
Thesis submitted by Leonardo Fialho in partial

fulfilment of the requirements for the degree of

Philosophiæ Doctor per the Universitat Autònoma

de Barcelona. This work has been advised by Dr.

Dolores Isabel Rexachs del Rosario

Escola d’Enginyeria Departament
d’Arquitectura de Computadors

i Sistemes Operatius

Fault Tolerance Configuration
for Uncoordinated Checkpoints

Bellaterra, July 2011

http://www.uab.es
http://caos.uab.es
http://caos.uab.es
http://caos.uab.es

Thesis submitted by Leonardo Fialho in partial

fulfilment of the requirements for the degree of

Philosophiæ Doctor per the Universitat Autònoma

de Barcelona. This work has been advised by Dr.

Dolores Isabel Rexachs del Rosario

Fault Tolerance Configuration
for Uncoordinated Checkpoints

Bellaterra, July 2011

—————————————————————
Dr. Dolores Isabel Rexachs del Rosario

Thesis Advisor

Abstract

Parallel computers are growing in complexity and in number

of components. The components miniaturisation and concen-

tration are the major root causes of the failures increasingly

seen on these computers. Thus, in order to achieve the ex-

ecution end, parallel application should use a fault tolerance

strategy.

A widely used strategy is the rollback-recovery, which consists

of saving the application state periodically. In the event of

a fault occurring, the application resumes it execution from

the most recent saved state. These fault tolerance protocols

include an overhead on the parallel application execution.

Using a coordinated checkpointing protocol it becomes easy

to estimate the application execution time, as well as to cal-

culate the frequency in which checkpoints should be taken. In

fact, there are very precise models to estimate the application

execution time and the checkpoint interval nowadays.

However, the use of the coordinated checkpointing may not

be the best solution to provide fault tolerance on the next-

generation parallel computers. In other words, the current

paradigm of fault tolerance for parallel applications is not

suitable for the future parallel computer.

Fault tolerance protocols such as uncoordinated checkpointing

permits that each process of the parallel application saves its

state independently of other processes. The combination of

uncoordinated checkpointing with logging of message-passing

events avoids the inconvenience of this sort of protocol, such as

the domino effect and orphan messages. This is the emergent

paradigm of fault tolerance for scalable parallel applications.

For instance, there is no model suitable to estimate the execu-

tion time of a parallel application protected by uncoordinated

checkpointing. As well as there is no convenient model to

calculate the frequency in which those checkpoints should be

taken.

The objective of this thesis is to define suitable models that

can be used with each paradigm: the coordinated and the

uncoordinated. These models should provide an estimation

of the application wall time clock running under each fault

tolerance paradigm, as well a methodology to define the value

of the variables used to calculate the checkpointing interval.

The main motivation of this work is to provide at the same

time the knowledge necessary to face the emergent fault tol-

erance paradigm and make it suitable to be used by parallel

applications users.

Resumo

A atual tendência dos computadores paralelos é crescer em

complexidade e número de componentes. A miniaturização e a

concentração destes elementos é a principal causa da aparição

e aumento do número de falhas nestes computadores. Para

permitir a correta execução das aplicações paralelas nestas

máquinas é necessário existir mecanismos para tolerar tais

falhas.

Uma estratégia largamente utilizada são as técnicas de rollback-

recovery, que consistem em guardar periodicamente o estado

da aplicação e, em caso de falhas, recuperar a aplicação desde

o último estado guardado. O uso destes protocolos gera um

incremento no tempo de execução das aplicações.

Quando se utiliza protocolos de checkpoint coordenados, é

fácil estimar o tempo total de execução de uma aplicação,

assim como a frequência na qual os checkpoint devem ser cri-

ados. Atualmente existem modelos precisos para estimar estes

tempos.

Entretanto, o uso de protocolos de checkpoint coordenados

pode não ser a melhor solução para prover tolerância a falhas

nos computadores de próxima geração. Em outras palavras,

o atual paradigma de tolerância a falhas para computadores

paralelos não é adequado para os sistemas futuros.

Os protocolos de tolerância a falhas não coordenados per-

mitem que, cada processo da aplicação paralela, guarde seu es-

tado, independente dos demais processos; a combinação destes

com técnicas de log de eventos eliminam os inconvenientes

destes protocolos, como o efeito dominó e as mensagens órfãs.

Esta combinação representa o paradigma emergente de tole-

rância a falhas para aplicações paralelas.

Atualmente não existem modelos adequados para estimar o

tempo de execução de aplicações paralelas que estão sendo

protegidas por checkpoint não coordenados. Assim como tam-

bém não existem modelos para calcular a frequência com que

os checkpoints devem ser criados.

O objetivo desta tese é definir modelos espećıficos para cada

um dos dois paradigmas: coordenado e não coordenado. Os

modelos fornecem uma estimação do tempo total de execução

das aplicações quando protegidas por qualquer um dos dois

paradigmas. Ademais, se propõe uma metodologia para definir

o valos das variáveis necessárias para calcular o intervalo de

checkpoint.

A principal motivação deste trabalho é prover o conhecimento

necessário para enfrentar o paradigma emergente de tolerância

a falhas e fazê-lo acesśıvel para os usuários de aplicações par-

alelas.

Resumen

La tendencia general de los computadores paralelos es crecer

en complejidad y en número de componentes. La miniatur-

ización y la concentración de dichos elementos es la principal

causa de la aparición y aumento de los fallos en estos computa-

dores. Asimismo, para permitir la ejecución correcta de las

aplicaciones paralelas, existe la necesidad de proveer soporte

y de tolerar fallos en estos entornos.

Una estrategia amplamente utilizada es el rollback-recovery,

que consiste en guardar periódicamente el estado de la apli-

cación y, en caso de fallos, reanudar la aplicación desde el

último estado guardado. El uso de estos protocolos añade

una sobrecarga al tiempo de ejecución de la aplicación.

Con el uso de protocolos de checkpoints no coordinados, es

fácil estimar el tiempo total de ejecución de una aplicación,

aśı como también la frecuencia en la cual estos checkpoints

deben ser guardados. Actualmente, existen modelos precisos

para estimar estos tiempos.

Sin embargo, el uso de protocolos de checkpoints coordina-

dos, puede no ser la mejor solución para proveer tolerancia a

fallos en los computadores paralelos de próxima generación.

En otras palabras, el actual paradigma de tolerancia a fallos

para computadores paralelos, no es adecuado para los futuros

sistemas.

Los protocolos de tolerancia a fallos no coordinados permiten

que, cada proceso de la aplicación paralela guarde su estado

independientemente de los demás procesos; la combinación

de estos protocolos con técnicas de log de eventos eliminan

los inconvenientes de los protocolos no coordinados, como el

efecto domino y la aparición de mensajes huérfanos. Esta

combinación representa el paradigma emergente de tolerancia

a fallos para aplicaciones paralelas escalables.

Actualmente, no hay modelos adecuados para estimar el tiempo

de ejecución de aplicaciones paralelas que están siendo prote-

gidas por checkpoints no coordinados. Aśı como tampoco ex-

isten modelos para calcular la frecuencia en que dichos check-

points deben ser creados.

El objetivo de esta tesis es, definir los modelos espećıficos

para cada uno de los paradigmas: el coordinado y el no coor-

dinado. Los modelos proveen una estimación del tiempo total

de ejecución de las aplicaciones cuando están protegidas por

cualquiera de los dos paradigmas. Además, se propone una

metodoloǵıa para definir el valor de las variables necesarias

para calcular el intervalo de checkpoints.

La principal motivación de este trabajo es proveer el conoci-

miento necesario para enfrentar el paradigma emergente de

tolerancia a fallos y hacerlo asequible para los usuarios de las

aplicaciones paralelas.

Resum

La tendència general dels computadors paral·lels és créixer en

complexitat i en nombre de components. La miniaturització

i la concentració d’aquests elements és la principal causa de

l’aparició i augment de les fallades en aquests computadors.

Aix́ı mateix, per permetre l’execució correcta de les aplica-

cions paral·leles, existeix la necessitat de proveir suport i de

tolerar fallades en aquests entorns.

Una estratègia àmpliament utilitzada és el rollback-recovery,

que consisteix a guardar periòdicament l’estat de l’aplicació

i, en cas de fallades, reprendre l’aplicació des de l’últim estat

guardat. L’ús d’aquests protocols afegeix una sobrecàrrega al

temps d’execució de l’aplicació.

Amb l’ús de protocols de checkpoints no coordinats, és fàcil

estimar el temps total d’execució d’una aplicació, aix́ı com

també la freqüència en la qual aquests checkpoints han de ser

guardats. Actualment, existeixen models precisos per estimar

aquests temps.

No obstant això, l’ús de protocols de checkpoints coordinats,

pugues no ser la millor solució per proveir tolerància a fallades

en els computadors paral·lels de propera generació. En altres

paraules, l’actual paradigma de tolerància a fallades per a

computadors paral·lels, no és adequat per als futurs sistemes.

Els protocols de tolerància a fallades no coordinades permeten

que, cada procés de l’aplicació paral·lela guardi el seu estat in-

dependentment dels altres processos; la combinació d’aquests

protocols amb tècniques de log de missatges eliminen els in-

convenients dels protocols no coordinats, com l’efecte domino

i l’aparició de missatges orfes. Aquesta combinació representa

el paradigma emergent de tolerància a fallades per a aplica-

cions paral·leles escalables.

Actualment, no hi ha models adequats per estimar el temps

d’execució d’aplicacions paral·leles que estan sent protegides

per checkpoints no coordinats. Aix́ı com tampoc existeixen

models per calcular la freqüència en què aquests checkpoints

han de ser creats.

L’objectiu d’aquesta tesi és, definir els models espećıfics per a

cadascun dels paradigmes: el coordinat i el no coordinat. Els

models proveeixen una estimació del temps total d’execució

de les aplicacions quan estan protegides per qualsevol dels dos

paradigmes. A més, es proposa una metodologia per definir

el valor de les variables necessàries per calcular l’interval de

checkpoints.

La principal motivació d’aquest treball és proveir el coneixe-

ment necessari per enfrontar el paradigma emergent de tole-

rància a fallades i fer-ho assequible per als usuaris de les apli-

cacions paral·leles.

Acknowledgements

Four year ago I left my country in order to achieve a Ph.D.

Now, in the end of this journey I am finishing it. More than

this degree I have found a new life and new friends.

Of course, there are lots of people whom I need to thank.

Starting from the principle, thank to my perfect family which

has supported me in all my decisions. Terezinha, Eunápio,

Erick and Diana. I have no words to describe how perfect you

are.

It is amazing to imagine that a guy, whom does not like to

study, is crossing this long and painful journey. The responsi-

ble for this is Dolores Rexachs, my lovely advisor. Of course,

I can not forget Emilio Luque, which for me will be always

an example of researcher. This work only exists because I

have these two “kindly” and special tutors. Lola and Emilio,

you gave me, and are still giving, all “nutrients” necessary to

develop my work here.

Thanks too for all other people who are part of the “CAOS”

department. Thanks to all professors and, in special, two

guys: Daniel Ruiz and Javier Navarro.

At least, I have to thanks to the doctor Miguel Brandão who

cured me of a skin cancer. You know, there is no sense in

being a Ph.D. if you are sick.

Agradecimentos

Os agradecimentos em português vão apenas para duas pes-

soas especiais: Eunápio e Terezinha.

Voces sabem que em nossa famı́lia não é muito comum ex-

pressar palavras “melosas”, então: Obrigado!

To myself...

Contents

List of Figures ix

List of Tables xv

List of Equations xix

1 Introduction 1

1.1 Objectives . 5

1.2 Motivations . 6

1.3 Organisation of this Thesis 7

2 Paradigms in Rollback-Recovery Fault Tolerance 9

2.1 Rollback-Recovery Fault Tolerance Protocols 10

2.1.1 Coordinated Checkpointing 10

2.1.2 Uncoordinated Checkpointing 12

2.1.3 Event Logging . 14

2.1.4 Comparing the Fault Tolerance Protocols 17

2.1.5 The Checkpoint Interval 19

2.2 Evolution of the Technology 20

2.2.1 Parallel Computer Performance and Resources . . 21

2.2.2 Checkpointing Techniques 21

2.2.3 Logging Techniques 22

2.3 Boundaries of the Current Paradigm 22

2.4 Beyond the Current Paradigm 23

vii

CONTENTS

3 Propose to Face the Emergent Paradigm 25

3.1 What is Missing in Current Fault Tolerance Models? . . . 26

3.1.1 Developing the Model 28

3.1.2 The Cost Function 31

3.2 The Inter-Process Dependency Factor 31

3.3 A Model for the Emergent Fault Tolerance Paradigm . . . 33

3.3.1 Developing a New Model 36

3.3.2 Defining The Inter-Process Dependency Factor . . 38

3.3.3 The Cost Function 41

3.4 Acquiring Values for the Model’s Variables 42

3.5 Exploiting the Solution 45

3.5.1 Recovery Time Constraints 46

3.5.2 Heterogeneous Processes on Parallel Applications . 47

4 Experimental Evaluation 49

4.1 Experimental Environment 50

4.1.1 Fault Distribution 50

4.1.2 Fault Tolerant MPI Library 53

4.2 Experiments . 54

4.2.1 Model for Coordinated Checkpointing 54

4.2.2 Model for Uncoordinated Checkpointing 63

4.2.3 Fault Tolerance Overhead 85

5 Conclusion 93

5.1 Summary of Contributions 95

5.2 Future Work . 96

References 97

viii

List of Figures

2.1 Parallel application running with a rollback-recovery fault

tolerance assisted by coordinated checkpoints. Work

done after the checkpoint and before the fault is lost.

Communications are not depicted. 11

2.2 Parallel application running with a rollback-recovery fault

tolerance assisted by uncoordinated checkpoints. Work

done after the checkpoint and before the fault is lost.

Communications are not depicted. 13

2.3 Diagram of a pessimistic sender-based message logging

protocol. 15

2.4 Diagram of a optimistic sender-based message logging

protocol. 15

2.5 Diagram of a pessimistic receiver-based message logging

protocol. 16

2.6 Diagram of a optimistic receiver-based message logging

protocol. 16

3.1 Between faults Fx and Fy there is a recovery time (Tr)

and three checkpoints (tc) among computational periods

(σ). 28

3.2 Rollback and recovery behaviour of the uncoordinated

checkpointing protocol. 33

ix

LIST OF FIGURES

3.3 Overhead introduced by the sender-based message log-

ging protocol for protection (∆lp) and for recovery (∆lr). 35

3.4 Overhead introduced by the receiver-based message log-

ging protocol for protection (∆lp) and for recovery (∆lr). 36

3.5 Parallel application running with a rollback-recovery fault

tolerance architecture assisted by uncoordinated check-

pointing in a fault-free scenario. The message logging

operation has been omitted. 39

3.6 Parallel application running with a rollback-recovery fault

tolerance architecture assisted by uncoordinated check-

pointing in a faulty scenario. The message logging oper-

ation has been omitted. 39

3.7 Diagram of the methodology used to define model vari-

ables values in run-time. 44

3.8 Diagram depicting the dynamic re-definition of the check-

point interval. 48

4.1 Moving average of values generated by 10 thousand dif-

ferent seeds after 500 rounds. Graph shows the conver-

gence to an average value with less than 2.5% of relative

error. These seeds have been used for simulation-based

experiments. 51

4.2 The fault distribution based on a given MTTI (100) and

pseudo-random numbers generated by MT19937 algo-

rithm (-67, 43, -24, 74, -72, . . .). 52

4.3 Moving average of values generated by 21 selected seeds

after 500 rounds. Graph shows the convergence to an

average value with less than 0.5% of relative error close

to the 500th round. These seeds have been used for real

execution based experiments. 52

x

LIST OF FIGURES

4.4 Architecture of the RADIC/OMPI fault tolerance library.

Dashed lines are fault tolerance specific communication

and continuous lines are MPI communication. 54

4.5 Architecture of the system used for model comparison

using real applications. 55

4.6 Overhead introduced by fault tolerance on the applica-

tion run time. Model performance is close in all cases.

Values are measurements, not predictions. 57

4.7 Relative prediction error presented by models in com-

parison with the real execution time. 58

4.8 Comparison of real execution and overhead prediction of

the models for α = 100, tc = 0.530, tl = 0.505, td = 0,

values in average. Application runs in 62,830 seconds

without fault tolerance and in absence of faults. 59

4.9 Diagram of the discrete event simulator used. Each box

represents an event, and its time is added to the simu-

lated run time. 61

4.10 Comparison of models and simulation results for values

depicted in table 4.4 using a 24 hours MTTI. The mini-

mum overhead is achieved for a checkpoint interval value

between 110 and 130 minutes. 62

4.11 Comparison of models and simulation results for values

depicted in table 4.4 using a 6 hours MTTI. The mini-

mum overhead is achieved for a checkpoint interval value

between 50 and 60 minutes. 63

4.12 Comparison of models and simulation results for values

depicted in table 4.4 using a 1-hour MTTI. The mini-

mum overhead is achieved for a checkpoint interval value

between 20 and 22 minutes. 64

xi

LIST OF FIGURES

4.13 Comparison of model overhead prediction and real exe-

cution of LU class B. Values of variables are depicted in

table 4.5, α = 100, and td = 0.5. Values are expressed

in seconds. The minimum overhead is achieved for a

checkpoint interval value between 10 and 12 seconds. . . . 67

4.14 Comparison between static and in run-time configured

values of the inter-process dependency factor. 68

4.15 Values for the overhead introduce by fault tolerance tasks

on the execution of the NAS LU application according

to the configuration methodology. 69

4.16 Execution flow of each process of the synthetic applica-

tion used to verify the effectiveness of the inter-process

dependency factor. 71

4.17 Communication patter of the synthetic application used

to verify the effectiveness of the inter-process depen-

dency factor . 71

4.18 Overhead prediction error for a synthetic application

running with 4, 9, 16, and 25 processes, 1 per node.

Values of variables are depicted in table 4.10, α = 100,

and td = 0.5. 72

4.19 Overhead prediction error for a synthetic application

running with 16, 36, 64, and 100 processes, 4 per node.

Values of variables are depicted in table 4.10, α = 100,

and td = 0.5. 73

4.20 Model overhead prediction relative error for LU class B.

Values of variables are depicted in table 4.5. 74

4.21 Model overhead prediction relative error for LU class C.

Values of variables are depicted in table 4.5. 74

xii

LIST OF FIGURES

4.22 Inter-process dependency factor for CG, LU, BT, and SP

applications from the NAS suite according to the number

of processes used to run the application. 76

4.23 Overhead prediction error and the inter-process depen-

dency factor for the LU applications according to the

number of processes. 78

4.24 The continuous line shows the memory footprint of the

NAMD master process running the “stmv” workload;

values are shown on the left axes. The dashed line rep-

resents the checkpoint interval used; values are shown on

the right axes. The rhombus points depict checkpoint in-

stances. 79

4.25 The continuous line shows the memory footprint of the

a NAMD worker process running the “stmv” workload;

values are shown on the left axes. The dashed line repre-

sents the checkpoint interval used; values are shown on

the right axes. The rhombus points depict checkpoint

instances. 79

4.26 The continuous line shows the value of φ for the master

process of the matrix multiplication; values are shown on

the left axes. The dashed line represents the checkpoint

interval used; values are shown on the right axes. The

rhombus points depict checkpoint instances. 81

4.27 The continuous line shows the value of φ for a worker

process of the matrix multiplication; values are shown on

the left axes. The dashed line represents the checkpoint

interval used; values are shown on the right axes. The

rhombus points depict checkpoint instances. 82

xiii

LIST OF FIGURES

4.28 Comparison of the NAMD execution time using differ-

ent fault tolerance configuration strategies on different

environments. 84

4.29 Comparison of the matrix multiplication execution time

using different fault tolerance configuration strategies on

different environments. 84

4.30 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 4 processes, 1 process per node. Values are in

seconds. φ = 1, α = 100. 86

4.31 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 9 processes, 1 process per node. Values are in

seconds. φ ≈ 0.90, α = 100. 87

4.32 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 16 processes, 1 process per node. Values are in

seconds. φ ≈ 0.59, α = 100. 88

4.33 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 25 processes, 1 process per node. Values are in

seconds. φ ≈ 0.45, α = 100. 89

4.34 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 16 processes, 4 process per node. Values are in

seconds. φ ≈ 0.59, α = 100. 90

4.35 Execution time breakdown of the NAS BT class B ac-

cording to the checkpoint interval model. Experiments

ran with 36 processes, 4 process per node. Values are in

seconds. φ ≈ 0.30, α = 100. 91

xiv

List of Tables

2.1 Summary of some important characteristics of the checkpoint-

based fault tolerance protocols for message-passing par-

allel applications. 17

2.2 Summary of some important characteristics of the log-

based fault tolerance protocols for message-passing par-

allel applications. 18

3.1 Checkpoint interval models under the same nomenclature. 31

3.2 Cost functions of checkpoint interval model according to

each author. 32

3.3 Values of the inter-process dependency factor for a Mas-

ter/Worker application running with 8 processes using

the first approximation to define P (n). 41

4.1 Seeds selected to generate fault distribution for real ex-

ecution experiments. 53

4.2 Checkpoint sizes according to matrix dimensions. The

last two columns show the mean time needed to perform

a checkpoint (tc) and the mean time needed to load it

from storage (tl). 56

xv

LIST OF TABLES

4.3 Comparison of a real execution and model prediction.

Lines show the relative error of predicted overhead of

the models for each checkpoint interval used. The last

line presents the optimum checkpoint interval estimation

of the models. 59

4.4 Variables used to simulate the influence of MTTI on

model accuracy and the optimum checkpoint interval cal-

culated by each model. 60

4.5 Summary of relevant characteristics of NAS LU applica-

tion. Time values are expressed in seconds. The right-

most column depicts the optimum checkpoint interval in

seconds calculated by our model. td = 0.5, α = 100, φ = 1. 65

4.6 Summary of measurements and predictions for the NAS

LU application. Time values are expressed in seconds.

Percentiles refer to the predicted overhead with relation

to the original run time. td = 0.5, α = 100, φ = 1,

σ = 10 for LU class B, and σ = 18 for LU class C. Other

variable values are available in table 4.5. 66

4.7 Summary of run time prediction relative error for NAS

LU class B running with 8 processes. Our model presents

the smallest error in all cases. Other variables are avail-

able in table 4.5. Checkpoint interval values are repre-

sented in seconds. 66

4.8 Estimated checkpoint interval for NAS LU class D. Val-

ues of variables are available in table 4.5, α = 100 and

td = 0.5. Values are expressed in seconds. 67

4.9 Values for the inter-process dependency factor for the

entire LU application and for each process individually. . 68

xvi

LIST OF TABLES

4.10 Relevant characteristics of the synthetic application used

to verify the effectiveness of the inter-process depen-

dency factor. For each model, the first column shows

the optimum checkpoint interval calculated and the sec-

ond column shows the predicted overhead error. α = 100

and td = 0.5. Values are expressed in seconds. 70

4.11 Characteristics of the NAS LU class B and C. For each

model, the first column shows the optimum checkpoint

interval and the second the predicted overhead error.

α = 100, td = 0.5, φ = 0.5625. Values are expressed

in seconds. 70

4.12 Values for the inter-process dependency factor for CG,

LU, BT, and SP applications from the NAS suite accord-

ing to the number of processes used to run the application. 75

4.13 Values for the inter-process dependency factor for the

entire LU application and for each process individually. . 77

4.14 First four values of the checkpoint size and the calculated

next checkpoint interval for the NAMD master process

running the “stmv” workload. 80

4.15 First four values of the checkpoint size and the calcu-

lated next checkpoint interval for a NAMD worker pro-

cess running the “stmv” workload. 80

4.16 First five values of φ and the calculated next checkpoint

interval for the master process of the matrix multiplica-

tion execution according to the execution instance. 82

4.17 First five values of φ and the calculated next checkpoint

interval for a worker process of the matrix multiplication

execution according to the execution instance. 83

xvii

LIST OF TABLES

4.18 Summary of the overhead experienced by NAMD and a

matrix multiplication execution time using different fault

tolerance configuration strategies on different environments. 83

xviii

List of Equations

3.1 Serial Application Overhead Model 26

3.2 Serial Application Recovery Time 28

3.3 Serial Application Recovery Time 29

3.4 Number of Checkpoint Performed Between Two Faults . . 29

3.5 Serial Application Protect Time 29

3.6 Serial Application Overhead Function 30

3.7 Optimal Checkpoint Interval for Serial Applications . . . 30

3.8 Optimal Checkpoint Interval for Serial Applications (short) 30

3.9 Serial Application Cost Model 31

3.10 Serial Application Cost Function 31

3.11 Parallel Application Recovery Time 36

3.12 Parallel Application Protection Time 37

3.13 Parallel Application Overhead Model 37

3.14 Parallel Application Overhead Function 37

3.15 Optimal Checkpoint Interval for Parallel Applications . . 38

3.16 Optimal Checkpoint Interval for Parallel Applications

(short) . 38

3.17 Global Inter-Process Dependency Factor 40

3.18 Individual Inter-Process Dependency Factor 41

3.19 Parallel Applications Cost Model 42

3.20 Parallel Applications Cost Function 42

3.21 Maximum Recovery Time Per Fault 46

xix

LIST OF EQUATIONS

3.22 Optimal Checkpoint Interval for Parallel Applications

with a MTTR user constraint 46

3.23 Parallel Application Overhead Function with a MTTR

user constraint . 47

3.24 Parallel Applications Cost Function with a MTTR user

constraint . 47

xx

I know but one freedom, and that

is the freedom of the mind.

— Antoine de Saint-Exupéry

1

Introduction

Parallel computers are growing in complexity and in number of com-

ponents. At the same time computers components are becoming smaller

and faster. The current trend to increase computation power is to concen-

trate even more components in a single machine and to combine several

machines to work together. However, the components miniaturisation

and concentration are the major root causes of the failures increasingly

seen on these computers.

Assuming that, along the years, parallel computers will fail more fre-

quently it is possible that applications running on these machines never

reach completion (46, 78, 79). It is especially true for long-running appli-

cations. In order to achieve the execution end, parallel application should

use a fault tolerance strategy. For that reason fault tolerance has become

an important issue for parallel applications in the last few years.

Notwithstanding the current interest in fault tolerance for parallel ap-

plications, this is not a new concern to applications users and researchers.

Fault tolerance has being studied from many years, since the 70’s it be-

comes even more important (25). And in the last four decades several

strategies have been developed to deal with computer failures.

A widely used strategy is the rollback-recovery, which consists of sav-

ing the application state periodically. In the event of a fault occurring,

1

1. INTRODUCTION

the application resumes it execution from the most recent saved state.

This state-saving technique is simple to deploy in comparison to writing

applications using fault tolerant algorithms.

Currently there are well-defined rollback-recovery protocols to handle

computer failures in order to avoid losing all the computation time. To

deal with failures in parallel computers, these protocols have evolved and

other protocols have been proposed also. This was necessary mostly be-

cause on parallel computers applications often use the message-passing

model to communicate processes.

Actually, many of the rollback-recovery protocols that protect paral-

lel applications are based on checkpointing the application processes or

saving the message-passing communication events. As usual, more elabo-

rated strategies tends to be harder to use. However, some fault-tolerance

strategies combine both techniques.

This is one of the reasons that explain the popularity of checkpoint-

ing. This state-saving technique is really simple to deploy on a single-

process application. The same technique has been adapted to perform a

checkpoint of a parallel application composed of several processes. The

technique of checkpointing all processes of a parallel application is known

as coordinated checkpointing.

To perform a checkpointing the application execution should be in-

terrupted. However it is expected that these periodically interruptions

introduce less overhead than the time needed to re-execute the entire

application.

Using a coordinated checkpointing protocol it becomes easy to esti-

mate the application execution time, as well as to calculate the frequency

in which checkpoints should be taken (44, 86).

In fact, there are very precise models to estimate the application ex-

ecution time and the checkpoint interval nowadays (29). However, these

models have been designed to be used with a single-process application.

2

The coordinated checkpointing behaviour allows the use of the same

model for parallel application being protected by a coordinated check-

pointing protocol.

The easiness to deploy and the existence of precise models makes

the coordinated checkpoint the de facto paradigm of fault tolerance for

parallel applications. However, will this paradigm still be valid for future

computer generations?

There are at least three good reasons to think that the coordinated

checkpointing paradigm will not be valid for the future computers gen-

erations 1. All these reasons are based on contrasting the intrinsic char-

acteristics of the coordinated checkpointing with the parallel machines

evolution trends:

— Growing the total memory size of the parallel computer versus in-

creasing the stable storage throughput (the coordinated checkpoint

protocol requires to save the global application state periodically);

— Growing the number of computing nodes versus the time needed

to coordinate all process in the parallel application (most protocols

require at least two global coordinations (34));

— Growing the number of components which form the parallel machine

(increasing the fault frequency) versus the computation time loss of

all processes in case of fault while using coordinated checkpointing

protocols.

These statements points that the use of the coordinated checkpointing

may not be the best solution to provide fault tolerance on the current par-

allel computers. In other words, the current paradigm of fault tolerance

for parallel applications is not suitable for the future parallel computer

generations.

1These reasons will be explained and discussed in details in Section 2.

3

1. INTRODUCTION

The current scenario of high performance computing claims for so-

lutions that avoid collective operations such as the coordination. This

requirement tends to becomes even header for the future parallel com-

puter generations if computers evolve in the same manners as they are

actually evolving. Fortunately, these solutions already exist.

Fault tolerance protocols such as uncoordinated checkpointing permits

that each process of the parallel application saves its state independently

of other processes. And the combination of uncoordinated checkpointing

with logging of message-passing events avoids the inconvenience of this

sort of protocol. This is the emergent paradigm of fault tolerance for

parallel applications.

The emergent paradigm in rollback-recovery fault tolerance for paral-

lel applications becomes to solve the scalability problem of providing fault

tolerance for parallel applications. However, there is a lack of knowledge

concerning the emergent paradigm, i.e. the use of protocols that combine

uncoordinated checkpointing with event logging.

For instance, there is no model suitable to estimate the execution time

of a parallel application protected by uncoordinated checkpointing. As

well as there is no convenient model to calculate the frequency in which

those checkpoints should be taken. This frequency should balance the

overhead during the fault-free execution and the recovery time in case of

fault.

The optimum checkpoint interval defines the frequency in which check-

point should be taken to introduce the minimum overhead on the applica-

tion. This overhead is the sum of the overhead generated by checkpoint-

ing during the fault-free execution phase and the rework time during the

recovery phase.

As shorter is the checkpoint interval smaller is the recovery overhead.

On the other hand the application will be interrupted more frequently

for checkpointing. This will increase the overhead of checkpointing. The

4

1.1 Objectives

balance between these two overheads is known as the optimum checkpoint

interval.

As the emergent paradigm becomes more and more obvious the fol-

lowing questions also becomes more evident:

— What fault tolerance paradigm offers the smaller overhead to pro-

tect a parallel application running on a given parallel computer

(considering application memory footprint, communication pattern,

and the parallel computer resources)?

— What is the frequency in which uncoordinated checkpoints should

be taken?

— How long will be the execution of a parallel application protected

by uncoordinated checkpointing?

These statements above can be summarised in one sentence: how to

face the emergent paradigm?

1.1 Objectives

The first objective of this work it to answer the three questions presented

above. The proposal is to define suitable models that can be used with

each paradigm: the coordinated and the uncoordinated. These models

should provide an estimation of the application wall time clock running

under each fault tolerance paradigm, as well a method to calculate the

checkpointing interval.

Considering a parallel applications running on a given parallel com-

puter, those models help users to define which fault tolerant paradigm

should be used. A simple comparison between the estimated applica-

tion execution time when it is being protected by uncoordinated and

coordinated checkpointing allows knowing what paradigm introduces less

overhead for a specific application running on a given parallel computer.

5

1. INTRODUCTION

Moreover, as a second objective, this work intends to provide a method-

ology to define the variable values used by the models. This permits the

use of the proposed models with any fault tolerance architecture.

1.2 Motivations

Computer failures are no longer a rare event but a common problem (22).

Currently, there are well-established techniques that provide fault toler-

ance for parallel applications. To write applications with native support

for faults seems to be a good option. However, this approach requires

the rewriting of legacy applications. Another solution is to provide fault

tolerance at the communication library level and on the parallel environ-

ment.

The combination of a resilient parallel environment and a fault re-

covery technique had been useful in MPI implementations like MPICH

(14, 17) and Open MPI (42, 48). However, it is necessary to know how

to configure the fault tolerance architecture parameters to make consci-

entiously use of the parallel machine resources.

Well-defined studies regarding the configuration of fault tolerance ar-

chitectures are limited to the coordinated paradigm. Moreover, many of

these studies are completely theoretical, thus they are far from being the

ultimate solution to parallel application users. Another issue which make

it difficult to use current models is the definition of the values used by

the current checkpoint interval models.

The main motivation of this work is to provide at the same time the

knowledge necessary to face the emergent fault tolerance paradigm and

make it suitable to be used by parallel applications users.

6

1.3 Organisation of this Thesis

1.3 Organisation of this Thesis

This thesis contains five chapters. In the Chapter 2 the current paradigm

is discussed in details besides the most used fault tolerance protocols in

the message-passing systems. Moreover, the technological evolution of

state-saving techniques is also presented.

In addition, a view of how parallel computer architectures can be

adapted to allows a conscientiously use of machines resources aiming the

application fault tolerance. Along this section the reader will found the

state of the art in fault tolerance for message-passing applications.

The Chapter 3 presents the contribution of this work. The contri-

bution is a proposal to face the emergent paradigm of fault tolerance in

message-passing parallel applications. First of all, a discussion of why

current models are not suitable for the emergent paradigm is presented.

This chapter starts with the development of the models, and goes with the

definition of the variable values of used by models. Finally, the practical

uses of the developed models are presented.

In the Chapter 4 the experimental evaluation is presented. The pro-

posed models are compared with models currently available. The exper-

iments focus is to try to minimise the overhead introduced by the fault

tolerant tasks for a known fault distribution. The comparison is made

focusing on the accuracy of the estimated application execution time and

on the precision of the calculated checkpointing interval.

The Chapter 5 states the thesis conclusions and presents the possible

future work.

7

1. INTRODUCTION

8

Life has meaning only if one barters it day by day

for something other than itself.

— Antoine de Saint-Exupéry

2

Paradigms in

Rollback-Recovery Fault

Tolerance

This chapter describes the fault tolerance protocols that can be used

to protect parallel applications. The description will be made from the

overhead perspective. Moreover, the tools that provide support for these

protocols, such as checkpoint libraries, will also be described. After that,

the boundaries of the current paradigm in rollback-recovery fault tol-

erance for parallel applications will be stated. Finally, a view of the

emergent paradigm will be presented.

9

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

2.1 Rollback-Recovery Fault Tolerance Protocols

There are several fault tolerance protocols that can be used with par-

allel applications. The operation mode of these protocols have been

vastly described in literature (34, 50, 62). In this thesis the most used

rollback-recovery checkpointing protocols used to provide fault tolerance

for message-passing parallel applications would be taken in consideration.

In the following sub-sections the fault tolerance protocols will be anal-

ysed from the overhead perspective.

2.1.1 Coordinated Checkpointing

To coordinate checkpoint means that all processes in the parallel appli-

cation should be checkpointed simultaneously in order to create a global

snapshot of the parallel applications (34, 56).

Figure 2.1 is provided to depict the coordinated checkpointing be-

haviour. In this picture, the grey dashed-line represents the checkpoint

coordination limited on both sides by events A and B and E and F . In the

time between these events, no communication other the specific coordina-

tion communication is allowed. This assures that the global applications

snapshot is consistent.

In case of fault, all processes of the parallel application should be

rolled back to the last checkpoint. Processes should perform another co-

ordination to ensure that all processes have been recovered before restart

execution. In figure 2.1, the numbers on the processes timeline represent

different computation instances. As depicted in the figure, all processes

lost the computation made between the event B and the event C, in

which the fault F crashed the process Pn.

Notice that this kind of protocol treats the parallel application as a

set of serial application. This occurs because the protocol synchronises

the events of checkpointing and recovering. Thus, all processes stop and

continue their execution quasi-simultaneously. However, there are some

10

2.1 Rollback-Recovery Fault Tolerance Protocols

t=0!

X!

P1!

t=0!
P2!

C1!C1!

t=0! A B C D E F!

Pn!

…
!

…!

…
!

C1!C2!
…!

Coordinated Rollback and Recovery!

Checkpoint Coordination!

… 4 – 5 – 6 !

… 3 – 4 – 5 !

… 5 – 6 – 7 ! … 27 – 28 – 29!

7 – 8… !

6 – 7… !

8 – 9… !

7 – 8… !

6 – 7… !

8 – 9… !

… 21 – 22 – 23!

… 19 – 20 – 21!

… 26 – 27!

… 19 – 21!

… 18 – 19!

22… !

20… !

28… !

Figure 2.1: Parallel application running with a rollback-recovery fault tol-
erance assisted by coordinated checkpoints. Work done after the checkpoint
and before the fault is lost. Communications are not depicted.

inconveniences on this synchronised behaviour of the coordinated check-

point. The main inconveniences are:

— If a process requires less time to be checkpointed it should wait

the conclusion of the other processes’ checkpoint before continues

it execution;

— All processes of the parallel application tries to save their state

at the same time and concurrently. This means that the storage

devices should deal with the load generated by all process at the

same time;

— The work done by all processes between the last checkpoint and the

fail is lost independent of the number of processes involved in the

fail.

11

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

Despite of the inconveniences, coordinated checkpoints have been used

on many systems. This is the current paradigm in the use of fault tol-

erance for parallel applications. The main reason of this is because it is

quite simple to model its behaviour. Moreover, as an application pro-

tected by coordinated checkpointing presents the same behaviour than

serial applications, models designed to be used with the second can also

be used with the first.

2.1.2 Uncoordinated Checkpointing

As the name suggests, the uncoordinated checkpoint does not require any

coordination between processes to perform checkpoints. Checkpoints are

taken independently for each process. Figure 2.2 depicts this behaviour.

In figure 2.2 the events A (A1, A2, and A3) are not correlated as well

as other events depicted. There is no global snapshot. Each process takes

its checkpoint independently and also keeps previous checkpoints. When

a fault occurs, only the failed process rolls back to the last checkpoint.

Other processes continue their execution. However, this behaviour brings

pros and cons.

The cons refer to the possibility of creating orphan message on other

processes after the recovery of the failed process. An orphan message

is created when one process rolls back to a moment previous than the

sending or receiving of a message but its counterpart does not roll back

with it. This is the reason of storing more than one checkpoint version

for each process.

To avoid the domino effect processes with orphan messages should

also rollback. Rolling back to previous checkpoint versions may generate

a domino effect on the entire parallel application.

To avoid these undesirable situations many authors have proposed

methodologies to determine a global consistent state (24, 51, 52). A

global consistent state is a set of checkpoints in which neither orphans

12

2.1 Rollback-Recovery Fault Tolerance Protocols

t=0!

F!

P1!

t=0!
P2!

C1.1!

t=0!
Pn!

…
!

… 4 – 5 – 6 !

… 7 – 8 – 9 !

… 4 – 5 ! … 16 – 17 – 18!

7 – 8… !

10 – 11… !

8 – 9… !

32 – 33… !

8 – 9… !

… 31 – 32 – 33!

… 29 – 30 – 31!

A1 B1 C1 D1!

C1.2!

34 – 35… !

C2.2!C2.1!

Cn.1!

A2 B2 C2 D2!

… 19 – 20 – 21!

Cn.2!

22… !

A3 B3 C3 D3 E3 F3!

Uncoordinated Checkpointing!

Uncoordinated Rollback and Recovery!
Figure 2.2: Parallel application running with a rollback-recovery fault tol-
erance assisted by uncoordinated checkpoints. Work done after the check-
point and before the fault is lost. Communications are not depicted.

messages nor a domino effect exists. There are some models created to

define global state that avoids a domino effect (10, 11, 81).

The pros of using uncoordinated checkpoints are related to the fault

tolerance performance. As each process does not need to coordinate itself

with other, the time need to perform a checkpoint tends to be smaller.

Moreover, there is no collective operation involving checkpointing. As the

checkpoints do not require to be stored simultaneously, the load in the

storage systems tends to be smaller and peaks and bottlenecks could be

avoided.

Besides their intrinsic behaviour, another big difference between the

uncoordinated checkpoint in its coordinated counterpart concerns the re-

13

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

covery phase. If no other process requires to rollback, only the work done

by the failed process is lost. This scenario is depicted in figure 2.2. While

process Pn restart from the last checkpoint and starts recovering, other

processes continue their compute. Moreover, as there is no coordination,

processes can take their checkpoints in different moments, according to

their requirements.

2.1.3 Event Logging

Event logging fault tolerance protocols are based on the assumption that

the state of a process can be reconstructed replaying all process events

(15) in the correct order. Even the indeterministic events should be re-

played in the same way it has been previously occurred.

The assumption above is founded on the deterministic of the applica-

tions (53). The indeterministic events are related to the communication

between processes. Thus, if the event logging protocol assures the events

replaying in the same order they have originally occurred, it is possible

to reconstruct the process state after a fault.

The analysis of the event log overhead depends on the logging pro-

tocol and its implementation (4, 18). The event logging can increases

the message delivery latency that could generate overhead on the appli-

cation processes. Moreover, during the recovery phase there are other

events associated with the events replaying (72), such as message replay

requests.

Figures below depict the operation of the event logging protocol when

the log is performed on the sender and on the receiver both for pessimistic

and optimistic protocols.

The main difference between the pessimistic and optimistic message

logging concerns the moment in which the log storing is performed. Pes-

simistic logging protocols assure that log data have already been saved

14

2.1 Rollback-Recovery Fault Tolerance Protocols

!"#$"%& '"(")*"%&

+,&

!"
#$%
"&
'(
#)
*"
+,
'(

-"..)/"(

),0(#1/(.*1&$+/(

Figure 2.3: Diagram of a pessimistic sender-based message logging proto-
col.

!"#$"%& '"(")*"%&

+,&

!"
#$%
"&
'(

#)
*"
+,
'(

-"..)/"(

#1/(.*1&$+/(

Figure 2.4: Diagram of a optimistic sender-based message logging proto-
col.

before the delivered message changes other processes state. This be-

haviour is depicted by the acknowledgement messages in figures 2.3 and

2.5.

On the other hand, optimistic logging protocols do not guarantee that

log data have been stored before events change other processes state, an

shown in figure 2.4 and 2.6.

From the overhead perspective, optimistic logging protocols intro-

duces less overhead than their pessimistic counterpart. However, in case

of fault optimistic logging protocols may require the rollback of non-failed

processes in order to replay messages that have not been stored yet. This

procedure is necessary to avoid the creation of orphan messages. Addi-

tionally, when the logging operation is performed on the sender side the

log storing can be overlapped with the message delivery. This overlap-

ping reduces the delivery latency in comparison with the receiver-based

protocols.

15

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

!"#$"%& '"(")*"%&

+,&

!"
#$%
"&
'(
#)
*"
+,
'(-"..)/"(

),0(

#1/(
.*1&$+/(

Figure 2.5: Diagram of a pessimistic receiver-based message logging pro-
tocol.

!"#$"%& '"(")*"%&

+,&!"
#$%
"&
'(

#)
*"
+,
'(

-"..)/"(

#1/(
.*1&$+/(

Figure 2.6: Diagram of a optimistic receiver-based message logging pro-
tocol.

In which concerns the differences between performing the log on the

sender or receiver side the general idea is that the receiver-based event

logging doubles the message delivery latency. However, there is another

difference concerning the recovery phase. Sender-based event logging pro-

tocols require that the sender process replays all messages exchanged with

the in-recovery process. On the other hand, for a receiver-based event log-

ging protocol all data necessary to rebuild the state of a failed process is

already available on its log repository.

The delivery behaviour of messages in MPI depends on the primitive

used for communication. For that reason it may be challenging to de-

termine the overhead introduced by the event logging. It is possible to

measure the overhead for specific applications running on certain parallel

computer. However, it is not possible to model this behaviour indepen-

dently of the pair application/machine.

16

2.1 Rollback-Recovery Fault Tolerance Protocols

2.1.4 Comparing the Fault Tolerance Protocols

According to the protocol operation mode, different characteristics could

be analysed. Some of these characteristics cannot be directly compared.

However, the following table depicts some important characteristics of

checkpoint-based protocols:

Table 2.1: Summary of some important characteristics of the checkpoint-
based fault tolerance protocols for message-passing parallel applications.

Characteristics Uncoordinated Coordinated
Communication

Induced

Domino effect Possible No No
Orphan processes Possible No Possible

Ages to rollback Undefined All processes Undefined
Recovery protocol Distributed Centralised Distributed
Checkpoints ages Several 1 Several

As presented in table 2.1 the coordinated checkpointing protocol avoids

the domino effect and orphan processes at the same time it need to stor-

age the last checkpoint only. However, this protocol requires the rollback

of all parallel application processes.

Other protocols have an undefined behaviour in case of fault. This

occurs because communication made with other processes may require to

rollback to previous checkpoint other than the last. For this reason these

protocols requires the storage of several checkpoints taken at different

moments. A key difference between these protocols and the coordinated

one concerns the recovery phase. In the uncoordinated and communi-

cation induced checkpointing protocols the recovery decision is taken in

a distributed manner. This characteristic avoids collective operations to

take the decision of what processes should be rolled back.

Besides the checkpointing protocols there are the event logging pro-

tocols. Event logging protocols are classified according to the moment

17

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

in which the data is stored. The event log data can be stored in three

different ways, as shown in table 2.2.

Table 2.2: Summary of some important characteristics of the log-based
fault tolerance protocols for message-passing parallel applications.

Characteristics Pessimistic Optimistic Causal

Domino effect No No No
Orphan messages No Possible Possible

Recovery data
Local or Local or

Distributed
Distributed Distributed

Recovery protocol Local Distributed Distributed
Overlap log with message

Possible Possible Possible
delivery or computation

As shown in table 2.2, recovery data can be stored locally or in more

than one process. This depends on the “side” used to perform the event

logging. If the event sender is responsible for performing the log, data is

stored distributed and the protocol is operating in “sender-base mode”.

In case of fault, the failed process should request to the event senders the

replay of the events. On the other hand, if the event receiver is responsible

for performing the log, data is always stored locally. This operation mode

is named “receiver-based”. If the protocol is operating in sender-based

mode, all data necessary to perform the recovery of a failed process is

already available locally. In this operation mode other processes do not

have to be contacted to replay messages.

All event logging protocols avoid the domino effect. However, the

optimistic and casual protocols allow the occurrence of orphan processes

because they do not assure that data is already saved before communi-

cation events changes processes states. The key characteristic of these

protocols is its distributed behaviour. It means that during the recovery

phase the failed process do not require any collective operation to per-

form the recovery. Decision are taken locally or in a distributed manner.

18

2.1 Rollback-Recovery Fault Tolerance Protocols

Other characteristics and differences between these logging protocols are

vastly available in literature (5).

Currently, there are many MPI implementation that provide fault

tolerance for parallel applications, such as the MPICH-V project (14,

17, 19), Open MPI (48), Egida (71), MPI-FT (59), FT-MPI (37, 38),

MPI/FT (12, 13), Starfish (1), LA-MPI (9) and LAM/MPI (75).

2.1.5 The Checkpoint Interval

The checkpoint interval is the time between two checkpoint instances. If

the time needed to perform a checkpoint is negligible the best strategy is

to perform a checkpoint after every instruction. However, the time needed

to perform a checkpoint depends on the application memory footprint and

the throughput of the storage devices, besides other operations intrinsic

to the checkpointing protocol.

The optimum checkpoint interval defines the frequency in which check-

point should be taken to introduce the minimum overhead on the applica-

tion. This overhead is the sum of the overhead generated by checkpointing

during the fault-free execution phase and the rework time (the amount

of work completed after a checkpoint and prior to a failure) during the

recovery phase.

As shorter is the checkpoint interval smaller is the recovery overhead.

On the other hand the application will be interrupted more frequently

for checkpointing. This will increase the overhead of checkpointing. The

balance between these two overheads is known as the optimum checkpoint

interval.

The use of analytical models to define the checkpoint interval for serial

applications has been studied from the 70’s until today. In 1974, Young

(86) introduced the first order approximation, an analytical model to

determine the checkpoint interval.

19

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

Using Young’s model it is possible to calculate the checkpoint interval

once the user knows the time needed to perform some fault tolerance tasks

and the system fault probability. More recently, Gropp (44) presented

a simpler model achieving a similar result for the checkpoint interval.

Nevertheless, Gropp uses a different approach to deduce his model.

Many years after Young, Daly presented a very deeply analytical study

(29) to determine the higher order estimation of the checkpoint interval.

Daly analyses different scenarios such as multiple failures between check-

points, fractional rework, failures during restarts et cetera. The model

achieved by Daly presents the same structure of Young’s model but is

more precise.

Other strategies to calculate the checkpoint interval have been pro-

posed. Some of these proposals concerns the definition of maximum and

minimum values for the checkpoint interval (68), the use of variational

calculus (57), or strategies based on the application algorithm (27, 84).

Despite the importance of the uncoordinated checkpoint protocols, as

far as we know, there is no model to calculate the checkpoint interval

that minimises the fault tolerance overhead for these protocols. Further-

more, models designed to be used with serial applications and also used

with coordinated checkpoints may be not appropriate for uncoordinated

checkpointing protocols (41).

Also, it is important to notice that values different than the optimum

checkpoint interval increases the fault tolerance overhead (49).

2.2 Evolution of the Technology

As parallel computers start to grow in number of compute nodes and in

total memory size users notice that the fault tolerance overhead grows as

well. Thus, there are many proposals to reduce the overhead introduced

by the fault tolerance tasks. These proposals concern new technologies

20

2.2 Evolution of the Technology

for checkpointing, better logging strategies, and small modifications on

the parallel computer architecture.

2.2.1 Parallel Computer Performance and Resources

The throughput of the storage device plays a major role in the time

needed to perform a checkpoint. It is notorious that the total memory

size of a parallel machine grows faster than its storage throughput.

Some authors believe that future generations parallel computers should

provide storage support exclusively to fault tolerance, such as solid state

drive devices (22). Besides the support of additional storage devices,

lightweight file systems have been developed specifically for checkpoint-

ing purposes (63).

Despite those architectural modifications on the parallel computer,

saving the whole parallel application state into a storage system represents

a huge load agains these devices. To solve this peak problem parallel

computers designers may over-dimension the storage system. However,

when the application is not being checkpointed the storage system is

practically idle.

2.2.2 Checkpointing Techniques

There are many checkpoint libraries and tools that can be used to support

the checkpointing of parallel applications, such as BLCR (47), DMTCP

(7), CLIP (26), and CRAK (88). These are kernel level or user space

level libraries that save the program memory state in a checkpoint file.

The file generated by these kind of libraries are equivalent to the process

memory footprint.

In order to reduce the time needed to perform a checkpoint many

strategies have been developed (74). These strategies concerns the cre-

ation of in memory checkpoint (87), incremental checkpointing (43, 61),

21

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

non-blocking checkpointing (28), and compiler-assisted checkpointing (55,

58).

Other optimisations on the checkpointing performance concerns the

moment in which the checkpoint is taken. Some strategies try to perform

the checkpointing opportunistically (8), reducing the storage contention.

Other strategies uses information from the application programmer, the

compiler, and the run-time system to decide when a checkpoint should

be taken (65, 66).

2.2.3 Logging Techniques

To reduce the event logging overhead many work have been done. All

these researches aim the reduction of the event logging latency. How-

ever, it is a common sense that the event logging is the major root cause

of the fault tolerance overhead. There are work that modifies the event

logging model to increase the overlap of the logging with the message de-

livery (16). Other authors have been working on re-designing the storage

procedure of the pessimistic logging (76).

It is possible to manage the optimism degree in order to minimise the

latency introduced by the event logging (73). Non-blocking and orphan

free event logging is also possible (3). However, there are different reasons

to choose one logging protocol instead of other (21). The decision of what

event logging protocol should be used depends on the performance and

the desired reliability.

2.3 Boundaries of the Current Paradigm

Despite of the achievements on the reduction of the state-saving tech-

niques, the coordinated checkpointing protocol still has many scalability

issues. These issues increases according to the size of the parallel com-

puter (45, 67).

22

2.4 Beyond the Current Paradigm

It is possible to know the overhead of checkpointing a parallel ap-

plication on large scale machines (64, 82), and it is notorious that to

coordinate and to store the state of huge parallel applications represent

a high overhead on the execution of these applications.

In many situations the use of event logging could be better than co-

ordinated checkpointing (20, 54), e.g. huge parallel applications with a

small number of messages exchanged between processes. The main root

cause of this resides on the poor scalability of the coordinated checkpoint-

ing (36).

2.4 Beyond the Current Paradigm

If the current paradigm in fault tolerance for parallel applications does not

introduces a small overhead, how to efficiently protect these application

running on the next-generations machines? Many authors have pointed

a new approach (22, 23, 30, 35).

This new approach tries to combine the use of event logging with

uncoordinated checkpointing (31, 32, 85). Indeed, there are MPI libraries

that support many fault tolerance protocols (19).

The idea behind these approaches consists of combine the benefits

of checkpoint and logging protocols. Bearing scalability, the uncoordi-

nated checkpointing protocol provide better results (2, 69). To avoid the

undesirable situations that this checkpointing protocols brings, it is nec-

essary to combine the uncoordinated checkpointing with an event logging

protocol.

The combination of uncoordinated checkpoint and an efficient message

logging reduces the amount of memory required for event logging (6).

This is the emergent fault tolerance paradigm that can provide scalable

fault tolerance for parallel application on the future parallel computers.

23

2. PARADIGMS IN ROLLBACK-RECOVERY FAULT
TOLERANCE

24

The machine does not isolate man

from the great problems of nature

but plunges him more deeply into them.

— Antoine de Saint-Exupéry3

Propose to Face the

Emergent Paradigm

In this chapter the proposal to face the emergent paradigm in fault

tolerance will be presented. To use uncoordinated checkpoint combined

with event logging users should be capable to define the checkpoint in-

terval for this fault tolerance protocol. Moreover, it is good to know the

overhead that this protocol introduces on the parallel application execu-

tion time.

The proposal concerns mathematical models to define the checkpoint

interval and the overhead introduced by fault tolerance tasks. As ex-

plained before, the use of current models, which have been designed to

be used with coordinated checkpoint, may not be adequate for uncoordi-

nated checkpointing.

The modifications necessary to use these models with uncoordinated

checkpointing will be explained. These modifications include the defi-

nition of a factor that represents the inter-dependence existent between

different processes in parallel applications.

25

3. PROPOSE TO FACE THE EMERGENT PARADIGM

3.1 What is Missing in Current Fault Tolerance

Models?

Current checkpoint interval models have been developed to define the

checkpoint interval that minimises the overhead introduces by fault tol-

erance tasks. These tasks can be divided into protection and recovery

tasks. The first represents procedures performed to save the application

state while the second represents procedures performed after a fault.

While using coordinated checkpoint all processes are rolled back and

start recovery in case of a fault. This coordinated behaviour makes par-

allel applications perform similar to serial applications.

For the sake of easiness, the deduction of the checkpoint interval model

for parallel applications protected by coordinated checkpointing will also

be explained using a serial application but considering the event logging

and the relationship between processes.

Analysing current checkpoint interval models, which have been de-

signed for serial applications and considering fault tolerance tasks per-

formed between two faults the overhead introduced by these tasks can be

defined as:

Overheadserial = Tc + Tr (3.1)

where Tc is the time needed to perform all protection procedures and Tr

is the total time needed to perform all recovery procedures.

In order to better understand the deduction of the serial application

fault tolerance model let us consider figure 3.1 and the following naming

system:

tc as the time spent on a checkpoint operation including the storage

time. In other words, it is the application interruption time neces-

sary to take a checkpoint.

26

3.1 What is Missing in Current Fault Tolerance Models?

td as the time needed to detect a fault, also known as fault detection

latency.

tl as the time needed to load a checkpoint from storage.

tr as the amount of time needed to recover a failed process and achieve

the computation point just before fault. It is the reworking of the

previous lost computation, also known as fractional rework.

Q as the quantity of checkpoints that should be performed between

two faults.

Tc as the total protection time represented by the sum of all tc between

two faults. This value can be obtained multiplying tc by Q.

Tr as the total recovery time per fault represented by the sum of td, tl,

and tr.

Ts as the total time to run the application without faults and any sort

of fault tolerance.

α as the mean time to interrupt (MTTI) for a given system, which is

the inverse of the fault probability.

σ as the checkpoint interval used to run the application. It can also

be considered as the useful time for the application to compute.

As shown in figure 3.1, the recovery task occurs at the beginning of the

period between faults Fx and Fy. Recovery takes Tr time (segment BE)

to conclude and after this comes one or more computational segments

followed by checkpoints. Each checkpoint requires tc time (segments EF ,

GH, and IJ) to be taken.

Checkpoints are separated by an application computational period

represented by σ (segments FG and HI). Ergo, σ is the interval between

checkpoints, ipso facto the checkpoint interval. Segment JK will be lost

27

3. PROPOSE TO FACE THE EMERGENT PARADIGM

t=0!

Fx!

"!
Tr! tc! #! tc! #! tc!

td! tl! tr!

A B C D E F G H I J K!

Fy!

Figure 3.1: Between faults Fx and Fy there is a recovery time (Tr) and
three checkpoints (tc) among computational periods (σ).

due to fault Fy. This work will be redone after the next recovery phase

(not depicted in figure 3.1).

As aforementioned, Tc is the sum of all tc, it represents the sum of

segments EF , GH, and IJ in figure 3.1. Time spent on protection and re-

covery tasks is not useful application time, thus these tasks are considered

to be overhead. This assumption leads us to equation 3.1

3.1.1 Developing the Model

As mentioned previously, Tr is the sum of the fault detection latency (td),

checkpoint loading from storage (tl) and the fractional rework (tr). It can

also be seen in figure 3.1 and leads us to the following equation:

Tr = td + tl + tr (3.2)

As proved by Daly (29), it is accepted to assume that interrupts occur

halfway through the checkpoint interval. Thus, it is valid to consider the

fractional rework (tr) as half of the checkpoint interval (σ). Rewriting

equation 3.2 in the terms above it gives us the following:

Tr = td + tl +
σ

2
(3.3)

28

3.1 What is Missing in Current Fault Tolerance Models?

The same demonstration can be used in relation to the fault detection

latency. However, there are many fault detection mechanisms that can be

used. Supposing that a system uses a heartbeat/watchdog mechanism,

the value of td is half of the frequency used to configure such a mechanism.

Because it is a user-defined value let consider it as a system variable.

Thus, the model maintains its original aspect presented in equation 3.3.

The total time spent on process protection (Tc) depends on the check-

point frequency. In order to calculate Tc, which is the sum of all tc, the

number of checkpoints (Q) should be defined.

The number of checkpoints (Q) can be defined as the number of seg-

ments composed of checkpoint (tc) and useful computing time (σ) that

fits the period between faults (α), excluding the recovery time. This

assumption is reflected in the equation below:

Q =
α− Tr
σ + tc

(3.4)

As shown in figure 3.1, the work done after the last checkpoint and

just before the fault Fy is lost. This lost work, represented in figure 3.1 by

the segment JK, will be redone during next recovery phase; in addition

tr represents the recuperation of the work lost before fault Fx. Thus,

segment JK has already been included in the model.

With the number of checkpoints already defined, it is easy to calculate

the total protection time as shown below:

Tc = Q ∗ tc (3.5)

Using equations 3.3, 3.4 and 3.5 and applying some algebraic oper-

ations on the preliminary overhead model presented in equation 3.1 the

following overhead equation is obtained:

29

3. PROPOSE TO FACE THE EMERGENT PARADIGM

Overheadserial =
σ2 + 2(σtd + σtl + αtc)

2(σ + tc)
(3.6)

It is possible to find the value of σopt that minimises the fault tolerance

overhead by deriving the overhead equation 3.6 with respect to σ and

setting the result to zero. Considering the positive solution, this operation

brings us to the optimum checkpoint interval hereunder:

σopt =
√
t2c − 2tctd − 2tctl + 2αtc − tc (3.7)

The checkpoint interval model that minimises the fault tolerance over-

head presented in equation 3.7 includes the failure detection latency. This

additional parameter distinguishes this model from those of Young (86),

Gropp (44), and Daly (29). Nevertheless, supposing a scenario in which

the fault detection latency tends to zero and the time needed to perform a

checkpoint is equal to the time needed to load a checkpoint from storage,

the models are very close, as shown in the following equation:

σopt =
√

2αtc − t2c − tc (3.8)

A comparison between this model and those of Young (86), Gropp

(44), and Daly (29) is presented in table 3.1. This table shows a summary

of the models under the nomenclature used in this paper. For comparison

purposes the fault detection latency has been defined to zero and the time

needed to perform a checkpoint have been considered equal to the time

needed to load it from storage.

30

3.2 The Inter-Process Dependency Factor

Table 3.1: Checkpoint interval models under the same nomenclature.

Author Optimal Checkpoint Interval

Young
√

2αtc
Gropp

√
2αtc

Daly
√

2αtc − tc
Fialho

√
2αtc − t2c − tc

3.1.2 The Cost Function

The cost function allows the estimation of the application run time run-

ning with fault tolerance and a given fault distribution.

Considering Ts as the total time to run a given application without

faults and any sort of fault tolerance and Test as the estimated time to run

the application with fault tolerance, the cost function can be represented

by the following equation:

Test = Ts

(
1 +

Overhead

α

)
(3.9)

Where the cost is defined by the original application run time plus the

overhead defined in equation 3.6. Replacing equation 3.6 in 3.9, the

further cost function is achieved:

Test = Ts

(
1 +

σ2 + 2(σtd + σtl + αtc)

2α(σ + tc)

)
(3.10)

Different than the checkpoint interval models, the cost functions pre-

sented by those author are not similar, as shown in table 3.2.

3.2 The Inter-Process Dependency Factor

The main problem of using the checkpoint interval model explained above

with uncoordinated checkpointing protocols refers to the fact that faulty

31

3. PROPOSE TO FACE THE EMERGENT PARADIGM

Table 3.2: Cost functions of checkpoint interval model according to each
author.

Author Cost Function

Young1 α− σ
1−e(σ+tc)/α

Gropp2 Ts
σ

(
tc + σ +

σtl+
σ2

2

α

)
Daly αetl/α(e(σ+tc)/α − 1)

(
Ts
σ
− tc

σ+tc

)
Fialho Ts

(
1 + σ2+2(σtl+αtc)

2α(σ+tc)

)

process should be rolled back while other processes continue their execu-

tion as shown in figure 3.2.

All processes in the parallel application can fail. However, each pro-

cess failure may impact other processes in a distinct way. This means that

if process n fails, one or more processes can hang waiting for the recovery

of n to be completed, e.g. considering a master/worker application, if the

master process fails, all workers may wait for the recovery of the master.

In figure 3.2 process P1 had to wait the recovery of process Pn before

sending it the message marked with the continuous red line. On the

other hand, process P2 did not had to wait, because this process does not

communicate with process Pn.

This means that processes in a parallel application have an intrinsic

inter-dependent relationship. This relationship is defined by the messages

exchanged between processes. In this thesis the relationship existent be-

tween processes will be named inter-processes dependency factor.

1This function calculates the overhead per fault.
2The original text refers to “k1 = cost to read and restore checkpoint” (44). It is

not clear if this variable considers the fractional rework time or not. Assuming that the
authors do not consider it, table shows a re-written version of the model to a common
nomenclature and replacing the original term k1 by tl.

32

3.3 A Model for the Emergent Fault Tolerance Paradigm

t=0!

X!

P1!

t=0!
P2!

C1.1!

t=0!
Pn!

…
!

… 4 – 5 – 6 !

… 7 – 8 – 9 !

… 4 – 5 ! … 16 – 17 – 18!

7 – 8… !

10 – 11… !

6 – 7… !

32 – 33… !

6 – 7… !

… 31 – 32 – 33!

… 29 – 30 – 31!

A1 B1 C1 D1!

C1.2!

34 – 35… !

C2.2!C2.1!

Cn.1!

A2 B2 C2 D2!

… 19 – 20 – 21!

Cn.2!

22… !

An Bn Cn Dn En Fn!

Uncoordinated Checkpointing!

Uncoordinated Rollback and Recovery!

Waiting time!

Figure 3.2: Rollback and recovery behaviour of the uncoordinated check-
pointing protocol.

3.3 A Model for the Emergent Fault Tolerance

Paradigm

To create a fault tolerance model for parallel applications, first of all, we

should introduce some statements of parallel application behaviour.

The first statement concerns the disturbances added by event logging

operations and how failures impact on different application processes.

These disturbances lead to changes in our previous model.

The other statement refers to the rollback of only one of all the pro-

cesses that compose parallel applications. This behaviour is defined by

the inter-process dependency factor.

Another important issue refers to the frequency in which processes

33

3. PROPOSE TO FACE THE EMERGENT PARADIGM

should be checkpointed. The optimum checkpoint interval for each pro-

cess depends on characteristics of the process itself. This means that

different processes in the parallel application may have different check-

point intervals.

Moreover, the checkpoint interval for a specific process may change

during the application execution if changes occur in the application char-

acteristics, such as memory footprint, or in the parallel machine status,

such as the network latency. The use of different checkpoint intervals

for each application process is only possible in uncoordinated checkpoint

protocols.

The event logging disturbance depends on the logging protocol used

(34). In this thesis two of these protocols will be analysed: pessimistic

sender-based and pessimistic receiver-based. The reason of choosing pes-

simistic protocols is because these protocols avoid the undesirable domino

effect and the creation of orphan processes.

Event logging protocols can introduce overhead on the parallel appli-

cation execution in two different situations: one refers to the fault free

operation and the other to the recovery phase.

Independently of the protocol used, event logging leads to changes in

the time needed to recover a failed process (Tr) and the time needed to

protect a process (Tc).

To better understand the the event logging overhead let us consider

figures 3.3 and 3.4 and the addition of two new terms to the naming

system presented above:

∆lp as the sum of all time added to message delivery due to the logging

procedure.

∆lr as the sum of all time spent no processing the message log after a

fault. The majority of this is the replaying time, if it exists.

34

3.3 A Model for the Emergent Fault Tolerance Paradigm

t=0!
P1!

t=0!
P2!

t=0!
P3!

m2.1! m3.1!

m2.1!

m3.1!

C1.1!

C2.1!

C3.1!

F!

32 – 33… !

34 – 35… !

35 – 36… !

m3.1!

Fault-free Log Overhead! Recovery!
Log Overhead!

checkpoint!

41 – 42… ! 41… !35… !

!lp! !lr!

Figure 3.3: Overhead introduced by the sender-based message logging
protocol for protection (∆lp) and for recovery (∆lr).

When the sender processes perform the event logging operation, they

should manage the data storage. This protocol allows message logging to

be executed in parallel with the message delivery. Thus the overhead

introduced by the logging procedure (∆lp) tends to be small or even

nonexistent, e.g. the message m2.1 in figure 3.3.

During the recovery phase, sender processes should replay messages

sent to the faulty process. Thus, the overhead introduced by this protocol

during recovery (∆lr) represents the time spent on replaying messages.

Figure 3.3 depicts the overhead introduced by this protocol during

a fault-free execution and during the recovery phase. As shown, the

recovery of process P3 depends on other processes.

When the message logging operation is performed on the receiver pro-

cess, as shown in figure 3.4, the data storage cannot be overlapped with

message delivery. In general, receiver based logging doubles the time

35

3. PROPOSE TO FACE THE EMERGENT PARADIGM

t=0!
P1!

t=0!
P2!

t=0!
P3!

m2.1!

m2.1!

m3.1!

C1.1!

C2.1!

C3.1!

F!

32 – 33… !

34 – 35… !

35 – 36… !

checkpoint+m3.1!

Fault-free!
Log Overhead!

Recovery!
Log Overhead!

m3.1!

41… ! 41… !35… !

!lp! !lp! !lr!

Figure 3.4: Overhead introduced by the receiver-based message logging
protocol for protection (∆lp) and for recovery (∆lr).

needed for message delivery. This occurs because data should be saved

in storage after message delivery.

However, in case of faults, only the faulty process is involved in re-

covery. Since messages do not need to be replayed, the time needed to

process the message log (∆lr) tends to be unappreciable and there is no

message replaying time.

3.3.1 Developing a New Model

Modifying the aforementioned equations 3.3 and 3.5 in order to reflect

the message logging overhead, leads us to the following equations:

Tr = td + tl +
σ

2
+ ∆lr (3.11)

36

3.3 A Model for the Emergent Fault Tolerance Paradigm

Tc = (Q ∗ tc) + ∆lp (3.12)

With regard to the disturbance introduced by faults; this depends

completely on application characteristics like programming paradigm,

communication pattern, data distribution, et cetera. However, the inter-

process dependency factor affects the aforementioned Tr lowering its weight

on the overhead equation.

Rewriting the overhead equation 3.1 in order to consider this assertion,

the following equation is produced:

Overheadparallel = φ(Tr) + Tc (3.13)

where φ represents the inter-process dependency factor.

Regarding this factor (φ), small values represent less dependency be-

tween processes while the higher value means that when one process fails

all other processes should wait for the recovery of the failed process.

The upper limit to the inter-process dependency factor is 1. In this

case the models for parallel and serial applications become the same. The

lower limit depends on the number of processes in the parallel application

and the relationship existent between them.

Replacing equations 3.11 and 3.12 in equation 3.13 and after applying

some algebraic operations, the following overhead equation is obtained:

Overheadparallel =
φσ2 + σ(2φtd + 2φtl + φtc + 2φ∆lr − tc + 2∆lp)

2σ + 2tc
+

2tc(φtd + φtl + φ∆lr + α− td − tl −∆lr + ∆lp)

2σ + 2tc
(3.14)

37

3. PROPOSE TO FACE THE EMERGENT PARADIGM

It is possible to find the value of σopt that minimises the fault tolerance

overhead for parallel applications by deriving equation 3.14 with respect

to σ, and setting the result to zero. Considering the positive solution,

this operation brings us to the following optimum checkpoint interval:

σopt =

√
φtc(tc + 2α− 2td − 2tl − 2∆lr)

φ
− tc (3.15)

Supposing a system whose detection latency tends to zero and the

time needed to perform a checkpoint is comparable to the time needed to

load a checkpoint from storage, the equation 3.15 can be simplified to:

σopt =

√
φtc(2α− tc − 2∆lr)

φ
− tc (3.16)

3.3.2 Defining The Inter-Process Dependency Factor

Considering a parallel application protected by an uncoordinated check-

pointing as the study scenario. In case of fault of one process, other

processes may be affected if they need to communicate with the faulty

process.

Figure 3.5 shows an execution of this application in a fault-free sce-

nario, while figure 3.6 represents the same execution in case of fault. For

the sake of easiness the message logging operation has been omitted.

Processes in this example application exchange a message on the com-

putation time 20. In figure 3.5 the communication is performed according

to the expected. However, in figure 3.6 because of process P1 has rolled

back process P2 have to wait for process P1 achieve the computation time

20 before continue its execution.

As aforementioned, the inter-process dependency factor tries to model

the dependency between all processes in the parallel application. This de-

38

3.3 A Model for the Emergent Fault Tolerance Paradigm

t=0!
P1!

t=0!
P2!

C1.1!

… 4–5–6 !

… 7–8–9 !

7–8… !

10–11… ! 32–33… !

… 31–32–33!

… 29–30–31!

A1 B1 C1 D1!

C1.2!

34–35… !

C2.2!C2.1!

A2 B2 C2 D2!

…19–20–21…!

…19–20–21…!

m1!
m2!

Figure 3.5: Parallel application running with a rollback-recovery fault
tolerance architecture assisted by uncoordinated checkpointing in a fault-
free scenario. The message logging operation has been omitted.

C2.2!
t=0!

P1!

t=0!
P2!

C1.1!

… 4–5–6 !

… 7–8–9 !

7–8… !

10–11… ! 25–26… !

… 32–33!

A1 B1 C1 D1!

C1.2!

34… !

C2.1!

A2 B2 C2 D2!

…19–20–21…!

…19–20–21––––––––––––––––22–23–24 !

X!
… 12–13! 7–8… !

Waiting time!

m1!
m2! m1!

m2!

Figure 3.6: Parallel application running with a rollback-recovery fault
tolerance architecture assisted by uncoordinated checkpointing in a faulty
scenario. The message logging operation has been omitted.

pendency exists because of the communication exchanged between these

processes. The function P (n) should consider the number of processes

which may be affected by a fault in a given process.

As communication defines the relationship between processes, to de-

fine the P (n) function the application’s communication characteristics

should be considered.

39

3. PROPOSE TO FACE THE EMERGENT PARADIGM

There are three main communication characteristics and one faulty

process characteristics that should be considered. Regarding communica-

tion characteristics there are: peers (sources and destinations), frequency,

and the recursive effect caused by a fault (process B hangs because of

process A, thus process C hangs because of process B, . . .). Regarding

the faulty process characteristic, is the time needed to recover a faulty

process.

In this first approximation to the P (n) function only the peers which

the process communicates with plus the faulty process will be taken in

consideration. The following equation shows the definition of the global

inter-process dependency factor using such analysis:

φglobal =

∑N
1 P (n)

N2
(3.17)

where P (n) is the function which defines the number of processes that

communicate with the process n plus itself, and N is the total number of

processes in the parallel application.

Based on the master/workers application used as example above, let

us assume an application running with 8 processes in which workers do

not communicate among themselves. And, supposing a function P (n)

which considers the existence of communication as the only dependency

between processes. If the master process fails all workers should wait for

its recovery, then P (master) is 8.

If any worker fails just the master may wait for it, then P (worker) is

2 for all 7 workers. In compliance with this assumption the dependency

factor for this application is 0.34375, as shown in table 3.3. It is a very

simple method to define the global inter-process dependency factor.

The equation 3.17 reflects this relationship of all processes in an appli-

cation. However, applications are composed of different phases (83). This

40

3.3 A Model for the Emergent Fault Tolerance Paradigm

Table 3.3: Values of the inter-process dependency factor for a Mas-
ter/Worker application running with 8 processes using the first approxi-
mation to define P (n).

Process Peers Pn φ

Master 8 8 1
Worker1 2 2 0.25
Worker2 2 2 0.25

.
Worker7 2 2 0.25

Global 0.34375

means that during the application execution processes may have different

relationships according to the phase it is running.

The best approach is to define the inter-process dependency factor

individually for each application process. For that, the following model

has been developed:

φindividual =
P (n)

N
(3.18)

Different from the previous model for the φ, this new one does not

reflect the inter-process dependency of the whole application but the rela-

tionship of each process with the others, giving each process an individual

value for the inter-process dependency factor. However, the sum of the

values of φ of all processes divided by the number of processes that com-

pose the parallel application is equal to the value of the global φ.

3.3.3 The Cost Function

Considering Tp as the total time to run a given parallel application with-

out faults and any sort of fault tolerance and Test as the estimated time

to run the application with fault tolerance, the cost function can be rep-

resented by the following equation:

41

3. PROPOSE TO FACE THE EMERGENT PARADIGM

Test = Tp

(
1 +

Overhead

α

)
(3.19)

where the cost is defined by the original application run time plus the

overhead defined in equation 3.14. Replacing equation 3.14 in 3.19, the

further cost function is achieved:

Test = Tp

[
1 +

φσ2 + σ(2φtd + 2φtl + φtc + 2φ∆lr − tc + 2∆lp)

α(2σ + 2tc)
+

2tc(φtd + φtl + φ∆lr + α− td − tl −∆lr + ∆lp)

α(2σ + 2tc)

]
(3.20)

3.4 Acquiring Values for the Model’s Variables

Current models to calculate de optimum checkpoint interval are far from

being the ultimate solution to the checkpoint interval. The major root

causes of this reside in the definition of the variables value used by these

models besides the use of simplified models. The use of average values as

input parameters for models reduces their accuracy.

During the execution, some application characteristics may change

over the time as well as the parallel machine status. Thus, models will

experience a loss of accuracy because the checkpoint interval does not

change to reflect such changes.

Models variables depend on the application characteristics such as the

memory footprint and the communication pattern, besides the system

load such as the storage and the communication network.

This thesis aims to propose a methodology to define in run-time the

checkpoint interval for parallel applications. The dynamic definition re-

lies on the measuring of the time spent on fault tolerance tasks to obtain

42

3.4 Acquiring Values for the Model’s Variables

values for the checkpoint interval model variables. It turns the checkpoint

interval model versatile enough to accommodate changes in the applica-

tion characteristics throughout its execution.

Our propose to define the checkpoint interval in run-time rests on

two foundations: first on a checkpoint interval model and second on the

measurement of the time needed to perform fault tolerant tasks. The

second provides the values for the variables used by the first.

To define the value of these variables, a monitoring mechanism of the

fault tolerant tasks performed during application execution is used. The

diagram shown in figure 3.7 depicts such a mechanism.

The time needed to perform a checkpoint operation (tc) is measured

by the timer depicted in events 1 and 2 of the diagram. The inter-process

dependency factor is calculated by analysing sources and destinations of

messages exchanged with other processes. It is depicted in the diagram

by event 4.

The message logging overhead depends on the logging protocol used

(34). The time added to message delivery due to the logging procedure

(∆lp) is measured by the timer depicted in events 3 and 4. When the

message logging operation is performed on the receiver process, as shown

in figure 3.4, in case of faults, only the faulty process is involved in re-

covery. Since messages do not need to be replayed, the time needed to

process the message log (∆lr) tends to be unappreciable. Thus, the value

of the ∆lr variable can be considered as zero (72).

The time needed to load a checkpoint (tl) cannot be measured using

the proposed methodology if no fault occurs. However, as a first approxi-

mation it is valid to consider this time equal to the time needed to perform

a checkpoint. It does not reduces the checkpoint interval model accuracy

because variables related to the recovery phase, with the exception of the

rework time, tend to be inappreciable (86).

43

3. PROPOSE TO FACE THE EMERGENT PARADIGM

START

start checkpoint
delay timer

checkpoint

stop checkpoint
delay timer

time to checkpoint?

compute

all work done?

need to communicate?

start logging
delay timer

communicate and log

stop logging
delay timer

END

no

no

yes

yes

no

yes

1

2

3

4

5

Figure 3.7: Diagram of the methodology used to define model variables
values in run-time.

44

3.5 Exploiting the Solution

After all variables values needed by the checkpoint interval model

had been already defined in run-time it is possible to use the checkpoint

interval model defined in section 3.3.1 to calculate the checkpoint interval.

3.5 Exploiting the Solution

With the checkpoint interval model and the methodology to acquire the

model’s variables this chapter intends to answer the questions raised in

the introduction of this thesis:

— What fault tolerance paradigm offers the smaller overhead to pro-

tect a parallel application running on a given parallel computer?

— What is the frequency in which uncoordinated checkpoints should

be taken?

— How long will be the execution of a parallel application protected

by uncoordinated checkpointing?

To know what fault tolerance protocol should be used to protect a

parallel application it is necessary to know a priori how the fault tol-

erance tasks perform on the target parallel computer. If the values of

the variables used on the checkpoint interval model are already known

it is possible to use the cost function of both models to make a simple

comparison.

However, if there is no prior knowledge about the performance of the

fault tolerance tasks on the target parallel computer, the methodology

to found the values of the variables used in models can be useful. Both

models are short enough to be included in any MPI library with fault tol-

erance capabilities. Thus, a multi-protocol MPI library implementation

such as MPICH-V (19) can be used to protect the parallel application.

45

3. PROPOSE TO FACE THE EMERGENT PARADIGM

The matter in question about multi-protocol MPI implementations

concerns the possibility to dynamically select the fault tolerance proto-

col. As far as the knowledge of the author, there is no published work

about changing in run-time the fault tolerance protocol for parallel ap-

plications. Thus, the only way to select the fault tolerance protocol is

before application launching.

The second question concerns the moment in which checkpoints should

be taken while using an uncoordinated checkpointing protocol. The

checkpoint interval model defined in equation 3.15 answers this question.

As well, the next question which concerns the overhead introduced by

fault tolerance is answered by the cost function defined in equation 3.19.

3.5.1 Recovery Time Constraints

Additionally, the model can be used to guarantee the maximum recovery

time per fault. For that a small modification should be made on the

proposed model. The time to recovery (Tr) should be replaced by the

user defined value for the maximum time to recovery – MaxTTR.

To satisfy the user requirements, the checkpoint interval model as well

as the cost function should be re-wrote as follows:

MaxTTRuser = σ + tl + td + ∆lr (3.21)

where MaxTTRuser represents the maximum time to recovery specified

by the user. Considering this equation, the calculation of the maximum

value that should be used for the checkpoint interval becomes easy:

σmax = MaxTTRuser − tl − td −∆lr (3.22)

46

3.5 Exploiting the Solution

Considering the recovery time constraint the fault tolerance overhead

should be:

Overheadparallel =
2φσ2 + σ(2φtd + 2φtl + 2φ∆lr + 2φtc − tc + 2∆lp)

2σ + 2tc

+
2tc(φtd + φtl + φ∆lr + α− td − tl −∆lr + ∆lp)

2σ + 2tc
(3.23)

Then, the cost function for a parallel application protected by uncoordi-

nated checkpointing with recovery time constraint is:

Test = Tp

[
1 +

2φσ2 + σ(2φtd + 2φtl + 2φ∆lr + 2φtc − tc + 2∆lp)

2σ + 2tc

+
2tc(φtd + φtl + φ∆lr + α− td − tl −∆lr + ∆lp)

2σ + 2tc

]
(3.24)

3.5.2 Heterogeneous Processes on Parallel Applications

Many parallel applications are composed by processes that perform differ-

ent tasks. This behaviour is common on parallel programming paradigms

such as Master/Worker, Workflow, and Map/Reduce.

The processes of applications designed under these paradigms may

present different memory footprint and communication pattern. It is

obvious that the fault tolerance tasks may perform differently according

to each process.

In this proposal the checkpoint interval is defined per process, as well

as the methodology used to acquire variable values. This means that

during the application execution each process can dynamically define the

checkpoint interval.

47

3. PROPOSE TO FACE THE EMERGENT PARADIGM

The dynamic definition of the checkpoint interval permits the adap-

tation of the checkpoint interval to changes on the application character-

istics and on the parallel computer status. Figure 3.8 depicts how the

checkpoint interval can be re-defined in run-time.

START

checkpoint

execute application

all work done?

calculate the new
checkpoint interval

END

no

yes

Figure 3.8: Diagram depicting the dynamic re-definition of the checkpoint
interval.

This methodology is based on measurements taken during the most

recently checkpoint cycle. When the application changes its behaviour,

i.e. the communication pattern or its memory footprint, after one check-

point cycle the checkpoint interval will already be adapted to the new

application characteristics.

Moreover, except during the start-up and finalisation phases it is ex-

pected that applications do not change their behaviour or memory foot-

print too frequently in comparison to the checkpoint interval (80).

48

Of what worth are convictions

that bring not suffering?

— Antoine de Saint-Exupéry

4

Experimental Evaluation

This chapter presents the experimental evaluation of the proposed

checkpoint interval model. First of all the experimental environment is

described. The description of the experimental environment includes the

fault distribution used to run the experiments, the event-based simulator

used to run simulation-based experiments, and the fault tolerant MPI

library.

The experimental section is divided in two subsections. The first

subsection presents a comparison of the proposed model for coordinated

checkpointing with other author’s models. The second subsection presents

experiments related to the uncoordinated checkpointing model, including

the inter-process dependency factor.

To close this chapter, the experiments conclusions are presented.

49

4. EXPERIMENTAL EVALUATION

4.1 Experimental Environment

To run experiments a 32 node cluster has been used. Each node is

equipped with two Dual-Core Intel Xeon processors running at 2.66GHz,

performing a total of 128 cores on the parallel machine. Moreover, each

node has 12 GBytes of main memory and a 160 GByte SATA disk for

local storage. Nodes are interconnected via two Gigabit Ethernet inter-

faces. One of these networks is used for storage and event logging while

the other is used for process communication.

To inject faults a program has been designed. This program runs

on a machine external to the cluster. According to the fault distribution,

the program connects to the target node and kills the application process.

The target machine is selected in a round-robin fashion. After the process

kill, the node becomes available to recover the killed process. Nodes are

not overloaded with more than one process per core.

4.1.1 Fault Distribution

In order to compare models a fault distribution should be used. This

subsection describes the fault distribution used for simulation and real

executions in this paper.

The fault distribution has been created based on the MT19937 pseudo-

random numbers generator algorithm (60). We have used the first 10

thousands prime numbers as seeds for this generator. All these seeds

generate pseudo-random numbers that are normalised to a range from -

100 to 100. The sum of these numbers converges to zero after 500 rounds,

with less than 2.5% of relative error, as presented in figure 4.1. After 4000

rounds the relative error is smaller than 1%.

After verifying that values taken using the MT19937 algorithm con-

verge to a medium, these values can be safely used in our experiments.

This verification is necessary because the models rely on the mean time

50

4.1 Experimental Environment

Figure 4.1: Moving average of values generated by 10 thousand differ-
ent seeds after 500 rounds. Graph shows the convergence to an average
value with less than 2.5% of relative error. These seeds have been used for
simulation-based experiments.

to interrupt (MTTI) value for a given computer. Thus, our fault distri-

bution must assure that the median value exists after a specific number

of faults. In this paper, experiments run long enough to present at least

500 faults.

The fault distribution is defined based on the MTTI value specified for

each experiment and pseudo-random numbers series described above. For

each MTTI value the normalised correspondent pseudo-random number

is added. This means that for the {-67, 43, -24, 74, -72} pattern and

with 100 minutes as a value for MTTI, faults will be placed on minutes

33, 143, 176, 328 and 374, as shown in figure 4.2. It means that the 4th

fault occurs after the 5th fault. There is the possibility of up to 3 faults

occurring simultaneously.

As aforementioned, experiments should run for long enough for at

least 500 faults to appear. This means that for a given MTTI value,

experiments run for at least 500×MTTI long. Simulations run for all 10

thousands seeds. However, experiments using real applications run for

51

4. EXPERIMENTAL EVALUATION

t=0! t=100! t=200! t=300! t=400!

!"#$%&'(#$
)*+$%&'(#$

,-+$%&'(#$

.#/$%&'(#$

0#/$%&'(#$
-67!

-24!

43!

-72!

74!

Figure 4.2: The fault distribution based on a given MTTI (100) and
pseudo-random numbers generated by MT19937 algorithm (-67, 43, -24,
74, -72, . . .).

only a few selected seeds due to the time needed to perform all those

experiments presented in this section. For this reason, a total of 21 seeds

have been selected.

All these seeds converge close to the 500th round, with a relative error

smaller than 0.5% as shown in figure 4.3. These seeds have been selected

due to their convergence moment and the small relative error presented

Figure 4.3: Moving average of values generated by 21 selected seeds after
500 rounds. Graph shows the convergence to an average value with less
than 0.5% of relative error close to the 500th round. These seeds have been
used for real execution based experiments.

52

4.1 Experimental Environment

Table 4.1: Seeds selected to generate fault distribution for real execution
experiments.

Seed Rounds to Seed Rounds to
converge converge

6991 492 16693 494
21341 495 22153 494
25603 493 26783 491
36929 492 42239 492
51517 495 52967 494
54443 493 59729 492
64157 493 69401 492
70981 494 71537 494
76543 493 88867 494
95219 493 100609 495
103483 491

by the final convergence value. Table 4.1 presents selected seeds and the

number of rounds necessary to converge.

With the fault distribution described above it is possible to recreate

all the experiments presented in this paper. Other fault distributions can

be used, mainly to analyse the overhead generated according to a specific

scenario. However, in order to compare models we have chosen a neutral

fault distribution that disperses faults uniformly over a wide time range.

4.1.2 Fault Tolerant MPI Library

RADIC/OMPI (42) has been used as a fault tolerant MPI library. Ac-

cording to the RADIC architecture (33), on each node there are three

entities: protector, observer, and the application process (Pn), as figure

4.4 depicts. Observers manage MPI communication, perform message

logging and take checkpoints. A protector located on another node stores

these data. Protectors use a heartbeat/watchdog mechanism to detect

faults. Fault tolerance communication, including checkpointing, message

logging, and heartbeat runs over the storage network.

53

4. EXPERIMENTAL EVALUATION

Pn! Pn+1!Pn-1!

…! …!Protectorn! Protectorn+1!

Observern+1!Observern-1!

Protectorn-1!

Noden!Noden-1! Noden+1!

Observern!

heartbeat!heartbeat!

MPI!MPI!

Figure 4.4: Architecture of the RADIC/OMPI fault tolerance library.
Dashed lines are fault tolerance specific communication and continuous lines
are MPI communication.

The RADIC/OMPI library performs uncoordinated checkpointing com-

bined with pessimist receiver-based message logging. There is no central

element on the RADIC architecture, neither for the fault tolerance opera-

tion nor storage (33, 42). RADIC/OMPI uses storage resources available

on nodes in order to create a distributed stable storage.

4.2 Experiments

4.2.1 Model for Coordinated Checkpointing

Hereunder, a comparison between the model designed for serial applica-

tions or coordinated checkpoint and previous models will be presented.

The comparison was made using simulation and real executions.

4.2.1.1 Comparison Using Real Executions

In order to compare models using real executions, a synthetic program

that creates the experimental environment has been designed. Figure 4.5

shows the architectural diagram of the system used. It consists of a main

process composed of 3 threads and one separated process.

54

4.2 Experiments

The threads of the main process are: fault injector, checkpointer,

recoverer, and the target application is the separated process. As the

system starts, both processes are launched simultaneously.

The checkpointer thread immediately takes a checkpoint of the target

application process and measures the time needed to perform this action.

With this information it calculates the next checkpoint interval. The

checkpoint interval is recalculated after each checkpoint in order to reflect

changes in the application memory footprint.

The fault injector thread kills the target application process according

to the fault distribution in use. The recoverer thread monitors the target

application process to detect faults according to the maximum detection

latency used. When a fault is detected, the recoverer thread restores

the target application process from the last checkpoint. Thus, the target

application resumes its execution until it reaches the end.

As the target application we have used a simple matrix multiplication

algorithm. To change the input value of the models variables different

Storage
Target

Application

Checkpointer

Recoverer Fault Injector

checkpointing

recovery

failure

Main
Process

Separated Process

Figure 4.5: Architecture of the system used for model comparison using
real applications.

55

4. EXPERIMENTAL EVALUATION

matrix sizes have been used. It is expected that the overhead increase

according to matrix dimensions. Nevertheless, the overhead prediction

error should stay stable and delimited by a small relative error range.

For this experiment the fault detection latency has been set to zero,

the MTTI has been defined to be 100 seconds, and all 21 fault distribu-

tions generated by those seeds shown in table 4.1 have been used.

The checkpoint interval is calculated after each checkpoint, using the

most recent measurements of the time needed to perform a checkpoint.

Table 4.2 presents the checkpoint sizes and discloses the mean time needed

to take (tc) and load (tl) a checkpoint. Each experiment has been executed

at least 16 times and values depicted in graphs are the average of all data

that fall in a 95% confidence interval.

Table 4.2: Checkpoint sizes according to matrix dimensions. The last two
columns show the mean time needed to perform a checkpoint (tc) and the
mean time needed to load it from storage (tl).

Matrix Checkpoint tc tl
Dimension Size (MB) (seconds) (seconds)

200×200 1.138 0.034 0.025
300×300 2.274 0.042 0.052
400×400 3.880 0.062 0.077
500×500 5.938 0.099 0.111
600×600 8.462 0.143 0.143
700×700 11.438 0.182 0.188
800×800 14.868 0.247 0.236
900×900 18.763 0.303 0.296

1000×1000 23.106 0.386 0.362
1100×1100 27.915 0.451 0.425
1200×1200 33.177 0.532 0.517
1300×1300 38.892 0.627 0.587
1400×1400 45.083 0.719 0.680
1500×1500 51.716 0.877 0.820
1600×1600 58.813 0.948 0.878
1700×1700 66.360 1.086 0.998

56

4.2 Experiments

0%

4%

8%

12%

16%

20%

200 500 800 1100 1400 1700

O
ve

rh
ea

d

Quadratic Matrix Size
Fialho Daly Gropp Young

Figure 4.6: Overhead introduced by fault tolerance on the application run
time. Model performance is close in all cases. Values are measurements,
not predictions.

Figure 4.6 shows that all models introduce practically the same over-

head on the application run time for a memory size greater than 10

megabytes, represented by a 700×700 matrix size. For checkpoint files

smaller than 10 megabytes, values are scattered. This is an expected be-

haviour, since the time needed to checkpoint processes with small memory

footprint is more sensitive to operating systems and hardware perturba-

tions.

Analysing figure 4.6 it is possible to perceive that the differences in

checkpoint interval models do not affect the fault tolerance overhead in a

perceptible way. On the other hand, model prediction for the application

run time loses accuracy when the checkpoint size grows. Predictions have

been calculated using overhead equations shown in table 3.2.

Figure 4.7 presents the model prediction accuracy. Daly’s model is

more precise than any other. Its prediction error is smaller than that of

the others. Nevertheless, all models present a relative prediction error

smaller than 2.5% for workloads smaller than 1500×1500.

For matrix dimensions greater than 1500×1500 the relative error in-

57

4. EXPERIMENTAL EVALUATION

-7.5%

-5.0%

-2.5%

0.0%

2.5%

5.0%

200 500 800 1100 1400 1700

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r

Quadratic Matrix Size
Fialho Daly Gropp Young

Figure 4.7: Relative prediction error presented by models in comparison
with the real execution time.

creases for all models, with the exception of Daly’s model which presents

a relative error smaller than 4% until a 4000×4000 matrix size.

This next experiment tries to verify the accuracy of the calculated

checkpoint interval to minimise the overhead introduced by fault toler-

ance. The predicted overhead relative error is analysed also. For that, the

synthetic program has been executed with different checkpoint intervals.

The application overhead is compared with the predicted overhead of the

models.

For this experiment a medium-size matrix (1200×1200) has been cho-

sen. This matrix size has been selected because it is not too small to

be affected by operating system or hardware perturbations. The fault

detection latency has been set to zero, the MTTI has been defined to be

100 seconds, and all 21 fault distributions generated by those seeds shown

in table 4.1 have been used. For each checkpoint interval the application

has been executed at least 16 times and values depicted in graphs are the

average of all data that fall in a 95% confidence interval.

Figure 4.8 depicts a comparison between overhead prediction of the

models and a real execution. All models have calculated an optimum

58

4.2 Experiments

Table 4.3: Comparison of a real execution and model prediction. Lines
show the relative error of predicted overhead of the models for each check-
point interval used. The last line presents the optimum checkpoint interval
estimation of the models.

Interval Fialho Daly Young Gropp

7 2.6% 1.2% 1.5% 1.8%
8 2.1% 0.8% 1.2% 1.5%
9 1.8% 0.6% 1.0% 1.3%
10 1.8% 0.6% 1.0% 1.3%
11 1.7% 0.5% 0.9% 1.2%
12 1.9% 0.7% 1.0% 1.5%
13 2.1% 0.8% 1.2% 1.7%

Predicted 9.752s 9.766s 10.300s 10.300s

checkpoint interval between 9.75 and 10.3 seconds, as shown in table

4.3. According to the real execution, the optimum checkpointing interval

seams to be between 10 and 11 seconds. All models have presented an

overhead relative error smaller than 3% as shown in table 4.3. Close to

the optimum checkpoint interval calculated by the models, the relative

68000

68750

69500

70250

71000

71750

72500

7 8 9 10 11 12 13

R
un

 T
im

e
(s

ec
on

ds
)

Checkpoint Interval (seconds)
Fialho Daly Gropp Young Real Execution

Figure 4.8: Comparison of real execution and overhead prediction of the
models for α = 100, tc = 0.530, tl = 0.505, td = 0, values in average.
Application runs in 62,830 seconds without fault tolerance and in absence
of faults.

59

4. EXPERIMENTAL EVALUATION

error is smaller than 2% for all models.

4.2.1.2 Comparison Using Simulation

In order to compare models through simulation, a discrete event simulator

has been designed. Figure 4.9 shows a flow diagram depicting consecutive

events on this simulator. To place a fault at the right moment there is a

conditional before each event. As input, the simulator receives the fault

distribution, the MTTI, the time needed to take and load a checkpoint,

and the application run time. The output is the simulated run time for

each checkpoint interval starting from 1 to MTTI.

This simulator has been used to analyse the relation between MTTI

and the time needed to take and load a checkpoint. This simulation

shows the MTTI impact on model accuracy, fixing all variables other

than MTTI and the checkpoint interval. For that, an extremely long

running application (500 days) will be simulated to assure a minimum of

500 faults in each simulation.

Table 4.4 shows variables used for simulation, the detection latency

has been set to zero, and all fault distributions generated by the afore-

mentioned 10 thousands seeds have been used. Moreover, table 4.4 shows

the values of the optimum checkpoint interval calculated by models for

each scenario.

Table 4.4: Variables used to simulate the influence of MTTI on model
accuracy and the optimum checkpoint interval calculated by each model.

MTTI Run Time tc tl Young Gropp Daly Fialho
hours days minutes minutes minutes minutes minutes minutes

24 500 5 5 120.00 120.00 115.00 114.89
6 500 5 5 60.00 60.00 55.00 54.79
1 500 5 5 24.49 24.49 19.49 18.98

Figure 4.10 shows a comparison of the simulation and all four models

60

4.2 Experiments

START

envisioning
a fault?

checkpoint

envisioning
a fault?

compute

application
finished?

END

fault

envisioning
a fault?

load checkpoint

envisioning
a fault?

forward
to fault

no

yes

no

yes

yes

no

yes

no

yes

no

Figure 4.9: Diagram of the discrete event simulator used. Each box rep-
resents an event, and its time is added to the simulated run time.

using a 24 hour MTTI. A 10 minute checkpoint interval step has been used

between each simulated checkpoint interval. The results of the models are

very close to the simulation.

With regard to the predicted overhead, the proposed model presents a

relative error of 0.64% on values close to the calculated checkpoint interval

(114.89 minutes). Daly’s model presented an error smaller than 0.2% for

61

4. EXPERIMENTAL EVALUATION

500

525

550

575

600

625

650

30 60 90 120 150 180 210 240 270 300 330

R
un

 T
im

e
(d

ay
s)

Checkpoint Interval (minutes)
Fialho Daly Gropp Young Simulation

Figure 4.10: Comparison of models and simulation results for values
depicted in table 4.4 using a 24 hours MTTI. The minimum overhead is
achieved for a checkpoint interval value between 110 and 130 minutes.

all checkpoint intervals simulated. As expected, all models perform well

when the ratio between the time needed to take a checkpoint is relatively

small in comparison to MTTI.

Figure 4.11 depicts the same experiment but using a 6 hours MTTI.

It demonstrates that Young’s model cannot predict the overhead with

less than 15% error under these circumstances. However, its calculated

checkpoint interval is still close to the optimum. Other models also start

to show an increase in the overhead prediction error. The smaller simu-

lated run time is for a 55 minute checkpoint interval. At this point, the

proposed model, Gropp’s and Daly’s present a relative error of 2.54%,

1.23% and 0.67%, respectively. In this experiments a 5 minute check-

point interval step has been between each simulated checkpoint interval.

As the MTTI decreases, Young’s model is completely unable to predict

the overhead as shown in figure 4.12. Gropp’s model predicts the overhead

better than the proposed model, which presents an error of 16%. In this

62

4.2 Experiments

500
525
550
575
600
625
650
675
700

0 20 40 60 80 100 120 140 160 180 200

R
un

 T
im

e
(d

ay
s)

Checkpoint Interval (minutes)
Fialho Daly Gropp Young Simulation

Figure 4.11: Comparison of models and simulation results for values de-
picted in table 4.4 using a 6 hours MTTI. The minimum overhead is achieved
for a checkpoint interval value between 50 and 60 minutes.

experiment a one-minute checkpoint interval step has been used between

simulations. The smaller overhead present in the simulation has been

achieved for a 21 minute checkpoint interval. This value is very close to

the values calculated by Daly’s and the proposed models.

4.2.2 Model for Uncoordinated Checkpointing

The experimental evaluation for the uncoordinated checkpointing pre-

sented in this section is divided in three set of experiments. The first set

presents the comparison of the proposed model with other author’s mod-

els. The second set of experiments concerns the accuracy and effectiveness

of the checkpoint interval model and of the inter-process dependency fac-

tor. The third and last set of experiments is related to the adaptation

of the checkpoint interval to changes on the application’s characteristics.

Additionally, in the second and third set of experiments other author’s

models are also presented in comparison with the proposed models.

63

4. EXPERIMENTAL EVALUATION

500
550
600
650
700
750
800
850
900
950

1000

10 15 20 25 30 35 40

R
un

 T
im

e
(d

ay
s)

Checkpoint Interval (minutes)
Fialho Daly Gropp Young Simulation

Figure 4.12: Comparison of models and simulation results for values de-
picted in table 4.4 using a 1-hour MTTI. The minimum overhead is achieved
for a checkpoint interval value between 20 and 22 minutes.

Other models had been designed to be used with serial applications.

To compare these models with the proposed one may be unfair while

running applications protected by uncoordinated checkpoint combined

with message logging. However, it is important to show de benefits of

using models specifically designed for uncoordinated checkpointing.

4.2.2.1 Comparison With Other Models

In order to compare the proposed model with other models a set of experi-

ments has been designed. These experiments use the NAS LU application

running with 8 processes, one per node. This application has been ex-

ecuted using class B and C. Table 4.5 depicts relevant characteristics of

both applications.

∆ values reflect the average measurements done during application

execution. In order to achieve a minimum execution time of 50,000 sec-

onds, the number of iterations of LU class B and C has been modified

64

4.2 Experiments

Table 4.5: Summary of relevant characteristics of NAS LU application.
Time values are expressed in seconds. The rightmost column depicts the
optimum checkpoint interval in seconds calculated by our model. td = 0.5,
α = 100, φ = 1.

LU Class tc tl ∆lp ∆lr σ

B 0.605 0.559 38.257 0.005 10.353
C 2.057 2.102 13.961 0.007 18.065

to 300,000 and 37,500 respectively. As shown in table 4.5, due to the

receiver-based message logging protocol used by RADIC/OMPI the ∆lr

value is virtually zero.

Table 4.6 shows a summary of measurements and overhead predictions

for the NAS LU. Percentiles refer to the predicted overhead related to the

original run time.

As shown, other models are not useful to predict the overhead for ap-

plications where message logging affects its performance. As figure 4.13

depicts, for those kinds of applications the proposed model performs bet-

ter than any other model with regard to the estimated execution time.

This occurs because the message logging increases the applications exe-

cution time and other models do not consider this interference.

However, all models calculate an accurate checkpoint interval. The

proposed model estimates a 10.353 seconds checkpoint interval. Young’s

and Gropp’s models estimate an 11 seconds checkpoint interval while

Daly’s a 10.395, as shown in table 4.8. As figure 4.13 shows, the opti-

mum checkpoint interval is probably between 10 and 12 seconds. The

accuracy of the checkpoint interval calculation presented by other models

is expected because the value of φ is 1 for this application.

Table 4.7 presents a summary of models overhead prediction relative

error for the application execution presented above. As shown, our model

has presented an error smaller than or close to 4% for all these applica-

tions.

65

4
.

E
X

P
E

R
IM

E
N

T
A

L
E

V
A

L
U

A
T

IO
N

Table 4.6: Summary of measurements and predictions for the NAS LU application. Time values are expressed in seconds.
Percentiles refer to the predicted overhead with relation to the original run time. td = 0.5, α = 100, φ = 1, σ = 10 for LU
class B, and σ = 18 for LU class C. Other variable values are available in table 4.5.

Application
Execution Measures Fialho Daly Gropp Young

Un-Protected Protected Predicted Predicted Predicted Predicted
Run Time Execution Time Run Time Run Time Run Time Run Time

LU class B 68,469 107,374 36.2% 102,484 33.2% 77,030 11.1% 76,418 10.4% 79,868 14.3%
LU class C 36,093 48,948 26.3% 48,594 25.7% 45,478 20.6% 44,225 18.4% 45,371 20.4%

Table 4.7: Summary of run time prediction relative error for NAS LU class B running with 8 processes. Our model
presents the smallest error in all cases. Other variables are available in table 4.5. Checkpoint interval values are represented
in seconds.

Interval Fialho Daly Gropp Young

7 3.35% 24.96% 25.59% 21.56%
8 3.24% 25.10% 25.76% 21.82%
9 3.12% 25.13% 25.81% 21.93%
10 3.06% 25.14% 25.85% 21.97%
11 3.12% 25.21% 25.96% 22.04%
12 3.24% 25.31% 26.08% 22.09%
13 3.36% 25.36% 26.18% 22.09%
14 3.41% 25.34% 26.18% 22.01%

66

4.2 Experiments

74000

81200

88400

95600

102800

110000

7 8 9 11 12 13 14

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Checkpoint Interval (seconds)
Fialho Daly Gropp Young Real Execution

Figure 4.13: Comparison of model overhead prediction and real execution
of LU class B. Values of variables are depicted in table 4.5, α = 100, and
td = 0.5. Values are expressed in seconds. The minimum overhead is
achieved for a checkpoint interval value between 10 and 12 seconds.

Table 4.8: Estimated checkpoint interval for NAS LU class D. Values of
variables are available in table 4.5, α = 100 and td = 0.5. Values are
expressed in seconds.

Application Fialho Daly Gropp Young

LU class B 10.353 10.395 11.000 11.000

4.2.2.2 Accuracy and Effectiveness of the Model

To verify the accuracy of the proposed model the NAS (77) LU class B

with 8 processes modified to iterate 300,000 times has been executed.

This modified version of the LU has been executed using different global

values for the φ, from 0.9 to 0.2. Table 4.9 shows the correct value of this

factor individually and globally for this application.

Analysing the curve in figure 4.14 and the data present in the table

4.15 it is possible to guess that the optimum value for the φ for this

execution should be a value between 0.45 and 0.60. Despite of the small

difference between the global and the individualised values for the φ, to

67

4. EXPERIMENTAL EVALUATION

65000
70000
75000
80000
85000
90000
95000

100000
105000
110000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Inter-Process Dependency Factor (!)
Defined in run-time Fixed global value
No Fault Tolerance

0.5625

Figure 4.14: Comparison between static and in run-time configured values
of the inter-process dependency factor.

use of a precise value for this factor reduces in more than 3% the overhead

introduced by the fault tolerance tasks for this application.

To evaluate the effectiveness of the checkpoint interval model for par-

allel application two sets of experiments have been designed: 1) one analy-

ses the effectiveness of the inter-process dependency factor, and 2) verifies

the correctness of the message logging modelling. To show that the using

of current models is inappropriate in this scenario, the values achieved

with other models will be included on the following experiments.

To run experiments presented in this section the MTTI (α) has been

set to 100 seconds. The RADIC/OMPI library has been configured to

Table 4.9: Values for the inter-process dependency factor for the entire
LU application and for each process individually.

Process Rank (Global Value) P (n) φ

Running with 8 processes 0.56250
0, 3, 4, 7 4 0.50000
1, 2, 5, 6 5 0.62500

68

4.2 Experiments

Figure 4.15: Values for the overhead introduce by fault tolerance tasks
on the execution of the NAS LU application according to the configuration
methodology.

Overhead Using Overhead Using
φ Fixed a Defined in Difference

Global Value Run-Time Value

0.2 36.2% 32.8% 3.38%
0.3 35.8% 32.6% 3.27%
0.4 35.5% 32.4% 3.16%
0.5 35.2% 32.1% 3.11%
0.6 35.4% 32.2% 3.17%
0.7 35.7% 32.4% 3.28%
0.8 36.1% 32.7% 3.39%
0.9 36.5% 33.0% 3.43%

send a heartbeat every 1 second. Thus, the fault detection latency (td) is

0.5 seconds. As this library performs receiver-base message logging during

the recovery phase messages are already available in the log. Thus, the

time needed to process the message log (∆lr) tends to be unappreciable

because there is no message replaying (72).

To assure that the inter-process dependency factor is the only vari-

able which changes between executions a synthetic application has been

designed. The message logging interference and the time needed to take

and load a checkpoint are quite similar for the same number of process

per node.

The synthetic application has been programmed using the SPMD

paradigm. Figure 4.16 presents the execution flow of each process of the

synthetic application. A computing and a communication phase compose

each process. The computing phase is represented by a 2000×2000 matrix

multiplication and during the communication phase processes communi-

cate to the right and lower neighbours, as depicted in figure 4.17.

69

4
.

E
X

P
E

R
IM

E
N

T
A

L
E

V
A

L
U

A
T

IO
N

Table 4.10: Relevant characteristics of the synthetic application used to verify the effectiveness of the inter-process
dependency factor. For each model, the first column shows the optimum checkpoint interval calculated and the second
column shows the predicted overhead error. α = 100 and td = 0.5. Values are expressed in seconds.

of Fialho Daly Gropp Young
Processes φ tc tl ∆lp ∆lr σ Error σ Error σ Error σ Error

4 1.0000 1.630 1.643 2.771 0.000 16.30 3.67% 16.42 2.8% 18.05 4.7% 18.05 3.4%
9 0.5556 1.622 1.596 2.763 0.000 22.39 3.15% 16.39 1.3% 18.01 0.6% 18.01 0.0%
16 0.3125 1.691 1.610 2.765 0.000 31.00 2.21% 16.70 5.3% 18.39 3.3% 18.39 3.3%
25 0.2000 1.650 1.634 2.779 0.000 38.70 2.11% 16.52 7.0% 18.17 5.1% 18.17 4.8%

16 (4×4) 0.3125 4.954 5.131 4.188 0.000 50.46 3.08% 26.52 12.1% 31.48 7.0% 31.48 6.4%
36 (4×9) 0.1389 5.032 5.199 4.160 0.000 78.73 2.65% 26.69 17.4% 31.72 12.2% 31.72 10.4%
64 (4×16) 0.0781 4.981 5.287 4.399 0.000 106.06 1.88% 26.58 20.4% 31.56 15.3% 31.56 12.7%
100 (4×25) 0.0500 5.284 5.330 4.328 0.000 137.76 1.63% 27.22 22.9% 32.51 17.6% 32.51 14.6%

Table 4.11: Characteristics of the NAS LU class B and C. For each model, the first column shows the optimum checkpoint
interval and the second the predicted overhead error. α = 100, td = 0.5, φ = 0.5625. Values are expressed in seconds.

LU Fialho Daly Gropp Young
Class tc tl ∆lp ∆lr σ Error σ Error σ Error σ Error

B 0.605 0.559 38.257 0.005 10.353 3.0% 10.395 25.1% 11.000 25.9% 11.000 22.0%
C 2.057 2.102 13.961 0.007 18.065 0.5% 18.065 5.6% 20.283 8.0% 20.283 5.8%

70

4.2 Experiments

START

compute

communicate

all work
done?

END

yes

no

Figure 4.16: Execution flow of each process of the synthetic application
used to verify the effectiveness of the inter-process dependency factor.

These phases are repeated until a defined amount of work has been

done. The computing and communication load are the same for all exe-

cutions. Thus, the interference caused by the message logging is the same

N11

N12

...

N1n

N21

N22

...

N2n

...

...

...

...

Nn1

Nn2

...

Nnn

Figure 4.17: Communication patter of the synthetic application used to
verify the effectiveness of the inter-process dependency factor

71

4. EXPERIMENTAL EVALUATION

in all experiments regardless of the number of processes used. However,

the value of the inter-process dependency factor changes accordingly to

the number of processes.

Besides other variables, table 4.10 depicts the value of φ for all exe-

cutions. Values of message logging operation (∆lp and ∆lr), checkpoint

taking (tc), and checkpoint loading (tl) are averages of all measurements

done during application execution. The value of the checkpoint interval

has been previously calculated based on the applications characteristics

and is used to configure the RADIC/OMPI library.

As shown in figures 4.18 and 4.19, as the number of processes increases

(or the value of φ decreases) so does the accuracy of our model. On the

execution with 4 processes the value of φ is 1. In this case all models

perform similarly. However, as the number of processes increases other

models depicts a loss of accuracy.

Analysing figure 4.19 it is easy to conclude that previous models can-

not be used with parallel applications protected by uncoordinated check-

0%
1%
2%
3%
4%
5%
6%
7%
8%

4 9 16 25

O
ve

rh
ea

d
Pr

ed
ic

ct
io

n
Er

ro
r

Number of Processes
Fialho Daly Gropp Young

Figure 4.18: Overhead prediction error for a synthetic application running
with 4, 9, 16, and 25 processes, 1 per node. Values of variables are depicted
in table 4.10, α = 100, and td = 0.5.

72

4.2 Experiments

0%

5%

10%

15%

20%

25%

16 36 64 100

O
ve

rh
ea

d
Pr

ed
ic

ct
io

n
Er

ro
r

Number of Processes
Fialho Daly Gropp Young

Figure 4.19: Overhead prediction error for a synthetic application running
with 16, 36, 64, and 100 processes, 4 per node. Values of variables are
depicted in table 4.10, α = 100, and td = 0.5.

points combined with message logging. Especially with a high number of

processes.

In order to verify the correctness of the message logging modelling

a new set of experiments have been made. These experiments use the

LU application from the NAS Parallel Benchmarks (77) running with 8

processes, one per node. LU has been executed using class B and C.

Table 4.5 depicts relevant characteristics of LU. ∆ values reflect the

average measurements done during application execution. The number of

iterations of LU class B and C has been modified to 300,000 and 37,500

respectively. The LU application presents a φ value equal to 0.5625 for 8

processes.

As shown in figures 4.20 and 4.21 the proposed model performs better

than any other. Because other models do not consider the message logging

time they present an overhead prediction relative error greater than 20%

for LU class B. It means that these models are not useful to predict

the overhead for parallel applications using uncoordinated checkpointing

73

4. EXPERIMENTAL EVALUATION

0%

5%

10%

15%

20%

25%

30%

Fi
alh

o
Da

ly
Gr

op
p

Yo
un

g

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r

Figure 4.20: Model overhead prediction relative error for LU class B.
Values of variables are depicted in table 4.5.

0%

5%

10%

15%

Fi
alh

o
Da

ly
Gr

op
p

Yo
un

g

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r

Figure 4.21: Model overhead prediction relative error for LU class C.
Values of variables are depicted in table 4.5.

combined with pessimist receiver-based message logging.

Nevertheless, the proposed model model presents a modest overhead

prediction error for both class B and C of the NAS LU. Notice that

from figure 4.20 to figure 4.21 other models presented a decrease in the

overhead prediction error while the opposite occurs with our model. This

occurs because the ratio between compute and communication changes

reducing the interference of message logging.

The next experiment tries to depict the sensibility of the inter-process

74

4.2 Experiments

dependency factor to the application’s communication pattern and num-

ber of processes. For that four applications from the NAS Parallel Bench-

marks (77) have been chosen. The applications are: CG, LU, BT and SP.

Table 4.12 shows the values for the inter-process dependency factor

(φ) for the selected applications. As expected, different communication

patterns generates different values for the φ. Moreover, in these appli-

cations the number of peers each process communicate is defined by the

data structure used by applications, and the applications is programmed

under an SPMD-like paradigm. This means that the number of peers

each process communicate does not increases with the same ration with

which the number of processes increases.

Figure 4.22 depicts the same data presented in table 4.12. As we can

see, for CG and LU applications the value of the φ decreases as the number

of processes increases. However, SP and BT present a special decrease in

the number of peers each process communicate to when the total number

Table 4.12: Values for the inter-process dependency factor for CG, LU,
BT, and SP applications from the NAS suite according to the number of
processes used to run the application.

of φ
Processes CG LU BT/SP

4 1.00000 0.75000 1.00000
8 0.62500 0.56250 —
9 — — 1.00000
16 0.37500 0.37500 0.56250
25 — — 0.49920
32 0.21875 0.22656 —
36 — — 0.40895
49 — — 0.34402
64 0.12500 0.13281 0.17188
81 — — 0.20668
100 — — 0.18870
121 — — 0.15272
128 0.07031 0.07520 —

75

4. EXPERIMENTAL EVALUATION

0

0.25

0.50

0.75

1.00

0 16 32 48 64 80 96 112 128In
te

r-
Pr

oc
es

s D
ep

en
de

nc
y

Fa
ct

or
 (!

)

of Processes
CG LU BT/SP

Figure 4.22: Inter-process dependency factor for CG, LU, BT, and SP
applications from the NAS suite according to the number of processes used
to run the application.

of processes is a perfect cube (64). These applications present the same

communication pattern and data-mapping algorithm.

To depict the influence of inter-process dependency factor on the over-

head prediction we chose the LU application from the NAS suite. This

application has been chosen due to its good scalability. Table 4.13 depicts

the global value for this factor for the LU applications according to the

number of processes it used to run. Also, the value of the inter-process

dependency factor for each individual process is exhibited.

Figure 4.23 depicts both the overhead prediction error and the inter-

process dependency factor for the LU applications according to the num-

ber of processes. As the value of the φ decreases the overhead prediction

error of our checkpoint interval model starts decreasing for a small num-

ber of nodes and stabilises after 16 nodes in use.

The overhead prediction error is the difference between the overhead

calculated by the cost function introduced in equation 3.19 and the over-

76

4.2 Experiments

Table 4.13: Values for the inter-process dependency factor for the entire
LU application and for each process individually.

Process Rank (Global Value) P (n) φ

Running with 4 processes 0.75000
0–3 3 0.75000

Running with 8 processes 0.56250
0, 3, 4, 7 4 0.50000
1, 2, 5, 6 5 0.62500

Running with 16 processes 0.37500
0, 3, 12, 15 5 0.31250
1, 2, 4, 7, 8, 11, 13, 14 6 0.37500
5, 6, 9, 10 7 0.43750

Running with 32 processes 0.22656
0, 7, 24, 31 6 0.18750
1–6, 8, 15, 16, 23, 25–30 7 0.21875
9–14, 17–22 8 0.25000

Running with 64 processes 0.13281
0, 7, 56, 63 7 0.10938
1–6, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 57–62 8 0.12500
9–14, 17–22, 25–30, 22–28, 41–46, 49–54 9 0.14063

Running with 128 processes 0.07520
0, 15, 112, 127 8 0.06250
1–14, 16, 31, 32, 47, 48, 63, 64, 79, 80, 95, 96, 111, 113–126 9 0.07031
17–30, 33–46, 49–62, 65–78, 81–94, 97–110 10 0.07813

head presented by the application execution. We consider a value smaller

than 5% for the overhead prediction error acceptable for those kind of

predictions.

4.2.2.3 Adaptation to the Application’s Characteristics

Model variables such as tc and tl depends on the amount of memory

used by application processes. And processes on the same application

may present different memory footprints. This occurs because processes

compute different data or processes play different roles in the parallel

application.

77

4. EXPERIMENTAL EVALUATION

0

0.2

0.3

0.5

0.6

0.8

4 8 16 32 64 128
0

1

2

3

4

5
In

te
r-

Pr
oc

es
s D

ep
en

de
nc

y
Fa

ct
or

 (!
)

of Processes

O
ve

rh
ea

d
Pr

ed
ic

tio
n

Er
ro

r (
%

)

Global ! Overhead Predicction Error

Figure 4.23: Overhead prediction error and the inter-process dependency
factor for the LU applications according to the number of processes.

To depict the adaptation of the checkpoint interval to the process

memory footprint the NAMD molecular dynamics application (70) have

been used. NAMD is implemented over a Master/Worker paradigm where

workers also communicate between themselves; the master process re-

quires more memory in comparison to the workers.

The experiment has been executed using with a fault frequency (α) of

3600 seconds and the heartbeat frequency (td) was set to 1 second. Values

for tc, tl, ∆lp, and ∆lr were measured during the execution. For this

application we have manually calculated the inter-process dependency

factor (φ) and its value is 1.

Dashed lines in figures 4.24 and 4.25 depict the checkpoint interval

used throughout the application execution. Figure 4.24 refers to the mas-

ter process, while figure 4.25 refers to a worker process. Figure 4.25

depicts only one worker processes, however others present a similar be-

haviour.

As the figures depict, processes use a small amount of memory in the

78

4.2 Experiments

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!
1000!

0!
150!
300!
450!
600!
750!
900!
1050!
1200!
1350!
1500!

0! 600! 1200! 1800! 2400! 3000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

Pr
oc

es
s S

iz
e

(M
By

te
s)
!

Execution Time (seconds)!

Figure 4.24: The continuous line shows the memory footprint of the
NAMD master process running the “stmv” workload; values are shown on
the left axes. The dashed line represents the checkpoint interval used; val-
ues are shown on the right axes. The rhombus points depict checkpoint
instances.

0!
100!
200!
300!
400!
500!
600!
700!
800!
900!
1000!

0!
150!
300!
450!
600!
750!
900!
1050!
1200!
1350!
1500!

0! 600! 1200! 1800! 2400! 3000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

Pr
oc

es
s S

iz
e

(M
By

te
s)
!

Execution Time (seconds)!

Figure 4.25: The continuous line shows the memory footprint of the a
NAMD worker process running the “stmv” workload; values are shown on
the left axes. The dashed line represents the checkpoint interval used; val-
ues are shown on the right axes. The rhombus points depict checkpoint
instances.

79

4. EXPERIMENTAL EVALUATION

startup phase. As a consequence of this the model calculates a short

checkpoint interval initially. However, after the startup phase the appli-

cation increases its memory footprint. After the second checkpoint the

checkpoint interval changes to reflect the changes on the process memory

footprint. Tables 4.14 and 4.15 summarise the checkpoint instances and

sizes for the master and a worker process, respectively.

To depict the adaptation of the checkpoint to the inter-process de-

pendency factor a dynamic matrix multiplication application built under

a Master/Worker paradigm where workers only communicate with the

master process have been used. This parallel application was executed

using 8 nodes.

Considering the equation 3.17, the initial value for the φ variable

is 0.34375. This value represents a global view of the relationship es-

tablished between all processes on this parallel application. The fault

frequency (α) has been defined as 3600 seconds and the heartbeat fre-

Table 4.14: First four values of the checkpoint size and the calculated
next checkpoint interval for the NAMD master process running the “stmv”
workload.

Execution Instant Process Size Checkpoint Interval

0.31 seconds 339.96 MB 340.56 seconds
358.45 seconds 1261.75 MB 775.93 seconds
1245.35 seconds 1270.05 MB 779.04 seconds
2132.25 seconds 1272.37 MB 779.41 seconds

Table 4.15: First four values of the checkpoint size and the calculated
next checkpoint interval for a NAMD worker process running the “stmv”
workload.

Execution Instant Process Size Checkpoint Interval

0.19 seconds 70.57 MB 157.35 seconds
160.95 seconds 1026.79 MB 689.77 seconds
934.97 seconds 1056.99 MB 693.29 seconds
1708.81 seconds 1060.23 MB 693.87 seconds

80

4.2 Experiments

quency (td) has been set to 1 second. Values for tc, tl, ∆lp, ∆lr, and φ are

measured during the execution. Equation 3.18 has been used to define in

run-time the value of φ for each process.

Continuous lines in figures 4.26 and 4.27 depict the calculated values

for the φ in run-time for the master and for a worker process, respec-

tively. In addition, the dashed line on these figures depicts the values of

the checkpoint interval during the application execution as well as the

checkpoints instances.

As shown in figure 4.26, the initial value of 0.34375 was redefined to

1. This occurs because between the first and the second checkpoint the

master process communicated with all 7 workers. As a consequence of

this increase in the value of φ, the model has changed the checkpoint

interval. Similarly, in figure 4.27 the decrease in the value of φ increases

the time between checkpoints for a worker process.

Figure 4.27 depicts only one worker process, however, other worker

processes present similar behaviour. The huge difference between the

0!

500!

1000!

1500!

2000!

2500!

3000!

3500!

0.0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!
1.0!

0! 2000! 4000! 6000! 8000! 10000!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

In
te

r-
Pr

oc
es

s D
ep

en
de

nc
y

Fa
ct

or
 ("

)!

Execution Time (seconds)!

Figure 4.26: The continuous line shows the value of φ for the master
process of the matrix multiplication; values are shown on the left axes. The
dashed line represents the checkpoint interval used; values are shown on the
right axes. The rhombus points depict checkpoint instances.

81

4. EXPERIMENTAL EVALUATION

0!
50!
100!
150!
200!
250!
300!
350!
400!

0.0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!
1.0!

0! 100! 200! 300! 400! 500! 600! 700! 800!

C
he

ck
po

in
t I

nt
er

va
l (

se
co

nd
s)
!

In
te

r-
Pr

oc
es

s D
ep

en
de

nc
y

Fa
ct

or
 ("

)!

Execution Time (seconds)!

Figure 4.27: The continuous line shows the value of φ for a worker process
of the matrix multiplication; values are shown on the left axes. The dashed
line represents the checkpoint interval used; values are shown on the right
axes. The rhombus points depict checkpoint instances.

checkpoint interval calculated for the master and for the worker process

is caused by the difference in the memory footprint of these processes.

Tables 4.16 and 4.17 summarise the checkpoint instances and sizes for

the master and a worker process, respectively.

The next experiments depict the performance gain in using the method-

ology to define the checkpoint interval in run-time. This experiment

compares the performance of our proposal with a static configuration in

Table 4.16: First five values of φ and the calculated next checkpoint inter-
val for the master process of the matrix multiplication execution according
to the execution instance.

Execution Instant Process φ Checkpoint Interval

0.84 seconds 0.34375 2,949.62 seconds
3,658.74 seconds 1.00000 1,436.16 seconds
5,823.01 seconds 1.00000 1,433.98 seconds
7,928.74 seconds 1.00000 1,439.21 seconds
10,054.94 seconds 1.00000 1,433.73 seconds

82

4.2 Experiments

Table 4.17: First five values of φ and the calculated next checkpoint in-
terval for a worker process of the matrix multiplication execution according
to the execution instance.

Execution Instant Process φ Checkpoint Interval

0.31 seconds 0.34375 286.52 seconds
286.84 seconds 0.25000 336.68 seconds
623.52 seconds 0.25000 334.99 seconds
960.20 seconds 0.25000 337.09 seconds

1,296.88 seconds 0.25000 336.96 seconds

a faulty and fault-free scenario. The comparison was made using the

aforementioned NAMD and dynamic matrix multiplication applications.

In these experiments only one fault was injected in each execution.

The moment of the fault differs from one execution to other. The fault

is distributed along the application execution according to the MT19937

PRNG algorithm. Each experiment has been executed at least 16 times

and values are the average of all data that fall in a 95% confidence interval.

As shown in figure 4.28 the use of the fault tolerance provided by the

RADIC/OMPI library introduces an overhead of about 25% in a fault-free

execution and about 34% in a faulty scenario.

As shown in table 4.18 there is a modest reduction in the overhead

while the checkpoint interval is calculated in run-time. This occurs be-

cause there is no significative change in the NAMD processes character-

istics, except for the memory footprint in the start-up phase. However,

as shown in figure 4.29 the matrix multiplication application presents

Table 4.18: Summary of the overhead experienced by NAMD and a matrix
multiplication execution time using different fault tolerance configuration
strategies on different environments.

App Statically Configured Configured in Run-Time
Fault-free Faulty Fault-free Faulty

NAMD 25.4% 25.1% 34.5% 33.6%
MM 18.1% 24.6% 35.4% 31.1%

83

4. EXPERIMENTAL EVALUATION

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Fault-free and static configured FT
Fault-free and in run-time configured FT
Faulty and static configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Fault-free and statically configured FT
Fault-free and in run-time configured FT
Faulty and statically configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d
Figure 4.28: Comparison of the NAMD execution time using different
fault tolerance configuration strategies on different environments.

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Fault-free and static configured FT
Fault-free and in run-time configured FT
Faulty and static configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Fault-free and statically configured FT
Fault-free and in run-time configured FT
Faulty and statically configured FT
Faulty and in run-time configured FT

0%

10%

20%

30%

40%

50%

Ex
ec

ut
io

n
Ti

m
e

O
ve

rh
ea

d

Figure 4.29: Comparison of the matrix multiplication execution time using
different fault tolerance configuration strategies on different environments.

different results.

In the fault-free environment the execution using statically configured

checkpoint interval presents a smaller overhead than the execution run-

ning with in run-time configuration. This is because the initial global

84

4.2 Experiments

value of φ increases the checkpoint interval for the master process. This

reduces the number of checkpoints performed. In this situation, the over-

head introduced by a fault increases. This can be verified when we com-

pare the total wall time clock in a faulty environment for the configura-

tions made statically and in run-time.

4.2.3 Fault Tolerance Overhead

It is important to understand that the fault tolerance overhead is not

only a question of the fault tolerance architecture configuration. It is

a complex relation between the parallel application behaviour over the

parallel computer. Moreover, the fault tolerance tasks may change the

expected communication time as well as stop the computation phases

for checkpointing. In addition, the injection of faults forces processes to

rollback.

To understand how all these operations affects the overall parallel ap-

plication execution time the following set of experiments were ran. The

class B of the BT NAS benchmark have been chosen to depict this ex-

periment. This application have been executed with 4, 9, 16, 25, and

36 processes. Executions ran in different number of nodes, depending

on the number of processes. Some execution have been made using one

process per node and other with four processes per node. For all these

experiments the MTTI was set to 100 seconds.

Figure 4.30 shows the execution time breakdown of the NAS BT class

B running with 4 processes. As a reference, the first column depicts the

execution of this application without any sort of fault tolerance. Running

one process per node, this application takes about to 157 seconds to run.

Practically all the communication is overlapped with computation. The

value of φ is 1 for this application under these circunstances.

As the value of the φ is 1, all models perform very similar. As well

as the communication time, the event logging time can be partially over-

85

4. EXPERIMENTAL EVALUATION

lapped with computation. The checkpointing and reworking time are the

main responsible for the overhead introduced by the fault tolerant tasks.

Figure 4.31 depicts the same data of figure 4.30 while running the

application with 9 processes. It is possible to notice the reduction on the

computation time. As the number of peers each process communicate

with increases. Thus, the application suffer a increase on the communi-

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 153.92 153.39 154.03 153.89 153.88
Communication 3.49 5.14 4.96 3.59 3.61
Checkpointing — 23.50 23.61 23.85 23.94
Event Logging — 3.51 3.45 3.69 3.49

Recovery — 7.47 7.26 7.10 7.51
Reworking — 46.28 42.96 44.21 45.09

Total 157.41 239.29 236.27 236.33 237.52

Figure 4.30: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 4 processes, 1
process per node. Values are in seconds. φ = 1, α = 100.

86

4.2 Experiments

cation time.

Under this circumstances the value of the global φ is close to 0.9, while

there are three groups of processes with the value of φ varying from 1 to

0.77. This slight variation on the value of the φ reduces the checkpoint

frequency as well as the interference of a faulty process on other processes.

These modifications are noticeable on the checkpointing and reworking

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 109.54 107.54 108.49 107.74 108.13
Communication 29.73 27.42 28.21 27.96 27.33
Checkpointing — 9.31 9.42 5.01 5.10
Event Logging — 10.18 10.08 8.43 8.70

Recovery — 3.21 3.00 0.98 1.39
Reworking — 40.26 37.38 34.48 32.46

Total 139.27 197.93 196.58 184.60 183.11

Figure 4.31: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 9 processes, 1
process per node. Values are in seconds. φ ≈ 0.90, α = 100.

87

4. EXPERIMENTAL EVALUATION

time shown in table depicted in figure 4.31.

It is possible to notice a general reduction on the execution time for

all models. Beside the lowering on the computation time, the main re-

sponsible for this is the diminution of the checkpointing time. It occurs

because this scenario generates checkpoint files smaller than the previous

one.

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 84.54 85.57 85.08 84.69 84.86
Communication 49.04 48.92 49.21 47.53 47.61
Checkpointing — 9.12 9.23 4.91 4.97
Event Logging — 16.21 16.11 16.51 16.17

Recovery — 3.16 2.95 0.96 1.37
Reworking — 36.10 33.94 26.53 22.55

Total 133.58 199.07 196.51 181.13 177.52

Figure 4.32: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 16 processes, 1
process per node. Values are in seconds. φ ≈ 0.59, α = 100.

88

4.2 Experiments

The same tendency depicted from figure 4.30 to figure 4.31 can be

perceived on figure 4.32 and figure 4.33. However, at this point, there

is only a slight gain on the execution time. This occurs because the

application starts to be driven by the communication time.

The event logging time increases because it depends on the applica-

tion communication behaviour. The checkpointing and recovery times

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 62.16 61.22 61.54 62.47 62.32
Communication 67.85 67.12 68.94 67.91 67.49
Checkpointing — 7.30 7.41 2.19 1.87
Event Logging — 27.48 27.38 27.78 27.44

Recovery — 2.61 2.40 0.82 0.73
Reworking — 36.10 33.94 14.59 13.53

Total 130.01 201.83 201.61 175.76 173.38

Figure 4.33: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 25 processes, 1
process per node. Values are in seconds. φ ≈ 0.45, α = 100.

89

4. EXPERIMENTAL EVALUATION

diminish because the process memory footprint is smaller. And finally,

as smaller is the value of the φ, less interference is generated by a faulty

process on other processes. Another consequence of the diminution of the

φ is a reduction on the checkpoint frequency that can be noticed by the

brutal reduction on the checkpointing time.

Experiments depicted in figures 4.34 and 4.35 differ from the previ-

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 119.02 118.83 119.07 119.31 118.99
Communication 23.98 24.19 24.00 23.49 23.35
Checkpointing — 41.82 41.93 21.26 17.17
Event Logging — 21.39 23.73 23.40 23.29

Recovery — 3.16 2.95 1.30 0.93
Reworking — 27.77 25.78 14.59 13.53

Total 143.00 237.15 237.45 203.35 197.26

Figure 4.34: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 16 processes, 4
process per node. Values are in seconds. φ ≈ 0.59, α = 100.

90

4.2 Experiments

ous because those two were executed with 4 processes per node. The

main consequence of having more than one process per node concerns the

competition for resources such as network, disk and access to the main

memory. In this case the CPU is not a problem because nodes have not

been overloaded with more processes than core exists on that.

Comparing figure 4.32 with figure 4.34 it is possible to notice that the

0

50

100

150

200

250

N
o

FT

Yo
un

g
&

 G
ro

pp

D
al

y

Fi
al

ho

Fi
al

ho
 D

yn
am

ic

Ti
m

e
(s

ec
on

ds
)

Computation Communication Checkpointing
Event Logging Recovery Reworking

Task No FT Young Daly Fialho Fialho
& Gropp Dynamic

Computation 73.21 73.42 73.27 73.46 73.59
Communication 24.79 24.95 24.72 24.23 24.12
Checkpointing — 27.90 28.01 14.30 11.60
Event Logging — 10.66 13.00 12.67 12.56

Recovery — 2.93 2.83 0.97 0.98
Reworking — 23.14 21.48 6.63 5.86

Total 98.00 162.99 163.30 132.26 128.71

Figure 4.35: Execution time breakdown of the NAS BT class B according
to the checkpoint interval model. Experiments ran with 36 processes, 4
process per node. Values are in seconds. φ ≈ 0.30, α = 100.

91

4. EXPERIMENTAL EVALUATION

computation time increases from 84.54 seconds to 119.02. This increment

is explained by the concurrency on accessing the main memory, since the

workload and the number of processes for both execution are the same.

Another significance difference concerns the apparently reduction on

the communication time. Indeed there is a reduction, since some process

communicate with other processes on the same node. The MPI library

used to run these experiment this communication goes through a special

communication channel implemented using shared memory. However the

event logging overhead increases because those data should be stored on a

remote node. In addition there are four processes using only one network

to communicate.

The most evident consequence of sharing hardware resources can be

perceived on the checkpointing time. There are two reasons for this in-

creasing. The first one concerns the transference of the checkpoint to a

remote node using a collapsed network. The second reason concerns the

concurrency for the disk. Even so checkpoint are not coordinated it is

possible that processes are performing the checkpoint at the same time.

Analysing figure 4.35, in comparison with figure 4.34 it is possible

to notice the same changes while analysing previous figures. As usual,

the value of the φ is smaller for 36 processes than for 16, which reduces

the reworking time. Obviously the computation time suffer a evident

diminution and the time of all fault tolerance tasks related to checkpoint

files diminish as well.

92

The meaning of things lies not in the things themselves,

but in our attitude towards them.

— Antoine de Saint-Exupéry

5

Conclusion

This thesis has presented a novel model to face the emergent fault tol-

erance paradigm. This paradigm tries to provide a fault tolerance infras-

tructure suitable for scalable parallel applications. To protect these ap-

plications the fault tolerance architecture relies on uncoordinated check-

pointing combined with event logging techniques.

There was a lack of knowledge concerning the use of protocols that

combine uncoordinated checkpointing with event logging. This thesis has

presented a model to estimate the wall time clock of a parallel application

protected by uncoordinated checkpointing. As well as a convenient model

to calculate the frequency in which those checkpoints should be taken.

This thesis has demonstrated that previous models are not useful to

define an accurate checkpoint interval for parallel applications protected

by uncoordinated checkpointing protocols. Furthermore, as the number

of processes in the parallel application increases the accuracy of those

models tends to decrease.

On the development of this work a model for coordinated checkpoint-

ing have been presented. After that, a model for parallel applications

has been introduced. A key point is the modelling of the relationship

between parallel application processes to define the checkpoint interval

for uncoordinated checkpointing protocols. According to this study, the

93

5. CONCLUSION

relationship between processes is defined by the communication events ex-

changed between the application processes. This relationship was called

inter-process dependency factor.

Some applications characteristics are important to model the rela-

tionship existent between parallel application processes like: peers each

process communicates with, frequency of this communication, the domino

effect caused by a fault, and the time needed to recover a faulty process.

A first order approximation to the definition of the inter-process de-

pendency factor as well as a simple methodology to define the variables

of this factor was presented and are the following:

φ =
P (n)

N

were φ should be defined individually for each application process as well

as the checkpoint interval. In this first approximation the P (n) function

considers only the peers each process communicates with.

The checkpoint interval model that minimises the overhead introduced

by the fault tolerance tasks can be calculated using the following equation:

σopt =

√
φtc(2α− tc − 2∆lr)

φ
− tc

and the cost function useful to estimate the application runtime is de-

picted underneath:

Test = Tp

[
1 +

φσ2 + σ(3φtc + 2φ∆lr − tc + 2∆lp)

α(2σ + 2tc)

+
2tc(φtc + φ∆lr + α− tc −∆lr + ∆lp)

α(2σ + 2tc)

]
The coordinated checkpointing model presents a difference of less than

1.2% from other models on average and the execution time prediction er-

ror is smaller than 3% in comparison with a real application execution.

94

5.1 Summary of Contributions

With regard to the parallel model, it presents an overhead prediction er-

ror smaller than 5% for the applications tested. Furthermore, we have

demonstrated that our models perform better when the number of pro-

cesses increases and there is less dependency between processes.

Moreover, this thesis have presented a methodology to dynamically

define the input variables used by models based on measurements per-

formed during the application execution. A methodology to monitor the

processes that compose the parallel application has been proposed. To

monitoring mechanism permits the definition of the variables value used

in the checkpoint interval model.

This instrumentation allows the definition of the checkpoint interval

in run-time with a high degree of precision, process by process. The use

of this methodology reduces in about 3% the overhead introduced in the

execution time for applications running in faulty environments.

5.1 Summary of Contributions

The contributions of this work have been accepted for publications on

different conferences.

The first one (42) describes the MPI library that incorporates the

RADIC fault tolerance architecture. This work has been published in

the proceedings of the 16th European PVM/MPI user’s group meeting

in Helsinki, Finland.

The modelling of the relationship between parallel application pro-

cesses to define the checkpoint interval for uncoordinated checkpointing

protocols has been accepted for publication on the 31th International

Conference on Distributed Computing Systems (41), to be held in Min-

neapolis, United States.

The definition of the checkpoint interval model for uncoordinated

checkpointing protocols (39) as well as the methodology to define the

95

5. CONCLUSION

models variable values in run-time (40) have been published in the Inter-

national Conference on Parallel and Distributed Processing Techniques

and Applications, to be held in Las Vegas, United States.

5.2 Future Work

The overhead added to the application execution by the monitoring mech-

anism tends to be unappreciable. However, it is necessary to quantify this

overhead.

The use of uncoordinated checkpointing is the only solution that al-

lows the use of different checkpoint intervals for each application process.

However, the use of uncoordinated checkpointing assisted by message log-

ging may not be the solution that presents the lowest overhead. There

is the need to analyse if a sender-based message logging or a coordinated

checkpointing solution present better results.

Although good results can be achieved by the probability function

presented in this paper, we consider this function very simple to define

the relationship existent between the processes of a parallel application.

More elaborate P (n) functions can be designed. A good choice is to define

P (n) analysing the probability that a fault process blocks other processes

during the recovery time (Tr).

Another important issue is to prove that the parallel model is suitable

for libraries that implement uncoordinated check- pointing combined with

sender-based message logging.

96

References

[1] A Agbaria and R Friedman. Starfish: Fault-Tolerant Dynamic MPI

Programs on Clusters of Workstations. Cluster Computing, 6(3):227—236,

2003. Available from: http://dx.doi.org/10.1023/A:1023540604208. 19

[2] A Agbaria and R Friedman. Model-based performance evaluation of

distributed checkpointing protocols. International Journal of Performance

Evaluation, 65(5):345—365, 2008. Available from: http://dx.doi.org/10.1016/

j.peva.2007.09.001. 23

[3] L Alvisi, B Hoppe, and Keith Marzullo. Nonblocking and Orphan-Free

Message Logging Protocols. Proceedings of the 23rd Annual International

Symposium on Fault-Tolerant Computing, pages 145—154, 1993. Available from:

http://dx.doi.org/10.1109/FTCS.1993.627318. 22

[4] L Alvisi and K Marzullo. Trade-Offs in Implementing Optimal Mes-

sage Logging Protocols. Proceedings of the 15th Annual ACM Symposium

on Principles of Distributed Computing, pages 58—67, 1996. Available from:

http://dx.doi.org/10.1145/248052.248061. 14

[5] L Alvisi and K Marzullo. Message Logging: Pessimistic, Opti-

mistic, Causal, and Optimal. IEEE Transactions on Software Engineering,

24(2):149—159, 1998. Available from: http://dx.doi.org/10.1109/32.666828.

19

[6] M Aminian, M Akbari, and B Javadi. Coordinated Checkpoint from Mes-

sage Payload in Pessimistic Sender-Based Message Logging. Proceedings

of the 20th International Parallel and Distributed Processing Symposium, 2006.

Available from: http://dx.doi.org/10.1109/IPDPS.2006.1639619. 23

[7] J Ansel, K Arya, and G Cooperman. DMTCP: Transparent Checkpoint-

ing for Cluster Computations and the Desktop. Proceedings of the 23rd

IEEE International Parallel and Distributed Processing Symposium, pages 1—12,

2009. Available from: http://dx.doi.org/10.1109/IPDPS.2009.5161063. 21

97

http://dx.doi.org/10.1023/A:1023540604208
http://dx.doi.org/10.1016/j.peva.2007.09.001
http://dx.doi.org/10.1016/j.peva.2007.09.001
http://dx.doi.org/10.1109/FTCS.1993.627318
http://dx.doi.org/10.1145/248052.248061
http://dx.doi.org/10.1109/32.666828
http://dx.doi.org/10.1109/IPDPS.2006.1639619
http://dx.doi.org/10.1109/IPDPS.2009.5161063

REFERENCES

[8] S Arunagiri, J Daly, P Teller, S Seelam, R A Oldfield, M R Varela,

and R Riesen. Opportunistic Checkpoint Intervals to Improve System

Performance. Technical Report: UTEP-CS-08-24, 2008. Available from: http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3874. 22

[9] R Aulwes, D Daniel, N Desai, R Graham, L Dean Risinger, Mark A

Taylor, Timothy S Woodall, and Mitchel W Sukalski. Architecture of

LA-MPI, a Network-Fault-Tolerant MPI. Proceedings of the 18th Inter-

national Parallel and Distributed Processing Symposium, 2004. Available from:

http://dx.doi.org/10.1109/IPDPS.2004.1302920. 19

[10] R Baldoni, J Hélary, A Mostefaoui, and M Raynal. Consistent Check-

pointing in Message Passing Dstributed Systems. INRIA Technical Rep-

port, 1995. Available from: http://hal.inria.fr/inria-00074117/en/. 13

[11] R Baldoni, J Hélary, A Mostefaoui, and M Raynal. On Modeling

Consistent Checkpoints and the Domino Effect in Distributed Sys-

tems. INRIA Technical Repport, 1995. Available from: http://hal.inria.fr/

inria-00074112/en/. 13

[12] R Batchu, Y Dandass, A Skjellum, and M Beddhu. MPI/FT: A Model-

Based Approach to Low-Overhead Fault Tolerant Message-Passing

Middleware. Cluster Computing, 7(4):303—315, 2004. Available from: http:

//dx.doi.org/10.1023/B:CLUS.0000039491.64560.8a. 19

[13] R Batchu, J Neelamegam, Z Cui, and M Beddhu. MPI/FT: Archi-

tecture and Taxonomies for Fault-Tolerant, Message-Passing Middle-

ware for Performance-Portable Parallel Computing. Proceedings of the

1st IEEE/ACM International Symposium on Cluster Computing and the Grid,

pages 26—33, 2001. Available from: http://dx.doi.org/10.1109/CCGRID.2001.

923171. 19

[14] G Bosilca, A Bouteiller, F Cappello, S Djilali, G Fedak, C Germain,

T Herault, P Lemarinier, O Lodygensky, F Magniette, V Neri, and

A Selikhov. MPICH-V: Toward a Scalable Fault Tolerant MPI for

Volatile Nodes. Proceedings of the 2002 ACM/IEEE conference on Supercom-

puting, pages 1—18, Jan 2002. Available from: http://dx.doi.org/10.1109/SC.

2002.10048. 6, 19

[15] A Bouteiller, G Bosilca, and J Dongarra. Retrospect: Determinis-

tic Replay of MPI Applications for Interactive Distributed Debug-

ging. Proceedings of the 2007 Recent Advances in Parallel Virtual Machine

and Message Passing Interface, pages 297—306, 2007. Available from: http:

//dx.doi.org/10.1007/978-3-540-75416-9_41. 14

98

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3874
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3874
http://dx.doi.org/10.1109/IPDPS.2004.1302920
http://hal.inria.fr/inria-00074117/en/
http://hal.inria.fr/inria-00074112/en/
http://hal.inria.fr/inria-00074112/en/
http://dx.doi.org/10.1023/B:CLUS.0000039491.64560.8a
http://dx.doi.org/10.1023/B:CLUS.0000039491.64560.8a
http://dx.doi.org/10.1109/CCGRID.2001.923171
http://dx.doi.org/10.1109/CCGRID.2001.923171
http://dx.doi.org/10.1109/SC.2002.10048
http://dx.doi.org/10.1109/SC.2002.10048
http://dx.doi.org/10.1007/978-3-540-75416-9_41
http://dx.doi.org/10.1007/978-3-540-75416-9_41

REFERENCES

[16] A Bouteiller, G Bosilca, and J Dongarra. Redesigning the Mes-

sage Logging Model for High Performance. Concurrency and Compu-

tation: Practice and Experience, 22(16):2196—2211, 2010. Available from:

http://dx.doi.org/10.1002/cpe.1589. 22

[17] A Bouteiller, F Cappello, T Herault, G Krawezik, P Lemarinier, and

F Magniette. MPICH-V2: a Fault Tolerant MPI for Volatile Nodes

based on Pessimistic Sender Based Message Logging. Proceedings of the

2003 ACM/IEEE conference on Supercomputing, page 25, Jan 2003. Available

from: http://dx.doi.org/10.1109/SC.2003.10027. 6, 19

[18] A Bouteiller, B Collin, T Herault, P Lemarinier, and F Cappello.

Impact of Event Logger on Causal Message Logging Protocols for

Fault Tolerant MPI. Proceedings of the 19th IEEE International Parallel

and Distributed Processing Symposium, pages 97—106, 2005. Available from:

http://dx.doi.org/10.1109/IPDPS.2005.249. 14

[19] A Bouteiller, T Herault, G Krawezik, P Lemarinier, and F Cappello.

MPICH-V Project: A Multiprotocol Automatic Fault-Tolerant MPI.

International Journal of High Performance Computing Applications, 20(3):319—

333, 2006. Available from: http://dx.doi.org/10.1177/1094342006067469. 19,

23, 45

[20] A Bouteiller, P Lemarinier, K Krawezik, and F Capello. Coordinated

checkpoint versus message log for fault tolerant MPI. Proceedings of

the 2003 IEEE International Conference on Cluster Computing, pages 242—250,

2003. Available from: http://dx.doi.org/10.1109/CLUSTR.2003.1253321. 23

[21] A Bouteiller, T Ropars, G Bosilca, C Morin, and J Dongarra. Rea-

sons for a Pessimistic or Optimistic Message Logging Protocol in

MPI Uncoordinated Failure Recovery. Proceedings of the 2009 Interna-

tional Conference on Cluster Computing, pages 1—9, 2009. Available from:

http://dx.doi.org/10.1109/CLUSTR.2009.5289157. 22

[22] F Cappello. Fault Tolerance in Petascale/Exascale Systems: Current

Knowledge, Challenges and Research Opportunities. International Jour-

nal of High Performance Computing Applications, pages 212—226, 2009. Available

from: http://dx.doi.org/10.1177/1094342009106189. 6, 21, 23

[23] S Chakravorty and L Kalé. A Fault Tolerant Protocol for Massively

Parallel Systems. Proceedings of the 18th International Parallel and Distributed

Processing Symposium, pages 212—219, 2004. Available from: http://dx.doi.

org/10.1109/IPDPS.2004.1303244. 23

99

http://dx.doi.org/10.1002/cpe.1589
http://dx.doi.org/10.1109/SC.2003.10027
http://dx.doi.org/10.1109/IPDPS.2005.249
http://dx.doi.org/10.1177/1094342006067469
http://dx.doi.org/10.1109/CLUSTR.2003.1253321
http://dx.doi.org/10.1109/CLUSTR.2009.5289157
http://dx.doi.org/10.1177/1094342009106189
http://dx.doi.org/10.1109/IPDPS.2004.1303244
http://dx.doi.org/10.1109/IPDPS.2004.1303244

REFERENCES

[24] K Chandy and L Lamport. Distributed Snapshots: Determining Global

States of Distributed Systems. ACM Transactions on Computer Systems

(TOCS), 3(1):63—75, 1985. Available from: http://dx.doi.org/10.1145/

214451.214456. 12

[25] K Chandy and C Ramamoorthy. Rollback and Recovery Strategies for

Computer Programs. IEEE Transactions on Computers, 21(6):546—556, 1972.

Available from: http://dx.doi.org/10.1109/TC.1972.5009007. 1

[26] Y Chen, J Plank, and K Li. CLIP: A Checkpointing Tool for Message-

Passing Parallel Programs. Proceedings of the 1997 ACM/IEEE conference

on Supercomputing, 1997. Available from: http://dx.doi.org/10.1145/509593.

509626. 21

[27] M Chung and M Krishnamoorthy. Algorithms of Placing Recovery

Points. Information Processing Letters, 28(4):177—181, 1988. Available from:

http://dx.doi.org/10.1016/0020-0190(88)90205-0. 20

[28] C Coti, T Herault, P Lemarinier, and L Pilard. Blocking vs. Non-

Blocking Coordinated Checkpointing for Large-Scale Fault Tolerant

MPI. Proceedings of the ACM/IEEE 2006 Conference on Supercomputing, 2006.

Available from: http://dx.doi.org/10.1145/1188455.1188587. 22

[29] J Daly. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computer Systems, 22(3):303—312, 2006.

Available from: http://dx.doi.org/10.1016/j.future.2004.11.016. 2, 20, 28,

30

[30] O Damani, Y M Wang, and V Garg. Distributed recovery with

K-optimistic logging. Journal of Parallel and Distributed Computing,

63(12):1193—1218, 2003. Available from: http://dx.doi.org/10.1016/j.jpdc.

2003.07.003. 23

[31] A Duarte. RADIC: A Powerful Fault-Tolerant Architecture. PhD Thesis,

2007. Available from: http://www.recolecta.net/buscador/single_page.jsp?

id=oai:UAB.es:TDX-1126107-101303. 23

[32] A Duarte, D Rexachs, and E Luque. A Distributed Scheme for

Fault-Tolerance in Large Clusters of Workstations. Proceedings of the

2005 International Conference Parallel Computing, 33:473—480, 2006. Avail-

able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.

11&rep=rep1&type=pdf. 23

[33] A Duarte, D Rexachs, and E Luque. Increasing the cluster availabil-

ity using RADIC. Proceedings of the 2006 IEEE International Conference on

100

http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1109/TC.1972.5009007
http://dx.doi.org/10.1145/509593.509626
http://dx.doi.org/10.1145/509593.509626
http://dx.doi.org/10.1016/0020-0190(88)90205-0
http://dx.doi.org/10.1145/1188455.1188587
http://dx.doi.org/10.1016/j.future.2004.11.016
http://dx.doi.org/10.1016/j.jpdc.2003.07.003
http://dx.doi.org/10.1016/j.jpdc.2003.07.003
http://www.recolecta.net/buscador/single_page.jsp?id=oai:UAB.es:TDX-1126107-101303
http://www.recolecta.net/buscador/single_page.jsp?id=oai:UAB.es:TDX-1126107-101303
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.11&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.11&rep=rep1&type=pdf

REFERENCES

Cluster Computing, 2006. Available from: http://dx.doi.org/10.1109/CLUSTR.

2006.311872. 53, 54

[34] E Elnozahy, L Alvisi, Y Wang, and D Johnson. A Survey of Rollback-

Recovery Protocols in Message-Passing Systems. ACM Computing Sur-

veys, 34(3):375—408, 2002. Available from: http://dx.doi.org/10.1145/

568522.568525. 3, 10, 34, 43

[35] E Elnozahy and J Plank. Checkpointing for Peta-Scale Systems: A

Look into the Future of Practical Rollback-Recovery. IEEE Transactions

on Dependable and Secure Computing, 1(2):97—108, 2004. Available from: http:

//dx.doi.org/10.1109/TDSC.2004.15. 23

[36] G Fagg, T Angskun, G Bosilca, and J Pjesivac-Grbovic. Scalable Fault

Tolerant MPI: Extending the Recovery Algorithm. Proceedings of the 12th

European PVM/MPI Users’ Group Meeting, pages 67—75, 2005. Available from:

http://dx.doi.org/10.1007/11557265_13. 23

[37] G Fagg, A Bukovsky, and J Dongarra. HARNESS and fault tolerant

MPI. Parallel Computing, 27(11):1479—1495, 2001. Available from: http:

//dx.doi.org/10.1016/S0167-8191(01)00100-4. 19

[38] G Fagg and J Dongarra. FT-MPI: Fault Tolerant MPI, Supporting

Dynamic Applications in a Dynamic World. Proceedings of the 7th European

PVM/MPI Users’ Group Meeting, pages 346—353, 2000. Available from: http:

//dx.doi.org/10.1007/3-540-45255-9_47. 19

[39] L Fialho, D Rexachs, and E Luque. Defining the Checkpoint Interval for

Uncoordinated Checkpointing Protocols. To appear in the Proceedings of

the International Conference on Parallel and Distributed Processing Techniques

and Applications, page to appear, 2011. 95

[40] L Fialho, D Rexachs, and E Luque. On the Calculation of the Check-

point Interval in Run-Time for Parallel Applications. To appear in the

Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, page to appear, 2011. 96

[41] L Fialho, D Rexachs, and E Luque. What Is Missing in Current Check-

point Interval Models? To appear in the Proceedings of the 31th International

Conference on Distributed Computing Systems, page to apper, 2011. 20, 95

[42] L Fialho, G Santos, A Duarte, D Rexachs, and E Luque. Challenges

and Issues of the Integration of RADIC into Open MPI. Proceedings

of the 16th European PVM/MPI Users’ Group Meeting, pages 73—83, Jan 2009.

101

http://dx.doi.org/10.1109/CLUSTR.2006.311872
http://dx.doi.org/10.1109/CLUSTR.2006.311872
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1109/TDSC.2004.15
http://dx.doi.org/10.1109/TDSC.2004.15
http://dx.doi.org/10.1007/11557265_13
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://dx.doi.org/10.1016/S0167-8191(01)00100-4
http://dx.doi.org/10.1007/3-540-45255-9_47
http://dx.doi.org/10.1007/3-540-45255-9_47

REFERENCES

Available from: http://dx.doi.org/10.1007/978-3-642-03770-2_14. 6, 53, 54,

95

[43] R Gioiosa, J Sancho, S Jiang, F Petrini, and Kei Davis. Transparent,

Incremental Checkpointing at Kernel Level: a Foundation for Fault

Tolerance for Parallel Computers. Proceedings of the ACM/IEEE 2005 Con-

ference on Supercomputing, 2005. Available from: http://dx.doi.org/10.1109/

SC.2005.76. 21

[44] W Gropp and E Lusk. Fault Tolerance in Message Passing Inter-

face Programs. International Journal of High Performance Computing Ap-

plications, 18(3):363—372, 2004. Available from: http://dx.doi.org/10.1177/

1094342004046045. 2, 20, 30, 32

[45] R Gupta, H Naik, and P Beckman. Understanding Checkpointing Over-

heads on Massive-Scale Systems: Analysis on the IBM Blue Gene/P

System. International Journal of High Performance Computing Applications,

2010. Available from: http://dx.doi.org/10.1177/1094342010369118. 22

[46] T Hacker, F Romero, and C D Carothers. An analysis of clustered fail-

ures on large supercomputing systems. Journal of Parallel and Distributed

Computing, 69(7):652—665, 2009. Available from: http://dx.doi.org/10.1016/

j.jpdc.2009.03.007. 1

[47] P Hargrove and J Duell. Berkeley lab checkpoint/restart (BLCR)

for Linux clusters. Journal of Physics: Conference Series, 46:494—499, 2006.

Available from: http://dx.doi.org/10.1088/1742-6596/46/1/067. 21

[48] J Hursey, J Squyres, T Mattox, and A Lumsdaine. The Design and Im-

plementation of Checkpoint/Restart Process Fault Tolerance for Open

MPI. Proceedings of the 2007 IEEE International Parallel and Distributed Pro-

cessing Symposium, Jan 2007. Available from: http://dx.doi.org/10.1109/

IPDPS.2007.370605. 6, 19

[49] W Jones, JT Daly, and N DeBardeleben. Impact of Sub-optimal

Checkpoint Intervals on Application Efficiency in Computational Clus-

ters. Proceedings of the 19th ACM International Symposium on High Perfor-

mance Distributed Computing, pages 276—279, 2010. Available from: http:

//dx.doi.org/10.1145/1851476.1851509. 20

[50] S Kalaiselvi and V Rajaraman. A survey of checkpointing algorithms

for parallel and distributed computers. Sadhana, 25(5):489—510, 2000.

Available from: http://dx.doi.org/10.1007/BF02703630. 10

102

http://dx.doi.org/10.1007/978-3-642-03770-2_14
http://dx.doi.org/10.1109/SC.2005.76
http://dx.doi.org/10.1109/SC.2005.76
http://dx.doi.org/10.1177/1094342004046045
http://dx.doi.org/10.1177/1094342004046045
http://dx.doi.org/10.1177/1094342010369118
http://dx.doi.org/10.1016/j.jpdc.2009.03.007
http://dx.doi.org/10.1016/j.jpdc.2009.03.007
http://dx.doi.org/10.1088/1742-6596/46/1/067
http://dx.doi.org/10.1109/IPDPS.2007.370605
http://dx.doi.org/10.1109/IPDPS.2007.370605
http://dx.doi.org/10.1145/1851476.1851509
http://dx.doi.org/10.1145/1851476.1851509
http://dx.doi.org/10.1007/BF02703630

REFERENCES

[51] R Koo and S Toueg. Checkpointing and Rollback-Recovery for Dis-

tributed Systems. IEEE Transactions of Software Engineering, 13(1):23–31,

1987. Available from: http://dx.doi.org/10.1109/TSE.1987.232562. 12

[52] A Kshemkalyani, M Raynal, and M Singhal. An introduction to snap-

shot algorithms in distributed computing. Distributed Systems, 2:224—233,

1995. Available from: http://dx.doi.org/10.1088/0967-1846/2/4/005. 12

[53] L Lamport. Time, Clocks, and the Ordering of Events in a Distributed

System. Communications of the ACM, 21(7):558—565, 1978. Available from:

http://dx.doi.org/10.1145/359545.359563. 14

[54] P Lemarinier, A Bouteiller, T Herault, G Krawezik, and F Cappello.

Improved Message logging versus Improved coordinated checkpointing

for fault tolerant MPI. Proceedings of the 2004 IEEE International Conference

on Cluster Computing, pages 115—124, 2004. Available from: http://dx.doi.

org/10.1109/CLUSTR.2004.1392609. 23

[55] C Li, E Stewart, and W Fuchs. Compiler-Assisted Full Checkpointing.

Software: Practice and Experience, 24(10):871—886, 1994. Available from: http:

//dx.doi.org/10.1002/spe.4380241002. 22

[56] W Li and J Tsay. Checkpointing Message-Passing Interface (MPI)

Parallel Programs. Proceedings of the Pacific Rim International Sympo-

sium on Fault-Tolerant Systems, pages 147—152, 1997. Available from: http:

//dx.doi.org/10.1109/PRFTS.1997.640140. 10

[57] Y Ling, J Mi, and X Lin. A Variational Calculus Approach to Optimal

Checkpoint Placement. IEEE Transactions on Computers, 50(7):699—708,

2001. Available from: http://dx.doi.org/10.1109/12.936236. 20

[58] J Long, W Fuchs, and J Abraham. Compiler-Assisted Static Checkpoint

Insertion. Proceedings of the 1992 International Symposium on Fault-Tolerant

Computing, pages 58—65, 1992. Available from: http://dx.doi.org/100.2/

ADA256039. 22

[59] S Louca, N Neophytou, A Lachanas, and P Evripidou. MPI-FT:

Portable Fault Tolerance Scheme for MPI. Parallel Processing Let-

ters, 10(4):371—382, 2000. Available from: http://dx.doi.org/10.1142/

S0129626400000342. 19

[60] M Matsumoto and T Nishimura. Mersenne Twister: A 623-

Dimensionally Equidistributed Uniform Pseudo-Random Number Gen-

erator. ACM Transactions on Modeling and Computer Simulation, 8(1):3—30,

1998. Available from: http://dx.doi.org/10.1145/272991.272995. 50

103

http://dx.doi.org/10.1109/TSE.1987.232562
http://dx.doi.org/10.1088/0967-1846/2/4/005
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/CLUSTR.2004.1392609
http://dx.doi.org/10.1109/CLUSTR.2004.1392609
http://dx.doi.org/10.1002/spe.4380241002
http://dx.doi.org/10.1002/spe.4380241002
http://dx.doi.org/10.1109/PRFTS.1997.640140
http://dx.doi.org/10.1109/PRFTS.1997.640140
http://dx.doi.org/10.1109/12.936236
http://dx.doi.org/100.2/ADA256039
http://dx.doi.org/100.2/ADA256039
http://dx.doi.org/10.1142/S0129626400000342
http://dx.doi.org/10.1142/S0129626400000342
http://dx.doi.org/10.1145/272991.272995

REFERENCES

[61] H Nam, J Kim, S Hong, and S Lee. Probabilistic Checkpointing. Proceed-

ings of the 27th Annual International Symposium on Fault-Tolerant Computing,

pages 48—57, 1997. Available from: http://dx.doi.org/10.1109/FTCS.1997.

614077. 21

[62] V Nicola and JV Spanje. Comparative Analysis of Different Models of

Checkpointing and Recovery. IEEE Transactions on Software Engineering,

16(8):807—821, 1990. Available from: http://dx.doi.org/10.1109/32.57620.

10

[63] R Oldfield. Investigating Lightweight Storage and Overlay Networks

for Fault Tolerance. Procceding of the 2006 High Availability and Performance

Computing Workshop, 2006. Available from: http://xcr.cenit.latech.edu/

hapcw2006/program/papers/lwfs-overlay.pdf. 21

[64] R A Oldfield, S Arunagiri, P J Teller, S Seelam, M R Varela, R Riesen,

and P C Roth. Modeling the Impact of Checkpoints on Next-Generation

Systems. Proceedings of the 24th IEEE Conference on Mass Storage Systems and

Technologies, pages 30—46, 2007. Available from: http://dx.doi.org/10.1109/

MSST.2007.4367962. 23

[65] A Oliner, L Rudolph, and R Sahoo. Cooperative Checkpointing: A

Robust Approach to Large-Scale Systems Reliability. Proceedings of the

20th Annual International Conference on Supercomputing, pages 14—23, 2006.

Available from: http://dx.doi.org/10.1145/1183401.1183406. 22

[66] A Oliner and R Sahoo. Evaluating Cooperative Checkpointing for Su-

percomputing Systems. Proceedings of the 20th International Conference on

Parallel and Distributed Processing, 2006. Available from: http://dx.doi.org/

10.1109/IPDPS.2006.1639693. 22

[67] A Oliner, R Sahoo, J Moreira, and M Gupta. Performance Implications

of Periodic Checkpointing on Large-Scale Cluster Systems. Proceedings of

the 19th IEEE International Parallel and Distributed Processing Symposium, pages

299—306, 2005. Available from: http://dx.doi.org/10.1109/IPDPS.2005.337.

22

[68] T Ozaki, T Dohi, H Okamura, and N Kaio. Min-Max Checkpoint Place-

ment Under Incomplete Failure Information. Proceedings of the 2004 In-

ternational Conference on Dependable Systems and Networks, pages 721—-730,

2004. Available from: http://dx.doi.org/10.1109/DSN.2004.1311943. 20

[69] H S Paul, A Gupta, and A Sharma. Finding a suitable checkpoint and

recovery protocol for a distributed application. Journal of Parallel and

104

http://dx.doi.org/10.1109/FTCS.1997.614077
http://dx.doi.org/10.1109/FTCS.1997.614077
http://dx.doi.org/10.1109/32.57620
http://xcr.cenit.latech.edu/hapcw2006/program/papers/lwfs-overlay.pdf
http://xcr.cenit.latech.edu/hapcw2006/program/papers/lwfs-overlay.pdf
http://dx.doi.org/10.1109/MSST.2007.4367962
http://dx.doi.org/10.1109/MSST.2007.4367962
http://dx.doi.org/10.1145/1183401.1183406
http://dx.doi.org/10.1109/IPDPS.2006.1639693
http://dx.doi.org/10.1109/IPDPS.2006.1639693
http://dx.doi.org/10.1109/IPDPS.2005.337
http://dx.doi.org/10.1109/DSN.2004.1311943

REFERENCES

Distributed Computer, 66(5):732—749, 2006. Available from: http://dx.doi.

org/10.1016/j.jpdc.2005.12.008. 23

[70] J C Philips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa,

C Chipot, R D Skeel, L Kalé, and K Schulten. Scalable Molecular

Dynamics with NAMD. Journal of Computational Chemistry, 26(16):1781—

1802, 2005. Available from: http://dx.doi.org/10.1002/jcc.20289. 78

[71] S Rao, L Alvisi, and H Vin. Egida: An Extensible Toolkit For Low-

overhead Fault-Tolerance. Proceedings of the 29th Annual International

Symposium on Fault-Tolerant Computing, pages 48—55, 1999. Available from:

http://dx.doi.org/10.1109/FTCS.1999.781033. 19

[72] S Rao, L Alvisi, and H Vin. The Cost of Recovery in Message Logging

Protocols. IEEE Transactions on Knowledge and Data Engineering, 12(2):160—

173, 2000. Available from: http://dx.doi.org/10.1109/69.842260. 14, 43, 69

[73] T Ropars and C Morin. O2P: An Extremely Optimistic Message Log-

ging Protocol. INRIA Research Report 6357, 2007. Available from: http:

//hal.archives-ouvertes.fr/docs/00/18/78/79/PDF/RR-6357.pdf. 22

[74] J Sancho, F Petrini, K Davis, R Gioiosa, and S Jiang. Current Practice

and a Direction Forward in Checkpoint/Restart Implementations for

Fault Tolerance. Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium, 2005. Available from: http://dx.doi.org/10.

1109/IPDPS.2005.157. 21

[75] S Sankaran, J Squyres, B Barrett, and V Sahay. The LAM/MPI

Checkpoint/Restart Framework: System-Initiated Checkpointing. In-

ternational Journal of High Performance Computing Applications, 19(4):479—

493, 2005. Available from: http://dx.doi.org/10.1177/1094342005056139. 19

[76] G Santos, L Fialho, D Rexachs, and E Luque. Increasing the Availability

Provided by RADIC with Low Overhead. Proceedings of the 2009 IEEE

International Conference on Cluster Computing, pages 1—8, 2008. Available from:

http://dx.doi.org/10.1109/CLUSTR.2009.5289163. 22

[77] W Saphir, R Wijngaart, A Woo, and M Yarrow. New Implementa-

tions and Results for the NAS Parallel Benchmarks 2. Proceedings of

the 8th SIAM Conference on Parallel Processing for Scientific Computing, Jan

1997. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.43.3199. 67, 73, 75

[78] B Schroeder and G Gibson. A large-scale study of failures in high-

performance computing systems. Proceedings of the International Conference

105

http://dx.doi.org/10.1016/j.jpdc.2005.12.008
http://dx.doi.org/10.1016/j.jpdc.2005.12.008
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1109/FTCS.1999.781033
http://dx.doi.org/10.1109/69.842260
http://hal.archives-ouvertes.fr/docs/00/18/78/79/PDF/RR-6357.pdf
http://hal.archives-ouvertes.fr/docs/00/18/78/79/PDF/RR-6357.pdf
http://dx.doi.org/10.1109/IPDPS.2005.157
http://dx.doi.org/10.1109/IPDPS.2005.157
http://dx.doi.org/10.1177/1094342005056139
http://dx.doi.org/10.1109/CLUSTR.2009.5289163
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3199
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3199

REFERENCES

on Dependable Systems and Networks, pages 249—258, 2006. Available from:

http://dx.doi.org/10.1109/DSN.2006.5. 1

[79] B Schroeder and G Gibson. Understanding Failures in Petascale Com-

puters. Journal of Physics: Conference Series, 78, 2007. Available from:

http://dx.doi.org/10.1088/1742-6596/78/1/012022. 1

[80] T Sherwood, E Perelman, G Hamerly, and Brad Calder. Automatically

Characterizing Large Scale Program Behavior. Proceedings of the 10th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 45—57, 2002. Available from: http://dx.doi.

org/10.1145/605397.605403. 48

[81] K Venkatesh, T Radhakrishnan, and H Li. Optimal Checkpointing and

Local Recording for Domino-Free Rollback Recovery. Information Pro-

cessing Letters, 25(5):295—303, 1987. Available from: http://dx.doi.org/10.

1016/0020-0190(87)90203-1. 13

[82] L Wang, K Pattabiraman, Z Kalbarczyk, R K Iyer, L Votta, C Vick,

and A Wood. Modeling Coordinated Checkpointing for Large-Scale

Supercomputers. Proceedings of the International Conference on Dependable

Systems and Networks, pages 812—821, 2005. Available from: http://dx.doi.

org/10.1109/DSN.2005.67. 23

[83] A Wong, D Rexachs, and E Luque. Parallel Application Signature. Pro-

ceedings of the 2009 IEEE International Conference on Cluster Computing, 2009.

Available from: http://dx.doi.org/10.1109/CLUSTR.2009.5289132. 40

[84] K Wong and M Franklin. Distributed Computing Systems and Check-

pointing. Proceedings of the 2nd International Symposium on High Perfor-

mance Distributed Computing, pages 224—233, 1993. Available from: http:

//dx.doi.org/10.1109/HPDC.1993.263838. 20

[85] J Yang, K F Li, W Li, and D Zhang. Trading off logging overhead and

coordinating overhead to achieve efficient rollback recovery. Concurrency

Computat.: Pract. Exper., 21(6):819—853, 2009. Available from: http://dx.

doi.org/10.1002/cpe.1364. 23

[86] J Young. A First Order Approximation to the Optimum Checkpoint

Interval. Communications of the ACM, 17(9):530—531, 1974. Available from:

http://dx.doi.org/10.1145/361147.361115. 2, 19, 30, 43

[87] G Zheng, L Shi, and L Kali. FTC-Charm++: An In-Memory

Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI.

106

http://dx.doi.org/10.1109/DSN.2006.5
http://dx.doi.org/10.1088/1742-6596/78/1/012022
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1016/0020-0190(87)90203-1
http://dx.doi.org/10.1016/0020-0190(87)90203-1
http://dx.doi.org/10.1109/DSN.2005.67
http://dx.doi.org/10.1109/DSN.2005.67
http://dx.doi.org/10.1109/CLUSTR.2009.5289132
http://dx.doi.org/10.1109/HPDC.1993.263838
http://dx.doi.org/10.1109/HPDC.1993.263838
http://dx.doi.org/10.1002/cpe.1364
http://dx.doi.org/10.1002/cpe.1364
http://dx.doi.org/10.1145/361147.361115

REFERENCES

Proceedings of the 2004 IEEE International Conference on Cluster Computing,

pages 93—103, 2004. Available from: http://dx.doi.org/10.1109/CLUSTR.

2004.1392606. 21

[88] H Zhong and J Nieh. CRAK: Linux Checkpoint/Restart As a Kernel

Module. Technical Report CUCS-014-01, 2001. Available from: http://www.cs.

columbia.edu/techreports/cucs-014-01.pdf. 21

107

http://dx.doi.org/10.1109/CLUSTR.2004.1392606
http://dx.doi.org/10.1109/CLUSTR.2004.1392606
http://www.cs.columbia.edu/techreports/cucs-014-01.pdf
http://www.cs.columbia.edu/techreports/cucs-014-01.pdf

	List of Figures
	List of Tables
	List of Equations
	1 Introduction
	1.1 Objectives
	1.2 Motivations
	1.3 Organisation of this Thesis

	2 Paradigms in Rollback-Recovery Fault Tolerance
	2.1 Rollback-Recovery Fault Tolerance Protocols
	2.1.1 Coordinated Checkpointing
	2.1.2 Uncoordinated Checkpointing
	2.1.3 Event Logging
	2.1.4 Comparing the Fault Tolerance Protocols
	2.1.5 The Checkpoint Interval

	2.2 Evolution of the Technology
	2.2.1 Parallel Computer Performance and Resources
	2.2.2 Checkpointing Techniques
	2.2.3 Logging Techniques

	2.3 Boundaries of the Current Paradigm
	2.4 Beyond the Current Paradigm

	3 Propose to Face the Emergent Paradigm
	3.1 What is Missing in Current Fault Tolerance Models?
	3.1.1 Developing the Model
	3.1.2 The Cost Function

	3.2 The Inter-Process Dependency Factor
	3.3 A Model for the Emergent Fault Tolerance Paradigm
	3.3.1 Developing a New Model
	3.3.2 Defining The Inter-Process Dependency Factor
	3.3.3 The Cost Function

	3.4 Acquiring Values for the Model's Variables
	3.5 Exploiting the Solution
	3.5.1 Recovery Time Constraints
	3.5.2 Heterogeneous Processes on Parallel Applications

	4 Experimental Evaluation
	4.1 Experimental Environment
	4.1.1 Fault Distribution
	4.1.2 Fault Tolerant MPI Library

	4.2 Experiments
	4.2.1 Model for Coordinated Checkpointing
	4.2.2 Model for Uncoordinated Checkpointing
	4.2.3 Fault Tolerance Overhead

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Work

	References

