based on infer-
ence from prior knowledge (Martin, 1999; von Helmholtz, 1954), a process which is only partially
understood in general hearing research. Here, we again want to emphasise the importance of top-
down control and specifically musical expectations, as shown by Ellis (1996) and, more recently,
Cont (2008) and Hazan (2010), which are essential parts of human auditory processing. Hence,
modelling these musical expectations can be accomplished in a fully probabilistic architecture and
should play a key role in future recognition system. In amuch broader CASA sense, the derived rep-
resentations then serve as additional, high-level timbral cues (i.e. the identity of the specific acoustic
sources) in the general hypotheses management system for auditory scene analysis.

e importance of a given instrument’s predominance inside a mixture for its successful recognition
is one key finding of the presented work. Since the auditory system similarly extracts high-level
information from reliable portions of the incoming signal while it infers missing parts from contex-
tual or prior knowledge (cf. Warren, 1970), an explicit location of short-term predominant signal
parts seems to be essential for improving recognition performance from mixtures. Hence, automatic
musical instrument recognition from polytimbral music signals should be based on the analysis of a
single instrument in both the spectral and temporal dimension, atwhichmultiple instruments can be
identified sequentially. Consequentially, dissolving a single source from the mixture for recognition
seems to be more appropriate than a separation of all containing sources (see, e.g. (Durrieu et al.,
2009; Lagrange et al., 2008) for somework on this topic). e resulting signal can thenbe recognised
using standard pattern recognition. Here, we can draw the connection to the attention mechanisms
of the human auditory system which enable the listener to focus on a specific source in the incoming
sensory data. Hence, the aim is to attenuate concurrent sounds while preserving the characteristics
of the target source for a reliable feature extraction (cf. a typical foreground-background modelling
paradigm). Moreover, information of already detected sources can then be incorporated in the scene
analysis process. is further improves the representation of the target inside the mixture while dis-
regarding potentially ambiguous portions of the signal. In this regard, and to connect the last three
paragraphs, speech processing research can provide a good starting point for constructing such flex-
ible recognition systems, incorporating both bottom-up and top-down schemes together with the
aforesaid auditory attention mechanisms (e.g. Barker et al., 2010).
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From an engineering viewpoint, we identify the possibilities of a signal-adaptive estimation of the
acoustical units instead of the here-applied fixed-length paradigm, e.g. the time span of several tacti
could be used to comply with the phrase-level paradigm for source recognition. An analysis of
changes in the instrumentation, based on the overall timbre and an estimation of the number of
concurrent sources, inside the entire signal can further help to improve the recognition perform-
ance.

In a more general sense, we see the need for constructing flexible, multi-hierarchical recognition
systems, which adapt to the context at hand, in order to develop descriptive algorithms¹. In partic-
ular, multiple overlapping taxonomies covering different levels in the hierarchical representation of
musical instruments would be needed to extract a detailed description of the instrumentation from
a given music piece (see also the results and conclusions of Chapter 6). Here, a successful recog-
nition system would both require general broad taxonomies at the upper level of the instrumental
hierarchy to perform general categorisation tasks and very specialised, fine grained taxonomies to
adapt to the musical context at hand for a detailed description of the music in terms of the involved
musical instruments. Hence, also more general contextual information has to be involved in the
recognition process; detailed genre information, a particular playing style, or even the name of the
analysed musical composition can serve as the cue for the selection of the proper taxonomy. e
involved recognition models can then be specialised by the incorporation of context-aware feature
selection and parameter tuning.

Finally, future recognition systems have to adopt more general flexible learning mechanisms. e
aforementioned taxonomies are by no means of a static kind; they usually evolve in time since new
categories arise from the data while models of already existing ones keep continuously updated in
terms of the underlying training data and the respectivemodel parameters. Automatic identification
of musical instruments therefore calls for semi-supervised learning concepts with an active involve-
ment of expert, i.e. human, teachers to prevent incorrect or inaccurate machine knowledge. is can
also be viewed from a perceptual viewpoint as for the human mind learning represents a live-long,
context-adaptive process.

7.4 Concluding remarks

Not for no reason does this dissertation start, in Chapter 2, with an overview of human auditory
perception and cognition. One main conclusion of this work is that these principles are indispens-
able for successful automatic recognition systems, whether theymodel them explicitly or just borrow
key components. Since human auditory perception and cognition is, after all, our touchstone for
this domain, future approaches should incorporate the principles the human brain uses to recog-
nise sound sources in complex acoustic scenes. Hence, from our perspective, psychoacoustics and
auditory scene analysis is the right starting point for forthcoming studies. As already stated in the

¹It is by way not informative and only somewhat descriptive to recognise an electric guitar from a rock piece.
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previous section the main effort has to be taken on the processing of multiple simultaneous sound
sources up to the level where the actual categorisation is performed, e.g. in a CASA framework.

is thesis has also shown that the automatic recognition of musical instruments is still a very act-
ive field of research in MIR, here deductible from the amount of works reviewed in Section 3.5 –
and, of course, by the amount of works that has been discarded due to prior exclusion. Recent ap-
proaches pay more and more effort to process complex audio data, in our literature survey we could
spot several approaches which work solely on real-world music signals (in fact a logical practice that
should be requisite for all future studies). is is even more remarkable since at the beginning of
the here-presented research, the author was not aware of any study dealing with complex input data
of this kind. More precisely, this thesis started in 2007, hence all of the comparative approaches
presented in the discussion of Chapter 4 originate after this date. is documents both the steady
improvement of the algorithms towards the recognition of sound sources from complex mixtures
(approaching the cocktail party!) and the merit and contributions of the insights gained from the
previous research works. We hope that the work presented in this thesis is in line with these con-
siderations and thus play its role in the steady improvement of musical instrument recognition ap-
proaches, providing the cornerstones for the next generations of approaches towards the problem.
Finally we hope to also contribute to the overall scientific goal of a thorough understanding of human
abilities to process and resolve complex auditory scenes.

In this light we encourage further comparative research in the field by publishing the data used to
construct and evaluate the differentmodules of the presented approaches. In particular, in the course
of this thesis we designed two complete datasets for research on automatic recognition of musical
instruments from music audio signals. e complete package along with a list of the corresponding
audio tracks can be found under http://www.dtic.upf.edu/~ffuhrmann/PhD/data.

http://www.dtic.upf.edu/~ffuhrmann/PhD/data


Ferdinand Fuhrmann, Barcelona, 18th January 2012
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A

Audio features

Here we provide the complete formulations of all audio features used in the modelling process. All
mathematical considerations are derived from the respective references provided in Section 4.2.1. If
not stated differently, Xi denotes the magnitude of the FFT bin i and N the total amount of bins
resulting from a 2N + 1-point FFT.

Bark energy bands. First, to map the frequency values in Hertz to the psycho-acoustic Bark scale,
we use

bark = 13 arctan(
0.76

1000
f) + 3.5 arctan((

1

7500
f)2).

For calculating the final energy values the magnitudes inside each band are squared and summed,

Ei =

fend∑
j=fstart

X2
j ,

where Ei denotes the energy value of the ith Bark band while fstart and fend refer to the its start
and end index in terms of FFT bins. In our specific implementation we use 26 bands ranging from
20 to 15 500 Hz. For convenience, Table A.1 lists these bands numbered by the applied indexing
schema together with their corresponding frequency ranges.

Spectral energy. e spectral energy is given by the sum over all values of the power spectrum,
i.e.
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Index Low High Index Low High

0 20 50 13 1 480 1 720
1 50 100 14 1 720 2 000
2 100 150 15 2 000 2 320
3 150 200 16 2 320 2 700
4 200 300 17 2 700 3 150
5 300 400 18 3 150 3 700
6 400 510 19 3 700 4 400
7 510 630 20 4 400 5 300
8 630 770 21 5 300 6 400
9 770 920 22 6 400 7 700

10 920 1 080 23 7 700 9 500
11 1 080 1 270 24 9 500 12 000
12 1 270 1 480 25 12 000 15 500

Table A.1: Indexing and frequency range [Hz] of Bark energy bands. In order to improve the feature’s resolution at low
frequencies, the first 4 bands are created by dividing the original 2 lowest bands. Note that all in-text references to individual
Bark bands apply the here-presented indexing schema.

E =
N∑
i=1

X2
i .

Mel Frequency Cepstral Coefficients (MFCCs). e computation of the MFCCs first involves a
mapping of the frequency values from Hertz to Mel and a subsequent energy calculation inside each
generated band (see above). To convert the frequencies we use

mel =
1000

log10(2)
log10[1 +

f

1000
].

After a logarithmic compression of the energy values the resulting signal is transformed into the
cepstral domain via the Discrete Cosine Transform (DCT), which is defined as follows:

c[n] = 2
N−1∑
k=0

Xk cos(
πn(2k + 1)

2N
), 0 ≤ n ≤ N − 1,

where c[n] denotes the nth cepstral coefficient.

Spectral contrast and valleys. First, the raw spectral contrast and valleys features are computed
for each considered frequency band separately,

Ck = (
Pk

Vk
)1/ log(µk), with µk =

1

Nk

Nk∑
i=1

Xk,i,
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where Pk and Vk represent the description of the peaks and valleys in band k, while Nk connotes
the number of FFT bins in the respective frequency band. It can be seen that the ratio of peaks
and valleys is weighted by the shape of the band k, implemented by the mean peak value µk . e
corresponding values for the peaks and valleys description are given by

Pk =
1

αNk

αNk∑
i=1

Xk,i, and Vk =
1

αNk

αNk∑
i=1

Xk,Nk−i+1,

where α denotes the fraction of FFT bins from the ranked list of magnitude values to be used (0 <

α ≤ 1). We use a value of 0.4 in our implementation. Finally, the respective Ck and Vk values are
decorrelated by applying a local PCA, using the covariance matrix estimated from the all present
frame observations. e resulting features represent the spectral contrast and valleys coefficients.

Linear Prediction Coefficients (LPC). Here, we concentrate on showing how the time-domain
prediction coefficients can be regarded as a description of the signal’s spectral envelope. First, in a
LPC analysis, the signal’s sample value x[n] is extrapolated by using a weighted sum of the previous
values of the signal,

x[n] =

p∑
i=1

aix[n− i],

where ai represent the p prediction coefficients. e coefficients are estimated by minimising the
respective error between the actual signal value and its extrapolation,

e[n] = x[n]−
p∑

i=1

aix[n− i]

By transforming this relation into the z-domain the process can be regarded as a filtering of the input
signal x,

E(z) = (1−
p∑

i=1

aiz
−i)X(z),

where the term in brackets denotes the filter’s transfer function. Furthermore, this transfer func-
tion can be used to minimise the error but also to synthesise the signal from the error given the
coefficients, hence the resulting filters are given by

A(z) = 1−
p∑

i=1

aiz
−i → S(z) =

1

A(z)
=

1

1−
∑p

i=1 aiz
−i

.
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It can be seen that the resulting synthesis filter S(z) takes the form of an all-pole filter, since the
function does not exhibit zeros in its numerator, but p zeros in the denominator, which come in
complex-conjugate pairs since the ais only take real values. e transfer function of this filter thus
exhibits p/2 peaks which describe the spectral envelope of the signal. e actual computation of
the coefficients ai is implements by using the autocorrelation method, as described in the relevant
literature.

Spectral centroid. e magnitude spectrum is regarded as a distribution, where the frequencies
denote the distribution’s values and its magnitudes its observation probabilities. e centroid de-
scribes the distribution’s barycentre, hence

centroid =

∑N
i=1 Xifi∑N
i=1 Xi

,

where fi represents the centre frequency value of FFT bin i.

Spectral spread. It describes the deviation of the spectral distribution from its mean, thus

spread =

∑N
i=1 Xi(fi − µ)2∑N

i=1 Xi

,

where µ denotes the observed spectral distribution’s mean, i.e. the centroid.

Spectral skewness. e spectral skewness is computed from the 3rd order moment, describing
the global shape of the spectral distribution,

skewness =

∑N
i=1 Xi(fi − µ)3

(
∑N

i=1 Xi(fi − µ)2)3/2
.

Spectral kurtosis. e spectral kurtosis represents the 4th order moment, again describing global
shape properties of the spectral distribution,

kurtosis =

∑N
i=1 Xi(fi − µ)4

(
∑N

i=1 Xi(fi − µ)2)2
.

Spectral decrease. It defines the decrease of magnitude values in the spectrum,

decrease =
1∑N

i=2 Xi

N∑
i=2

Xi −X1

i− 1
.
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Spectral flatness. It is defined by the ratio of the geometric and the arithmetic mean of the spec-
trum, here transformed into decibels,

flatnessdB = 10 log10(
(
∏N

i=1 Xi)
1/N

1
N

∑N
i=1 Xi

).

Spectral crest. is feature describes the shape of the spectrum by relating the maximum to the
mean magnitude. It is calculated by

crest =
max

i
(Xi)

1
N

∑N
i=1 Xi)

.

Spectral flux. It is derived by comparing the spectra of the actual and the previous frame,

flux = ||X[n]−X[n− 1]||2,

where X[n] denotes the magnitude spectrum at frame n and || · ||2 the Euclidean norm.

Spectral roll-off. e 85 percentile of the power spectral distribution, that is, it is defined by the
frequency below which 85% of the spectral energy lies,

rolloff = fi, max
i

i∑
j=1

X2
j = 0.85

N∑
j=1

X2
j , i = 1 : N

where i denotes the FFT bin index where the accumulated spectral energy reaches 85% of the total
spectral energy.

High frequency content. A weighted energy calculation, as defined by

hfc =

N∑
i=1

iXi.

Spectral strongpeak. e spectral strongpeak is calculated by dividing the spectrum’s maximum
by the width of this particular peak, i.e.

strongpeak =
max

i
Xi

log10(khi − klo)
,

where khi and klo represent, respectively, the upper and lower FFT-bin index around the maximum
peak of the spectrum where the respective magnitude reaches half the value of the maximum peak.
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Spectral dissonance. Given the FFT bin indices of the peaks of a given spectrum, the dissonance
is calculated as followed,

dissonance =
P∑
i=1

P∑
j=1

(1− ci,j)Xj ,

where P denotes the total number of peaks while the function ci,j represents a polynomial imple-
mentation of the obtained consonance curves in the original publication.

Spectral complexity. In our implementation the spectral complexity is defined by the number of
spectral peaks present in an audio frame. Hence, we apply a peak detection algorithm to the input
spectrum to derive the value of this audio feature.

Pitch confidence. Its value is derived from the depth of the deepest valley of the YinFFT-lag
function. e descriptor is computed as followed,

pitchconf = 1−min
τ

(yinFFT(τ)), with

yinFFT(τ) =
4

N

N∑
i=1

X2
i − 2

N

N∑
i=1

X2
i cos(

2πiτ

N
),

with τ denoting the time domain lag in samples.

Pitch salience. It is defined as the local maximum of the normalised autocorrelation function, i.e.

pitchsal = max
τ

rx(τ)

rx(0)
, with rx(τ) =

1

N

N−1∑
n=0

x[n]x[n+ τ ], 0 ≤ τ ≤ M,

where M corresponds to the maximum time-shift in samples.

Inharmonicity. Given the harmonic components hi, i = 1 . . . H of an estimated fundamental
frequency f0 in the signal, the inharmonicity is given by

inharmonicity =
2

f0

∑H
i=1 |fhi − if0|X2

hi∑H
i=1 X

2
hi

,

where fhi and Xhi denote, respectively, the value in frequency and magnitude of the FFT bin as-
sociated with the ith harmonic.
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Odd-to-even harmonic energy ratio. Similarly, the magnitudes of the harmonic components
hi, i = 1 . . . H of an estimated f0 are used to calculate the ratio between the odd and even har-
monics, hence

odd2even =

∑
i X

2
hi∑

j X
2
hj

, i = 1, 3, 5, . . . , H, j = 2, 4, 6, . . . ,H.

Tristimuli. We derive 3 values for the tristimulus, which account for different energy ratios in the
series of harmonics hi, i = 1 . . .H of an estimated f0. Hence,

T1 =
Xh1∑H
i=1 Xhi

,

T2 =
Xh2 +Xh3 +Xh4∑H

i=1 Xhi

,

T3 =

∑H
i=5 Xhi∑H
i=1 Xhi

.

Zero crossing rate. e temporal zero crossing rate is given by

zcr =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])|,

where x[n] represents the time domain signal and N its length in samples.





B

Evaluation collection

Here we provide the complete list of all music pieces used in the evaluation collection described in
Section 4.3.2. Table B.1 shows the metadata (artist, album artist, album title, track number, and
track title) of each track along with the musical genre and the annotated instrumentation. e cor-
responding annotation files can be obtained from http://www.dtic.upf.edu/~ffuhrmann/PhD/data.
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