

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Architectural Support for High-Performance
Hardware Transactional Memory Systems

by

Marc Lupon i Navazo

Submitted in Fulfillment of the
Requirements for the Degree

Doctor of Philosophy
Programa de Doctorat: Arquitectura de Computadors

Supervised by

Grigorios Magklis
Antonio González Colás

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

November 8, 2011

iii

iv

v

”Per als meus pares, Isa i Emili, que sempre

m’han ajudat, incĺus sense saber-ho”

vi

vii

Acknowledgments

Són moltes les persones les quals m’han ajudat durant aquesta tesi; estic convençut que

sense elles no hauria acabat aquest llarg camı́. No seria just si no comencés pel meu director,

en Grigoris, no només per guiar-me durant tots aquests anyssinó perquè s’ha preocupat per

mi en tot moment, i encara avui és capaç d’aguantar les meves “neures”. També vull agrair al

meu co-director, l’Antonio, per donar-me l’oportunitat defer el doctorat, aconsellar-me en tot

moment i ensenyar-me què és la recerca.

M’agradaria seguir per tota la gent que m’ha fet més entretinguda la vida al campus, ja

sigui prenent cafès al bar, posant la decoració de Nadal a la sala o jugant a futbol als migdies.

Òscar, Iñaki, Beacco, Enric, Niko, Javi, Demos, Gemma, Xavi, Renné, Manu, Miquel, Marc,

Eduard, membres de la sala C6-E208, jugadors del DEE+, gent del gimnàs i resta de companys

d’ARCO, d’IBRC i del DAC: moltes gràcies a tots! També vullagrair al Mark D. Hill i a tota

la gent del Wisconsin Multifacet Project per fet la meva est`ancia a Madison més agradable.

Per acabar, vull donar les gràcies a les meves dues famı́lies, la de sang i l’adoptiva. Tinc la

sort d’haver crescut amb en Ferran, Dani, Vidi, Gus, Maria, Cesc, Puyi, Torra, Rafa, Maurici,

Núria, Ricard, Oriol, Albert i molts altres que segur m’oblido. Amb amics com ells es pot

superar qualsevol entrebanc, i tota anècdota es torna un record inesborrable.

Finalment vull donar les gràcies als meus avis; ells em van ensenyar la importància d’intentar

ser sempre treballador i bona persona. També a la meva germana Anna, ella és la única que em

coneix millor que jo mateix. I als meus pares, Isa i Emili, perquè sense ells no seria ni una

desena part de la persona que sóc avui en dia.

viii

ix

Abstract

Parallel programming presents an efficient solution to exploit future multicore processors.

Unfortunately, traditional programming models depend on programmer’s skills for synchroniz-

ing concurrent threads, which makes the development of parallel software a hard and error-

prone task. In addition to this, current synchronization techniques serialize the execution of

those critical sections that conflict in shared memory and thus limit the scalability of multi-

threaded applications.

Transactional Memory (TM) has emerged as a promising programming model that solves

the trade-off between high performance and ease of use. In TM, the system is in charge of

scheduling transactions (atomic blocks of instructions) and guaranteeing that they are executed

in isolation, which simplifies writing parallel code and, atthe same time, enables high con-

currency when atomic regions access different data. Among all forms of TM environments,

Hardware TM (HTM) systems is the only one that offers fast execution at the cost of adding

dedicated logic in the processor.

Existing HTM systems suffer considerable delays when they execute complex transactional

workloads, especially when they deal with large and contending transactions because they lack

adaptability. Furthermore, most HTM implementations aread hocand require cumbersome

hardware structures to be effective, which complicates thefeasibility of the design. This thesis

makes several contributions in the design and analysis of low-cost HTM systems that yield good

performance for any kind of TM program.

Our first contribution, FASTM, introduces a novel mechanism to elegantly manage specula-

tive (and already validated) versions of transactional data by slightly modifying on-chip memory

engine. This approach permits fast recovery when a transaction that fits in private caches is dis-

carded. At the same time, it keeps non-speculative values insoftware, which allows in-place

x

memory updates. Thus, FASTM is not hurt from capacity issues nor slows down when it has to

undo transactional modifications.

Our second contribution includes two different HTM systemsthat integrate deferred reso-

lution of conflicts in a conventional multicore processor, which reduces the complexity of the

system with respect to previous proposals. The first one, FUSETM, combines different-mode

transactions under a unified infrastructure to gracefully handle resource overflow. As a result,

FUSETM brings fast transactional computation without requiring additional hardware nor extra

communication at the end of speculative execution. The second one, SPECTM, introduces a

two-level data versioning mechanism to resolve conflicts ina speculative fashion even in the

case of overflow.

Our third and last contribution presents a couple of truly flexible HTM systems that can

dynamically adapt their underlying mechanisms according to the characteristics of the program.

DYNTM records statistics of previously executed transactionsto select the best-suited strategy

each time a new instance of a transaction starts. SWAPTM takes a different approach: it tracks

information of the current transactional instance to change its priority level at runtime. Both

alternatives obtain great performance over existing proposals that employ fixed transactional

policies, especially in applications with phase changes.

xi

Table of Contents

Acknowledgments vii

Abstract ix

List of Figures xvii

List of Tables xxiii

1 Introduction 1

1.1 Transactional Memory .. 2

1.2 HTM Systems: Problems and Limitations 4

1.3 Thesis Contributions .. . 6

1.3.1 FASTM . 6

1.3.2 FUSETM and SPECTM . 7

1.3.3 DYNTM and SWAPTM . 8

1.4 Relationship to My Previously Published Work 9

1.5 Thesis Organization .. . 10

2 Background on Transactional Memory 12

2.1 Transactional Memory Systems 13

2.1.1 Software Transactional Memory Systems 14

xii

2.1.2 Hardware Transactional Memory Systems 16

2.2 Hardware Transactional Mechanisms 17

2.2.1 Access Summary . 18

2.2.2 Data Version Management . 21

2.2.3 Conflict Management . 22

2.2.4 Building High-Performance HTM Systems 25

2.3 Eager HTM Systems . 26

2.3.1 Bounded HTM Systems . 26

2.3.2 Hardware-accelerated TM Systems 27

2.3.3 Hybrid TM Systems . 28

2.3.4 Unbounded HTM Systems . 30

2.4 Lazy HTM Systems . 32

2.5 Reutilizing Transactional Mechanisms 34

3 Experimental Methodology 36

3.1 Simulation Infrastructure 37

3.1.1 Modeling Hardware Support .38

3.2 System Configuration .. 38

3.2.1 Base CMP Parameters . 39

3.2.2 Reference HTM systems . 40

3.3 Transactional Workloads 42

3.3.1 Transactional Benchmark Suites 43

3.3.2 Transactional Workload Characterization 45

3.3.3 Discussion about Transactional Workload Behavior 49

3.4 Performance Metrics and Methods 50

xiii

4 A Log-Based Hardware Transactional Memory with Fast Abort Recovery 52

4.1 Motivation . 55

4.2 The FASTM System . 59

4.2.1 FASTM Overview . 59

4.2.2 Hardware Support . 60

4.3 The Transactional L1 Cache Coherence Protocol 61

4.4 FASTM Transactional Operations . 62

4.4.1 Transactional Stores .63

4.4.2 Transactional Loads . 64

4.4.3 Transactional Cache Replacements 65

4.4.4 Committing Transactions .. 66

4.4.5 Aborting Transactions .67

4.5 FASTM with Wake-up Notification . 68

4.5.1 Conflict Tracking . 68

4.5.2 The Wake-up Mechanism . 69

4.5.3 FASTM-WN: Examples of Wake-up Notification 69

4.6 FASTM with Selective Logging . 70

4.6.1 The Selective Logging Mechanism 71

4.6.2 Pushing Physical Addresses in the Log 72

4.6.3 FASTM-SL: Adding Selective Logging to FASTM 73

4.6.4 Discussion . 74

4.7 Evaluation . 75

4.7.1 FASTM Performance Analysis . 76

4.7.2 FASTM-WN Performance Analysis 81

4.7.3 FASTM-SL Performance Analysis . 83

4.7.4 FASTM Conflict Resolution Analysis 85

xiv

4.8 Related Work on Eager HTM Systems .. . 87

4.9 Conclusions . 90

5 Speculative Hardware Transactional Memory Systems with Local Commits 92

5.1 Motivation . 95

5.2 A Fused HTM System with Local Commits 97

5.2.1 FUSETM Overview . 97

5.2.2 Hardware Support . 98

5.2.3 FUSETM Modes of Execution . 99

5.2.4 The Unified Transactional L1 Cache Coherence Protocol. 100

5.2.5 FUSETM Lazy Transactional Operations 102

5.2.6 Lazy Conflict Management in FUSETM 107

5.2.7 Simultaneous Execution of Eager and Lazy Transactions 108

5.3 A Speculative HTM System with Early Overflowing Updates 109

5.3.1 SPECTM Overview . 110

5.3.2 Partial Consistency .111

5.3.3 Overflow Isolation . 112

5.3.4 Coherence States: Codification and Implementation 113

5.4 Evaluation . 115

5.4.1 FUSETM Performance Analysis . 116

5.4.2 SPECTM Performance Analysis . 119

5.4.3 Local Commit Analysis . 120

5.4.4 Eager and Lazy Execution Analysis 122

5.4.5 FUSETM and SPECTM Execution Analysis 124

5.5 Related Work on Lazy HTM System .. 126

5.6 Conclusions . 128

xv

6 High-Performance Adaptive Hardware Transactional Memory Systems 130

6.1 Motivation . 132

6.2 A Dynamically Adaptable HTM System 135

6.2.1 DYNTM Overview . 135

6.2.2 Programming Model . 136

6.2.3 Transactional Mode Selector .. . 136

6.2.4 A Highly-Efficient Policy for Eager and Lazy Transactions 139

6.3 A High-Performing HTM with Swapping Execution Modes 141

6.3.1 SWAPTM Overview . 141

6.3.2 Hardware Support . 143

6.3.3 SWAPTM Execution Mode Transitions 144

6.4 Evaluation . 146

6.4.1 DYNTM Performance Analysis . 148

6.4.2 SWAPTM Performance Analysis . 153

6.5 Results Roadmap: A General View 157

6.5.1 Low-contention Applications 157

6.5.2 Medium-contention Applications 159

6.5.3 High-contention Applications 160

6.6 Related Work on Contention-Aware HTM Systems 163

6.7 Conclusions . 167

7 Conclusions 168

7.1 Summary . 169

7.2 Future Work . 170

7.2.1 Eager HTM Systems . 170

7.2.2 Lazy HTM Systems . 171

7.2.3 Dynamic HTM Systems . 172

xvi

Bibliography 173

xvii

List of Figures

1.1 Lock- and transactional-based multithreaded executions 3

1.2 Intrinsic properties of the HTM systems proposed in thisthesis 6

2.1 Implementations and properties of STM and HTM systems 14

2.2 Hardware implementations of the acccess summary mechanism 18

2.3 Design options when implementing signatures 20

2.4 Data version management alternatives in HTM systems 22

2.5 Conflict management alternatives in HTM systems 24

2.6 Eager versus lazy transactional execution 25

3.1 Base system configuration .. . 38

3.2 Clustering TM workloads according their characteristics 49

4.1 Percentage of time spent in abort recovery under 16-threaded LogTM-SE . . . 54

4.2 Abort rate distribution of 16-threaded LogTM-SE executions 55

4.3 Percentage of overflowing transactions in single-threaded LogTM-SE executions 56

4.4 Percentage of time spent in overflowing transactions in single-threaded LogTM-

SE . 56

4.5 Store buffer implementation of an HTM system with early VM 57

4.6 Speedup of LogTM-SE, Ideal early VM, Store Buffer (8 entries) and Store

Buffer (32 entries) implementations 58

xviii

4.7 Hardware support for FASTM . 60

4.8 TMESI coherence protocol transitions 61

4.9 Non-conflicting TStore (a) and conflicting TLoad (b) in FASTM 64

4.10 Transactional replacements (a), commits (b) and aborts (c and d) in FASTM . . 65

4.11 Examples of the wake-up notification mechanism 70

4.12 L1 Cache replacement actions in FASTM-SL 73

4.13 Distributed execution time of low-contention (top, 32threads) and medium-

and high-contention (bottom, 16 threads) TM applications under LogTM-SE

(L), FASTM (F) and Ideal (I) HTM systems 77

4.14 Performance improvement of FASTM-SIG (S), FASTM (F) and Ideal VM (I)

HTM systems over LogTM-SE in low-contention (top, 32 threads) and medium-

and high-contention (bottom, 16 threads) TM applications 78

4.15 Speedup of FASTM-WN over FASTM in 16-threaded medium- and high-contention

TM applications . 81

4.16 Network conflicting messages per transaction of 16-threaded medium- and high-

contention TM applications in FASTM and FASTM-WN 82

4.17 Number of active cores during 16-threaded medium- and high-contention exe-

cutions in FASTM-WN . 82

4.18 Normalized execution time of variable- and coarse-grained TM applications un-

der 16-threaded FASTM (F), FASTM-SL (S), and Ideal (I) HTM systems 83

4.19 Software log size in FASTM and FASTM-SL 84

4.20 Distributed executed time of low-contention (top, 32 threads) and medium- and

high-contention (bottom, 16 threads) TM applications under LogTM-SE (L),

FASTM (F) and Ideal (I) HTM systems . 86

5.1 Percentage of time spent in arbitration under 32-threaded TCC-Dist 95

5.2 Average network messages in the commit phase under 32-threaded TCC-Dist . 96

5.3 Base system configuration and transactional hardware support for DYNTM . . 98

xix

5.4 State-transition diagram of the unified transactional L1 cache coherence protocol 101

5.5 Conflicting transactional stores in FUSETM 103

5.6 Conflicting transactional loads in FUSETM 104

5.7 Retarded directory updates in FUSETM . 106

5.8 Local Commits and Abort Notification in FUSETM 107

5.9 Partial consistency: Coherence transitions and early abort notification 112

5.10 Unbounded hardware support for partial consistency (a,b), selective logging (c)

and overflow isolation (d) in SPECTM . 114

5.11 Codification and implementation of cache coherence states 115

5.12 Distributed executed time of low- and medium-contention (top, 32 threads)

and high-contention (bottom, 16 threads) TM applications under TCC-Dist (D),

FUSETM (F) and TCC-Loc (L) HTM systems 117

5.13 Normalized FUSETM execution time of applications distributed by the transac-

tional mode . 118

5.14 Speedup achieved in low-contention (top, 32 threads) and high-contention (bot-

tom, 16 threads) applications in TCC-Dist (D), SPECTM (S) and TCC-Loc (L) . 119

5.15 Normalized commit time under 32-threaded TCC-Dist (D), TCC-Sel (S) and

TCC-Loc (L) . 121

5.16 Average network messages in the commit phase under 32-threaded TCC-Dist

(D), TCC-Sel (S) and TCC-Loc (L) . 122

5.17 Distributed executed time of low- and medium-contention (top, 32 threads)

high-contention (bottom, 16 threads) TM applications under Eager FASTM (E)

and Lazy TCC-Loc (L) HTM systems . 123

5.18 Distributed executed time of low- and medium-contention (top, 32 threads)

high-contention (bottom, 16 threads) TM applications under TCC-Loc (L), FUSETM (F)

and SPECTM (S) HTM systems . 125

6.1 Speedup over opposite fixed-policy (eager or lazy) HTM systems 133

xx

6.2 Conflict management in eager, lazy and dynamically adaptable HTM systems . 134

6.3 Hardware support for the Transactional Mode Selector 137

6.4 TMS selection (top) and THT update (bottom) algorithms 138

6.5 Resolving eager/lazy conflicts in DYNTM . 140

6.6 Transiting from eager to lazy and vice versa 141

6.7 Detecting long transactions in SWAPTM . 143

6.8 Switching execution modes in SWAPTM . 145

6.9 Distributed executed time of low- and medium-contention (top, 32 threads)

high-contention (bottom, 16 threads) TM applications under FASTM-IVM (E),

TCC-Loc (L) and DYNTM (D) HTM systems 149

6.10 Distributed executed time of low- and medium-contention (top, 32 threads)

high-contention (bottom, 16 threads) TM applications under FUSETM (F), Stat-

ically Programmed (P) and DYNTM (D) HTM systems 150

6.11 Normalized DYNTM execution time of applications distributed by the transac-

tional mode . 151

6.12 Speedup achieved in low-contention (32-threads, left) and high-contention (16-

threads, right) applications by FUSETM, DYNTM-Ov, DYNTM-Ab and DYNTM 151

6.13 Speedup achieved in low-contention (32-threads, left) and high-contention (16-

threads, right) applications by FUSETM, FUSETM-HP, DYNTM-EP and DYNTM 152

6.14 Distributed executed time of low- and medium-contention (top, 32 threads) and

high-contention (bottom, 16 threads) TM applications under FASTM-IVM (E),

TCC-Loc (L) and SWAPTM (W) HTM systems 153

6.15 Speedup over best-performing fixed-policy HTM of low- and medium-contention

(top, 32 threads) and high-contention (bottom, 16 threads)TM applications un-

der SPECTM (S), FUSETM (F), DYNTM (D) and SWAPTM (W) 154

6.16 Speedup achieved over TCC-Loc in low-contention (top,32 threads) and high-

contention (bottom, 16 threads) applications in SPECTM (S), SWAPTM-TLD (T),

SWAPTM-EST (E) and SWAPTM (W) . 155

xxi

6.17 DYNTM and SWAPTM execution time of low-contention (left, 32 threads) and

high-contention (right, 16 threads) applications distributed by the transactional

mode . 156

6.18 Scalability analysis of HTM systems on low-contentionapplications 158

6.19 Scalability analysis of HTM systems on medium-contention applications 159

6.20 Scalability analysis of HTM systems on high-contention applications 161

xxii

xxiii

List of Tables

2.1 Classification of eager HTM systems 27

2.2 Classification of lazy HTM systems 33

3.1 Base system parameters .. . 39

3.2 Input parameters of TM applications 43

3.3 TM applications grouped by the size of their transactions 45

3.4 TM applications grouped by the size of their transactional time 46

3.5 TM applications grouped by the size of their transactional contention 48

4.1 Overflow, abort and software abort rates for variable- and coarse-grained 16-

threaded executions under LogTM-SE, FASTM and FASTM-SL 80

4.2 Data VM characteristics of eager HTM systems 89

5.1 Resolving eager-lazy conflicts in FUSETM 109

5.2 Characteristics of lazy HTM implementations 127

6.1 Resolving eager-lazy conflicts in DYNTM . 139

6.2 Data VM and CM characteristics of high-performance HTM systems 164

xxiv

1

Chapter 1

Introduction

The emerging shift toward Chip Multiprocessor (CMP) architectures [28, 57, 62] moved the

pressure of how to exploit effectively hardware resources to the programmer [87]. While in

the past software developers were able to transparently speed up sequential applications using

processors with ever higher instruction-level parallelism [127], nowadays they are forced to

write multithreaded applications in order to extract thread-level parallelism. Thus, the success

of future generation CMP processors highly depends on the capacity to widely adopt parallel

computing as a standard programming paradigm.

Most parallel programming models have relied during decades on blocking synchroniza-

tion for mutual exclusion of critical sections in multithreaded applications (i.e., chunks of in-

structions that atomically modify shared memory variables), although it is well-known that

protecting critical sections withlocks—atomic variables that are acquired (released) before (af-

ter) executing the critical section—is error-prone, it lacks composability and may limit overall

performance [29].

So far, two distinct strategies have been followed when developing parallel software using

blocking synchronization. Easy-to-usecoarse-grainlocking protects a large amount of code

with the same lock, which in turn serializes critical sections and, therefore, limits application’s

scalability. Difficult-to-developfine-grain locking employs small critical sections to increase

the performance of parallel programs, but tuning an application is extremely hard and may

lead to programming errors (e.g., deadlocks) [118]. This difficult to address trade-off between

2

high performance and ease of use has encouraged research on alternative, lock-free parallel

programming models [53].

This thesis deals with how to incorporate hardware support in modern CMP environments

for Transactional Memory [49], possibly the most promising(and broadly accepted) non-blocking

parallel programming approach. To this end, in this thesis we try to show how programmer-

friendly multithreaded applications can achieve good performance when the system devotes

part of its transistor budget to enhance concurrency.

1.1 Transactional Memory

Transactional Memory (TM) provides a parallel paradigm that facilitates application writing

without sacrificing performance [102]. In TM, the programmer decomposes the application

in different threads that are executed simultaneously, andthen encapsulates blocks of code

that access shared memory insidetransactions. Like in database systems, the underlying TM

mechanisms guarantee that transactions follow theACI properties [41]:Atomicity (transactions

are either fully completed or not executed at all),Consistency (completed transactions can be

deterministically ordered) andIsolation (transactions must not report data races with concurrent

threads during their execution).

Efficient TM systems employ speculation in order to execute transactions concurrently. On

the one hand, this technique allows the system to get rid of deadlocks (all transactions are even-

tually executed) and enables the composition of atomic blocks because deadlocking is no longer

possible. On the other hand,optimisticTM execution permits the system to run simultaneously

transactions from independent threads, whilepessimisticlocking execution serializes critical

sections, even when they do not access the same data. In consequence, TM systems commonly

perform (and scale) better than systems that utilize hand-coded locks, especially when they

execute many-threaded or coarse-grained applications.

In contrast to blocking synchronization schemes, in TM is the system, not the programmer,

who ensures the correct execution of the program. Programming languages designed on top of

a TM system just need to provide semantics to definewherea transaction starts and finishes,

3

Figure 1.1: Lock- and transactional-based multithreaded executions

hiding from the userhow the transaction is executed. Thus, all synchronization events are

carried out implicitly, which simplifies significantly the development of parallel software.

In order to provide safe and efficient transactional execution, the system must implement

a set of invisible mechanisms to verify at runtime that the ACI properties are not violated.

Therefore, beforecommittinga transaction (i.e., finishing speculative execution and making

transactional stateglobally visible) the system must check that noconflicts(i.e., memory access

that breaks the isolation invariant) involving this transaction exist. However, if a violation is

reported, the system may potentiallyabort (i.e., undo all the memory modifications performed

inside the transaction) one of the conflicting transactionsand restart it from its very beginning.

Figure 1.1 shows the differences between lock-based and transactional-based executions.

While locking techniques block the execution of critical sections when running a piece of

code protected by the same lock, the transactional (speculative) strategy permits non-conflicting

transactions to execute—and even commit—in parallel (Situation 1 and 2). Nonetheless, Situa-

tion 3 generates a conflict between two transactions, which produces the abort of the requesting

transaction. Notice that this scenario does not hurt concurrency compared to the lock-based

execution, given that, in the worst case, the aborted transaction will restart at the time that the

conflict disappears—this happens when the conflicting transaction commits, which approxi-

mately coincides with the time that the lock is released under blocking synchronization.

Environments that sustain TM can be implemented exclusively in software (Software Trans-

actional Memory [48, 77, 104, 110], STM for short), mostly inhardware (Hardware Transac-

tional Memory [45, 49, 84, 97], HTM for short) or a combination of the two (Hybrid Transac-

4

tional Memory [31, 63, 65], HyTM for short). Complete specifications of TM systems can be

found in [46], where Harriset al.cover in detail the large TM design space up to early 2010.

The majority of STM systems use software locks tolocally hold the ownership of data

objects, and record the memory locations accessed within transactions in software structures,

which must be constantly traversed during transactional execution. Hence, STM systems in-

cur considerable delays when running transactional code. In fact, some researchers claim that

STM is just a testing tool to familiarize users with the TM programming model [18]. Instead,

HTM systems devote silicon to accelerate transactions, resulting in significantly less overheads

than STM systems, although they lose the portability to legacy (non-HTM) systems. More-

over, HTM systems are more robust, preserving strong isolation between transactional and non-

transactional code [17].

HyTM systems propose an interesting compromise betweenhigh-performinghardware and

flexiblesoftware [31]. As in any compromise, it is difficult to know exactly where the optimal

software-hardware division lays. Moreover, any fully-hardware TM system requires software to

enable virtualization of large transactions. As a consequence, most HTM systems can somehow

be considered hybrid approaches.

Among all the flavors of TM proposed by today, we think that HTMis the one that offers the

best alternative, especially in terms of performance. We believe that, if the TM programming

model becomes ubiquitous, it will be through some HTM implementation [33].

1.2 HTM Systems: Problems and Limitations

To the best of our knowledge, almost all proposed HTM designsclearly fall into one of

the two possible categories: they can be eithereageror lazy. Each category defines a set of

actions that must be taken when the system has to resolve memory inconsistencies introduced

by in-flight transactions. This mechanism, commonly known as conflict management(CM),

also establishes the strategy that the system follows when dealing with the speculative state, a

group of rules commonly known asversion management(VM).

Existing HTM systems fix the CM and VM policies at design time.The qualitative and

quantitative analysis performed in this thesis shows that inflexible HTM systems are faced with,

5

at least, one of the following limitations that discourage their implementation: (a) theyperform

poorly when executing non-trivial transactional workloads, (b) theydo not scale on many-core

systems, (c) theirhardware cost istoo expensive or (d) the complexity of the system makes its

implementation not affordable.

Eager HTM systems [5, 49, 84, 97]—those that resolve conflicts as soon as they happen—

present a major variation on their design: they use oppositestrategies to manage data versioning.

Late(also known as lazy) VM systems rapidly recover the transactional state in hardware—it is

kept in local caches—but utilize either software or very complex (and inefficient) hardware im-

plementations to maintain overflowing data (i.e., memory lines evicted from local caches), while

early (also known as eager) VM systems employ slow software to restore the pre-transactional

state, but handle overflows gracefully by storing in-place speculative data values. Because of

this both approaches may suffer important performance penalties when executing applications

with large transactions—early VM systems spend a lot of timerecovering aborts, while late VM

systems slow down transactional execution due to resource overflow.

Lazy HTM systems [20, 45, 112]—those that resolve conflicts at the time a transaction at-

tempts to commit—are forced to implementlatedata versioning; therefore they are also affected

by the slow-on-overflow issue. As the majority of lazy HTM designs introduce specialized (and

cumbersome) structures to buffer the overflowing speculative state, they increment the hardware

cost when compared to eager HTM systems. Moreover, lazy HTM systems require arbitration

and communication with shared resources at commit time [22,92, 124], which (i) substantially

delays transactional execution, especially in applications that frequently commit transactions,

(ii) increases the complexity of critical system elements,such as the directory or the coherence

protocol, and (iii) hurts the system scalability.

Most importantly, fixed-policy (either eager or lazy) HTM systems establish the CM strat-

egy at design time, taking always the same decision to resolve conflicts for the whole execution.

It is widely known that eager and lazy HTM systems have their strengths and weaknesses [14],

but, unfortunately, they are too inflexible in the way they manage transactional contention, re-

sulting in a significant performance opportunity loss when they deal with complex transactional

workloads that combine transactions of different size and variable contention [16].

6

Figure 1.2: Intrinsic properties of the HTM systems proposed in this thesis

1.3 Thesis Contributions

All the above has led us to conceivefivedifferenthigh-performance HTM systems based on

efficient eager and lazy HTM approaches. What is more, our proposals enable thescalability of

coarse-grained TM applications, while keeping thedesign simple (system complexity remains

under affordable limits) and requiringlittle hardware cost.

This thesis tackles the major problems across the HTM designspace. Our first contribu-

tion, FASTM, presents a novel solution for managing data versioning on eager HTM systems,

whereas our second proposals, FUSETM and SPECTM, improve on prior lazy HTM works by

including lightweight hardware to support multiple versions of the speculative state in a typical

cache coherence protocol. Our last contributions, DYNTM and SWAPTM, integrate opposite

conflict management policies in a single framework to selectthe most profitable strategy ac-

cording to the application characteristics. Figure 1.2 presents a pictorial overview of the HTM

systems presented on this thesis and compares them with well-known, state-of-the-art HTM

implementations.

1.3.1 FASTM

The data VM mechanism is possibly the main limitation factorof eager HTM systems when

executing large transactions. Late VM systems (e.g., VTM [97]) suffer important overheads on

commits and on resource overflows, while early VM systems (e.g., LogTM-SE [130]) experi-

ment long delays in case of abort, given that the old state is recovered using software. Looking

at the available HTM systems, one could conclude that the shortcomings of each VM style

7

are inherent to its design philosophy, which defineshow (software or hardware) andwhere(in

private or in shared resources) the speculative/non-speculative state is kept.

Our first contribution, FASTM (log-based HTM with fast abort recovery), is a departure

from this thinking by observing that the important thing forVM is whothe owner of the specu-

lative state is andwhenthe state should become visible to the rest of the system, butnot where

or howthe (non-)speculative state is stored. Thus, FASTM breaks with the VM implementation

dichotomy and proposes a change in the design philosophy: ahybrid VM alternative that takes

advantage of the strong points of both approaches toaccelerate commits and abortswhile

implementing asimple overflow policy—in fact, FASTM can be seen as an early VM system

with a late VM implementation. These VM properties become a requirement for complex TM

workloads, which are believed to represent future transactional applications.

1.3.2 FUSETM and SPECTM

Early work on lazy HTM systems proposead hocmechanisms to implement a coherence

and consistency model based on transactions (TCC [45] for short). These designs introduce

some modifications (few of them non-trivial) on different layers of standard CMP configuration

(memory hierarchy, coherence protocols, on-chip directory, etc.) that increase the complexity

of the design. Although recent proposals have tried to generalize the TCC approach to integrate

it in a traditional CMP environment [22, 92], most solutionsstill require extra communication

on commits and specialized hardware to buffer non-validated data.

Our second contribution seeks to decouple data versioning from conflict management by

adapting transactional mechanisms under conventional (eager-like) hardware. We show how

this goal can be achieved through the implementation of two distinct HTM systems. FUSETM in-

troduces aflexible and simpleVM framework to track (and defer if necessary) memory vi-

olations from lazy-mode transactions without adding unaffordable complexity in the system.

Moreover, by extending its VM strategy to enable multiple versions of the same data and de-

ferring directory updates, the system is able toremove data transfers and communications

at commit time, which is very useful in applications with short transactions. FUSETM (fused

HTM system with local commits) also offersan eager mode of execution for those transac-

8

tions that exceed private resources, so the system does not have to provide complex hardware

support for boundless lazy transactions.

FUSETM falls back to “on-demand” resolution of conflicts for overflowing transactions,

which may restrict overall concurrency. SPECTM (speculative HTM system with early over-

flowing updates) tries to overcome this limitation by offering a two-level data versioning mech-

anism: multiple copies of a line are allowed in the first levelcaches, whereas a single copy

is permitted after evicting the line toward the upper levelsof the memory hierarchy. This ap-

proachenables deferred conflict management for any kind of transaction—even for those

that exceed private buffers.

1.3.3 DYNTM and SWAPTM

Prior HTM systems fix the conflict management policy at designtime. Fixed-policy HTM

systems are faced with numerous issues that limit the concurrency of transactional applications.

Experiments presented on this thesis show that the two groups (eager or lazy) of HTM systems

do not respond equally to all types of workloads, which is crucial given the unknowns about the

behavior of future TM applications. A truly flexible HTM thatcould select the ideal execution

mode for each transaction at runtime would be more adept at dealing with many different types

of workloads.

Our last contribution pursues the design of such a fully-flexible HTM system. More specif-

ically, we propose two such systems. DYNTM (dynamically adaptable HTM system) combines

eager and lazy transactions simultaneously tochoose the best performing mode of execu-

tion for each dynamic instance of a transaction. DYNTM uses a simple (and local) predictor

to dynamically decide at the beginning of a transaction the best-suited (eager or lazy) execu-

tion mode. The election, which is hidden from the programmer, is based on the behavior of

pastinstances of the same transaction. This system greatly outperforms fixed-policy HTM sys-

tems [112].

Once the philosophical barrier of eager versus lazy HTM systems is crossed, a whole new

class of opportunities for research is opened—DYNTM is only the first implementation. One

interesting optimization is SWAPTM (high-performing HTM system with swapping execution

modes), a dynamic alternative thatswitches the transactional mode of execution of trans-

9

actions on the fly. SWAPTM offers early VM for unbounded lazy transactions, therebythe

transactional execution mode is not restricted by the size of the transaction. SWAPTM analyzes

the characteristics of eachindividual instance of a transaction to decide its performance impact,

and then adjusts the underlying hardware to select the most adequate system configuration.

1.4 Relationship to My Previously Published Work

FASTM [71] was published in theProceedings of the 18th International Conference on

Parallel Architectures and Compilers Techniques(PACT’09), along with co-authors Grigorios

Magklis and Antonio Gonzalez. FASTM was motivated by a potential study that had appeared

in Lupon’s Master Thesis [69] and by the limitations found while evaluating a log-based store-

buffered HTM system [70], a study that was published in theProceedings of the 9th Workshop

on MEmory Performance: DEaling with Applications, systemsand architectures(MEDEA’08).

This thesis extends earlier published work by proposing newvariations in the design and

evaluating the system with a wider spectrum of benchmarks. Alight description of the se-

lective logging and wake-up notification mechanisms for FASTM can be found in a Technical

Report [75]. This thesis complements previous work with a detailed discussion of hardware

alternatives that permit virtual address logging.

The FUSETM system was published in theProceedings of the 43rd International Symposium

on Microarchitecture(MICRO’10) under the label of thelazyexecution mode for DYNTM [72].

This thesis describes the FUSETM system in a greater detail and provides a more exhaustive

characterization. The SPECTM system together with the hardware support for unbounded lazy

transactions is described in a Technical Report [74].

Respect to DYNTM [72], this thesis presents a more accurate discussion over related work

and describes from top to bottom the implementation of the conflict management policy and

the configuration of the transactional mode selector. The work on SWAPTM is currently under

submission. An early version of that creation is described in a Technical Report [73].

10

1.5 Thesis Organization

This thesis dissertation is organized as follows. Chapter 2reviews the state-of-the-art of TM

systems, paying more attention to those that include hardware support. The chapter starts given

an historical overview of TM proposals and follows discussing the mechanisms that forge mod-

ern HTM proposals and how they are implemented. Then, it reviews how these mechanisms are

used to build fixed-policy (either eager or lazy) HTM systems, pointing out the main limitations

of prior work.

Chapter 3 presents the experimental methodology followed through this thesis. It begins

explaining how the simulation infrastructure models the processor, the memory hierarchy and

the transactional hardware support. Then, the chapter defines the base CMP configuration and

the system parameters utilized along the evaluation, together with the reference HTM systems

implemented as baselines. After that, it exposes the TM benchmark suites used to evaluate the

correctness and the performance of the proposed HTM systems, classifying them into different

categories. Finally, the chapter ends explaining the experimental methods and metrics adopted

in the evaluation.

The next three chapters describe the contributions of our research. All three chapters briefly

introduce the work with a motivation section, and present a big picture of the contribution.

Then, they explain the intrinsic details of the proposals (hardware support, memory operations,

transactional mechanisms and so on) and some design optimizations. From that point, each

chapter evaluates the proposed implementations and compares them with baseline HTM archi-

tectures. After that, a qualitative comparison against related work is performed, concluding

with a summary of the exposed ideas and results.

Chapter 4 presents FASTM as a revolutionary eager HTM system with a novel data version

management mechanism, and extends the proposal with two additional implementation vari-

ants. Chapter 5 describes FUSETM and SPECTM as pure, not-so-complex lazy HTM designs.

It also analyzes the benefits and drawbacks of using speculative conflict management and com-

pares FUSETM’s and SPECTM’s performance against FASTM. Chapter 6 takes the results of the

prior chapter to motivate the evolution to two unified, trulyflexible and adaptive HTM systems

(DYNTM and SWAPTM). After detailing the innermost parts of both alternatives, this chapter

11

studies how transactional applications behave under documented HTM systems to show the

importance of implementing high-performing designs.

Chapter 7 concludes the research presented on this thesis and avenues for future work.

12

13

Chapter 2

Background on Transactional Memory

In the late 70’s, Lomet came up with the idea of using databasetransactions when accessing

shared data [68]. It was not until two decades ago though, when Herlihy and Moss introduced

the concept of Transactional Memory (TM) as a new programming paradigm that intended

to make lock-free mechanisms more efficient than blocking synchronization techniques [49].

Since then, many researchers have taken different approaches to construct efficient TM sys-

tems. This section starts describing those alternatives, and follows presenting the mechanisms

underneath hardware-assisted TM (HTM) systems. Afterwards, it reviews most notable HTM

(fully-hardware, hardware-accelerated and hybrid TM) implementations and discusses their

complexity, performance and hardware cost.

2.1 Transactional Memory Systems

A large amount of environments combine different degrees ofhardware and software sup-

port to execute speculative transactions. Harris (second edition [46]) joined Larus and Rajwar

(first edition [64]) to synthesize a computer architecture lecture that offers an extensive survey

of the state of the art on TM systems, as of early spring 2010. An updated TM bibliography can

be found in the University of Wisconsin website [1].

We draw some impressions about most commonly used transactional systems in Figure 2.1,

which shows a graphical representation of some TM implementations and their basic properties.

14

Figure 2.1: Implementations and properties of STM and HTM systems

As it can be seen, software strategies are cheaper and more flexible, but achieve poor perfor-

mance compared to hardware-assisted TM systems. The following subsections highlight the

main features of software- and hardware-based TM approaches.

2.1.1 Software Transactional Memory Systems

Shavitet al.proposed Software Transactional Memory (STM) as a friendlyinterface to ex-

ecute transactional applications in mainframe systems [110]. In STM, memory accesses within

transactions have to access a software library that implements automatic, object-grained locking

and track version numbers using data structures. In order tokeep the system consistent, soft-

ware libraries must synchronize transactional reads or updates upon those structures, limiting

the concurrency of the parallel execution (see Cascaval [18] et al. for more details).

STM systems provide high flexibility and can easily be revised. Moreover, they (i) can con-

veniently handle transactions of any size or duration, (ii)require simple validation and (iii) can

run on legacy hardware—which makes them serviceable for thedevelopment of transactional

programs. Nonetheless, software monitoring sacrifices performance and power, as it requires

explicit (programmed by hand) calls to system libraries each time a memory location is ac-

cessed, which results in the execution of additional instructions. In order to overcome this vital

constraint, several STM systems have been proposed.

15

Dynamic STM (DSTM [48]) is a deferred update STM system implemented as a library

usable in C++ or Java. It introduces a flexible conflict manager that delegates to the programmer

how conflicts are resolved, uses obstruction freedom as a non-blocking progress condition and

permits early object release, which reduces the size of the read set before committing. Word-

granularity STM (WSTM [78]) performs similar to DSTM, but detects conflicts with a highly

accurate precision. Scherer and Scott [108] studied the behavior of different conflict resolution

policies for the DSTM system and concluded that no policy performs best in all the measured

scenarios. To optimize the base DSTM contention manager, Adaptive STM (ASTM [109])

changes the conflict resolution policy at run-time.

Rochester STM (RSTM [77]) enhances the performance of deferred update STM systems

by reducing the levels of indirections to an object. It also provides its own memory allocator

and uses reader invalidation on commits, which substantially minimizes the size of those data

structures devoted to maintain the read set. InvalSTM [40] complements RSTM’s approach

by providing full invalidation, which accelerates transactions with big read and/or write sets in

many-threaded applications.

In contrast to the above proposals, Transactional Locking (e.g., TL2 [34]) STM systems

combine deferred state updates with blocking synchronization to hold non-committed values.

When a transaction finishes its speculative execution, it must lock the modified objects—i.e.,

acquire a conventional lock for each element of the write set—using a global clock, what allows

the transaction to validate its read set. The benefit of locking objects consists on simplifying

software data structures and minimizing the transactionaloverhead.

In the manner of TL2, McRT-STM [104] and Bartok STM (BSTM [47]) use transactional

locking for keeping the consistency of their read and write sets. Unlike TL2, McRT-STM and

BSTM perform direct update, maintaining transactional values in-place in memory and using

early blocking synchronization—i.e., acquiring locks at the first time an object is accessed—

to prevent other transactions to read or write the modified state. Furthermore, they combine

pessimistic concurrency control for updates with optimistic control for reads, and use version

numbers on a per-object basis instead of a global clock. Those implementations can take ad-

vantage of Intel’s C++ STM [4] and Microsoft’s Bartok [3] compilers to aggressively reduce

the size of software data structures.

16

TinySTM [37] is a lightweight STM system written in C that borrows several key aspects

of TL2. It implements word granularity and uses a timestamp algorithm based on LSA [100] to

resolve conflicts. SwissTM [35] mixes TL2-like global clocking with a hybrid conflict detec-

tion mechanism. RingSTM [114] and STMlite [83] implement software Bloom filters to avoid

storing recurrent metadata in the heap space.

Each of the above optimized STM implementations intend to leverage the overhead asso-

ciated with software transactional mechanisms [110]. Nevertheless, the question of how to

build an efficient STM remains open. Recent studies show thatSTM systems underperform

lock-based executions—especially when few threads are used [125]—leading some academics

to postulate that STM is just a mere research toy [18]). For this reason, it seems inevitable to

conclude that some kind of hardware support is necessary in order to speed up transactional ex-

ecution. Next subsection overviews and classifies those TM systems that incorporate hardware

assistance in some (or all) of their layers.

2.1.2 Hardware Transactional Memory Systems

Herlihy and Moss included hardware support in the microarchitecture of their original TM

design, building a hardware-assisted TM (HTM) system [49].Their approach uses typical cache

management and coherence protocols on non-transactional operations, and provides a new In-

struction Set Architecture (ISA) for transactional accesses, commit actions and state validation.

A separate processor cache contains old and transactional values, which can only be accessed

by the owner processor.

Hardware-assisted TM systems are less invasive than STM systems, given that they treat all

memory accesses within a transaction as implicitly transactional. Thus, they only demand two

additional instructions in the architecture to encapsulate blocks of atomic instructions inside

transactions:Tx_Begin and Tx_End. This way, memory operations performed inside those

bounds can transparently use built-in transactional hardware with little (in some cases almost

negligible) performance and power penalty.

Proposals for HTM implementations have been around for morethan a decade, feeding a

wide range of design possibilities. Fully-hardware TM environments (commonly generalized as

HTM) fill the system with specialized mechanisms in order to accelerate whatever transaction,

17

reducing the overheads produced by special operations to the bare minimum. Actually, some

HTM designs introduce no overhead for standard transactional execution. However, they still

require some kind of software support for virtualization purposes. LogTM [84], TCC [45] or

VTM [97] are few examples of fully-hardware HTM implementations.

Hybrid TM systems (HyTM for short) provide finite hardware support, devoting best-effort

transistors for conventional transactions and relying on STM systems for those transactions

that do not fit in the hardware or require unusual actions. Early HyTM approaches [31, 63],

PhTM [65], FlexTM [112] or UFO [8] are instances of partially-in-hardware HyTM designs.

Hardware-accelerated (HaTM) systems share some similarities with hybrid TM systems, as

their execution depends upon a STM. However, rather than falling back to software in corner

situations, HaTM systems always run on a faster STM mode thatuses small pieces of acute hard-

ware to speed up the slow software infrastructure. HASTM [105], RSTM [113] or SigTM [17]

are well-known representations of HaTM systems.

The next section explains in detail the main mechanisms usedto build high-performance

fully-hardware HTM, HyTM and HaTM systems. Given that the line to distinguish the cate-

gory of each approach is extremely tight, we decided to referall of those systems as HTM1,

describing their implementation components in Sections 2.3 and 2.4.

2.2 Hardware Transactional Mechanisms

Hardware transactional mechanisms are necessary in order to track memory locations read

or written inside the transaction (access summary), buffer both the previous (old) and the spec-

ulative (new) memory state and restore the old values in caseof abort (version management),

and detect and resolve conflicts among transactions (conflict management).

Hill et al. [51] proposed a decoupled implementation of transactionalmechanisms. Decom-

posing hardware into interchangeable components aids HTM design and permits the system to

use those mechanisms for other purposes, such as reliability, security, deterministic replay and

high-performance sequential (even parallel) execution. To this end, a TM system must pro-

vide an efficient implementation of these mechanisms, offering fast execution in case of infre-

1After all, any HTM system introduces specific hardware mechanisms and requires software solutions to handle
memory paging or context switches.

18

Figure 2.2: Hardware implementations of the acccess summary mechanism

quent conflicts and minimizing the impact of collisions among transactions when contention is

present. In this section, we explain which is the purpose of hardware transactional mechanisms

and overview their most-known design options.

2.2.1 Access Summary

Access summary is the mechanism that tracks the set of memorylocations accessed by

a transaction, commonly known as read (for transactional loads) and write (for transactional

stores) sets. A memory address is inserted in either the reador the write set—depending on

its access type—when it finalizes successfully. It is necessary to maintain those memory ac-

cesses in silicon to rapidly match the addresses that induceconflicts among transactions. Sev-

eral implementations of the access summary mechanism have been proposed in the literature.

Figure 2.2 provides a schematic view of some of them.

Early HTM proposals introduce read and write (R/W) bits in private caches (typically in

the L1 cache [45, 84, 97]) that have to be asserted when a memory operation completes and

tested each time a remote memory request is forwarded to a processing core. In some cases,

these bits are coupled with an additional bit that informs ifa transactional line has been evicted

from a cache set [5, 25]. While most of the HTM proposals trackthe conflict at the granularity

of a line, optimized systems may introduce R/W bits per word with a noticeable increment

on cache area [81, 85]. In order to simplify hardware logic, R/W cache bits can be replaced

with supplementary cache states, requiring fewer bits and integrating transactional actions in

the cache coherence protocol [113].

19

Previous mechanisms are limited by the size of private caches, losing precision when the

system replaces a cache line. In those occasions, systems may behave as HyTMs, requiring

software [31] or OS support [24] for tracking evicted lines.Another design alternative consists

on implementing a tagged (also known as supervised) memory,where some metabits are kept in

physical memory for a variety of purposes including data race detection, determinism control or

typestate trackers. Transactional Memory can also take advantage of this system configuration

when metadata is used to hold transactional read and write sets [8, 12]. Although supervised

programs may experiment ordering issues when they are executed under a weak consistency

model, recent research precludes that this problem does notaffect TM systems [13].

Even though R/W bits offers a low-complexity solution for recording memory accesses, its

implementation is not-so-attractive from commercial point of view. As industry always tries to

keep cache design simple and unmodified, they would prefer not to include transactional support

in caches and rely instead on decoupled solutions. To this end, some researchers investigate the

use of signatures as an interesting alternative to eliminate transactional state from caches [20,

106,130].

A signature consists on a Bloom filter [9], where a set of memory addresses are collected in

an array of bits. Each time that a memory operation is retired, the system must insert its address

in the signature by encoding the given address with a hash function and then marking certain

bits of the array. Testing operations are performed similarly, applying the hash function over

remote addresses and checking if all the selected bits are asserted. These basic operations can

be extended with join and intersection functionalities, which are required in Bulk implementa-

tions [21,93].

Cezeet al. introduced signatures in order to improve the capacity offered by R/W bits [20].

However, signatures may saturate when they contain lots of addresses, losing precision and

thus creatingfalse positives—i.e., systems detect that an address is present in a read or write

set, while it is not. Lots of works studied the effect of transactions in signatures, and they

showed that true Bloom filters—those that can mark any bit of the array—coupled with simple

bit-selection hash algorithms generate lots of false conflicts, what may hurt overall performance.

Thus, several signature implementations have been proposed to reduce the rate of false posi-

tives. Sanchezet al.presented parallel and Cuckoo Bloom filters as more efficientorganizations

20

Figure 2.3: Design options when implementing signatures

for signatures [106]. Parallel filters use a finite number of hash functions that point to smaller

array blocks to reduce the area occupied by signatures. Cuckoo-Bloom filters increase even

more the accuracy of signatures by providing an exact representation of their content when

the number of items is low and by behaving like a parallel filter after bypassing a saturating

threshold.

Yen et al. studied the costs of implementing bit-selection, H3 XOR andpage-block XOR

hash functions [131], concluding that XOR-based hash functions help to maximize the preci-

sion on signatures. Quislantet al. demonstrated the importance of using space locality when

inserting addresses in signatures [94]. Figure 2.3 compares the insert and test operations in true

(bit-selection hash function) and parallel (H3 hash function) Bloom filters.

Despite signatures, there are simpler decoupled access summary mechanisms. For instance,

small fully-associative structures (e.g., Store Buffers) can be used to track modest write sets [33,

49]. However, this mechanism restricts the number of writesenclosed inside a transaction.

21

2.2.2 Data Version Management

Data version management (VM) is one of the key design dimensions of a TM system, as its

implementation impacts directly on the performance and thecomplexity of the system. Version

management defines how and where transactional modifications are stored, and what actions

must be performed at commit and abort time. The majority of TMsystems fall into one of two

distinct strategies for version management:early (also known aseageror in-place) or late (also

known aslazyor deferred update).

On the one hand, late version management [5, 24, 45, 49, 97] keeps old (pre-transactional)

state in-place in memory and buffers new state (values generated inside the running transac-

tion) elsewhere. This makes aborts fast, but commits have anoverhead because the new state

must become globally visible. Thus, data movement is necessary in order to update shared

components such as upper levels of the memory hierarchy or the directory.

Most late VM systems use the L1 caches to buffer new state, andspecialized coherency

protocols to hide transactional updates from the rest of thememory hierarchy. LV* [86] is just

the Nth HTM system that implements late version management. Other implementations, like

the one proposed for the Rock [79] processor, store transactional modifications in a gated store

buffer, the content of which is drained at commit time.

In case the new state overflows its buffering space, some lateVM systems behave similar to

HyTM systems, and fall-back to a STM implementation [110]. Some other HTM systems [5,97]

store overflowed state in a data structure kept in memory, which must be accessed on cache

misses and on commits. Falling-back to STM incurs into significant performance loss while

fully-hardware HTM systems require complex, expensive andcumbersome hardware mecha-

nisms. This fact makes transactional state overflows the main drawback of late VM systems.

On the other hand, early version management [10,12] puts newstate in-place in memory and

buffers pre-transactional state elsewhere, usually a software-managed log structure in cacheable

memory [84]. This makes commits fast, since data is already stored in memory, but aborts have

an overhead because the old state must be recovered.

Also, since the pre-transactional state is stored in the logand can be recovered, transactional

modifications can be put anywhere in the memory hierarchy, soearly VM systems do not suffer

22

Figure 2.4: Data version management alternatives in HTM systems

from cache (or store buffer) overflows like those systems with late VM, with the additional

benefit of reduced hardware cost. LogTM-SE [130] is an example of an early VM system.

Figure 2.4 schemes how late and early version management HTMsystems operate. In

Figure 2.4a, coresCi and Cj introduce a specialized on-core hardware structure to manage

transactionally written evicted data, keeping pre-transactional data in the L2 cache. WhenCj

commits, it must traverse this structure and atomically update the shared L2 cache data with the

new, not-anymore-speculative data. Instead, Figure 2.4b shows how early VM cores (Ci and

Cj) gracefully handle cache overflows by moving evicted data tothe L2 cache. However, core

Cj requires a slow software routine to recover the pre-transactional state, which is stored in a

private, cacheable and software-accessed log.

2.2.3 Conflict Management

Conflict management (CM) is possibly the most critical aspect of HTM systems. It is the

hardware mechanism in charge of preserving the transactional isolation property and the correct

ordering of the committed transactions. Furthermore, it isalso necessary to guarantee forward

progress in case of a memory race. First, it has to determine how and when conflicts are de-

tected. This feature is commonly known as conflict detection. Second, it must decide when

and through which technique conflicts are resolved. The lastcontribution of the mechanisms

is defining which actions are performed (and by whom) in orderto eliminate the collision that

23

originated the conflict. The last two exposed facets are sometimes referred as the conflict reso-

lution policy.

Conflict management policies are classified aseagerand lazy. Eager CM schemes detect

conflicts at the moment that a load (store) instruction from an in-flight transaction accesses

a memory location being written (read or written) by anotherin-flight transaction [98, 130].

The majority of eager implementations slightly modify the coherence protocol to introduce an

implicit test operation against the read (for writes) or write (for writes and reads) sets from the

owners of the requested line [5,49,97]. For instance, LogTM[84] uses sticky states to hold the

last owner (or sharers) of an evicted line and enforce consistency checks even if that processor

does not maintain the line anymore.

Eager CM strategies normally cohabit with conservative conflict resolution policies—those

that resolve memory violations at the time that they are produced. These policies disallow incon-

sistencies among transactions and permit the system to keepa single version of a written line,

making the data versioning mechanism straightforward. Nevertheless, eager conflict resolution

policies are less flexible in the way they manage contention and may generate performance

pathologies such as unfair scheduling of transactions [14]or multiple crossed aborts [111].

Primitive HTM systems implemented a requester-wins policythat served pre-transactional

values to those processors that request a transactional line, but abort the owners of the line to

avoid discrepancies. As this strategy creates repeated aborts that may produce livelocks, some

HTM systems introduce a software backoff to spread contention. Advanced HTM implemen-

tations stall requesting petitions—i.e., retry the memory operation until it succeeds—once they

detect a conflict, using a timestamp-based protocol to eliminate dependence cycles between

stalled transactions [96]. This approach enables the conservation of non-conflicting, consistent

transactional work.

In contrast, lazy CM schemes resolve conflicts at the time that a transaction attempts to

commit [22, 45, 92]. Before making the transactional state visible, processors must abort all

the transactions that have accessed the committing write set, imposing a consistent order be-

tween transactional instances. Notice that transactions are only aborted when another transac-

tion wants to commit, so progress is not an issue when applying lazy policies.

24

Figure 2.5: Conflict management alternatives in HTM systems

In lazy schemes, conflict detection can take place early [112,124] or it can be delayed until

commit [82, 93]—after all, the conflict will not be resolved until commit time. Early conflict

detection proposals integrate sanity checks in the coherence protocol and track individually

conflicts in hidden registers. Deferred conflict detection requires the broadcast of the write

set [20, 45], a power-hungry technique that do not scale withmany-core CMPs, albeit it may

reduce the latency of memory operations by eliminating coherence messages [21].

Lazy CM strategies enable more concurrency between conflicting transactions, which keep

executing even in the case of collision. This policy permitsthe system to (i) omit read-write

conflicts (committing readers always load pre-transactional data), (ii) increment its flexibility,

(iii) pre-fetch useful data if the transaction requires a re-execution and (iv) eradicate software

management of conflicts (e.g., software backoff). However, lazy CM schemes require late VM

with buffering support for multiple data versions of the same cache line, arbitration and extra

communication with shared resources at commit time andad hochardware implementations.

What is more, optimistic treatment of conflicts may deliver alarge amount of discarded work.

Figure 2.5 shows how HTM systems operate under eager and lazyCM strategies. In Fig-

ure 2.5a, coreCi attempts to eagerly write line A, which belongs to the write set of coreCj. The

directory forwards the request to the owner of the line (Cj), which checks its write signature

25

Figure 2.6: Eager versus lazy transactional execution

and repliesCi with a conflict message. Instead, in Figure 2.5b coresCi andCj have written

line A within a transaction, whichCi attempts to commit. Before updating the directory and the

L2 cache, the system broadcast the write set ofCi—in this case, line A—to abort inconsistent

transactions. When coreCj receives the message, it automatically aborts its transaction.

2.2.4 Building High-Performance HTM Systems

Bobbaet al.[14] pointed out that HTM systems reflect different choices while implementing

the above mechanisms, dividing HTM implementations in two different groups:eager (single

version per memory block,immediateresolution of conflicts) andlazy (multiple versions per

memory block,deferredresolution of conflicts) HTM systems. Although hybrid approaches

can be found in the literature, they can easily be placed in one of these two groups.

Figure 2.6 shows how eager and lazy HTM systems deal with conflicting transactional exe-

cutions. In Situation 1, the eager HTM can preserve useful execution on write-write conflicts,

while at least one transaction has to abort due to a direct inconsistency when it is executed in

the lazy HTM environment. In Situation 2, the lazy HTM successfully speculates with the read-

write conflict, while the eager HTM has to stall the conflicting request. In Situation 3, the eager

HTM must abort a transaction when a potential cycle between stalled transactions is detected,

while the lazy HTM may starve older transactions. In the following sections, we borrow the

eager/lazy taxonomy to describe state-of-the-art HTM implementations.

26

2.3 Eager HTM Systems

We designate eager HTM systems those implementations that resolve conflicts as soon as

they are produced, independently of the data version management strategy that they follow.

Identifying conflicts once they are detected enables exercising conservative conflict resolution

policies, which prevents the abort (and re-execution) of large transactions with one-direction

conflicts. Moreover, eager HTM can employeither early or late version management, given

that the system maintains just asinglespeculative value for any transactionally written data. In

this section, we review related work in eager HTM systems. Table 2.1 summarizes the main

characteristics of different-style eager HTM systems.

2.3.1 Bounded HTM Systems

Precursors of modern HTM systems observed that processors could use the coherence pro-

tocol to optimistically monitor atomic accesses on memory locations. Jensenet al. [59] were

the first to propose synchronization primitives to track operations for a single memory address.

Later, Herlihy and Moss [49] presented their pioneer HTM implementation, which supported

finite-sized transactions. They added a specific transactional cache in the infrastructure to buffer

written data explicitly classified as transactional. They also implemented an ownership-based

coherence protocol to match incoming requests against the data stored in the transactional cache.

Transactions kept running even in the case of conflict, but they required validation before com-

mitting. If someone had interfered with them during their execution, the register state had to be

restored and transactional cache lines invalidated.

Speculative Lock Elision (SLE [95]) is an implicitly transactional implementation—it keeps

using a lock-based nomenclature—that alters modern out-of-order processors by introducing a

transactionally read bit in the L1 cache and by holding speculative writes in the store buffer.

The system issues exclusive requests when the processor retires a tentative store, discarding

and restarting the computation of those processors that owned the line. In case of failure, the

critical section retries its execution using locking semantics. Once all the exclusive permis-

sions are granted, processors atomically drain the store buffer into the data cache while keeping

denying incoming requests. Thread Lock Release (TLR [96]) extends SLR to construct a fair

27

HTM System
Eager HTM Access VM Bounded Finite Overflow

Group Summary Strategy Support Tx? Support

Original HTM [49]
Bounded

R/W L1 bits Late
Separate

Yes None
HTM Tx L1 cache

RockHTM [33]
Bounded

Read L1 bits Late
Store

No STM
HTM Buffer

HASTM [105]
Hardware

Read L1 bits STM
Tx L1

No STM
Accelerated cache

Damron’s
Hybrid TM R/W L1 bits Late Tx L1 cache No STM

HyTM [31]

VTM [97]
Unbounded R/W L1 bits

Late
Tx L1 cache,

No
SW

HTM SW filters Tx registers buffers

LogTM-SE [130]
Unbounded

Signatures Eager None No SW log
Log-based HTM

Table 2.1: Classification of eager HTM systems

timestamp-based algorithm that enforces younger transactions to restart or wait. This starvation-

free algorithm guarantees that at least one of the conflicting transactions keeps doing progress.

Since SLE, some store-buffered HTM systems have been proposed. Such late version man-

agement scheme is promising given it requires minor modifications in the hardware, especially

in memory structures. In fact, the Rock processor [33] prototyped by Sun Microsystems exploits

a flash copy mechanism to checkpoint the architectural register state and limits the version man-

agement support to the size of the store buffer. It also exposes the hardware resources to the

software layer, which is notified each time a transaction fails. (This includes buffer overflows,

data races between transactions or processor exceptions and interruptions.) In those situations,

the system can behave like a HyTM, as it implements a friendlyinterface for STM [79].

2.3.2 Hardware-accelerated TM Systems

Sahaet al. proposed the acceleration ofsoftwaretransactions through specific hardware

mechanisms [105]. In their HASTM implementation, they exposed four L1 cache bits to the

architecture, allowing the software to monitor, test and clear those bits. Thus, the STM layer was

28

able to track transactional evictions and invalidations, reducing the software cost of managing

extra metadata such as the whole read set.

RTM [113] implements an object-oriented RSTM that modifies the cache coherence proto-

col with 5 additional states to hide transactional actions in the L1 cache. Although this novel

approach increments the complexity of the system, it also minimizes the overheads associated

with the access summary and data versioning mechanisms. RTM’s software controlled coher-

ence permits the system to monitor any communication among processors. Hence, when the

software discovers an inconsistent access, it has to notifyconflicts to individual processors.

This is made through the Alert-On-Update mechanism, which extends the ISA with additional

instructions to expose convenient information (e.g., when to abort) to independent processors.

SigTM [17] augments a TL2 STM system by substituting slow metadata structures with

hardware (read and write) signatures. Note that this keeps caches clean—read and write sets are

not maintained in metadata software structures or in the L1 cache. In SigTM, each transactional

write has to execute an additional instruction to introduceits address in the signature. Similarly,

a transactional read has to test remote write signatures when it asks for the exclusiveness of a

line. As write-write concurrency is allowed, transactionsmust validate their write set at commit

time. This is done by issuing special exclusive requests, which may not be granted if an address

belongs to another in-flight transaction. If these special instructions fail, the software takes

command and resolves the conflict.

Dalessandroet al. showed how a NOrec STM system can coexist—and, of course, accel-

erate their execution—with Rock-like HTM support [30]. Forexample, hardware and software

transactions use a nested hardware transaction (two hardware-accelerated writes) to acquire a

secondary lock needed to validate the committing values. This fact prevents transactions that fit

in the hardware to interfere with software transactions.

2.3.3 Hybrid TM Systems

Hybrid Transactional Memories (HyTM) handle large transactions using software mecha-

nisms such as STM [48] systems, whereas common-case, smaller transactions use best-effort

hardware. Kumaret al. extended core resources with a transactional state table and a highly-

associative transactional buffer in order to simultaneously combine hardware and software

29

transactions [63]. The first records the execution mode of each in-core hardware context and its

associated transaction, while the latter stores, for each cache line, both the old and new values

and a vector of R/W bit—one per each hardware context executed in the core. If virtualization

is needed the system aborts the current transaction and restarts it in software (DSTM) mode.

Damronet al.cut apart the software strategy from the hardware support beneath the HyTM

system to embrace a wider range of applications, but software transactions may slow down

hardware transactions due to additional lookups [31]. PhTM[65] increments the flexibility

of hybrid environments by enlarging the modes of execution and by preventing hardware-only

transactions to overlap their execution with software-only transactions.

Hybrid UFO [8] expands the system with fine-grained hardwarememory protection to

achieve strongly-atomicity between STM/HTM transactionsand outsider code. Moreover, trans-

actions that fit in special-purpose hardware can run safely with concurrent software transactions,

although multiple readers of a memory block are not allowed.Exposing potential conflicts

among transactions to the software permits the system to apply fair contention management

policies, such as age-based approaches—these policies prioritize, in the common case, the STM

transaction. The study of distinct software conflict management policies also pointed out that it

is important not to fail over the STM when contention is high.

MetaTM [98] modifies x86 architecture to provide HTM assistance, allowing the system to

execute a “transactified” release of Linux, called TxLinux.MetaTM upholds multiple methods

for resolving conflicts between transactional accesses. Polka, a policy that aborts the transac-

tion that has done less work—i.e., has executed less instructions—and performs an exponential

backoff before restarting it, is the one that achieves the most average performance, although it is

not the best in all the cases. In [54], MetaTM simplifies the transactional hardware, at the cost of

limiting concurrency. It proposestransactional ordering, a mechanism that relies on a runtime

system that assigns kernel-level locks to those transactions that overflow physical resources and

commits them in serial order.

Riegelet al. [101] expanded the design space of HyTM systems by implementing time-

based algorithms using AMD’s Advanced Synchronization Facility (ASF [27]), an x86 ISA

extension that aims to provide rich semantics for easing thesynchronization of threads.

30

2.3.4 Unbounded HTM Systems

Bounded HTM systems do not ensure by themselves the progressof those transactions that

exceed buffering resources, such as local caches. However,high-performance HTM systems

must support in hardware transactions of arbitrary size, even in the case of overflow. While

HaTM and HyTM systems offer clean solutions when dealing with those situations, software

dependency induces substantial performance overhead. To this end, Ananianet al. proposed

Unbounded TM (UTM [5]), a hardware-assisted system whereall information regarding a trans-

action is held in a unique memory-resident data structure.

Since UTM introduces several changes in processor’s state,UTM authors presented a sim-

plified (almost unbounded) HTM implementation, called Large TM (LTM [66]), that allows a

safe execution of transactions as large as physical memory.LTM reserves part of its non-cached

DRAM memory space—organized as a hash table—to buffer updated data spilled from the L1

cache. Note that LTM employslate data versioning, keeping the pre-transactional state in the

shared levels of the memory hierarchy.

Virtualized Transactional Memory (VTM [97]) maintains vital information of data that ex-

ceeds hardware resources—e.g., speculative values or read and write sets—in a table placed

in application’svirtual memory. Similarly, Page-based Transactional Memory (PTM [24]) ex-

pands a conventional bounded HTM system with shadow pages that hold transactionally modi-

fied values. Those deferred update VM schemes, however, experiment large delays when over-

flowing data is made visible at the end of a transaction. To overcome this issue, lots of HTM

implementations offerearly data versioning to manage efficiently the speculative (new)trans-

actional state. In those approaches, hardware structures that hold new values are replaced with

low-cost mechanisms (commonly software-resident logs) tokeep the transactional state in-place

and the pre-transactional (old) state in private (per-thread) memory.

Moore et al. were the first to simplify the UTM’s version management mechanism by us-

ing software-resident logs to maintain the old values of transactionally written lines. In their

LogTM implementation [84], the software log is logically organized as a stack, placing the old

values of recent modified data above the values of previouslyaccessed data. In case of abort, a

software routine traversed the log to undo the modificationsintroduced by the offending trans-

31

action. While LogTM only supports flat nesting [43], optimized reinterpretations of the original

system [85] enable composing transactions by encapsulating the nesting depth and a pointer to

its parent in the header of the software-resident log.

As a result of its simplicity, the majority of contemporary HTM proposals [70, 122, 130]

establishearly software logging as their data versioning strategy. These implementations are

ordinarily known as log-based HTM systems. This method relocates transactionally modified

data across whatever level of the memory hierarchy, which means that just a single speculative

version of a memory block can be spilled in the shared memory space. Thus, log-based HTM

systems impose eager conflict management, building up what is commonly known astruly

eager(earlyVM, eagerCM policies,EE for short) HTM systems. In Section 3.2.2 we describe

LogTM-SE [130], an evolution of LogTM that replaces R/W bitswith signatures to summarize

thosephysicaladdresses accessed within a transaction. We also explain indetail the logging

and abort process on conventional log-based HTM systems. Section 4.8 describes in more detail

related work on unbounded and log-based HTM systems.

There are severalmetadataHTM implementations that combine software-resident logs

with per-bock memory extensions for access summary purposes. OneTM [10] introduces a

permission-only cache to maintain consistency of evicted cache lines. The system just allows

one overflowing transaction at a time, which can be executed in parallel with multiple small

transactions. Overflowed lines must keep a transaction identifier, which determines which

thread owns—and thus can access—the evicted data.

Similarly, TokenTM [12] eliminates the false positives of signatures by adapting the concept

of token coherence to detect conflicts among any kind of transactions. In TokenTM, each mem-

ory block carries T tokens, which are propagated through thememory hierarchy using metabits.

Threads must acquire one (all) token(s) of each memory blockread (written) within a transac-

tion. This fact does not generate any ordering issue in TSO-like implementations given that TM

applications aresafe supervised[13]. If a token cannot be acquired, a conflict is detected and

the transaction must abort. Tokens are restored at commit orabort time, using metadatafusion

andfissiontechniques to accelerate the process. LiteTM [58] reduces the number of out-of-band

bits required to represent the token state by exploiting locality properties and using software to

infer the lost information.

32

2.4 Lazy HTM Systems

Some HTM implementations defer the resolution of conflicts until commit time. As these

approaches permit inconsistencies among transactions, multiple versions of the same line have

to be maintained in hardware. Hence,late version management is a must when designing those

HTM systems. That is the reason why these systems are commonly known astruly lazy (late

VM, lazy CM policies, LL for short) HTM systems. Resolving conflicts after they are pro-

duced enables speculation between contended transactions, which favors overall concurrency

and eliminates some read-write conflicts. However, arbitration and atomic data movement is

required when a transaction finalizes. In Section 5.5 we survey in more detail how lazy commit

protocols operate.

Stoneet al. proposed Oklahoma Update [116] to replace short critical sections with multi-

word atomic updates, the values of which were stored in multiple (up to 8) reserved registers.

These registers buffered updates until commit time, where the processor requested exclusive

write permissions of the accessed addresses. Once all the permissions were acquired, the pro-

cessor sent write requests to memory, blocking incoming request to prevent interruptions. This

process is commonly known astwo-phasecommit—acquire permissions (first phase), then up-

date memory (secondphase). To avoid deadlocks, permissions were acquired in ascendant

address order.

Transactional Coherence and Consistency (TCC [45]) presented a new shared-memory

model based on transactions. In TCC,everyoperation is performed inside an atomic block

declared statically by the programmer or the compiler; making transactions the basic unit of

work from the system point of view [44]. Thus, memory accesses performed inside a trans-

action can be freely re-ordered, given that they will appearatomic from outsider threads. This

concept is generally known astransactionalconsistency. Table 2.2 summarizes some lazy HTM

implementations with TCC background.

In contrast to conventional eager HTM systems, lazy HTM implementations require several

changes in the memory hierarchy and in the coherence protocol. A TCC-like system must have

at least two levels in the memory hierarchy, one private thatkeeps thespeculativestate—in the

original TCC, R/W bits are added to track transactional lines—and one shared that holds the

33

HTM System
Lazy HTM Access VM Bounded Finite Overflow

Group Summary Strategy Support Tx? Support

TCC [45]
TCC-based

R/W L1 bits Late
Tx L1 cache,

Yes

Grab

HTM Central Arbiter Token

XTM [25]
TCC-based R/W L1 bits,

Late
Tx L1 cache,

No
Trap

HTM Snapshots Central Agent Exception

Bulk [20]
Bulk

Signatures Late
Tx L1 cache,

No
DRAM

Consistency Central Arbiter Space

FlexTM [112]
Hybrid

Signatures Late Tx L1 cache No STM
TM

Table 2.2: Classification of lazy HTM systems

committed(non-speculative) state. In-flight transactions read datafrom the shared (or global)

state, and hold new values locally until the transaction ends.

The global state isatomically updated at commit time following Oklahoma’s two-phase

protocol, and only one transaction can commit at a time. Thus, it is necessary to arbitrate

between in-flight transactions, allowing a single committer in the system. TCC opts to integrate

in the hardware a centralized agent that fairly distributesa global token among transactions

willing to commit. If a transaction fails to acquire the token, it must wait until the token is

released [82]. Once a transaction acquires a token, it broadcasts its write set to all the processors,

which inspect their access summary to find inconsistencies.If so, non-committers abort their

running transaction. After that, the committer updates theshared memory. As the commit

is an atomic process, the system must block accesses to the modified lines until the commit

ends—i.e., after the committer releases the token.

If a transaction does not fit in the L1 cache, the overflowing processor must acquire the

commit token and hold it until commit time, so the transaction can safely update shared mem-

ory with the speculative state. This mechanism may starve younger committers, which cannot

acquire the token and thus commit, serializing parallel execution. To avoid this problem, Ex-

tended Transactional Memory (XTM [25]) complements TCC with a page-based virtualization

strategy that buffers updates in private pages and uses snapshots for conflict detection. TCC can

also be enlarged with nesting, I/O and OS support [81], as well as word-granularity conflict de-

34

tection. Enhanced TCC-based systems can rely on programmers’ ability to leverage the commit

packet [107].

Cezeet al. compact memory accesses executed within atomic blocks in finite signatures

for different purposes, ranging from TM or TLS [20] to high-performance sequential consis-

tency [21]. Specific hardware is necessary in order to efficiently operate with signatures. Like

in TCC, collisions between transactions (chunks of instructions) are resolved at commit time

by broadcasting the write signature and performing local Bulk disambiguation. In the case of

violation, the transaction (chunk) is aborted (squashed) and immediately re-executed.

Several improvements have been proposed to enhance the scalability of lazy HTM sys-

tems [92, 93, 112, 124]. These techniques are broadly discussed in Chapter 5. An interesting

alternative to rethink a lazy system is FlexTM, which uses a software layer to define the resolu-

tion of conflicts while the hardware is in charge of maintaining the speculative state. We review

FlexTM in Section 6.6 together with related work on contention-aware HTM systems.

2.5 Reutilizing Transactional Mechanisms

Few proposals extended HTM support for non-transactional purposes, such as enforcing se-

quential consistency in weaker memory models, checking determinism, detecting races between

atomic sections or maximizing the performance of sequential and parallel execution.

Invisifence [11] pins down non-ordered data in private caches and supervises memory mes-

sages to support sequential consistency among parallel chunks of instructions. A chunk ends

when it receives cache permission for all the memory instructions contained in it. Similar to

eager HTM systems, Invisifence clears speculative bits from caches and flushes processor’s

pipeline in case of collision between in-flight chunks, avoiding weak-ordered executions.

Porteret al. adapted hardware-assisted (either eager or lazy) TM support to accelerate se-

quential execution in a Speculative Multithreaded (SpMT) environment [91]. This approach

achieves higher concurrency between speculatively spawned threads, given that they can opti-

mistically execute in parallel in the (common) case that memory dependences do not appear.

Like this, SpMT implementations can be more aggressive thanconventional designs.

35

TM support can also be used for testing parallel code. StealthTest [15] exposes software

transactions as the principal operation to undo the inherent modifications introduced by on-line

testing of parallel code. RaceTM [42] detects data races between ongoing threads using TM-

like coherency to reportbugs—i.e., conflicts between implicit transactions—on non-protected

parallel code. LifeTx [60] enforces deterministic thread interleaving by encapsulating parallel

code inside bounded and ordered hardware transactions.

36

37

Chapter 3

Experimental Methodology

This chapter overviews the simulation infrastructure utilized in the next chapters to evaluate

the contributions of the thesis. After that, it details the base system configuration used through

the study and presents the state-of-the-art, reference HTMsystems against which the proposed

techniques are compared. The chapter ends describing and characterizing the transactional

benchmarks used for the evaluation and presenting the performance metrics employed to ana-

lyze the behavior of the proposed HTM designs.

3.1 Simulation Infrastructure

A complete system has been simulated using the Simics [76] infrastructure from Virtutech

and the GEMS [80] toolset from Wisconsin’s Multifacet group. Simics is a commercial product

that provides full-system functional simulation of a multiprocessor system executing a SPARC

Instruction Set Architecture (ISA) [55]. This environmentenables the evaluation of TM work-

loads running on top of a Solaris 9 Operating System (OS). GEMS (version 2.1) is a timing

module that has been used to model the memory hierarchy, the HTM base systems, the coher-

ence protocol and the network traffic. GEMS is essentially written in C++, but it uses SLICC—a

specific domain language—to define coherence transitions and intermediate (non-solid) cache

states.

38

Figure 3.1: Base system configuration

3.1.1 Modeling Hardware Support

Simics processing cores retire an instruction per cycle fornon-memory operations. How-

ever, in our infrastructure, those cores communicate with GEMS to model the latency of mem-

ory operations. Each time a core retires a memory operation,it blocks its execution and it

delegates the management of memory to GEMS, which simulatesthe timing of the operation

(coherency included) and updates the memory state before returning the government to Simics.

GEMS treats non-included ISA instructions as “magic” instructions—i.e., a SPARC no-

operation (NOP) when they are executed in a real machine. When a processing core issues a

magic instruction (e.g., Tx_Begin or Tx_End in a TM habitat), it gives control to the GEMS

timing model, which prepares the processor state for transactional purposes. Transactional

operations are handled as regular memory operations—the only overheads introduced in the

timing model are those produced by special coherency events.

Notice that GEMS is possibly the most used infrastructure inthe literature to model HTM

systems due to its flexible capabilities. Several HTM systems [84, 112, 122, 130] have been

built on top of this simulation environment. Its adaptability allows the system to efficiently pass

information to the software using hidden processor registers and trapping precise exceptions

appropriately.

3.2 System Configuration

For our evaluation, we assume a Chip Multiprocessor (CMP) with 32 cores and two levels

of caches, where the first level (L1) is private and the secondlevel (L2) is shared among all the

39

Core
32 UltraSPARC III cores, 1.2 GHz in-order, IPC = 1,

single issue, single-threaded

L1 cache
32 KB, 4-way, 64 bytes per line, inclusive,

write-back, 2-cycle latency

L2 cache
16 MB, 8-way, banked NUCA,

write-back, 15-cycle latency

Memory 4 GB, DRAM, banked, 150-cycle latency

Memory controllers 4 Memory controllers, distributed in the CMP, 25-cycle latency

L2 directory
Bit vector of sharers/owners, distributed,

L2 inclusive, 6-cycle latency

Interconnect
16-node mesh, 64-byte links, 2-cycle wire latency,

1 cycle route latency

Base HTM Support

2 Kb parallel Chuckoo-Bloom filters

Register checkpoints per core

Software logging support

Table 3.1: Base system parameters

cores, as shown in Figure 3.1. Coherency is implemented using a blocking, distributed directory

placed in the L2 cache. The system has a 16-node mesh interconnect that uses 64-byte links

with adaptive routing. Each node has two cores, a piece of a shared L2 cache and part of the

directory. Further information about simulation parameters is described in the next subsection.

3.2.1 Base CMP Parameters

The CMP models 32 simple, single-threaded, in-orderUltraSPARC III cores with fixed

IPC 1 for non-memory operations. Memory operations, instead, take variable latency.

Each core has two private 32KB cache, one for instructions and one for data. The L1 data

cache is write-back and coherent. Besides the standard logic, cores are extended with additional

hardware support for TM. For example, cores use local shadowcopies of physical registers,

which are updated each time a transaction starts and are usedto recover the processor state

when an abort occurs. We defer the description of specific in-core hardware support for each

40

HTM to the following section (for reference HTM systems) andchapters (for proposed HTM

systems).

Our base system implements a shared L2 cache distributed among the CMP nodes [50,67],

where each node has 1 MB of the L2 cache. This is a Non-Uniform Cache Access (NUCA)

system that contains a total of 16 MB. The system has four memory controllers to access 4 GB

of main memory. Coherency among L1 caches is implemented on top of a split directory placed

at the L2 cache, which keeps, for each line, a list of sharers and owners (if more than one).

Table 3.1 contains additional parameters of the base CMP system.

3.2.2 Reference HTM systems

We take two state-of-the-art HTM systems as baseline architectures to evaluate the effec-

tiveness oftruly eager (LogTM-SE) andtruly lazy (TCC) schemes. Following is a description

of the reference HTM systems.

LogTM-SE [130]: Our eager start point is LogTM-SE, a log-based (EE-like) HTMsystem

developed at the University of Wisconsin-Madison and distributed with GEMS 2.1. This im-

plementation stores directly transactional values in Simics memory and delegates the detection

of conflicts to afiltered MESI coherence protocol, which forwards coherence messages to the

owner (or sharers) of a cache line. Memory locations accessed within transactions are kept in

per-core read and write signatures, which are consulted each time the core receives a remote

memory request.

For our evaluation, we choose to use 2Kbit parallel Cuckoo-Bloom filters [130], given

that previous studies advocate that this configuration commonly obtains the best performance-

per-area results [106]. Like all log-based HTM systems, LogTM-SE initializes the software-

managed log when a transaction begins—i.e., when a processor retires aTx_Begin instruction.

In such situations, the processor jumps to a firmware routinethat initializes the log.

In LogTM-SE, each time that a memory operation misses the L1 cache the system must

perform conflict detection by issuing a memory request to thememory subsystem. If the mem-

ory request does not report a conflict, the reader (writer) core adds the memory address in its

Read (Write) Signature. In addition to this, when a transactional store is retired (i.e., no conflict

appears) the core must maintain the old value of the line in a private software log before writing

41

the new value to memory. The software log contains, for each transactional written line, the

logical address of the line and its pre-transactional value [88].

Our LogTM-SE implementations follows three steps to ensurethat the new value is in place

and the old value in the software log: (1) the system brings the cache line to the processor if it

is not already there, checking for conflicts through forwarded coherency requests, (2) if there is

no conflict, the old data is stored in the first available entryof the stack together with its logical

address and (3) the new data is stored in the L1 cache and the log pointer is incremented. Note

that the logging process can be treated as a conventional non-transactional store, so conflict

checking is not required—the software log is private and thus not accessed by other processors.

When a core receives a conflict notification, it re-issues thememory operation again, hoping

the conflict to disappear soon. However, LogTM-SE may abort atransaction when a cycle

among conflicting requests is detected. When a core has to abort, it has to undo all the changes

performed by its transaction. This is done by triggering an exception that jumps to a recovery

handler. This handler invokes a software routine that walksthe log in reverse order and, for

each undo entry, stores the old data at the address associated with that entry. When the first

entry of the log is restored—the routine arrives at the head of the log—the handler informs the

hardware that it can clear the access summary, recovers the register checkpoint and sets the PC

to the value stored in the header log, which corresponds to the start point of the transaction.

As transactions are durable, once they commit their changesare preserved forever—i.e.,

the stacked data is discarded by updating the log pointer. Our implementation extends the base

conflict resolution policy of LogTM-SE with other policies described in the literature [14,98].

TCC [45] with distributed commits [92] (TCC-Dist): Modeling TCC-based (LL-like)

systems may turn into a complex task because the majority of proposals usead hoc HTM

implementations. Nonetheless, we integratetruly lazy execution in a conventional CMP envi-

ronment by adjusting the coherence protocol to allow multiple versions of the same cache line.

The complete design of this system is described in Chapter 5.

Lazy HTM systems do not update memory until a transaction commits, so our lazy imple-

mentation modifies the simulation interface to hide transactional stores from Simics, keeping

old values untouched in global memory and new values only locally visible. Hence, the simula-

42

tor buffers transactional writes and bypasses (updates) these values each time a younger reader

(writer) accesses the memory block within that transaction. Despite TCC does not support un-

bounded transactions, we idealized late VM hardware to permit the execution of transactions

of any size. This implementation allows us to emulate the optimal behavior experimented in

FlexTM [112] or EazyHTM [124], which mitigate the impact of resource overflow by using

specially designed hardware.

Like FlexTM, our lazy approach relies on signatures to trackthe read and write sets. To

provide a fair comparison, we used the same signature parameters than in LogTM-SE. Contrary

to FlexTM, our base lazy HTM system does not require softwarearbitration to guarantee trans-

actional consistency. Instead, we borrow the distributed technique presented in [92] to enable

parallel (and reliable) commits. To implement this technique, each core keeps a bit vector con-

taining all the directory banks accessed during the transaction. Before making the state visible

(i.e., moving the speculative state to non-transactional), the committing core must acquire all

the directories that are present in the read and write sets. When a core fails in its attempt (this

happens when another transaction is committing a transaction that has accessed the same di-

rectory), it must re-issue theAcquiremessage. Directory steals are allowed in order to prevent

directory deadlocks. After acquiring all the directories,the core sends abort messages to con-

flicting cores, updates Simics global memory and releases the directories. More details about

the base commit process (and its optimizations) are described in Chapter 5.

3.3 Transactional Workloads

Evaluating HTM systems may become a labyrinthine task giventhe lack of TM software

developed until the date. The majority of HTM systems appeared in the literature do not con-

template complex TM workloads (in part because they did not exist by the time those systems

were published), and most TM behavioral studies are based onsimple programs that read/update

shared variables (e.g., global counters) or small data structures. Instead, we characterize both

reference and proposed HTM systems with a vast range of TM applications, which allows us to

better prove the (dis)advantages of each approach.

All the TM benchmarks are multithreaded applications written in C. These applications

first prepare the input data for computation and then divide the work in independent threads,

43

Suite Benchmark Input parameters Execution

µbench

Btree-fix 10/90% inserts/lookups, fixed Tx size 16K iterations

Btree-var 50/50% inserts/lookups, variable Tx size 2K iterations

List-long 5K dummy work, 2K useful work, 16 lists 4K iterations

List-short 2K dummy work, 1 useful work, 1 list 16K iterations

Hash-read 10/80/10 inserts/lookups/deletes, 4K buckets 4K iterations

Hash-write 25/50/25 inserts/lookups/deletes, 1K buckets 4K iterations

SPLASH-2
Barnes 512 bodies Whole parallel phase

Raytrace Teapot Whole parallel phase

STAMP

Bayes 32 vars, 1024 records Whole parallel phase

Genome 32K segments, 512 genes, 32 lengths Whole parallel phase

Kmeans-low 40/40 clusters, 16K points Whole parallel phase

Kmeans-high 15/15 clusters, 16K points Whole parallel phase

Intruder 4K traffic, 10 attack, 4 packs Whole parallel phase

Labyrinth 32*3*3 maze, 2048 routes Whole parallel phase

Ssca2 213 nodes, 3 edges, 3 length Whole parallel phase

Vacation-low 1M clients, 90% queries, 4 items 16K tasks

Vacation-high 64K clients, 60% queries, 16 items 4K tasks

Yada 20 angle, 633.2 mesh Whole parallel phase

Table 3.2: Input parameters of TM applications

which are bound to a unique processing core usingpthreads. Threads are executed in parallel,

accessing shared data within transactions. Before starting the parallel phase, a Simics “magic”

instruction is introduced in order to warm up transactionalstructures. A non-blocking memory

pool library is used to remove implicit locking from OS operations (malloc or free) performed

inside transactions. Global barriers are placed at the end of the computation to synchronize

threads. After that, the master thread performs sanity checks.

3.3.1 Transactional Benchmark Suites

TM is an emerging programming paradigm, and thus there is nota quorum regarding which

is the best-suited methodology to quantify HTM systems. This partly happens because it lacks a

44

standard TM benchmarks suite, so most proposals are evaluated with self-developed programs.

We believe that this is a not-fair strategy, given that it maybe applied at convenience, leading

to incorrect conclusions. In order to run away from those tricky methods, this dissertation

evaluates its contributions with a wide spectrum of TM applications, which vary in terms of

transaction’s length and contention. The TM benchmark suites utilized are described below.

Microbenchmarks [80] are slightly modified benchmarks which plain version is provided

by GEMS. These benchmarks interact with distinct data structures and present variable con-

tention, depending on how data is distributed on those structures. We rewrote those bench-

marks (Btree, List andHash) to regulate (by input parameters) overall transactional size and

contention. We utilize these benchmarks to stress the HTM systems, which permits us to dis-

tinguish clearly (and rapidly) the strengths and weaknesses of each implementation.

Splash-2 [128]presents a set of benchmarks for multiprocessors, where lock-protected re-

gions are replaced with transactional blocks. As Splash-2 benchmarks have been tuned over

the years to minimize synchronization, they spend most of the time in small, fine-grained trans-

actions. Although this behavior is not TM representative, we included in our evaluation two

Splash-2 benchmarks (BarnesandRaytrace) because (i) they enable a fair comparison with past

HTM work [130], which used this benchmark suite for their evaluation, and (ii) they concentrate

shared data in few code lines, what makes critical the conflict management policy implemented

in the system.

STAMP [16] is the first (and, until the date, the unique) pure transactional benchmark suite.

STAMP workloads try to recreate how an average programmer would implement an applica-

tion using a TM programming model. In these workloads (Bayes, Genome, Intruder, Kmeans,

Labyrinth, Ssca2, VacationandYada), programmers conservatively protect accesses to shared

data structures in large (even huge) transactions, which eases programmability but increases

the conflicting rate—and thus scalability. Hence, these workloads spend most of the time run-

ning transactions, what raises interesting performance concerns when they are executed in non-

optimized HTM systems. For the evaluation, most STAMP workloads use the input parameters

suggested in the 0.9.10 distribution. However, some input parameters are modified (using val-

ues suggested for non-simulated executions,i.e., STM systems) to preserve the scalability of

TM applications.

45

Category Benchmark Avg. Read Set Avg. Write Set Max. Read Set Max. Write Set

Fine grain

Barnes 6.27 4.63 41 35

Kmeans-low 8.00 3.50 10 4

Kmeans-high 7.25 2.75 9 3

List-short 1.25 1.50 2 2

Raytrace 5.32 1.98 458 3

Ssca2 3.00 2.00 3 2

Variable grain

Bayes 79.29 37.73 806 455

Btree-var 155.25 85.24 291 262

Genome 31.74 10.47 155 45

Hash-read 128.73 121.19 282 270

Intruder 8.71 2.97 43 21

List-long 30.81 30.67 261 259

Yada 32.77 14.85 326 158

Coarse grain

Btree-fix 36.44 13.52 51 23

Hash-write 158.19 150.25 401 389

Labyrinth 112.02 102.16 316 222

Vacation-low 97.47 20.77 184 31

Vacation-high 101.72 20.20 234 37

Table 3.3: TM applications grouped by the size of their transactions

All transactional benchmark suites are compiled withgcc 3.6 using the -O2 optimization

flag. They are also executed until their completion taking asan input the parameters described

in Table 3.2.

3.3.2 Transactional Workload Characterization

Prior studies assumed that transactions are commonly smalland do not conflict [26]. How-

ever, novel TM workloads include large transactions that access shared data structures, what

may often produce collisions. The performance achieved by HTM systems is highly applica-

tion dependant; therefore it is interesting to categorize TM workloads according to their charac-

teristics. Grouping applications permits a comprehensible understanding of how transactional

46

Category Benchmark Transactional Time Committed TransactionsTagged Transactions

Barely Tx

Barnes 2.11% 2187 3

Kmeans-low 3.65% 21846 3

Kmeans-high 8.77% 21846 3

Intruder 29.30% 22501 3

List-short 2.38% 32768 2

Raytrace 0.14% 47751 5

Ssca2 14.45% 47257 3

Mostly Tx

Bayes 81.79% 490 15

Btree-var 98.86% 2048 2

Btree-fix 91.79% 16384 2

Genome 97.57% 19483 5

Hash-read 98.47% 4096 4

Hash-write 98.78% 4096 4

Labyrinth 99.48% 4098 3

List-long 62.74% 8192 2

Vacation-low 91.15% 16384 3

Vacation-high 86.34% 4096 3

Yada 99.92% 2788 6

Table 3.4: TM applications grouped by the size of their transactional time

mechanisms operate under certain scenarios and allows us todetermine the major performance

bottlenecks associated with these situations.

Table 3.3 provides important information about the size of the transactions that belong to

the applications utilized in this dissertation. For each benchmark, Table 3.3 shows a column

with its average transactional read set size (Avg. Read Set), the average transactional write set

size (Avg. Write Set), the maximum read set size (Max. Read Set) and the maximum write set

size (Max. Write Set) of a single-threaded LogTM-SE execution (cache line granularity). The

last column classifies applications in three different categories according to the data gathered in

the previous columns.

47

We refer asfine-grainedapplications those that contain transactions that read and/or modify

few lines. Variable-grainedapplications are those that combine small and huge transactions

to build software using rational-size atomic blocks. Theseapplications are easy to identify be-

cause average and maximum read and write sets considerably differ. In contrast,coarse-grained

applications are dominated by large transactions that copemost of application’s execution time.

Variable- and coarse-grained applications recreate the (expected) behavior of future parallel

software, where non-expert programmers enclose shared data utilizing conservative principles.

Table 3.4 complements the previous table with additional information of single threaded

LogTM-SE executions. It shows the percentage of time spent inside a transaction (column

Tx Time), the number of committed transactional instances during the application (column

Committed Tx) and the number ofdifferent tagged transactions executed in the application

(column Tagged Tx). The last column of Table 3.4 classifies the benchmarks in function of its

transactional weight.

We define asbarely transactionalthose applications that spent most of the time in parallel,

independent computation or in barriers waiting other threads to finish their computation. These

applications may experiment high contention given that they tend to concentrate shared memory

accesses in tiny transactions. Instead,mostly transactionalapplications cover almost all parallel

computation using transactions.

Prior tables provision a summary of static transactional information. Unfortunately, this

data is not sufficient to extract conclusive assumptions of application’s scalability capabilities.

For example, someone could claim that fine-grained, highly-tuned applications should perform

better than coarse-grained applications. This is commonlytrue in STM systems, where transac-

tional overheads downgrade considerably overall performance [18]. However, in HTM systems,

fine-grained applications usually concentrate data collisions in specific points of the program,

which may generate high contention and thus worse performance.

All the above has lead us to measure the contention level of the applications. Table 3.5

summarizes contention information regarding 8-threaded LogTM-SE executions. The second

column of the table (Conflict Rate) shows the number of collisions per committed transaction,

while the third column (Abort Rate) shows the number of aborts per committed transaction. The

forth column (Contention Overhead) shows the percentage oftime spent managing contention—

48

Category Benchmark Conflict Rate Abort Rate Contention Overhead

Low Contention

Hash-read 0.48 0.07 28.32%

Kmeans-low 0.01 0.001 0.02%

Kmeans-high 0.03 0.002 0.15%

Raytrace 0.08 0.05 0.75%

Ssca2 0.005 0.001 0.78%

Vacation-low 0.07 0.001 2.70%

Medium Contention

Barnes 0.32 0.24 6.99%

Btree-fix 0.04 0.03 12.17%

Genome 0.13 0.08 32.07%

List-short 0.25 0.18 5.84%

Vacation-high 0.12 0.02 10.47%

High Contention

Bayes 2.93 2.26 78.60%

Btree-var 0.23 0.19 36.77%

Hash-write 1.50 0.39 56.81%

Intruder 4.37 2.95 71.06%

Labyrinth 0.85 0.76 63.50%

List-long 0.62 0.40 37.35%

Yada 2.55 1.79 77.74%

Table 3.5: TM applications grouped by the size of their transactional contention

i.e., time spent executing discarded work, re-issuing a memory request, recovering the pre-

transactional state and spreading transactional computation.

The last column of the table classifies the applications according to the contention obtained

using our baseline HTM system.Low-contentionapplications experiment few conflicts, so they

are expected to scale well even with more threads.Medium-contentionapplications show vari-

able contention through different phases of the execution,what should limit global performance

as reported by Amdahl’s Law [36, 52]. Finally,high-contentionapplications present a great

challenge for HTM systems, given that they are expected to perform poorly due to the huge

overhead produced by conflicting memory accesses.

49

Figure 3.2: Clustering TM workloads according their characteristics

3.3.3 Discussion about Transactional Workload Behavior

Figure 3.2 clusters TM applications using the categories introduced in Tables 3.3- 3.5. As

it can be seen in the figure, most transactions rather differ in the way they use transactions,

implementing transactions of distinct size, time and contention. Performance analysis carried

out in this dissertation are grouped in accordance with one (or more) of the above categories.

This classification allows the reader to better understand the limitation factors of each HTM

system when it executes a specific type of application.

Thus, we want to note that a heterogeneous set of applications has been used to evaluate the

proposals presented in this dissertation. Our classification indicates that most of them exhibit

different properties, and it seems reasonable to think thatthey will show a divergent behavior

when they execute over the same underlying hardware. For example,Labyrinth andVacation-

low are both coarse-grained applications, but possibly onlyVacation-lowwill scale in LogTM-

SE due to its low contention.

Similarly, these applications may alter their performancewhen they are executed on distinct

HTM systems. As discussed in the previous chapter, lazy HTM systems commonly present

poor scalability when they execute fine-grained applications [16], like Ssca2, because of the

overhead introduced on commits [45]. However, they also favor concurrency in high-contention

applications [111]. Hence, some high-contention applications with small transactions, such as

List-shortor Genome, may obtain better performance when they are run on a lazy HTMsystem.

50

3.4 Performance Metrics and Methods

Evaluating HTM systems is an extremely sensitive labor, as common performance metrics

can not be applied. For example, an HTM system with high IPC may present ridiculous perfor-

mance if retired transactional instructions are later discarded when transactions abort. Similarly,

specific contention metrics, such asAbort Rate, may produce tricky behavioral pathologies. For

instance, a high-contention TM application may show a lowAbort Ratebut poor performance

if processors are disabled after abort recovery.

For our quantitative performance evaluation, we focus on the parallel phase of the program,

skipping the initialization and the end phase. Hence, we runthe TM applications until their end,

taking the overall execution time as the basic metric for theperformance analysis. Notice that

threads are synchronized with barriers at the end of the program, ergo the execution completes

when the last operative thread finishes its computation. In our performance analysis, execution

time is normalized according to the reference HTM systems toease the comparison with other

HTM proposals.

Although normalized execution time is necessary to showhow muchperformance each

HTM system obtains, it is even more important to understandwhyeach HTM system achieves

that performance. Thus, is crucial to distribute the execution time to see which computation is

useful and which is discarded. Our analysis does such distribution in a way that permits a fast

localization of HTM main limitations.

Besides execution time, this dissertation uses secondary metrics to provide further infor-

mation regarding transactional behavior. These metrics complement the analysis by pointing

out specific factors that may impact overall performance. The abort rate, commit contention

or number of network messages are few examples of secondary metrics. Other metrics are

described at convenience in the following chapters.

Transactional applications are executed using from 1 to 32 threads. We run several simula-

tions for each benchmark and then compute the average mean. We provide scalability graphic

plots to show how applications behave under different number of threads. We also include

bar graphs to analyze the performance of many-threaded executions, which are the ones that

present more performance pathologies. Bar graphs show the speedup with respect to the refer-

51

ence HTM systems using 32-threaded (16-threaded) executions when studying low-contention

(high-contention) applications—we use fewer threads for high-contention applications because

they normally do not scale beyond 16 threads.

Modeling power and energy consumption in transactions systems is extremely hard, given

that aggressive designs may accelerate execution and thus reuse hardware resources more of-

ten. While this behavior may introduce high energy consumption peaks, it may reduce overall

execution time. Moreover, the number of instructions may vary depending on the policies im-

plemented in the HTM system, making the energy analysis useless.

Due to the difficulty of providing accurate power/energy metrics, we have decided to present

a behavioral analysis instead. Network traffic, point-to-point coherence messages and memory

accesses have been characterized. This approach allows us to point out some hints that may

help the reader to understand the power and energy implications of the proposed transactional

mechanisms.

We evaluate the complexity and area of our proposals qualitatively, comparing the transis-

tors required in our implementations with the hardware costof state-of-the-art HTM systems.

52

53

Chapter 4

A Log-Based Hardware Transactional

Memory with Fast Abort Recovery

Data version management (VM) is one of the key aspects of eager1 HTM systems, and its

implementation has a direct impact both in the performance of the system and in the complexity

of the hardware design [14].

Late VM systems [5, 33, 97] keep old (pre-transactional) state in the upper levels of the

memory hierarchy, buffering the new (speculative) state inprivate caches [97, 112] or in store

buffers [33]. While in late data versioning aborts are fast because it is enough to invalidate

those hardware structures that hide the new state, commits require additional data movements.

Moreover, late VM systems incur in significant overhead in the case of resource overflow, as

they must jump to STM execution [63] or traverse complex hardware structures on cache misses

and commits [97].

Early VM [84] systems keep new state in-place in memory, holding the pre-transactional

state on a side, commonly a software-resident log [10, 12, 84, 130]. In case of abort, the sys-

tem must trigger an exception and recover pre-transactional values using a user-level software

routine. Nonetheless, commits are immediate—data is already placed in memory. As a result,

early VM systems do not suffer from cache/buffer overflows like late VM systems—speculative

data can safely be moved across the memory hierarchy.

1in this thesis, we refer as eager HTMs those systems that resolve conflicts as soon as they are produced, inde-
pendently of the VM strategy that they employ.

54

The obstacles of early and late VM systems have led us to develop FASTM, a log-based

HTM system with fast abort recovery. This is an eager HTM system that takes the best of both

VM worlds: FASTM keeps both the new state and the pre-transactional state in memory to pro-

vide fast commits and aborts. FASTM achieves this by pinning down new values in the L1

caches, similar to late VM systems, but with two key differences: (i) transactions update mem-

ory in-place, so commit requires no special actions, and (ii) overflows are handled gracefully

by using a software-managed log, like in early VM systems.

In FASTM, we change the coherence protocol and the L1 cache controller to guarantee that,

if there are no overflows, the old state is in-place in the higher levels of the memory hierarchy.

Aborts in FASTM are fast, because they only require the invalidation of the transactional lines

that remain in the L1 cache. Nonetheless, since the pre-transactional values are kept in a log on

the side, if a transactionally modified line is evicted from the L1 cache the system can recover

the old state from the log, using the software abort recoverymechanism—not unlike early VM

systems.

This chapter starts presenting a quantitative analysis of the limitations of state-of-the-art ea-

ger HTM systems and follows showing a potential study that explains the benefits of having fast

abort recovery. Then, it overviews the FASTM system, its underlying hardware and the modifi-

cations in the coherence protocol. Afterwards, it summarizes how FASTM executes basic mem-

ory operations. Later, it proposes two optimizations for the FASTM system: FASTM-WN and

FASTM-SL. The chapter finalizes evaluating FASTM, reviewing related work on unbounded

HTM systems and exposing the main conclusions of the study.

4.1 Motivation

Previous studies [26] have claimed that common-case transactions were short and did not

usually conflict. However, newer, more complex workloads that are believed to better represent

future transactional applications [16] exhibit a significant number of large and/or conflicting

transactions. The execution of large transactions has uncovered performance issues with current

implementations of both early and late VM systems.

55

Figure 4.1: Percentage of time spent in abort recovery under 16-threaded LogTM-SE

Figure 4.2: Abort rate distribution of 16-threaded LogTM-SE executions

Early VM systems suffer considerable delays when they execute transaction-dominated

workloads. Figure 4.1 shows the percentage of time spent in abort recovery after executing

16-threaded TM applications using LogTM-SE, a well-known early VM system. Applications

are gathered according to the size of the transactions that they execute; from fine-grained (left)

to coarse-grained (right). As it can be seen, TM applications devote substantial part of their

time to abort recovery, especially those with huge (e.g., Hash-writeor Labyrinth) or conflicting

(e.g., Btree-fixor Intruder) transactions, due to the overheads of software recovery.

Moreover, slow aborts may exacerbate contention, as many conflicts involve transactions in

their abort recovery phase, which in turn provokes more aborts. This happens because an abort-

ing transaction cannot clean (remove the ownership of) its write set until the pre-transactional

values are restored. Figure 4.2 classifies the abort rate of 16-threaded LogTM-SE executions in

two different groups: those aborts produced by in-flight (non-aborting) transactions (light bar)

and those aborts that involve, at least, one transaction that is recovering its old state (dark bar).

56

Figure 4.3: Percentage of overflowing transactions in single-threadedLogTM-SE executions

Figure 4.4: Percentage of time spent in overflowing transactions in single-threaded LogTM-SE

As shown in the graph, in high-contention applications (e.g., List-short, Intruder or Labyrinth)

an important number of aborts come from aborting transactions.

On the other hand, the overflow mechanism becomes critical inlate VM systems. Figure 4.3

shows the percentage of committed transactions that overflow the L1 cache in single-threaded

executions of LogTM-SE. The left-sided bars show fine-grained TM executions, while the right-

sided bars show coarse-grained TM executions. In contrast to conventional belief, the graph

indicates that TM applications (especially those with large transactions, likeBtree-varor Hash-

read) commonly evict transactionally written lines from the L1 cache.

Even more important, overflowing transactions cover most ofthe transactional time in

variable- and coarse-grained TM applications. From Figure4.4, which shows the percentage of

execution time (transactional and non-transactional) that LogTM-SE runs an overflowing trans-

action (single-threaded), we can devise how critical is to not slow down on overflows. However,

late VM systems delay those transactions, either executingthem in software or walking com-

plex hardware structures on L1 cache misses or on commits. Thus, those systems perform worse

57

Figure 4.5: Store buffer implementation of an HTM system with early VM

than early VM systems when they execute TM applications populated with large transactions

because they (i) retard memory operations, (ii) require additional movements at commit time

and (iii) increase the time that conflicting data is exposed to conflicts.

To quantify the overheads associated with data versioning,we analyze the behavior of TM

applications on a store-bufferedearly VM system that recovers instantaneously the old state

when the aborting transaction fits in the in-core store buffer [70]. Figure 4.5 describes the store-

buffer HTM system, which shares some similarities with the Rock HTM implementation [33].

Following is a general picture of how the system interacts with the memory hierarchy when it

executes transactional operations.

Transactional Store: A transactional store (TStore) sends the old data from the L1cache

to the store buffer and simultaneously updates the L1 cache with the new data value (Fig-

ure 4.5a). At the same time, a CAM search is performed in the buffer using the store address.

A match means that this address has been written before in this transaction and the correct (pre-

transactional) data is already present in the buffer. If no match is found, the old L1 data is stored

in the first free entry of the buffer.

TLoad: A transactional load works identically to the original LogTM-SE proposal [130],

getting the (non-)speculative data from the closest level of the memory hierarchy (Figure 4.5b).

Abort: When an abort occurs, the processor is stopped and the state is restored by moving

the old values from the buffer to the L1 cache using regular memory write requests (Figure

4.5c). If a line has been evicted from the L1 cache, it is brought from the lower levels of the

58

Figure 4.6: Speedup of LogTM-SE, Ideal early VM, Store Buffer (8 entries) and Store Buffer
(32 entries) implementations

hierarchy. This is not a problem, because the conflict detection mechanism guarantees that no

other processor accesses the line—the abort process must beatomic. In our system, the cache

has a single write port, so only one request can be sent at a time. When the abort recovery

process finishes, the buffer is cleared.

Commit: On commits, all buffer entries are invalidated by flash-clearing the valid bits

(Figure 4.5d). No other action is required.

Overflow: When the buffer overflows, transactions have to be recoveredvia the software

log. In order to avoid unnecessary aborts, this implementation creates the software log always.

Hence, transactional stores place the old values in both thestore buffer and the software log.

On overflow, a special flag is asserted and the store buffer is cleared–from that point, it is not

necessary to keep old values in the store buffer. When a transaction aborts, the overflow flag

decides if the transaction is recovered via hardware or software.

Figure 4.6 presents the average speedup of LogTM-SE and the store-buffered (SB) HTM

implementations normalized to single-threaded LogTM-SE execution. TM applications are

grouped according to their granularity. We also present thespeedups obtained by an upper-

bounded HTM system that spends zero cycles on commits and aborts, which allows us to show

the potential of putting into effect an ideal VM mechanism. Two realistic store buffer sizes

have been used in this study: store buffers either have 8 or 32word entries. These sizes corre-

spond to the ones found in commercial processors from the Niagara series [62] and Rock [23],

respectively.

59

As we can see in Figure 4.6, the ideal (zero-cost commit and abort) VM implementation

outperforms LogTM-SE by an average 18% on fine-grained applications (32-threads) and ap-

proximately by a 70% on variable- and coarse-grained applications (16-threads). Thus, data

versioning becomes critical in applications that execute large transactions.

Store-buffered HTM implementations obtain similar performance to the ideal VM mech-

anism on fine-grained applications, where transactions fit on the store buffer. However, in

variable- or coarse-grained applications they behave as LogTM-SE: the ideal performance is

downgraded around a 45% (8-entry) and a 44% (32-entry) when store buffers are used for

version management. Thus, we can conclude that bigger buffers are needed to achieve close

performance to the ideal VM system.

We can draw three main conclusions from the previous study. First, a VM mechanism with

fast abort recovery should help to reduce overall executiontime and contract the window of

conflicts, improving then the scalability of TM applications. Second, such VM mechanism

must be able to handle gracefully resource overflows, eliminating large transactions from the

critical performance path. Third, this VM mechanism shouldhave enough capacity to accelerate

any kind of transaction, given that conventional store buffers are too small to be effective when

they are used to maintain transactional values.

4.2 The FASTM System

In FASTM we propose such VM mechanism, which allows us to overcome the major limi-

tations of early and late VM systems. To achieve that goal, FASTM impulses a simple but truly

elegant abort strategy: it provides fast abort recovery forshort- and medium-sized transactions

(common case) and slow software recovery for those transactions that exceed the L1 cache

(uncommon case).

4.2.1 FASTM Overview

The novelty in FASTM lies on the way it manages the transactional state and in its abort re-

covery mechanism. Following the example of many late VM systems [97,112], FASTM utilizes

a new coherence protocol for the L1 cache—we call it Transactional Cache Coherence Protocol

(TMESI for short).

60

Figure 4.7: Hardware support for FASTM

TMESI is a write-back protocol that provides fast commits because it does not hide trans-

actional updates from the memory hierarchy—this is the mainreason why FASTM is taking

for an early VM system—but it does enforce the following condition: transactionally modi-

fied lines are “pinned” in the L1 cache (they cannot write back) to guarantee that a valid copy

of the pre-transactional version of the line exists in the memory hierarchy until commit/abort

time (or until an overflow occurs). This operation is similarto some Thread-Level Speculation

protocols [115]. Section 4.3 presents a throughout description of the TMESI protocol.

With the TMESI protocol, the system guarantees that if no overflow occurs, the old values

are still in-place in the higher levels of the memory hierarchy. Hence, if a transaction that has

not overflowed the L1 cache aborts, FASTM provides a very fast abort mechanism: it simply

invalidates the lines modified by the transaction (this is a silent invalidation, more on this later).

However, if an overflowed transaction aborts, FASTM falls back to a software recovery

mechanism similar to that employed in LogTM-SE [130]. The software abort recovery process

requires just a few registers to hold the last entry of the log, the address of the abort recovery

routine and the Program Counter (PC) of the current transaction.

Like most of the early VM implementations, FASTM performs eager conflict detection and

eager conflict resolution. FASTM borrows the conflict detection engine from LogTM-SE, where

the directory forwards transactional requests to the private caches. Moreover, as it is described

in Section 4.7.4, FASTM supports multiple conflict resolution policies.

4.2.2 Hardware Support

FASTM is an eager HTM system based on LogTM-SE [130], so our proposal requires

mostly the same hardware support. (A scheme of FASTM’s hardware support is shown in Fig-

61

ure 4.7.) FASTM uses two hardware signatures to track transactional accesses: a Read Signature

to identify read conflicts and a Write Signature to detect write conflicts in case of overflow.

Also, it keeps a software log in the same way as log-based HTM systems do: each transac-

tional store copies the old value to the log before updating the memory with the new value. We

assume that logging is a dual-phase process where, (1) the old line is brought to the processor

and is written in the first free entry of the log and (2) the new value is stored in the cache. The

combination of the signatures and the software log allows FASTM to gracefully handle cache

overflows.

To support eager conflict management, FASTM keeps evicted L1 data in a special directory

state, which maintains the last owner (sharers) of the line.Hence, future requests to that line

are forwarded to the last owner (sharers), who validates theconsistency of the transaction by

clashing the requested address into the Read or the Write Signature. Each core also incorporates

an OV bit that is set when a transaction replaces a transactionally written line.

4.3 The Transactional L1 Cache Coherence Protocol

In order to allow a special handling of transactional stores, TMESI modifies the classical

MESI protocol to put said lines to a new state, namedT, where they persist until the transaction

commits, aborts or overflows. Therefore, FASTM requires, as it is shown in Figure 4.8, an extra

bit to encode theT state and some logic to identify transactional stores.

TheseT lines are also used to detect conflicts among transactions, so the Write Signature

only contains the addresses of lines that overflow (get evicted from) the L1 cache. This fact

reduces the aliasing in the Write Signature, increasing itsfidelity.

Figure 4.8 shows the principal state transitions of the TMESI coherence protocol. In the

diagram, the triggering message is written before the slashand its associated action after the

slash (‘–’ means none).TStoreandTLoadare memory accesses produced inside a transaction.

GetSis a directory forwarding load request from a remote processor, GetX is a forwarding

transactional write request. Transactional requests are identified by adding a ‘T’ prefix before

the requested message (TGetSfor TLoads, TGetXfor TStores).

62

Figure 4.8: TMESI coherence protocol transitions

If a forwarded message generates a conflict (TGetS(C)or TGetX(C)in the diagram), the

requested line remains in the same state, sending aNackmessage to the requester. Then, re-

quester can retry the memory access or abort the transaction. TheWB action pushes the line

to the higher levels of the memory hierarchy.Replacementindicates an L1 cache eviction. In

the case of replacing a transactional line, a set of overflowed actions are required (OV actions).

Commit andAbort actions also trigger transitions to the Modified or Invalid states. A detailed

explanation of the TMESI transitions is presented in Section 4.4.

We want to note that the TMESI protocol only works for CMP systems with single-threaded

cores. In a simultaneous multi-threaded (SMT) environment, it is necessary to prevent accesses

to T-state lines to those threads that share the core with the owner of the line. There are two

different solutions to implement FASTM on SMT systems: (a) keep always written locations in

the Write Signature and enforce signature matching even in the case of hitting aT line or (b) add

a thread idon each entry of the cache that informs who is the current owner of a transactionally

written line.

63

4.4 FASTM Transactional Operations

This section describes how FASTM operates, explaining in detail how transactional lines

interact with the system. We present the basic operations ofthe system and describe L1 cache

replacements and the mechanism for abort recovery. For our discussion we will assume a CMP

system with single-threaded cores and two levels of caches,where the L1 cache is private per

core and the L2 cache is shared. Coherency is implemented using a directory at the L2 cache.

4.4.1 Transactional Stores

To understand how transactional stores operate, assume a core C0 that performs aTStore

instruction. If C0 has the line in its L1 cache in an exclusive (T or E) state, it changes the

cache state toT and theTStorecompletes immediately. If the line was previously written by

C0 inside a transaction that has already committed, or by non-transactional code, the line may

be inC0’s L1 cache in theM state. If so, thenC0 must write back the line data to the L2 cache

before transitioning the line to theT state and completing theTStore. This write-back does not

generate any coherence requests to the other L1 caches, but it is necessary for guaranteeing that

the L2 cache always has the correct pre-transactional state.

In Figure 4.9a we can see an example of the case whereC0 misses in the L1 cache (having

the line in theS state is identical). The left (right) of the figure shows the state of the system

before (after) theTStore. WhenC0 misses in its L1 cache (step 1), it requests the line from

the directory (step 2), and the directory forwards the request (TGetX) to the line current owner,

in this caseC1 (step 3). IfC1 has the line in theT state, itnacksthe request directly without

checking the signatures. Otherwise, it checks its Read and Write signatures to detect conflicts

with the requesting transaction (step 4). If a positive match is found,C1 nacksthe request from

C0 and the conflict resolution mechanism kicks in. If the line isnot being accessed by any

transaction (i.e., C1 has it inM, or E state), the directory gives the ownership toC0, invalidating

all other copies of the line (in this caseC1).

With MESI, if C1 has the line inM state it must forward the line data toC0 beforeC0 can

become the new owner of the line. In TMESI, the L2 cache must always have a copy of the

old value in order to guarantee correct abort recovery for non-overflowing transactions. For this

reason,C1 also sends a copy of the forwarded line to the L2 cache (step 5)before relinquishing

64

Figure 4.9: Non-conflicting TStore (a) and conflicting TLoad (b) in FASTM

ownership of the line toC0 (step 6) and allowingC0 to safely write the transactional value (step

7 and 8).

4.4.2 Transactional Loads

Now, assume a coreC1 that performs a transactional read (TLoad) operation. In FASTM,

TLoadsare performed as regular loads. However, in order to maintain transactional coherency,

theTLoadaddress must be added to the Read Signature ofC1, which is used to detect conflicts

with remote transactional stores.C1 only has to check for conflicts when loading a line that is

not present in its L1 cache. In this case,C1 must request the line from the directory in the L2

cache, which serves the line if there are no writers. If thereis a writer, the directory forwards

the request to the core that owns the line.

65

In Figure 4.9b we can see how the previous example follows in the case where coreC1 tries

to read a transactional written line by coreC0. The left (right) of the figure shows the state

of the system before (after) theTLoad. In this context,C1 introduces aTLoadoperation that

misses the L1 cache (the line is inI state, step 1). WhenC0 receives the forwarding read request

(TGetS, step 2 and 3),C0 must acknowledge it. AsC0 has the line in its L1 cache inT state (i.e.,

it is a transactional, non-oveflowed line), it sends aNackreply toC1 and the conflict is resolved

according to the conflict resolution policy (step 4).

If the requested line is not inT state or it is not inC1’s L1 cache, thenC1 must check its

Write Signature. This is necessary to guarantee coherence for transactions that overflow the L1

cache. If there is a match in the signature,C1 replies toC0 with aNackmessage. Otherwise, the

line moves to theS state and, if the line was previously in theM state,C1 forwards the data toC0

and also writes it back to the L2 cache (this is the same as in a typical MESI).

4.4.3 Transactional Cache Replacements

Figure 4.10a assumes a coreC0 that replaces a line with transactional modifications. In

FASTM evictions of lines inT state write back the speculative values to the higher levelsof the

memory hierarchy, similar to evictions of lines inM state. This is analogous to other log-based

HTM systems (those that implement early VM), and it is safe todo because the pre-transactional

values are kept in a software log. Nonetheless, the system must perform some actions before

pushing the speculative data to the L2 cache.

First, the evicted line address must be added toC0’s Write Signature. Note that in FASTM non-

overflowed written cache lines do not insert their addressesin the Write Signature, which allows

the system to track the write set in a more accurate precision. The directory maintains as the

owner of the line the current core (C0) and will forward all future remote requests to it. As dis-

cussed earlier, upon receiving a remote requestC0 will check its Read and/or Write signatures

to discover conflicts. If theC0 evicted line is also replaced from the L2 cache, the request is

forwarded to all the processors, which must check their signatures. This fact permits the conflict

detection engine to identify collisions that involve evicted transactionally written lines.

66

Figure 4.10: Transactional replacements (a), commits (b) and aborts (c and d) in FASTM

Second, a transaction overflow flag inC0 is asserted to inform the processor that the trans-

action has to be aborted by software. In FASTM, we have chosen to write all the updated lines

in the software log—this fact allows software abort recovery at any time.

An alternative is to only insert overflowed lines in the software log (instead of all updated

lines). This approach is more efficient, because it reduces abort recovery time of overflowed

transactions, given that fewer lines must be restored by thesoftware routine. Moreover, this

results to less cache pollution (the software log is in cacheable memory) which may result in

fewer transactional evictions. We propose such optimization in Section 4.6.

4.4.4 Committing Transactions

FASTM provides, like other early VM systems, a fast commit even for overflowed transac-

tions. FASTM only commits consistent transactions, therefore no additional actions are needed

to validate the speculative state. In FASTM, a committing transaction first flush-clears theT bit

67

of all cache lines, moving allT lines toM, and then releases the signatures. Figure 4.10b shows

how FASTM makes visible the transactional state at commit time.

Notice that non-cached lines do not require any commit action, because transactional mod-

ifications are already in the memory hierarchy. In contrast to late VM schemes [97, 124], our

system does not require sending state updates to the directory. Instead, the directory already

has the committer as the owner of the line (it acquired ownership during the execution of the

transaction).

4.4.5 Aborting Transactions

FASTM uses a hardware-accelerated abort recovery mechanism for non-overflowed transac-

tions (Figure 4.10c) and a software abort recovery mechanism for transactions that have evicted

lines in theT state (Figure 4.10d). The processor decides which of the tworecovery mechanisms

applies by checking its overflow (OV) flag.

Non-overflowed transactions use the coherence protocol to discard transactional modifica-

tions. This process is performed by silently invalidating all the T state lines in the L1 cache (the

directory is updated lazily by future requests). Hence, when the transaction restarts again, it

must re-acquire the ownership of each line. This can be safely done because the L2 cache keeps

the pre-transactional state.

Assume that coreC0 aborts and now coreC1 requests a line thatC0 wrote inside the aborted

transaction. First, the directory will forward the requestto C0 since it is still the owner.C0

acknowledges the request, informingC1 that it (C0) is no longer the owner. Then,C1 will take

the line from the L2 instead, which still keeps the pre-transactional value, and the directory

will be updated. This lazy directory update removes unnecessary communication with shared

resources at abort time, allowing a fast abort recovery.

The invalidation ofT state lines increases the number of L1 misses on restarted transac-

tions. However, this situation is not critical mainly for two reasons. First, most transactions

have considerably smaller write sets than read sets, so the rate of L1 store misses is not a bottle-

neck (read lines are not invalidated in FASTM). Second, these L1 misses are served faster than

conventional L1 misses because these lines are still owned by the aborted transaction.

68

Let’s assume now that coreC0 aborts and tries to re-acquire a line invalidated by the fast

abort mechanism.C0 requests the line from the directory, which still hasC0 as its owner. Thus,

the line can be directly served from the L2 cache, without requiring coherency operations or

signature checking.

Transactions that overflow the L1 cache are recovered by software by taking a trap to the

recovery handler. The recovery handler is a software routine that walks the log in reverse order

and, for each entry, writes the logged data to its corresponding place in memory. Notice that

some of theT state lines may be overwritten by the recovery handler. Suchwrites are performed

by non-transactional stores, moving the lines fromT to M. When the software abort-recovery

mechanism finishes, it returns control to the hardware.

Both the hardware and the software mechanisms release the signatures when the recovery

process finishes.

4.5 FASTM with Wake-up Notification

FASTM follows the same conflict resolution policy than other high-performance eager HTM

systems like LogTM-SE [130], MetaTM [98] or the eager mode ofFlexTM [111]: it stalls on a

conflict and then retries the non-completed memory request until the inconsistency disappears—

i.e., the conflicting transaction commits or aborts. While this strategy permits the conserva-

tion of useful transactional work, it also introduces unnecessary traffic on the on-chip network,

which increments the energy consumed by the application andsaturates shared resources (e.g.,

the network and the directory modules), slowing down conflict-free transactions.

In this section, we propose a novel technique to manage stalled transactions (we called it

wake-up notification). Instead of continuously retrying those memory accesses that conflict,

we stop polling on those cores that cannot complete a memory operation. These cores remain

disabled (they do not schedule any operation to the memory subsystem) until the conflicting

transactions either commit or abort. At that moment, the system enables the core and the trans-

action restarts its execution from the conflicting point.

69

4.5.1 Conflict Tracking

Wake-up notification extends FASTM cores with one bit vector, called Wake-up List (WL

for short) and an integer counter, called Nacks. The WL tracks those cores that are executing

a transaction which has requested a location being read or written by the in-flight transaction.

Thus, this vector has a bit per on-chip core, which is set eachtime a conflict is notified. In other

words, the WL maintains a list of the cores stopped by the current transaction.

The Nacks counter, on the other hand, maintains the number ofremote, non-committed

transactions that conflict with the transaction executed inthe non-operative core. Thus, when

the counter is positive, it means that the conflict is still present in the system, while when the

counter is zero, the core should be enabled.

4.5.2 The Wake-up Mechanism

The wake-up mechanism notifies stalled transactions that the conflict who caused the dis-

ablement of the core has disappeared. This action, which is performed by a committing transac-

tion before it makes the state visible or by an aborting transaction before releasing the read and

write sets, consists on sending aWakeUpmessage to all the cores present in theWL list—those

cores stalled by the committer/aborter.

When a core receives aWakeUpmessage, it is because a remote conflicting transaction has

finished its execution. However, it may be the case that othertransactions still own the requested

data, making useless the activation of the core. Instead of starting polling again, the receiver

decrements the Nacks counter and acknowledges the request.The core only re-schedules the

offending memory request when the Nacks counter is zero—i.e., all the transactions that partic-

ipated in the original conflict have committed or aborted. Ofcourse, the conflict may remain, as

younger transaction may have acquired the permissions of the line while the core was disabled.

We want to note that the use of wake-up notification is independent of the conflict resolution

policy used on the HTM system. Our mechanism does not saywhichtransaction has to be stalled

nor detects cycles among stalled transactions—there are plenty of examples in the literature

that explain how to deal with that. Instead, we focus onhow to handle contending transactions

efficiently, minimizing the impact of retrying redundant memory instructions. Moreover, this

technique can be applied to any eager HTM system, without mattering its VM mechanism.

70

Figure 4.11: Examples of the wake-up notification mechanism

4.5.3 FASTM-WN: Examples of Wake-up Notification

Figure 4.11 shows how FASTM integrates wake-up notification in different situations, build-

ing the FASTM-WN system. In Situation 1, transactionTi asks for a line that belongs to trans-

actionTj. WhenTj receives the petition, it updates its WL list, adding coreCi as a conflicting

core, and repliesTi with a Nackmessage. When coreCi catches the message, it updates the

Nacks counter setting it to one and stops polling the conflicting line. Eventually, transaction

Tj commits, sending aWakeUpmessage to those cores marked in its WL (in the case,Ti). As

a result, the system awakes coreCi (Nacks value is decremented to zero) and it resumes the

execution ofTi.

Situation 2 shows a similar scenario, but in this case transactionsTi andTk own the line.

Thus, whenTj tries to acquire the data, it fails in its attempt, setting the Nacks counter at 2.

Thus,Tj must wait untilTi (first) andTk (later) commit to retry the execution of the stalled

transaction. In Situation 3, there is a crossed conflict between transactionsTi andTj. In order

to guarantee forward progress, the aborting coreCj has to send aWakeUpmessage to revive

coreCi, who retries the original conflicting request.

It can be the case that, due to external effects (a gamma ray flips a bit in aWakeupmes-

sage while it is crossing the network), a wake-up notification does not arrive to the consumer.

To avoid deadlocks—transactions that are never revived by the committingcore—FASTM-

WN couples the system with a mechanism that is triggered if a timeout threshold is reached.

71

This mechanism aborts the stopped transaction and re-executes it afterwards to guarantee for-

ward progress in the application.

4.6 FASTM with Selective Logging

Log-based HTM systems (FASTM included) must face three main challenges that may slow

down transactional execution. First, writing pre-transactional values to the log always before a

transactional store enlarges the latency of those memory accesses—speculative values cannot

be written in memory until the old data is logged. Second, thesoftware log is maintained

in cacheable memory, which reduces the buffering capacity of the transactional caches—in

other words, the logging mechanism increases the possibilities of evicting transactional data.

Third, in log-based HTM systemsall transactionally written lines are placed in the log, even if

the speculative data fits in the L1 cache. Thus, if an overflowing transaction aborts, it has to

restore the whole log using aslow software routine, ignoring the built-in hardware support of

transactional caches [5,12,71,97].

In order to address the above issues, we proposeselective logging, a novel VM technique

that only logs the pre-transactional values of those memoryblocks that the hardware cannot

recover—e.g., a non-committed speculative write that overflows the transactional L1 cache.

Hence, he idea behind selective logging is rather simple buteffective. By adding a few addi-

tional hardware steps on resource overflows (uncommon event), we are able to (i) accelerate

most of the memory updates within a transaction, (ii) reducethe size of the software log, which

diminishes the L1 cache pollution and (iii) accelerate the abort recovery process because fewer

lines must be restored by software.

Selective logging can easily be included in the FASTM framework to build a powerful eager

HTM system that we called FASTM-SL. The following sections describe the selective logging

mechanism, the hardware/software support that it requiresand the FASTM-SL system.

4.6.1 The Selective Logging Mechanism

When an HTM system incorporates support for selective logging, transactional stores do not

carry additional actions—i.e., it is not necessary to write in the log the old state before updating

the memory. However, when a transactional line is evicted from the L1 cache, the processor

72

stops conventional execution (the memory instruction thatgenerates the cache miss remains

incomplete) and starts executing a microcode routine. Thisfirmware loads the old value of the

line from the L2 cache into a special register, and stores theold data and the corresponding

memory address in the first free entry of the software log. After that, the processor re-schedules

the memory instruction that produced the cache replacementand continues executing the trans-

action.

Like other log-based HTM systems, commits do not require additional actions, given that

the transactional state can harmlessly flow though the memory hierarchy. Nonetheless, when an

overflowing transaction aborts it has to perform a two-phaseprocedure. First, the hardware in-

validates all the transactional lines in the L1 cache, clearing the transactional state from caches.

Then, the processor throws an exception and traps to the user(or system) software layer, which

undoes the modifications introduced by the transaction.

4.6.2 Pushing Physical Addresses in the Log

By deferring log updates to L1 eviction time, selective logging requires a subtle modifi-

cation in the way the log is stored in memory. More specifically, traditional log-based HTM

systems uselogical addresses to track the location of pre-transactional data.Logical addresses

are readily available at the transactional store issue time(i.e., the time the log info is collected).

The benefit of using logical addresses in the log is that the software recovery routine can be

done in user-space. In selective logging, on the other hand,the system collects the log info at

the time an L1 cache line is evicted. At this point, logical addresses are not available (most

memory systems use physical addresses), but using physicaladdresses in the log poses a secu-

rity risk though.

In order to address the above issues, we propose to move the transaction abort recovery

handler in the Operating System (OS). In this case, when an overflowing transaction aborts, the

hardware raises an exception that calls the OS abort recovery routine. The OS recovers the log

using physical addresses and returns control to the application. Note that logical-to-physical

translation is not needed when the OS is undoing the log—the TLB is automatically bypassed.

Moreover, the actual log memory must be only visible to the OS, otherwise user applications

can reverse-engineer the logical-to-physical memory mapping. This requires that transactional

73

applications execute a log creation system call at init time. The memory of the log is thus kept

in OS memory, and is hidden from the application.

Some HTM systems may not want to expose the abort recovery to the OS. An alternative

consists on obtaining the evicted virtual2 address of the memory block from somewhere, so the

system can recover the pre-transactional state in the user-space. A simple way to do it resides

on modifying the TLB to providereversetranslation from physical to virtual page memory

addresses. Another design option consists on using a virtually-tagged L1 data cache [2,39,56].

ARM v5 [56] is just an example of a commercial processor that uses virtually-tagged caches.

Discussing the viability of virtually-tagged caches or reverse TLB translation is out of the scope

of this thesis (we refer the reader to [19]).

4.6.3 FASTM-SL: Adding Selective Logging to FASTM

This sections describes how the FASTM infrastructure can be extended to support selective

logging—we call this system FASTM-SL. FASTM-SL differs from FASTM in the way it updates

the software log and how it recovers the pre-transactional state when aborting an overflowing

transaction. While FASTM logs the values ofall transactional stores (at least the first time they

write a line inside a transaction), FASTM-SL only logs the values of transactional evicted data.

Thus, if an overflowing transaction aborts, FASTM has to restore the entire pre-transactional

state by software. Instead, FASTM-SL can take advantage from the innate in-cache support for

clearing non-evicted cache lines.

For FASTM-SL, we assume that the log contains physical addresses, and thus it has to be

recovered in privileged mode. When a transactionally written line is evicted from the L1 cache,

FASTM-SL has to construct a new log entry. We use the example of Figure 4.12 to describe

how the selective logging machinery handles the eviction ofa T-state line (step 1). First, the

eviction process is put on hold, and the core sends a request to the L2 cache for the previous

version of the line (step 2).

The requested data, together with the physical address of the line are temporarily stored in

a special register. At this point, the data in the special register is written to the first free entry

2we assume that logical addresses are analogous to virtual addresses, as most 64-bit architectures (e.g., Intel x86)
turn off segmentation. In fact, the majority of OS Kernels omit segmentation when possible. Systems that require
segmentation can trivially add a step in the translation to obtain the logical address from the virtual address.

74

Figure 4.12: L1 Cache replacement actions in FASTM-SL

of the log using regular (i.e., non-transactional) memory operations (step 3). Then, thephysical

address of the line is added to the Write Signature (step 4) and the OV bit is set (step 5). Finally,

the transactional line is evicted to the L2 cache (step 6). This process maintains the atomicity

of the store operation, a requirement for an in-order core. However, non-blocking out-of-order

processors can be overlap the logging process with other computation.

When an overflowed transaction aborts, FASTM-SL has to restore the values modified dur-

ing its execution. For non-evicted data it is enough to invalidateT-state lines (by flash-clearing

the state bits), as pre-transactional values are still valid in the L2 cache. However, transactional

replaced data has to be restored by software because the L2 cache does not hold the old state

anymore. Hence, the system triggers an exception, which jumps to an Operating System routine

that walks the log in reverse order to undo the changes introduced by the aborted transaction.

Note that, in contrast to FASTM, FASTM-SL only has to restore those lines that have been

evicted from the L1 cache during the in-flight transaction—those lines that fit in the L1 cache are

invalidated by the underlying hardware and, eventually, the core will obtain the valid data from

the L2 cache using conventional coherence requests when thetransaction restarts. As a result,

the size of the log (and thus the time spent in software abort recovery) is reduced considerably.

75

4.6.4 Discussion

Selective logging introduces some complexity in the FASTM system. In fine-grained appli-

cations overflows are not common, so FASTM does not experiment long delays. Moreover,

accesses to the software log experiment high locality, and thus writing the log takes small

overhead—most of the memory accesses hit the L1 cache. In addition to this, few transac-

tions overflow the L1 cache (and almost none of them abort), sothe size of the software log is

not so hazardous.

Having said that, someone could say that the amount of complexity of the technique—it may

require changes in the hardware or in the OS—is too high and itdoes not worth the effort. How-

ever, we see reasons to not believe such thing. First, there is a set of TM applications—those

that execute large transactions, evaluated in Section 4.7.3—that can take advantage of selective

logging. It is not clear if those applications will be the norm in the near future, but some people

claim that they will [16]. Hence, it is important to have thisthought in mind when designing

HTM systems, and selective logging certainly helps those coarse-grained applications.

Second, the efficient log mechanism considered in log-basedHTM systems may be too ex-

pensive for next generation of commercial processors, which may decide to implement cheaper

but slower logging strategies. In this situations, selective logging avoids the overhead of access-

ing the log on each transactional store; in fact it removes the cost of logging if the transaction

fits in the L1 cache. Third, selective logging opens new avenues for HTM systems that do not

support unbounded transactions (more on this in Section 5.3).

However, the hybrid recovery solution complicates the abort mechanism, which must main-

tain the atomicity of a dual phase hardware/software abort.The upside of maintaining the

software abort for all updated lines is that it allows the useof mechanisms like those of LogTM-

VSE [119] to survive context switches or page faults. Thus, when this happens in FASTM-SL,

we opt to abort the in-flight transaction and restart it in theoriginal FASTM mode.

4.7 Evaluation

For our analysis we have chosen to compare FASTM with two eager HTM systems that

implement early VM, although with different underlying mechanisms. The first one, which

76

serves as our baseline, is LogTM-SE, particularly the implementation that is distributed with

GEMS 2.0 [80]. The second one, is an idealized early VM systemwith zero-cost abort recovery

that servers as our upper-bound.

We have used theStall conflict resolution policy for the comparisons between FASTM and

the other HTM systems. Stall is the policy implemented by LogTM-SE [130]. After detect-

ing a conflict between two transactions, this policy stalls the requester, who waits until the other

transaction commits. However, to avoid cyclical dependences among stalled transactions, trans-

actions must inform a centralized cycle-detector when theyare stalled. If a dependence cycle

occurs, a timestamp determines the younger transaction that participates in the cycle and aborts

it. After recovery, an exponential backoff is performed to guarantee progress.

We decided to use the Stall conflict resolution policy for allthe comparisons between

LogTM-SE and FASTM for two main reasons. First, this policy minimizes the number of aborts,

which become critical in an HTM with software abort recovery(also, by minimizing aborts we

are conservative in how much FASTM improves over LogTM-SE). Second, by using the Stall

policy for our evaluation it is easier to compare FASTM results with previous LogTM-SE char-

acterizations [70, 106, 121]. In Section 4.7.4 we describe other conflict resolution policies and

we discuss about how they behave in LogTM-SE/FASTM.

Moreover, we have also evaluatedFASTM-SIG , a variation of FASTM where allTStore

addresses are added to the Write signature (remember that FASTM only updates the Write sig-

nature withT state lines that get evicted from the L1 cache). Studying this alternative allows us

to determine the performance benefits of reducing aliasing in the signatures.

In addition to the above proposals, we have also evaluate thetwo optimizations for FASTM pre-

sented in this thesis:FASTM-WN andFASTM-SL . FASTM-WN implements wake-up notifi-

cation to save energy and bandwidth on conflicting memory accesses. FASTM-SL incorporates

the selective logging mechanism in hardware exposing physical addresses to the log.

4.7.1 FASTM Performance Analysis

Figure 4.13 presents the time distribution of LogTM-SE (labeled L), FASTM (labeled F)

and Ideal (labeled I) HTM systems in their 32-threaded executions (for low-contention applica-

77

Figure 4.13: Distributed execution time of low-contention (top, 32 threads) and medium- and
high-contention (bottom, 16 threads) TM applications under LogTM-SE (L), FASTM (F) and

Ideal (I) HTM systems

tions, top of Figure 4.13) and in their 16-threaded executions (for high-contention3 applications,

bottom of Figure 4.13) using the Stall conflict resolution policy.

The execution time has been normalized to the 32-threaded (low-contention) and 16-threaded

(high-contention) LogTM-SE execution and is broken down to: non-transactional and barrier

cycles (labeled Non-Tx and Barrier), the time spent in committed transactions (labeled Good

Tx), the time that is wasted in non-useful work discarded from aborted transactions (labeled

Aborted Tx), the time spent in abort recovery (labeled Aborting), the time that transactions re-

main stalled waiting for a conflict to be resolved (labeled Stalled), and the time that processors

execute the exponential backoff after aborting (labeled Backoff).

As it can be seen in Figure 4.13, FASTM has an average speedup of 16% (low-contention)

and 44% (high-contention) over LogTM-SE, achieving, in most of the workloads, similar per-

formance to the ideal VM approach, which uses a zero-cycle abort recovery mechanism and

3we refer as high-contention applications those that presented medium and high abort rates in Section 3.3.2

78

Figure 4.14: Performance improvement of FASTM-SIG (S), FASTM (F) and Ideal VM (I) HTM
systems over LogTM-SE in low-contention (top, 32 threads) and medium- and high-contention

(bottom, 16 threads) TM applications

perfect signatures. The benefit is especially notable in some coarse-grained applications like

Bayesor Btree-fix, where FASTM obtains more than 2X speedup with respect to LogTM-SE.

The reasons why FASTM outperforms LogTM-SE in all the benchmarks are explainedin the

following paragraphs.

Fast abort recovery. FASTM decreases the time spent in abort recovery, which reduces

overall execution time. As we can see in Figure 4.13, the LogTM-SE recovery mechanism

accounts for 6.6% of the total execution time on high-contention applications and for 1.4% on

low-contention applications. Note that, in coarse-grained applications likeBtree-var, List-long

or Labyrinth, up to 10% of the time is spent in the software abort routine. This undesirable

overhead can be reduced if we apply a fast abort recovery mechanism. In fact, FASTM only

spends, on average, 1.9% of the execution time to restore thepre-transactional state of high-

contention applications, which corresponds to a 4.5X improvement over LogTM-SE. For low-

contention applications, the time spent in abort recovery is negligible in FASTM.

79

Low conflict rate. By reducing the abort recovery time, FASTM decreases the number

of conflicts that involve transactions that are aborting. InLogTM-SE, the transaction is alive

until the very end of the abort recovery procedure. Thus, as we have shown in Figure 4.2,

remote transactions that want to access to data owned by the aborting transaction will generate

conflicts. As FASTM aborts transactions faster, most of the conflicts produced in the LogTM-

SE abort period disappear. This benefit can be seen from the data in Table 4.1, which shows,

for both HTM systems, the rate of aborts per transaction (labeled Abort Rate) in variable- and

coarse-grained applications.

Figure 4.14 shows the speedup achieved by the FASTM-SIG (labeled S), the FASTM (la-

beled F) and the Ideal VM (labeled I) implementations over 32-threaded (low-contention ap-

plications, top of Figure 4.14) and to 16-threaded (high-contention applications, bottom of Fig-

ure 4.14) LogTM-SE executions. The average time in both graphics is calculated using the

harmonic mean.

Small Write Signature. The figure shows that FASTM can also take advantage of theT

state to reduce the pressure on signatures, which may lead toless false conflicts. However, this

fact is not critical in the majority of the benchmarks. As canbe seen in Figure 4.14, benchmarks

with small or medium size transactions do not suffer from false positives when 2 Kbit signatures

are used, and thus FASTM-SIG and FASTM obtain similar performance results. OnlyBtree-var

andLabyrinth, which execute huge transactions, gain from this enhancement, showing a up to

a 10% speedup in the comparison between FASTM-SIG and FASTM.

On the other hand, FASTM-SIG facilitates the use of mechanisms like those of LogTM-

VSE [119] to survive context switches or page faults (because the write set of the transaction is

already in the Write Signature). With FASTM, the Write Signature has to be reconstructed from

the log (the hardware Write Signature does not include theT state lines in the L1 cache). Given

that our evaluation shows that the fidelity of the Write Signature is not critical, FASTM-SIG may

be a good alternative to simplify transaction virtualization.

Good fine- and coarse-grain performance. As it can be seen in the previous figures,

fine-grained applications—those that execute small transactions—exhibit good scalability in

the majority of TM systems given that most of their time is spent in non-transactional code.

Ssca2does not show this behavior because most threads wait in barriers on certain phases of

80

LogTM-SE FASTM FASTM-SL

Bench Commits Abort Rate SW Ab OV Tx Abort Rate SW Ab OV Tx Aborts SW Ab

Bayes 520 3.9 100% 71 3.4 16% 37 2.3 10%

Btree-var 2048 1.03 100% 627 0.22 6.5% 34 0.18 2.2%

Genome 19330 0.13 100% 318 0.11 0.6% 18 0.11 0%

Hash-read 4096 0.09 100% 1433 0.07 31% 334 0.07 0%

Intruder 22516 4.84 100% 450 3.36 0% 0 3.34 0%

Lists-long 8192 0.92 100% 802 0.53 7.7% 9 0.42 0%

Yada 2966 2.3 100% 511 2.01 2% 24 2.01 0.6%

Btree-fix 16384 0.3 100% 245 0.05 0% 1 0.03 0%

Hash-write 4096 0.77 100% 2123 0.56 44% 1970 0.53 10.6%

Labyrinth 4128 2.95 100% 2318 0.22 39% 379 0.22 1%

Vacation-low 16384 0.01 100% 820 0.01 0% 0 0.01 0%

Vacation-high 4096 0.38 100% 492 0.27 20% 272 0.21 4.5%

Table 4.1: Overflow, abort and software abort rates for variable- and coarse-grained 16-threaded
executions under LogTM-SE, FASTM and FASTM-SL

the execution. In fact, LogTM-SE does not lose much performance in fine-grained applications

due to their parallel nature. However, benchmarks with somecontention, likeList-short or

Raytrace, are far from the upper-bound because more than 40% of the execution time is devoted

to conflict management. In those applications, FASTM achieves similar performance to the Ideal

VM implementation. This is because fine-grained applications almost never evict transactional

cache lines, so no software aborts are performed.

Some coarse-grained applications, likeGenome, Hash-reador Vacation-lowscale well be-

cause they present few aborts. However, other applicationswith large transactions do not scale

because most of the transactions conflict or overflow. For instance, applications that have lots

of aborts, likeHash-write, Intruder or Yada, require a large number of backoff or stall cycles

(up to 70%) in LogTM-SE.

In these benchmarks, the fast abort recovery of FASTM reduces the time wasted in non-

useful transactional work, the time spent in stalled transactions and the time that processors

execute the backoff (see Figure 4.13). Although most coarse-grained benchmarks, likeBayes,

Vacation-highor Yada, have an important number of overflows, FASTM recovers the majority

81

Figure 4.15: Speedup of FASTM-WN over FASTM in 16-threaded medium- and high-
contention TM applications

of the aborted transactions almost immediately by hardware. This can be seen from the data in

Table 4.1, where we can see the number of committed transactions (labeled Commits) and the

number of transactions that evict transactional lines fromthe L1 cache (labeled OV Tx). We can

also see in that table the percentage of aborts that are restored by software (labeled SW Ab).

As a result, FASTM performs comparable to the Ideal VM implementation for most of the

applications (only 3% worse for low-contention benchmarks, 18% worse for high-contention

benchmarks). However, some applications with large transactions and contention still execute

slow aborts. For example,Hash-writeandLabyrinth suffer a significant amount of software

aborts—up to a 10% of the time is spent in abort recovery. As wewill see in Section 4.7.3,

selective logging is an attractive solution to improve on FASTM performance.

4.7.2 FASTM-WN Performance Analysis

For the performance analysis of FASTM-WN, we have focused on medium- and high-

contention benchmarks because they typically report a gross amount of memory violations,

so they are more sensitive to the impact of continuously retrying conflicting memory accesses

or having extra network messages. We do not show the results of applications with a low con-

flict rate because most of their memory requests are not subjected to long delays produced by

collisions among transactions.

Figure 4.15 presents the speedup of FASTM-WN over conventional FASTM . Both HTM

systems have been evaluated with 16-threaded executions ofmedium- and high-contention

benchmarks. As it can be seen in Figure 4.15, FASTM-WN outperforms all FASTM executions

82

Figure 4.16: Network conflicting messages per transaction of 16-threaded medium- and high-
contention TM applications in FASTM and FASTM-WN

except inBarnes, obtaining an average speedup of 5.5%. The benefit of wake-upnotification

is more notable in applications with large transactions like Hash-writeor List-long, where the

FASTM-WN system can devote all the on-chip resources to non-stalled transactions.

Remember that regular FASTM keeps retrying the conflicting access until the memory oper-

ation succeeds. Until then, the conflicting requests may block shared resources (e.g., routers or

directory entries) and thus increase the latency of conflict-free memory operations. In FASTM-

WN, however, stalled transactions must wait until they receive theWakeUpmessage to retry the

memory access. This procedure is counter-productive in fine-grained applications likeBarnes

because conflicting accesses must wait until they are notified to resume their execution. The

reasons for such improvements are described below.

Reduction of network traffic. Performing wake-up notification on commits and aborts

removes unnecessary network messages introduced by non-satisfied memory requests. Fig-

ure 4.16 shows the average number of messages (Nack, WakeUpandAck in FASTM-WN, only

Nack in FASTM) generated by conflicting accesses. Wake-up notificationdrastically reduces

the amount of messages by a factor of 50X (inBayesmore than 500X). This fact accelerates

still working transactions, which can commit (and eliminate the conflict) earlier.

Saving energy on conflicts.Disabling conflicting cores permits the system to reduce the

number of “active” threads that keep interacting with shared resources. Figure 4.17 breaks down

the system activity during the parallel execution showing the number of cores that are operative

at a time. At it can be seen, in applications likeHash-writeor List-longhalf or more processors

83

Figure 4.17: Number of active cores during 16-threaded medium- and high-contention execu-
tions in FASTM-WN

are stopped4 during, at least, a 25% of the execution time. This strategy saves global power

because disabling memory traffic on conflicts lowers the energy consumption. A power-hungry

possible optimization is to spend this power budget for increasing the frequency of active cores

in order to accelerate the execution of conflict-free transactions.

4.7.3 FASTM-SL Performance Analysis

For the performance analysis of FASTM-SL, we have selected variable- and coarse-grained

benchmarks because they typically execute large transactions that overflow the L1 cache, and

thus they are more sensitive to the VM strategy implemented in the base HTM system. We have

omitted the results of applications with small (non-overflowing) transactions because they only

report speedups between 1% to 3%, although they never perform worse in FASTM-SL. Table 4.1

provides detailed information about the applications we utilize and how they perform under

LogTM-SE, FASTM and FASTM-SL. These numbers were collected running the applications

with 16 threads.

Figure 4.18 presents the time distribution of FASTM (labeled F), FASTM-SL (labeled S) and

Ideal (labeled I) HTM systems in their 16-threaded executions. The execution time has been

normalized to the 16-threaded FASTM execution and is broken down using the same parame-

ters than Figure 4.13. As it can be seen in Figure 4.18, FASTM-SL obtains a 18% speedup over

FASTM (15% reduction of execution time), obtaining close performance to the Ideal VM ap-

4those cores are not completely disabled because registers,caches and other HTM support must preserve data.

84

Figure 4.18: Normalized execution time of variable- and coarse-grainedTM applications under
16-threaded FASTM (F), FASTM-SL (S), and Ideal (I) HTM systems

proach for all the benchmarks. The benefit is especially noticeable inBayesor Labyrinth, which

achieve almost 2X speedup over FASTM. The reasons for this behavior are the following.

Small log size.Selective logging drastically reduces the number of cache lines that have to

be maintained in software. Figure 4.19 shows the average size (in KB) of the software log per

transaction in FASTM and in FASTM-SL. Selective logging drastically lowers the size of thelog

by a factor of 15X (inHash-writealmost a 100X). This fact has two implications. First, there

are less transactions that overflow the L1 cache (Table 4.1, labeled OV Tx). Second, as there

is more space in the L1 for caching transactional data, the hit rate of the L1 cache increases

higher.

Efficient transactional stores. In FASTM-SL, transactional stores do not need to access

the software log each time they are retired—only when they leave the L1 cache, which is an un-

common event. As a result, the time spent in transactions that commit (Good Tx in Figure 4.18)

is reduced by 3% on average.

Negligible software abort recovery. In case of abort, the software has to restore just a

few lines. Moreover, the number of software aborts is also reduced in FASTM-SL because

less transactions overflow the L1 cache (Table 4.1, labeled SW Ab). Accordingly, Figure 4.18

shows that FASTM-SL virtually eliminates the abort recovery overhead. Aspointed out in

the FASTM performance analysis, speeding up aborts cuts down the time that transactions are

exposed to conflicts, which turns out to lower the abort rate (Table 4.1, labeled Abort Rate) and

the time spent in Stall and Backoff cycles.

85

Figure 4.19: Software log size in FASTM and FASTM-SL

4.7.4 FASTM Conflict Resolution Analysis

The Stall conflict resolution policy sometimes exhibits pathological behavior that can affect

the performance of the application [14]. For this reason, wehave evaluated both LogTM-SE

and FASTM with three other conflict resolution policies:

Abort: Aggressive policy that tries to eliminate the conflicts generated by stalled transactions.

When a conflict is detected, the system aborts the requester,instead of stalling the transac-

tion [98]. It also requires a backoff to avoid multiple aborts of transactions.

Timestamp: Policy that eliminates the backoff cycles by guaranteeing the progress of the old-

est transaction, based on [98]. If a processor receives a conflicting request, it checks the remote

timestamp and, if it is older than the local timestamp, the processor aborts the local transaction

after sending aNackto the requester together with its timestamp. When a processor receives a

Nackmessage, it checks the remote timestamp and, if it is older than the local, it aborts the local

transaction. Otherwise, it keeps issuing the request untilthe conflicting transaction finishes its

abort recovery process.

Hybrid: Enhanced policy described as EEHP in [14]. It works like the Stall policy, but write

requests abort younger readers in order to directly get the ownership of the requested data. This

policy eliminates thestarvation of the writerpathology.

We have evaluated LogTM-SE with all the conflict resolution policies and we have found

that the Stall policy outperforms the Abort and the Timestamp policy in LogTM-SE because it

reduces the number of software aborts. However, LogTM-SE with the Hybrid policy achieves

better results than LogTM-SE with the Stall policy in benchmarks with small transactions and

86

Figure 4.20: Distributed executed time of low-contention (top, 32 threads) and medium- and
high-contention (bottom, 16 threads) TM applications under LogTM-SE (L), FASTM (F) and

Ideal (I) HTM systems

high-contention, likeBarnesor List-short, or in applications with read-only transactions, like

Hash-reador Btree-var. In these situations, LogTM-SE with Hybrid obtains similarperfor-

mance to FASTM given that most aborted transactions do not need to restore too many lines.

However, LogTM-SE with the Stall policy presents better performance in applications with

large transactions, likeVacation-highor Yada.

FASTM can take advantage of aggressive conflict resolution policies because it minimizes

the impact of aborts. Figure 4.20 shows the time distribution of FASTM with Stall (labeled S),

Abort (labeled A), Timestamp (labeled T) and Hybrid (labeled H) conflict resolution policies

normalized to the 32-threaded (low-contention) and 16-threaded (high-contention) execution of

FASTM with the Stall conflict resolution policy.

The Abort policy removes stalling transactions in case of conflict given that transactions

automatically abort.List-longcan benefit from this policy, because conflicts that involve stalled

transactions disappear. However, in benchmarks with high-contention and small transactions,

87

like Raytraceor Genome, the number of aborts augments significantly, increasing the time

spent in backoff. Moreover, it also increases the number of aborts that have to be recovered by

software, what is critical in applications likeLabyrinth

The Timestamp policy improves some high-contention benchmarks with variable-size trans-

actions, likeBtree-fixor Vacation-high, because it does not require backoff cycles. Nonetheless,

the Timestamp policy has some weaknesses. First, it constantly aborts transactions, which in-

creases considerably the discarded work in coarse-grainedapplications likeBayes. Second,

a transaction remains stalled until the younger conflictingtransaction finishes its abort phase.

Although FASTM provides fast abort recovery, those transactions that overflow the L1 cache

do not abort instantaneously. This is a problem in benchmarks that continuously execute large

transactions (e.g.., Yada), given that overflowing transactions must abort each time they find a

conflict using the slow software routine.

The Hybrid policy improves our baseline because it reduces the starvation of older writers

without increasing contention. Like in LogTM-SE, the Hybrid policy accelerates applications

with high-contention and small/read-only transactions. Moreover, the fast abort recovery mech-

anism allows FASTM to improve the performance of some coarse-grained benchmarks as well,

like Intruder or Yada, which discard a lot of work when large transactions abort.

4.8 Related Work on Eager HTM Systems

Unbounded TM (UTM [5]) was the first HTM that allowed a fast (non-software) execution

for transactions of any size or duration. UTM extends each memory block with R/W bits and

an address pointing to an entry of the a hardware-accessed XSTATE structure. Because UTM

implementsearly version management, speculative updated values are coupled with a pointer

that indicates where the original data is—this data has to berestored in case of abort. Thus,

XSTATE contains a linked list of transactional accessed (either read or written) addresses and

a status register of the current transaction. Those linked lists must be traversed each time a

memory operation finds the R/W bit set (to identify which transaction owns a block) and at

commit or abort time (to update the global state). Although UTM does not require transactional

caching support for correctness, it can be used for speedingup speculative execution.

88

Large TM (LTM [5]) presents a simplification of the UTM engine. In LTM, a per-setover-

flow bit in the L1 cache informs ongoing memory operations that anin-flight transaction has

evicted a line. Thus, overflow storage has to be accessed whenmemory operations find the

overflow bit marked. In these occasions, the processor interrupts the execution and triggers a

walk in a hash table kept in DRAM memory. This happens when loads miss their local cache

(as they need to read the value generatedearlier in the transaction) or when remote requests

have a potential conflict with the line (as they must be deniedbecause LTM resolves conflicts

eagerly). On commits, LTM writes back overflowed data from the overflow storage space to the

main memory.

Virtualized Transactional Memory (VTM [97]) tracks transactional information—e.g., spec-

ulative values or read and write sets—in a table placed in application’s virtual and private mem-

ory, called XADT. VTM uses conventional (bounded) HTM caching support for small transac-

tions, invoking virtual machinery only when it is necessary. Like in LTM, the XADT is accessed

on L1 misses (either local or remote) and at commit time, but,instead of relying on per-block

metadata pointers, VTM extends processors with microcode (or firmware) aptitudes to operate

in software structures. Performing lookups on each L1 miss incurs in a significant slow down.

To overcome this issue, VTM introduces a software-managed Bloom filter, which conserva-

tively dictates if a given address is present in the XADT. Additionally, VTM can incorporate

a transactional victim cache to keep constantly-accessed data close to the processor. Hence,

hardware requirements of VTM are not as expensive as UTM, while they provide transparent

execution of unbounded transactions and capability for handling transactions in the presence of

context switches and page faults.

Page-based Transactional Memory (PTM [24]) expands an LTM-like HTM system with

shadow pages that hold transactionally modified values. An additional table maps physical

pages to shadow pages, while processors maintain in the specialized vectors which page entries

have been accessed within a transaction, a requirement to perform conflict detection. Shad-

ows pages must be copied in their associated physical pages at commit time to make the state

globally visible.

LogTM [84] simplified the UTM mechanism by storing old valuesand their associated

address in a private log. Like other HTM systems, it uses L1 R/W bits to track those memory

89

HTM System
VM Hardware Abort Overflow Commit CM

Strategy Support Recovery Policy Process Strategy

LogTM-SE [130] Early Logging Software
Update

- Eager
Memory

Rock HTM [33] Late
Store

Hardware
Notify Drain

Eager
Buffer Software Buffer

HyTMs [31,63] Late
L1 TX

Hardware Run STM
Update

Eager
Cache Memory

VTM [97] Late
L1 TX

Hardware
Software Update

Eager
Cache Structure Memory

FASTM Early5 Logging, L1 Hardware and Update Clean L1
Eager

TX Cache Software Memory State

Table 4.2: Data VM characteristics of eager HTM systems

accesses performed inside a transaction, albeit it modifiesthe coherence protocol with sticky

directory states to perpetuate the partnership between a transactionally evicted line and its last

owner. Sticky directory states forward memory request to the last owner(s) of the line, which

tests its R/W bits to perform conflict detection—even in the case they have evicted the cache

line—and reply with aNackmessage in case of conflict, instead of acknowledging or sending

the data to the requester. The W bit is also used to prevent repetitive logging when a memory

block is updated multiple times. Notice that, in contrast toUTM, LogTM does not require

per-block metadata for data versioning purposes.

LogTM-SE [130] decouples transactional state from caches,replacing the L1 R/W bits of

LogTM with signatures that summarize thosephysicaladdresses accessed within a transaction.

This implementation also uses sticky states for those data evicted in the L1 cache but present in

the L2 cache. However, L2 evicted data is forwarded to all theprocessors of the CMP, which

test their signatures and reply with aNack message if a conflict occurs. LogTM-SE cannot

use the W bit to determine if a given address has been introduced in the log. Instead, it uses

an effective small table containing recent logged addresses. LogTM-VSE [119] shows how

5we consider FASTM an early VM system, although it shares somesimilarities with late VM system

90

signatures can be invirtually summarized using OS support to keep executing transactionsafter

they are de-scheduled or interrupted by a page fault.

In [69], we revealed how log-based HTM systems can be accelerated by using an in-core

gated store buffer, not unlike how the implementation proposed for Rock [33] keeps the trans-

actional state. This approach is extremely encouraging because it allows flexibleearly andlate

version management. Moreover, the industry has voted for introducing exposed write buffers in

the microarchitecture of future CMPs, which makes this approach even more feasible.

Table 4.2 summarizes the main VM characteristics of state-of-the-art eager HTM systems

and compares them to FASTM. As it can be seen, FASTM presents fast commit and abort pro-

cedures with reasonable hardware support and minimum complexity, a feature that is missing

in other unbounded eager HTM systems.

4.9 Conclusions

In this chapter, we have presented FASTM, the first log-based HTM system that, like late

VM approaches, takes advantage of the processor’s cache hierarchy to provide fast abort recov-

ery. FASTM uses a novel coherence protocol to buffer the transactional modifications in the first

level cache and to keep the non-speculative values in the higher levels of the memory hierarchy.

This mechanism accelerates the abort recovery of large transactions, which is critical in other

log-based implementations like LogTM-SE.

To handle cache overflows, FASTM follows a log-based approach. Transactional cache lines

are evicted in-place in the memory hierarchy and old values are maintained in a cacheable log,

which must be restored by a software routine. This approach simplifies overflow mechanisms

of late VM systems, that either need complex specialized hardware to handle cache misses and

to commit overflowed lines or fall-back to software-only transactions.

We have evaluated FASTM with a heterogeneous set of applications and conflict resolu-

tion policies. Our proposal obtains, on average, a speedup of 44% over LogTM-SE in high-

contention applications. We have seen that the performanceimprovement is more pronounced

in applications with coarse-grain transactions, because FASTM reduces considerably the time

spent in abort recovery as well as the number of conflicts. Although our analysis shows that

91

transactional cache replacements are common in coarse-grain applications, FASTM does not

suffer performance penalties, because transactions that overflow the caches do not usually abort.

We have also proposed two additional optimizations for FASTM: wake-up notification and

selective logging. While the former proposes an efficient solution to handle stalls in eager

HTM systems, the latter reduces the pressure on logging mechanism in FASTM. Our evaluation

shows that selective logging accelerates transactional execution, reduces the number of slow

aborts and decrements the size of the software log, achieving an average speedup of 18% over

FASTM. On the other hand, the wake-up mechanism delivers good performance (5.5% speedup

over FASTM) and saves energy in the system when threads are stalled bylarge transactions.

Our evaluation of FASTM with different conflict resolution policies shows that having a fast

abort recovery mechanism favors aggressive policies that abort critical transactions in situations

with high-contention.

92

93

Chapter 5

Speculative Hardware Transactional Memory

Systems with Local Commits

Conflict management (CM) is possibly the most critical feature of HTM systems [38]. The liter-

ature is full of proposals that try to improve on this mechanism, either by moving the resolution

of conflicts to software [103, 112], applying high-performance hardware policies [14, 98, 111]

or modifying the coherence protocol drastically [7,99,124].

Lazy HTM 1 systems [22, 45, 92, 107, 112, 124] commonly obtain better performance than

eager HTM systems [14, 111, 122] because they (i) offer more concurrency (transactions spec-

ulate with conflicts), (ii) guarantee forward progress (no backoff or time-based policies are

required) and (iii) permit transactional readers to overlap their execution with non-committed

writes, which removes direct conflicts if a transaction thatreads a memory location finishes

before a transaction that writes the same location.

Unfortunately, prior lazy HTM systems suffer numerous limitations that may affect both

the scalability and the complexity of the system. In lazy HTMsystems, transactions require

arbitration and data movements at commit time, which incurssignificant overheads. They also

introduce sophisticated commit protocols that are quite hardware invasive—they demand sev-

eral changes in the communication between private and shared resources. Moreover, lazy HTM

systems imposelateVM, and thus they are subjected to long delays when they execute transac-

tions that commonly exceed on-chip buffers, as explained inChapter 4.

1in this thesis, we refer as lazy HTMs those systems that speculate with conflicts and resolve conflicts at commit
time, independently of how conflicts are detected or the VM strategy that they employ.

94

In order to address the above issues, this chapter starts presenting FUSETM, a fused dual-

mode HTM system with local commits. This is a speculative HTMsystem that integrateslazy

resolution of conflicts in a conventionaleagerHTM framework. By adding minor changes

in the coherence engine, FUSETM keeps executing after a conflict occurs and performslocal

commits—a technique thatmoves arbitration, data transfers and directory updates out of

the critical path . Moreover, FUSETM is the first speculative approach that offerssimultane-

ous execution of eager and lazy transactionsin the same latent microarchitecture. Hence,

FUSETM breaks with thelate VM invariant for lazy HTM systems: the system switches to the

eager (log-based) execution mode when a transaction exceeds the L1 cache in order to maintain

in-place in memory the overflowing state. This strategy simplifies the hardware design that is

required to support unbounded transactions.

FUSETM forbids lazy execution for those transactions that evictspeculative data from the

L1 cache—large transactions are aborted and restart in eager mode. This can be an issue if over-

flows are frequent, because the system must discard lot of useful work and enforce eager CM

from the very beggining, which results into less concurrency among conflicting transactions. To

overcome the above problems, we implement SPECTM, a speculative HTM system with early

overflowing updates. SPECTM shares most of the underlying infrastructure of FUSETM—and

thus most of its features—but it has one major difference. Byreadjusting the selective logging

mechanism, SPECTM is able tokeep running in lazy-mode until commit time. This tech-

nique removes aborts provoked by overflowing transactions and performing enables resolution

of conflicts for most of the transactionally accessed lines.

This chapter starts presenting the motivation for FUSETM and SPECTM, showing the weak-

nesses of contemporary lazy HTM systems. Then, it overviewsthe FUSETM system, describing

the hardware extensions and the unified coherence protocol that FUSETM (and SPECTM) uti-

lizes. The chapter follows up summarizing how FUSETM operates in the lazy mode, and then

presents how the system is able to combine eager and lazy transactions without requiring cum-

bersome hardware. Then, the chapter goes on overviewing SPECTM, explaining the additional

mechanisms that it requires and how they operate. The chapter finalizes evaluating FUSETM and

SPECTM, and comparing both systems with other modern commit protocols for lazy HTM sys-

tems.

95

Figure 5.1: Percentage of time spent in arbitration under 32-threaded TCC-Dist

5.1 Motivation

Several studies [14, 111] showed the benefit of using lazy management of conflicts when

dealing with high-contention transactions. However, committing transactions is an expensive

operation when the resolution of conflicts is moved at the endof a transaction because it re-

quires arbitration. Software arbitration [112] produces important delays at commit time. On

the other hand, hardware arbitration [21,22,45,92] serializes transactional computation, which

compromises the scalability of the system.

In order to quantify the performance loss of a standard commit protocol, we use a TCC-

based implementation with distributed commits as a lazy HTMbaseline (TCC-Dist for short).

This is a lazy HTM system that assumes an idealized late VM mechanism (zero-cost commits

and aborts) and an instantaneous abort notification (inconsistent transactions undo their modi-

fications at the same time that a transaction commits). TCC-Dist uses the distributed algorithm

presented in [92] to arbitrate between committing transactions. More documentation regarding

the lazy HTM baseline can be found in Section 3.2.2.

Fine-grained transactional workloads suffer important overheads when arbitration is re-

quired. Figure 5.1 shows the percentage of time spent in arbitration after executing 32-threaded

TM applications using our reference HTM system. Applications are gathered according to the

size of their transactions; from fine-grained (left) to coarse-grained (right). As it can be seen,

TM applications waste substantial part of their time in commit arbitration, especially those that

continuously execute tiny transactions (e.g., Genome, List-shortor Ssca2).

96

Figure 5.2: Average network messages in the commit phase under 32-threaded TCC-Dist

The reason of such commit delay resides on the communicationwith shared resources—

in TCC-Dist, transactions acquire/release directory modules. Figure 5.2 shows the average

number of messages per transaction introduced in the network at commit time. As it can be

seen, variable- and coarse-grained applications introduce more messages because they read and

write more directory banks. Nonetheless, the commit phase does not become critical because

most of the time is devoted to compute large transactions. However, applications with small

read/write sets may require numerous messages to acquire a single directory module, given

that in most of the occasions the module is already acquired (the Acquire message must be

re-issued).

Commit arbitration is a not the only problem that lazy HTM systems have to face. For in-

stance, TCC implementations [22, 45] require write backs tothe shared L2 cache, while Eazy-

HTM [124] needs atomic directory updates. As a matter of fact, all the proposed approaches

introduce substantial changes in the CMP configuration. This includes a firmware that walks

the entries of the L1 cache to identify those that have been transactionally written, a mecha-

nism that sends bulk messages containing the write set to remote cores, the L2 cache and/or

the directory, a deadlock-free protocol that groups and blocks directory modules and a device

to support atomic memory updates. Hence, lazy HTM systems presentad hocimplementations

that highly depend on the underlying hardware machinery.

Finally, lazy HTM systems assume late data versioning for overflowed data—they keep

overflowed data hidden from in-flight transactions using specialized structures, such as firmware-

accessed memory structures (LTM [5] or VTM [97]), shadow memory pages (PTM [24] or

XTM [25]) or additional hardware tables (FlexTM [112] or EazyHTM [124]). When the trans-

97

actional buffers are overflowed, the system inserts new datain these specialized structures,

where it is kept until the transaction commits (new data is transferred to global memory) or

aborts (new data is invalidated). Also, if the transaction does not find the data in the transac-

tional buffers, lazy HTM systems must traverse specializedstructures to check if the accessed

data has been modified during the in-flight transaction. In contrast to early VM systems, late

VM systems are subjected to long delays when they execute transactions that commonly exceed

on-chip data versioning support.

The previous paragraphs reflect three major concerns that affect the performance and the

design of lazy HTM systems. First, arbitration is an expensive operation for fine-grained trans-

actional applications; therefore it would be extremely helpful to eliminate it from the commit

phase. Second, the design of a lazy HTM should not rely on specific hardware components,

nor include atomic operations at commit time. Third, using late data versioning for holding the

overflowing state adds even more obstacles in an already complex design; a simpler approach

is worthy to be preferred.

5.2 A Fused HTM System with Local Commits

FUSETM presents a novel HTM implementation to overcome the aboveissues. This pro-

posal slightly modifies the L1 cache controller to simultaneously combine eager and lazy trans-

actions and providelocal commits, which avoids expensive commit arbitration [92] and direc-

tory updates [124], while it keeps standard activity for regular memory operations.

5.2.1 FUSETM Overview

FUSETM offers two different execution modes: eager and lazy. TheeagerFUSETM execu-

tion mode uses both eager version and conflict management. The lazyFUSETM execution mode,

on the other hand, uses both lazy version and conflict management. Moreover, FUSETM per-

mits eager- and lazy-mode transactions to executesimultaneouslyin the system. This is possible

through UTCP, a novel unified transactional cache coherenceprotocol that is able to correctly

track conflicts among transactions—independent of their execution mode—and it ensures the

correct propagation of transactional modifications.

98

Figure 5.3: Base system configuration and transactional hardware support for DYNTM

The FUSETM eager execution follows a log-based approach. Transactional modifications

are kept in-place in memory, where they are allowed to propagate to all levels of the hierarchy.

The pre-transactional state is logged in a software structure [84]. In the eager mode, conflicts are

resolved as soon as they are produced. In contrast, the FUSETM lazy execution mode resolves

conflicts at the very end of a transaction. In the lazy mode, the speculative state is buffered in

the L1 cache and is not made visible to the rest of the system until the transaction is committed.

FUSETM takes advantage of the built-in hardware support for eager version management in

order to handle L1 cache overflows and context switches for lazy transactions. In such cases,

the system will simply abort the lazy transaction and re-execute it in eager mode.

5.2.2 Hardware Support

In this work, we assume for our FUSETM implementation a CMP system similar to that uti-

lized in the previous chapter (see Figure 5.3). Besides the UTCP coherence protocol, FUSETM re-

quires additional extensions to existing hardware components for executing eager and lazy

transactions:

Logging Support. Like previous log-based HTM proposals [84, 130], FUSETM extends the

core with register checkpointing andconventionalsoftware logging support to implement early

version management.

Signatures. FUSETM requires Read and Write signatures [21, 130] (Bloom filters) to track

99

transactional accesses. While the Read Signature summarizes any transactional read, the Write

Signature only contains addresses from eager transactional stores.

Conflict Vectors. Like FlexTM [112] or EazyHTM [124], DYNTM introduces Read Conflict

Vector (RCV) and Write Conflict Vector (WCV) to maintain inconsistencies between in-flight

transactions.

5.2.3 FUSETM Modes of Execution

Like other lazy HTM protocols, FUSETM restricts transactional updates to the L1 cache

only, maintaining pre-transactional values in the L2 cache. However, rather than requiring

specialized hardware to handle L1 cache overflows [97, 112],FUSETM aborts the offending

transaction and re-executes it in eager mode. In this section, we overview both eager and lazy

execution modes.

Eager execution mode.In FUSETM, eager transactions follow the same hybrid data version

management mechanism as the one presented in FASTM. This mechanism guarantees that,

if a transaction has not overflowed the L1 cache, the L2 cache will contain the correct pre-

transactional state. This is done by writing back eachdirty non-transactional L1 cache line

before overwriting it with transactional data. By keeping both the old and the new (trans-

actional) state in-place in memory, FUSETM offers a very fast abort recovery mechanism for

transactions that do not overflow the L1 cache—it simply invalidates transactionally accessed

lines. Eager transactions also maintain the old state in a private, cacheable software log [84],

which permits the safe eviction of consistent transactionally written lines. In case of over-

flow, the pre-transactional state can be recovered by a software routine (slow abort recovery

mechanism). Moreover, transactional store operations always add their addresses in the Write

Signature. Thus, the FUSETM eager mode allows transactions to survive context switches and

page faults by virtualizing the signatures and by using the software log for abort recovery [130].

FUSETM detects conflictsearly with the help of the UTCP protocol.

Lazy execution mode. Lazy transactions also detect conflictsearly via the UTCP protocol.

Contrary to the eager execution mode, lazy transactions continue executing after detecting a

conflict—conflicts are resolvedlazily at commit time or until someone aborts the transaction.

In order to track conflicts from their detection until their resolution time, FUSETM transitions

100

conflicting cache lines to special UTCP states, and marks conflicts among cores in the Read

and Write Conflict Vectors (RCV and WCV). In FUSETM, conflicts are notified at commit time

using point-to-pointAbortTxmessages. This can be done because information about inconsis-

tent transactions are recorded in the WCV. After acknowledging that all conflicting transaction

have been aborted, the corelocally commits the transactional data in order to make itglobally

visible. Unlike prior proposals, FUSETM does not require directory updates [20, 22, 124] nor

data movement [45,92,112] at commit time.

5.2.4 The Unified Transactional L1 Cache Coherence Protocol

In the heart of FUSETM lies a novel coherency protocol, the Unified Transactional Coher-

ence Protocol (UTCP), that guarantees the correct propagation of transactional modifications,

as well as the prompt detection of conflicts among transactions.

The UTCP protocol distinguishes between coherent and speculative states. The coherent

states include the four states of a typical MESI protocol, plus theT state. Cache lines in these

states are either non-transactional or they are read insidea transaction and have no conflicts (M,

E, S andI states), or they are written inside a transaction and they have no conflicts (T state).

Notice that this is analogous to the Transactional Coherence Protocol implemented by FASTM.

The two speculativeR andW states keep transactionally read (R) or written (W) cache lines

that have a conflict with one or more other transactions. Cache lines are transitioned to theR

or W states only when they have a conflict with a lazy transaction—eager transactions are not

allowed to speculate with their execution when they conflictwith other eager transactions.

The coherent statesT, M, E have a single owner or version in the system directory (multi-

ple sharers are allowed forS, of course). On the other hand, speculative lines can have multiple

active versions, therefore the directory must maintain a vector of owners. Conflicts among trans-

actions are detected through the andT andW states (for lazy transactional writers) and the Read

and Write signatures (for transactional readers and eager transactional writers, respectively).

The UTCP protocol differentiates between eager and lazy memory requests by adding an

extra bit in the coherence messages. Eager transactions notify conflicts usingNackmessages.

This mechanism allows eager transactions to maintain theirisolation by preventing remote re-

questers to access their read/write sets. Requesting coresmay retry the memory access or abort

101

Figure 5.4: State-transition diagram of the unified transactional L1 cache coherence protocol

the transaction. Nevertheless, when a core that executes a transaction receives a conflicting lazy

request, it must transit the conflicting line to a speculative state and reply with aLack mes-

sage. In order to implement strong isolation, the UTCP protocol aborts transactions that receive

non-transactional conflicting messages.

Figure 5.4 shows the UTCP states and transitions. The label of each transition shows the

UTCP triggering message (before the slash) and the associated actions (after the slash).TStore

andTLoadare memory accesses produced within a transaction. Note that a transactional L1

miss generates a memory request to the directory, which is forwarded to the owner(s) of the line

(TGetSfor reads,TGetXfor writes). If the line has accessed the line within a lazy transaction—

represented with the suffix (L) in Figure 5.4—the line transits to a speculative state and the

receiver replies sending aLack message to the requester. If the line has been accessed inside

102

an eager transaction—represented with the suffix (E) in Figure 5.4—the receiver replies with a

Nackmessage and the line remains in the same cache state.

The Conflict action updates the RCV (forR-state lines) or the WCV (forW-state lines)

by marking the requesting/replying core in one of the conflict lists. TheWB action pushes the

line to the L2 cache.Replacementindicates an L1 cache eviction, which activates the abort

machinery in lazy transactions (OV actions).Commit andAbort actions also trigger transitions

to the Modified or Invalid state. A detailed explanation of lazy memory operations and how

they affect the UTCP transitions is presented in the next section.

5.2.5 FUSETM Lazy Transactional Operations

This section explains how the lazy mode of FUSETM works. We describe how lazy-mode

transactions interact with the elements of the system (UTCPprotocol included). We omit here

how eager-mode transactions operate, as they follow the same steps that in FASTM. We defer

the explanation of how FUSETM mingle different-mode transactions on top of the same infras-

tructure to Section 5.2.7.

5.2.5.1 Lazy Transactional Stores

In FUSETM, non-conflicting transactional stores (TStores) follow the TMESI protocol proposed

in FASTM—they write back the value ofM-state lines to the L2 cache before transitioning to the

T state. This guarantees that the L2 cache always has the correct pre-transactional value of the

line.

The novelty of the UTCP protocol lies on how the system handles transactional conflicting

lines. Let’s assume that coreL0, which is executing a lazy transaction, attempts to write a line

that has been accessed by other cores during their in-flight lazy transaction. In this scenario,

L0 requests the line to the directory, which (1) forwards the coherence request to the current

owner(s) of the line and (2) sends a message containing the number of owners toL0.

Now we assume that coreL1 is one of thelazy owners of that line. WhenL1 receives the

conflicting request (TGetX), it replies toL0 with a Lack message and moves the line to one of

the speculative states. IfL1 has transactionally written the line before (i.e., the line is in theT or

103

Figure 5.5: Conflicting transactional stores in FUSETM

W state), the line transitions toW andL1 addsL0 to its WCV. Similarly, if L1 has transactionally

read the line (i.e., the line is in theM, E, S or R), the line transitions toR andL1 addsL0 to its

RCV. WhenL0 receives theLack reply fromL1, it detects that there is a conflict. Hence,L0’s

request is serviced by the L2 cache, which is guaranteed to have the correct pre-transactional

values, andL0 is added as a new line owner in the directory.L0 puts the line inW and addsL1 to

its WCV. This mechanism permits the system to identify inconsistent transactions that should

be aborted before committing.

In Figure 5.5 we can see an example where coreL0 misses in the cache after retiring a

TStore(step 1). CoreL0 requests the line to the directory, which forwards the requests to the

only owner of the line (in this case, coreL1 (step 2 and 3)). At that time, the directory notifies

L0 that a unique copy of the line is present in the system (step 4). L1 has the line in theT state,

so a conflict is detected. Hence,L1 updates its WCV by marking the inconsistency withL0 (step

5), transits the line to the speculativeW state (step 6) and sends aLackmessage toL0 (step 7).

OnceL0 receives theLackmessage, it addsL1 in its WCV (step 8) and loads the line from

the L2 cache, which has a consistent copy of the pre-transactional values of the line (step 9 and

10). After that, it performs the transactional write, movesthe line to theW state (step 11) and

unblocks the directory, setting itself as a new owner of the line (step 12).

104

Figure 5.6: Conflicting transactional loads in FUSETM

5.2.5.2 Lazy Transactional Loads

Non-conflicting transactional loads (TLoads) are performed as regular loads (adding the address

in the Read signature if they end successfully). However, conflicting transactional loads are

executed following a similar strategy toTStores.

Let’s assume that coreL0 attempts to read a line that has been written by another lazy

transaction. If the line is in theR state, the pre-transactional value is already load in the L1

cache and the conflict has been detected as well, so theTLoad is completed. If the line is not

valid in the L1 cache,L0 requests the line to the directory, who forwards the requests to the

owner(s) of the line. Then, all the writers of the line respond with aLackmessage, addL0 as a

conflict in their WCV and transit to theW state—readers do not have to perform any action.

WhenL0 receives theLack replies, it marks the conflicts in its RCV and gets the old value

of the line from the L2 cache, holding the line in theR state. Afterwards,L0 communicates the

directory that it owns another alive copy of the line.

Figure 5.6 shows an example of how FUSETM handles a transactional load that misses the

L1 cache in coreL2 (step 1).L2 requests the line to the directory, which transmits the request to

L0 andL1, who have written the line before. The directory also sends amessage toL2 informing

that the line has two owners (step 4).L0 andL1 own the line in theW state; therefore both cores

markL2 in their WCV (step 5 and 6), and reply with aLackmessage toL2 (step 7 and 8). When

105

L2 receives the twoLackmessages, it marksL0 andL1 as potential conflicts in its RCV (step 9)

and gets the old values of the line from the L2 cache, which is kept in theR state (step 10-12).

Finally, it updates the directory, which contains nowL0, L1 andL2 as the current owners of the

line (step 13).

5.2.5.3 Local Commits

In FUSETM, when a lazy transaction attempts to commit it probes its local WCV for conflicts

with remote transactions. If the WCV is empty (i.e., non-conflicting or read-only conflicting

transactions), the core enters the commit phase. However, in case of conflict, the core enters the

notification phase.

In this phase, the core sends abort messages (AbortTx) to all the cores marked in its WCV

and waits for their response. A core that receives an abort request must check both its RCV

and WCV to verify that there is a conflict with the committer. If so, the conflicting transaction

is aborted and anAbortAckresponse is sent to the committer. Otherwise, the abort request is

because of a conflict with a transaction that no longer executes on this core (either committed

or aborted) and the request is ignored.

When all abort requests have been acknowledged, the notification phase ends. The core

then enters the commit phase, where the core validates its data, so it becomes visible to the

rest of the world. This is done by transitioning all cache lines accessed transactionally to a non-

speculative state (T orW are moved to theM state andR lines are invalidated) and by clearing local

signatures and Conflict Vectors. Unlike prior proposals, FUSETM does not brings additional

communication with shared resources (e.g., the L2 cache or the directory).

5.2.5.4 Local Aborts

In FUSETM, aborts are notified using core-to-core notification. When a core receives an abort

notification (i.e., a conflicting transaction is committing), it invalidates all the T, W andR lines

from its L1 cache. Notice that FUSETM’s aborts (like commits) do not require communication

with the L2 cache or the directory.

106

Figure 5.7: Retarded directory updates in FUSETM

FUSETM eliminates arbitration among lazy transactions, therefore two transactions may

enter the notification phase at the same time. In order to prevent crossed conflicts, abort requests

include a timestamp with the time a transaction started executing. When two transactions in the

middle of their notification phase receive crossed abort requests, the younger transaction is

aborted (it receives anAbortNackresponse).

In the uncommon case that two transactions report the same timestamp, the transaction

executed on the core with a higher CPUid is aborted. Abortingcommitting transactions in their

notification phase is safe to do because the memory state is not updated until a core enters its

commit phase.

5.2.5.5 Retarded Directory Updates

In FUSETM, the directory is updatedlazily by future remote requests, therefore committed lines

may have multiple owners in the directory even though they may only exist in one L1 cache.

Figure 5.7 shows an example of how FUSETM performs local commits and retarded directory

updates. In the example, coresL0, L1 andL2 are cores that have written lineA inside a transac-

107

Figure 5.8: Local Commits and Abort Notification in FUSETM

tion. Eventually,L2 commits (step 1), abortingL0 andL1 (step 2-4). After acknowledging the

abort (step 5),L2 becomes the only owner of lineA because it holds the line in the Modified

state (step 6), although the directory still has coresL0 andL1 as possible sharers.

WhenL0 re-executes, it performs aTStoreover lineA and requests it from the directory

(step 7).L2 has not updated the directory at commit time, so the directory still maintainsL0, L1

andL2 as the owners of the line. Thus, the directory forwards the request toL1 andL2 (step 8

and 9). WhileL1 acknowledges the request (it has invalidated lineA during its abort, so it does

not own the line anymore),L2 sends the committed data toL0 (step 10 and 11). After collecting

all the responses,L0 writes the line (step 12) and updates the directory by setting itself as as the

exclusive owner of the line (step 13).

Similarly, if coreL0 performs aTLoad, the directory addsL0 as a sharer in the directory

(line A is kept in theS state in bothL0 andL1 L1 caches).

5.2.6 Lazy Conflict Management in FUSETM

The prior section showed how lazy instructions deal with thememory subsystem individu-

ally. In this section, we describe how the entire lazy transactions are executed. Figure 5.8 shows

how FUSETM executes lazy-mode transactions. In the following paragraphs, we describe how

distinct situations are handled in our proposal.

108

Read Conflict (Situation 1): Ti is a read-only, lazy transaction that wants to load lineA,

which has been written by lazy-mode transactionTj. After receiving theTGetSrequest, core

Lj marks biti in its WCV and replies with aLack message (step 1). When coreLi catches

the message, it updates its RCV adding transactionTj as a conflict (step 2). Eventually,Ti

commits without conflict notification, cleaning the ConflictVectors of coreLi (step 3). (Ti

eliminates the transactional state from caches, moving line A from R to I.) As it has its WCV

empty, notification is not required. When transactionTj commits, it checks its WCV and sends

an AbortTx message toTi (step 4). However,Tj does not appear in the RCV ofTi, so Ti

acknowledges the request and continues its execution (step5).

Write Conflict (Situation 2): Both transactionsTi andTj write line A (step 1 and 2). Thus,

they track the conflict in their WCV, requiring abort notification in their commit phase. At some

point in time,Ti commits. Then, coreLi checks its WCV and sends anAbortTxmessage to

transactionTj. CoreLj picks up the message, findsTi in their WCV and aborts transactionTj,

replying the notification with anAbortAckreply (step 4). After that,Ti commits, transiting line

A from theW to theM state.

Crossed Write Conflict (Situation 3): Ti and Tj are lazy-mode transactions with crossed

conflicts (they have read and write linesA andB) that attempt to commit at the same time. Both

transactions notify conflicts by sending abort messages (step 1 and 2), but onlyTj successfully

commits, becauseTj’s timestamp is older thanTi’s (step 3 and 4). BothTi andTj wait until

they collect all the replies from conflicting cores.Tj only receivesAbortAckmessages, therefore

Tj moves to the commit phase, andlocally commits the transaction (step 5). In contrast,Ti

aborts as soon as it receives theAbortNackmessage fromTj (step 6).

5.2.7 Simultaneous Execution of Eager and Lazy Transactions

FUSETM executes eager-mode transactions when they do not fit on the L1 cache, but the

system keeps running the rest of the transactions in the lazyexecution mode. Eager and lazy

transactions resolve memory inconsistencies using conventional strategies when they collide

with same-mode transactions.

On the one hand, conflicts between eager transactions are resolved using theHybrid (EEHP

in [14]) conflict management policy, which, as suggested in the results presented in Section 4.7.4,

109

Eager Requester (Conflict) Lazy Requester (Conflict)

Eager Receiver Hybrid conflict Abort lazy requester

(Conflict) resolution policy (immediately)

Lazy Receiver Abort lazy receiver Defer the resolution until commit time

Conflict (immediately) (comitter wins)

Table 5.1: Resolving eager-lazy conflicts in FUSETM

normally outperforms other conflict resolution policies. Note that this is a a high-performance

policy that tries to avoid wasting computation by stalling transactions that issue conflicting re-

quests. However, younger readers are aborted in order to minimize starvation for writing trans-

actions. After aborting, an exponential backoff (based on the number of retries) is performed

to guarantee the forward progress of eager transactions. Onthe other hand, lazy conflicts are

resolved in a deferred fashion, aborting all the transactions that are inconsistent with the com-

mitter.

Nonetheless, in order to simultaneously execute transactions with different VM and CM

schemes, FUSETM uses a conflict resolution policy that preserves the consistency of eager

transactions and, at the same time, shields lazy transactions from eager modifications that have

overflowed the cache. We have decided to implement a conflict resolution policy that priori-

tizes eager transactions over lazy transactions. Thus, this policy favors large transactions that

overflow the L1 cache.

FUSETM implements aneager-winspolicy when an eager transaction clashes with a lazy

transaction. If the data is owned by the lazy transaction, the system aborts the lazy transaction

and forwards to the eager requester the non-speculative value of the line from the L2 cache.

Similarly, when a lazy transaction attempts to access to a memory location that belongs to an

eager transaction, it automatically aborts its execution after receiving theNackmessage. This

strategy guarantees that thelarge eager transaction commits beforehand and, at the same time,

prevents lazy transactions to read or write speculative overflowed data. Table 5.1 summarizes

how FUSETM deals with conflicts while executing different-mode transactions.

110

5.3 A Speculative HTM System with Early Overflowing Updates

To the best of our knowledge, all HTM systems that postpone the resolution of conflicts for

any kind of transaction implement late VM to store the overflowing speculative state [25, 45,

124] at the cost of adding expensive hardware. FUSETM eliminates this requirement by aborting

the offending transaction that exceeds the L1 cache and restarting it in eager mode afterwards,

using from that point ahead early VM.

Changing to eager mode on overflow introduces non-despreciable overhead that becomes

critical when the system executes large transactions for two main reasons. First, lazy overflow-

ing transactions discard useful work because they are aborted even in the absence of conflicts.

Second, overflowing transactions must be re-executed from the very beginning in eager mode,

which may restrict the overall concurrency of transactional threads.

In this section, we present SPECTM, a speculative HTM system that implementsearly up-

dateson overflowinglazydata. This strategy allows SPECTM to keep speculating with most of

transactional data in the presence of L1 cache overflows.

5.3.1 SPECTM Overview

SPECTM assumes similar infrastructure to FUSETM, being a fixed-policy, TCC-based HTM

system built on top of a UTCP coherence protocol. It performslocal commits together with

core-to-core abort notification. However, it changes the L1overflow engine to avoid inoppor-

tune aborts. Moreover, SPECTM keeps executing in lazy mode even when a transaction replaces

speculative data—here the reason behind the name of the system.

On L1 cache replacements, SPECTM moves pre-transactional data to a software log and

places new data on the shared levels of the memory hierarchy—SPECTM borrows theselective

loggingprocedure implemented in FASTM-SL to accomplish this task. Evicting actions do not

affect the behavior of overflowing transactions, which do not abort nor transit to eager mode.

Thus, this technique allows lazy-mode transactions to movetoward the commit point, deferring

the resolution of most conflicts.

Usingearly updateson overflowing data presents non-trivial challenges for lazy HTM im-

plementations. First, systems with lazy conflict management allow multiple versions of a line

111

in distinct L1 caches. However, before replacing a cache line, the system must guarantee that

the evicting core is the unique owner of that line, because that core is responsable of restoring

its old state if the transaction aborts. Thus, an overflowingline must only have a single copy in

the system.

Second, our approach moves overflowing data to the shared memory space, overwriting the

old state kept in the L2 cache. As the old value of the line can no longer be obtained, the system

must prevent remote transactions to access transactionally evicted lines, preserving those lines

isolated from the world until the transaction commits or aborts—i.e., eager resolution is needed

for overflowed data.

SPECTM adds two novel mechanisms to achieve the above goals:Partial Consistencyand

Overflow Isolation. The next sections describe how these mechanisms operate aswell as how

they are implemented.

5.3.2 Partial Consistency

Like FUSETM, SPECTM holds non-conflicting transactional updates in theT state and con-

flicting written lines in a separateW state. Pre-transactional values of non-evicted cache lines

are always kept in the L2 cache.

Before writing back the value of the transactionally modified cache line, the SPECTM must

ensure that there are no live copies of the line in other private L1 caches. This is a straight-

forward step for consistentT-state lines, as they are exclusively owned by a single core.How-

ever, conflicting written lines—those lines that have been moved to theW state and thus poten-

tially have multiple readers/writers in non-committed transactions—require additional actions

to eliminate non-compatible values.

In order to invalidate all the transactional sharers of the cache line, the evicting core sends

an Abort notification to all the cores that are present in its WCV, following exactly the same

procedure as at commit time. When the remote cores receive that message, they abort, even if

they have not touched the evicted cache line within their transactions. If an aborting transaction

has already overflowed the L1 cache—i.e., the software log is not empty—then the core must

recover the old state using the procedure described in Section 4.6.

112

Figure 5.9: Partial consistency: Coherence transitions and early abort notification

After the abort process ends successfully, the evicting core is safe to write back the specu-

lative value in the L2 cache. However, before that, the core (1) transits all theW-state lines toT,

(2) clears the WCV list, (3) inserts the memory address of theevicted cache line in the Write

Signature and (4) logs the pre-transactional data togetherwith its physical addresses using the

selective logging mechanism.

Partial Consistency guarantees that the replaced cache line has a unique owner in the system,

as potential conflicters have aborted. What is more, it also guarantees that, at that point,every

line being written inside the transaction only belongs to the overflowing transaction. Nonethe-

less, that transaction is not entirely isolated from the rest, as conflicting read lines—those kept

in theR state—may still be found in the write set of other in-flight transactions. If those conflicts

still remain at the end of the transaction, the committing transaction will abort the readers to

maintain the consistency of the system.

The leftmost diagram of Figure 5.9 shows how Partial Consistency modifies the transitions

of the UTCP Coherence Protocol. The rightmost picture of Figure 5.9 shows how transaction

Tj performsPartial Consistencybefore evicting blockB. Tj must abortTi because both trans-

actions have written lineA before in the transaction—SPECTM can only evict consistent data,

so the system must enforce thatTj does not have a conflict with any in-flight transaction.

5.3.3 Overflow Isolation

In SPECTM, overflowing data must be preserved in isolation—no in-flight transaction can

access that data until the transaction commits or aborts. Toguarantee that invariant, when

a core receives a coherence request from a remote transaction, it checks its Write Signature.

113

If the address is present in the filter, then the core replies with an Abort message, and the

remote transaction aborts immediately. The right picture of Figure 5.9 shows how transaction

Tj prevents the access of L1 evicted blockA when transactionTk attempts to write it.

Note that overflowing transactions may produce cascades of aborts (either when there are

continuous evictions of transactional data or when overflowing transactions access speculative

data that has been moved out of the L1 cache). As these transactions have to be recovered

by software, we decided to perform a randomized exponentialbackoff before restarting the

transaction. This strategy reduces contention to ensure forward progress in the application.

For exemplifying how overflowing data is kept in isolation after Partial Consistency, we

assume that transactionsTi, Tj andTk have written lineA. As can be seen in Figure 5.10,

the transaction executed in coreCi wants to replace lineA (step 1). This causes the abort of

transactionsTj and Tk (step 2). Then,Ci cleans its WCV vector, adds lineA in the Write

signature (step 3), brings the old value of lineA from the L2 cache (and takes the physical

address of the line from the L1 tag) and inserts a new entry on top of the software log (step 4).

After that, the system can safely write back the speculativevalue in the L2 cache and set core

Ci as the exclusive owner of the line (step 5). Assume now that transactionTj attempts to write

the evicted lineA (step 6). The directory forwards the request toCi (steps 7 and 8), who denies

the access to preserve the isolation of the overflowed cache block because it finds a match in its

Write Signature (step 9). Consequently,Ci replies aborting transactionTj (step 10).

5.3.4 Coherence States: Codification and Implementation

Figure 5.11 presents a possible codification for the UTCP coherence states. We augment a

classical MESI layout with two additional bits: the transactional (T) bit—used for conflicting

read data (R state) and transactionally written data (W andT states)—and the speculative (S)

bit—used only for conflicting written data (W state).

Figure 5.11 also shows a six-transistor SRAM cell implementation of the above codifica-

tion. Each cell keeps a bit, and the system is extended with circuitry for flash-clearing the

transactional state. Each bit uses a different signals for changing the cache line state in parallel.

These signals use three in-core flags to control the logic of the circuitry, which are set when

114

Figure 5.10: Unbounded hardware support for partial consistency (a,b),selective logging (c)
and overflow isolation (d) in SPECTM

(i) a W line is evicted from the L1 cache (Partial Consistency,PCon for short), (ii) a transaction

receives anAbortTxmessage (Abort) or (iii) a transaction reaches its end (Commit).

After triggering Partial Consistencyand collecting all theAbortAckmessages, allW-state

lines must transit toT. Our implementation accomplishes that by activating theWclear signal

when thePCon flag is set, which flash-clears the S bit of eachW-state line simultaneously.

Similarly, W-state andT-state lines must be moved to Modified in the commit phase—this

happens when theCommit flag is set to one. Thus, after the notification phase, the S andT bits

are pulled down to zero by asserting signalsWclear andTclear. This is also straight forR lines,

which must transit to Invalid. Note that theR state does not have the Dirty (D) or Valid (V) bit

activated, so the transition is immediate.

If the Abort flag is asserted, the core turns on theWclear, theTclear and theDclear signal to

invalidate all transactional lines. Before clearing the S and T bits, transactionally modified lines

must pull down to zero the D bit. (The D bit is already zero forR-state lines.) This only happens

115

Figure 5.11: Codification and implementation of cache coherence states

for those L1 cache entries where the T bit is one—this ensuresthat non-transactional lines are

not flushed from the L1 cache. After that, S and T bits are flash-cleared.

5.4 Evaluation

For our analysis we have chosen to compare FUSETM and SPECTM with different lazy

(TCC-like) HTM systems that utilize an idealized late VM foroverflowing data. These im-

plementations, which serve as upper-bounds, never log values in software; instead they keep

transactionally evicted lines in an infinite victim cache. This cache has the same latency as the

L1 cache for reads and writes. The transactional victim cache moves committed values to the L1

instantaneously, and it has a zero-cost abort recovery—transactional entries are just discarded.

The idealized lazy HTM systems employ distinct commit protocols. Thus, we compare our

local approach with two other techniques proposed for modern TCC-based HTM systems. All

the proposals use the UTCP protocol for keeping the speculative state, 32-bit RCV and WCV

and core-to-core abort notification. The rest of the parameters used in the evaluation are the ones

described in Chapter 3. Following is a description of the parallel commit protocols analyzed in

the evaluation for idealized lazy HTM systems.

Distributed Commit [92] (TCC-Dist): This is protocol used in the lazy reference system

described in Section 3.2.2. The system acquires the directory modules accessed during the

transaction before making transactional writes globally visible. Hence, transactions that modify

different directories can commit in parallel. Acquired directories are blocked only for commit

purposes—the directory modules can still forward memory requests. Directory steals are al-

116

lowed to eliminate deadlocks.

Selective Commits [124] (TCC-Sel):This commit protocol only acquires/releases directory

modules that possess a conflicting line. Like in EazyHTM [124], TCC-Sel assumes that non-

conflicting lines are exclusively owned by the committing transaction (the directory is up-to-

date for those lines, so it is not necessary to update the module). However, entries that record

conflicting lines must be atomically acquired (and after that, updated) to keep the system consis-

tent. Thus, selective commits permits a truly parallel commit on non-conflicting (or read-only

conflicting) transactions, but arbitration and directory updates remain for those with inconsis-

tencies.

Local Commits (TCC-Loc): This is the mechanism proposed for FUSETM and SPECTM. Like

in SPECTM , all transactions are executed in lazy mode—the system does not abort overflowing

transactions to restart them in eager mode, as FUSETM does. However, it does not implement

partial consistency nor overflow isolation, given that speculative L1 evicted data is held in an

unbounded victim cache. Note that TCC-Loc performs local commits. As a result, the system

eliminates directory communication from the commit phase.

5.4.1 FUSETM Performance Analysis

Figure 5.12 presents the time distribution of TCC-Dist (labeled D), FUSETM (labeled F) and

TCC-Loc (labeled L) HTM systems in their 32-threaded executions (for low-contention appli-

cations, top of Figure 5.12) and in their 16-threaded executions (for high-contention2, bottom

of Figure 5.12) applications.

The execution time has been normalized to the 32-threaded (low-contention) and 16-threaded

(high-contention) TCC-Dist execution and is broken down to: non-transactional and barrier cy-

cles (labeled Non-Tx and Barrier), the time spent in committed transactions (labeled Good Tx),

the time that is wasted in non-useful work discarded from aborted transactions (labeled Aborted

Tx), the time spent in abort recovery and in the commit phase (labeled Aborting and Commit),

the time that transactions remain stalled waiting for a conflict to be resolved (labeled Stalled),

and the time that processors execute the exponential backoff after aborting (labeled Backoff).

2we refer as high-contention applications those that presented high abort rates in Section 3.3.2. whereas low-
contention are those that present low and medium abort rates

117

Figure 5.12: Distributed executed time of low- and medium-contention (top, 32 threads)
and high-contention (bottom, 16 threads) TM applications under TCC-Dist (D), FUSETM (F)

and TCC-Loc (L) HTM systems

Note that Stall and Backoff cycles only appear in the FUSETM bar, given that this is the only

system that executes eager transactions.

As it can be seen in Figure 5.12, FUSETM performs close to both idealized VM sys-

tems, although it does not require additional hardware to pin down overflowing data. In fact,

FUSETM outperforms TCC-Dist by a 3% in low-contention applications, behaving like TCC-

Loc in most of the workloads. Nonetheless, FUSETM is a step far from TCC-Loc in applications

with large benchmarks, likeBtree-fixor Hash-read.

In high-contention applications, FUSETM also presents pretty good performance. In aver-

age, it only slows down around a 0.5% with respect to the idealized lazy HTM systems. This

is because the elegant overflow policy that FUSETM incorporates: by re-executing overflowing

transactions in eager mode, the system reduces to the bare minimum the buffering support with-

out scarifying performance. OnlyBayesandHash-writedowngrade their performance under

FUSETM due to the overheads produced by eager transactions. In contrast, other applications

118

Figure 5.13: Normalized FUSETM execution time of applications distributed by the transac-
tional mode

like Intruder or Yadaexperiment the opposite behavior. The reasons for such performance are

summarized in the following paragraphs.

High-performance dual-mode execution. FUSETM successfully integrates lazy execution

with eager-like hardware support. Consequently, both modes of execution exhibit good (and

comparable) performance (more on this in Section 5.4.4). What is more, FUSETM success-

fully combines eager and lazy transactions when cache overflows occur. Figure 5.13 breaks

down FUSETM HTM execution time to the time spent in non-transactionalcode or barriers

(labeled N-Tx+Bar), the time spent in eager (overflowed) transactions (labeled Eager TX) and

the time spent in lazy transactions (labeled Lazy TX). As it can be seen, in applications that

execute small and large transactions (e.g., Genome, Intruder, List-long), FUSETM prioritizes

eager-mode transactions while keeping lazy-mode transactions under fast execution.

Fast lazy commits.FUSETM performslocal commits, a technique that eliminates the commu-

nication with shared resources at commit time. This is especially helpful in applications with

read-only transactions, likeHash-reador Vacation-high, or in applications with tiny-size trans-

actions, likeList-shortor Ssca2. As can be seen in Figure 5.12, the time spent in local commits

(either in FUSETM or in TCC-Loc) is inconsequential, which reports up to a 80% speedup over

state-of-the-art committing techniques in applications with small read/write sets.

Efficient unbounded transactions.Our evaluation shows that overflows are common. Albeit

the important overheads of discarding more transactional work (around 2X over TCC-Loc in

119

Figure 5.14: Speedup achieved in low-contention (top, 32 threads) and high-contention (bot-
tom, 16 threads) applications in TCC-Dist (D), SPECTM (S) and TCC-Loc (L)

high-contention applications) and introducing a randomized backoff, switching to eager mode

on overflows in applications likeList-long or Yadareduces the impact of thestarvation of the

elder pathology [14]. Thus, in some occasions, FUSETM is better than idealized, fixed-policy

HTM systems, with the added benefit of lower hardware cost.

5.4.2 SPECTM Performance Analysis

Figure 5.14 shows the execution time of SPECTM (labeled S) compared with the normalized

execution of TCC-Dist (baseline, labeled D) and the TCC-Loc(labeled L) systems. Figure 5.14

groups execution cycles using the same classification as Figure 5.12.

As it is shown in Figure 5.14, SPECTM experiments a similar behavior to TCC-Loc using

bounded hardware support, and much better performance thanTCC-Dist because it implements

local commits. In average, it only performs a 0.4% worse thanTCC-Loc in low-contention

applications. Moreover, SPECTM yields better performance than TCC-based implementations

in applications with large transactions and conflicts, suchasHash-writeor List-long because

120

of the reasons listed below. In average, SPECTM reports a 10% speedup over TCC-Loc in

high-contention applications.

Efficient late data versioning. SPECTM offers an elegant data versioning mechanism that

combines the benefits of selective logging for overflowed data (early data versioning) with the

smartness of handling few multiple versions of conflicting lines in the L1 cache (late data ver-

sioning). This mechanism extends lazy resolution of conflicts even for those applications that

overflow finite data versioning buffers, which permits more concurrency than eager solutions

when transactions collide, eliminate some read-write violations and remove backoff in all the

cases butYada, where multiple overflowing transactions access L1 evicteddata,

Anticipated resolution of conflicts. SPECTM implements partial consistency when a conflict-

ing transaction evicts transactional data, solving the inconsistencies among transactions before

commit time. Moreover, keeping the isolation of overflowed speculative values also guards

long-standing modifications against younger writes. This permits SPECTM to outperform TCC-

Loc by a 10% in benchmarks likeBayes, Labyrinth or List-long—and up to a 30% inHash-

write. Nonetheless, the impossibility of adaptation at runtime produces a negative effect in

environments likeIntruder or Yada, which are far from the performance exhibited by FUSETM.

5.4.3 Local Commit Analysis

Both FUSETM and SPECTM performlocal commits, a technique that eliminates the commu-

nication with shared resources at commit time. This is helpful in low-contention applications,

especially if they execute small transcations. In fact, thedata on Figure 5.13 report that 5%

of the execution time in low-contention workloads is spent in commits when a non-optimized

protocol is used. Instead, our mechanism requires less than0.1% of the execution time on com-

mits. In high-contention, coarse-grained applications the overhead is not so critical because

most applications hide the commit latency by computing large transactional chunks.

Nonetheless, in environments that execute small transactions likeList-short or Ssca2the

usage of local commits report significant performance benefit, improving up to an 80% the

performance of the distributed commit implementation. In medium-contention applications

like Vacation-highthe usage of local commits also reduces the conflict window (fewer aborts

121

Figure 5.15: Normalized commit time under 32-threaded TCC-Dist (D), TCC-Sel (S) and
TCC-Loc (L)

are notified), which permits a more balanced execution of transactional threads (fewer Barrier

cycles).

Figure 5.15 presents the time spent on commits in three idealized VM systems that im-

plement distinct commit protocols: TCC-Dist (labeled D), TCC-Sel (labeled S) and TCC-Loc

(labeled L). Commit time is normalized to TCC-Dist and applications are executed under 32

threads. Figure 5.15 shows thatlocal commits accelerate the commit phase of the distributed

(selective) approach by an average factor of 20X (4X). The improvement is even more notable

in applications with non-conflicting transactions (e.g., Kmeans-lowor Ssca2), where selective

and local commit protocols almost reduce to zero the commit impact. Nonetheless, in high-

contention applications only our technique is able to reduce the commit overhead (inVacation-

high up to 100X over distributed, up to 60X over selective).

Figure 5.16 shows the average number of network messages pertransactions introduced in

the commit phase by the three idealized VM systems. Althoughfine-grained applications have

small read and write sets, they introduce lots of messages inthe network at commit time under

TC-Dist. The main reason is that most of the transactions fail in their attempt of acquiring

directory modules, so they require several retries (an evendirectory steals) before acquiring a

single module. This behavior can be observed inBarnes, Raytraceor Ssca2. Similarly, TCC-Sel

suffers long delays in high-contention applications likeBtree-varor Yadabecause transactions

must acquire conflicting directories before committing. Incontrast, TCC-Loc only needs to

122

Figure 5.16: Average network messages in the commit phase under 32-threaded TCC-Dist (D),
TCC-Sel (S) and TCC-Loc (L)

notify aborts (a point-to-point message) for conflicting transaction, minimizing the number of

network messages delivered on commits.

Note that the commit protocols recreated in this dissertation only take into account the time

spent in commit arbitration, given that data transfers and directory updates are not required

in our framework. Nonetheless, other lazy HTM systems impose data broadcast and extra

communication at commit time [20, 45, 124], which increasesthe delay produced at the end of

the transaction.

5.4.4 Eager and Lazy Execution Analysis

Figure 5.17 presents the time distribution of two high-performance fixed-policy HTM sys-

tems —an eager HTM system (FASTM with the Hybrid resolution policy, labeled E), and

a lazy HTM system (the idealized TCC-Loc, labeled L) in their32-threaded executions (for

low-contention applications, top of Figure 5.17) and in their 16-threaded executions (for high-

contention bottom of Figure 5.17) applications. The distribution time has been normalized to

FASTM execution and has broken down using the same categories asFigure 5.12.

As it can be seen in Figure 5.17, lazy-mode transactions outperform by a 14% eager-mode

transactions in low-contention applications, while in high-contention applications eager-mode

transactions obtains better performance (FASTM gets a 19% speedup over TCC-Loc). We ex-

plain the reasons why the three HTM systems achieve such accomplishments in the following

paragraphs.

123

Figure 5.17: Distributed executed time of low- and medium-contention (top, 32 threads) high-
contention (bottom, 16 threads) TM applications under Eager FASTM (E) and Lazy TCC-Loc

(L) HTM systems

Eager HTM weaknesses.Eager HTM systems systems—even the FASTM that implements

high-performance conflict and version management policies—are not effective when collisions

among threads are frequent. In FASTM execution, transactions are stalled in the case of conflict,

which may lead to futile stalls (transactions that abort after being stalled for a long time) or cas-

cades of stalls (transactions that are stalled by transactions that have been already stalled, which

are waiting for other conflicts to be resolved). This behavior typically occurs in many-threaded

applications with read-write conflicts, likeHash-writeor Vacation-high, or in applications with

long transactions likeLabyrinth. On average, 27% (6%) of the eager high-contention (low-

contention) execution time is spent in stalled transactions. Moreover, eager transactions utilize

an exponential backoff that is based on the number of retriesto spread the computation and

avoid livelocks. Backoff is critical in high-contention applications with large transactions, like

Btree-fixor Yada, or in applications with lots of aborts and small transactions, like Intruder or

Genome. On average, 8% (2%) of the high-contention (low-contention) eager execution time is

124

spent in the randomized backoff.

Lazy HTM weaknesses.Lazy HTM systems may abort older writers several times, which re-

sults to an important amount of discarded transactional work (TCC-Loc wastes 4X more than

FASTM execution in high-contention benchmarks). This is critical in applications with large

transactions, likeIntruder or Yada. However, applications with small transactions and read-

after-write conflicts, such asBtree-fixor Hash-write, improve their performance over the eager

baseline. This performance improvement is due to (i) the speculative resolution policy that

TCC-Loc employs—which do not stall conflicting memory accesses nor require backoff—and

(ii) the efficiency oflocal commits—which drop off the time spent in the commit operation.

5.4.5 FUSETM and SPECTM Execution Analysis

Figure 5.18 shows the execution time of both proposals (FUSETM , labeled F, and SPECTM ,

labeled S) using the normalized execution of TCC-Loc (labeled L) as a pure, high-performing

lazy baseline. Figure 5.18 classifies the execution cycles according to the previous standards,

using 32 threads (low-contention) and 16 threads (high-contention).

In average, SPECTM obtains less than a 1% performance degradation in low-contention

benchmarks compared with the ideal TCC-Loc, while in high-contention applications it beats

the baseline by a 10%. On the other hand, FUSETM achieves an 8% (low-contention) and

a 0.5% (high-performance) of performance degradation withrespect to TCC-Loc, albeit it re-

quires less hardware extensions than SPECTM. The following paragraphs summarize the upsides

and downsides of both speculative HTM systems with local commits.

FUSETM strengths. By re-executing overflowing transactions in eager mode, FUSETM obtains

similar performance to FASTM in coarse-grained applications, as it can take advantageof eager

conflict management for large transactions. This fact reduces the number of aborts inIntruder

or Yada, given that, after receiving a conflict notification, the system is able to preserve useful

computation from large transactions. On these benchmarks,FUSETM beats SPECTM by a factor

of 2X. Moreover, FUSETM can rely on conventional logging mechanisms, being less hardware-

invasive than SPECTM.

FUSETM weaknesses.FUSETM must abort the whole overflowing transaction, which incurs

in an increment of Aborted Tx cycles in low-contention applications with long transactions

125

Figure 5.18: Distributed executed time of low- and medium-contention (top, 32 threads)
high-contention (bottom, 16 threads) TM applications under TCC-Loc (L), FUSETM (F) and

SPECTM (S) HTM systems

like Hash-reador Btree-fix. Moreover, it forces eager execution for overflowing transactions in

medium- or high-contention applications, which is not the best alternative inBayesor Vacation-

high. On some applications, these disadvantages report up to a 50% performance degradation

with respect SPECTM.

SPECTM strengths. SPECTM does not suffer from FUSETM’s limitations described above. It

resolves most of the conflicts lazily, independently of the transactional size. This is preferable

in applications likeBtree-varor Labyrinth, where read-write conflicts are common. Moreover,

it avoids aborts of transactions that overflow at the cost ofearly abort notification. Resolv-

ing some conflicts beforehand provides additional benefit over TCC-Loc in benchmarks like

Bayes, Hash-writeor List-long. Overall, SPECTM obtains a 9% speedup over FUSETM in high-

contention applications, and around an 8% in low-contention applications.

SPECTM weaknesses.As pointed out in the last section, lazy conflict management sometimes

performs worse than eager conflict management. In those ocassions, SPECTM will perform sim-

126

ilar to TCC-Loc, which is far from the performance of an eagerHTM system such as FASTM.

Nonetheless, FUSETM re-executes large transactions in eager mode, incorporating by default a

better resolution of conflicts inIntruder or Yada. In fact, SPECTM spends almost half ofYada’s

execution cycles in backoff. This is because lots of conflicts involve transactional evicted lines.

Nonetheless, FUSETM eliminates this problem by stalling the transaction on conflict.

5.5 Related Work on Lazy HTM System

Transactional Coherence and Consistency (TCC [45]) proposed to decompose parallel exe-

cutions on chunks of computation to reorder at free will memory accesses. In later refinements

of the system, those chunks were defined by the programmer using transactional semantics.

Bulk [21] used a similar approach to implement efficient sequential consistency. Both TCC-

like and Bulk-like HTM implementations require some kind ofglobal arbitration—involving

either token acquisition or bus blocking. This process makes committing data one of the prin-

cipal bottlenecks of lazy HTM systems. Hence, distinct proposals have emerged to reduce the

commit overhead, allowing distributed arbitration and memory updates to increase the scalabil-

ity of TM applications.

Chafi et al. employed a directory-based coherence protocol to increment the scalability

of a TCC environment (ScalableTCC [22]). Processors must acquire a globalticket from a

centralized agent, and then acquire (block) each directorybank being read or written in the

committing transaction. Probe messages are sent to check iftransactions with smaller tickets

have acquired their writing directories, stalling youngercommitters if they do not. After all

directories are acquired, each directory entry of the writeset has to be updated, setting the

committer as the new owner of the line. Of course, invalidatemessages are sent to the concurrent

sharers/owners, which force the abort of conflicting transactions.

Pugleyet al. proposed different protocols to eliminate the use of a centralized agent that

delivers tickets [92]. In their SEQ-TS strategy, distributed directory banks are acquired in par-

allel, recording in that moment a timestamp that informs at which moment the transaction has

started its commit phase. To avoid deadlocks, older committers must steal younger directory

acquisitions by sending a specific message. If so, younger committers release stolen directories

and restart the commit process again. Once a processor has acquired all the directories, it asserts

127

HTM System
VM Hardware Conflict Overflow Commit Arbitration

Strategy Support Detection Policy Process Mechanism

TCC [45] Late
L1 TX

Lazy
Serialize Broadcast Centralized

cache long Tx Rd & Wr set arbiter

ScalTCC [22] Late
L1 TX

Lazy XTM [25]
Serialize dir. Centralized

cache acquisition TID delivery

SEQ-TS [92] Late
L1 TX

Lazy No info
Parallel dir. Block dir.

cache acquisition modules

Bulk HTM [20] Late
L1 TX

Lazy LTM [5]
Broadcast Acquire

cache signatures bus

Eazy HTM [124] Late
L1 TX

Eager
Victim Update Block dir.

cache cache directories entries

FlexTM [112] Late
Coherence

Eager
Overflow Software

Software
protocol Table notification

FUSETM
Late or Coherence

Eager
Switch to Local

-
Early (OV) protocol Eager Tx commits

SPECTM
Mostly Coherence

Eager
Overflow Local

-
Late protocol Isolation commits

Table 5.2: Characteristics of lazy HTM implementations

a local flag to prevent future steals, and then starts updating all the directory entries in the write

set, not unlike ScalableTCC.

EazyHTM [124] uses eager conflict detection to track violations among transactions, but

defer the resolution of conflicts until commit time, just like FlexTM [112] does. In EazyHTM,

transactions without conflicts can commit in parallel, serially writing the transactional values in

the shared memory. If a conflict exists, the committing core must notify aborts and then proceed

with directory updates, acquiring exclusive permissions for each line contained in the write set,

which in turn invalidates copies kept in other processors.

Recent Bulk CMP implementations also optimize the chunck commit phase. BulkSC [21]

adds a centralized arbiter that takes each of the write signatures of the already committing

chunks and intersects them with the read/write signature ofthe incoming committer. If the

intersection is empty, parallel commits are allowed. A distributed arbiter can also be used to

128

improve the scalability of the system. In BulkSC, signatureexpansion is performed in the

directories to avoid massive broadcast of signatures. ScalableBulk [93] increases the overlap

between committing chunks by grouping directory banks, blocking accesses to a set of shared

cache lines and performing signature disambiguation in directory modules.

Table 5.2 summarizes the main characteristics of existing lazy HTM systems. As it can be

observed, both FUSETM and SPECTM use a novel version management scheme for keeping the

speculative state, with results in improved commits and no arbitration. Both schemes also sim-

plify the overflow hardware compared with other lazy HTM systems: FUSETM relies on eager

transactions to accomplish that task whereas SPECTM takes advantage of a co-designed conflict

and buffering engine. Most importantly, both solutions fit in a conventional CMP framework,

being less intrusive that previous lazy HTM systems.

5.6 Conclusions

In this chapter, we have presented FUSETM and SPECTM, the first lazy HTM systems that

entirely remove global arbitration and communication withshared resources at the end of trans-

actions to provide fast commits. Both of them extend a typical coherence protocol with two

additional solid L1 states to separate conflicting and consistent memory blocks inside the first

level cache, which permits an easy identification of non-isolated data. These system also track

in per-core bit vectors conflicting transactions, use core-to-core abort notification and postpone

directory updates to perform local commits.

FUSETM is the first HTM system that permits simultaneous execution of eager- and lazy-

mode transactions. FUSETM offers high-performance lazy execution for those transactions that

fit in the L1 cache. In the case of cache overflow, the system aborts the offending transaction

and re-executes it in eager mode, which uses early data versioning with logging support. This

approach is much simpler and efficient than previous approaches, which assumed late data

versioning for the overflowed state.

FUSETM substantially reduces the hardware cost compared to prior lazy HTM designs with-

out loosing performance. Evaluation results show that FUSETM obtains close performance to

an idealized HTM system that does not suffer from transactional cache evictions. In some appli-

129

cations FUSETM even outperforms the idealized approach because eager conflict management

can be more effective when dealing with large transactions.The evaluation also demonstrates

the effectiveness of using local commits in fine-grained applications. Our mechanism achieves

up to 80% speedup over other commit protocols that recently appeared in the literature. In fact,

our technique removes the commit phase from the critical path—less than 0.1% of the execution

time is spent on commits.

FUSETM forces overflowing transactions to be re-executed in eager mode. We have seen that

this procedure generates extra aborts, and limits the concurrency obtained by pure lazy HTM

systems in some applications. SPECTM proposes a realistic VM scheme to maintain isolated

speculative overflowing data in the upper levels of the memory hierarchy, while in-cache values

allow inconsistencies. Therefore, SPECTM recreates a truly lazy HTM system where most of the

conflicts are resolved at commit time. This approach obtainsa 17% speedup over FUSETM in

high-contention applications.

Finally, we offer the most complete evaluation of both eagerand lazy HTM designs using

the same simulation infrastructure, comparable HTM support and hardware configuration. This

methodology permits a more meaningful comparison of the various HTM systems. We show

that lazy schemes are more efficient when dealing with small transactions with high-contention,

because they guarantee forward progress without requiringbackoff schemes and they can spec-

ulate on read-write conflicts. In contrast, eager schemes are better suited for large transactions,

because they implement simpler overflow policies and can preserve transactional computation

in the case of conflict by stalling the uncompleted request.

130

131

Chapter 6

High-Performance Adaptive Hardware

Transactional Memory Systems

Most Hardware Transactional Memory implementations choose fixed version management (VM)

and conflict management (CM) policies at design time. Although there are few exceptions (see

related work in Section 6.6), most HTM implementations fit inone of two categories: they are

either eager or lazy1 HTM systems.

On the one hand, eager HTM systems present poor performance when they execute appli-

cations with a high number of conflicts. In these scenarios, eager HTM designs may abort a

transaction multiple times before it commits [14]. Moreover, most implementations require a

backoff policy to avoid repetitive conflicts between aborting transactions [98]. Nonetheless,

eager approaches can preserve the computation generated onlarge transactions by stalling con-

flicting requesters, and they do not require additional commit actions [112].

On the other hand, lazy HTM systems suffer considerable delays when hardware resources

are overflowed—e.g., in FUSETM, large transactions discard transactional computationon over-

flows because the system must re-execute them in eager mode. Moreover, lazy solutions must

abort all the transactions that conflict with the committer,which may result to starvation of older

transactions [109] and may increase the amount of transactional wasted work [112]. Neverthe-

less, lazy HTM systems can avoid some read-write conflicts and guarantee forward progress

1in this chapter, we refer as eager HTM systems those that implement eager CM, whereas lazy HTM systems
implement lazy CM, independently of the VM strategy that they use.

132

without applying a backoff policy. Therefore, lazy approaches are more effective when they

deal with small, high-contention transactions [14].

Experiments presented in the previous two chapters show that each scheme has its strengths

and weaknesses. Nonetheless, both approaches lack flexibility when they resolve non-trivial

conflicts on different-length transactions. In this chapter, we present two fully-flexible HTM

systems that can adapt the hidden transactional mechanismsaccording to the size and con-

tention of any instance of a transaction executed in the system. The former proposal is DYNTM,

the first truly adaptive HTM system that implements a novel conflict resolution policy between

distinct-mode transactions and utilizes a simple predictor to decide the best execution mode

for each transaction at runtime. The latter proposal is SWAPTM, an effective alternative to

DYNTM. SWAPTM records in hardware important statistics of the activityof the in-flight trans-

action to interchange the conflict management strategy without additional actions. Because of

SWAPTM decouples the VM strategy from the CM policy, transactions’ mode of execution is

not subjected to their length.

This chapter is organized as follows. First, it motivates the work for DYNTM and SWAPTM,

showing the main limitations of fixed HTM systems. Then, it overviews the DYNTM system,

describing the programming model, the hardware required todetermine the best-suited exe-

cution mode for each instance of a transaction and the proposed conflict management policy.

After that, the chapter reveals how SWAPTM can take advantage of SPECTM’s VM strategy to

get rid of DYNTM’s predictor and use instead profiling information of the current instance of a

transaction to determine the most profitable mode of execution. The chapter follows evaluating

DYNTM and SWAPTM , and presenting a global vision of how this thesis contributes to improve

the quality of HTM state-of-the-art. The chapters ends comparing our contribution with other

high-performing HTM systems and adding few concluding remarks.

6.1 Motivation

Nowadays, most HTM systems implement fixed (either eager or lazy) version and conflict

management mechanisms. Unfortunately, fixed-policy HTM systems are faced with several

challenges that limit the concurrency of transactional workloads [16].

133

Figure 6.1: Speedup over opposite fixed-policy (eager or lazy) HTM systems

Inflexible conflict management has to prioritize between conflicting transactions. On the

one hand, lazy HTM systems must abort all the transactions that conflict with the commit-

ting one, which (i) may result to starvation of the older transactions [14] and (ii) it increases

the amount of discarded transactional computation [111, 122]. On the other hand, eager HTM

systems may abort a transaction multiple times, which may lead to different pathological situ-

ations [98]. Nevertheless, lazy transactions can avoid some read-write conflicts whereas eager

transactions minimize discarded work in the case of write-write violations by stalling conflicting

requesters [14].

As we have mentioned in Section 5.4.4, there is no fixed-policy HTM system that outper-

forms the rest. Figure 6.1 shows, for transactional benchmarks, which high-performing eager

(FASTM) or lazy (TCC-Loc) HTM system obtains better performance—the height of each bar

shows the performance improvement over the other HTM system. As it can be seen, applica-

tions with some contention and small transactions (e.g., Raytraceor Vacation-high) or those

with read-write conflicts (e.g., Btree-fixor Hash-write) yield better performance when they are

executed in lazy HTM systems, while applications with high contention and large transactions

(e.g., List-longor Yada) obtain better results when they are executed in eager HTM systems. In

some applications, the performance gap between eager and lazy HTM systems is huge—close

to 3X speedup inLabyrinth (lazy better) orIntruder (eager better).

Figure 6.2 shows the benefits of using flexible conflict management. In Situation 1, eager

transactions stall their execution when they find a read-write conflict, while lazy transactions

speculate with the conflict and commit without aborting if the reader finishes before the writer.

134

Figure 6.2: Conflict management in eager, lazy and dynamically adaptable HTM systems

In Situation 2, however, eager transactions do not abort when they discover a write-write con-

flict, and thus they conserve transactional computation. Having a flexible VM and CM scheme

should allow the system to select the most profitable policy on each situation.

In addition to this, complex applications that combine small and large transactions with

variable contention present a great challenge for HTM systems that fix the version and conflict

management strategies for the whole program execution: while eager HTM systems can pre-

serve the computation generated by long transactions in case of collision, lazy HTM systems

are more effective dealing with small, high-contending transactions. A truly flexible HTM that

could select the ideal (eager or lazy) execution mode for each transaction at runtime would not

be challenged by such complex design choice. In Situation 3 of Figure 6.2, we present how

three different transactions interact in an HTM system thatcan choose at free will the trans-

actional mode of execution. When transactions are executedunder thesamemode (analogous

behavior to a fixed-policy HTM system), they perform poorly.However, when transactions are

executed usingdistinctmodes, overall throughput is improved.

On top of that, some applications present a level of contention that fluctuates through time.

This dynamic behavior can be found in workloads with transactions that operate on data struc-

tures that continuously modify their size (e.g., binary trees). At the beginning, the tree is empty,

so each insertion provokes a conflict—threads simultaneously attempt to add a leaf that is linked

135

with the root. However, the number of collisions diminishesas the tree increases its size, given

that insertions are spread over distinct branches of the tree. Inflexible strategies are not effi-

cient on those situations, because all the instances of the transaction use the same policies. An

HTM that adapts its version and conflict management mechanisms should be able to catch the

dynamic behavior of these kind of applications.

6.2 A Dynamically Adaptable HTM System

DYNTM (dynamically adaptable HTM system) is the first HTM systemthatcleverlycom-

bines eager and lazy transactions to untie the conflict management policy from the bottom-

line HTM machinery. Using FUSETM’s infrastructure, DYNTM describes a runtime prediction

scheme that decides, for eachdynamicinstance of a transaction, at what mode it should be

executed according to its characteristics. When tightly coupled with a new conflict resolution

policy, this system enables safe and efficient execution of eager and lazy transactions.

6.2.1 DYNTM Overview

DYNTM offers two different execution modes (eager and lazy) that use opposite VM and

CM strategies. DYNTM incorporates the UTCP protocol to isolate eager modifications from

other in-flight transactions and to track violations between lazy conflicting accesses. Like

FUSETM, DYNTM takes advantage from the deep-seated early VM support in order to han-

dle cache overflows and context switches for large transactions.

Contrary to FUSETM, in DYNTM the systemdynamicallydecides the most profitable (or

the necessary) execution mode at the beggining of a transaction. That choice is preserved until

commit or abort time. DYNTM selects the eager or lazy mode of execution by consulting a

per-core Transactional Mode Selector (TMS). This hardwarecomponent uses past information

of thecurrent instance of the transaction (if the transaction aborts there will be several retries

of the same instance) and the history ofpreviousinstances of the same transaction to determine

the most effective execution mode.

Predicting the behavior at runtime permits the system to select the best-suited policy for

eachindividual instance of a transaction. This scheme allows DYNTM to break the chains

imposed by fixed-policy HTM systems, which lack adaptability.

136

6.2.2 Programming Model

Like most HTM systems, DYNTM only needs two new instructions to define the boundaries

of the transactions:TM_BEGIN() andTM_END(). All the memory accesses performed inside the

atomic block are treated as transactional, requiring special operations. Although DYNTM does

not require additional instructions, we have added two new directives that permit the program-

mer to take control over the VM and CM mechanisms.

We have introduced theTM_CONFLICT(mode) directive, where mode can beEAGER or LAZY,

that forces all transactions of the application from this point on to run at the execution mode

selected by the user. This execution modes are analogous to the ones presented in FUSETM.

Hence, if a transaction executed after setting aLAZY environment overflows, it has to abort and

restart in eager mode, just as in FUSETM. In contrast, if the transaction is executed after setting

aEAGER environment, it will run in FUSETM’s eager mode from the very begginnig.

We also add theTM_BEGIN(mode) directive, which statically indicates the execution mode

for all the instances of the defined transaction. This seconddirective has higher precedence over

TM_CONFLICT. These two directives allow expert programmers to overridethe default execution

mode selected by the system and combine eager and lazy transactions on the same application.

6.2.3 Transactional Mode Selector

In DYNTM, each core includes a simple Transactional Mode Selector(TMS) to decide the

most profitable execution mode for eachproper transaction. The appropriate execution mode

for a transaction is highly application-dependent. Lazy transactions usually manage contention

more efficiently than eager transactions, especially when there are many small transactions with

high contention. Nonetheless, eager transactions reduce the amount of discarded work due to

aborts of large transactions. For this reason, the TMS decides to execute most of the transactions

lazily, except in the case of multiple lazy-mode aborts or frequent overflows.

The TMS configuration shares similarities with typical two-level branch predictors [129].

As it can be seen in Figure 6.3, the TMS requires two hardware structures that store important

information about past transactional executions. The firststructure is the Transactional State

Register (TSR), which collects information about the current dynamic instance of alocally

137

Figure 6.3: Hardware support for the Transactional Mode Selector

executing transaction. The second structure is the Transactional History Table (THT), which

records statistics from previously committed transactions on this core.

The TSR contains (i) the overflow bit (OV), which is asserted when the system aborts a

lazy transaction due to an L1 cache overflow, (ii) a 3-bit saturating counter (Ret) that counts

how many aborts (i.e., retries) the currently executing transaction has performed, and (iii) the

Mode bit, which determines the execution mode of the currentin-flight transaction. Each entry

of the THT has two 2-bit saturating counters and a bit that contains the execution mode of the

last committed instance of the transaction (LEM bit). The first counter (LOC) tracks if the

transaction is prone to overflow while the latter (RetC) tracks if the transaction is prone to abort

multiple times before committing.

At the beginning of a given transaction, the TMS decides the execution mode (eager or

lazy) of the transaction and stores the decision in the Mode bit of the TSR. This decision is

preserved until the transaction commits or aborts. Figure 6.4a shows how the execution mode

is selected using the TMS. The TMS uses the TSR when the systemre-executes an aborted

transaction (Ret>0). In this case, DYNTM changes the execution mode from lazy to eager

when (a) the OV bit is asserted or (b) the number of transactional retries is above a thresholdT.

In our evaluation, the thresholdT is a static parameter (the number of active threads divided by

four). This technique permits our system to eliminate thestarvation of the olderpathology [14]

and minimize the amount of discarded transactional computation [111].

138

(a) Execution Mode Predictor

if(Ret>0)
if(OV == true || Ret > T || Mode == Eager)

Mode = Eager
else

Mode = Lazy
else

if(LOC == 3 || RetC == 3)
Mode = Eager

else if (LOC < 2 && RetC < 2)
Mode = Lazy

else
Mode = LEM

(b) Transactional History Table Update

if(Ret > 2*T && RetC < 3){
RetC++

else if(Ret < T/2 && RetC > 0)
RetC--

if(OV == true && LOC < 3){
LOC++

else if(OV == false && LOC > 0)
LOC--

LEM = Mode

Figure 6.4: TMS selection (top) and THT update (bottom) algorithms

When a new instance of a transaction starts (i.e., not a re-execution), the TMS indexes the

THT with the Program Counter (PC) of the transaction to decide the execution mode. Like in

conventional Branch Predictors, the PC goes through a hash function to avoid aliasing [129]. If

it hits in the THT, the TMS inspects the corresponding saturated counters. If previous instances

of the same transaction have presented a recognizable behavior (confident LOC or RetC coun-

ters), the TMS chooses between the eager (high counter values) or lazy (low counter values)

execution modes.

If the predictor is not confident on its decision, the TMS chooses the execution mode used in

the last committed instance of the transaction (LEM bit). Ifthere is a miss in the THT, the TMS

executes the transaction lazily because lazy transactionsusually obtain better performance than

139

Lazy Reader Lazy Writer

Eager
No conflict

Speculate with the eager reader

Reader Abort eager transactions if the lazy transaction commits first

Eager Abort lazy transaction Abort lazy transaction

Writer (immediately) (immediately)

Table 6.1: Resolving eager-lazy conflicts in DYNTM

eager transactions. The THT is updated each time the core commits an instance of a transaction

following the algorithm described in Figure 6.4b.

Notice that all the operations that involve the TMS—TSR/THTlookups and updates—are

performedlocally using information from transactions executed in the same core. Hence, the

TMS does not suffer scalability issues.

6.2.4 A Highly-Efficient Policy for Eager and Lazy Transactions

DYNTM introduces a novel conflict resolution policy that enforces the right outcome for

solving conflicts between eager and lazy transactions. Likein FUSETM, this policy schedules

eager transactions over lazy transactions, although is less restrictive than the prior policy, as it

permits to speculate with some read-against-write conflicts.

In DYNTM, lazy transactions cannot safely access the pre-transactional data of an eager

transaction because, in the case of a transactional L1 cacheeviction, eager transactions write

back the line in the L2 cache, polluting the pre-transactional values. For this reason, lazy

transactions must abort when they access a memory location written by an eager transaction,

since they cannot know if the L2 cache contains a pre-transactional or an evicted eager value.

Nonetheless, eager readers speculate when they conflict with lazy writers. When an ea-

ger transaction wants to read data that is written in a lazy transaction, the system will respond

with the line from the L2 cache (lazy modifications are never evicted from the L1 cache, so the

L2 cache always keeps the pre-transactional state) and marka conflict in the eager transaction’s

RCV vector. This policy avoids read-write and write-read conflicts if the eager transaction com-

mits before the lazy transaction. If the lazy transaction commits first, then the eager transaction

must abort. Notice that eager transactions only speculate with read data (the WCV remains

140

Figure 6.5: Resolving eager/lazy conflicts in DYNTM

empty), so abort notification at commit time is not required.Table 6.1 summarizes the conflict

resolution policy between eager and lazy transactions.

Now, assume thatE0 is a core executing an eager transaction andL1 is a different core

executing a lazy transaction. In order to explain how conflicts that involve eager and lazy

transaction are resolved, we will describe the various situations in Figure 6.5.

Eager Early Write (Example 1): DYNTM must prevent lazy transactions from reading or

writing the modifications introduced by eager transactions. Thus, whenL1 attempts to access a

line being modified byE0, E0 responds with aNackmessage. After receiving theNackresponse,

L1 aborts immediately.

Eager Late Write (Example 2): Similarly, upon a write request fromE0, L1 acknowledges

the request and aborts itself, permitting the eager transaction to obtain the pre-transactional

data from the L2 cache. This is safe to do because lazy writes never leave the L1 cache. This

approach reduces the amount of wasted computation on abortsand facilitates fast restarts, since

lazy transactions do not require backoff cycles.

Eager Late Read (Example 3):WhenE0 reads data that is written inL1, L1 responds with

a Lack message.E0 marks the conflict in its RCV, andL1 marks the conflict in its WCV.E0

receives the line data from the L2 cache and stores it in theR state. Since lazy modifications are

never evicted from the L1 cache,E0 gets the correct pre-transactional data. This policy avoids

aborts from read-write conflicts whenE0 commits beforeL1. Of course, ifL1 commits first,E0

has to abort.

Eager Early Read (Example 4): Similarly, L1 can continue its execution when it writes a

memory location that has been read byE0, tracking the conflict in its WCV. Hence, ifL1 com-

141

Figure 6.6: Transiting from eager to lazy and vice versa

mits beforeE0, anAbortTxmessage is sent toE0, which immediately aborts. Otherwise, ifE0

commits beforeL1, no conflict is reported.

6.3 A High-Performing HTM with Swapping Execution Modes

DYNTM offers a thorough solution to break with the inflexibilityof HTM systems. How-

ever, it still imposes two major concerns that may affect theperformance of TM applications

with irregular transactions. First, it forces early VM for those transactions that exceed the limits

of the L1 cache. This becomes a problem if the TMS fails in its prediction and decides to execute

the transaction in lazy mode because then overflowing transactions have to be aborted. Second,

DYNTM assigns a mode of execution when transactions start, and that decision is preserved

until commit or abort time. This may lead to pathological situations that should be avoided if

the transaction couldswitchits mode of execution on demand.

6.3.1 SWAPTM Overview

SWAPTM (high-performing HTM with swapping execution modes) is the first HTM system

that can adapt on the fly the most profitable mode of execution without causing unnecessary

aborts. The system relies on simple hardware to collect information of the current instance of

a transaction and then uses this knowledge to dynamically change the transactional execution

mode. Of course, switching from a mode to another may triggeradditional actions to satisfy the

constraints of each mode of execution.

For SWAPTM we assume a similar hardware foundation to DYNTM, which allows the sys-

tem to execute eager and lazy transactions simultaneously.However, there is a key difference

142

between both systems: like in SPECTM, this system incorporates selective logging (and the rest

of mechanisms) to implement early VM for overflowing data. Insuch way, SWAPTM is able to

decouple the conflict management technique from the size of atransaction.

SWAPTM decides to move to the eager mode those transactions that have been running for

a long time. Experiments carried out in this thesis show thatit is critical to prioritize large

transactions because otherwise they may starve by younger transactions (this happens when all

transactions are executed in lazy mode [14]). We consider a transaction large when the number

of transactional reads or writes that it performs is considerable higher than the average.

SWAPTM may also switch from eager to lazy at runtime. There are twosituations to perform

such transition. First, when an eager transaction continuously clashes with other transactions

may produce acascade of stalls(a transaction that is waiting for a conflict to be resolved owns

data requested by a third transaction) or acontention point(a single transaction is continuously

denying access to a group of transactions that also have high-priority). Moving transactions that

generate contention to a more relaxed conflict management strategy increases the transactional

activity in the system (higher commit rates) and enables speculation on read-write conflicts

(lower abort/stall rates).

Second, if there is a cycle between stalled transactions, conventional eager HTM systems

must abort at least one transaction. Someone may claim that these aborts are needed anyway,

because transactions involved in a cycle are not serializible. This is not entirely true, because

moving conflicting transactions to lazy mode favors overallconcurrency (some of the read-

write conflicts may disappear) and guarantees forward progress (in eager mode, the system must

resolve cyclic dependences takingblind decisions, which may introduce repeated executions of

transactions if the winner of the conflict is aborted by a third transaction).

To prevent contention points and repeated aborts, the system records the number of conflicts

generated by eager transactions. Figure 6.6 shows SWAPTM mode transitions and some of

their associated actions. Conflicts between transactions are resolved using the same resolution

policies to DYNTM, which are briefly described in Table 6.1

143

Figure 6.7: Detecting long transactions in SWAPTM

6.3.2 Hardware Support

Besides DYNTM’s conventional hardware (UTCP protocol, conflict vectors, etc.) and se-

lective logging support, SWAPTM incorporates specialized structures to keep account of trans-

action’s properties.

Long Transaction Detector (LTD). In SWAPTM, each core tracks in a local register (called

TxMemOps) the number of transactional loads and stores that are completed successfully. Thus,

when a transaction starts the register is cleaned, and then incremented each time that a store

is retired inside this transaction. Cores also keep in another register (calledAvgTxMem) an

approximation of the average number of stores performed by the already committed transactions

in the core. This is a pondered average, which is calculated each time an instance of any

transaction ends using the following formula:

AvgTxMemi :=(AvgTxMemi−1+TxMemOps)/2

Basically, the new average becomes the mean between the old average and the number of mem-

ory operations of the committing transaction. Hence, recent committed transactions have more

weight than the older ones. Cores detect large transactionswhen the number of memory oper-

ations completed in the actual transactional instance is higher than the average (multiplied by a

factorF to prevent cyclic transitions from lazy to eager, more on this later). Figure 6.7 shows a

scheme of the LTD mechanism.

144

Eager Starvation Tracker (EST). In SWAPTM, each core records in its EST how many trans-

actions it has stalled. When this counter bypasses a threshold T, the system assumes that the

in-flight transaction is starving other eager transactions.

SWAPTM uses the underlying hardware to determine if the current transaction must switch

its mode of execution. In some occasions, these transitionscarry additional actions. In the next

section, we explain when transactions change their mode of execution and which mechanisms

they trigger.

6.3.3 SWAPTM Execution Mode Transitions

SWAPTM uses the underlying hardware to determine if the current transaction must switch

its mode of execution. We will use the examples from Figure 6.8, which recreate distinct situa-

tions where transactions dynamically shift their policies, to describe how system transits from/to

distinct execution modes. Eager transactions are represented with a continuous line, while lazy

transactions are represented with a dotted line.

Moving from lazy to eager (long transaction): In Example 1 of Figure 6.8, transactionsTi

andTj are being executed in lazy mode. At some point in time, SWAPTM determines thatTj

transaction must be executed in eager mode, increasing its priority level overTi. This hap-

pens when the LTD mechanism detects that the number of memoryaccesses performed within

a transaction is over a threshold (step 1). This threshold iscalculated using the pseudo-average

AvgTxMem multiplied by a factorF, which original value is one.

Eager transaction do not accept inconsistencies, as they only permit a unique owner per trans-

actionally written line. Thus, whenTj reaches the maximum number of memory operations, it

stops normal execution and activates thePartial Consistencymachinery, which notifies the abort

of conflicting transactions (in this case,Ti), who clear inconsistent data from their caches (step

2). Like in SPECTM, this mechanism inspects the WCV and sends point-to-point abort mes-

sages to all conflicting transactions. Note that this is the same mechanism that SWAPTM uses

each time a core evicts aW-state cache line—a transactionally written line that has been accessed

in other non-committed transactions.

Once thePartial Consistencyaction finishes,Tj switches to eager mode. To eliminate repetitive

lazy-to-eager transitions, each time that a transaction moves from lazy to eager the factorF is

145

Figure 6.8: Switching execution modes in SWAPTM

incremented. Hence, ifTj transits to lazy again in a near future, it would not change automati-

cally to eager—Tj will only do that when it doubles the current size.

Eager transactions must prevent remote transactions to access their write set. In SWAPTM, ea-

ger transactions have higher priority than lazy transactions, so whenTi asks for data owned by

Tj, Tj replies with an abort message (step 3). This guarantees thatthe longer transaction that is

being executed in eager mode (in this case,Tj) will commit in a near point in time.

Moving from eager to lazy (cycle between stalled transactions): In Example 2 of Figure 6.8,

Ti has written dataB andTj has written dataA. As both transactions are eager transactions, they

must prevent requesting transactions to access their read/write set (by sendingNacknotifications

and updating their EST counters). After receiving aNackmessage, they must retry the non-

completed memory access. This scenario happens whenTj attempts to obtain the ownership of

B (step 1) and whenTi attempts to get access toA (step 2). Hence, transactionsTi andTj have

crossed conflicts.

SWAPTM is able to identify these cycles by adding timestamps on transactional accesses [96].

When this occurs, the youngest transaction that participates in the cycle (in this example,Tj)

transits to lazy mode to eschew an abort (step 3). The transition to lazy mode is not immediate,

asTj has to be sure that all conflicting transactions transit to lazy mode as well. OtherwiseTj

would see a conflict with an eager transaction once it retriesthe conflicting access, and it would

automatically abort.

146

Hence, before jumping to lazy mode,Tj must inform to all its stalled transactions (in this case,

Ti) that they must also switch to lazy execution. This is done byreplying each conflicting

request with aSwapmessage, and decrementing the EST counter (step 4). Only when the EST

counter is zeroTj can resume its execution in lazy mode—this means that, in thenormal case,

all conflicting eager transaction have already been informed that they should transit to lazy

mode (step 5). After receiving aSwapreply,Ti moves to lazy mode and resends the offending

request (step 6).

Moving from eager to lazy (contention point): In Example 3 of Figure 6.8, three transactions

Ti, Tj andTk are executed in eager mode. At a particular point, transaction Tj starvesTi and

Tk, placing the EST counter above a thresholdT (step 1). (In SWAPTM, T is the number of

active threads divided by four, although to ease the comprehension of this example we have set

it to two).

When the threshold is reached, SWAPTM decides to move transactionTj and all itsnackersto

lazy mode, which increases the concurrency of parallel threads. Hence, whenTi andTk retry

their conflicting memory access,Tj replies withSwapnotifications, so they also can transit to

lazy mode (step 2 and 3). Only when all stalled transactions are revived in lazy mode (EST

becomes zero)Tj performs the switch to lazy mode (step 4).

Note that there can be the case when a new requester conflicts with the transaction that is

carrying the eager-to-lazy transition. This is not problematic in terms of correctness, given that

the new requester would transit to lazy (if it is eager) or retry the access (if it is already lazy).

However, it may introduce a performance pathology, given that an eager transaction (the one

that does not receive theSwapnotification) will not transit to lazy, becoming the only participant

of the conflicting group with high privileges. In the worse scenario, this will generate an abort

of the transaction that produced the contention point (now in lazy mode) when it clashes against

the non-transiting one (still in eager mode).

6.4 Evaluation

For our evaluation of DYNTM, we have equiped each core with 2Kbit signatures, 32-bit

Conflict Vectors (one bit per core) and a TMS with a 16-entry THT. A 16-entry predictor

is enough to avoid aliasing between different transactions. We also evaluate three distinct

147

DYNTM alternatives. DYNTM-Ov uses a simpler predictor that only reports if the transac-

tion is prone to overflow, whereasDYNTM-Ab predictor only indicates when the transaction

is prone to abort a lazy transaction multiple times. The original DYNTM uses the policy intro-

duced in this chapter to resolve eager-lazy conflicts, whileDYNTM-EP implements theeager

priority policy by FUSETM.

For our implementation of SWAPTM, we assume analogous hardware support to DYNTM ex-

cept for the TMS. To quantify the importance of switching modes at any point of time, we

evaluate two additional systems:SWAPTM-TLD only performs a single transition from lazy to

eager mode when the number of transactional writes is beyondthe average, whereasSWAPTM-

EST adds eager-to-lazy transitions when a cascade of stalls is detected (all SWAPTM features

but eager-to-lazy transition after detecting a cycle of stalled transactions).

We compare DYNTM (labeled D in all the figures) and SWAPTM (labeled W in all the

figures) against the following fixed and dynamic HTM systems:

FASTM-IVM (labeled E): This configuration is our eager HTM baseline, which corresponds

to a FASTM implementation that uses the idealized VM system proposed in Chapter 4 to spend

zero cycles in aborts and commits. Conflicts arealwaysresolved eagerly using theHybrid

conflict resolution policy. Thus, this HTM system can be seenas an upperbound of FASTM.

TCC-Loc (labeled L): This is our lazy HTM baseline, which corresponds to the HTM system

introduced in Chapter 5. It uses an idealized data versioning for overflowing data and local

commits with core-to-core abort notification. Conflicts arealwaysresolved lazily at commit

time, borrowing the strategy from TCC [45] or EazyHTM [124].

FUSETM (labeled F): This HTM system executes all transactions in lazy-mode except those

that exceed the L1 cache. We evaluate FUSETM with its original policy (eager priority) and with

the high-performance policy introduced in this chapter—wenamed that systemFUSETM-HP .

SPECTM (labeled S): This HTM system executes all transactions in lazy-mode, butresolves

conflicts when a transaction evicts speculative data. Moreover, the system prevents the access

of those replaced blocks by aborting requesters on the fly.

Statically Programmed HTM (labeled P): Static alternative to DYNTM where an expert pro-

grammer decides the execution mode of transactions using theTM_BEGIN(mode) directive. For

148

our evaluation, we decided to execute all transactions lazily except those transactions that over-

flow the L1 cache or those transactions with many lazy aborts.We use this system to evaluate

the performance benefit of the TMS predictor compared to a simpler adaptive method.

6.4.1 DYNTM Performance Analysis

Figure 6.9 presents the time distribution of eager FASTM (ideal VM, labeled E), lazy TCC-

Loc (ideal VM, labeled L) and DYNTM (non-ideal VM, labeled D) in their 32-threaded execu-

tions (for low-contention applications, top of Figure 6.9)and in their 16-threaded executions (for

high-contention, bottom of Figure 6.9) applications. The execution time has been normalized

to the 32-threaded (low-contention) and 16-threaded (high-contention) FASTM execution and

is broken down to: non-transactional and barrier cycles (labeled Non-Tx and Barrier), the time

spent in committed transactions (labeled Good Tx), the timethat is wasted in non-useful work

discarded from aborted transactions (labeled Aborted Tx),the time spent in abort recovery and

in the commit phase (labeled Aborting and Commit), the time that transactions remain stalled

waiting for a conflict to be resolved (labeled Stalled), and the time that processors execute the

exponential backoff after aborting (labeled Backoff).

DYNTM outperforms both fixed policy systems by (i) combining eager and lazy transactions

in applications that execute heterogeneous transactions and (ii) re-adapting the execution mode

of the transactions at runtime. As it can be seen in Figure 6.9, DYNTM achieves, on average,

a speedup of 19% over FASTM-IVM and a speedup of 57% over TCC-Loc in high-contention

applications. In low-contention applications, the speedup is not so impressive, but significant

over FASTM-IVM (13% improvement).

Similarly, Figure 6.10 shows the time distribution of DYNTM (labeled D) together with two

realistic HTM systems that use either fixed or static conflictmanagement strategies: FUSETM (la-

beled F) and the Statically Programmed version of DYNTM (labeled P). As it shown, DYNTM ob-

tains an average speedup of 24% (6%) on high-contention (low-contention) applications over

FUSETM and a 12% (7%) with respect to the Statically Programmed HTM system. The reasons

why DYNTM outperforms state-of-the-art fixed and static HTM executions are described in the

following paragraphs.

149

Figure 6.9: Distributed executed time of low- and medium-contention (top, 32 threads) high-
contention (bottom, 16 threads) TM applications under FASTM-IVM (E), TCC-Loc (L) and

DYNTM (D) HTM systems

Truly flexible system. DYNTM uses the eager execution mode for transactions that (i) com-

monly overflow the L1 cache and (ii) for transactions that abort several times before committing.

In the former case, DYNTM can stall large transactions—those that modify a lot of lines—to

preserve useful work in case of conflict without requiring specialized late VM support (i.e., the

transactional victim cache used in TCC-Loc, which speeds upthe execution ofVacation-high).

In the latter case, older transactions can commit faster, decreasing the number of aborts—eager

transactions have more priority than lazy transactions in DYNTM. Figure 6.9 shows that com-

bining eager and lazy execution has a positive effect in applications with heterogeneous transac-

tions likeGenome, Bayes, Intruder or Yada, which reduce the Stalled and Backoff cycles (with

respect to FASTM) and the Aborted Tx cycles (with respect to TCC-Loc).

Catch dynamic behavior. Figure 6.10 shows the importance of having a dynamic execution

mode selector. FUSETM cannot combine execution modes on applications likeIntruder, which

starve older non-overflowed transactions. Moreover, overflowed transactions must abort before

150

Figure 6.10: Distributed executed time of low- and medium-contention (top, 32 threads) high-
contention (bottom, 16 threads) TM applications under FUSETM (F), Statically Programmed

(P) and DYNTM (D) HTM systems

being re-executed, which increases the amount of discardedtransactional work inYada. In con-

trast to FUSETM, DYNTM does not need to abort lazy overflowed transactions and then restart

them in eager mode. It recognizes very quickly which transactions will probably overflow, and

decides to executes most of them eagerly right away.

The Statically Programmed HTM delegates the election of theexecution mode to the program-

mer. The assignment that the programmer has performed triesto minimize the impact of aborts

caused by overflows (e.g., in Bayes) and accelerate applications with multiple lazy aborts (e.g.,

in Intruder). However, applications that present a dynamic behavior (such as phase changes)

may suffer considerable delays when we fix the execution modeof a transaction for the entire

application. This happens in applications likeGenome, Btree-varor Yada, which present sev-

eral overflows at the beginning of the execution and less overflows at their end.

As opposed to the Statically Programmed HTM, DYNTM executes eager transactions only when

it is necessary (when lazy aborts are frequent), avoiding the shortcomings of using conservative

151

Figure 6.11: Normalized DYNTM execution time of applications distributed by the transac-
tional mode

Figure 6.12: Speedup achieved in low-contention (32-threads, left) andhigh-contention (16-
threads, right) applications by FUSETM, DYNTM-Ov, DYNTM-Ab and DYNTM

conflict management mechanisms for the entire application.The only scenario where the Stat-

ically Programmed HTM system performs better than DynTM isBayesandHash-write. This

happens becauseBayesonly executes few transactions, which does not give enough time to our

dynamic selector to learn the best execution mode for each transaction.

Best-suited execution mode selection.By re-adapting the system at runtime, DYNTM can use

the most profitable strategy through the whole execution. Figure 6.11 breaks down applications

run on top of DYNTM according to the mode of execution. As it can be seen in the figure,

DYNTM executes most of the applications with small transactions lazily. This strategy is really

useful because it (i) eliminates read-write conflicts if thereader commits before the writer, (ii)

152

Figure 6.13: Speedup achieved in low-contention (32-threads, left) andhigh-contention (16-
threads, right) applications by FUSETM, FUSETM-HP, DYNTM-EP and DYNTM

does not require exponential backoff and (iii) removes pathological behavior caused by stalled

transactions. In contrast, coarse-grain applications spent more time in the eager mode, given

that large transactions that overflow the L1 cache do not support the lazy execution mode and

conservative conflict management reduce drastically the number of aborts and re-executions.

High-accurate predictor. Selecting the best-suited execution mode for each individual task

may become a delicate task. Nonetheless, DYNTM’s TMS does a great job handling this assign-

ment. Figure 6.12 shows the speedup achieved by DYNTM-Ov, DYNTM-Ab and DYNTM with

respect to the FUSETM execution. As it can be seen, moving overflowing transactions from

eager at the beginning enhances the performance ofBtree-fixor Yada. However, in applications

with read-only conflicts likeGenomehaving only an overflow predictor can have a negative

effect. In other applications likeIntruder its necessary to count the number of lazy aborts to

increase the priority of critical transactions. When both techniques are combined, the predictor

finds the most profitable mode of execution in most of the occasions. Vacation-lowis the only

benchmark that performs worse in DYNTM over FUSETM. The reason of such behavior lies on

the erratic style of its transactions, which makes difficultfor the predictor to guess which will

be the adequate mode.

High-performing conflict policy. Part of the performance improvement that DYNTM yields

comes from the policy employed to resolve eager-lazy conflicts. Figure 6.13 shows how both

FUSETM and DYNTM perform under theeager winpolicy (original FUSETM and DYNTM-EP)

153

Figure 6.14: Distributed executed time of low- and medium-contention (top, 32 threads) and
high-contention (bottom, 16 threads) TM applications under FASTM-IVM (E), TCC-Loc (L)

and SWAPTM (W) HTM systems

and thehigh-performancepolicy (FUSETM-HP and the original DYNTM). As it can be seen,

FUSETM can take advantage of the new policy in applications likeBtree-fix, Labyrinthor Yada

to increase overall concurrency. However, some applications with crossed conflicts (e.g., Hash-

reador List-long) perform better (both for FUSETM and DYNTM) with the eager winspolicy.

6.4.2 SWAPTM Performance Analysis

Figure 6.14 exhibits the performance improvement of SWAPTM (labeled W) compared with

FASTM-IVM (labeled E) and TCC-Loc (labeled L). As it can be observed, SWAPTM achieves,

in low-contention benchmarks, a 15% speedup over the ideal FASTM implementation and a

4% speedup over TCC-Loc. The benefits of SWAPTM are especially notable in workloads

that require dynamic conflict management for variable-sizetransactions (e.g., Hash-readand

Vacation-high). In high-contention applications, the performance gap between FASTM-IVM

(32%), TCC-Loc (76%) and SWAPTM is bigger due to the complex nature inherent of those

154

Figure 6.15: Speedup over best-performing fixed-policy HTM of low- and medium-contention
(top, 32 threads) and high-contention (bottom, 16 threads)TM applications under SPECTM (S),

FUSETM (F), DYNTM (D) and SWAPTM (W)

benchmarks. That is the case ofHash-writeor Yada, where fixed-policy HTM systems suffer

notable performance pathologies.

Figure 6.15 shows the speedup obtained on dynamic HTM systems (SPECTM, FUSETM,

DYNTM and SWAPTM) over the best-performing fixed-policy HTM system (TCC-Loc for low-

contention, FASTM-IVM for high-contention applications). In the low-contention scenario,

SWAPTM beats DYNTM and SPECTM by a 3% performance improvement, and FUSETM by

around a 5%. This is because SWAPTM can take advantage of selective logging to run ahead

speculatively without additional aborts—a condition thatFUSETM and DYNTM do not satisfy.

On the other hand, in high-contention applications SWAPTM obtains an average speedup

of 13% (DYNTM), 51% (FUSETM) and 72% (SPECTM). This happens because some of the

benchmarks execute transactions with variable length and contention—this difference on trans-

actional behavior is noticeable even among instances of thesame transaction. That is the case

for Bayes, Hash-writeor List-long. In those complex situations, SWAPTM picks on the run

155

Figure 6.16: Speedup achieved over TCC-Loc in low-contention (top, 32 threads) and high-
contention (bottom, 16 threads) applications in SPECTM (S), SWAPTM-TLD (T), SWAPTM-

EST (E) and SWAPTM (W)

the best conflict management strategy based on analysis information of each dynamic instance

of a transaction. This technique allows SWAPTM to obtain up to 2X speedup over DYNTM in

Hash-write. Following we present a deeper analysis on SWAPTM strengths.

Fine-grain flexibility. Unlike DYNTM, SWAPTM does not enforce early VM for those trans-

actions that do not fit in the L1 cache. Instead, it relies on SPECTM’s logging and engine for

keeping safe those speculative data that leave in-core memory space. However, SPECTM lacks

flexibility—it executes all the transactions with lazy resolution of conflicts. Figure 6.16 shows

the speedup of three different SWAPTM alternatives compared to SPECTM. As it can be seen,

having a fixed policy hurts drastically the performance of TMapplications that combine different-

style transactions (Bayes, List-long and Yada) or manifest dynamic behavior (e.g., Btree-fix,

GenomeandIntruder). In average, SWAPTM obtains a 72% (3.4%) performance improvement

against SPECTM in high-performance (low-performance) benchmarks.

Useful profiling information. Figure 6.16 provides additional information about the adaptive

156

Figure 6.17: DYNTM and SWAPTM execution time of low-contention (left, 32 threads) and
high-contention (right, 16 threads) applications distributed by the transactional mode

engine implemented by SWAPTM. The LTD mechanism permits a rapid switch toward eager

CM when a transaction is considered large. As a result, SWAPTM-TLD improves on SPECTM in

applications with variable-length transactions such asHash-read, Intruder or Yada. However,

moving to eager CM too often or too early may incur a significant overhead in applications

with long transactions and read-write conflicts, as it restricts concurrency among threads and

imposes backoff. This limitation also affects DYNTM, which must run selected transactions in

eager mode from the very beginning. To prevent cascade of stalls we evaluate SWAPTM-EST,

an instrument that change to lazy CM when a transaction provokes starvation. On top of that

system we build SWAPTM, which moves to lazy CM when a cycle of stalled transactions occurs.

As it can be seen, going back to lazy mode has some benefits in applications with read-write

conflicts likeGenomeor List-long.

Great adaptability. The sum of the previously described mechanisms offers a fastin-time reac-

tion to transactional events. This profit is significant in applications where instances of the same

transaction produce an uncertain behavior (e.g., BayesandLabyrinth), where SWAPTM obtains

better performance than DYNTM at less hardware cost—SWAPTM does not require the TMS

predictor.

Effective combination of CM policies. As it is shown in Figure 6.17, SWAPTM distributes

wisely eager and lazy execution: eager transactions are notmandatory for large transactions nor

require conservative re-execution, while lazy transactions do not abort due to overflows and can

157

prevent read-write conflicts that end up as aborts. In fact, in some benchmarks likeSsca2the

on-fly swapping mechanism balances the speculative execution flow, which reduces the barrier

cycles and overall execution time.

6.5 Results Roadmap: A General View

This section reviews the performance of the HTM systems enclosed on this thesis—i.e.,

FASTM under thecycle policy, FUSETM, SPECTM, DYNTM and SWAPTM—and compares

their performance against our reference HTM systems—LogTM-SE and TCC-Dist. The next

paragraphs expose how the intrinsic properties of each benchmark affects its performance and

scalability. We grouped the benchmarks according to its level of contention (Figure 6.18 for

low contention, Figure 6.19 for medium contention, Figure 6.20 for high contention), and we

present speedup numbers over sequential execution after running TM applications with up to

32 threads.

6.5.1 Low-contention Applications

Hash-read. In this application, parallel threads execute most of the time searches in a large

shared hash table, although they can also insert or remove data randomly. This kind of applica-

tions normally perform better in lazy environments, like SPECTM or TCC-Dist. FUSETM cannot

take advantage of lazy capabilities because some transactions overflow the L1 cache, and thus

they need to be aborted and re-executed in eager mode. Dynamic HTM systems—especially

SWAPTM, which lazy mode is not bounded by transactions’ size—canrapidly adapt a more

conservative conflict policy when two threads update shareddata, a strategy that reports better

performance. Nonetheless, eager HTM systems keep scaling with many-threads, asHash-Read

is a low-contention benchmark.

Kmeans-low.This workload is the only one of eighteen where all HTM systems obtain similar

(extremely good) scalability. This is becauseKmeans-lowmostly executes non-transactional

embarrassingly parallel code, and thus concurrent threadsdo not need to synchronize.

Kmeans-high. Like Kmeans-low, this STAMP benchmark runs in its majority outside trans-

actional blocks. However, the few (commonly small) transactions that it executes may collide,

producing aborts. LogTM-SE recovers the state by software,adding overheads that expose

158

Figure 6.18: Scalability analysis of HTM systems on low-contention applications

more time transactions to conflicts. In contrast, FASTM and the rest of the proposals are not

challenged byKmeans-highbecause they perform an (almost) immediate restoration of the val-

idated state.

Raytrace. This application suffers considerably delays when it is executed under 32 threads

with eager conflict management. The reason behind this limitation lies on the high volume of

read-write conflicts risen at runtime, and the poor job that eager schemes do when they must

spread contention. As most of the transactions are small, FUSETM is able to run them in fast lazy

mode, behaving like SPECTM. Dynamic approaches execute almost all transactional instances

in lazy mode, here the explanation why they perform like the ideal TCC-Dist inRaytrace.

Ssca2.This benchmark consists on multiple kernels accessing a single data structure represent-

ing a weighted, directed multigraph. It executes tiny transactions that do not usually conflict.

This behavior affects negatively TCC-Dist, which commit protocol collapses the network and

the directory. Although this benchmark presents a really low conflict rate, it does not scale with

159

Figure 6.19: Scalability analysis of HTM systems on medium-contention applications

32 threads, as great part of the execution time is sequential—all except one threads wait most

of the times in barriers.

Vacation-low. In this low-contention configuration,Vacation searches on large regions of

shared data structures, and at the end writes few data in another list. Hence, few transactions

collide, allowing almost linear scalability. Only with 32 threads the dynamic HTM versions

outperform the rest, as the can operate smartly on these rareoccasions where performance

pathologies appear.

6.5.2 Medium-contention Applications

Barnes. This application is another example of the importance of having fast commits and

deferred resolution of conflicts in applications with smalltransactions. Eager HTM systems

(Logtm-SE and FASTM) do not scale whenBarnesis executed with many threads, whereas

lazy HTM systems keep extracting parallelism. Like inSsca2, TCC-Dist suffers delays when it

has to commit many short transactions, given that it saturates shared resources.

Btree-fix. In this configuration, the workload computed data in a sharedbinary tree after doing

160

a homogeneouscomputation—i.e., the time computing the data does not vary. While all but

LogTM-SE approaches perform similarly with 16 threads or less, with 32 threads the perfor-

mance drops down, especially on eager approaches. The reason behind this behavior is that

accessing a data structure when it is empty causes lots of conflicts and data transfers in the

CMP, lowering the efficiency of the application. An execution of the benchmark with more

transactions (and thus populating the tree faster) should increase the scalability of the workload

for all HTM systems.

Genome.This workload is a good reference point to study the performance of HTM systems

in applications with phase-changes. As it can be seen, both DYNTM and SWAPTM do a good

pursuit dealing with conflicts when the contention level varies through time. Although both

approaches eliminate the impact of conflicts at runtime, thesequential parts of the application

bound the scalability of the program in many-threaded executions.

List-short. This benchmark is similar toKmeans: large parallel (non-transactional) sections of

code combined with short transactions, with two key differences. First, simultaneous threads

share most of the data, making the CMP configuration (memory hierarchy, distributed directory,

network topology,etc.) the main bottleneck to achieve good scalability. Second, abort recovery

is critical, here the reason for the inefficiency of LogTM-SE. Note that, in contrast toSsca2,

small transactions are executed in the middle of parallel phases. This fact allows TCC-Dist to

hide its slow commits, as it is rare that two transactions commit at the same time.

Vacation-high. This configuration ofVacationis a clear example of the importance of enabling

speculation even in the case of overflow. On cache evictions,SPECTM and SWAPTM are able to

keep deferring the resolution of conflicts until commit time(or until the system suggests a wiser

conflict management decision), avoiding some read-write conflicts that arise on many-threaded

executions. TCC-Dist must execute those transactions lazily until the end, which sometimes

provokes the re-execution of the older (and thus critical) transaction. This may cause thread

unbalance in the application.

6.5.3 High-contention Applications

Bayes. This workload, which consists on building a belief network,is very challenging for

modern HTM systems. It executes different-type transactions, some of them huge. Moreover,

161

Figure 6.20: Scalability analysis of HTM systems on high-contention applications

as it can be seen from the data in Figure 6.20,Bayessuffers performance degradation at 16

threads, but it recovers most of it at 32 threads. SWAPTM is the best of all HTM systems, and it

outperforms DYNTM because it does not rely on an erratic predictor to select the transactional

execution mode. As FASTM or SPECTM do not have to abort in case of transactional eviction,

they provide better conduct than FUSETM.

Btree-var. Like the fixed version ofBtree, this microbenchmark do not scale beyond 16 threads.

Eager HTM systems like FASTM or LogTM-SE must be inflexible in the way of resolving con-

flicts, which may prevent the forward progress of critical transactions when they collide with

162

ones with lower priority. Speculative systems, instead, are able to run-ahead in case of conflict.

Such freedom helps lazy HTMs like TCC-Dist to be more effective with respect to eager-based

HTMs. In contrast toBtree-fix, here most transactions fit on the L1 cache, therefore FUSETM is

not affected by aborts caused by overflows. The main limitation of dynamic approaches is

thatBtree-varexecutes transactions with different characteristics with a random pattern, which

makes difficult for DYNTM history-based predictor to identify the most profitable execution

mode.

Hash-write. This microbenchmark executes large transactions with opposed contention char-

acteristics: some transactions are parallel, while the others are mostly serial. The main lim-

itation of fixed policy systems (TCC-Dist or FASTM) is their lack of flexibility, while some

dynamic HTM systems (FUSETM and DYNTM) bound their performance because their execu-

tion modes are tied to L1 buffering space. As a result, partly(SPECTM) or fully (SWAPTM)

adaptive and non-restrictive HTM systems improve on previous approaches, obtaining more

than 10X speedup over FASTM with 32 threads.

Intruder. This is possible the poorest scaling workload from the STAMPbenchmark suite, es-

pecially when it is executed withsimulationsmall-size inputs—other inputs suggested for STM

systems achieve more scalability [16]. The maximum performance is reached with 8 threads

(around 6X speedup over sequential execution when run in dynamic approaches). Note that

Intruder is strongly affected by thestarvation of the olderpathology [14] in lazy environments

like TCC-Dist or SPECTM, working worse than FASTM or even LogTM-SE.

Labyrinth. This workload exemplifies the importance of having fast abort recovery and flex-

ible conflict management. Apparently,Labyrinth is a high-contention workload, especially at

the beginning of its execution. Inefficient eager policies may delay that phase during too much

time, putting obstacles on the path of pressing transactions. Software abort increases the con-

flict window, adding more risk of serialization. As a matter of fact, SWAPTM obtains 20X over

sequential execution when it is run with 32 threads, while LogTM-SE barely improves single-

threaded execution.

List-long. Updating shared lists with data computed during several cycles can be an important

issue for transactions that resolve conflicts at commit time—TCC-Dist performs worse than

low-cost LogTM-SE. Dynamic (DYNTM and SWAPTM) and eager high-performing (FASTM)

163

systems can preserve useful work ofList-long by stopping conflicting transactions when they

are close to their end, minimizing the impact of re-executing after introducing inconsistencies.

Yada. This is another high-contention workload that do not scale beyond 16 threads. It com-

bines small and large transactions with variable contention: such properties impose hard con-

straints on fixed-policy HTM systems. In this application, FUSETM takes advantage of the

eager mode of execution for long transactions, and thus it outperforms unique-mode HTMs

like SPECTM. Dynamic HTM systems are better-suited than non-adaptive systems (either lazy-

based TCC-Dist or eager-based FASTM), as they can adopt the most beneficial execution mode

according the characteristics ofYada’s transactions.

6.6 Related Work on Contention-Aware HTM Systems

Most HTM proposals fit in the eager/lazy HTM categories—the last two chapters review in

detail both HTM designs. Nonetheless, there are some hardware-assisted TM designs that es-

tablish novel conflict management techniques to favor concurrency and attest high performance.

In this section, we revise those designs that reduce contention by applying software-managed

conflict management policies, tracking dependences between transactions, predicting specula-

tive values or performing partial re-executions.

Conventional HTM systems implement atwo-phase-locking(2PL [32]) algorithm that seri-

alizes the execution of conflicting transactions. Thus, in case of collisions, one of the conflicting

transactions has to abort or delay its execution until the conflict disappears. This may become

a bottleneck in applications with a high volume of sharing data but a small conflicting set.

Conflict-serializability(CS [6]) is a more relaxed algorithm that allows concurrencybetween

conflicting threads by tracking (and ordering) data dependences.

Ramadanet al. implemented such algorithm in hardware through a Dependence-Aware

HTM (DATM [99]) system. DATM accepts more interleaving than2PL by forwarding non-

committed values using a non-standard coherence protocol.This approach permits overcoming

direct (non-cyclical) WAW (write-after-write) and RAW (read-after-write) conflicts, but cores

must keep a single, updated order between transactions during the whole execution. If a con-

flicting cycle appears, at least one transaction is aborted and the global order is re-calculated.

Moreover, short transactions may have to wait for longer transactions to commit. To reduce the

164

HTM System
VM Hardware CM Fixed Versatility

Strategy Support Strategy Policy? Granularity

DATM [99] Late
Forwarding Speculate with

Yes Application
L1 protocol WAW and RAW

WarTx [122] Early
Tx Store Buffer, Speculate with

Yes Application
SW logging WAR conflicts

FlexTM [112] Late
Tx L1 cache, Lazy or

No2 Application
SW support Eager

FASTM Early
TMESI

Eager Yes Application
L1 protocol

FUSETM
Late

UTCP L1 protocol
Lazy or

Yes3 Overflowing

Early (OV Tx) Eager Transactions

SPECTM
Late or UTCP L1 protocol,

Lazy Yes Application
Early (OV data) Selective log

DYNTM
Late or UTCP L1 protocol, Lazy or

No
Individual Tx

Early TMS predictor Eager Instances

SWAPTM
Late or SPECTM-like & Lazy or

No
Individual Tx

Early (OV data) profiling HW Eager Instances

Table 6.2: Data VM and CM characteristics of high-performance HTM systems

hardware complexity of DATM, Utkeet al. assigned aserializability ordering number(SON)

to each committing transaction [7]. Their system implements late version management and

tracks the read history and conflicts in hardware tables. At commit time, negative acknowl-

edgements are broadcast to enforce global seralizable order between conflicting transactions.

Pantet al.also showed how to reduce the hardware overheads by using advanced concurrency

monitoring techniques [90].

Titos et al. followed a distinct approach to survive WAR (write-after-read) conflicts in a

log-based HTM system [122]. While non-conflicting writes store transactional modification

in-place, conflicting writers maintain the speculative state in a specific gated store buffer until

older readers commit or abort. Note that this mechanism imposes a global order between in-

2in FlexTM, the programmer decides in which mode of executiona transaction is going to run
3although it offers two modes of execution, the eager-mode only is operative for overflowing transactions

165

flight transactions. Again, a cycle between conflicting transactions requires, at least, an abort

to break the cyclic dependence. Unfortunately, all proposals impose a strict order between

conflicting transactions and can only eliminateacyclicdependences. Thus, these HTM systems

experiment the same issues as conventional HTM systems whenthey execute transactions with

crossed conflicts, which are common in typical transactional workloads [16].

In order to introduce some flexibility to TM systems, Shriraman et al. proposed FlexTM

[112], a hybrid implementation [31, 63] that decouples conflict detection from conflict resolu-

tion by tracking transactional violations eagerly and delegating their resolution to the software.

In such way, the system can operate either eagerly (resolving the conflict at the moment that it

is produced) or lazily (resolving the conflict at commit time). Nonetheless, the choice has to

be applied for the entire application. For data versioning,it readjusts the underlyinglate VM

support from RTM [113] by adding two states to a typical MESI protocol, which hold trans-

actionally written and read lines. This buffering capability is complemented with signatures

to summarize accesses within transactions and a hash structure, called Overflow Table, which

must be accessed by software to perform lookups on cache misses and to ensure permanent

commits.

FlexTM’s dual-mode system permits the programmer to decidethe conflict management

scheme for the entire application (eager or lazy), but it requires (i) software decisions to resolve

conflicts, (ii) complex hardware to buffer transactional overflowed data (because it uses late

VM) and (iii) software commit arbitration for lazy transactions. What is more, FlexTM applies

the same conflict management policy for the whole execution,being more restrictive than an

HTM system that dynamically adopts the policy at the granularity of a transaction—something

that DYNTM and SWAPTM can do.

Two other HTM systems appeared recently that also mix concepts from eager and lazy ap-

proaches. LagerTM [132] retains few lines privately in a gated store buffer to emulate lazy

execution for conflicting lines, while other memory accesses are executed under eager seman-

tics. A local-accessed structure informs each core which lines must be kept hidden in the store

buffer (in the common case, those that conflict frequent). The store buffer must be drained at

commit time. Similarly, ZEBRA [123] modifies the coherence protocol engine to redirect those

speculative updates that are marked as contended in the L1 cache to a special buffer (like late

166

VM systems). Non-contending data can be safely moved towards the memory hierarchy be-

cause old values are maintained on the side (like early VM systems). Note that both proposals

introduce small data structures to keep the pre-transactional and/or the speculative state. Those

private buffers can easily be overflowed, reducing the potential performance gain in applications

with large memory footprints. Instead, DYNTM and SWAPTM modify bigger, already existing

buffers to permit flexible policies for any kind of transaction.

Table 6.2 shows the differences between enhanced HTM systems and our proposals. As we

can see, our main contribution lays on the possibility of adapting the system at runtime at the

granularity of a transaction, something that other HTM systems cannot do. The non-dependency

on software, the version management flexibility or the feasibility of the design are also a plus.

Another way to deal with high-contention situations is to guess the value generated by trans-

actions that conflict. Tabbaet al.speculated in their Transactional Value Prediction (TVP [120])

implementation with false sharing conflicts—those caused by cache-line granularity—by using

stale data cache lines on transactional loads and validating those loads (and also those stores

from whom the processor does not have exclusive permissions) at commit time.

Value Prediction Transactional Memory (VP-TM [89]) implements a memory-level predic-

tor over a log-based HTM system that attempts to anticipate the future value of a conflicting

line. The predictor assumes a well-known pattern in commonly updated shared variables—e.g.,

a counter that is always incremented—and supplies the generated value of the line to the proces-

sor, which has to validate the correctness of the line when the conflict disappears—this happens

when the clashing transaction commits or aborts. Notice that value prediction does not impose

an order between conflicting transactions, being more flexible than CS-based HTM systems. Of

course predicting the correct value for a line is not straightforward.

Nesting transactions (either close or open) can be used to reduce the wasted work on aborts.

Many HTM proposals can be extended for supporting differentforms of nesting [43]. An

alternative way to minimize discarded work consists on using automaticintermediatecheck-

points [126] to restart transactions from a convenient snapshot rather than from the very begin-

ning of the transaction. These techniques are orthogonal todynamic conflict management, and

we do not see any restriction for using them to improve further the performance of DYNTM or

SWAPTM.

167

6.7 Conclusions

In this chapter we have presented DYNTM and SWAPTM, two fully flexible HTM systems

that adapt their version and conflict management strategiesaccording to the characteristics

of each individual instance of a transaction executed in thesystem. This versatility allows

DYNTM and SWAPTM to take smart decisions to resolve complex conflicts, something that

modern HTM systems that fix the conflict management strategy at design time cannot do.

DYNTM extends the FUSETM system with the Transactional Mode Selector (TMS), a history-

based predictor that takes advantage of the flexibility offered by the underlying hardware to

decide the best execution mode for each transaction at runtime. The predictor executes those

transactions that tend to overflow the L1 cache or those transactions that are prone to abort

multiple times in eager mode, which saves computational work and minimizes the abort rate.

The rest of transactions are executed lazily to favor concurrency in the system. DYNTM also

gets benefit from a novel, high-performance policy to efficiently resolve eager-lazy conflicts. In

high-contention applications, DYNTM obtains an average speedup of 19% over the best (ide-

alized) HTM system that employ fixed version and conflict management mechanisms, a 24%

speedup over FUSETM and a 12% speedup over an HTM system that applies static conflict

management policies.

While DYNTM re-executes in eager mode those transactions that exceedthe L1 cache,

SWAPTM handles on the fly the eviction, removing inconsistenciesif necessary. This mech-

anism hybrid data versioning technique offers more flexibility than DYNTM conflict manage-

ment approach. For instance, SWAPTM takes out the predictor from the system and uses instead

profiling techniques to modify at any point in time the behavior of each individual instance of a

transaction. As a result, SWAPTM obtains an average speedup of 11% over DYNTM.

168

169

Chapter 7

Conclusions

The consolidation in the multicore era offers numerous opportunities to develop powerful appli-

cations in the near future. Transactional Memory proposes asimple and efficient programming

model to enhance the performance of parallel software without sacrifying ease of use. This

thesis examines different alternatives to implement a high-performance hardware-assisted TM

system using architectural on-chip support. In this chapter, we first expose a summary of the

contributions enclosed in this dissertation and then we follow discussing future work.

7.1 Summary

In this thesis, we address the latent problems associated with modern HTM systems by

presenting five advanced HTM designs that require distinct transactional mechanisms.

FASTM. We propose a low-costeagerHTM system that modifies the L1 cache controller and

the coherence protocol to eliminate most of the software aborts, which in turn minimizes the

number of conflicts and favors overall concurrency. On the one hand, FASTM forces write-

backs to the L2 cache on coherence transitions, which transparently guarantees that the non-

speculative state is pinned down in the upper levels of the memory hierarchy. On the other

hand, a software log is kept on the side with a copy of these values, which permits in-place

transactional replacements without additional actions. Hence, FASTM takes advantage of a

hybrid version management mechanism that collects the best of previous (early or late) data

170

versioning proposals. This HTM system can be further improved by coupling the original pro-

posal with selective logging or wake-up notification.

FUSETM and SPECTM. We rethink the concept of speculative transactions by presenting

FUSETM, a non-invasivelazy HTM system that offers a unified framework where different-

mode transactions can be simultaneously executed. In FUSETM, transactions that fit in the L1

cache defer the resolution of conflicts at commit time, although it detects (and tracks) collisions

as soon as they are produced. This infrastructure permits the implementation oflocal commits

that avoid long delays when the system executes short transactions. What is more, by restart-

ing in eager mode those transaction that overflow the L1 cache, the FUSETM system saves a

considerable amount of on-chip area—previous lazy HTM systems require additional hardware

to maintain the overflowing state. SPECTM extends FUSETM to support deferred resolution of

conflicts for most of the lines of a transaction, independently of its size.

DYNTM and SWAPTM. We break with the assumption that HTM system must fix transac-

tional mechanisms at design time by introducing two truly flexible HTM systems: DYNTM and

SWAPTM. The former determines the best-suited execution mode for each individual instance

of a transaction by recording past information of previously committed or aborted instances.

The latter decouples conflict management from version management in order to switch the ex-

ecution mode on the fly. Cutting off the dependency on the conflict and version management

strategy during the whole execution enables high concurrency on applications with heteroge-

neous transactions—those that present variable sizes and different levels of contention—and

good performance on applications that carry a dynamic behavior.

7.2 Future Work

The wide versatility of the HTM systems presented in this dissertation opens new venues

for future TM research.

7.2.1 Eager HTM Systems

FASTM is only the first step to bridge the gap between early and late VM implementations.

Nonetheless, we believe that there is plenty of work that canhelp to improve further eager HTM

systems. In this thesis, we have seen that FASTM reduces the pressure on signatures, increas-

171

ing their fidelity and reducing the overhead of false positives. However, the implementation of

this mechanism is still critical when large transactions are executed. Thus, it would be interest-

ing to study new methods to track big read and write sets, suchas hierarchical or asymmetric

configurations.

This thesis also demonstrates that many-threaded executions suffer considerable delays

when running high-contention applications, even after applying advanced conflict resolution

policies. Wake-up notification is a good strategy to save global power on those situations. This

power budget could be used to accelerate critical transactions (e.g., by applying DVFS tech-

niques [61]) and reduce the conflict window. Similarly, it would be attractive to study the

impact of coupling an Asymmetric CMP [117] with TM support, which would permit critical

transactions to speed up their execution as soon as they are moved to the faster core.

7.2.2 Lazy HTM Systems

This thesis shows how a lazy HTM system can be built using eager-like hardware. To

achieve our goal, we have assumed simple, in-order cores to facilitate the comprehension of the

design. Nonetheless, the industry is manufacturing out-of-order (OoO) processors to increase

ILP. This core configuration introduces several microarchitectural structures (e.g., store buffers)

or events (e.g., branch misspeculation) that the transactional mechanisms must be aware of.

Although few OoO architectures with TM support have been explored (see the Rock proto-

type [23] for more info), all of them assumed an eager HTM scheme. Thus, it would be nice to

see how a lazy HTM system can be integrated in a CMP formed by OoO processors.

One of the advantages of using store buffers is that the system can implement relaxed con-

sistency models. Inside transactions, it is enough to satisfy transactional consistency (of course,

register dependences must be preserved). In such weak models, memory accesses can be re-

ordered at free will. It would be interesting to research howHTM systems can take advantage of

this flexibility—delaying offending memory accesses at theend of a transaction may improve

the overlap of conflicting atomic blocks.

172

7.2.3 Dynamic HTM Systems

The dynamically adaptive HTM systems presented through this thesis provide an important

framework for future HTM studies. A lot of interesting work on conflict management on the

face of adaptability is possible. A reasonable starting point could be extending the two available

execution modes with others that employ more aggressive or conservative features. The conflict

resolution policy between different-mode transactions can also be revised to establish distinct

priority levels to promote critical transactions.

More sophisticated mechanisms for deciding the right execution mode could be devised as

well. For instance, the DYNTM predictor can be expanded with additional parameters in order to

figure out with high accuracy how future instances of a transaction will behave. Improvements

on the coherence protocol, reductions on complexity, implications to the TM runtime, and others

are also topics that could be revisited on the type of systemsenabled by DYNTM or SWAPTM.

173

Bibliography

[1] http://www.cs.wisc.edu/trans-memory/biblio/.

[2] TLB and snoop energy-reduction using virtual caches in low-power chip-
multiprocessors, Aug 2002.

[3] Martı́n Abadi, Tim Harris, and Mojtaba Mehrara. Transactional Memory with Strong
Atomicity Using Off-the-Shelf Memory Protection Hardware. In Procs of the 14th Symp
on Principles and Practice of Parallel Programming, Feb 2009.

[4] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha,
and Tatiana Shpeisman. Compiler and Runtime Support for Efficient Software Transac-
tional Memory. InProc of the Intl Conf on Programming Language Design and Imple-
mentation, Jun 2006.

[5] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and
Sean Lie. Unbounded Transactional Memory. InProcs of the 11th Intl Symp on High-
Performance Computer Architecture, Feb 2005.

[6] Utku Aydonat and Tarek Abdelrahman. Serializability ofTransactions in Software Trans-
actional Memory. InProcs of the 3rd Workshop on Transactional Computing, Feb 2008.

[7] Utku Aydonat and Tarek Abdelrahman. Hardware Support for Relaxed Concurrency
Control in Transactional Memory Systems. InProcs of the 43rd Intl Symp on Microar-
chitecture, Dec 2010.

[8] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using Hardware Memory Protection
to Build a High-Performance, Strongly Atomic Hybrid Transactional Memory . InProcs
of the 35th Intl Symp on Computer Architecture, Jun 2008.

[9] Burton H. Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors.Com-
munications of the ACM, 13:7, 1970.

[10] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin. Making
The Fast Case Common And The Uncommon Case Simple In Unbounded Transactional
Memory. InProcs of the 34th Intl Symp on Computer Architecture, Jun 2007.

[11] Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. InvisiFence: Performance-
Transparent Memory Ordering in Conventional Multiprocessors. InProcs of the 36th Intl
Symp on Computer Architecture, 2009.

174

[12] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A. Wood.
TokenTM: Efficient Execution of Large Transactions with Hardware Transactional Mem-
ory. In Procs of the 35th Intl Symp on Computer Architecture, Jun 2008.

[13] Jayaram Bobba, Marc Lupon, Mark D. Hill, and David A. Wood. Safe and Efficient Su-
pervised Memory Systems. InProcs of the 17th Intl Symp on High-Performance Com-
puter Architecture, Feb 2011.

[14] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D. Hill, Michael M.
Swift, and David A. Wood. Performance Pathologies in Hardware Transactional Mem-
ory. In Procs of the 34th Intl Symp on Computer Architecture, Jun 2007.

[15] Jayaram Bobba, Weiwei Xiong, Luke Yen, Mark D. Hill, andDavid A. Wood. StealthT-
est: Low Overhead Online Software Testing using Transactional Memory. InProcs of
the 18th Intl Conf on Parallel Architectures and Compilation Techniques, Sep 2009.

[16] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford Transactional Applications for Multi-Processing. In Procs of The IEEE Intl
Symp on Workload Characterization, Sep 2008.

[17] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, AustenMcDonald, Nathan Bron-
son, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.An Effective Hybrid Trans-
actional Memory System with Strong Isolation Guarantees. In Procs of the 34th Intl
Symp on Computer Architecture, Jun 2007.

[18] Calin Cascaval, Colin Blundell, Maged Micheal, HaroldCain, Peng Wu, Stefanie Chiras,
and Siddhartha Chatterjee. Software Transactional Memory: Why is it only a research
toy? Communications of the ACM, 51(11):40–46, Nov 2008.

[19] Michel Cekleov and Michel Dubois. Virtual-address caches, part 2: Multiprocessor is-
sues.IEEE Micro, 17, Nov 1997.

[20] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk Disambiguation of
Speculative Threads in Multiprocessors. InProcs of the 33th Intl Symp on Computer
Architecture, Jun 2006.

[21] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk enforce-
ment of sequential consistency. InProcs of the 34th Intl Symp on Computer Architecture,
June 2007.

[22] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi Cao Minh,
Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. A Scalable, Non-blocking Ap-
proach to Transactional Memory. InProcs of the 13th Intl Symp on High-Performance
Computer Architecture, Feb 2007.

[23] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and
M. Tremblay. Rock: A high-performance sparc cmt processor.IEEE Micro, 29(2), Apr
2009.

175

[24] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson, Michael Van
Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin. Unbounded Page-Based
Transactional Memory. InProcs of the 12th Intl Conf on Architectural Support for Pro-
gramming Languages and Operating Systems, Mar 2006.

[25] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Hassan Chafi,
Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukotun. Tradeoffs in Transac-
tional Memory Virtualization. InProcs of the 12th Intl Conf on Architectural Support for
Programming Languages and Operating Systems, Oct 2006.

[26] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom,
Christos Kozyrakis, and Kunle Olukotun. The Common Case Transactional Behavior of
Multithreaded Programs. InProcs of the 12th Intl Symp on High-Performance Computer
Architecture, Feb 2006.

[27] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael Hohmuth,
Dan Grossman, and David Christie. ASF: AMD64 Extension for Lock-free Data Struc-
tures and Transactional Memory. InProcs of the 43rd Intl Symp on Microarchitecture,
Dec 2010.

[28] Pat Conway and Bill Hughes. The AMD Opteron NorthbridgeArchitecture.IEEE Micro,
27:10–21, Mar 2007.

[29] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh.Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1997.

[30] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: Streamlining STM
by Abolishing Ownership Records. InProcs of the 15th Symp on Principles and Practice
of Parallel Programming, Jan 2010.

[31] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Dan
Nussbaum. Hybrid Transactional Memory. InProcs of the 12th Intl Conf on Architectural
Support for Programming Languages and Operating Systems, Oct 2006.

[32] Dave Dice, Yossi Lev, Mark Moir, and Dan Nussbaum. Transactional Locking II. In
Procs of the 14th Intl Conf on Distributed Computing, Sept 2006.

[33] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early Experience with a
Commercial Hardware Transactional Memory Implementation. In Procs of the 14th Intl
Conf on Architectural Support for Programming Languages and Operating Systems, Mar
2009.

[34] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Shlomi Dolev,
editor, Distributed Computing, Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006.

[35] Aleksandar Dragojević, Rachid Guerraoui, and Michael Kapalka. Stretching Transac-
tional Memory. InProcs of the 2009 Intl Conf on Programming Language Design and
Implementation, Jun 2009.

176

[36] Stijn Eyerman and Lieven Eeckhout. Modeling Critical Sections in Amdahl’s Law and
its Implications for Multicore Design. InProcs of the 37th Intl Symp on Computer Ar-
chitecture, 2010.

[37] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic Performance Tuning of
Word-Based Software Transactional Memory. InProcs of the 13th Intl Symp on Princi-
ples and Practice of Parallel Programming, Feb 2008.

[38] Tim Harris Osman Unsal Adrián Cristal Ibrahim Hur Mateo Valero Ferad Zyulkyarov,
Srdjan Stipic. Discovering and understanding performancebottlenecks in transactional
applications. InProcs of the 19th Intl Conf on Parallel Architectures and Compilation
Techniques, Sep 2010.

[39] James R. Goodman. Coherency for multiprocessor virtual address caches. InProcs of the
Intl Conf on Architectual Support for Programming Languages and Operating Systems,
1987.

[40] Justin E. Gottschlich, Manish Vachharajani, and Jeremy G. Siek. An Efficient Software
Transactional Memory Using Commit-time Invalidation. InProcs of the Intl Symp on
Code Generation and Optimization, Apr 2010.

[41] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[42] Shantanu Gupta, Florin Sultan, Srihari Cadambi, Franjo Ivancic, and Martin Rotteler.
Using Hardware Transactional Memory for Data Race Detection. In Procs of the 23rd
Intl Symp on Parallel and Distributed Processing Symposium, May 2009.

[43] Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jean-
nette M. Wing. Composing First-Class Transactions.ACM Transactions on Program-
ming Languages and Systems, 16, 1994.

[44] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen, Christos
Kozyrakis, and Kunle Olukotun. Programming with Transactional Coherence and Con-
sistency (TCC). InProcs of the 11th Intl Conf on Architectural Support for Programming
Languages and Operating Systems, Oct 2004.

[45] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Oluko-
tun. Transactional Memory Coherence and Consistency. InProcs of the 31st Intl Symp
on Computer Architecture, Jun 2004.

[46] Tim Harris, James R. Larus, and Ravi Rajwar.Transactional Memory. Morgan and
Claypool, Jun 2010.

[47] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing Memory
Transactions. InProcs of the Intl Conf on Programming Language Design and Imple-
mentation, Jun 2006.

177

[48] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software
Transactional Memory for Dynamic-Sized Data Structures. In Procs of the 22nd Symp
on Principles of Distributed Computing, Jul 2003.

[49] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. InProcs of the 20th Intl Symp on Computer Architecture,
May 1993.

[50] Enric Herrero, José González, and Ramon Canal. Elastic Cooperative Caching: an Au-
tonomous Dynamically Adaptive Memory Hierarchy for Chip Multiprocessors. InProcs
of the 37th Intl Symp on Computer Architecture, Jun 2010.

[51] Mark D. Hill, Derek Hower, Kevin E. Moore, Michael M. Swift, Haris Volos, and
David A. Wood. A Case for Deconstructing Hardware Transactional Memory Systems.
In Programming Models for Ubiquitous Parallelism, 2007.

[52] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. volume 41, Jul
2008.

[53] Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and John Gilbert. A Pilot Study to Com-
pare Programming Effort for Two Parallel Programming Models. Journal of System
Software, 81, Nov 2008.

[54] Owen S. Hofmann, Christopher J. Rossbach, and Emmett Witchel. Maximum Benefit
from a Minimal HTM. In Procs. of the 14th Intl Conf on Architectural Support for
Programming Languages and Operating Systems, Mar 2009.

[55] T. Horel and G. Lauterbach. UltraSPARC-III: DesigningThird-Generation 64-bit Per-
formance. volume 19, May/Jun 1999.

[56] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-JuPark, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. Xen on arm: System virtualization using xen
hypervisor for arm-based secure mobile phones. InConsumer Communications and Net-
working Conference, 2008. CCNC 2008. 5th IEEE, Jan 2008.

[57] Intel. First the Tick, Now the Tock: Next Generation Intel’s Microar-
chitecture (Nehalem). Inhttp://www.intel.com/technology/architecture-silicon/next-
gen/whitepaper.pdf.

[58] S.A.R. Jafri, M. Thottethodi, and T.N. Vijaykumar. LiteTM: Reducing Transactional
State Overhead. InProcs of the 16th International Symposium on High Performance
Computer Architecture, Jan 2010.

[59] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broughton. A New Approach to
Exclusive Data Access in Shared Memory Multiprocessors. Technical Report Technical
Report UCRL-97663, Nov 1987.

[60] Satish Narayanasamy Jie Yu. Tolerating Concurrency Bugs Using Transactions as Life-
guards. InProcs of the 43rd Intl Symp on Microarchitecture, Dec 2010.

178

[61] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David Brooks. System level
analysis of fast, per-core dvfs using on-chip switching regulators. InProcs. of the 14th
Intl Symp on High-Performance Computer Architecture, Feb 2008.

[62] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor.IEEE Micro, 25(2):21–29, 2005.

[63] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony
Nguyen. Hybrid Transactional Memory. InProcs of the 11th ACM SIGPLAN Symp
on Principles and Practice of Parallel Programming, Mar 2006.

[64] James R. Larus and Ravi Rajwar.Transactional Memory. Morgan and Claypool, 2006.

[65] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased Transactional Memory. In
Procs of the 2nd Workshop on Transactional Computing, Aug 2007.

[66] Sean Lie. Hardware Support for Unbounded Transactional Memory. Master’s thesis,
May 2004. Massachusetts Institute of Technology.

[67] Javier Lira, Carlos Molina, and Antonio González. TheAuction: Optimizing Banks
Usage in Non-Uniform Cache Architectures. InProcs of the 24th Intl Conf on Super-
computing, Jun 2010.

[68] David B. Lomet. Process Structuing, Synchronization and Recovery Using Atomic Ac-
tions. InProcs of the Intl Conf on Language Design for Reliable Software, Mar 1977.

[69] Marc Lupon. Hardware Approaches for Transactional Memory. Master’s thesis, Univer-
sitat Politècnica de Catalunya, 2008.

[70] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. Version Management Alterna-
tives for Hardware Transactional Memory. InProcs. of the 9th MEDEA Workshop on
MEmory performance: DEaling with Applications, systems and architecture, Oct 2008.

[71] Marc Lupon, Grigorios Magklis, and Antonio González.FASTM: A Log-based Hard-
ware Transactional Memory with Fast Abort Recovery. InProcs of the 18th Intl Conf on
Parallel Architectures and Compilation Techniques, Sep 2009.

[72] Marc Lupon, Grigorios Magklis, and Antonio Gonzalez. ADynamically Adaptable
Hardware Transactional Memory. InProcs of the 43rd Intl Symp on Microarchitecture,
Dec 2010.

[73] Marc Lupon, Grigorios Magklis, and Antonio González.A High-performing Hardware
Transactional Memory with Swapping Execution Modes. Technical Report UPC-DAC-
RR-ARCO-2011-6, Universitat Politècnica de Catalunya, 2011.

[74] Marc Lupon, Grigorios Magklis, and Antonio González.A Selective Logging Mech-
anism for Hardware Transactional Memory. Technical ReportUPC-DAC-RR-ARCO-
2011-7, Universitat Politècnica de Catalunya, 2011.

179

[75] Marc Lupon, Grigorios Magklis, and Antonio González.Lightweight Optimizations
for Eager Hardware Transactional Memory Systems. Technical Report UPC-DAC-RR-
ARCO-2011-5, Universitat Politècnica de Catalunya, 2011.

[76] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Sim-
ics: A Full System Simulation Platform.IEEE Computer, 35, 2002.

[77] Virendra Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisen-
stat, William N. Scherer III, and Michael L. Scott. Loweringthe Overhead of Software
Transactional Memory. InProcs of the 1st Intl Workshop on Transactional Computing,
Mar 2006.

[78] Virendra J. Marathe and Michael L. Scott. Using LL/SC toSimplify Word-based Soft-
ware Transactional Memory (poster). InProcs of the 24th Intl Symp on Principles of
Distributed Computing, Jul 2005.

[79] Kevin Moore Mark Moir and Dan Nussbaum. The Adaptive Transactional Memory Test
Platform: A Tool for Experimenting with Transactional Codefor Rock. InProcs of the
3rd ACM SIGPLAN Workshop on Transactional Computing, Feb 2008.

[80] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.Wood. Multifacet’s
General Execution-Driven Multiprocessor Simulator (GEMS) Toolset. ACM SIGARCH
Computer Architecture News, 33, 2005.

[81] Austen McDonald, JaeWoong Chung, D. Carlstrom Brian, Chi Cao Minh, Hassan Chafi,
Christos Kozyrakis, and Kunle Olukotun. Architectural Semantics for Practical Transac-
tional Memory. InProcs of the 33th Intl Symp on Computer Architecture, Jun 2006.

[82] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Brian D. Carlstrom,
Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. Characterization of TCC
on Chip-Multiprocessors. InProcs of the 14th Intl Conf on Parallel Architectures and
Compilation Techniques, Sep 2005.

[83] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahkle. Parallelizing Sequential
Applications on Commodity Hardware Using a Low-Cost Software Transactional Mem-
ory. In Procs of the 2009 Intl Conf on Programming Language Design and Implementa-
tion, Jun 2009.

[84] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. LogTM: Log-based Transactional Memory. InProcs of the 12th Intl Symp on
High-Performance Computer Architecture, Feb 2006.

[85] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben
Liblit, Michael M. Swift, and David A. Wood. Supporting Nested Transactional Memory
in LogTM. In Procs of the 12th Intl Conf on Architectural Support for Programming
Languages and Operating Systems, Oct 2006.

180

[86] Negi, A. and Waliullah, M.M. and Stenstrom, P. LV*: A LowComplexity Lazy Version-
ing HTM Infrastructure. InProcs of the Intl Conf on Embedded Computer Systems, Jul
2010.

[87] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.
The Case for a Single-Chip Multiprocessor. InProcs of the 7th Intl Conf on Architectural
Support for Programming Languages and Operating Systems, Oct 1996.

[88] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An OptimalBloom Filter Replacement.
In Procs of the 16th Intl Symp on Discrete Algorithms, 2005.

[89] Salil Pant and Greg Byrd. A Case for using Value Prediction to Improve Performance of
Transactional Memory. InProcs of the 4th Workshop on Transactional Computing, Feb
2009.

[90] Salil Pant and Gregory Byrd. Limited Early Value Communication to Improve Perfor-
mance of Transactional Memory. InProcs of the 23rd Intl Conf on Supercomputing, Jun
2009.

[91] Leo Porter, Bumyong Choi, and Dean Tullsen. Mapping Outa Path from Hardware
Transactional Memory to Speculative Multithreading. InProcs 18th Intl Conf on Parallel
Architectures and Compilation Techniques, Sep 2009.

[92] Seth H. Pugsley, Manu Awasthi, Niti Madan, Naveen Muralimanohar, and Rajeev Bala-
subramonian. Scalable and Reliable Communication for Hardware Transactional Mem-
ory. InProcs of the 17th Intl Conf on Parallel Architectures and Compilation Techniques,
Oct 2008.

[93] Xuehai Qian, Wonsun Ahn, and Josep Torrellas. ScalableBulk: Scalable Cache Co-
herence for Atomic Blocks in a Lazy Environment. InProcs of the 43rd Intl Symp on
Microarchitecture, Dec 2010.

[94] Ricardo Quislant, Eladio Gutierrez, and Oscar. Plata.Improving Signatures by Local-
ity Exploitation for Transactional Memory. InProcs of the 18th Intl Conf on Parallel
Architectures and Compilation Techniques, Sep 2009.

[95] Ravi Rajwar. Speculation-Based Techniques for Transactional Lock-Free Execution of
Lock-Based Programs. PhD thesis, University of Wisconsin, Oct 2002.

[96] Ravi Rajwar and James R. Goodman. Transactional Lock-Free Execution of Lock-Based
Programs. InProcs of the 10th Intl Symp on Architectural Support for Programming
Languages and Operating Systems, Oct 2002.

[97] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional Memory. In
Procs of the 32nd Intl Symp on Computer Architecture, Jun 2005.

[98] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. MetaTM/TxLinux: Transactional Memory for an Oper-
ating System. InProcs of the 34th Intl Symp on Computer Architecture, Jun 2007.

181

[99] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. Dependence-Aware
Transactional Memory for Increased Concurrency. InProcs of the 41st Annual Intl Symp
on Microarchitecture, Nov 2008.

[100] Torvald Riegel, Pascal Felber, and Christof Fetzer. ALazy Snapshot Algorithm with
Eager Validation. InProcs of the 20th Intl Symp Distributed Computing, Sep 2006.

[101] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based Transactional Memory
with Scalable Time Bases. InProcs of the 19th Symp on Parallelism in Algorithms and
Architectures, Jun 2007.

[102] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is Transactional
Programming Actually Easier? InProcs of the 15th Intl Symposium on Principles and
Practice of Parallel Programming, 2010.

[103] José M. Garcı́a Tim Harris Adrián Cristal Osman Unsal Ibrahim Hur Mateo Valero Rubén
Titos-Gil, Manuel E. Acacio. Hardware transactional memory with software-defined
conflicts. InProcs of the 5th Workshop on Transactional Computing, Apr 2010.

[104] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a High Performance Software Transactional Memory System
for a Multi-core Runtime. InProcs of the 11th Intl Symp on Principles and Practice of
Parallel Programming, Mar 2006.

[105] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural Support for
Software Transactional Memory. InProcs of the 39th Annual Intl Symp on Microarchi-
tecture, Dec 2006.

[106] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Implementing
Signatures for Transactional Memory. InProcs of the 40th Annual IEEE/ACM Intl Symp
on Microarchitecture, pages 123–133, Dec 2007.

[107] Sutirtha Sanyal, Adrián Cristal, Osman S. Unsal, Mateo Valero, and Sourav Roy. Dynam-
ically Filtering Thread-Local Variables in Lazy-Lazy Hardware Transactional Memory.
In HPCC ’09: Procs of the 11th Conf on High Performance Computing and Communi-
cations, Jun 2009.

[108] William N. Scherer III and Michael L. Scott. Contention Management in Dynamic Soft-
ware Transactional Memory. InProcs of the Workshop on Concurrency and Synchro-
nization in Java Programs, Jul 2004.

[109] William N. Scherer III and Michael L. Scott. Advanced Contention Management for
Dynamic Software Transactional Memory. InProcs of the 24th Symp on Principles of
Distributed Computing, Jul 2005.

[110] Nir Shavit and Dan Touitou. Software Transactional Memory. InProcs of the 14th Symp
on Principles of Distributed Computing, Aug 1995.

[111] Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing Conflicts in Hardware Trans-
actional Memory. InProcs of the 23rd Intl Conf on Supercomputing, Jun 2009.

182

[112] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible Decoupled
Transactional Memory Support. InProcs of the 35th Intl Symp on Computer Architecture,
Jun 2008.

[113] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra Marathe, Sandhya
Dwarkadas, and Michael L. Scott. An Integrated Hardware-Software Approach To Flex-
ible Transactional Memory. InProcs of the 34th Intl Symp on Computer Architecture,
Jun 2007.

[114] Michael F. Spear, Maged M. Michael, and Christoph von Praun. RingSTM: Scalable
Transactions with a Single Atomic Instruction. InProcs. of the 20th Intl Symp on Paral-
lelism in Algorithms and Architectures, Jun 2008.

[115] J. Greggory Steffan, Christopher B. Colohan, AntoniaZhai, and Todd C. Mowry. A
scalable approach to thread-level speculation. InProcs of the 27th Intl Symposium on
Computer Architecture, Jun 2000.

[116] Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek. Multiple Reserva-
tions and the Oklahoma Update.IEEE Parallel and Distributed Technology, 1(4), Nov
1993.

[117] M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt. Accelerating
critical section execution with asymmetric multi-core architectures. InProcs. of the 14th
Intl Conf on Architectural Support for Programming Languages and Operating Systems,
2009.

[118] Herb Sutter. The Trouble With Locks.C/C++ Users Journal, 23(3), Mar 2005.

[119] Michael M. Swift, Haris Volos, Neelam Goyal, Luke Yen,Mark D. Hill, and David A.
Wood. OS Support for Virtualizing Hardware Transactional Memory. InProcs of the 3rd
ACM SIGPLAN Workshop on Transactional Computing, Feb 2008.

[120] Fuad Tabba, Andrew W. Hay, and James R. Goodman. Transactional Value Prediction.
In Procs of the 4th Workshop on Transactional Computing, Feb 2009.

[121] J. Ruben Titos, Manuel E. Acacio, and Jose M. Garcia. Characterization of Conflicts
in Log-Based Transactional Memory. InProcs of the 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processing, Feb 2008.

[122] Rubén Titos, Manuel E. Acacio, and Jose M. Garcia. Speculation-Based Conflict Res-
olution in Hardware Transactional Memory. InProcs of the 23rd Intl Parallel and Dis-
tributed Processing Symposium, May 2009.

[123] Rubén Titos-Gil, Anurag Negi, Manuel E. Acacio, JoseM. Garcia, and Per Stenstrom.
Zebra : A data-centric, hybrid-policy hardware transactional memory design. InProcs
od the 25th Intl Conf on Supercomputing, Jun 2011.

[124] Sasa Tomic, Cristian Perfumo, Chinmay Kulkarni, Adria Armejach, Adrian Cristal, Os-
man Unsal, Tim Harris, and Mateo Valero. EazyHTM, Eager-Lazy Hardware Transac-
tional Memory. InProcs of the 42nd Intl Symp on Microarchitecture, Dec 2009.

183

[125] Takayuki Usui, Yannis Smaragdakis, and Reimer Behrends. Adaptive Locks: Combining
Transactions and Locks for Efficient Concurrency. InProcs of the 18th Intl Conf on
Parallel Architectures and Compilation Techniques, Sep 2009.

[126] M. M. Waliullah and Per Stenstrom. Intermediate Checkpointing with Conflicting Access
Prediction in Transactional Memory Systems. InProcs of the 22nd Intl Conf on Parallel
and Distributed Processing Symposium, Apr 2008.

[127] David W. Wall. Limits of Instruction-Level Parallelism. In Procs of the 4th Intl Conf
on Architectural Support for Programming Languages and Operating Systems, pages
176–188, Apr 1991.

[128] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Characterization and Methodological Considerations.
In Procs of the 22nd Intl Symp on Computer Architecture, Jun 1995.

[129] Tse-Yu Yeh and Yale N. Patt. Alternative Implementations of Two-Level Adaptive
Branch Prediction. InProcs of the 25th Intl Symp on Computer Architecture, Jun 1998.

[130] Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. Moore, Haris Volos, Mark D.
Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling Hardware Trans-
actional Memory from Caches. InProcs of the 13th Intl Symp on High-Performance
Computer Architecture, Feb 2007.

[131] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware Techniques to Enhance
Signatures. InProcs of the 41st Intl Symp on Microarchitecture, Dec 2008.

[132] Lihang Zhao, Woojin Choi, and Jeff Draper. LagerTM: Cooperative Lazy-Eager Man-
agement for Improved Concurrency in Transactional Memory.In Procs of the 20th Intl
Conf on Parallel Architectures and Compiler Techniques, Sep 2011.

