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Abstract
Artificial Intelligence Planning is about acting in order to achieve a desired goal.
Under incomplete information, the task of finding the actions needed to achieve the
goal can be modelled as a search problem in the belief space. This task is costly,
as belief space is exponential in the number of states, which is exponential in the
number of variables. Good belief representations and heuristics are thus critical for
scaling up in this setting.

The translation-based approach to automated planning with incomplete information
deals with both issues by casting the problem of search in belief space to a search
problem in state space, where each node of the search space represents a belief state.
We develop plan synthesis tools that use translated versions of planning problems
under uncertainty, with partial or null sensing available. We show formally under
which conditions the introduced translations are polynomial, and capture all and
only the plans of the original problems. We study empirically the value of these
translations.

Resumen
La Planificación es la disciplina de Inteligencia Artificial que estudia los procesos de
razonamiento necesarios para conseguir las acciones que logren un objetivo dado.

En presencia de información incompleta, el problema de planificación puede ser mod-
elado como una búsqueda en el espacio de estados de creencia, cada uno de ellos
representando un conjunto de estados posibles. Este problema es costoso ya que el
numero de estados de creencia puede ser exponencial en el número de estados, lo
cual es exponencial en el número de variables del problema. El uso de buenas repre-
sentaciónes de los estados y de heuŕısticas informadas resultan cruciales para escalar
en este espacio de búsqueda.

En esta tesis se presentan traducciones para planificación con información incom-
pleta, que transforman el problema de búsqueda en el espacio de estados de creencia,
en búsqueda en espacio de estados, donde cada nodo representa un estado de creen-
cia. Hemos desarrollado herramientas para la generación de planes para el problema
traducido, ya sea con percepción parcial o nula. A su vez, demostramos formalmente
bajo qué circunstancias las traducciones son polinómicas, completas y correctas. La
evaluación emṕırica remarca el valor de dichas traducciones.
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Preface

Automated Planning is concerned with the task of reasoning about action, with the
objective of achieving a desired goal situation. The simplest form of automated
planning, Classical Planning, involves full knowledge about the environment and
deterministic operators; it is indeed the task of providing a sequence of operators, or
plan, that given an initial state realises the goal. Classical planning can be seen as
a path finding problem in an implicitly defined graph whose nodes represent states,
specified in terms of the values of a set of variables, and where edges represent
operators, specified in terms of sets of requirements and effects on the variables.

The model underlying classical planning can be extended to more general planning
models, which include incomplete information and sensing on the environment where
the planning agent is immersed. The main difference between planning with incom-
plete information and classical planning comes from the impact of uncertainty: in
this setting, a planner must consider sets of states called belief states, which represent
uncertainty about the world. The problem of planning with incomplete information
has been then approached as a path-finding problem in belief space. Belief space is
computationally exponentially bigger than state space –the belief space is the pow-
erset of the state space– thus good belief representations and heuristics are critical
for scaling up. However, the implementation of heuristic search in the belief space
is more complex than in classical planning because of the difficulty of deriving good
and informed heuristics, in the sense that heuristics are generally not well informed
compared to heuristics used in classical planning tasks. On the other side, the belief
representation and update is an intractable problem, in the worst case.

The translation-based approach to automated planning handled in this dissertation
solves both issues by casting the problem of search in belief space as a search problem
in state space, where each node of the search space represents a belief state. More-
over, the translation-based approach to planning under uncertainty exhibits good
performance in relation to approaches that explicitly search in belief space.

In the first part of the dissertation we review the problem of automated planning,
from the classical model, to the models with incomplete information and sensing.
We then revise the translation-based approach to conformant planning introduced by
Palacios and Geffner (2009), where conformant planning problems are translated to
classical planning ones and then solved by state-of-the-art classical planners. Confor-
mant planning is the task of finding solution plans in presence of partial information
on the environment and no sensing available. A plan for a conformant problem is
then a sequence of actions that drives all the states in the initial belief to the goal.

xi



xii Preface

In the second part of the dissertation, we introduce new translations for Conformant
Planning. New translations are needed as existent translation-based approaches need
complete translations that may require exponential time and space, since incomplete
translations may result in unsolvable problems. We present then a family of tractable
translations for conformant planning based on sampling initial states. These transla-
tions are always complete, meaning that heuristics on the translated initial situation
never evaluate it as unsolvable when it is not. We also formally describe the condi-
tions under which such translations based on samples are also sound, and polynomial.
Translations based on samples provide the backbone of the state-of-the-art confor-
mant planner T1. In addition, to handle non-determinism in the actions’ effects,
we introduce different translations based on the general idea that non-deterministic
effects can be compiled away by introducing new hidden artificial conditions each
time a non-deterministic action is applied. This observation leads to a family of
translations of conformant problems with non-deterministic effects into conformant
planning problems with deterministic effects, which are themselves related to classical
planning problems.

The third part of the dissertation introduces translations for Contingent Planning,
which is the task of planning under incomplete information and partial observability.
Unlike less complex forms of planning, in the contingent model of planning, sensing
actions permit to unveil the truth values of hidden variables. Plans for contingent
problems are then trees branching on observations, instead of action sequences as
in conformant and classical planning. The challenge in producing general solvers
for planning with partial observability add to the other difficulties of planning un-
der incomplete information, the necessity to include sensing as a crucial element for
successful plans. We propose then a translation for contingent problems, that maps
them into non-deterministic but fully observable planning in state space. This com-
pilation is linear in the number of possible initial states, which is in turn exponential
in the number of fluents. We prove nonetheless that even in such cases, a sound,
complete, and polynomial translation is possible, provided that the contingent prob-
lem has bounded contingent width, a parameter relevant to the difficulty of solving a
planning problem with incomplete information. We show that the contingent width
of almost all existing benchmarks is 1. Such translation cannot be solved by a classi-
cal planner, as the plans have different shape; we instead produce a relaxation of the
problem that is a classical planning problem which provides an informed heuristic
estimator that naturally embeds sensing in the relaxation. This approach has been
implemented in the state-of-the-art contingent planner CLG. We then extend our
translation for contingent planning problems to deal with those problems for which
reaching the goal is not guaranteed a priori. The possible sources of dead-ends in
a planning problem can come from the initial lack of information, the limits of the
sensing model, or the incompleteness of the used translations. To overcome this is-
sue, we gradually introduce automatically generated assumptions on the belief state
in order to produce plans that work for as many states as possible, when finding a
plan for all the states is infeasible.



Preface xiii

Overview of Dissertation

Chapter 1 introduces Classical Planning, a deterministic and fully informed plan-
ning model.

Chapter 2 covers planning models with incomplete information and sensing.

Chapter 3 describes a translation for Conformant Planning problems into Classical
Planning.

Chapter 4 introduces translations for Conformant Planning based on samples of
initial states. Such translations are used in belief tracking and update, and to
generate new heuristics.

Chapter 5 introduces a new family of incomplete translations for conformant plan-
ning with non-deterministic actions.

Chapter 6 presents translations that compile problems with sensing and incomplete
information into non-deterministic fully observable problems. These translated
problems are solved using a classical relaxation of the Contingent problem.

Chapter 7 shows how Contingent planning problems that are not always solvable
can be solved by introducing automatically assumptions on the initial situation.

Chapter 8 presents a summary of the contributions of the dissertation and de-
scribes future work of planning with partial information and sensing.

The results presented in the dissertation have been published in the following articles:

• Effective Heuristics and Belief Tracking for Planning with Incomplete Informa-
tion, by A. Albore, M. Ramirez, and H. Geffner, in 21st International Confer-
ence of Automated Planning and Scheduling (ICAPS-11), Freiburg, Germany,
2011 (Albore et al., 2011) [chapter 4].

• Compiling Away Uncertainty in Non-Deterministic Conformant Planning Prob-
lems, by A. Albore, H. Palacios, and H. Geffner, in 21st European Conference on
Artificial Intelligence (ECAI-10), Lisbon, Portugal, 2010 (Albore et al., 2010)
[chapter 5].

• Acting in Partially Observable Environments When Achievement of the Goal
Cannot be Guaranteed, by A. Albore, H. Geffner, in Workshop on Planning
and Plan Execution for Real-World Systems, at 19th International Conference
on Planning and Scheduling (ICAPS-09), Thessaloniki, Greece, 2009 (Albore
and Geffner, 2009) [chapter 7].

• A Translation-based Approach to Contingent Planning, by A. Albore, H. Pala-
cios, and H. Geffner, in 21st International Joint Conference on Artificial Intelli-
gence (IJCAI-09), Pasadena, California, 2009 (Albore et al., 2009) [chapter 6].

• Fast and Informed Action Selection for Planning with Sensing, by A. Albore,
H. Palacios, and H. Geffner, in Lecture Notes in Computer Science – Current
Topics in Artificial Intelligence, 12th Conference of the Spanish Association for
Artificial Intelligence (CAEPIA-07), Salamanca, Spain. Springer, 2007 (Albore
et al., 2007) [chapter 6].
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Chapter 1

Introduction

The aim of Artificial Intelligence is to program autonomous computer agents able
to produce intelligent behaviour by simulating many of the higher functions of the
human brain. The general problem of finding a solution to a given task has been
tackled mainly following three approaches. First, programming–based approaches
count on programmers to encode the method to solve a problem. In learning–based
approaches, it is the program that improves itself by learning the adecuate solution,
and this can be done by trial-and-error or based on the information provided by
an instructor. Model–based methodologies rely on a general program which infers
automatically a solution, starting from a suitable description of the actions, sensors,
and goals.

Automated Planning is a model–based approach to autonomous behaviour, and is
a quintessential discipline of Artificial Intelligence as it involves different aspects of
what makes intelligent a conduct. The ability to reason well about the actions to
perform, before acting, is certainly a central point to define intelligence, and is the
main focus of our approach to Automated Planning.

The classical model for planning is a common restriction of the more general problem
of selecting actions to reach a desired objective. Here, the actions are assumed to
be deterministic and the information about the environment, complete. Classical
planning can thus be cast as a path finding problem in a graph whose nodes are the
states, and whose edges are the transitions that are possible, described in terms of
actions. The purpose of classical planning solvers is to find an action sequence that
reaches the target nodes from the root node of the graph.

In this chapter we introduce the classical planning model and how it is used to solve
deterministic automated planning problems.

1.1 Automated Planning

Automated planning is the task of finding plans, i.e. solutions of a planning problem
given following a specific representation. A solution plan is a path in a directed
graph that drive the environment described in the problem from an initial node to a
desired goal node.

3



4 Introduction

Two contrasting approaches to automated planning have been followed since the
’70s: domain–dependent and domain–independent. The first aims at solving tasks
by ad-hoc approaches, involving high performance algorithms that exploit domain
features for efficiency. Such domain–specific approaches are however not satisfying
for our purpose of studying and designing machines that mimic autonomous and
rational behaviour, as many aspects of reasoning are just focused on a specific prob-
lem, and not on understanding the process of planning in a whole. In contrast,
domain–independent planning makes use of general languages for representing prob-
lem instances (e.g. pddl), and general algorithms to solve all kind of tasks expressible
in the language. The principal characteristic of this approach – that is also the one
discussed in this dissertation – resides in the separation of the planning engine from
the world model, which is given to the solver as part of the problem, together with
the initial situation and the goal.

A planning task is defined by a model description provided by a language; solving
an automated planning task requires then a description of the dynamic system, the
model, whose states are considered by the planning agent. This model, also called
environment, has to be driven by means of actions from an initial situation to a
desired goal, or final situation. General language and models lead to high level
representations that allows fast prototyping and that are often simple to modify and
extend. An easy analogy can be made with the human process of representing tasks
in an abstract way, that potentially involves different brain regions. Humans’ and
other animals’1 remarkable capacity to switch between multiple tasks is bound to
updating the many representations of the information needed to guide performance
in complex tasks (Miller and Cohen, 2001; Baene, 2011).

Example 1.1 (A planning task). As an example of a planning problem consider
the task of catching a train on time, while stopping to drink a coffee on the way
to the train station. The initial situation would be that we are at home. Thus,
reaching first the cafe and then the station would require the use of different means
of transportation, a careful selection of the path leading to the locations, and use of
the time–table and, eventually, gathering information about the traffic situation.

To solve a planning task, the research in (domain–independent) automated planning
has focused in the last 40 years on the development of general-purpose algorithms,
called planners. The development of planners brought many families of algorithms
and seach spaces to represent a planning problem and to solve it. We can cite
planning-graph, and propositional satisfiability techniques that use powerful pro-
cedures for finding a solution. These techniques will be discussed in section 1.4.
Constrain satisfaction techniques, encodes a planning problem into a constraint sat-
isfaction problem, and uses many efficient methods to refine the plan space. These
last three approaches have in common that the nodes of the search space can be
viewed as a set of several partial plan, where each partial plan is a sequence of ac-
tions in the state space2. On the other hand, classical planning associates to every
node of the search space a partial plan, such that any solution reachable from that
node comprises all the actions of the associated partial plan.

1Just for comparison, animals with fewer than a hundred thousand neurons can approach food
and avoid predators. In the human brain there are 100 billion or more neurons.

2When searching in the space of plans, a partial plan is a partially ordered set of actions.
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Motivations

The aim of automated planning is to model real–life problems or puzzles, and to
have automated systems solving them. The possible applications to such kind of
problem–solving tasks are uncountable, going from automated rovers exploring afar
planets to generators of dialogs for human–machine interfaces.

However, real world problems are considered hard, mainly because the dynamics
of the domain are generally only partially known to a planning agent; this would
involve unpredictable behaviours, unknown values of variables, and a huge number
of variables describing the different aspects of the environment.

One way to limit the amount of possible contingencies of a problem, and to restrict
the difficulty of finding a solution, involves algorithms for searching efficiently a
simplification of the complex problem. Such simplification aims at reducing the
number of variables involved, and the incomplete information about the behaviour of
the environment affecting the planning task. The most common used simplification,
or relaxation, of the (complex) planning task is known as the classical planning
paradigm, and comprises full knowledge of the environment and to how a planner
would affect it.

1.2 Models for Classical Planning

Methods for classical planning have had great success, and are in continual develop-
ment and subject of research. The good results of classical planning techniques have
cleared the path to approaches that simplify more complicated problems to classical
planning problems, in order to solve them efficiently.

The paradigm of classical planning we use has a representation based on states and on
transitions between them. Compared to more particular types of problems, classical
planning restricts the model with some strong assumptions:

• finite set of states;

• deterministic transitions between states, caused by the agent’s actions;

• full information about the initial state;

Model description

The objective of planning, and of classical planning in particular, is to find actions
that drive the system from an initial state to a goal state. A classical planning prob-
lem can be translated as a directed graph whose nodes represent states, and whose
edges represent actions. The change of state is then represented as a transition from
a source node representing it along an edge and toward a target node representing
the next state. A solution plan is then a path from the node in the graph represent-
ing the initial state to a goal node representing a state recognized as a goal state
of the problem, i.e. a linearly ordered finite sequence of actions. The formal model
underlying the planning problem can be described as follows:
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Definition 1.1 (Classical Planning Model). The classical planning model Q is de-
fined as the tuple Q = 〈S, s0, SG, A, f〉 where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• SG ⊆ S is the set of goal states,

• A is the set of operators (the actions),

• a state transition function f : S ×A→ S : (s, a) 7→ f(s, a) = s′.

s′ is the state resulting from applying the operator a onto a given state s.

A fixed action a is applicable in a state s when exists at least one target state s′

such that f(s, a) = s′. We define the applicability domain as the subset Sa such that,
f |Sa is injective. Executing a sequence of applicable actions [a0, . . . , an] onto a given
state s0 results in a chain of states such that f (s0, [a0, . . . , an]) = [s0, . . . sn+1], with
f(si, ai) = si+1, for 0 ≤ i ≤ n, and ai an applicable operator in si.

A plan for a classical planning problem is given by a sequence of actions achieving a
goal state from the initial state of the problem:

Definition 1.2 (Classical Plan). A plan π for a classical problem P = 〈S, s0, SG, A, f〉
is an action sequence π = [a0, . . . , an] that, once applied on the initial state, results
in a sequence of states [s0, . . . , sn], such that:

• all actions are applicable, and si+1 = f(si, ai), for 0 ≤ i ≤ n.

• the sequence terminates in a goal state: sn+1 ∈ SG.

We sometimes use the writing result(π, s0) = sn+1 to indicate that the state resulting
from the execution of π on s0 is sn+1.

To evaluate a plan π, its length |π| is commonly considered as a preference criterion,
and it corresponds to the number of actions in the plan. This is a special case of
planning with costs, where to every action is associated a positive cost:

Definition 1.3 (Classical planning model with costs). A planning model with costs
Pc consists of a planning model Pc = 〈S, s0, SG, A, f〉 along with a function
c : A 7→ R+

0 that maps each operator in the model to a non-negative cost.

Definition 1.4 (Plan cost). The cost of a plan π = [a1, . . . , an] is given by

cost(π) =

n∑
i=1

c(ai)

The plan length corresponds with the cost of a plan when all the costs are 1. In a
planning model with non–unitary costs, plans with lower cost are preferred to plans
with higher cost.
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s0

g1

g2 g3

π

SG

Figure 1.1: The objective of classical planning is to find a plan π, wich is a sequence of
actions that provide the transitions from the initial state s0 to a desired goal state in SG.

Modelling language

The representation of a planning problem seen so far is general but not effective as it
is often costly to represent explicitly all the states of a planning problem. Classical
planning problems can be very big. We are interested in problems whose state spaces
are too large to be represented explicitly, and factored representations must be used.

A factored representation represents states via a set of variables, or fluent3, inter-
preted as a conjunction, and such that each state s is a complete assignment of the
state variables. The goal states and the operators, as well as the applicability and
transition functions, can also be described in terms of these state variables. In par-
ticular, the actions encoding the transitions between states are expressed in terms
of preconditions and post–conditions. Action preconditions specify the conditions
under which an action can be applied. The post-conditions specify the changes to
variable assignments made by the effects of the applied actions.

The effects of the actions describe the changes an action a makes to the world. In
the case of a factored representation that consists only of Boolean variables, these
changes are commonly specified in terms of add lists and delete lists. For an action
a, the add list add(a) specifies the properties that a makes true, while the delete list
del(a) specifies the properties that a makes false. All other variable assignments are
left unchanged by the action; we often refer to that rule as a solution to the frame
problem (McCarthy and Hayes, 1969).

The Boolean factored representation is surely the simplest and most common, and is
widely used in automated planning. In the planning language called STRIPS (Fikes
and Nilsson, 1971; Nilsson, 1980) state variables are Boolean, so each such variable
indicates whether a proposition about the world is true or false in a given state.

Definition 1.5 (STRIPS). A planning problem in STRIPS is defined as a 4–tuple
〈F ,A, I,G〉, consisting in:

F : a set of Boolean variables (fluents),

A: a set of operators, where each action a is a pair of preconditions and post–
conditions: 〈 pre(a), eff(a) 〉 .
The precondition pre(a) is a set of fluents over F .
The effects are conjunction of fluents, described in terms of simple effects, such
that an effect eff(a) is either

3 Factored representations can use multivalued variables, but “fluents” usually refers to Boolean
variables only.
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• a simple add effect e, where e ∈ F ,

• a simple del effect ¬e, where e ∈ F , or

• a conjunctive effect e ∧ e′, where e and e′ are effects.

I: a set of fluents I ⊆ F , describing the initial state

G: a set of fluents G ⊆ F , describing the set of goal states.

In STRIPS, following the Closed World Assumption, the unmentioned literals are
false, so a state can be described only by literals that hold in it.

A STRIPS problem defines a state model as in definition 1.1 in the following way:

• the set of states S is defined in terms of the set F of fluents, s.t. S = 2F ;

• the initial state s0 is described by the assignment I, such that in s0 the fluents
p ∈ I have the value true and all other fluents have the value false;

• the goal states are described by a (partial) assignment of the fluents in G, such
that in all the states in SG, the fluents p ∈ G have the value true;

• the applicability is fixed by the preconditions of the actions: a is applicable in
s if pre(a) ∈ s;

• the transition function is defined by the action effects, s.t. s′ = f(s, a) s.t.
s′ = s \ del(a) ∪ add(a).

Planning languages extend STRIPS in many features. In this dissertation we con-
sider extentions of STRIPS that allows negative literals, whereas is STRIPS only
conjunctions of positive literals are permitted, with a particular reference to actions’
preconditions and goals. We use ¬L to refer to the complement of L. Moreover, the
effects of actions can be conditioned on the truth values of fluents. The difference
between a conditional effect and a precondition resides in that the precondition must
be satisfied in order to make the action applicable, while a condition that doesn’t
hold just doesn’t produce the corresponding effect.

We extend the representation in definition 1.5 with operators with conditional effects:

Definition 1.6 (Conditional effect). The effects are conjunction of fluents, described
in terms of simple effects such that an effect eff(a) is either

• a simple add effect e, where e ∈ F ,

• a simple del effect ¬e, where e ∈ F ,

• a conditional effect C → e, where C is a conjunction of variables over F and
e is an effect, or

• a conjunctive effect e ∧ e′, where e and e′ are effects.
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Semantically, the consequences of conditional effects apply in the target state s′ only
if the condition hold in the source state s, and the action is by itself executable on
that state: for a conditional effect of an action a : C → e, the transition function is
defined a follows:

s′ = f(s, a) s.t. s′ =

{
s \ del(a, s) ∪ add(a, s) if pre(a) ⊆ s
undefined otherwise

where:

• add(a, s) =

{
add(e) if C ⊆ s
∅ otherwise

• del(a, s) =

{
del(e) if C ⊆ s
∅ otherwise

Informally, we say that when an operator makes a set of fluents true, it adds these
fluents, and deletes those that it makes false. We will refer to the set of fluents made
true/false by an operator as its add/delete list, respectively.

As any planning problem described in terms of the above semantics, can be trans-
lated into an equivalent STRIPS instance, even if existing compilation techniques are
worst-case exponential. This preprocessing grounding phase is commonly applied by
most of the existing planners.

Example 1.2. Consider the problem of a robot in a 1 × N grid, with N = 5, that
has to go from an extreme of the corridor (the hashed cell p2 in Figure 1.2) to the
goal cell at the other side of the corridor (“ goal” cell in the figure). The position x of
the agent is denoted by at(px). This problem can be modeled as a classical planning
problem P = 〈F ,A, I,G〉, with:

Fluents F : at(px), for any x in [1, N ],

Actions A:

• left(px) for any x ∈ [1, N − 1]

Precondition: { at(px) } Effect: { at(px+1), ¬at(px) }

• right(px) for any x ∈ [2, N ]

Precondition: { at(px )} Effect: { at(px−1), ¬at(px) }

• left(p 5)

Precondition: { at(p 5) } Effect: { at(p 5) }

• right(p 1)

Precondition: { at(p 1)} Effect: { at(p 1) }

Initial situation I: { at(p 2) }

Goal G: { at(p 4) }
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NB: Moving toward the wall has no effect, e.g. going left from cell p 5 will leave the
agent in p 5.

A possible solution for the problem would be to move the agent two times to the left,
as in the sequence:

π =
[

left(p 2), left(p 3)
]

p5 p1p4 p3 p2
goal   

left right
Figure 1.2: Navigation problem in a 1 × 5 grid corridor. The pddl code of this problem
in reproduced in Figure 1.3 and 1.4.

The problem can be reformulated in a different way, using conditional effects: instead
of having 10 actions, we can encode 2 moving actions with 10 possible conditional
effects. This change would remove the precondition, and hence would give a slightly
different meaning to the action: with preconditions, the position of the agent has
to be known before moving, while with conditional effects, the action can always be
applied4.

We show the example of how to change in that way the 4 left(px) action above in
one action left:

left:
Precondition: ∅
Effect:
{ at(px) } −→ { at(px+1), ¬at(px) }, for any x ∈ [1, N − 1].
{ at(p 5) } −→ { at(p 5) }

Using this encoding, a solution plan would be:

π =
[

left , left , left
]

PDDL

Planning problems are generally expressed in the Planning Domain Description Lan-
guage (pddl). First defined in 1998 by McDermott, the pddl language has been
updated and extended through the years to match advances in planning and the evo-
lution of the needs of the planning community. pddl is capable of representing the
semantics of both STRIPS and the ADL extension(Pednault, 1989) languages since
its version 1.2, used for the IPC of 1998. Nowadays the pddl language is widely
used in the planning community and includes many specific features, as trajectory
constraints for temporal reasoning or soft constraints to express preferences. Even

4In deterministic classical planning, this difference doesn’t affect the problem and its solution,
but this changes when dealing with incomplete information, as we will see in the next chapters.
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complex actions with control flow blocks inspired by imperative programming lan-
guages can be compiled as ordinary pddl actions usable with standard off-the-shelf
planners (McIlraith and Fadel, 2002; Baier and McIlraith, 2006; Petrick, 2009; Claßen
et al., 2007). The version that is relevant to the topics discussed in this thesis is the
most basic one with Boolean state variables only. Actions in pddl are expressed as
schemata instantiated with objects, as shown in the following example:

(:action move

:parameters (?s1 ?s2 - cell)

:precondition (at ?s1)

:effect (and (not (at ?s1))

(at ?s2)))

Here the action move, referred to the former example, takes two parameters s2

and s2 that will be eventually instantiated with the possible values assumed by the
cell objects declared in the problem description. These variables appear also in the
preconditions and the body of the action effects.

Algorithms for Classical Planning

As commented above, solving classical planning problems can be cast as path-finding
in a directed graph whose nodes represent states, and whose edges represent state
transitions due to actions. Classical planning problems can then be solved by using
graph search algorithms to find a path from the initial state to a goal state. This
graph search approach is not trivial because the size of the graph may be exponential
in the size of the description of the planning problem in propositional form (i.e. the
number of fluents of the problem). Thus, blind search algorithms such as depth-first
or Dijkstra are practically unfeasible.

An approach that has proved to be effective relies on to use heuristic search. Heuristic
search uses heuristic functions to evaluate the cost-to-go from a node to a goal, or
to be more general, to provide a ranking of a set of nodes in order of their relative
desirability (Ghallab et al., 2004, chap.9). This estimation of the distance in the
search space is then used by the search algorithm to drive the state space search,
preferring to visit nodes considered more promising from their heuristic value.

Planning as Heuristic Search (Bonet and Geffner, 2001a) is sound and complete by
construction, as far as the used search algorithm is complete, given that the state
space contains exactly all the possible plans as paths from the initial state to any
goal state.

The “best first” algorithms used for heuristic search (also called “informed” search)
expand always the best state according to some evaluation function. Optimal al-
gorithms also make use of heuristics to speed up the search; in this family we find
A* (Hart et al., 1968) and IDA* (Korf, 1985). Other local search algorithms such as
simulated annealing (Kirkpatrick et al., 1983; C̆erný, 1985), or tabu search (Glover,
1989, 1990), are little used in planning.

Many successful heuristics are obtained by solving a simpler version of the original
problem relaxing its constraints (Pearl, 1983). Relaxations directly derived from the
problem description are useful and efficient, such as the successful “delete relaxation”,



12 Introduction

(define (problem corridor-5)

(:domain corridor)

(:init (x p1) )

(:goal (x p5) )

)

Figure 1.3: pddl encoding of a navigation problem in a corridor grid. The agent in a 1× 5
grid starts at position 1 and must get to position 5.

(define (domain corridor)

(:requirements :typing) (:types pos)

(:constants p1 p2 p3 p4 p5 - pos)

(:predicates (x ?p - pos) )

(:action left-p5

:precondition (x p5)

:effect (x p5)

)

(:action left-p4

:precondition (x p4)

:effect (and (not (x p4)) (x p5))

)

...

(:action left-p1

:precondition (x p1)

:effect (and (not (x p1)) (x p2))

)

(:action right-p1

:precondition (x p1)

:effect (x p1)

)

(:action right-p2

:precondition (x p2)

:effect (and (not (x p2)) (x p1))

)

...

(:action right-p5

:precondition (x p5)

:effect (and (not (x p5)) (x p4))

)

)

Figure 1.4: pddl encoding of the actions in a navigation problem in a 1× 5 corridor. The
available actions are moving left and right.



1.3. Complexity 13

obtained by dropping the negative effects of the actions. Many planners use heuristic
search (McDermott, 1996; Bonet et al., 1997), which is now the most successful used
approach to classical planning.

One of the first approaches making use of domain-independent heuristics is the HSP
planner (Bonet and Geffner, 1999). HSP used best-first search coupled with hadd
heuristic that approximates the distance between two states by summing the dis-
tances between the propositions in the states, ignoring the delete effects.
The Fast-Forward (ff) planner by Hoffmann and Nebel (2001) is based on the same
delete relaxation as HSP but uses an explicit solution of the relaxed problem to
estimate its heuristic hFF and the extraction of helpful actions applied first when
searching for a plan. When the ff’s incomplete but effective greedy search (called
“enforced hill climbing”) based on helpful actions only fails, the planner launches a
best-first search. The helpful actions are defined in the ff planner as those oper-
ators applicable in the current state that add some precondition of an operator in
the plan. This search control technique has proved to be quite successful and effec-
tive, being the base of many developments (Hoffmann, 2002; Brafman and Hoffmann,
2006; Hoffmann and Brafman, 2005b).
lama planner (Richter and Westphal, 2010) makes use of a pseudo-heuristic derived
from landmarks, i.e. propositions that must be true in every solution of a plan-
ning task (Hoffmann et al., 2004; Porteous and Cresswell, 2002). lama is built on
top of the Fast Downward Planning System, using in particular a multi-heuristic
search. The “landmark counting heuristic” (Richter et al., 2008) estimates the goal
distance of a state s by counting the number of landmarks that still are needed to
be achieved. Like ff’s helpful actions, lama uses preferred operators along with the
landmark heuristic.
The planner PROBE (Lipovetzky and Geffner, 2011) implements a dual search archi-
tecture for planning that is based on the idea of “probes”: single action sequences
computed without search from a given state for achieving a serialization of the prob-
lem subgoals that is computed dynamically along with the probe. A probe, by its
construction can go quickly deep into the state space, terminating either in the goal
or in failure. When the goal is not achieved, the states expanded along the probe
are added to the open list, and control returns to the greedy best first search loop.
PROBE is a complete planner using the standard additive heuristic hadd.

1.3 Complexity

The plan existence problem in the classical setting, i.e. the problem of deciding
if there exists a valid plan for an arbitrary problem instance, in the propositional
STRIPS planning model is decidable and has been shown to be PSPACE–complete
(Bylander, 1994). This regards the fragment of STRIPS we discussed in this chap-
ter, while the original STRIPS language (Bylander, 1994) allows for infinite state
spaces and is undecidable. Planning with costs (cf. definition 1.3), which involves
the optimization problem of finding a valid plan of minimal cost for an arbitrary
problem instance, has the same class of complexity. The plan existence problem for
ADL is also PSPACE–complete for any allowed complexity of precondition and ef-
fect formulæ (Baier, 2003). As noted above, an ADL problem can be translated into
a STRIPS instance, but existing compilation techniques are worst–case exponential
(Gazen and Knoblock, 1997).
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1.4 Other techniques for Classical Planning

Automated planning has been strongly influenced, in its origins, by the work on
automated theorem proving (Green, 1999). Logical description of the problem comes
from one of the first formulations of planning problems as axiomatic description of
initial state, goal, and operators. The original STRIPS representation used first
order formulæ that added more expressive power. This representation has been then
restricted to the actual one, where preconditions and effects are specified in terms of
atoms. The STRIPS representation has been extended in many ways, while staying
within the confines of the classical planning model.

The representation of the planning problem in terms of preconditions and post-
conditions adapts well to state-space search algorithms. It is possible to search in
both directions: from the goal to the initial state, and vice versa. It is also easy
to derive heuristics automatically from the explicit goal and actions representation,
in particular under the subgoal independence assumption, when interaction between
goal atoms are not considered, and other relaxation of the planning problem.

Other techniques apply to the classical planning formulation. They involve the con-
struction of planning graphs and the translation of the planning problem into propo-
sitional axioms, in order to consequently apply a satisfiability algorithm to find a
model that then corresponds to a solution plan.

Planning graphs

A planning graph is constitued by the levels obtained by alternating fluents and
actions layers. The first layer includes all the fluents that can obtined in the initial
situation, then the second layer is made by all the actions that can be applied from
the literals true in the former layer. The third layer is constitued by fluents that
can be obtained from applying the actions in the precedent layer, and so on until
fixpoint. fluent level including all the goal literals.

Such a planning graph is a useful structure from which information can be drawn
into. The first immediate information regards reachability : a literal not included in
the graph cannot be obtained in the problem. Such a graph can also be used as a
heuristic estimate: the cost of obtaining a literal is given by the layer it appears first.

The GraphPlan algorithm (Blum and Furst, 1995; Kambhampati et al., 1997; Ander-
son et al., 1998; Smith and Weld, 1998) applies this approach, expanding the graph
until all the goal literals are reached in a level, with no mutex links between any pair
of them, i.e. if no conflict between actions prohibits two literals to be present at the
same time in the same state. When such a level is reached, the algorithm intents to
extract a plan from the graph.

Planning as Satisfiability

Planning as satisfiability is a powerful approach to automated planning first pro-
posed by Kautz and Selman (1992). The approach translates a STRIPS problem
and a horizon in a propositional logical formula whose satisfiability is checked. Of
couse the formula includes the initial situation, the goal, and all the possible action
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applications, stored as propositional axioms. If the planning problem is unsolvable,
the SAT formula will be unsatisfiable.

The main issue of planning as satisfiability comes from the encoding of the prob-
lem as a formula, being the memory required to store the propositional axioms the
bottleneck of the approach. Recent work has shown that the conflict-directed clause
learning algorithm (CDCL), which most the current best SAT solvers use, together
with an extremely simple planning-specific scheme for selecting decision variables
lead to very competitive planning, matching in efficacy other search paradigms (Rin-
tanen, 2010b). Simple heuristics on top of the basic variable selection scheme improve
the efficiency of SAT based planner even further (Rintanen, 2010a).

1.5 Thesis outline

Automated planning involves the practice of reasoning about acting. So far we
have considered classical planning, the simplest form of planning which involves a
deterministic action model, and complete information about the environment and the
planning agent’s state. In problems with incomplete information, planning is done
by considering belief states instead of states, and a belief state is the set of all the
states that are regarded as possible in a given (uncertain) situation. Thus, solving
a problem involves finding a solution for all the states deemed compatible with the
initial situation. Planning with incomplete information presupposes using the agent’s
sensing abilities to discover its environment and to reduce the uncertainty. Planning
under uncertainty is mainly divided in two models: the conformant planning setting,
where no sensing is available, which is like “moving in the dark”, and the contingent
planning setting, in which the agent can make use of limited sensing. In both settings,
a solution plan is applicable in all the states of the initial belief, and drives them to
the goal.

Planning problems under incomplete information, with or without sensing available,
can be cast as a path-finding problem in a belief states space. There the main chal-
lenges come from deriving the heuristics to guide the search, and the representation
and update of the beliefs. The translation-based approach to planning under un-
certainty is elegant and exhibits good performances compared to approaches that
explicitly search in belief space. This dissertation will describe new translations for
conformant and contingent planning that are competitive with the state-of-the-art
methods. A translation that captures all and only the solutions of the original plan-
ning problem is said to be complete and sound. In the worst case these translations
are exponential, but for a large collection of problems they can be shown to be poly-
nomial, sound and complete. We identify then a parameter for planning problems
under uncertainty and sensing called the width, and show the conditions under wich
the translations introduced are sound, complete, and polynomial. The complexity
of sound and complete translations is exponential in the width parameter, that for
most conformant and contingent benchmarks turns out to be bounded and equal to
one.

In the first part of the dissertation, we present some background on automated
planning. In the present chapter we reviewed classical planning, while in the next
chapter we will describe models for planning under uncertainty. We then review the
translation introduced by Palacios and Geffner (2009), that maps conformant plan-
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ning problems into classical ones that are then solved by a state-of-the-art classical
planner. This translation is the starting point of our research.

The second part of the dissertation describes two translation-based approaches to
conformant planning. The first uses a set of states sampled from the initial belief
state to provide informed heuristics, and to keep track of the belief states along the
plan execution (cf. chapter 4). We will see that it is possible to identify a basis of
sampled states for which all the solution plans are also solution plans of the whole
planning problem. In chapter 5 we then define different translations for conformant
problems with non-deterministic actions. Even if incomplete, such translations have
been proved to be quite effective.

In the third part of the dissertation we tackle the problem of contingent planning,
which is planning with incomplete information and partial observability. We delin-
eate in chapter 6 a translation-based approach that compiles a contingent planning
problem P into a non-deterministic but fully observable problem X (P ). This plan-
ning problem is then solved using a relaxation H(P ), that is a classical planning
problem and that can be fed to a state-of-the-art classical planner that provides the
next-to-apply action. This part ends with chapter 7, where we introduce an exten-
tion of contingent planning that allows us to automatically introduce assumptions
on the (hidden) state of the world, in order to eventually find a solution for those
planning problems that, because of limited sensing or because of the possibility of a
dead-end in the search space, are not solvable by current planners.

We then summarise the contributions of this thesis, and discuss future work and
applications.

1.6 Summary

The classical planning model can be cast as a search problem in a directed graph,
where nodes represent states, and edges, actions. By shifting the planning problem to
a factored representation, the states and the edges of the state space are implicitely
represented: states are expressed as a complete assignment to a set of variables, and
actions are transformations of the variables’ value, in terms of pre-conditions and
post-conditions. The heuristic search approach to planning uses heuristic functions,
extracted automatically from the factored problem representation, for guiding the
search for a plan from the initial state of the state space to a goal state.

Classical planning domains are deterministic, and complete information on the initial
situation is assumed. This implies that the state of the domain is always perfectly
known during a plan execution. In an uncertain environment, on the other hand,
this assumption does not hold anymore, and the agent has to deal with incomplete
information, because the world is partially observable, non-deterministic, or both.
These kinds of representations shift the complexity of finding a solution to a planning
problem from PSPACE to the more complex tasks of conformant and contingent
planning, respectively EXPSPACE and 2–EXP.



Chapter 2

Planning under uncertainty

In the precedent chapter we considered the model of classical planning, where com-
plete information on the initial situation is available, and actions are deterministic.
These two strong assumptions are certainly useful, but they also are limiting for
modelling realistic domains. Complete information about the initial state and de-
terministic actions imply that the system can only evolve along a single completely
specified sequence of states, ignoring any non-deterministic or exogenous effect. But
the majority of the problems we are interested in solving are contexts where the
agent does not hold a priori all the information necessary to solve the problem, so
they fall out of the scope of classical planning.

More elaborated models of planning go beyond the limits of classical planning and
involve incomplete information about the status of the environment, actions with
non-deterministic effects, and the ability to sense the actual state of the system.
Algorithms for planning with incomplete information and sensing provide a general
enough solution that maps all the possible initial states onto the goal: due to partial
information on the initial situation, it is not longer satisfactory to find a single
candidate solution that works for a single and uncertain initial state.

Planning under uncertainty is motivated by realistic applications: planning agents
can be immersed in an unknown environment, similarly to what happens to au-
tonomous rovers moving on the surface of planets, or in the depths of oceans. In
the case of interacting agents, the inner knowledge of either agent is not known
to the others, so that their behaviour can be encoded as planning with incomplete
information.

In this thesis we will tackle those extensions of classical planning that encode in-
complete information about the characteristics and the dynamics of the planning
domain, including the eventual deficiencies of the sensors’ response and the planning
agent’s incomplete knowledge about its current situation.

2.1 Incomplete information and sensing

To move automated planning closer to realistic tasks, it is necessary to include the
incomplete information about the planning agent’s state and about the effects of the

17
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actions in the planning model. In presence of uncertainty, the agent’s beliefs about
the environment can be different from the actual state of the environment, on the
other hand, physical actions having effects on the environment can also effect the
beliefs of the agent, modifying its knowledge about the world. As this distinction
is made, it is accepted that other kind of actions can modify only the mental state
of the agent, i.e. its knowledge about the environment, without changing it. These
actions are called sensing actions, or observations. In classical planning, given that
the actions all have deterministic effects and that the initial situation in perfectly
known, the agent does no need to sense the environment.

Consider a situation where a lever opens one of the two opposed closed exits of
a room, but which one is not known initially. After pulling the lever and before
moving toward a door, a sensing action should be done to check which door has been
opened. This is the kind of problems that planning with incomplete information
encode: where acting changes the state of the world and sensing drives the agent
toward the proper solution.

In problems with sensing actions, the complete state of the system cannot always be
sensed totally, and a limited amount of knowledge is generally gathered from each
observation. This restriction on observability comes from different causes. First,
certain aspects of the environment cannot be sensed because of a lack of proper
sensors or because they are simply hidden. Second, the planning domain can be
simply too large or complex to be entirely represented, and its representation should
be limited to a certain level of granularity. Finally it is very possible that the sensing
is subject to noise, which makes it piecemeal and approximate.

The availability of sensing defines two main models of planning with incomplete
information: conformant planning, where no sensing is available at all, and contingent
planning, that involves partial observability of the environment.

Planning as Heuristic Search in Belief Space

The main difference between classical planning and planning under uncertainty re-
sides in the agent’s incomplete knowledge modelled as a belief state (Bonet and
Geffner, 2000). In a given situation, the belief state is the set of all the states
deemed possible by the agent. In classical planning, the initial situation is perfectly
defined and the actions are deterministic; this means that along the whole plan, the
state is known and no uncertainty affects the problem. On the other hand, when the
initial situation is uncertain due to incomplete information or when non-deterministic
actions are elements of the problem, it is not possible to consider only a single cur-
rent state, unless fully observability is assumed, yet a set of states that potentially
represent the current situation must be considered.

The most common approach to planning under uncertainty is based on the belief state
formulation. Similarly to what happens in the case of planning in a state space, under
uncertainty belief states are related by an accessibility relation f , characterised as
in definition 1.1. This mean that we do not tackle here other forms of planning with
partial information, like probabilistic approaches. From these definitions, a planning
task can be seen as a path–finding problem in a directed graph where the nodes are
belief states. The source node b0 of the graph corresponds to the belief state of the
initial situation, and the target nodes are those representing belief states where the
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goal holds in any one of the states. In this context, every action a executable in a
belief state b, maps b to another belief state b′:

b′ = {s′ | s′ = f(s, a) for all s ∈ b} (2.1)

Belief space planning requires, as for classical planning, verifying the action precon-
ditions before execution: the preconditions must be true in the belief in order to
apply the action effects. We say that a formula is true in a belief state b if it is
true for every state s ∈ b. Consequently, an action a is executable in a belief state
b if its preconditions are true in every state s in the belief b. It is in belief space
that the conditional effects of actions from definition 1.6 acquire a major role. If the
preconditions say when an action possibly has effects in a belief state, the conditions
define the set of states where the effects take place. It is then also possible that an
executable action has no effects, when the conditions of the effect do not hold.

We indicate with result(π, b) the belief state resulting from applying the plan π on
the belief b, given that π is applicable in b. The resulting belief will be the union of
all the states of b progressed through π:

result(π, b) =
⋃
s∈b

result(π, s) (2.2)

Strong and weak solution plans

In planning with belief states, a solution plan guarantees mapping all the possible
initial states onto the goal. When such a solution plan exists, it is called a strong
solution or simply a solution. When a solution plan does not exist for all the states
of the initial belief, it might still be feasible to find a solution that applies to at least
one state in the initial belief; this kind of solution plan is called weak solution, and
is generally avoided as it does not guarantee the achievement of the goal.

Searching in belief space for solution plans is a problem exponentially larger than
searching for solution plans in the classical setting, as the number of possible belief
states is exponential in the number of states. This source of difficulty is tackled
in this thesis by considering “translations” applied to planning problems, that may
consider only a subset of initial states, possibly polynomial, even when their num-
ber is exponential. Translation-based approaches to planning under uncertainty is
the subject of this thesis. Out aim is to cast the planning problem with incomplete
information as a planning problem in the state space by considering, when possi-
ble, approximations to solve the original planning problem, or to guide the search
by providing informed heuristics. In particular, we will prove that under certain
circumstances, our translation encodes all the uncertainty of the problem.

When incomplete information is taken into account, the reasoning abilities of the
system should tackle with reducing the uncertainty of the problem, which provides
solution that are radically different from the one in classical planning. In fact, instead
of proceeding directly to the goal in a greedy way, a solution plan would generally
first remove the ambiguity about the situation by driving the domain into a known
state or by performing sensing actions, and only then go to the goal.

As a motivating example, let’s consider an agent in a maze, where the initial position
of the agent is unknown and the goal is to find a way out of the maze. A map of the
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maze is given to the agent, yet it is not possible for it to initially know its location
on the map. Moving directly to the exit is not possible as the path to the exit
cannot be immediately known. The expected behaviour of the agent would be to
look for reference points or to try to find a particular configuration that would help
it determine its location with certainty.

Planning under uncertainty, as it is treated here, is divided mainly in two tasks of
increasing model’s complexity: conformant planning, where no sensing is available,
and contingent planning, with partial observability.

2.2 Conformant Planning

The conformant planning model can be seen as classical planning with the addition
of uncertainty, and no sensing available. The different sources of uncertainty may be
compiled into a problem with deterministic actions only in which all the uncertainty
is encoded in the initial situation (Bonet and Geffner, 2000). The task of conformant
planning is to find a sequence of actions, the plan, that only requires the application
of executable actions, and whose execution is guaranteed to solve the problem in
spite of the incomplete information about the problem.

Conformant planning with deterministic actions is one the simplest form of planning
with uncertainty. A deterministic conformant problem is like a classical problem but
with many possible initial states instead of one, and a plan is conformant when it is
a valid plan for each possible initial state. In spite of its simplicity, the conformant
planning problem is harder than classical planning, as plan verification remains hard
even under polynomial restrictions on plan length (Haslum and Jonsson, 1999; Baral
et al., 2000; Rintanen, 2004; Turner, 2002). Few practical problems are purely con-
formant, but the ability to find conformant plans is needed in planning with sensing,
of which conformant planning is a special case where no sensing is allowed. Indeed,
relaxations of planning with sensing into conformant cases lies at the heart of recent
methods for computing contingent plans (Hoffmann and Brafman, 2005a; Albore
et al., 2009) and deriving finite-state controllers (Bonet et al., 2009).

Conformant planning can be formulated as a path-finding problem in belief space.
Computational challenges faced in this formulation are the derivation of heuris-
tics to guide the search, and belief representation and update (Bonet and Geffner,
2000). This formulation is the basis of the most recent conformant planners such
as Conformant-FF (Brafman and Hoffmann, 2004), mbp (Bertoli et al., 2006),
pond (Bryce et al., 2006), cnf (To et al., 2010), dnf (To et al., 2009), and T1 (Al-
bore et al., 2011). The exception is the planner T0 which is based on a translation of
conformant problems P in classical problems K(P ) that are solved by off-the-shelf
classical planners (Palacios and Geffner, 2009).

Model for Conformant Planning

A conformant planning problem can be described in terms of search in the belief
space with deterministic actions. Solving a conformant planning problem involves
selecting actions to achieve a goal state. However, unlike classical planning, such a
plan should do so from each possible initial state.
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Figure 2.1: The objective of conformant planning is to produce a plan π, i.e. a sequence of
actions that provide the transitions from all the initial states in S0 to a goal belief state SG.

As with classical planning, the model underlying conformant planning can be for-
mally described with a state space:

Definition 2.1 (Conformant Planning). The conformant planning model Q is de-
fined as the tuple 〈S, S0, SG, A, F 〉, where:

• S is a finite set of states,

• S0 ⊆ S is the initial non empty belief state,

• SG ⊆ S is the set of goal states,

• A is the set of operators (the actions), with non–deterministic effects,

• F is the state transition function for a non deterministic action, and it is a map
F : S×A→ 2S : (s, a) 7→ (s1, ...sn). We can define F in terms of deterministic
transition functions as in definition 1.1, considering F = (f1, ...fn) where we
have fi(s, a) = si, with 1 ≤ i ≤ n.

The operator a is applicable in a state s if F gives at least one target state,
i.e. if exists at least one s′ such that F (s, a) = s′. In terms of deterministic
functions, which are injective by definition, we can rephrase this definition as
follows: a is applicable in a state s if exists at least one fi such that fi(s, a) =
si. The applicability domain here is the union of the applicability domains for
any fi, in other words, we consider the subset of S given by the states s such
that F (s, a) 6= ∅. We remark here that the map F restricted to the applicability
domain is injective.

By extension, when considering a belief state b, a is applicable in the belief b if F (si, a)
gives at least one target state for any si ∈ b. Hence the set of applicable operators in
the belief are those operators applicable in every state of b: {a | F (si, a) 6= ∅, ∀si ∈ b}.

Applying an operator a in a given belief state b results in the successor belief state
b′ defined when a is applicable in every state s in b. Applying a sequence of actions
[a0, . . . , an] in a given belief state b0 results in a chain of belief states [b0, . . . bn+1],
with bi+1 = {s | F (si, ai) = s, ∀si ∈ bi}, and given that ai is applicable in bi, for
0 ≤ i ≤ n.
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Syntax

Similarly to classical planning, a factored model given by a tuple of the form P =
〈F ,A, I,G〉, corresponding to the state model of conformant planning, and whose
semantics will be given in terms of definition 2.1.

Definition 2.2 (Non-deterministic Conformant Planning). A conformant planning
problem can be defined as a tuple P = 〈F ,A, I,G〉, where:

F : a set of Boolean fluents of the problem.

A: a set of actions, where every action a is described by a tuple of preconditions and
conditional effects: 〈 pre(a), eff(a) 〉.
The effects eff(a) are rules in the form:

C → L1 | . . . | Ln

where C and Li are conjunctions of literals in F , for which C can be empty,
and every Li is a non-deterministic effect of the action a, for 1 ≤ i ≤ n.

I: a set of clauses over F defining the initial situation1.

G: a set of fluents G ⊆ F , describing the set of goal states.

Semantics

Similarly to classical planning, we can here establish a relation between the state
space model described in definition 2.1, and the factored definition 2.2 above.

Given a conformant problem P = 〈F ,A, I,G〉, the conformant model
〈S, S0, SG, A, F 〉 is obtained from P in the following way:

• The states s of the state space S are sets of literals that represent truth assign-
ment over the fluents F in P , i.e. for every fluent L in F , either L or ¬L must
belong to s.
Notice that in the syntax of planning under uncertainty we don’t assume a
closed world, but we specify whether a literal is true, false, or unknown.

• The set of possible initial states S0 are the states of S that satisfy the clauses
in I, such that I |= s0, for all states s0 ∈ S0.

• The goal states s ∈ SG are those such that G |= s.

• The actions a applicable in s, are the ones in A such that pre(a) ⊆ s.

• The non–deterministic state transition function F maps the states in the belief
b to a successor belief b′ by applying all the possible effects of an executed
action a:

b′ = {s′ | F (s, a) = s′,∀s ∈ b, and a applicable in s} (2.3)

1We will consider that I is encoded as a Conjunctive Normal Form (CNF).
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We assume throughout that I is logically consistent, so that the set of possible initial
states is not empty, and that the problem P itself is consistent, so that the bodies
C1 and C2 of conflicting effects a : C1 → L and a : C2 → ¬L associated with the
same action a are mutually exclusive or mutex.

For a state s, we write τ(s) to refer to the set of atoms (positive literals) that are true
in s (i.e. L ∈ τ(s) iff L is true in s), and we write P |s to refer to the classical planning
problem P |s = 〈F ,A, τ(s),G〉 which is like the conformant problem P except for the
initial state that is fixed to s.

In this context, an action sequence π = [a0, a1, . . . , an] is a classical plan for P |s if
the action sequence π is executable in the state s and results in a goal state. An
action sequence that is a solution for at least one state in I is called a weak plan.
Likewise, an action sequence π is a conformant plan for P iff π is a classical plan
solving P |s, for every possible initial state s of P .

In case of non-deterministic actions, we must consider all the state trajectories
[s0, . . . , sn+1] that are possible given an action sequence [a0, a1, . . . , an]: these are
the ones starting in a possible initial state s0, and with si+1 a possible successor
state of si given the action ai. An action sequence [a0, a1, . . . , an] is a conformant
plan for P if all the possible state sequences end in a goal state. When using action
costs, we say that a plan π is optimal when no other plan has a smaller cost.

Deterministic conformant planning problems are the main topic of the next two
chapters. As anticipated before, in chapter 5 we will describe translations of non-
deterministic conformant planning problems that result in classical planning prob-
lems, solved by off–the–shelf classical planners.

Example 2.1. We consider again the problem of example 1.2, where incomplete in-
formation about the initial situation is now part of the conformant planning problem.

A robot in a 1 × N grid, with N = 5, that has to go from an initial cell to the
goal cell p 4. However, the initial position of the robot is not known, and can be one
of the last two cells at the opposite end of the corridor from the goal, as shown in
Figure 2.2. This problem can be modelled as a deterministic conformant planning
problem P = 〈F ,A, I,G〉, with:

Fluents F : at(px), for any x in [1, N ],

Actions A:

• left:
Precondition: ∅
Effect:
{ at(px) } −→ { at(px+1), ¬at(px) }, for any x ∈ [1, N − 1].
{ at(p 5) } −→ { at(p 5) }

• right:
Precondition: ∅
Effect:
{ at(px) } −→ { at(px−1), ¬at(px) }, for any x ∈ [2, N ].
{ at(p 1) } −→ { at(p 1) }

Initial situation I: oneof
(
at(p 1), at(p 2)

)
Goal G: { at(p 4) }
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Here the solution shown in example 1.2 cannot be applied, as we would end in an
ambiguous situation: after applying the plan π =

[
left , left , left

]
, the final belief state

would be b = {at(p 4), at(p 5)} (shown in light grey in the figure). Notice that the
belief b includes the goal, but his is not the desired goal G, as it includes the goal
at(p 4), but also at(p 5). The plan π achieves the goal only in the case I= {at(p 1)};
it is indeed a weak plan for P .

p5 p1p4 p3 p2
goal   

Figure 2.2: 1 × 5 corridor of the example 3.1. The initial possible positions of the robot
are p1 or p2, while the goal is to reach the cell p4 labelled with goal.

One solution plan would achieve G for all the (two) states in I. Thus, a possible
solution could be the following:

π =
[

right , left , left , left
]

After the first action, the belief size is reduced to only one state: b ={at(p 1)}, mean-
ing that all the uncertainty of the problem has been removed. Moving right maps
at(p 1) onto itself, and the other possible initial position at(p 2) in at(p 1). After
applying π, the final belief state is just the desired goal: at(p 4).

The conformant solution differs from the classical one also in the fact that it first
drives the robot away from the goal, to an extreme of the corridor, in order to remove
the uncertainty about the robot’s position, and only then goes in the direction of the
goal. In classical planning this in unnecessary, as the goal can be reached directly.

2.3 Contingent Planning

An important extension to conformant planning, and to planning in general, is the
addition of sensing actions. When planning for real–world domains, the agent doesn’t
have complete knowledge of the state of the environment at each point in time, but
it is allowed to sense certain features relevant to it. These domains are partially
observable, as not all the features of the world are available to observe. Planning
problems involving uncertainty and partial observability are particularly demanding,
and are viewed as the most complex form of planning with uncertainty (Kaelbling
et al., 1999; Rintanen, 2004).

In contingent planning, solution plans differ from classical and conformant plans for
their shape. In classical and conformant planning, plans are given by a sequence of
actions, while in contingent planning plans are tree–shaped, branching on observa-
tions. This difference affects the nature of the translations that can be applied to
contingent planning problems, as we will see in chapter 6.
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Model for Contingent Planning

We describe now the model for deterministic contingent planning problems.

Definition 2.3 (Contingent Planning). The deterministic contingent planning model
Q is a tuple 〈S, S0, SG, A,O, f, o〉, where:

• S is a finite set of states,

• S0 ⊆ S is the initial non empty belief state,

• SG ⊆ S is the set of goal states,

• A is the set of operators (the actions),

• O is the set of sensing actions (the observations),

• f : S × A → S : (s, a) 7→ f(s, a) = s′ is a state transition function that maps
states to states.
The successor state s′ results from applying the executable operator a onto a
given state s, and is the single successor state given by s′ = f(s, a),

• an observation function o : S → O that associates to each state a possible
observation.

We will indicate with b′ = f(b, a) the belief state b′ resulting from applying the oper-
ator a to the belief state b. Applying an observation operator o on a belief b results
in the set of states compatible with observation coming from o and is denoted bo.

The plan can be interpreted as an automaton, whose execution controls the system
(that we call the planning domain) by synchronously reading the output of the system
(the observations resulting from sensing) and providing step by step the input for
the system (the planning actions).

The idea of performing sensing is strongly bound to solving contingent planning prob-
lems, as it provides information that consequently reduces the size of the belief state:
after applying a sensing action, only the states compatible with what observed are
possible. In the case of deterministic effects, performing sensing actions will mono-
tonically increase the knowledge about the environment, as there is no uncertainty
in the problem except the one encoded in the initial situation.

To describe a contingent planning problem, like for conformant planning (cf. defini-
tion 2.2), we consider a planning language that extends STRIPS with deterministic
conditional effects, negation, an uncertain initial situation, and sensing actions.

Definition 2.4 (Contingent Planning). A contingent planning problem can be de-
fined as a tuple P = 〈F ,A,O, I,G〉, where:

F : a set of Boolean fluents of the problem,

A: a set of actions, where every action a is described by a tuple of preconditions and
conditional effects: 〈 pre(a), eff(a) 〉.
The effects eff(a) are rules in the form: C → L, where C and L are a conjunc-
tion of literals in F for which C can be empty.
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O: a sensor model, or sensing actions, given by a set of pairs < C,L >, where C
is a set of literals, and L is a positive literal in F . The pair indicates that
the (hidden) truth value of L is observable when C holds in a state. Each
pair < C,L > can be understood as a sensing action that activates when the
precondition C is true, and that reveals the Boolean value of L.

I: a set of clauses over F defining the initial situation,

G: a set of fluents G ⊆ F , describing the set of goal states.

We express the general solution of a contingent planning problem as a tree rooted in
the initial belief, rather than an action sequence. The search space can be cast as an
And-Or tree, where observations are And nodes and regular actions are the Or nodes,
then a contingent plan is a sub-tree where all leaves are goal (belief) states. That is,
the plan has to treat every possible outcome of sensing actions. Many planners con-
sider graphs instead of trees, but the theoretical difference is nonexistent.

sense-right

left

left

left

left

left

wall-right ¬wall-right

Figure 2.3: Tree showing
how sensing disambiguates
the initial position of the
robot in example 2.2.

Example 2.2. We now consider a new version of the
example 2.1 of the robot in a corridor, to which we add
sensing actions.

As before, the initial position of the robot is not known,
being one of the two possible initial poses. The differ-
ence is that now the robot has the ability to sense the
presence of walls nearby. For example, if the robot is in
position at(p 1), it can sense a wall on the right.

This problem can be modelled as a deterministic con-
tingent planning problem P = 〈F ,A,O, I,G〉, with the
same set of fluents F as before, but with the addition of
two new literals encoding the presence of a wall on the
left and on the right. I encodes the same uncertainty as
in the former example, but it encodes also the presence
of walls. The actions are, as the goal, unchanged.

Fluents F : { at(px) } ∪ { wall–left, wall–right}, for any x in [1, N ],

Actions A:

• left:
Precondition: ∅
Effect:
{ at(px) } −→ { at(px+1), ¬at(px) }, for any x ∈ [1, N − 1].
{ at(p 5) } −→ { at(p 5) }

• right:
Precondition: ∅
Effect:
{ at(px) } −→ { at(px−1), ¬at(px) }, for any x ∈ [2, N ].
{ at(p 1) } −→ { at(p 1) }

Sensing Actions O: for any x, y ∈ [1, N ]
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• sense-left():
〈 { at(p 1,y) }, wall–left 〉

• sense-right():
〈 { at(pN,y) }, wall–right 〉

Initial situation I:
{(

at(p 1), at(p 2)
)
,
(
wall–left,¬at(p 1)

)
,(

wall–right,¬at(pN )
)}

Goal G: { at(p 4) }

Similarly to the former conformant example, the classical plan does not accommodate
all the possible contingencies of the problem. However, it is now possible to produce
plans taking advantage of sensing.

A solution contingent plan π would achieve G for all the (two) states in I:

π =
[

sense–right, if wall–right,

then left , left , left .

else left , left .
]

By only the use of sensing, it is possible to disambiguate the initial situation, and to
apply the plan to drive each possible initial state in the goal.

When compared to the conformant solution in example 2.1, the contingent solution
do not remove uncertainty by moving and localising the robot in a corner of the
corridor, but uses its sensors to do so. The plan shown before can also be seen as
a decision tree, where every sensing action helps retrieving the real position of the
robot, as shown in Figure 2.3.

2.4 Complexity

PlanEx is the problem of determining if a problem has a solution plan. Outside
the bounds of classical planning, different varieties of planning problems can be
described, each one with its own complexity results.

For planning problems with incomplete information about the initial state, non-
deterministic actions, and no sensing, PlanEx is EXPSPACE-complete (Haslum and
Jonsson, 1999). For conformant planning with deterministic action effects, deciding
if a plan exists is PSPACE-complete (Littman et al., 1998; Haslum and Jonsson,
1999). Planning with uncertainty about the initial state, non-deterministic actions,
and full observability, where it is assumed that all belief states are singleton2, is
EXP-complete (Littman et al., 1998).

Conformant planning appears to be more difficult that classical planning in the sense
that plan verification is harder: determining the existence of a classical plan with
length at most k is NP–complete, if k is assumed to be polynomial in the size of

2 The reason of considering singletons instead of sets of states is that, when the current state is
ambiguous, it is always possible to observe until one state in singled out.
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the problem; the same problem, for conformant planning is ΣP
2 –complete (Turner,

2002).

Planning with partial observability (or sensing as we defined it above) is the most
difficult planning task. To determine if a problem has a solution plan, for prob-
lem instances with deterministic operators, uncertainty, and partial observability, is
EXPSPACE–complete (Rintanen, 2004). The same decision problem for contingent
problems with deterministic actions is also EXPSPACE–complete. For planning with
incomplete information about the initial state, non-deterministic actions, and partial
observability, the plan existence problem is 2–EXP complete (Rintanen, 2004). The
intuition behind this result is easy to understand if we consider that the partially
observable planning problem can be seen as a non-deterministic fully observable plan-
ning problem where the belief states are viewed as states. The belief state space has a
doubly exponential size in the size of the problem instance, and hence the algorithm
runs in doubly exponential time.

The following table summarises these complexity results:

Action effects
deterministic non-deterministic

Observability
full PSPACE EXP
null EXPSPACE EXPSPACE

partial EXPSPACE 2–EXP

Table 2.1: Complexity of the plan existence problem for different flavours of planning with
uncertainty (Rintanen, 2004).

It is interesting to note that restricting the initial belief state to only one initial state
affects the complexity of only the deterministic unobservable and partially observable
planning problems, bringing them down from EXPSPACE to PSPACE.

2.5 Belief representation and heuristics

In the formalisation of planning under uncertainty as a path-finding problem in belief
space, we face two main computational challenges: the belief states representation
and update, and the heuristics to guide the search (Bonet and Geffner, 2000).

Belief representation

As explained in section 2.1, in planning under uncertainty, the number of possible
belief states of the problem is exponential in the number of states. Different ap-
proaches have been taken to deal with this potential source of inefficiency, and to
represent belief states in a compact way that allows at the same time efficient belief
updating after executing an action. Efficient implementations will need a compact
representation of the belief state, in order to speed up the node generation rate, and
reduce the memory footprint, to scale up to larger problems.

The first approach we’re considering relies on representing beliefs with ordered bi-
nary decision diagrams (OBDD) (Bryant, 1992). The planner Pond has used this
approach successfully (Bryce et al., 2006), and likewise has done mbp, a planner that
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makes use of model checking techniques to solve conformant and contingent planning
tasks (Bertoli et al., 2006, 2001). The main disadvantage of the symbolic approach
with OBDDs, however, is that the size of the OBDD can be very large. The structure
of the diagram depends on the ordering of variables, and the manipulation of the
OBDD might require intermediate OBDDs of exponential size.

The planner Conformant FF (Brafman and Hoffmann, 2004) does not employ an
explicit representation of belief states, but instead represents them implicitly with
the plan prefix leading to the belief state in the search from the initial belief state. In
this approach, the size of the search nodes is compact because only the information
given by the initial situation and the plan prefix is stored, and is thus less demanding
w.r.t. OBDDs. Checking entailment in such a belief state needs to encode the initial
state and the plan prefix as a propositional theory and then calling a sat solver. The
concern in this approach is the need to call a sat solver to check –when necessary–
the truth value of a fluent, trading–off space for time. The planner T1 (Albore
et al., 2011) also uses a similar technique to keep track of belief states, as we will see
in chapter 4.

In the context of contingent planning, the SDR Planner of Shani and Brafman (2011)
takes the history based method of conformant–FF to an extreme, maintaining just
the history of execution: the initial belief state, the actions executed, and the obser-
vations made. The belief tracking is then done in a lazy way, regressing through the
executed plan the negation of the fluent to be verified.

The planner CpA uses an approximation of the belief states, considering only the
literals true in all the states of the belief. This translation is called 0-approximation
(Baral and Son, 1997) and corresponds to the K0 translation of Palacios and Geffner
(2009). Information about the belief states is encoded as a formula in disjunctive
normal form (DNF). As in classical planning, a successor state can be computed here
in polynomial time, which makes this approach computationally attractive. But the
0-approximation is incomplete, meaning that not all the solutions of the problem can
be captured by this approximation, and a planning problem can be evaluated to be
unsolvable even when it is not. Even if incomplete, for certain planning problems the
size of the disjunction can be exponential, which prevents CpA from getting off the
ground. The dnf planner (To et al., 2009) has been developed from a rib of CpA,
from which it inherits preprocessing techniques to simplify the problem before start-
ing the search. dnf employs an explicit representation of belief states in disjunctive
normal form, using a consequent formalisation for the progression function. CpA
and dnf share the overhead for computing the initial approximation state, which is
sometimes quite significant. A similar approach, but with a different representation,
makes use of Conjunctive Normal Form (CNF) to represent the planning problem
under uncertainty. The planner cnf (To et al., 2010) represents belief states as
CNF-states, which are a special case of CNF formulæ where no clause in a formula
ϕ subsumes another other clause in ϕ. CNF-states indeed are a compact encoding
of belief states. But cnf does not perform well in some domains, mainly because
of the explosion in size of the CNF-state or because of the overhead in converting a
belief state encoded as a CNF formula to the equivalent CNF-state.

Another recent approach to conformant planning is based on translation-based meth-
ods: the conformant planner T0 successfully translates a conformant planning prob-
lem into a classical planning problem, and uses solutions to the latter to solve the
original conformant problem. Under certain conditions, the solutions of the classical
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problem correspond to all the solutions of the conformant planning problem (Pala-
cios and Geffner, 2009). The size of the initial state in the new translated problem,
however, can be exponential in the size of the original problem if completeness is re-
quired, depending on the characteristics of the problem. This KT,M (P ) translation
employed by T0 is the subject of the next chapter.

Heuristics

The ways to represent the belief states may vary in the various approaches to plan-
ning with incomplete information. The principal trade off here being between com-
pactness and efficiency, while the heuristics remain a weak point for planning under
uncertainty.

The first planner performing heuristic search in belief space is gpt (Bonet and
Geffner, 2001b), which used an explicit enumeration of possible states and a heuristic
function derived from a relaxation of the problem. This relaxation retains the uncer-
tainty in the model but assumes full observability, resulting in a heuristic function
that doesn’t appear to be well informed for those problems where reasoning by cases
is not appropriate.

mbp, and its enhanced conformant version kacmbp (Bertoli and Cimatti, 2002), two
planners based on an OBDD representation of the beliefs, use the cardinality heuris-
tic that measures the size of the belief state b, i.e. the number of states included in
b. This heuristic estimates the “amount of uncertainty” encoded in a belief state,
starting from the intuition that a belief state reduced to a singleton carries no un-
certainty. Model counting for OBDDs can be performed in polytime, so evaluating
the cardinality heuristic is simple and inexpensive for these planners. The actions
selected aim consequently at reducing the size of the current belief state, which helps
in problems where localising first is a plus, as in the example 2.1. kacmbp adjusts
its heuristic estimate by alternating between the “acquire knowledge” mode, when
the cardinality heuristic is considered, and the “reach–goal” mode that uses the gpt
heuristic.

Translation-based approaches use heuristics coming from the planner used to solve
the translation. Planner T0 (Palacios and Geffner, 2006) uses a classical off–the–
shelf planner to solve the classical problem the original conformant problem has
been compiled into. There, all the information about the size of the belief seems to
have been lost in translation: the classical heuristic will never consider reducing the
size of the belief, which is in turn the main criterion used by kacmbp.

The cardinality heuristic is a main aspect of planning under uncertainty, but the
measure of the distance from the goal can still be the main guide in the search. This
is one of the main motivations that pushed us to create and implement the conformant
T1 planner (Albore et al., 2011): a conformant planner that is very efficient and uses
a heuristics portfolio which considers two heuristics, one dependent on the “classical”
distance from the goal of the current belief, and a second second heuristic related to
both cardinality heuristics, and landmark heuristics (Richter et al., 2008). The T1
planner is described in chapter 4.

It has been suggested by Funge (1998, 1999) to formalise knowledge in the situation
calculus, and to keep track of the amount of uncertainty of in uncertain states with
the help of epistemic interval-valued fluents. For this purpose, a special fluent If
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is used to express the (un)certainty of a corresponding fluent f by maintaining an
interval of possible values for it; for instance If =< a, b > means that f can assume
values between a and b. The idea accommodates also sensing and exogenous events.

pond (Bryce et al., 2006) uses a structure called the Labelled Uncertainty Graph
(LUG) that is similar to that used in the GraphPlan algorithm for classical plan-
ning (Blum and Furst, 1995), and encodes information about different initial states,
i.e. the mutexes, the support from preconditions to actions and from actions to ef-
fects. For example, the LUG considers multiple support actions for a literal when
they are necessary across different initial states, but does not overcount when the
same action is used as a support for a literal given different initial states.

On the other side, dnf makes use of a relaxation on the information about the
cardinality of the belief state, the one-of relaxation. An exclusive disjunction on
state variables is treated as a simple disjunction: the information about the amount
of uncertainty carried by a belief will then appear over–estimated. For example, the
uncertainty on a multi-valued variable initially described as oneof (x1, . . . , xn) will be
simplified to (x1∨ . . .∨xn): the mutual exclusivity of the values is ignored, and states
where more than a xi is true will be gratuitously considered. dnf and cnf planners
use also the number of satisfied subgoals to guide its search.

The Conformant-FF planner (Brafman and Hoffmann, 2004) re-uses the ideas behind
the delete relaxation heuristic (Hoffmann and Nebel, 2001), which solves a relaxed
version of the problem, which assumes that all delete lists are empty. The length of
the relaxed (classical) plan is taken to be the heuristic estimate. The relaxed planning
method that ff uses to compute its heuristic function is modified accordingly, with
a complete but unsound form of the CNF reasoning about known propositions. The
key step is to project the relevant clauses of the CNF theory of the conformant
problem to one having clauses of size 2.

2.6 Probabilistic approaches to planning under
uncertainty

Uncertainty about actions’ outcomes can be modelled as a probability distribution
function: a probability is assigned to each possible effect of an action. Consequently,
the goals are represented as utility functions, i.e. numeric functions that can express
preferences about the executed actions and the desired final states. In such a frame-
work, a plan is expressed as a policy that details the action to execute in each state,
and the planning problem reduces to an optimisation problem where a solution is an
optimal policy which maximises the utility function.

The execution of a policy corresponds to a Markov Chain, an infinite sequence of
states where each state depends on the previous one. Thus, each state has a different
probability to be visited during the execution, such that the expected reward for
being in a particular state s, following some fixed policy π in the infinite horizon
case, is given by the equation below:

Vπ(s) = R(s, π(s)) + γ
∑
s′

P (s′|s, π(s))Vπ(s′) (2.4)
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This equation (2.4) describes the expected reward V π(s) for stating in a state s and
applying the actions in some policy π, considering the immediate reward R(s, a) for
applying the action a in s, and a discount factor γ ≤ 1.

The planning problem is to find an optimal policy that maximises the utility function,
the optimal expected cost in a state s is given by the Bellman equation:

V ∗(s) = R(s, a) + max
a

γ
∑
s′

P (s′|s, a)V ∗(s′) (2.5)

The former family of equations due to Bellman can be used to solve Markov Decision
Processes (MDPs). MDPs are particularly interesting for us because it has been
shown that a STRIPS planning problem can be encoded as a MDP (Koenig, 1991).
Different methods exist and have been applied to MDPs’s solving, the most popular
being policy iteration and value iteration.

Full observable MDPs have been proved to be P-Complete by Papadimitriou and
Tsitsiklis (1987); this means that even if they are solvable in polynomial time, an
efficient parallel solution is unlikely: if an efficient parallel algorithm were available,
then all problems in P would be solvable efficiently in parallel (Littman et al., 1995).

Contingent planning as POMDP

When the assumption of full observability that sustains MDP’s approach doesn’t
hold, the optimal policy does not depend only on the current state anymore, but
also on the information available up to that point.

For our purpose it could be useful to delineate an alternative characterisation for
contingent planning, which can be cast from a dynamic programming perspective
(Bellman, 1957; Bonet and Geffner, 2000). In a contingent problem, an agent starts
in a given belief state b = b0 and must reach a target belief bF that only contains
goal states. For this, the physical effects of an action a, applicable in a belief state
b, deterministically map b to a new belief state ba:

ba = {s′ | s′ = f(a, s) , s ∈ b} (2.6)

where f(a, s) is the state-transition function determined by the effects associated
with the action a in P , while the sensing effects of an action a non-deterministically
map ba to a belief state boa:

boa = {s |s′ ∈ b and s compatible with o} (2.7)

where o is one of the possible observations that may arise in ba. If we write O(b, a)
to indicate the possible observations that may arise by doing action a in b, then the
cost of reaching a target belief state bF from a non-target belief b, in the worst case,
can be obtained from the optimality equation:

V (b) = min
a∈A(b)

[
c(a) + max

o∈O(b,a)
V (boa)

]
(2.8)

and the equation V (bF ) = 0 for goal beliefs (those that only include goal states).
In this equation (2.8), A(b) denotes the set of actions applicable in b; namely, those
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whose preconditions are true in b, and c(a) is the cost of the action a, assumed to
be 1 by default.

The solution to the optimality equation captures the optimal cost function V ∗(b)
that measures the cost of reaching a goal belief from b in the worst case, providing
the minimum depth of the contingent tree that solves the problem. In our setting,
where actions have either physical or sensing effects but not both, O(b, a) must be set
to contain just one dummy observation true in all states when a is a physical action,
and ba must be set to b when a is a sensing action. For capturing expected costs
rather than worst case costs, the beliefs must be set to probability distributions, and
the equations for updating beliefs and the optimality equations must be adjusted,
with a weighted sum over the observations o ∈ O(b, a) replacing the max, with the
weights being probability of getting each observations given b and a. The resulting
model is then a POMDP (Cassandra et al., 1994; Bonet and Geffner, 2000).

POMDPs include, beside the same probabilistic transition model and reward function
of MDPs, an observation model O(s, o) that expresses the probability of having
the observation o in the state s. Belief states are a probability distribution b(s)
over all possible states s such that

∑
s b(s) = 1, being b(s) the probability assigned

to the particular state s in the belief b. A policy is a function that maps belief
states to actions. In a way similar to MDPs, planning problems in POMDPs can be
stated as optimisation problems where an optimal policy has to be found. This is
done by seeing the POMDP planning problem as a fully observable MDP planning
problem on the infinite set of belief states (Åström, 1965). The optimal policy can
be understood as the solution of a continuous space belief Markov Decision Process.
For such continuous MDPs, the belief transition function T is expressed in terms of
the probability of reaching a belief state b′ from a belief b, given an action a, such
that T (b, a, b′) = P (b′|b, a), and the reward function on belief states is given by
ρ(b, a) =

∑
s b(s)R(s, a).

POMDPs are much more a difficult problems than MDPs, due to the resulting be-
lief states space, which is infinite and continuous. Thus computation of optimal
policies is intractable: the problem is PSPACE–complete (Papadimitriou and Tsit-
siklis, 1987), and current computing power can only solve POMDPs with a few dozen
states. Instead of computing an exact solution to a POMDP, as suggested by Sondik
(1971), research has focused on producing approximated solution algorithms, like
Witness (Littman, 1994), which is an improved value iteration for POMDPs.

2.7 Summary

Standard planning algorithms assume complete information about a deterministic
environment. However, many planning domains violate these assumptions and do
not guarantee full information about the agent’s situation. In these cases, a solution
plan compels with all the contingencies that can arise from incomplete information,
driving all the possible initial states to goal states. Contingent planning can be
seen as a general case of planning under uncertainty, where sensing actions allow to
“observe” the status of the environment and collect information needed to solve the
problem. Contingent planning is the most difficult task of planning, since finding a
plan for non-deterministic and partially observable problems is in 2-EXP, while the
same problem featuring null observability is in EXPSPACE. Conformant planning is
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the task of finding a plan in a domain with incomplete information about the initial
situation, and no sensing actions. A plan for a conformant planning problem is then
a sequence of actions, rather than a tree. The ability to find conformant plans is
needed in the contingent setting, of which conformant situations are a special case.

The problem of planning with incomplete information has been approached as a
path-finding problem in belief space where good belief representations and heuristics
are critical for scaling up. In the next chapter, we will see a different formulation
for conformant problems with deterministic actions where they are automatically
converted into classical ones and solved by an off-the-shelf classical planner.



Chapter 3

Conformant translations to
Classical Planning

The obstacles to providing effective solutions to conformant planning are the ones of
planning under incomplete information: providing a compact and efficient represen-
tation of the problem, and having informed heuristics over belief states for solving
it. Translation-based approaches address the difficulty of planning under uncertainty
by compiling planning problems to another ones, easier to solve. The aim of trans-
lations is to avoid searching the whole belief space, and to adopt a more compact
representation of the beliefs themselves.

In this chapter we describe an alternative approach to conformant planning where
problems are automatically compiled into classical problems. These compiled prob-
lems are then solved by an off–the–shelf classical planner. The backbone of the
translation approach resides in the fact that belief states are represented as states, al-
lowing standard classical planning heuristics to be used. We will follow the approach
described in (Palacios and Geffner, 2009), where conformant planning problems are
mapped into classical ones that are then solved by using a state-of-the-art classical
planner. In the worst case this translation is exponential, but for a large collection
of problems it can be shown to be polynomial, and complete.

Motivation

Conformant problems mapped into classical ones provide an implicit solution to
the two principal issues faced by conformant planners that perform search in belief
space (Bonet and Geffner, 2000), namely the belief representation and the efficacy of
heuristics over beliefs. In the conformant setting, the number of possible belief states
is exponential in the number of states, thus the problem of searching for conformant
plans is exponentially larger than in the classical planning setting. In conformant
problems translated in classical problems, belief states are represented as plain states,
allowing standard classical planning heuristics to be used.

35
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3.1 The K0 translation

The translation-based approach to conformant planning from which we start, maps
deterministic conformant problems P into classical problems K(P ) that can be solved
by off-the-shelf planners (Palacios and Geffner, 2009). The approach is also closely
related to the notion planning at the knowledge level, which can include sensing,
and that extends STRIPS representation to model actions that make changes at
the “knowledge level”, rather than on the world state (Petrick and Bacchus, 2002,
2004). The main difference being that in the work of Palacios and Geffner (2009),
the epistemic encoding is derived automatically.

The simplest translation, called K0, changes the representation of the problem P by
replacing all the literals L in P by literals KL and K¬L in K0(P ). The literals KL
and K¬L aim at capturing whether L is “known to be true” and “known to be false”
respectively. A literal L is “known to be true” in a belief state b when it holds in all
the states s of b, and vice versa for a literal “known to be false”.

Definition 3.1 (Translation K0). For a deterministic conformant problem P =
〈F ,A, I,G〉, the translation K0(P ) = 〈F ′,A′, I ′,G′〉 is a classical planning problem
where

• F ′ = {KL,K¬L | L ∈ F},

• I ′ = {KL | L is a unit clause in I},

• G′ = {KL | L ∈ G}, and

• A′ = A with each precondition L for a ∈ A replaced by KL, and each condi-
tional effect C → L replaced by the two rules KC → KL and ¬K¬C → ¬K¬L.

The expressions KC and ¬K¬C for conjunctions C = C1∧ . . .∧Cn are abbreviations
for KC1 ∧ . . . ∧KCn and ¬K¬C1 ∧ . . . ∧ ¬K¬Cn respectively.

The intuition behind the translation is that the only information retained in the
compiled problem K0(P ) is the information about I that is certain. In other word,
the literal KL is true in I ′ if L is known to be true in I; otherwise it is false1. This
removes all uncertainty from K0(P ), making it a classical planning problem.

Example 3.1. Let consider again the conformant planning problem of a robot moving
in a 1 × 5 corridor that we already saw in example 2.1. The initial position of the
robot is not known with certainty: it can be in one of the last two cells at the end of
the corridor opposite from the goal.

Here the initial situation in the conformant problem P is described by the formula
oneof

(
at(p 1), at(p 2)

)
, indicating that the initial position of the robot can be either

p1 or p2 in Figure 2.2. I is then expressed as a set of clauses:

I =
{(

at(p 1), at(p 2)
)
,
(
¬at(p 1),¬at(p 2)

)
,
(
¬at(p 5)

)
,
(
¬at(p 3)

)
,
(
¬at(p 4)

)}
G =

{
at(p 4)

}
1As said in section 2.2, a literal L is true in I iff I |= L.
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The only fluents that are true in all the possible situations in I are ¬at(p3), ¬at(p 4),
and ¬at(p 5), thus they are the only fluents that appear in the initial state I ′ of the
translation K0(P ):

I ′ = {K¬at(p 5),K¬p3,K¬at(p 4)}
G′ = {Kat(p 5)}

To preserve soundness, the actions in definition 3.1 are such that each rule a : C → L
in P is mapped into two rules:

• a support rule a : KC → KL, that ensures that L is known to be true when
the condition C is known to be true, and

• a cancellation rule a : ¬K¬C → ¬K¬L that guarantees that K¬L is deleted
(i.e. prevented to persist) when action a is applied and C is not known to be
false.

The translation K0(P ) is sound as every classical plan that solves K0(P ) is a con-
formant plan for P , but incomplete, as not all conformant plans for P are classical
plans for K0(P ). This means that if a plan achieves KL in K0(P ), then the same
plan achieves L with certainty in P , but the converse is not always true, meaning
that a plan may achieve L with certainty in P without making the literal KL true
in K0(P ).

This translation share many similarities with the 0-approximation (Baral and Son,
1997), where belief states are represented by 3–valued fluents states where fluents can
be true, false, or unknown, following Lukasiewicz’s logic (Lukasiewicz, 1953). The
two approximations share the same representation of the problem where incomplete
information is not considered when searching for a solution plan. The result is that
an action sequence π is a classical plan for K0(P ) iff π is a conformant plan for P
according to the 0-approximation semantics.

The translation K0 is linear in the size of the original problem, but is generally
incomplete. We are going to see in the next sections some more translations that
may be exponential in the size of the problem, but that can provide completeness
and applicability on a large number of problems.

3.2 General translation scheme KT,M

The translation scheme K0 is compact and efficient, but not sufficiently expressive
when the planning problems to solve request to reason by cases. In this section
we depict a more general translation scheme that is sound and also complete under
certain conditions. The complexity of the complete translation is exponential in a
parameter of the problem that is called the conformant width, that will be defined
later on in this chapter (cf. definition 3.15). It turns out that the conformant width
is bounded for most benchmarks, leading to a polynomial translation.

The more general translation scheme KT,M builds on K0 by the mean of two param-
eters: a set T of tags t and a set M of merges m. The tags and the merges are used
to account for conformant plans that reason by cases; indeed, the tags are used to
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introduce assumptions about the initial situation that are eliminated via the merges.
The translation KT,M (P ) introduces new literals KL/t to which we attribute the
following semantics:

L is known to be true if t was true in the initial situation.

A tag t ∈ T is a conjunction of literals L of P , whose truth value in the initial
situation is not known. The tags t encode assumptions about the initial situation
that, if they hold, they yield the literal L in the current situation, which corresponds
exactly to the semantics of KL/t.

A merge m is a non-empty collection of tags t in T of which at least one is true, i.e.
a merge m stands for the Disjunctive Normal Form (DNF) formula

∨
t∈m t. A merge

m is said to be valid when at least one of the tags t ∈ m is true in I:

I |=
∨
t∈m

t (3.1)

The translation KT,M is sound as long as the merges in M are valid. A merge m for
a literal L in P translates into the “merge action” with single effect∧

t∈m
KL/t → KL (3.2)

The set of “merge actions” associated with the set of merges M is referred to as
AM . The translation KT,M (P ) is the basic translation K0(P ) where the literals are
“conditioned” with the tags t in T and the set of actions is extended with the AM
actions.

The literals written KL (without a tag) are assumed to stand for the literals KL/t
where t is the empty tag . The empty tag expresses no assumption about the initial
situation and is assumed implicitly in every set T .

Definition 3.2 (Translation KT,M (P )). Let P = 〈F ,A, I,G〉 be a conformant prob-
lem, then the translation KT,M (P ) = 〈F ′,A′, I ′,G′〉 is a classical planning problem,
where

• F ′ = {KL/t,K¬L/t | L ∈ F and t ∈ T},

• I ′ = {KL/t | I |= (t ⊃ L)},

• G′ = {KL | L ∈ G}, and

• A′ = AM ∪ A with each precondition L for a ∈ A replaced by KL, and each
conditional effect C → L replaced by the two rules:
KC/t→ KL/t and ¬K¬C/t→ ¬K¬L/t.

The conditions KC/t and ¬K¬C/t, for the conjunction C = C1 ∧ . . . ∧ Cn, corre-
spond to KC1/t ∧ . . . ∧KCn/t, and ¬K¬C1/t ∧ . . . ∧ ¬K¬Cn/t, respectively.

KT,M can be seen as the simple translation K0, but where the literals considered
are the ones known to be true in all the initial states where a tag t holds, and not
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just the literals known to be true in all the states. The translation KT,M reduces
to the basic translation K0 when M is empty and T contains only the empty tag.
For suitable choices of T and M , the translation KT,M is both sound and complete:
sound, meaning that the classical plans for KT,M (P ) are all conformant plans for P
once merge actions are removed, and complete, meaning that all conformant plans
for P yield classical plans for KT,M (P ) once merge actions are added (Palacios and
Geffner, 2009). The formal definitions are given below:

Definition 3.3 (Soundness of KT,M (P )). A translation KT,M (P ) is sound when for
any classical plan π that solves the classical planning problem KT,M (P ), the plan π′

that results from π by dropping the merge actions is a conformant plan for P .

Definition 3.4 (Completeness of KT,M (P )). A translation KT,M (P ) is complete
when for any conformant plan π′ that solves the conformant problem P , there is a
classical plan π that solves the classical problem KT,M (P ) such that π′ is equal to π
with the merge actions removed.

The general translation schemeKT,M is sound, provided that all merges are valid, and
that all the tags are consistent. A tag t is consistent if all the literals in t are true in
some possible initial state. The problem KT,M (P ) is consistent if the original problem
P is consistent, i.e. for two mutex literals L and L′ in the consistent problem P , the
invariant KL/t ⊃ K¬L′/t is preserved in the translated problem KT,M (P ) (Palacios
and Geffner, 2009). We say that a clause is consistent if the set of states it implies
is not empty; for example, in this thesis are only considered problems where I is
logically consistent, meaning that at least one initial state exists.

Theorem 3.5 (Soundness of KT,M (P )). The translation KT,M (P ) is sound provided
that all merges in M are valid and all tags in T are consistent.

Having consistent tags ensure that the literals in a tag are true in some initial state,
and valid merges that at least one of the tags is satisfied in the initial situation. This
is enough to guarantee that a plan for KT,M (P ) is also a plan for P . From now on,
we will assume to have valid translations, i.e. translations where all the merges are
valid and all the tags consistent.

3.3 The KS0
Complete translation

One way to get a complete translation is by associating the tags in T with the set
S0 of possible initial states of P (in addition to the empty tag). This translation is
called KS0 , which is the instance of the general translation KT,M that results from
setting T to S0, and having one merge in M equal to S0 for each precondition and
goal literal. The translation KS0 is complete but exponential in the worst case.

Definition 3.6 (Translation KS0). For a conformant problem P , the translation
KS0(P ) is an instance of the translation KT,M (P ) where

• T is set to the union of the empty tag and the set S0 of all possible initial states
of P (understood as the maximal sets of literals that are consistent with I), and
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• M is set to contain a single merge m = S0 for each precondition and goal literal
L in P .

The translation KS0 is valid and hence sound, and it is complete because of the
correspondence between the tags with the possible initial states. A conformant plan
π for the problem P maps all the possible initial states s in a goal state, so π is a
solution for every P |s. As the set of tags in KS0 corresponds to the set of initial
states, the same solution plan π will achieve the goal for all the tags of the problem.

Theorem 3.7 (Completeness of KS0). If π is a conformant plan for P , then there
is a classical plan π′ for KS0(P ) such that π results from dropping the merge actions
from π′.

We saw previously that the number of possible states is exponential in the num-
ber of the uncertain fluents of the problem, from which comes that the translation
KS0 is exponential too in the worst case. Needless to say, planners based on the
KS0 translation do no scale up well, compared to other state–of–the–art conformant
planners (Palacios, 2009, chap. 6), even if they appear to be efficacious on small
instances of planning problems.

3.4 The compact Ki translation

The translation KS0 is sound and complete, but introduces in the translated problem
literals KL/t that might be exponential in the number of uncertain fluents of the
problem. However it is possible to obtain from KT,M (P ) a more compact translation
that is sound and complete by just considering smaller sets of tags T and merges
M . To guarantee that this reduced set of tags captures the necessary uncertainty
of the problem P to solve it, we must consider the set of the clauses in I that are
relevant to the literals that are helpful in solving the problem. This is not a trivial
task indeed, but that can be shone upon with the help of some basic notion.

Definition 3.8 (Relevance). The conformant relevance relation L −→ L′ in P , read
L is relevant to L′, is defined inductively as

1. L −→ L

2. L −→ L′ if a : C → L′ is in P with L ∈ C for some action a in P

3. L −→ L′ if L −→ L′′ and L′′ −→ L′

4. L −→ L′ if L −→ ¬L′′ and L′′ −→ ¬L′.

The notion of relevance traces how the uncertainty about certain literals affects
others. It is important to notice that relevance only considers conditional effects and
not preconditions. The reason is simple: in order to apply an action, its precondition
has to be known, consequently no uncertainty can come from a precondition; however,
truth value of conditions can be ambiguous.

We assume from now on that the initial situation I is written in Prime Implicate
Form (Marquis, 2000). A formula is in Prime Implicate Form if includes only the
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inclusion–minimal clauses it entails, but not tautologies. We consider prime implicate
form because to check whether a clause c follows logically from a formula I expressed
in prime implicate form is a polynomial operation as it is reduced to check if c is
subsumed by a clause in I, or if it is a tautology.

The set CI stands for the set of clauses that represent uncertainty about the initial
situation, namely the non-unit clauses in I, along with the tautologies (L ∨ ¬L) for
complementary literals L and ¬L not appearing as unit clauses in I (i.e. literals that
are initially unknown). The notion of (conformant) relevance is extended to clauses
as follows:

Definition 3.9 (Relevant Clause). A clause c ∈ CI is relevant to a literal L in P
when every literal c in c is relevant to L. The set of clauses in CI relevant to a literal
L is denoted as CI(L).

The literals that have necessarily to be known in order to solve a problem are the
ones present into the goal, and in the preconditions of the actions. Thus, the merges
of a KT,M (P ) translation should satisfy the clauses relevant to such literals. If we
consider the CNF formula CI(L) that captures the fragment of the initial situation
I that is relevant to a literal L, the type of merges required for completeness are
then simply the valid merges m that satisfy the set of clauses CI(L). We say that
a merge m satisfies a set of clauses if m satisfies each clause in the set: for every
clause c = (c1, . . . , cn) in the set, m contains a tag t and some literal ci in c is a
consequence of t, i.e. I |= (t ⊃ ci). This set of valid merges satisfying CI(L) is said
to be covering :

Definition 3.10 (Covering Merges). A valid merge m in a translation KT,M (P ) of
a conformant problem P = 〈F ,A, I,G〉 covers a literal L when m satisfies CI(L).

This yields to translations built with covering merges. A valid translation KT,M (P )
that contains a merge m that covers each precondition and goal literal L in P is said
to be a covering translation:

Definition 3.11 (Covering Translation). A covering translation is a valid translation
KT,M (P ) that includes one merge that covers L, for each precondition and goal literal
L in P .

Testing whether a valid translation KT,M (P ) is a covering translation can be done
in polynomial time. Another central result is that covering translations are com-
plete (Palacios and Geffner, 2009):

Theorem 3.12 (Completeness). Covering translations KT,M (P ) are complete; i.e.,
for any π conformant plan for P there is a classical plan π′ for KT,M (P ) such that
π is π′ with the merge actions removed.

In a complete translation KT,M (P ), the tags and merges in T and M capture the
information in the initial situation relevant to each precondition and goal literal, and
thus embed all the necessary information to solve the planning problem P .

A translation that is sound and complete, but generally more compact w.r.t. KS0 ,
can be made by considering only the relevant clauses to precondition and goal literals:
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Definition 3.13 (Translation Kmodels). For a conformant problem P , the translation
Kmodels(P ) is an instance of the translation KT,M (P ) where

• M is set to contain one merge m for each precondition and goal literal L, given
by the models of CI(L) that are consistent with I, and

• T is set to contain the tags in all such merges, plus the empty tag.

The translation Kmodels is equivalent to KS0 when the set of relevant clauses for all
the precondition and goal literals L equals I, i.e. CI(L) = I. In other words, the
translation Kmodels is equivalent to KS0 when all the clauses in I are relevant to L;
consequently Kmodels is exponential in the number of fluents appearing in the sets
CI(L). Thus Kmodels is generally more compact than KS0 while staying sound and
complete.

The conformant width

In order to obtain a more compact translation KT,M (P ), it is necessary to obtain the
minimal set of clauses to cover the literals needed to solve the problem. For that,
Palacios and Geffner defined a structural parameter, called the conformant width
to capture the minimal size of tags necessary to have a complete translation for a
conformant problem P (Palacios and Geffner, 2006). The width of a conformant
problem is related to the maximum number of variables whose values are initially
unknown, such that all of them are relevant to a certain precondition or goal.

A cover is a combination of literals close to the notion of merge:

Definition 3.14 (Cover). A cover c(C) for a set of clauses C, relative to a conformant
problem P with initial situation I, is the minimal set of literals S consistent with
I such that S contains a literal of each clause in C.

A cover is then a DNF formula that is logically equivalent to the CNF formula C (in
fact c(C) satisfies C), consistent with I. In particular, the cover c(CI(L)) of CI(L) is
a valid merge that covers L. To identify the smallest set of clauses having a merge
that satisfies CI(L) (like a covering merge), the set CI(L) has first to be extended
with tautologies of the form (p ∨ ¬p) for fluents p such that either p or ¬p appears
in CI(L). This extended set of clauses is denoted by C∗I (L).

Definition 3.15 (Conformant Width of a Literal). The conformant width of a literal
L in P , written w(L), is the size of the smallest (cardinality-wise) set of clauses C
in C∗I (L) such that c(C) satisfies CI(L).

The width of a problem is the maximum width of the precondition or goal literals:

Definition 3.16 (Conformant Width of a Problem). The conformant width of a
problem P , written w(P ), is given by

w(P ) = max
L

w(L)

where L ranges over the precondition and goal literals in P .
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The notion of width is important for our translation–based approaches to planning
with incomplete information as it provides an important parameter on the difficulty
of solving a problem. The characteristics of the translations also strongly depend on
it: the width gives an idea of the structural complexity of the problem, and is related
to the size of the tags needed for completeness. Having translations with bounded
tags size will also bound the size of the translation itself, that will be exponential
only in the width. This means that sound and complete translations can be now
obtained being exponential in the size of the tags and not in the size of the problem.

The polynomial translation Ki

The translations KS0 and Kmodels above are both sound and complete, but with tags
of arbitrary size. An instance of the general translation scheme KT,M (P ) can be
obtained from covering translations from definition 3.11, where the covering merges
are all the ones that cover all the preconditions and the goal literals of the problem
that include tags of bounded size. More in particular, the tags of max size i provide
the family of translations Ki, defined as follow:

Definition 3.17 (Translation Ki). For a conformant planning problem P , the trans-
lation Ki(P ) is obtained from the general scheme KT,M (P ) where

• M is set to contain one merge m = c(C) for each precondition and goal literal
L in P , if there is a set C of at most i clauses in C∗I (L) such that m covers L.
If no such set exists, one merge m = c(C) for L is created for each set C of i
clauses in C∗I (L), and no merges are created for L if C∗I (L) is empty;

• T is the collection of tags appearing in the merges above, plus the empty tag.

When the parameter i = 0, then the translation Ki(P ) reduces to K0(P ) (cf. sec-
tion 3.1). In fact, K0 has no tags but the empty tag, and no merges.

Example 3.2. The problem P of the example 3.1 above can be translated following
the terms of the Ki(P ) translation.

If we take the actions of moving left and right as they are described in example 2.1,
without preconditions but with conditional effects only, we obtain the relevance results
below:

at(p i)→ at(p j), for i, j in [1, N ]

Given the goal {at(p 4)}, the set CI(at(p 4)) is given by the clauses:(
at(p 1), at(p 2)

)
;
(
¬at(p 1),¬at(p 2)

)
;
(
at(p 1),¬at(p 1)

)
;
(
at(p 2),¬at(p 2)

)
The minimal set of clauses satisfying CI(L), for L precondition of goal, is:

{(
at(p 1), at(p 2)

)}
,

from which follows a width of the problem of 1.

The merge
(
at(p 1), at(p 2)

)
is covering, so the problem KT,M (P ) will have 2 tags,

i.e. at(p 1) and at(p 2), plus the empty tag.

This problem can now be modelled as a classical planning problem KT,M (P ) =
〈F ′,A′, I ′,G′〉, with:
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Fluents F : Kat(px)/at(p 1), Kat(px)/at(p 2), K¬at(px)/at(p 1),
K¬at(px)/at(p 2), Kat(px), K¬at(px), for any x in [1, N ].

Actions A:

left:
Precondition: ∅
Effect: {Kat(px)} −→ {Kat(px+1), K¬at(px)}

{Kat(p 5) } −→ { Kat(p 5)}
{¬K¬at(px)} −→ {¬K¬at(px+1), ¬Kat(px)}
{¬K¬at(p 5)} −→ {¬K¬at(p 5)}
{Kat(px)/t} −→ {Kat(px+1)/t, K¬at(px)/t}
{Kat(p 5)/t } −→ { Kat(p 5)/t}
{¬K¬at(px)/t} −→ {¬K¬at(px+1)/t, ¬Kat(px)/t}
{¬K¬at(p 5)/t} −→ {¬K¬at(p 5)/t},

for any t ∈ {at(p 1), at(p 2)}, and for any x ∈ [1, N − 1].

right:
Precondition: ∅
Effect:
{at(px) } −→ { at(px−1), ¬at(px)} {at(p 1) } −→ { at(p 1)},

for any x ∈ [2, N ].

Initial situation I: { at(p 2) }

Goal G: { Kat(p 4) }

Here the initial situation in the conformant problem P is described by the formula
oneof

(
at(p 1), at(p 2)

)
, indicating that the initial position of the robot can be either

p1 or p2 in Figure 2.2.

I =
{(

at(p 1), at(p 2)
)
,
(
¬at(p 1),¬at(p 2)

)
,
(
¬at(p 5)

)
,
(
¬at(p 3)

)
,
(
¬at(p 4)

)}
G =

{
at(p 4)

}
The only fluents that are true in all the possible situations in I are ¬at(p3), ¬at(p 4),
and ¬at(p 5), thus they are the only fluents that appear in the initial state I ′ of the
translation K0(P ):

I ′ = {(K¬at(p 5)), (K¬p3), (K¬at(p 4))}
G′ = {Kat(p 5)}

The translation Ki applies to any problem P , remaining sound. If the conformant
width of the problem is bound by an integer i ≥ 0, the translation Ki is also com-
plete (Palacios and Geffner, 2009). In all the cases, for a bounded value of the
parameter i, the translation Ki is sound and polynomial in the number of fluents,
actions, and clauses in the problem P .

Theorem 3.18 (Properties of Ki). Given a conformant planning problem P , for a
fixed positive integer i, the translation Ki(P ) is sound, and polynomial in size.
If w(P ) ≤ i the translation Ki(P ) is also complete.
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This result is important as it has been noticed that most of the conformant planning
problems have width equal to 1, meaning that a sound and complete translation K1

can be provided to solve them with a classical planner, with tags of size one. Such
translation has polynomial size and appears to be effective on the majority of the con-
formant planning problems. This is the main motivation behind the implementation
of the successful planner T0, which has been built on top of K1. The planner T0 has
been the best performer at the international planning competition IPC 2006 (Bonet
and Givan, 2006).

3.5 Summary

We saw in this chapter several sound translations for planning with incomplete in-
formation. These translations map deterministic conformant planning problems into
classical problems, which solutions are plans for the conformant problem.

The general translation scheme KT,M is built on top of two parameters, a set of tags
T encoding assumptions about the initial situation, and a set of merges M encoding
valid disjunctions of tags. For T equal the total possible initial states S0, and M
a single merge upon S0, the translation KS0 is sound and complete, but exponential
in the number of unknown fluents of the problem. Setting M to contain one merge
m for each precondition and goal literal L, given by the models of CI(L) that are
consistent with I, and T to contain the tags in all such merges, plus the empty
tag, the resulting Kmodelstranslation is sound and complete, but exponential in the
number of the fluents L in CI(L). The translation K0 includes only the empty tag
and no merge; it is effective for simple problems2, but complete only if w(P ) = 0.
We presented then the notion of conformant width, a structural parameter of the
problem that provides an upper bound on the time and space complexity required
for generating a complete translation. The sound and complete translation Ki for
conformant planning is exponential in the width of the problem, meaning that for
problems with high width, this translation-based approach is impractical. In those
cases, adopting a translation Ki with a parameter i lower than the width of the
problem, can result in an unsolvable translation for a planning problem that indeed
has solutions. These results are resumed in Table 3.1.

To overcome this, and other limitations, of this translation, we introduce in the next
chapter sound and complete translations that use samples, i.e. a subset of the states
in the initial belief. The translation KS built on samples, solves conformant problems
effectively and compares favourably to other state-of-the-art planners.

translation complexity completeness

KS0(P ) exponential in the unknown fluents complete

Kmodels(P ) exponential in unknown prec. and goals complete

K0(P ) linear complete if w(P ) = 0

Ki(P ) exponential in i complete if w(P ) ≤ i

Table 3.1: Comparison of sound translations for conformant planning.

2cf. section 8.1, page 144.
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Chapter 4

Sound and Complete translations
using samples

Deterministic conformant planning is the basic form of conformant planning: it is like
a classical planning problem but with many possible initial states instead of one, and
a plan is conformant when it works for each one of them. The conformant planning
problem is harder than classical planning (Haslum and Jonsson, 1999; Turner, 2002)
and has applications like deriving finite state controllers (Hoffmann and Brafman,
2005a; Bonet et al., 2009) or generating homing sequences in electronic circuits.
Moreover, both non-deterministic conformant and contingent problems can be solved
employing deterministic conformant planning techniques, which make it crucial for
the area of automated planning under uncertainty.

Deterministic conformant planners suffer of mainly two limitations. First, and this
is a common problem of planning under uncertainty, the heuristics to guide the
search are weak, in the sense that they are generally not well informed compared to
heuristics for classical planning tasks. Second, the belief representation and update
is an intractable problem, in the worst case. In the translation-based approach due
to Palacios and Geffner, reviewed in the last chapters, the two aspects are handled
together by translating conformant problems into classical ones that are solved with
classical planners. But this approach suffers from a belief representation that is
exponential in the width of the problems for sound and complete translations, and the
resulting classical heuristics miss important aspects of planning under uncertainty,
as the cardinality of the belief states.

In this chapter we introduce a new translation Ki
S(P ) that overcomes the limits

of the translation-based approach à la Palacios & Geffner. We present also a new
planner, T1, based on a particular case of the general translation scheme Ki

S(P ). T1
compares favourably with state of the art conformant planners, and scales up well
on difficult planning problems.

Results from this chapter have been published in Effective Heuristics and Belief
Tracking for Planning with Incomplete Information, by A. Albore, M. Ramirez, and
H. Geffner, in 21st International Conference of Automated Planning and Scheduling
(ICAPS-11), Freiburg, Germany, 2011 (Albore et al., 2011).
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4.1 Motivation

The translation-based approach that we discussed in chapter 3 is competitive with
belief search approaches, and is in fact an instance of them: beliefs over the confor-
mant problem P are encoded as states over the translation KT,M (P ), and heuristics
over beliefs are reduced to classical heuristics over states. In spite of its performance,
however, the translation-based approach runs into multiple problems.

First, complete translations1 are size-exponential in the width of the problem P .
This means that for problems with large conformant width, such translations are
ineffective, and the planners fail to scale up completely.
The second issue, no less important, is that incomplete translations can’t be used
for heuristic guidance, as the heuristic values that they generate can be infinite even
when the problem P is solvable. The result is that incomplete translations may end
up mapping a solvable problem into an unsolvable one.
Last, important aspects that are specific to the conformant setting and that proved
useful then, like the cardinality of the belief states, seem to get lost in the translation.
In fact, KT,M (P ) translations do not encode explicitly the available knowledge about
the certainty of a considered belief state, which is also a fundamental factor that must
be taken into account in order to control the exploration of the belief space, beside
an estimate of the distance of a state to the goal.

We propose a new translation, based on top of KT,M (P ), but not to translate the
conformant problem into a classical one, solved then by an off-the-shelf classical
planner; instead, to address to the problem of the representation and the heuristics,
our translation uses a subset of the initial belief state, which we call a sample, to
both provide informed heuristics for the search and to represent belief states in a
compact way.

The basis of the new belief space search planner T1 is then a translation Ki
S , that

unlike the translation Ki considered in section 3.4, is always tractable and complete,
but not always sound. The translation Ki

S is sound for problems P with conformant
width no greater than i.

Palacios’ and Geffner’s Ki translation, on the other hand, is tractable and sound,
but complete only for problems with width bounded by i. Thus, while Ki gives up
completeness for problems with width beyond i, Ki

S gives up soundness then. For
conformant planning this means two things: heuristics based on the new translation
Ki
S will produce infinite values only when the problem is actually unsolvable, and

that the belief literals resulting from this translation must sometimes be checked
for validity. This first result solves one of the main issues of the translation-based
approach Ki, which was incomplete for problems with conformant width beyond i.

The conformant planner T1 uses the translation Ki
S for i = 1 to generate heuristic

and candidate belief literals. The beliefs are then verified with a sat engine in
the way it is done by conformant-FF (Brafman and Hoffmann, 2004). Moreover,
the heuristic resulting from the translation K1

S is extended with a second heuristic
that is obtained from invariant “oneof expressions” derived from the problem. As
we will see, this second heuristic is related to both cardinality heuristics (Bertoli
and Cimatti, 2002), and landmark heuristics (Richter et al., 2008). The planner, by

1We recall that complete translation are for us those in which every conformant plan for P
appears as a classical plan for KT,M (P ).
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using a combination of these two heuristics, has a more informed and efficient scheme
to search in the beliefs space, that solves the second and third problem mentioned
above, which is like killing two birds with one stone.

4.2 A translation based on samples

In order to benefit from tractable translations while avoiding the limitation of in-
complete translations, we take a different approach: we formulate a new translation
that is tractable and complete, but which is not always sound. The new translation
can’t be used to solve conformant problems with a classical planner, as classical plans
might not be solutions of the original conformant problem, but it is effective to derive
heuristics and compute beliefs inside a belief space planner.

The key idea is to sample and use a set of states S, subset of the initial set of possible
states S0, to plan from those states, and to employ the solution to drive the search
in the belief space. This approach is effective, in particular when –and this is our
main motivation– we sample a polynomial number of initial states, even when their
total number is exponential.

This translation-based approach is similar to the translation KS0 we saw in sec-
tion 3.3. The translation KS0 is a particular case of KT,M , where the set of T tags
is equal to the set of states in the initial belief S0. The translation KS0 is sound
and complete, as all the plans for the translated problem KS0(P ) are all the plans
for the original conformant problem P .

We introduce the translation KS(P ), considering the set of states S, which is a subset
of the states in the initial belief: S ⊆ S0. KS is similar to KS0 , but with the set of
tags T = S, and a single merge on S.

Definition 4.1 (Translation KS(P )). Given a conformant planning problem P , and
a subset S of the initial belief state S0, the translation KS(P ) is the translation
KS0(P ) applied to the problem P |S, i.e. the problem P restricted to the initial set
of states S.

A solution for KS(P ), in the case S = S0, is obviously a solution for the problem P ,
as the plan would maps all the initial states onto goal states. On the other hand, a
plan π for P is necessarily also a plan for KS(P ): π conforms with all the states in
S0, of which S is a subset. It comes that the translation KS is always complete, but
not always sound. Compared to the translation KT,M (P ), the new translation trades
off soundness for completeness, meaning that in KS(P ) the initial situation I always
has a finite heuristic value when P is solvable, unlike what happens for incomplete
instances of KT,M (P ).

Theorem 4.2 (Completeness of KS). Given a conformant planning problem P , and
a set of initial states S of P , the translation KS(P) is complete.

In the general case, the translation KS is not sound as not all the plans that map
S onto the goal would map all the states in S0 onto the goal. Nevertheless, under
certain circumstances we will see that this translation can be sometimes sound and
complete. To define the conditions under which the translation KS , based on a set of
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states S, is complete we will need to recall the notion of basis (Palacios and Geffner,
2009). A basis, for a problem under uncertainty, is a subset S of the initial belief
state S0 such that all the plans for S are plans for S0:

Definition 4.3 (Conformant Basis). Given S a subset of the set of all possible initial
states S0 of a conformant planning problem P = 〈F ,A, I,G〉. S is a basis for P when
any plan for P |S is a conformant plan for P .

A direct consequence of this definition is that a problem can be solved only by
considering the states in a basis S, ignoring all the other states of S0 \S. In fact the
plans for the problem P |S , which is P but taking as initial belief the set of states S,
are plans for the full problem P , and the plans for P are obviously plans for P |S .

If we consider the set of states S ⊆ S0 such that S is a basis for the problem P , then
the translation KS(P ) is complete and sound, meaning that all the plans for the
states in S are all and only the plans for the states in S0:

Theorem 4.4 (Soundness of KS). Given a conformant problem P , and a set of
initial states S of P , then the translation KS(P ) is sound if S is a basis for P .

A particular interesting result from Palacios and Geffner (2009) relates the size of
bases to the width of the problem (as from definition 3.15), and leads to the following:

Theorem 4.5. Conformant planning problems P with conformant width bounded by
an integer i have bases of size exponential in i.

This theorem is useful computationally when the size |S| of a basis S is exponentially
smaller than |S0|. For problems of bounded width, it is then possible to find a basis
of size exponential in the width, even if the size of S0 is exponential in the number of
fluents.

Example 4.1. Let’s consider an example problem where the task is to defuse n
bombs2. Initially the status of the bombs is not known, so the (only) uncertainty in
P is due to a clause (armed(bomb1) ∨ . . . ∨ armed(bombn)).

The available action is defuse (bomb), with one conditional effect:
(when (armed ?bomb) (not (armed ?bomb)))

Here, the only uncertain literals in I that are relevant to a precondition or goal literal
are the armed(bombi) (NB: their negation is not relevant to a precondition or a goal).
Then it is easy to check that S0 has 2n possible initial states, but the set of n states
S = {s1, . . . , sn} that make just one of the armed(bombi) literals true is indeed a
basis for P :

s1 :
(
armed(bomb1),¬armed(bomb2) . . . ,¬armed(bombn)

)
s2 :
(
¬armed(bomb1), armed(bomb2) . . . ,¬armed(bombn)

)
. . .

sn :
(
¬armed(bomb1), . . . ,¬armed(bombn−1), armed(bombn)

)
2This example is a vanilla version of the infamous “bomb in the toilets”.
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The above Theorem 4.5 depends on some results that relate bases with the the
notion of relevance that has been described in definition 3.8. The relevance of a
literal depends on the conditional effects and do not depend on action preconditions,
that have to be known with certainty and hence do not “propagate” uncertainty. We
denote with rel(s, L) the set of literals in a state s that are relevant to a literal L:

rel(s, L) = {L′ ∈ s | L′ is relevant to L} (4.1)

From this notion of relevance, and the definition 4.3 of a basis S, we can derive the
following result:

Proposition 4.6. The set of states S is a basis for P if S contains a state s such that
rel(s, L) ⊆ rel(s0, L), for every possible initial state s0 ∈ S0 and every precondition
and goal literal L in P .

The proof of this proposition is sophisticated, and we do not report it here; the
enthusiastic reader can see (Palacios and Geffner, 2009) for the complete proof. Other
important results on bases of this chapter can be found in the same paper.

The former result can be exploited to determine bases for conformant problems P .
At least one basis can be identified for each problem P , and this basis has size
exponential in a parameter i, even if the size of S0 is exponential in the number of
fluents. It is easy to check that in the example 4.1, the set S0 contains states where
multiple literals armed(bombi) are true; yet the set S is a basis, as for any state s0
in S0 there is state s in S where just one of those literals armed(bombi) is true.

A new polynomial translation Ki
S

For problems P with conformant width bounded by a value i, a basis Si of size
exponential in i exists (Palacios and Geffner, 2009). From the Theorem 4.4 follows
that if we can identify such a basis Si for a problem P with bounded width i, we
guarantee that a translation based on the samples set Si is sound and complete. This
translation also has the advantage to be exponential in the parameter i, instead that
in the number of unknown fluents in S0.

The translations Ki
S(P ) built fixing the parameter i for the basis Si are sound for

planning problems P with width bounded by i, and complete for all problems.

The bases Si used for such translations comprise a set of sample states of S0 that
are minimal models of I plus the literals relevant to some precondition and goal. We
define Si in terms of the samples Si(L), picked up for each precondition and goal
literal L. For this we define the L–rank of s (or simply the rank of s) as the number
of literals in s that are relevant to L:

Definition 4.7 (L–rank). Given a state s, and a literal L, the “L–rank of s” is the
positive integer given by the number of literals in s that are relevant to L:∣∣rel(s, L)

∣∣
For any precondition and goal literal L, and a fluent formula C consistent with I,
we define sL(C) as the set of states that satisfy I, and C, and a minimum number
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of literals relevant to L. If |rel(s, L)| is the L–rank of s, then sL(C) stands for the
lowest ranked states that satisfies I and C. Of course there is always one such state,
although not necessarily unique.

Definition 4.8 (Lowest ranked states sL). Given a conformant planning problem P
with initial belief state S0, a fluent L, and a formula C consistent with I. sL(C) is
the set of initial states satisfying I and C, and a minimal number of literals relevant
to L:

sL(C) = {s ∈ S0 | s satisfies I ∧ C, and |rel(s, L)| is minimal.} (4.2)

Example 4.2. In the example 4.1 each state s ∈ S has rank 1: the only uncertain
literals in I that are relevant to a precondition or goal literal are armed(bombi), it
follows that for every L precondition or goal, we have |rel(s, L)| = 1. Notice that a
state s′ making all the fluents true, such that

s′ =
(
armed(bomb1), armed(bomb2), . . . , armed(bombn)

)
,

would satisfy all the literals L, but will have also |rel(s′, L)| = n. Given that in
I we have C =

(
armed(bomb1) ∨ . . . ∨ armed(bombn)

)
, we thus obtain sL(C) =

{s1, . . . , sn}, as the states si are all the minimal ranked states that satisfy I and the
clause C.

The set Si is chosen to depend on the width i of the problem, hence on the number
of clauses relevant to preconditions and goals.

Definition 4.9 (Relevant terms of bounded size T i(L)). We define T i(L) as the set
of consistent conjuncts of literals initially unknown that are relevant to a precondition
or a goal L, which maximum size is equal to a parameter i:

T i(L) =
{
t = L1 ∧ . . . ∧ Lm | m ≤ i, and for any Lk ∈ t, Lk relevant to L,

I 6|= Lk ∧ I 6|= ¬Lk, and I 6|= ¬t
}

If i = 0, then the only available term is t = >.

The set of samples Si is defined to contain the minimal ranked states that satisfy I
and all the terms t in T i(L), with L ranging over all precondition and goal literals.
In such a way, the states in Si satisfy a minimum number of literals relevant to L.

Definition 4.10 (Set of samples Si). For any conformant problem P , and any
parameter i > 0, the set of samples Si is defined as:

Si =
⋃
L

Si(L) (4.3)

where L ranges over the precondition and goal literals in P .

The set of states Si(L) is set of the minimal L–ranked states that satisfy the tags t
in T i(L):

Si(L) = {sL(t) | t ∈ T i(L)} (4.4)

where sL(t) is the set of states that satisfy t, I, and a minimum number of literals
relevant to L, following definition 4.8.
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The definition puts in relation the basis and the notion of tags in a covering translta-
tion, represented by the sets T i(L), and yields to the result we were looking for:

Theorem 4.11. Given a conformant planning problem P , the sample set Si, as
defined in 4.10, is a basis for P if the width of P is bounded by i.

The theorem can be proved by providing an alternative equivalent characterisation
of the notion of width. We are going to make a parallelism between how the basis
Si is defined and the notion of tags, used for the translation KT,M (P ). In fact, for
a basis, we want to capture those states s such that they satisfy a minimal set of
initial terms t∗ in T i(L) that are relevant to precondition or goal literals L.

For a term t in T i(L), let t∗ stand for the tuple that extends t with all the literals
deducible from t and I:

Definition 4.12 (Deductive Closure t∗). Given a tuple t in T i(L), we define the
deductive closure t∗ of t as the set of literals entailed by t in I:

t∗ = {L | I ∧ t |= L} (4.5)

Let now be mi(L) the subset of the tuples t in T i(L) such that all the literals L′ in
sL(t) that are relevant to L are also in t∗. In other words, mi(L) admits states sL(t)
that do not make true literals relevant to L that do not belong to t∗:

Definition 4.13 (Tuples mi(L)). Given a literal L of a conformant planning problem
P , the tuples mi(L) can be interpreted as a DNF regrouping the tags in T i(L):

mi(L) =
{
t | t ∈ T i(L) and rel (sL(t), L) ⊆ t∗

}
(4.6)

The tuples mi(L) can be put in correspondence with the merges of a covering trans-
lation, that satisfy the clauses encoding uncertainty that are relevant to precondition
and goal literals L. The conformant width of a problem P can be then (re)defined
in terms of the clauses mi(L):

Definition 4.14 (Width of a literal). The width w(L) of a literal L is the minimal
value of i for which the DNF formula mi(L) is entailed by I.

Recall that w(P ), the conformant width of a problem P , is just maxLw(L), where
L ranges over the precondition and goal literals in P (cf. definition 3.15). Defini-
tion 4.14 thus implies that w(P ) is the minimum value of i for which mi(L) is a valid
merge, for any precondition or goal L. Palacios’ and Geffner’s Ki translation is an
instance of the KT,M translation that uses these merges along with the tags in them.
The translation Ki

S below is a variation of the KS0 translation that uses min-ranked
states sL(t) associated with the tags instead.

The set of states Si is then a basis for a problem P if the states in Si satisfy the terms
in T (L), which is the DNF of the conjuncts of any size of literals initially unknown
and relevant to the preconditions or goals L. The central point here being that the
states that satisfy T i(L) are the same that satisfy T (L) = T∞(L), if w(P ) ≤ i.

In particular, if mi(L) is valid in I, every state s0 that satisfies I must also satisfy
a term t in mi(L). But from the definition of mi(L), for any state s = sL(t), we
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will have that rel(s, L) ⊆ rel(s0, L); it derives and from Proposition 4.6, that the set
Si(L) of states sL(t), for t ∈ mi(L), forms a basis for P , provided that L is the only
precondition or goal. This proves Theorem 4.11. The tuples t can then be used as
tags, with similar properties that in translation KT,M (P ).

A very similar result has been obtained for covering merges from definition 3.10: the
merges required for completeness are simply the valid merges m that satisfy the set
of clauses CI(L) (the initial clauses relevant to a precondition of goal L). There,
covering merges of bounded size were used for Ki conformant translation, that were
sound and complete for problems of width bounded by i. Here, the states sL –
which constitute the basis Si for a translation Ki

S(P )– are obtained from the tuples
mi(L) such that all the literals relevant to a precondition or goal L in sL(t) are also
the literals t∗ entailed by the clauses t in mi(L). We define the translation Ki

S(P )
as follows:

Definition 4.15 (Translation Ki
S(P )). Given a conformant planning problem P ,

and a positive parameter i, the translation Ki
S(P ) is defined as KS(P ), with S = Si

defined as in 4.10.

Defining the translation Ki
S as KS for S = Si directly yields that:

Theorem 4.16 (Soundness of translation Ki
S(P )). The translation Ki

S(P ) has a
size that is exponential in i, is complete, and is sound for problems P having width
bounded by i.

The proof is direct from Theorem 4.11: by construction, the sample set Si is a basis
for P if w(P ) ≤ i. The computational advantage of using Theorem 4.16 comes from
the fact that sound and complete translations have a size linear in mi(L) and thus
exponential in the parameter i only, even if the size of the initial belief is exponential
in the number of unknown fluents of the problem. In particular, many conformant
planning problems have with bounded by 1, which means that a sound and complete
translation can be made by generating samples S1 of polynomial size.

4.3 Computation of S1

The conformant planner T1 uses the sample set S1 of the K1
S(P ) translation for

deriving heuristics and tentative belief literals that are used in the context of a belief
space search algorithm.

The first step is to select the states that form the set S1, given by the set of initial
states sampled from S0 such that they correspond to the lowest ranked states that
satisfy I. This is done by compiling the initial situation of the problem in d-dnnf,
as explained in the next section.

Sampling initial states

The set S1 of samples is defined to contain the minimal ranked states that satisfy
I, and all the tuples t of size 1 in T 1(L), with L spacing over all precondition and
goal literals. S1 is obtained from the lowest ranked states sL(L) that satisfy I ∪{L},
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for various literals L. These states are computed by compiling the initial situation
I into d-dnnf (Darwiche, 2001a), a logical form that allows the computation of a
number of otherwise intractable operations, such as consistency, model counting3,
and lowest ranked models, in time that is linear in the size of the compilation (which
is at worst exponential in the number of variables, but not necessarily so). The main
reason that attracted us to propositional theories in d-dnnf is that they are highly
tractable while maintaining the same expressive power.

d-DNNF

A propositional sentence is in negation normal form (NNF) if it is constructed from
atoms using only the conjoint and disjoint operators and maintaining the negation
symbol only next to the atoms4.

A d-dnnf, deterministic dnnf, is a normal form introduced by Darwiche (2001a)
and that constitutes a particular case of dnnf, a decomposable negation normal
form that supports a wide set of polynomial-time operations. For instance deciding
the satisfiability of a dnnf can be done in linear time, as conjoining a dnnf formula
with a set of literals (Darwiche, 1999). Another linear time operation that interests
us, and that we are going to use both to calculate the conformant width of a problem
and to build the sample set Si0, is the computation of the minimal cardinality of a
dnnf. Let’s recall that the cardinality of a model is the number of atoms that are
set to false in the model itself. The minimal cardinality of a theory is the minimal
cardinality of any of its model.

The d-dnnf compilation is also used for selecting the min-ranked states sL(t) when
they are not unique so that the sets Si(L) overlap as much as possible, and hence
the size of their union Si is minimised.

Definition 4.17 (dnnf). A decomposable negation normal form (dnnf) is a nega-
tion normal form satisfying decomposability property: for any conjunction

∧
i αi ap-

pearing in the form, no atoms is shared by any pair of conjuncts in
∧
i αi.

As an example, the nnf formula (A∨B)∧ (¬A∨C) is not decomposable, since atom
A is shared by the two conjuncts.

Definition 4.18 (d-dnnf). A deterministic dnnf (d-dnnf) is dnnf satisfying the
following property: for any disjunction

∨
i αi appearing in the form, every pair of

disjuncts in
∧
i αi are logically disjoint.

For a dnnf, the determinism is what makes model counting tractable. The number
of models for determinist conjunctive formulæ ends up being the product of the
number of models of each conjunct, while the number of models of a disjunction that
satisfies determinism is the sum of the number of models of each disjunct.

The set of samples S1 is obtained from its definition 4.10 by computing the minimal
ranked states that satisfy I ∪L for various literals L, and in particular the ones that

3The model count of a formula stands for the number of truth assignments that satisfy the
formula.

4A formula can be converted to the nnf by simply moving the negations across braces either
using De Morgan’s laws or the equivalence (¬¬a = a).



58 Sound and Complete translations using samples

are unknown in I, and relevant to a precondition or goal. Thus, to compute these
states, we first compile I into a d-dnnf formula δ, and then we extract the minimal
models of δ. A model is said to be minimal for a satisfiable propositional formula δ
if the number of atoms set to false in a truth assignment ω is minimal compared to
any other truth assignment ω′. The minimal models of a formula are not necessarily
unique.

If the cardinality of a model is the number of atoms that are set to false (or true) in the
model, then the minimal cardinality of a theory is defined as the minimal cardinality
of any of its models, i.e. the truth assignments that minimises the cardinality:

Definition 4.19 (Minimal cardinality). Let be δ a d-dnnf formula with a truth
assignment ω on a d-dnnf formula. The minimal cardinality of δ, denoted mCard(δ),
is defined as follows:

mCard(δ) =


0 if δ is a positive literal or true,

1 if δ is a negative literal,

∞ if δ is false.

(4.7)

mCard(δ = ∨i ai) = mini mCard(ai) (4.8)

mCard(δ = ∧i ai) =
∑
i

mCard(ai) (4.9)

A minimal model is such that any other assignment of variables has bigger cardinality
for the same formula. The minimum cardinality of an unsatisfiable formula is defined
to be ∞. The operation of computing the minimum cardinality of a d-dnnf can be
done in linear time (Darwiche, 1998).

Algorithm 4.1: Generation of set of minimal samples S1.

Output: set of samples S

1 W ←− 10000 // Constant W high weight fixed to 10000.

2 S ←− ∅

3 if w(P ) > 1 then
4 getSamplesPlus(S)

5 else
6 foreach L goal or precondition in P do
7 foreach L′ relevant to L do
8 weight(L′) ←− W

9 switch the value of w(L) do
10 case 0
11 getSamplesZero(L,S)

12 case 1
13 getSamplesOne(L,S)

14 return S
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Extraction of the minimal weighted models

The approximation initial belief state S1 will be given by the set of initial states
sampled from S0 such that they correspond to the lowest ranked states satisfying I.
We will attribute a positive cost to the initially unknown literals that are relevant
to a precondition or a goal literal, so to yield a set of sample corresponding to
definition 4.10. In the Algorithm 4.1, the generation of the samples is differentiated
following the width of each literal. The key idea is to extract a minimal model that
“covers” as much literals as possible, i.e. that makes true as much literals L′ relevant
to a precondition or a goal. To obtain sample states as much different as possible,
we use a high weight for literals relevant to a precondition or goal (the constant W ),
and a low weight (set to 1) for those literals made true in a model. This shrewdness
makes the algorithm prefer models where are made true those literals that are false
in other models: this is applied in Algorithm 4.2 at line 9, in Algorithm 4.3 at line
16, and in Algorithm 4.4 at line 9.

Algorithm 4.2: getSamplesZero – selects samples when w(L) = 0

Input: literal L, set of samples S

1 foreach L0 goal or precondition in P do
2 if L0 == L || w(L0) 6= 0 then
3 continue

4 foreach L′ relevant to L0 do
5 weight(L′) ←− 1

6 s ←− minModel(I)

7 if s 6∈ S then
8 foreach L′ in s do
9 ++weight(L′)

10 S := S ∪ s

All the optimizations aimed at minimising the size of the sample set Si while retaining
its properties are implemented by exploiting the capabilities of the d-dnnf compi-
lation. By taking advantage of the fact that samples are computed incrementally,
samples that make true literals relevant to other precondition or goal L′ are consid-
ered if the rank of s in minimal for L′, when w(L′) > 0. Other optimizations, like
removing states sL(t) from Si(L), when the tag t can be removed from the merge
mi(L) without affecting its validity, are accommodated as well.

Example 4.3. We can consider as an example the domain illustrated in Figure 4.1,
an instance of the square-center domain, described in section 6.5. Here, positions
in a grid 7 × 7 are denoted by a couple of coordinates (x, y). The initial position
is completely unknown (marked in coloured areas in the figure), and the goal is to
reach a position in the center of the grid. The initial situation I is given by the
disjunctions x1 ∨ · · · ∨ x7 and y1 ∨ · · · ∨ y7. The movement is from an area to an
adjacent one, so all the (coordinates of the) areas are relevant between themselves.
In this class of problems, then arbitrary choices of the sets sL(xk) and sL′(yk) may
result in a sample set S1 with 2n states. On the other hand, it is possible to choose
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the states sL(xk) to be equal to the states sL(yk), e.g. by making all other x’s and
y’s false, so that the size of S1 is just n.

S0 S1

Figure 4.1: A grid domain. On the left S0, the original set of states in I. On the right the
sampled set of states S1 ⊆ S0.

For problems with width bigger than one, the function getSamplesPlus is invoked
(cf. Algorithm 4.4). The aim is not to produce a covering set of states, as the belief
approximation is potentially exponential, but a set S1 as varied as possible of fixed
size; this size is set to 20 in Algorithm (line 1). Then, from Theorem 4.16, the
approximation S1 we use is unsound in any case, for problems with high width.

The d-dnnf compilation has also been used to determine the conformant width of
each literal of the problems, from the results in previous section, in the following
way: for all unknown literal relevant to a precondition or a goal, we set its weight
to 1. Then the minimal weighted model is computed for the initial state and the
negation of the literal, as described in Algorithm 4.5.

4.4 The T1 planner

The planner T1 is built on top of the K1
S translation. The algorithm is then sound for

problems with width 1, and complete for all problems. We perform a forward search
in belief space. Each node of the search space represents a belief state. For each
belief state expanded, we perform a verification procedure to establish the literals
that are positively or negatively known. This procedure is specifically executed in
problems with width bigger than 1, as the translation in those cases is unsound. We
then discuss how belief states are represented and updated in the search space.

Verification

For problems P where the translation KS(P ) is unsound, not all the plans for the
translated problem are plans for the original one. Thus, if for an actions sequence
a the literal L is true in the belief state resulting from applying a to S0, then L
can be true in certain states of P but not in all of them. This mean that the set of
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Algorithm 4.3: getSamplesOne – selects samples when w(L) = 1

Input: literal L, set of samples S
1 foreach L0 goal or precondition in P do
2 if L0 == L then
3 continue

4 foreach L′ relevant to L0 do
5 if L′ relevant to L then
6 continue

7 weight(L′) ←− 1

8 foreach L′ relevant to L do
9 if L′ is not unknown initially then

10 continue

11 s ←− minModel(I + L′)
12 if mCard(s) ==∞ then
13 continue

14 if s 6∈ S then
15 foreach Li in s do
16 ++weight(Li)

17 S := S ∪ s

Algorithm 4.4: getSamplesPlus – selects samples when w(L) > 1

Input: set of samples S
1 N ←− 20 // Constant N arbitrarily fixed to 20 samples.

2 foreach L′ relevant to L goal or precondition in P do
3 weight(L′) ←− 1

4 while tot ≤ N do
5 s ←− minModel(I)
6 if s ∈ S then
7 break

8 foreach L′ in s do
9 ++weight(L′)

10 S := S ∪ s
11 ++tot
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Algorithm 4.5: Minimal weighted model to determine the conformant width
of a literal L goal or precondition in P

Input: literal L
Output: width of L

1 foreach L′ relevant to L goal or precondition in P do
2 if L′ is not unknown initially then
3 continue

4 relL ←− L′
5 weight(L′) ←− 1

6 if mCard(minModel(I)) == 0 || relL == ∅ then
7 width(L) ←− 0
8 return

9 foreach L′ in relL do
10 if mCard(minModel(I+ L’)) == 1 then
11 S ←− L′

12 if S == ∅ then
13 width(L) > 1
14 return

15 if mCard( minModel(I+
∧
L′∈S ¬L′) ) 6=∞ then

16 width(L) > 1
17 else
18 width(L) ←− 1

known and negatively known propositions in a belief state has to be computed. A
proposition L is said to be known in a belief b if s |= L, for all states s ∈ b. Similarly,
a proposition L is negatively known in b if the proposition L does not hold in any
of the states s in b. Following these definition, we call unknown a proposition that
in neither known nor negatively known. Deciding whether a proposition is known or
not is co–NP–complete.5 This verification can be done by making use of an implicit
representation of the belief state b, given by the initial situation I encoded as a CNF
formula together with the action sequence π that leads from I to b.

We check if a proposition is known, or negatively known, in a belief state b by
testing if it is contained in the intersection of all the states of b. This can be done by
taking advantage of the implicit representation of the belief states, by calling a sat
solver over a formula representing the current belief b in the propositional encoding
Γ(P ) of the planning problem P . In other words, we check if applying the action
sequence π to I ends up into a belief state where the proposition holds, given that
the propositional encoding Γ(P ) of the problem P is such that the models of Γ(P )
are in direct correspondence with the plans the solve P .

For a conformant problem P , a plan π is a solution for all possible initial state s ∈ I
if and only if the formula (

Γ(P ) ∧ π ∧ s
)

is satisfiable4. (4.10)

5The proof can be found in (Brafman and Hoffmann, 2006).
4This case applies only if the actions in π are deterministic.
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The test we perform to check if a proposition L holds in the belief b resulting of
applying π on I, is to verify if the formula(

Γ(P ) ∧ π ∧ ¬L
)

is not satisfiable (4.11)

For this, we used the approach of (Brafman and Hoffmann, 2006) that computes
the sets of known and negatively known propositions in a belief state from a CNF
formula built to correspond to the semantics of the action sequence π to be tested,
and executed from the initial situation I. As from eq. (4.11), a literal L is true in a
belief b if the resulting CNF formula Φ(π) is denoted as unsat from a sat solver call.

In Φ(π), a time index is used to differentiate between the values of the propositions
in each step of the action sequence π, e.g. a proposition p true at time step i will be
denoted by p(i). The time indexes range from 0 to |π|. The encoding of the formula
Φ(π) starts with all the clauses in I, indexed with time 0:

• for each clause (l1, . . . , ln) in I, we add to Φ(π) the disjunction(
l1(0), . . . , ln(0)

)
.

Then, let be π = [a1, a2 . . . , an], we extend the formula Φ(π) adding, for each action
ai ∈ π at timestep i, the following effect, and frame axioms:

Effect Axioms

• For every conditional effect with positive effect C → P , with C = c1 ∧ . . .∧ ck,
and every proposition p ∈ P of ai, we add to Φ(π) the add effect axiom ¬c1(i−
1) ∨ ¬ck(i− 1) ∨ p(i);

• For every conditional effect with negative effect C → P , with C = c1 ∧ . . .∧ ck
(and P ∈ del(eff )), and every proposition p ∈ P of ai, we add to Φ(π) the
delete effect axiom ¬c1(i− 1) ∨ ¬ck(i− 1) ∨ ¬p(i).

Frame Axioms

• For every conditional effect with negative effect C → P , with C = c1 ∧ . . .∧ ck
(and P ∈ del(eff )), and every proposition p ∈ P of ai, we add to Φ(π) the
positive frame axiom ¬p(i− 1) ∨ c1(i− 1) ∨ ck(i− 1) ∨ p(i);

• For every conditional effect with positive effect C → P , with C = c1 ∧ . . . ∧ ck
(and P ∈ add(eff )), and every proposition p ∈ P of ai, we add to Φ(π) the
negative frame axiom p(i− 1) ∨ c1(i− 1) ∨ ck(i− 1) ∨ ¬p(i).

The effect axiom encodes the effects (positive and negative) of each action ai: if the
condition holds, then the effect holds. The frame axiom encodes that if a proposition
was true (resp. false) before applying the action ai, and the effects of ai do not delete
(resp. add) the proposition, then it is still true (resp. false) in the next frame, i.e.
after executing ai.

If an action is executable, its preconditions are not encoded into Φ(π); this is done
for all propositions p that are unknown. Several sat calls must be performed during
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the search of a plan, however we limit them depending of the width of the problem,
even if modern sat solvers can hold problem instances with ten thousands variables.
When the problem width is minor or equal to the translation parameter i in Ki

S , the
set of known and negatively known propositions is given by simple progressing the
initial known propositions through the action sequence π. This procedure is reflected
in our implementation, and in particular in the way search nodes are encoded.

Search space

A node in the search graph represents a belief state and corresponds to a tuple
n = 〈π, S,R〉, where:

• π is the plan prefix used to reach n from the root node of the search,

• S is the sample set S1 progressed through π,

• R is a set of literals 6.

The belief state bn represented by the node n corresponds to the whole set S0 of initial
states of P progressed through π. This means that belief states are not computed
explicitly, but represented implicitly in the plan prefix π. The set of literals in R
contains literals all of which are known to be true in bn, and is sound with respect to
bn but not necessarily complete; i.e. even if R contains all literals known to be true
in bn, it does not contain in general all such literals. Likewise, S is complete with
respect to bn but not necessarily sound; i.e., all literals true in bn are true in all the
states in S, but not the other way around:

Literals in R ⊆ Literals true in bn ⊆ Literals true in S (4.12)

Still, if the problem has width bounded by 1, the set of true precondition and goal
literals coincide in bn and S, and such literals are added to R.

The root node in the search is n0 = 〈π0, S1, R0〉, where π0 is the empty plan, S1 is
the approximation of the initial belief in the K1

S(P ) translation, and R0 is the set of
literals known to be true in the initial situation.

The goal nodes are the nodes n = 〈π, S,R〉 where R contains the literals goal of the
problem.

The edges in the graph correspond to the applicable actions. An action is applicable
in n = 〈π, S,R〉 when all the action preconditions are in R. The node n′ that results
from applying the action a in the node n is given by n′ = 〈π′, S′, R′〉, where π′ is π
with the action a appended, S′ is the result of progressing each of the states s ∈ S
through a, and R′ is the set of literals obtained by progressing the set of literals R
in n through the action a in the following manner:

L ∈ R′ iff
1) there is an effect a : C → L such that C ⊆ R (L is added), or

2) L ∈ R and for every effect a : C ′ → ¬L, R contains the com-

plement of a literal in C ′ (L persists).
6In the implementation, the set S of progressed samples is not stored in the nodes; rather the

progression is done when required.
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The computation of the atoms in R′ from R corresponds to the application of the sup-
port and cancellation rules in the translation K0(P ) that involves no tags, as we can
remember from section 3.1, and which corresponds in turn with the 0-approximation
semantics (Baral and Son, 1997).

While there is no need for the set of literals R in n = 〈π, S,R〉 to include all literals
true in the belief state bn for the planner to be complete, R must be complete with
respect to action preconditions and goals. This means that if a goal is true in bn or
an action is applicable in bn, then the goal and the action preconditions must be in
R. For problems having conformant width no larger than 1, the above property is
guaranteed as the sample set S is not only complete but also sound, and hence the
literals true in S can be added to R. For problems with higher width, on the other
hand, a verification operation is carried out after the node has been generated. This
is done by looking at the samples in S: a precondition or goal literal L is added to R
when L is true in S, and this belief is certified by calling a sat solver over a suitable
CNF formula, as in Conformant-FF (Brafman and Hoffmann, 2006) and similarly as
described in the previous section (p. 60). The formula corresponds to the semantics
of the action sequence π, executed from the initial situation: I is encoded at time
0, the conditional effects of the i-th action in the plan prefix π are encoded at each
time slice [i, i+ 1], and the negation of the literal L to be tested is encoded at time
|π|. The literal L is true in bn if the resulting CNF formula is unsatisfiable. This
procedure is sound, but not complete in a general sense, since the test is performed
only on precondition and goal literals.

A last operation is performed in T1 to test whether two nodes n and n′ represent
the same belief state, i.e. if bn = bn′ . This test is not needed for completeness, but
for saving duplicate work, ruling out nodes that have already been expanded. When
the problem width is 0 or 1, the two nodes n = 〈π, S,R〉 and n′ = 〈π′, S′, R′〉 can
be safely collapsed when S = S′ and R = R′. For problems with higher width, an
additional test is needed: n and n′ are collapsed if, in addition to the former property,
for each possible initial state s of the problem, the plans π and π′ result in the same
state s′. This test, which is sound, is performed through a single sat call over two
formulæ like the CNF above to verify if L follows from a plan prefix π from I, except
that now two disjoint formulæ are built to encode the plan prefixes π and π′. The
first formula involves fluent variables x(i) for atoms x in the problem, 0 ≤ i ≤ |π|,
and the second uses primed variables x′(k) for atoms x in the problem, 0 ≤ k ≤ |π′|.
Then these two formulæ are joined along with two other formulæ built as follows.
The first, establishing the equivalence between the x variables at the beginning of
the plans,

∧
x(x(0) ≡ x′(0)), the second postulating a non-equivalence at the end of

the plans,
∨
x ¬
(
x(|π|) ≡ x′(|π′|)

)
, where x ranges in both cases over the fluents of

the problem. If there is a model that satisfies this formula, it means that there is a
possible initial state s0 and an atom x such that one of the plans π or π′ achieves
x from s0 and the other does not. The test is not complete because bn and bn′ may
contain the same states, even if π and π′ do not result in the same state from some
possible initial state (e.g., as when there are two possible initial states s and s′ such
that π maps s into s′, and s′ into s, while π′ is empty). Conformant-FF performs a
similar test for the same purpose of ruling out duplicate nodes.
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4.5 Effective heuristics for planning with incomplete
information

The difficulties in finding and using heuristics in the belief space come from the belief
state formulation of the different aspects of the planning problem. When planning
under uncertainty, not only the distance from the goal has to be used in order to find
a solution, but other aspects too, related to the uncertainty in the problem. One
of these aspects is the size of the belief, i.e. the number of states in it, which is an
estimate of the amount of uncertainty of the situation it encodes. This information
is being mainly used by the kacmbp planner, for instance. However, reducing the
size of the belief state has no direct relation with reducing the goal distance.

As a motivational example, let’s consider a 9×9 grid–like domain, where a robot must
reach a goal cell (the central cell outlined in red in the leftmost grid in Figure 4.2)
starting from an ambiguous initial position (one of the four blue cells). Four actions
are available to the robot: East, West, South, and North. A wall can’t be passed,
so moving in its direction would not change the current position. Reducing the
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Figure 4.2: Portion of the Belief space of the square room localisation domain.

distance from one of the possible initial states by moving East would not guarantee
that the goal is reached for sure, as many possible states are currently possible.
A good solution plan would be to move in the top–left corner [North, West] to
remove the ambiguity about the position of the robot and, once localised, to move
deterministically through the goal [East, South]. With this simple example we have
a glimpse of the main difference between finding a solution in state space and finding
a solution in the belief space: clearly, in both cases an estimate of the distance of
a state to the goal is essential to drive the search and obtain plan of good quality,
however the amount of available knowledge is also a fundamental factor that must
be taken into account in order to control the exploration of the belief space.

We aim, with the new translation Ki
S(P ), at deriving heuristics, based on the states

in S, that take into account these two major aspects of automated planning under
uncertainty: the cardinality of the belief state, and its distance from the goal. The
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result planner T1 uses two heuristics in combination, that we call, the classical
heuristic and the certainty heuristic for reasons that will be clear below.

Classical Heuristic hC

The classical heuristic hC(n) for a node n = {π, S,R} is defined as the estimated cost
of the classical planning problem KS(P ). For the root node, this is the estimated
cost of the translation K1

S(P ), as S is then S1.

The estimated cost of the classical problem KS(P ) is obtained from the combination
of the additive and relaxed plan heuristics (Bonet and Geffner, 2001a; Hoffmann and
Nebel, 2001), as formulated by Keyder and Geffner (2008), where a relaxed plan is
constructed backward from the goal by collecting the best supporters of the atoms in
the goal, and recursively, the best supporters of the preconditions of those supporters.
The estimated cost is the number of actions in the relaxed plan, while the helpful
actions (to be used in the search) are as defined in FF (Hoffmann and Nebel, 2001):
the applicable actions that add a precondition or a goal in the relaxed plan.

The computation of the heuristic has been done by introducing new fluents L|s, to
keep track of the truth values of literals L in each state s of the set S used for
the translation. The border condition for the Dijkstra algorithm used is given by
h(L|s) = 0 if L is true in s, while all the other heuristic values are set to∞ (Dijkstra,
1959). In the heuristic computation, merge rules are implicitly encoded as rules with
zero cost:

∧
s∈S L|s → L|S .

1    2 5

Figure 4.3: Corridor domain. Initially the agent can be either in position 1 or 2; the goal
is to reach the cell marked “5”. Allowed actions: to move left or right.

Example 4.4. In a 1 × 10 corridor like the one illustrated in Figure 4.3, where a
robot can move either left or right, and 1 and 10 are the left and rightmost positions,
the oneof(x1, . . . , x10) expression is an invariant encoding the possible positions of
the robot.

If initially the robot is either at 1 or 2 on the left, and the goal is to reach position
5, then hC(n0) for the root node will be 7: the distance from position 1 to position
5, plus distance from position 2 to 5. In this case we consider that S is made by two
states corresponding to the two initial poses. The best action according to the classical
heuristic would be to move right, towards the goal, which would lower the heuristic
of the node by 2. We will see next that this result is different when considering the
certainty heuristic hK(n0).

Certainty Heuristic hK

The certainty heuristic hK(n) is defined in terms of a set of “oneof invariants” explic-
itly given in the problem or derived from it. A given oneof invariant is an exclusive
disjunction oneof(x1, . . . , xn) in the initial situation I that is maintained by the
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actions in the problem, i.e. after applying any action of the problem, a true oneof
formula is still true.

More precisely, a oneof(x1, . . . , xm) expression is invariant if all pairs xi, xj in it are
mutex for i 6= j, and every action a with an effect C → ¬xi, has an effect C → xj ,
for 1 ≤ i, j ≤ m. When a oneof(x1, . . . , xm) expression in I is not invariant, an
attempt is made to find a set of literals y1, . . . , yk that “extend” the original formula
so that the expression oneof(x1, . . . , xm, y1, . . . , yk) is true in I and invariant. To do
so, we must make certain that each yi is mutex with the other literals in the formula.
The computation of these completions is simple and follows the calculation of similar
invariants in classical planning 7 (Helmert, 2009).

For a “oneof invariants” oneof(x1, . . . , xn), the clause (x1∨. . .∨xn) expresses that the
set {xi}ni=1 of (invariant) literals is exhaustive, meaning that at least one of them is
true in every reachable state, while the set of clauses (xi∨xj) and (¬xi∨¬xj) capture
the mutual exclusivity of such literals, meaning that only one of them can be true in a
reachable state, for i 6= j. Generally, if the non–unary clauses of I are invariant, they
can be associated to sets of multivalued variables which value is initially unknown,
and the uncertainty in the problem corresponds to the uncertainty on such variables.

To illustrate the use of these oneof invariants, we can consider a version of the
gripper problem: an object o is placed in an unknown position and has to be picked
up by a mechanical arm to finally place it in a box. The problem can be encoded
with a oneof (at(o, p1), . . . , at(o, pn)) expression in I, with the pi fluents encoding the
position. However this expression is not invariant, but can be completed into the
invariant oneof

(
at(o, c1), . . . , at(o, cn), hold(o), at(o, box)

)
: the last two propositions

encode that the object o can be in the box or being hold by the arm.

The certainty heuristic hK(n) for a node n = 〈π, S,R〉 is then defined as the number
of literals xi in oneof invariants with a literal in the goal, such that ¬xi is not in R.
In other words, if we take the literals xi in the invariants as representing the values
X = Xi of some multi-valued variable X that is mentioned in the goal, hK(n) simply
counts the possible values of such variables that have not yet been knocked out of
the current belief. Thus, if xi is in the goal, then at the end of any conformant plan
xi must be known, and so must the negation of the literals xk that are mutex with
xi.

Example 4.5. Let’s consider again the 1× 10 corridor illustrated in Figure 4.3. If
initially the robot is either at 1 or 2 on the left, and the goal is to reach position 5,
then hK(n0) for the root node will be 2. The best action according to the certainty
heuristic would be to move left, away from the goal, reducing the heuristic and the
uncertainty by 1. On the other hand, we saw in example 4.4 that the best action
according to the classical heuristic would be to move right, towards the goal, which
however cannot be achieved if the uncertainty is not first removed.

The certainty heuristic has relation to two heuristics used in planning that appeared
to be completely orthogonal up to now. One is the cardinality heuristic that simply

7Roughly, if there is an action with effect C → ¬xi and no effect C → xj , the candidate invariant
appears to be refuted; in such a case we look for an effect C → y1, for y1 mutex with (x1, . . . , xm).
If so, the new candidate invariant is oneof(x1, . . . , xm, y1), which is tested and extended in the same
way, until no refutation is found, producing eventually the invariant oneof(x1, . . . , xm, y1, . . . , yk).
On the other hand, if the current candidate invariant is refuted and there is no mutex y1 as above
to extend it, the candidate invariant is dropped.
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counts the number of states in a belief state Bertoli and Cimatti (2002). The other
is the landmark heuristic, popularised by the classical planner lama(Richter et al.,
2008), that counts the number of unachieved landmarks, where a landmark is an
atom that is made true by all plans (Hoffmann et al., 2004). The relation to the
cardinality heuristic is immediate in problems where all the uncertainty comes from
a set of multi-valued variables that appear in the goal and whose initial value is
initially unknown, like in our example 4.5. In such cases, the target belief states
have cardinality one, and hence it makes sense to establish a preference for belief
states with lower cardinality. However, although the cardinality heuristic takes the
product of the cardinalities of the beliefs over the variables, the certainty heuristic
takes the sum. This sum corresponds to the number of literals that must be achieved
in all the plans; namely, the goal literals xi, along with the negation of all literals xk
that are mutex with xi. These literals are like epistemic landmarks, meaning that
any conformant plan must achieve all these literals with certainty.8

Search Algorithm

The two heuristics hC and hK are used in the context of a multi–heuristic best
first search algorithm following the classical planners FD and lama(Helmert, 2006;
Richter et al., 2008). Multi–heuristic best first search is a variant of the well known
best first search algorithm that combines several heuristic evaluators, which are in
our case the classical and the certainty heuristics.

In T1, the search is implemented as a multi–queue best first search making use of
three open lists that we call Q1, Q2, and Q3. Children nodes obtained using helpful
actions or actions that decrease the value of the certainty heuristic are placed in
the first two queues, while those obtained with other actions are placed in the last
queue. Nodes in Q1 and Q3 are ordered with classical heuristic hC , while nodes in
Q2 are ordered with certainty heuristic hK . Ties are broken in each of the queues
using first the other heuristic (i.e. hC for Q2, hK for Q1 and Q3), and then the
accumulated cost to the node. The expansions of the first two queues alternate, and
every tenth iteration, the last queue is expanded. Expanding a queue means picking
up the best node in the queue, checking if it is a goal node, and if not, producing all
of its children.

4.6 Empirical evaluation

The conformant planner T1 involves five parts: parsing, sampling (computing S1),
search, computation of the heuristics, and verification of beliefs (for widths greater
than 1). The parser is implemented on top of Conformant–FF sources, the com-
putation of the samples uses the Cnf to d–Dnnf compiler c2d (Darwiche, 2004),
and the verification process is done with MiniSAT-2.2 (Een and Sorensson, 2004).
T1 is written in C++.

We compared T1 with dnf (To et al., 2009) and T0 (Palacios and Geffner, 2009).
Conformant-FF (Brafman and Hoffmann, 2004), pond (Bryce et al., 2006), and

8 Notice that the certainty heuristic, as defined here, overestimates the true count by the number
of oneof invariants with a literal in the goal, yet this difference is a constant that has no effect in
the search.
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mbp (Bertoli et al., 2006) perform well on several domains but have smaller coverage,
so we stuck to the former planners for our tests. We wanted to test also the recent
cnf planner (To et al., 2010), but the author have not made it available at the
time we are writing. For dnf preprocessing we used SWI Prolog rather than the
proprietary SICStus Prolog used by the authors. T0 has been ran with classical
planner ff (Hoffmann and Nebel, 2001).

The results of the comparison are shown in Table 4.1. The problems are from past
IPC competitions and various planner’s distributions. For each of the 17 domains
considered, three instances are shown, from easy to hard, when at least one planner
solved them. The experiments have been executed on a cluster of multi–core, multi–
CPU machines with a clock speed of 2.33GHz running Linux, with 2 hours and 2GB
for time and memory outs.

T1 solves 44 problems out of 47 (93%), while T0 solves 38 (80%), and dnf 35 (74%).
In general, however, T0 is fastest, solving most of the (translated problems) with the
effective EHC search in ff (such instances appear with a number of expanded nodes
x + 0, meaning that x nodes where expanded by EHC and 0 by the greedy best-
first search). dnf does comparatively best on the “corner version” of the Square
and Cube domains (Corners-Cube and Corners-Square), where neither of the two
heuristics used in T1 appears to be useful (this can be seen in the number of
expanded nodes). T0 doesn’t well either in this domain, as the heuristic used by ff
over the K1 translation is similar to one of the heuristics used in T1 (the classical
heuristic hC). dnf solves these instances with much less expansions, meaning that
the heuristic it’s using is the most informative for these domains. In most other
domains, both T1 and T0 expand much less nodes than dnf, which nonetheless,
expands nodes very fast. For example, in the second Bomb problem, dnf expands
175k nodes in 23 secs, while T0 and T1expand 1.1k nodes in 3.5 secs, and 140
nodes in 21 secs, respectively. This means, that in this instance, dnf, T0, and
T1 expand roughly 7k nodes per second, 300 nodes per second, and 70 nodes per
second respectively. In general, T1 expands fewer nodes than T0, but not necessarily
faster. Part of the explanation for the slow node expansion rate of T1 vs. T0 is
what expansion means in each of the two planners. In T0, while ff is running
in EHC mode, an expansion is the application of the helpful actions only. This
search is incomplete, but as it can be seen in the table, it’s often quite effective.
In T1, on the other hand, an expansion is a full expansion: all the children nodes
are generated, and if they are “helpful” they are placed in the right queue. This,
however, is a problem in instances with high branching factors where the number of
nodes generated can be much larger than the number of nodes expanded. This is the
reason that T1 runs out of memory in domains such as Bomb and Logistics, where
it expands few nodes that lead however to the generation of hundred of thousands
of nodes. This problem could avoided by delaying the generation and evaluation of
such nodes. Such techniques are used in recent classical planners such as FD and
lama.

Table 4.2 compares the performance of T1 when restricted to use just one heuristic,
either the classical heuristic hC or the certainty heuristic hK , as opposed to the two
heuristics combined. When running T1 with a single heuristic, the “helpful” queue
corresponding to the other heuristic is removed. As it can be seen, there are some
domains where the classical heuristic is better than the certainty heuristic, and other
domains, where the opposite is true. At the same time, the combination in T1 seems
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T0 DNF T1

Problem T L E T L E T L E |S1
0 | / |b0|

1-Dispose-8-1 79 1316 119+0 OM – – 142 560 3.6k 64/64

Blocks-1* U – 7+872 0.1 7 5 0.05 6 23 2/2
Blocks-2* 0.2 23 86+0 0.1 38 20 0.3 20 72 6/6
Blocks-3* 71 80 5.3k+0 4.9 307 125 TO – 6.3k 12/125

Bomb-b100-t10 7.8 290 4.4k+0 2.6 190 17k 4.8 190 190 101/2100

Bomb-b100-t60 3.5 140 1.1k+0 23 140 175k 21 140 140 101/2100

Bomb-b100-t100 7.0 100 201+0 50 100 348k OM – 42 101/2100

Coins-18 0.1 97 679+0 1.0 100 2.4k 2.8 191 635 10/2·106

Coins-17 0.1 96 382+0 1.0 110 3.1k 1.0 257 1.1k 10/2·106

Coins-21 OM – – OM – – 193 904 11.9k 10/1·1016

Comm-20 0.3 278 1.1k+0 171.6 296 1.5k 43 295 616 41 / 220

Comm-25 1.2 453 1.8k+0 1857 501 2.5k 339 478 1k 66/225

Comm-30 2.0 593 2.3k+0 OM – – 30 1090 1.3k 86/230

Cube-67 33 294 7.6k+0 1895 2019 71k 10 303 308 67/673

Cube-91 OM – – 2200 2271 73k 31 408 408 91/913

Cube-139 OM – – TO – – 151 622 623 139/1393

Corners-Cube-15 0.6 147 5.8k+10k 0.7 117 1.4k 2.7 159 5.7k 2/8
Corners-Cube-20 2.2 258 13k+29k 1.8 217 2511 8.6 248 12k 2/8
Corners-Cube-55 OM – – 18.6 806 10k 836 1644 182k 2/8

Corners-Sqre-36 1.0 412 2.6k+16k 0.7 138 451 12 412 8.7k 2/4
Corners-Sqre-72 20 1474 10k+141k 12 615 3.3k 241 1474 44k 2/4
Corners-Sqre-120 190 3898 29k+681k 75 1870 10k 2694 4014 136k 2/4

Dispose-12-1 55 1274 267k+0 5590 330 13k 488 786 2.5k 144/144
Dispose-12-2 2037 1437 3922k+0 5810 567 18k 1690 1196 4.5k 146/1442

Dispose-12-3 OM – – 6305 1131 34k 6257 1385 5.6k 146/1443

Logistics-4-3-3 0.01 24 53+0 7.5 160 16k 0.1 41 96 8/43

Logistics-2-10-10 0.4 84 414+0 OM – – 47 94 859 3/210

Logistics-4-10-10 0.7 125 774+0 OM – – 121 167 1.7k 5/410

Look-Grab-4-2-1* U – 3+16 OM – – 1.8 42 138 16/256
Look-Grab-8-1-1 59 242 6.4k+44 OM – – 16 106 377 64/64
Look-Grab-8-3-2* OM – – OM – – 3957 56 3.1k 20/643

Push-To-8-1 83 464 74k+0 134 163 3.9k 271 538 6.5k 64/64
Push-To-8-2 817 423 131k+0 195 162 124k 53 336 1.5k 66/642

Push-To-8-3 1213 597 132k+0 OM – – 59 300 1.3k 66/643

Raos-Keys-2* 0.02 16 22+0 0.5 22 70 0.7 21 130 2/4

Ring-10 0.1 55 530+0 1546 39 107 0.6 41 484 10/590k
Ring-20 2.0 95 2.3k+0 OM – – 29 91 3.2k 20/6·1010

Ring-30 24 121 8.1k+0 OM – – 393 133 11.9k 30/6·1015

Safe-30 0.06 30 30+0 0.2 30 465 0.2 30 30 30/30
Safe-70 0.5 70 70+0 2 70 2.5k 3.0 70 70 70/70
Safe-100 1.0 100 100+0 5 100 5k 13 100 100 100/100

Square-24 0.4 69 172+0 3 351 2.6k 0.2 70 71 24/242

Square-92 36 273 1413+0 1236 2444 36k 14 274 275 92/922

Square-120 OM – – 2376 2813 45k 36 358 358 120/1202

Uts-k 30 4.0 89 92+0 8.5 101 13k 8.3 112 691 30/230

Uts-k 40 13.4 119 122+0 26.5 136 31k 42 143 1.1k 40/240

Uts-k 50 33.8 149 152+0 63.9 171 61k OM – – 50/250

#Solved/#Total 38/47 35/47 44/47

Table 4.1: Performance of T0, dnf and T1 over 47 conformant problems: T is total time, L is
plan length, and E is number of expanded nodes
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hC hK T1
Domain I S T E L S T E L S T E L
Bomb 9 7 71 4k 101 7 11 773 101 8 2 100 101
Coins 9 8 1 888 78 8 8 7k 74 8 3 425 166
Comm 9 9 2 1k 176 9 21 30k 175 9 5 440 214

Square(Ctr) 10 4 18 5k 186 10 0.2 224 44 10 0.1 43 44
Square(Cor) 11 10 604 212k 659 11 51 81k 119 11 100 18k 661
Cube(Ctr) 12 6 84 32k 188 10 1 890 61 12 0.1 61 58
Cube(Cor) 11 8 92 219k 271 10 4 26k 88 11 12 15k 269

Dispose 11 7 664 8k 349 9 57 2k 190 8 134 1k 491
Logistics 4 2 0.2 546 30 2 544 1613k 30 4 0.1 554 78

Look-Grab 6 6 0.1 96 10 3 41 92k 7 6 0.1 20 11
Push-To 8 6 657 21k 247 6 238 12k 116 6 83 1k 237

Ring 7 6 1 1k 17 5 571 58k 17 8 0.2 214 31
Safe 5 5 0.05 40 10 1 5 10k 10 5 0.04 9 10

UTS-k 15 15 0.06 26 7 2 0.05 154 7 13 0.04 10 9

Coverage 127 99 93 119

Table 4.2: Comparison of T1 with one heuristic (either hC or hK) and the two heuristics
combined. I is number of instances, S is number of instances solved; T, E, and L are avg.
time, avg. number of expanded nodes, and avg plan length, respectively Averages taken over
instances solved by the three configurations.

to get the best of both, in certain cases solving instances that cannot be solved with
one of the heuristics alone. This doesn’t mean, however, that the synergies between
the two heuristics cannot be exploited further.

4.7 Discussion

The experimental results show that T1 is very competitive with state-of-the-art con-
formant planners in number of problems solved and quality of solutions. Additional
progress on scalability seems feasible by exploiting further the synergies between the
two heuristics, and by dealing in a more effective manner with the huge number of
nodes that are generated in problems with large branching factors.

The individual width of precondition and goal literals, as opposed to the width of
the problem given by the maximum of such width, could be used to avoid some
verifications and, in principle, to simplify the detection of duplicate nodes.

Impact of the representation

The way to represent beliefs has an impact on the belief tracking and update, and
consequently, on the performances of the planner.

The OBDD encoding of belief states, of which d-dnnf is a superset, is implemented
in mbp and kacmbp planners (Bertoli et al., 2001; Bertoli and Cimatti, 2002). d-
dnnfis more space efficient (Darwiche, 2001b) the OBDD, and provides many useful
functions for planning that can be computed in linear time, like model counting.

Petrick and Bacchus (2002) represent beliefs by formulæ, and actions are modeled as
updates to these sets of formulæ. However a set of formulæ is more compact than a
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BDD, but this representation compiles away the single states information from the
beliefs, and thus some planning problems that require reasoning about single states
cannot be modelled by this approach although they can be handled with BDDs.

The planners dnf and cnf (To et al., 2009, 2010) use homonymous representations.
Both appear to be adequate, but some difference are evidenced by empirical results:
the CNF encoding of belief states is more compact than DNF encoding in the general
case, but the CNF compilation and update has a cost which is paid by a time
overhead (To et al., 2011a). On the other hand, the DNF encoding of disjunctive
formulæ is larger than the CNF equivalent, but the transition function if exponential
only in the number of unknown antecedents of conditional effects for dnf, while the
transition function for cnf is exponential also in the number of clauses representing
the (belief) state in the CNF encoding (To et al., 2011a).

Heuristics issues

Generally the two heuristics combined together, in an alternation mechanism, appear
to work better than alone. This is shown in Table 4.6. However, in certain domains
better solutions are found using either the cardinality heuristic alone or the classical
heuristic alone. When does it happen? Consider a classical domain, where solving
the uncertainty on I in not necessary, or a domain where the goal can be reached
regardless the size of the belief state: in those cases the classical heuristic alone should
guide the search efficiently. En example of such a case is illustrated in Figure 4.4.
In the domain in the figure, with similar characteristics as the problem illustrated
in Figure 4.2 but with the difference that the cardinality does not affect a solution.
This domain can indeed be solved by T1 without considering the certainty heuristic;
a solution would be: {East, South} without the need of localising first in the corner
as in the former example, so alternating between the two heuristics is simply useless.

Figure 4.4: Square
room domain. Initial be-
lief is the 4 top left cells,
the goal is in the lower
right outlined cells.

This example shows another aspect of the certainty heuris-
tic that improves on the cardinality heuristic: here, the cer-
tainty heuristic would never have a value < 4, as the atoms
in the goal are considered. The cardinality heuristic, how-
ever, would simply aim at reducing the size of the belief state
possibly moving the agent away from the goal, which poten-
tially ends into a longer search and a longer plan. Driving
the search in order to reach the same cardinality as the
goal, and no more, is what the certainty heuristic does in
these cases. A very similar mechanism is implemented in in
the kacmbp (Bertoli and Cimatti, 2002) planner, making
advantage of the OBDD representation to reduce the un-
certainty of the agent’s belief to the same size of the goal
belief state.

Now, if we consider the other case of a domain where the
goal is to reach either end of a corridor, and the initial position in unknown, i.e. the
agent can be in any pose in the corridor as shown in Figure 4.5. Here, reaching an
end of the corridor means removing the ambiguity about the position of the agent,
so only the certainty heuristic is relevant to the solution of the problem: the classical
heuristic wouldn’t bring additional information.
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2n

Figure 4.5: Corridor domain of length
2n. The initial position is unknown,
goal is reaching either end of the corri-
dor. Actions: move left or move right.

In cases like the ones we just saw, alternat-
ing between the two heuristics is simply of no
use, as one of them does not add helpful in-
formation to solve the problem. But these
are not the only case of inefficiency: occur-
rences where the values of one heuristic de-
creases where the other rises, and vice–versa,
have negative repercussions on the plan qual-

ity. This happens in the planning domain shown in Figure 4.6: a corridor domain
where a robot has to reach the goal is at one end, and with the initial possible
positions of the robot at the other end. The closest position where to reduce the
cardinality of the initial belief state is in the opposite direction from the goal. Here
the two heuristics drive the search literally in opposite directions. Reducing quickly
the certainty heuristic, would end up going all way to the left, and only then moving
through the goal, in the right direction. This plan is inefficient as it is also possible
to remove the uncertainty about the position on the right, in the goal cell. More-
over, depending on the initial situation, alternating between the two heuristics could
end in this example in alternating from one direction to the other. Here a boosting

m

2n

m < n

Figure 4.6: Corridor domain of length 2n. The initial position is unknown and the goal is
to reach the right end of the corridor. Actions: move left or move right.

mechanism could be advantageous; increasing the expansion rate of the queue that
improves most the global heuristic goal distances. Another possibility would be the
use of a lookahead mechansim, identifying when a lower value of a heuristic will also
lead to lower values for the other heuristic functions. Such technique would indirectly
avoid search plateaux, a situation that arises when goals are in “conflict”, meaning
that approaching one presupposes to move away from the others, from an heuris-
tic point of view. This can be done exploiting techniques from classical planning,
where both lookahead in search (Vidal, 2004), or automated generation of probes9

(Langley, 1992; Nakhost and Müller, 2009; Lipovetzky and Geffner, 2011) have been
employed to solve the problems with more efficiency.

4.8 Summary

Conformant planning is the task of finding a solution plan in problems where there
is partial information on the domain and where no sensing is available. Conformant
planning can be formulated as a path-finding problem in belief space, where the main

9A probe is an action sequence computed from a state, which can be done greedily or randomly,
in the former case the aim is achieving a serialisation of the problem subgoals, dynamically generated
along with the probe.
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challenges come from the heuristics to guide the search, and the representation and
update of the beliefs.

The translation-based approach to planning under uncertainty is elegant and exhibits
good performances in relation to approaches that explicitly search in belief space.
While competitive with the state-of-the-art methods, translation-based approaches
shock against the difficulty that complete translations may require exponential time
and space, since incomplete translations may result in unsolvable problems.

We presented a translation-based planner for deterministic conformant planning that
tries to combine the two approaches: the flexibility of planners that search explicitly
in belief space, with the heuristics and beliefs that arise from translations. For this
we have formulated a novel translation Ki

S that is always tractable and complete, and
sound for problems with width bounded by i. The T1 planner uses the set of samples
that result from the K1

S translation in the context of a belief search planner. We
take advantage of the samples not for solving the problem with a classical planner,
but for deriving heuristics and computing belief states. We incorporated a heuristic
derived from the “oneof invariants” in the problem, related to the cardinality and the
landmarks heuristics, and using a multi-queue best first search algorithm patterned
after the classical planners fd and lama. The experimental results show that T1 is
competitive with the state-of-the-art conformant planners in number of problems
solved, and quality of solutions.

Non-determinism is a feature that seems to be ignored by the majority of confor-
mant planners, even if it’s one of the principal sources of uncertainty for planning in
realistic environments. Translation-based approaches can handle actions with non-
deterministic effects. Non-deterministic effects can be compiled away by introducing
hidden conditions afresh each time a non-deterministic action is executed. This
method mean that many “copies” of the action must be added to the problem. The
way these actions are introduced, and the limitation on the number of their copies,
will determine the properties of the translation, and in particular its completeness.
These transformations are the subject of the next chapter.





Chapter 5

Translations for Non-Deterministic
Conformant Planning

In the previous chapters, we saw that conformant planning problems where the ac-
tions have deterministic effects can be translated into classical problems that can
be then solved by off-the-shelf classical planners. This is the case of the planner T0,
and in part of the approach behind the planner T1. When planning problems have
actions with non-deterministic effects, these have to be adapted to the translations,
in order to find a solution. Moreover, the non-deterministic effects can appear as
many “copies” of the action, which will determine the properties of the translation,
in particular its completeness.

In this chapter we will introduce different translations to handle non-determinism in
the effects of the actions. Very few planners, however, deal with such an important
feature of planning problems modeling, the most successful of them are the ones
developed in Trento; we named mbp and kacmbp (Bertoli et al., 2001; Bertoli and
Cimatti, 2002), to which we compare to.

Results from this chapter have been published in Compiling Away Uncertainty in
Non-Deterministic Conformant Planning Problems, by A. Albore, H. Palacios, and
H. Geffner, in 21st European Conference on Artificial Intelligence (ECAI-10), Lisbon,
Portugal, 2010 (Albore et al., 2010).

5.1 Motivation

Non-determinism is an important feature of planning for real world. Exogenous
events can be common in a realistic domain, while the outcome of a performed
action is not always certain. Nevertheless, this important feature seems to have been
ignored by the majority of existent planners.

In this chapter, we extend the formulation for deterministic conformant problems
to non-deterministic conformant planning. We will start with the well known ob-
servation that non-deterministic effects can be eliminated by using hidden artificial
conditions that must be introduced afresh each time a non-deterministic action is
applied (cf. section 2.2). This observation leads to an original translation of con-
formant problems with non-deterministic effects into conformant planning problems

77
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with deterministic effects, which are themselves related to classical planning prob-
lems. However, this translation has to be recomputed as the search for plans pro-
ceeds.

We will then introduce other translations that provide sound –but not necessary
complete– solutions to the original problem by solving a relaxed conformant deter-
ministic problem. These translations, while incomplete, appear to be quite effective
and result in classical planning problems that need to be solved only once.

5.2 Translations for Non-Deterministic actions

In chapter 2 we introduced non-deterministic conformant planning (cf. definition 2.2).
Conformant planning problems P are represented as tuples of the form P = 〈F ,A, I,G〉,
where F stands for the fluent symbols in the problem, I is a set of clauses over
F defining the initial situation, A stands for a set of (ground) operators or actions a,
and G is a set of literals over F defining the goal. Every action a has a precondition
pre(a) given by a set of fluent literals, and a set of conditional effects or rules

a : C → L1 |L2 | · · · | Ln, n ≥ 1, (5.1)

where C and Li stand for sets (conjunctions) of literals, and C can be empty. The
effect is deterministic if n = 1, and non-deterministic otherwise. When convenient,
we take a deterministic effect C → C ′ as the set of effects C → L for each L ∈ C ′.

The semantics of a non-deterministic problem P is defined in terms of the state
trajectories that are possible. A state s, as we saw, is a set of literals representing
a truth assignment over the fluents in F . An action a ∈ A is applicable in s if
pre(a) ⊆ s, and s′ is a possible successor state of s if for each of the ni(a) conditional
effects associated with the action a

Ci → Li1 | · · · | Lini(a)
(5.2)

we have s′, single successor state of s given an action a′ that is like a but with the
deterministic conditional effects Ci → Lif(i), where 1 ≤ f(i) ≤ ni(a) is a function

that selects one effect Lif(i) from the set of possible effects. We assume that this

successor state is always well defined, and hence, that if two different outcomes Lik
and Lil are complementary, the bodies of these effects can’t be reached jointly from
any possible initial state. The state trajectories [s0, . . . , sn+1] that are possible given
an action sequence [a0, . . . , an] are the ones that start in an initial state s0 and that
include the states si+1, which are possible successors of si given an action ai.

An action sequence [a0, . . . , an] is a conformant plan for P if each action ai, with
1 ≤ i ≤ n, is applicable in the state si of all the state trajectories [s0, . . . , si] that are
possible given the preceding action sequence [a0, . . . , ai−1], and sn+1 is a goal state.
Alternatively, if b0 is the set of initial states deemed possible, and bi+1 is the set of
states that are possible given an action ai applicable in each state in bi, then the
sequence [a0, . . . , an] is a conformant plan for P if it maps the initial set b0 to a final
set bn+1 of goal states.
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Deterministic Relaxation

We aim at applying the KT,M (P ) translation to non-deterministic conformant plan-
ning, but the translations we discussed in chapter 3 are pertinent to deterministic
conformant planning and can’t be applied directly to the cases we are treating here.
We present so a deterministic relaxation that introduces new hidden variables for the
problem to encode non-deterministic effects, with the limitation that, one executed,
the action will always have a fixed outcome.

To compile away non-deterministic effects, one possibility is to take advantage of
a well known transformation that makes use of auxiliary hidden variables hij . In
general, an hidden variable is a fluent p such that neither p not ¬p are known initially.
Hidden variables are used here to map each one of the non-deterministic effects in
eq. (5.2) to ni(a) deterministic effects

Ci ∧ hij(a) → Lij (5.3)

with 1 ≤ j ≤ ni(a). The following “oneof” expressions are then added to the initial
belief state I:

oneof
(
hi1(a), . . . , hini

(a)
)

(5.4)

In this transformation, the uncertainty in the state transitions becomes converted in
clauses with the hij(a) literals in the initial situation.

Definition 5.1 (Deterministic transformation Pd). Let be P = 〈F ,A, I,G〉 a non-
deterministic conformant problem, then the transformed problem Pd = 〈F ′,A′, I ′,G′〉
is a deterministic conformant planning problem, where

• F ′ = F ∪ {hij(a) | for each non-deterministic outcome j of conditional effect i
of action a ∈ A },

• A′ = A with each conditional effect of action a: Ci → Li1 | · · · | Lini(a)
replaced

by the ni(a) rules: Ci ∧ hij(a) → Lij

• I ′ = I ∪ oneof
(
hi1(a), . . . , hini

(a)
)
, for each action a ∈ A, with conditional

effect i,

• G′ = G

By changing the non-deterministic rules in deterministic rules and introducing new
hidden conditions following eq. (5.4), the original non-deterministic conformant prob-
lem P is now translated in a deterministic conformant problem Pd. The new problem
Pd is equivalent to P when non-deterministic actions are applied only once. In fact,
for a non-deterministic action a, the oneof constraint in eq. (5.4) can be seen as a
multivalued variable which value is initially hidden and that informs on the effect of
the action a. Once its value unveiled, the action a is bound a specific deterministic
effect.

Proposition 5.2. Let π be an action sequence that involves each non-deterministic
action from P at most once. Then π is a plan for the non-deterministic conformant
problem P if π is a plan for the deterministic conformant plan Pd.
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The difference between P and Pd is that the hidden h conditions in Pd establish
correlations among the possible outcomes of the same action during the execution of
a plan. When non-deterministic actions are applied more than once, Pd would not
consider other effects than the one corresponding to the hidden condition h, while a
different effect can take place in the original problem P . In particular, the possible
outcome of an action a in P can be Lij the first time, and Lil the second time, with
l 6= j; this is not possible in the deterministic relaxation Pd.

x(1), y(1)

x(0), y(2) x(1), y(2) x(2), y(2)

x(0), y(1) x(2), y(1)

x(0), y(0) x(1), y(0) x(2), y(0)

2nd move

1st move

Figure 5.1: Grid from example 5.1. The first move is shown in continuous line, the second
move in dotted line.

Example 5.1. Let’s consider a moving agent in a grid. The action “move” has two
non-deterministic effects in P :

x(i) ∧ y(j) → x(i+ 1) ∧ ¬x(i)
∣∣ y(j + 1) ∧ ¬y(j)

meaning that the movement can be either in vertical or in horizontal.

This action “move” is translated in a problem Pd as follows:

x(i) ∧ y(j) ∧ h11(move) → x(i+ 1) ∧ ¬x(i)

x(i) ∧ y(j) ∧ h12(move) → y(j + 1) ∧ ¬y(j)

where the two new fluents h11(move) and h12(move) are added, along with in the initial
situation a clause

oneof
(
h11(move), h

1
2(move)

)
A sequence of two move actions starting at

(
x(0), y(0)

)
may end in P in one of three

possible locations:
(
x(2), y(0)

)
,
(
x(0), y(2)

)
, and

(
x(1), y(1)

)
.

On the other hand, only the first two locations are possibly reachable in Pd: the first
follows from states where the first hidden condition h11(move) is true; the second,
from states where the second hidden condition h12(move) is true.

Even if not all the plans for P are plans for Pd, the transformation of P to Pd can
be used to obtain an incomplete non-deterministic conformant planner in a simple



5.2. Translations for Non-Deterministic actions 81

manner. A traslation K = KT,M can be applied on the deterministic conformant
problem Pd. Then, a classical planner is called over the translation K(Pd), and if
no non-deterministic action from P appears twice in the plan returned, from the
soundness of the translation and Proposition Theorem 5.2, the plan with the merge
actions removed must be a plan for P .

This simple translation allows only to represent non-deterministic actions that are
executed once. It is of course possible to extend the above deterministic translation
to obtain problems where non-deterministic actions can be applied more than once.
We introduce then a generalization of the deterministic relaxation Pd that works on a
variant of P that we call Pm. The conformant problem Pm is exactly like P but with
each non-deterministic action a in P copied m times, with different names a1, . . . , am.
These copies make no difference to P , as the problems P and Pm are equivalent, but
make a difference in the relaxations Pd and Pmd , of P and Pm respectively. The two
relaxations Pd and Pmd are not equivalent: while the relaxation Pd can capture plans
for P that include each non-deterministic action of P at most once, the relaxation
Pmd can capture plans for P where each non-deterministic action is done at most m
times. Indeed, for a sufficiently large m, Pmd will necessarily account for a plan that
solves P , and even for a plan that solves P optimally. Useless to say, the relaxation
Pd is Pmd with the parameter m set to 1.

The relaxation Pmd we just saw can be slightly modified so that the translation
K(Pmd ) generates only sound plans. The translation K(Pmd ) would produce plans
where each non-deterministic action is applied up to m times and no more.

The change is very simple:

1. we create new fluents blocked(ak), for each copy ak of a non-deterministic action
a in Pmd (with 1 ≤ k ≤ m),

2. we set all the new atoms true initially, except for blocked(a1), that is false
initially,

3. we add the literal ¬blocked(ak) to the precondition of the action aj , and add
the literals ¬blocked(ak+1) and blocked(ak) to its effects.

The objective of using the blocked fluents in the copy of the actions is to enable the
nth copy of the action only after executing the action n− 1 times.

Definition 5.3 (Deterministic relaxation Pmd ). Let be P = 〈F ,A, I,G〉 a non-
deterministic conformant problem, and a positive parameter m. The deterministic
relaxation Pmd = 〈F ′,A′, I ′,G′〉 is a deterministic conformant planning problem,
where:

• F ′ = F ∪ {hij(ak) | for each possible outcome j of the i-th conditional effect
of the action a ∈ A}, with 0 < k ≤ m.

• A′ = A with for each action ak having

– each precondition L replaced by
(
L ∧ ¬blocked(ak)

)
, and

– each conditional effect Ci → Li1 | · · · | Lini(a)
replaced by the ni(a) rules:

Ci ∧ hij(a
k) → Lij ∧ blocked(ak) ∧ ¬blocked(ak+1)
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• I ′ = I ∪ oneof
(
hi1(a), . . . , hini

(a)
)
∪ blocked(ak), for each action a ∈ A, with

conditional effect i, and for 2 ≤ k ≤ m.

• G′ = G

The naive scheme for eliminating non-determinism can be used to solve a non-
deterministic problem P by applying any of the KT,M translations to the determin-
istic problem Pmd , for a parameter m that is large enough. The difficulty with this
method, however, is that many problems involve the execution of non-deterministic
actions many times, and moreover, it is not easy to come up with an upper bound m
in general. Following that idea, it is possible to implement a planner that incremen-
tally searches for solutions of P by incrementing the value of the parameter m until
a solution is found. Such a planner would be sound, as a relaxation with a sufficient
number of copies of the actions would have a solution for the original problem P .
Another benefit is that the bound m does not have to be known. This will be the
topic of the next section.

5.3 The K-replanner

This approach, for solving non-deterministic problems P , makes use of the ideas
behind the Pmd relaxation without using it explicitly. It can be understood as a
lazy implementation where the new copies ak of the non-deterministic actions are
added incrementally, along with its associated fluents hij(a

k) and blocked(ak), and
their corresponding initial conditions.

The K-Replanner is a lazy implementation of a planner based on the classical trans-
lation K of the deterministic relaxation Pmd of P , for an arbitrary m, where the last
copy ak of each non-deterministic action a does not get blocked and can be used more
than once. It exploits the property that if such actions ak are not used more than
once in the classical plan π returned for K(Pmd ), then π is a conformant plan for P
(once the merge actions are dropped). On the other hand, a plan π = [a0, a1, . . . , an]
returned for K(Pmd ) such that πi+1 = [a0, . . . , ai+1] is the first prefix that violates
this condition, constituting a flaw, has to be repaired. This flaw is “repaired” by
preserving the “flawless” prefix πi and merging it with a plan tail π′. The plan tail
π′ is obtained recursively from the resulting state si+1 before the flaw and over an
encoding that is like K(Pmd ) except that the “faulty” repeated action copy ak is split
in two: 1) the action ak itself, that is blocked in si+1, and 2) a new copy ak+1 with
its own fresh hidden h variables, that is not. The resulting planning algorithm is dy-
namic in the sense that each time a classical plan with a repeated non-deterministic
action is returned, a plan tail is computed (recursively) over a slightly different clas-
sical problem that includes more fluents (the new hidden h variables and the blocked
fluents), more initial conditions (involving the new blocked fluents and the clauses
coming from the one-of over the h-fluents expressions), and more actions (the merges
resulting from the new one-of expressions). If we call Pi the deterministic relaxation
of P before the flaw, and Pi+1 the deterministic relaxation after the flaw, the classical
problems before and after the flaw are K(Pi) and K(Pi+1) respectively. Notice that
for all translation schema K = KT,M , the translation K(Pi+1) can be computed in-
crementally with just minor modifications from the translation K(Pi) of the previous
deterministic relaxation Pi.
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Example 5.2. Let’s consider the example 5.1. The hidden fluents bound to the two
non-deterministic effects of the move action are h0 and h1. The K-replanner starts
from a problem Pmd where the parameter m is fixed to 1. So, from definition 5.3, the
move action has in P 1

d two deterministic conditional effects:

move
(
x(i), y(j)

)
:

x(i) ∧ y(j) ∧ h0 → x(i+ 1) ∧ ¬x(i)

x(i) ∧ y(j) ∧ h1 → y(j + 1) ∧ ¬y(j)

Where the initial situation includes the constraints on the hidden fluents:

I =
{

(x(0), y(0), oneof (h0, h1)
}

A second execution of the action move would increment the parameter m; so that
the transformation P2 = P 2

d of the original problem would include a second copy of
the action and new hidden variables. The initial situation of P2 would include the
blocked constraint on the copy (blocked(m1)), and the conditions on the new hidden
variables h10 and h11:

I =
{

(x(0)), (y(0)), oneof (h10, h
1
1), oneof (h0, h1), (blocked(m1))

}
Then the action move is then present in two copies, the first of which is unblocked
initially and that corresponds to the action present in P1, but which execution is
limited to one time:

move0
(
x(i), y(j)

)
:

precondition : ¬blocked(m0)

effect :

x(i) ∧ y(j) ∧ h0 → x(i+ 1) ∧ ¬x(i) ∧ blocked(m0) ∧ ¬blocked(m1)

x(i) ∧ y(j) ∧ h1 → y(j + 1) ∧ ¬y(j) ∧ blocked(m0) ∧ ¬blocked(m1)

The action copy move1 is unblocked only after the execution of move0:

move1
(
x(i), y(j)

)
:

precondition : ¬blocked(m1)

effect : x(i) ∧ y(j) ∧ h10 → x(i+ 1) ∧ ¬x(i)

x(i) ∧ y(j) ∧ h11 → y(j + 1) ∧ ¬y(j)

If move1 is executed twice, the planner is called again on a new version P3 of the
problem P .

We call this incremental planning schema able to handle non-deterministic actions
and that starting with P1 = Pd, the K-replanner . The K-replanner is incomplete
even if the translation K is complete for deterministic problems. The incompleteness
is a result of the commitment to the “flawless” plan prefixes that are extended after
each iteration, and which may render a solvable problem P , unsolvable. The schema,
however, is sound:
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Proposition 5.4. If the K-replanner returns an action sequence π, then π with the
merge actions removed is a plan for the non-deterministic conformant problem P .

However, the incompleteness is more a result deriving from the search algorithm that
doesn’t backtrack than from the translation itself, if we put aside the limit on the
number of copies of the non-deterministic actions.

The K-replanner requires the classical planner to be called more than once: the
algorithm starts with a deterministic conformant problem P0 that is similar to the
relaxation Pm above for m = 1, the empty plan prefix π0, and the initial state s0 of
K(P0), and if the obtained plan π contains a “flaw”, a classical planner is called over
the classical problem K(Pn) obtained from the problem Pn that extends Pn−1 with an
extra copy of the non-deterministic action repeated in π, with initial situation sn that
is the state achieved in K(Pn−1) just before the “flaw”. The resulting conformant
plan is the concatenation of all the action sequences obtained at each step, and it is
a solution plan for P (once the merge actions are dropped). The search terminates
with failure if the classical problem K(Pn+1) from the state sn+1 is unsolvable.

The planning schemas that we will introduce next are simpler and require calling a
classical planner only once. The classical plan returned is a solution to the original
non-deterministic conformant problem: both schemas are thus sound, and while
neither one is complete, they turn out to be more effective than the K-replanner.

5.4 The K-Reset Planner

The K-reset planner uses the translation K(Pd) of the deterministic relaxation Pd
extended with the blocked fluents that prevent a non-deterministic action from being
applied more than once. The classical encoding K(Pd) is extended with reset actions
for each non-deterministic action a, denoted reset(a). Resets are used to unblock
the non-deterministic actions and to apply them multiple times in a sound manner.

The definition of the reset(a) action takes advantage of the structure of the trans-
lations K = KT,M seen in chapter 3, and it allows multiple occurrences of non-
deterministic actions without having to introduce various action copies. Assume a
belief space planner that represents belief states as sets (conjunctions) of formulæ.
Actions in such a setting, deterministic or not, map one set of formulæ Fi to an-
other set Fi+1 (i.e. map belief states to belief states, cf. equation (2.3)). Likewise,
an action sequence [a0, . . . , an] is a solution plan if it maps the initial set of for-
mulæ F0 to a final set Fn+1 that implies the goal. Now consider a version of such a
belief space planner that drops some of the formulæ in Fi+1 and thus maps a set of
formulæ Fi to a weaker set F ′i+1. Such a planner is still sound but possibly incom-
plete, as some states in the beliefs are ignored. The relevant observation here is that
such incomplete planner over the deterministic relaxation Pd can accommodate plans
with multiple occurrences of non-deterministic actions a provided that, before new
occurrences of the same action a are applied in Pd, all belief states involving hidden
conditions hij(a) are dropped. This is equivalent to ignore the information about the
number of executions of non-deterministic actions, and their consequences.

This is precisely what the reset(a) action does: it unblocks the action a while deleting
all beliefs involving the hidden conditions hij(a) associated with a. This is achieved by



5.5. The 〈K,K0〉 Planner 85

having the literal blocked(a) as a precondition of reset(a), and the literals ¬blocked(a)
and ¬KL/t as its effects, for all L and tags t that include a hidden condition hij(a).1

Definition 5.5 (Translation K(Pd)). Let Pd = 〈F ,A, I,G〉 be a conformant prob-
lem as in definition 5.1, then the translation K(Pd) = 〈F ′,A′, I ′,G′〉 is a classical
planning problem, where

• F ′ = {KL/t,K¬L/t | L ∈ F and t ∈ T }∪{blocked(a)|a is a non-deterministic
action in A},

• A′ = A ∪ { reset(a) | a is a non-deterministic action in A}, and with each
precondition L for a ∈ A replaced by KL ∧ ¬blocked(a), and each conditional
effect C → L replaced by the two rules:
KC/t→ KL/t and ¬K¬C/t→ ¬K¬L/t.

The reset(a) action, for all non-deterministic action a ∈ A, is such that:

– pre
(
reset(a)

)
: blocked(a)

– eff
(
reset(a)

)
: ¬blocked(a) ∧ ¬KL/t, for all tag t such that hij(a) ∈ t or

hij(a) ∈ L, for some integer i, j,

• I ′ = {KL/t | I ∧ t |= L} ,

• G′ = {KL | L ∈ G}.

If Pd is the deterministic relaxation of P extended with the blocked(a) fluents, and
K(Pd) is the translation extended with the reset(a) actions, it can be proved that
the classical plans for K(Pd) are all plans for P :

Proposition 5.6. Any plan π returned by a classical planner from the translation
K(Pd) extended with the reset actions, is a plan for the non-deterministic conformant
problem P , once the merge and reset actions are removed.

5.5 The 〈K,K0〉 Planner

The third non-deterministic planner is a special case of the K-reset planner; it uses
a particular type of K translation for getting rid of the reset(a) actions and the
blocked(a) fluents. This family of translations are motivated by the fact that the
reset actions and the blocking fluents are not needed in the K-reset planner when
the translation K does not generate tags involving the hidden conditions hij(a). Not
generating tags simply means that the hidden conditions on actions execution are
not relevant to the goal or to the preconditions involved in the planning problem.

For example, the K-reset planner, for the special case of K = K0, does not require
blocking fluents and reset actions as it does not generate any tags at all, except for
the empty tag. In any case, the K0-reset planner is just too weak.

1 It is actually not necessary to delete all literals KL/t involving tags featuring the hidden
conditions hi

j(a) before applying the action a a new time; it suffices to delete all such literals
when KL does not hold. Otherwise, all literals KL/t can be maintained. This refinement is often
convenient and is part of the K-reset planner tested below.
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A much larger family of translations that do not generate tags involving the hidden
conditions hij(a) can be defined in analogy to the family of deterministic translations
Kmodels, and Ki for i ≥ 0 in chapter 3. Recall that these translations are instances
of the general KT,M translation defined by the manner in which they map subsets
of clauses of CI(L) to merges, for literals L. Given a non negative parameter x, we
denote for a translation Kx its set of merges for each literal L as mx(CI(L)). The
translation Kx follows the schema described in section 3.4. A class of translations
〈Kx,K0〉 can then be defined for the deterministic relaxation Pd of P by considering
the set of clauses in CI(L) split in two sets: the clauses ChI (L) that involve hidden
conditions hij(a) for some action a, and the clauses CoI (L) that do not. The transla-

tion 〈K,K0〉 for K = Kx is defined by discarding the clauses ChI (L) that involve the
hidden conditions, and hence by applying the Kx translation to the remaining set of
clauses CoI (L) only. Namely, the merges in the translations 〈K,K0〉 are simply the
merges mx(CoI (L)) for the goal and precondition literals L, and the resulting set of
tags is the set of tags in all such merges (along with the empty tag). The translation
〈K,K0〉 does not generate tags involving the hidden conditions hij(a), nor beliefs
that are conditional over such conditions. Thus it is not required to block or to reset
(non-deterministic) actions a whose effects depend on hidden condition. It can be
shown that:

Proposition 5.7. Any plan π returned by a classical planner from the translation
〈K,K0〉(Pd) is a plan for the non-deterministic conformant problem P once the merge
actions are dropped.

Since the 〈K,K0〉 translation does not capture disjunctive reasoning over the hidden
h-conditions, we extend it with two types of general inference rules from Palacios
and Geffner (2006), implemented as additional actions in the classical encoding that
capture some of those patterns.

The first is the static-or rule, that is based on the disjunctions L1 ∨ · · · ∨ Ln in the
problem P that are invariant , meaning that these clauses are true in all reachable
belief states.

For instance, consider the example 3.1, where the initial position is completely un-
known, being possibly one in the set S = {p1, p2, p3, p4, p5}. The clause (p1 ∨ p2 ∨
p3∨p4∨p5) expresses that the set S of (invariant) literals is exhaustive, meaning that
at least one of them must be true in every reachable state, while the set of clauses
(pi, pj) and (¬pi,¬pj) capture the mutual exclusivity of such literals, meaning that
only one of them can be true in a reachable state, for i 6= j. Given that, we can
say that the set S of literals are invariant for this planning problem. Generally, if
the non–unary clauses of I are invariant, they can be associated to sets of multival-
ued variables which value is initially unknown, and the uncertainty in the problem
corresponds to the uncertainty on such variables.

The action associated to an invariant has n conditional effects
∧
iK¬Lk → KLi, for

1 ≤ i ≤ n and k 6= i. For example, in a grid n ×m, the disjunctions x1 ∨ · · · ∨ xn
and y1 ∨ · · · ∨ ym encoding the possible x and y locations are invariant and therefore
result in two actions of this type.

The second rule, called action compilation (Palacios and Geffner, 2006), makes ex-
plicit effects that are otherwise implicit. Consider an action a that under certain
conditions C ′ can force a literal L to make the transition from false to true, while
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preventing the opposite transition. In this case it can be inferred that a makes L true,
even if it is initially unknown. This type of inference is captured in the translation
as follows:

Definition 5.8 (Action Compilation). Let be P a conformant planning problem and
K(P ) a classical translation over P . The action compilation rules are added to K(P )
for each rule a in P of the form a : C ∧¬L→ L, and the effects for the same action
a that delete L are Ci → ¬L, with 1 ≤ i ≤ n. The action compilation rules are of
the form: KC ∧K¬c1 ∧ · · · ∧K¬cn → KL, where ci is a literal in Ci.

This is a modular translation rule in which the C ′ above is the formula
(C ∧ ¬c1 ∧ · · · ∧ ¬cn), for any combination of literals ci chosen to preempt the rules
Ci → ¬L of the same action a that can add L. The action compilation rule basically
inhibit the condition of effects that would delete a literal L, added by another effect
of the same action. Action compilation obtains such implicits effects in polynomial
time as each action is considered in isolation, as a preprocessing step. This traslation
rule preserves soundness, as so do the approximation of the rule that we implemented
by using in the head of the rule only one ci for each effect Ci. This approximation is
also polinomial, as here only of of the possible combination of literals ci is used.

The family of translations 〈K,K0〉 adapt to different family of problems, and have the
vantage of needing a single call to the classical planner. They constitute a particular
case of translations, where case base reasoning ignores the hidden conditions on the
non-deterministic effects, but where it is applied to the other unknown variables of
the problem. In the experimental section below, the 〈K,K0〉 implemented planner
tests the translations incrementally. Over a planning problem, first the 〈K0,K0〉
translation is tried, then 〈K1,K0〉, and finally 〈Kmodels,K0〉. Of course, the first
translation that solves a problem ends up the planning process.

5.6 Experimental evaluation

The different translation-based strategies discussed in this chapter have been im-
plemented in different planners that make use of the KT,M (P ) translation. The
source code, written in OCaml, has been built as an extension of the translator
from conformant to classical of the planner T0 (Palacios and Geffner, 2009).

The performance of the 〈K,K0〉 and K-reset planners are evaluated using lama
(Richter et al., 2008) and ff (Hoffmann and Nebel, 2001) as the base classical plan-
ners over the translated problem. The results for the K-Replanner are not included:
the experiments using a preliminary implementation suggest that it does not scale up
due to the multiple calls over incremental versions of the planning problems: adding
a copy of a non-deterministic actions implies a polynomial increasing in the size of
the problem, making it to degrades fast as action copies are incrementally added.
The results are compared with mbp and kacmbp (Bertoli et al., 2006; Bertoli and
Cimatti, 2002), which to the best of our knowledge are the only other (qualitative)
conformant planners that deal with non-deterministic actions.
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〈K,K0〉 K1-reset mbp kacmbp
time #acts time #acts time #acts time #acts

bmtuc-10-10 0.0 20 0.0 20 65.9 29 0.2 20
bmtuc-20-10 0.1 40 0.1 40 > 2h 0.6 40
bmtuc-100-10 12.0 200 12.7 200 > 2h 25.1 200
bmtuc-100-50 5.6 200 6.1 200 > 2h > 2h
bmtuc-100-100 10.6 200 11.9 200 > 2h > 2h

btuc-100 2.7 200 2.8 200 > 2h 2.0 200
btuc-200 20.3 400 21.4 400 > 2h 16.9 400
btuc-300 70.6 600 72.8 600 > 2h 62.1 600

nondet-ring-30 430.1 206 440.9 206 > 2h 21.1 349
nondet-ring-40 1698.4 276 1729.4 276 > 2h 67.6 469
nondet-ring-50 SMF, PTL SMF, PTL > 2h 603.1 2552

nondet-ring-1key-05 0.4 30 unsolvable 0.1 33 0.2 42
nondet-ring-1key-10 12.6 77 unsolvable 11.2 122 4.0 197
nondet-ring-1key-15 101.9 272 unsolvable > 2h 33.7 375
nondet-ring-1key-20 SM unsolvable > 2.1 GB 246.5 1104

sgripper-10 0.1 47 0.9 56 > 2h 0.6 68
sgripper-30 2.5 147 34.7 176 > 2h 23.3 228
sgripper-50 16.0 247 255.1 296 > 2h 155.6 388

mouse-and-cat-10 0.3 17 11.8 17 0.0 17 0.0 17
mouse-and-cat-20 5.2 37 1031.7 37 1.8 37 0.2 37
mouse-and-cat-30 23.3 57 KT 38.8 57 0.9 57
mouse-and-cat-40 KT KT 49.2 77 2.2 77

nd-coins-06 0.0 24 0.0 24 165.9 25 1.6 45
nd-coins-08 0.0 26 0.0 26 882.1 24 2.4 52
nd-coins-10 0.0 21 0.0 21 > 2h 3.8 106
nd-coins-12 0.1 68 0.1 68 > 2h > 2h
nd-coins-20 0.1 88 0.1 88 > 2h > 2h

nd-uts-04 0.0 23 0.1 27 12.2 40 18.8 42
nd-uts-05 0.1 29 0.2 30 > 2h 735.2 61
nd-uts-06 0.1 35 0.4 40 > 2h > 2h
nd-uts-07 0.2 41 0.6 44 > 2h > 2h

trail-follow-100 0.8 198 PMF, PTL 0.2 198 0.1 198
trail-follow-150 1.3 298 PMF, PTL 0.4 298 0.1 298
trail-follow-200 1.9 398 PMF, PTL 0.7 398 0.2 398

move-pkgs-nd-3-3 0.1 22 51.7 22 8.4 28 0.3 22
move-pkgs-nd-4-1 0.0 8 34.4 8 0.0 8 0.0 8
move-pkgs-nd-4-2 0.1 35 PMF, PTL 0.1 18 0.1 28
move-pkgs-nd-4-3 0.2 28 PMF, PTL 48.3 27 1797.0 37
move-pkgs-nd-5-1 0.2 19 PMF, PTL 0.0 25 0.1 19
move-pkgs-nd-5-2 0.2 49 PMF, PTL 0.4 35 1.6 73
move-pkgs-nd-5-3 0.4 22 PMF, PTL > 2h 398.6 26

Table 5.1: Performance of the non-deterministic conformant planners based on the 〈K,K0〉
and K1-reset translations, and comparison with mbp and kacmbp.

The results are shown in Table 5.1. The table shows times in seconds, and plan
quality. Times including preprocessing, translation, and search, and are rounded to
the closest decimal. Plan quality is expressed as number of actions in plan. The
data has been generated on PCs running Linux at 2.33GHz with 8GB of RAM, with
a cutoff time of 2 hours, and a memory bound of 2.1GB. The best times for each
domain shown in bold. In legends, KT means translation time out, PMF means FF
preprocessor memory-out, PTL means preprocessor times out in lama, SMF means
that search memory-out in ff. “Unsolvable” means that the translation results in
classical planning problem with an unreachable goal (h(s0) =∞).
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Non-deterministic benchmarks

Many of the domains used in the tests are taken from the mbp, kacmbp and T0
distributions (Bertoli et al., 2006; Bertoli and Cimatti, 2002; Palacios and Geffner,
2009). These include bmtuc, btuc, nondet-ring and nondet-ring-1key, from the for-
mer, and sgripper from the latter. The first two are non-deterministic variations
of the bomb-in-the-toilet problem where the action to dunk the the bomb can non-
deterministically clog the toilet. The nondet-ring is a variation of the deterministic
ring domain, where all the windows of a ring-shaped corridor have to be closed and,
when not locked, the windows can open again). The last one is a variation of the
classical gripper domain: a movement can end non-deterministically in one of the
target rooms).

The other domains are new. Mouse-and-cat-n is about a mouse that must collect
one of m cheeses in known locations over a n × n grid. The initial position of the
cat is known, but every time the mouse moves, the cat moves non-deterministically
in one of the four possible directions. The mouse can move or grab a cheese only if
the cat is not in that position. An instance has a solution if the mouse can get to a
cheese, reaching each position before the cat does.

The domains nd-coins and nd-uts are non-deterministic extensions of the coins and
uts domains used in the conformant track of previous IPCs. In nd-coins, a certain
amount of coins is hidden and has to be collected from different floors of a building.
In this particular benchmark, the lift non-deterministically closes its doors when the
agent steps in or out. The lift can’t move if a door is left open, and an action is
available to shut the doors. In nd-uts, a traveller has to visit different destinations
in order to fulfil the goal, not knowing initially its own position. The traveller can
forget his passport in the plane after each leg of the trip and, before leaving for
another destination, there is an action to recover the passport that is necessary to
travel.

Trail-follow-n is a about an agent moving in a n × n grid from x = 0, y = n/2 to
x = n, y = n/2. There are actions for moving 1 unit along the x-axis with noise over
the y coordinate that can be +1, −1, or 0. In addition, there is an action “back-to-
trail” that moves the agent 1 unit up or down, or none, according to whether the
agent is below, above, or at the y = n/2 row (the trail).

Last, move-pkgs-n-m is about moving m objects from their initial locations to their
final locations over a n× n grid. The possible actions involve picking-up or putting-
down an object, and moving from a location to an adjacent one. The action “move”
has the non-deterministic effect that the object being held may drop at the target
location.

Empirical results

The best results in Table 5.1 are for the kacmbp and 〈K,K0〉 planners. The 〈K,K0〉
planners produce much shorter plans then kacmbp or mbp. The 〈K,K0〉 planner
used here tries different translations, in order: first the 〈K0,K0〉 translation, then
〈K1,K0〉, and finally 〈Kmodels,K0〉, until a solution is found. A translation is assumed
to fail when the classical planner reports an infinite heuristic for the initial state,
meaning that no solution can be captured by the translation.
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In the table, the classical planner used is lama, except for move-pkgs (〈K,K0〉),
btuc, trail-follow, sgripper, where results with ff have been reported. The classi-
cal planners ff and lama provide roughly a similar coverage over these domains,
with most failures arising not during the search but during preprocessing, as neither
planner has been designed to handle the huge grounded pddl files that result from
the translations. For instance, in the K1-reset translation, where tags are added
for each of the hidden h conditions, lama times out in the translation into SAS in
domains like trail-follow and move-pkgs, while in the same two domains, ff’s parser
breaks down. Likewise, in nondet-ring, ff runs out of memory in the search, while
lama times out while processing the landmarks. Last, in mouse-and-cat, the prob-
lem is in our translators, that time out. This problem, however, should be fixable
with a better implementation.

The 〈K,K0〉 translation with K = K0 produces solutions for mouse-and-cat, sgrip-
per, trail-follow, and move-pkgs, and with K = K1, solutions for all the other do-
mains except for nondet-ring-1key. For the K-reset planner, K = K1 was used in
all cases, reporting the nondet-ring-1key instances as unsolvable. Even leaving the
non-deterministic actions aside, this problem has width higher than 1 and the K1

translation does not render it solvable. Hence, the Kmodels translation ends up being
used in the 〈K,K0〉 planner, but the size of this translation grows exponentially with
the number of rooms. On the other hand, in the version without the key that has
width equal to 1, the difficulties arise in the classical planners: lama times out
while ordering the landmarks, and ff gets lost in the search. kacmbp is best on
the two nondet-ring domains.

Many solutions come from the K0 or from the K1 translation, without considering
hidden condition hij . Thus, 〈K,K0〉 is able to deal with the non-determinism involved
in many planning problems by considering them like exogenous events from which
the plan can be recovered into a known state by deterministic actions.

In principle, mbp and kacmbp can deal with a broader sets of problems, they are
provably complete, but they tend to get lost more easily in the search in problems
that have a significant planning component. The reason of that behaviour has to
be searched in the heuristics used by these two planners. The accent is put to the
cardinality of the belief state, i.e. the number of states that it includes. In certain
domains, this is an useful guide to the search, but the classical planners make use of
more powerful search estimates on top of the classical translation KT,M (P ).

5.7 Discussion

The translation-based approach to conformant planning for settings where some of
the actions have non-deterministic effects makes use of a deterministic relaxation
that is correct as long as the non-deterministic actions are executed at most once.
One theoretical issue for the future, involves studying the conditions under which
some of the incomplete translations described before are either strongly or weakly
complete. A translationK(P ) is strongly complete if it captures all plans for P , and is
weakly complete if it captures some plans. In the latter case, the translation is useful
too, as it can be used to obtain a plan for P . The K1 translation for deterministic
conformant planning is strongly complete for problems with width bounded by 1, and
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yet it is often effective (weakly complete) for problems with higher widths. These
characterizations are still to be worked out for the incomplete translations proposed.

The problems that cannot be solved by the 〈K,K0〉 and K-reset planners are prob-
lems that involve non-trivial disjunctive reasoning patterns over the hidden condi-
tions h. For example, consider a problem where a goal x = n + 1 is to be achieved
starting from x = 0 and y = 0 with an action that increases x one by one up to
x = n, and increase y non-deterministically by either 1 or 0. If there are then n
actions enter(i), with 1 ≤ i ≤ n, to move from x = n to x = n + 1, each with
condition y = i. The plan that increases x for n times, followed by the actions
enter(1), . . . , enter(n), solves the problem, but can’t be captured by the 〈K,K0〉
and K-reset planners for any translation K if n > 2.

While the results show that the translation-based approach is feasible and com-
petitive in the non-deterministic setting, they also suggest that scalability could be
improved by integrating the classical planner and the translators more tightly. More-
over, tags in the translation play two roles: keeping track of the “conditional beliefs”,
and producing the heuristic for guiding the search over beliefs. It seems also that
scalability could be improved by separating these two roles, and implementing them
in different ways.

Related work

The planners mbp and kacmbp allow to represent non-deterministic effects in ac-
tions’ outcome as these two planners are based on model checking technique that
relies on non-deterministic state transition systems (Bertoli et al., 2001; Bertoli and
Cimatti, 2002).

Many other planner that deal with incomplete information, like pond (Bryce et al.,
2006), do not encode non-deterministic effects. The reason seem to lie in a pref-
erence for probabilistic effects rather than non-deterministic effects; the difference
being that –in theory– non-deterministic effects imply that no particular effect is
preferred over the others, meaning simply that the action model is completely un-
known to the planning agent. Conformant planning with non-deterministic action
effects can be indeed done as probabilistic planning and asking for a 1.0 probability
plan. the use of probabilities appear to us to be justified only in those cases where
the (non-deterministic) action model is already partially known, which doesn’t ap-
pear to be the case in the general setting of planning under incomplete information
as conformant and contingent planning.

5.8 Summary

We have considered extensions of the translation-based approach to conformant plan-
ning problems where some of the actions have non-deterministic effects. We employed
a deterministic relaxation that is sound as long as the non-deterministic actions are
executed at most once. We then considered several incomplete translation schemas
and planners that use this relaxation, some of which appear to be quite effective
and map non-deterministic conformant problems into classical ones. Two of these
planners, based on the K-reset and 〈K,K0〉 translations, are compatible with any
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translation K, and in particular, the 〈K,K0〉 translation applied successively for
K = K0 and K = K1 appears to be quite effective. The empirical results of these
translations are encouraging, even if the resulting planners do not always perform
better than existing ones.

The non-deterministic effects in actions are a typical but non commonly used source
of incomplete information in planning. Typically actions with multiple possible ef-
fects encode exogenous events, or partial knowledge of actions outcome. When the
action model is not well known, the actions outcomes are not previsible. Our en-
coding allow us to use assumptions on the initial situation to model such kind of
planning problems. This topic will be discussed deeply in chapter 7.

Conformant planning is fundamental in dealing with problems with incomplete in-
formation, as the ability to find conformant plans is needed in contingent settings
where conformant situations are an special case. The contingent planning model
extends conformant planning with the addition of sensing actions: actions that allow
the planning agent to observe some features of the world. Contingent planning is
one of the most computationally difficult tasks of automated planning and is well
adapted to model real world problems. We use results obtained from conformant
planning to characterise and express families of translations adapted to contingent
planning.
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Chapter 6

A translation-based approach to
Contingent Planning

In this chapter, we introduce an approach to contingent planning that uses and
extends ideas advanced recently for compiling conformant problems into classical
planning problems (Palacios and Geffner, 2007).

Here, a contingent problem P , which is a non-deterministic search problem in belief
space, is compiled into a non-deterministic problem X (P ) in state space whose literals
represent the beliefs over P . We assume that the problem P involves uncertainty
in the initial situation only, and that actions are all deterministic. As we will see,
a straightforward sound and complete compilation is feasible by tagging each of the
fluents L in P with the possible initial states of P .

This compilation, however, is linear in the number of possible initial states, which
is in turn exponential in the number of fluents. We show nonetheless that even in
such cases, a sound, complete, and polynomial translation X (P ) is possible, provided
that the problem P has bounded contingent width, and we show that the contingent
width of almost all existing benchmarks is 1; a result that parallels the one for
conformant planning reported by Palacios and Geffner (2009). We then show how the
non-deterministic but fully observable problem X (P ) can be solved using a suitable
relaxation X+(P ) that is a classical planning problem. The resulting contingent
planner CLG (Closed-Loop Greedy Planner) accepts then a contingent problem P
with deterministic actions, and solves it by using the translation X (P ) for keeping
track of the beliefs, and a suitable strengthening of the relaxation X+(P ) for selecting
the actions to apply next. We finally present empirical results and a summary.

Results from this chapter have been published in

• A Translation-based Approach to Contingent Planning, by A. Albore, H. Pala-
cios, and H. Geffner, in 21st International Joint Conference on Artificial Intel-
ligence (IJCAI-09), Pasadena, California, 2009 (Albore et al., 2009).

• Fast and Informed Action Selection for Planning with Sensing, by A. Albore,
H. Palacios, and H. Geffner, in Lecture Notes in Computer Science – Current
Topics in Artificial Intelligence, 12th Conference of the Spanish Association for
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Artificial Intelligence (CAEPIA), Salamanca, Spain. Springer, 2007 (Albore
et al., 2007).

6.1 Motivation

Contingent planning is concerned with the problem of achieving goals in the presence
of incomplete information and sensing actions (Peot and Smith, 1992; Pryor and
Collins, 1996). This is one of the most general problems considered in the area of
planning and one of the hardest (Haslum and Jonsson, 1999; Rintanen, 2004). In
the last few years, significant progress has been achieved resulting in a variety of
contingent planners that can solve large and non-trivial problems, usually by casting
the contingent planning problem as a search problem in belief space (Bonet and
Geffner, 2000).

In spite of this progress, however, a large obstacle remains: many problems involv-
ing incomplete information and sensing actions have solutions of exponential size.
This is different than in classical or conformant planning where exponential length
solutions are the exception. Contingent plans of exponential size follow naturally
from situations where the number of observations required is linear in the size of the
problem1.

Domain-independent planning techniques can be exploited for dealing with these
problems. However, rather than aiming at constructing full contingent plans, we
aim at an effective action selection mechanism that chooses the action to do next
in closed-loop fashion. For this to work, the action selection mechanism must be
fast and informed. Indeed, while it is not possible to consider explicitly all possible
combination of contingencies that may arise, these contingencies cannot be ignored.
So, an action selection mechanism that implicitly takes all contingencies into account,
is the greedy policy πh(b) obtained with a sufficiently informed heuristic function h(b)
over the beliefs b. For suitable heuristic functions (e.g., the optimal value function),
the resulting policies are optimal. In practice this approach faces two problems: the
difficulty of getting fast and informed heuristics over belief space, and the time and
space complexity of carrying out the beliefs.

As we will see, a contingent planning problem P can be converted into a suitable
planning problem X (P ) at the knowledge-level whose states represent belief states
over P . The problem X (P ) is thus a fully observable but non-deterministic planning
problem, whose solutions represent solutions to the contingent planning problem P .
These problems cannot be directly fed into classical planners, but an appropriate
relaxation H(P ) can. Classical heuristics for H(P ) hence estimate the length of
plans that implicitly consider all the contingencies while taking sensing actions into
account. With these transformations performed as preprocessing, the action selec-
tion problem in planning with sensing is mapped into an action selection problem in
classical planning. The resulting Closed-Loop Greedy planner (CLG) scales up well:
constructing contingent plans faster than other planners over a broader range of sce-
narios, and producing also meaningful executions in problems where the construction
of full contingent plans is not feasible.

1 Compact solutions to these problems are often possible in languages closer to the ones used in
programming that accommodate loops and subroutines, yet planning with such constructs appears
to be very hard (as hard as automatic programming), and as shown here, not always necessary.
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6.2 The translation X (P ) for Contingent Planning

Our intention is to use the results and advances obtained for conformant planning to
solve contingent planning problems. Contingent planning is more complex than con-
formant planning, as conformant planning can be seen as a special case of contingent
planning. In fact, contingent planning adds the possibility to perform sensing to a
conformant planning problem with uncertainty, but no sensing available. Removing
sensing actions from a contingent problem P yields a conformant planning problem,
where uncertainty is embedded in the initial situation only.

However, the direct translation of a contingent problem P into an equivalent classical
problem P ′ is not possible as the problems have different solution form. The solution
to a conformant problem is an action sequence, while the solution to a contingent
problem P is a contingent plan that can be regarded as a policy tree Π: a tree2 with
a function mapping the internal nodes n of the tree into actions a(n) in P . Roughly,
a node n in the tree has many children when the action a = a(n) is a sensing action3,
so that the different (complete) branches stand for the different possible executions.
A policy tree Π solves the problem P when the executions associated with each of
the branches in Π are all feasible (i.e. the action preconditions hold when actions
are applied), and end up in belief states where the goals are true.

Since contingent plans are not just sequences of actions, we cannot derive (inter-
esting) contingent plans from a classical planner following similar technique as in
chapter 3. Rather, here we aim at obtaining heuristics from a translation of a con-
tingent planning problem P into a classical planning problem K(P ), and an efficient
and compact belief representation that, while not always complete4, will be suffi-
ciently flexible and practical to enable the solutions of interesting problems.

Execution model: the X (P ) translation

Contingent problems P cannot be translated into classical problems but can be
translated into non-deterministic fully observable problems: these are problems where
the states are observable and some actions have non-deterministic effects. (Strong)
solutions to such problems are also policy trees: in fact a solution must hold for
any possible branch of the tree Π; the difference being that belief states b(n) in P
associated to each node n in Π can be replaced by plain states s(n) over a non-
deterministic fully observable problem X (P ). The benefit of this translation, that is
common to the translations of conformant problems into classical ones, is that beliefs
are compiled away in the target problem. Of course, the translation is fully efficient
when the mapping from P to X (P ) can be done in polynomial time.

To describe contingent planning problems, we consider a planning language that
extends STRIPS with conditional effects, negation, an uncertain initial situation,
and sensing actions. We use the definition 2.3, where a contingent problem P is a

2 Most contingent planners build graphs rather than trees, yet this distinction is irrelevant from
a theoretical point of view.

3Generally it is considered that the children nodes of a sensing action a are two: one of each
possible truth value of the observed (Boolean) variable. Of course, in case of multivalued variables,
the potential outcomes of an observation are as many as the possible values of the variable can be.

4The approach is sound but incomplete, meaning that some solutions of P (contingent plans)
are not solutions of K(P ).
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Figure 6.1: Steps for the X (P ) translation.

5-tuple < F ,A,O, I,G >, where O is the set of observations or sensing actions5.
Each sensing action is described by a pair < C,L >, meaning that when C holds,
then the truth value of fluent L can be observed. An observation that uncovers the
truth value of a positive literal L and is also denoted as obs(L). Observations may
have preconditions, but for simplicity we assume that they do not have any other
effects. Sensing actions have a different scope and meaning than regular actions:
while an action modifies the environment by acting on it, a sensing action does not
change the status of the environment, but reveals it, when initially hidden to the
planning agent. A normal action a ∈ A has preconditions given by a set of fluent
literals, and a set of conditional effects C → L where C is a set of literals and L is a
single literal.

We start by defining the conformant fragment P ′ of the contingent problem P with-
out the sensing actions. So if P is described by the tuple 〈F ,A,O, I,G〉, then
P ′ = 〈F ,A, I,G〉. On top of P ′, we apply the KT,M translation as seen in defini-
tion 3.2, to obtain a fully observable problem KT,M (P ′) which is a classical planning
problem.

To obtain the translation X (P ) = XT,M (P ), we extend the former translation
KT,M (P ′) with two components: an encoding of the sensing actions, expressed as
non-deterministic actions, and two deductive rules expressed as actions that extend
the merge rules used for conformant planning, reflecting that tags may be inferred to
be false when observations are gathered. We will see that the translation XT,M (P )
is sound, and that for suitable choices of tags T and merges M , it can be shown to
be complete too.

Example 6.1. We can consider, as a motivating example, the following contingent
planning problem: a robot in a T-shaped corridor has the goal of reaching one of the
two extremes of the T (top left or right end). A sensor at the bottommost cell of the
central corridor indicates whether the goal is on the left or the right.

This problem can be modelled with the standard up, down, left, and right move
actions, that move the agent one cell in the relative direction, and with the goal

5 No closed world assumption about I is made throughout the presentation, yet as it is standard,
the actual planner assumes ¬L in I if the positive literal L is not mentioned at all in I.
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(p ∧X1) ∨ (¬p ∧X2) where X1 and X2 stand for the possible goal locations. Notice
that this goal is made by two disjuncts, but it can be brought back to a conjunction
by simply adding a “end” action with each term as precondition and a single effect
literal g set to be the goal of the problem. The goal also depends on the value of the
fluent p that encodes the information available in the bottommost cell, that can be
obtained from an information gathering action obs(p) =< X5, p >:

obs(p) : X5 → p | ¬p

where X5 is the location of the bottommost cell, and p corresponds to the (hidden)
domain variable encoding the goal location.

Without the presence of the information gathering action, this problem would be
unsolvable because the truth value of the fluent p could never be uncovered.

The sensing actions obs(L) :< >, L > in the contingent problem P become in X (P )
the non-deterministic actions

obs(L) : ¬KL ∧ ¬K¬L → KL |K¬L . (6.1)

These are physical actions that result in either KL or K¬L when neither KL nor
K¬L hold before6, thus capturing the effect of observing the truth value of L at
the knowledge-level (Petrick and Bacchus, 2002). If either L or ¬L is known before
applying obs(L), the action has no effect.

Additional deductive rules are needed in X (P ), as the tags t that are initially un-
known may become known due to observations. For example, if the disjunction
x1 ∨ x2 is true in the initial situation, an action a with conditional effect x1 → y is
applied, and y is then observed to be false, it should be possible to conclude both
K¬x1 and Kx2 (provided that a doesn’t affect x2). Moreover, if this is followed by
an action b with conditional effect x2 → L, it should be inferred KL as well.

The additional deductive rules are encoded as actions with single conditional effects:

1. Contingent Merge:
∧
m∈M
t∈m

(KL/t ∨K¬t) → KL (6.2)

2. Tag Refutation: KL/t ∧K¬L → K¬t (6.3)

Contingent Merge (CM) is a generalization that subsumes the Merge actions
in the conformant translation by replacing every literal KL/t by the disjunction
KL/t ∨ K¬t. This is because in the contingent setting it suffices to have L true
given the tags t in a merge m that have not been refuted by the observations for L
to be known.

Tag Refutation (TR) yields the tags t that are refuted by the observations: these
are the tags that predict a literal L which is known to be false. In these rules, Kt
and K¬t refer to new atoms added to X (P ) = XT,M (P ) for all t ∈ T (except the
empty tag).

6Recall that in the KT,M (P ) translation the couple of new fluents KL and K¬L indicate that
the fluent L in the original problem is “known to be true” and, respectively, “know to be false”.



100 A translation-based approach to Contingent Planning

The use of these rules is combined with a simple transformation that make all tag
literals static. A static literal is never added or deleted by some action effect. So, in
case a tag in the initial situation equals to a non static L (and L can be a conjunction
of literals), then the new atom Kt is added in the translation to refer to the tag,
instead of using KL. The tags considered for the translation are then limited to such
static literals only.

Definition 6.1 (Non-deterministic fully observable translation XT,M (P )). For a
contingent problem P , XT,M (P ) is the non-deterministic, fully observable problem
given by translation KT,M (P ′) of the conformant fragment P ′ of P , extended with
the non-deterministic actions in eq.(6.1), and the deductive actions CM and TR.

For a contingent problem P = 〈F ,A,O, I,G〉, the problem equivalent to the con-
formant fragment P ′ is given by P ′ = 〈F ,A, I,G〉. Finally the classical problem
XT,M (P ) = 〈F ′,A′, I ′,G′〉 is:

F ′ =
{
KL/t,K¬L/t

∣∣ L ∈ F}
A′ =

{
a : KC/t→ KL/t, a : ¬K¬C/t→ ¬K¬L/t

∣∣ a : C → L in A
}
∪{∧

t∈m
KL/t ∨K¬t→ KL

∣∣ m ∈M} ∪{
KL/t ∧K¬L → K¬t

∣∣ t ∈ m,m ∈M} ∪{
KC ∧ ¬KL ∧ ¬K¬L → KL ∨ K¬L

∣∣ obs(L) =< C,L >∈ O
}

I ′ ={KL/t
∣∣ if I |= t ⊃ L}

G′ ={ KL
∣∣ L ∈ G}

with the preconditions of the actions a in KT,M (P ) including the literal KL if the
preconditions of a in P include the literal L, and t ranging over T .

Example 6.2. Consider a contingent problem P with I = {¬s}, G = {h}, actions a
and b with effect h and preconditions d and ¬d respectively, action c with conditional
effect d → s and no precondition, and the sensing action obs(s) =< >, s >. The
objective is to obtain h without knowing if d is initially true or false. A contingent
plan for this problem is

Π = {c, obs(s), if true a else b}

that can be understood as a policy tree with two complete branches with action/observation
sequences π1 = [ c, o+(s), a ] and π2 = [ c, o−(s), b ], where o+(x) and o−(x) stand for
observing x and ¬x respectively.

c

obs(s)

o+(s)

a

o−(s)

b

In the translation XT,M (P ) with tags t1 = {d} and t2 = {¬d}, and merge m = {t1, t2}
for d and ¬d, this plan would work as follows:
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1. The action c in the first branch yields the literal K¬s/t2, while o+(s) yields the
literal Ks.

2. From TR, it follows K¬t2, which along with Kd/t1 (that is initially true and
persists) permits to obtain Kd from CM for L = d, so that action a can be
applied and the goal Kh obtained.

3. The second branch works in a similar way, but with o−(s) yielding K¬s.

The former example shows that the solution tree Π for P solves also the translation
XT,M (P ) for suitable tags and merges, provided that deductive actions (merges and
tag refutations) are interleaved with plan execution. This is the basis for the notions
of soundness and completeness below.

6.3 Properties of X (P )

The proofs of all the theorems in this chapter are detailed in Appendix A.

The first result that can be established is that the translation XT,M preserves con-
sistency, i.e. if P is a consistent contingent planning problem, then the translated
problem XT,M (P ) is consistent as well7.

Theorem 6.2 (Consistency of X (P )). Let be a contingent problem P . A valid
translation X (P ) is consistent if P is consistent.

To prove the soundness and completeness of the translation X (P ) we consider for
convenience policy trees Π∗ for X (P ), where the labels a(n) associated with the
internal nodes of Π∗ can stand for an action a in P followed by a (possibly empty)
sequence of deductive actions (merges and tag refutations). We write then a(n) =
a∗ and prevent deductive actions from appearing anywhere else in Π∗. As in the
execution in X (P ) actions are followed by the application of deductive actions, any
policy tree for X (P ) can be written in this way.

With this notation, two transformations on policies can be defined: dropping the
deductive actions from Π∗ replaces the “actions” a(n) = a∗ by the actions a(n) = a
over all nodes in Π∗, and vice versa, adding deductive actions in a policy Π for P ,
replaces the actions a(n) = a by a(n) = a∗ for suitable sequences starting with a.
The soundness and completeness of X (P ) can be then defined as follows:

Definition 6.3 (Soundness). A translation X (P ) is sound if for any policy tree
Π∗ that solves X (P ), the policy tree Π obtained from Π∗ by dropping the deductive
actions solves P .

Definition 6.4 (Completeness). A translation X (P ) is complete if any policy tree
Π that solves P can be extended into a policy tree Π∗ that solves X (P ) by adding
some deductive actions to Π.

The first result that can be established is soundness:

7We recall that a contingent problem P is consistent if the initial situation I is logically con-
sistent, and every pair of complementary literals L and ¬L is mutex in P .
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Theorem 6.5 (Soundness). The translation X (P ) is sound.

The proof is immediate, considering that the deductive actions in eq.(6.2) and (6.3)
are not present in problem P .

The conditions that ensure completeness are more subtle and are considered below.
A simple complete translation however can be obtained from the general XT,M (P )
scheme as in conformant planning, by letting the set of tags T represent the set
S0 of all the possible initial states of P and by having a single merge m for each
precondition and goal literal in P s.t. m = S0. We call the resulting translation
XS0(P ):

Theorem 6.6 (Completeness of XS0). The translation XS0(P ) is sound and com-
plete.

This translation XS0(P ) is exponential in the number of uncertain fluents in the
initial situation of P , in the worst case, as S0 stands for the set of all the possible
initial states of P . Still, where this number is small enough, the translation can be
quite effective. Before addressing how these non-deterministic but fully observable
problems X (P ) are solved, we consider complete translations that may be compact.
We assume from now that all merges are valid.

Covering translations

Similarly to what happens in conformant planning (Palacios and Geffner, 2006), the
merges m = {t1, . . . , tn} that are needed for completeness in X (P ) are the ones in
which each tag ti subsumes the clauses in I that are relevant to the precondition
and goal literals of P . Clearly, the merge m = S0 achieves this, yet more compact
merges will often do as well. We will say that a merge m = {t1, . . . , tn} with tags ti
all consistent with I, satisfies a set of clauses C if for each ti in m, and each clause
c in C, there is at least one literal ci in c entailed by ti and I. For characterizing
the set of clauses CI,O(L) that are relevant to a given literal L, we assume that
I is in prime implicate form (Marquis, 2000), meaning that I includes only the
inclusion-minimal clauses it entails. I is then extended with the tautologies (L∨¬L)
for complementary literals L and ¬L that do not appear as unit clause in I.

Definition 6.7 (Set of relevant clauses CI,O(L)). For a literal L in P , with I in
prime implicate form, CI,O(L) is the set of non-unary clauses c ∈ I such that each
ci ∈ c is relevant8 to an observable literal L′ in O or to L.

O stands for a set of observables: literals L such that either obs(L) or obs(¬L) is a
sensing action in P .

The implication of the set O of observables in definition 6.7 is the main difference with
the corresponding result for conformant planning. This set can be taken to comprise
the set of all observables, yet a smaller set does as well: it suffices to take O = O(L)
to be the observables that may affect L. This reduced set O(L) corresponds to the
unique minimal set of observable fluents that obey the following condition:

8 The notion of relevance used here is the same than the one from definition 3.15.
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Definition 6.8 (Set of relevant observables O(L)). Given a literal L in a contingent
problem P , the set of observables O(L) is the set of literals {Li}ni=0 such that, given
a clause c = (c1, . . . , cm) in I, the literals Li verify:

• c1 is relevant to Li, for a fixed i, and

• exists a ck in c such that ck is relevant to Lj, where Lj ∈ O(L) or Lj = L.

If i = j, the membership of Li in O(L) is trivial, as Li already belongs to O(L).

Again, in the contingent setting the literals that affect L are not the same as the
literals that may affect L in the conformant setting, which are fully characterized
by the notion of relevance. Until now relevance expresses “causal relevance”, but in
the contingent setting there is “evidential relevance” as well, which expresses how
possible observations affect information about the current belief.

The condition for completeness can then be expressed in terms of the clauses CI,O(L)
for each precondition or goal literal L, as these clauses are the ones needed for solving
the problem. We call this set of clauses CI,O.

Definition 6.9 (Covering translation). XT,M (P ) is a covering translation for a
contingent problem P when for each precondition and goal literal L in P such that
CI,O(L) is non-empty, the set M contains a merge m that satisfies CI,O(L).

Theorem 6.10. Covering translations XT,M (P ) are complete.

As an illustration, we can consider the following example:

Example 6.3. Let’s consider the contingent problem P that has initial situation
I = {(x1 ∨ . . .∨ xn)}, goal G= {y}, actions ai with precondition xi and effect y, and
sensing actions obs(xi) =< >, xi >, with 1 ≤ i ≤ n.

For this problem, a translation XS0(P ) would be exponential in size, as in I the xi
are not mutually exclusive.

On the other hand, the translation XT,M (P ) with tags ti = {xi} and merge m =
{t1, . . . , tn} for each precondition xi can be shown to be covering, and hence complete.
For the goal y, the set CI,O(y) is empty because O(y) is empty, as there are no obs-
ervations relevant to a literal in a clause with y. For the preconditions L = xi, the
set CI,O(L) contains all the prime implicates that follow from (x1∨ . . .∨xn) –in this
case O(xi) includes all the observables–, all of which are satisfied by each ti in m.

The completeness results presented here are important for both testing whether a
translation is complete and to generate complete translations. Indeed, for generating
a covering translation we just need to identify the set CI,O(L) and compute a (valid)
merge m that satisfies CI,O(L). This computation is polynomial if the size of this set
is bounded.
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6.4 Contingent width and the Xi translation

The CNF formula CI,O(L) encodes the uncertainty in I relevant to the precondition
and goals L. Covering translations “require” the translation of the CNF formula
CI,O(L) in a DNF formula entailed by I (the merge for L) and that satisfies CI,O(L).
Such DNF formula can be characterized by considering the cover c(C) of a set of
clauses C (cf. definition 3.14), i.e. the collection of all minimal sets of literals S that
contain a literal of each clause in C, and that are consistent with the initial situation
I. The cover c(C) satisfies C, and can be computed in polynomial time if |C| is
bounded. From the completeness of covering translations, it follows that a complete
translation XT,M (P ) can be constructed in polynomial time if the size |CI,O(L)| is
bounded, for all preconditions and goals L in P . Unfortunately this condition rarely
holds, yet there is a weaker sufficient condition that does: it is often possible to find
a subset C of clauses that are either in CI,O(L) or are tautologies (p∨¬p), for any p
or ¬p mentioned in CI,O(L), such that c(C) satisfies CI,O(L). The contingent width
of a literal L is defined in terms of the cardinality of such sets:

Definition 6.11 (Contingent Width of a Literal). The contingent width of a literal
L in P , written w(L), is the size of the smallest (cardinality-wise) set of clauses
C in CI,O(L) ∪ Taut such that c(C) satisfies CI,O(L), with Taut denoting the set
of tautologies (p ∨ ¬p), for any p or ¬p in CI,O(L) (if both appear in CI,O(L), then
(p∨¬p) is in CI,O(L) from its definition). We will refer with C∗I,O(L) to this extended
set of clauses, i.e. C∗I,O(L) = CI,O(L) ∪ Taut.

A consequence of this definition is that the width of a literal lies in the interval
0 ≤ w(L) ≤ n, where n is the number of fluents in P whose status in the initial
situation is not known. The width of a problem is the width of the precondition or
the goal literal with maximum width:

Definition 6.12 (Contingent Width of a Problem). The contingent width of a con-
tingent problem P , written as w(P ), is w(P ) = maxLw(L), where L ranges over the
precondition and goal literals in P .

Like for the (tree)width of graphical models, computing the width of a problem P is
exponential in w(P ), so the recognition of problems with small width can be carried
out quite efficiently (Palacios and Geffner, 2009):

Proposition 6.13 (Time complexity of contingent width). The width w(P ) of P
can be determined in time that is exponential in w(P ).

In particular, we can test if w(P ) = 1 by considering one by one each of the sets C
that includes a single clause from C∗I,O(L), verifying whether c(C) satisfies CI(L) or
not. If w(P ) 6≤ 1, then the same verification must be carried out by setting C to each
set of i clauses in C∗I,O(L) for increasing values of i. For a fixed value of i, there is
a polynomial number of such clause sets C and the verification of each one can be
done in polynomial time. Moreover, from the arguments above regarding w(L), the
width of the problem w(P ) can never exceed the number of unknown fluents in the
problem.

The translation Xi(P ), for a non-negative integer i, is a special case of the general
translation XT,M (P ). For a fixed i, the translation is sound, polynomial in i, and
complete if w(P ) ≤ i.
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Definition 6.14. The set of merges for a precondition or goal literal L in Xi(P )

1. is empty, if CI,O(L) is empty,

2. contains a single merge m = c(C), if C is a set of at most i clauses in
C∗I,O(L) such that c(C) satisfies CI,O(L),

3. is the collection of all merges m = c(C), for each set C of i clauses in C∗I,O(L),
otherwise.

The tags in Xi(P ) are that ones appearing in the merges along with the empty tag.

Theorem 6.15. For a fixed i, the translation Xi(P ) is sound, polynomial, and if
w(P ) ≤ i, covering and complete.

The translation X (P ) in the example 6.3 above, with I = {xor(x1, . . . , xn)}, is
evidently an instance of the X1(P ) translation, and is then polynomial in size when
a translation XS0(P ) would be not.

Like in conformant planning, the contingent width of almost all contingent bench-
marks turns out to be 1, and hence for these problems, the X1(P ) translation is
sound and complete. Still, it is not necessary for X1(P ) to be complete for being
useful: if the translation X1(P ) is solvable, it can produce a solution to P . The
incompleteness of X1(P ) just means that there is no guarantee that all solutions to
P can be obtained in this way.

6.5 The CLG planner

The computational pay-off of the translation X (P ) is that it allow us to compute
plans with states represented by sets of literals, rather than with beliefs represented
by sets of states. Nonetheless, the solution of non-deterministic fully observable
problem like X (P ) is not trivial. Fortunately, however, X (P ) is a problem of a special
type that can be solved using classical planning techniques. The central point resides
in solving a relaxation X+(P ) which is a classical planning problem, and that will
provide an informed heuristic to solve X (P ) efficiently. These translations are the
base of the CLG contingent planner.

Heuristic model: the H(P ) relaxation

Hoffmann and Brafman (2005b) shown that removing the preconditions and moving
them into the conditions of the actions would end up in having a conformant planning
problem. We want to apply such a transformation to contingent problems, deprived
of sensing actions, to derive an informed and effective heuristic that can be used to
solve X (P ) by selecting the action to do next without having to construct the full
plan first.

The relaxation is based first on a transformation of the contingent problem to a
conformant problem, then to a classical problem. The key result is based on the
classical planning problem X+(P ), which stands for the relaxation of X (P ) where
deletes, preconditions, and actions with non-deterministic effects are dropped.



106 A translation-based approach to Contingent Planning

P'
conformant 
fragment

K(Pc)
classical 
problem

H(P)
heuristic model

KTM translationremove 
sensing actions

deterministic 
sensing

P
contingent 
problem

sensing 
actions

move 
preconditions 
in conditions

insert ML in 
preconditions

relax delete 
effects

Pc
conformant 
fragment

X+(Pc)
classical 
problemadd deductive 

rules

Figure 6.2: Steps for the H(P ) translation.

Theorem 6.16. If X (P ) is a covering translation and Π∗ is a policy tree that solves
X (P ), then there is a classical plan π for the relaxation X+(P ) that only uses the
deterministic action in Π∗.

The proof comes directly from the applicability of the policy tree in X+(P ), and the
fact that for Π∗ to be a solution, the goal is reached regardless of the sensing results. A
very similar results applies to generous execution semantics (Hoffmann and Brafman,
2005b), where there is a sequence of the non-sensing actions in a contingent plan for
a problem P that can be linearised to yield a conformant solution to relaxation P+

obtained from P by assuming empty preconditions and delete lists. The difference
being here that the positive thinking relaxes the preconditions only respect to the
observations outcomes.

Like in classical planning, we can use the relaxation X+(P ), that can be solved in
polynomial time, to get estimates of the size of the plans that are needed for solving
X (P ). The result applies to covering translations X (P ), but not to arbitrary non-
deterministic problems, which can be rendered unsolvable when the non-deterministic
actions are dropped.

In the CLG planner, the relaxation X+(P ) is strengthened in two ways. First, rather
than using X+(P ), we use a stronger relaxation X+(Pc) obtained from a problem Pc
that is equivalent to P but with each precondition L of an action a in P copied as a
condition of all the effects associated with a. The result is that “wishful thinking” in
X+(Pc) about the applicability of actions does not translate into “wishful thinking”
about the action effects. This is crucial for the heuristics obtained from X+(Pc)
to be well informed. In Contingent-FF, a similar transformation is used, where
preconditions in P are moved in as conditions (Hoffmann and Brafman, 2005b), the
difference being here that preconditions are relaxed only with regard to the sensing
actions’ effects, maintaining so the central role of sensing in the contingent setting.

Second, rather than making the preconditions of an action a in X+(Pc) empty, we
add literals ML for each precondition L of a in P expressing roughly that L must
be known in some branch of the contingent plan. The ML literals are added by a
suitable relaxation of the sensing actions obs(L)

obs(L) : ¬KL ∧ ¬K¬L → ML ∧M¬L ∧ o(L) (6.4)

that makes both ML and M¬L true after observing the truth value of L. The
model is enriched by deductive actions similar to the ones used for the KL literals
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in equations (6.2) and (6.3) :

M−CM :
∧

t,t′∈m
t′ 6=t

M¬t′ →Mt (6.5)

M−TR : KL/t ∧ o(L)→M¬t (6.6)

M−K : KL→ML (6.7)

with o(L) representing an atom that is true when the action obs(L) has been done.
Moreover, for each action a in P with effects a : L1 ∧ . . . Ln → L, the M -action
a : ML1 ∧ . . . ∧MLn →ML is added as well in X+(Pc).

The classical planning problem that results from these extensions is what we call the
heuristic model H(P ):

Definition 6.17 (Heuristic Model). H(P ) is the classical planning problem given
by the relaxation X+(Pc) extended with the ML literals into the preconditions for
each precondition L in P , the encoding in eq.(6.4) of the sensing actions, the actions
M-CM, M-TR, and M-K, and the rules a : MC → ML for each rule a : C → L
in P .

The sensing actions obs(L) in the form (6.4) are part of this classical model H(P )
as they are needed for achieving the ML preconditions of other actions. The ML
literals in the model H(P ) arise from the observations of the KL literals, and get
propagated by the M -actions and deductive rules.

Example 6.4. To illustrate the heuristic model we can consider an action a with
precondition L and effect L1 → L2 in P . In H(P ) then a will be an action with
precondition ML and effects:
ML1 →ML2, and
KL/t ∧KL1/t→ KL2/t, for all tags t in H(P ).

The CLG action selection mechanism

The Closed-Loop Greedy (CLG) planner uses the X1(P ) translation, called now the
execution model, for keeping track of beliefs, and the heuristic model H(P ) for select-
ing the actions to do next in a closed-loop fashion. Starting with the initial state s
of the problem X (P ) = X1(P ), an action sequence π is selected for application in s,
and the loop resumes from the resulting state s′, until s′ is a goal state in X (P ). The
action sequence π is obtained using a modified version of the classical FF planner.
In FF, a single enforced hill climbing (EHC) step is a local search that results in an
action sequence π that maps a state s to a state s′ with a better heuristic value hff.
In this local search, the classical model is used for doing the state progression, and its
delete-relaxation for computing the relaxed plans. In CLG, the same search strategy
is adopted, with the execution model X (P ) used for the progression, and the heuris-
tic model H(P ) used for computing the relaxed plans. In addition, in order to avoid
the consideration of non-deterministic actions in the local search, whenever a “local
plan” π that ends in a sensing action obs(L) is being considered, the action sequence
π is returned without further evaluation. Notice that for an action to be considered
into the local plan, the action must have been found to be “helpful” according to
FF’s criterion.
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Figure 6.3: The closed-loop greedy action
selection mechanism.

The CLG planner can be used on-line
or off-line. In the first case, the non-
deterministic actions obs(L) in X (P ) are
applied by selecting one of outcomes ran-
domly9; in the second, both outcomes are
considered. In both cases, CLG is invoked
recursively on the resulting states. In on-
line mode is used for capturing single exe-
cutions: the planner behaves as a reactive
platform, interleaving sensing with plan-
ning actions. In off-line mode, the plan-
ner is used for constructing full contingent
plans. While an off-line plan is a tree-
shaped sequence of actions and observa-
tions, forking on sensing outcomes, an on-
line solution is simple a sequence of ac-
tions and observations as the observation
outcome is provided directly by sensing on
the environment.

Implementation

CLG is implemented on top of a revised
version of ff v2.3 (Hoffmann and Nebel,
2001) that loads a single pddl file where
convenient flags are used for distinguishing
the X (P ) and H(P ) models.

The translations used in CLG accommo-
date certain simplifications and some addi-
tional actions that are in line with general
encoding, and make explicit certain types of deductions for efficiency purposes:

1. for each static disjunctions c = (L1 ∨ · · · ∨ Ln) in P , KLi is derived in X (P )
from the following deductive rule:∧

i 6=j
Li,Lj∈c

KLi → K¬Lj

2. A generalization rule subsumed by contingent merge and the static merge
above, for all tags t we add the rule:

KL/t ∧Kt→ KL

The translations considered are all uniform in the sense that all literals L in P and
all rules C → L are “conditioned” by each of the tags t in T . From a practical point

9 To run the tests shown in Table 6.2 the random selection of the sensing outcome has been
applied, however the implementation allows manual selection of the outcome, or sensing accordingly
to a given initial hidden state.
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of view, however, this is not needed. The literals KL/t encoding the belief in P are
then only generated when the closure t∗ contains10 literals relevant to L, or if t is
in the set O(L). In this doesn’t happen, the tag t cannot “affect” the literal L, i.e.
the invariance KL/t ⊃ KL holds for any t, and thus every occurrence of the literal
KL/t in KT,M (P ) can be replaced by KL.

After applying each action in a sequence π in X (P ), the resulting state s′ is closed
under the deductive K-actions above, the contingent merge, and the tag refutation.
The closure of the state is performed by translating the fluents in the state and the
deduction rules in sat clauses, and their application until fixpoint is performed by a
single call to the MiniSAT sat solver (Een and Sorensson, 2004). This implementation
shrewdness that boosted the empirical results of the CLG planner, is possible because
all the deducing rules only add new literals without deleting any.

From the implementation of T0 (Palacios and Geffner, 2006), on which we based the
translator for X (P ) and H(P ), we inherited other simplifications, namely:

• The support rules a : KC/t → KL/t for non-empty tags t are not created
when L is not relevant to a literal L′ within a merge that contains t: in such
a case, the literal KL/t cannot contribute to establish a precondition or goal.
Similarly, cancellation rules a : ¬K¬C/t→ ¬K¬L/t for non-empty tags t are
not created when ¬L is not relevant to a literal L′ in a merge that contains t.

• The support and cancellation rules
a : KC/t→ KL/t, and a : ¬K¬C/t→ ¬K¬L/t
are grouped in a single rule a : KC/t → KL/t ∧ ¬K¬L/t every fluent L′

relevant to L is such that either L′ or ¬L′ belongs to t∗. In such a case, there
is no incomplete information about L given t in the initial situation, and thus
the invariant KL/t ∨K¬L/t always holds, bringing that to write ¬K¬C/t is
equivalent to KC/t, given that C is by construction relevant to L.

These rules are computationally sound, and appear to help in certain domains with-
out hurting in others.

Empirical evaluation

CLG has been tested over a broad range of problems comparing it with Contingent-
FF (Hoffmann and Brafman, 2005a) and Pond 2.2 (Bryce et al., 2006). The planner
Contingent-FF appears to scale up better than other contingent planners such as
pond, while planners such as mbp use a different modelling language. We used
Contingent-FF with two options (with or without helpful actions), reporting the
best option for each instance. Pond was run with the A∗ search algorithm. The
experiments are obtained on a Linux machine running at 2.33 GHz with 2Gb of
RAM with a cutoff of 45 mn or 1.8Gb of memory.

Some of the benchmarks are taken from the Contingent-FF distribution, like ebtcs,
elog, medpks, and unix ; others are more challenging problems from our own: cballs-n-
x, about disposing of x balls with unknown location and colour into boxes according
to their colour; doors-n, about moving in a n× n grid with hidden doors, localize-n,

10To recall the notion of closure, cf. to definition 4.12.
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about robot localization in a known map, and wumpus-n, a variation of the Wumpus
world (Russell and Norvig, 2002) where a monster hides in a cave and it has to be
found from its stench that can be smelled from the adjacent caves. Last, clog is a
variation of elog where all action conditions have been moved out as preconditions.
In this suite of problems, only two domains have contingent width greater than 1:
cballs, and wumpus.

CLG in Off-line Mode
Contingent FF pond clg

problem time #acts time #acts time #acts
ebtcs-50 11,96 99 6,02 99 4,93 149
ebtcs-70 69,66 139 29,82 139 21,32 209
elog-7 0,06 223 1,10 212 0,07 210
eloghuge M M 240,14 38894
medpks-50 164,94 51 100 3,23 2,32 101
medpks-70 1098,44 140 T 8,12 141
medpks-99 T T 44,28 199
unix-2 0,09 48 2,18 48 0,23 50
unix-3 4,10 111 M 3,56 113
unix-4 222,65 238 M 156,47 240
cballs-4-1 0,27 277 0,98 102 0,20 295
cballs-4-2 35,88 18739 40,92 1897 18,03 20050
cballs-4-3 T 1063,11 28008 1603,63 1136920
cballs-10-1 T M 415,73 4445
cballs-10-2 T M T
cballs-11-1 T M 1172,96 5884
cballs-11-2 T M T
localize-5 9,8 188 T 0,72 137
localize-7 MC T 3,80 314
localize-11 MC T 58,88 577
localize-13 MC T M
clog-7 E 1,12 212 0,08 210
clog-huge E M 248,44 37718
doors-7 E 21,48 2159 6,32 2153
doors-9 E 1432,34 44082 1036,18 46024
doors-11 E T T
wumpus-5 E 5,58 587 0,39 754
wumpus-7 E 703,54 11673 7,90 6552
wumpus-10 E M 2125,65 321268

Table 6.1: Full Contingent Plans: Contingent-FF vs pond vs CLG. Figures shown are
total times in seconds, and total number of actions in solution. M, T, MC and E refer to
memory out, time out, too many clauses, and buggy response, respectively.

Table 6.1 displays the ability of CLG to build full contingent plans which compares
favourably with the other two planners. Times reported stand for total time, and in
the case of CLG, they include the translation time. The quality of the plans appears
to be comparable (except for cballs). Domains marked with an ’E’, are reported as
unsolvable by Contingent-FF without any search. After checking with Hoffmann and
Brafman, it appears that this is due to a bug that results from simplifications made
in Contingent-FF that are not easy to fix.

Table 6.2 shows average results for CLG used in execution mode over a sample of 50
random executions for each problem. The first two columns of Table 6.2 show the
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CLG in Execution Mode
Translation Search Time #acts ratio

problem time size avg / max avg / max n ÷ a
ebtcs-70 7,7 12,9 0,62 / 3,48 12,5 / 71 1,0
elog-huge 1,1 1,7 0,63 / 1,43 44,25 / 59 1,8
medpks-99 13,7 21,6 0,54 / 3,30 15,1 / 100 1,0
medpks-150 48,7 65,0 4,26 / 28,60 20,8 / 150 1,0
unix-4 27,9 87,2 10,88 / 70,03 27,0 / 181 1,9
cballs-9-1 20,9 16,5 1,21 / 7,80 33,7 / 197 1,6
cballs-9-2 56,4 33,7 4,84 / 25,70 57,1 / 288 1,6
cballs-9-3 113,7 51,4 46,26 / 122,19 76,3 / 367 1,7
clog-huge 1,0 1,6 0,44 / 0,71 48,2 / 69 2,6
doors-9 6,0 8,1 0,72 / 1,46 34,2 / 80 1,1
doors-11 19,4 20,0 2,58 / 6,37 42,8 / 120 1,1
doors-13 52,4 44,7 6,78 / 20,68 53,0 / 178 1,1
doors-15 127,5 90,2 MP
localize-9 4,6 8,9 0,37 / 0,60 21,3 / 34 1,0
localize-11 12,1 20,4 M
wumpus-7 2,4 4,5 0,42 / 0,56 38,5 / 46 1,6
wumpus-10 12,1 16,8 3,26 / 5,59 57,5 / 86 1,8
wumpus-15 101,1 80,7 M

Table 6.2: CLG in Execution Mode: Averages over 50 samples. Figures shown are time and
size of translation, avg and max search time for execution, avg and max number of actions
in execution, and ratio of nodes per actions executed in local EHC search. M stands for
memory out, and MP for too many predicates. Times are in seconds.

time consumed in the translation from P to X (P ) and H(P ), as well as the size of
the resulting PDDL file in MBytes. All the executions end up in the goal with the
number of actions shown in the fourth column. The last column shows how focused
is the search for the next action to apply, and more precisely, the number of nodes
expanded in the local EHC search vs. the number of actions executed. Indeed, a
ratio of one means a very focused search. The results show that CLG in execution
mode can solve problems for which building a full contingent plan is not feasible due
to its size. For example, the largest door instance solved in off-line mode is doors-9
that results in a policy tree with more than 46 000 actions; in on-line mode CLG
solves doors-13 that is much larger. The same is true for other domains like cballs
and wumpus.

6.6 Discussion

Contingent planning has been addressed by using many different ways to represent
belief states, as their explicit representation is impractical due to their possible expo-
nential size. The way belief states are encoded have an impact on the performances of
the planner, in contingent planning as in conformant planning. We discussed about
the representation of belief states in section 2.5 and section 4.7, but we will broaden
here the analysis to the context of contingent planning.

The Contingent-FF planner by Hoffmann and Brafman (2005a) adopts an implicit
representation of the beliefs, borrowed from (Brafman and Hoffmann, 2004). Belief
states are represented through the action sequences leading to them from the initial
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belief state. The fluents that are true in a belief state are then computed by the ver-
ification procedure that we used for the T1 planner in chapter 4. This lazy approach
is enough to perform conformant planning, as to apply actions and check the goal
state only the precondition and goal literals need to be verified to be true in all the
states of the belief. This procedure is extended to contingent planning by consider-
ing action-observation sequences, and the construction of the formulæ encoding that
capture the semantics of the action sequence applied to the initial situation needs
only to be slightly modified: the verification algorithm is still co-NP complete, and
is still done by CNF reasoning. This representation uses very little memory, but the
trade-off is made with the computation time expended to compute the known literals
in each belief. in particular, this approach suffers when the actions’ structure or the
unknown fluents make the verification problem harder.

MBP (Bertoli et al., 2001) and pond (Bryce et al., 2006) use a OBDD-based rep-
resentation for belief states. OBDDs are generally compact, and each visited belief
state is represented by a unique OBDD. The transitions between belief states can be
described in logical terms, and are encoded in MBP and pond by means of BDD-
based transformations, e.g. union, projection and intersection. OBDDs provide
for an efficient implementation of these operations needed for manipulating belief
state (Cimatti et al., 1998). Still, the size of an OBDD can be exponentially large
in the number of variables, and intermediate formulæ of exponential size used to
compute successors states can be required during the search, making the operation
expensive.

A different approach has been recently used for the DNFct contingent planner (To
et al., 2011b). There, a DNF representation is used to encode belief states, along
with a variant of the AND/OR search algorithms which includes some techniques
to prune the search space. The DNF encoding in DNFct is compact and permits
the planner to scale up well. However, as in many other contingent planners, the
heuristic function based mostly on the number of achieved subgoals does not help
much DNFct in the search for a solution. The DNF representation can be very large
in those domain that include a large number of clauses in I. The scalability of the
planner is obviously affected by these contingencies; for example in the wumpus-10
instance, the initial DNF contains 2 567 504 partial states.

The assumption in most of related works is that the hidden preconditions become
observable, and hence known to be either true or false, in states where the non-
hidden preconditions hold. Under this assumption, a greedy strategy can solve the
planning problem by first making the most convenient assumption about the values of
the hidden variables, and then execute the plan that is obtained from the resulting
classical planning problem, and revise the assumptions and replan, if during the
execution the observations gathered refute the assumptions made. This method
works for on-line planning, and has been proposed recently by Shani and Brafman
(2011). In their SDR planner, a sample is taken from the initial belief state is and
a single initial state si is selected, then a plan is generated as if si was the real
initial state. This approach has some points in common with the sampling used for
conformant planning in chapter 4, where a subset of states in the initial belief was
selected and used for planning, but in SDR nothing guarantees that the encountered
plan is a correct solution for all the states in the initial belief. In fact the technique
applies only to produce single branches of the complete plan, in what we called
on-line mode for CLG.
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Another limitation of many approaches to contingent planning comes from the heuris-
tics used to guide the search. These heuristics are generally poorly informed, a de-
ficiency that partially comes from the belief representation employed, that do not
allow to extract efficiently informed heuristics. We overcame this issue with the
heuristics model H(P ), used for computing a classical plan relaxation that provides
useful heuristics.

Sensing actions obs(L) are naturally integrated into CLG, via the relaxation about
action preconditions in the heuristic model, and the introduction of the M -literals in
the preconditions. The ML literals are added in the relaxed problem by a suitable
relaxation of the sensing actions obs(L) which allow the sensing actions to be consid-
ered, and included in the relaxed plan when they appear to be necessary to trigger
the preconditions of an action. In Contingent-FF, the heuristic is derived from the
delete relaxation of the classical planner ff (Hoffmann and Nebel, 2001) sensing
actions, and sensing actions are not directly considered by the heuristic, which is
a major drawback for solving contingent planning problems. In the SDR planner,
sensing will never by used purposely, as considering a single initial state end up in
classical planning, where full information is assumed. Actions are then artificially
forced into the plan: at each step, if it is possible to sense the value of an unknown
proposition without affecting the state, the correspondent observation is performed.

The translation K0, even if normally incomplete, has been proved to be effective in
simple problems, defined as deterministic planning problems where the non unary
clauses in I are all invariant, and no hidden fluent appears in the body of a con-
ditional effect. The extension K ′0 of the translation K0 has been applied to simple
partially observable problems P , where policies for the fully–observable determinis-
tic problem K ′0(P ) can be mapped into actions applicable in P . K ′0(P ) is always
sound, and complete is P is simple and connected (Bonet and Geffner, 2011). In
partial observable multi-agents planning, a translation based on K0 has been used
to search for plans involving two agents. We will discuss more about this application
in chapter 8.

6.7 Summary

We have extended the translation-based approached to conformant planning intro-
duced by Palacios and Geffner, to planning with sensing. In both settings, the
translation maps search problems in belief space into search problems in state space
with complete translations being exponential in a width parameter that is 1 for most
benchmarks. We have also tested these ideas empirically by formulating a contingent
planner CLG that uses the new translation along with a suitable relaxation, and have
found that the planner scales up better than existing contingent planners, and that
when used in on-line mode, it can scale up to problems for which the construction
of full contingent plans is not feasible. Two advantages of the translation-based ap-
proach are that it results in compact belief representations that are often complete,
and classical plan relaxations that provide useful heuristics.

The Xi(P ) translation is incomplete for problems P with high contingent width:
this means that to guarantee that a solution is always found for Xi(P ), the width
of the problem should bound the parameter i, related to the size of the tags used in
the translation. The CLG planner implements only tags of size one, a choice made
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because the translation Xi(P ) for i > 1 is exponential in the parameter i, which
makes a planner built on this translation unable to scale up. It is thus possible that
CLG outputs an infinite heuristic value for the initial state in the problems with
width bigger than 1, even when the planning problem does have a solution.

But there are other classes of problems that actual contingent planners cannot solve.
These are the planning problems that have a dead-end, i.e. the initial belief state
includes some states for which no solution is possible. This can happen when certain
configurations of the domain are not solvable, and no information is available initially
to shine light on the incomplete information of the domain, so the goal might be
effectively reachable even if the information is hidden. In other cases no policy can
deal with all the possible states in the initial belief state, even though none of these
states is a dead-end: any taken policy will work for some initial states, but not for
others.

Such problems are not solved neither by contingent planners (they answer that no
solution is reachable), nor by POMDP-based solvers (the expected cost of reaching
the desired state is infinite as there is a non-zero probability that the paths to the
goal are actually blocked). However, a contingent planner should not freeze in such
situations, but plan in order to gather information to eventually solve the problem.
We will see that it is easy to adapt our model for contingent planning to solve these
classes of “unsolvable” problems. Assumptions can be automatically cast to make
the heuristic finite, and to plan toward the goal, gathering information where sensing
is available.



Chapter 7

Planning when goal reachability is
not guaranteed

In the translations we developed in the previous chapters, the search of a plan ends
without a result when the classical planner called on the translated problem answers
that a solution is not satisfiable.

In planning with incomplete information and sensing, it might be impossible to find
a strong solution simply because the sensors do not capture the information needed
to reach the goal with certainty, or because this information is not available initially.
Consider for instance, a robot that has to cross a room, without knowing the position
or the nature of the obstacles it can find on its path. In this case, no solution can
be provided in initially, as the path to the goal might be blocked. However, it is
desirable for the robot to move anyway and gather information in order to find a
way to the goal.

In this chapter we address the problem of planning in partially observable environ-
ments, with uncertainty encoded in the initial situation, when no plan guarantees to
reach the goal from any possible initial state. We attempt to produce a solution even
in these cases by automatically generating assumptions on the planning domain that
allow the planner to produce a potential solution anyway. These assumptions are de-
rived from the very structure that constitute the basis of the KT,M (P ) translations:
the set of tags and merges.

Results from this chapter have been published in Acting in Partially Observable
Environments When Achievement of the Goal Cannot be Guaranteed, by A. Albore,
H. Geffner, in Workshop on Planning and Plan Execution for Real-World Systems, at
19th International Conference on Planning and Scheduling (ICAPS-09), Thessaloniki,
Greece, 2009 (Albore and Geffner, 2009).

7.1 Motivation

Planning in partially observable environments can be regarded as a search problem
in belief space where beliefs express the collection of states that are deemed possible.
We address the problem that arises when the goal cannot be reached at least from
some of the possible initial states.

115
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A large number of relevant planning problems require the ability to deal with par-
tially observable domain models. Planning under these conditions is an extremely
hard task, and often strong plans that guarantee reaching the goal in spite of in-
complete run-time information do not exist. This extreme case of planning under
uncertainty is sometimes called “hard partial observability”, to express the diffi-
culty to plan when (partial) observability on the domain’s variables do not permit
to achieve the goal; in other words, the hidden state of the environment is not ob-
servable. In such situations, no contingent plan exists, neither when considering the
introduction of probabilities. Moreover, no contingent planner provides any mean to
carry on, gathering observations in order to eventually solve the problem. Neverthe-
less, in many cases it is possible to express reasonable assumptions over the planning
domain, so to ease the planning task, allowing to build assumption-based solutions
that achieve the goal under certain conditions.

One option in such cases is to find contingent plans or policies that maximise “cover-
age”, i.e. the set of possible states for which the solution under assumptions works.
To do so, we extend the action-selection mechanism of CLG for contingent planning
(seen in the last chapter) to generate in an automated way the assumptions under
which a solution exists. The assumptions are selected to plan for as many initial
states as possible, when finding a plan for every possible initial state is not doable.

We will show that scenarios where the planning agent “freezes” without finding any
solution by lack of information are common, and that the proposed mechanism helps
overcoming this difficulty, having at the same time other applications as well: we will
use the machinery for planning under assumptions to learn action models in those
domains where actions outcomes are not specified.

7.2 Planning when missing information is not always
observable

Consider the problem of a robot that has to move from one position to another
position in a grid, not knowing which of the cells in the grid are free. The robot
can move into an adjacent cell, and can also sense whether it is free or not. The
problem can be expressed as a contingent planning task and fed easily into a state-of-
the-art contingent planner like CLG (Albore et al., 2009). But the planner will not
help, because the problem has no contingent solution. Indeed there are contingencies
in the problem that prevent to have a plan that guarantees the robot to reach its
destination with certainty; namely, all the possible configurations where every single
path to the goal is blocked by no-free cells. Still, in the absence of contingent plans,
it is not desirable that the robot freezes without being able to search for a solution
plan. What it should do instead, is to move toward the target and give up only when
one of these possibilities turns out to be true, i.e. when effectively no path leads
to its destination. Contingent planners do not help in producing such behaviour,
answering that no solution exists.

This limitation does not apply only to contingent planning, but to many other models
of action selection that require the goal being achievable with certainty. The problem
can be cast also as a POMDP by filling in the probabilities that each cell is free and
maintaining the goal of reaching the target with certainty (Cassandra et al., 1994).
Even then, the expected cost of reaching this target belief will be infinity as there is a
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non-zero probability that the paths to the goal are actually blocked 1. So probabilistic
POMDP solvers will not help in this problem either.

Dead-ends

Since contingent and POMDP problems can be cast as search problems in belief space
(Åström, 1965; Bonet and Geffner, 2000), the hard partial observable problems above
correspond to situations in which certain belief states are dead-ends, i.e. belief states
from which the goal beliefs cannot be reached with certainty. In the robot navigation
example, the initial belief state is obviously a dead-end. In the contingent setting,
the belief states represent the set of all the states deemed possible at one point (cf.
section 2.1), so the states in the example encode the position of the agent and the
status of the cells (which can be free or not). The initial belief state is a dead-end
because it contains states where the non-empty cells block the paths to the goal.
Those states are dead-ends in themselves as the goal cannot be reached from any
of them, although the state is assumed to be completely observable. In contingent
planning or in POMDPs, a belief state containing a dead-end state is itself a dead-
end. Even in these cases, it is possible that the problem is intrinsically solvable, but
the information initially available doesn’t allow the planner to provide a solution,
which is surely a weakness of those formulations, even if such situations are very
common.

When planning with incomplete information, dead-end belief states do not always
arise only from dead-end states. A problem can be unsolvable if no policy reaches
the goal from any of the states in the initial belief, even though none of the initial
states is a dead-end. This is the case of the medical domain in the example below.

Example 7.1. Let’s consider the medical domain, first introduced by Weld et al.
(1998), where a patient may suffer of one of several illnesses. Every illness has a
cure, but the cure is deadly if applied on an illness different from the one it has been
designed for. It is possible to diagnose the illness by exploiting diagnosis actions:
measuring the white cells in the blood, or using a litmus paper.

Here, if the observations available discard all but two possible diseases, and no therapy
works for both diseases at the same time, the belief is a dead-end even if none of the
states in it are, as each disease can be treated separately.

Another possible cause of dead–end can arise from translation-based approaches to
planning under uncertainty: we saw that some translations are complete only under
certain circumstances. When these circumstances are not full-filled, it is possible
that the classical planner evaluates as unsolvable a translation of a solvable problem.

When the achievement of the goal cannot be guaranteed, one option is to find con-
tingent plans or policies that maximise “coverage”, i.e. the set of possible states for
which the solution works. These policies are well-defined except in the very unfortu-
nate situations where each of the states that are deemed possible is a dead-end. This

1 Costs and rewards are often discounted in POMDPs: this results in bounded expected costs
and rewards. Yet discounting, which is a convenient mathematical mechanism, is not always a
meaningful one: for example it can produce finite costs in reachability problems with no solutions.
In any case, in our example, even if discounting can be used to bound the expected costs, it doesn’t
result in meaningful policies.
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S G

Figure 7.1: A 5× 5 grid.

is the approach that we take here. We extend the action selection mechanism for
contingent problems described in section 6.5 to work in such settings and producing
an action selection mechanism for on-line planning. Through a number of examples
we will see that this kind of scenarios are frequent in planning, and the proposed ex-
tension of our translation for contingent problems has other applications as well. In
particular, it can be used to generate meaningful, goal-oriented behaviour in solvable
but complex contingent settings where state-of-the-art contingent planners fail.

Planning under assumptions

From the POMDP perspective (cf. section 2.6), a dead-end belief state is just a belief
state b with infinite cost; this reflects that a goal belief state can’t be reached with
certainty from b, even supposing full state observability.

Dead-end states s have infinite optimal costs V ∗(s) and they induce an infinite op-
timal cost on any belief state b that include them: it is easy to show then that
V (b) ≥ V ∗(s) = ∞. But these results do not reflect whether the problem is effec-
tively solvable or not, in fact many other states s′ in b can have a finite optimal cost,
in spite that the whole belief appear as unsolvable.

Yet acting should not be stopped when one of the possible scenarios is a dead-end
but rather only when these possibilities are the only ones left, i.e. when there is the
certainty that no plan can solve the problem. A possible principle for guiding the
search of a solution is to follow a policy obtained from a relaxation, where the current
belief is augmented with some assumptions aiming at taking away those states that
are actually dead-ends. These assumptions can then be confirmed or denied as a
result of following such a policy. This process can be iterated until the goal has
been reached or it has been found out to be effectively unreachable. This is actually
the approach adopted by Albore and Bertoli (2004), but in our framework those
assumptions will arise naturally from the planning process.

Example 7.2. Figure 7.1 shows an instance of the example used in the introduction:
a 5 × 5 grid with cells marked in grey that may be free or not, and with the agent
initially to the left of this line of cells, while the goal is on its right side. The status
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of those cells is not known to the agent, but the agent can move one unit in each
of the four directions, if the corresponding adjacent cell is free, and it can sense the
status of the adjacent cells.

The problem involves in the order of 52 × 25 states: 52 possible positions for the
agent, and 25 possible configurations of the cells in grey. Some of these states are
not reachable, like those where the agent is at one of the cells in grey and this cell is
not free. The dead-end states for this problem are quite few indeed and correspond
to those in which the agent is to the left of the line of grey cells, and none of these
cells is free. These are 10 states, and one of these 10 states are part of the initial
belief state b0, where the agent knows its position but does not know the status of the
cells in grey. This yields b0 to be a dead-end belief state, so that the problem has no
solution.

We fed this problem into some recent contingent planners. Contingent-FF, for ex-
ample, notices right away and without search that the problem has no solution and
immediately quits. pond, on the other hand, starts searching for a solution and
keeps searching for quite a while, without obviously finding it. CLG behaves like
Contingent-FF, producing an infinite heuristic value for the initial belief state and
quitting without doing any search.

In this case, the responses of both Contingent-FF and CLG are adequate if the ob-
jective is to generate a plan that considers all the possibilities. However, this is
not a reasonable objective nor a requisite for an agent acting in partially observable
environments.

In the absence of a policy that will work in all cases, the strategy that makes sense
is to follow the policy that will work in most cases, revising the policy as new obser-
vations are gathered. This means actually to compute a policy assuming the current
belief not to be b, if b is a dead-end, but a belief b′ that differs minimally from b and
is no longer a dead-end. In the example 7.2, this “alternative” initial belief state
b′0 can be possibly obtained in two ways. One is by excluding from b0 the states
where all the grey cells are blocked. Another non-minimal change that will work
as well, is to keep in b′0 only the states in which one specific grey cell is free: this
change amounts to making the assumption, rather than the observation, that such
a cell is free. Planning considering this assumption will result in a policy that, if
followed, might turn out to prove the assumption wrong, which can then be revised
and replaced by another one if the resulting belief state still remains a dead-end. For
this to work, a reactive on-line planning platform must be used.

Formally, an assumption is a formula that restrict the initial belief state; this is done
to obtain a solution from the resulting planning problem under the assumption.

Definition 7.1 (Assumption). Given a contingent planning problem P =
〈F ,A,O, I,G〉, an assumption t is a valid formula over I such that

I ∧ t 6|= ∅ (7.1)

Definition 7.2 (Assumption-based solution). Given a contingent planning problem
P = 〈F ,A,O, I,G〉, and an assumption t, we say that a contingent plan π is an
assumption-based solution for P if π is a solution for the problem P |s, which is the
problem P with initial state equal to s, for all state s compatible with the assumption,
i.e. I ∧ t |= S0 and s ∈ S0.
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Otherwise stated, the plan π is a solution for the contingent problem P ′ that is equal
to P but with the initial belief state restricted by t, i.e. P ′ = 〈F ,A,O, I ∧ t,G〉.

Our scope is to permit to cast assumptions on the initial situation such that an
assumption-based solution works for a maximum number of states. These assump-
tions will be included in our translated problem as assumptive actions. The as-
sumptive actions will be introduced incrementally in the problem’s model to avoid
to execute them as first instance, solving so the problem by “assuming that it is
solved”. These actions have a high cost, which, coupled with a cost-sensitive heuris-
tic, will provide solution plans that make a use as limited as possible of the assumptive
actions.

In particular, we will see that not always an assumption is a “bet” on the domain
behaviour: when enough sensing is available at execution-time, the validity of the
assumption can be verified and, if it is necessary, replanning episodes can be triggered.
An assumption is monitorable, or verifiable, if at execution time it is possible to
observe its truthfulness.

7.3 The CLG+ Planner

To solve contingent planning problems where the goal is initially not reachable, we
will introduce assumptions under which a solution might exist. Assumptions will be
encoded as actions with high cost in the CLG planner, used in on-line mode. The
consequence is that plans including actions that code assumptions will be produced
as last option when generating relaxed plans. Thus, cost optimisation will result in
plan strategies that are as strong as possible.

The advantages of building on CLG are three.

First, in many of the problems the bottleneck for contingent planners is not the lack
of solutions, but the size of the solutions, that is exponential in the number of possi-
ble observations. For example, the solution to the robot navigation problem above,
once fixed to ensure the reachability of the goal, will have a size that is exponential in
the number of cells that sit between the initial and the goal locations. The ability of
CLG to produce goal-oriented observation–action sequences without having to build
a complete contingent plan is thus a plus, and CLG does not fail scaling up in these
situations.
Second, in on-line mode the CLG planner does not build a full contingent plan, but
becomes an action selection mechanism that outputs the next action to do given the
past history of actions and observations. Even if on-line mode generates a single
branch of the full plan, the heuristic implicitly considers all the possibilities: that
makes perfect sense if the choice is between an action that works in all cases, and
one that works only on some, but fails when the choice is between actions none of
which works in all cases.
Third, the use of tags t in the underlying translation, that denote assumptions about
the initial situation, can be used to render an unsolvable problem into a solvable one,
and to find contingent plans or policies that maximise “coverage”. This maximisa-
tion will be done heuristically, by extending the translation X (P ) with actions that
can manipulate these assumptions, at a high cost. The selection of actions that are
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compatible with the plans that maximise coverage will be obtained from the relax-
ation H(P ) = X+(P ) using standard heuristic functions that are sensitive to costs,
ending by selecting assumption-based actions only when necessary to minimise the
cost of the plan.

Our adaptation of CLG action selection mechanism exploits the translation that
compiles beliefs away while translating contingent problems P into non-deterministic
but fully observable problems X (P ), whose literals encode the beliefs over P . In these
translations, a tag is a set of literals in P whose status in the initial situation I is not
known. Tags are assumed to represent consistent assumptions about I, i.e. I 6|= ¬t.
We recall that the fluents in both XT,M (P ) and KT,M (P ), for a conformant fragment
P = 〈F ,A, I,G〉 of a contingent problem, are of the form KL/t for each fluent L ∈ F
and tag t ∈ T , meaning that “if t is true in the initial situation, then L is true in the
current situation”.

These changes result in an action selection mechanism that we call CLG+, and whose
difference with CLG is that it works in contingent problems that can have a priori no
solution. Thus CLG+, like CLG, does not “freeze” due to the size of the contingent
solutions, but unlike CLG, it does not “freeze” either due to their absence. As long
as there is the possibility of reaching the goal, CLG+ will go for it, making it a quite
robust, persistent, and fast action selection mechanism for dealing with partially
observable environments.

The planner CLG+ uses the same execution and heuristic models of CLG (cf. chap-
ter 6), with the addition of actions to introduce assumptions on the environment
behaviour, and the algorithms needed to handle them.

Assumptive actions

The key idea in CLG+ is to introduce assumptions in the form of new assumptive
actions in the translated contingent problem. The available assumptions are the tags
of the problem, which are also the conjunction of literals relevant to the preconditions
and the goal. So, in CLG+, to introduce an assumption is to make available to the
planner a conjunction of literals needed to solve the problem.

Definition 7.3 (Assumptive action). Given a contingent planning problem P =
〈F ,A,O, I,G〉, and a translation XT,M (P ), the assumptive actions at of the problem
are such that

at :

precondition : ¬K¬t ∧ ¬Kt
effect : → K¬t

for all tag t ∈ T .

These actions at form part of both the execution model X (P ) and the heuristic model
H(P ) of the planner. The reason for having assumptions adding the negation of a
tag K¬t, rather than directly “knowing that the tag itself is true” Kt, is that the
former are finer grained. For example, in a problem involving an initial situation
with an xor(x1, . . . , xn), where the tags are ti = xi, we will be able to discard some
xi without necessarily committing to another one.
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The result of having such actions is evident: if no plan exists given an initial situation
I, maybe a plan exists for another initial belief I ′ = I ∧ t. There is however a
difference in the use of assumptive actions in the execution model X (P ) and the
same assumptions in the heuristic model H(P ). Recall, that the heuristic model is
used to compute heuristic values and relaxed plans, and to indicate the actions that
are helpful. On the other hand, states are progressed using the execution model, both
when they are finally selected and applied, and when they are applied in the enforced
hill climbed search (EHC). The difference between an assumption K¬t in H(P ) and
the same assumption in X (P ) is that the former is just “thinking” (considering
the possible situation given the assumption in order to search efficiently for a plan)
whereas the latter is “acting” (i.e. executing an action under the presumption that
the assumption holds in the real world). In different words, the first just extends the
relaxation with an extra assumption, while the second is a commitment that affects
the current beliefs.

The asymmetry between assumptions K¬t in the execution and heuristic models is
captured by integrating the assumption in three steps.

1. The actions to be done in the current state s are computed by mean of an EHC
search from s, with the helpful actions but excluding the assumptive actions.
This first step doesn’t use at all the actions from definition 7.3

2. If this fails, then this EHC search is repeated, but considering all actions
and not only the helpful ones, and still without executing any assumption.
This mean that no assumptive action will be executed (they are de facto not
introduced in X (P )).

3. If this fails too, then this same EHC search is carried out with all the actions
enabled, including the assumptions in the execution model. It is only then that
assumptions may be chosen for execution.

In all cases, as in CLG, if a sensing action is selected for application in the EHC
search, the path leading to the sensing action is selected for application. As in CLG,
this is done in order to avoid the simulation of the non-deterministic effects of sensing
in the EHC search.

From the integration process, it is evident that executing an assumptive action has
to be done as last resort: these action modify the belief state, arbitrarily excluding
states from it. It is like a “bet” on the domain behaviour, letting the planner to
choose which is the subset of the initial belief that will be driven to the goal by the
solution plan. As we will see, sometimes the current belief needs to be changed.
This can occur when there is a single possible relevant action to apply, but there
still is uncertainty about the status of its preconditions, and no observation can help
disambiguating it. If the agent is supposed to head for the goal no matter what, as
CLG+ does, then it must then take risks: if it applies an action assuming that its
preconditions hold, and this is not the case, then the execution will fail.

An essential element in the move from CLG to CLG+ is a device for preventing
inconsistent assumptions from producing arbitrary conclusions. Since the deductive
actions in CLG are not deductively closed, the merge rules in the heuristic model
may result in unwarranted conclusions.
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Consider a merge m for a literal L: the contingent merge action∧
t∈m(KL/t ∨K¬t) → KL can be used to derive KL from the assumptions K¬t

applied for all t ∈ m. These assumptions are jointly inconsistent, as it is not guar-
anteed that L is known to be true under any tags, but nothing prevents them from
being made in a “relaxed plan” with a sufficiently high cost. In order to avoid this,
we introduce a new fluent in the language, ok(m,L) that we keep true only when
some literal KL/t is true, and introduce this new literal as an extra condition in the
merge action. This prevents the merge m for L to trigger if none of the literals KL/t
are true.

A cost sensitive heuristic

The second element needed in CLG+ is the handling of action costs. In order to
establish a preference for solutions and relaxed solutions that work in most cases,
actions that involve assumptions are penalised with a high cost. This is needed to
prefer solutions that make an use of assumptive actions as limited as possible. In
particular, in our implementation, the cost of assumptive actions if fixed to 100×|T |,
i.e. 100 times the total number of tags2. The following step is to integrate a heuristic
sensitive to costs, to properly select the actions.

In order to preserve as much of the architecture of CLG as possible, we achieve this
in CLG+ by moving the underlying classical planner from ffto ff(hsa), a planner
that retains from ff everything except the definition and computation of the relaxed
plans, that makes use of the set-additive heuristic hsa (Keyder and Geffner, 2008). We
moved to ff(hsa) because in ffthe relaxed plans that serve to provide the heuristics
and the helpful actions are computed using the relaxed plan graph, which is not
sensitive to costs.

In ff(hsa), the relaxed plans are computed recursively, very much as the heuristic
estimates in the additive heuristic. The difference between the additive heuristic
hadd and the set-additive heuristic hsa, is that the former propagates numbers h(p; s)
that estimate the cost of achieving the fluent p from a state s, while the latter
propagates labels πsa(p; s) that capture the relaxed plans for computing p from s.
To avoid over counting of operators, the set-additive heuristic hsa approximates the
optimal relaxed plan for a set of fluents as the union of the relaxed plans for each
fluent. The heuristic estimate for a given state s is then the cost of the set-additive
relaxed plan πsa to achieve the goal fluents G from s:

hsa(G; s) = cost
(
πsa(G; s)

)
(7.2)

which is given by the following equations:

πsa(p; s) =

{
{} if p ∈ s
πsa(a

sa
p ; s) otherwise

(7.3)

2 This number is set to a high value to use assumptions as a last resort. The value of such an
action could possibly be accommodated to depend on the number of tags in a merge it refers, but
we left this fine tuning of the algorithm to future work.
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where

asap = argmina∈ADD(p) cost(π
s
a(a; s)) (7.4)

πsa(a; s) = {a} ∪
{ ⋃
q∈pre(a)

πsa(q; s)

}
(7.5)

and withADD(p) denotes the actions in the problem that add p, such thatADD(p) =
{a | p ∈ add(a)}. The cost of a relaxed plan is the sum of the costs of the operators
it contains:

cost(π) =
∑
a∈π

cost(a)

Although cost-sensitive relaxed plans could be obtained from using the least ex-
pensive additive heuristic, the set-additive heuristic has benefits when dealing with
conditional effects, that are numerous in the translation H(P ) and are not treated
well by most heuristics. Indeed, the hff heuristic treats conditional effects as inde-
pendent actions, except when the conditional effects appear in the same level of the
relaxed plan graph. This choice is rather arbitrary, as sometimes the heuristic value
of a state can be reduced by moving a conditional effect to a successive layer.

The set-additive heuristic combines a sensitivity to costs with the ability to deal
with conditional effects in a more principled manner. When a conditional effects of
an action a are present in the support plan for preconditions of the same action a,
then the count is increased. On the other hand, if some conditional effect of the
same action appear in the relaxed plans for different preconditions, then the action
is counted only once. Another way to think about it is to consider the relaxed plan
represented as a tree: if two independent sub-trees have conditional effects of the
same action, then they are combined and counted as the same action. But if two
conditional effects of the same action lie along a single path to the root, then they
are considered as different actions and counted separately.

Taking advantage of a cost-sensitive heuristic, the cost of all the deductive actions
in X (P ) and H(P ) is set to 0.

Doing the union of the plans, as in eq.(7.5), sometimes the result ends up in under-
counting the total cost of the plan. As an example we can consider a problem with
two actions a and b, each with two conditional effects, and the goal of achieving both
g1 and g2, such that

a : b :

→ p → q

q → g1 p→ g2

The relaxed plan that achieves g1 from I is: πsa(g1; I) = {a, b}, while the relaxed plan
that achieves g2 is: πsa(g2; I) = {b, a}. From this, the relaxed plan that achieves both
g1 and g2 is the union of the two plans, i.e. πsa(g1∧g2; s) = {a, b} when this is clearly
unsound. The union doesn’t consider the order of the actions it includes. What
should be done is to consider, instead of the regular union, the minimal superset
of unions, which will provide, once the plans have been represented as graphs, as
minimal superset of edges in the plans such that every path in the plans has to
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appear in the transitive closure. In that way, we could obtain for this problem
πsa(g1 ∧ g2; s) = {a, b, a}, for instance, by considering instead of (7.5), the following
πsa(a; s) = {a} ∪

⊎
q∈pre(a) π

s
a(q; s).

7.4 Learning action models

A direct application of the model brought by planning under assumptions concerns
the task of learning partially observable deterministic action models. When actions’
models are not known in a planning problem, a solution plan cannot be directly
derived because of the incompleteness of the model. The approach we tackle here is
to encode unknown action’s outcomes as uncertainty in the initial situation, where
hidden variables encode the unknown effect of an action. In this case, the possible
effects of an unknown action cannot be encoded as non-deterministic effects because
the effects of the action are in fact deterministic: the result of applying the action
will always be the same, it is just initially unknown.

Definition 7.4 (Action with unknown effects). An action a with preconditions p,
and whose possible effect ei is unknown (1 ≤ i ≤ n), is written:

precondition : p

effect : → e1

· · ·
→ en

(7.6)

In case the condition C of the effect is known, the action a can be written similarly
as in eq. (7.6):

precondition : p

effect : C → e1

· · ·
C → en

(7.7)

For a contingent planning problem P , we call the set of actions with unknown effects
AU . Of course we have that AU is a subset of A.

The contingent planning problem P with unknown action effects can be encoded
as a contingent planning problem K̄(P ) where all the actions having an unknown
outcome are modelled as in definition 7.4, and where hidden fluents bound to each
effect are introduced to learn the real result of applying the action:

Definition 7.5 (Contingent translation K̄(P )). Let be P = 〈F ,A,O, I,G〉, a con-
tingent planning problem with actions with unknown effect. The contingent problem
K̄(P ) = 〈F ′,A′,O′, I ′,G′〉 with no unknown action effects is defined as follows:

• F ′ = F ∪ {hi(a) | for each unknown effect ei of an action a ∈ AU},

• A′ = A where every effect C → ei of the unknown action a in AU has been
replaced by C ∧ hi(a)→ ei,
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• I ′ = I ∪ oneof
(
h1(a), . . . , hn(a)(a)

)
, for every action a ∈ AU , with n(a) that

indicates the total number of possible unknown effects of a,

• G′ = G.

The problem K̄(P ) with all unknown actions replaced by the mechanism above
is only solvable by using assumptions, as it is not guaranteed that all the effects
bring to the goal; in other words, the goal is not reachable in all the contingencies.
However, thanks to the use of assumptions, the CLG+ planner doesn’t freeze and
provides a plan that unveils the effect unknown actions by observing the changes
in the domain at execution-time. From deductive rules like the contingent merge
and the tag refutation, the hi’s truth value can be learnt and thus also the actions’
effects 3.

Figure 7.2: A boxes domain.

Example 7.3. We consider a Boxes domain, illustrated in Figure 7.2, where a
treasure is hidden in one of three closed boxes. There are three levers, each one
controlling the opening or the closure of one box, but the relation between a lever and
the box it opens is initially unknown. The goal is to retrieve the treasure, and to
close all the opened boxes again.

The problem is modelled with an uncertain initial situation where an XOR is used to
state that each lever controls one box, but nothing implies that each box is controlled by
one lever. In particular, the push lever and pull lever actions have conditional
effects depending on the truth value of the fluents (controls ?lever ?box); the
result of pushing opens a box, pulling will close a box.

The problem where the agent has to get the hidden treasure has no contingent solution.
The push lever is shown here as example:

(:action push_lever

:parameters (?l - lever)

:effect (and (when (controls ?l box1)

(opened box1))

(when (controls ?l box2)

(opened box2))

(when (controls ?l box3)

(opened box3)) ))

A similar action are used to close them by pulling the lever. The agent can check
if the treasure is in a box, if the box is open. The boxes should all be closed at
the end: this tests whether the agent is learning the action model; namely, which

3 The values of the newly introduced literals hi does not change by the effect of the actions, and
can only be “learnt” from observing the actions’ outcomes.
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lever controls which box. Passive learning is assumed in this case, meaning that all
applicable sensing actions are automatically applied after each normal action. The
observable fluents include whether a box is opened or closed, and whether the treasure
is or is not in an open box.

The aim is to make the agent able to learn the action model from the gathered
sensing, in order to open and subsequently close the boxes acting on the levers of
the example 7.3. Another issue of the domain resides in the absence of a contingent
solution (a strong plan). In fact, it is very possible that no lever opens the treasure
box. Nevertheless, it should be possible to check whether the treasure is hidden in
one of the boxes that can be opened.

Example 7.4. Continuing on the example 7.3, let’s notice that the fluents (opened

boxX) (for X ∈ {1, 2, 3}) are effects that can be (automatically, if passive sensing
is enabled) observed after manoeuvring a lever. The initial relaxed plan is based on
identifying a box X containing the treasure relying on assumptions, pushing a lever,
observing that the box X is open, and picking up the treasure.

“Pushing a lever” and “observing” are the first two actions selected by the planner.
This is reflected by the following execution obtained by CLG+ for the hidden initial
state where the treasure is in box 2, and the levers A, B, and C control the boxes 1,
2, and 3 respectively:

1: PUSH_LEVER-A *

2: PUSH_LEVER-B **

3: PULL_LEVER-A

4: PICKUP_BOX3

5: PULL_LEVER-B

To illustrate the reasoning rules applied after an observation, we propose to analyse
the result of the first action (marked with ∗). The sensing after PUSH LEVER-A carries
that only the box 1 is opened. This result is carried out by reasoning rules like Tag
Refutation and Contingent Merge, bringing that lever-A does not control neither box
2 nor box 3, but controls (by exclusion) box 1. In that way the action model for lever
A is learn, i.e. the atom Kcontrols leverA box1 is true in the state after the first
sensing.

After PUSH LEVER-B, a similar mechanism infers that the lever B controls box 2.
From the same sensing episode, the treasure is observed in box 2. The plan then
closes box 1, picks up the treasure, and closes box 2, applying the knowledge gained
about the levers’ mechanism.

7.5 Cases studies and experiments

The approach taken by CLG+, and by planning under assumptions in particular, is
extremely powerful as it allows to go out from the scope of contingent planning. As
we saw in the previous section, assumptions can be cast to describe planning problems
for which the model is not fully known, and to plan in such domains. Assumptions are
not simply preferences on the domain hidden state: when automatically generated,
they allow to solve by planning problems that are not solvable by any other planner,
and this by finding plans that maximise the coverage.
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To illustrate the behaviour of CLG+, we run the planner over a number of different
problems, most of which are meaningful contingent problems without solutions. We
will see also complex problems with contingent widths greater than 1 which are not
solved by CLG because of the incompleteness of the translation for such problems,
but that CLG+ manages to solve. The problems are then divided into those with
dead-ends that arise from dead-end states, those with dead-ends that arise due to
the absence of policies able to handle all possibilities, and those that are in theory
solvable, but for which the incompleteness of the translation does not allow to capture
a solution.

Problems with Dead-End States

Problems with dead-end states are intrinsically unsolvable as a contingent plan
doesn’t guarantee to solve the problem for all the contingencies. This is the case
seen in example 7.2, where certain configurations of the domain are not solvable,
and where the heuristic evaluation points to an unreachable goal. But the goal
might be effectively reachable even if the information is hidden. It should be then
possible for the planning agent to execute a plan under assumptions, and use sensing
to find out whether the goal is achievable, whereas this information is not available
initially.

Wumpus

1: MOVE_P1-1_P2-1

2: MOVE_P2-1_P1-1

3: MOVE_P1-1_P1-2

4: MOVE_P1-2_P2-2

5: MOVE_P2-2_P3-2

6: MOVE_P3-2_P2-2

7: MOVE_P2-2_P2-3

8: GRAB_P2-3

Figure 7.3: An execution in Wumpus domain: hidden state shown on the left and execution
(with passive sensing) shown on the right.

The Figure 7.3 shows a version of the Wumpus problem from (Russell and Norvig,
2002), which is actually solvable, although the initial belief has an infinite heuristic
value. In this problem, the agent shown in the Start state must get the Gold by
sorting dangerous wumpuses and pits. We assume that the agent can move deter-
ministically one unit in each of the four directions, provided that in the target cell
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there is no wall, wumpus, or pit.4

Initially, the agent knows its location, but doesn’t know where the gold is, nor where
the wumpuses or pits are. The uncertainty in the initial situation is modelled by
having uncertainty in each cell, regarding whether it contains a wumpus, a pit, none,
or both. The uncertainty on the gold location is an XOR over all the grid cells. This
is a natural encoding of the problem, yet it makes the problem unsolvable, as the
gold may be in a cell with a wumpus or pit, or it may be blocked by them. The
agent can sense the presence of a wumpus in some adjacent cell by the stench, the
presence of a pit in some adjacent cell by the breeze, and the presence of the gold in
its own cell by the glitter. The stench, the breeze, and the glitter are all observable.

On the right side of the figure is reproduced the execution obtained from CLG+ by
running it on the hidden state shown in the picture, where there are 3 pits and 1
wumpus, and the gold is located at cell 2-3. For simplicity, the sensing is assumed to
be passive, meaning that all applicable sensing actions are applied after every step.
Thus, the actions shown in the execution all refer to non-sensing actions.

In the execution, the agent starts at (1,1) knowing that there is no wumpus or pit in
the two adjacent locations. It then moves to (2,1), where it senses no stench, yielding
that there is not wumpus around, and a breeze, from which it concludes that the
only safe cell to move is (1,1). It moves there, and then to the other known safe cell
(1,2), where it senses no breeze, and thus no pit around, but it senses a stench. From
the observations gathered so far it concludes that there is neither a wumpus nor a
pit at (2,2): this cell is safe. Its moves there, and senses no stench and no breeze. It
moves then to (3,2), but sensing a breeze there it backs up to (2,2), heading up now
into (2,3), where it sees the glitter and grabs the gold.

In this computation, CLG+ never commits to an assumptive action K¬t in the
execution, but uses many of those actions in the construction of relaxed plans, and
in the computation of the heuristic. In every relaxed plan, it is assumed that the gold
is not at a number of locations, from which it is inferred that it must be at particular
location. This is not enough though. All the relaxed plans involve also assumptions
about cells that are safe to be traversed in order to reach to the assumed gold position.
These assumptions are all handled automatically as actions in the heuristic model,
and no assumptive action from the execution model is applied.

Navigation in Unknown Map

We consider a version of a navigation problem, where an agent must move from an
initial location I to a target location G in a grid where the status of all other cells is
unknown (cf. Fig. 7.4). Such cells can be free or not, the agent can sense the status
of adjacent cells, and can move into them if free. The problem is not solvable, as it
contains dead-end beliefs that result from dead-end states: those in which the cells
that are not free block the path to the goal.

Like before, the hidden status of the environment is solvable, as a path to the goal cell
G exists; it is just unknown initially to the agent. The assumptions concern possible
free cells, but none of these assumptive action is actually executed, as sensing always
unveil the preconditions of moving actions.

4In the book, if the agent moves into a wumpus or pit cell, it dies. Also agent is there armed
with an arrow which can kill the wumpus if fired properly.
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Figure 7.4: Navigation. Initially the sta-

tus of all cells other than I and G is unknown

and therefore marked in grey.

I

G

Figure 7.5: Navigation. The hidden state

of the navigation problem: the free cells are

in white.

Figure 7.6: Navigation. Initially the status of all cells other than I and G is unknown. The
hidden state is shown by indicating the free cells in white.

The Figure 7.6 shows the execution of CLG+ in this 4× 4 grid example. Arrows in
the figure indicate the execution that results from a particular hidden state where
the cells that are free are the ones shown in white. In such a case, by moving and
sensing, the agent follows the path shown. Not knowing that the two cells under
the goal are blocked, the agent heads initially to the right, but having learnt that, it
backtracks, going around those two cells to eventually reach the goal.

Problems with Pure Dead-ends Beliefs

Problems with pure dead-ends beliefs are unsolvable problem that result from the
absence of a policy that can deal with all the possible states in the initial belief,
even though none of these states is a dead-end. Any taken policy will work for some
initial states, but not for others. Thus, in these cases, the adoption of a policy
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involves “betting” on a possible contingency: if we are lucky, we solve the problem,
if we are not, we fail. This is different from the problems above where the actions of
the agent did not affect the solubility of the problem; the question was then whether
the hidden state was a dead-end or not. If it wasn’t, sensing would lead to the goal
at execution-time.

Minesweeper

1 2 3

1

2

3

Figure 7.7: Minesweeper. Distribution of

the bombs in the hidden state.

1 2 3

1

2

3

Figure 7.8: Minesweeper. Deductions of

the agent on the (hidden) state of the world:

white cells have a known status.

We consider a version of the well known Minesweeper problem. This problem in-
volves a grid where each cell may contain a mine or not. Cells without a mine must
be cleared with the clear action, while cells with a mine must be cleared with a
sweepmine action. The goal is to have all the cells cleared. Knowledge about the
location of the mines is obtained through a check action on a cell that yields a failed
execution if the cell contains a mine. We model this by setting no mine at cell as a
precondition of check cell, and mine at cell as precondition of sweepmine cell. Given
the initial complete lack of knowledge about the mine locations, the problem is un-
solvable, and indeed, it can lead to failure after the first check. One thus must “bet”
on the first cell to clear. The initial belief state is thus a dead-end despite the fact
that it does not contain any dead-end states. Indeed, the problem would be solvable
for any initial state if the state was observable.

The hidden state of the example has mines at (2,3), (3,1), and (3,3), as shown in
Figure 7.7. The first action is to assume that there is no mine at (1,1), and to check
this position. This is the first domain where assumptive actions need to be executed
outside of the heuristic model, in order to obtain the knowledge about the action
preconditions. This could lead to execution failures in case the executed assumption
does not yield a “desired” precondition for the next-to-apply action. Here this could
happen if there were a bomb in (1,1). In this example (1,1) is free of bombs, and
thus the action is successful. After the check at (1,1), for the hidden state shown,
the planner infers that there is no bomb at either (1,2) or (2,1). It thus checks these
two positions, and infers that (1,3) and (2,2) are free of mines. On the other hand,
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from the check at (2,1) it infers that there must be a bomb at (3,1), since it is known
by then that there is no bomb at (2,2), and minesweeps that bomb. The belief at
that point is shown in Figure 7.8, where the white cells are the ones whose status is
known. It then chooses to do a check at (3,1), that is now cleared too, to find out
that (2,3) is clear, and from the resulting observations there and in (2,2), finds out
the status of the two last cells with bombs.

Problems with High Contingent Width

Binary Tree

As a last example, we show a solvable problem having contingent width higher than
1, out of the scope of those translation-based approaches that are sound and complete
for contingent problems with width ≤ 1. These problems are difficult for state-of-
the-art contingent planners, and the translation at the basis of CLG is not complete,
which means that the planner can indicate an infinite heuristic in the initial state
even if the problem is completely solvable (which is the case in the example below).

0

1

2

Figure 7.9: Binary tree do-
main of depth 3

This example is not solved by both CLG and
Contingent-FF, while pond solves only the small in-
stances. CLG+, on the other hand, turns out to scale
up better in this example as a full contingent planner.

The problem involves a binary tree with depth n. Start-
ing in the root, the agent has to move to a leaf of the
tree. The possible actions are to move from a node n to
its left or to its right son, if the corresponding edge is
not blocked. One of the two edges, however, is always
blocked, and the agent can find out which by doing a
sensing operation. There are also actions for moving up
in the tree. The problem has width n, meaning that a
complete Xi(P ) translation would be exponential in n.
As a result, CLG that uses the X1(P ) translation does
not solve the problem, and reports an infinite heuristic
value. The problem, however, is simple, just requiring sensing at each node, and
moving to the son along the edge that is open.

Table 7.1 shows some results on different instances of the binary tree domain. CLG
does not find a solution, as well as Contingent-FF, to this solvable problem, CLG+
does for all the instances tested, while pond solves the first two but not the last one.

pond CLG+
depth of the tree time # actions time # actions

3 0.11 6 0.24 6
4 0.87 8 0.99 8
5 T T 3.60 10

Table 7.1: CLG+ compared to pond on different instances of the binary tree. Figures
shown are total time in seconds and total number of actions in solution. T stands for time
out (cut-off of 45mn or 1.8Gb of memory).
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Scalability and Overhead

CLG CLG+
problem time # actions time # actions
ebtcs-50 11.96 149 12.88 149
ebtcs-70 34.37 209 34.13 209
medpks-50 3.23 101 3.17 101
medpks-70 9.89 141 9.10 141
medpks-99 28.77 199 27.61 199
unix-3 9.26 113 52.17 111
unix-4 120.72 240 1748.84 238
cballs-4-1 0.35 295 0.71 282
cballs-4-2 18.83 20050 56.44 20203
cballs-4-3 1537.99 1136920 T
cballs-9-1 192.16 3385 234.88 3497
cballs-9-2 T T
clog-7 0.17 210 1.12 215
clog-huge 157.94 37718 T
doors-7 10.60 2153 64.28 2145
doors-9 1042.96 46024 T
wumpus-5 1.76 732 14.31 753
wumpus-7 89.32 10681 1217.39 17256
wumpus-10 T T

Table 7.2: Examples to calibrate the performance and scalability of CLG+ in relation to
plain CLG. Figures shown are total time and total number of actions in solution. T stands
for time out (cut-off of 45mn or 1.8Gb of memory).

Table 7.2 displays the ability of CLG+ to build full contingent plans over standard
benchmarks, in comparison with CLG, shown in (Albore et al., 2009) to scale up
better than Contingent-FF and pond. All the tests are obtained on a Linux machine
running at 2.33GHz with 2Gb of RAM.

In these problems, all the additional machinery in CLG+ is not needed, and thus
the difference in performance between CLG and CLG+ shows the overhead resulting
from these changes. As it can be seen, CLG+ is slower than CLG, but it manages to
solve most of the problems that CLG can solve. These figures give an idea of how well
CLG+ scales, an idea that cannot be obtained from the examples discussed above,
that are aimed at describing the functionality of CLG+ rather than its scalability.

7.6 Discussion

Planning with preferences on domain uncertainty

Assumptions are modelled as actions with high cost in our model. However, as the
problem has been tackled until now, all such actions have the same cost. Now we
ask what would be the behaviour of the planner in case different costs were to be
attributed to different actions.

Of course, certain assumption K¬t with lower cost than other assumptive actions
would be selected first during the plan search, obtaining as side effect of this for-
mulation with different costs the generation of a solution plan under preferences.
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Preferences encoded in this form do not aim at expressing preferences over states
achieved by the plans as in (Brewka, 2004), nor to express importance of achieving
certain variables over others like in TCP–nets (Brafman et al., 2006), but it is used
to express the “strength” of assumptions used to solve a problem otherwise without
solution.

Say that in the example 7.2, the possibly blocked central wall is encoded as a
disjunction (free(x1) ∨ . . . ∨ free(x5)), where x1, . . . , x5 are the central grey cells.
Expressing preferences would result, for instance, in giving to the assumptive action
K¬free(x3) relative to the central cell, a cost higher than to the other actions to
express that this cell is more likely to be free. In this case, to direct the search directly
to that cell x3, the cost would be proportional to the elements in the disjunct, i.e.
more than 4 times the cost of each other assumption.

Actually differentiating the encoding of the assumptions is not feasible in an auto-
matic way, given the actual implementation. This means that exploring the capacities
of expressing preferences over domain uncertainty is left as a future work. Such an
encoding would surely appear to be a powerful mean to deal with complex prob-
lems, like the ones common in the field of robotics. Then, these preferences would
subsume the assumptions hand coded as a formula describing the expected domain
behaviour (Albore and Bertoli, 2004, 2006), a technique that could also be used to
express preferences over plan trajectories.

Related Work

The approach tackled with CLG+ makes use of the paradigm of interleaving planning
and execution, as has been done in many robotic frameworks. Interleaving planning
and execution has sometimes been considered a necessary approach to deal with real
world problems (Nyblom, 2005). In (Genesereth and Nourbakhsh, 1993), planning
and execution is interleaved to reduce the search space for a conditional planner.
A similar approach has been applied to the conditional planner MBP, modified and
reused in a planning/execution algorithm (Bertoli et al., 2004). The main differences
between this approach and ours are that we use optimistic plans to guide the search
instead of information gain and we use a cost-aware planner instead of a conditional
planner. Efficient heuristics from classical planning help the search in CLG+, since
they assume that a path exists from a well defined initial state, regardless the non-
deterministic actions’ possible outcome, then they optimistically forecast the outcome
of each action, but checking the result before triggering the next planning episode.

The common assumption in most of related works is that the hidden preconditions
become observable, and hence known to be either true or false before applying an ac-
tion. This includes the absence of dead-end in so called connected search space.Under
this assumption, a greedy strategy can solve the planning problem by first making
the most convenient assumption about the values of the hidden variables, and then
execute the plan that is obtained from the classical planning problem obtained by
selecting the most promising initial state. If during the execution the observations
gathered refute the assumptions made, it will always be possible to revise the as-
sumptions and replan. The replanning technique is popular and effective when the
search space is small and connected (Yoon et al., 2007). However, this assumption
might not hold, and such planners just freeze without being able to find a solution
or fail during execution.
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An instance of this general idea, used in robot navigation tasks, is the “freespace
assumption” (Koenig and Smirnov, 1997), where an optimistic assumption is made
about the crossability of a maze, i.e. that the path to the goal is free.

Albore and Bertoli (2004) restrict the belief search space by adopting assumptions
on the initial belief state. The search space is in that way reduced, but the plans
generated are such that a mistake in the assumptions can always be detected by the
available sensing before acting, triggering a replanning episode that considers the
whole search space if necessary. This safe assumption-based planning has been ex-
tended to use more complex formulæ to describe expected effects of non-deterministic
actions and exogenous events over time: there safe plans are still generated by as-
sumptions, but described via an LTL encoding (Albore and Bertoli, 2006). However,
in their approach, the assumptions are generated by hand, while CLG+ selects them
in an automatic way in order to maximise the “coverage”, i.e. number of states to
which a solution under assumptions applies.

Learning action models in partially observable domains, i.e. how actions affect the
world’s states change, has been approached with a learning algorithm that updates
a formula representing the initial transition belief state with the sequence of exe-
cuted actions and sensing (Chang and Amir, 2006; Amir, 2005). A transition belief
state is constituted by a belief state and action-schemas, which are propositions that
represent the possible transition relations. The actions to apply are selected by a
SAT-based planning subroutine, which searches for plans that could possibly work.
The plan is executed and the transition belief updated, so that the formula returned
includes all consistent models, which can be retrieved then with additional process-
ing. The approach scales up well, and guarantees to reach the goal within a bounded
number of steps, linear in the length of the longest plan needed for reaching the goal,
and exponential in the complexity of the action model learnt. On the other hand,
the size of the formula grows linearly with the sequence length, but does not depend
on the domains size.

Other approaches to learning action models differ from CLG+ because they assume
full observability (Gil, 1994; Pasula and Zettlemoyer, 2004; Sutton and Barto, 1998).
Reinforcement learning in POMDPs approaches, on the other side, fail in scaling up
(Even-Dar et al., 2005).

Do probabilities solve this problem?
Actually not. In undiscounted goal MDPs and POMDPs, the agent is supposed
to reach the goal with certainty, and in the presence of such dead-ends this is not
possible. At the same time, discounting makes all costs (rewards) bounded . . . but
meaningless. Take the following example: a treasure is at distance d (which encodes
its cost), then for any discount factor γ < 1, it is possible to select d large enough
so that the agent would prefer not to go for the goal, even though it can get the
treasure with certainty.

With deterministic actions, optimal (probabilistic) POMDP policies are acyclic, like
in contingent plans. The difference resides in that the former are aimed at minimising
expected cost, and the latter at minimising cost in the worst case. Both costs are
infinite if the goal is not reachable from one of the possible initial states.

The cost of the assumptive actions do not take into account the cardinality these
assumptions restrict the belief states. Indeed, costs help the search algorithm to
provide solutions with as less assumptions as possible, but this minimisation is not
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calibrated on the actual model count of the resulting belief. This optimisation can
be obtained by a preprocessing computation: performing a model counting operation
on the initial belief state I ′ = I ∧ t, for all assumption t. This would give a weight to
each assumption/tag that would provide a consequent cost to the relative assumptive
action at.

7.7 Summary

We introduced a translation-based model for planning with incomplete information
and sensing, and always generates a plan to execute, even when contingent planners
or POMDPs solvers fail because of the potential unreachability of the goal. Instead,
we produce on-line plans under assumptions for which the goal is reachable, and plan
consequently on a reactive platform. The resulting planner CLG+ never freezes in
front of lack of initial information of the problem, replans when the automatically
generated assumption is observed to be false, and fails only when the execution fails.
The assumptions are generated in order to maximise the coverage, and the method
provides also many other applications, one of them being learning incomplete action
models.
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Chapter 8

Conclusions

In this dissertation we have described translation-based methods to deal with con-
formant and contingent planning problems. Planning with incomplete information
is a search problem in belief space. Our encoding reduces the belief space search
to state space search. We have identified the conditions under which the proposed
translations are sound, complete, polynomial, and consistent.

We now summarise the contributions of the thesis, and briefly discuss some ways in
which the work presented may be extended.

8.1 Contributions

We enumerate the contributions that we feel to be of greatest interest to the AI
planning community.

Conformant planning

Conformant planning is the task of planning with incomplete information and no
sensing. In this dissertation we built on and extended the work by Palacios and
Geffner (2009) by providing:

1. A formal description of tractable translations to conformant plan-
ning based on sampling initial states KS . For a planning problem P , the
translation KS(P ) is always complete. We also characterise the translation Ki

S ,
that is always complete and is sound for problems having width bounded by i.
e used for the state–of–the–art conformant planner T1. For a problem P with
conformant width bounded by i, the translation Ki

S(P ) is sound, polynomial,
and complete (chapter 4, section 4.2).

2. Heuristics that take into account two major aspects of automated
planning under uncertainty, namely the cardinality of the belief state, and
its distance from the goal. The planner T1 uses these two heuristics, called
the classical and certainty heuristics, in combination. The certainty heuristic
hK is given in terms of a set of “oneof invariants” derived from the problems,
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and exploits these invariants to obtain more accurate estimates (chapter 4,
section 4.5).

3. A family of translations for conformant planning problems with non-
deterministic actions that compile away the non-determinism using newly-
introduced state variables. The starting point for this family is a deterministic
relaxation that is sound as long as the non-deterministic actions are executed at
most once. We provided completeness results for these translations (chapter 5).

4. Several incomplete translation schemas for non-deterministic plan-
ning, some of which appear to be quite effective, mapping non-deterministic
conformant problems into classical ones. In particular, the 〈K,K0〉 translation
applied successively for K = K0 and K = K1 appears to be quite effective
(chapter 5, section 5.6).

Contingent planning

Contingent planning is the task of planning with incomplete information and sensing.
In this dissertation we approached the task by providing:

5. The translation-based approach for contingent planning XT,M . The
computational pay-off of the translation XT,M is that it allows us to com-
pute plans with states represented by sets of literals, rather than with beliefs
represented by sets of states. The translation XT,M preserves consistency for
contingent problems. We also characterise soundness and completeness prop-
erties of the translation Xi we used for the state–of–the–art contingent planner
CLG that depends on a parameter of the problem, the contingent width. We
have also shown that for a problem P with contingent width bounded by i, the
translation Xi(P ) is sound, complete, and polynomial ( chapter 6, section 6.3).

6. The relaxation H(P ) for contingent problems P that is a classical
planning problem. We use H(P ) in conjunction with a classical planner to
provide an informed heuristic to efficiently drive the search of the state–of–the–
art contingent planner CLG in a closed loop fashion. The planner CLG can
produce off-line and on-line plans. ( chapter 6, section 6.5).

7. A modification to the translation-based approach used in CLG to
deal with problems that do not guarantee goal reachability. In such
cases, instead of “freezing”, our CLG+ planner provides anyhow a solution un-
der assumptions, automatically generated from the problem description. De-
pending on the results of sensing actions, these assumptions can be either con-
firmed or shown to be false during execution, triggering a replanning episode
when necessary. Assumptions are introduced in such a way that actions de-
pending on them, are executed only as a last resort.

8.2 Future & ongoing work

Translation-based approaches are an efficient and elegant way to represent plan-
ning problems with incomplete information. The flexibility of the translations used
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throughout this thesis allowed us to extend the original compilation of conformant
problems to classical ones of (Palacios and Geffner, 2009) to non-deterministic ac-
tions, to contingent planning, and also to capture those plans that do not guarantee
goal reachability, including some application to learning unknown action models.
We will see now some future lines of research bound to extending or re-using the
translations described in this dissertation.

Using samples to translate contingent planning problems

The translations based on samples are efficient and compact. We presented in chap-
ter 4 the translation-based planner T1 for deterministic conformant planning that
uses the K1

S translation, and that tries to combine the flexibility of planners that
search explicitly in belief space, with the heuristics and belief representation that
arise from translations. The novel general translation Ki

S selects sets of initial states
depending on the width i of the conformant problem. The translated problem Ki

S(P )
is always tractable and complete, and sound for problems with width bounded by i.

We believe that similar translation techniques based on sampling states in the initial
belief can be used for contingent planning problems, and more accurately if the initial
samples form a basis for the problem. For this, the notion of basis has to be extended
to planning with incomplete information and sensing. We can consider that a set of
states S is a basis for a contingent planning problem P = 〈F ,A,O, I,G〉 if S is
a subset of the set of all possible initial states S0 of P , and if any plan for P |s =
〈F ,A, τ(s),G〉 is a contingent plan for P , for any state s ∈ S.

Given a contingent basis for a problem P , a solution plan π for P |S (which is P
restricted to the initial subset of states S of S0) is a solution plan for the whole
contingent problem P . The translation-based approach using samples exploits con-
tingent bases to generate a contingent plan that maps the belief S into the goal, and
that conforms for all the states in S0. In particular, we can relate contingent bases
to the covering merges used in translations Xi(P ) that are sound and complete for
problems having contingent width bounded by i (as seen in section 6.4). The set
of states that satisfy a covering merge is de facto a basis by construction. If we
consider covering merges, we can identify a subset of the initial set of states that
satisfy merges covering every precondition or goal L, allowing so to track relevant
beliefs along the plan execution.

A basis S can be built from the covering merges of a translation Xi(P ) = XT,M (P ).
We start by considering a merge m = {tk}nk=1 that covers a precondition or goal
literal L, and we select the set Stk(L) of possible initial states s of P such that
rel(s, L) ⊆ t∗k. This result mirrors a similar one obtained in the conformant planning
setting: the set Stk(L) contains the possible initial states of P that make false all
the literals L′ that are relevant to L, except for those in the closure t∗k of tk. Finally,
the set S =

⋃
tk∈m,L Sti(L) is a basis for the contingent problem P , for all merges

m ∈M and all precondition or goal literals L.

We can give a sketch of the proof for this result. First we notice that, by induction
on the length of a plan π, it can be proved that S is a basis for P if for every possible
initial state s0 of P , and given a precondition and goal literal L in P , S contains a
state s such that rel(s, L) ⊆ rel(s0, L). In fact, if S is a basis for P , then a plan π that
achieves the goal for P |S , achieves the goal also for P |S0 . Then every state s0 ∈ S0
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must satisfy a tag tk in a valid merge m for a precondition or goal literal L. From
Theorem A.25 in the appendix, we know that for each initial state s of P exists a tag
tk in a valid merge m such that rel(s, L) ⊆ t∗k, and therefore rel(s, L) ⊆ rel(s0, L),
since s must satisfy t∗k and possibly other literals L′ that are relevant to L.

Thus, from a valid set of merges of a covering translation, a contingent basis can
be extracted. This result provides us a method to extract samples to build a basis
for P , given the tags tk in a covering translation XT,M (P ). Once a contingent
basis is identified, we can exploit the “oneof” invariants of the problem to produce
a heuristic sensitive to the “amount of uncertainty” of the belief states. Similarly
to what has been done in T1, such a heuristic would be related to the cardinality
and the landmarks heuristics, and improve the efficiency of solving the translated
problem.

Sentence generation as Multi-agent planning

Dialogue between two agents can be viewed as actions interchanging information or
knowledge about the environment, in order to reach a final situation, where both
agents achieve their own goal. So sentence generation problems can be cast as plan-
ning problems under incomplete information, and with some sensing available.

We then consider a two-agent collaborative planning model, where here collabora-
tive means that both agents share the same goal, to tackle the dialogue generation
problem. A multi-agent planning problem, and in particular a two-agent problem,
can be cast as a single agent planning problem with incomplete information and
sensing (Weerdt et al., 2005), as agents act independently. The “state of knowledge”
of each agent is encoded by the mean of epistemic modal operators K1 and K2 to
denote what each agent “knows”, e.g. K1K2L indicates that the agent 1 is aware
that the agent 2 knows that L is true.

In practice, however, single-agent planning problems that feature incomplete infor-
mation and sensing are solved using classical planners and replanning. As we saw
in chapter 6, problems with incomplete information and sensing can be cast as non-
deterministic fully observable planning problems.

The translation K ′0(P ) = 〈F ,A,O, I,G〉 is based on the K0 translation for con-
formant problems (cf. section 3.1), and extends it to capture partially observable
problem P at the “knowledge-level”, in a fashion similar to what X (P ) does (cf.
chapter 6). K ′0(P ) represents only the literals that are known and negatively known
in the original problem, and is a more compact translation compared to X (P ), since
K ′0 is linear rather than quadratic.

This translation is the base for an on-line planner for partially observable domains,
where a reactive platform allows getting feedback from the environment and replan-
ning. This approach can be extended to the general multi-agent case.

The translation K ′0 requires a connected state space, which guarantees that no dead-
ends are present. Another assumption is considered in approaching partially observ-
able problem with replanning techniques: the hidden preconditions of actions become
observable at execution, and thus are known to be either true or false. Under these
optimistic assumptions, but that are easily achieved in multi-agent planning prob-
lems, the K ′0(P ) model can be cast as a classical planning problem by fixing –when
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needed– the values of all the unknown variables. This method follows the scheme of
an effective greedy on-line algorithm:

1. to consider the most convenient assumption about the values of the unknown
variables;

2. to execute the plan obtained from the resulting classical planning problem fed
to a classical planner;

3. to revise the assumptions made, from the observations gathered at execution
time, and eventually replan if the observations refute the assumptions made.

This method is similar in spirit to the assumption-based translation we saw in chap-
ter 7 for problems where reaching the goal is not a priori guaranteed. The difference
here is that assumptive actions are not on tags, as –similarly to the translation K0–
the beliefs are compiled away, but the assumptions are only made about the truth
value of a single fluent.

Another central aspect of multi-agent planning is the coordination between the
agents. Coordination between agents aims at avoiding conflicts during the execu-
tion of plans. In the former on-line planning algorithm, coordination is taken into
account very lazily, by letting the agents observe the outcome of their actions, or
letting them sense the inner knowledge state of the other agent. But multi-agent
planning needs a more elaborate form of coordination, like messages interchanged
between the agents, or sensing of agent’s knowledge state that includes the next-to-
apply actions. This modelisation of a coordination algorithm is left as future work.
We have, however, applied and tested a simplification of the two-agent planning
model to the dialogue generation problem that avoids any coordination problem.

A dialogue session between the computer agent and a user is an actual conversation,
consisting of a specific series of dialogue turns1. On this benchmark, we formulated
the two-agents planning model as a Master–Slave multi-agent problem, where the
slave acts as decided by the master. In our case, the user acts like a slave of the
computer agent. This abstraction allows the master to communicate to the slave
all the actions in the environment, that it then performs while the master can sense
its mental state to check the outcome of the actions, and the results of the sens-
ing. Another important simplification is that the slave does not have false beliefs.
Consequently if the master knows a fact to be true, then the slave knows it as well.

As for single agent planning, a solution to a Master–Slave two-agent problem P
can also be regarded as a policy Π that maps belief states b into actions, or action
sequences π. The implementation we carried out produced an on-line replanner,
involving the K ′0(P ) translation, and featuring the master’s actions, the master’s
and the slave’s physical sensors of the environment, and the master’s mental sensor
of the slave’s internal state. For the simulated executions on a reactive platform, the
executor keeps track of the hidden state of the world, and the hidden belief state of
the slave agent (captured by means of invariants and epistemic literals).

We obtained preliminary results of this simplified model applied to language gener-
ation, reproducing the dialogue between a human user and an automatic agent to

1We had the occasion to approach dialogue generation in the context of the SpaceBook European
project SP7, where an automated agent drives verbally a user toward a map to a desired location.
The dialogue is also needed to establish the user’s goal.
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solve troubleshooting problems, that replicate the “modem restarting” task proposed
by Boye (2007). The tests shows the ability of the replanner to propose solutions
based on the knowledge of the master’s agent, that is initially null. Via a question-
answering procedure, the master identifies the correct sequence of actions the slave
has to apply.

The Master-Slave is indeed a big simplification that avoids the coordination problem
and that does not feature an independent slave agent (the slave does not act by itself,
and does not need to sense the master’s internal state of knowledge). The master-
slave model for two-agent planning can thus be encoded as a single agent planning
problem. However, these first results are encouraging for developing a more complex
two-agent planning model, based on classical translations and replanning.

Ongoing Work

The translation-based approach to planning with incomplete information has inspired
some new line of research in automated planning recently. In these pages we focused
on finding efficient translations that put together the capacity of scaling up with
the properties of soundness and completeness. For this reason we identified and
used a parameter called the width, to specify families of conformant and contingent
problems for which a translation is sound and complete. As the size of many of
the translations we introduced here is exponential in the width, there is a trade–off
between the capacity of scaling up and the width of the family of problems that a
translation can solve. Notice that even an incomplete translation can nevertheless
provide solutions for a planning problem, yet this is not always guaranteed.

One can then consider a translation that maps the problem with incomplete infor-
mation to a deterministic problem; this is done by considering the best assumption
s on the uncertain literals, and planning for the original problem P restricted to the
initial situation P |s. This is indeed a classical planning problem, and is the starting
point of two successful translations for planning with incomplete information and
sensing.

Bonet and Geffner (2011) extended the K0 translation to include reasoning rules
on the invariants of the problem K ′0 for simple problems. A problem is said to be
simple when (i) the non-unary clauses representing the uncertainty about the initial
situation are invariant (i.e. left unchanged by any action), and (ii) the fluents that
are unknown in the initial situation do not appear in the body of conditional effects,
all of which are assumed to be deterministic.

For simple problems P , and for connected state spaces, the translation K ′0(P ) is
shown to be both sound and complete.

Shani and Brafman (2011) use replanning and a translation to classical planning in
their SDR planner. The translation considers only a single initial state is considered
initially: SDR samples an initial state s and plans for the restricted problem P |s,
replanning when necessary. This technique is fast and efficient, in particular for
problems with high contingent width, where the size of a complete XT,M translation
would affects the performances negatively.

Both the K-replanner of Bonet and Geffner (2011), and SDR of Shani and Brafman
(2011) use replanning while solving a classical planning problem, in a fashion that is
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not dissimilar to CLG in on-line mode. While SDR uses a sample state of the initial
belief, K-replanner considers only the literals that are known initially. The mecha-
nism allows the planner to make optimistic assumptions on the preconditions, while
focusing on sensing, as these assumptions might be then confirmed by observation.

Sensing actions are handled by the K-replanner when “assuming” the truth value
of a literal: a confirmation by sensing is then needed. In SDR, observations have
to be forced by a bias, that can be deactivated when necessary. Observing is a key
characteristic for contingent planning to succeed, as it is often beneficial to sense the
environment to limit the amount of uncertainty of the problem.

The simplicity of these translations illustrate well the flexibility of the approach.
These planners have good performances, scaling up well on several benchmark do-
mains, where the machinery of CLG in on-line mode is not adapted to the task.
However, the simplicity of the translation techniques also fail in more complex do-
mains, or just in domains featuring dead-ends, due to their incompleteness. But the
challenge here is to identify the planning problems that can benefit from translations,
to use them proficiently. The ongoing work in translations follows this path, iden-
tifying and applying successfully new translations for different families of planning
problems with incomplete information and sensing.
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Appendix A

Proofs of Soundness and
Completeness for X (P )

In this appendix we provide formal results used in chapter 6.

1 Basic Definitions

Definition A.1. A policy tree Π for a contingent planning problem P is a pair
< T,A > where T is a rooted directed tree, and A is a function mapping the internal
nodes n of T to actions a(n) in P .

A similar definition can be cast for X (P ).

For the fully-observable non-deterministic problem X (P ) and for the contingent prob-
lem P , we consider only policy trees Π =< T,A > where each node n can have no
child (a tip node), one child, denoted as c(n), or two children, denoted c+(n) and
c−(n). The only nodes n that can have two children are those in which a non-
deterministic action set(L) is performed in a state1 that results in the two possible
outcomes KL and K¬L. This is formalised below:

Definition A.2 (Policy Trees applicable to X (P )). A policy tree Π for X (P ) is
applicable if there is a state function s(n) over the nodes in Π such that:

1. s(n0) = s0 where s0 is the initial state of X (P ) and n0 is the root node of Π,

2. a(n) is executable in s(n) and n has a single child c(n) if a(n) is a deterministic
action in s(n), and two children c+(n) and c−(n) otherwise, with states:

a) s(c(n)) = f (s(n), a(n))

b) s(c+(n)) = f (s(n), set+(L)) if a(n) = set(L)

c) s(c−(n)) = f (s(n), set+(¬L)) if a(n) = set(L)

1 In this appendix we use the notations set and obs, instead of simply obs as in chapter 6, to
differentiate the sensing actions encoding in X (P ) and P respectively.
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with f the transition function associating successors states f(s, a) = s′ to states s
after applying the action a in P .

In this definition, set(L) is the non-deterministic action set(L) = C → KL | K¬L
in X (P ). We also use set+(L′) and set−(L′), where L′ ∈ {L,¬L}, to identify two
deterministic actions with the same preconditions as set(L) but with effect KL′

and K¬L′ respectively. Of course set+(¬L) = set−(L). The solutions of the fully
observable, non-deterministic problem X (P ) are then given in terms of the unique
state function s(n) that the definition above associates with any applicable policy
tree.

Definition A.3 (Achievement in X (P )). A policy tree Π achieves a literal L in
X (P ) if Π is applicable in X (P ) and L is true in all the states s(n) associated with
the tip nodes n of Π.

Definition A.4 (Solutions to X (P )). A policy tree Π solves X (P ) if Π is applicable
in X (P ) and it achieves each goal literal LG in X (P ).

The corresponding definitions for the contingent problem P follow.

Definition A.5 (Policy Trees applicable to P ). A policy tree Π for a contingent
problem P is applicable if there is a belief state function b(n) over the nodes n in Π
such that:

1. b(n0) = b0, where b0 is the initial state of X (P ) and n0 is the root node of Π,

2. a(n) is executable in b(n) and n has a single child c(n) if a(n) 6= obs(L), and
has two children c+(n) and c−(n) if a(n) = obs(L), and neither L nor ¬L are
in b(n). The belief state for these children is:

3. b(c(n)) = f(b(n), a(n)) if a(n) 6= obs(L)

4. b(c(n)) = b(n) if a(n) = obs(L), and either L ∈ b(n) or ¬L ∈ b(n)

5. b(c+(n)) = b(n) ∩ |L| if a(n) = obs(L)

6. b(c−(n)) = b(n) ∩ |¬L| if a(n) = obs(L)

In this definition, a belief state b(n) stands for a set of states, L ∈ b(n) means that L
is true in all the states in b(n), and a(n) is applicable in b(n) if for each precondition
L of a it occurs that L ∈ b(n). Likewise, |L| and |¬L| stand for the set of states
where L is true, and false, respectively. The belief-state transition function is

f(b, a) = {s′| s ∈ b and f(s, a) = s′}

Note that a node n, where a(n) = obs(L), must necessarily “branch” into two children
nodes c+(n) and c−(n) when the outcome of the observation cannot be predicted,
when neither L nor ¬L are true in b(n). On the other hand, branching is allowed but
not forced in a policy tree Π, when the observation can be predicted, because either
L or ¬L are in b(n). In such case, if n doesn’t branch, the next belief state b(c(n))
is equal to b(n), and if n branches, one of the possible next belief states b(c+(n)) or
b(c−(n)) will be equal to b(n) while the other one will be empty. This last option
will be possible actually when the policy trees for P is obtained from a sound but
incomplete X (P ).
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Definition A.6 (Achievement in P ). A policy tree Π achieves a literal L in P if Π
is applicable in P , and L is true in all the belief states b(n) associated with the tip
nodes n of Π.

Definition A.7 (Solution to P ). A policy tree Π solves a contingent problem P if
Π is applicable in P and achieves each goal literal LG of P .

2 Policy Trees as Sets of Action Sequences

For establishing the correspondence between the policy trees that solve X (P ) and P ,
it is convenient to associate with each branch p of a policy Π a deterministic action
sequence π(p) that represents in a suitable sense the effects in the planning problem
that results from following such branch in the policy tree. For defining this action
sequence, we will assume that P and X (P ) contain some “dummy action” that are
not part of the policy trees for them, but that may belong to sequences π(p).

For every action obs(L) in P , where L is a positive literal, we assume that P con-
tains also the deterministic action obs+(L), obs−(L) and nobs(L), all with the same
precondition of the action obs(L) but with no effects. Similarly, for X (P ), we as-
sume that for every non-deterministic set(L) action with effect C → KL|K¬L, the
problem X (P ) contains the deterministic action set set+(L), set+(¬L) and nset(L),
all with the same precondition of the action set(L) but the first with the effect KL,
the second with effect K¬L, and the third with no effect.

Definition A.8 (Action Sequences associated to Π). Let p = (n0, . . . , nk) be a
rooted directed path in a policy tree Π for either P or X (P ). The action sequence
π(p) associated with this path is Π is then [a0, . . . , ak−1], where for any i = 0, . . . , k,
the action ai is:

• a(ni), if a(ni) 6∈ {obs(L), set(L)};

• nobs(L) or nset(L), if a(ni) is obs(L) or set(L) resp. and ni+1 = c(ni);

• set+(L) or set−(L), if a(ni) = set(L) and ni+1 is c+(ni) or c−(ni) resp.;

• obs+(L) or obs−(L), if a(ni) = obs(L) and ni+1 is c+(ni) or c−(ni) resp.

We refer to the rooted directed paths p in Π simply as paths or branches. A branch
p determines an action sequence π(p) that is unique to this branch; indeed, for two
branches p and p′, if p 6= p′, then π(p) 6= π(p′) 2

We say that a branch p = (n0, . . . , nk) is complete if nk is a tip node in Π, and
similarly, that an action sequence π is complete if π(p) = π, with p complete. From
now on we will consider only proper policy trees, i.e. policy trees that only have
complete branches.

2The proof for this statement: let π = π(p), π′ = π(p′), and let p 6= p′. Let also n = (n0, . . . , ni)
be the longest sub-path that is common to both p and p′; with the nodes ni+1 and n′i+1 the successors
nodes of ni and n′i in Π respectively. If Π is applicable, then the actions ai ∈ π and a′i ∈ π′ must
be of the form set+(L) and set−(L) in X (P ), or of the form obs+(L) and obs−(L) in P , (otherwise
ni+1 = n′i+1 and n would not be the longest common sub-path of p and p′). In both cases ai 6= a′i,
and hence π 6= π′.
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3 Characterising X (P ) in terms of Classical Plans

Given a branch p in a proper policy tree Π for X (P ), the action sequence π(p)
associated to p captures the plans for X (P ) from the structure of Π.

Definition A.9. Let be Π a proper policy tree for X (P ), and let p = (n0, . . . , nk) be
a branch in Π. The branch p is applicable in X (P ) if the action a(ni) is executable
in s(ni) for every node ni of p.

From the definition A.9, any path p = (n0, . . . , nk) in Π is associated to a sequence
of states S =

(
s(n0), . . . , s(nk)

)
in X (P ).

Theorem A.10. Let Π be a proper policy tree for X (P ). If Π solves X (P ), then
π(p) is executable and is a classical plan that solves X (P ), for each branch p in Π.

Proof. Π solves X (P ) then any branch p in Π is applicable, and result in a node
n to which correspond a state s(n) in X (P ), where the goal literals hold. From
definition A.9, the action sequence π(p) is executable in X (P ) and achieves the goal
state s(n). Then π(p) solves X (P ) for all the branches p of the policy tree Π.

4 Characterising P in Terms of Classical Plans

We turn on establishing a similar correspondence between policy trees and classical
plans for the contingent problem P . For this, let P |s stands for the classical planning
problem obtained by setting the initial situation I of P to be the state s, while
removing the sensing actions.

Definition A.11 (Applicable branch). Let Π be a proper policy tree and p a branch
of Π. We say that p is applicable in P if the action sequence π = π(p) is executable
in the initial belief state b0 of P , and the resulting belief is given by the union of the
states resulting from applying π in each state si of b0:

result(π, b0) =
⋃
si∈b0

result(π, si) (A.1)

and result(π, b0) 6= ∅.

For every node ni of a branch p of a proper policy tree Π, the executability of the
action a(ni) in b(ni) yields that the resulting belief state result

(
a(ni), b(ni)

)
is not

empty. From this remark, follows that

Proposition A.12. Given an applicable proper policy tree Π for P . For every initial
state s ∈ b0 exists a branch p of Π such that the corresponding action sequence π(p)
achieves a state s′ from s, i.e. result(π(p), s) = s′.

Proof. Consider the converse that exists a state sk in b0 such that result(π(p), sk) = ∅
for every branch p of Π. Then there exist a node ni of p such that the action a(ni) is
not executable in the state si resulting from applying the actions prefix of π(p) until
a(ni): si = result

([
a(n0), . . . , a(nj−1)

]
, sk
)
.

If the action a(ni) is not executable in si, then two possibilities arise:
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1. a(ni) is a regular action; then if it is not executable in si, it is not executable
in b(ni), contradicting the hypothesis of applicability of Π in P .

2. a(ni) is obs(L), for a given L; then one of the two child states has to be non-
empty, as L and ¬L can’t be both in si, which contradicts our hypothesis that
result(π(p), sk) = ∅.

From the two former results, follows the next definition:

Definition A.13 (Applicable policy tree). A proper policy tree Π is applicable to
P when for every state s ∈ b0 exists a branch p of Π such that π(p) is executable in
P |s, and that result(π(p), s) 6= ∅.

This definition implies that the applicability of a policy tree is in direct relation with
the actual executability of the corresponding actions in a planning problem. From
the definition A.11, for a branch p = (n0, . . . , nk) of a proper policy tree Π applicable
to P , the resulting belief state of executing π(p) in the initial belief state b0(p) is the
non empty belief b(nk):

b(nk) = {result(π(p), s) | s ∈ b0(p)} (A.2)

Proposition A.14. Let Π be a proper policy tree applicable to P . If Π achieves a
literal L in P , then for every initial state s ∈ b0 a branch p in Π is such that the
action sequence π(p) achieves L in P |s.

Proof. Direct from the expression (A.2) of resulting belief state above and from
definition A.11, where a policy tree Π achieves a literal L in P when L is true in all
the belief states b(n) associated to the tip nodes of Π. This results in having, for
any initial initial state s ∈ b0, a path p in Π such that L ∈ result

(
π(p), s

)
; thus π(p)

achieves L in P |s.

Theorem A.15 (Contingent and Classical Plans). Let Π be a proper policy tree
applicable to P . If Π solves P , then for every initial state s ∈ b0 a branch p of Π is
such that the action sequence π(p) is a classical plan that solves P |s.

Proof. For any branches p in an applicable policy tree Π, the action sequence π(p)
is executable in P , from definition A.11. Then, directly from Proposition A.14, a
policy tree Π solves P when the goal is achieved by all its complete branches p in Π,
thus for any state s in the initial belief state b0 of P , there is a path p such that the
deterministic action sequence π(p) achieves the goal in P |s. Consequently the action
sequence π(p) is a classical plan that solves P |s.

5 Soundness

We prove the soundness of X (P ) by showing that policy trees Π∗ that solve X (P )
can be easily transformed in policy trees Π that solve the contingent problem P .

For these transformation, it will be convenient to generalise the policy trees Π for
X (P ) by allowing the actions a(n) associated with the nodes n in Π to stand not
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just for a single action a, but for certain action sequences as well. In particular we
write Π∗ to denote a policy tree for X (P ) where a(n) is restricted to be any action
a in X (P ) that is also in P , followed by a (possibly empty) sequence of deductive
actions in X (P ) (i.e. actions that stand for full merges or tag refutations). We will
denote from now on such action sequence as a∗. From a policy tree Π∗ that solves
X (P ), we obtain the policy tree Π for P by simply dropping the deductive actions in
each a(n) = a∗, and replacing the set(L) actions by obs(L) actions, and vice-versa:
given a policy tree Π that solves P , we obtain the corresponding policy tree Π∗ for
X (P ) by replacing each a(n) = a by a(n) = a∗, where a∗ equals a followed by all the
deductive actions in X (P ), in any order.

We refer to the action sequences associated with p in Π∗ as π∗(p), and leave π(p) to
refer to the action sequence associated to p in Π.

Last, while we allow a(n) to stand for an action sequence a∗ in X (P ), we will keep
referring to a(n) as an action. If a(n) = a∗, the action that a(n) represents is just
the action a present in P : we do not need to work out the form of this action, but
just notice that it has the same preconditions as a, as the deductive rules in a∗ have
no preconditions.

Lemma A.16 (Soundness of deductive rules). Let be P a contingent planning prob-
lem, and X (P ) a valid3 translation of P following definition 6.1. Given a branch p in
a proper policy tree applicable in X (P ), we consider two states s∗ and s, respectively
in X (P ) and P |si, resulting from applying π∗(p) in s0 and π(p) in si, for an initial
state si in b0. We assume that when KL/t is in s∗, then L is in s when si |= t, with
t a conjunction of literals.

Given an executable action a∗ in s∗, we claim that if a∗ achieves KL in f(s∗, a∗),
then the action a achieves L in f(s, a).

Proof. If the action a∗ with precondition a conjunction of literals C is executable in
s∗, then it is also executable in s by construction of s∗ and s. In fact, if KC is in s∗,
then C is in s for any initial state si.

Three scenarios are then possible:

1. a has a (deterministic) effect that adds KL, then the claim comes because a is
executable in both s and s∗, and deductive rules do not delete any atom.

2. a hasn’t an effect that adds KL, but the deductive rules in a∗ do. We prove the
lemma by examining the application of deductive rules case by case, checking
that the closure rules applied in s∗ yield atoms KL ∈ f(s∗, a∗) if L ∈ f(s, a).

Full Merge Let’s recall that the Full Merge rule is:∧
t∈m

(KL/t ∨K¬t) → KL.

If the Full Merge rule yields KL, then its condition has to hold in s∗, i.e.
KL/t ∈ s∗, or K¬t ∈ s∗.

3We recall that a valid translation has all the merges with at least one of the tags true in I.
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If KL/t ∈ s∗, it comes from the hypothesis that L was already present in s
if si |= t. The case of K¬t ∈ s∗ can’t hold, otherwise si would not satisfy t.
In fact such tag-fluents considered for the translation are limited only to static
literals, as explained at page 100.

Tag Refutation Assuming that we are in the Tag Refutation case, with the
deductive rule being:

KL′/t ∧K¬L′ → K¬t.
If Tag Refutation rule yields KL when applied in s∗ (i.e. we have t = ¬L),
then the rule condition KL′/t∧K¬L′ has to hold in the state. However, K¬L′
is not true in s∗ by hypothesis: having KL′/t and K¬L′ in s∗ would bring that
both L′ in s (because si satisfies t), and ¬L′ in s, which is a contradiction.

3. KL was already present in s∗. If KL has not been deleted by a∗, then L is
present in s by hypothesis, and this literals persists in f(s, a).

So, the deductive rules add in X (P ) only atoms that are already present in the
correspondent belief state in P .

Lemma A.17. Let be a contingent problem P , and a translation X (P ). For any
branch p of a proper policy tree Π, if π∗(p) achieves KL/t in X (P ), then π(p) achieves
L in P |s for all s ∈ b0(p) such that s |= t.

Proof. We prove the statement by induction on the length of π∗(p) = [a0, . . . , ai],
with a0 being the empty action ε.

Initially, if π∗ = {ε}, the proof is direct from the definition of X (P ) (cf. defini-
tion 6.1): by construction KL/t belongs to the initial situation of X (P ) when L is
in all the initial states s that satisfy t (and by consistency of the tags in the trans-
lation4, such initial states exist). It follows that L is achieved in P |s by π∗ = {ε} in
the initial situation.

Inductive step over the length of p = (n0, . . . , ni) : the action sequence π∗(p) =
π∗i−1 = [a0, . . . , ai−1] achieves KL/t in X (P ), then πi−1 achieves L in P |s for all
s ∈ b0(p) such that s satisfies t.

Now π∗(p) = [a0, . . . , ai−1, ai] = [π∗i−1, ai] achieves KL/t in X (P ). Then, either

1. π∗i−1 had achieved KL/t;

2. π∗i−1 had not achieved KL/t, but ai does.

We prove those cases one after the other.

1. By inductive hypothesis, if π∗i−1 had achieved KL/t, then L has been achieved
in P |s. If the action ai deletes 5 L in P |s, then it should delete KL/t in
X (P ) by construction of the actions in the translation: if ai : C → ¬L in P ,
then in X (P ) the support rule is such that ai : KC/t→ K¬L/t ∧ ¬KL/t. An
ai of that form deletes KL/t, and consequently contradicts the hypothesis that
π∗(p) achieves KL/t. Thus L is achieved in P |s.

4 We recall that a tag t is consistent if all the literals in t are true in some initial state.
5 We excluded that ai can be set−(L) because, by tag refutation application, we would obtain

K¬t in X (P ), implying that s doesn’t satisfy t and contradicting the hypothesis.
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2. When ai do achieves KL/t, we distinguish two cases:

(i) The action ai = set+(L) : > → KL∧¬K¬L yields that KL/t is achieved
by π∗(p) in X (P ). In P |s the correspondent sensing action is obs+(L) :
> → L is applicable and π(p) achieves L in P |s.

(ii) The action ai is a regular action, and in X (P ) the support rule is such that
ai : KC/t → KL/t, with KC/t already achieved by π∗i−1. By inductive
hypothesis, πi−1 achieves C in P |s, and in P the corresponding action
ai : C → L is executable in P |s, bringing that π(p) achieves L in P |s.

Corollary A.18. If a policy tree achieves KL in X (P ), then L is achieved in all
the final states of P .

Proof. Direct from checking that if the preconditions of the actions are achieved in
X (P ), then they also are in P .

From the validity of the merges, it comes that for every initial state s ∈ b0 of P ,
exists a tag t satisfied by s. To the contrary, there would exist a state s′ ∈ b0 that
would not satisfy any tag, denying the validity of the merge m, since I 6|=

∨
t∈m t.

The consistency of tags ensure that the state that satisfies t exists and is consistent.

If KL is achieved in X (P ), then KL/t is also achieved in X (P ) for every tag t in
a valid merge m for which there is an initial state si that satisfies it. Thus, from
the Lemma A.17, if KL is achieved in X (P ), then L is also achieved in P |s, for any
initial state s.

Corollary A.19. If a policy tree is applicable in X (P ), it is also applicable in P .

Proof. Direct from the former Lemma A.17: if the preconditions of the actions are
achieved in X (P ), then they also are in P .

Theorem A.20 (Soundness). Consider a contingent planning problem P and a valid
translation X (P ), let Π∗ be a policy tree for X (P ) and Π the corresponding policy tree
for P obtained from Π∗ by dropping the deductive actions and replacing the set(L)
actions by obs(L) actions. Then if Π∗ solves X (P ), Π solves the problem P .

Proof. If Π∗ achieves the goal for X (P ), then by the Theorem A.10, Π∗ is proper
and applicable, achieving the goal literals KLG in all states s(nk) corresponding to
the tip nodes nk of Π∗. Then, from Lemma A.17 and Corollary A.19, the policy
tree Π is proper and applicable in P , achieving the goal literals LG in P |s, as by the
Theorem A.15, we know that exists a branch p in Π that achieves the goal in P |s,
for every initial states s ∈ b0. Thus Π solves the problem P .

6 Completeness

We prove completeness of X (P ) by showing that under certain conditions, policy
trees Π that solve the contingent problem P can be transformed in policy trees Π∗

that solve the non-deterministic fully observable problem X (P ).

We recall here some useful definition that we use to prove completeness.
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Definition 6.8 (Set of relevant observables)Given a literal L in P , the set of ob-
servables O(L) is the set of literals {Li}ni=0 such that, given a clause c = (c1, . . . , cm)
in I, the literals Li verify:

• c1 → Li, for a fixed i, and

• exists a ck ∈ c such that ck → Lj, where Lj ∈ O(L) or Lj = L.

If i = j, the membership of Li in O(L) is trivial, as Li already belongs to O(L).

The set O(L) is unique by construction, as all the literals in O(L) are the ones for
which literals in clauses c are relevant to, and such clauses are identifiable by being
the ones that include L or a literal relevant to an element of O(L). The set O(L) is
minimal because it doesn’t include duplicate elements.

For characterising the set of clauses CI,O(L) that are relevant to a given literal L,
we assume like that I is in prime implicate form (Marquis, 2000), meaning that I
includes only the inclusion-minimal clauses that it entails but no tautologies, along
the tautologies (L ∨ ¬L) for complementary literals L and ¬L that do not appear
as unit clause in I. The set CI,O(L) can then be defined as the set of non-unary
(uncertain) clauses c ∈ I such that each literal Li ∈ c is relevant to L or to some
observable relevant to L.

Definition 6.7 (Set of relevant clauses CI,O(L))Let be a problem P , with I in
prime implicate form (Marquis, 2000) and let be a literal L in P . CI,O(L) is the set
of non-unary clauses c ∈ I such that each ci ∈ c is relevant to an observable literal
in O(L) or to L.

Given a literal L and given a state s, we denote as rel(s, L) the set of literals in s
relevant to L. The set of literals that follow from I and a set of literals t is called
the closure t∗ of t:

Definition 4.12 (Deductive closure)The deductive closure t∗ of a tag t under I is
the set of literals entailed by t in I:

t∗ = {L | I ∧ t |= L}

From now on, we denote with m the merges in a translation X (P ) of a contingent
planning problem P . The notion of satisfaction associates a consistent set of literals
t with the partial truth assignment that is implicit in the closure t∗ of t, and is
extended to account for the conditions under which a DNF formula (e.g., a merge
for L) satisfies a CNF formula (e.g., CI,O(L)).

Definition A.21 (Satisfaction). A consistent6 set of literals m satisfies a clause
c = (c1 ∨ . . . ∨ cn) , if m∗ = {t∗1, . . . , t∗n} contains at least one literal ci in c.

A consistent set of literals m satisfies a collection of clauses C, if m satisfies each
clause in C.

A collection Σ of consistent sets of literals satisfies a collection of clauses C if each
set in Σ satisfies C.

6A merge m = {t1, . . . , tn} is consistent if m∗ does not contain a pair of complementary tags.
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For a translation X (P ) of P , the type of merges required for completeness are simply
the valid merges m that satisfy the set of clauses CI,O(L), with L a precondition or
a goal literal of the problem. We call them covering merges:

Definition 6.9 (Covering translation) X (P ) is a covering translation for a con-
tingent problem P if for each precondition and goal literal L in P such that CI,O(L) is
not empty, the set M of all the merges for X (P ) contains a merge mL that satisfies
CI,O(L).

Lemma A.22. Let m = {t1, . . . , tn} be a covering merge for a literal L, with all tags
ti consistent, in a valid translation X (P ) of a contingent problem P which initial
situation is in prime implicate form. Then for each initial state s of P exists a tag
t in m such that rel(s, L) ⊆ t∗.

Proof. Say ad absurdum that, fixed an initial state s in b0, no tag t in m satisfies
rel(s, L) ⊆ t∗. Then, for any tag ti in m, there is at least on literal Li made true in
s and that is relevant to L, but does not belong to the closure t∗i . If we consider c
the disjunction of such literals Li over all the tags in m, we obtain that I satisfies
c, since I is in prime implicate form, and s is a valid state of I. Consequently, the
clause c is included in CI,O(L), as all the Li are relevant to L. From the definition of
covering merge, at least one tag tk in m includes a literal Lk in c, which contradicts
the initial hypothesis, and proves the thesis.

In case the state s does not make true any literal relevant to L, the lemma is trivially
proved, as the set rel(s, L) is empty.

Lemma A.23. Let Π be a policy tree applicable to P and a covering translation
X (P ). For any complete branche p ∈ Π and the states s ∈ b0(p), if π(p) achieves
a literal L in P |s, then the action sequence π∗(p) achieves either KL/t or K¬t in
X (P ) if exists a tag t in X (P ) such that rel(s, L) ⊆ t∗.

Proof. We prove the statement by induction on the length of π(p) = π = [a0, . . . , ai],
with a0 being the empty action ε, for any complete branch p of Π.

If π = {ε} is the empty plan, then L ∈ s, for any s ∈ b0(p). For the Theorem A.25,
exists a tag t ∈ X (P ) such that rel(s, L) ⊆ t∗. The literal L is relevant to itself,
so L ∈ t∗, and thus KL/t is achieved by π∗(p) as, by definition KL/t is in I when
I |= (t ⊃ L).

Inductive step over the length of the action sequence π(p) = πi−1 = [a0, . . . , ai−1]:
the plan π∗i−1 achieves KL/t or K¬t in X (P ), when πi−1 achieves L in P |s and exists
a tag t for which rel(s, L) ⊆ t∗.

If π+1 = [πi−1, a], and t is not the empty tag, π+1 achieves L in P |s for one of the
following reasons:

A) πi−1 achieves C in P |s for a rule a : C → L in P , or

B) πi−1 achieves L in P |s, and for any rule a′ : C → ¬L, the action sequence πi−1
achieves ¬Li for some Li in C, or

C) a is a sensing action.
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If A, by inductive hypothesis, π∗i−1 achievesKC/t in X (P ), for a tag t when rel(s, L) ⊆
t∗. Hence, π∗+1 achieves KL/t, from the support rule a : KC/t → KL/t. The rea-
soning rules do not delete any atom, so if the sequence π∗+1 = [π∗i−1, a] achieves KL/t
in X (P ).

If B, by inductive hypothesis, π∗i−1 achieves both K¬Li/t (for some literal Li ∈ Ci),
and KL/t in X (P ). Thus, the cancellation rule a : ¬K¬C/t → ¬KL/t has a false
condition, therefore KL/t persists and π∗+1 = [π∗i−1, a

∗] achieves KL/t.

If C, we distinguish three cases: a = obs+(N), a = obs+(L) and a = obs−(L), with
N 6= L. In case the literal K¬N/t has been achieved in X (P ), the set+(N) rule
yields KN in X (P ). By tag refutation rule, K¬t is achieved by π∗+1. Otherwise, if
L has been achieved in P |s by πi−1, then by inductive hypothesis KL/t has been
achieved in X (P ).
If obs(L) = true, then KL (and KL/t) is achieved in X (P ) by a = set+(L).
If obs(L) = false, KL/t is achieved by π∗i−1 by inductive hypothesis, as L is achieved
in P |s. From KL/t and K¬L (the effects of set−(L)) the tag refutation rule achieves
K¬t in X (P ). This tag is static and is not modified by successive actions, thus π∗+1

achieves K¬t in X (P ).

Lemma A.24. Let Π be a policy tree for P and a covering translation X (P ). If Π
is applicable to P , then the policy tree Π∗ is applicable in X (P ).

Proof. The proof is direct from the result of the former Lemma A.23, applied on the
precondition L of the actions in every branch of Π.

Theorem A.25 (Completeness of covering translations). Let be a contingent problem
P , and X (P ) a covering translation. If Π is a proper policy tree that solves P , then
Π∗ is a policy tree that solves X (P ).

Proof. The proof comes directly from the former lemmas, after noticing that every
covering translation has a merge that covers any goal literal LG in P . If a policy
tree Π is a solution that achieves the goal literals in P , then the policy tree Π∗ is
applicable and achieves the goal literals in X (P ), being a solution for the translated
problem.

Theorem A.26. Given a contingent problem P , and a translation X (P ) with the
set of tags T fixed such that each tag ti is the set of all the literals true in an initial
state si, and a single merge m equal to the set of tags. Then X (P ) is a covering
translation, and hence sound and complete.

Proof. The soundness of the translation comes from the validity of the merge m as
by definition I entails all the initial states. The completeness comes directly from
the former Theorem A.25 and the fact that X (P ) is a covering translation, as the
set CI,O is banally satisfied by the disjunction of all the initial states. CI,O is the set
of clauses CI,O(L) for each precondition or goal literal L.

Theorem 6.6 (Completeness and soundness of XS0)The translation XS0(P )
at page 102 is sound and complete.

Proof. Direct from the Theorem A.26 above.
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We recall that the cover c(C) of a set of clauses C is the minimal set of literals S
consistent with the initial situation I such that S contains a literal of each clause in
C (cf. definition 3.14). This definition will be useful in the next theorem:

Theorem 6.15 (Completeness and soundness of Xi) Given a contingent prob-
lem P , and a positive integer i such that i ≥ w(P ), the translation Xi(P ) defined at
page 105 is valid and covering, hence is sound and complete.

Proof. For soundness, we just need to prove that all merges m in Xi(P ) are valid
and that all tags t in Xi(P ) are consistent. The merges m for a literal L in Xi(P )
are given by the covers c(C) of collections C of i or less clauses in C∗I,O(L). Since each
model M of I satisfies C∗I,O(L), it satisfies some t in c(C). For m = c(C), it comes
that at least one tag in m is initially true: I |=

∨
t∈m t, and hence the merge is valid.

At the same time, a cover c(C) is consistent with I, so do are each of the tags t.
Using Theorem A.20, the soundness is proved.

For proving completeness, if the width of the problem is bounded by i, then also
is the width w(L), for each precondition or goal literal L. Therefore, for each such
literal L there is a set C of clauses in C∗I,O(L) for which c(C) satisfies CI,O(L). The
translation Xi(P ) then generates an unique merge m = c(C) that covers L. Since
Xi(P ) is a valid translation, then Xi(P ) is also covering, then is complete by virtue
of Theorem A.25.

7 Consistency

We have been assuming throughout the paper that the contingent planning problems
P and their translations X (P ) are consistent.

We assume at this point that states are not truth-assignments but sets of literals over
the fluents of the language that are true. A state s is complete if for every literal L,
either L or ¬L is in s, and consistent if for no literal L, both L and ¬L are in s.
Complete and consistent states represent truth-assignments over the fluents F and
the consistency of P and of the translation X (P ) ensures that all applicable action
sequences π map complete and consistent states s into complete and consistent states
s′. Once this is guaranteed, complete and consistent states can be referred to simply
as states which is what we have done in the paper.

Given a complete state s and an action a applicable in s, the next state sa is complete
if it satisfies the following conditions, given in terms of the delete and add lists of
the action a in P , from the definitions given in chapter 1 on page 9:

sa =
(
s \ del(a, s)

)
∪ add(a, s) (A.3)

where

add(a, s) = {L | a : C → L and C ⊆ s} (A.4)

del(a, s) = {¬L | L ∈ add(a, s)} (A.5)

It follows from these rules that if s is a complete state then sa is a complete state
when the applied action a only deletes a literal L in s if its negation ¬L is added.
Notice that these conditions do not preserve consistency: s may be consistent and
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sa inconsistent7. To guarantee that all reachable state is complete and consistent,
and thus represent genuine truth assignments over the fluents in F , a consistency
condition on P needs to be defined.

Definition A.27 (Consistency). A classical, conformant, or contingent problem P
is consistent if the initial situation I is logically consistent and every pair of com-
plementary literals L and ¬L is mutex in P .

In a consistent classical problem P , all the reachable states are complete and consis-
tent, and the standard progression lemma (Palacios and Geffner, 2009) used in the
preceding proofs holds:

Lemma A.1 (Progression in Classical planning). An action sequence π+1 = [π, a]
applicable in the complete and consistent state s achieves a literal L in a consistent
classical problem P iff A) π achieves the body C of a rule a : C → L in P , or B) π
achieves L and for every rule a : C ′ → ¬L, π achieves ¬L′ for a literal L′ in C ′.

The notion of mutex used in the definition of consistency expresses a guarantee that
a pair of literals L and L′ cannot be both true in a reachable state. Sufficient and
polynomial conditions for mutual exclusivity and other type of invariants have been
defined in various papers, here we follow the definition by Bonet and Geffner (1999).

Definition A.28 (Mutex Set). A mutex set is a collection R of unordered literals
pairs (L,L′) over a classical or contingent problem P such that:

1. for no pair (L,L′) in R, both L and L′ are in a possible initial state s,

2. if a : C → L and a : C ′ → L′ are two conditional effects for the same action a,
and (L,L′) is a pair in R, then the set (pre(a) ∪ C ∪ C ′) contains two literals
p and q that are mutex in R,

3. if a : C → L is a conditional effect in P for an action a, and the literal L belongs
to a pair (L,L′) in R, then either a) L′ = ¬L, b) the set (pre(a)∪C) contains
a literal that is mutex with L′, or c) the action a has an effect a : C ′ → ¬L′,
and the set (pre(a) ∪ C) implies C ′.

For simplicity and without loss of generality, we will assume in the proofs that
preconditions pre(a) are empty: it is simple to show that the mutexes of a problem
P remain the same if preconditions are pushed in as conditions. We also assume that
no condition C in a rule C → L in P includes mutex fluents, as these rules can be
simply pruned because the body never holds.

Theorem A.29. If (L,L′) is a pair in a mutex set R of a classical, conformant,
or contingent problem P , then the mutex literals don’t hold together in any reachable
state s in P , i.e. {L,L′} 6⊆ s.

Proof. The theorem has been proved by Palacios and Geffner (2009) for classical
an conformant planning problems. We now turn on contingent planning problems
P =< F ,A,O, I,G >.

7Consider as an example the following rules a : C → L, and a : C′ → ¬L. In the case both C
and C′ are in s.
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Given Π be a proper policy tree for P , and p = (n0, . . . , ni) a rooted directed path
in Π. We prove the hypothesis by recursion on the length i of the action sequence
π(p) = [a0, . . . , ai] associated to p, for any p in Π, and with a0 the empty action.

For π(p) = [a0], L and L′ cannot be part of a possible initial state, as this is ruled
out by the definition A.28 of mutex set.

From the inductive hypothesis, {L,L′} 6⊆ s for any state s reachable in less than i+1
steps by applying π(p) = [a0, . . . , ai−1] to the initial belief b0.

For π+1 = [a0, . . . , ai−1, ai] then we distinguish three cases for which L and L′ can
be in a state s+1, and we prove that none of them is possible:

A) ai is a sensing action that adds L, while L′ already was in s (or the converse).
If L has been observed to be true, then L ∈ s, as sensing actions reveal the
truth value of a fluent in a state, withou changing it. But form the inductive
hypothesis, both L′ and L cannot be in s as they are mutex, which invalidates
that L can be observed to be true if L′ ∈ s.

B) ai is a regular action that adds both L and L′. Then a has two conditional
effects C → L and C ′ → L′. If L and L′ are mutexes, then, by the point 2 in
definition A.28, the set (C ∪C ′) contains two mutex literals implying that the
conditions C and C ′ cannot hold at the same time: either L is added, or L′,
or none, but never both. The case L and L′ are add effects of the same rule
is not possible either, as in this case the condition would also include a mutex
pair, and be pruned from the problem for that.

C) ai is a regular action that adds L, and L′ was in s and is not deleted by a (or
the converse). Say that an effect C → L of a adds L with C ⊆ s and no other
effect of a is such that C ′ → ¬L′, because L′ ∈ s+1. This case also cannot
hold, as from L′ ∈ s+1 and the inductive hypothesis, it follows that either 1)
C is not mutex with L′, or 2) L′ = ¬L. In the first case, this contraddicts the
third point in definition A.28, so this case is impossible. Finally, if L′ = ¬L,
then L′ should be in del(a) following eq.(A.5), because the states are defined
to be complete; this implies that the case 2) cannot hold.

To prove the consistency of the non-deterministic fully observable problem X (P ) =
XT,M (P ), we start from proving that if P is consistent, so is the translated problem
X (P ). For the proof, we assume without loss of generality that the heads KL of
the merge actions in X (P ) = XT,M (P ) are extended with the literals K¬L′ for the
literals L′ that are mutex with L in P .

The consistency of the classical problems P |s for possible initial states s ∈ b0 is
direct, as the set of mutexes in P is a subset of the set of mutexes in P |s where the
initial situation is more constrained.

Given a traslation X (P ), the set of mutexes RT in the translation depends on the
mutexes R in the contingent problem P , and in particular:

Proposition A.30 (Mutex Set RT ). Let be a valid transition X (P ) of a consistent
contingent problem P with mutex set R. Let be the set RT of literals given by

RT =
{

(KL/t,KL′/t′) ∪ (KL/t,¬K¬L′/t′) | (L,L′) ∈ R
}

(A.6)
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with the two sets of literals t ad t′ joinly satisfiable in I, i.e. I 6|= ¬(t ∪ t′).

We claim that RT is a mutex set.

Proof. We need to prove the three properties of a mutex set in definition A.28.

1. Initially, and from the definition of the XT,M translation, the literal KL/t holds
in XT,M if I |= (t ⊃ L) in the original problem P , and similarly holds KL′/t′

when I |= (t′ ⊃ L′). If t and t′ are jointly satisfiable in I, then in any initial
state s for which (t ∪ t′) ⊆ s the mutexes L and L′ cannot jointly hold, thus
either KL/t or KL′/t′ can not be in the initial situation of X (P ).

A similar reasoning can be applied to the negation of L′: say that L holds in
s and L′ does not, then from the consistency of P and the completeness of s
comes that ¬L′ ∈ s, i.e. I |= (t′ ⊃ ¬L′), and K¬L′/t′ is in the initial situation
of X (P ) if KL/t is. Yields that KL/t and the negation ¬K¬L′/t′ cannot be
together in the initial situation of X (P ). Such state exist because the merges
are valid and consistent.

No pair (L,L′) in RT can jointly be in an initial state of X (P ).

2. Say an action a has two conditional effects a : C → L and a : C ′ → L′ in P , and
(L,L′) is a mutex pair in R. In X (P ), the action a includes two support rules
that add both KL/t and KL′/t′: a : KC/t→ KL/t and a : KC ′/t′ → KL′/t′.

From the consistency of P , we know that the set (C ∪ C ′) contains a pair of
mutex literals (L1, L2) ∈ R. Then it comes that before applying a, in the
translation KC/t and KC ′/t′ do not hold together in any initial state that
satisfies both t and t′, hence (KC/t ∪KC ′/t′) contains a mutex pair in X (P ).

Similarly, if from rules a : C → L and a : C ′ → L′ in P , the action in X (P ) with
rules adding KL/t and ¬K¬L′/t are the support and cancellation rules of the
form a : KC/t → KL/t and a : ¬K¬C ′/t′ → ¬K¬L′/t′, for a pair of mutex
literals L′ and L in P , Since L and L′ are mutex in P , then (C ∪ C ′) must
contain literals that are mutex P , so that the pair (KC/t,¬K¬C ′/t′) is mutex
in RT .

Notice that a cannot be a reasoning rule, as by construction ,the condition of
the rule would hold a pair of mutexes, making it pruned from the problem.

3. We are left to prove that the clauses (KL/t,KL′/t′) and (KL/t′,¬K¬L′/t′)
in RT are mutex pairs that complies with the third case of definition A.28.

Say an action a in P has the conditional effect a : C → L, then in the translation
X (P ) it has a conditional effect a : KC/t→ KL/t, and (L,L′) is a mutex pair
in R.

We consider first the pair (KL/t,KL′/t′):

a) if L′ = ¬L, then by construction KL′/t′ = K¬L/t′. The action a : C → L
in P is translated in X (P ) as the support rule a : KC/t′ → KL/t′, and
the cancellation rule a : ¬K¬C/t′ → ¬K¬L/t′; the latter is equivalent to
a : ¬K¬C/t′ → ¬KL′/t′. The condition KC/t implies the body ¬K¬C/t′
of the cancellation rule, then for each literal Li in C, a literalKLi/t implies
a literal ¬K¬Li/t′ ∈ ¬K¬C/t′ in X (P ). Then the pair (KLi/t,K¬Li/t′)
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is mutex in RT , and the literal K¬Li/t′ does not belong to KC/t as it
is mutex with an element of KC/t. The point 3a) of the mutex set’s
definition is then verified.

b) we prove that, given the point 3b) of the mutex set’s definition in P , the
same point holds in X (P ). If the action a : C → L adds L in P , and C
contains a literal Li that is mutex with L′, then also the body KC/t of
the support rule contains, by construction, a literal KLi/t that is mutex
with KL′/t′, yielding that (KLi/t,KL

′/t′) ∈ RT , for t and t′ sets that are
not mutually exclusive in I. Hence KC/t contains a literal mutex with
KL′/t′ in X (P ), which proves the claim.

c) given the point 3c), we prove that the same holds in X (P ). If the action a
has an effect a : C ′ → ¬L′, and the fluents Li in C imply the literals in C ′,
then the body KC/t of the support rule a : KC/t → KL/t implies the
body ¬K¬C ′/t′ of the cancellation rule a : ¬K¬C ′/t′ → ¬KL′/t′. Hence
every fluent KLi/t in KC/t implies a fluent ¬K¬L′i/t′ in ¬K¬C ′/t, which
is the body of the rule that deletes KL′/t′. This proves the claim.

In case the action applied is a contingent merge a :
∧
ti∈m(KL/ti∨K¬ti)→ KL

for a valid merge m, the pair (KL/t,KL′/t′) is still mutex if (L,L′) ∈ R. We
show this by considering the sets t and t′, joinly consistent in I: as m is a
valid merge, at least a ti in m is consistent initially with t′, so that the pair
(KL/ti,KL

′/t′) is in RT . Hence the body of the rule includes at least literal
mutex with KL′/t′, following 3b).

We do not consider here the tag refutation rule a : KL/t∧K¬L→ K¬t, com-
ing after an observation, as we are considering by hypothesis only sets t and t′

that are joinly satisfiable initially, which is not the case if K¬t.

We check now that the claim holds for the second pair (KL/t,¬K¬L′/t′).

a) if L′ = ¬L, then by construction KL′/t′ = K¬L/t′, and the pair
(KL/t,¬K¬L′/t′) is made by a fluent and its negation, from 3a).

b) we prove the claim by showing that the point 3b) of the definition A.28
holds in X (P ). If an action a : C → L has the body C that contains
a literal mutex with L′, then KC/t contains a literal KLi/t mutex with
KL′/t′. By the construction of the actions in the translated problem, ev-
ery fluent KL/t implies ¬K¬L/t, hence KL′/t′ implies a literal ¬K¬L′/t′
which is mutex with KLi/t and consequently also with KL/t in RT , prov-
ing the claim.

c) we prove the claim by showing that the point 3c) of the definition A.28
holds in X (P ). If the action a has an effect a : C ′ → ¬L′, and the
fluents Li in C imply the literals in C ′, then KC/t of the support rule
a : KC/t → KL/t implies the body ¬K¬C ′/t′ of the cancellation rule
a : ¬K¬C ′/t′ → ¬KL′/t′. Indeed every fluent KLi/t in KC/t implies a
fluent ¬K¬L′i/t′ in ¬K¬C ′/t. If we notice that K¬L′/t′ = ¬(¬K¬L′/t′),
then the claim becomes verified for (KL/t,¬K¬L′/t) ∈ RT .

In case the action applied is a contingent merge a :
∧
ti∈m(KL/ti∨K¬ti)→ KL

for a valid merge m, the pair (KL/t,¬K¬L′/t′) is still mutex if (L,L′) ∈ R.
We show this by considering the sets t and t′, joinly consistent in I: as m is
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a valid merge, at least a ti in m is consistent initially with t′, so that the pair
(KL/ti,KL

′/t′) is in RT for (L,L′) ∈ R. As the reasoning rules’ heads KL are
extended with K¬L′ if L′ is mutex with L in P , then ∧K¬L′ is implied by the
contingent merge, and the property 3c) of the mutex set if trivially verified as
K¬L′/t′ = ¬(¬K¬L′/t′).

An action sequence in a branch of a plan for X (P ) is made by [a0, . . . , ai], with a0 = ε
the empty action, applied on the initial state s0. Then, we proved that for each step,
if (L,L′ is a mutex pair in R, then the pairs (KL/t,KL′/t′) and (KL/t,¬K¬L′/t′)
are mutex pairs in RT , for t and t′ two sets of literals no mutually exclusive in I.

Theorem 6.2 (Consistency of X (P )) Let be a contingent problem P . A valid
translation X (P ) is consistent if P is consistent.

Proof. The consistency of the translation X (P ) comes from the Proposition A.30:
the translation X (P ) is logically consistent in the initial state s0, and if (L,L′) is
a mutex pair in P , then the literals introduced in the set RT in the translation
X (P ) constitute a mutex set, preserving the consistency property.
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