

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

Efficient OpenMP over sequentially consistent

distributed shared memory systems

Juan José Costa Prats

Advisors: Toni Cortés Rosselló

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Thesis submitted in fulfillment of the requirements of the degree:

Doctor per la Universitat Politècnica de Catalunya

June 2011

Abstract

Nowadays clusters are one of the most used platforms in High Performance

Computing and most programmers use the Message Passing Interface (MPI)

library to program their applications in these distributed platforms getting

their maximum performance, although it is a complex task. On the other

side, OpenMP has been established as the de facto standard to program ap-

plications on shared memory platforms because it is easy to use and obtains

good performance without too much effort.

So, could it be possible to join both worlds? Could programmers use the

easiness of OpenMP in distributed platforms? A lot of researchers think so.

And one of the developed ideas is the distributed shared memory (DSM),

a software layer on top of a distributed platform giving an abstract shared

memory view to the applications. Even though it seems a good solution it

also has some inconveniences. The memory coherence between the nodes in

the platform is difficult to maintain (complex management, scalability issues,

high overhead and others) and the latency of the remote-memory accesses is

highly increased due to the interconnection network, which can be orders of

magnitude greater than on a shared bus.

Therefore this research improves the performance of OpenMP applications

being executed on distributed memory platforms using a DSM with sequential

1This work has been supported by the Spanish Ministry of Education (TIN 2004-

07739-C02-01, TIN2007-60625), by the Generalitat de Catalunya (2009-SGR-980), by the

European Union (under the HiPEAC2 Network of Excelence FP7/ICT 217068 and the

POP: Portability of OpenMP Performance project Future and Emerging Technologies

IST-2001-33071) and by IBM through the CAS program. We would also like to thank

Mathias Muller and the Barcelona Supercomputing Center for the use of their machines.

i

consistency evaluating thoroughly the results from the NAS parallel bench-

marks.

The vast majority of designed DSMs use a relaxed consistency model be-

cause it avoids some major problems in the area. In contrast, we use a

sequential consistency model because we think that showing these potential

problems that otherwise are hidden may allow the finding of some solutions

and, therefore, apply them to both models.

The main idea behind this work is that both runtimes, the OpenMP and

the DSM layer, should cooperate to achieve good performance, otherwise they

interfere one each other trashing the final performance of applications.

We develop three different contributions to improve the performance of

these applications: (a) a technique to avoid false sharing at runtime, (b) a

technique to mimic the MPI behaviour, where produced data is forwarded to

their consumers and, finally, (c) a mechanism to avoid the network conges-

tion due to the DSM coherence messages.

The NAS Parallel Benchmarks are used to test the contributions. One of

the results of this work is that the false-sharing problem is a relative problem,

and it depends on each application. For example, there are cases where the

false sharing does not affect the final application performance.

Results also show that it is really important to move the data flow outside

of the critical path and techniques that forwards data as early as possible,

similar to MPI, benefits the final application performance.

Another interesting result is that this data movement is usually concen-

trated at single points and, due to the limited bandwidth of the network, affects

the application performance. Therefore it is necessary to provide mechanisms

that allows the distribution of this data through the computation time using

an otherwise idle network.

Finally, results shows that the proposed contributions improve the perfor-

mance of OpenMP applications on this kind of environments.

Acknowledgements

Since the beginning of this document, this has been a long journey. A journey

where I have met very different people whom I am really grateful and possibly

never I have told them. Let me redeem myself.

First of all Xavier Martorell who made the Operating Systems classes a

really interesting topic during my undergraduate courses. Xavier also give me

an opportunity to enter the now extinct Center of Parallelism in Barcelona

(CEPBA) for continuing the research on distributed shared memory systems.

My research needs to acknowledge a lot of people. First of all, Sebastià,

who started all this work, and afterwards all the people that help to grow the

final result: Pimpam, Ramon, JBueno, JVaquero and Ernest. Thank you,

without your contributions and support this thesis could not be possible.

During my research I followed one of the indications from Jesus Labarta,

main director of the CEPBA, who think that to improve the performance of

OpenMP programs on the distributed shared memory world you should feel

the pain(meaning that a sequential consistency model should be used). Now

that I am finishing this thesis, I can say, that, as usual, he was right. . . but

it really hurts :).

I need to thank Xavier (again) and Eduard Ayguadé for their support in

the moments were the work seems stuck at some point and their comments

helped to solve or circunvent the problems.

I can not forget about Toni, my thesis advisor, he is without any doubt

one of the persons who has dedicated more time to me. He has been there

during the best moments, and also during the worst, giving hope and always

showing me the good side of the situations. Thank you (no, really, Thank

You).

iii

Aside from people related to my research, I need to thank also all those

who have had the time to share a good coffee in the campus. . . well, maybe

not so good, but you made it better. I would like to thank Alex specially for

finding holes in his incredibly busy agenda ;).

Finally, I need to give a special thank you to my partner, because she has

been always there, giving support and helping me to believe that this day

would arrive, taking care of the good and bad moments (specially the bad

ones). She is the best thing I could have ever wished and together we have

made our best achievement. Thank you.

To my parents.

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 A distributed world . 2

1.2 Motivation . 3

1.3 Thesis and Goals . 4

1.4 Organization of this thesis . 4

2 Background and related concepts 7

2.1 Introduction . 8

2.1.1 Memory address spaces 8

2.1.2 Coherence and Consistency 9

2.2 OpenMP . 10

2.2.1 Directives . 10

2.3 Message Passing Interface (MPI) 12

2.4 Distributed Shared Memory (DSM) 12

2.4.1 Consistency models . 13

2.5 OpenMP on distributed memory 14

2.5.1 Transform the OpenMP code 15

2.5.2 Execute OpenMP on top of DSM 15

2.5.3 Hybrid programming 16

2.6 Benchmarks . 16

2.6.1 NAS Benchmarks . 16

vii

2.6.2 SPLASH Benchmarks 19

2.7 Our environment . 20

2.7.1 Mercurium compiler 20

2.7.2 OpenMP Runtime . 21

2.7.3 NanosDSM . 21

2.7.4 Testbed . 22

3 Boundaries alignment 25

3.1 Motivation . 26

3.2 Thesis . 27

3.3 Related work . 28

3.3.1 Compile time . 28

3.3.2 Runtime . 29

3.4 Mechanism . 30

3.4.1 Boundaries alignment 30

3.4.2 Design issues . 31

3.5 Evaluation . 35

3.5.1 Methodology . 35

3.5.2 Results . 37

3.6 Conclusions . 43

4 Apply lessons learnt from MPI 45

4.1 Motivation . 46

4.2 Thesis . 47

4.3 Related Work . 47

4.3.1 Overlap communication and computation 47

4.3.2 Relax consistency . 48

4.3.3 Transform the code . 49

4.4 Mechanism . 49

4.4.1 Presend . 49

4.4.2 Preinvalidation . 50

4.4.3 Design issues . 51

4.5 Evaluation . 54

viii

4.5.1 Methodology . 54

4.5.2 Results . 55

4.6 Conclusions . 59

5 Avoiding network congestion 61

5.1 Motivation . 62

5.2 Thesis . 62

5.3 Related Work . 63

5.4 Mechanism . 63

5.4.1 Chopper . 64

5.4.2 Design issues . 66

5.5 Evaluation . 73

5.5.1 Methodology . 73

5.5.2 Results . 75

5.5.3 BT benchmark . 79

5.6 Conclusions . 80

6 Performance Evaluation 83

6.1 Introduction . 84

6.2 Methodology . 84

6.2.1 Benchmark description 85

6.2.2 Detailed parallel loops study 85

6.2.3 Performance results . 87

6.3 Testbed . 87

6.4 NAS Benchmarks . 88

6.4.1 EP . 88

6.4.2 CG . 89

6.4.3 BT . 94

6.4.4 SP . 98

6.4.5 LU . 102

6.4.6 MG . 106

6.4.7 FT . 108

6.5 Conclusions . 111

ix

7 Conclusions 115

7.1 Contributions of this work . 116

7.1.1 Tolerate false sharing 116

7.1.2 Reduce memory latencies 117

7.1.3 Avoid network congestion 119

7.1.4 Proposal of OpenMP extensions 119

7.2 Future Work . 121

7.2.1 Implementation details 121

7.2.2 Further research . 122

x

List of Tables

2.1 Platforms used in our tests. 22

3.1 Parameter values for A and B classes of CG benchmark. . . . 36

3.2 Main data structures for CG benchmark. 36

3.3 Summary of CG data structures modified by each loop. 36

3.4 Execution time for A and B classes of CG benchmark 37

3.5 Execution time for Ocean benchmark 42

5.1 Pages sent at each VSP in the synthetic benchmark 77

6.1 Access pattern and techniques used at CG benchmark 91

6.2 Access pattern and techniques used at BT benchmark 96

6.3 Access pattern and techniques used at SP benchmark 100

6.4 Access pattern and techniques used at LU benchmark 104

6.5 Access pattern and techniques used at FT benchmark 108

6.6 Effects of our techniques on the loops per benchmark 112

6.7 Quantifying improvements for loops of all benchmarks 112

7.1 Parallel loops using Align technique on NAS Benchmarks . . . 117

7.2 Parallel loops using Presend technique on NAS Benchmarks . 118

7.3 Parallel loops using Chopper technique on NAS Benchmarks . 120

xi

xii

List of Figures

2.1 Basic architecture for a distributed-memory multiprocessor . . 8

2.2 Different memory address spaces 9

2.3 OpenMP fork-join parallelism 10

2.4 Our environment components 20

3.1 Example of a Fortran loop parallelized with OpenMP. 26

3.2 Iterations per thread when aligning to the boundaries 30

3.3 Fortran code example for the Align scheduler use. 32

3.4 Components that take part in the alignment mechanism. . . . 32

3.5 Components that take part in the upcall mechanism. 34

3.6 Speedup of CG class A for original and aligned versions. . . . 38

3.7 Page faults per loop at CG class A using Align 38

3.8 Average time used at different loops in CG class A benchmark 39

3.9 False sharing effects on CG benchmark 40

3.10 Speedup of CG class B for original and aligned versions. . . . 40

3.11 Page faults per loop at CG class B using Align 40

3.12 Speedup of Ocean benchmark for original and aligned versions. 42

3.13 Page faults per loop at Ocean using Align 42

4.1 Prefetch technique in a loop. 47

4.2 Prefetch problem, the prefetched page is still being used. . . . 49

4.3 Components that take part of the presend mechanism. 51

4.4 Fortran code example using the Presend directive. 52

4.5 Page faults per loop at CG class A using presend 56

4.6 CG class B at Crossi. 56

4.7 CG class A at Crossi. 56

xiii

4.8 CG class A at kandake. 58

5.1 Proposed OpenMP directives for the chopper mechanism. . . . 66

5.2 Dividing a parallel loop into smaller sections. 67

5.3 Grouping two parallel loops into a bigger region. 68

5.4 Objects created by chopper mechanism 70

5.5 Pseudo-code for the context predictor update function. 72

5.6 Algorithm for the synthetic benchmark with the chopper . . . 74

5.7 Bandwidth used for different number of messages of 4096 bytes. 75

5.8 Synthetic benchmark performance results. 76

5.9 Execution time for the synthetic benchmark 77

5.10 BT Class A performance results. 78

5.11 Pages send at each synchronization point in BT.A 79

6.1 Total time per loop for EP class A. 88

6.2 Average time per loop EP class A. 89

6.3 EP Class A performance results. 89

6.4 Structure of the CG algorithm. 90

6.5 Total time per loop for original version of CG class A. 90

6.6 Average time per loop of CG class A 92

6.7 CG Class A performance results. 93

6.8 CG Class B performance results. 94

6.9 Total time per loop for original version of BT class A. 95

6.10 Parallelization of BT benchmark. 95

6.11 Matrix parallelized with the outer dimension. 95

6.12 Matrix parallelized with an inner dimension. 95

6.13 Average time per loop of BT class A 97

6.14 BT Class A performance results. 98

6.15 BT Class B performance results. 98

6.16 Total time per loop for different versions of SP class A. 99

6.17 Average time per loop of SP class A 101

6.18 SP Class A performance results. 102

6.19 Structure of the LU algorithm and the jacu subroutine. 103

6.20 Total and average time per loop for LU class A 103

xiv

6.21 Average time per loop for different versions of LU class A. . . 105

6.22 LU Class A performance results. 106

6.23 Structure of the MG algorithm and zero subroutine. 107

6.24 Total time per loop for original version of MG class A. 107

6.25 MG Class A performance results. 107

6.26 Algorithm structure of the FT benchmark 108

6.27 Total time per loop for original version of FT class A. 109

6.28 Average time per loop for different versions of FT class A. . . 110

6.29 FT Class A performance results. 110

xv

xvi

Chapter 1

Introduction

DON’T PANIC
The Hitchhiker’s Guide to the Galaxy

Douglas Adams

Abstract

This chapter introduces the research topic, the motivation

and the contributions of this thesis. Finally, the structure of the

remaining document is outlined.

1

CHAPTER 1. INTRODUCTION

1.1 A distributed world

Distributed memory platforms, like clusters, are one of the most used ar-

chitectures for high performance computing nowadays. According to data

extracted from the top500 list [top], clusters represent a 83% of the 500

most powerful machines installed in the world. In fact, their progress have

been growing exponentially since the end of the 2000 year. This exponential

progress is explained because they are more cost effective than its shared

memory counterparts.

On one hand, the cost of these shared memory machines is explained by

the extra hardware needed to maintain the global shared address space. The

memory should be coherent across all the processors, and they are connected

through an interconnection network that should deliver a high bandwidth

and a low latency.

On the other hand, clusters have a distributed address space, where each

node has its own memory address space, and the different nodes are connected

through commodity networks simplifying the design and lowering the costs.

Any programmer using one of these distributed machines normally use

a distributed memory programming model, such as MPI message passing

[mpi, For94], where each node has a private address space and thus a node

must communicate any produced data explicitly to the nodes that will use

it. The problem with this programming model is that a programmer needs

to create an algorithm taking care of all the burden of the data distribution

between the nodes in the machine to achieve a functional parallel program.

Shared memory machines have a globally shared addressable memory, and

programming models like OpenMP1 [Boa04] allow a straightforward paral-

lelization of sequential applications without too much effort.

The ease of programming of shared memory computers when compared

with the complex task of programming a distributed memory one, makes us

wonder if it could be possible to program a distributed one with the same

complexity as the shared one.

1OpenMP is a trademark of the OpenMP Architecture Review Board. Portions of
this product/publication may have been derived from the OpenMP Language Application
Program Interface Specification

2

1.2. MOTIVATION

1.2 Motivation

The use of a shared memory programming model like OpenMP on top of a

distributed memory platform, like clusters, has already been researched and

some of these works are presented in the next Chapter 2.

We focus our research in the execution of OpenMP applications on top

of a distributed system using a distributed shared memory layer. This layer

offers a shared addressable memory space across the nodes in the cluster,

allowing the execution of OpenMP applications.

But the OpenMP programming model, thought for shared memory ma-

chines, has some issues when used on distributed platforms that impact in

the final application performance.

Basically, clusters have non-uniform memory accesses. A processor in

this architecture has access to: i) local memory, located in the same bus

as the processor; and ii) non-local or remote memory, accessible through an

interconnection fabric or network. The local memory accesses take just a

couple of nanoseconds, but an access to memory on a remote node can take

orders of magnitude more.

OpenMP is a model which hides the subjacent hardware from the pro-

grammer, so it helps the programmer to focus in parallelizing the algorithm

and the access pattern. The problem is that the cost of the different mem-

ory references is also hidden, and the programmer does not have any control

over it. It is the runtime responsibility to minimize these accesses to remote

memory, or at least to hide their communication overhead.

On the othe hand, a programmer using a distributed programming model,

like MPI, is conscious of these different costs, and he explicitly avoids (or

minimizes) these remote accesses to improve application performance.

In this research we try to address some of the problems that arise when us-

ing a DSM to execute OpenMP applications by enabling a tight cooperation

between the OpenMP runtime and the DSM software.

3

CHAPTER 1. INTRODUCTION

1.3 Thesis and Goals

The thesis for this work is that it is neccessary to have a tight cooperation

between the different layers to improve the performance of OpenMP applica-

tions when they are executed on distributed environments using a distributed

shared memory software,

For this work we have used a DSM with sequential consistency, and, to

accomplish this thesis we think that the following goals should be solved:

1. Tolerate false sharing adapting the application at runtime

2. Apply lessons learnt from MPI

3. Avoid network congestion

4. Proposal of OpenMP extensions

The research presented here tries to avoid the modification of the OpenMP

application source code or, at least, modify it without affecting the initial

algorithm. For example, with the addition of new directives.

1.4 Organization of this thesis

This work is organized in 7 chapters as follows:

• Chapter 2 introduces some related concepts needed for understanding

this work. It also shows the environment used to execute OpenMP

applications on top of a distributed platform.

• Chapter 3 shows the first contribution of this work: the boundary

alignment. Describes its philosophy, its design and obtained results.

• Chapter 4 presents the second contribution of this work: a mechanism

to overlap communication with computation that tries to imitate the

MPI behavior. It describes the design of this mechanism and evaluates

its performance.

4

1.4. ORGANIZATION OF THIS THESIS

• Chapter 5 explains a mechanism to distribute coherence data during

the computation time to avoid network congestion when this coherence

data is send at once after the computation. This chapter discusses its

design issues, and it evaluates its performance.

• Chapter 6 presents an extended evaluation of the three contributions

applied on the NAS Benchmark.

• Finally, Chapter 7 concludes this work with a summary of all contri-

butions and the future work.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background and related

concepts

Abstract

This chapter presents some concepts to aid in the understand-

ing of this thesis work, the research being done in areas similar

to our, the benchmarks used in the performance evaluation and

our environment.

7

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

2.1 Introduction

The research presented here is focused on distributed-memory multiproces-

sors, where individual nodes containing one or more processors and some

memory are connected through some interconnection network as Figure 2.1

shows. These machines are commonly known as clusters.

The nodes inside these clusters are usually symmetric multiprocessors

(SMPs) where the processors connects to a single shared main memory. These

nodes are also known as uniform memory access (UMA) architectures be-

cause they have a uniform access time from any processor to the memory.

2.1.1 Memory address spaces

Different architectures have different memory address spaces and Figure 2.2

shows some of them.

In first place it shows the hardware shared address space, present in

SMPs, where three threads share the same code, data and heap, but different

locations in the shared address space for the different stacks.

In second place, it shows the memory address space available in a dis-

tribute platform, present in clusters. There are three different nodes, each

one with its own private address space, and so the application is replicated

between the nodes. Any communication should use some mechanism of

message-passing. Due to the distributed address space, the three threads

Figure 2.1: Basic architecture for a distributed-memory multiprocessor con-
sisting on individual nodes containing one or more processors, some memory
and an interface to an interconnection network that connects all the nodes.

8

2.1. INTRODUCTION

Figure 2.2: Different memory address spaces: (a) shared memory, (b) dis-
tributed memory and (c) distributed shared memory.

can use the same addresses for their stacks.

Finally, it shows the address space of a distributed platform that uses a

DSM system. As in the distributed case the code is replicated and the data

and heap are completely private but now it allows the explicit sharing of a

specific memory region.

In contrast to this distributed view, NanosDSM, the DSM used in our

environment, offers an everything-shared address space similar to the hard-

ware shared address space offered by the SMPs. This DSM is explained later

in section 2.7.

2.1.2 Coherence and Consistency

Whenever two or more processors share a common area of memory and they

have copies of the same memory value in their local caches, the cache coher-

ence problem appears. How to maintain both memory values coherent?

Adve et al. [AG96] explains that, on one hand, the usually referred as

cache coherence protocol is the mechanism to propagate a newly written

value to all the cached copies of the modified location. This propagation is

usually done by invalidating or updating all cached values.

On the other hand, the consistency model defines a policy for when this

9

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

Figure 2.3: Illustration showing the OpenMP fork-join parallelism.

written value should be notified to all caches, giving an upper and lower

bound.

2.2 OpenMP

OpenMP [Boa04] is a paradigm designed to parallelize C/C++ or Fortran

programs in a shared memory environment. It consists of a set of compiler di-

rectives, library routines, and environment variables that influence run-time

behavior. The programmer annotates the sequential code with these direc-

tives or pragmas, giving hints to the OpenMP runtime about, for example,

parallel regions or synchronization events.

OpenMP follows a fork-join parallelism (see Figure 2.31), there is a master

thread executing an application and when it enters a parallel task it creates

a fixed number of threads, forks, and divides the task among them. When

the task finishes, the threads join back to the master thread continuing the

execution.

2.2.1 Directives

In this section we present some of the OpenMP directives encountered in the

benchmarks used in the performance evaluation. The information presented

1Extracted from http://en.wikipedia.org/wiki/File:Fork join.svg (accessed April 2011)

10

2.2. OPENMP

here is a summary extracted from the OpenMP specification to ease the

reading of next chapters, but the source should be consulted to get more

details. Only the Fortran API is presented.

parallel Construct

The parallel directive is the mechanism to spawn parallelism in a program.

When a thread encounters this directive creates a team of threads to execute

the parallel region.

1 !$omp paral lel [c l au s e [[,] c l au s e] . . .]]

2 s t r u c tu r ed b l o ck

3 !$omp end paral lel

Loop Construct

The loop construct distributes the iterations of the loop across the team of

threads inside a parallel region, which will be executed in parallel.

1 !$omp do [c l au s e [[,] c l au s e] . . .]]

2 do loops

3 [!$omp end do [nowait]]

We use the term orphaned loop when the loop construct is not nested

within another construct than can determine the execution context. For

example, having a loop construct inside a subroutine without a parallel con-

struct.

master Construct

The structured block after the master directive is executed by the master

thread of the team only.

1 !$omp master [c l au s e [[,] c l au s e] . . .]]

2 s t r u c tu r ed b l o ck

3 !$omp end master [nowait]

single

The single directive executes the structured block inside the single region by

only one thread in the team.

11

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

1 !$omp single [c l au s e [[,] c l au s e] . . .]]

2 s t r u c tu r ed b l o ck

3 !$omp end single [end c l ause [[,] end c l ause] . . .]]

barrier

All threads in a team that finds this construct will execute a barrier, and no

thread is allowed to continue the execution before the others have finished

all their tasks.

1 !$omp ba r r i e r

2.3 Message Passing Interface (MPI)

Message Passing Interface (MPI) [mpi] library is the most used method to

parallelize applications in distributed platforms. It offers a collection of com-

munication functions to send and receive data between two or more comput-

ers.

It follows a SPMD (Single Program Multiple Data) model, meaning that

MPI allocates all the processes that the user wants and all of them execute

the same program but on different data.

2.4 Distributed Shared Memory (DSM)

Distributed Shared Memory (DSM) is a layer on top of a cluster offering an

abstract view of a globally shared memory. All locations in the global mem-

ory are accessible by all nodes in the cluster but the content of the memory

is distributed across the nodes. Due to that distribution some memory is

local to the node and the rest is remote, meaning that there are different

access times to memory depending on the location. This is known as a Non

Uniform Memory Access(NUMA) architecture.

Hardware implementations of DSM exist like the Stanford DASH [LLG+92]

or Star-T Voyager [ACRA98] but the software implementations are more

12

2.4. DISTRIBUTED SHARED MEMORY (DSM)

usual. The main differences between them being the consistency model [AG96]

implemented, the memory access granularity or the platforms supported.

2.4.1 Consistency models

This section describes the main consistency models used to maintain the

memory consistent between different nodes in a DSM: Sequential and relaxed

consistencies.

Sequential Consistency

Lamport [Lam79] defines sequential consistency as the result of any execution

is the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in this

sequence in the order specified by its program. This means, that a system

will be sequentially consistent if the result of any execution is the same

as obtaining a code mixing all instructions executed by all processors and

executing it in an uniprocessor system.

Since the first reference to a DSM [LCBZ97] several other works imple-

menting sequential consistency have appeared. For example, Murks [PR01]

which implements a multithreaded page-based DSM, Jackal [VBB01] that

uses a Java implementation and so an object-based DSM or Millipede [ISW96,

NS01] which adapts the data granularity by creating different views of the

same memory region.

NanosDSM, the DSM used in this work, is another example that uses this

consistency offering an everything-shared DSM.

Relaxed Consistency

Relaxed consistency, in contrast to sequential, relax the restriction imposed

by Lamport which forces that a change in a memory value should be imme-

diately seen by all other processors. This relaxation is usually implemented

by making a twin of the modified memory-page and sending the differences

between this twin and the modified page at some point. In any case, re-

laxing the consistency has been extensively studied, because lowers the data

13

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

granularity and reduces the quantity of data transfer, at the cost of higher

computation to detect exactly what has been modified and giving the re-

sponsibility of controlling the coherence to the programmer.

Different types of consistency models have been studied which basically

modifies the exact instant where the calculated differences should be sent:

release consistency [ACD+96b], lazy release consistency [KCZ92], scope con-

sistency [ISL98], entry consistency [ACD+96a] or even transactional consis-

tency models [SSS+99,STS98].

These consistency models are implemented by, for example: Brazos [SB97]

which implements scope consistency on top of Windows NT, Munin [BCZ89,

CBZ91] which uses release consistency, Quarks [SSC98] release consistency,

Treadmarks [KCDZ94] using lazy release consistency, CVM [Kel96a], Jiajia

[HST99] who uses an scope consistency and a bigger shared address space

containing the sum of all memory nodes or MOME [Jég00,Jég03] which also

uses both consistency models (strong and weak) but it sends whole pages

instead of calculating the differences.

2.5 OpenMP on distributed memory

OpenMP has been designed to use a shared memory environment, but there

are different approaches to execute an OpenMP application on a distributed

memory environment.

Transform the source code. At compile time, OpenMP source code can

be translated to other languages suited for distributed platforms, MPI

or global arrays for example.

Use a distributed shared memory. Source code could be unmodified and

use a DSM at runtime offering the abstraction of a shared memory be-

tween the different nodes.

A combination of both. Where smaller granularity is handled at compile

time by transforming the code to MPI for example, and coarser gran-

ularity is handled at runtime with a DSM.

14

2.5. OPENMP ON DISTRIBUTED MEMORY

2.5.1 Transform the OpenMP code

One of the techniques used to execute OpenMP applications in a distributed

environment is to analyze the accesses to the shared data and transform them

to other languages. Basumallik et al. [BE05,BE06] transform the OpenMP

code to use the MPI message-passing library. This kind of transformations

are feasible when the application makes regular accesses, but when the ac-

cesses are irregulars then the transformation becomes trickier.

Huang et al [HCL05] make the same transformation, but instead of using

MPI, they used global arrays (GA).

2.5.2 Execute OpenMP on top of DSM

Another technique is to use a DSM that offers a shared memory layer be-

tween the nodes executing the OpenMP application. This is the approach

followed in this thesis, the OpenMP source code is compiled with our Nanos

Compiler which generates a binary linked with the OpenMP runtime and the

NanosDSM library.

Usually, available software DSMs needs to modify the application source

code to mark the variables that should be shared, TreadMarks [KCDZ94] for

example.

To avoid this annoyance some compilers transforms an annotated OpenMP

source code to its equivalent code to be used in an specific DSM automat-

ically. For example, Sato et al. [SSKT99, SHI00, SHH01,OSHI03] presented

the Omni compiler which detects the variables to share and inserts code to be

executed on top of the SCASH [HIH+00] DSM. Their results are comparable

to the results obtained with direct MPI [HJMR02].

Similarly, Intel has integrated TreadMarks [KCDZ94] inside its com-

piler [Hoe06], with promising results for small applications but for larger

applications too much tweaking was necessary [TMSW08].

In our case it is not necessary to mark the shared variables, because

the NanosDSM is an everything-shared DSM, meaning that all application

memory is shared by default.

15

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

2.5.3 Hybrid programming

Finally the last option is to use both components at compile time and at run-

time. For example, Parade [KKH03] uses this kind of hybrid programming,

it uses MPI for synchronizations and small data-structures and a DSM for

the rest of the code (HLRC). Min et al [ME08] presents a similar approach

focused on improving applications with irregular accesses.

2.6 Benchmarks

2.6.1 NAS Benchmarks

The NAS Parallel Benchmarks (NPB) [BBB+94, JFY99] are a set of bench-

marks developed at the NASA Advanced Supercomputing (NAS) division

to measure and evaluate the performance of parallel supercomputers. The

benchmarks, which are derived from computational fluid dynamics (CFD)

applications, consist of five kernels and three simulated CFD applications.

We have not used the integer sort benchmark (IS).

Embarrassingly parallel (EP)

This kernel generates pairs of Gaussian random deviates according to a spe-

cific scheme. This is a really parallel benchmark, where all the data in the

loop is private and it finally does a reduction. This benchmark is useful to

establish the reference point for peak performance of a given platform.

Conjugate gradient (CG)

The CG benchmark kernel uses a conjugate gradient method to compute an

estimate to the largest eigenvalue of a symmetric sparse matrix with a random

pattern of nonzeros. The problem size of the benchmark class depends on

the number of rows (na) of the sparse matrix and the number of non-zero

elements per row (nz). We use the classes A and B as distributed in the NAS

benchmarks suite for our experiments.

16

2.6. BENCHMARKS

Fourier Transformation (FT)

FT computes a 3D fast Fourier Transformation (FFT), performing three

consecutive 1-D FFTs in each of the three dimensions.

1 ca l l setup

2 ca l l f f t (1)

3 do s tep=1, n i t e r

4 ca l l evo lve

5 ca l l f f t (−1)

6 ca l l checksum

7 enddo

Multigrid (MG)

This is a kernel that uses a V-cycle MultiGrid method to compute the solution

of the 3D scalar Poisson equation. The algorithm works continuously on a

set of grids that are made between coarse and fine. It tests both short and

long distance data movement.

1 do s tep=1, n i t e r

2 ca l l r p r j 3

3 ca l l ps inv

4 ca l l i n t e r p

5 ca l l r e s i d

6 ca l l ps inv

7 enddo

Block tridiagonal solver (BT)

The BT benchmark is an application for a typical problem on computational

fluid dynamics codes (CFD) that solves 3-dimensional compressible Navier-

Stokes equations. It updates a 3-dimensional array of points successively in

the x-, y-, and z-direction solving a system of equations per planar grid point.

The algorithm iterates through five basic functions: i) compute the right

hand side matrix (rhs), solve the equations in the ii) x-, iii) y-, iv) and z-

direction, and finally v) accumulate the results. These 5 functions contains 15

parallel loops in the version used (NPB 3.3). The rhs function has 11 parallel

loops, and the remaining functions have one parallel loop each. All loops are

17

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

parallelized using the outermost dimension (z) except five of them, where the

second outermost dimension (y) is used due to their data dependencies.

1 do s tep=1, n i t e r

2 ca l l compute rhs

3 ca l l x s o l v e

4 ca l l y s o l v e

5 ca l l z s o l v e

6 ca l l add

7 enddo

The loops basically modify eight large shared structures: us, vs, ws, qs,

square, rho i, u and rhs. Six 3-dimensional and two 4-dimensional matrices.

The interesting part of this benchmark is how these structures are read or

written at each loop. Most of these variables are written once, at the rhs1

and add loops, and read at the remaining loops. The unique exception is the

structure rhs, which is written in almost all of them.

Pentadiagonal solver (SP)

This simulated CFD application has a similar structure to BT. The solution

is calculated using the the Beam-Warning approximate factorization instead

of the Alternating Direction Implicit.

1 do s tep=1, n i t e r

2 ca l l compute rhs

3 ca l l tx invr

4 ca l l x s o l v e

5 ca l l ninvr

6 ca l l y s o l v e

7 ca l l pinvr

8 ca l l z s o l v e

9 ca l l t z e t a r

10 ca l l add

11 enddo

LU Solver (LU)

LU is a simulated CFD application that uses symmetric successive over-

relaxation (SSOR) method to solve a seven-block-diagonal system resulting

18

2.7. OUR ENVIRONMENT

from finite-difference discretization of the Navier-Stokes equations in 3D by

splitting it into block Lower and Upper triangular systems.

1 do s tep=1, n i t e r

2 ca l l compute rhs

3 ca l l j a c l d

4 ca l l b l t s

5 ca l l jacu

6 ca l l buts

7 ca l l add

8 enddo

2.6.2 SPLASH Benchmarks

Ocean

The Ocean application is one of the SPLASH benchmarks [WOT+95], that

studies the large-scale ocean movements based on eddy and boundary cur-

rent. It takes a simplified model of the ocean based on a discrete set of

points equally spaced and simplified again as a set of 2D point planes. In

this situation, it solves a differential equation via a finite difference method

using a Gauss-Seidel update, computing a weighted average for each point

based on its 4 neighbors. And it repeats this update until the difference for

all points is less than some tolerance level.

1 ! Weighted average computing

2 d i f f = 0 . 0 ;

3 C$OMP PARALLEL DO PRIVATE (i , j , tmp)

4 C$OMP& REDUCTION (+: d i f f)

5 do j = 2 , n+1

6 do i = 2 , n+1

7 tmp = A(i , j)

8 A(i , j)=0.2∗(A(i , j)+A(i , j −1)

9 +A(i −1, j)+A(i , j+1)+A(i +1, j))

10 d i f f = d i f f + abs (A(i , j) − tmp)

11 enddo

12 enddo

19

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

Application

OpenMP runtime

DSM

OpenMP
Source
Code

Fortran

Source

Code

Mercurium

Compiler

Fortran

Compiler

Figure 2.4: Components for running an OpenMP source code application on
top of a distributed architecture.

2.7 Our environment

In order to execute an OpenMP application on a distributed environment

like a cluster, we will go through different phases. As shown in Figure 2.4,

we start from an OpenMP application source code, coded in Fortran for our

examples. This application is compiled through a source-to-source compiler,

Mercurium, which translates OpenMP directives into plain Fortran code with

added calls to our Nanos OpenMP runtime. The resulting Fortran code is

compiled through the native Fortran compiler present in the machine to

obtain an application object. And, finally, this application object is linked

against the OpenMP and DSM libraries to obtain the final application binary.

2.7.1 Mercurium compiler

In our environment, OpenMP applications are parallelized using the Mer-

curium compiler [BDG+04]. This compiler understands OpenMP directives

embedded in traditional Fortran codes, such as the NAS benchmarks 2.3 [JFY99]

and generates parallel code. In the parallel code, the directives have trig-

gered a series of transformations: parallel regions and parallel loop bodies

have been encapsulated in functions for an easy creation of the parallelism.

Extra code has been generated to spawn parallelism and for each thread to

decide the amount of work to do from a parallel loop. Additional calls have

been added to implement barriers, critical sections, etc. And variables have

been privatized as indicated in the directives.

20

2.7. OUR ENVIRONMENT

2.7.2 OpenMP Runtime

Nthlib [MLNA96,MAN+99] is our runtime library supporting the Fork-Join

parallel codes.

Nthlib spawns parallelism using an abstraction called work descriptor.

A thread sets up a work descriptor and it provides the other threads with

it. A work descriptor contains a pointer to the function to be executed

in parallel and its arguments. Usually, the work descriptor is set up in a

shared memory area. In the NanosDSM implementation, the work descriptor

is set up in a local memory area and then it is sent through the message

queues described in previous section to reach the other threads. This solution

allows to distribute work among different nodes avoiding any page fault while

spawning parallelism.

2.7.3 NanosDSM

NanosDSM is the software that offers the shared memory abstraction to an

application being executed in a distributed environment. It shares the whole

memory of a node between all members in the cluster nodes.

It has two components: 1) a user-level library, to be linked with the

application, which offers functionalities of a thread library; and 2) a server

daemon, that will be responsible to maintain the memory coherence by dis-

tributing and gathering memory pages to and from nodes.

The library has different functions to send work to a specified thread in

a node, to synchronize threads and to communicate data between threads.

Each node in the cluster sharing the memory will execute a serve daemon:

the infoserver. This daemon has two features: 1) handle requests from local

threads for remote pages, and 2) handle requests from other infoservers.

The node starting the application is known as the master node. The

master node has all the application memory, and the remaining nodes do

not have any access to it. When a thread accesses an address that is not

valid, it will generate a trap that will be captured by the operating system

(a SIGSEGV). The signal handler will request a copy of the page containing

the offending address and the working thread will be blocked until this page

21

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

Table 2.1: Platforms used in our tests.

Kandake Crossi Marenostrum

Nodes 8 24 2560
Available nodes 6 7 8
Processors per node 2 2 2
Processor type Intel Intel PowerPC

(Hyper threaded) (Hyper threaded)
Processor speed 266MHz 2.4GHz 2.3GHz
RAM per node 128Mbytes 2Gbytes 4Gbytes
Network Myrinet Myrinet Myrinet

Gigabit

arrives.

The request will be directed to the page master node who has all the

information about the page, and it will update the coherence graph, solving

the request and answering with the requested page.

After receiving the page, the infoserver will put the page in the local

memory with the right protections and it will unblock the working thread,

continuing the application execution.

Sequential consistency

The implementation of the memory coherence follows a sequential consistency

model as explained in Section 2.4.1.

Memory coherence protocol

To maintain the memory consistency, NanosDSM uses a memory coherence

protocol similar to the MSI protocol.

A single node is allowed to write a page in the same instant, but multiple

readers are allowed.

2.7.4 Testbed

Three different systems have been used to test and develop the present re-

search: (a) Kandake, (b) Crossi and (c) Marenostrum.

Their characteristics are summarized in Table 2.1.

22

2.7. OUR ENVIRONMENT

Kandake

Kandake was a Pentium based cluster located at the Center for European

Parallelism in Barcelona (CEPBA) facilities. 8 nodes were interconnected

through a Myrinet network. Each node has a dual-processor Pentium II at

266 Mhz with a total of 128Mb of RAM.

Crossi

Crossi was an Intel based cluster located at the High Performance Com-

puting Center Stuttgart (HLRS). It had 24 nodes, each one with a dual

hyperthreaded processor Xeon at 2.4Ghz and 2 gigabytes of main memory.

The nodes were interconnected through a myrinet network.

Marenostrum

MareNostrum is a cluster of PowerPCs at the Barcelona Supercomputing

Center (BSC). It is a supercomputer with 31 racks, each one with 6 Blade-

Centers, and each BladeCenter with 14 JS21 nodes. The JS21 node has two

dual hyperthreaded processors PowerPC 970MP at a frequency of 2.3 GHz,

and 8Gb of shared memory between both processors. All nodes are connected

through a fast Myrinet network and a full-duplex Gigabit.

Due to the global availability of this machine and its shared use, the tests

in this research are executed in the same BladeCenter to avoid interferences

with other users jobs. We have used a maximum of 8 nodes.

23

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS

24

Chapter 3

Boundaries alignment

With great power there must also come

– great responsibility!

Amazing Fantasy #15 (August 1962)

The first Spider-Man story.

Stan Lee

Abstract

False sharing is a known problem plaguing DSMs. It is pro-

duced when two nodes access two different offsets in the same

cache line, and at least one of them is a write. A typical solution

to cope with this problem is to relax the memory consistency. We

think that this is unnecessary, and it can be avoided with a tight

cooperation between OpenMP and DSM runtimes. This chapter

presents the design, implementation details and evaluation for a

mechanism that tolerates at runtime the false sharing in an ap-

plication without relaxing the memory consistency. The idea is

to modify the iteration space of parallel loops to avoid the false

sharing. Results show that this mechanism is suitable for regular

applications working with linear data structures.

25

CHAPTER 3. BOUNDARIES ALIGNMENT

1 !$omp paral lel do
2 do i =1, N
3 A[i] = . . .
4 enddo

Figure 3.1: Example of a Fortran loop parallelized with OpenMP.

3.1 Motivation

OpenMP is one of the most used programming models for shared memory

systems, mainly due to its ease of use and its more than acceptable perfor-

mance. One of its features is to automatically divide the iteration space of

parallel loops among the processors that will execute them in parallel.

Figure 3.1 shows a simple Fortran Loop that writes all positions of an

array (A) parallelized with an OpenMP directive. This example can be exe-

cuted on top of any parallel system with shared memory, like an SMP system.

Each processor of the SMP has a local cache to improve the accesses to global

shared memory. In our example, each cache contains a part of the A array,

thus when two processors write to the same memory cache line, the sharing

problem appears. This sharing increases the memory traffic, because the

memory system, who must guarantee the cache coherence, invalidates the

cache line and forces a request for the new values.

Two sharing situations are possible: true sharing and false sharing. True

sharing happens when two processors access exactly the same offset at the

same cache line and at least one of the accesses is a write. False sharing

happens when two processors access different offsets at the same cache line.

True sharing is produced by the programmer and therefore it can not be

avoided at runtime, because the programmer (possibly) knows what he is

doing.

In false sharing, data is not really shared but it produces cache inval-

idations that would be avoided if data was placed in different cache lines.

This kind of sharing is produced by accessing different positions in an array

(like our example), known also as self-variable false sharing ; or by differ-

ent variables that fits in the same cache line, known as cross-variable false

sharing.

26

3.2. THESIS

Both false sharings are due to a mismatch between the size of the data and

the size of the hardware cache line. With bigger cache lines, more data can

fit inside them, and so the probability of issuing false sharing is also bigger.

On SDSM systems, this is specially problematic, because the cache line size

is usually bigger than processor caches. In page-based DSMs it corresponds

to a whole physical page size of 4096Kb.

Our work focuses on removing at runtime the self-variable false sharing

on OpenMP loops, because cross-variable false sharing can be easily solved

by the compiler.

3.2 Thesis

A popular solution to the false sharing problem is to relax the idea that any

modification has to be seen immediately by all nodes. This will allow several

nodes to hold the same page and modify it as long as they do not modify

the same data. Once the application reaches a synchronization point, the

modified data is forwarded to the rest of the nodes. This solution solves

the problem but lies a tougher one to the application: programmers have to

change their way of thinking as they cannot assume a modification is done

till the next synchronization point. In addition, this is not even always true

as threads in the same node will see this modification while “threads” in a

different node will not.

A typical false sharing problem appears when a loop is parallelized by

the OpenMP runtime. The runtime ignores the fact that the application is

being executed in a distributed environment and so it just distributes the

loop iteration space between the available threads, without any care about

the data placement. In the worst case, the last iterations executed by one

thread and the first iterations of the following thread will share the same

page, and so, there will be false sharing.

Our proposal is to give more information to the OpenMP runtime about

the underlying layer to be able to distribute the iteration space in a smarter

way without relaxing the consistency. This proposal needs a tight coopera-

tion between the runtime and the DSM layer.

27

CHAPTER 3. BOUNDARIES ALIGNMENT

3.3 Related work

The effects of the false sharing, increase of memory traffic due to the “ping-

ponging” of cache lines, have been studied largely in the literature [TLH90,

GP91,EJ91]. There are two main ways to solve the false sharing problem: at

compile time or at runtime. On one hand, the source code of the application

can be modified to avoid the sharing between the processors. On the other,

the false sharing can be tolerated by allowing the sharing and merging the

results at the end.

3.3.1 Compile time

Chow and Sarkar [CS97] categorizes the solutions to reduce or eliminate false

sharing at compile time in four groups:

Changing loop structures Changes in the parallel loop structures can

avoid the false sharing. For example, transforming the program in

such a way that iterations in a parallel loop accesses different cache

lines (e.g., by blocking, alignment or peeling) [WL91, GP91, Gra93,

KRC99,KCRB03]

Changing data structures The layout of the data structures can also be

rearranged. For example, changing the starting address or the size

of one of the dimensions of an array (array alignment and padding)

[TLH90,BCJ+94,KRC99,HCZ00,JE95]

Copying data Copying the original data to be updated by the loop to a

temporary area which does not suffer from false sharing and is well

suited to the data access pattern [TGJ93, EJ91, LRW91]. After exe-

cuting the loop, the data at the temporary area is copied back to its

original placement (even though this last step may show false sharing).

Changing schedule parameters Schedule the loop iterations so that con-

currently executed iterations access different cache lines [SSMBL94].

28

3.3. RELATED WORK

They also think that the false sharing can be eliminated changing the

schedule and thus they add three parameters (chunksize, chunkstride and

peel) to the DOALL fortran library implementation to eliminate it.

Granston et al. [GW93] presented the idea of align the iteration space

to page boundaries. Later, Bodin et al. [BGG+95] proved that it is feasible,

showing the results of this theory.

Nikolopoulos et al. [NAAL01] presented the idea of reusing a schedule to

exploit spatial locality between different parallel loops.

3.3.2 Runtime

The most used technique to tolerate the false sharing problem at runtime is to

relax the memory consistency, using a multiple writer protocol (LRC) [KCZ92,

Kel96b]. Different DSM implementations with this protocol exists: Tread-

Marks [ACD+96b], CVM [Kel96a], Quarks [SSC98], Amza et al. [ACRZ97]

showed that a large consistency unit (like a hardware page) is not detrimen-

tal of performance if a relaxed consistency and a multiple writer protocol is

used.

Protocol writer-owns [FA96] improves the performance of LRC by re-

mapping subpages in a page, such all sub-pages are written by the same

process.

Instead of relaxing the consistency, Itzkovitz and Schster [IS99b, IS99a]

also use sequential consistency. They detect pages with false sharing and

map the conflictive sections of the same page to different virtual pages at

runtime, avoiding the false sharing completely. This technique is known as

the EmFiGS approach. But this technique has been proven ineffective by

Kudlur and Govindarajahn [KG04] due to the overhead of managing the

extra virtual pages and the reduced exploitation of spatial locality.

Alexander et al. [ACCL00] developed a DSM called ULTRA that uses

dynamic granularity to eliminate false sharing. The accesses to the shared

address space are sequentialized with the use of tokens that represent a spe-

cific region of memory.

Our work uses the idea of scheduling loops taking into account the affinity

29

CHAPTER 3. BOUNDARIES ALIGNMENT

(a)

(b)

thread 1 thread 2

page p+1

page p−1 page p+1

thread 2thread 1

page p−1 page p

page p

Figure 3.2: Iterations per thread (a)before and (b)after aligning to the bound-
aries.

to local data [Mar94] and it is heavily influenced by the work of Granston

and Nikolopoulos, extending them to the runtime arena.

3.4 Mechanism

As we have already mentioned, our approach does not consist on modifying

the source code of the application nor the semantics of the SDSM software,

but to encourage the cooperation between the OpenMP runtime and the

SDSM software. In this section, we present one of the cooperations we have

already implemented and tested.

3.4.1 Boundaries alignment

As most parallel loops are executed more than once, our proposal consists

of scheduling the iterations in two steps. In the first execution of a parallel

loop, the runtime starts with an static scheduling of the iterations (where all

iterations are evenly distributed among all processors) and then learns which

iterations access to which pages. Once this is known, the runtime reschedules

the iterations avoiding the sharing of a page among two processors. As a side

effect this schedule produces some load unbalance. Figure 3.2 (a) shows an

example, where two threads execute a static schedule and a page P is shared

between both processors. After the alignment (Figure 3.2 (b)) the page P is

not shared anymore. This mechanism has some overhead the first time the

loop is executed, but the benefits are then seen in all further executions of

30

3.4. MECHANISM

the loop.

3.4.2 Design issues

In this section, we explain how to use the new ALIGN scheduler and the

features needed in the DSM and in the runtime.

User: SCHEDULE directive

In order to use the new scheduler in a parallel loop, the OpenMP programmer

uses the SCHEDULE directive. We propose the following syntax:

1 !$omp SCHEDULE (ALIGN, <schedule>, <operat ion>)

The schedule parameter is a number identifying the schedule to be used in

the following parallel loop. It can be a new or previously calculated one. The

operation parameter manages what to do with the schedule: 1) TRAIN, to

learn the iterations per page and detect the page boundaries to build a new

schedule that will be reused later by the current or other loops, or 2) REUSE,

to reuse a schedule calculated previously.

Example

Figure 3.3 shows an excerpt from the CG source code modified to use the

align scheduler.

Two parallel loops are being executed 25 times. Both loops use the same

schedule, which is calculated in the second loop after a warm-up of 2 itera-

tions of the outermost loop. The first parallel loop uses a static scheduling

in its first execution because the schedule is not yet calculated. The schedule

clause uses a variable (operation) to select what operation to do: train or

reuse. This is useful to do some warm-up (2 iterations in this case), learn

the right schedule and reuse it afterwards.

Runtime: The ALIGN scheduler

The ALIGN scheduler follows these steps to compute a schedule of iterations

taking into account the page boundaries:

31

CHAPTER 3. BOUNDARIES ALIGNMENT

1 operat i on = TRAIN
2 do c g i t =1, 25
3 !$omp paral lel do default (shared) private (j , k , sum)
4 !$omp& schedule (ALIGN, 1 , REUSE)
5 do j =1, lastrow−f i r s t r ow+1
6 sum = 0 . d0
7 do k=rowstr (j) , rowstr (j+1)−1
8 sum = sum + a (k)∗p(co l i dx (k))
9 enddo

10 q (j) = sum
11 enddo
12

13 !$omp paral lel do default (shared) private (j)
14 !$omp& schedule (ALIGN, 1 , operat i on)
15 do j =1, l a s t c o l− f i r s t c o l +1
16 p(j) = r (j) + beta ∗p(j)
17 enddo
18

19 i f (c g i t . eq . 2) then
20 operat i on= REUSE
21 endif
22 enddo

Figure 3.3: Fortran code example for the Align scheduler use.

Loop Scheduling
Library Tracking

System boundaries

Iterations
at page

NanosDSM

Iteration
Information

Application

OpenMP
Runtime

Schedulers

Memory map

feedback

Page Fault Upcalls

Loop Scheduling

Figure 3.4: Components that take part in the alignment mechanism.

32

3.4. MECHANISM

1. Register the memory regions where write accesses are done, so it can

detect the false sharing and avoid it. We only care about write ar-

eas because they are the important ones for page alignment. Read

pages can be replicated in all nodes that need them. The idea is to

establish a communication between the SDSM layer and the OpenMP

runtime in a way that the SDSM notifies the runtime about a page

fault and its associated information. This notification mechanism is

what we have defined as the upcall mechanism and it is explained later

in Section 3.4.2. In order to avoid the overhead of being notified at all

the memory page faults, the mechanism offers functions to register a

specific region of memory where faults should be notified.

2. When a page fault occurs, the SDSM sends an upcall, and the OpenMP

runtime checks if the address is the first one in the page. In this case,

it marks that the current iteration corresponds to the beginning of a

page. Otherwise, it does nothing.

3. Once each node has its list of iterations that correspond to the begin-

ning of a page, they send them to the master, who will do the redistri-

bution taking into account the list of iterations and the time used by

each thread. We have to note that these times include the page faults

and thus may not correspond to the reality. For this reason we have to

do the task several times till it becomes stable (repeat steps 1 to 3).

This algorithm generates a new schedule that is then reused every time

the loop is executed. Also, this schedule calculated for an specific loop can

be applied to other parallel loops which will reuse the same mapping between

iterations and threads exploiting any temporal locality available.

The modules in the Nanos OpenMP runtime taking part into the align-

ment mechanism are presented in Figure 3.4. There is a module that will

gather the page faults and the iteration information, building a memory map

for the current parallel loop. This information is used to detect the iterations

at page boundaries and construct a new schedule accordingly to be reused

later.

33

CHAPTER 3. BOUNDARIES ALIGNMENT

Application

2

Shared Areas
Register1

4

NanosDSM
Page @

in

Registered Area?

3

Page Fault

OpenMP Runtime

Page Fault Upcalls

Figure 3.5: Components that take part in the upcall mechanism.

This mechanism does the best possible load balance taking into account

the page granularity and it adds little overhead.

DSM: Support to allow cooperation with higher levels

The most important feature to support the cooperation consists on offering

upcalls [Cla85]. This mechanism, shown in Figure 3.5, allows the applica-

tion (the OpenMP runtime in our case) to register a memory region, which

means that NanosDSM will notify the higher level whenever a page fault oc-

curs within this memory region. The mechanism to notify these page faults

consists of executing the function that was passed as a parameter when reg-

istering the region. As this function is part of the application, it allows the

higher level to know what is happening at the NanosDSM level, which is

normally transparent.

This upcall mechanism is not being thought to be used by regular pro-

grammers, but by runtime implementors, compiler developers, etc. This

mechanism should be transparent to regular applications.

Register a shared memory region. To notify page faults in a shared

memory region, the region should be registered with a function to be called

whenever the page fault occurs. The register function has the following

interface:

1 i n t m sm s e t r e g i o n p f n o t i f i c a t i o n (char ∗ r e g i o n s t a r t , long size ,

2 void (∗ upca l l) (char ∗ , char ∗ , int , i n t))

34

3.5. EVALUATION

where region_start and size are the region starting address and its

length in bytes; and upcall is the address of the upcall function to be called.

A list of registered regions is maintained and the register function will

return a positive value with the new assigned region identifier, or a negative

value meaning that the region overlaps a previously registered region.

Page fault in a registered region. When a page fault occurs, the list

of regions is checked. If the page fits in a region, the corresponding upcall

function will be called with the address being faulted, the instruction code

that produced the fault, its type (a read or a write fault), and the selected

region id.

3.5 Evaluation

3.5.1 Methodology

The evaluation of the page alignment scheduler is divided in two parts. First,

a preliminary evaluation of the mechanism with a couple of benchmarks just

to prove that the mechanism works. And, second, a more comprehensive

evaluation with more benchmarks at chapter 6.

The benchmarks used in this section are the Conjugate Gradient (CG)

from the NAS benchmarks [JFY99], and the Ocean kernel from the Splash2

benchmark suite [WOT+95,SWG92]. They are executed in the MareNostrum

cluster. On one hand, the CG benchmark is an application which suffers

from false sharing that can be solved with the align scheduler. On the other

hand, the Ocean benchmark also has false sharing, but it can not be solved

with this mechanism. It is an example showing the worst case and that the

mechanism is able to detect when it will not be useful and it simply uses an

static schedule adding very low overhead.

For each benchmark two versions are evaluated:

Static The unmodified original source code of the benchmark, which acts

as the baseline.

Align The static version extended with the align scheduler in the parallel

35

CHAPTER 3. BOUNDARIES ALIGNMENT

CG

Class A Class B

na 14000 75000
nz 11 13

niter 25 75

Table 3.1: Parameter values for A
and B classes of CG benchmark.

Data structure Size

p na
q na
r na
z na

Table 3.2: Main data structures
for CG benchmark.

Loop p q r z

MVP R W
DP R R

AXPYDP R R RW RW
AXPY RW R

Table 3.3: Summary of CG data structures modified by each loop.

loops that suffer false sharing.

CG Benchmark

The CG benchmark kernel has four consecutive parallel loops (i) matrix-

vector product (MVP), ii) dot-product (DP), iii) AXPY/Dot-product combi-

nation (AXPYDP) and iv) axpy (AXPY)) that are executed a fixed number

of times (niter) determined by the benchmark class. The experiments uses

the classes A and B as distributed in the NAS benchmarks suite, Table 3.1

summarizes the values for the na, nz and niter parameters.

These loops modifies the main data structures (Table 3.2) following the

access pattern presented in Table 3.3, where for each loop we show if the

corresponding variable is read (R), written (W) or both (RW). The table

shows that the p and q variables are the most used structures, which are

written in a loop and then they are read by the others, AXPY and MVP

loops respectively.

36

3.5. EVALUATION

CG

Class A Class B
Nodes Static Align Static Align

Seq 12.82 12.82 1399.71 1399.71
1 14.04 13.57 1533.74 1526.76
2 11.81 10.89 524.96 523.43
4 9.70 8.16 375.04 366.88
8 9.27 8.33 329.42 323.75

Table 3.4: Execution time (seconds) for A and B classes of CG benchmark.

Ocean Benchmark

The Ocean benchmark uses a square matrix A of 2048x2048 float elements to

represent the set of 2D point planes. The benchmark uses one parallel loop

(MAIN) to calculate the weighted average and this loop is executed until the

difference for all points arrives to an specified tolerance level.

Testbed

The benchmarks have been executed on top of the MareNostrum cluster (see

Section 2.7.4) with 8 nodes using the Full-Duplex Gigabit Ethernet network.

Even we could use a maximum of 4 threads per node, just one thread will be

used for all benchmarks, because the problem already appears. All bench-

marks have been run with 2, 4 and 8 nodes.

3.5.2 Results

CG Benchmark

The execution times for the CG benchmark are summarized in the Table 3.4.

The speedup for the CG class A is shown in Figure 3.6. The speedup for

the static version is quite low, arriving at a maximum of 1.38 with 8 nodes.

The small size of the matrix provides small computation time per thread.

Threads can access few pages in this time, and therefore the boundary pages

(pages that share the last iterations from one thread and the first iterations

37

CHAPTER 3. BOUNDARIES ALIGNMENT

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

nodes

CG.A

static
align

Figure 3.6: Speedup of CG class A
for original and aligned versions.

 0

 5

 10

 15

 20

 25

 30

MVP DP AXPYDP AXPY

#
 p

a
g

e
 f

a
u

lt
s

loops

CG.A

static2
align2
static4
align4
static8
align8

Figure 3.7: Number of page faults
per loop for static and align ver-
sion of the CG Class A benchmark.

of another) are accessed at the same time, making threads to compete for

them. This ping-pong effect trashes the execution time.

Figure 3.7 shows the average number of page faults for the four main

benchmark loops. For each loop, it presents the static and align versions

using 2, 4 and 8 nodes respectively. Versions are grouped together to ease

their comparison.

As the figure shows, the third parallel loop in the static version has a great

number of page faults with a big variation, basically due to the iteration-page

boundaries mismatch. These page faults represents, on average, a 42% of the

pages faulted in the first loop.

The align scheduler learns a new schedule at the fourth loop, when a sin-

gle structure is written, and the resulting schedule is reused in the remaining

loops. This new schedule is able to completely eliminate the false sharing in

the third loop and to exploit a better spatial locality in the other loops. It

removes the 92% of the faults in the third loop, getting an average improve-

ment of an 11% in the execution time of this class. Even though the number

of page faults has been greatly reduced, the impact on the final execution

time of the application is not as important, this is easily explained because

the number of page faults is not the only thing to consider. Figure 3.8 shows

the average time used by both versions at each loop, it is divided between

38

3.5. EVALUATION

 0

 5

 10

 15

 20

 25

static2

align2

static4

align4

static8

align8

static2

align2

static4

align4

static8

align8

static2

align2

static4

align4

static8

align8

static2

align2

static4

align4

static8

align8

T
im

e
(m

s
)

Loops

CG.A

Computation time
Solving Page Faults

AXPYAXPYDPDPMVP

Figure 3.8: Average time used in the computation phase and solving page
faults at the different loops when executing the CG class A benchmark.

time computing data and time solving page faults. As the figure shows, the

third loop suffers from false sharing, but it is not the most consuming one.

To better understand the false sharing problem and the effect of the align

scheduler, Figure 3.9 shows the faults in the memory address space of the

application for static and align versions when executed with 4 nodes. The

address space shown includes the four main variables p, q, r and z. The

figure shows two Paraver [PLCG95] histograms for the static (upper) and the

align (lower) versions. Each column represents a memory address, and each

row represents a node. A gradient of color represents the number of faults

for each address by each node (darker color means more faults).

Page faults shows that one of the structures is used by both versions,

while the other three structures are faulted at the boundaries in the static

version. But these faults disappear completely in the align version due to

the alignment of the iteration space to these page boundaries.

In contrast, both versions have similar speedup when they use the bigger

class B (Figure 3.10). There are two things that explain this similarity. On

one hand, the number of page faults in the third loop does not change as

much as in the smaller class, meaning, that even the false sharing problem

exists, there is enough computation time between consecutive faults from

different threads to avoid the ping-pong effect. The page faults per loop

39

CHAPTER 3. BOUNDARIES ALIGNMENT

Figure 3.9: False sharing effects in the number of page faults for the CG
benchmark executed with 4 nodes: light green corresponds to few page faults
and dark blue to many page faults. The static version shows 4 structures
being accessed, all of them with false sharing, while the aligned version do
not have this problem.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

nodes

CG.B

static
align

Figure 3.10: Speedup of CG class
B for original and aligned versions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

MVP DP AXPYDP AXPY

#
 p

a
g

e
 f

a
u

lt
s

loops

CG.B

static2
align2
static4
align4
static8
align8

Figure 3.11: Number of page faults
per loop for static and align ver-
sion of the CG Class B benchmark.

40

3.5. EVALUATION

corroborate this theory (Figure 3.11). On the other hand, the third loop has

a small number of page faults compared with the first one (which has the

highest number), representing just a 4% in average. So, even the scheduler

solves the false sharing problem, it does not improve the final execution time,

because it is not a relevant problem anymore.

Ocean Benchmark

The Ocean benchmark presents a potential horrible situation for a SDSM,

which is a true sharing among nodes. Many different cells in the array are

read by one node and written by another. This implies that there are not

explicit boundaries at all, because no matter how we split the computation,

some elements on one side will be written by the nodes assigned to the other

side. Our mechanism is able to detect this situation and it disables the

alignment, using a simple static schedule.

Even a static schedule is used, the speedup of this benchmark is quite

good, with a maximum of 6 with 8 nodes (Figure 3.12). This is easily ex-

plained with the regularity of this benchmark. After the first execution of the

main loop, the placement of main part of the pages remains stable, except

for pages suffering from true sharing, which are the ones that keep faulting.

Figure 3.13 shows the average number of page faults per loop, showing the

static and align versions executed with 2, 4 and 8 nodes. As expected, the

number of page faults increases with the number of nodes, because there are

more boundaries. But, at least, the number of faults per node remains stable.

We can also observe that the number of faults do not change when using the

align scheduler, because the same static schedule is used.

Execution times for both versions are shown in Table 3.5. As a curiosity,

the align mechanism seems to get better speedup than the static version

alone, even they do exactly the same schedule. A closer look to the generated

code showed that the align version uses more parameters, and so it has a

different alignment in the stack frame. This difference in the stack alignment

explains the slight difference in the speedup, a deeper research is needed to

understand why is this behavior happening.

41

CHAPTER 3. BOUNDARIES ALIGNMENT

Ocean

Nodes Static Align

Seq 15.18 15.18
1 15.25 14.29
2 7.92 7.49
4 4.41 4.21
8 2.59 2.5

Table 3.5: Execution time in seconds for original and align versions of the
Ocean benchmark.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

nodes

Ocean

static
align

Figure 3.12: Speedup of Ocean
benchmark for original and aligned
versions.

 0

 5

 10

 15

 20

 25

MAIN

#
 p

a
g

e
 f

a
u

lt
s

loops

Ocean

static2
align2
static4
align4
static8
align8

Figure 3.13: Number of page faults
per loop for static and align ver-
sion of Ocean benchmark.

42

3.6. CONCLUSIONS

3.6 Conclusions

In this chapter, we have presented the false sharing problem: when two

processors, in a parallel system, access the same cache line at different offsets

and, at least, one of them is a write. We have shown that the false sharing

in a sequential consistency DSM is a problem when different threads try to

access the same page at the same time, producing a ping-pong effect that

may trash the final execution time.

A typical solution to solve this problem at runtime is to relax the memory

consistency, and therefore the false sharing vanishes due to the multiple writer

protocol. We think that there are cases where the complexity and the cost

necessary for this relaxation are not worth it.

The problem is that this false sharing is due to the OpenMP runtime who

decides an iteration distribution without taking into account the underlying

DSM. We have proven that in these cases it is not necessary to relax the

consistency but to obtain a better distribution of the iterations.

Therefore we have designed a new Align scheduler for OpenMP parallel

loops that avoids this false sharing problem at runtime.

The scheduler needs a tight cooperation between DSM and OpenMP run-

time layers, and we propose a mechanism of upcalls to communicate with the

DSM layer.

The scheduler has been used in a couple of benchmarks, showing that,

on one hand, when the false sharing produces trashing it is able to avoid

it and it reduces the execution time by an 11% on average. On the other

hand, when the scheduler is not able to find a better schedule, it adds small

overhead and it obtains similar execution times than an static schedule. We

have also shown that the false sharing is a problem if the computation time

available is small, and that if the computation time is big enough its effects

are not relevant.

The results of this contribution have been published in [CCM+04,CCM+06].

43

CHAPTER 3. BOUNDARIES ALIGNMENT

44

Chapter 4

Apply lessons learnt from MPI

La mejor defensa es un buen ataque

Sun Tzu

Abstract

One of the main problems when executing an OpenMP appli-

cation on top of a distributed platform with a DSM is the over-

head of the remote memory accesses. In this chapter we design

and evaluate a new mechanism to overlap the computation of an

OpenMP parallel loop, with the communication of its referenced

memory accesses. We emulate the data flow from MPI, where a

node forwards data it owns to the nodes that will need this data

after finishing a parallel loop. Results show that a sequential con-

sistency DSM with this technique achieves similar performance

results than a relaxed consistency DSM like TreadMarks.

45

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

4.1 Motivation

In a DSM environment, an access to an address that is not locally accessible

has a high overhead. It involves a segmentation fault signal captured by the

DSM layer, a request to the manager of the page containing that address and

wait the network latency for the response.

A typical approach to minimize this overhead is by avoiding the fault in

the first place, for example, by placing the data before the offending access:

the prefetch technique.

The idea is simple, imagine an OpenMP application with the code pre-

sented previously where a parallel loop traverses an array:

1 !$omp paral lel do

2 do i =1, N

3 A[i] = . . .

4 enddo

When this application is executed, each thread accesses different memory

pages due to the organization of the memory in physical pages. Each accessed

pages that is not in the local memory will generate a page fault with the

corresponding overhead to receive the page content. Figure 4.1 a) shows the

timeline of one thread where pages P1, P2 and P3 are accessed sequentially.

This specific pattern of page accesses in an application parallel region can

be learnt by each thread, and when this pattern is detected again, the whole

set of accessed pages is brought locally to the thread avoiding posterior page

faults, as shows Figure 4.1 b) where the previous pages are gathered after

faulting the first page.

This way, the first access has a slightly bigger overhead, but the following

extra memory accesses are avoided.

This solution follows a consumer-driven model, where the consumer re-

quests necessary data from the producers. Even though this approach has

been proven as a successful model, it has some limitations: (1) data may

be requested before all nodes working on it have finished, producing some

unwanted results; and (2) the most important, data is not consumed imme-

diately after being produced, so there is still place to reduce latency.

46

4.2. THESIS

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����
����

����
����
����
����
����

P3P1

P1, P2, P3

a)

b)

P2

Time

Figure 4.1: Prefetch technique in a loop.

4.2 Thesis

We think that the performance of an OpenMP application being run on top

of a DSM could be improved if we follow a producer-driven model, similar

to MPI, where producers send their new data directly to the consumers.

4.3 Related Work

A lot of research has been done to reduce the high memory latencies to access

remote nodes through the interconnection network, but they reduce to three

main topics: overlap the communication with the computation, relax the

consistency or transform the code.

4.3.1 Overlap communication and computation

One of the main ideas at hardware architectures with different levels of mem-

ory hierarchies to overlap data communication with computation is to fetch

data locally before accessing it, the prefetch technique [VL00]. The tecnique

described here is used by programmers to specify which data needs to be

fetched.

Jégou [Jég00] also opts for using extracted information from the compile-

time analysis to predict variable accesses and include prefetch requests. This

47

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

is different from our proposal where the prediction is done at runtime and

the data is sent from the producers instead of requested from the consumers.

Instead of moving the data to the nodes that will do the computation,

Saltz et al. [SBW91] propose to change the schedule so each node computes on

its local data, the inspector-executor method. A loop is divided into two code

segments: the inspector and the executor, where the inspector preprocesses

the loop to gather the best schedule and then the executor executes the loop

using the calculated schedule.

Instead of using this inspector-executor method, data accesses informa-

tion can be generated at compile-time and the runtime can precompute the

set of pages that will be accessed, fetching them before each iteration execu-

tion as Lu et al. [LCD+97] prove to improve irregular applications.

The main problem with distributed memory is that when nodes accesses

remote memory, a lot of coherence messages are sent and received to update

the local memory view. Keleher et al [Kel99] proposes a mechanism that

captures this coherence traffic inside a region of code and it allows to replay

it afterwards in next executions of the same region, the Tapeworm. This

is similar to our solution with the difference that is the data consumer who

requests the data instead of the producer as we propose. Other minor differ-

ences is that we use the page content instead of the coherence messages and

we use sequential consistency.

4.3.2 Relax consistency

Another idea to reduce the network latency is to relax the consistency, de-

laying all memory updates till a synchronization point is reached. Tread-

marks [KCDZ94, Hoe06, TMSW08] implementing a Lazy Release Consis-

tency with multiple writers is the most successful DSM relaxing the con-

sistency. Additionally, Carter et al [CBZ95] presents a similar idea as our

pre-invalidation mechanism, but they use a timeout and therefore they could

make a wrong decision.

48

4.4. MECHANISM

Prefetch

page P

P(r) P(r)Thread 1

Thread 2

Time

PF

PF

PF

...

P(r) P(w) P(r)

P(−)P(−)

P(w)

Figure 4.2: Prefetch problem, the prefetched page is still being used.

4.3.3 Transform the code

Finally the last option is to transform the source code to a real distributed en-

vironment like MPI. This is the option used by Basumallik et al [BME02] who

transforms the code mixing an SPMD with Treadmarks, and pointing out

that data-forwarding should be preferred over prefetch, because the former

is a one-way communication (producer forwards to all consumers) whereas

the latter is two-way (consumers request data and producers respond). But

finally, he opts for transforming the whole code to MPI [BE05,BE06].

4.4 Mechanism

In this section we present the idea of two mechanisms to achieve the sender

initiated data flow and also the issues needed to design these features in our

environment: the presend and the preinvalidation.

4.4.1 Presend

In order to overlap data movement with computation, it is necessary to know

which pages will be needed by which nodes and when they will be needed.

Prefetching, the traditional solution, can easily detect the pages, but not the

exact time when the data movement will be best done without interfering

with the application. This is specially important when using a single writer

protocol like us. This problem can be better seen in the Figure 4.2 where

two threads appear. One of them prefetchs the p page while the other node

is still writing it. This causes a ping-pong effect moving the page between

the two threads unnecessarily.

49

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

The solution: Our solution is to allow a cooperation between the run-

time and the SDSM, who will actually do the presend. The idea is to detect

the end of a loop and send the pages that each node has to the nodes that will

need them in the next loop. As the work is normally a little bit unbalanced

(specially if we align boundaries), we can start sending pages from one node

while others are still computing. The only remaining question is to know if

there is enough time to send the pages between loops.

How is the solution implemented: To compute the list of pages that

have to be copied when presending pages, we follow these steps:

1. Learn the sequence of loops in the application to be able to know which

loop comes after the current one.

2. Register the memory regions that are accessed by the parallel loop (note

that in this case regions that are read are also important, not like in

page alignment where write regions where the only ones to check).

3. Each thread keeps a list of the page faults it has generated for each

loop (using the upcall mechanism) and sends it to the master.

4. The master makes a new list with the pages that each node has that

should be sent, once the loop is over, to which nodes. For performance

reasons, if more than one node have a page that another one will need,

all nodes holding the page will have this page in their list of pages

to send. In the execution, only the first one to request the copy will

actually do it. With this mechanism we guarantee that pages are copied

as soon as possible.

5. Once the thread has this list back, whenever it finishes a loop, it sends

the pages specified in the list using the presend mechanism implemented

in the NanosDSM.

4.4.2 Preinvalidation

A very similar problem consists on invalidating the copies of a page once a

node wants to modify them. This task is also time consuming and it would

50

4.4. MECHANISM

NanosDSM

Register Shared Areas
+ Current Loop

Page Access
Tracking System

Presend
Pages

Application

After Each
Loop1 4

Calculate
Presend Pages

3

2

OpenMP
Runtime

Page Fault Upcalls

Memory map

Figure 4.3: Components that take part of the presend mechanism.

be desirable to overlap it with the computation as we do with presends.

The solution: Our approach is very similar to the one presented for

presends. When we detect which nodes will need a page, we also detect if it

will need it for writing. If this is the case and a node that holds the page will

not need the page, then we invalidate this copy and inform the page master

that this copy does not exist anymore. Hopefully, when the node wants to

write the page, it will be the only one holding it as all other nodes will have

preinvalidated their copies, and thus it will be able to write it with no extra

overhead.

How is the solution implemented: The mechanism used is exactly the

same as in the presend but taking into account the page writes to invalidate

the pages a node has that will be written by other nodes in the next loop.

4.4.3 Design issues

The three main components of the presend mechanism are shown in Fig-

ure 4.3: the OpenMP application, the OpenMP runtime and the software

DSM. This section presents what needs to be done at each component to

implement the presend mechanism.

51

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

1 !$omp paral lel do default (shared) private (j , k , sum)
2 !$omp& PRESEND
3 do j =1, lastrow−f i r s t r ow+1
4 sum = 0 . d0
5 do k=rowstr (j) , rowstr (j+1)−1
6 sum = sum + a (k)∗p(co l i dx (k))
7 enddo
8 q (j) = sum
9 enddo

Figure 4.4: Fortran code example using the Presend directive.

User: PRESEND directive

We propose a new OpenMP directive PRESEND to enable the presend/prein-

validation technique on a parallel loop with the following syntax:

1 !$omp PRESEND

Only the threads that execute a parallel loop annotated with this directive

will detect page faults during its execution and, at the end of the loop, will

presend or preinvalidate all detected pages.

On one hand, the directive adds flexibility to the OpenMP application,

allowing the user to decide if the technique should be applied or not to each

parallel loop.

On the other, there are situations where the presend technique is not

desirable. For example, there are parallel loops where:

1. the presend can be useless, because the results of the presend can not be

exploited; for example if the loop is executed just once or the accessed

data is completely different at each iteration, avoiding any benefit from

the technique.

2. the presend can be unnecessary, because the computation time is too

small or the accessed data is not relevant.

We think that these reasons justify the use of a directive per parallel loop

instead of applying the presend technique to all of them.

52

4.4. MECHANISM

Example

Figure 4.4 shows an OpenMP parallel loop using the PRESEND directive

extracted from the CG NAS benchmark source code. It is a loop that updates

all positions of an array (q) with the result of summing up some positions

of another array (p) through indirect accesses. The directive enables the

monitoring of all memory references inside the parallel loop and presend

them as needed at the end of the loop.

Runtime: Parallel loops

As the figure 4.3 shows, the OpenMP runtime, which has a tight cooperation

between the application and the DSM, needs to:

1. Learn the sequence of parallel loops. The parallel loops are iden-

tified and a simple one level detector is used to detect their sequence

order. A parallel loop delimits a region of code where page faults can

be associated, we use the term context for this region, and Section 5.4.2

in next Chapter gives more details.

2. Build the list of pages faulted inside each annotated parallel

loop. The upcall mechanism will notify each thread with all pages

faulted inside a monitored loop. All threads will send this list of pages

to a master node when the threads finish the parallel loop. This master

node will build a global list with these lists, containing the pages faulted

and their protections for each parallel loop.

3. Build the list of pages that each thread should presend/prein-

validate. Finally, with these global lists, the master node will send to

each thread the set of pages that should be pre-sent or pre-invalidated

after the current loop. For each page in the loop, the master node cal-

culates which is the next loop that uses that page for reading or writing

and so it calculates a presend or a preinvalidate request accordingly.

53

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

DSM: Presend

The presend mechanism allows the content of a page to be sent asynchronously

to a list of destination nodes. Each thread can use it to distribute a page it

owns (meaning that it has read or write permissions for this page) to other

nodes. This is specially useful to distribute new produced content to its

consumers.

A thread issuing a presend on a page sends a request to the master node

of that page. The master node will get a copy of that page (in case the

master did not have any copy) and it will send copies to all nodes in the

destination list. Copies will not be sent if the destination node already has

the page, this can be the case if the node faulted the page before the presend

request.

DSM: Preinvalidation

In a sequential consistency DSM with a write-invalidate protocol, all nodes

that have read the value of a variable will receive an invalidation for the

page containing that variable when this variable is updated by other node.

The preinvalidation mechanism allows a node to invalidate the local copy

of a page in advance, notifying the master node that his copy is not valid

anymore.

4.5 Evaluation

4.5.1 Methodology

We used the CG benchmark, explained in the previous chapter at section 3.5.1,

to test these mechanisms.

We evaluate the results from three different versions:

Original The original version without modifications.

Align This version corresponds to the Original version with the SCHED-

ULE directive added to avoid false sharing (like in chapter 3).

54

4.5. EVALUATION

Presend Presend version is the Align with the directive PRESEND enabled.

The different versions are executed in Kandake and Crossi clusters (see sec-

tion 2.7.4), with one thread per node.

4.5.2 Results

The CG benchmark does not run efficiently on an everything-shared SDSM

if there is no cooperation between the layers. The most important reason is

that the elements of a vector are written by some node in a loop and read

by different nodes in another loop. This situation is perfect for the presend

and alignment mechanisms.

In order to present a more detailed study of the behavior of this bench-

mark, four different graphs are presented. The first one (Figure 4.5) shows

the average number of page faults at each parallel loop for original and pre-

send versions. Afterwards, Figure 4.6 shows the behavior of the class B of

this benchmark on Crossi. Then, the behavior of the same benchmark in a

smaller class (A) on the same machine (Figure 4.7) is presented. This will

help us to see the effects of the different proposals when the granularity is

smaller and thus will give us an idea of how well this application will scale.

Finally, CG class A is re-executed on Kandake and compare its speedup with

the one obtained by TreadMarks (Figure 4.8). This experiment will show us

how well our automatic mechanism does compared to a version specifically

written for TreadMarks and using a relaxed-consistency SDSM.

Figure 4.5 presents the average number of page faults in the main parallel

loops of the CG class A benchmark. As the figure shows, the presend clearly

reduces the number of page faults in the first and last parallel loops (MVP

and AXPY), which are the loops that takes more execution time, as it will

be clearly shown in Chapter 6.

The CG class B on Crossi shows that a good speedup can be achieved

(Figure 4.6). It also shows that as the number of nodes grows, the alignment

and presend mechanisms become more important. This makes sense because

as we increase the number of nodes, we also increase the number of boundaries

and the number of pages that have to be copied/moved.

55

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

 0

 5

 10

 15

 20

 25

 30

MVP DP AXPYDP AXPY

#
 p

a
g

e
 f

a
u

lt
s

loops

CG.A

Original2
Original4
Original8

Presend2
Presend4
Presend8

Figure 4.5: Number of page faults at each parallel loop in the CG class A
benchmark for original and presend versions when they are executed with 2,
4 and 8 nodes.

Execution time (seconds)

Nodes Original Align Presend

Seq 1421.19 1421.19 1421.19
2 −.− −.− −.−

3 −.− −.− −.−

4 378.94 371.32 350.14
5 343.22 310.18 302.66
6 −.− −.− −.−

7 297.11 280.10 267.79
 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

S
p

e
e

d
u

p

nodes

CG.B

Original
Align

Presend

Figure 4.6: CG class B at Crossi.

Execution time (seconds)

Nodes Original Align Presend

Seq 7.0 7.0 7.0
2 7.03 5.47 4.34
3 7.37 5.25 4.21
4 22.66 5.47 4.35
5 22.13 5.65 4.54
6 24.19 6.00 4.76
7 26.28 6.22 4.97
8 22.20 6.67 5.38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

nodes

CG.A

Original
Align

Presend

Figure 4.7: CG class A at Crossi.

56

4.5. EVALUATION

When executing the same benchmark but using a smaller dataset on the

same machine (Figure 4.7), we clearly see that the alignment and the presend

are necessary if some speedup is to be achieved. We can also see that this

speedup stops when more than 3 nodes are used. The reason behind this

behavior is the presence of two variables alpha and beta, which are written

in sequential and read in parallel, producing a big contention. This is solved

in Chapter 6 where this situation is detected and the reading threads are

informed with the written value avoiding any page fault. Even though the

load balance has improved the performance a lot, as iterations are divided

on a page basis, a given node has all the iterations that modify a page or

none. This limits the possibility of load balancing and thus if very few pages

are used, a good schedule will be impossible. For instance, if the dataset has

as many pages as nodes plus one, we will have all nodes with the iteration

of one page and one node with the iteration of 2 pages, which means that it

will have twice as many iterations (and thus work) than any other node.

Finally, the execution of the benchmark is repeated on Kandake (Fig-

ure 4.8). The objective was to compare the presend speedup with the one

observed when the “same” application is run on TreadMarks. The Tread-

Marks version has been tested only on this machine because a license was

available for this machine. Its source code included a version of the CG

benchmark. This version is similar to the MPI version of the NAS bench-

mark, but it has been modified to be executed on top of Treadmarks. It is

also modified to do a preliminary redistribution of the data and some other

tricks to improve its performance. It is not fair to compare this version with

the original OpenMP used for the tests, but it will give a reasonable idea of

the results that can be accomplished.

The first thing one can see is that it has a similar behavior (speedup wise)

than the execution on Crossi. This speedup also stops growing after 4 nodes

and the reason is also the same as in the previous experiment.

When comparing the presend behavior with the one achieved by Tread-

Marks, it is easy to observe that the presend does it as well as they do but

without using a relaxed-semantic SDSM. In addition, it is important to re-

member that the CG executed in TreadMarks is not the OpenMP version,

57

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

Execution time (seconds)

Nodes Original Align Presend TreadMarks

Seq 89.0 89.0 89.0 89.0
2 79.85 56.7 52.15 60.93
3 60.13 46.39 41.16 43.04
4 70.46 43.29 37.27 35.53
5 203.8 42.74 37.36 32.19
6 255.75 42.17 37.20 31.47

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6

S
p

e
e

d
u

p

nodes

CG.A

Original
Align

Presend
TreadMarks

Figure 4.8: CG class A at kandake.

58

4.6. CONCLUSIONS

but a version specially coded for TreadMarks. Finally, the Treadmarks in-

creases its performance when the number of nodes grows beyond 4. Observe

also that, even when using TreadMarks and relaxed consistency, the speedup

is limited to 2.5 on 4 processors, confirming the point about the small size of

the class A of CG.

4.6 Conclusions

In this chapter, we have designed a mechanism that follows a producer-

consumer model similar to MPI, where the producers send data to the con-

sumers before they need it. The goal of this mechanism is to reduce the

latencies of the accesses to remote pages.

The mechanism offers two different functions: presend and preinvalida-

tion. Presend sends copies of a page to a list of nodes, and preinvalidation

invalidates the local copy of a page.

The OpenMP runtime uses these functions together to forward all data

produced in a parallel loop to the nodes that will need this data in the next

loop. So, the consumer loop avoids the majority of page faults because the

data will be already there. The communication of these pages overlaps with

the computation of the current loop.

The experimental results show that the number of page faults is highly

reduced compared to the baseline. It also shows that the performance of a

sequential consistency DSM using a sender initiated communication is similar

to the performance obtained by a relaxed consistency DSM like TreadMarks.

The contributions from this chapter have been published in [CCM+06,

CCM+04].

59

CHAPTER 4. APPLY LESSONS LEARNT FROM MPI

60

Chapter 5

Avoiding network congestion

No dejes para mañana lo que puedas hacer hoy

Refranero español

Abstract

A typical problem when running OpenMP applications on top

of a DSM is that, at synchronization points, the network can sat-

urate when the system sends high amounts of control messages

and pages trying to maintain the memory coherence. The limited

bandwidth of network and the effect of concentrate communica-

tion at single points in time produces network congestion. This

situation may limit or degrade the final performance of the ap-

plication.

This chapter discusses a method to distribute this memory

coherence messages during the computation phase and send them

as early as possible avoiding the congestion.

61

CHAPTER 5. AVOIDING NETWORK CONGESTION

5.1 Motivation

The main problem of page-based DSMs is that they need to communicate a

high amount of pages through the network in order to maintain the coherence

of the global shared memory across the nodes in a cluster.

In OpenMP applications, this communication is usually produced at the

OpenMP synchronization points, namely implicit and explicit barriers or

locks.

At these points, the required bandwidth to send these pages may be

greater than the available in the network, generating some temporal conges-

tion. The number of network messages is directly related to the number of

memory modifications, because they are basically coherence messages. So,

applications that modifies a high amount of data will send a high amount of

network messages.

The TCP protocol tolerates this congestion using a congestion avoidance

algorithm [APS+99] and the data will be eventually sent but it will not be

transferred immediately as needed. Even though this algorithm is effective,

it affects negatively the final application performance because it limits the

quantity of data sent at the same time, reducing bandwidth and adding some

timeouts.

The underlying problem is that the quantity of data to be transferred at

these points is greater than the data that the network can transmit and this

affects negatively the final performance results.

5.2 Thesis

The solutions to network congestion problem are mainly two: (1) reduce the

quantity of data sent, or (2) distribute the data to avoid the congestion.

The main idea in this work is to avoid the transient network congestion

situations by distributing coherence messages that produces the congestion

as early as possible during the computation time, taking profit from the

potentially idle network.

62

5.3. RELATED WORK

5.3 Related Work

The topic of network congestion has been extensively researched in the net-

work area, like the TCP congestion algorithm [JK88,APS+99,AFP02], where

a congestion window with the acknowledged messages is used to slowdown

the client. The work presented here is somewhat related but instead of slow-

ing down the client, we identify earlier points in time where data could be

distributed.

As far as we know, in the DSM literature nobody else has been doing any

research on distributing data delivery across time to avoid network conges-

tion. However, there are different works that allow programmers to synchro-

nize explicitly different regions of memory and therefore they could be used

to distribute manually the coherence messages.

The OpenMP specification offers a flush operation [HDS08] to enforce

consistency between a thread’s temporary view and global memory, it affects

the whole memory or just the data specified in the parameters. Our proposal

extends this operation to automatically detect what needs to be synchronized

without the user intervention.

Another idea is developed by Iftode et al [ISL98] who allow the synchro-

nization of all modified data inside a scope, where the term scope refers to a

region a code. They call it the Scope Consistency model. Inconveniently, an

improper use of this technique produces an incorrect code.

There are other studies, like Gornish et al. [GGV90] which shows mech-

anisms to find at compile time the earliest time to start prefetching data

taking into account data and control dependences, but the question of how

to avoid the network congestion remains unanswered.

5.4 Mechanism

This section presents the chopper, a mechanism that can detect when a thread

access a specified page by the last time.

63

CHAPTER 5. AVOIDING NETWORK CONGESTION

5.4.1 Chopper

Network congestion appears because a high number of network messages are

sent at the same time, therefore to avoid it, it is necessary to distribute these

network messages during the computation phase.

These network messages are directly related to coherence messages, and in

our DSM these coherence messages corresponds to pages because the memory

granularity is a page.

The ideal situation to distribute the coherence messages would be if the

DSM was able to detect the exact time when a thread finishes working on

a page. After finishing a page, the DSM could send the coherence data

messages automatically, without waiting for any synchronization point. The

problem is that DSMs usually do not know when a thread finishes working

on a page.

The solution: Our proposal gives a solution to this problem: DSMs

can detect the exact interval of time where a thread finishes working on a

page, allowing the distribution of coherence messages before synchronization

points.

The idea is to divide a given interval of execution time into smaller sec-

tions and monitor the page faults inside each section. Therefore, we can

detect which is the last section using any page and send the coherence mes-

sages for a page before the usual synchronization points, exactly at the end

of the last section using it.

How is the solution implemented: The starting point for our mech-

anism is an OpenMP application that has some regions which suffer network

congestion at synchronization points and therefore the chopper algorithm

follows these steps:

1. Mark the regions suffering network congestion.

2. Learn the sequence of regions.

3. Detect when a thread has finished working on a page, by dividing a

region into sections and detecting all page faults inside the sections.

4. Calculate pages that can be sent after each section.

64

5.4. MECHANISM

5. And finally, distribute the list of pages using the sections.

Actually, our mechanism needs some manual modifications in the source

code to mark these regions and to divide a region into smaller sections where

the network messages can be distributed. We use the pre-send techniques

explained in previous Chapter 4 to execute this distribution.

Marking regions with network congestion

The regions which suffer network congestion are marked and identified. This

allows the page-fault detection inside the regions and the posterior distribu-

tion of their related coherence data.

These chopper regions can contain different parallel loops and sequential

sections, in contrast to the previous chapter where the regions where limited

to parallel loops.

These regions correspond to contexts inside the DSM and they are used

by the pre-send mechanism later.

Detecting when a thread has finished working on a page

It is necessary to find a mechanism that detects when a thread finishes work-

ing on a page in order to avoid the congestion and send the page modifications

as soon as possible.

The DSMs have information about the first reference to a page after a

synchronization point and the next synchronization point, but nothing else

is recorded in between. For example, after a synchronization, a thread, with

an invalid copy of a page that wants to update it, accesses the page and a

page fault is generated. The page fault notifies the DSM that a thread wants

to access that page. But, once the DSM retrieves that page with the right

protections and gives a copy to the thread, the DSM will not be notified

anymore about any posterior access to this page done by this thread.

Given this scenario, the thread usage of a page is limited by the first time

the thread references the page generating a page fault and the synchroniza-

tion point after the page fault.

65

CHAPTER 5. AVOIDING NETWORK CONGESTION

Our proposal consists in dividing the computation phase suffering the

network congestion into smaller sections. These smaller sections will allow

the detection of sections where the page is used and, even more important,

in which sections the page is unused.

The virtual synchronization points(VSP) are the proposed mecha-

nism to divide a region into smaller sections. The OpenMP runtime will use

them as extra points to distribute coherence data earlier than the congestion

point.

Each VSP behaves like a synchronization directive, so it synchronizes all

data that is not referenced anymore inside current region or it is silently

ignored. They are simple hints to the OpenMP runtime which will decide

their final semantics.

5.4.2 Design issues

As in the previous Chapters, this mechanism requires a tight cooperation

between the OpenMP and the DSM runtimes. This section presents the

changes needed to implement the chopper mechanism.

User: Directives

We propose the directives shown in Figure 5.1 to use the chopper mecha-

nism. The user annotate an OpenMP application with the start region

and stop region directives to mark and identify a region of code, and the

vsp directive to insert a new VSP inside the code, slicing the current region

in two sections or chops.

1 !$omp start region (i d)
2 !$omp stop region (i d)
3 !$omp vsp

Figure 5.1: Proposed OpenMP directives for the chopper mechanism.

A region of code enclosed between the start region and stop region

and identified by the parameter id is monitored during the execution. All

referenced pages inside this region are forwarded to the next region at the

66

5.4. MECHANISM

end of the region or at any available VSP, which are used as additional points

to distribute pages.

We show two examples for using these directives: a typical approach

where a parallel loop sends too much data and it uses the VSP to distribute

the data; and another one where the chopper is used to group different par-

allel loops into a bigger region.

Example: Dividing a parallel loop into smaller sections

Figure 5.2 shows a typical parallel OpenMP loop which suffers network con-

gestion. It is annotated as a region and a VSP is used at each 10 iterations.

1 !$omp paral lel
2 !$omp start region (i d)
3 !$omp do
4 do i =1, N
5 A[i] = . . .
6 ! $ i f (i % 10) {
7 !$omp vsp
8 ! $ }
9 enddo

10 !$omp stop region (i d)
11 !$omp end paral lel

Figure 5.2: Dividing a parallel loop into smaller sections.

Example: Grouping different parallel loops into a bigger region

There are situations where it is desirable to join different regions into a

bigger one instead of dividing them, for example, in cases where the pre-

send technique is not applicable because the computation time is too small.

Figure 5.3 shows an example where two different loops are considered as a

single context for the DSM by enclosing both inside the same region.

Runtime: Marking chopper regions

From the runtime point of view, an OpenMP application is a sequence of se-

quential and parallel regions, with some synchronization points in the middle.

67

CHAPTER 5. AVOIDING NETWORK CONGESTION

1 !$omp paral lel
2 !$omp start region (i d)
3 !$omp do
4 do i =1, N
5 A[i] = . . .
6 enddo
7 !$omp do
8 do j =1, N
9 A[j] = . . .

10 enddo
11 !$omp stop region (i d)
12 !$omp end paral lel

Figure 5.3: Grouping two parallel loops into a bigger region.

This limits the runtime potential to modify the behavior of the application.

Specially, if our goal is to distribute the coherence messages that are concen-

trating in a single synchronization point.

For this reason, we have modified the Nanos OpenMP runtime to offer

functions to delimit a region of the application that suffers network congestion

and another function to divide a region into smaller ones to distribute those

messages:

int start region (unsigned int id) This function marks the beginning of

a new region of code. This region is identified with the id identifier. It

also creates a link between this region of code and a new context inside

the DSM layer.

int stop region (unsigned int id) It marks the finishing point of the re-

gion of code identified with the id number.

int vsp() The Virtual Synchronization Point is the function that divides a

bigger region into smaller sections (what we call chops), allowing the

distribution of the network coherence messages.

Parallel loops are automatically annotated by our runtime at the be-

ginning and at the end of the loop with start region and stop region

respectively.

Nested regions are allowed but the inner ones will be silently ignored.

This is useful, for example, to group different parallel loops together in a

single region (see Section 5.4.2).

68

5.4. MECHANISM

The implementation of these routines follows the next algorithm, where

each thread will:

• After entering a region by the first time:

– Record all accessed pages inside the region using the upcall mech-

anism.

– If a VSP is found inside the region, mark all previously recorded

pages as invalid to generate new faults on new accesses. This is

essential to detect which VSP uses a page by the last time.

• After finishing a region by the first time:

– Calculate the list of page addresses that are not faulted any more

inside the region for each VSP.

– Calculate a list of the page addresses faulted at the last section

for the end of the region.

• After this first time, when a VSP or the end of the region is found,

the list of page addresses is sent to the DSM which will pre-send or

pre-invalidate each page to the next regions.

Runtime: Monitoring chops

The runtime monitor from previous chapter has been modified to monitor

chops instead of parallel loops, and a parallel loop is redefined as a sequence

of chops with a starting chop and an ending chop.

DSM: Support to allow cooperation with higher levels

From the DSM point of view, an OpenMP application is just a sequence of

page faults without any knowledge about the context of these page faults.

We add some intelligence to the DSM to correlate a set of page faults

to a specific region into the application and the relations between different

regions. We have used the term contexts for these regions.

69

CHAPTER 5. AVOIDING NETWORK CONGESTION

Figure 5.4: Chopper directives create chops in the OpenMP runtime, and
these chops are grouped inside a DSM context.

Figure 5.4 summarizes the relation between the different concepts ex-

plained till this moment through the different layers: application, OpenMP

runtime and NanosDSM. The start region and stop region directives de-

fine a DSM context, while the vsp directives create new chops.

The state of each page (page protections at each node) is recorded at each

context and, therefore, DSM knows what actions (pre-send or pre-invalidate)

need to be taken to change the page state in the current context to the next

one.

Context

As stated before, a context is a region of code delimited by a starting and an

ending points where page faults can occur. Each context is identified by an

unique number. The DSM API offers two functions to define a context:

int msm begin ctxt (void * ctxt) This function marks the beginning

of a context identified with the ctxt number. All pages faulted after

this point will be associated with this context identifier.

int msm end ctxt (void) This function marks the end of the current

context, identified with a previous call to msm begin ctxt. All page

faults after this point will be annotated without any context, and so,

they will not be considered in the context state calculation.

70

5.4. MECHANISM

State of pages inside contexts

Each page in the DSM will record its state at each different context encoun-

tered. The state of a page at a region consists of a page protection: Read

or Write; and the list of nodes that have a copy of the page. This state is

built during runtime at the master page node with each page fault. On one

hand, a write page fault sets the protection to write, resets the list of nodes

containing the page and sets the node that faulted the page. On the other, a

read page fault sets the protection to read and adds a new node containing

a copy of the page.

In order to send data as early as possible, the states of a page with read

protections between two writes can be accumulated. This way, after finishing

a context where a page has been written, this page can be pre-sent at once to

all nodes that will require the page in the following contexts. It is important

to remark that all pages faulted outside a context will not be considered in

this calculation for the context page states.

Context predictor

A simple 1-level predictor is used to detect the sequence of contexts, and to

predict the next context after a given one. For each context, it stores which

is the next context and a counter to ensure its validity.

The predictor is notified when a new context starts, inserting the con-

text into the predictor if it was not present or updating its values if the

saved prediction for the previous context matches (or not) the new one. The

pseudocode is shown at Figure 5.5.

It is able to detect cycles in the sequence, but it will not detect when the

cycle has finished, nor different context options due to branches.

Marking pages

In order to detect accesses to pages that are already owned by a node, DSM

offers a couple of functions to the upper layers:

int msm mark page(void *page) This function marks a page so it will

71

CHAPTER 5. AVOIDING NETWORK CONGESTION

1 function upda t e p r ed i c t o r (cur r ent)
2 i f (cur r ent i s new)
3 add cur r ent to pr ed i c t o r
4 i f (pr ev i ous . next = cur r ent) /∗ HIT ∗/
5 prev i ous . counter ++
6 else /∗ MISS ∗/
7 i f (pr ev i ous . counter > 0)
8 prev i ous . counter −−
9 else

10 prev i ous . next := cur r ent

Figure 5.5: Pseudo-code for the context predictor update function.

generate a page fault if accessed. It remembers the current protection

of page page and invalidates its local copy. Any posterior access to

the page will generate a page fault, restoring its previous protections

and executing any registered upcall. After that fault the marking is

disabled.

int msm mark page range(void *start, unsigned long size) This func-

tion marks all the memory pages in the memory address interval be-

tween start and start+size rounded up.

This is used in conjunction with the upcall mechanism, where a func-

tion has been registered to be called whenever a page fault occurs inside a

delimited memory region.

Automatic pre-send/pre-invalidate

A node can inform the DSM layer with a list of page addresses that may be

forwarded to the next context using the pre-send/pre-invalidate mechanism.

Each node can build a list of page addresses. The construction of the list

uses a couple a functions:

int msm release(void *page) It adds the page address page to the cur-

rent list. It can be called multiple times without sending any network

message. A fixed size buffer is used to store the list, so in case the

buffer fills, a msm release all call is issued, clearing the buffer and

starting over.

72

5.5. EVALUATION

int msm release all(void) This function sends the list of page addresses

to the DSM and clears the list for posterior use. Each page address has

a master node, so the list of page addresses is split into different lists,

one list per master node, with all the page addresses corresponding to

the same master node. Finally, each list is sent with a message to its

master node.

When this list is received by a master node, for each page address it:

1. Predicts the next context that will use the page. This context will has

the page state with the nodes that will need it and their protections.

2. Pre-sends the page to the nodes that will read it, or pre-invalidate the

page and upgrade the page protections at the writer node if possible.

5.5 Evaluation

5.5.1 Methodology

In first place we evaluate the bandwidth behavior of the gigabit network in

an environment similar to the DSM, trying to find its limits. Afterwards

we use a synthetic and the BT benchmarks to evaluate the impact of the

chopper mechanism in the performance results. And, finally, we evaluate the

impact of the number of chops inside the same synthetic benchmark.

Bandwidth evaluation

To evaluate the network bandwidth we use a client-server application. The

client sends a set of consecutive messages to all the nodes, and the server at

each node waits for a message, acknowledges that message by resending it

and waits for more messages.

The bandwidth is measured as the total number of bytes sent and re-

trieved by the client divided by the time it used:

bw =
2 ∗MAX ∗m ∗ nodes ∗ sizeof(message)

time

73

CHAPTER 5. AVOIDING NETWORK CONGESTION

1 do i t =1, n i t e r
2 !$omp paral lel do default (shared) private (j)
3 !$omp& PRESEND
4 do j =1,na
5 v (j) = v(j) + 1
6 ca l l heavy ca l cu l a t i on (3 , delay)
7 ! $ i f (mod(j , chop) . eq . 0) then
8 !$omp vsp
9 ! $ endif

10 enddo
11

12 !$omp paral lel do default (shared) private (j , d)
13 !$omp& PRESEND
14 do j=na , 1 , −1
15 d = d + v (j)
16 ca l l heavy ca l cu l a t i on (d , delay)
17 ! $ i f (mod(j , chop) . eq . 0) then
18 !$omp vsp
19 ! $ endif
20 enddo
21 enddo

Figure 5.6: Algorithm for the synthetic benchmark, annotated with the pre-
send and the chopper.

, where MAX is the number of times that the test is repeated to minimize any

outlayer effect; m is the number of messages send; nodes is the number of

nodes involved in the execution; sizeof(message) is the size in bytes of the

message sent in the request; and time is the measured time in seconds at the

client side between the beginning of the test and the last message received.

Synthetic benchmark

The synthetic benchmark tries to exploit the fact that too many coherence

requests produce congestion in the network affecting the final performance.

The synthetic benchmark algorithm iterates over two parallel loops. The

first writes all positions of an array (v) and the second reads the same array

in reverse order (see Figure 5.6). This is intended to avoid the same data

placement and generate page faults at each parallel loop. Both loops have

an added delay to simulate a longer computation time. And, finally, there

is an instruction calling the VSP routine each chop iterations. By default,

this chop value has been calculated so the application has a maximum of 400

chops (see Section 5.5.2 for a discussion on this number).

74

5.5. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192
16384

32768

65536

B
a

n
d

w
id

th
 (

M
B

/s
)

messages of 4096 bytes

Gigabit Bandwidth

2 nodes
4 nodes
8 nodes

Figure 5.7: Bandwidth used for different number of messages of 4096 bytes.

The array v has 2000000 doubles (na), using about 4000 pages, big enough

to be representative.

Three versions for this benchmark are presented: (a) Original, is the

baseline version, without pre-send nor chopper; (b) Presend, where the pre-

send is used at the end of each parallel loop; and (c) Chopper, which uses

pre-send and chopper to avoid the network congestion, its source code is

shown at Figure 5.6.

VSP overhead

To calculate the chopper overhead we have evaluated the effects of not using

the chopper at all, which corresponds to the Original version; and different

versions with 25, 50, 100, 200, 400 and 800 total chops. We have used these

values to calculate the chops variable values in the synthetic benchmark

shown in Figure 5.6 which controls the number of iterations to process by

the thread before issuing a VSP.

5.5.2 Results

Bandwidth evaluation

Figure 5.7 shows the bandwidth used (in MegaBytes/seconds) by the bench-

mark when different messages of 4096 bytes are sent concurrently between 2,

4 and 8 nodes.

75

CHAPTER 5. AVOIDING NETWORK CONGESTION

Execution time (seconds)

Nodes Original Presend Chopper

Seq 53.80 53.80 53.80
1 54.09 53.88 54.28
2 50.30 37.89 29.06
4 25.46 18.71 14.61
6 17.15 11.85 9.79
8 12.99 8.69 7.39

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

Synthetic Benchmark

Original
Presend
Chopper

Figure 5.8: Synthetic benchmark performance results.

The figure shows, that the bandwidth between 2 nodes is not affected by

the number of messages and it achieves a sustained bandwidth of 180MB/s

close to the optimum bandwidth of the targeted network.

In contrast, when we use more than 2 nodes the bandwidth have a peak

with 16 or 32 messages and immediately falls down to a minimum band-

width. Afterwards, the bandwidth curve increases steadily until it arrives

to another stable maximum at 100MB/s. This important decrease in band-

width is due to the TCP congestion avoidance algorithm, and it may affect

the performance.

Synthetic benchmark

The performance results for the different synthetic benchmark versions are

presented in Figure 5.8. It shows that the original achieves a maximum

speedup of 4 with 8 nodes. The pre-send concentrates all the coherence

messages at the end of the parallel loops and it achieves a better speedup

of 6. Finally the chopper version is able to achieve an speedup of 7, by the

simple fact of distributing the coherence messages during the computation

phase.

VSP overhead

Figure 5.9 shows the execution times for the synthetic benchmark when using

25, 50, 100, 200, 400 and 800 total chops. The original and presend version

76

5.5. EVALUATION

Execution time (seconds)

Nodes Original 25 50 100 200 400 800

1 54.09 54.31 54.25 54.07 53.98 54.09 54.09
2 50.3 49.09 48.05 45.87 40.92 29.22 29.78
4 25.46 24.93 24.36 23.16 20.65 14.64 14.93
8 12.99 12.77 12.50 11.90 10.57 7.37 7.51

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

nodes

Total number of chops

Original
25
50

100
200
400
800

Presend

Figure 5.9: Execution time (in seconds) for the Synthetic benchmark with
different number of total chops. Best values are highlighted.

Pages synchronized at each VSP

Pages 25 50 100 200 400 800

4000 160 80 40 20 10 5

Table 5.1: Number of pages synchronized at each VSP for the Synthetic
benchmark with different number of total chops.

77

CHAPTER 5. AVOIDING NETWORK CONGESTION

Execution time (seconds)

Nodes Original Presend Chopper

Seq 46.88 46.88 46.88
1 48.53 47.00 47.20
2 50.44 32.03 28.32
4 36.39 25.06 19.76
8 25.66 17.95 16.33 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

BT.A

Original
Presend
Chopper

Figure 5.10: BT Class A performance results.

also appear for completeness. Each version is evaluated with 1, 2, 4 and 8

nodes.

This figure shows that the best case corresponds to using 400 chops, which

is the value used in the Chopper version presented before.

The figure also shows that the number of chops must be chosen wisely,

because it affects the performance. It clearly shows two boundaries: (i) the

best execution time achievable with the chopper and (ii) the worst execution

time corresponding to the original version. On one hand, adding too few

VSPs decrease the execution time marginally and obtains worse behaviour

than the presend version. But, on the other hand, adding too much VSPs

gets a performance similar to the best execution or slightly worse. Therefore

there must be a tradeoff between the execution time and the number of chops,

and it will depend on each application.

Due to the fixed number of chops per application, the number of VSPs

per thread decrease with the number of threads. This is a desirable situation

because the computation time available per thread also diminishes and there

are less time to overlap the communication.

Finally, Table 5.1 shows the number of pages synchronized at each VSP

for this synthetic benchmark when using different number of VSPs. As the

table shows, in this case, the number of pages are directly related to the

number of chops.

78

5.5. EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

ysolve zsolve

P
a

g
e

s
 s

e
n

d

Loops

Number of pages send per chop (BT.A)

Presend2
Presend4
Presend8
Chopper2
Chopper4
Chopper8

Figure 5.11: Average number of pages send in BT.A benchmark by each
thread at each synchronization point in parallel loops ysolve and zsolve

when executing the presend and chopper versions with 2, 4 and 8 nodes.

5.5.3 BT benchmark

In order to execute the 3.3 version of this benchmark in our environment we

have modified the code slightly, because our runtime lacks an implementation

for the threadprivate directive. The solution has been to modify all the

variables declared as threadprivate to be globally shared, and privatizing

them each time that they are used.

To test our mechanism we used the class A of this benchmark, which

defines the size N of the working matrices of NxNxN elements as 64.

We compare the results for the original, presend and chopper versions.

The chopper version is the same as the presend, but issuing a chop at each

iteration of two of the main loops (ysolve and zsolve) to reduce the number

of pages send at the same time. A more detailed study explaining why these

loops needs the chopper will appear in chapter 6.

Figure 5.11 shows the average number of pages send by each thread at

each synchronization point in both parallel loops when executing the Presend

and Chopper versions with 2, 4 and 8 nodes. As the figure shows, the Presend

version needs to send all pages at a single point, and therefore there are

a lot of pages send. In contrast, the Chopper version can use the extra

synchronization points to distribute these pages and, therefore, reduce the

number of pages send.

79

CHAPTER 5. AVOIDING NETWORK CONGESTION

A serial thread takes 46.88 seconds to execute 20 iterations of the main

loop of this class A.

The speedup results for this class are shown in Figure 5.10. Original ver-

sion has poor scalability. It has some slowdown with 2 nodes and a speedup

of 1.9 is obtained when using 8 nodes. Presend technique achieves better

results, speedup of 1.5 for 2 nodes and 2.3 for 8 is achieved. Even bet-

ter speedups for all nodes are obtained when the chopper is used, 1.7 and

2.7 with 2 and 8 nodes respectively, meaning a performance improvement

of about 16%. But this speedup trend seems to change slightly compared

with the other versions, in fact a superior speedup could be expected with 8

nodes. As we will see in chapter 6, this change is due to the lack of enough

computation time to get profit from the chopper.

5.6 Conclusions

In this chapter we have shown that the OpenMP applications, with a high

volume of memory accesses, executed on top of a page based DSM produces

network congestion.

The congestion appears at OpenMP synchronization points, where the

DSM exchanges messages: (1) to maintain the global shared-memory in a

consistent state and/or (2) to pre-send data to improve performance.

This congestion may limit or degrade the final application performance

due to the limited bandwidth of the network, but it can be avoided using a

better temporal distribution of these messages.

Therefore we propose a technique to distribute the data producing the

congestion along the computation phase of the application using additional

points before those congestion points: the Virtual Synchronization Points.

The technique is based on adding these new virtual synchronization points

in the application code and the runtime using them to dynamically decide

what data and at which moment can be safely exchanged to minimize network

congestion.

A better overlap of computation with communication is achieved, because

the network messages are distributed along the computation phase of the

80

5.6. CONCLUSIONS

application.

A synthetic benchmark and the BT benchmark are used to demonstrate

the potential of the technique on top of our page based DSM implementing

sequential consistency. The effects on more applications will be shown in

next Chapter 6.

Results show that the network congestion situation is reduced and the

application performance is increased by 19% on average over the Presend

version. As expected, results also show that the proposed technique is limited

by the computation time available to distribute all network data and that the

number of VSP to use at each thread should be chosen wisely to achieve the

best results. For all these reasons some compiler solution would be desirable.

Part of these results and contributions have been published in [CCM+10,

CBMC09,CCM+09].

81

CHAPTER 5. AVOIDING NETWORK CONGESTION

82

Chapter 6

Performance Evaluation

The devil is in the details

Classic proverb

Abstract

This chapter presents a detailed analysis of the NAS OpenMP

benchmarks performance results when executed on top of our dis-

tributed environment. The analysis includes two versions: the

original one, to detect the main problems affecting the applica-

tions performance; and a final version modified with the tech-

niques explained in previous chapters, to obtain the best perfor-

mance results.

This study concludes with a list of considerations to take into

account when using these techniques in order to maximise the

benefits.

83

CHAPTER 6. PERFORMANCE EVALUATION

6.1 Introduction

In previous chapters we have described three different techniques to over-

come some of the problems of executing OpenMP applications on top of

a distributed platform using a distributed shared memory. The boundaries

alignment, to eliminate the false sharing in linear arrays; the data forwarding

with presend and preinvalidation, to reduce the page fault handling latency,

overlapping the communication with the computation; and distribution of

network coherence messages to avoid the bottlenecks from sending a huge

number of messages at the same time like the presend produces.

We have evaluated the benefits of these techniques individually, but in

this chapter we analyze their combined effects to get the best performance

results for the NAS OpenMP benchmarks. The NAS benchmarks, which

are typically used to evaluate the performance of shared memory platforms,

consist of seven kernels: EP, CG, BT, SP, LU, MG and FT.

This chapter is organized in five sections. Section 6.2 describes the

methodology used to do this evaluation. Section 6.3 describes the testbed

where the applications have been executed, and Section 6.4 shows the results

for each of the NAS benchmarks. Finally section 6.5 presents the conclusions

of this results.

6.2 Methodology

The methodology to evaluate the use of our techniques in an application is

as follows. In first place, we show a terse description of the benchmark with

an enumeration of its parallel loops. In second place, a preliminary study of

these parallel loops is done to detect performance problems and potential uses

of our techniques. And, finally, we present the performance results according

to the techniques decided before applied and a detailed study of these results.

84

6.2. METHODOLOGY

6.2.1 Benchmark description

This section explains the main structure of each benchmark and describes its

parallel loops, because they will guide the following study. A preliminary de-

scription of the benchmarks has been already presented in previous chapters,

section 2.6.1.

6.2.2 Detailed parallel loops study

The behavior of the benchmarks is directly related to the behavior of its inner

parallel loops, thus a detailed study of all parallel loops in the application is

shown.

The study analyzes two versions for each benchmark: the original, which

studies the results for the original source code without any modification;

and the final, which modifies the original code with a combination of our

techniques to obtain the best performance results: The analysis of the parallel

loops includes a categorization of the execution time and the detection of the

access pattern for the shared variables in the loop.

Benchmark versions

1. Original version details limits the study to the original version to

detect any problem that degrades the performance of the application

when executed in our environment. The benchmark algorithm and the

main data structures used by this algorithm are shown, analyzing their

access patterns, which will guide the decision of the best techniques to

use.

2. Final version details presents the set of techniques to apply to each

parallel loop to obtain the best final performance result. Accordingly,

the effects of this decision are also explained.

Shared variable access pattern

The shared variable access pattern is an study of how the different variables

(data structures) used by the benchmark are accessed through the differ-

85

CHAPTER 6. PERFORMANCE EVALUATION

ent parallel loops. This is necessary to detect data dependences and, more

important, detect the producer-consumer relations needed for the presend

technique.

The access type of a shared variable inside each parallel loop, can be:

1. Read by some thread (R).

2. Written by some thread (W).

3. Read and written by some thread (RW).

4. Not used by any thread (-).

Categorized parallel loops execution time

The execution time of each parallel loop, measured as the time between the

beginning of the parallel loop and the beginning of the next one, quantifies

the cost of each loop inside the whole application.

This time has been categorized in three different aspects: (a) compute

time, time doing real computation work; (b) page fault time, time solving

remote page accesses; and (c) idle time, all the remaining time without

computation nor page faults. This idle time includes the overhead of the

library, barriers and real sequential time.

For each benchmark, we have used a small region that includes 4 or 5

iterations of the benchmark to gather the numbers presented in the results.

This results are presented with two different graphs showing the total time

per loop and average time per loop.

On one hand, the total time per loop graph shows the time used by all

threads to execute each loop inside the considered region. For each loop, it

sums up all times (compute, page faults and idle) from all threads instances

of the loop.

The time is shown in the Y axis and the different loops of the benchmark

are shown in the X axis, with a column for each execution. This statistic

shows the global behavior of the application and the most time consuming

loops.

86

6.3. TESTBED

On the other, the average time per loop graph shows the average

time used by each thread to execute a loop in the benchmark. It uses the

same axis as the previous graph.

This graph is used to make comparisons between the baseline and the

final versions. Due to its finer granularity it is chosen to show the effects of

the different techniques on each loop.

6.2.3 Performance results

The performance results section shows a summary of the performance results

obtained by the original application without using our techniques, and the

results when they are used. The performance of the application without any

of our techniques is used as a baseline.

Each version of the benchmark is executed a minimum of 5 times, and the

final execution time corresponds to their arithmetical mean. All execution

times are measured in seconds. The standard deviation is so small that it is

not shown.

Each version has been executed with 1, 2, 4 and 8 nodes and a serial

version (Seq) without any call to the OpenMP runtime nor the DSM API.

The speedup is calculated using this serial time.

6.3 Testbed

This chapter presents the applications executed in Marenostrum (see Sec-

tion 2.7.4 for extra details) with a maximum of 8 nodes, using one working

thread per node. A single working thread has been used because the study

centers on ways of reducing the number of remote page accesses, adding more

threads potentially reduces the computation time but the number of remote

page accesses per node remains constant.

87

CHAPTER 6. PERFORMANCE EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 4 8 2 4 8

T
im

e
(s

)

Loops

EP.A

Compute time
Page fault time

Idle time

main2main1

Figure 6.1: Total time per loop for EP class A.

6.4 NAS Benchmarks

6.4.1 EP

The embarrassingly parallel benchmark is a very simple benchmark that

makes some data placement at the beginning, does all the computation locally

at each node and, finally, the master node recovers the remotely calculated

results.

Original version details

The benchmark has two parallel loops: main1 which does the data placement

and main2 which does the computation locally.

Figure 6.1 shows the total time per loop used by each loop. It shows that

the second loop doing the computation is the most time consuming and, as

expected, the time solving page faults is extremely low. This is expected be-

cause each thread only needs to access the first values of the shared variables,

and then all computation can be done without any other remote accesses.

These initial page faults, due to the working threads accessing the master

node stack for these initial values, are a feature of the current implementation

of the OpenMP runtime and so they are actually unavoidable.

The main1 loop uses very little time and therefore it does not show up in

the Figure.

88

6.4. NAS BENCHMARKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 2 4 8

T
im

e
(s

)

Loops

EP.A

Compute time
Page fault time

Idle time

main2main1

Figure 6.2: Average time per loop EP class A.

Execution time (seconds)

Nodes Original

Seq 73.38
1 74.43
2 37.36
4 18.80
8 9.54 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

EP.A

static

Figure 6.3: EP Class A performance results.

This particular benchmark does not need any additional technique, be-

cause, as the Figure 6.2 shows, the scalability of this main2 loop is linear and

there are no page faults. In fact, the use of the presend technique will add

unnecessary overhead, because this benchmark is not iterative, and so the

cost of registering the memory will just add overhead without obtaining any

performance benefit.

Just for completeness, the execution times and speedup curve for this

benchmark is shown in Figure 6.3.

6.4.2 CG

The algorithm of this benchmark, shown in Figure 6.4, contains a main loop

with a call to the conj grad subroutine and a couple of parallel loops (main1

and main2).

89

CHAPTER 6. PERFORMANCE EVALUATION

1 do i t = 1 , n i t e r
2 ca l l con j grad ()
3 ! $ omp paral lel do "main1"

4 ! $ omp paral lel do "main2"

5 enddo

1 subroutine con j grad ()
2 ! $ omp paral lel do "cg1 "

3 ! $ omp paral lel do "cg2 "

4 do c g i t = 1 , cgitmax
5 ! $ omp paral lel do "cg3"

6 ! $ omp paral lel do "cg4"

7 ! $ omp paral lel do "cg5"

8 ! $ omp paral lel do "cg6"

9 enddo
10 ! $ omp paral lel do "cg7 "

11 ! $ omp paral lel do "cg8 "

12 end subroutine

Figure 6.4: Structure of the CG algorithm.

 0

 1

 2

 3

 4

 5

 6

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

CG.A

Compute time
Page fault time

Idle time

main2main1cg8cg7cg6cg5cg4cg3cg2cg1

Figure 6.5: Total time per loop for original version of CG class A.

The subroutine has an inner loop that iterates cgitmax times over the

main four parallel loops (cg3, cg4, cg5 and cg6), a couple of parallel loops

(cg1 and cg2) to initialize the working sets at the beginning and two more

(cg7 and cg8) at the end.

Original version details

As Figure 6.5 shows, the most time consuming loops are the ones present in

the conj grad subroutine (cg3, cg4, cg5, cg6 and cg7). So we will center the

study on these loops only.

The most time consuming loop (cg3) writes an array (q) using an indirect

access on top of array (p) causing a high number of page faults. The following

loop (cg4) just reads the previously written data, so there are few faults

because each node has the pages cached locally. Afterwards, in the third and

90

6.4. NAS BENCHMARKS

Loop z q p r Align Presend Chopper

cg1 - W R - - - -
cg2 - W R - - - -
cg3 - W R -

√ √ √

cg4 - R R -
√ √

-
cg5 RW R R RW

√ √
-

cg6 - - RW R
√ √

-
cg7 R - - W - - -
cg8 - - - R - - -

main1 R - - - - - -
main2 - - - - - - -

Table 6.1: CG benchmark access pattern and summary of techniques used
at each parallel loop.

fourth loops (cg5 and cg6), there are some variables written whose cached

copies must be invalidated, and so there are write faults.

Finally, the last loop (cg7) reads one of the arrays(z) using the indirect

access, and therefore some page faults appear. Figure 6.1 summarizes these

accesses. It shows all loops in the benchmark, and for each loop the access

type to each of the shared variables used in the benchmark.

Final version details

To improve the performance of this benchmark we decide to use the align

mechanism in the four main loops, to avoid false sharing; the presend mech-

anism in the same loops, to avoid the page faults; and the chopper just in

the most time consuming loop, to give more time for sending all pages. A

summary is shown in Table 6.1, where all parallel loops are shown and there

is a column for each of our contributions: Align, Presend and Chopper. A

symbol ’
√
’ is used to depict that the selected loop uses that contribution.

Figure 6.6 shows the final results for this version and the faults are reduced

considerably in almost all loops. The indirect access pattern found in the

cg3 loop may seem difficult to solve, but the truth is that the accesses are

repeated along the execution, so the presend is able to detect them. This

way, the cg6 loop is able to presend the right pages on time. The second

91

CHAPTER 6. PERFORMANCE EVALUATION

 0

 5

 10

 15

 20

 25

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

CG.A

Compute time
Page fault time

Idle time

final
cg7

original
cg7

final
cg6

original
cg6

final
cg5

original
cg5

final
cg4

original
cg4

final
cg3

original
cg3

Figure 6.6: Average time per loop for original and final versions of CG class A.

loop is not affected because it has few faults. But the third and fourth loops,

are really improved because the preinvalidate is able to invalidate the copies

before any write access is done.

Even though the last loop cg7 takes a non-negligible time, it is not im-

proved. This is explained because the current implementation of the pre-

dictor is too simple and it is not able to predict the last iteration of the

previous parallel loop (cg6) and therefore it does not presend/preinvalidate

the cg7 page faults. Actually, this is not an issue, because the impact on the

total execution time is quite small. But it can become a problem with an

increasing number of nodes.

It is interesting to note that the use of our techniques, even it reduces

the time solving page faults due to a reduction of the number of page faults,

increases slightly the idle time due to some network congestion.

The use of the presend technique changes the data movement and con-

centrates it at single points which we have explained that is a problem, and

it is the same behavior that appears in a DSM using a relaxed consistency

model.

The presend technique predicts the pages that are needed in the next

parallel loop and thus, at the end of a parallel loop, it sends all predicted

pages in parallel to the consumer node. These pages produce a huge number

of network messages at the same time interfering in the normal behavior of

the DSM.

92

6.4. NAS BENCHMARKS

Execution time (seconds)

Nodes Original Final

Seq 12.82 12.82
1 14.04 14.95
2 11.81 9.26
4 9.70 6.36
8 9.27 5.81 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

CG.A

Original
Final

Figure 6.7: CG Class A performance results.

In contrast, a DSM with sequential consistency distributes the remote

memory accesses by a node evenly during the computation phase, because

the accesses are sequentially ordered. For example, during a parallel loop

that traverses a linear array writing each position, a node writes a non-local

page, sends a network message and waits for the answer; when the page

arrives with the right protections, the node updates their values and access

the following non-local page repeating the process.

The chopper technique tries to avoid this problem but, in this case, it is

not able to eliminate the problem due to the random access patterns and the

small computation time available to overlap this communication.

Figure 6.7 shows the resulting performance results for the original and

final versions. The small speedup obtained by this benchmark is basically

due to its small computation, insufficient to hide the communication costs.

This is confirmed when a bigger class is used. Figure 6.8 shows the

performance results for the class B and it is clear that with a small number

of nodes the computation time is enough to overcome the cost of the page

faults, but as the number of nodes grows, this computation gets smaller, and

the overhead of the page faults affect the performance. In contrast, the use

of our techniques allows to overlap this cost and the application maintains

the speedup until 8 nodes.

93

CHAPTER 6. PERFORMANCE EVALUATION

Execution time (seconds)

Nodes Original Final

Seq 1399.71 1399.71
1 1533.74 1399.71
2 524.96 577.85
4 375.04 317.69
8 329.42 204.05 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

CG.B

Original
Final

Figure 6.8: CG Class B performance results.

6.4.3 BT

As explained in Section 2.6.1, the BT benchmark repeats the execution of

five functions (rhs, xsolve, ysolve, zsolve and add) a fixed number of

iterations.

The source code implementing these five functions has 15 parallel loops.

We consider the 11 parallel loops contained in the rhs function as a group

because their computation is small and the results are best shown.

Original version details

The BT algorithm uses the same dimension to parallelize all loops, maximiz-

ing the spatial data locality, but this parallelization changes in the zsolve

and in one of the parallel loops of rhs. This behavior explains why three

parallel loops (rhs, zsolve and add) uses a lot of time solving page faults,

while the rest (xsolve and ysolve) do not fail any page. Figure 6.9 shows

the total time (in seconds) used by each loop when executing the original

version with 2, 4 and 8 nodes.

An example of the effects of a change in the parallelization index is shown

in Figure 6.10. It shows the data layout of a matrix when the xsolve, ysolve

and zsolve loops are executed by three threads. The first two loops use the

outer dimension of the matrix to parallelize the algorithm (see Figure 6.11),

while the zsolve loop uses an inner dimension (see Figure 6.12).

Due to the memory organization, each thread accesses consecutive pages

when the loop is parallelized using the third dimension, because the first two

94

6.4. NAS BENCHMARKS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

BT.A

Compute time
Page fault time

Idle time

addzsolveysolvexsolverhs

Figure 6.9: Total time per loop for original version of BT class A.

Figure 6.10: Parallelization of BT benchmark.

1 !$omp f o r
2 f o r k = 1 , P
3 f o r j = 1 , N
4 f o r i = 1 , M
5 m[i] [j] [k] = . . .

Figure 6.11: Matrix parallelized
with the outer dimension.

1 !$omp f o r
2 f o r j = 1 , N
3 f o r k = 1 , P
4 f o r i = 1 , M
5 m[i] [j] [k] = . . .

Figure 6.12: Matrix parallelized
with an inner dimension.

95

CHAPTER 6. PERFORMANCE EVALUATION

Loop u rho i us vs ws square qs rhs Align Prsnd Chppr

rhs R RW RW RW RW RW RW RW
√ √

-
xsolve R R - - - R R RW

√ √
-

ysolve R R - - - R R RW
√ √ √

zsolve R - - - - R R RW
√ √ √

add RW - - - - - - R
√ √

-

Table 6.2: BT benchmark access pattern and summary of techniques used
at each parallel loop.

dimensions are kept together.

The change in the parallelization produces a reordering of the memory

accesses and thus the locality is lost and it produces a lot of page faults.

Even worse, at the next loop, the spatial locality is lost again because the

first parallelization is used again, producing more page faults.

Finally, Table 6.2 shows the shared variables used in the benchmark and

the access type at each of the parallel loops. The add and rhs parallel

loops write all shared variables that will be accessed in the next loops while

xsolve, ysolve and zsolve read their content updating the final rhs vari-

able

Final version details

In this benchmark we use the align technique in all loops because, even it

can not be applied to matrices to solve false sharing, it is useful to reuse the

same schedule for all loops and avoid slight glitches at the loops limits, when

a loop executes one iteration more or one iteration less.

The Presend technique is applied to all parallel loops, while the chopper

is used in the ysolve and zsolve loops only. The chopper is necessary to

avoid the congestion that the presend produces at the end of these loops due

to the high amount of pages to distribute.

A summary of the application of these techniques at each loop is presented

in Table 6.2 and their results are shown in Figure 6.13. It shows the average

time (in milliseconds) used by each thread at each parallel loop for the two

versions: the original and the final.

96

6.4. NAS BENCHMARKS

 0

 200

 400

 600

 800

 1000

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

BT.A

Compute time
Page fault time

Idle time

final
add

original
add

final
zsolve

original
zsolve

final
ysolve

original
ysolve

final
xsolve

original
xsolve

final
rhs

original
rhs

Figure 6.13: Average time per loop for original and final versions of BT
class A.

As the figure shows, the time solving page faults have been reduced con-

siderably. These pages are forwarded from the previous parallel loops and

thus a local copy exists when the node makes the access. The use of the

presend and the chopper alleviates the problem of changes in parallelization

index by forwarding data that will be needed before its use.

Even though our techniques reduce the time solving page faults, the com-

putation time per thread decreases when the number of nodes increases, and

consequently the time available to hide the communication also decreases.

This is specially visible in the final version of zsolve when executed with 8

nodes, where the total execution time is smaller than the original, but the

page fault and idle times are higher than with fewer nodes in the same ver-

sion. This explains why the results goes worse with a higher number of nodes

for this class size.

Figure 6.14 shows the execution times and the speedups obtained by the

original version of the BT class A benchmark and the obtained final version.

The original version of this benchmark has some speedup starting at 4

nodes arriving at a maximum speedup of 1.8 with 8 nodes. The final version

improves the performance of the benchmark by a 32% in average, with a

maximum performance of 2.6.

In this case, the use of a bigger class does not help because the compu-

97

CHAPTER 6. PERFORMANCE EVALUATION

Execution time (seconds)

Nodes Original Final

Seq 46.88 46.88
1 48.53 47.20
2 50.44 28.32
4 36.39 19.76
8 25.66 16.33 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

BT.A

Original
Final

Figure 6.14: BT Class A performance results.

Execution time (seconds)

Nodes Original Final

Seq 195.00 195.00
1 197.22 202.86
2 205.56 122.50
4 140.08 96.55
8 91.93 55.03 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

BT.B

Original
Final

Figure 6.15: BT Class B performance results.

tation time increases, but the number of page faults also increases meaning

that the behaviour does not depend on the class size and therefore we obtain

similar results as Figure 6.15 shows.

6.4.4 SP

The SP is another benchmark solving a system of partial finite differential

equations, similar to the BT, but with a different algorithm. As explained

in Section 2.6.1 the SP has nine functions: rhs, txinvr, xsolve, nivnr,

ysolve, pinvr, zsolve, tzetar and add. Each function has one parallel

loop except rhs that has six.

Original version details

Figure 6.16 shows the total time per loop, and it clearly shows that a huge

amount of time is invested in the page fault handling. The most time con-

98

6.4. NAS BENCHMARKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

SP.A

Compute time
Page fault time

Idle time

addtzetarzsolvepinvrysolveninvrxsolvetxinvrrhs6rhs5rhs4rhs3rhs2rhs1

Figure 6.16: Total time per loop for different versions of SP class A.

suming loops are: rhs5, rhs6, zsolve, tzetar, add and rhs1.

The huge amount of page faults produced are due to changes in the par-

allelization scheme, in this case it happens in the rhs5 and zsolve loops. It

is exactly the same case as explained in Section 6.4.3 where these changes

produce the loss of locality.

An important difference of this benchmark compared with the previous

BT benchmark is the ratio between the time dedicated to computation and

the time solving page faults, which is huge.

As in the BT benchmark, the rhs and add loops writes all the shared

variables that will be needed in the next loops, and the remaining loops just

reads these variables and updates the resulting rhs variable (see Table 6.3).

Final version details

For the final version, the presend technique is applied to the most notorious

loops. In this case just the loops doing the changes in the parallelization

index, because the loops writing the main structures have a very small com-

putation time, and it is not worth to use the chopper. As usual, the chopper

is used in the loops prior to the change in the parallelization index (rhs4 and

ysolve), to prepare the data placement; and the ones with the change (rhs5

and zsolve), to restore the page placement in the next loop. The pinvr

and tzetar also uses the chopper, because they form part of the ysolve

and zsolve parallel loops. Table 6.3 shows a summary of the techniques

99

CHAPTER 6. PERFORMANCE EVALUATION

Loop u rho i us vs ws square qs speed rhs Align Prsnd Chppr

rhs1 R W W W W W W W - -
√

-
rhs2 - - - - - - - - W -

√
-

rhs3 R R R R R R R - RW - - -
rhs4 R R R R R R R - RW -

√ √

rhs5 R R R R R R R - RW -
√ √

rhs6 - - - - - - - - RW - - -
txinvr - R R R R - R R RW - - -
xsolve - R R - - - - R RW - - -
ninvr - - - - - - - - RW - - -
ysolve - R - R - - - R RW -

√ √

pinvr - - - - - - - - RW -
√ √

zsolve - R - - R - - R RW -
√ √

tzetar R - R R R - R R RW -
√ √

add RW - - - - - - - R -
√

-

Table 6.3: SP benchmark access pattern for the different structures and
summary of techniques used at each parallel loop.

applied at each parallel loop and Figure 6.17 shows the comparison of the

two versions for the different loops.

It is interesting to note that even the time solving page faults have been

reduced, in the cases where the parallelization index changes (rhs5 and

zsolve), the time solving page faults increases with the number of nodes.

The problem is that the presend is not able to deliver all pages on time, due

to the quantity of pages to send. Even though the chopper has been used to

send these pages as early as possible, the computation time available is so

small that it is not enough to overlap all the communication.

Another interesting effect is the increase of the ’idle time’ in all rhs,

the pinvr and zsolve loops. This is an after-effect of the huge amount of

presend messages that the DSM infoservers should treat at the same time,

interfering on the normal behavior of the DSM, meaning that the messages

are queued and therefore the treatment of other messages, like the barrier

messages, are delayed.

The performance results of this benchmark, presented at Figure 6.18,

shows that even our techniques improves the global performance, the effect

100

6.4. NAS BENCHMARKS

 0

 200

 400

 600

 800

 1000

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

SP.A

Compute time
Page fault time

Idle time

final
rhs6

original
rhs6

final
rhs5

original
rhs5

final
rhs4

original
rhs4

final
rhs3

original
rhs3

final
rhs2

original
rhs2

final
rhs1

original
rhs1

 0

 200

 400

 600

 800

 1000

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

SP.A

Compute time
Page fault time

Idle time

final
add

orig
add

final
tzetar

orig
tzetar

final
zsolve

orig
zsolve

final
pinvr

orig
pinvr

final
ysolve

orig
ysolve

final
ninvr

orig
ninvr

final
xsolve

orig
xsolve

final
txinvr

orig
txinvr

Figure 6.17: Average time per loop for original and final versions of SP
class A.

101

CHAPTER 6. PERFORMANCE EVALUATION

Execution time (seconds)

Nodes Original Final

Seq 401.88 401.88
1 403.44 416.67
2 1179.91 457.33
4 930.35 526.92
8 683.6 637.42 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

SP.A

Original
Final

Figure 6.18: SP Class A performance results.

of sending too much data at the same time affects negatively the final result.

Again the problem is due to an available computation time that is not enough

to overlap the communication.

6.4.5 LU

The LU is yet another kernel to solve a system of partial finite differential

equations.

The structure of this benchmark is slightly different to the previous bench-

marks presented till this moment. The most interesting part is the fine

granularity of the parallel loops. Instead of doing big parallel loops, there

is a parallel region that executes a loop with calls to OpenMP orphaned

loops. Figure 6.19 shows this structure and a sample from the jacu subrou-

tine. There are a total of 12 parallel loops: ssor1, jacld, blts1, blts2,

jacu, buts1, buts2, ssor2, rhs1, rhs2, rhs3 and rhs4.

Even it is not shown, there is a manual synchronization through a shared

variable between the two parallel loops from buts and blts, to force a

pipeline between the working threads.

Original version details

Figure 6.20 presents two graphs with the execution times per loop with some

interesting effects.

On one hand, the total time per loop shows that the computation time

per loop is small, and that all loops have a high amount of page faults.

102

6.4. NAS BENCHMARKS

1 do s tep=1, n i t e r
2 !$omp paral lel do ‘ ‘ s s o r 1 ’’
3 !$omp paral lel
4 do k=2, nz − 1
5 ca l l j a c l d
6 ca l l b l t s
7 enddo
8 !$omp end paral lel
9 !$omp paral lel

10 do k=nz − 1 , 2 , −1
11 ca l l jacu
12 ca l l buts
13 enddo
14 !$omp end paral lel
15 !$omp paral lel do ‘ ‘ s s o r 2 ’’
16 ca l l rhs
17 enddo

1 subroutine jacu (k)
2 !$omp do
3 do j = jend , j s t , −1
4 do i = iend , i s t , −1
5 u [i] [j] [k] = . . .
6 . . .
7 enddo
8 enddo

Figure 6.19: Structure of the LU algorithm and the jacu subroutine.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

LU.A

Compute time
Page fault time

Idle time

rhs4rhs3rhs2rhs1ssor2buts2buts1jacublts2blts1jacldssor1

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

LU.A

Compute time
Page fault time

Idle time

rhs4rhs3rhs2rhs1ssor2buts2buts1jacublts2blts1jacldssor1

Figure 6.20: Total time per loop (above) and average time per loop (below)
for LU class A.

103

CHAPTER 6. PERFORMANCE EVALUATION

Loop u rho i a,b,c,d au,bu,cu,du rsd Align Prsnd Chppr

ssor1 - - - - RW
√ √

-
jacld R R W - - - -

√

blts1 - - Ra - R - -
√

blts2 - - Rbcd - RW - -
√

jacu R R - W - - -
√

buts1 - - - Rc R - -
√

buts2 - R - Rabd RW - -
√

ssor2 RW - R - R
√ √

-
rhs1 R W - - W

√ √
-

rhs2 R R - - RW
√ √

-
rhs3 R R - - RW

√ √
-

rhs4 R R - - RW -
√

-

Table 6.4: LU benchmark access pattern for the different structures and
summary of techniques used at each parallel loop.

On the other hand, the average time per loop shows that the execu-

tion time of each orphaned loops (jacld, blts1, blts2, jacu, buts1 and

buts2) is incredible small but they are executed a lot of times.

Another effect is that the idle time increases with the number of nodes,

basically due to the manual synchronization.

Most of the loops modifies the resulting variable rsd. The variables u and

rho i are written once at ssor2 and rhs1 respectively, and read multiple

times at rhs, jacld, jacu and buts. And the remaining variables a, b,

c, d, au, bu, cu and du are used locally at the parallel loops jacld, blts

and jacu, buts (see Table 6.4).

Final version details

The final version uses the align in the main loops (ssor1, ssor2, rhs1,

rhs2 and rhs3) to exploit the spatial locality; and the presend in the same

loops and in the rhs4, because it is the loop that changes the parallelized

dimension.

The small granularity of the orphaned loops limits the applicability of

the presend technique, because the presend maps a set of accessed pages to

104

6.4. NAS BENCHMARKS

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

LU.A

Compute time
Page fault time

Idle time

final
buts1

original
buts1

final
jacu

original
jacu

final
blts2

original
blts2

final
blts1

original
blts1

final
jacld

original
jacld

final
ssor1

original
ssor1

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(m

s
)

Loops

LU.A

Compute time
Page fault time

Idle time

final
rhs4

original
rhs4

final
rhs3

original
rhs3

final
rhs2

original
rhs2

final
rhs1

original
rhs1

final
ssor2

original
ssor2

final
buts2

original
buts2

Figure 6.21: Average time per loop for different versions of LU class A.

a region of code, and, in this case, the same region of code (the orphaned

loops) accesses different sets of pages at each iteration.

To overcome this situation, the chopper allows us to join different parallel

loops in a single region. And therefore, we create two bigger regions: one

containing the jacld, blts1 and blts2, and the other containing jacu,

buts1 and buts2.

Figure 6.21 shows the results for this final version and compares them

with the original version.

The number of page faults is reduced for all loops and the idle time is also

slightly increased. In the rhs4 the number of page faults is reduced, but the

page fault time and, specially, the idle time grows with the number of nodes

arriving to its maximum with 8 nodes. The problem is that the change in

parallelization index needs to move a lot of pages and the computation time

is too small as explained in other benchmarks.

105

CHAPTER 6. PERFORMANCE EVALUATION

Execution time (seconds)

Nodes Original Final

Seq 423.64 423.64
1 429.20 422.64
2 1190.11 884.46
4 978.80 848.75
8 814.44 863.24 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

LU.A

Original
Final

Figure 6.22: LU Class A performance results.

The behavior of this benchmark when executed in parallel in our DSM

have worse times than when executed serially, as the idle time shows in the

Figure 6.22. The final version improves the performance slightly for small

number of nodes but it ends with a worse behavior with 8 nodes.

6.4.6 MG

The structure of this benchmark is shown in Figure 6.23. This benchmark

has the peculiarity that the dimension of the shared arrays changes at each

iteration, making impossible the use of the presend techniques, because it

will learn a wrong access pattern and therefore a wrong portion of the total

array would be presend.

In addition, the MG executes in the same iteration different instances of

the same parallel loop, this means that even there are 6 parallel loops (rprj,

zero, interp, resid, psinv and comm) they are executed multiple times

and, again, the predictor will be unable to detect this sequence.

Original version details

Figure 6.24 shows the total time per loop for the MG benchmark, and Fig-

ure 6.25 shows the performance results.

106

6.4. NAS BENCHMARKS

1 do i t =1, n i t e r
2 do k=l t , l b+1, −1
3 ca l l r p r j (k)
4 enddo
5 k = lb
6 ca l l zero (k)
7 ca l l ps inv (k)
8 do k=lb+1, l t −1
9 ca l l zero (k)

10 ca l l i n t e r p (k)
11 ca l l r e s i d (k)
12 ca l l ps inv (k)
13 enddo
14 k=l t
15 ca l l i n t e r p (k)
16 ca l l r e s i d (k)
17 ca l l ps inv (k)
18 ca l l r e s i d (k)
19 enddo

1 subroutine zero (z , n1 , n2 , n3)
2 !$omp paral lel do
3 do i 3 =1,n3
4 do i 2 =1,n2
5 do i 1 =1,n1
6 z (i1 , i2 , i 3)=0.0D0
7 enddo
8 enddo
9 enddo

Figure 6.23: Structure of the MG algorithm and zero subroutine.

 0

 2

 4

 6

 8

 10

 12

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

MG.A

Compute time
Page fault time

Idle time

commpsinvresidinterpzerorprj

Figure 6.24: Total time per loop for original version of MG class A.

Execution time (seconds)

Nodes Original

Seq 21.94
1 23.43
2 27.28
4 27.26
8 30.78 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

MG.A

static

Figure 6.25: MG Class A performance results.

107

CHAPTER 6. PERFORMANCE EVALUATION

1 do i t= 1 , n i t e r
2 ca l l evo lve
3 ca l l f f t
4 ca l l checksum
5 enddo

1 subroutine f f t
2 ca l l c f f t s 3
3 ca l l c f f t s 2
4 ca l l c f f t s 1
5 end

Figure 6.26: Algorithm structure of the FT benchmark and the fft subrou-
tine.

Loop u1 y1 y2 Align Prsnd Chppr

evolve W - - -
√

-
cffts3 RW RW RW -

√
-

cffts2 RW RW RW - - -
cffts1 RW RW RW -

√
-

checksum R - - - - -

Table 6.5: FT benchmark access pattern for the different structures and
summary of techniques used at each parallel loop.

6.4.7 FT

The structure of this benchmark is shown in Figure 6.26. It iterates over three

functions: evolve, fft and checksum. The main function fft uses three

inner functions to calculate a Fourier Transformation on each dimension of

the 3 dimensional matrix using blocking. In total we have five parallel loops

for these functions: evolve, cffts3, cffts2, cffts1 and checksum.

The benchmark uses three different arrays that are used as linearized

matrices. As Table 6.5 shows, the main array (u1) is used by all parallel

loops, while the other arrays (y1 and y2) are used only in the fft function.

Original version details

As usual with these benchmarks parallelizing on a 3D matrix, one of the

parallel loops is parallelized using a different dimension than the other two,

producing a high number of page faults in that loop and in the adjacent one

(cffts3 and cffts2) as the total time per loop graph shows in Figure 6.27.

Another detail of this benchmark is that the fft function has two different

108

6.4. NAS BENCHMARKS

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

FT.A

Compute time
Page fault time

Idle time

checksumcffts1cffts2cffts3evolve

Figure 6.27: Total time per loop for original version of FT class A.

behaviors depending on the value of one of its parameters. This parameter

controls the order in which the dimensions are parallelized. In one case it

executes the inner functions in the order explained in the text (cffts3,

cffts2 and cffts1) and, in the other, it reverses the order. This change in

the order of the cffts functions happens only once at the beginning of the

benchmark, so it can be easily ignored. But this kind of algorithms, where

the behavior depends on a parameter, may prohibit the use of our prediction

techniques.

Final version details

To improve the performance of this benchmark and remove the page faults,

we apply the presend technique in the loop changing the dimension (cffts3)

and in the previous ones (cffts1 and evolve).

The idea is that the presend in the cffts3 loop reduces the number of

page faults in the following loop cffts2, because cffts3 is the producer of

the variables u1, y1, and y2, which are consumed at the cffts2.

With the same goal, we use the presend in evolve (which updates the u1

array) and cffts1 (which updates y1 and y2) to reduce the page faults in

cffts3. This is summarized in Table 6.5.

The final results appear in Figure 6.28 and they show that the final version

reduces the number of page faults in the cffts3 and cffts2 but the idle time

increases. This increase can be explained with the high number of messages

109

CHAPTER 6. PERFORMANCE EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

T
im

e
(s

)

Loops

FT.A

Compute time
Page fault time

Idle time

Final
checksum

Original
checksum

Final
cffts1

Original
cffts1

Final
cffts2

Original
cffts2

Final
cffts3

Original
cffts3

Final
evolve

Original
evolve

Figure 6.28: Average time per loop for different versions of FT class A.

Execution time (seconds)

Nodes Original Final

Seq 6.89 6.89
1 7.19 7.23
2 78.94 86.98
4 56.91 57.65
8 35.28 27.73

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

nodes

FT.A

Original
Final

Figure 6.29: FT Class A performance results.

sent at the end of the loops, which interfere in the normal execution of

the infoserver. It is interesting to note, that this overhead is reduced when

the number of nodes grows, basically due to the reduction of data to be

transferred. In fact, it seems that in this benchmark we did the wrong thing

using the presend in the evolve because the final time solving page faults

and the idle time have increased significantly.

The main problem with this benchmark is that the computation time is

not enough to overlap all the communication.

The performance results for this benchmark appear in Figure 6.29. The

serial version takes just 7 seconds, and when executed in parallel it takes

an order of magnitude more to execute. Meaning that the cost of remote

memory handling overcomes the computation time.

110

6.5. CONCLUSIONS

6.5 Conclusions

In this chapter we evaluate the execution of the OpenMP version of the

NAS benchmarks on a distributed environment using a sequential consistency

DSM. We use a combination of the techniques explained in previous chapters:

boundaries alignment, presend/preinvalidation and chopper; to obtain the

best performance results on each benchmark.

For each benchmark we evaluate the original version with the final version,

which uses our techniques. The analysis for each benchmark contains the

algorithm structure, the shared variables access pattern, the execution time of

each parallel loop, a comparison between the average execution time of each

parallel loop and the performance results for original and final benchmark

versions.

Table 6.6 summarizes the results from all benchmarks. It shows four

different columns:

Total The total number of analyzed parallel loops.

Representative The number of loops that consumes most time due to page

faults and therefore can be solved.

Better The number of loops that reduces their execution time using our

techniques more than 10% of the original.

Worse The number of loops that increase their final execution time by more

than 10%.

One loop represents three executions (2, 4 and 8 nodes) of a parallel loop.

A total of 54 parallel loops have been analyzed, from which 29 were re-

sponsible for the bad performance of the benchmark, and with our techniques

an average of 60% of these parallel loops have been improved.

The quality of this improvement can be seen in Table 6.7, that shows the

total number of executions for all parallel loops of each application, counting

three executions per parallel loop, corresponding to the execution with 2, 4

and 8 nodes. It counts the number of executions that reduce their execution

time by more than 10, 25, 50 and 75 percent and the number of executions

111

CHAPTER 6. PERFORMANCE EVALUATION

Total Representative Better Worse

EP 2 - - -
CG 10 4 3 -
BT 5 3 3 -
SP 14 6 5.33 0.67
LU 12 10 4.67 3
FT 5 2 1.33 0.33
MG 6 4 - -

Total 54 29 17.33 4

Table 6.6: Summary of number of loops per benchmark, showing the loops
using more time due to page faults (representative) and the effects of our
techniques showing the loops that reduce the number of page faults and the
loops whose execution time increases.

Total Representative Worse 10- 25- 50- 75-

EP 6 0 0 0 0 0 0
CG 30 12 0 1 4 4 0
BT 15 9 0 0 4 2 3
SP 42 18 2 1 2 4 9
LU 36 30 9 1 8 4 1
FT 15 6 1 0 2 0 2
MG 18 12 0 0 0 0 0

TOTAL 162 87 12 3 20 14 15

Table 6.7: Number of executed parallel loops per benchmark that, using our
techniques, reduce their execution time by more than 10, 25, 50 or 75 percent;
or decrease more than 10 percent (Worse). It shows the total number and
the representative executions, executions of the loops using more time due
to page faults.

112

6.5. CONCLUSIONS

which increase their execution time by more than 10 percent (Worse). All

columns are exclusive, meaning that they do not count the executions from

greater percentages.

The main conclusions of the contributions are:

• The boundary alignment is specially useful for removing false sharing

in linear arrays, but its importance depends on the importance of the

false sharing in the application.

• The schedule reuse is also useful to avoid page faults due to slight

changes in the parallel loop limits.

• Presend/Preinvalidation techniques are the most important techniques

to avoid page faults, following a model where the producer sends the

data before the consumer requests it.

• The chopper technique is also useful to overcome the limitations of the

network if, and only if, there is enough computation time to overlap

the communication phase.

• Finally, there are cases, where our techniques can not be applied:

changes in the size of the matrices, parallel loops with different behav-

iors during execution time and parallel loops with too few computation.

113

CHAPTER 6. PERFORMANCE EVALUATION

114

Chapter 7

Conclusions

- No! Harry! No! Don’t look at the light!

- I can’t help it. It’s so beautiful. . .
A bug’s life (1998)

Disney Pixar

Abstract

In this chapter, we summarize the main contributions of this

thesis: a method to avoid false sharing in OpenMP loop work-

sharings, a mechanism to send/invalidate data at the owner side,

and finally the automatic distribution of coherence data messages

instead of centralizing them.

115

CHAPTER 7. CONCLUSIONS

7.1 Contributions of this work

In this thesis we have studied the execution of OpenMP applications on top of

distributed memory platforms using a shared memory abstraction provided

by a DSM layer.

The main idea in this thesis is that there must exist a tight cooperation

between both layers to obtain the maximum performance when executing

OpenMP applications on top of a DSM.

This idea is enforced with the main contributions of this thesis:

1. Tolerate false sharing adapting the application at runtime

2. Reduce remote memory latencies

3. Avoid network congestion

4. Proposal of OpenMP extensions

Even it has not been tested, we think that the contributions explained in

this work can benefit other DSMs with different consistency models, like the

relaxed ones. Mainly, because the problems we solve here are also present in

DSMs using relaxed consistencies but they just avoid them.

7.1.1 Tolerate false sharing adapting the application

at runtime

We have shown that an inadequate iteration distribution from the OpenMP

runtime produces false sharing, and it can be eliminated by adapting the

iteration space at runtime with some cooperation from the DSM. The results

also shown that an application can suffer from false sharing without affecting

too much the final performance result, because the sharing is small compared

with the total computation time.

Our contribution is a new Align scheduler that adapts a parallel loop to

the memory boundaries that it traverses, so false sharing is avoided. Ad-

ditionally, it exploits temporal locality by ensuring that the same threads

access the same pages that have been used in previous schedule.

116

7.1. CONTRIBUTIONS OF THIS WORK

Total Representative Using Align

EP 2 - -
CG 10 4 4
BT 5 3 5
SP 14 6 -
LU 12 10 5
FT 5 2 -
MG 5 4 -

Total 53 29 14

Table 7.1: Number of parallel loops using the align technique on NAS Bench-
marks.

This technique uses the iteration space of the parallel loop to avoid the

false sharing, and therefore only loops that access one position of the array

at each iteration can be adapted. Multidimensional arrays using a parallel

algorithm with a loop for each dimension can not be adapted directly, because

at each iteration of the outer loop, more than one position is modified. But

these arrays could be adapted if the code is linearized in such a way that the

previous rules is accomplished.

As Table 7.1 shows, the Align scheduler have been used in 14 parallel

loops, and results shows that, on one hand, it is able to avoid false sharing

producing trashing, and it reduces execution time by reusing the same sched-

ule. On the other hand, the scheduler adds small overhead and it obtains

similar execution times than an static schedule when the scheduler is not

able to find a better schedule.

We have also shown that the false sharing problem depends on the ap-

plication and thus if the computation time available is small, then the false

sharing becomes a problem; but if the computation time is big enough then

its effects are not relevant.

7.1.2 Reduce memory latencies

We have shown that the performance of the applications can be improved

following a producer-consumer model like MPI. Typical behavior of a sequen-

117

CHAPTER 7. CONCLUSIONS

Total Representative Using Presend

EP 2 - -
CG 10 4 4
BT 5 3 5
SP 14 6 9
LU 12 10 6
FT 5 2 3
MG 5 4 -

Total 53 29 27

Table 7.2: Number of parallel loops using the presend technique on NAS
Benchmarks.

tial consistency DSM corresponds to a two-way communication, where one

thread requests a page address and the master answers with its page content.

Our contribution propose new mechanisms offering a one-way communi-

cation between the data producer and its consumers: the pre-send and the

pre-invalidation.

The pre-send sends copies of a page produced at a producer node to all

the nodes that will consume it before it is accessed. The pre-invalidation

invalidates the local copy of a page before it is written by a different node.

These techniques are used by the OpenMP runtime to send all data that

will be used/consumed in the next region at the end of the OpenMP parallel

loops

Table 7.2 summarizes how many loops from the NAS benchmarks have

been extended with the Presend technique and the experimental results show

that the number of page faults is highly reduced compared to the baseline.

It also shows that the performance of a sequential consistency DSM using a

sender initiated communication is similar to the performance obtained by a

relaxed consistency DSM like TreadMarks.

The results also show that the technique forwards data from a parallel

region to the next one without any synchronization, meaning that enough

time is needed to send all data pages before they are used.

118

7.1. CONTRIBUTIONS OF THIS WORK

7.1.3 Avoid network congestion

The presend improves the performance of the sequential consistency by chang-

ing the way the data is transfered. When using the sequential consistency

alone, the data producer is passive, and the consumer node requests pages

on an on-demand basis and, therefore, lots of small requests are distributed

along the computation. In contrast, when using the presend, the data pro-

ducer is active and it sends all the pages that will be needed by the consumer

after the computation that produces them and, thus, a high number of re-

quests are sent at the same time.

This means that the use of a data forwarding method, like our presend

technique, transforms a sequential consistency DSM to behave similarly to a

relaxed consistency one, where the coherence messages are also sent at the

end of a computation phase.

The difference is that in a relaxed consistency DSM, the data is not

forwarded to the consumer that will use it but the home nodes of the data

pages. This means that a technique like ours could be also used on this kinds

of DSMs.

To overcome the negative effects of concentrating coherence messages

at single points, we proposed the chopper mechanism, and distribute the

messages during the computation phase.

Figure 7.3 presents 15 parallel loops from the NAS benchmarks that use

the chopper mechanism. Results show that the chopper technique is limited

by the computation time available to overlap the distribution of all network

data and that the number of VSP to use at each thread should be chosen

wisely to achieve the best results.

7.1.4 Proposal of OpenMP extensions

As a result of the previous contributions, we propose five new directives to

extend the OpenMP specification. The proposals are designed to:

Calculate an schedule to avoid false sharing The new Align scheduler

calculates new schedules for specific parallel loops taking into account

119

CHAPTER 7. CONCLUSIONS

Total Representative Using Chopper

EP 2 - -
CG 10 4 1
BT 5 3 2
SP 14 6 6
LU 12 10 6
FT 5 2 -
MG 5 4 -

Total 53 29 15

Table 7.3: Number of parallel loops using the chopper technique on the NAS
Benchmarks.

the page boundaries to avoid false sharing. It also allows a parallel loop

to reuse a previously calculated schedule and so we propose a modifi-

cation to the original SCHEDULE directive adding this information:

1 !$omp SCHEDULE (ALIGN, <schedule>, <operat ion>)

Enable the presend mechanism The presend mechanism allows to for-

ward all necessary data from a parallel loop to the next parallel loops

that need this data. We propose a new directive to enable this mecha-

nism for a specific parallel loop:

1 !$omp PRESEND

Enable the distribution of coherence messages We finally propose some

directives that allow the programmer to mark a specific region of code

suffering from the network congestion problem and enable the distribu-

tion of network messages through the virtual synchronization points:

1 !$omp start region (i d)

2 !$omp stop region (i d)

3 !$omp vsp

120

7.2. FUTURE WORK

7.2 Future Work

In the near future, there are still some aspects that should be investigated.

In first place there are some implementation details that should be handled,

like the coherence protocol to strictly follow a MSI or a better predictor. In

second place, there are some topics that should be researched in more detail

like: grouping of multiple pre-send and pre-invalidation messages, use of the

compiler to give hints for the chopper or aggregation of DSMs. Finally,

another research area could be to use the DSM on many-core processors

without cache coherence like, for example, the Single-Chip Cloud (SCC)

[MRL+10] experimental processor from Intel Labs.

7.2.1 Implementation details

Use a real MSI coherence protocol in the master node as well

The master node when in a SHARED state will always has a copy of the

page. This a very strict limitation and is an annoyance for the preinvalidation

feature. There are situations when the master node wants to invalidate his

own copy but it can not due to this restriction.

For example, when the master node has finished a region of code that

reads a page which is needed for writing in the following region by another

node, but still there are other nodes reading it. In this case, the state of

the page must remain in SHARED, meaning that the invalidation has been

ineffective for this node, and so the destination node will never receive an

upgrade and it will generate a write page fault.

Improve the predictor

The implemented predictor is quite simple, and a better prediction may

detect special cases where the current design is not able to follow, and so

may improve the final performance.

121

CHAPTER 7. CONCLUSIONS

7.2.2 Further research

Multipresend and Multipreinvalidation

Usually, when forwarding data from a region to the next one, there are a

lot of pages being sent, and the current implementation requests a presend

or a preinvalidation in a sequential manner. This means that a message is

generated for each page, and each message is processed by its page master

node. The latency of this mechanism could be improved if the pages were

grouped. For example, instead of sending a hundred messages saying that

pages from addresses ranging from 1 to 100 should be invalidated and for-

warded to another node, a single message could be sent just saying the same

information.

The idea of the multipresend and multipreinvalidation is to group the

presend and preinvalidation messages from a node into a single message.

Of course, the computation time at the sending and receiving sides will be

increased to pack and unpack the pages, but we think that it is more im-

portant to reduce the use of the network than the computing time because

it is usually cheaper and faster. A potential problem of this mechanism is

that these bigger messages could interfere the normal behaviour of the DSM

infoservers, delaying the processing of some other important coherence or

control messages, therefore it is necessary to evaluate this technique.

Hints for the chopper

Currently the use of the chopper mechanism is quite limited and depends

exclusively on the expertise of its user. Some hints from the compiler or even

the runtime should make his life better, by giving instructions on when and

where to put the right VSPs. It would be nice if the compiler could set this

information on its own.

Multiple DSMs instances to aggregate nodes

It has been shown, that when the number of nodes increases too much, the

fine granularity of the application may kill the final performance. While the

122

7.2. FUTURE WORK

performance with small number of nodes remain acceptable.

A conclusion of this thesis is that the DSM can be used to aggregate

small number of nodes into bigger shared memory machines, meaning that

it is useful to add more threads to execute one application. Big clusters

with a high number of nodes may use this functionality to build smaller

shared memory machines inside with more threads than the single nodes.

This idea is similar to the idea presented by Schulthess et al. [SSSW00]

agregating nodes in the World-Wide Web, what they call DSM-Communities,

but limited to a cluster.

Aggregate cores in a many-core processor

The number of cores per single die is expected to increase in the foreseeable

future and so there will be a need to know how to connect these cores and

how to program the resulting many-core processor. One of this machines

is the Single-Chip Clour processor from Intel Labs [HDH+10]. A many-core

processor without any cache coherence between the cores similar to a cluster.

The idea presented before of aggregating nodes can be applied to this

processor aggregating cores, taking profit of a fast communication layer

[vdWMH11]. A porting of the NanosDSM software to this platform should

be performed in first place.

123

CHAPTER 7. CONCLUSIONS

124

Bibliography

[ACCL00] I. Alexander, LAI Chi, and LEI Chin-Laung. A False-Sharing

Free Distributed Shared Memory Management Scheme. IEICE

TRANSACTIONS on Information and Systems, E83-D(4):777–

788, 04 2000.

[ACD+96a] Sarita V. Adve, Alan L. Cox, Sandhya Dwarkadas, Ramakrish-

nan Rajamony, and Willy Zwaenepoel. A comparison of entry

consistency and lazy release consistency implementations. In

HPCA, pages 26–37, 1996.

[ACD+96b] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-

mony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared Mem-

ory Computing on Networks of Workstations. IEEE Computer,

29(2):18–28, February 1996.

[ACRA98] Boon Seong Ang, Derek Chiou, Larry Rudolph, and Arvind.

The start-voyager parallel system. In IEEE PACT, pages 185–,

1998.

[ACRZ97] Cristiana Amza, Alan Cox, Karthick Rajamani, and Willy

Zwaenepoel. Tradeoffs between false sharing and aggregation

in software distributed shared memory. In PPOPP ’97: Pro-

ceedings of the sixth ACM SIGPLAN symposium on Principles

and practice of parallel programming, pages 90–99, New York,

NY, USA, 1997. ACM Press.

125

BIBLIOGRAPHY

[AFP02] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial

Window. RFC 3390, October 2002.

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer, 29(12):66–76,

1996.

[APS+99] M. Allman, V. Paxson, W. Stevens, et al. TCP congestion

control. RFC 2581, April 1999.

[BBB+94] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,

L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasin-

ski, R. Schreiber, H. Simon, Venkatakrishnan, and S. Weer-

atunga. The nas parallel benchmarks. Technical Report RNR-

94-007, NASA Ames Research Center, March 1994.

[BCJ+94] D.F. Bacon, J. Chow, D.R. Ju, K. Muthukumar, and V. Sarkar.

A Compiler Framework for Restructuring Data Declarations

to Enhance Cache and TLB Effectiveness. In Proceedings of

CASCON’94, 1994.

[BCZ89] J.K. Bennet, J.B. Carter, and W. Zwaenepoel. Munin: shared

memory for distributed memory multiprocessors. Technical Re-

port TR89-91, Departament of Computer Science, Rice Univer-

sity, April 1989.

[BDG+04] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé,

and J. Labarta. Nanos Mercurium: a Research Compiler for

OpenMP. In Sixth European Workshop on OpenMP, 2004.

[BE05] Ayon Basumallik and Rudolf Eigenmann. Towards automatic

translation of openmp to mpi. In Arvind and Larry Rudolph,

editors, ICS, pages 189–198. ACM, 2005.

[BE06] Ayon Basumallik and Rudolf Eigenmann. Optimizing irregular

shared-memory applications for distributed-memory systems.

126

BIBLIOGRAPHY

In Josep Torrellas and Siddhartha Chatterjee, editors, PPOPP,

pages 119–128. ACM, 2006.

[BGG+95] Francois Bodin, Elana Granston, Elana D. Granston, Thierry

Montaut, and Thierry Montaut. Page-level affinity scheduling

for eliminating false sharing. In In Fifth Workshop on Compil-

ers for Parallel Computers, Malaga, pages 175–186, 1995.

[BME02] Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann. To-

wards openmp execution on software distributed shared mem-

ory systems. In Lecture Notes in Computer Science, volume

2327, 2002.

[Boa04] OpenMP Architecture Review Board. OpenMP Language Spec-

ification v2.5, November 2004. www.openmp.org.

[CBMC09] J. Costa, J. Bueno, X. Martorell, and A. Cortes. Measuring tcp

bandwidth on top of a gigabit and myrinet network. Technical

report, Universitat Politècnica de Catalunya, 2009.

[CBZ91] J.B. Carter, J.K. Bennett, andW. Zwaenepoel. Implementation

and performance of Munin. In Proceedings of the thirteenth

ACM symposium on Operating systems principles, pages 152–

164. ACM New York, NY, USA, 1991.

[CBZ95] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques

for reducing consistency-related communication in distributed

shared-memory systems. ACM Transactions on Computer Sys-

tems (TOCS), 13(3):205–243, 1995.

[CCM+04] J.J. Costa, T. Cortes, X. Martorell, E. Ayguade, and

J. Labarta. Running OpenMP Applications Efficiently on an

Everything-Shared SDSM. In Proceedings of the 18th Interna-

tional Parallel and Distributed Processing Symposium (IPDPS-

04), Santa Fe, New Mexico, April 2004. IEEE.

127

BIBLIOGRAPHY

[CCM+06] J. Costa, A. Cortes, X. Martorell, E. Ayguade, and J. Labarta.

Running openmp application efficiently on an everything-

shared sdsm. Journal of Parallel and Distributed Computing,

66:647–658, May 2006.

[CCM+09] J. Costa, A. Cortes, X. Martorell, E. Ayguade, and J. Bueno.

Overlapping communication with computation on nas bt bench-

mark. In Fifth International Summer School on Advanced

Computer Architecture and Compilation for Embedded Systems,

pages 55–58, Terrassa (Spain), July 2009. Academia Press.

[CCM+10] J.J. Costa, T. Cortes, X. Martorell, J. Bueno, and E. Ayguade.

Transient congestion avoidance in software distributed shared

memory systems. Parallel and Distributed Computing Appli-

cations and Technologies, International Conference on, 0:357–

364, 2010.

[Cla85] David D. Clark. The structuring of systems using upcalls.

SIGOPS Oper. Syst. Rev., 19:171–180, December 1985.

[CS97] Jyh-Herng Chow and Vivek Sarkar. False sharing elimination by

selection of runtime scheduling parameters. In In Proceedings of

the 26th International Conference on Parallel Processing, pages

396–403, 1997.

[EJ91] Susan J. Eggers and Tor E. Jeremiassen. Eliminating false shar-

ing. In ICPP (1), pages 377–381, 1991.

[FA96] Vincent W. Freeh and G.R. Andrews. Dynamically control-

ling false sharing in distributed shared memory. In HPDC

’96: Proceedings of the High Performance Distributed Comput-

ing (HPDC ’96), pages 403–411, Washington, DC, USA, 1996.

IEEE Computer Society.

[For94] M.P.I. Forum. Mpi: A message-passing interface standard.

Technical report, UT-CS-94-230, 1994.

128

BIBLIOGRAPHY

[GGV90] Edward H. Gornish, Elana D. Granston, and Alexander V. Vei-

denbaum. Compiler-directed data prefetching in multiproces-

sors with memory hierarchies. In Proceedings 1990 Interna-

tional Conference on Supercomputing, ACM SIGARCH Com-

puter Architecture News, volume 18, pages 354–368, 1990.

[GP91] M. Gupta and D.A. Padua. Effects of program paralleliza-

tion and stripmining transformation on cache performance in a

multiprocessor. In Proceedings of the International Conference

on Parallel Processing (ICPP’91), pages 301–304, Texas, USA,

1991.

[Gra93] Elana D. Granston. Toward a compile-time methodology for re-

ducing false sharing and communication traffic in shared virtual

memory systems. In Utpal Banerjee, David Gelernter, Alexan-

dru Nicolau, and David A. Padua, editors, LCPC, volume 768

of Lecture Notes in Computer Science, pages 273–289. Springer,

1993.

[GW93] Elana D. Granston and Harry A. G. Wijshoff. Managing pages

in shared virtual memory systems: getting the compiler into

the game. In ICS ’93: Proceedings of the 7th international

conference on Supercomputing, pages 11–20, New York, NY,

USA, 1993. ACM.

[HCL05] Lei Huang, Barbara Chapman, and Zhenying Liu. Towards a

more efficient implementation of openmp for clusters via trans-

lation to global arrays. Parallel Computing, 31(10-12):1114–

1139, October-December 2005.

[HCZ00] Y. Charlie Hu, Alan L. Cox, and Willy Zwaenepoel. Improv-

ing fine-grained irregular shared-memory benchmarks by data

reordering. In SC, 2000.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,

D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,

129

BIBLIOGRAPHY

T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,

M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries,

T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar,

V. De1, R. Van Der Wijngaart, and T. Mattson. A 48-core ia-32

message-passing processor with dvfs in 45nm cmos. In Proceed-

ings of the International Solid-State Circuits Conference, Feb

2010.

[HDS08] J.P. Hoeflinger and B.R. De Supinski. The openmp memory

model. Lecture Notes in Computer Science, 4315:167, 2008.

[HIH+00] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and

T. Takahashi. Dynamic home node reallocation on software dis-

tributed shared memory. In High Performance Computing in

the Asia-Pacific Region, 2000. Proceedings. The Fourth Inter-

national Conference/Exhibition on, volume 1, pages 158 –163

vol.1, 2000.

[HJMR02] M. Hess, G. Jost, M. Müller, and R. Rühle. Experiences us-

ing OpenMP based on Compiler Directed Software DSM on a

PC Cluster. In Workshop on OpenMP Applications and Tools

(WOMPAT’02), August 2002.

[Hoe06] J.P. Hoeflinger. Extending OpenMP to clusters. White Paper,

Intel Corporation, 2006.

[HST99] W. Hu, W. Shi, and Z. Tang. JIAJIA: An SVM System Based

on A New Cache Coherence Protocol. In Proceedings of the High

Performance Computing and Networking (HPCN’99), volume

LNCS 1593, pages 463–472, Amsterdam, Netherlands, April

1999. Springer.

[IS99a] A. Itzkovitz and A. Schuster. Distributed shared memory:

Bridging the granularity gap. In Proceedings of the First ACM

Workshop on Software Distributed Shared Memory (WSDSM).

Citeseer, June 1999.

130

BIBLIOGRAPHY

[IS99b] Ayal Itzkovitz and Assaf Schuster. Multiview and millipage

- fine-grain sharing in page-based dsms. In Proceedings of the

Third Symposium on Operating Systems Design and Implemen-

tation (OSDI), pages 215–228, February 1999.

[ISL98] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope Consis-

tency: A Bridge between Release Consistency and Entry Con-

sistency. Theory Comput. Syst., 31(4):451–473, 1998.

[ISW96] A. Itzkovitz, A. Schuster, and L. Wolfovich. Millipede: To-

wards standard interface for virtual parallel machines on top of

distributed environments. Technical Report Technical Report

9607, Technion IIT, 1996.

[JE95] Tor E. Jeremiassen and Susan J. Eggers. Reducing false shar-

ing on shared memory multiprocessors through compile time

data transformations. In PPOPP ’95: Proceedings of the fifth

ACM SIGPLAN symposium on Principles and practice of par-

allel programming, pages 179–188, New York, NY, USA, 1995.

ACM Press.

[Jég00] Yvon Jégou. Controlling distributed shared memory consis-

tency from high level programming languages. In José Rolim,

editor, Parallel and Distributed Processing, volume 1800 of Lec-

ture Notes in Computer Science, pages 293–300. Springer Berlin

/ Heidelberg, 2000.

[Jég03] Yvon Jégou. Implementation of page management in Mome, a

user-level DSM. In Proc. Intl. Workshop on Distributed Shared

Memory on Clusters (DSM 2003), pages 479–486, Tokyo,

Japan, May 2003. Held in conjunction with CCGrid 2003. IEEE

TFCC.

[JFY99] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation

of the NAS Parallel Benchmarks and its Performance. Technical

131

BIBLIOGRAPHY

Report NAS-99-011, NASA Ames Research Center, October

1999.

[JK88] Van Jacobson and Michael J. Karels. Congestion avoidance

and control. SIGCOMM Comput. Commun. Rev., 18:314–329,

August 1988.

[KCDZ94] P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.

TreadMarks: distributed shared memory on standard worksta-

tions and operating systems. In Proceedings of the USENIX

Winter 1994 Technical Conference, pages 10–10. USENIX As-

sociation Berkeley, CA, USA, 1994.

[KCRB03] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.

Reducing false sharing and improving spatial locality in a uni-

fied compilation framework. Parallel and Distributed Systems,

IEEE Transactions on, 14(4):337–354, 2003.

[KCZ92] Peter J. Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy

release consistency for software distributed shared memory. In

ISCA, pages 13–21, 1992.

[Kel96a] P. Keleher. The CVM manual. Technical Report CS-TR-3545,

University of Maryland, 1996.

[Kel96b] P.J. Keleher. The relative importance of concurrent writers

and weak consistency models. In International Conference on

Distributed Computing Systems, volume 16, pages 91–99. IEEE

Computer Society Press, 1996.

[Kel99] Peter J. Keleher. Tapeworm: High-level abstractions of shared

accesses. In OSDI, pages 201–214, 1999.

[KG04] Manjunath Kudlur and R. Govindarajan. Performance analysis

of methods that overcome false sharing effects in software dsms.

Journal of Parallel and Distributed Computing, 64(8):887–907,

2004.

132

BIBLIOGRAPHY

[KKH03] Y.S. Kee, J.S. Kim, and S. Ha. ParADE: An OpenMP Pro-

gramming Environment for SMP Cluster Systems. In Super-

computing 2003 (SC’03), November 2003.

[KRC99] Mahmut T. Kandemir, J. Ramanujam, and Alok N. Choud-

hary. Improving cache locality by a combination of loop and

data transformations in an integrated framework. IEEE Trans-

actions on Computers, 48(2):159–167, 1999.

[Lam79] L. Lamport. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Progranm. Computers, IEEE

Transactions on, C-28(9):690–691, Sept. 1979.

[LCBZ97] K. Li, J. Carter, J. Bennett, and W. Zwaenepoel. Ivy: A shared

virtual memory system for parallel computing. Distributed

Shared Memory: Concepts and Systems, page 121, 1997.

[LCD+97] Honghui Lu, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan

Rajamony, and Willy Zwaenepoel. Compiler and software dis-

tributed shared memory support for irregular applications. In

PPOPP, pages 48–56, 1997.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-

Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz,

and Monica S. Lam. The stanford dash multiprocessor. Com-

puter, 25:63–79, 1992.

[LRW91] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The

cache performance and optimizations of blocked algorithms. In

ASPLOS, pages 63–74, 1991.

[MAN+99] X. Martorell, E. Ayguade, N. Navarro, J. Corbalan, M. Gon-

zalez, and J. Labarta. Thread Fork/Join Techniques for Multi-

level Parallelism Exploitation in NUMA Multiprocessors. In

13th International Conference on Supercomputing (ICS’99),

june 1999.

133

BIBLIOGRAPHY

[Mar94] T.J.; Markatos, E.P.; LeBlanc. Using processor affinity in loop

scheduling on shared-memory multiprocessors. In Parallel and

Distributed Systems, IEEE Transactions on, volume 5, pages

379 – 400. IEEE Computer Society, Apr 1994. 1045-9219.

[ME08] Seung-Jai Min and Rudolf Eigenmann. Optimizing irregular

shared-memory applications for clusters. In Pin Zhou, editor,

ICS, pages 256–265. ACM, 2008.

[MLNA96] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. A

Library Implementation of the Nano-Threads Programming

Model. In Euro-Par, Vol. II, pages 644–649, August 1996.

[mpi] Message passing interface web page. www-

unix.mcs.anl.gov/mpi/.

[MRL+10] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul

Brett, Werner Haas, Patrick Kennedy, Jason Howard, Sriram

Vangal, Nitin Borkar, Greg Ruhl, and Saurabh Dighe. The 48-

core scc processor: the programmer’s view. In Proceedings of

the 2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC

’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer

Society.

[NAAL01] Dimitrios S. Nikolopoulos, Ernest Artiaga, Eduard Ayguadé,

and Jesús Labarta. Exploiting memory affinity in openmp

through schedule reuse. SIGARCH Computer Architecture

News, 29(5):49–55, 2001.

[NS01] Nitzan Niv and Assaf Schuster. Transparent adaptation of shar-

ing granularity in multiview-based dsm systems. In IPDPS,

page 38. IEEE Computer Society, 2001.

[OSHI03] Y. Ojima, M. Sato, H. Harada, and Y. Ishikawa. Performance

of cluster-enabled OpenMP for the SCASH software distributed

134

BIBLIOGRAPHY

shared memory system. In Proc. of the 3rd Intl. Symp. on

Cluster Computing and the Grid, pages 450–456, 2003.

[PLCG95] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A tool

to visualize and analyze parallel code. In Transputer and oc-

cam developments: WoTUG-18: proceedings of the 187th world

occam and Transputer User Group Technical Meeting, 9th-13th

April 1995, Manchester, UK, volume 44, page 17. Ios Pr Inc,

1995.

[PR01] M. Pizka and C. Rehn. Murks-a POSIX threads based DSM

system. PDCS’01, pages 642–648, 2001.

[SB97] W. E. Speight and J. K. Bennett. Brazos: A Third Generation

DSM System. In Proc. of the USENIX Windows NT Workshop,

1997.

[SBW91] Joel H. Saltz, Harry Berryman, and Janet Wu. Multiprocessors

and run-time compilation. Concurrency - Practice and Experi-

ence, 3(6):573–592, 1991.

[SHH01] Mitsuhisa Sato, Hiroshi Harada, and Atsushi Hasegawa.

Cluster-enabled openmp: An openmp compiler for the scash

software distributed shared memory system. Scientific Pro-

gramming, 9(2-3):123–130, 2001.

[SHI00] M. Sato, H. Harada, and Y. Ishikawa. OpenMP Compiler for

a Software Distributed Shared Memory System SCASH. In

WOMPAT2000, July 2000.

[SSC98] Mark R. Swanson, Leigh Stoller, and John B. Carter. Making

distributed shared memory simple, yet efficient. In HIPS, pages

2–. IEEE Computer Society, 1998.

[SSKT99] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of

OpenMP Compiler for an SMP Cluster. In EWOMP ’99, pages

32–39, September 1999.

135

BIBLIOGRAPHY

[SSMBL94] Barbara Simons, Vivek Sarkar, Jr. Mauricio Breternitz, and

Michael Lai. An optimal asynchronous scheduling algorithm for

software cacheconsistency. In Proceedings of the 27th Hawaii

International Conference on Software Technology, volume II,

pages 502–511, January 1994.

[SSS+99] O. Schirpf, M. Schoettner, P. Schulthess, S. Traub, and

M. Wende. Dsm-java: Foundation of a lean distributed oper-

ating system. In Proceedings of the International Workshop on

Distributed Computing on the Web, Rostock, Germany, 1999.

[SSSW00] Peter Schulthess, Oliver Schirpf, Michael Schöttner, and Moritz

Wende. Dsm-communities in the world-wide web. In Peter G.

Kropf, Gilbert Babin, John Plaice, and Herwig Unger, edi-

tors, DCW, volume 1830 of Lecture Notes in Computer Science,

pages 65–73. Springer, 2000.

[STS98] M. Schoettner, S. Traub, , and P. Schulthess. A transactional

dsm operating system in java. In Proceedings of the 4th In-

ternational Conference on Parallel and Distributed Processing

Techniques and Applications, Las Vegas, USA, 1998.

[SWG92] J. Pal Singh, W.-D. Weber, and A. Gupta. Splash: Stanford

parallel applications for shared-memory. ACM SIGARCH Com-

puter Architecture News, 20(1):5–44, 1992.

[TGJ93] Olivier Temam, Elana D. Granston, and William Jalby. To

copy or not to copy: a compile-time technique for assessing

when data copying should be used to eliminate cache conflicts.

In SC, pages 410–419, 1993.

[TLH90] J. Torrellas, M.S. Lam, and J.L. Hennessy. Shared data place-

ment optimizations to reduce multiprocessor cache miss rates.

In Proceedings of the 1990 International Conference on Parallel

Processing, volume 2, pages 266–270, 1990.

136

BIBLIOGRAPHY

[TMSW08] C. Terboven, D. Mey, D. Schmidl, and M. Wagner. First Ex-

periences with Intel Cluster OpenMP. LECTURE NOTES IN

COMPUTER SCIENCE, 5004:48, 2008.

[top] Top 500 supercomputer sites. www.top500.org.

[VBB01] R. Veldema, RAF Bhoedjang, and HE Bal. Jackal, a compiler

based implementation of java for clusters of workstations. In

Proc. of PPoPP. Citeseer, 2001.

[vdWMH11] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner

Haas. Light-weight communications on intel’s single-chip cloud

computer processor. SIGOPS Oper. Syst. Rev., 45:73–83,

February 2011.

[VL00] S.P. Vanderwiel and D.J. Lilja. Data prefetch mechanisms.

ACM Computing Surveys (CSUR), 32(2):174–199, 2000.

[WL91] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm.

ACM SIGPLAN Notices, 26(6):30–44, 1991.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 Pro-

grams: Characterization and Methodological Considerations.

In Proceedings of the 22th International Symposium on Com-

puter Architecture, pages 24–36, Santa Margherita Ligure, Italy,

1995.

137

	tesi.pdf
	Abstract
	Acknowledgements
	Introduction
	A distributed world
	Motivation
	Thesis and Goals
	Organization of this thesis

	Background and related concepts
	Introduction
	Memory address spaces
	Coherence and Consistency

	OpenMP
	Directives

	Message Passing Interface (MPI)
	Distributed Shared Memory (DSM)
	Consistency models

	OpenMP on distributed memory
	Transform the OpenMP code
	Execute OpenMP on top of DSM
	Hybrid programming

	Benchmarks
	NAS Benchmarks
	SPLASH Benchmarks

	Our environment
	Mercurium compiler
	OpenMP Runtime
	NanosDSM
	Testbed

	Boundaries alignment
	Motivation
	Thesis
	Related work
	Compile time
	Runtime

	Mechanism
	Boundaries alignment
	Design issues

	Evaluation
	Methodology
	Results

	Conclusions

	Apply lessons learnt from MPI
	Motivation
	Thesis
	Related Work
	Overlap communication and computation
	Relax consistency
	Transform the code

	Mechanism
	Presend
	Preinvalidation
	Design issues

	Evaluation
	Methodology
	Results

	Conclusions

	Avoiding network congestion
	Motivation
	Thesis
	Related Work
	Mechanism
	Chopper
	Design issues

	Evaluation
	Methodology
	Results
	BT benchmark

	Conclusions

	Performance Evaluation
	Introduction
	Methodology
	Benchmark description
	Detailed parallel loops study
	Performance results

	Testbed
	NAS Benchmarks
	EP
	CG
	BT
	SP
	LU
	MG
	FT

	Conclusions

	Conclusions
	Contributions of this work
	Tolerate false sharing
	Reduce memory latencies
	Avoid network congestion
	Proposal of OpenMP extensions

	Future Work
	Implementation details
	Further research

