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 “La Vida És Una Oportunitat…” 
 

 
La vida és un oportunitat  APROFITA-LA 

La vida és maca    ADMIRA-LA 

La vida és un somni   FES-LO REALITAT 

La vida és un repte   AFRONTA’L 

La vida és un deure   COMPLEIX-LO 

La vida és un joc    JUGA-HI 

La vida és preciosa    CUIDA-LA 

La vida és riquesa    CONSERVA-LA 

La vida és amor    GAUDEIX-NE 

La vida és un misteri    DESCOBREIX-LO 

La vida és promesa    COMPLEIX-LA 

La vida és tristesa    SUPERA-LA 

La vida és un himne    CANTA’L 

La vida és un combat    ACCEPTA’L 

La vida és una aventura   ENFRONTA-T’HI 

La vida és felicitat    GUANYA-TE-LA 

La vida és la vida    DEFENSA-LA 

 

Mare Teresa de Calcuta 
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La cita anterior es refereix a la vida, però si us hi fixeu bé, es podria canviar la paraula Vida per Tesi en 

moltes frases i continuarien tenint sentit. Per exemple, “La Tesi és una oportunitat: Aprofita-la; La Tesi 

és un repte: Afronta’l; La Tesi és un misteri: Descobreix-lo; La Tesi és una aventura: Enfronta-t’hi; La 

Tesi és la tesi: Defensa-la...”.  

Us he de confessar que m’ha costat molt començar a fer aquest apartat, ja que significa que el moment 
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d’escriure els agraïments. Vull donar les gràcies a tota la gent que ha fet possible que aquesta tesi es fes 
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També vull donar especialment les gràcies a la Montse. Aquest ha estat un treball fet en equip, i sense 

la teva col·laboració, els teus consells i la teva motivació no hagués estat el mateix. Vull agrair també 

l’ajut rebut de la resta de membres del grup de Nutrigenòmica: Lluís, Pepa, Cinta, Antón, Mayte, 

Gerard, Santi, Juan, Begoña, Anna Arola i especialment al Miquel. 

I would also like to thank Dr. Pierre Maechler for giving me the opportunity to stay in his group. Many 

thanks also to Thierry, Francesca, Sachin, Gaëlle, Clarissa and specially Laurène. 

Gràcies també a l’equip de secretaria i als tècnics que m’han ajudat durant aquests anys. Niurka gràcies 

per la teva eficiència i per tenir sempre un moment per ajudar-me. També a la Rosa, la Vanessa i 

especialment a la Yaiza per compartir l’aventura de ser mare. Gràcies al Santiago i a la Pietat per fer que 

mai ens falti de res al preparar les pràctiques. També vull donar les gràcies a la Isa Baiges per compartir 

els seus coneixements sempre que ho he necessitat. 

Aquesta tesi no hagués estat el mateix sense els companys de laboratori. Gràcies a la Gemma, a la Xim, 

a la Isa Quesada, al Mario, a la Sabina, a l’Helena i al David per fer-me sentir una més del grup des del 

primer moment, i ajudar-me en tot el que vaig necessitar. Gràcies també a les bioinformàtiques Esther i 

Montse Vaqué. Gràcies Victor per no tenir mai un no quan té demanat ajuda i solucionar-me tots els 

problemes informàtics. Gràcies Anabel i Cris pel vostre somriure i per preocupar-vos sempre de com em 

van les coses. I especialment gràcies a la Lídia. Com he dit abans, aquest ha estat un treball en equip i, 

tot i que les INS-1E, els illots, els miRNA i la proteòmica ens ho han posat difícil, ens n’hem sortit. 

Gràcies pel teu treball, la teva constància i la teva sinceritat. Gràcies també als que us heu incorporat 

més tard Ligia, Noemi, Neus, Aleix, Hussam, Laura i Ester, a tots us desitjo el millor. També gràcies a 

l’Helena Torrell. Gràcies als membres del CTNS pels vostres consells, especialment al Toni. 

Vull donar les gràcies als companys de la carrera, sense vosaltres l’estada a Tarragona no hagués estat 
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A. Insulin as the main regulator of glucose disposal 

Insulin is a hormone with two important functions related to overall metabolic homeostasis: to 

maintain adequate energy stores for development, growth and reproduction and to regulate plasma 

glucose levels [1]. The maintenance of normal glucose homeostasis requires complex and highly 

integrated interactions among the liver, muscle, adipocytes, kidneys, pancreas and neuroendocrine 

system [2] (Figure 1).  

 

Figure 1. Overview of normal glucose homeostasis (from [3]).  

In the fasting state, the blood glucose concentration is determined by the balance between 

endogenous glucose production (EGP) and its use by insulin-independent tissues [3]. The majority of 

EGP is derived from liver glycogenolysis and gluconeogenesis (approximately 85 %), and the remaining 

amount is produced by the kidney. Under basal conditions, approximately 50 % of all glucose disposal by 

insulin-independent tissues occurs in the brain, which becomes saturated at a plasma glucose 

concentration of about 2.22 mM (40 mg/dL). Another 25 % of glucose uptake occurs in the splanchnic 

area (liver plus gastrointestinal tissues) and is insulin independent. The remaining 25 % of glucose 

metabolism in the postabsorptive state occurs in insulin-dependent tissues, primarily muscles [4]. The 

delicate balance between EGP and tissue glucose uptake is disrupted in the fed state (glucose-containing 

meal). After ingestion, the glucose concentration in the blood rises because of absorption in the gut, 

which stimulates insulin secretion by islet β-cells and suppresses glucagon secretion from α-cells. EGP is 

suppressed and uptake into insulin-sensitive peripheral tissues, such as heart, skeletal muscle and 

adipose tissues is activated (which increases the rate of glucose disposal). The kidneys also play a 

central role in glucose homeostasis by reabsorbing all of the filtered glucose [2]. Neurohormonal 

processes include the release of the incretin hormones, such as glucagon-like peptide 1 (GLP1), which 

increase glucose-stimulated insulin secretion (GSIS) and glucose-suppression of glucagon secretion. 

Moreover, adipose tissue lipolysis is suppressed, and anabolic metabolism is promoted. Glucose 

concentrations become close to the fasting level within 2 h [3].  

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

16 

1. Insulin production and secretion 

1.1 Insulin production 

1.1.1 The islets of Langerhans 

The pancreas is a multifunctional organ located next to the stomach, duodenum and bladder (Figure 

2). Mammals, birds, reptiles and amphibians have pancreases with similar histologies and modes of 

development, whereas invertebrates do not have pancreases. The pancreas has two major functional 

units: the exocrine pancreas, which is responsible for the production of digestive enzymes to be secreted 

into the gut lumen, and the endocrine pancreas, which has a role in the synthesis of several hormones 

with key regulatory functions in food uptake and metabolism [5]. 

 

Figure 2. Structure of the pancreas. Acinar cells produce digestive enzymes, which are secreted into tiny ducts 

that feed into the pancreatic duct. Islets of Langerhans are clusters of cells that secrete hormones (from [6]).  

The exocrine pancreas constitutes the majority of the mass of the organ and consists of two major 

cell types: acinar and ductal cells, which are organised in a lobular branched tissue architecture and 

secrete and transport digestive enzymes into the duodenum [7].  

The endocrine pancreas represents less than 2 % of the organ and is made up of clusters (islets of 

Langerhans) of five major types of cells: insulin-producing β-cells, glucagon-producing α-cells, 

somatostatin-producing δ-cells, pancreatic polypeptide (PP)-producing cells and ghrelin-producing ε-cells 

[8]. The islets also include nerves, dendritic cells, macrophages, fibroblasts and vascular cells, such as 

endothelial cells and pericytes (as reviewed in [9]). 

The islet structure is highly diverse among vertebrates, from the principal islet in many species of fish 

to individual islets characteristic in mice and humans [10]. The arrangement of endocrine cell types in the 

islet has been suggested to have important physiological implications because the order of blood 

perfusion facilitates potential paracrine interactions between islet cells, such as those between α- and β-

cells [11]. 
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Murine islets are often described to have a highly ordered structure that is composed primarily of β-

cells (60-80 % of islet cells) clustered in a central core, surrounded by smaller numbers of α-cells (15-20 

%), δ-cells (<10 %), PP-cells (<1 %) and ε-cells in the periphery [10]. The size of mouse and rat islets can 

vary considerably, from ten or fewer cells to thousands of cells [12] (Figure 3). 

 

Figure 3. Histology of mouse pancreas. Micrographs of four different mouse islets show the typical core-mantle 

arrangement of β- and non-β-cells. (A-D) β-cells, green; α-cells, red; and δ-cells, blue (the minority islet’s PP- 

and ε-cells are not represented). Magnification (A) x20, (B) x40, (C) x20, (D) x10 (from [13]). 

The human islet architecture is distinct from that of rodents. Unlike the defined β-cell core and α-cell 

mantle characteristic of rodent islets, the α-, β- and δ-cells appear to be randomly distributed throughout 

human islets. The adult human islet is about ~50 % β-cells, ~40 % α-cells, ~10 % δ-cells and <1 % PP-

cells and ε-cells. [12-14] (Figure 4). 

 

Figure 4. Histology of human pancreas. Micrographs of four different human islets show the intermingling of β- 

and non-β-cells. (A-D) β-cells, green; α-cells, red; and δ-cells, blue (the minority islet’s PP- and ε-cells are not 

represented). Magnification x40 (from [13]). 

Various studies have shown that the islet composition varies not only between species but also within 

species. Murine islets display a wide variety of morphologies under various physiological conditions, 

including pregnancy, obesity and diabetes. In db/db mice, which are obese and diabetic because of a 

mutation in the leptin receptor, the islet architecture and cellular composition resemble those of humans 

[10]. 

1.1.2 Insulin synthesis 

Insulin gene expression begins early in embryonic development of the pancreas and remains tightly 

regulated throughout adult life. The mouse and rat genomes contain two insulin genes, insulin-1 and 

insulin-2 (INS1 and INS2). The INS2 gene has greater structural and functional similarity to other 

mammalian insulin genes whereas INS1 is considered to be a functional retroposon because it 

possesses only one of the two introns present in INS2 and other mammalian insulin genes [15,16]. Insulin 

is encoded on the short arm of chromosome 11 in humans. By contrast, the rat INS1 and INS2 genes are 

co-localised on chromosome 1, and the mouse genes are positioned on two different chromosomes, INS1 

on chromosome 19 and INS2 on chromosome 7. 
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Similar to the human gene, rodent INS2, but not INS1, is expressed in the thymus, yolk sac, fetal liver 

and brain [17] as well as the pancreas. The role of insulin expression in non-β-cells is unclear. 

Hyperglycemia, with or without overt diabetes, has been reported to activate insulin gene transcription 

and proinsulin production in multiple extrapancreatic tissues, including the liver, spleen, adipose tissue, 

thymus and bone marrow [18]. 

Circulating and biologically active insulin is a monomer consisting of two peptide chains, A (with 21 

amino acid residues) and B (with 30 residues), which are linked by two disulphide bonds (residues A7 to 

B7 and A20 to B19). The A chain has an additional internal disulphide bond between residues A6 and 

A11. The stability of disulphide bonds is important to the conformation of insulin. At micromolar 

concentrations, insulin dimerises, and in the presence of zinc, it further associates into a hexamer, which 

is the form of insulin stored in pancreatic β-cells. This inactive form has long-term stability and serves as 

a way to keep the highly reactive insulin protected, yet readily available [19]. 

The insulin gene encodes a much larger molecule than insulin, preproinsulin, which has 110 amino 

acids in humans (Figure 5). In addition to the mature protein, preproinsulin contains a predominantly 

hydrophobic 24 amino acid signal sequence at its N-terminus and a 35 amino acid connecting peptide 

linking the C-terminus of the B-chain to the N-terminus of the A-chain. The function of the signal peptide 

is to direct the protein into the secretory pathway by targeting it to the lumen of the endoplasmic reticulum 

(reviewed in [20]).  

 

Figure 5. Pathway of insulin biosynthesis. Preproinsulin: signal peptide (grey), B-domain (blue), dibasic BC 

junction (green), C-domain (red), dibasic CA junction (green) and A-domain (red) (from [21]).  

Insulin biogenesis is initiated with the synthesis of preproinsulin in the rough endoplasmic reticulum. 

Following the removal of a 24 residue signal sequence and packaging in the Golgi complex, insulin is 

stored as proinsulin in the immature secretory granules where conversion into its biologically active form 

is catalysed by the concerted activities of two endoproteases, prohormone convertase-1 and prohormone 

convertase-2, and exoprotease carboxypeptidase H to produce mature insulin and the C-peptide [22]. 

During the granule maturation process, insulin is crystallised with zinc and calcium in the form of dense‐

core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to 

either the constitutive trafficking pathway for secretion or to degradative pathways [23]. Interestingly and 

for reasons that remain unclear, the last granules generated are most likely to undergo release when the 

β-cell is stimulated [22]. 
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1.2 Insulin secretion 

Secreting the right amount of insulin at the right moment is the crucial function of pancreatic β-cells 

that adjust insulin secretion to fluctuations of blood glucose levels. Although several nutrients can act as 

insulin secretagogues, glucose is the most potent secretagogue. Upon glucose stimulation, insulin 

secretion is biphasic, with a rapid transient (4-8 min) first phase and a second sustained phase that lasts 

as long as the glucose stimulation [24].  

Two pathways interact in β-cells to ensure temporal and amplitude control of insulin secretion by 

glucose. The most well-known pathway is the triggering pathway where glucose triggers insulin secretion 

by increasing the concentration of cytosolic free calcium ([Ca
2+

]c) in β-cells. The pancreatic β-cells sense 

an elevated level of glucose in the plasma by glucokinase. Rapid entry of glucose through glucose 

transporters, GLUT2 (SLC2A2) for rodents and GLUT1 (SLC2A1) for humans, is followed by the 

phosphorylation of glucose by glucokinase, which increases the glycolytic flux, producing pyruvate as the 

terminal product of the pathway [25]. In the mitochondria, pyruvate is a substrate for both pyruvate 

dehydrogenase (PDH) and pyruvate carboxylase (PC). The latter forms oxaloacetate, providing 

anaplerotic input to the tricarboxylic acid (TCA) cycle [26]. Reducing equivalents generated by the TCA 

cycle activate the electron transport chain, resulting in hyperpolarisation of the mitochondrial membrane 

(ΔΨm) and formation of ATP. The increase in cytosolic ATP and/or the decrease in free ADP promotes 

the closure of the ATP-sensitive potassium channel (KATP) and depolarisation of the plasma membrane, 

which triggers the opening of voltage-dependent Ca
2+

 channels (VDCCs). The opening of VDCCs results 

in an influx of Ca
2+

 into the cell that triggers the exocytosis of insulin granules [25] (Figure 6).  

 

Figure 6. Model of GSIS in pancreatic β-cells (from [27]). GK: glucokinase; Pyr: pyruvate. 

The KATP channels are complex structures composed of a pore made of Kir6.2 and a regulatory 

subunit made of sulfonylurea receptor 1 (SUR1). Although the central role of KATP channels in the 

production of the triggering Ca
2+

 signal by glucose is not disputed [28], the process described above is a 

simplification of the triggering pathway. Observations that glucose can control [Ca
2+

]c in β-cells lacking 

KATP channels (because of a knockout of either SUR1 or Kir6.2 [24,29]) call for renewed attention to the 

possible influence of glucose metabolism on additional ion channels in the β-cell membrane. The 

relationship between the repletion of intracellular Ca
2+

 stores and voltage-independent Ca
2+

 channels in 

the plasma membrane should not be neglected (reviewed in [28]). 

Numerous hormones and neurotransmitters bind to receptors in β-cell membranes and activate 

neurohormonal amplifying pathways that potentiate nutrient-induced insulin secretion. The transduction of 

their effects may involve changes in the triggering Ca
2+

 signal but mainly relies on amplifying the action of 

Ca
2+

 in exocytosis. Another mechanistically different pathway is set in operation by glucose. This 

amplifying pathway was identified during pharmacological bypass of KATP channels and clamping of the β-

cell [Ca
2+

]c at an elevated level. In one approach, KATP channels were held open by diazoxide, and high 

extracellular KCl was used to depolarise β-cells and steadily increase [Ca
2+

]c. In a second approach, all 
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KATP channels were closed by a high concentration of sulfonylurea, which depolarised β-cells and led to 

increased [Ca
2+

]c. Increasing the glucose concentration under these conditions augmented insulin 

secretion with hardly any effect on the already elevated [Ca
2+

]c. The effect of glucose also depends on 

sugar metabolism by β-cells and is mimicked by other metabolised secretagogues, but not by non-

metabolised secretagogues [30]. These observations convincingly establish that glucose controls insulin 

secretion by a two-pronged mechanism [31]. Recent studies have shown that the pathway is operative 

during the stimulation of insulin secretion by glucose alone, when islet [Ca
2+

]c is allowed to fluctuate freely 

in response to the stimulus [32]. Although it is clear that metabolic amplification is physiologically relevant 

and quantitatively important, its molecular and cellular mechanisms have not yet been identified 

completely [30]. In contrast to the transient secretion induced by Ca
2+

-raising agents, sustained insulin 

release (amplifying signal) depends on the generation of metabolic factors. 

In the presence of non-stimulatory concentrations of glucose, the rate of metabolism in β-cells is 

relatively low, and enough KATP channels are open in the plasma membrane to counteract depolarising 

currents and maintain the membrane potential at values more negative than the threshold for opening 

VDCCs. The influx of Ca
2+

 is minimal, [Ca
2+

]c is low, and insulin secretion is basal [31]. 

The final steps in insulin granule exocytosis are governed by a series of proteins that mediate the 

correct docking, priming and fusion of insulin-containing secretory granules to the plasma membrane. In 

particular, a complex of proteins from both secretory granules and the plasma membrane is responsible 

for the efficiency of the fusion step. These proteins, known as soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE) proteins, contain a signature sequence or SNARE motif with a high 

potential for coiled-coil formation [33]. In response to an increase in Ca
2+

 intracellular levels ([Ca
2+

]i), 

insulin granules fuse with the plasma membrane in a SNARE-dependent process [34]. The actin 

cytoskeleton is a highly dynamic and complex structure that is remodelled in response to various stimuli. 

The dynamics of insulin granules resulting from glucose stimulation could also be affected by actin 

remodelling [35]. 

Pancreatic β-cells contain at least two pools of insulin secretory granules that differ in release 

competence: a reserve pool (RP), which accounts for the vast majority of granules, and a readily 

releasable pool (RRP), which provides the remaining granules (less than 5%). The prevailing hypothesis 

is that the release of RRP granules accounts for the first phase of GSIS and that the mobilisation of a 

subsequent supply of new granules for release by mobilisation is responsible for the second phase [36]. 

More recently, Seino et al. proposed a model of insulin exocytosis in which both the first and second 

phases are caused by newly recruited granules without docking (restless newcomer) (Figure 7). Although 

both phases of insulin secretion are caused by these granules, the mechanisms of the first and second 

phases of insulin secretion are distinct, and the two phases are caused by granules from separate pools 

[37].  

 

Figure 7. Existing and new models of GSIS in the normal state (from [37]).  
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2. Insulin signalling 

2.1 β-cells  

 As described above, the pancreatic β-cell is a target for insulin feedback action. This autocrine 

feedback loop is important for proper β-cell function and survival and is involved in regulating gene 

expression, ion flux, insulin secretion, β-cell size and proliferation as well as β-cell survival (reviewed in 

[38]).  

 To execute its action and initiate a signalling cascade, insulin first has to bind to cell surface 

receptors, which are usually insulin receptor types A (INSRA) and B (INSRB). However, because 

pancreatic β-cells are exposed to insulin concentrations higher than those in the periphery, insulin-like 

growth factor 1 and 2 receptors (IGFR1/2), which have a lower affinity for insulin, cannot be excluded as 

targets for insulin binding [39]. Insulin binding to the receptors initiates activation of the intrinsic tyrosine 

kinase with subsequent autophosphorylation of these receptors followed by binding and tyrosine 

phosphorylation of so-called adapter proteins, such as insulin receptor substrate (IRS) proteins, SHC1 

(Src homology 2 domain-containing transforming protein 1), GAB1 (GRB2-associated binding protein 1) 

and SH2B2 (SH2B adaptor protein 2). These adaptor proteins provide an interface between the activated 

receptors and the downstream-located effector molecules (reviewed in [40]). Data gathered over the past 

decade from both analytical (reverse-transcription polymerase chain reaction and western blotting) and 

functional studies (transgenic mice, knockout mice, expression of interfering protein variants and RNAi-

mediated knockdown) have demonstrated the presence and function of various downstream effector 

proteins, such as isoforms of phosphoinositide-3-kinase (PI3K), isoforms of AKT1 (v-akt murine thymoma 

viral oncogene homolog 1), RPS6KB2 (ribosomal protein S6 kinase, 70 kDa, polypeptide 2 ), MAPK 

(mitogen-activated protein kinase) and PLCG (phospholipase C gamma). Published studies have shown 

that insulin activates both the mitogenic (MAPK ERK1/2 (MAPK3)) and metabolic branches of insulin 

signalling. The latter involves PI3K, AKT, MTORC1 (mechanistic target of rapamycin complex 1), 

RPS6KB2 and PLCG. All of these studies provide evidence for autocrine feedback of insulin at the 

molecular level but do not resolve whether insulin is a negative, positive, or complex (negative and 

positive) signal in β-cell function (reviewed in [38]). 

 

2.2 Peripheral tissues 

 Insulin synthesised and secreted by pancreatic β-cells is released into the portal vein and carried 

mainly to the liver, skeletal muscle and adipose tissue. 

 Insulin mediates its physiological functions by binding to insulin receptors, a process that results in 

receptor autophosphorylation on tyrosine residues and tyrosine phosphorylation of IRS by the insulin 

receptor tyrosine kinase (Figure 8). IRS phosphorylation allows for association of IRS with the regulatory 

subunit of PI3K through its SH2 domains. Once activated, the catalytic subunit phosphorylates 

phosphoinositides at the 3' position of the inositol ring or proteins at serine residues. PI3K activates 3-

phosphoinositide-dependent protein kinase 1 (PDPK1), which activates AKT. In turn, AKT deactivates 

glycogen synthase kinase 3 (GSK3), leading to activation of glycogen synthase and thus stimulating 

glycogen synthesis. The activation of AKT also results in translocation of glucose transporter 4 (GLUT4) 

vesicles from their intracellular pool to the plasma membrane, where they enable the uptake of glucose 

into the cell [41]. 
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 Figure 8. Signal transduction involving insulin (from [42]). 

 Other signal transduction proteins interact with IRS molecules, including growth factor receptor-

bound protein 2 (GRB2) and a protein-tyrosine phosphatase containing SH2 domains (SHP2). GRB2, an 

adaptor protein, contains an SH3 (SRC homology domain 3), which allows constitutive association with 

the guanine nucleotide exchange factor mSOS. Moreover, GRB2 is part of a signalling cascade including 

RAS, RAF1 (v-raf-1 murine leukemia viral oncogene homolog 1) and MEKK (mitogen-activated protein 

kinase kinase) that leads to the activation of MAPK and mitogenic responses in the form of gene 

transcription stimulated by FOS (FBJ murine osteosarcoma viral oncogene homolog) and ELK1 (ELK1, 

member of ETS oncogene family). SHC (Src homology 2 domain-containing transforming protein 1) is 

another substrate of the insulin receptor that contains SH2 and phosphotyrosine-binding domains. When 

tyrosine is phosphorylated, SHC associates with GRB2 and can activate the RAS/MAPK pathway 

independently of IRS1 [41]. 

 Signal transduction by the insulin receptor is not limited to its activation at the cell surface. The 

activated ligand-receptor complex, which is initially located at the cell surface, is internalised into 

endosomes, a process that is dependent on tyrosine autophosphorylation. Endocytosis of activated 

receptors has the dual effect of concentrating receptors within endosomes and allowing the insulin 

receptor tyrosine kinase to phosphorylate substrates that are spatially distinct from those accessible at 

the plasma membrane. Because of the presence of proton pumps, acidification of the endosomal lumen 

results in dissociation of insulin from its receptor. This loss of the ligand-receptor complex prevents any 

additional insulin-driven receptor re-phosphorylation events and leads to receptor dephosphorylation by 

extraluminal endosomally associated protein tyrosine phosphatases (PTPs) [41]. 

 

3. Regulation of insulin synthesis and secretion 

3.1 Regulation of insulin synthesis 

 Insulin gene transcription is mainly controlled by a 340 bp promoter region upstream of the 

transcription start site of the insulin gene. The insulin promoter is organised in a complex arrangement of 

discrete cis-acting sequence motifs, which serve as binding sites for both ubiquitous and β-cell-specific 

transcription factors. The co-ordinated interaction between cis-elements and trans-acting factors at the 

promoter contributes to both β-cell-specific expression of the insulin gene and regulation of its expression 

in response to glucose, Ca
2+

 levels, nutrient availability and hormone signalling [43]. 
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3.1.1 Regulatory elements within insulin promoters 

 Insulin promoters from the rat INS1 and INS2 genes and the human INS gene have been 

characterised in detail. These promoters all contain transcriptionally important E, A and C regulatory 

elements, as well as additional sequences that have more subtle regulatory effects (Table 1) [44]. 

Table 1. Regulatory elements within insulin promoters.  

Regulatory 

element 
Consensus sequence 

Example of 

transcription factor 

that binds 

References 

A boxes TAAT motif 
PDX1, HNF1A, ISL1 

and CDX3 
[45-49] 

GG boxes GGAAAT-containing GG2 motif PDX1 [50] 

cAMP response 

elements 
5’TGACGTCA bZIP CREB/ATF family [51,52] 

C elements 5’TGCAGCCTCAGCC MAFA, PAX6 and PAX4 [53-55] 

E boxes 5′CANNTG TCF3 and NEUROD1 [56,57] 

Negative 

regulatory 

elements 

5′GAGACATTTGCCCCCAGCTGT  [58] 

Insulin-linked 

polymorphic 

regions 

5’TCTGGGGAGAGGGG PURA and MAZ [59] 

G1 boxes 5’GTAGGGGA PURA and MAZ [59] 

Enhancer cores 5′TGTGGAAAG CEBP [60] 

SP1 sites 5′CCGCCC KLF11 [44] 

Ink boxes 5′AG GTCCCCAGGTCATGCCCTC 
Retinoic acid and 

thyroid hormone 
[61] 

 

 3.1.2 Transcription factors that modulate insulin transcription 

 PDX1 (pancreatic duodenal homeobox 1) is the major regulator of glucose-stimulated insulin gene 

transcription and is essential for early pancreatic development and for pancreatic β-cell maturation and 

function [62]. PDX1 primarily acts in β-cells to up-regulate the transcription of several β-cell-specific 

genes, including insulin, GLUT2, glucokinase, somatostatin, islet amyloid polypeptide (IAPP) and MAFA 

as well as to auto-regulate its own expression. In addition, PDX1 has been reported to function as a 

transcriptional repressor for glucagon, cytokeratin K19 and MYC (v-myc myelocytomatosis viral oncogene 

homolog) [43].  

 MAFA (v-maf musculoaponeurotic fibrosarcoma oncogene homolog A) is a basic leucine zipper 

transcription factor belonging to the large MAF family of transcription factors. Beyond insulin expression, 

MAFA also appears to play a role in mediating the expression of a number of other genes such as 

GLUT2, NKX6-1 (NK6 homeobox 1) and PDX1. MAFA participates in insulin transcription by binding to 

and activating PDX1, NEUROD1 and NFAT (nuclear factor of activated T-cells) [43]. 

 NEUROD1, also known as BETA2, belongs to the BHLH (basic helix–loop–helix) family of 

transcription factors and functions in a complex with the ubiquitously expressed TCF3 (transcription factor 

3) protein. These two proteins associate with DNA as a heterodimer. The ability of NEUROD1 to activate 

transcription is enhanced by its interaction with the co-activator p300 or CREB (cAMP-responsive 

element-binding protein) [43], and NEUROD1’s interaction with PDX1 is essential to activate insulin gene 
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transcription in β-cells [63]. NEUROD1 also binds to NR0B2 (nuclear receptor subfamily 0, group B, 

member 2), an orphan nuclear receptor that functions as a repressor of transcription [43].  

 Members of the CREB/ATF (activating transcription factor 1) family also play an important role in 

regulating the insulin gene. CREB/ATF proteins can exist as multiple isoforms that can be activated by 

cAMP and diacylglycerol (DAG) signalling pathways to form complexes with other transcription factors 

(such as NEUROD1, as explained above) [64]. ATF2 is involved in the regulation of insulin gene 

expression through its binding to CRE-like elements in the promoter region, but it acquires binding 

capacity through complex formation with MAFA. Indeed, co-expression of ATF2, MAFA, PDX1 and 

NEUROD1 result in a synergistic activation of the insulin promoter [65]. 

 NKX6-1 is a homeodomain transcription factor exclusively expressed in β-cells in mature islets and 

is required for normal GSIS. Although the specific function of NKX6-1 in GSIS of mature β-cells remains 

elusive, overexpression of NKX6-1 increases GSIS in rat islets. By contrast, islets isolated from type 2 

diabetes mellitus (T2DM) patients have altered NKX6-1 expression [66]. 

 HNF1A (hepatocyte nuclear factor 1 homeobox A) is the major transcription factor that is involved in 

most cases of maturity-onset diabetes of the young (MODY). Genes involved in β-cell regulation and 

metabolism, such as GLUT2, pyruvate kinase, insulin as well as the transcription factors PDX1, HNF4A 

(hepatocyte nuclear factor 4 homeobox A) and NEUROD1, are expressed abnormally in HNF1A-null 

mice. One of HNF1A’s major regulators is NKX6-1 [66]. Rat and mouse insulin promoters contain a 

consensus binding site for HNF4A. The rat INS1 promoter has been shown to be activated directly by 

HNF4A, which can interact synergistically with PDX1 at the adjacent A1 site [67]. However, an HNF4A-

binding site does not exist in the human insulin promoter [68]. Evidence suggests that HNF4A can 

modulate insulin gene expression directly or indirectly through a mechanism involving HNF1A, which is a 

regulator of HNF4A expression [69]. 

 PAX6 (paired box 6) is a transcription factor essential for normal expression of insulin and GLUT2 

[70]. The overexpression of PAX6 was recently reported to prevent activation of rat INS2, thus 

suppressing insulin synthesis and secretion. Indeed, PAX6 binds to A-boxes in vitro, thereby blocking 

binding of PDX1; at the same time, its paired domain interacts with NEUROD1 [71]. 

 NKX2-2 (NK2 homeobox 2) may also be important in the maintenance of mature β-cell function. 

Transgenic mice, in which a repressor form of NKX2-2 was expressed in β-cells, exhibited reduced β-cell 

levels of MAFA, GLUT2 and insulin, and the islets displayed a disrupted architecture [72]. The effect of 

NKX2-2 on the insulin gene may be through binding sites in the promoter [73] or indirectly through its 

ability to activate MAFA expression [74]. 

 FOXO1 (forkhead box O1) is a transcription factor of the forkhead family that negatively regulates 

PDX1 by modulating the PDX1 subcellular location or by suppressing PDX1 gene transcription [75]. In 

fact, these two transcription factors exhibit mutually exclusive patterns of nuclear localisations in β-cells, 

but the types of molecular events that occur between FOXO1 and PDX1 remain unclear [76]. Silencing of 

FOXO1 significantly elevated the expression of mouse INS2 but not INS1 mRNA; moreover, putative 

FOXO1-binding sites were identified in the distal promoter of rodent INS2 genes and direct binding of 

FOXO1 to the INS2 promoter has been demonstrated [77]. The transcription factor FOXA2 (forkhead box 

A2) can bind to the PDX1 promoter and positively regulate PDX1 gene expression both in vitro and in 

vivo [78]. Indeed, Kitamura et al. reported that FOXO1 and FOXA2 share common DNA-binding sites in 

the PDX1 promoter, indicating that both transcription factors could regulate PDX1 expression through 

competition at the same binding site [79]. 

 GLIS3 (GLIS family zinc finger 3) is a member of the Krüppel-like family and is highly expressed in 

islet β-cells. GLIS3 regulates insulin gene expression through two GLIS-binding sites in its proximal 

promoter [80]. Moreover, GLIS3 physically and functionally interacts with PDX1, MAFA and NEUROD1 to 
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modulate INS2 promoter activity. In addition, GLIS3 may indirectly affect insulin promoter activity through 

the upregulation of MAFA and downregulation of NKX6-1 [81]. 

 PPARG (peroxisome proliferator-activated receptor gamma) is a key transcriptional and signalling 

regulator of events in β-cells. PPARG is a nuclear receptor that heterodimerises with retinoid X receptor 

(RXR) after binding to its ligand, translocates and binds peroxisome proliferator response elements 

(PPREs) in the promoter of target genes, including insulin. Indeed, PPARG regulates the expression of 

other genes that control functions important for the maintenance of secretory β-cell functions, such as 

GLUT2, glucokinase, PDX1 and IRS1 [82]. 

 SRF (serum response factor) is a prototype of the MADS box domain-containing transcription 

factors. SRF binds to the serum response element (SRE) as a homodimer. Various ion channel proteins 

expressed in the pancreas, such as the Ca
2+

 pump ATP2A2 (ATPase, Ca
2+

 transporting, cardiac muscle, 

slow twitch 2), the Na
+
/Ca

2+
 exchanger pump SLC8A1 (solute carrier family 8 –sodium/calcium 

exchanger-, member 1) and the Cl
-
 pump CFTR (cystic fibrosis transmembrane conductance regulator), 

are regulated by SRF [83]. Sarkar et al. recently identified a conserved SRE in the insulin gene promoter 

and showed that SRF activates the rat INS2 promoter by binding to this SRE and interacting with PDX1 

[83].  

 3.1.3 Signals that control insulin transcription 

 Insulin 

 Evidence for negative feedback of insulin gene expression by insulin has been reported [84]. 

However, other studies have indicated that insulin exerts stimulatory effects on insulin production 

(reviewed in [85]). The general disruption of IRS2 in mice caused important β-cell defects [86], and the 

inactivation of the receptor resulted in a selective loss of first-phase secretion in response to glucose [87]. 

On the other hand, insulin regulates the gene expression of GLUT2 and glucokinase. In addition, the 

expression and action of several important transcription factors of β-cells, including PDX1, FOXO1 and 

FOXA2, are regulated by insulin (reviewed in [38]). 

 The mechanism by which insulin exerts stimulatory effects on its own transcription was suggested to 

involve IRS2/PI3K, RPS6KB2 and the calcium calmodulin kinase pathways [88]. In addition, the 

stimulation of insulin gene expression by insulin receptor signalling has been reported to be glucose 

dependent and to involve PI3K [89]. Therefore, the data indicate that glucose and insulin (involving PI3K) 

activate insulin gene transcription and that their effects can be additive in β-cells [90]. 

 Glucose 

 Glucose is the major physiological regulator of insulin gene expression and controls insulin synthesis 

at the transcriptional and post-transcriptional levels. Much of the glucose responsiveness inherent to the 

insulin promoter is conferred by the A3, E1 and C1 sites, which are bound by the transcription factors 

PDX1, NEUROD1 and MAFA, respectively. These three transcription factors have been demonstrated to 

play crucial roles in glucose induction of insulin gene transcription and pancreatic β-cell function (as 

described above). These transcription factors activate insulin gene expression in a co-ordinated and 

synergistic manner in response to increasing glucose levels. Changes in the glucose concentration 

modulate the functions of these β-cell transcription factors at multiple levels: changes in expression level, 

subcellular localisation, DNA-binding activity, transactivation capacity and interactions with other proteins 

[43].  

 One of the mechanisms that glucose uses to regulate insulin synthesis is through increasing O-

linked N-acetylglucosamine (GlcNAc)-modified proteins. The O-GlcNAc modification is an important post-

translational modification that modulates the function of many nuclear and cytoplasmic proteins. Proteins 
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are modified at serine or threonine residues by attachment of a single N-GlcNAc molecule, a reaction 

catalysed by O-linked N-acetylglucosaminyl transferase (OGT). UDP-GlcNAc, the substrate for OGT, is 

synthesised by the hexosamine biosynthetic pathway (HBP), which uses the glycolytic metabolite 

fructose-6-phosphate and glutamine; however, only a small fraction of glucose (2-5 %) enters the HBP as 

fructose 6-phosphate. The HBP together with the O-linked GlcNAc modification of proteins has been 

suggested to function as a nutrient sensor for the cell. Accordingly, exposure to high glucose levels leads 

to increased flux via the HBP and results in elevated levels of O-GlcNAc modified proteins. Many nuclear 

proteins, including transcription factors, are modified by O-linked GlcNAc [91]. 

 Glucose modulates PDX1 function in pancreatic β-cells by multiple mechanisms. Glucose regulates 

the interaction of PDX1 with various co-regulators in a phosphorylation-dependent manner in the mouse 

insulinoma cell line MIN6. Under low or normal glucose conditions, PDX1 is mainly associated with 

histone deacetylase 1 and 2 (HDAC1/2) to down-regulate insulin gene expression. An increase in glucose 

levels disrupts the interaction of PDX1 with HDACs and promotes its association with the histone 

acetyltransferase p300, which leads to the hyperacetylation of histone H4 and the induction of insulin 

gene transcription. This switch in the PDX1 interaction in response to high glucose requires a 

phosphorylation event that causes changes in PDX1 localisation. Several signalling pathways, including 

the p38/SAPK (stress-activated protein kinase), PI3K, atypical PRKC (protein kinase C) and MAPK 

pathways, as well as PASK (PAS domain containing serine/threonine kinase) have been implicated in 

PDX phosphorylation, nucleocytoplasmic shuttling, DNA binding and the transactivation potential [43]. 

Humphrey et al. recently showed that glucose regulates the steady-state levels of the PDX1 protein via a 

novel phosphorylation site. They observed that glucose stimulation of primary islets and cultured MIN6 β-

cells decreases PDX1 phosphorylation; moreover, they described a novel C-terminal atypical non-primed 

GSK3 consensus site that regulates PDX1 protein stability in response to glucose [92].  

 Elevated concentrations of glucose lead to O-GlcNAc modification of PDX1 in pancreatic β-cells. The 

O-GlcNAc modification regulates PDX1 binding to the insulin promoter and thereby influences insulin 

secretion in MIN6. Moreover, the O-GlcNAc modification of PDX1 appears to be important for binding 

PDX1 to the insulin promoter and for activating insulin gene expression. However, the exact 

mechanism(s) by which O-GlcNAc modification enhances the DNA-binding activity PDX1; in addition, the 

PDX1 residues that are modified by O-GlcNAc remain to be identified [91]. Increased O-GlcNAc 

modification of PDX1 has also been observed in diabetic Goto-Kakizaki rats and was associated with 

decreased insulin secretion from pancreatic β-cells [93]. 

 Glucose has been shown to regulate the nuclear localisation and transactivation capacity of 

NEUROD1 via post-transcriptional modifications. While NEUROD1 is mainly localised in the cytoplasm 

under low or normal glucose conditions, exposure to high glucose causes NEUROD1 to translocate into 

the nucleus and thereby to activate insulin gene transcription in pancreatic β-cells. In the presence of high 

glucose, NEUROD1 becomes phosphorylated by ERK2 at multiple sites within its transactivation domain, 

which enhances its transactivation capacity [43]. Wong et al. demonstrated that the activation of the 

oestrogen receptor 1 (ESR1) potentiates the effect of glucose on NEUROD1 nuclear localisation and 

binding to the insulin promoter, thereby amplifying insulin gene transcription [94]. The nuclear 

translocation of NEUROD1 under high glucose conditions is also mediated by O-linked GlcNAc 

modification of NEUROD1 itself [95]. However, additional research is needed to map the O-GlcNAc-

modified residues within NEUROD1 and to confirm their role in the regulation of the NEUROD1 

subcellular localisation [91]. 

 Both the MAFA mRNA and protein levels increase in response to high glucose [96]. Phosphorylation 

has been implicated in regulating MAFA protein levels and in modulating the binding of MAFA to the 

insulin promoter [97]. Current evidence suggest that enhanced production of MAFA under high-glucose 

conditions may regulate glucose-dependent insulin gene transcription, whereas decreased production 

and proteasomal degradation of MAFA probably enables the rapid inhibition of insulin transcription under 
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low-glucose conditions [43]. Indeed, the induction of MAFA expression by high glucose requires 

increased flux through the HBP and an O-linked GlcNAc modification event [96]. Knockdown of OGT 

using siRNA oligonucleotides abolishes the induction of MAFA expression by high glucose in pancreatic 

β-cells. Treatment of pancreatic β-cells with PUGNAc, an inhibitor of O-GlcNAcase, induces MAFA 

expression even in the absence of high glucose. Therefore, the induction of MAFA expression under high 

glucose may be mediated by an O-GlcNAc modification of an unknown transcriptional regulator(s) that is 

required to activate MAFfA expression [96]. 

 GLP1 

 GLP1 increases insulin gene transcription and biosynthesis by activating both protein kinase A 

(PRKAC, PKA)-dependent and PKA-independent signalling pathways. PDX1 is a key effector of the 

GLP1 receptor (GLP1R) signalling pathway, which is involved in insulin gene transcription and 

biosynthesis. GLP1 has been shown both in vitro and in vivo to be involved in regulating PDX1 by 

increasing its total protein levels and its translocation to the nucleus, followed by its binding to the A-box 

element and the GG2 element of the insulin promoter and the resultant increase in the activity of the 

insulin gene promoter in β-cells. The regulation of PDX1 by GLP1 mainly occurs via a cAMP/PKA-

dependent signalling pathway. GLP1 triggers expression and nuclear localisation of PDX1 by a 

mechanism that involves the phosphorylation of FOXO1 via transactivation of the EGFR (epidermal 

growth factor receptor) and PI3K/AKT pathways, resulting in deactivation and nuclear exclusion of 

FOXO1 and consequent disinhibition of the FOXA2-dependent PDX1 gene promoter activity. The GLP1R 

signalling pathway also mediates insulin gene transcription via basic region-leucine zipper transcription 

factors that are related structurally to the transcription factor CREB and directly bind to CRE sites on the 

insulin gene promoter [98]. 

 Similar to other hormones such as leptin, adiponectin, growth hormone, prolactin and oestrogens, 

GLP1 modulates insulin expression in pancreatic β-cells [99-104]. 

 3.1.4 DNA methylation modulates insulin transcription 

 Like other mammalian gene promoters, the insulin gene promoter contains cytosine-guanosine 

dinucleotide (CpG) sites, which play a pivotal role in the control of gene expression. Methylation of the 

cytosine residues regulates transcription directly by inhibiting the binding of specific transcription factors 

and indirectly by recruiting methyl-CpG-binding proteins and their associated repressive chromatin-

remodelling activities. These epigenetic changes are responsible for the modulation of developmentally 

regulated and tissue-specific gene expression [105]. Kuroda et al. found CpG sites in both the mouse 

INS2 and human INS promoters, and they observed that these sites are uniquely demethylated in insulin-

producing β-cells. Methylation of these CpG sites suppressed insulin promoter-driven reporter gene 

activity by almost 90 %, and specific methylation of the CpG site in the CRE of the promoter alone 

suppressed insulin promoter activity by 50 %. Methylation did not directly inhibit transcription factor 

binding to the CRE in vitro, but inhibited ATF2 and CREB binding in vivo and increased binding to 

MECP2 (methyl CpG binding protein 2) [17]. Indeed, Yang et al. demonstrated that DNA methylation of 

the insulin promoter is increased in patients with T2DM [106]. 

 3.1.5 Post-transcriptional control of insulin mRNA  

 Changes in mRNA abundance can be regulated post-transcriptionally, such as through differential 

effects upon mRNA splicing, nuclear export or stability. Following glucose stimulation, exocytotic events 

are responsible for the loss of granules from the storage pool. To replenish the pool and keep a balance 

between release and storage, β-cells should rapidly synthesise new granule proteins and produce new 

membranes in the endoplasmic reticulum [107]. Protein and mRNA analyses have suggested that the 

abundance of a large number of secretory granule-related genes is up-regulated by glucose in a 

coordinated manner [108]. As for increased protein synthesis in primary β-cells, this effect is achieved 
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primarily by a powerful acceleration of general translation. In primary β-cells, insulin mRNA is translated 

preferentially in comparison to non-insulin encoding mRNA. The increased translation of proinsulin mRNA 

results from the stimulation of translation initiation and elongation as well as from the reduced 

degradation of insulin mRNA [107]. This latter mechanism has been explored and involves the rapid 

nucleo-cytoplasmic translocation of polypyrimidine tract-binding protein (PTB) upon β-cell stimulation with 

glucose [108]. Activated PTB has been shown to increase the stability of insulin mRNA by binding to its 

3′-untranslated region (UTR) [107]. The coordinated glucose-stimulated synthesis of insulin and other 

components of dense-core secretory granules can be explained (at least in part) by the fact that PTB also 

binds and stabilises mRNAs encoding different transcripts related to granule biogenesis, in particular 

prohormone convertases 1/3 or 2, pre-chromogranin A, secretogranin 2, synaptobrevin 2, synaptophysin 

and the tyrosine phosphatase-like molecule I-A2 [108]. More recently, PTB has been suggested to 

promote the stabilisation of mRNAs coding for not only insulin and other insulin granule proteins but also 

components comprising the entire secretory pathway [109].  

 3.1.6 MicroRNA 

 MicroRNAs (miRNAs) are a family of small non-coding RNAs that post-transcriptionally regulate 

gene expression [110]. Each miRNA gene encodes a mature miRNA approximately 22 nucleotides in 

length. MiRNAs play predominantly inhibitory regulatory roles by binding to cis-elements in the 3’-UTR of 

message-encoding RNAs. Regulation occurs by one of three mechanisms (which are not mutually 

exclusive): target cleavage, repression of target translation and message degradation in cytoplasmatic P-

bodies [111].  

 Recent studies have demonstrated that miRNAs are required for pancreas development [112] and 

regulation of GSIS [113]. The most studied miRNA molecule that acts in the pancreas is miR-375. 

Published studies revealed the involvement of miR-375 in pancreatic islet cell viability and function, and 

its removal or overexpression profoundly affects glucose metabolism [114]. More recently, other miRNAs 

have been described as regulators of pancreas function. Some miRNAs modify insulin secretion by 

modulating the level of key components of the exocytosis process and insulin biosynthesis. Some 

miRNAs have also been related to β-cell apoptosis [115] (Table 2). 

Table 2. MiRNA action on β-cells. 

MicroRNA Effects on β-cells References 

miR-375 

Modify insulin secretion by modulating the 

level of key components of the exocytosis 

process 

[114,116] 

miR-9 [117] 

miR-96 [117,118] 

miR-124a [118] 

miR-130a [119] 

miR-200 [119] 

miR-410 [119] 

miR-30d 

Modify insulin biosynthesis 

[120] 

miR-15a [121] 

miR-24 [122] 

miR-26 [122] 

miR-182 [122] 

miR-19b [123] 

miR-148 [122] 

miR-34a 
Modify β-cell apoptosis 

[115] 

miR-146 [115] 
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 MiRNAs are also involved in diabetes. Studies on Goto-Kakizaki rats, a model of spontaneous lean 

T2DM, showed differential expression of fifteen miRNAs in skeletal muscle compared with Wistar control 

rats [124]. In addition, Herrera et al. recently showed that the expression patterns of five miRNAs in 

insulin target tissues were modified by hyperglycemia, suggesting a role for these miRNAs in the 

pathophysiology of T2DM [125].  

 

3.2 Key regulators of insulin secretion 

 The secretion of insulin by β-cells is a highly dynamic process regulated by complex mechanisms, 

including nutrient status, hormonal factors such as gastrointestinal hormones incretins and neural factors 

[37] (Figure 9).  

 

 Figure 9. Regulation of insulin secretion process (from [3]).  

 3.2.1 Nutrients 

 Carbohydrates 

 Glucose is the only nutrient secretagogue capable alone of promoting the release of insulin at 

concentrations within its physiological range in vitro [126]. Glucose stimulates insulin secretion through an 

oxidative metabolism (pathway also used by other carbohydrates) in which mitochondria are crucial 

elements. 

 In β-cells, mitochondria integrate and generate metabolic signals, ensuring efficient coupling of 

glucose recognition to insulin secretion [127]. Several mitochondrion-derived molecules distinct from ATP 

have been proposed to act as additive factors participating in the amplifying pathway of insulin secretion. 

In fact, mitochondrial defects in β-cells, such as mutations and reactive oxygen species (ROS) 

production, are associated with β-cell failure in diabetes [128]. These data suggest that this organelle 

plays an important role in insulin secretion. 

 Although mitochondria can be activated by three classes of fuels, amino acids, fatty acids and 

carbohydrates, the last class is most relevant for β-cells. Importantly, β-cells have negligible lactate 

dehydrogenase (LDH), so pyruvate from glycolysis is weakly metabolised into lactate, and the majority of 

pyruvate-derived carbons are essentially mitochondrial [129]. In fact, pyruvate, formed during glycolysis 

enters mitochondria where it can either be oxidised by PDH to form acetyl-CoA (oxidative pathway) or 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

30 

carboxylated by PC to generate oxaloacetate, thereby ensuring anaplerosis to the TCA cycle (Figure 10). 

Therefore, these pathways result in the net synthesis of TCA cycle intermediates that act directly as or as 

precursors of important signals in insulin secretion. [25,129] 

 The anaplerotic enzyme PC participates directly or indirectly in several metabolic pathways that are 

important for GSIS, including the pyruvate/malate cycle, the pyruvate/citrate cycle, the pyruvate/isocitrate 

cycle and glutamate dehydrogenase (GDH)-catalysed α-ketoglutarate production. These four pathways 

enable ‘shuttling’ or ‘recycling’ of these intermediate(s) into and out of mitochondria, allowing continuous 

production of intracellular messenger(s) (reviewed in [25]). 

 

Figure 10. Mitochondrial biochemical pathways that are involved in the GSIS amplifying pathway (modified from 

[25]).  

 Amino acids 

Amino acids individually are poor insulin secretagogues but are able to actively promote secretion 

and augment GSIS in certain combinations [130]. The mechanisms by which amino acids induce insulin 

secretion are not well understood, but there is evidence that they involve both triggering and amplification 

processes [24]. The catabolism of amino acids involves pyruvate, acetyl-CoA and ketone bodies or 

intermediates of the TCA cycle. Amino acids can feed into glucose oxidation and anaplerosis pathways. 

Indeed, amino acids can also modify GSIS through direct depolarisation of the plasma membrane through 

the accumulation of positive charge and by co-transport with Na
+
, resulting in membrane depolarisation 

and opening of VDCCs [131].  

L-Arginine causes an elevation in [Ca
2+

]i as a result of its electrogenic transport into β-cells via the 

amino acid transporter BCAT2 (branched chain amino-acid transaminase 2). Depolarisation of the plasma 

membrane triggers insulin secretion [132]. Alternatively, L-arginine metabolism in β-cells can give rise to 

glutamate production and thus can influence insulin secretion.  

L-Alanine is cotransported with Na
+
 and depolarises the cell membrane as a consequence of Na

+
 

transport, thereby inducing insulin secretion by activating VDCCs. Indeed, the metabolism of this amino 

acid results in partial oxidation and an increase in the cellular content of ATP, leading to closure of KATP 

channels and ultimately to insulin exocytosis [133].  
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L-Leucine stimulates insulin release in pancreatic β-cells by a process that involves increased 

mitochondrial metabolism by activation of GDH, an increase in ATP production by transamination of 

leucine to α-ketoisocaproate and subsequent entry into the TCA cycle via acetyl-CoA [134]. Other studies 

have shown that leucine and α-ketoisocaproate stimulate insulin release via distinct mechanisms. α-

Ketoisocaproate was proposed to stimulate insulin release by a combination of mechanisms, including its 

own catabolism and transamination to leucine with production of α-ketoglutarate [135]. 

L-Glutamate is the most debated amino acid with respect to the possible molecular mechanism of its 

action on promotion of insulin secretion [130]. Glutamate has been suggested to act downstream of 

mitochondria and to participate in the amplifying pathway of the secretory response to glucose [136]. In 

permeabilised INS-1 β-cells, glutamate potentiates insulin secretion under conditions of clamped, 

permissive Ca
2+

 and ATP [136,137]. In patch clamp experiments, glutamate enhanced Ca
2+

-induced 

insulin exocytosis from rat β-cells [137]. Therefore, potentiation of insulin secretion by glutamate depends 

on Ca
2+

 signals, which are initiated by the triggering pathway under physiological conditions. β-cells 

express the vesicular glutamate transporters SLC17A6 and SLC17A7 (solute carrier family 17 (sodium-

dependent inorganic phosphate cotransporter), member 6/7) [138]. SLC17A6 is upregulated by increased 

and decreased glucose in β-cells and α-cells, respectively, suggesting that exposure to high glucose 

concentrations stimulates glutamate uptake into secretory vesicles in β-cells [136-138]. Once inside the 

secretory granule, glutamate can induce pH changes, as reported in secretory vesicles from pancreatic β-

cells, and/or activate GRM5 (glutamate receptor, metabotropic 5), which has been shown to be expressed 

in secretory granules, thereby mediating insulin release. Alternative mechanisms for glutamate action in 

β-cells include activation of acetyl-CoA carboxylase and inhibition of protein phosphatase enzymatic 

activities, as reversible protein phosphorylation-dephosphorylation cycles have been shown to play a role 

in the rate of insulin exocytosis [139].  

L-Aspartate plays a key role in NADH shuttles, serving as an important mechanism for the 

maintenance of glucose metabolism [140].  

Finally, dietary amino acids also influence insulin secretion by indirect mechanisms such as 

stimulating incretin release, modulating glucagon release and regulating lipid metabolism [130]. 

 Fatty acids 

Non-esterified fatty acids (NEFAs) do not stimulate insulin secretion in the absence of glucose. 

However, there is substantial evidence that they are essential for GSIS to occur and that they can 

markedly augment GSIS. NEFAs regulate insulin secretion via three interdependent processes, which are 

referred to as the “trident model” of β-cell signalling [131]. 

Malonyl-CoA/Long-chain CoA signalling 

In β-cells, the cytoplasmic NEFAs are converted to long-chain acyl-CoA (LC-CoA) by acyl-CoA 

synthase, thereby increasing the availability of LC-CoA, which is important for stimulating the insulin 

exocytotic machinery [141]. Under basal conditions, the LC-CoA molecules are transported into the 

mitochondria via CPT1A (carnitine palmitoyltransferase-1A), where β-oxidation occurs. However, high 

levels of glucose form acetyl-CoA and subsequently malonyl-CoA, which supplies the two carbon units for 

fatty acid synthesis. This process inhibits β-oxidation by CPT1A and induces a marked rise in the 

cytoplasmic content of LC-CoA. Thus, malonyl-CoA acts by switching β-cell metabolism from fatty acid 

oxidation to glucose oxidation. LC-CoA is responsible for triggering different mechanisms to release 

insulin. LC-CoA signalling includes (1) the activation of certain types of PRKC, which interacts with 

components of the NEFA microtubular/exocytotic machinery, (2) the modulation of ion channels directly 

or indirectly and (3) the protein acylation of GTP-binding proteins [142].  
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Triglyceride (TG)/NEFA cycling 

In addition to fatty acid oxidation and esterification, lipolysis is the major pathway of intracellular fatty 

acid partitioning. Elevated glucose was demonstrated to increase lipolysis, thus increasing the levels of 

LC-CoA, DAG, phospholipids and NEFAs. DAG not only activates PRKC, which is implicated in insulin 

secretion, but also binds to the C1 domain of the synaptic vesicle priming protein UNC13 (unc-13 

homolog A), which has recently been shown to be important for normal insulin secretion. TG/NEFA also 

affects membrane glycerophospholipid metabolism, which could influence secretion by changing the 

physicochemical properties of membranes [141]. The glycerophospholipids may also have more direct 

effects. The TG/NEFA cycle may be a means for targeting the delivery of NEFAs and perhaps specific 

NEFAs, such as arachidonic acid, to a particular subcellular site within β-cells [142].  

Fatty acids and lipid receptor signalling 

The finding that lipid molecules also activate islet G protein-coupled receptor (GPCR) signalling 

suggested that lipids may also stimulate insulin secretion through receptor-mediated mechanisms. Both 

GPR40 and GPR119 are known to be expressed in pancreatic β-cells and their activation stimulates 

insulin secretion in a glucose-dependent manner. GPR40 is highly expressed in β-cells and is activated 

by medium- to long-chained NEFAs to potentiate GSIS. C12–C22 fatty acids, such as linoleic acid, are 

most effective in activating GPR40, although the receptor does not appear to discriminate between 

different NEFAs. GPR40 is coupled to GNAQ (G protein, q polypeptide), which increases [Ca
2+

]c 

concentrations, although mechanisms that involve the activation of PLC (phospholipase C) and increased 

formation of cAMP have also been proposed. In contrast to the stimulatory action of NEFAs on insulin 

secretion, long-term exposure of islets to NEFAs results in impaired GSIS through a lipotoxic action, 

which involves the progressive intracellular accumulation of lipid signalling molecules that inhibit insulin 

secretion. The activation of GPR119 augments GSIS through increased formation of cAMP, suggesting 

that the receptor mediates its actions through GNAS [143].  

 3.2.2 Hormones 

 Peptides and insular hormones 

β-cells 

The role of insulin in insulin secretion is the most controversial topic related to insulin feedback and 

β-cell function. Published data have led to four possible outcomes, i.e., that insulin is (a) a negative 

regulator, (b) a positive regulator, (c) essential, or (d) not involved (reviewed in [38]). Insulin exocytosis 

was suggested to be inhibited by secreted insulin, as supported by several publications [144-146]. 

Although other older and more recent reports demonstrate no effects of insulin on its own secretion 

[144,147], other evidence suggests that secreted insulin may be essential for insulin exocytosis or that it 

may even have a positive effect on its own release [87,89,148]. Mice with a β-cell–specific insulin 

receptor knockout (βIRKO), a model of β-cell insulin resistance, manifest defective GSIS, progressive 

glucose intolerance and increased rates of diabetes [149]. Stimulation of β-cells with exogenous insulin 

leads to increased intracellular Ca
2+

, suggesting that insulin also stimulates its own secretion by 

mobilising Ca
2+

 from the endoplasmic reticulum [150]. Furthermore, Park et al. more recently observed 

that changes in the phosphorylation of IRS1 and AMPK (PRKA, AMP-activated protein kinase) by glucose 

and extracellular insulin may be involved in this insulin feedback signalling pathway. The altered AMPK 

activity appears to modulate the activity of the KATP channel, thereby influencing [Ca
2+

]c and insulin 

secretion [151]. Indeed, Bouche et al. recently demonstrated that insulin improves GSIS in healthy 

humans. However, the identity of the downstream transcription factors and/or repressors that mediate the 

effects of insulin and glucose remains unknown [152]. These data suggest that insulin’s involvement in 

the regulation of its own secretion is complex. Whereas basal insulin may serve as a maintenance signal 

that primes β-cells to respond to the next glucose stimulus, insulin may inhibit further release at the peak 
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of the exocytotic event, i.e., at very high local insulin concentrations [38]. On the other hand, insulin also 

modifies its own secretion through transcriptional regulation of other genes, such as glucokinase [153]. 

Along with insulin, β-cells also secrete gamma-aminobutyric acid (GABA). Although GABA is a major 

neurotransmitter in the central nervous system (CNS), a large amount of GABA is also produced in β-

cells. The stimulation of type A GABA receptors (GABAARs) in β-cells induces membrane depolarisation, 

enhancing insulin secretion in the presence of physiological concentrations of glucose [154].  

Pancreatic β-cells co-express and co-secrete amylin, also known as IAPP, and insulin in response to 

several secretagogue stimuli. Different studies have demonstrated that IAPP can inhibit GSIS [155,156]. 

Recently, Soty et al. observed that β-cells overexpressing human IAPP showed a defect in insulin and 

IAPP secretion in response to glucose. The inhibition of hormone secretion occurs through altered KATP 

channels, and the increased mitochondrial metabolism observed is a compensatory response to 

counteract the secretory defect of the β-cells [157]. 

Serotonin and pancreastatin can be synthesised within β-cells and affect insulin secretion [158]. 

Serotonin mainly acts intracellularly. Serotonylation, the covalent coupling of serotonin to target proteins, 

regulates their activity and activates specific small GTPases, which in turn promote GSIS [159]. 

Otherwise, pancreastatin is a modulator of the early changes in insulin secretion after an increase in the 

glucose concentration within the physiological range. Pancreastatin has been reported to increase [Ca
2+

]i 

in insulin-secreting RINm5F cells independent of the extracellular Ca
2+

 levels [160]. 

α-cells 

Glucagon binds to glucagon receptors, which are expressed in several organs as well as in the β-

cells, where glucagon-receptor signalling stimulates insulin release in a glucose-dependent manner [161]. 

The activation of glucagon receptor increases the cAMP levels and activates PLC. Glucagon stimulates 

insulin secretion in a glucose-dependent manner [162].  

δ-cells 

Somatostatin inhibits insulin secretion mainly via hyperpolarisation of the plasma membrane 

potential. The resultant inhibition of Ca
2+

-dependent electrical activity reduces Ca
2+

 influx and insulin 

secretion. Hyperpolarisation by somatostatin occurs via the combined activation of KATP channels and G 

protein-coupled inward rectifiers, and this hormone can also act by directly blocking the VDCCs [163].  

ε-cells 

Ghrelin has been shown to inhibit GSIS in several experimental models [164-166]. Ghrelin has been 

suggested to attenuate membrane excitability through the activation of specific voltage-dependent K
+
 

channels (Kv channels), which in turn suppress Ca
2+

 uptake [164]. In addition, ghrelin directly interacts 

with β-cells to reduce glucose-induced cAMP production and PKA activation. Another study showed that 

ghrelin’s inhibitory effect on insulin secretion is partly mediated by the AMPK-UCP2 (mitochondrial 

uncoupling protein 2) pathway [166]. 

PP-cells 

Low concentrations of adrenomedullin inhibit insulin secretion. At higher concentrations, 

adrenomedullin induces a stimulatory component of insulin secretion, presumably via the elevation of 

cAMP, which cancels out the inhibitory component observed at lower concentrations. The inhibitory effect 

of adrenomedullin can be ascribed to the inhibition of insulin exocytosis through a PTX-sensitive G 

protein [167].  
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 Gut hormones and peptides  

The gastrointestinal hormones, incretins, GLP1 and GIP (glucose-dependent insulinotropic 

polypeptide), are released from gastrointestinal endocrine cells in response to the ingestion of nutrients 

[168]. Both of these hormones then potentiate GSIS by binding to their specific GPCRs in the pancreatic 

β-cell membrane and increasing cAMP production through activation of adenylate cyclase [169]. The 

modulatory action of incretins involves not only PKA but also RAPGEF4 (Rap guanine nucleotide 

exchange factor 4), which interacts directly with the SUR1 subunit of KATP channels. GLP1 also promotes 

Ca
2+

 influx through mobilising Ca
2+

 stored in intracellular organelles, which serves as a direct stimulus for 

exocytosis in β-cells. In addition, GLP1 exerts a direct action during the “late steps” of β-cell stimulus-

secretion coupling in order to facilitate Ca
2+

-dependent exocytosis of insulin [170].  

The peptide neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells [171]. 

NT stimulates insulin secretion at low glucose levels and has a small inhibitory effect on stimulated insulin 

secretion from isolated islets or INS-1E cells. NT increases the Ca
2+

 influx through the opening of cation 

channels, and the NT-evoked Ca
2+

 regulation involves PRKC and the translocation of PRKCA and 

PRKCE (protein kinase C alpha/epsilon) to the plasma membrane. Part of the effects of NT appears to be 

mediated by PKA but not by the ERK pathway [172].  

Xenin stimulates insulin secretion and exerts an additive effect on GIP-, GLP1- and NT-mediated 

insulin secretion in clonal β-cells. Xenin does not stimulate cellular cAMP production, alter the membrane 

potential or elevate [Ca
2+

]i. These data demonstrate that xenin may have significant metabolic effects on 

glucose control, but further studies are needed to identify the specific mechanism of action of xenin [173].  

Cholecystokinin (CCK) enhances GSIS in mice [174] and humans [175] via the CCKA receptor 

(CCKAR). CCK-KO mice were reported to develop glucose intolerance despite increased insulin 

sensitivity associated with low insulin secretion [176]. Indeed, CCK is a potential therapeutic for T2DM 

because exogenous CCK treatment enhances insulin secretion in patients with T2DM [177].  

 Other hormones and peptides 

Leptin induces β-cell hyperpolarisation by opening the KATP channels [178], inhibiting insulin 

secretion and insulin mRNA levels in rat isolated pancreatic islets [179]. This hormone also inhibits insulin 

secretion by inhibiting the cAMP-PKA signalling pathway [180]. 

Adiponectin significantly stimulates insulin secretion and insulin gene expression in an AMPK-

independent pathway [102]. 

Oestrogens, especially 17β-estradiol (E2) at physiological levels, are involved in maintaining normal 

insulin sensitivity for β-cell function. However, E2 levels above or below the physiological range may 

promote insulin resistance and T2DM. In synergy with a stimulatory glucose concentration, binding of E2 

to a mER activates a guanylyl cyclase and consequently PRKG (protein kinase, cGMP-dependent), which 

closes KATP channels and triggers insulin release [103]. 

Melatonin is considered to be a main pineal product but may be also synthesised in the 

gastrointestinal tract. Melatonin inhibits insulin secretion through coupling of the receptor to inhibitory 

guanine nucleotide-binding proteins and subsequent downregulation of cAMP signalling [181].  

  

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

35 

3.2.3 Neurotransmitters  

 The pancreatic islets are richly innervated by parasympathetic, sympathetic and sensory nerves. 

Several different neurotransmitters including the classical neurotransmitters, acetylcholine and 

noradrenaline and several neuropeptides are stored within the terminals of these nerves. The 

neuropeptides, vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide 

(PACAP) and gastrin-releasing peptide (GRP) are constituents of the parasympathetic nerves, whereas 

the neuropeptides galanin and neuropeptide Y (NPY) are localised at sympathetic nerve terminals [182]. 

Stimulation of the autonomic nerves and treatment with neurotransmitters affect islet hormone secretion. 

Thus, insulin secretion is stimulated by parasympathetic nerves or their neurotransmitters and is inhibited 

by sympathetic nerves or their neurotransmitters.  

 Parasympathetic nervous system 

 Acetylcholine (Ach) exerts a pronounced stimulatory effect on pancreatic insulin release mediated 

by the M3R subtype [183]. In pancreatic β-cells, M3R-mediated activation of Gq-type G proteins 

stimulates the activity of different isoforms of PLCβ, resulting in the enzymatic breakdown of the 

membrane lipid phosphatidylinositol 4,5-bisphosphate and the generation of two second messengers, 

DAG and inositol 1,4,5-trisphosphate [143,182,184]. DAG activates PRKC, thus enhancing the effects of 

cytosolic Ca
2+

 on the exocytosis of insulin granules. In addition, stimulation of β-cell M3R can partially 

depolarise the plasma membrane via activation of a specific Na
+
 channel [184]. 

 The neuropeptides VIP, GRP and PACAP are released from the pancreas on electrical vagal 

activation and stimulate both insulin and glucagon secretion. [182]. Both VIP and PACAP stimulate insulin 

secretion in a glucose-dependent manner accompanied by increased action of adenylate cyclase with 

increased formation of cAMP [185]. PACAP also increases the cytoplasmic concentration of both Ca
2+ 

and Na
+
 and has a distal effect on the exocytosis machinery, which may contribute to its potent 

insulinotropic action [143]. These effects have been suggested to be activated by cAMP-PKA signalling 

and to contribute to the increase in [Ca
2+

]i and insulin secretion [185]. On the other hand, the islet action 

of GRP is related to changes in cytoplasmic Ca
2+

 through the formation of DAG and activation of PRKC 

[182]. 

 Sympathetic nervous system 

 Noradrenaline and adrenaline affect insulin secretion by acting as stimulators through β2-

adrenoceptors and as inhibitors through α2-adrenoceptors in β-cells. β2-adrenoceptors are linked to 

activation of cAMP through Gs, whereas α2-adrenoceptors are linked to Gi and Go, which lead to the 

inhibition of cAMP production and opening of K
+
 channels. Selective knockout studies have shown that 

the α2A- and α2C-adrenoceptor subtypes mediate the inhibition of insulin secretion by catecholamines. 

Recently, a counteraction of GLP1 potentiation of GSIS by subthreshold α2-adrenergic activation in the 

pancreatic β-cell was reported. The in-depth mechanisms whereby the α2-adrenergic signalling system 

antagonises the GLP1 signalling system in pancreatic β-cells remain to be characterised [186]. 

 The powerful inhibitory influence of galanin in rodent islets has been shown to be accompanied by a 

complex signalling mechanism, involving hyperpolarisation and reduction in [Ca
2+

]c, although reduced 

formation of cAMP and inhibition of a direct exocytotic mechanism could also contribute [187]. At least six 

different NPY receptors have been cloned, and there is evidence that the Y1 receptor subtype mediates 

the islet actions of NPY [188]. The mechanism underlying the inhibition of GSIS by NPY involves the 

inhibition of adenylate cyclase with reduced formation of cAMP. However, other mechanisms not 

involving the adenylate cyclase activity have also been suggested [189]. 
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3.2.4 Nucleotides and metabolites involved in GSIS 

 Several metabolites and nucleotides (Figure 11) have been proposed to play a role in the amplifying 

pathway of insulin secretion, but neither the second messenger nor the cellular effector has been 

identified yet.  

 

Figure 11. Nucleotides and metabolites involved in glucose-stimulated insulin secretion (from [190]).  

 A direct effect of NADPH, generated by glucose metabolism via the pentose phosphate shunt and by 

mitochondrial shuttles [26], was reported in the release of insulin from isolated secretory granules [191]. 

In pancreatic β-cells, glucose acutely stimulates a sharp increase in the NADPH/NADP
+
 ratio concomitant 

with insulin secretion. This effect is mediated by GLRX1 (glutaredoxin) and TXN1 (thioredoxin) [192]. 

GLRX1 was more recently demonstrated to mediate NADPH-dependent stimulation of Ca
2+

-dependent 

insulin secretion in pancreatic β-cells by a local redox reaction that accelerates β-cell exocytosis and, in 

turn, insulin secretion [193]. 

 Among the many products of the TCA cycle, attention has also focused on nucleotides formed by 

succinyl-CoA synthetase (SCS), which catalyses the synthesis of succinate from succinyl-CoA. Two 

isoforms SCS-ATP and SCS-GTP form ATP or GTP, respectively, to preserve the energy that would 

otherwise be lost during hydrolysis of the thioester. Mitochondrial GTP synthesis correlates with TCA 

cycle activity, whereas TCA cycle-derived ATP makes only a minor contribution to the total mitochondrial 

ATP production [194]. Studies have shown how SCS-GTP-dependent GTP synthesis may link the TCA 

cycle activity to anaplerosis and to coupling factors that augment nutrient-dependent insulin secretion 

[195]. Down-regulation of SCS-GTP inhibits GSIS. Reduced expression of the SCS-ATP isoform diverts 

the reaction to SCS-GTP and markedly enhances insulin secretion [195]. Mitochondrial GTP, unlike ATP, 

is trapped within the mitochondrial matrix and therefore cannot stimulate exocytosis directly. 

Nevertheless, this signal was able to cause insulin secretion under conditions assessing the amplifying 

pathway [196]. 

 cAMP serves as an almost universal signal that modulates or regulates exocytosis in various 

secretory systems including pancreatic β-cells [197,198], but the precise mechanisms of its actions are 

still unclear. In β-cells, specific G proteins can activate or inhibit adenylate cyclases that catalyse cAMP 

synthesis. In turn, cAMP signalling is attenuated by phosphodiesterase-catalysed degradation [199]. 

cAMP activates PKA, a multifunctional regulatory enzyme, and binds to guanyl exchange proteins 

[197,198]. Different effectors of PKA and guanyl exchange proteins regulate the potentiation of exocytosis 

in β-cells [198]. The combination of increased cAMP levels and high extracellular glucose potentiates 

GSIS [197,198]. In mouse β-cells, an elevation of intracellular cAMP potentiates secretion mainly by a 

direct effect on the exocytotic machinery [197] and to a lesser extent by increasing [Ca
2+

]c [200]. Indeed, 

cAMP in the submembrane space has important effects on ion channels and exocytosis of insulin 
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granules [200,201]. As explained above, many neurotransmitters and hormones increase cAMP levels in 

β-cells by activating adenylate cyclase. 

 Malonyl-CoA can also act as a metabolic coupling factor in insulin secretion and as a messenger 

derived from citrate generated in the mitochondria. Malonyl-CoA inhibits CPT1A, which transports fatty 

acyl-CoA into mitochondria where it is oxidised and then causes an increase in long-chain acyl-CoAs in 

the cytosol. Glucose rapidly induces acetyl-CoA carboxylase production with a concomitant rapid rise in 

malonyl-CoA concentration preceding insulin secretion [25]. 

 Other metabolites closely linked to glutamate, such as the amino acid glutamine or the TCA cycle 

intermediate α-ketoglutarate, are also potential signalling molecules [202,203]. Glutamine by itself is not 

a secretagogue. Like glutamate, glutamine causes a pronounced increase of second phase insulin 

secretion following activation of the β-cell by suboptimal glucose concentrations [202]. Cytosolic Ca
2+

 

signalling is required for the amplifying potential of glutamine [196]. 

 Recent studies also suggest a role of reactive oxygen species such as H2O2 [204], granule 

translocation by the cytoskeleton [36] and AMPK [205]. AMPK acts as a cellular integration node for 

various nutrient and hormone signals, and subsequent changes in AMPK activity regulate multiple 

metabolic pathways of glucose metabolism [206]. The AMPK activator AICAR has been shown to 

enhances GSIS, an effect that can be attributed to increased electrical activity and [Ca
2+

]c resulting from 

AICAR-induced inhibition of the KATP current. [207]. Indeed, RIPCreα2KO mice, which lack AMPKA2 in β-

cells and a population of hypothalamic neurons, exhibited glucose intolerance and impaired GSIS. 

Moreover β-cells lacking AMPKA2 or expressing a kinase-dead AMPKA2 failed to hyperpolarise in 

response to low glucose even though the KATP channel function was intact [208].  

 3.2.5 Other regulators 

 Several reports recently demonstrated that some thermosensitive transient receptor potential 

(TRPM) channels are expressed in pancreatic β-cells. These channels can function as multimodal 

receptors and cause Ca
2+

 influx and membrane depolarisation at physiological body temperature. TRPM 

channels (TRPM2, TRPM4 and TRPM5) control insulin secretion levels by sensing an intracellular 

increase in Ca
2+

 or NAD metabolites or through hormone receptor activation [209]. 

 

4. Insulin degradation  

 Insulin clearance is a complex mechanism involving multiple organs and cells. Several steps are 

involved including binding to the insulin membrane receptor, its internalisation as an insulin-insulin 

receptor complex and degradation by the insulin-degrading enzyme (IDE) or by lysosomal enzymatic 

processes [210]. A major part of insulin is internalised by receptor-mediated processes, but internalisation 

can also occur by pinocytosis in cases of hyperinsulinaemia. Under normal conditions, almost all insulin is 

degraded intracellularly or at least by membrane processes. Some studies have suggested that 

significant amounts of insulin may be cleared and degraded extracellularly in wounds, which appears to 

be due primarily to IDE and may play a role in the wound-healing activity of insulin [211].  

 Insulin clearance includes both first-pass hepatic and peripheral insulin uptake. Degradation is a 

characteristic of all insulin-sensitive tissues. The liver, the primary site of insulin clearance, removes 

approximately 50 % of portal insulin, but this percentage varies widely under different conditions. 

Prolonged increases in portal insulin levels also result in reduced clearance because of receptor down-

regulation. Removal of insulin from the circulation does not result in immediate destruction of the 

hormone. A significant amount of receptor-bound insulin is released from the cell and re-enters the 

circulation [210]. Nutrient intake alters insulin clearance. In general, glucose ingestion increases hepatic 
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insulin uptake and decreases hepatic fractional extraction. Increasing doses of glucose result in insulin 

secretion increase with simultaneous decreased hepatic extraction. Fatty acids also alter hepatic and 

splanchnic insulin uptake and degradation and may be involved in the changes associated with T2DM 

[211]. 

 Because 50 % of insulin secreted by the pancreas is removed on first pass by the liver before 

reaching peripheral circulation, a reduction in hepatic insulin extraction would lead to substantial 

peripheral hyperinsulinaemia in insulin-resistant states caused by both hypersecretion and reduced 

hepatic extraction of insulin. The NEFA-mediated reduction and hepatic insulin extraction may be viewed 

as an adaptive mechanism to generate peripheral hyperinsulinaemia and thus to partially overcome the 

peripheral insulin resistance induced by NEFA, which could relieve the stress on pancreatic β-cells 

imposed by insulin resistance [210].  

 The kidney is the major site of insulin clearance from systemic circulation, removing approximately 

50 % of peripheral insulin. In addition, the kidney removes 50 % of circulating proinsulin and 70 % of C-

peptide by glomerular filtration. In general, insulin degradation by kidney cells is accomplished by the 

same processes as by the liver. Insulin is internalised into endosomes where degradation is initiated. 

Some insulin is released from the cell by retroendocytosis. As with the liver, isolated endosomes from the 

kidneys can degrade insulin, probably by IDE. Unlike the liver, lysosomes play a greater and earlier role 

in kidney insulin degradation, with most of the endosomal insulin and partially degraded insulin fragments 

delivered directly to lysosomes where degradation is completed [210]. The kidney plays an even greater 

role in insulin clearance in insulin-treated patients with diabetes than in normal subjects. Because insulin 

administered by subcutaneous injection escapes first-pass removal by the liver, the kidneys have 

increased importance in insulin removal in these patients [211]. 

 Insulin not cleared by liver and kidneys is ultimately removed by other tissues. All insulin-sensitive 

cells remove and degrade the hormone, because they contain insulin receptors and internalisation 

mechanisms. After the liver and kidneys, muscles play a significant role in insulin removal with a 

mechanism that involves insulin binding to its receptor, internalisation and degradation as in other tissues. 

Insulin uptake and degradation also occur in adipocytes, fibroblasts, monocytes, lymphocytes, 

gastrointestinal cells  and many other tissues [210].  

 In addition to IDE, other enzymes are involved in insulin degradation including protein disulphide 

isomerise (PDI), which acts after IDE cleavage of the B chain of receptor-bound insulin, catalysing 

disulphide cleavage and leading to production of intracellular fragments of insulin with potential biological 

activity [210]. During the last decade, evidence has emerged to reveal an important role of the 

transmembrane glycoprotein, CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), in 

regulation of hepatic insulin clearance [212]. CEACAM1 is phosphorylated by the insulin receptor kinase 

after insulin binding and can subsequently bind to insulin receptor and be internalised [213]. CEACAM1 

increases the rate of receptor-mediated insulin endocytosis and degradation to mediate insulin clearance 

in the liver [212]. Because CAECAM1-null mice or mice that express a dominant-negative CEACAM1 

mutant both have impaired hepatic insulin clearance, a close relationship between CEACAM1 and the 

insulin receptor clearly has mechanistic importance [212,214].  

 

4.1 Insulin-degrading enzyme (IDE) 

 Insulin-degrading enzyme was first described by Mirsky as “insulinase” on the basis of its ability to 

rapidly degrade insulin [215]. IDE, also referred as insulysin, is a zinc metallopeptidase enzyme that is 

predominantly present in the cytosol (~95 %) but is also found in small but significant amounts in 

endosomes, peroxisomes, mitochondria and extracellular space and at the cell surface [211,216-218]. In 

rats, Kuo et al. observed that IDE is highly expressed in adult rat testes, tongues and brains, moderately 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

39 

expressed in the kidney, prostate, heart, muscle, liver, intestine and skin and lowly expressed in the 

spleen, lung, thymus and uterus [219]. The highest levels of IDE gene expression were found in germinal 

epithelium, suggesting an important role of IDE in the regulation of cellular growth and differentiation. In 

humans, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and 

skeletal muscle as well as in breast and ovarian cancer tissues [220].  

 IDE is reported to cleave small proteins of diverse sequences, several of which have common 

abilities to form β-pleated sheet-rich amyloid fibrils, such as insulin, β-amyloid, amylin, glucagon, atrial 

natriuretic factor and calcitonin [210,221]. However, IDE is also responsible for the degradation of IGF1 

and 2 [222] and transforming growth factor α (TGFA) [223]. 

 IDE exists predominantly as a dimer in equilibrium with tetramers and to lesser extent monomers, 

with the dimer having the highest activity [224]. IDE is unique among the enzymes comprising the zinc 

metallopeptidase M16 family, which exhibit allosteric kinetic behaviour and show increased activity in the 

presence of substrate peptides [225]. In addition to certain peptide substrates, the activity of IDE is also 

influenced by other factors. For example, calcium-depleted muscle tissue has a decreased ability to 

degrade insulin and reduced IDE activity; however, the addition of calcium to the muscle restored insulin 

degradation. The catalytic activity of IDE in vitro was also observed to be inhibited by free long-chain fatty 

acids and acyl-CoA. These results suggest that elevated intracellular long-chain fatty acid concentrations 

may act directly on IDE to decrease insulin metabolism [226]. Moreover, insulin degradation by IDE is 

also affected by ATP through the triphosphate moiety [227]. Camberos et al. showed that ATP inhibits 

insulin degradation by IDE. This inhibition of insulin degradation appears to be strongly dependent on 

ATP concentration; indeed, other nucleotides, such as ADP and AMP, cannot induce the same inhibitory 

effect. ATP decreases insulin binding and degradation and diminishes dimer formation, suggesting that 

IDE undergoes conformational changes [227]. Thus, the energy status of the cell may serve as a 

feedback inhibition signal for insulin hydrolysis. Indeed, IDE is also capable of hydrolysing ATP [228]. 

Oxidative and nitrosative stress have also been proposed as other modulators of IDE activity [226]. 

Cordes et al. demonstrated the sensitivity of insulin degradation by IDE to the redox environment as 

oxidised glutathione inhibited IDE through glutathionylation and reduced glutathione had no effect on IDE 

[229]. 

 On the other hand, IDE has been identified as a candidate gene for diabetes susceptibility in the 

Goto-Kakizaki rat, a genetic model of non-insulin-dependent diabetes. These animals exhibit elevated 

blood glucose and insulin levels due to a mutated form of IDE, which leads to reduced insulin degradation 

and causes symptoms typical of human T2DM [230]. The evidence for the putative influence of IDE on 

the pathogenesis of T2DM has been confirmed with human genetic studies that have linked 

polymorphisms in the IDE gene to an increased risk for insulin resistance and T2DM [231,232]. 

Furthermore, genome-wide association studies in humans have revealed that the IDE region of 

chromosome 10q contains a variant that confers risk for T2DM [233]. Lastly, Abdul-Hay et al. 

characterised IDE knockout (IDE-KO) mice at 2, 4 and 6 months of age. Consistent with a functional role 

for IDE in insulin clearance, fasting serum insulin levels in IDE-KO mice were found to be ~3-fold higher 

than those in wild-type controls at all ages examined. Six-month-old IDE-KO mice exhibited a severe 

diabetic phenotype, but 2-month-old IDE-KO mice showed multiple signs of improved glycemic control. 

These results indicate that the diabetic phenotype in IDE-KO mice is not a primary consequence of IDE 

deficiency but that it is an emergent compensatory response to chronic hyperinsulinemia resulting from 

complete deletion of IDE in all tissues throughout life [234].  

 IDE is also strongly linked both functionally and genetically to the pathogenesis of Alzheimer’s 

disease (AD) [235]. Genetic evidence implicates variations in and around the IDE gene with the incidence 

and onset of AD [236]. In addition, several studies suggest that IDE is the principal protease responsible 

for the degradation of β-amyloid in the extracellular space [237]. 
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5. Diseases linked to β-cell dysfunction 

5.1 Diabetes mellitus 

 Diabetes mellitus is not a single disease but a syndrome of disordered metabolism with abnormally 

high blood glucose levels resulting from defects in insulin secretion, insulin action, or both. The estimated 

worldwide prevalence of diabetes among adults was 285 million (6.4 %) in 2010, and this value is 

predicted to increase to about 439 million (7.7 %) by 2030 (Table 3). The two most common forms of 

diabetes are type 1 diabetes (T1DM, diminished production of insulin) and T2DM (impaired response to 

insulin and β-cell dysfunction). The chronic hyperglycemia of diabetes is associated with long-term 

damage, dysfunction and the failure of various organs, especially the eyes, kidneys, nerves, heart, and 

blood vessels. The classical symptoms of diabetes include polyuria, polydipsia, weight loss, sometimes 

with polyphagia and blurred vision. Indeed, the impairment of growth and susceptibility to certain 

infections may also accompany chronic hyperglycemia [238].  

Table 3. Estimated numbers of adults aged 20-79 with any type of diabetes mellitus and prevalence, by region, in 

2010 and 2030 (from [3]). 

*Values are standardised to world age distribution for that year for each region. 

 5.1.1 Type 1 Diabetes Mellitus  

 T1DM is a T-cell mediated autoimmune disease that is characterised by the destruction of insulin-

producing β-cells of the pancreas because of the activation of pro-apoptotic signalling events. This 

metabolic disorder accounts for approximately 10% of diabetes mellitus cases. Autoimmune destruction 

of β-cells has multiple genetic predispositions and is related to environmental factors. Although patients 

are rarely obese when they are present with this type of diabetes, the presence of obesity is not 

incompatible with the diagnosis [238]. However, it is unclear whether the causes that trigger the 

development of this type of diabetes can be corrected with diet because genetic predisposition is a key 

factor. 

  

 2010 2030  

 Number of 

adults with 

diabetes 

(million) 

Prevalence* Number of 

adults with 

diabetes 

(million) 

Prevalence* Percentage 

increase in 

number 

Africa 12.1 3.8 % 23.9 4.7 % 98.1 % 

EMME 26.6 9.3 % 51.7 10.8 % 93.9 % 

Europe 55.4 6.9 % 66.5 8.1 % 20.0 % 

North America 37.4 10.2 % 53.2 12.1 % 42.4 % 

South and 

Central America 

18.0 6.6 % 29.6 7.8 % 65.1 % 

Southeast Asia 58.7 7.6 % 101.0 9.1 % 72.1 % 

West Pacific 76.7 4.7 % 112.8 5.7 % 47.0 % 

Worldwide 284.8 6.4 % 438.7 7.7 % 54.1 % 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

41 

5.1.2 Type 2 Diabetes Mellitus 

 T2DM is the most common type of diabetes. This metabolic disorder of fuel homeostasis is 

characterised by hyperglycemia and altered lipid metabolism caused by islet β-cells being unable to 

secrete adequate insulin in response to varying degrees of overnutrition, inactivity, consequential 

overweight or obesity and insulin resistance. The burden of this disorder is enormous because of its 

rapidly increasing global prevalence and the devastating damage it can do to many organs of the body 

[3]. 

 Chronic fuel excess is the primary pathogenic event that drives the development of T2DM in 

genetically and epigenetically susceptible people [239,240]. However, many chronically overnourished 

and overweight or obese individuals do not develop diabetes at all or develop it very late in life. These 

individuals remain resistant to T2DM and safely partition excess calories to subcutaneous adipose tissue 

(SAT) rather than to the heart, skeletal muscle, liver and islet β-cells because of the following 

mechanisms (Figure 12): successful islet β-cell compensation; maintenance of near-normal blood nutrient 

concentrations; development of minimal insulin resistance; increased expansion of SAT relative to 

visceral adipose tissue (VAT); and limited increase in liver fat. In this way, key organs of the body avoid 

nutrient-induced damage [3]. 

 In contrast, susceptible overnourished individuals develop T2DM because of the failure of these 

adaptive responses to safely dispose of the fuel surfeit (Figure 12). The following metabolic defects are 

crucial to the development of T2DM: inability of islet β-cells to compensate for the fuel excess; increased 

glucagon secretion and reduced incretin response; impaired expansion of SAT, hypoadiponectinaemia 

and inflammation of adipose tissue; increased endogenous glucose production; and development of 

peripheral insulin resistance [131,239-241], Importantly, the fuel surfeit is not safely deposited into SAT 

such that it has to be disposed of elsewhere, namely, less healthy VAT and “ectopic” storage in organs, 

such as the liver, heart, skeletal muscle and pancreas, which causes widespread tissue damage [241].  

 

Figure 12. Pathway to T2DM and related complications (from [3]). 
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 Pathogenesis of T2DM 

 T2DM and impaired glucose tolerance (IGT) result from an interaction between genetic and 

environmental factors as described above. The genetic background causes insulin resistance and β-cell 

failure, whereas weight gain and physical inactivity exacerbate the inherited metabolic abnormalities.  

 Both insulin resistance and impaired insulin secretion are characteristic of T2DM [240]. Current 

evidence favours a two-step development of T2DM. During step one, normal glucose tolerant (NGT) 

individuals progress to IGT with insulin resistance as the primary determinant. Plasma insulin levels are 

elevated, but β-cell function is clearly impaired [240] (Figure 13). Thus, it is important to distinguish 

between the plasma insulin response and β-cell health. In step two, IGT advances to T2DM because of a 

progressive decline in β-cell function [242]. 

 

Figure 13. Natural history of T2DM. Progression from lean NGT to obese NGT to obese IGT (bottom) is 

associated with worsening insulin resistance and compensatory hyperinsulinemia (top). The development of 

overt diabetes (bottom) is associated with a progressive decline in insulin secretion with little further deterioration 

in insulin resistance (bottom) (40). OB, Obese; DIAB, diabetes; Hi INS, high insulin; Lo INS, low insulin (from 

[242]). 

 Insulin resistance 

 By placing an increased demand on β-cells to hypersecrete insulin, insulin resistance also plays an 

important role in progressive β-cell failure in T2DM. Insulin resistance involves liver, muscle and adipose 

tissue and precedes development of glucose intolerance and overt T2DM (Figure 14) [240]. NGT first-

degree relatives of T2DM individuals and people with IGT are markedly resistant to insulin and manifest 

compensatory hyperinsulinaemia. Much evidence supports a genetic component of insulin resistance, 

which is aggravated by weight gain, physical inactivity and aging. Not surprisingly, interventions that 

enhance insulin sensitivity and reduce the insulin secretory demand have been shown to effectively 

prevent/delay IGT progression to T2DM [242]. 

 β-cell dysfunction and impaired insulin secretion 

 Although insulin resistance is an important pathogenic factor, β-cell failure is ultimately responsible 

for progression of IGT to T2DM [240,243]. Insulin resistance was well established early in the natural 

history of T2DM; however, glucose tolerance remains normal because of a compensatory increase in 

insulin secretion [244]. The pancreas in persons with normal-functioning β-cells is able to “read” the 

severity of insulin resistance and adjust its secretion of insulin to maintain normal glucose tolerance.  

 In patients with T2DM, the fasting plasma insulin concentration invariably has been found to be 

normal or increased [245], and basal insulin secretion, as measured from C-peptide kinetics, is elevated 

[246]. The progressive rise in the fasting plasma insulin level can be viewed as an adaptive response of 

the pancreas to offset the progressive deterioration in glucose homeostasis. However, when the fasting 
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plasma glucose concentration exceeds 7.78 mM (140 mg/dL), β-cells no longer can maintain their 

elevated rate of insulin secretion and the fasting insulin concentration declines precipitously [4] (Figure 

14).  

 

Figure 14. Impaired insulin secretion results in decreased insulin levels and decreased signalling in the 

hypothalamus, leading to increased food intake and weight gain, decreased inhibition of hepatic glucose 

production, reduced efficiency of glucose uptake in muscle and increased lipolysis in the adipocyte, resulting in 

increased plasma NEFA levels. The increase in body weight and NEFAs contribute to insulin resistance, and the 

increased NEFAs also suppress the β-cell's adaptive response to insulin resistance. The increased glucose 

levels together with the elevated NEFA levels collectively can adversely affect β-cell health and insulin action 

and is often referred to as glucolipotoxicity (from [247]). 

 Currently, the defect in insulin secretion in T2DM is thought be a combination of two components: 

reduced functional β-cell mass and intrinsic β-cell dysfunction [248,249]. T2DM patients have disrupted 

pulsatile insulin secretion, abnormal potentiation of non-glucose secretagogues and a reduced maximal 

secretory capacity to glucose and arginine. Moreover, the conversion of pro-insulin to insulin is reduced in 

T2DM leading to elevated pro-insulin levels. Finally, interactions of glucagon-producing α-cells within the 

islet are altered, leading to increased plasma glucagon levels, which contribute to hyperglycemia [250]. In 

addition to intrinsic functional defects in the insulin secretory machinery, anatomical abnormalities are 

also present in diabetic patients. Autopsy studies demonstrated a 63 % reduction in islet mass of T2DM 

patients compared with matched normoglycemic controls. In the same study, subjects with impaired 

fasting glucose (IFG) were shown to have a 40 % reduction of relative β-cell volume, suggesting that the 

loss of β-cell mass is present in the early stages of the disease [251]. The reduced β-cell mass is not due 

to the reduced formation of new islets but is caused by increased rates of apoptosis in islets [251]. The 

deficit in β-mass was correlated with fasting plasma glucose levels (FPG) levels, suggesting that the 

number of (functional) β-cells may play a role in physiological regulation [252]. Despite a vast body of 

research, the molecular mechanisms underlying β-cell dysfunction and apoptosis in the pathophysiology 

of T2DM remain unclear. However, increasing evidence suggests that hyperglycemia and hyperlipidemia 

in susceptible individuals further deteriorate β-cell function by inducing a cascade of processes referred to 

as glucotoxicity and lipotoxicity, respectively [253]. 
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Glucotoxicity 

 The term glucotoxicity refers to the slow and irreversible detrimental effects of chronically elevated 

glucose levels on β-cell function, characterised by decreased insulin synthesis caused by reduced insulin 

gene expression. A number of mechanisms have been proposed for how chronically elevated glucose 

levels may impair β-cell function and increase β-cell apoptosis rates. Mechanisms related to glucotoxicity 

include endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction and islet 

inflammation [253].  

 Sustained increased demand for insulin due to chronic hyperglycemia may impose a burden or 

“stress” on the ER, characterised by an accumulation of misfolded proteins inside the organelle. The so-

called unfolded protein response (UPR) is initiated, which aims to restore ER homeostasis by decreasing 

the ER protein load and by increasing the folding capacity. When the UPR fails to alleviate ER stress, the 

UPR triggers apoptosis [254]. In cultured rat islets, high glucose levels were shown to induce both 

components of the ER stress response and to trigger apoptosis. In β-cells from pancreatic sections 

obtained from T2DM patients, distended ER was found using electron microscopy, and markers for both 

ER stress and apoptosis were increased compared with non-diabetic patients [254,255]. 

 Elevated levels of glucose lead to increased generation of ROS in islet cells, which induce oxidative 

stress. ROS are produced following oxidative phosphorylation of glucose in mitochondria but may also be 

generated through alternative metabolic pathways. Because β-cells have very low levels of antioxidant 

enzymes, they are particularly vulnerable to oxidative stress [256]. ROS mostly exert their detrimental 

effects on β-cells by impairing the function of mitochondria [257], which play a crucial role in GSIS (as 

described above) and in the regulation of β-cell mass. In rat islets and INS-1E cells, hyperglycemia-

induced ROS production was shown to damage mitochondrial DNA and mitochondrial membrane 

proteins and to decrease the ability of mitochondria to produce ATP, resulting in reduced GSIS [258]. In 

isolated islets of pancreas from T2DM patients, increased markers of oxidative stress were observed 

compared with healthy controls, and oxidative stress correlated with the degree of impairment in insulin 

secretion [259]. Moreover, treatment of Zucker diabetic fatty (ZDF) rats with antioxidants led to decreased 

markers for oxidative stress and improved insulin gene expression and glycemic control [256]. ROS may 

impair mitochondrial dysfunction through an additional pathway related to uncoupling. Increased glucose 

fluxes through oxidative phosphorylation enhance ROS production. Increased glucose and ROS levels 

activate UCP2, which reduces the mitochondrial membrane potential, and thus, ATP synthesis is 

necessary for insulin secretion [239]. 

 β-cell dysfunction observed during the course of T2DM is partially due to β-cell destruction through 

apoptosis and inflammation. Similarly as in T1DM, the pro-inflammatory cytokines interleukin IL1B and 

nuclear factor NFKB (nuclear factor of kappa light polypeptide gene enhancer in B-cells) in T2DM may 

orchestrate an autoimmune reaction leading to β-cell apoptosis. Some studies have proposed that the 

pro-apoptotic signals following chronic hyperglycemia are mainly derived from mechanisms related to the 

ER and oxidative stress [260]. Additionally, β-cell apoptosis in humans may also be triggered by pro-

inflammatory signals from other organs, such as adipose tissue, which is associated with the production 

of numerous pro-inflammatory adipocytokines [253]. 

 Lipotoxicity 

 Although slightly elevated levels of fatty acids may play an important role in sustaining basal insulin 

secretion and in maintaining a normal insulin secretory response to glucose, several studies have 

suggested that prolonged exposure to pharmacological levels of fatty acids impairs β-cell function. In line 

with in vitro findings, prospective studies in subjects at risk for T2DM have shown that the development of 

abdominal obesity is correlated with a loss of β-cell function [260] and that increased NEFA 

concentrations are a risk factor for the development of T2DM, independently of its effects on insulin 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



I. Introduction 

45 

sensitivity [261]. Whether these fatty acids are derived from adipose tissue lipolysis or from hydrolysis of 

TG-rich lipoproteins in the plasma remains unclear [262]. The negative effects of elevated plasma fatty 

acids concentrations on β-cell function are referred to as lipotoxicity. 

 Fatty acids were shown to impair GSIS and insulin gene expression and to increase β-cell apoptosis 

and necrosis in vitro both in cell lines and in isolated (human) islets [263,264]. In addition, a 48 h infusion 

of intralipids or oleate in Wistar rats impaired GSIS [265]. In another in vivo study in wild-type rats, insulin 

gene expression was decreased by intralipid infusion [256]. 

 A number of mechanisms have been proposed for how fatty acids impair β-cell function. First, fatty 

acids induce ER stress, most likely as a consequence of the overstimulation of NEFA esterification, which 

reduces the capacity of the ER for other processes [266]. Second, NEFAs have been shown to induce 

oxidative stress both in vitro and in vivo [265,267]. As such, treatment with anti-oxidants prevented 

oleate-induced β-cell dysfunction in Wistar rats. Third, fatty acids and especially the saturated NEFA 

palmitate may serve as substrates for the formation of ceramide and other metabolites, which have been 

shown to be pro-apoptotic and to reduce insulin gene expression [267]. 

 More recently, the term glucolipotoxicity has been used because the alterations in intracellular lipid 

partitioning underlying the mechanisms of lipotoxicity are dependent upon elevated glucose levels. 

Consequently, hyperglycemia is a prerequisite for lipotoxicity to occur. Therefore, the term 

glucolipotoxicity rather than lipotoxicity is more appropriate to describe the deleterious effects of lipids on 

β-cell function [256].  

 In T2DM, overnutrition is a primary pathogenic event that triggers the development of T2DM, 

although it does not develop the illness genetically or epigenetically. In other types of diabetes, including 

MODY, the genetic factor is more decisive. The people suffering from this type of diabetes have genetic 

defects in β-cell function [268,269]. The different forms of MODY are all due to ineffective insulin 

production or release by pancreatic β-cells. Maternally inherited diabetes with deafness (MIDD) is another 

genetic caused type of diabetes. Impaired pancreatic β-cell insulin secretion is the major 

pathophysiological mechanism of MIDD, which is caused by mutations in the mitochondrial genome (most 

frequently the A3243G tRNALeu substitution) [270]. Many other mutations in mitochondrial DNA have 

been linked with the diabetic phenotype. MIDD is characterised by variability in clinical presentation, as it 

may mimic T1DM and T2DM. The disease is usually diagnosed in early adulthood; however, the age 

range of onset is very wide [270,271]. 
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B. Flavonoids in insulin metabolism 

1. Flavonoids 

Plants contain more than 100,000 secondary metabolites, ranging from structurally simple alkaloids to 

more complex phytosterols and polyphenolic molecules. These ‘phytochemicals’ are not recognised as 

essential dietary components because they are not associated with a specific deficiency condition. 

Nevertheless, many of these non-nutritive compounds exert biological activities in mammalian systems 

that may affect health and disease risks. Indeed, some of these phytochemicals have been used 

therapeutically since ancient times, and their molecular structures are the basis of many modern 

pharmaceuticals. As such, bioactive compounds are likely to be present in a wide range of plant-based 

foods, and there is growing interest in their potential role in health and disease prevention in nutritionally 

relevant amounts. Phenolic compounds or polyphenols constitute one of the most numerous and 

ubiquitously distributed groups of plant secondary metabolites, and more than 8000 phenolic structures 

are currently known. These molecules are widespread in plant foods and are synthetic precursors and 

catabolic products of many more complex phytochemicals [272]. 

 Polyphenols can be classified into different groups according to the number of phenolic groups that 

they contain or the structural elements that bind the rings to one another. The main classes of 

polyphenols are phenolic acids, stilbenes, lignans and flavonoids [273]. 

Flavonoids are a large class of polyphenols that are usually found in fruits, vegetables, medicinal 

plants and drinks, such as red wine, tea and beer [274,275], and thus are widely consumed. Their roles 

as antioxidants [276], anti-inflammatories [277], anticarcinogens [278] and protective agents against 

coronary disease and metabolic syndromes [279] are widely accepted. These beneficial effects make 

them good candidates for the development of new functional foods with potential protective/preventive 

properties against several diseases.  

 

1.1 Structure and classification of flavonoids 

The basic structure of flavonoids consists of 3 phenolic rings referred to as the A, B and C rings [280]. 

The A ring of benzene is condensed with a six-member ring (C), which carries a phenyl benzene ring (B) 

as a substituent at the 2-position [281]. Depending on the structure and oxidation level of the C ring, 

flavonoids are further divided into several subclasses. The main groups of flavonoids are anthocyanidins, 

flavonols, flavones, flavanones, isoflavones and flavanols or flavan-3-ols [281] (Table 4). In addition, the 

basic flavonoid structures can be modified and have several kinds and different patterns of substitutions 

(including glycosylation, hydrogenation, hydroxylation, malonylation, methylation, glucuronidation and 

sulfatation), which confer them different physical properties. Furthermore, the degree of polymerisation 

adds more variability to the flavonoids. Thus, the term flavonoid includes thousands of structures with 

different chemical, physical and biological properties [282].  
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Table 4. Classification, representative structure and food source of main flavonoids [282]. 

Flavonoids Structure Food source 

Flavonols 

(Quercetin) 

 

Onion, kale, broccoli, 

lettuce, tomato, apple, 

grape, berries, tea and 

red wine 

Flavanones 

(Naringenin) 

 

Citrus fruit (orange, 

grapefruit and lemon 

juice) 

Flavones 

(Apigenin) 

 

Celery and parsley 

Anthocyanidins 

(Pelargonidin) 

 

Aubergine, black 

grape, red cabbage 

and strawberry 

Isoflavones 

(Genistein) 

 

Soy bean and soy 

products 

Flavanol monomer, 

dimers, trimers, etc. 

(EGCG) 

 

Tea, chocolate, red 

wine, apple and 

berries 

 

1.2 Chemical structure and classification of proanthocyanidins 

The group of flavan-3-ols is the largest and most ubiquitous class of monomeric flavonoids and 

consists of not only simple monomers, such as (+)-catechin and its isomer (-)-epicatechin, but also 

oligomeric and polymeric proanthocyanidins [275] (Figure 15). The units of flavan-3-ols that form 

oligomers and polymers are mainly linked not only through the C4-C8 bond but also through the C4-C6 

linkage [283]. These linkages are both called B-type linkages. However, A-type proanthocyanidins contain 

a linkage between C2 and C7. The designed procyanidins are proanthocyanidins that exclusively consist 

of (epi)catechin units and are the most common type of proanthocyanidins found in nature. The flavan-3-

ols subunits may carry acyl or glycosyl substituents, with gallic acid bound as an ester (3-O-gallate) being 

the most common.  
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Procyanidins have a high structural diversity based on the four possible monomer units because of 

the different configurations of catechin and epicatechin (cis or trans, depending on the stereochemistry of 

their C2-C3 bond) [283]. 

 

Figure 15. Structure of the flavanol monomers (+)-catechin and (-)-epicatechin and their polymers procyanidins. 

 

1.3 Intake, bioavailability and metabolism 

 Various studies confirmed that proanthocyanidins are the most abundant phenolic compounds in 

fruits, such as grapes [284], apples [285] and strawberries [286], but these compounds are also present 

in beans, grains, nuts, spices, vegetables and beverages [287]. Although proanthocyanidins are widely 

present in the human diet, it is important to better understand their bioavailablity to humans.  

 Gu et al. estimated the daily average dietary intake of proanthocyanidins in the USA and found that 

the daily intake of proanthocyanidins is about 53.6 mg/day excluding the monomers and 57.7 mg/day 

including the monomers. These authors observed that about 74 % of ingested proanthocyanidins have a 

degree of polymerisation > 3 [288]. In another study, the dietary proanthocyanidin intake was found to 

vary from 10 mg to 0.5 g/day, with the B-1 and B-2 dimers most likely to be consumed [275]. Good 

evidence suggests that the dietary intake may be underestimated because of problems associated with 

extraction from food matrices prior to quantification [286].  

 The bioavailability of flavonoids, such as proanthocyanidins, involves liberation and digestion in the 

stomach and gastrointestinal tract, transport across the intestinal membrane into the blood, tissue 

distribution, metabolism and efficacy (biological effects) and finally elimination [289].  

 The mechanisms involved in flavonoid absorption have not been clearly elucidated. Following 

ingestion, the digestion and absorption of a few flavonoids begin in the stomach, where the aglycones 

may be absorbed [289]. However, the majority of dietary flavonoids, which exist predominantly as 

glycoside conjugates, are absorbed from the small intestine and pass through the gut wall into the 

circulatory system [290]. Typically, the absorption is associated with hydrolysis, releasing the aglycone, 

as a result of the action of lactase phloridizin hydrolase (LPH) in the brush-border of the small intestine 

epithelial cells. LPH exhibits broad substrate specificity for flavonoid-O-β-D-glycosides, and the released 
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aglycone may then enter the epithelial cells by passive diffusion as a result of its increased lipophilicity 

and its proximity to the cellular membrane [291]. Alternatively, hydrolysis involving cytosolic β-glucosidase 

(CBG) can occur within the epithelial cells. The polar glucosides must be transported into the epithelial 

cells in order for CBG-mediated hydrolysis to occur and possibly with the involvement of active SGLT1 

(SLC5A1, sodium glucose cotransporter 1) [292]. Thus, there are two possible routes by which glucoside 

conjugates are hydrolysed and the resultant aglycones appear in the epithelial cells, namely, 

‘LPH/diffusion’ and ‘transport/CBG’. However, a recent investigation, in which SGLT1 was expressed in 

Xenopus laevis oocytes, indicated that SGLT1 does not transport flavonoids and that glycosylated 

flavonoids and some aglycones can inhibit the glucose transporter [293]. 

 Prior to passage into the blood stream, the aglycones undergo metabolism, forming sulphate, 

glucuronide and/or methylated metabolites through the actions of sulfotransferases, uridine-5′-

diphosphate glucuronosyltransferases and catechol-O-methyltransferases, respectively. In addition, efflux 

of at least some of the metabolites back into the lumen of the small intestine occurs, which is thought to 

involve members of the ATP-binding cassette family of transporters including multidrug resistance protein 

and P-glycoprotein [294].  

 Bacteria that normally colonise the colon also play an important role in flavonoid metabolism and 

absorption. Flavonoids or flavonoid metabolites that reach the colon may be further metabolised by 

bacterial enzymes and absorbed. Extensive colonic degradation of procyanidins, the flavanol quercetin 

and flavan-3-ols occurs [289]. Flavonoids known to be particularly well absorbed in humans are 

isoflavones, followed by quercetin-glucosides. Proanthocyanidins and the flavan-3-ol epigallocatechin 

gallate (EGCG) appear to be among the least well-absorbed polyphenols, which may be a result of 

instability once absorbed and not poor absorption [295]. Following the ingestion of a procyanidin-rich 

food, such as chocolate [296], tea [297] or grape seed extract [298], the oligomers of procyanidins are 

fragmented during digestion into monomeric units of catechin and epicatechin, which are then absorbed. 

 Once in the portal bloodstream, metabolites rapidly reach the liver, where they can be subjected to 

another metabolic phase. Further conversions and enterohepatic recirculation may result in some 

recycling back to the small intestine through bile excretion [290]. Metabolites of polyphenols are lost from 

the body via urinary and biliary excretion. Urinary excretion is an important pathway for flavanones, 

isoflavones and flavan-3-ols (10 % or more of the dose is excreted via urine), but biliary excretion is 

important for all polyphenols [289]. 

 The diversity of flavonoid structures complicates their identification and measurement in plasma. 

However, despite the difficulties, several forms of modified flavonoids have been found in plasma 

[295,299]. Furthermore, some flavonoids have also been found within tissues such as the stomach, small 

intestine, colon, liver, spleen, kidney, muscle, heart, endothelium, lung, brain, thyroid, bone, skin, bladder, 

prostate, testes, vagina, uterus, ovary, mammary gland, fat, adrenal gland, oesophagus, eyes, lymph 

nodes and pituitary gland [282]. 

 EGCG was detected in pancreas tissue as soon as 1 h after oral administration and reached about 3 

times higher levels after 24 h. A second oral administration 6 h later resulted in a 4-fold increase of EGCG 

levels in the pancreas [300]. The isoflavone puerarin was found in pancreas 2 h after its acute 

administration [301]. Silibinin is the major active constituent of silymarin, the mixture of flavonoids 

extracted from milk thistle. Zaho et al. administered silibinin to mice starved for 24 h. They observed peak 

levels of free silibinin in pancreas 30 min after its administration, and peak levels of sulphate and β-

glucuronidate conjugates of this compound were measured at 1 h after its administration [302]. Zhang et 

al. recently found quercetin and its metabolites in mice pancreas after being administered diets with 0.2 

and 1 % of quercetin. Pancreas from mice fed with a 1 % quercetin diet accumulated near 4-times higher 

concentrations of quercetin and methylated quercetin compared with those fed with a 0.2 % quercetin diet 

[303]. 
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2. Flavonoid action on insulin metabolism  

 Flavonoids are defined as bioactive compounds because they influence physiological or cellular 

activities and have beneficial health effects [276,304-307]. Several monomeric flavonoids and natural 

extracts rich in monomeric forms have been shown to improve hyperglycemia in streptozotocin-induced 

diabetic rats, in genetically altered diabetic mice and in animal models with diet-induced insulin resistance 

or diabetes [308-311]. 

 The potential beneficial effects of procyanidins have also been widely studied because of their 

considerable intake through the diet. Procyanidins have been reported to act against coronary heart 

diseases and atherosclerosis as well as several metabolic processes associated with the development of 

those disorders [312]. Moreover, procyanidins are involved in the modulation of cholesterol and lipid 

metabolism [312], induce changes in vascular events [313], have antigenotoxic [314] and cardiovascular 

effects [315] and improve oxidative or inflammatory states. Procyanidins also have antiproliferative effects 

and have been studied as cancer preventive agents [316,317]. Indeed, several studies have investigated 

their effects on glucose homeostasis-disrupted situations, but a clear consensus has not been reached 

(reviewed in [318]). 

 

2.1. Effects of procyanidins on glucose homeostasis 

 Published studies on the effects of procyanidins on glucose homeostasis suggest that these 

flavonoids may act as hypoglycemic agents. However, their effects can depend on the specific condition 

of glucose homeostasis disruption in which they are analysed. On the one hand, hyperglycemia may be 

the consequence of T1DM, in which there is a loss of β-cells due to an immune assault [319]. On the 

other hand, high glucose levels can occur because of the ineffectiveness of insulin. Insulin resistance is a 

condition in which insulin levels initially increase to compensate for the lack of insulin effect before 

reaching a state in which the pancreas is no longer functional (T2DM) [320].  

 Hyperglycemia in T1DM is the result of the body’s inability to synthesise and/or secrete functional 

insulin. Several authors have assayed the ability of procyanidin-enriched extracts to ameliorate the 

physiological state caused by this situation using animal models with a destructed pancreas (mainly 

through the action of streptozotocin). Collectively, the published studies suggest that procyanidins have a 

short-lived insulin-mimetic effect on internal targets of the organism [321-323] and that they are useful in 

improving the general situation of the entire organism [324], most likely due to oligomeric forms [325] and 

a forced acute dose (summarised in [318]). On the other hand, the improved physiological state in these 

animal models could also result from the antioxidant effects that these flavonoids exert [326-328], 

because the drugs used may involve production of reactive oxygen species [329]. The action of the 

procyanidins avoid β-cell damage resulting in slight β-cell activity; consequently, the animals would be 

able to produce low levels of insulin, thus improving the physiological situation.  

 In normoinsulinemic animals, the effects of procyanidins on glucose homeostasis are not clear. If the 

inhibition of glucose absorption was the main mechanism explaining the glucose-lowering effects 

observed in diabetic animals, similar effects would be expected in non-diabetic animals. However, most of 

the experiments published do not support this hypothesis. Therefore, with a lack of insulin, procyanidins 

may act as insulin-mimetic agents affecting some insulin targets. Under normal insulinemia, the published 

studies suggest no clear effect of procyanidins on whole glucose homeostasis, probably because insulin 

is more effective in terms of its physiological effects [318,322,325]. 

 Several studies have also analysed the effects of procyanidins on glucose homeostasis in an insulin-

resistant state using animals fed special diets or animals with genetically induced obesity. Although 

preventive studies using fructose-fed models indicate that procyanidins may be useful in preventing the 
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induction of damage and thus in limiting hyperglycemia [330,331], the results of other studies using 

models such as high-fat diet-treated rats or genetically obese animals are controversial [332,333].  

Pinent et al. reviewed that procyanidins may improve a slightly disrupted homeostatic situation, but such 

effects are highly dependent on the quantity of procyanidins that the animals receive, including the daily 

dose, which in turn depends on the method and period of administration [318]. 

 

2.2 The effects of flavonoids on insulin homeostasis 

 As previously described, procyanidins are able to modify glucose homeostasis, which could be 

through a peripheral and/or a central action [334]. Because of its physiological position, it is feasible that 

chronic procyanidin treatment targets the pancreas, the organ responsible for insulin secretion after 

glucose intake. However, very little information concerning the effects of procyanidins in pancreatic insulin 

synthesis and secretion is available. Most studies have focused on the effects of entire flavonoids in the 

pancreas.  

 Several in vitro and in vivo studies have described the effects of flavonoids in insulin secretion 

processes in β-cells. The author of this thesis participated in a review of this area, which serves as a 

complementary material of this thesis [282]. 

 Genistein is the most studied isoflavone in vitro. Early studies showed that this compound increases 

GSIS in the β-pancreatic cell line MIN6 [335] as well as in cultured islets from mice [336] and rats [337] at 

concentrations up to 100 µmol/L. However, higher concentrations of genistein inhibited insulin secretion 

in rat islets [338]. Moreover, acute genistein treatment at physiological concentrations was shown to 

potentiate GSIS both in cell lines and isolated mouse islets. The insulin-secreting activity of genistein is 

mediated at least in part by cAMP accumulation and PKA activation [339] and is independent of 

oestrogen receptor mechanisms, protein tyrosine kinases and nitric oxide signalling pathways. Another 

study from the same research group showed that the GSIS-enhancing effect of genistein in INS-1E cells 

is not correlated with a modification, suggesting that genistein-enhanced GSIS is not due to the 

modulation of insulin synthesis. Indeed, genistein acts in a protein tyrosine kinase- and KATP channel-

independent manner, and treatment with this flavonoid do not affect GLUT2 or cellular ATP production. 

Genistein- enhanced insulin secretion is associated with elevated intracellular Ca
2+

 concentrations and 

depends on PKA [340].  

 Quercetin at 20 µmol/L was recently reported to potentiate glucose-induced insulin secretion in a β-

cell line but only had a minor effect in the absence of stimulated insulin secretion. Quercetin was also 

able to potentiate insulin secretion stimulated by glibenclamide, a KATP channel blocker that triggers 

membrane depolarisation independently of any change in glucose metabolism [341]. This work also 

revealed that quercetin could sensitise β-cells to primary stimulants of insulin secretion through an 

increase in basal [Ca
2+

]i and subsequent ERK1/2 activation, and thereby amplify the insulin response. 

Indeed, quercetin was shown to increase the intracellular Ca
2+

 levels in rat islets of Langerhans [342] or 

inhibit ATP2A2 (responsible for cytosolic Ca
2+

 removal) [343]. Accordingly, Youl et al. observed that 

quercetin amplifies the depolarisation-induced intracellular Ca
2+

 increase in INS-1 cells [341]. 

 Several molecules from the anthocyanin and anthocyanidin classes are also effective insulin 

secretagogues when tested in pancreatic cell lines but with different efficiencies depending on the 

structure. Delphinidin-3-glucoside was the most potent among the tested compounds and significantly 

induced insulin secretion at low and high glucose concentrations as compared with untreated cells. 

Although cyanidin-3-glucoside was less active than delphinidin-3-glucoside at a lower glucose 

concentration, it was more active at a higher glucose concentration. These results indicate that the 

number of hydroxyl groups in ring B of anthocyanins plays an important role in their ability to secrete 
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insulin. Among the anthocyanidins tested, pelargonidin was the most active at low glucose concentrations 

[344]. 

 Some flavonoids interfere with glucose-induced depolarisation of the cell membrane, which initiates 

firing of action potentials that result in insulin secretion. Of the green tea catechins, (-)-epigallocatechin-

3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG), but not (-)-epicatechin or (-)-epigallocatechin, 

inhibit the activity of KATP channels at tens of micromolar concentrations; indeed, ECG was 3 times more 

effective than EGCG. Using cloned β-cell-type KATP channels, these researchers showed that only EGCG 

at 1 µmol/L, a readily achievable plasma concentration by oral intake in humans, but not other 

epicatechins significantly blocked channel reactivation after ATP wash-out, suggesting that the interaction 

of phosphatidylinositol polyphosphates with the channel was impaired by EGCG [345]. Previously, Baek 

et al. also reported that the gallate-ester moiety of epicatechins may be critical for inhibiting the KATP 

channel activity via the pore-forming subunit Kir6.2, which may be a mechanism by which green tea 

extracts or EGCG cause unexpected side effects at the micromolar plasma level [346]. More recently, Cai 

and Lin published that these flavonoids could preserve the insulin secretory machinery and stimulate 

IRS2 signalling in rat pancreatic β-cells (RIN-m5F) under glucolipotoxic conditions [347].  

 Concerning the in vivo effects, long-term studies of the effects of soy protein containing genistein 

and daidzein were performed in models fed a normal and high-fat diet [348]. Chronic consumption of 

saturated fat increased insulin secretion associated with an increase in pancreatic islets, and soy protein 

ameliorated this situation. Thus, soy protein (because of its amino acid pattern as well as its isoflavones) 

reduces blood insulin. Using hyperglycemic clamps, rats fed soy protein were found to secrete less insulin 

to maintain glucose at normal levels. Interestingly, this effect was also observed in normal-fed rats. 

Furthermore, hyperglycemic clamps of rats infused with phytoestrogens (genistein, daidzein and equol) 

showed that these compounds rapidly inhibit the release of insulin, suggesting a short-term mechanism 

regulating this process and involving down-regulation of PPARG and GLUT2 mRNA expression [348]. 

More recently, another study was conducted with male CD1 mice fed with a high soy-containing diet from 

conception to adulthood. These animals had lower basal insulin levels and pancreatic insulin content than 

low phytoestrogen-fed mice [349]. Genistein and daidzein have been shown to elevate plasma insulin 

levels in non-obese diabetic (NOD) mice, an animal model that spontaneously develops autoimmune 

diabetes [350]. A 9-week treatment with genistein or daidzein (0.2 g/kg diet, animals fed ad libitum) 

suppressed an increase in blood glucose in NOD mice by elevating plasma insulin levels. Such effects 

were accompanied by an increase in insulin-positive β-cells, although it remained unresolved whether 

there was more insulin secretion from the remaining β-cells or increased β-cell mass in isoflavone-treated 

mice [350]. 

 Another flavonoid, catechin from green tea, administered for 10 months with a high-fat diet in 

SAMP10 mice, which have characteristics of brain atrophy and cognitive dysfunction with aging, 

protected the pancreas from damage produced by the diet. Although the levels in serum insulin of fasted 

mice for 12 h were not significantly altered, the release of insulin from islet cells was significantly 

increased in mice fed a high-fat diet and was suppressed in mice fed a high-fat diet with green tea 

catechin [351]. 

 Insulin degradation also plays an important role in insulin homeostasis. However, there have been 

no studies to our knowledge to determine the effects of flavonoids in insulin degradation or in relationship 

to IDE, the main enzyme responsible for insulin clearance. 
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Several studies have reported that procyanidins (one of the most abundant group of flavonoids) can 

protect against coronary heart diseases and atherosclerosis as well as act on several metabolic 

processes that are associated with the development of these disorders. Evidence supports procyanidin 

bioactivity in lipid metabolism and as antioxidant agents, but the data are less clear regarding the 

effectiveness of procyanidins in other physiological processes. 

Previous studies published by our research group (Nutrigenomics group) have shown that 

procyanidins have positive effects on glucose metabolism in situations of slightly disrupted glucose 

homeostasis. Part of this effect was explained by the activity of procyanidins on adipose cells. However, 

this work was based on a rat cafeteria-diet model treated with GSPE for 30 days, exhibiting decreased 

fasting plasma insulin levels concomitantly with unchanged glucose. The same effect was observed in 

non-fasting insulin levels. These results seem to indicate that procyanidins can modulate insulin 

secretion and/or insulin synthesis through their action on β-cells. 

The importance of the endocrine pancreas in whole body nutrient equilibrium is highlighted by the 

emergence of several pathologies of nutrient metabolism, such as type 1 and 2 diabetes mellitus, that 

involve pancreatic cell deregulation. However, little data are available that address whether 

procyanidins have central effects on the endocrine pancreas, a key organ involved in metabolic 

control. This hypothesis could be supported by the fact that the pancreas is located immediately after 

the location of enteric absorption. 

 

Therefore, taking into account the data presented above, our hypothesis was as follows: 

Procyanidins can modulate β-cell functionality 

 

The aim of this thesis was to assess whether procyanidins affect insulinemia through their action on 

pancreatic insulin synthesis and secretion.  

The main objectives proposed to achieve this aim were as follows: 

1. To develop a tool to evaluate the bioactivity of plant extracts on pancreatic β-cells. 

2. To evaluate whether GSPE modulates β-cell functionality. 

3. To assess whether the effects of GSPE on β-cells prevent or improve β-cell dysfunction.  

4. To identify the mechanisms used by GSPE to modulate β-cell functionality. 

 

The work presented in this thesis was performed in the Nutrigenomics group at the Universitat Rovira i 

Virgili, together with a 3 month stay at the Faculty of Medicine at the University of Geneva. Funding came 

from three different institutions. The first six months of funding came from Universitat Rovira i Virgili. After 

that, I received the FI fellowship from the Generalitat de Catalunya. Finally, I won a FPU fellowship from 

the Ministerio de Educación of the Spanish government that covered the last 3 years of this thesis.  
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    III. Results 

75 

The results of this thesis are presented as accepted or submitted manuscripts for peer-reviewed 

journals. A brief description of the relationship between the objectives and chapters follows. 

 

OBJECTIVE 1: To develop a tool to evaluate the bioactivity of plant extracts on pancreatic β-cells. 

To overcome the limitation of working with natural extracts, we designed a coculture system to 

reproduce in vivo conditions, where compounds from natural extracts cross the epithelium barrier before 

reaching the pancreas. We seeded Caco-2 cells onto culture inserts. After 21 days, these cells were 

cocultured with pancreatic β-cells, INS-1E, on the base of the well. To prove the reliability of this method, 

we assayed essential functions of each cell type both alone or under co-culture conditions. The results 

from this study are described in the Chapter 1 and were published in Planta Medica (Planta Med 2010; 

76: 1576-1581). 

 

OBJECTIVE 2: To evaluate whether GSPE modulates β-cell functionality. 

To determine the effects of GSPE on β-cell functionality, we assayed various doses of GSPE in 

different animal models. We used an acute high dose and chronic moderate treatments in healthy 

animals. To better understand how GSPE acts on β-cells, we also used the INS-1E β-cell line. The results 

of these experiments are reported in Chapter 2 and have been accepted in the Journal of Nutritional 

Biochemistry (JNB 2012; in press). 

 

OBJECTIVE 3: To assess whether the effects of GSPE on β-cells prevent or improve β-cell dysfunction.  

To prove whether the GSPE effects could be beneficial to prevent or improve disrupted β-cell 

functionality, we used animal models that presented β-cell dysfunction caused by diet (animals fed with a 

cafeteria diet) or genetics (Zucker fatty rats). As a complementary approach, we used an in vitro model of 

β-cell dysfunction induced by treatment with the fatty acid oleate. The results of these experiments are 

described in Chapter 4 (submitted to the Journal of Nutritional Biochemistry) and Chapter 5 

(submitted to the Journal of Proteome Research).  

 

OBJECTIVE 4: To identify the mechanisms used by GSPE to modulate β-cell functionality. 

All of the presented studies were designed to determine the mechanisms that the procyanidin extract 

use to modulate β-cell functionality. Moreover, taking into account the role of microRNA (miRNA) in the 

regulation of metabolic processes in diabetes and that some published data reported the modulation of 

miRNA expression by flavonoids in other tissues than pancreas, we analysed whether GSPE could 

modify β-cell functionality through its effect on the miRNA expression pattern. The results from this study 

are reported in Chapter 3 and have been submitted to the Molecular Nutrition & Food Research as a 

Food & Function manuscript. 

 

Most of this work has been accomplished together with my colleague Lidia Cedó. Only the results 

related to the GSPE effects to insulin secretion and synthesis belong to this thesis. All the other data 

belong to the future theses of my colleagues. 
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Abstract
!

Natural plant extracts are candidates for the de-
velopment of new functional foods. Most of them
are usually complex mixtures of molecules of un-
certain bioavailability that are often partially me-
tabolized before they finally reach the target cells
in vivo. In vitro studies of the bioactivity of these
extracts suggest that their direct application to
some cell cultures might be a long way from be-
coming a reality. To overcome this limitation, we
seeded Caco-2 cells onto culture inserts and after
21 days, cocultured these with INS-1E on the base
of the well. After 24 hours of coculture, TEER
(transepithelium electrical resistance) measure-
ments indicated no changes in the permeability
of the Caco-2 barrier. We also found no changes
in either the ability of Caco-2 cells to metabolize

the flavan-3-ol component of a grape-seed pro-
cyanidin-rich extract, or in the flavanolsʼ ability
to pass through the barrier. However, the expres-
sion of the Caco-2 SGLT-1 gene increased due to
the coculture. GSIS (glucose stimulated insulin se-
cretion) was maintained in the INS-1E cells with
higher levels of insulin secretion despite the fact
that the insulin gene expression was unmodified
by the cocultivation. Furthermore, we found that
in some of the assays requiring several medium
changes there was a tendency to lose β-cells. Neu-
tral red assay showed that seeded cells should on-
ly be cocultured for a short time to obtain a higher
consistency. In conclusion, four hours coculture
with Caco-2 cells and INS-1E is a suitable method
for checking the bioactivity of natural plant ex-
tracts of unknown bioavailability on β-cells.
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Introduction
!

Designing functional food requires a lot of time
and many expensive studies to demonstrate
foodʼs bioactivity. The first steps usually involve
screening a large number of molecules before
moving on to human intervention studies to pro-
vide the human data required to demonstrate
that the food is functional [1]. In an attempt to re-
strict animal experimentation as much as possi-
ble, the European Union recommends that a pre-
vious screening of a foodʼs bioactivity on cell lines
should be carried out when testing the biological
effects of compounds [2]. Extracts from natural
plant sources are candidates for formulating and
developing new functional foods. However, natu-
ral extracts are complex mixtures of molecules
which have to be uptaken and metabolized if they
are to finally reach the cells in vivo [3–5]. There-
fore, directly applying the extracts to the cell cul-
tures might be a long way from becoming a real-
ity in in vivo situations [6,7]. To overcome this
79
problem many studies have analyzed the activity
of pure molecules [7–13]. Yet, obtaining pure
components might be very difficult given the
technical limitations, the huge diversity of the
structures contained in the extracts, and the very
small quantity inwhich they are found. Moreover,
only a limited amount of original molecules
present in the extracts have been detected in
plasma after their intake, and a huge proportion
of the metabolites detected and quantified in
plasma corresponded to modified forms of the
original ingested molecules [3,14,15]. Working
with pure molecules directly on the cell line in or-
der to analyze their bioactivity therefore does not
completely overcome the problem of whether a
potential beneficial compound will be absorbed.
Finally, and very importantly, the in vivo effects
of natural extracts may be due not only to the
pure molecules but also to synergies between
them [16]. If the molecules present in extracts
are to be absorbed they have to cross the intesti-
nal epithelium barrier. Human intestinal epithe-



Table 1 Analysis of procyanidins of grape seed extract.

Procyanidin mg/g extract

Catechin 31.16

Epicatechin 30.77

Epigallocatechin gallate 58.29

Epigallocatechin 0.92

Epicatechin gallate 1.40

Dimer 123.32

Trimer 17.39

Tetramer 0.97

Pentamer 0.29

Fig. 1 Chromatographic analysis of GSPE. HPLC chromatogram (at
280 nm) of procyanidin extract from grape seed. (1) Dimer, (2) catechin,
(3) epicatechin, (4) epigallocatechin, (5) trimer, (6) epigallocatechin, (7)
epicatechin gallate, (8) tetramer, (9) pentamer.
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lial Caco-2 cells grown on permeable inserts have been shown to
possessmany of themorphological and functional characteristics
of intestinal enterocytes and to enable intestinal permeability to
be evaluated [17]. Furthermore, they have already been used as
an in vitromodel in studies of the absorption of natural bioactive
compounds [13,17–20]. They have also been assayed in a double-
layered system that reproduces absorption in the intestine. Co-
culturing Caco-2 with hepatocytes has been proved a feasible
system for analyzing drug toxicity in hepatocytes, even when
the chemicals remain unidentified [21]. Also it has proved a suit-
able model for analyzing the bioactivity of a grape-seed derived
procyanidin extract on HepG2 cells (submitted results). The bio-
activity of plant extracts on β-pancreatic cells has received little
attention [5]. In fact, there is much controversy, at least regarding
the flavonoid group, about the effects of plant extracts on β-cell.
In this study, we show the advantages and limitations of a cocul-
ture system based on physically separated human intestinal epi-
thelial Caco-2 cells and β-cell lines when used to evaluate how
the bioactivity of plant extracts of unknown bioavailability af-
fects β-cells.
b

Materials and Methods
!

Chemical
Cell culture reagents were obtained from BioWhittaker. A grape
seed procyanidin extract (GSPE) was used as source of procyani-
dins (Dérivés Résiniques et Terpéniques; batch no. 031751). The
extract contained monomers (catechin and epicatechin), oligom-
ers (dimer to pentamer), epigallocatechin galate, epigallocate-
chin and epicatechin gallate (l" Fig. 1). The procyanidins content
of the extract was determined by liquid chromatography tandem
mass spectrometry according with the method described by Ser-
ra et al. [14]. Results of the quantification are showed in l" Table
1.
8

Cell culture
Caco-2 cells were obtained from ATCC (American Tissue Culture
Collection). MIN6 cells (mouse derived pancreatic β-cells) were
kindly provided by Dr. Anders Tengholm, Uppsala University
[22]. Rat insulinoma INS-1E cells were kindly provided by Prof.
Pierre Maechler, University of Geneva [23]. Caco-2 cells were
kept in Dulbeccoʼs modified minimum essential medium
(DMEM) supplemented with 20% foetal bovine serum, 2mM L-
glutamine, 25mM HEPES, 100U/mL penicillin, and 100 µg/mL
streptomycin. MIN6 were cultured in DMEM (4.5 g/L glucose)
supplemented with 100 U/mL penicillin, 100 µg/mL streptomy-
cin, 50 µM 2-mercaptoethanol, 15% FBS (heat inactivated at 56°
C for 30min), and 2mM L-glutamine. INS-1E cells were cultured
in RPMI 1640 supplemented with 5% fetal bovine serum, 1mM
sodium pyruvate, 50 µM 2-mercaptoethanol, 2mM L-glutamine,
10mMHEPES, 100 U/mL penicillin, and 100 µg/mL streptomycin.

Single- and double-layered culture
Caco-2 were seeded onto a culture insert (6- or 12-well Millicell
Hanging Cell Culture Inserts; Millipore) at a cell density of 5.3 ×
104 cells/cm2. The cells were then used for the experiments after
21 days once the confluent monolayer had formed, and the cells
expressed a constant transepithelium electrical resistant (TEER)
measured with the Millicell-ERS system (Millipore). The volume
of the culture mediumwas 0.4mL on the apical side and 1mL on
the basolateral side. For the coculture with MIN6, β-cells were
seeded into the 6-well plates at a cell density of 2.5 × 105 cells/
cm2. The volume of the culture medium was 2.5mL. For the co-
culture with INS-1E, β-cells were seeded onto the 12-well plates
at a cell density of 1 × 105 cells/cm2. The volume of the culture
medium was 1mL. In both cases, once the cells reached conflu-
ence, we prepared the following different culture systems: cul-
ture of Caco-2 cells, culture of MIN6 cells, culture of INS-1E cells,
double-layered coculture of Caco-2 cells andMIN6 cells, and dou-
ble-layered coculture of Caco-2 cells and INS-1E cells. Caco-2 cells
and MIN6 cells were cocultured for 2 and 5 days. Caco-2 cells in
the inserts and INS-1E cells on the base of the well were cocul-
tured for 4 and 24 hours (l" Fig. 2).

Viability and glucose measures
Following 4 and 24 h of coculture, INS-1E cells were incubated
with neutral red dye to assess toxicity as previously described
[24]. Essentially, 1mL of freshly prepared neutral red solution
(50 µg/mL) was prewarmed to 37°C and added to each well (12-
well plate). The cells were then incubated for 2 h at 37°C. After
the cells had beenwashed twice with PBS, 750 µL of glacial acetic
acid solution (1% (v/v) glacial acetic acid, 50% (v/v) absolute etha-
nol inMQwater) were added to eachwell and plateswere shaken
0



Fig. 2 Coculture system constructed with Caco-2 cells and INS-1E cells.
Caco-2 were seeded alone at a cell density of 5.3 × 104 cells/cm2. The vol-
ume of culture medium was 0.4mL on the apical side and 1mL on the ba-
solateral side. INS-1E cells were seeded onto the 12-well plates at a cell
density of 1 × 105 cells/cm2. The volume of the culture medium was 1mL.
After the cells reached confluence, cells were cocultured for 4 and 24
hours.
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bfor 20min to release all of the dye from the cells. The absorbance
was read at 540 nm. After 24 h of double coculturing Caco-2 cells
and INS-1E cells, the basolateral medium was removed and the
glucose concentration was analyzed using an enzymatic colori-
metric kit (QCA) following the manufacturerʼs instructions

Insulin secretion
The secretory responses to glucose were tested in INS-1E cells,
after the coculture treatment, as previously described [23]. The
cells (Caco-2 and INS-1E) were maintained for 2 h in glucose-free
culture medium. The cells were then washed twice and preincu-
bated for 30min at 37°C in glucose-free Krebs-Ringer bicarbon-
ate HEPES buffer (KRBH) containing 135mM NaCl, 3.6mM KCL,
5mM NaHCO3, 0.5mM NaH2PO4, 0.5mM MgCl2, 1.5mM CaCl2,
and 10mM HEPES, pH 7.4. BSA (0.1%) was added as an insulin
carrier. Next, the cells were washed oncewith glucose-free KRBH
and then incubated for 30min in KRBH 2.5mM (basal) or 20mM
glucose (stimulated). Glucose stimulated insulin secretion (GSIS)
was measured by Insulin ELISA (Mercodia).

Quantitative RT‑PCR
The total RNA was extracted using the TRIzol reactive following
the manufacturerʼs instructions. cDNA was generated using
High-Capacity cDNA Reverse Transcription Kits (Applied Biosys-
tems). Quantitative PCR amplification and detection were done
using TaqMan assay-on-demand probes (Applied Biosystems):
Hs00165793_m1 for SGLT1 (SLC5A1) and Rn01774648_g1 for in-
sulin. The results were referenced to cyclophiline Hs99999
904_m1 in the Caco-2 cells and β-actin Rn00667869_m1 in the
INS-1E cells.
81
Analyses of procyanidins and their metabolites in
the culture cell mediums
The culture cell mediumswere pretreatedwith off-linemicroelu-
tion SPE plates (2mg of OASIS HLB; Waters) before chromato-
graphic analysis. The plates were conditioned sequentially with
250 µL of methanol and 0.2% acetic acid. After that, 350 µL of cel-
lular medium with 200 µL of phosphoric acid 4% containing the
internal standard catechol (50 µL at a concentration of 10mg/L)
were loaded into the plate. The internal standard (IS) was pre-
pared in 4% phosphoric acid. Then, 200 µL of MilliQ water and
0.2% acetic acid were passed through the plate in order to elimi-
nate any possible interference in the sample. Finally, 2 × 50 µL of
acetone/Milli-Q/acetic acid (70/29.5/0.5, v/v/v) solutionwas used
to elute the procyanidins. The eluted solution was directly in-
jected into the UPLC‑MS/MS and the sample volume was 2.5 µL.
The chromatographic analyses of the procyanidins and their me-
tabolites were done using UPLC along with tandem MS in accor-
dance with a previous study [14].

Calculations and statistical analysis
Results are expressed as the mean ± SEM. Effects were assessed
by ANOVA or Studentʼs t-test. All calculations were made with
SPSS software.
Results and Discussion
!

Working with cell lines is a useful way to easily prove and under-
stand the bioactivity of natural extracts; however, the complex
composition of the extract and its real bioavailability can be a
very big limitation to this method. Kroon et al. strongly recom-
mended using only physiological relevant flavonoids and their
conjugates to study the biological responses of dietary polyphe-
nols in in vitro models [6]. In the present paper, we describe an
approach that fully meets this objective when used to analyze
the bioactivity of plant extracts with unknown bioavailability on
pancreatic β-cells. Our approach is based on the coculture of in-
testinal Caco-2 cells and pancreatic β-cells. Several studies have
shown that coculturing other cell types is an appropriate method
for: adipocyte-macrophage cross-talk [25], improving gastroin-
testinal permeability modelling [26], or coculturing Caco-2 and
HepG2 [21]. We have also previously characterized a coculture
of Caco-2 and HepG2 cells to study the bioactivity of plant ex-
tracts (submitted results). In our first attempt, we cocultured
MIN6 cells on the base of the wells and grew Caco-2 cells on the
inserts suspended on the same well. The TEER measurements in
l" Fig. 3a show that coculture does not affect the permeability
barrier established by Caco-2 cells. On the periphery of the base
of the well, the cells maintained a similar morphology to cells
growing without any other well coculture (l" Fig. 3b, upper pan-
el). In contrast, l" Fig. 3b shows that after 2 days of coculture,
MIN6 cells that were situated directly below the insert of Caco-2
changed their morphology towards a phenotype more typical of
an undifferentiated cell, that is, it was individualized and with a
rounded appearance (l" Fig. 3b, lower panel). The challenge for β-
cell lines is to properly reproduce glucose stimulated insulin se-
cretion (GSIS) [27]. We had difficulties in our lab in reproducing
GSIS in MIN6 cells (results not shown) and this, together with the
change in morphology due to coculture, meant that we decided
to use another β-cell line (the INS-1E cell line) to develop our ap-
proach which shows very good GSIS [23].



Fig. 3a Coculture
Caco-2/MIN6. Caco-2
cells grown on inserts
for 20 days were cocul-
tured with MIN6 cells
(squares) or grown
alone (rhombs) during
5 more days. Each day,
TEER measurements
were taken from 2 wells
of each treatment dur-
ing 3 different pas-
sages.

Fig. 4 Effect of cocul-
ture on glucose uptake
ability of Caco-2 cells.
a SGLT-1 expression of
Caco-2 cells (n = 3): Co-
cultured Caco-2 cells
(according tol" Fig. 2)
and parallel non-cocul-
tured Caco-2 cells, 24
hours after beginning
the coculture, were
rinsed with PBS. RNA
was extracted using TRI-
ZOL solution on 2 wells
of each treatment dur-
ing 3different passages.
cDNAwas obtained
from this RNA and SGLT-
1 analyzed and normal-
ized using cyclophiline
by RT‑PCR. b Glucose
amount in the basolat-
eral medium (n = 6):
basolateral media were
collected from the same
cells for glucose mea-
surement according to
the procedure detailed
onMaterials andMeth-
ods.* Indicates p < 0.05
versus its respective
non-cocultured Caco-2.

Fig. 3b The same
MIN6 cells that were
cocultured in l" Fig. 3a
were used to show
phenotype changes.
Periphery of the cocul-
tured MIN6 (upper pan-
el). Center of the cocul-
tured MIN6 (lower pan-
el). These pictures show
the cells in each situa-
tion after 2 days of co-
culture.
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bAfter 24 hours of coculturing the Caco-2 and INS-1E cells, we
found that they had slight differences compared to when they
grew alone. The TEER measurements showed no change in the
Caco-2 barrier permeability (197 ± 4 Ω · cm2) and that it was sim-
ilar to that found by some other authors [28]. TEER measure-
ments were used to assess the integrity of membrane barriers,
and the results showed that the barrier was maintained, and that
there was no reduction in Caco-2 cell viability due to the cocul-
ture. No change in the TEER value suggested no changes on leaki-
ness or tightness [29] in the paracellular pathway which is used
by some compounds to cross intestinal barrier. But for some oth-
er bioactive compounds, the transepithelial pathway is the pre-
ferred way of crossing the intestinal barrier [30]. For example,
certain flavonoid glycosides used some habitual transporters of
the enterocyte, i.e., SGLT1 [31], whereas other structures such as
epigallocatechin (EGC) did not [9]. This is important since we
found slight differences between cells when they were cocul-
tured and when they grew alone. Specifically, our coculture sys-
tem increased SGLT-1 gene expression (l" Fig. 4a). This effect
contrasts with the effect that we previously observed in Caco-2
cocultured with HepG2 cells, where we found that the coculture
downregulated SGLT-1 expression (submitted results). The upre-
gulation of SGLT1 suggested that Caco-2 cells had a possible effect
on the amount of glucose in the basolateral side which could af-
8

fect β-cell function. We therefore measured it and found no sig-
nificant changes in the concentration of glucose that reached the
β-cells (see l" Fig. 4b).
The intestinal barrier is also active at modifying the natural com-
ponents of natural extracts. Galijatovie et al. [32,33] described
the presence of enzymes responsible for glucuronidation and sul-
fatation in Caco-2 cells. Likewise, we found that Caco-2 cells were
able to sulphate and glucuronidate the catechin components of a
grape-seed procyanidin-rich extract (GSPE). Our results also
show that coculturing caused no changes in the ability of Caco-2
cells to metabolize the flavan-3-ols components of GSPE or in the
flavanolsʼ ability to pass through the barrier (l" Fig. 5). Therefore,
applying the natural extracts to the coculture, instead of incubat-
ing the extracts directly over the β-cells, is better because theme-
dia in the basolateral side of the Caco-2 cells more closely resem-
ble the plasma flavonoid composition after the ingestion of natu-
ral extracts [34]. Moreover, the number of oligomeric forms
present in both situations is another very strong difference be-
cause the coculture systemmimicked both the physiological con-
centrations reached by these oligomeric forms and the size of the
compounds that truly reach internal body cell types [14]. Then
Caco-2 cells act as a filter for natural extracts and also modify
some of their structures, thus providing a basolateral media for
β-cells that resembles in vivo natural plasma after oral intake of
this extract.
The proper functionality of INS-1E cells should show a reprodu-
cible GSIS. l" Fig. 6 shows that GSIS was maintained, although
with higher levels of basal insulin secretion. The insulin gene ex-
pression was, however, unmodified by cocultivation (no cocul-
ture 1.06 ± 0.32, coculture 1.22 ± 0.35). As previously stated, we
2



bFig. 6 INS-1E cellsʼ glucose response. INS-1 cells were cultured or cocul-
tured 24 hours according to l" Fig. 2, after which the coculture cells were
kept for 2 h in glucose-free culture medium. The cells were then washed
twice and preincubated for 30min at 37°C in glucose-free KRBH. Next, the
cells were washed once with glucose-free KRBH and then incubated for
30min in KRBH 2.5mM (white column) or 20mM glucose (black column).
Glucose stimulated insulin secretion (GSIS) was measured by Insulin ELISA
(n = 6). Different letters indicate statistically significant differences be-
tween treatments (p < 0.05) by ANOVA (Tukey method as post hoc test).

Fig. 7 INS-1E cell viability after 4 and 24 h of coculture. INS-1 cells were
cultured or cocultured for 4 and 24 hours according to l" Fig. 2. The co-
culture cells were then cultured with a neutral red enriched medium and
further processed according to the Materials and Methods procedure
(n = 6). 100% Viability corresponds to non-cocultured cells in each treat-
ment. * Indicates p < 0.05 versus its respective non-cocultured well.

Fig. 5 Effect of coculture on the number of com-
ponents of grape-seed procyanidin extract (GSPE) in
basolateral media of Caco-2 cells. Cocultured Caco-
2 cells (left pictures indicated as A) and non-cocul-
tured Caco-2 cells (right pictures indicated as B)
were seeded as indicated in l" Fig. 2. After twenty-
four hours of coculture, Caco-2 cells were treated
on apical media with two doses (500mg/L and
750mg/L) of GSPE. After 4 hours of treatment,
basolateral media were collected and treated to
analyze the presence of flavan-3-ols and derivatives,
as stated in the Material and Methods. Pictures
show the nM concentration of each compound in
the control situation and in each apical GSPE con-
centration. First row of pictures refers to non-modi-
fied compounds, second row includes sulphate
conjugates, and third row includes glucuronide
conjugates.
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ruled out the idea that the coculture affects the cell culture media
by increasing the amount of glucose. Instead, these results could
reflect a phenotypic adaptation of the cells to the new culture sit-
uation.
Finally, we found that some of the assays that required several
medium changes tended to lose β-cells. Therefore we carried out
a neutral red assay after 4 and 24 hours of coculture and com-
pared this to a non-coculture situation (l" Fig. 7). Our results sug-
gest that it is better to coculture cells only for a short time to ob-
tain a higher constancy of seeded cells and better results repro-
ducibility.
83
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Abstract

Previous studies from our research group have suggested that procyanidins modify glycemia and insulinemia. The aim of this work was to evaluate the effects
of procyanidins on β-cell functionality in a nonpathological system. Four groups of healthy rats were studied. The animals were given daily acute doses of grape
seed procyanidins extract (GSPE) for different time periods and at different daily amounts. A β-cell line (INS-1E) was treated with 25 mg GSPE/L for 24 h to
identify possible mechanisms of action for the procyanidins. In vivo experiments showed that different doses of GSPE affected insulinemia in different ways by
modifying β-cell functionality and/or insulin degradation. The islets isolated from rats that were treated with 25 mg GSPE/kg of body weight for 45 days
exhibited a limited response to glucose stimulation. In addition, insulin gene expression, insulin synthesis and expression of genes related to insulin secretion
were all down-regulated. In vitro studies revealed that GSPE decreased the ability of β-cells to secrete insulin in response to glucose. GSPE increased glucose
uptake in β-cells under high-glucose conditions but impaired glucose-induced mitochondrial hyperpolarization, decreased adenosine triphosphate synthesis and
altered cellular membrane potentials. GSPE also modified Glut2, glucokinase and Ucp2 gene expression as well as altered the expression of hepatic insulin-
degrading enzyme (Ide), thereby altering insulin degradation. At some doses, procyanidins changed β-cell functionality by modifying insulin synthesis, secretion
and degradation under nonpathological conditions. Membrane potentials and Ide provide putative targets for procyanidins to induce these effects.
© 2011 Published by Elsevier Inc.
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1. Introduction

It is now generally accepted that food can have health-promoting
properties beyond its traditional nutritional value [1]. Procyanidins
are a class of bioactive compounds that are usually found in fruits and
other plant organs and are widely consumed. Procyanidins can
protect against coronary heart diseases and atherosclerosis as well as
act on several metabolic processes that are associated with the
development of these disorders [2].

Most of the studies describing the beneficial effects of procyani-
dins have shown the peripheral activity of these molecules [3–7].
However, there are little data addressing whether procyanidins have
central effects on the endocrine pancreas, a key organ of metabolic
control [8]. Hanhineva et al. demonstrated that water extract from
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Eriobotrya japonica increased the insulin secretion of INS-1E cells,
but treatment with procyanidin B-2 isolated from the extract
decreased insulin secretion [9]. Previously, pretreatment and a daily
administration of proanthocyanidins for 72 h were shown to protect
β-cell function in alloxan-diabetic rats, suggesting a protective effect
against the generation of reactive oxygen species [10].

The importance of the endocrine pancreas in whole-body nutrient
equilibrium is highlighted by the emergence of several pathologies of
nutrient metabolism, such as type 1 and 2 diabetes, that involve
pancreatic cell deregulation. In addition, the pancreas is exposed to
bioactive compounds immediately after their enteric absorption,
suggesting that bioactive absorbed flavonoids can achieve high
concentrations in this organ [11]. Therefore, the pancreas may be a
target for procyanidins and their effects on metabolic processes.

Procyanidins act positively on glucose metabolism [7] by modi-
fying both glycemia and insulinemia. We have previously described
the peripheral targets of procyanidins that partially account for these
effects [12,13]. However, the question remains whether procyanidins
affect β-cell functionality. To address this question, healthy rats were
treated with different grape seed procyanidins extracts (GSPEs). In
addition, a β-cell line (INS-1E) was treated with GSPE to gain a better
understanding of potential mechanisms of action, and work done in
this cell line focused on the central pathways that regulate glucose-
driven insulin secretion.

http://www.sciencedirect.com/science/journal/09552863
http://dx.doi.org/10.1016/j.jnutbio.2011.10.010
http://dx.doi.org/10.1016/j.jnutbio.2011.10.010
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Table 1t1:1

Summary of animal experimental procedurest1:2

t1:3 Animal group Group A Group B Group C Group D

t1:4 Sex Female Male Female Female
t1:5 Weight (g) 150–175 130–150 225–250 175–200
t1:6 Doses GSPE (mg/kg of bw) 0, 2.5, 5, 10, 25, 50 0,5, 15, 25, 50 0, 25 0, 1000
t1:7 Treatment period 36 days 21 days 45 days 1 h
t1:8 Doses GSPE (mg/kg of bw⁎days of treatment) 0, 90, 180, 360, 900, 1800 0, 105, 315, 525, 1050 0, 1125 0, 1000
t1:9 Vehicle Sweetened condensed milk Sweetened condensed milk Sweetened condensed milk

diluted 1:6 with water
Tap water

t1:10 Fasting period before sacrifice 5 h Overnight Overnight Overnight
t1:11 Last dose time 9 a.m. 9 a.m. 8 p.m. day before 9 a.m.
t1:12 Sacrifice time 2 p.m. 12 p.m. 9 a.m. 10 a.m.
t1:13 Anesthetic (mg/kg of bw) Ketamine (70) and xylazine (5) Ketamine (70) and xylazine (5) Pentobarbital sodium (75) Pentobarbital sodium (75)

2 A. Castell-Auví et al. / Journal of Nutritional Biochemistry xx (2011) xxx–xxx
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2. Materials and methods

2.1. Chemicals

According to the manufacturer, GSPE (Les Dérives Résiniques et Terpéniques, Dax,
France) contained monomeric (16.6%), dimeric (18.8%), trimeric (16.0%), tetrameric
(9.3%) and oligomeric procyanidins (5–13 units, 35.7%) as well as phenolic acids (4.2%).
104
105
106
107
108
2.2. Cell culture

INS-1E cells were kindly provided by Prof. Pierre Maechler, University of Geneva
[14]. The cell line was cultured as previously described [15]. Cell culture reagents were
obtained from BioWhittaker (Verviers, Belgium).
109
110

111
112

113

114
115
116
117
118

119
2.3. Animal procedures

Four groups of Wistar rats were studied. All animals were purchased from Charles
River Laboratories (Barcelona, Spain) and housed in animal quarters at 22°C with a 12-
h light, 12-h dark cycle. Treatment began after 1 week in quarantine, as detailed in
Table 1. Pancreatic islets were isolated from groups that underwent treatments C and D
(Table 1). Blood was collected from all of the animal groups using heparin. Tissues from
all of the animal groups were excised, frozen immediately in liquid nitrogen and stored
at −80°C until analysis. All procedures were approved by the Experimental Animals
Ethics Committee of the Universitat Rovira i Virgili. Insulin and C-peptide plasma levels
were measured by enzyme-linked immunosorbent assay (ELISA) (Mercodia, Uppsala,
Sweden) following the manufacturer's instructions. Glucose plasma levels were
determined using an enzymatic colorimetric kit (GOD-PAP method from QCA,
Amposta, Spain).
120
121
122
123
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2.4. Islet isolation

Islets from animals in groups C and D were prepared by collagenase digestion as
described previously [16]. Briefly, the rats were anesthetized, and the pancreas was
infused with 7 ml of ice-cold collagenase P (Roche, Barcelona, Spain) solution (1 mg/
ml) before removal. After the pancreas was removed, it was incubated at 37°C for 15
min. Islets were purified on a Histopaque gradient (Sigma, Madrid, Spain) and
handpicked until a population of pure islets was obtained.
129
130
131
132
133
134
135

136
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138
2.5. Glucose-stimulated insulin secretion (GSIS)

Secretory responses to glucose were tested in INS-1E cells as previously described
[15]. GSIS and cellular insulin contents were measured by radioimmunoassay (RIA)
using rat insulin as a standard [17]. GSIS was tested in islets from rats in groups C and D.
Islets were maintained for 24 h in RPMI-supplemented medium. The islets were then
washed twice and incubated for 1 h at 37°C in Krebs–Ringer bicarbonate HEPES buffer
(KRBH) with 2.8 mM glucose (basal) or 16.8 mM glucose (stimulated). Insulin
secretion was measured using the Insulin ELISA Kit (Mercodia, Uppsala, Sweden). The
islet protein content for each sample was measured using the Bradford method [18].
Fig. 1. Effects of procyanidin on insulinemia after different GSPE treatments. Animals (five or s
Table 1. (a) Plasma insulin levels and the HOMA index vs. control for different doses of GSPE (se
respectively. (b) Pancreatic insulin and Pdx1 gene expression vs. control for different doses of
between plasma insulin and insulin gene expression after treatment with different doses of G
bw for 21 days (525 mg GSPE/kg of bw⁎days of treatment). The plasma C-peptide levels we
with 15 mg of GSPE/kg of bw for 21 days (315 mg GSPE/kg of bw⁎days of treatment). The da
2.6. Glucose uptake

Glucose transport was determined by measuring the uptake of 2-deoxy-D-[3H]
glucose in INS-1E cells cultured in 24-well plates using a methodology adapted from
Ref. [19]. Briefly, pancreatic cells were maintained for 30 min at 37°C in glucose-free
KRBH. The cells were then incubated for 10 min in a KRBH transport solution
containing 2.5 mM or 15 mM glucose and 0.75 μCi 2-deoxy-D-[3H]glucose. Uptake was
halted by adding 100mMglucose, and cells were disrupted by adding 0.1MNaOH/0.1%
phosphate-buffered saline. Glucose uptake was assessed by scintillation counting, and
protein content was used to normalize the glucose transport values. The protein
content was determined by the Bradford method [18].

2.7. Mitochondrial membrane potential (ΔΨm) and cellular membrane
potential measurements

The ΔΨm and cellular membrane potential were measured as described previously
[14].

2.8. Cytosolic adenosine triphosphate (ATP) levels

The cytosolic ATP levels were monitored in cells expressing an ATP-sensitive
bioluminescent luciferase probe 1 day after transduction. Pancreatic β-cells were
maintained for 2 h in glucose-free culture medium and then stimulated with 15 mM
glucose in the presence of 200 μM luciferin. Finally, 2 mM NaN3 was added as a
mitochondrial poison [14].

2.9. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR)

Total RNA from INS-1E cells grown in six-well plates was isolated using the SV Total
RNA Isolation System (Promega, Madison,WI, USA), and 2 μg of RNAwas converted into
cDNA [20]. Total RNAwas extracted from the pancreas and the liver of animals in groups
A and B using TRIzol reagent following the manufacturer's instructions, and cDNA was
generated using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, Foster City, CA, USA). RNA was extracted from the islets using the miRNeasy Mini
Kit (Qiagen, Barcelona, Spain), and cDNA was generated using a kit from Applied
Biosystems. The cDNA from all the experiments was subjected to quantitative RT-PCR
amplification using the TaqMan Master Mix (Applied Biosystems, Foster City, CA, USA).
Specific TaqMan probes (Applied Biosystems, Foster City, CA, USA) were used for
different genes: Rn01774648-g1 for insulin, Rn00755591-m1 for pancreatic duodenal
homeobox 1 (Pdx1), Rn00561265-m1 for glucokinase, Rn00563565-m1 for Glut2,
Rn00565839-m1 for insulin-degrading enzyme (Ide) and Rn01754856-m1 for
uncoupling protein 2 (Ucp2). β-Actin was used as the reference gene (Rn00667869-
m1). The reactions were run on a quantitative RT-PCR 7300 System (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer's instructions.

2.10. Calculations and statistical analysis

The results are expressed as the mean±S.E.M. The effects were assessed by the
Student's t test. All calculations were performed with the SPSS software.
ix per group) were sacrificed, and their plasma and tissues were collected according to
eTable 1). Glucose and insulin levels were analyzed by colorimetric and ELISAmethods,
GSPE (seeTable 1). mRNA levels were determined by quantitative RT-PCR. (c) The ratio
SPE for 21 days. (d) Plasma C-peptide levels after a treatment with 25 mg GSPE/kg of
re quantified using ELISA methodology. (e) Liver Ide gene expression after treatment
ta are presented as the mean±S.E.M. ⁎Pb.05 vs. the control; #Pb.1 vs. the control.
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Table 2t2:1

Statistical results of the effects on plasma insulin, HOMA index, insulin mRNA and Pdx1 mRNA after a treatment with different doses of GSPEt2:2

t2:3 GSPE doses (mg GSPE/kg of bw⁎days) 90 105 180 315 360 525 900 1050 1125 1800

t2:4 Plasma insulin vs. control NS NS NS Pb.05 NS NS Pb.05 NS NS NS
t2:5 HOMA vs. control NS NS NS Pb.05 NS NS Pb.06 NS Pb.05 NS
t2:6 Insulin mRNA vs. control – Pb.1 NS NS – Pb.1 NS NS Pb.1 –

t2:7 Pdx-1 mRNA vs. control – NS – NS – NS – NS Pb.05 –

NS, not significant.t2:8
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3. Results and discussion

3.1. Procyanidins affect insulinemia due to their effects on insulin
synthesis and degradation

Procyanidins have been shown to have beneficial effects on
glucose homeostasis [7], but most of these studies focused on the
bioactivity of procyanidins in the liver and adipose tissues. The
present study shows that a daily acute administration of a GSPE to
healthy rats at different concentrations and for different time periods
results in a peculiar effect on insulinemia. To better compare the GSPE
effects between different animal studies, the effects of each treatment
are shown relative to its own control group [insulin reference values
for each group (μg/L): A, 0.47±0.2; B, 0.24±0.0; C, 0.90±0.1]. Fig. 1
shows that the lowest doses of GPSE did not affect insulinemia, and
statistically significant results were found at moderate doses
(summarized in Table 2). Treatments at 5 mg and 15 mg GSPE/kg of
body weight (bw) for 21 to 36 days (180 mg and 315 mg GSPE/kg of
bw⁎days of treatment) increased insulinemia, whereas treatments
at 25 mg/kg of bw for 36 days (900 mg GSPE/kg of bw⁎days of
treatment) decreased insulinemia. Higher doses did not show any
effect. The homeostasis model assessment (HOMA) index [21] for
these treatment groups exhibited a similar pattern (Fig. 1a) and
showed that the changes in insulin did not provoke significant
changes in glycemia (as seen in Table 2) (HOMA reference values for
each group: A, 9.49±4.1; B, 1.61±0.3; C, 10.24±2.2). These results
Fig. 2. Effects of GSPE treatment on rat islets. (a and b) The rats were treated with 25mg GSPE/k
gene expression. (c and d) The rats were treated acutely with 1000 mg GSPE/kg of bw. (c) GSIS
response in both experiments, isolated islets were maintained for 24 h in RPMI-supplemen
concentrations. Insulin levels were quantified by ELISAmethodology, andmRNA levels were de
the control; #Pb.1 vs. the control.
agree with our previous results that suggested that procyanidins alter
insulinemia, although the relationship between the dose and the
effect was unclear [12]. In a retrospective review, we highlighted that
the efficacy of procyanidins or procyanidin extracts depends on the
dose and the metabolic situation [7].

To better understand this procyanidin effect, insulin production
was analyzed. Fig. 1b shows that the insulin gene expression profile in
these animals exhibits the tendency for lower insulin mRNA levels at
lower doses. The same tendency was found for Pdx1mRNA (Fig. 1b), a
key controller in insulin synthesis. Fig. 1c shows the relationship
between plasma insulin and insulin mRNA at different GSPE concen-
trations. Insulin mRNA levels reflect the amount of insulin synthesis.
Insulin plasma levels reflect the amount of insulin from pancreatic
production and the clearance of this hormone in different tissues. At
some GSPE doses, the plasma insulin protein levels were higher than
the pancreatic mRNA levels. These ratios may reflect modifications in
insulin production (synthesis and/or secretion) and/or in insulin
removal. Fig. 1b showed no effect on insulin mRNA synthesis at these
doses. To determine if insulin secretion was altered, the C-peptide
levelswere analyzed. Fig. 1d shows thatGSPE treatment did notmodify
pancreatic insulin secretion. Therefore, insulin removal was analyzed.
Because Ide is responsible for the removal of insulin and Ide activity
is high in the liver [22], liver Ide gene expression was measured in the
treatment group that showed significantly increased insulinemia: 15
mgGSPE/kg of bw⁎21days (315mgGSPE/kg of bw⁎days of treatment).
At this dose, procyanidins decreased Ide mRNA levels (Fig. 1e),
g of bw for 45 days. (a) GSIS measurements and (b) insulin, glucokinase, Pdx1 and Ucp2
measurements and (d) insulin, Pdx1 and Ucp2 gene expression. To analyze the glucose
ted medium and then cultured for 1 h at low (2.8 mM) or high (16.8 mM) glucose
termined by quantitative RT-PCR. The data are presented as themean±S.E.M. ⁎Pb.05 vs.
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cells were treated as indicated in Fig. 3. (a) Glucose uptake was determined by
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suggesting that these animals have limited insulin degradation activity,
which could explain their increased insulinemia. These data suggest
that Ide is a target for procyanidins, and to our knowledge, this is the
first data describing the effect of procyanidins on Ide. The transcrip-
tional regulation of Ide and its effect on insulin homeostasis are still not
well understood, and there are little data describing the factors that
regulate Ide gene expression. Insulin increases Ide gene expression in
HepG2 cells but only under high-glucose conditions [23]. Concerning
other tissues, Du et al. showed that peroxisome proliferator-activated
receptor-γ (PPARγ) plays an important role in regulating Ide gene
expression in rat primary neurons through its interaction with a
functional peroxisome proliferator-response element on the Ide
promoter, thereby activating Ide gene transcription [24]. We do not
exclude that the effect of GSPE on Ide expression could involve PPARγ
regulation since chronic GSPE treatment down-regulates PPARγ
expression in 3T3-L1 adipocytes [25].

Therefore, the effects of procyanidins on plasma insulin could be
related to their bioactivity on Ide as well as their effects on β-cells.

3.2. Islets from GSPE-treated animals show decreased responsiveness
to glucose

To directly test whether the islets of Langerhans are the targets of
procyanidins, islets from rats treated with 25 mg GSPE/kg of bw for
45 days were isolated, and their response to glucose stimulation
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Fig. 3. Effects of procyanidin treatment on insulin synthesis and secretion in INS-1E
cells. INS-1E cells were treated with 25 mg/L of GSPE for 24 h. After 2 h of starvation in
RPMI without glucose medium, cells were cultured in medium with basal (2.5 mM) or
stimulated (15 mM) glucose levels. (a) GSIS measurements and (b) insulin content in
the cells were determined from an acid-ethanol extract. Insulin was measured by
insulin RIA. (c) Insulin mRNA levels were measured by quantitative RT-PCR. The data
are presented as the mean±S.E.M. ⁎Pb.05 vs. the control.

glucokinase gene expression was analyzed by quantitative RT-PCR. The data are
presented as the mean±S.E.M. ⁎Pb.05 vs. the control.
was measured after 24 h in culture. Fig. 2a shows that there were a
higher basal level of insulin production and a clearly limited response
to glucose stimulation in islets from GSPE-treated animals (GSIS rate
for the control group, 4.94±1.32, was significantly different from the
GSIS rate for GSPE-treated animals, 1.45±0.43). At the mRNA level
(Fig. 2b), there was a decrease in both insulin and Pdx1 mRNA levels.
Glucokinase gene expression was significantly down-regulated, and
there was also a small, but not statistically significant, decrease in
Ucp2 mRNA levels. Taken together, these data suggest that procya-
nidins modify islet functionality by decreasing their sensitivity to
glucose and by modifying mRNA expression levels.

Next, we tested whether the same effects could be induced by a
similar amount of procyanidins in an acute dose. Healthy female rats
were treatedwith an acute dose of 1000mg/kg of bw. After 1 h, which
corresponded to peak procyanidin levels in the blood [26], islets from
these animals were isolated and cultured as described above, and
their response to glucose stimulation was measured.Fig. 2c shows
that this treatment led to higher basal levels of insulin production,
which limited islet sensitivity to glucose stimulation. Similar to islets
from animals in the 45-day treatment group, these islets exhibited
lower insulin, Pdx1 and Ucp2 mRNA levels (Fig. 2d), and there was
no effect on glycemia (control: 6.22±0.31 mM, GSPE treatment:
6.11±0.28 mM).

Similar effects were produced in vitro after long-term fatty acid
treatment [27,28] or after hyperglycemia [29]. The molecules that are
used as antidiabetic drugs also produced similar effects. Chronic
treatment of islets with glibenclamide, a sulfonylurea, inhibited
proinsulin biosynthesis at basal and intermediate glucose concentra-
tions and promoted insulin secretion independently of glucose
concentration [30].

Surprisingly, when two different administrations of the same total
amount of procyanidins were compared, we found very similar
effects. Both treatments limited glucose sensitivity in the islets that
were removed from GSPE-treated animals and cultured for 24 h.
These effects did not correlate with plasma procyanidin levels in
either treatment group. In the acute treatment group, dimeric
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procyanidins reached 0.5 nM, and trimeric procyanidins reached 2.5
nM [26]. In the chronic treatment group, dimeric procyanidins
reached 11.5±1.25 nM, but there was no measurable amount of
trimeric procyanidins. These results suggest that a minimum amount
of dimeric procyanidins (approximately 0.5 nM) is necessary to
induce the described effects. However, unpublished results from our
research group, working with pure structures, do not support this
conclusion.We expected that other components from the extract that
we were not able to identify could play a role in eliciting these effects.
However, measuring the bioavailability of differentmolecules in plant
extracts is beyond the scope of this paper [8,15,31]. We included this
information to highlight the relationship between two very different
procyanidin administrations, both in their pancreatic effects and in
the amount of procyanidins achieved in plasma.

3.3. GSPE limits mitochondrial function

To better understand how procyanidins modify β-cell insulin
secretion, the study was carried out using the INS-1 β-cell line. The
cells were treated for 24 h with 25 mg GSPE/L (Fig. 3a), and we found
that insulin secretion decreased under basal glucose conditions, and
this effect was even stronger under stimulated glucose conditions. In
addition, the amount of insulin content was higher (Fig. 3b) and
insulin gene expressionwas lower (Fig. 3c) in cells treatedwith 25mg
GPSE/L.

Because insulin secretion depends on cell energetics, key path-
ways in cell energetics from glucose entry to insulin secretion [32]
were analyzed to identify possible targets of procyanidins that could
limit insulin secretion and/or insulin synthesis.

Fig. 4a shows that GSPE administration led to an increase in
glucose uptake in β-cells under high-glucose conditions. In contrast,
procyanidins lowered mRNA levels for the Glut2 glucose transporter
Fig. 5. Effects of a 24-h GSPE treatment (25mg/L) onmitochondrial function in INS-1E cells. The
fluorescence. Hyperpolarization of ΔΨm was induced with 15 mM glucose, and after 10 min o
FCCP. (c) Ucp2 mRNA levels were measured by quantitative RT-PCR. The data are presented
and glucokinase, which are key effectors of glucose uptake (Fig. 4b).
After glucose enters the cell and is metabolized through the glycolytic
pathway, it reaches the mitochondria and enters the Krebs cycle. At
the mRNA level, there was no effect on citrate synthase enzyme levels
(1.03±0.04 vs. control 1.00±0.03). In contrast, there was a clear
effect on the ΔΨm.Fig. 5a shows that INS-1E cells treated with 25 mg
GSPE/L for 24 h exhibited a decrease in glucose-induced mitochon-
drial hyperpolarization (∼5%). The total ΔΨm revealed by p-
trifluoromethoxyphenylhydrazone (FCCP) was reduced by GSPE
treatment compared with the control (Fig. 5b). A possible cause for
this uncoupling could be the increase in Ucp2 expression (Fig. 5c).
Uncoupling protein-2 is thought to catalyze a mitochondrial inner-
membrane H+ leak that bypasses ATP synthase, thereby reducing the
cellular ATP content [33]. These data suggest that although there was
an increased entry of glucose under high-glucose conditions, coupling
with the mitochondria was altered and resulted in lower levels of ATP
synthesis.Fig. 6a shows that the GSPE strongly inhibits cytosolic ATP
production after glucose stimulation, which may lower the ability of
the GSPE-treated cells to close ATP-sensitive potassium (K+

ATP)
channels as suggested inFig. 6b. GSPE treatment for 24 h did not affect
the cellular membrane potential after glucose stimulation, but
addition of 30 mM KCl in the presence of 25 mg GSPE/L resulted in
an increased depolarization. These results suggest that absolute
cellular membrane potential levels are lower in INS-1E cells treated
with the highest GSPE dose than in control cells. Therefore, GPSE
decreases the ability of these cells to secrete insulin in response to
glucose entry by uncoupling the entire process.

Thus, our results indicate that procyanidins limit insulin secretion
through modifying membrane permeability and the glucose-stimu-
lated insulin secretion pathway, which lead to an increase in insulin
content in β-cells. Accumulation of insulin in the cell could be
responsible for the inhibition of insulin mRNA levels, as there is
cells were treated as indicated in Fig. 3. (a) The ΔΨmwasmonitored by rhodamine 123
f glucose stimulation, depolarization was induced by FCCP. (b) Total ΔΨm revealed by
as the mean±S.E.M. ⁎Pb.05 vs. the control; #Pb.06 vs. the control.
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Fig. 6. Effects of a 24-h GSPE treatment (25 mg/L) on ATP generation and cellular
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sufficient insulin protein synthesized. However, according to
published data [34], it seems not to be responsible to explain the
effects on insulin biosynthesis; therefore, GSPE could also act
directly at the insulin promoter to inhibit gene transcription. We
do not exclude this possibility because we found it in all the models
we have assayed.

A recently published study demonstrated that treating INS-1E cells
with resveratrol, another phenolic compound, for 24 h promoted GSIS
by increasing glucose oxidation, ATP production and mitochondrial
oxygen consumption [35]. Vetterli et al. have also shown that
resveratrol up-regulates key genes in β-cell function, such as Glut2,
glucokinase, Pdx1, hepatocyte nuclear factor 1 homeobox A and
mitochondrial transcription factor A. The differences between this
result and our results could be due to the differences in chemical
structure between procyanidins and resveratrol; in fact, there have
been several controversial results reported for the effects of different
flavonoids on β-cells [8].

Alternatively, acute treatment with pioglitazone (Pio), a thiazoli-
dinedione (TZD), in INS 832/13 cells and in isolated rat islets
produced effects similar to those for GSPE treatment. Pio reduced
the GSIS in β-cells at intermediate glucose concentrations, which
altered ATP content and inhibited glucose-induced mitochondrial
membrane hyperpolarization. A previous study published by Kim et
al. showed that chronic treatment with other TZD molecules, such as
rosiglitazone, stimulated insulin release and synthesis. These mole-
cules upregulated Glut2 and glucokinase gene expression after a 24-h
treatment period through PPARγ activation [36]. The results from this
study and other studies suggest that the effects of TZDs, which are
PPARγ agonists, on pancreatic β-cells remain controversial, and the
effect depends on the dose and treatment period of antidiabetic
agents, similar to our results with procyanidins.

We speculate that during chronic treatment, GSPE can act as a
PPARγ antagonist in β-cells; this is similar to its effect on adipocytes,
where procyanidins limit adipogenesis during the induction of
differentiation [12,25]. In β-cells, GSPE limited glucose-induced
insulin secretion by uncoupling the process and down-regulated the
expression of genes that act directly on insulin synthesis and
secretion. Furthermore, Moibi et al. showed that PPARγ induces
Pdx1 expression and, consequently, induces the expression of Glut2,
glucokinase and insulin [37]. The present study showed that the
expression of these genes decreased after GSPE treatment at different
doses and at different treatment periods. However, the precise role of
PPARγ in the molecular mechanisms by which GSPE alters β-cell
functionality remains elusive.

In conclusion, we showed that procyanidins play an important role
in β-cell function by limiting glucose sensitivity and insulin
biosynthesis. GPSE treatment altered the ΔΨm, ATP production and
the cellular membrane potential. Various in vivo experiments
corroborate this procyanidin effect. Both acute and chronic treatment
reduced glucose-induced insulin secretion and down-regulated
insulin and Pdx1 mRNA levels, the β-cell master gene, in rat islets.
Moreover, our results demonstrated that low doses of procyanidins
increased the plasma insulin levels and inhibited insulin gene
expression, which led to reduced Pdx1 mRNA levels in the pancreas
and reduced hepatic Ide gene expression.

Acknowledgments

Wewould like to acknowledge Niurka Llopiz for technical support.
We would also like to thank Eduard Montanya's research group for
their support on islet isolation.

References

[1] Saris WH, Asp NG, Bjorck I, Blaak E, Bornet F, Brouns F, et al. Functional food
science and substrate metabolism. Br J Nutr 1998;80(Suppl 1):S47–75.

[2] Blade C, Arola L, Salvado MJ. Hypolipidemic effects of proanthocyanidins and
their underlying biochemical and molecular mechanisms. Mol Nutr Food Res
2010;54:37–59.

[3] Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids:
potential mechanism for its lipid-lowering effect. J Nutr Biochem 2007;18:
179–83.

[4] Meeran SM, Katiyar SK. Cell cycle control as a basis for cancer chemoprevention
through dietary agents. Front Biosci 2008;13:2191–202.

[5] Pinent M, Blade C, Salvado MJ, Blay M, Pujadas G, Fernandez-Larrea J, et al.
Procyanidin effects on adipocyte-related pathologies. Crit Rev Food Sci Nutr 2006;
46:543–50.

[6] Vafeiadou K, Vauzour D, Spencer JP. Neuroinflammation and its modulation by
flavonoids. Endocr Metab Immune Disord Drug Targets 2007;7:211–24.

[7] Pinent M, CedÃ³ L, Montagut G, Blay M, ArdÃ vol A. Procyanidins improve some
disrupted glucose homoeostatic situations: an analysis of doses and treatments
according to different animal models. Crit Rev Food Sci Nutr 2011.

[8] Pinent M, Castell A, Baiges I, Montagut G, Arola L, Ardévol A. Bioactivity of
flavonoids on insulin-secreting cells. Compr Rev Food Sci Food Saf 2008;7:
299–308.

[9] Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen
H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci
2010;11:1365–402.

[10] El-Alfy AT, Ahmed AA, Fatani AJ. Protective effect of red grape seeds
proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol
Res 2005;52:264–70.

[11] Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of
[3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse
tissue. Carcinogenesis 1998;19:1771–6.

[12] Montagut G, Blade C, Blay M, Fernandez-Larrea J, Pujadas G, Salvado MJ, et al.
Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance. J Nutr
Biochem 2010;21:961–7.

Anna
Tachado

Anna
Texto insertado
ó

Anna
Tachado

Anna
Texto insertado
é

Anna
Texto insertado
In press.



403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474Q4
475
476
477
478
479
480

481

8 A. Castell-Auví et al. / Journal of Nutritional Biochemistry xx (2011) xxx–xxx

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 
[13] Montagut G, Onnockx S, Vaque M, Blade C, Blay M, Fernandez-Larrea J, et al.
Oligomers of grape-seed procyanidin extract activate the insulin receptor and key
targets of the insulin signaling pathway differently from insulin. J Nutr Biochem
2010;21:476–81.

[14] Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose
sensitivity and metabolism-secretion coupling studied during two-year
continuous culture in INS-1E insulinoma cells. Endocrinology 2004;145:
667–78.

[15] Castell-Auvi A, Cedo L, Pallares V, Blay MT, Pinent M, Motilva MJ, et al.
Development of a coculture system to evaluate the bioactivity of plant extracts
on pancreatic beta-cells. Planta Med 2010;76:1576–81.

[16] Estil les E, Tellez N, Soler J, Montanya E. High sensitivity of beta-cell replication
to the inhibitory effects of interleukin-1beta: modulation by adenoviral over-
expression of IGF2 in rat islets. J Endocrinol 2009;203:55–63.

[17] Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in
glucose-induced insulin exocytosis. Nature 1999;402:685–9.

[18] Bradford MM. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem
1976;72:248–54.

[19] Pinent M, Blay M, Blade MC, Salvado MJ, Arola L, Ardevol A. Grape seed-derived
procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic
rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology
2004;145:4985–90.

[20] Frigerio F, Chaffard G, Berwaer M, Maechler P. The antiepileptic drug
topiramate preserves metabolism-secretion coupling in insulin secreting cells
chronically exposed to the fatty acid oleate. Biochem Pharmacol 2006;72:
965–73.

[21] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC.
Homeostasis model assessment: insulin resistance and beta-cell function from
fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:
412–9.

[22] Valera MoraME, Scarfone A, Calvani M, Greco AV,Mingrone G. Insulin clearance in
obesity. J Am Coll Nutr 2003;22:487–93.

[23] Pivovarova O, Gogebakan O, Pfeiffer AF, Rudovich N. Glucose inhibits the insulin-
induced activation of the insulin-degrading enzyme in HepG2 cells. Diabetologia
2009;52:1656–64.

[24] Du J, Zhang L, Liu S, Zhang C, Huang X, Li J, et al. PPARgamma transcriptionally
regulates the expression of insulin-degrading enzyme in primary neurons.
Biochem Biophys Res Commun 2009;383:485–90.
[25] Pinent M, Blade MC, Salvado MJ, Arola L, Hackl H, Quackenbush J, et al. Grape-seed
derived procyanidins interfere with adipogenesis of 3T3-L1 cells at the onset of
differentiation. Int J Obes (Lond) 2005;29:934–41.

[26] Serra A, Macia A, Romero MP, Valls J, Blade C, Arola L, et al. Bioavailability of
procyanidin dimers and trimers and matrix food effects in in vitro and in vivo
models. Br J Nutr 2010;103:944–52.

[27] Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, et al. Rosiglitazone
prevents the impairment of human islet function induced by fatty acids: evidence
for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol
Endocrinol Metab 2004;286:E560–7.

[28] Olofsson CS, Collins S, Bengtsson M, Eliasson L, Salehi A, Shimomura K, et al. Long-
term exposure to glucose and lipids inhibits glucose-induced insulin secretion
downstream of granule fusion with plasma membrane. Diabetes 2007;56:
1888–97.

[29] Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case
of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 2006;41:
177–84.

[30] Alarcon C, Wicksteed B, Rhodes CJ. Exendin 4 controls insulin production in rat
islet beta cells predominantly by potentiation of glucose-stimulated proinsulin
biosynthesis at the translational level. Diabetologia 2006;49:2920–9.

[31] Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and
bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J
Clin Nutr 2005;81:230S–42S.

[32] Maechler P, Wollheim CB. Mitochondrial signals in glucose-stimulated insulin
secretion in the beta cell. J Physiol 2000;529(Pt 1):49–56.

[33] Chan CB, De Leo D, Joseph JW,McQuaid TS, Ha XF, Xu F, et al. Increased uncoupling
protein-2 levels in beta-cells are associated with impaired glucose-stimulated
insulin secretion: mechanism of action. Diabetes 2001;50:1302–10.

[34] Leibiger IB, Leibiger B, Berggren PO. Insulin signaling in the pancreatic beta-cell.
Annu Rev Nutr 2008;28:233–51.

[35] Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates
glucose-stimulated insulin secretion in INS-1E beta-cells and human islets
through Sirt1 dependent mechanism. J Biol Chem 2010.

[36] Kim HS, Noh JH, Hong SH, Hwang YC, Yang TY, Lee MS, et al. Rosiglitazone
stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase
and BETA2/NeuroD expression. Biochem Biophys Res Commun 2008;367:623–9.

[37] Moibi JA, Gupta D, Jetton TL, Peshavaria M, Desai R, Leahy JL. Peroxisome
proliferator-activated receptor-gamma regulates expression of PDX-1 and
NKX6.1 in INS-1 cells. Diabetes 2007;56:88–95.

Anna
Tachado

Anna
Texto insertado
J Biol Chem 2011;286(8):6049-60.



 

Procyanidins Modulate MicroRNA Expression in 

 Pancreatic Islets

 

 

Castell-Auví, A.*1; Cedó, L.*1; Movassat, J.2; Portha, B.2; Sánchez-

Cabo, F.3; Pallarès, V.1; Blay, M.1; Pinent, M.1; Ardévol, A.1 

 

1Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain.  
2Laboratoire B2PE, Unité BFA, Université Paris-Diderot et CNRS, Paris, France. 
3Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain. 

 

*These authors have contributed equally to this work. 

 

 

Submitted to Molecular Nutrition & Food Research 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



Chapter 3 

97 

ABSTRACT 

Procyanidins modulate glucose metabolism, and the results of recent experiments also suggest that 

the pancreas is a target for procyanidins. Given the role of microRNAs (miRNAs) in the regulation of 

metabolic processes in diabetes and that of flavonoids in the modulation of miRNAs in tissues other than 

the pancreas, we hypothesised that procyanidins might target miRNAs in the pancreas. We assessed the 

miRNA expression profile in pancreatic islets isolated from rats that had been chronically treated with a 

daily dose of grape seed procyanidin extract (GSPE). Our data indicate that GSPE treatment modulates 

the miRNA gene expression pattern, and in silico prediction studies suggest that ion transport and 

response to glucose might be among the pathways affected.  
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MANUSCRIPT FOOD&FUNCTION 

MicroRNAs (miRNAs) comprise a family of small non-coding RNAs that post-transcriptionally regulate 

gene expression [1]. Currently, it is known that miRNAs are important not only for normal organism 

development and physiology but also for the pathologies of cancer, heart disease and inflammation [2]. 

MiRNAs are also involved in diabetes [3] and are required for both pancreas development [4,5] and the 

regulation of glucose-stimulated insulin secretion [6]. The most widely studied miRNA in the pancreas is 

miR-375 [2,7]. However, other miRNAs have recently been described as regulators of pancreas 

functionality, modifying insulin secretion [6,8,9] and insulin biosynthesis [10,11] ; additionally, some 

miRNAs have been shown to be related to β-cell apoptosis [12]. Given the role of miRNAs in regulating 

the metabolic processes that are important in some pathologies and in diabetes, miRNAs are likely 

targets for bioactive compounds that affect these pathologies. Among these bioactive compounds are the 

procyanidins, which are phenolic compounds found in fruits and vegetables [13]. Procyanidins modulate 

glucose metabolism by modifying both glycemia and insulinemia (reviewed in [14]). We recently observed 

that, in vivo, different doses of grape seed procyanidin extract (GSPE) affected insulinemia by modifying 

β-cell functionality and/or insulin degradation activity [15]. Considering the fact that miRNAs modify 

pancreas functionality and apoptosis, we hypothesised that another mechanism for procyanidins to act on 

glucose homeostasis might be via the modulation of miRNA expression. A few recent studies support the 

idea that flavonoids can alter the miRNA expression profile [16-19]. In addition there are evidences that 

procyanidins treatment modulate miRNA expression pattern, since our research group has recently 

published that GSPE modulate miRNA profile in an hepatocyte cell line (HepG2) [20]. These studies 

describe in vitro experiments in different cell lines, but, to our knowledge, there have been no studies to 

determine the effects of flavonoids in the pancreas. The aim of this study, therefore, was to investigate 

whether procyanidins modify the expression pattern of miRNAs in rat pancreatic islets after a chronic 

treatment.  

Rats were treated with a daily dose of GSPE (25 mg/kg of body weight (bw)) for 45 days, and the 

expression of 680 miRNAs in freshly isolated islets was analysed. In Figure 1, the 50 miRNAs with the 

highest absolute values of logarithmised fold changes are presented. We found 4 miRNAs with significant 

differential expression due to the GSPE treatment: miR-1249, miR-483, miR-30c-1* (each of which was 

down-regulated), and miR-3544 (which was up-regulated). Previous studies have reported that miR-375, 

miR-9, miR-124a, and miR-96 play a role in the regulation of insulin secretion in rodent pancreatic β-cell 

lines [6,8,9]. All of these referenced miRNAs were present in our biochip, but GSPE did not alter the 

expression of any of them. Instead, GSPE modulated the gene expression of other miRNAs for which a 

role in the pancreas has not been previously described. There is very little available information 

describing the roles of these miRNAs. Data are available for only miR-483, which is a malignancy marker 

in adrenocorticol tumours in humans [21], and miR-30c-1*, which is associated with the recurrence of 

non-small-cell lung cancer following surgical resection in humans [22]. Our results suggest that miR-1249, 

miR-3544, miR-483, and miR-30c-1* may have functions in the pancreas and that GSPE might exert its 

effects on the pancreas via modulation of the gene expression of these miRNAs; however, more 

information concerning the function and targets of these miRNAs is necessary to further elucidate the 

roles of these miRNAs.  
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Figure 1. Differential expression of miRNAs in control rats vs GSPE-treated rats and a hierarchical 

clustering/heatmap of the 50 miRNA genes with higher logFC values. The 4 miRNA genes with significantly 

changed expression are included. Each row represents a miRNA, and each column represents an individual 

sample. The colorgram depicts high (red), average (black), and low (green) expression levels.   

To investigate the function of these differentially expressed miRNAs, we analysed their putative target 

genes using the miRWalk database [23]. miR-1249 and miR-3544 do not have any validated or predicted 

targets. miR-483 has 4 validated and 1592 predicted targets, and miR-30c-1* has 19 validated and 2442 

predicted targets. Nearly half of the validated targets of miR-483 and miR-30c-1* (Table 1) are related to 

apoptosis or proliferation in pancreatic islets. Moreover, most of the published studies concerning 

flavonoids and miRNA describe the activity of these phenolic compounds in cancer and, therefore, the 

involvement of these compounds in apoptosis and proliferation [24-26]. To complement these 

observations, we analysed whether GSPE plays a role in apoptosis and proliferation in the pancreas. Our 

immunohistochemistry results did not show any sign of apoptosis in the islets or the exocrine pancreas. 

The β-cell mass also remained unmodified by treatment with GSPE (0.72 ± 0.09 % vs. 0.85 ± 0.06 % for 

GSPE-treated and control cells, respectively). The gene expression of the anti-apoptotic marker Bcl2 

showed a tendency (p < 0.1) to decrease (0.75 ± 0.09 vs. 1.02 ± 0.10) in the islets of rats treated with 

GSPE. Although the gene expression of the proliferation marker MKI67 remained statistically unchanged 

(0.71 ± 0.22 vs. 1.02 ± 0.11), that of cyclin D2 was significantly (p < 0.05) down-regulated by GSPE (0.77 

± 0.05 vs. 1.02 ± 0.10). In summary, nearly half of the validated targets of GSPE-modulated miR-483 and 

miR-30c-1* are related to apoptosis or proliferation processes. Additionally, GSPE slightly modulated the 

gene expression of Bcl2 and cyclin D2 in the islets, but it did not modulate the islet content or apoptosis in 

the pancreas.  
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Table 1. rno-miRNA-483 and rno-miRNA-30c-1* validated targets. 

MiRNA Official symbol Name 

rno-miR-483 

Myc Myelocytomatosis oncogene 

Mzf1 Myeloid zinc finger 1 

Nos2 Nitric oxide synthase 2, inducible 

Nos3 Nitric oxide synthase 3, endothelial cell 

rno-miR-30c-1* 

Abcb1b ATP-binding cassette, subfamily B (MDR/TAP), member 1B 

Akt1 v-akt murine thymoma viral oncogene homolog 1 

Bcl2 B-cell leukemia/lymphoma 2 

Egfr Epidermal growth factor receptor 

F2 Coagulation factor II (thrombin) 

Gria2 Glutamate receptor, ionotropic, AMPA 2 

Id1 Inhibitor of DNA binding 1 

Inhba Inhibin beta-A 

LOC503116 Similar to lin-28 homolog 

Met Met proto-oncogene 

Nfyb Nuclear transcription factor-Y beta 

Notch1 Notch homolog 1, translocation-associated (Drosophila) 

Smad2 SMAD family member 2 

Snca Synuclein, alpha (non A4 component of amyloid precursor 

Sox2 (Sex determining region Y)-box 2 

Tgfbr1 Transforming growth factor, beta receptor 1 

Tp53 Tumor protein p53 

Xiap X-linked inhibitor of apoptosis 

Xpo5 Exportin 5 

We next performed an in silico prediction to investigate the functions of these predicted target genes 

using the ontology classification of genes based on the gene annotation and summary information that is 

available through DAVID. We restricted our analysis to the 599 common predicted and validated targets 

of miR-483 and miR-30c-1* because it has been shown that the effects of binding multiple miRNA 

complexes to the 3′-untranslated region (UTR) are likely to be cooperative; therefore, effects greater than 

those of a single miRNA in suppressing protein synthesis are expected [27]. The significantly enriched 

Gene Ontology (GO) terms in the common predicted miRNA target genes are listed in Table 2 and 

classified according to the “biological processes” in which they are involved. We observed GO enrichment 

for genes involved in the processes of ion transport and response to stimuli such as hormones and 

organic substances. Our previous studies support GSPE action through changes to membrane potentials 

[15]. The islets isolated from rats subject to the same treatment described above exhibited an altered 

glucose-stimulated insulin secretion. This alteration could partially be mediated by the modification of cell 

and mitochondrial membrane potentials by GSPE, which has been observed in INS-1E cells. The 

involvement of other miRNAs in the regulation of pancreas functionality by modulating membrane 

proteins has previously been shown. For example, miR-15a regulates insulin synthesis by inhibiting the 

expression of uncoupling protein-2 [10], a mitochondrial inner membrane uncoupler that modifies 

mitochondrial membrane permeability.  

Also, the expression of the plasma membrane monocarboxylate
 

transporter-1 is silenced in 

pancreatic
 
β cells at least in part by miRNAs (miR-29a,

 
miR-29b, and miR-124), thus affecting insulin 

release [28].  
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Table 2. The significantly enriched GO terms in the predicted common target genes of miR-483 and miR-30c-1*. 

Biological process 
GO 

term 

Genes in 

pathway 

Biological 

regulation 

Regulation of 

biological 

process 

 

Regulation of 

anatomical 

structure 

morphogenesis 

Regulation of cell morphogenesis 0022604 14 

Regulation of 

cellular 

process 

Regulation of 

cellular 

component 

organization 

Cellular 

process 

Cellular 

component 

movement 

Cell motility Cell migration 0016477 19 

Cellular 

developmental 

process 

Cell 

differentiation 
Neuron differentiation 0030182 30 

Developmental 

process 

Cell 

development 
Neuron development 0048666 24 

Anatomical 

structure 

development 

Localization 
Establishment 

of localization 
Transport 

Ion transport 0006811 36 

 

Cation transport 0006812 28 

 

Metal ion transport 0030001 27 

 
Sodium ion 

transport 
0006814 14 

Monovalent inorganic 

cation transport 
0015672 22 

 
Sodium ion 

transport 
0006814 14 

Neurotransmitter transport 0006836 14 

Locomotion Cell motility Cell migration 0016477 19 

Multicellular 

organismal 

process 

System 

process 

Neurological 

system 

process 
Transmission of nerve impulse 0019226 20 

Multicellular 

organismal 

signalling 

 
Signalling 

Response to 

stimulus 

Response to 

chemical 

stimulus 

 

Response to organic substance 0010033 51 

 

Response to hormone stimulus 0009725 32 

Response to carbohydrate stimulus 0009743 12 

 

Response to monosaccharide 

stimulus 
0034284 11 

 

Response to 

hexose stimulus 
0009746 11 

 

Response 

to 

glucose 

stimulus 

0009749 10 

Response to oxygen levels 0070482 16 

Response to endogenous stimulus 0009719 34 

 Response to hormone stimulus 0009725 32 
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Therefore, the effects of GSPE on the functionality of the islets could, in part, be due to GSPE’s 

effects on the expression profile of the miRNA, which would contribute to changes in the cell and 

mitochondrial membrane permeabilities by varying the expression of ion transport proteins. Finally, we 

also observed enrichments in genes with roles included in the category “neuron differentiation and neuron 

development”. Some miRNAs are known to regulate the translation of genes that are involved in 

development of the central nervous system [29]. Observation of this result was unexpected in the present 

study because we focused on the pancreas. However, most of the genes classified in this GO category 

are also expressed in other tissues; thus, the putative modulation of these genes via miRNAs could be 

linked to other processes and not detected as being significantly modified in the present common set. 

One such process could be the differentiation of the islet cells because some of the genes found in these 

categories (e.g., Dlk, SDF-1) have been related to this process [30,31]. Consequently, although these 

results are interesting because they suggest that procyanidins may act on the nervous system, more 

studies in a more appropriate model must be carried out to confirm this hypothesis. 

In conclusion, we show that a chronic GSPE treatment in rats modulates the miRNA gene expression 

pattern in pancreatic islets, down-regulating the expression of miR-1249, miR-30c-1*, and miR-483 and 

up-regulating that of miR-3544.The scarce knowledge about these miRNAs difficult to finely describe the 

consequences of their modulation by GSPE, our in silico prediction studies, in accordance with cell 

culture studies, suggest that ion transport and response to glucose might be among the pathways 

affected.  

Acknowledgments 

This study was supported by a grant (AGL2008-01310) from the Spanish government. A. C-A is the 

recipient of an FPU fellowship from the Ministerio de Educación of the Spanish government. L. C. is the 

recipient of an FPI fellowship from Generalitat de Catalunya, and V. P. is the recipient of a fellowship from 

Universitat Rovira i Virgili. We thank Dr. Joan Josep Sirvent (BioBanc Hospital Joan XXIII, Tarragona, 

Spain). We thank Laura Guasch (Nutrigenomics Group, Universitat Rovira i Virgili, Tarragona, Spain) for 

assistance with data processing. 

References 

[1] Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell . 2004,116,281-297. 

[2] Lynn, F.C. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends 

Endocrinol.Metab. . 2009,20,452-459. 

[3] Herrera, B.M., Lockstone, H.E., Taylor, J.M., Ria, M., et al. Global microRNA expression profiles in 

insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia . 2010,53,1099-1109. 

[4] Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., et al. Targeted inhibition of miRNA maturation with 

morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol.. 2007,5,e203. 

[5] Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., et al. MicroRNA expression is required for 

pancreatic islet cell genesis in the mouse. Diabetes . 2007,56,2938-2945. 

[6] Plaisance, V., Abderrahmani, A., Perret-Menoud, V., et al. MicroRNA-9 controls the expression of 

Granuphilin/Slp4 and the secretory response of insulin-producing cells. J.Biol.Chem. . 2006,281,26932-

26942. 

[7] Guay, C., Roggli, E., Nesca, V., Jacovetti, C., Regazzi, R. Diabetes mellitus, a microRNA-related 

disease?. Transl.Res. . 2011,157,253-264. 

[8] Lovis, P., Gattesco, S., Regazzi, R. Regulation of the expression of components of the exocytotic 

machinery of insulin-secreting cells by microRNAs. Biol.Chem. . 2008,389,305-312. 

[9] Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., et al. MicroRNA-124a regulates Foxa2 expression 

and intracellular signaling in pancreatic beta-cell lines. J.Biol.Chem. . 2007,282,19575-19588. 

[10] Sun, L.L., Jiang, B.G., Li, W.T., Zou, J.J., et al. MicroRNA-15a positively regulates insulin synthesis 

by inhibiting uncoupling protein-2 expression. Diabetes Res.Clin.Pract. . 2011,91,94-100. 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



Chapter 3 

103 

[11] Melkman-Zehavi, T., Oren, R., Kredo-Russo, S., Shapira, T., et al. miRNAs control insulin content in 

pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. . 2011,30,835-845. 

[12] Lovis, P., Roggli, E., Laybutt, D.R., Gattesco, S., et al. Alterations in microRNA expression contribute 

to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes . 2008,57,2728-2736. 

[13] Bhagwat, S., Holden, J., Haytowitz, D., Gebhardt, S., et al. USDA database for the flavonoid content 

of selected foods. Available from: http://www.ars.usda.gov/nutrientdata . 

[14] Pinent, M., Cedó, L., Montagut, G., Blay, M., Ardévol, A. Procyanidins improve some disrupted 

glucose homoeostatic situations: an analysis of doses and treatments according to different animal 

models. Crit.Rev.Food Sci.Nutr. . 2011. In press. 

[15] Castell-Auví, A., Cedó, L., Pallarès, V., Blay, M., et al. Procyanidins modify insulinemia by affecting 

insulin production and degradation. J.Nutr.Biochem. . 2011. In press. 

[16] Murase, T., Misawa, K., Minegishi, Y., Aoki, M., et al. Coffee polyphenols suppress diet-induced body 

fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. 

Am.J.Physiol.Endocrinol.Metab. . 2011,300,E122-33. 

[17] Boesch-Saadatmandi, C., Loboda, A., Wagner, A.E., Stachurska, A., et al. Effect of quercetin and its 

metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. 

J.Nutr.Biochem. . 2011,22,293-299. 

[18] Sun, Q., Cong, R., Yan, H., Gu, H., et al. Genistein inhibits growth of human uveal melanoma cells 

and affects microRNA-27a and target gene expression. Oncol.Rep. . 2009,22,563-567. 

[19] Tsang, W.P., Kwok, T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis 

in human cancer cells. J.Nutr.Biochem. . 2010,21,140-146. 

[20] Arola-Arnal, A., Blade, C. Proanthocyanidins Modulate MicroRNA Expression in Human HepG2 

Cells. PLoS One . 2011,6,e25982. 

[21] Patterson, E.E., Holloway, A.K., Weng, J., Fojo, T., Kebebew, E. MicroRNA profiling of adrenocortical 

tumors reveals miR-483 as a marker of malignancy. Cancer . 2011,117,1630-1639. 

[22] Patnaik, S.K., Kannisto, E., Knudsen, S., Yendamuri, S. Evaluation of microRNA expression profiles 

that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer 

Res. . 2010,70,36-45. 

[23] Dweep, H., Sticht, C., Pandey, P., Gretz, N. miRWalk - Database: Prediction of possible miRNA 

binding sites by "walking" the genes of three genomes. J.Biomed.Inform. . 2011. 

[24] Siddiqui, I.A., Asim, M., Hafeez, B.B., Adhami, V.M., et al. Green tea polyphenol EGCG blunts 

androgen receptor function in prostate cancer. FASEB J. . 2011,25,1198-1207. 

[25] Tsang, W.P., Kwok, T.T. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis 

in human cancer cells. J.Nutr.Biochem. . 2010,21,140-146. 

[26] Sun, Q., Cong, R., Yan, H., Gu, H., et al. Genistein inhibits growth of human uveal melanoma cells 

and affects microRNA-27a and target gene expression. Oncol.Rep. . 2009,22,563-567. 

[27] Doench, J.G., Petersen, C.P., Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. . 

2003,17,438-442. 

[28] Pullen, T.J., da Silva Xavier, G., Kelsey, G., Rutter, G.A. miR-29a and miR-29b Contribute to 

Pancreatic β-Cell-Specific Silencing of Monocarboxylate Transporter 1 (Mct1). Mol.Cell.Biol. . 

2011,31,3182-3194. 

[29] Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., et al. Expression profiling of mammalian 

microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human 

neuronal differentiation. Genome Biol. . 2004,5,R13. 

[30] May, R., Sureban, S.M., Lightfoot, S.A., Hoskins, A.B., et al. Identification of a novel putative 

pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas. 

Am.J.Physiol.Gastrointest.Liver Physiol. . 2010,299,G303-10. 

[31] Cheng, H., Zhang, Y.C., Wolfe, S., Valencia, V., et al. Combinatorial treatment of bone marrow stem 

cells and stromal cell-derived factor 1 improves glycemia and insulin production in diabetic mice. 

Mol.Cell.Endocrinol. . 2011. 

UNIVERSITAT ROVIRA I VIRGILI 
THE EFFECTS OF GRAPE SEED PROCYANIDIN EXTRACT ON INSULIN SYNTHESIS AND SECRETION 
Anna Castell Auvi 
DL:T. 271-2012 



Chapter 3 

104 

SUPPORTING MATERIAL 

Materials and methods 

Chemicals. According to the manufacturer, GSPE (Les Dérives Résiniques et Terpéniques, Dax, France) 

contained monomeric (16.6 %), dimeric (18.8 %), trimeric (16.0 %), tetrameric (9.3 %), and oligomeric 

procyanidins (5 to 13 units, 35.7 %) as well as phenolic acids (4.2 %).  

Animal procedures. Female Wistar rats weighing 225-250 g were purchased from Charles River 

Laboratories (Barcelona, Spain) and housed in animal quarters at 22ºC with 12 h light/12 h dark cycles. 

Treatment began after the rats had spent 1 week in quarantine. The animals were divided into two groups 

a control group and a group treated for 45 days with 25 mg GSPE /kg of body weight (bw) * day. The rats’ 

food (standard chow) was withdrawn at 8 a.m. every day, and, at 8 p.m., the rats were treated with GSPE 

or its vehicle (sweetened condensed milk diluted 1:6 with tap water), and the food was renewed. On the 

sacrifice day, the animals, which had fasted overnight, were anesthetised at 9 a.m. using pentobarbital 

sodium (75 mg/kg of bw) and then sacrificed by exsanguination. The blood was collected and the 

pancreatic islets were isolated from ten animals per group, and one half of the pancreas from six rats per 

group were fixed overnight in 4% (w/v) formaldehyde (QCA, Amposta, Spain) and embedded in paraffin. 

This procedure was approved by the Experimental Animals Ethics Committee of the Universitat Rovira i 

Virgili (Permission number from Government of Catalonia: 4250). 

Islet isolation. The islets were prepared by collagenase digestion as previously described. Briefly, the rats 

were anesthetised, and the pancreas was infused with 7 mL of an ice-cold collagenase P (Roche, 

Barcelona, Spain) solution (1 mg/mL) before its removal and incubation at 37 ºC for 15 min. The islets 

were purified on a Histopaque gradient (Sigma-Aldrich, St. Louis, MO) and handpicked until a population 

of pure islets was obtained.  

miRNA profile analysis. The total RNA from freshly isolated islets was extracted using the Qiagen 

miRNeasy isolation kit (Qiagen, Barcelona, Spain) and stored at -80ºC. The quality of the total RNA was 

determined with an Agilent 2100 Bioanalyzer using the RNA 6000 Nano kit according to the 

manufacturer’s instructions. All samples ha e Abs 2  /2      2.  and Abs 2  /23     .4. The samples 

were analysed with a Geniom Real-time Analyser (GRTA, febit GmbH, Heidelberg, Germany) using the 

Geniom Biochip MPEA Rattus norvegicus. The probes were designed as the reverse complements of all 

of the major mature miRNAs and the mature sequences as published in the current Sanger miRBase 

release (version 16.0 September 2010 for Rattus norvegicus) [1]. For each array, the RNA was 

suspended in 

performed automatically for 16 h at 42 ºC using GRTA. Next, the biochip was stringently washed. 

Following the labelling procedure, febit was applied to the microfluidic-based primer extension assay [2]. 

This assay utilises the bound miRNAs as a primer for the enzymatic elongation using labelled 

nucleotides. The elongation was performed with Klenow fragments and biotinylated nucleotides at 37ºC 

for 15 minutes. Finally, the biochip was washed automatically. For maximum sensitivity, febit used biotin 

and its detection with streptavidin-phycoerythrin (SAPE) in combination with febit’s consecuti e signal 

enhancement (CSE) procedure. The feature recognition (using a Cy3 filter set) and signal calculation 

were performed automatically within milliseconds. The Geniom technology provided accurate detection of 

the miRNA profiles. The microarray data were normalised by the variance stabilisation normalisation 

method [3], and statistics were analysed with linear models as implemented in the Limma Bioconductor 

package [4]. The miRNAs with adjusted p-values less than 0.2 were considered significant. 

Pathway analysis and prediction. The validated and predicted target genes for rno-miRNAs that had 

statistically significant modifications to their expression after GSPE treatment were obtained from the 

online database miRWalk [5]. A miRWalk miRNA target prediction was provided by the match among 
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eight established miRNA prediction programs on 3’ UTRs (RNA22, miRanda, miRDB, TargetScan, 

RNAhybrid, PITA, PICTAR, and Diana-microT) with a p-value less than 0.05.  

To determine the functions of the common predicted and validated target genes, we used DAVID 

(Database for Annotation, Visualisation and Integrated Discovery) [6]. This database allowed us to assign 

predicted target genes to functional groups based on molecular function, biological process and specific 

pathways. The GO terms with p-values less than 0.05 after adjustment using the Benjamini method were 

considered significantly enriched.  

Measurement of mRNA expression of apoptosis and proliferation markers. For gene expression 

experiments, the total RNA from freshly isolated islets was extracted as described above. A total RNA of 

0.5-  μg was re erse transcribed using a High-Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA), and cDNA was amplified for 40 cycles in a quantitative RT-PCR 7300 

System (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions using a 

Taqman Master Mix and the specific Taqman probes for different genes (Applied Biosystems, Foster City, 

CA): Rn99999125_m1 for Bcl2, Rn01492401_m1 for cyclin D2 (CCND2), Rn01451446_m1 for MKI67 

and Rn00667869-m  for β-actin as the reference gene. The relative mRNA expression levels were 

calculated using the ∆∆Ct method. 

Immunohistochemical analysis of apoptosis and pancreatic islet mass. Each block of the pancreas that 

had been embedded in paraffin was serially sectioned throughout its length in cuts of   μm and mounted 

on slides. One section of every interval of approximately 40 slides was deparaffinated, rehydrated and 

used to study apoptosis. Apoptotic cells were detected with the ApopTag Peroxidase In Situ Apoptosis 

Detection kit (Millipore, Billerica, MA) as previously described [7]. 

Pancreas sections were then immunostained for insulin. First, they were blocked for 50 min at room 

temperature with goat serum (Vector Laboratories, Burlingame, CA) diluted 1:10 with Tris buffer and 

incubated overnight at 4ºC with an anti-insulin antibody from guinea pig (MP Biomedicals, Illkirch, France) 

diluted 1:300 with Tris buffer. After being washed, the samples were incubated for 1 h at room 

temperature with an alkaline phosphatase-conjugated polyclonal anti-guinea pig antibody from rabbit 

(Abcam, Cambridge, UK) diluted 1:200 with Tris buffer and stained using an Alkaline phosphatase 

Substrate kit I (Vector Laboratories, Burlingame, CA). After being stained, the sections were dehydrated 

and mounted in Eukitt (Labonord, Templemars, France). In these double-stained sections, β-cells were 

stained in red, and apoptotic cells exhibited dark nuclei.  

The analysis of the sections was performed using an Olympus BX40 microscope in conjunction with a 

video camera connected to a computer and using the Histolab software v. 7.2.7 (Microvision Instruments, 

Evry, France). The number of apoptotic cells, the surface area of the islets and the total pancreatic 

surface area were quantified in each stained section. Apoptosis was expressed as the number of 

apoptotic cells/total pancreas surface area (µm
2
) multiplied by 10

7
, and the β-cell mass was expressed as 

the percentage of the ratio between the β-cell surface area and the total pancreatic surface area. 

Calculations and Statistical Analysis. The results are expressed as the mean ± SEM. Effects were 

assessed by Student’s t-test. All calculations were performed with SPSS software. 
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ABSTRACT 

Procyanidins have positive effects on glucose metabolism in situations involving slightly disrupted 

glucose homeostasis, but it is not clear how procyanidins interact with β-cells. On this work, we evaluate 

the effects of procyanidins on β-cell functionality under an insulin-resistance situation. After 13 weeks of 

cafeteria diet, female Wistar rats were treated with 25 mg of grape seed procyanidin extract (GSPE)/kg of 

body weight for 30 days. To determine the possible mechanisms of action of procyanidins, INS-1E cells 

were separately incubated in high glucose, high insulin and high oleate media to reproduce the conditions 

the β-cells were subject to during the cafeteria diet feeding. In vivo experiments showed that chronic 

GSPE treatment decreased insulin production, since C-peptide levels and insulin protein levels in plasma 

were lower than those of cafeteria-fed rats, as were insulin and Pdx1 mRNA levels in the pancreas. 

GSPE effects observed in vivo were reproduced in INS-1E cells cultured with high oleate for 3 days. 

GSPE treatment significantly reduces triglyceride content in β-cells treated with high oleate and in the 

pancreas of cafeteria-fed rats. Moreover, gene expression analysis of the pancreas of cafeteria-fed rats 

revealed that procyanidins up-regulated the expression of Cpt1a and down-regulated the expression of 

lipid synthesis-related genes such as Fasn and Srebf1. Procyanidin treatment counteracted the decrease 

of AMPK protein levels after cafeteria treatment. Procyanidins cause a lack of triglyceride accumulation in 

β-cells. This counteracts its negative effects on insulin production, allowing for healthy levels of insulin 

production under hyperlipidemic situations.   
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Introduction 

Procyanidins have positive effects on glucose metabolism in situations of slightly disrupted glucose 

homeostasis [1], a property that makes these compounds very interesting as functional food ingredients. 

Part of this effect could be explained due to the activity of procyanidins on adipose cells [2], but in fact, in 

a rat cafeteria-diet model, grape seed procyanidins extract (GSPE)-treated animals had fewer instances 

of insulinemia and glycemia than did the cafeteria group. Literature analysis indicated that the mechanism 

of the interaction of procyanidins with β-cells is not completely understood [3]. On the other hand, we 

recently observed that, at some doses, procyanidins change β-cell functionality, modifying insulin 

synthesis and secretion under non-pathological situations [4], through their effects on membrane 

potentials. 

A cafeteria diet allows for development of insulin resistance with hyperglycemia and 

hypertriglyceridemia conditions, and it is thus a good model for most syndrome X human pathologies [5]. 

Peripheral tissues play a key role in these pathologies, working together with pancreatic β-cells. In 

situations of insulin resistance, β-cells are in high glucose and high fatty acid conditions, and published 

studies have shown that prolonged exposure of pancreatic islets to elevated concentrations of fatty acids 

reduces insulin secretion in vitro [6,7]. This has also been implicated in the declining insulin secretory 

capacity of the β-cell, which accompanies the beginning of type 2 diabetes [8]. Like fatty acids, chronic 

hyperglycemia in β-cells causes defective insulin gene expression, diminished insulin content and 

defective insulin secretion [9]. While elevated levels of glucose or fatty acids can, by themselves, have 

detrimental effects on β-cell function in many experimental systems, the combination of both nutrients is 

synergistically harmful, and the term glucolipotoxicity has been coined to describe the phenomenon 

[10,11].  

In the present study, our goal is to understand the relationship between procyanidins and insulin-

producing cells under an insulin resistance situation. We first determine whether procyanidin extract could 

alleviate the deleterious effects of cafeteria diet on β-cell functionality in vivo. To analyze the biochemical 

mechanism of this postulated effect, we assess the actions of GSPE on β-cells cultured in high glucose, 

high insulin and high fatty acid media. 

Materials and methods  

Chemicals. According to the manufacturer, GSPE (Les Dérives Résiniques et Terpéniques, Dax, France) 

contained monomeric (16.6%), dimeric (18.8%), trimeric (16%), tetrameric (9.3%) and oligomeric 

procyanidins (5-13 units: 35.7%) and phenolic acids (4.22%).  

Cell culture and treatment. INS-1E cells were kindly provided by Prof. Pierre Maechler, University of 

Geneva [12]. The cell line was cultured as previously described [13]. Cell culture reagents were obtained 

from BioWhittaker (Verviers, Belgium). Three different models were assayed. 1) High glucose treatment: 

The cells were incubated with 25 mM glucose for 24 h with 5 or 25 mg/L of GSPE. 2) High insulin 

treatment: After 24 h of depletion, the cells were incubated for 24 h with 20 nM insulin (Novo Nordisk 

Pharma SA, Madrid, Spain) and with 1, 5 or 25 mg/L of GSPE. 3) High oleate treatment: Cells were 

cultured for 72 h with 0.4 mM oleate (stock solution: 10 mM oleate (Sigma-Aldrich, St. Louis, MO) 

dissolved in 12.5 % fatty acid-free BSA (Sigma-Aldrich, St. Louis, MO) [14] and during the last 24 h, cells 

were treated concomitantly with 25 mg GSPE/L. 

Animal experimental procedures. For the cafeteria-fed animal study (6 animals per group), the animals 

were treated as previously described [2]. Briefly, female rats were divided into two groups: a control group 

fed with a standard diet (Panlab A03) and a cafeteria-fed group fed with a cafeteria diet and water plus 

the standard diet. After 13 weeks, obesity was induced in the animals and the cafeteria group was divided 

into two subgroups: i) cafeteria group of rats treated with a vehicle (sweetened condensed milk) and ii) 
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cafeteria + 25 group of rats treated with 25 mg of GSPE/kg of body weight (bw)*day. After 10 days of 

GSPE treatment, six animals from each group were sacrificed (Short treatment). After 30 days of GSPE 

treatment, the remaining six animals of each group were sacrificed (Long treatment). For the high-fat fed 

animal study (6 animals per group), the animals were treated as previously described [15]. Briefly, male 

rats were fed with a high-fat diet (control) or with a high-fat diet containing 1 mg of GSPE per gram of 

feed (approximately 30 mg GSPE/ kg of bw). After 19 weeks of treatment, animals were sacrificed. Blood 

was collected from all the animals using heparin and animal tissues were excised, frozen immediately in 

liquid nitrogen and stored at -80ºC until analysis. All the procedures were approved by the Experimental 

Animals Ethics Committee of the Rovira i Virgili University. Insulin and C-peptide plasma levels were 

assayed using ELISA methodology (Mercodia, Uppsala, Sweden) following the manufacturers’ 

instructions. Glucose plasma levels were determined using an enzymatic colorimetric kit (GOD-PAP 

method from QCA, Amposta, Spain). 

Glucose-stimulated insulin secretion. The secretory responses to glucose were tested in INS-1E cells as 

previously described [13]. Glucose stimulated insulin secretion (GSIS) was measured by Insulin ELISA 

(Mercodia, Uppsala, Sweden).  

Triglyceride (TG) content. INS-1E cells were cultured in 12-well plates and treated with 0.4 mM oleate for 

3 days. During the last 24 hours of oleate treatment, cells were incubated concomitantly with 25 mg/L of 

GSPE. Cells were collected in PBS containing 0.1% triton X-100 (Sigma-Aldrich, St. Louis, MO) and the 

solution was sonicated. TGs from the pancreas were extracted using the same buffer. TG content was 

determined using an enzymatic colorimetric kit (QCA, Amposta, Spain). Protein content of each sample 

was measured using the Bradford method [16] and was used to normalize the TG values. 

Mitochondrial membrane potential (ΔΨm) and cell membrane potential measurements. Mitochondrial 

membrane potential (ΔΨm) and cell membrane potential were measured as described [12].  

Western Blot. Protein was extracted from the whole frozen pancreas using RIPA lysis buffer (15 mM Tris-

HCl, 165 mM NaCl, 0.5% Na-deoxycholate, 1% Triton X-100 and 0.1% SDS), with a protease inhibitor 

cocktail (1:1,000; Sigma-Aldrich, St. Louis, MO) and 1 mM PMSF. Total protein levels of the lysate were 

determined using the Bradford method [16]. Proteins were loaded and run through a 12 % SDS-

polyacrylamide gel. Samples were transferred to a PVDF membrane (Bio-Rad Laboratories, Hercules, 

CA), blocked at room temperature using 5% (wt/vol) non-fat milk in TTBS buffer (Tris-buffered saline 

[TBS], 0.5% [vol/vol] Tween-20) and incubated with rabbit AMPKα primary antibody (Cell Signaling 

Technology, Beverly, MA), or anti-β-actin antibody (Sigma-Aldrich, St. Louis, MO). After washing with 

TTBS, blots were incubated with peroxidase-conjugated anti-rabbit secondary antibody (GE Healthcare, 

Buckinghamshire, UK). Blots were washed thoroughly in TTBS, followed by TBS after immunoblotting. 

Immunoreactive protein was visualized with ECL Plus Western blotting detection system (GE Healthcare, 

Buckinghamshire, UK) on the Alpha Innotech system with software version 6.0.2v (San Leonardo, CA). 

Densitometric analysis of immunoblots was performed using ImageJ 1.44p software; all proteins were 

quantified relative to the loading control.  

Quantitative RT-PCR. Total RNA from pancreas, liver, kidney and white adipose tissue was extracted 

using TRIzol reagent following the manufacturer’s instructions. Total RNA from INS-1E cells was isolated 

using an miRNeasy Mini Kit (Qiagen, Barcelona, Spain). cDNA from all the experiments was generated 

using the Applied Biosystems’ kit and it was subjected to Quantitative RT-PCR amplification using 

Taqman Master Mix (Applied Biosystems, Foster City, CA). Specific Taqman probes (Applied 

Biosystems, Foster City, CA) were used for different genes: Rn01774648-g1 for insulin, Rn00565839-m1 

for insulin degrading enzyme (Ide), Rn00755591_m1 for pancreatic duodenal homeobox 1 (Pdx1), 

Rn00561265-m1 for glucokinase, Rn01754856-m1 for mitochondrial uncoupling protein 2 (Ucp2), 

Rn00569117_m1 for fatty acid synthase (Fasn), Rn01495769_m1 for sterol regulatory element-binding 
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protein 1c (Srebf1), Rn00580702_m1 for carnitine palmitolitransferase-1a (Cpt1a) and Rn00440945_m1 

for peroxisome proliferator-activated receptor γ (Pparγ). β-actin was used as the reference gene 

(Rn00667869-m1). Reactions were run on a quantitative RT-PCR 7300 System (Applied Biosystems, 

Foster City, CA) according to the manufacturer’s instructions.  

Calculations and Statistical Analysis. Results are expressed as the mean ± SEM. Effects were assessed 

by Student’s t-test. All calculations were performed with SPSS software. 

Results 

GSPE decreases insulin production. 

For animals in which we previously induced damage by cafeteria-diet treatment for 13 weeks, 30 

days of daily treatment with 25 mg GSPE/kg of bw improved glycemia and lowered insulinemia [2]. 

Peripheral effects were seen in the adipose tissue of these animals [2], and now we show that β-cell 

insulin production is lower, with an even stronger effect on mRNA levels (Table 1).  

Table 1. Gene expression in the pancreas of cafeteria-fed rats treated with GSPE. 

Gene Cafeteria Cafeteria + GSPE 

Insulin 5.11 ± 1.4 1.48 ± 0.0* 

Pdx1 4.07 ± 1.0 2.32 ± 0.3 

Ucp2 1.64 ± 0.3 0.65 ± 0.1* 

Cpt1a 1.63 ± 0.2
 

2.20 ± 0.3* 

Fasn 0.75 ± 0.1 0.31 ± 0.0* 

Srebf1 1.28 ± 0.1 1.03 ± 0.1 

Rats were fed with a cafeteria diet for 13 weeks and then were orally treated with 25 mg GSPE/kg of bw for 

30 days. Data are the mean ± SEM of six animals. *Indicates statistically significant differences between 

treatments (P ≤ 0.05). 

The amount of insulin protein levels in the pancreas and the C-peptide levels in the plasma were also 

lower (Figure 1A and B, respectively). In fact, GSPE-treated rats had insulin gene expression and C-

peptide levels similar to those of the control group. The strong effect on insulin synthesis agrees with the 

decrease in levels of the upstream insulin effector Pdx1 (Table 1), despite not statistically significant 

differences were observed. Must be highlighted that the Pdx1 mRNA levels from cafeteria group were not 

different compared with levels in the control group [17]. However, we did observe a decrease of Ucp2 

gene expression (Table 1). 

A. B. 

Figure 1. Insulin production after 30 days of GSPE treatment of cafeteria-fed animals. A. Pancreas insulin content. B. 

Peptide-C plasma levels. After 30 days of treatment, animals were sacrificed, and blood and pancreas samples were 

obtained. Pancreas insulin content and Peptide-C plasma levels were quantified by the ELISA method. Data are 

means ± SEM. Different letters indicate significantly different groups with P<0.05.  
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Insulin plasma levels depend on insulin production but also on insulin clearance. In normal healthy 

animals, we have shown insulin-degrading enzyme (Ide) to be a target for GSPE [4]. However, although 

the cafeteria diet modifies the activity and expression of Ide in liver and white adipose tissue [17], GSPE 

treatment did not have any effects on insulin clearance (results not shown).  

The effects of GSPE on glucose homeostasis are very dependent on the degree of damage [1]. Thus, 

to gain further evidence of the effects of GSPE on the pancreas as described above, we analyzed 

relevant data from other animal models. A similar study that used a shorter GSPE treatment of 10 days 

did not show a statistically significant effect on insulin mRNA, but there was a tendency towards 

decreased gene expression (Cafeteria: 1.07 ± 0.2; Cafeteria + 25: 0.76 ± 0.1; vs. Control: 1.16 ± 0.3). 

When we compared the insulin plasma levels to mRNA expression levels, there was a statistically 

significant increase due to GSPE treatment, suggesting a limited production versus the amount of 

circulating insulin (Cafeteria: 1.05 ± 0.3; Cafeteria + 25: 1.83 ± 0.2; vs. Control: 0.63 ± 0.2). This 

parameter was also clearly increased after 30 days of GSPE treatment (Cafeteria: 1.50 ± 0.4; Cafeteria + 

25: 2.70 ± 0.7; vs. Control: 1.22 ± 0.3).  

By contrast, an equivalent dose of GSPE simultaneously administrated with feed pellets in a high-fat 

diet (HF) to another group of rats did not cause any statistically significant change in insulin 

measurements. Despite a tendency towards lower mRNA levels (HF + 30: 0.94 ± 0.2; vs. HF: 1.32 ± 0.3), 

plasma insulin levels were unchanged (HF + 30: 5.20 ± 0.5; vs. HF: 4.77 ± 0.8), as was the ratio of 

plasma insulin to mRNA insulin (HF + 30: 5.95 ± 1.2; vs. HF: 5.46 ± 1.5). It must be highlighted that this 

third model showed only moderate signs of glucose homeostasis disruption [15]. By contrast, cafeteria 

animal models showed almost all the metabolic syndrome alterations: hyperglycemia, hyperinsulinemia 

[2] and increased plasma free fatty acids [18].  

The effects of GSPE on insulin production can be explained through its action on lipid metabolism in β-

cells. 

β-cells of cafeteria animals live in a high glucose, high insulin and high FFA environment that affect 

their functionality [6,7,19]. We reproduced these three effects separately in cultured β-cells to identify 

where procyanidins act in limiting insulin production. High glucose medium for 24 hours provoked a very 

high decrease in insulin mRNA levels that was not counteracted by GSPE treatment (Control 11 mM 

glucose: 2.13 ± 0.0; 25 mM glucose + 5 mg GSPE/L: 1.01 ± 0.1; 25mM glucose + 25 mg GSPE/L: 0.96 ± 

0.1; vs. Control 25 mM glucose: 1.00 ± 0.0). Glucokinase mRNA was also decreased by hyperglycemia, 

an effect that was statistically reinforced by concomitant treatment with 25 mg GSPE/L (Control 11 mM 

glucose: 1.38 ± 0.0; 25 mM glucose + 5 mg GSPE/L: 0.99 ± 0.0; 25mM glucose + 25 mg GSPE/L: 0.87 ± 

0.0; vs. Control 25 mM glucose: 1.00 ± 0.0). High insulin treatment for 24 hours did not modify insulin 

mRNA levels, but concomitant GSPE treatment induced a tendency to increase insulin gene expression, 

being only statistically significant at 5 mg GSPE/L (20 nM insulin: 0.96 ± 0.1; 20 nM insulin + 1 mg 

GSPE/L: 1.06 ± 0.1; 20 nM insulin + 5 mg GSPE/L: 1.13 ± 0.1; 20 nM insulin + 25 mg GSPE/L: 1.06 ± 

0.1; vs. Control: 1.00 ± 0.0)  

Table 2 shows the effects of GSPE on high oleate culture medium. In this situation, there was an 

increase in insulin mRNA and GSPE limited this gene expression increase similar to what we observed in 

the in vivo studies. Glucokinase mRNA showed a similar pattern: levels were increased by oleate and 

GSPE limited the oleate effect. Pdx1 gene expression was unmodified by oleate treatment (Oleate: 0.97 ± 

0.03; Oleate + GSPE: 0.96 ± 0.06; vs. Control: 1.00 ± 0.03). On the other hand, Ucp2 mRNA levels were 

up-regulated by oleate (Table 2), as was expected because Ucp2 expression is regulated in tandem with 

the level of FFA [20], and in isolated rat islets and INS-1 pancreatic β-cells, long term treatment with FFAs 

can increase Ucp2 mRNA [21,22]. However, in this case, GSPE did not mitigate the effects of oleate on 

Ucp2 mRNA levels.  
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Table 2. Gene expression in INS-1E cells treated with oleate and GSPE.  

Gene Control Oleate Oleate + GSPE 

Insulin 1.00 ± 0.0 1.64 ± 0.1* 1.24 ± 0.1*
, ‡ 

Glucokinase 1.00 ± 0.0 1.20 ± 0.1* 1.08 ± 0.1 

Ucp2 1.00 ± 0.0 1.86 ± 0.2* 1.71 ± 0.1* 

INS-1E cells were cultured for 3 days in the absence of oleate or with 0.4 mM oleate (0.4 mM). During the 

last 24 h, the cells were cultured in the absence or presence of 25 mg GSPE/L. Data are the mean ± SEM. 

*Indicates a significant difference (P ≤ 0.05) vs. control group. 
‡
Indicates a significant difference (P ≤ 0.05) 

vs. oleate group. 

Thus, out of all the conditions assayed for culture of β-cells, only hyperlipidemia reproduced the 

effects we had obtained in vivo, i.e., the cafeteria diet induced high insulin expression levels that could be 

counteracted by addition of procyanidins. Moreover, high oleate treatment altered insulin secretion, 

mainly basal secretion, but also the GSIS (Figure 2A), in agreement with previous publications [21,23]. 

GSPE treatment slightly improved the oleate effect on insulin secretion (Figure 2A). Therefore, GSPE 

seems to act on β-cell lipid metabolism to exert its bioactivity on insulin production. 

A.      

 
B.  

 
Figure 2. Effects of GSPE and oleate on insulin secretion. A. After oleate and GSPE treatment, cells were 

maintained for 2 h in RPMI w/o glucose medium and then cells were cultured with basal (2.5 mM) or stimulated 

(15 mM) glucose concentrations. Data shown are means ±SEM. *Indicates significantly different groups with 

P<0.05 vs. control group (same glucose concentration). 
‡
Indicates significantly different groups with P<0.05 vs. 

oleate group (same glucose concentration). B. Mitochondrial membrane potential was monitored with rhodamine 

123 fluorescence. Hyperpolarization of ΔΨm was induced with 15 mM glucose and after 10 min of glucose 

stimulation, depolarization was induced by FCCP. 
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Mechanism of action of GSPE on β-cells under hyperlipidemic stress.  

Data regarding how procyanidins affect β-cells is limited [3]. Working on an undamaged cell line (INS-

1E), we have found that GSPE alters insulin secretion through its uncoupling action on cell membranes 

[4]. Oleate also uncouples mitochondrial plasma membrane potential [14,21]. To identify the target sites 

of GSPE on β-cells, we measured the mitochondrial membrane potential under oleate and GSPE 

treatment. We reproduced the expected uncoupling action induced by oleate, but GSPE did not reverse 

this effect (Figure 2b). Thus, GSPE must use other mechanisms to improve the function of damaged 

oleate cells.  

One of the most obvious effects of GSPE is its ability to improve lipid metabolism [24]. Under oleate 

treatment, β-cells have higher levels of TG stores [25], so we measured the TGs accumulated in β-cells. 

Oleate treatment doubles the amount of TGs (2.05 ± 0.1) vs. control cells (1.00 ± 0.0), while GSPE 

slightly but statistically significantly decreases the amount of TGs in the cell (observed decrease: -0.096 ± 

0.03).  

We next checked the pancreas TG content of cafeteria-fed animals and found that GSPE reduced it 

significantly after 30 days of treatment (Figure 3). We also analyzed the differential expression of key 

genes that control lipid metabolism in the pancreas (Table 1).  

 
Figure 3. Effects of GSPE on TG content in the pancreas of cafeteria-fed rats. TGs from β-cells and pancreas 

tissue were quantified using an enzymatic colorimetric kit. Data shown are means ± SEM. Different letters 

indicate significantly different groups with P<0.075 vs. control. 

We selected the Cpt1a gene, which is the key controller of free fatty acid oxidation [26], the Fasn 

gene, which is the key enzyme of de novo fatty acid synthesis [27] and the Srebf1 gene, a transcription 

factor that activates the expression of several genes involved in FFA and TG synthesis, as well as other 

components of the regulatory machinery of lipid metabolism [28]. Cafeteria-fed animals showed a slight 

increase in Cpt1a gene expression [17], suggesting an increase of β-oxidation, and GSPE treatment 

caused a higher increase in Cpt1a mRNA levels (Table 1). Fatty acid synthase levels, which were 

reduced by a cafeteria diet (submitted results), were significantly decreased with GSPE treatment as 

shown by Fasn gene expression (Table 1). GSPE treatment tended to reduce the mRNA levels of Srebf1 

after 30 days of treatment (Table 1). These data agreed with the lipid-mobilization effect attributed to the 

GSPE. 

To better understand how procyanidins modify β-cell functionality, we assessed whether the effects of 

GSPE on β-cells were mediated via AMP-activated protein kinase (AMPK). When we analyzed AMPK 

protein levels (Figure 4), we observed that a cafeteria diet produces a significant decrease in the levels of 

this protein in the pancreas, which was counteracted by GSPE treatment.  
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Figure 4. Effects of GSPE on AMPK protein levels in the pancreas of cafeteria-fed rats. AMPK protein levels 

were quantified by western blot analysis. The protein expression was quantified relative to the β-actin loading 

control using ImageJ 1.44p software. The data are presented as the mean ± SEM. Different letters indicate 

significantly different groups with P<0.05.  

Discussion 

Procyanidins have clear and well-defined beneficial, protective effects against most risk factors of 

metabolic syndrome, and they have been shown to have positive effects on glucose metabolism under 

situations of slightly disrupted glucose homeostasis [1]. We have previously shown that GSPE acts 

peripherally on adipose cells to improve glycemia, which leads to lower insulinemia in cafeteria-fed rats 

[2]. However, there is limited data regarding the effects of procyanidins on β-cells [3]. Taking into account 

that β-cells are responsible for maintaining glucose homeostasis by synthesizing and secreting insulin, 

the purpose of this study was to understand the effects of procyanidins on β-cell functionality under an 

insulin resistance situation.  

Our results showed that rats fed with a cafeteria diet for 13 weeks and treated with 25 mg GSPE/kg of 

bw for 30 days had decreased insulin production. Studies with other flavonoids also showed reduced 

insulinemia. Ihm et al. showed that chronic intake of catechin for 12 weeks in the prediabetic stage 

significantly reduces insulin plasma levels [29]. This study was performed with the Otsuka Long-Evans 

Tokushima Fatty (OLETF) rat model, a distinct model of type 2 diabetes that has some characteristic 

features, such as late onset of hyperglycemia, hyperinsulinemia and obesity [30]. Similar to our results, 

the phenolic acids chlorogenic acid and caffeic acid administered with high-fat diet significantly lowered 

plasma insulin levels compared to the high-fat diet group [31]. In a similar way, a 4-week treatment with 

bitter melon extract, traditionally used as an antidiabetic, is effective for improving insulin resistance in a 

mouse model of Type 2 diabetes (animals fed with a high-fat diet for 12 weeks) by reducing blood 

glucose and insulin [32]. The authors suggested that the extract regulates the Ppars-ediated pathway, 

because thiazolidinedione (TZD), a synthetic Pparγ ligand that significantly increases insulin sensitivity 

via Pparγ, actually causes improved insulin sensitivity in a high-fat diet [33,34]. Insulin sensitivity is highly 

dependent on the peripheral actions of compounds. GSPE also proved to be effective at working through 

Pparγ in adipose tissue [2,35], but Pparγ also plays a role in pancreas tissue. We measured Pparγ 

expression in the pancreas of cafeteria-fed rats (Cafeteria: 1.50 ± 0.4; Cafeteria + 25: 1.21 ± 0.4; vs. 

Control: 1.15 ± 0.3) and we did not observe changes in Pparγ gene expression; but this might be due to 

very low levels of expression of this gene in the whole pancreas.  

Cafeteria-diet is a good model to reproduce most syndrome X human pathologies [5]. It causes the 

development of an insulin resistance situation, with hyperglycemia and hypertriglyceridemia conditions 

and hyperinsulinemia. We tested several conditions to reproduce the effects in vitro that were observed in 

vivo, and found that only hyperlipidemia mimicked them. In fact, lipotoxicity is one of the major causes of 

β-cell dysfunction in type 2 diabetes. Prolonged exposure of β-cells to high levels of fatty acids can cause 

impairment in the expression of metabolic genes, leading to decreased glucose-stimulated insulin 

secretion [36,37], as we showed.  
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In this study, we observed that chronic exposure of INS-1E cells to the fatty acid oleate resulted in 

impaired mitochondrial response, lipid accumulation in the cells, and GSIS loss. GSPE treatment partially 

reversed the deleterious effects associated with lipid accumulation. Interestingly, the effects observed in 

vitro are correlated with the GSPE effects on cafeteria-fed rats, in which pancreatic TG accumulation and 

plasmatic insulin secretion (measured as C-peptide) are significantly reduced by the GSPE treatment vs. 

cafeteria-fed rats. In these animals, GSPE also significantly decreased levels of fatty acid synthase, 

suggesting reduced fatty acid synthesis. Furthermore, GSPE tended to reduce Srebf1. In fact, this effect 

on Srebf1 gene expression has also been observed in the white adipose tissue of cafeteria-fed rats [2] 

after 30 days of GSPE treatment and in the liver after 10 days of treatment [18]. Since Srebf1 activates 

the expression of acetyl-CoA, down-regulation of Srebf1 by GSPE could result in a lower concentration of 

malonyl-CoA in β-cells and, therefore, an increase of Cpt-1a [38]. We actually found increased gene 

expression of Cpt-1a, suggesting that the fatty acids that were present in the cytoplasm could be 

consumed via β-oxidation upon activation of the long fatty acid carrier Cpt1a, which carries the fatty acids 

through the mitochondrial membrane. A similar effect was observed in HepG2 cells treated with luteolin, 

one of the most common flavonoids [39]. Liu et al. have shown that luteolin decreases gene expression of 

Srebf1 and Fasn and increases Cpt1a gene expression in the absence and presence of palmitate and it 

enhances the phosphorylation of AMPK, leading to a decrease in intracellular lipid levels of HepG2 cells. 

AMPK, which plays a central role in regulating cellular metabolism and energy balance [40], is also 

activated by several other natural compounds, including resveratrol, epigallocatechin gallate, berberine 

and quercetin [41]. In MIN6 cells, berberine acutely increased AMPK activity and in high-fat diet-fed rats 

treated with berberine for 6 weeks, it decreased plasma glucose and insulin levels and improved the 

blood lipid profile [42]. We therefore assessed AMPK involvement in the effects of GSPE and found that a 

cafeteria diet significantly decreased AMPK protein levels in the pancreas, while GSPE treatment 

increased levels back up to the levels seen in the control group. It must be highlighted that total AMPK 

protein levels and AMPK phosphorylation levels follow the same tendency [43-45]. Interestingly, islets 

cultured with the AMPK activator 5-amino-4-imidazolecarboxamide riboside (AICAR) decreased the 

expression of Srebf1 and cellular TG content, effects that we observed in INS-1E after GSPE treatment 

[46]. Taken together, these observations show that GSPE promotes lipid mobilization in β-cells, favoring a 

negative energy balance. This effect is mediated through AMPK and it causes changes in insulin 

secretion.  

In conclusion, we show that under situations of insulin resistance, chronic GSPE treatment (25 mg 

GSPE/Kg of bw) significantly decreases insulin production. The effects of GSPE on lipid-damaged β-cells 

can be explained through its lipid-lowering effect because the TG content in the pancreas was reduced, 

and procyanidin treatment also affected lipid oxidation through the up-regulation of Cpt1a gene 

expression and through lipogenesis, which down-regulated Fasn and Srebf1 gene expression. Moreover, 

GSPE treatment prevented the decrease in AMPK protein levels seen after cafeteria treatment.  
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ABSTRACT 

Grape seed procyanidins have been described to modify glucose metabolism and β-cell functionality 

through their lipid-lowering effects in a diet-induced obesity model. The objective of the present study was 

to evaluate the effects of chronically administrated grape seed procyanidin extract (GSPE) on the 

proteomic profile of isolated pancreatic islets from Zucker fatty (ZF) rats, a genetically-induced obesity 

model. To achieve this objective, an iTRAQ experiment was conducted, and 31 proteins were found to be 

differentially expressed in ZF rats treated with GSPE for two months compared to untreated ZF rats. Ten 

proteins were upregulated, and 21 were downregulated. Of these differentially expressed proteins, five 

subcategories of biological processes emerged: hexose metabolic processes, response to hormone 

stimulus, apoptosis and cell death, translation and protein folding, and macromolecular complex 

assembly. Gene expression analysis supported the role of the first three biological processes, concluding 

that GSPE limits insulin synthesis and secretion and tends to induce apoptosis, but these molecular 

changes are not sufficient to counteract the genetic background of the Zucker model at a physiological 

level. 
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Introduction 

The increased prevalence of obesity has become a worldwide problem. Obesity is associated with 

insulin resistance and type 2 diabetes mellitus (T2DM), which has also reached epidemic proportions 

[1,2]. T2DM is a metabolic disorder characterized by hyperglycemia, altered lipid metabolism, and 

impaired insulin action in peripheral tissues [3,4]. T2DM is also associated with a deficient β-cell insulin-

secretory response to glucose [3,4] and involves a combination of genetic and environmental or lifestyle 

factors [3,5]. While genetic background is responsible for insulin resistance and β-cell failure, weight gain 

and physical inactivity exacerbate these inherited metabolic abnormalities [5].  

Procyanidins are the most abundant phenolic compounds in the human diet, and they are widely 

found in fruits, berries, beans, nuts, cocoa-based products, and wine [6,7]. Procyanidins are known to 

have protective effects against cardiovascular diseases, as they have antioxidant and anti-inflammatory 

properties and prevent atherosclerosis [6]. However, there is little information about procyanidins’ effects 

on the endocrine pancreas, which is a key organ of nutrient metabolism [8]. We have recently described 

the effects of some doses of grape seed procyanidin extract (GSPE) on healthy animals [9]. Moreover, in 

a previous study by our group, GSPE was described to modify glucose metabolism by modulating plasma 

insulin levels and acting on peripheral tissues. The modifications were observed in the circumstance of 

obesity and mild insulin resistance induced by cafeteria diet [10]. In this model, the effects of GSPE on 

lipid-damaged β-cells can be explained by its lipid-lowering effect; procyanidins reduced the triglyceride 

content in the pancreas, stimulating β-oxidation and inhibiting lipid synthesis (submitted results). 

Given these findings, the aim of the present study was to evaluate the effect of GSPE on the 

proteomic profile of the endocrine pancreas by utilizing a model of genetically-induced obesity (Zucker 

fatty rats). Zucker fatty rats are extensively used as a model of obesity and pre-diabetes and are 

characterized by insulin resistance and glucose intolerance. These rats are genetically obese, due to a 

mutation in the leptin receptor gene [11,12]. Under the influence of obesity and insulin resistance, β-cells 

are exposed to elevated glucose, insulin, and lipid levels. β-cells physiologically adapt to these conditions 

through increased β-cell mass and enhanced β-cell function [12,13]. We completed an iTRAQ experiment 

and identified proteins differentially expressed, which then we clustered, categorized according to Gene 

Ontology (GO) terms, and visualized into network context, in order to understand the proteome profile of 

isolated pancreatic islets from Zucker fatty rats chronically treated with GSPE.  

Materials and methods 

Reagents. According to the manufacturer, GSPE (Les Dérives Résiniques et Terpéniques, Dax, France) 

contained monomeric (16.6 %), dimeric (18.8 %), trimeric (16.0 %), tetrameric (9.3 %), and oligomeric 

procyanidins (5 to 13 units, 35.7 %), as well as phenolic acids (4.2 %).  

Procedures. Five-week-old lean (10 animals, 113-135 g) and obese (20 animals, 129-170 g) female 

Zucker fa/fa rats were purchased from Charles River (Barcelona, Spain). The rats were housed in animal 

quarters at 22ºC with 12 h light/dark cycle and fed ad libitum with a standard chow diet (Panlab 04, 

Barcelona, Spain) and tap water. After 1 week in quarantine, the treatment began as previously described 

[14]. Briefly, the lean control group (ZL) and ten randomly divided Zucker fatty rats (ZF) were treated with 

a vehicle (sweetened condensed milk diluted 1:6 with tap water). The other ten obese Zucker rats (ZF + 

GSPE) were treated daily with 35 mg of GSPE/kg of body weight (bw) dissolved in the vehicle. Every day 

at 8 am, food was withdrawn, and at 4 p.m., the vehicle (or treatment) was administrated by controlled 

oral intake with a syringe. At 5 p.m., the food was replaced. After two months of treatment, the animals 

were anesthetized using sodium pentobarbital (Sigma-Aldrich, St. Louis, MO) at 75 mg/kg of bw and were 

killed by abdominal aorta exsanguination. Blood was collected, and pancreatic islets were isolated from 

all of the animals. Insulin (Mercodia, Uppsala, Sweden), C-peptide (Mercodia, Uppsala, Sweden), and 

glucagon (Wako Chemicals, Neuss, Germany) plasma levels were assayed using ELISA methodology 
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following the manufacturers’ instructions. Glucose (QCA, Amposta, Spain) and non-esterified fatty acids 

(NEFA) (Wako Chemicals, Neuss, Germany) plasma levels were determined using an enzymatic 

colorimetric kit. All procedures were approved by the Experimental Animals Ethics Committee of the 

Universitat Rovira i Virgili. 

Islet isolation. Islets were obtained by collagenase digestion, as described previously [9]. Briefly, the rats 

were anesthetized, and the pancreas was infused with 7 mL of ice-cold collagenase P (Roche 

Diagnostics, Mannheim, Germany) solution (1 mg/mL) before removal and were incubated at 37ºC for 15 

min. Islets were purified on a Histopaque gradient (Sigma-Aldrich, St. Louis, MO) and handpicked until a 

population of pure islets was obtained. 

Proteome sample preparation and analysis. Islets were lysed with 100 µl of solution containing 8 M urea 

and 0.1 % ProteaseMAX
TM

 Surfactant (Promega, Madison, WI). Following lysis, samples were 

centrifuged at 14000 rpm for 20 min to remove cell debris. Total protein content from the supernatants 

was determined by the Bradford method [15]. Equal amounts of protein from 1-3 rats of each 

experimental group were pooled, and 70 µg of each pool was reduced, alkylated, digested and labeled 

with a different 8-plex iTRAQ reagent, as described in the iTRAQ protocol (Applied Biosystems, Foster 

City, CA). Finally, all of the labeled samples were combined as a unique sample. Half of the unique 

sample (200 µg) was used to conduct isoelectric focusing. Peptides were focused at 5000 V until 12000 

V/h. After focusing, the strip was divided into 15 pieces, and the peptides were extracted with three 

different solutions: 0.1 % trifluoroacetic acid (TFA); 50 % acetonitrile (ACN), 0.1 % TFA; and ACN 0.1 % 

TFA. The extracts were combined and concentrated into a volume of 9 µL. The other half of the sample 

was loaded onto a Reverse Phase Column (Gemini, 3 µm, C18 110 Å, Phenomenex, Torrance, CA) and 

peptides were separated in a 5-45 % linear gradient of solvent B (20 mM triethylamine in ACN) in 60 min 

at a flow rate of 0.15 ml/min. The fractions were analyzed by MALDI-TOF/TOF MS (4700 Proteomics 

analyzer, AB Sciex, Foster City, CA) and combined for a final amount of 15 fractions. Peptides contained 

in the fractions obtained after reversed-phase chromatography were separated by liquid chromatography 

and subjected to MS/MS analysis to sequence the peptides using an Ultimate Plus/Famos nano LC 

system (LC Packings, Amsterdam, The Netherlands) and a QSTAR XL hybrid quadrupole-TOF 

instrument (AB Sciex, Foster City, CA) equipped with a nano-electrospray ion source (Protana, Odense, 

Denmark). The samples were pre-concentrated on a 0.3 x 5 mm, 3 µm, C18 trap column from LC 

Packings PepMap (Dionex Company, Amsterdam, The Netherlands) at a flow rate of 40 µL/min, utilizing 

0.1 % TFA as the mobile phase. After three minutes of pre-concentration, the trap column was 

automatically switched in-line with a 0.075 x 150 mm, 3 µm, Dionex C18 PepMap column from LC 

Packings (Amsterdam, The Netherlands). Mobile phases consisted of solvent A (0.1 % formic acid in 

water) and solvent B (0.1 % formic acid in 95 % ACN). Chromatographic conditions were a linear gradient 

from 95 % to 50 % solvent A in 30 min at a flow rate of 0.25 µL/min. The column outlet was directly 

coupled to a nano-eletrospray ion source (Protana, Odense, Denmark) using a 10-µm PicoTip EMITTER 

SilicaTip needle (New Objective, Massachusetts, USA). The positive TOF mass spectra were recorded 

on the QSTAR instrument using information-dependent acquisition (IDA). The TOF MS survey scan was 

recorded for mass range m/z 350 to 1800 followed by MS/MS scans of the three most intense peaks. 

Typical ion spray voltage was in the range of 2.5 to 3.0 kV, and nitrogen was used as collision gas. The 

spray positions and other source parameters were optimized with a tryptic digest of a protein standard 

mixture (LC Packings, Amsterdam, The Netherlands). 

Database search. Search on SwissProt database (523,151 sequences and 184,678,199 residues) was 

performed using Mascot 2.2 in combination with the Mascot Daemon interface 2.2.2 (Matrix Science, Inc., 

Massachusetts, USA) (hppt://www.matrixscience.com) and the ProteinPilot 3.0 software (Applied 

Biosystems, Foster City, CA). Mascot.dll 1.6b25 and ABSciex.DataAccess.Wiff File DataReader.dll were 

used for importing data into Mascot and Protein Pilot, respectively. Mascot searches were performed with 

trypsin enzymatic specificity, allowing one missed cleavage and a tolerance on the mass measurement of 
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100 ppm in MS mode and 0.6 Da for MS/MS ions. Deamidation of Asparagine-Glutamine and oxidation of 

Methionine were used as variable modifications. Using ProteinPilot software is not necessary to fix mass 

tolerance or possible modifications because the Paragon algorithm used preset values. The results were 

represented as ZL/ZF and ZF+GSPE/ZF ratios, and each ratio has a P-value associated with it. The P-

value is the probability that the iTRAQ ratio is different from 1 by chance. For protein identifications where 

no hit was found in the rat databases, protein homology search was done using the BLAST tool from 

NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The protein with highest identity was considered. For the 

proteins identified, the cellular compartment, molecular function and biological process were assigned 

according to the DAVID (Database for Annotation, Visualization and Integrated Discovery) [16,17]. 

Additionally, the data were hierarchically clustered using the Cluster 3.0 software [18] (version 1.5), and 

the results were visualized with Java TreeView software [19] (version 1.1.6r2). The list of significantly 

regulated proteins by GSPE was further analyzed using the network building tool, Ingenuity Pathway 

Analysis (IPA) (Ingenuity Systems, Inc.), which uses the Ingenuity Pathways Knowledge Base. 

Hypothetical networks of proteins from our experiment and proteins from the Ingenuity database were 

built using the de novo network-building algorithm. IPA calculates a significance score for each network, 

where score=-log10(P-value). This score specifies the probability that the assembly of a set of proteins in 

a network could be generated randomly. A score of 3 indicates that there is a 1 in 1000 chance that the 

focus proteins are arranged together in a network due to random chance. Therefore, networks with 

scores of 3 or higher have a 99.9 % confidence of not being generated by random chance [20].  

Apoptosis assay. Thirty pancreatic islets of ZL rats and 20 islets of ZF and ZF+GSPE were lysed. 

Oligonucleosomes in the cytosol, indicative of apoptosis-induced DNA degradation, were quantified using 

the Cell Death Detection kit ELISA
PLUS

 (Roche Diagnostics, Mannheim, Germany) according to the 

manufacturer’s instructions. The absorbance value of the blank was subtracted from the values of the 

sample, and the results were normalized with the protein content of the islets, as analyzed by Bradford 

method [15].  

Quantitative RT-PCR. Total RNA from isolated islets was extracted using the RNeasy Mini Kit (Qiagen, 

Barcelona, Spain), and cDNA was generated with the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA). The cDNA from all of the experiments was subjected to 

quantitative Real-Time PCR amplification using the TaqMan Master Mix (Applied Biosystems, Foster City, 

CA). Specific TaqMan probes (Applied Biosystems, Foster City, CA) were used for each gene (Table 3), 

and β-actin was used as the reference gene (Rn00667869-m1). Reactions were run on a quantitative RT-

PCR 7300 System (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. 

The relative mRNA expression levels were calculated using the ∆∆Ct method. 

Calculations and Statistical Analysis. Results are expressed as the mean ± SEM. Effects were assessed 

by Student’s t-test. All calculations were performed with SPSS software. 
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Results 

Effects of GSPE on the pancreatic islet proteomic profile.  

A daily dose of 35 mg/kg of GSPE was administrated to ZF rats for two months. At the end of the 

treatment, plasma levels of glucose, insulin, C-peptide, glucagon and NEFA were quantified (Table 1). All 

of the parameters were significantly increased in ZF rats, but GSPE did not counteract this increase. A 

similar pattern was previously observed in the quantification of triglycerides [14].  

Table 1. Plasmatic parameters 

 ZL ZF ZF + GSPE 

Glucose (mM) 7.2 ± 0.6 a 9.8 ± 0.5 b 9.9 ± 0.9 b 

Insulin (µg/L) 1.0 ± 0.2 a 9.8 ± 0.6 b 10.0 ± 0.5 b 

C-Peptide (nM) 0.7 ± 0.1 a 5.8 ± 0.3 b 5.6 ± 0.5 b 

Glucagon (pg/mL) 166.4 ± 6.3 a 273.9 ± 33.2 b 265.7 ± 20.2 b 

NEFA (mg/dL) 8.8 ± 0.8 a 29.3 ± 1.7 b 31.9 ± 3.5 b 

Different letters indicate the statistically significant differences between treatments (P-Value ≤ 0.05). 

In order to analyze the proteomic profile of the pancreatic islets after the treatment with GSPE, an 

iTRAQ experiment was conducted. The information from the iTRAQ experiment was analyzed using the 

ProteinPilot search algorithm against the SwissProt database, and a total of 84 proteins were identified. 

Regarding to the effect of the genetic background, 21 proteins that were differentially expressed in ZL vs. 

ZF, 18 were associated with a P-value ≤ 0.05, and 3 were associated with a P-value ≤ 0.1. Additionally, 4 

of these differentially expressed proteins were upregulated, while the other 17 were downregulated (Table 

2). Concerning the effect of the procyanidin treatment in the genetically obese rats 31 proteins were 

differentially expressed in ZF + GSPE rats when compared to ZF rats. Of these, 18 were associated with 

a P-value ≤ 0.05, and 13 were associated with a P-value ≤ 0.1; furthermore, 10 were upregulated, while 

21 were downregulated (Table 2). 

The proteins modified by GSPE were analyzed using DAVID according to the different categories in 

the GO classification. In the cellular component category, the highest proportion of differentially 

expressed proteins was cytosolic, and the classification based on the molecular functions revealed that 

the proteins were associated with structural molecular activity, catalytic activity, and binding functions. 

Upon analysis of the biological process, five subcategories were obtained: hexose metabolic, translation 

and protein folding, macromolecular complex assembly, response to hormone stimulus, and apoptosis 

and cell death (Figure 1 A-E). 
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Figure 1. Biological processes of proteins whose expression was significantly modulated by GSPE treatment 

assessed using the DAVID database. The proteins involved in A) hexose metabolic process, B) translation and 

protein folding, C) macromolecular complex assembly, D) response to hormone stimulus, and E) apoptosis and cell 

death, are presented.  
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Table 2. Differentially Expressed Proteins
a
 

Swiss-Prot 

Accession 

Number 

Gene name Protein name 

Number of 

matched 

peptides 

ZL / ZF 
ZF+GSPE / 

ZF 

P06761 Hspa5 78 kDa glucose-regulated protein 16 0.81 * 0.85 # 

P10719 Atp5b 
ATP synthase subunit beta. 

mitochondrial 
9 0.93 0.85 # 

P63259 Actg1 Actin. cytoplasmic type 8 28 0.64 ** 0.89 * 

P11598 Pdia3 Protein disulfide-isomerase A3 19 0.74 ** 0.78 ** 

P02091 Hbb Hemoglobin subunit beta-1 10 0.48 ** 0.67 ** 

P00731 Cpa1 Carboxypeptidase A1 10 0.86 * 1.70 ** 

P00689 Amy2 Pancreatic alpha-amylase 4 2.01 ** 1.22 

P01946 Hba1 Hemoglobin subunit alpha-1/2 33 0.49 ** 0.69 ** 

Q66HD0 Hsp90b1 Endoplasmin 14 0.65 ** 0.84 ** 

P62804 Hist1h4b Histone H4 18 1.71 ** 1.49 ** 

P01322 Ins1 Insulin-1 5 0.75 0.56 ** 

Q9WVK7 Hadh 
Hydroxyacyl-coenzyme A 

dehydrogenase, mitochondrial 
5 0.71 ** 0.82 # 

P06883 Gcg Glucagon 6 2.94 ** 0.57 ** 

O88989 Mdh1 Malate dehydrogenase, cytoplasmic 11 0.58 ** 0.69 ** 

P62630 Eef1a1 Elongation factor 1-alpha 1 3 1.40 1.39 # 

P27657 Pnlip Pancreatic triacylglycerol lipase 6 1.06 1.34 * 

P04797 Gapdh 
Glyceraldehyde-3-phosphate 

dehydrogenase 
8 0.91 0.65 * 

Q6IMF3 Krt1 Keratin. type II cytoskeletal 1 6 0.98 0.27 ** 

Q6P9V9 Tuba1b Tubulin alpha-1B chain 5 0.67 * 0.71 # 

P19222 Cpa2 Carboxypeptidase A2 3 0.86 1.89 # 

P11980 Pkm2 Pyruvate kinase isozymes M1/M2 3 1.01 0.64 # 

P84245 H3f3b Histone H3.3 5 1.07 1.21 # 

P63039 Hspd1 60 kDa chaperonin 7 0.38 ** 0.46 ** 

D3ZUL3 Col6a1 Collagen alpha-1(VI) chain 2 0.99 1.31 # 

P10111 Ppia Peptidyl-prolyl cis-trans isomerase A 5 1.06 0.81 # 

P54316 Pnliprp1 Pancreatic lipase-related protein 1 5 0.70 # 1.22 

Q05962 SLC25A4 ADP/ATP translocase 1 5 0.81 1.32 * 

P19944 Rplp1 60S acidic ribosomal protein P1 3 0.74 1.44 # 

P62989 Ubb Polyubiquitin-B 2 1.14 1.54 # 

P15087 Cpe Carboxypeptidase E 4 0.96 0.61 ** 

P07338 Ctrb1 Chymotrypsinogen B 2 0.54 ** 1.17 

Q63617 Hyou1 Hypoxia up-regulated protein 1 2 0.55 # 0.74 * 

Q8CIS9 Krt9 Keratin. type I cytoskeletal 9 6 0.58 ** 0.20 ** 

P38983 Rpsa 40S ribosomal protein SA 2 1.50 * 1.29 

P34139 Rab1A Ras-related protein Rab-1A 2 0.52 ** 1.10 

Q9Z2L0 Vdac1 
Voltage-dependent anion-selective 

channel protein 1 
3 0.78 # 0.80 # 

a
 SwissProt accession number, gene name, protein name, number of identified peptide sequences, fold regulation ZL 

vs. ZF, fold regulation ZF+GSPE vs. ZF. * P-Value ≤ 0.05; ** P-Value ≤ 0.01;  # P-Value ≤ 0.1. 
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Clustering analysis of the differentially expressed proteins in the iTRAQ experiment.  

The iTRAQ ratios of ZL/ZF and ZF+GSPE/ZF were used to perform hierarchical clustering of the 

differentially expressed proteins using the Cluster 3.0 software, and the results were visualized with Java 

TreeView software (Figure 2A). The values for the ZF group were assigned as 1 for all of the proteins. 

The hierarchical clustering revealed that the 36 proteins modified in ZL vs. ZF and/or ZF+GSPE vs. ZF 

were clustered in four expression patterns (Figure 2B). Two clusters exhibited a profile in which 

ZF+GSPE counteracted the effect of ZF: Down-Up in which the expression of 5 proteins was 

downregulated in ZF versus ZL, and the effect was counteracted by GSPE; and Up-Down, in which the 

expression of 12 proteins was upregulated in ZF versus ZL, and the effect was counteracted by GSPE. 

The major biological function affected in these clusters was apoptosis and cell death, with 31 % of the 

proteins being included in this category. Among these proteins, Pdia3, Hspd1, and Vdac1 are positive 

regulators of apoptosis included in the Up-Down cluster, and Eef1a1, involved in negative regulation of 

apoptosis, was found in the cluster Down-Up. The other biological processes with various proteins 

involved were translation and protein folding and macromolecular complex assembly. The other two 

clusters included proteins that showed a general profile in which ZF had no effects, though ZF + GSPE 

did: Down, in which the expression of 8 proteins was not modified in ZF versus ZL but was downregulated 

in ZF+GSPE versus ZF; and Up, in which the expression of 11 proteins was mainly not modified in ZF but 

was upregulated in ZF+GSPE versus ZF. Within the Down cluster, 50 % of the proteins (Ins1, Gapdh, 

Pkm2, and Cpe) were classified in the GO biological process of hexose metabolic process and response 

to hormone stimulus. The group Up was more heterogeneous, exhibiting effects of GSPE in proteins 

classified into diverse biological processes. 

 

Figure 2. A) Hierarchical clustering for differentially expressed proteins performed using the Cluster 3.0 program [18]. 

Red gradients represent upregulated proteins, and green gradients represent downregulated proteins compared to 

ZF rats (which ratio is 1, represented in black). 
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Figure 2. B) Six different clusters were derived from the analysis and are represented in different graphics. 

Network analysis of differentially expressed proteins in ZF rats treated with GSPE.  

The 31 proteins differentially expressed in ZF+GSPE rats were imported into the Ingenuity Pathway 

Analysis software and were mapped to two different protein networks in the Ingenuity database (Figure 

3A and B). Network A had a score of 48 (P-value = 10
-48

) and included the following top functions: free 

radical scavenging, cell function and maintenance and cellular compromise. Network B had a score of 25 

(P-Value = 10
-25

) and included the following top functions: drug metabolism, lipid metabolism and 

molecular transport.   
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Figure 3. Hypothetical networks associated with the proteins differentially expressed following treatment of GSPE in 

Zucker Fatty rats generated by Ingenuity Pathway Analysis software. In the analysis, two networks were generated, A 

and B. Proteins are represented as nodes with different shapes that represent different functional type of proteins. 

Upregulated proteins are shown in red, and downregulated proteins in green. Proteins depicted in white are proteins 

from the Ingenuity database. The relationship between proteins is represented as a line, and the arrowheads indicate 

the direction of the interaction. 
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Apoptosis and expression analysis in pancreatic islets.  

Given that one of the subcategories obtained in the biological process analysis using DAVID was 

apoptosis and cell death, the apoptosis levels in the isolated islets were determined (Figure 4). The 

results indicate that apoptosis was increased in the islets from ZF and ZF+GSPE rats compared to the 

islets from ZL rats. No significant difference in apoptosis was observed between ZF and ZF+GSPE, but 

GSPE treatment counteracted the effects of ZF on gene expression of the anti-apoptotic marker Bcl-2 

and the proliferation marker Cyclin D2 (Table 3). 

 

Figure 4. Apoptosis of the isolated islets assessed using the cell death apoptosis kit (Roche) that quantifies the 

histone-complexed DNA fragments. The results were normalized with the quantity of protein in the islets. The data 

are shown as the mean ± SEM of 5 ZL, 7 ZF and 6 ZF+GSPE rats. Different letters indicate groups significantly 

different (P-value ≤ 0.05). 

Conversely, considering that another subcategory obtained in the DAVID analysis was hexose 

metabolic processes and that insulin and glucagon were modified at the protein level in the proteomic 

experiment, the gene expression levels of insulin and glucagon were also assayed. Additionally, the 

expression of other genes involved in the insulin synthesis, secretion and degradation pathways were 

assayed (Table 3). The gene expression of insulin and glucagon followed the same profile that was 

obtained in the proteomic experiment. Glucagon protein levels were significantly downregulated in ZF 

compared to ZL and in ZF+GSPE compared to ZF; the mRNA levels of this gene followed the same 

tendency. Similarly, insulin protein levels were downregulated in ZF+GSPE compared to ZF. Insulin gene 

expression was upregulated in ZF compared to ZL, and GSPE counteracted this effect. The same profile 

was seen in the expression of the transcription factor that regulates insulin gene expression, that is, Pdx-

1; in one of the regulators of insulin secretion, that is, glucokinase; and in a protein that can alter the 

insulin secretion process, that is, Ucp2 (Table 3). 

    Table 3. Islets gene expression 

Gene Name 
Commercial 

reference 
ZL ZF ZF + GSPE 

Ins2 Rn01774648-g1 1.0 ± 0.1 a 3.2 ± 0.2 b 1.8 ± 0.4 a 

Pdx1 Rn00755591-m1 1.0 ± 0.1 ab 1.3 ± 0.1 b 0.9 ± 0.2 a 

Pparg Rn00440945-m1 1.1 ± 0.3 a 2.4 ± 0.3 b 1.9 ± 0.2 ab 

Gck Rn00561265-m1 1.0 ± 0.0 ab 1.4 ± 0.1 b 1.0 ± 0.1 a 

Ucp2 Rn01754856-m1 1.1 ± 0.2 a 2.1 ± 0.2 b 1.6 ± 0.2 ab 

Bcl2 Rn99999125_m1 1.2 ± 0.3 ab 1.3 ± 0.1 a 0.9 ± 0.1 b 

Bax Rn01480160_g1 0.9 ± 0.2 a 1.1 ± 0.0 a 1.0 ± 0.2 a 

Ratio Bcl2/Bax 0.9 ± 0.1 a 1.3 ± 0.1 b 1.0 ± 0.1 a 

Ddit3 Rn01458526_m1 1.4 ± 0.5 a 1.4 ± 0.3 a 1.7 ± 0.4 a 

Ccnd2 Rn01492401_m1 1.0 ± 0.0 a 1.4 ± 0.1 b 0.8 ± 0.1 a 
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Mki67 Rn01451446_m1 1.0 ± 0.1 a 2.2 ± 0.3 b 1.6 ± 0.2 b 

Gcg Rn00562293_m1 1.1 ± 0.2 a 0.7 ± 0.1 ab 0.5 ± 0.1 b 

Ppy Rn00561768_m1 1.0 ± 0.1 a 0.7 ± 0.2 ab 0.5 ± 0.1 b 

Different letters indicate the statistically significant differences between treatments (P-Value ≤ 0.05). 

Discussion 

Procyanidins are flavonoids with well-known antioxidant and anti-inflammatory activity that protect 

against cardiovascular and metabolic diseases. However, the effects of procyanidins on glucose 

metabolism and the endocrine pancreas are poorly investigated [8]. Since obesity is associated with 

insulin resistance, ZF rats are a useful model to analyze the effects of natural compounds in pancreatic 

islets under conditions of insulin resistance. Therefore, the aim of the present study was to analyze the 

effect of GSPE on the proteomic profile of isolated pancreatic islets of Zucker fatty rats. For this purpose, 

we carried out a proteome analysis, and we obtained 31 proteins differentially expressed in islets isolated 

from ZF+GSPE rats compared to ZF rats. These differentially expressed proteins provide information that 

aids our understanding of the effects of procyanidins on a genetically induced pre-diabetic model. To 

understand better the changes induced by GSPE, we also analyzed the effect of the genetic obese 

background by comparing ZF and ZL rats. A similar proteome analysis had been previously performed 

[21]. Clustering analysis revealed that GSPE effects counteracted the action of the obesity-related genetic 

mutation in ZF rats for approximately half of the proteins. The main effects were related to processes 

involving apoptosis and cell death followed by translation and protein folding and macromolecular 

complex assembly, suggesting an improvement in the genotype-induced dysfunction. 

Our main objective was to identify the role of GSPE on the ZF pancreatic islet proteome. The GO 

analysis using DAVID allowed us to identify the biological processes that involve proteins that are 

expressed differently following GSPE treatment. One subcategory obtained in the biological process 

analysis was apoptosis and cell death. Procyanidins have been shown to modulate apoptosis in other 

tissues/cell lines. These compounds have been found to be pro-apoptotic in cancer cell lines. 

Procyanidins from hops decreased the cell viability of human colon cancer HT-29 cells [22], and dimer 

procyanidins produced significant cytotoxicity in numerous human cancer cell lines [23]. Conversely, 

antiapoptotic activity has been suggested for procyanidins in non-cancer cells. Grape procyanidins 

inhibited the damage induced by ethanol and carbon tetrachloride in rat hepatocytes [24], and they 

protected against cardiac cell apoptosis via the induction of endogenous antioxidant enzymes [25]. 

Previous experiments by our group showed that GSPE modulates apoptosis markers in the pancreas 

(submitted results); therefore, we were interested in analyzing this subcategory in more detail. We 

checked apoptosis and apoptosis markers in the pancreatic islets. GSPE did not counteract the increased 

apoptosis levels in pancreatic islets of ZF rats. The mRNA levels of the antiapoptotic marker Bcl-2 were 

decreased by GSPE treatment, as well as the ratio Bcl-2/Bax, which counteracts the effects of ZF. The 

expression of Cyclin D2 (a marker of proliferation), which was increased in the ZF rats, was also 

decreased by GSPE treatment. However, GSPE modulated some proteins involved in the apoptotic 

process. GSPE treatment increased expression of Eef1a1, which mediates cytoskeletal changes during 

cell death [21,26]; this treatment also decreased the levels of chaperones involved in endoplasmatic 

reticulum (ER) homeostasis and the unfolded protein response (UPR) following ER stress (Hspd1 [27], 

Hspa5 [28], and Hsp90b1 [29,30]). Procyanidins also decreased Cpe, which positively controls β-cell 

survival via effects on ER stress [31,32], and Vdac1, the mitochondrial element of the cell-death pathway 

[33]. Most of these proteins are included in the clusters in which GSPE counteracts the effects of ZF 

genotype. With all of this information, the effects of GSPE on cell death and apoptosis are not clearly 

understood. However, using ZF rats as a reference for apoptosis, GSPE would tend to improve the 

process, as procyanidins counteract apoptotic markers at the gene and protein level, although they do not 

induce changes in the final apoptosis levels.  
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Another biological process identified in the functional analysis of the differentially expressed proteins 

induced by GSPE was translation and protein folding. The ER is the organelle where the protein folding 

takes place, and beta cells are very sensitive to disruptions in ER homeostasis. When ER exceeds its 

folding capacity ER stress occurs, and this activates the UPR, which mitigates stress. ER stress seems to 

be one of the molecular mechanisms of beta-cell dysfunction contributing to diabetes [34]. Analysis of 

differentially expressed proteins in Zucker diabetic rats compared to ZL rats showed a reduction of 

Hspd1/Hspe1 chaperone complex [21]. We found that GSPE decreased protein levels of the chaperones 

Hspd1, Hsp90b1, and Hspa5, proteins that promote protein folding and degradation [35]; and of protein 

disulfide-isomerase A3 (Pdia3), involved in ER-associated degradation. Chaperones Hspa5 and 

Hsp90b1, as well as Pdia3, were also decreased in the beta-cell line INS-1E when severe ER stress was 

induced or when they were treated with high glucose, indicating a defective UPR [33,36,37]. GSPE 

treatment also increased Polyubiquitin-B (Ubb), a molecule that targets misfolded proteins for degradation 

[35]. Taken together these results could point out to an alteration of the response to ER stress due to 

GSPE. On the other hand, according to clustering analysis, GSPE reversed the effects of ZF rats in this 

biological process. And GSPE increased the levels of the 60S acidic ribosomal protein P1 (Rplp1) and 

Eef1a1, which could indicate an activation of protein biosynthesis by the treatment. So our results could 

also indicate that the level of misfolded proteins is lower in ZF rats treated with GSPE and that the UPR is 

unnecessary. A reason of such reduced amount of misfolded proteins could be a lower insulin production 

by GSPE, considering that the high insulin production in β-cell due to insulin resistance is a cause of ER 

stress and activation of UPR.   

In the functional analysis using the DAVID server, we also identified hexose metabolic process and 

response to hormone stimulus that were modified at the protein level by GSPE treatment. Although we 

found that these biological processes were targets of procyanidins in the clustering analysis, we did not 

detect changes due to the fa/fa genotype. These results suggest that the effects of GSPE do not directly 

counteract the effects of the genetic background and that procyanidin actions go beyond modifying these 

processes. Insulin was one of the proteins centrally located in network A, confirming its crucial role in the 

proteome profile of pancreatic islets. These results reinforce our previous studies that describe 

procyanidins as modulators of glucose homeostasis [10,38] and insulin metabolism [9,10]. The reduced 

insulin protein and gene expression in the islets confirm GSPE as repressor of insulin production, as was 

previously suggested [9]. The downregulation of insulin production is also supported by the action of 

GSPE as a repressor of Pdx1 [39] gene expression, as we observed in previous studies [9] (and 

submitted results), and as a repressor of Cpe protein levels [40]. The proteome profile study also 

uncovered proteins involved in insulin secretion that were targets of GSPE. The energetic production 

necessary to secrete insulin was decreased, and this result suggests the inhibitory effect of GSPE on the 

protein levels of two enzymes involved in the glycolytic pathway, Pkm2 and Gapdh. Protein levels of 

Atp5b, a member of ATP synthase protein complex, also decreased following GSPE treatment [41]. 

Reduced expression of a mitochondrial metabolic enzyme, malate dehydrogenase, can also contribute to 

decreased insulin secretion [42]. One of the key regulators of insulin secretion is glucokinase [43]. 

Although glucokinase protein levels were not modified by GSPE treatment, gene expression analysis 

showed that procyanidins inhibited glucokinase mRNA levels. Therefore, our data suggests that GSPE 

was able to affect insulin secretion. GSPE limits insulin synthesis and secretion, as we have found in 

other assayed animal models, i.e., healthy animals [9] and cafeteria-fed animals (submitted results). 

Conclusion 

The present study demonstrates that chronically administrated GSPE modulates the proteomic profile 

of β-pancreatic islets from Zucker Fatty rats. Procyanidins modulate proteins involved in insulin synthesis 

and secretion. Procyanidins also alter the protein or gene expression levels of other factors involved in 

apoptosis. However, the molecular changes induced by GSPE are not sufficient to counteract the genetic 

background of the Zucker model at a physiological level. In addition, the proteome analysis has provided 
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new information about the procyanidin mechanism of action and identified translation, protein folding and 

macromolecular assembly as biological processes that are targeted by procyanidins. 
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 The endocrine pancreas is a key organ in metabolic control. Because it follows enteric absorption, 

this organ might be a target of procyanidins and other flavonoids. However, little data on the effects of 

procyanidins on the pancreas can be found in the literature, as we highlighted previously [1] and revised 

in the introduction of this doctoral thesis.  

 Previous work of our research group suggests that procyanidins act on the endocrine pancreas [2]. 

Our present work was designed to verify and understand this action. It was necessary to more concretely 

describe the effects of procyanidins on β-cell functionality by studying the modulation of the insulin 

synthesis and secretion processes by grape seed procyanidin extract (GSPE) in different physiological 

states. To achieve our objectives, we used in vitro models of β-cells, mouse insulinoma MIN6 cells and 

rat insulinoma INS-1E cells; and in vivo models of non-pathological rats, cafeteria diet-fed rats and 

genetically obese Zucker fatty (ZF) rats.  

 Our research group is focused on the identification and description of new bioactive compounds with 

potential protective/preventive properties against several diseases for functional food design. Extracts 

from natural plant sources are good candidates for formulating and developing new functional foods, and 

when working with extracts, it is necessary to develop tools that will produce reliable results. It is also 

important to note that the European Union recommends restricting animal experimentation as much as 

possible.  

 Taking together all of these considerations, we designed a tool to evaluate the bioactivity of natural 

extracts on β-cells using an in vitro model (Chapter 1). We previously described a coculture system of 

Caco-2 and HepG2 cells to study the bioactivity of these extracts on hepatocytes [3]. The coculture 

system was designed with human epithelial Caco-2 cells seeded onto culture inserts and INS-1E cells 

grown on the base of the well. This method reproduced the physiological situation in which the molecules 

present in the extracts are absorbed, and in some cases metabolised, across the intestinal epithelium 

barrier to the pancreas. Although this tool allows us to work with complex mixtures of compounds and to 

reproduce the processes that these compounds suffer in the epithelium cells, we did not use this system 

in our current study because of its culture time limitations. While there is a phenotypic adaptation of the 

cells to the new culture situation in the coculture system, which might reproduce the in vivo situation, we 

found that it is better to coculture the cells for only a short time. This finding restricted the use of this 

system; it has been not useful for 24 h treatments, this being the period of time necessary to treat the 

cells to reproduce the chronic effects seen in the in vivo models. However, our coculture system is a new 

tool that could be useful for other applications. In this respect, the same approach with hepatocytes is 

more robust and can be used for many types of experiments [3].  

 To overcome the limitations that in vitro models present, the most suitable alternative to obtain 

physiological relevant data is to work with in vivo models that allow the study of concepts in a whole body 

system. Therefore, we analysed the physiological effects of GSPE on β-cell functionality in non-

pathological animals and in models with damaged β-cells.  

 To address whether different GSPE treatments modify β-cell functionality in non-pathological 

models, i.e., healthy animals (Chapter 2), we designed four different in vivo experiments using Wistar 

rats. Two experiments were chronic (21 or 36 days) dose-response treatments that were directed to 

determine the most effective dose. The GSPE doses ranged from 2.5 to 50 mg GSPE/kg of body weight 

(bw). The third experiment was a chronic treatment (45 days) with 25 mg GSPE/kg of bw, and the final 

experiment was an acute treatment (1 h) with a high dose of GSPE (1 g GSPE/kg of bw). Islets were 

isolated in the last two experiments, which allowed us to obtain more information on the effects of GSPE 

on β-cell functionality by analysing the islet insulin secretion response after stimulation with glucose.  

 These groups of animals showed peculiar insulin plasma level and HOMA index profiles when the 

results from all animal groups are represented according to the GSPE dose ingested. Whereas the lowest 
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and highest doses of GSPE did not affect insulinaemia, moderate doses, such as 315 mg GSPE/kg of bw 

* days of treatment, increased insulin plasma levels and a higher dose, 900 mg GSPE/kg of bw * days of 

treatment, decreased insulinaemia. In addition, the HOMA index values followed the same tendency, 

showing that the changes in insulin did not provoke significant changes in glycaemia. These data 

emphasise that the efficacy of procyanidins depends on the dose and time of treatment.  

 The effects of GSPE on insulinaemia may be due to modifications in insulin production (synthesis 

and/or secretion) and/or insulin removal. In fact, our data indicate that procyanidins have a tendency to 

reduce insulin biosynthesis, as shown by the insulin and PDX1 mRNA levels. Otherwise, we are able to 

explain the increase in insulin plasma levels at some moderate doses with the decrease in insulin 

removal. The expression of insulin-degrading enzyme (IDE) in the liver, the primary player in insulin 

clearance, at a dose of 315 mg GSPE/kg of bw * days of treatment decreased. These results identify IDE 

as a target of procyanidins for the first time. In fact, there is little information in the literature about the 

transcriptional regulation of IDE. In the available studies, insulin and PPARγ have been identified as 

modulators of IDE gene expression in hepatocytes and neurons, respectively [4,5]. Thus, procyanidins 

are insulinomimmetic in other tissues, and GSPE could modulate IDE gene expression in a similar 

manner as insulin. 

 Functional foods are foods and food components that provide a health benefit beyond basic nutrition. 

Functional foods are not designed to be drugs to correct or improve a disrupted function, but are 

expected to delay or avoid some initial signs of pain, allowing better health. The ability to delay or limit 

type 2 diabetes mellitus (T2DM) in Western societies is being analysed using this approach [6-8]. This 

multifactorial disease results from the interaction of environmental factors and genetic predisposition, 

leading to two abnormalities: insulin resistance and β-cell dysfunction. During the long persistent silent 

phase, known as prediabetes, that precedes the onset of T2DM, hyperinsulinaemia appears to 

compensate for insulin resistance. Hyperglycaemia then develops with progressive impaired β-cell 

function [9]. Several animal models have been used to study β-cell dysfunction, which can develop from 

other diseases to T2DM. In this doctoral thesis, we examined two animal models. First, we used a diet-

induced obesity model in which animals were fed a cafeteria diet; and in the second experiment, we 

studied genetically induced obesity with ZF rats. 

 The cafeteria diet model has been used as a robust model because it is a good reproduction of the 

diet of Western society, where the prevalence of overweight and obesity has increased drastically in the 

last decades [10]. Because we induce the damage, this animal model is very useful to assay the possible 

action of functional foods to prevent or improve the dysfunctionality. The cafeteria diet model consists of 

feeding the animals a substantial amount of salt, sugar and fat to promote voluntary hyperphagia, 

producing a rapid increase in weight gain and fat pad mass. In addition, the animals fed this type of diet 

reach a prediabetic state, showing insulin resistance and impaired β-cell function [10,11]. We previously 

described that these animals have ectopic lipid accumulation in the pancreas and increased insulin 

clearance activity mediated by IDE [12].  

 In our study, obesity was induced by feeding the animals a cafeteria diet for 13 weeks (Chapter 4). 

Then, the animals were divided into two groups: the cafeteria diet group and the cafeteria + 25 GSPE 

group, with animals fed the cafeteria diet concomitantly with 25 mg GSPE/kg of bw for 30 days. A study 

on the effects of a cafeteria diet on insulin production and clearance confirmed that treatment of rats with 

a cafeteria diet, for 17 weeks in our case, mimicked a prediabetic state [12]. Chronic GSPE treatment was 

able to improve hyperinsulinaemia [2]. Studies with other flavonoids also showed the effects of these 

phenolic compounds on reducing insulinaemia [13-15]. This decrease was due, first of all, to decreased 

insulin production; GSPE-treated animals have decreased insulin gene expression, as well as decreased 

expression of one of its major regulators, PDX1. Moreover, the pancreatic insulin content and insulin 

secretion of these animals was lower. The action of procyanidins on insulin resistance leads the cells to 
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achieve the levels of insulin production and secretion observed in the control rats. Therefore, our results 

suggest that procyanidins are able to prevent the cafeteria diet-induced dysfunction in β-cells. 

 The data presented are in accordance with previous results related to the effects of procyanidins 

mimicking some of the physiological effects of insulin [16]. Analysis of the same experiment with 

cafeteria-fed animals reported that procyanidins stimulate glucose uptake in peripheral tissues, with less 

insulin necessary to induce this uptake [2]. In this regard, the present study shows that GSPE targets the 

β-cells that are repressing insulin synthesis and secretion to adapt the insulin plasma levels to the 

physiological demands.  

 As described above, we also used a genetically induced obesity model, ZF rats, to evaluate the 

effectiveness of the extract under this genetically programmed dysfunction. The ZF rat is a model of 

obesity and prediabetes that is characterised by a point mutation in the leptin receptor. This mutation 

leads to impaired signalling of the leptin receptor, which results in hyperphagia, insulin resistance, 

hyperinsulinaemia, hyperlipoproteinaemia and obesity [17,18]. These rats become glucose intolerant but 

do not develop T2DM.  

 To assess the effects of procyanidins on β-cell functionality in the ZF model, we designed an 

experiment with three animal groups: a control lean group, a control ZF group (animals with the mutation 

in the leptin gene) and an experimental ZF + 35 mg GSPE/kg of bw group (Zucker fatty rats treated with 

GSPE) (Chapter 5). We worked with five- to six-week old rats, and the period of treatment was 10 weeks. 

We selected younger animals that guaranteed the genetically obese recessive phenotype but were not 

strongly damaged because we were expecting mild GSPE action [19]. As hypothesised, our results 

indicate that in a situation of obesity-related insulin resistance with a failure of β-cell compensation due to 

genetic factors, procyanidins are not effective enough to prevent β-cell dysfunction.  

 The analysis of insulin plasma levels demonstrates that procyanidins, at the dose and treatment time 

studied, cannot counteract hyperinsulinaemia. Therefore, these flavonoids are not able to modify insulin 

secretion (C-peptide levels). However, insulin production is decreased, as shown by the insulin mRNA 

and protein levels in isolated islets. In addition, procyanidins also reduce the expression of the β-cell 

master gene PDX1, which controls insulin gene expression. These results suggest that although 

procyanidins affect β-cell gene expression, the action of GSPE is not strong enough to show observable 

effects in insulin physiological levels. Therefore, GSPE cannot counteract the strong metabolic disruption 

resulting from the studied genetic factor.  

 After describing the effects of GSPE on insulin synthesis and secretion in non-pathological and 

insulin resistant models, we then analysed the mechanism of action of GSPE. We isolated islets from the 

rats treated with GSPE and used the β-cell line INS-1E after rejecting MIN6 cells mainly because the 

GSIS of the MIN6 cells was not very consistent.  

 A common trait found throughout our studies is that the procyanidin extract tested caused a reduced 

GSIS. When isolated islets from rats were treated acutely or chronically with GSPE, we found that the 

procyanidin extract significantly decreased the capacity of the islets to respond to glucose stimulus. Some 

of these GSPE effects in these islets could result from its effect on insulin biosynthesis because insulin 

and PDX1 mRNA levels were downregulated. It must be highlighted that the total amount of procyanidins 

reached at the end of the treatment was similar, but the analysis of procyanidin content in the plasma 

from both groups showed differences in concentration and composition, as could be expected due to their 

different treatments (Chapter 2). We found the same effect when we treated INS-1E cells chronically with 

GSPE (Chapter 2) at the mRNA and protein level. 

 Effects on mRNA expression control insulin synthesis, but an important step that controls insulin 

secretion is the cell energetic pathway from glucose entry to insulin secretion. Thus, we next evaluated 

whether some of the points in this pathway could be targets of GSPE (Figure 16). GSPE increases 
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glucose uptake in β-cells under high glucose conditions, although it decreases the expression of the key 

effectors of glucose uptake, GLUT2 and glucokinase. In addition, procyanidins impair glucose-induced 

mitochondrial hyperpolarisation, decrease ATP synthesis and alter cellular membrane potential. These 

results note that GSPE acts through decreasing the ability of β-cells to secrete insulin in response to 

glucose entry by uncoupling the entire process. 

 
Figure 16. Effects of GSPE on the insulin secretion process.  

 To identify GSPE targets in β-cells, we developed a study to create a microRNA (miRNA) profile for 

islets isolated from the animals treated chronically (45 days) with 25 mg GSPE/kg of bw to support the 

previous results (Chapter 3). MiRNAs play a key role in the regulation of metabolic processes in diabetes 

[20], and some authors have shown that flavonoids modulate miRNA expression [21-23]. In this work, we 

found four miRNAs that demonstrated significantly different expression in GSPE-treated islets. This is the 

first time, to our knowledge, that pancreatic miRNAs have been described as procyanidin targets. 

Because the information on the function of the identified miRNAs is lacking, we performed an in silico 

analysis to understand the roles of these miRNAs in the pancreas through their predicted and validated 

targets. The in silico prediction studies suggest that ion transport and response to stimuli, such as 

hormones and organic substances, including glucose, might be among the pathways affected by the 

miRNAs modulated by GSPE. Therefore, the effects that we have described on islet functionality, such as 

the modulation of cell and mitochondrial membrane permeability, might be due in part to the effects of 

GSPE on modifying miRNA expression patterns. In fact, the involvement of other miRNAs has been 

described in the regulation of pancreas functionality by modulating membrane proteins [24,25]. The main 

targets of GSPE in non-pathological β-cells are involved in mitochondrial and cellular membrane 

permeability. We did not discard the possibility of a direct GSPE role in insulin synthesis because 

according to published data [26], insulin accumulation in the cell does not seem to be responsible for the 

inhibition of insulin mRNA expression.  
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 As we observed in the non-pathological in vitro and in vivo models, GSPE targets β-cells by 

repressing their insulin production and secretion capacity; this effect was also observed in cafeteria diet-

fed animals. To evaluate if the previously described GSPE target from the non-pathological models also 

worked in an impaired β-cell environment, we incubated INS-1E cells in a high glucose, high insulin and 

high oleate medium, separately (Chapter 4). We reproduced the GSPE effects observed in the cafeteria 

diet in vivo model by culturing the β-cells with high oleate for three days. In this culture condition, GSPE 

counteracted the increase observed in the insulin mRNA levels after oleate incubation and slightly 

improved the effect of oleate on insulin secretion. These results suggest that GSPE acts on β-cell lipid 

metabolism to exert its bioactivity on insulin synthesis and secretion.  

 Next, we analysed the accumulation of triglycerides (TGs) in β-cells cultured with oleate and in the 

pancreas of cafeteria diet-fed animals. Although the GSPE effects observed in vitro were moderate, the 

results obtained in vivo indicated that the effects of GSPE on impaired β-cells are mediated by its ability 

to diminish lipid accumulation in pancreas; the GSPE-treated animals had the same amount of TGs in 

their pancreas as the control groups. Therefore, GSPE might act by up-regulating the expression of 

Cpt1a, which increases β-cell oxidation, and downregulating the expression of lipid synthesis-related 

genes, such as Fasn and Srebf1.  

 Moreover, we have described AMPK as a GSPE target because procyanidin treatment counteracts 

the decrease in AMPK protein levels due to the cafeteria diet. AMPK plays a central role in regulating 

cellular metabolism, and its activity is influenced by changes in the AMP/ATP ratio [27]. In addition, AMPK 

has been identified as a target of other natural compounds [28]. Our results show that in damaged β-cells, 

GSPE also diminishes the accumulation of TGs. 

 Once we described the effects of GSPE in non-pathological conditions and with a cafeteria diet, we 

studied the more damaged in vivo model. As described above, although GSPE represses insulin gene 

expression in islets isolated from ZF rats treated with GSPE, the effects of procyanidins are not sufficient 

to counteract the characteristic hyperinsulinaemia of this model. In this sense, we observed similar effects 

in vitro in INS-1E-cells cultured under conditions of hyperglycaemia and hyperinsulinaemia (Chapter 2), 

in which GSPE was unable to improve β-cell functionality. Similar effects were expected in INS-1E cells 

cultured with palmitate because this saturated fatty acid causes considerable negative effects on β-cell 

function [29].  

 The proteomic study of the islets isolated from the chronically treated rats (Chapter 5) gave us a 

more complete picture of the effects of GSPE on pancreatic islets. A total of 31 proteins were differentially 

expressed between ZF rats treated with GSPE and the ZF rat control group; 10 of the proteins were 

upregulated and the other 21 were downregulated. Gene Ontology (GO) analysis revealed that these 

proteins are associated with hexose metabolic processes, translation and protein folding, macromolecular 

complex assembly, response to hormone stimulus and apoptosis and cell death. Interestingly, insulin was 

identified as one of the differentially expressed proteins. GSPE treatment significantly reduced the insulin 

protein in islets, which is in accordance with the results on insulin gene expression. However, the effects 

observed in the mRNA and protein levels in islets are not observed in insulin plasma. Moreover, GSPE 

treatment decreases the protein levels of carboxypeptidase E (CPE), an important enzyme in the 

conversion of proinsulin to insulin [30]. These results support the direct effect of GSPE on insulin 

synthesis as suggested above. As a part of insulin production, the insulin secretion process is also a 

target of GSPE in ZF rats. Procyanidin treatment downregulates the protein levels of two of the enzymes 

involved in the glycolytic pathway, PKM2 (pyruvate kinase isozymes M1/M2) and GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase), and of a member of ATP synthase protein complex, 

ATP5B [31]. This effect is in accordance with the GSPE action on ATP synthesis observed in non-

damaged β-cells (Chapter 2), suggesting that procyanidin treatment in ZF rats might affect ATP synthesis 

and thus insulin secretion, although the C-peptide levels were not altered by this treatment.  
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 All of the data discussed above allow us to form a hypothesis of the GSPE mechanism of action on 

β-cells (Figure 17). 

 
Figure 17. Hypothesis of GSPE action on pancreatic β-cells. 

 According to our hypothesis and the results obtained in this study, procyanidins reduce the 

mitochondrial membrane polarisation, producing a decrease in the rate of ATP synthesis. A consequent 

increase in the AMP/ATP ratio may result in AMPK activation, and an increased ADP/ATP ratio limits the 

closure of the KATP channels (indicated by cell membrane potential), therefore triggering the Ca
2+ 

pathway 

for glucose-induced insulin secretion. In addition, as has been previously reported [32], upregulation of 

AMPK activity increases lipid oxidation and reduces TGs accumulation in β-cells. This effect produces a 

decrease in the TG/NEFA cycle, producing a diminution in the generation of lipid signalling molecules 

involved in the amplification pathways of GSIS [33]. 

 Moreover, procyanidins modify the gene expression of proteins involved in the insulin synthesis and 

secretion processes. GSPE inhibits the expression of PDX1, a master β-cell gene that regulates insulin, 

glucokinase and GLUT2 [34,35], producing a decrease in the mRNA levels of these genes. These 

procyanidin effects on gene expression lead to decreased insulin production and secretion.   

 In conclusion, GSPE modulates β-cell functionality in non-pathological states and could be used as a 

bioactive compound to limit β-cell dysfunction under high-palatable diets. Otherwise, at the assayed 

doses, its action is not sufficient to counteract a genetically induced metabolic disruption. 
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1. The coculture system designed with Caco-2 and INS-1E cells is a suitable method to assay 

the bioactivity of natural extracts of unknown bioavailability on β-cells for short treatment 

times.  

 

2. Procyanidins modulate β-cell functionality.  

In non-pathological models, GSPE acts on insulin synthesis, secretion and/or degradation. The 

efficacy of procyanidins depends on the dose and the time of treatment. 

GSPE treatment partially disrupts cafeteria diet-induced β-cell dysfunction by counteracting the 

increase in insulin production and secretion provoked by this diet. 

Although GSPE modulates β-cell gene expression, its effect on Zucker fatty model, at the dose 

and period of treatment tested, is not enough to counteract the physiological dysfunctions caused 

by the genetic mutation. 

 

3. The main target sites of GSPE in β-cells are mitochondrial and cellular membrane 

permeability. Under lipotoxic conditions, GSPE improves β-cell functionality, thus 

preventing lipid damage.  

 

4. The effects of GSPE observed on membrane permeability might be due in part to its 

effects on modifying the microRNA profile. 
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1. ABBREVIATION LIST 

 

ACH  Acetylcholine  

ACN  Acetonitrile 

ACTG1  Actin cytoplasmic type 8 

AD  Alzheimer disease 

AICAR  Activator 5-amino-4-imidazolecarboxamide riboside 

AKT1  v-akt murine thymoma viral oncogene homolog 1 

AMPK  AMP-activated protein kinase  

AMPKA2 AMP-activated protein kinase, alpha 2 

AMY2  Pancreatic alpha-amylase 

ATCC  American tissue culture collection 

ATF  Activating transcription factor 1 

ATP2A2 ATPase, Ca
2+

 transporting, cardiac muscle, slow twitch 2 

ATP5B  ATP synthase subunit beta. mitochondrial 

BAX  BCL2-associated X protein 

BCAT2  Branched chain amino-acid transaminase 2 

BCL2  B-cell CLL/lymphoma 2 

Bw  Body weight 

[Ca
2+

]c  Cytosolic free calcium 

[Ca
2+

]i  Intracellular free calcium 

CBG  Cytosolic β-glucosidase 

CCK  Cholecystokinin 

CCKAR CCKA receptor 

CDX3  Caudal type homeobox 3 

CEACAM1 Carcinoembryonic antigen-related cell adhesion molecule 1 

CEBP  CCAAT/enhancer binding protein 

CFTR  Cystic fibrosis transmembrane conductance regulator  

CNS  Central nervous system 

COL6A1 Collagen alpha-1(VI) chain 

CPA1/2  Carboxypeptidase A1/2 

CPE  Carboxypeptidase E 

CpG  Cytosine-guanosine dinucleotide  

CPT1A  Carnitine palmitolitransferase-1A 

CRE  cAMP response element 

CREB  cAMP responsive element binding protein 

CSE  Consecutive signal enhancement 

CTRB1  Chymotrypsinogen B 

DAG  Diacylglycerol 

DAVID  Database for annotation, visualization and integrated discovery 

DMEM  Dulbecco’s modified minimum essential medium 

E2  17β-estradiol 

ECG  Epicatechin gallate 

EEF1A1 Elongation factor 1-alpha 1 

EGC  Epigallocatechin 

EGCG  Epigallocatechin gallate 

EGFR  Epidermal growth factor receptor 

EGP  Endogenous glucose production 

ELK1  ELK1, member of ETS oncogene family 

ER  Endoplasmic reticulum 

ESR1  Estrogen receptor 1 

FASN  Fatty acid synthase 

FCCP  p-trifluoromethoxyphenylhydrazone  

FFA  Free fatty acid 

FOS  FBJ murine osteosarcoma viral oncogene homolog 
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FOXO1  Forkhead box O1 

FOXA2  Forkhead box A2 

FPG  Fasting plasma glucose levels 

GAB1  GRB2-associated binding protein 1 

GABA  Gamma-aminobutyric acid 

GABAAR type A GABA receptors  

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GCG  Glucagon 

GDH  Glutamate dehydrogenase 

GI  Glycemic index 

GIP  Glucose-dependent insulinotropic polypeptide 

GlcNAc N-acetylglucosamine 

GLIS3  GLIS family zinc finger 3 

GLP1  Glucagon-like peptide 1 

GLP1R  GLP1 receptor 

GLRX1  Glutaredoxin 1 

GLUT1/2/4 Glucose transporters 1/2/4 

GNAQ  Guanine nucleotide binding protein (G protein), q polypeptide 

GO  Gene ontology 

GPCR  G-protein-coupled receptors 

GRB2  Growth factor receptor-bound protein 2 

GRM5  Glutamate receptor, metabotropic 5 

GRP  Gastrin releasing peptide 

GRTA  Geniom real time analyzer 

GSIS  Glucose-stimulated insulin secretion 

GSK·  Glycogen synthase kinase 3  

GSPE  Grape seed procyanidin extract 

H3F3B  Histone H3.3 

HADH  Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial 

HBA1  Hemoglobin subunit alpha-1/2 

HBB  Hemoglobin subunit beta-1 

HBP  Hexosamine biosynthetic pathway  

HDAC1/2 Histone deacetylase 1 

HF  High fat diet 

HIST1H4B Histone H4 

HNF1A  Hepatocyte nuclear factor 1 homeobox A  

HNF4A  Hepatocyte nuclear factor 4 homeobox A 

HSP90B1 Endoplasmin 

HSPA5  78 kDa glucose-regulated protein 

HSPD1  60 kDa chaperonin 

HYOU1  Hypoxia up-regulated protein 1 

IAPP  Islet amyloid polypeptide 

IDA  Information-dependent acquisition  

IDE  Insulin-degrading enzyme 

IFG  Impaired fasting glucose 

IGF1/2  Insulin-like growth factor 1/2 

IGFR1/2 IGF receptors ½ 

IGT  Impaired glucose tolerance 

INS1/2  Insulin gene-1/2 

INSRA/B Insulin receptor type A or B 

IPA  Ingenuity Pathway Analysis 

IPGTT  Intraperitoneal glucose tolerance test 

IR  Insulin resistance 

IRS  Insulin receptor substrate 

ISL1  ISL LIM homeobox 1 
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iTRAQ  Isobaric tags for relative and absolute quantitation 

KATP channel ATP-sensitive potassium channel 

KLF11  Kruppel-like factor 11 

KRBH  Krebs-Ringer bicarbonate HEPES buffer 

KRT1  Keratin. type II cytoskeletal 1 

KRT9  Keratin. type I cytoskeletal 9 

Kv channels Voltage dependent K
+
 channels 

LC-CoA Long-chain Co-A 

LDH  Lactate dehydrogenase 

LPH  Lactase phloridizin hydrolase 

MAFA  v-maf musculoaponeurotic fibrosarcoma oncogene homolog A 

MAPK  Mitogen-activated protein kinase  

MAZ  MYC-associated zinc finger protein (purine-binding transcription factor) 

MDH1  Malate dehydrogenase, cytoplasmic 

MECP2  Methyl CpG binding protein 2 

MEKK  Mitogen-activated protein kinase kinase  

MIDD  Maternally inherited diabetes with deafness 

MiRNA  MicroRNA 

MODY  Maturity-onset diabetes of the young 

mSOS  Guanine nucleotide exchange factor 

MTORC1 Mechanistic target of rapamycin (serine/threonine kinase) complex 1 

MYC  v-myc myelocytomatosis viral oncogene homolog 

NEFA  Non-esterified fatty acids 

NEUROD1 Neurogenic differentiation 1 

NFAT  Nuclear factor of activated T-cells 

NFKB  Nuclear factor of kappa light polypeptide gene enhancer in B-cells 

NGT  Normal glucose tolerance 

NKX2-2 NK2 homeobox 2 

NKX6-1 NK6 homeobox 1 

NOD mice Non-obese diabetic mice 

NPY  Neuropeptide Yare 

NR0B2  Nuclear receptor subfamily 0, group B, member 2 

NT  Neurotensin 

OGT  O-linked N-acetylglucosaminyl transferase 

OGTT  Oral glucose tolerance test 

OLETF  Otsuka Long-Evans Tokushima Fatty  

PACAP  Pituitary adenlyate cyclase activating polypeptide 

PASK  PAS domain containing serine/threonine kinase 

PAX4/6  Paired box 4/6 

PC  Pyruvate carboxylase 

PDH  Pyruvate dehydrogenase 

PDI  Protein disulfide isomerase 

PDIA3  Protein disulfide-isomerase A3 

PDPK1  3-phosphoinositide dependent protein kinase-1 

PDX1  Pancreatic duodenal homeobox 1 

PI3K  Phosphoinositide-3-kinase  

PKA  Protein kinase A 

PKM2  Pyruvate kinase isozymes M1/M2 

PLC  Phospholipase C 

PLCB  Phospholipase C, beta 

PLCG  Phospholipase C, gamma 

PNLIP  Pancreatic triacylglycerol lipase 

PNLIPRP1 Pancreatic lipase-related protein 1 

PP  Polypeptide 

PPARG Peroxisome proliferator-activated receptor gamma 
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PPIA  Peptidyl-prolyl cis-trans isomerase A 

PPRE  Peroxisome proliferator-response element  

PRKC  Protein kinase C 

PRKCA/E Protein kinase C, alpha/epsilon 

PRKG  Protein kinase, cGMP-dependent 

PTB  Polypyrimidine tract-binding protein 

PTPs  Protein tyrosine phosphatises 

PURA  Purine-rich element binding protein A 

RAB1A  Ras-related protein Rab-1A 

RAF1  v-raf-1 murine leukemia viral oncogene homolog 1 

RAPGEF4  Rap guanine nucleotide exchange factor 4 

ROS  Reactive oxygen species 

RP  Reserve pool 

RPLP1  60S acidic ribosomal protein P1 

RPS6KB2 Ribosomal protein S6 kinase, 70kDa, polypeptide 2 

RPSA  40S ribosomal protein SA 

RRP  Readily releasable pool  

RXR  Retinoid X receptor 

SAPE  Streptavidin-phycoerythrin 

SAPK  Stress-activated protein kinase 

SAT  Subcutaneous adipose tissue 

SCS  Succinyl-CoA synthetase 

SGLT1  Sodium glucose cotransporter 1 

SH2/3  SRC homology domain 2/3 

SHC1  (Src homology 2 domain containing) transforming protein 1 

SH2B2  SH2B adaptor protein 2 

SHP2  Protein-tyrosine phosphatase containing SH2 domains 

SLC8A1 Solute carrier family 8 (sodium/calcium exchanger), member 1 

SLC17A6/7 Solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 

6/7 

SLC25A4 ADP/ATP translocase 1 

SNARE  Soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

SRE  Serum response element 

SRF  Serum response factor 

SUR1  Sulfonylurea receptor 1 

T1DM  Type 1 diabetes mellitus 

T2DM  Type 2 diabetes mellitus 

TCA cycle Tricarboxylic acid cycle 

TCF3  Transcription factor 3 

TEER  Trans-epithelium electrical resistance 

TFA  Trifluoroacetic acid 

TFAM  Mitochondrial transcription factor A 

TG  Triglycerides 

TGFA  Transforming growth factor alpha 

TRPM  Thermosensitive transient receptor potential 

TTBS   Tris-buffered saline plus tween-20  

TUBA1B Tubulin alpha-1B chain 

TXN1  Thioredoxin 

TZD  Thiazolidinedione 

UCP2  Mitochondrial uncoupling protein 2 

UNC13  Unc-13 homolog A 

UBB  Polyubiquitin-B 

UPR  Unfolded protein response 

UTR  Untranslated region 

VAT  Visceral adipose tissue 
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VDAC1  Voltage-dependent anion-selective channel protein 1 

VDCC   Voltage-dependent Ca
2+

 channels  

VIP  Vasoactive intestinal polypeptide 

ZDF  Zucker diabetic fatty rat 

ZF  Zucker fatty rats  

ZL  Zucker lean rats 

βIRKO   β-cell–specific insulin receptor knockout  

ΔΨm  Mitochondrial membrane potential 
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