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Raúl Cruz Barbosa

advisor
Alfredo Vellido

Departament de Llenguatges i Sistemes Informàtics
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Meyĺı Guadalupe†, Raúl Add́ı and Diego, my children- for their con-

tribution in my PhD. They make my spirits high with their smiles

and make me strong with their unquestioning love all along.

I would like to thank Prof. Carles Arús at UAB who allowed my col-
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In many real-world application problems, the availability of data labels for

supervised learning is rather limited. Incompletely labeled datasets are common

in many of the databases generated in some of the currently most active areas of

research. It is often the case that a limited number of labeled cases is accompanied

by a larger number of unlabeled ones. This is the setting for semi-supervised

learning, in which unsupervised approaches assist the supervised problem and

vice versa.

A manifold learning model, namely Generative Topographic Mapping (GTM),

is the basis of the methods developed in this thesis. The non-linearity of the

mapping that GTM generates makes it prone to trustworthiness and continuity

errors that would reduce the faithfulness of the data representation, especially

for datasets of convoluted geometry. In this thesis, a variant of GTM that uses a

graph approximation to the geodesic metric is first defined. This model is capable

of representing data of convoluted geometries. The standard GTM is here modi-

fied to prioritize neighbourhood relationships along the generated manifold. This

is accomplished by penalizing the possible divergences between the Euclidean

distances from the data points to the model prototypes and the corresponding

geodesic distances along the manifold. The resulting Geodesic GTM (Geo-GTM)

model is shown to improve the continuity and trustworthiness of the represen-

tation generated by the model, as well as to behave robustly in the presence of

noise.



The thesis then leads towards the definition and development of semi-supervised

versions of GTM for partially-labeled data exploration. As a first step in this di-

rection, a two-stage clustering procedure that uses class information is presented.

A class information-enriched variant of GTM, namely class-GTM, yields a first

cluster description of the data. The number of clusters defined by GTM is usu-

ally large for visualization purposes and does not necessarily correspond to the

overall class structure. Consequently, in a second stage, clusters are agglomer-

ated using the K-means algorithm with different novel initialization strategies

that benefit from the probabilistic definition of GTM. We evaluate if the use of

class information influences cluster-wise class separability. A robust variant of

GTM that detects outliers while effectively minimizing their negative impact in

the clustering process is also assessed in this context.

We then proceed to the definition of a novel semi-supervised model, SS-Geo-

GTM, that extends Geo-GTM to deal with semi-supervised problems. In SS-

Geo-GTM, the model prototypes are linked by the nearest neighbour to the data

manifold constructed by Geo-GTM. The resulting proximity graph is used as the

basis for a class label propagation algorithm. The performance of SS-Geo-GTM is

experimentally assessed, comparing positively with that of an Euclidean distance-

based counterpart and that of the alternative Laplacian Eigenmaps method. Fi-

nally, the developed models (the two-stage clustering procedure and the semi-

supervised models) are applied to the analysis of a human brain tumour dataset

(obtained by Nuclear Magnetic Resonance Spectroscopy), where the tasks are, in

turn, data clustering and survival prognostic modeling.
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Chapter 1

Introduction

Labeling aspects of reality seems to be one of the most standard occupations of

the human brain and, therefore, of natural learning. When dividing the existing

reality into different categories, we are seamlessly performing a classification task

that can be improved over time through learning.

In the realm of non-natural, or machine learning, the task of unraveling the

relationship between the observed data and their corresponding class labels can

be seen as the modeling of the mapping between a set of data inputs and a set

of discrete data targets. This is understood as supervised learning.

Unfortunately, in many real applications class labels are either completely or

partially unavailable. The first case scenario is that of unsupervised learning,

where the most common task to be performed is that of data clustering, which

aims to discover the “true” group structure of multivariate data (Jain & Dubes,

1998). The second case is less frequently considered but far more common than

what one might expect: quite often, only a reduced number of class labels is

readily available and even that can be difficult and/or expensive to obtain.

One clear example of such situation is the type of data that will be the subject

of a benchmark study in this thesis. The data in this study are spectra obtained

through Nuclear Magnetic Resonance (NMR) spectroscopy, which are intended

to provide the clinician (or the data analyst) with an accurate snapshot of the

chemical composition of human brain tumour tissue samples. These spectra, by

themselves, are difficult to obtain, standardize and preprocess for analysis (Tate

et al., 1998). On top of that, not all the tumour samples are likely to be correctly
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1. INTRODUCTION

classified (attributed to a tumour type) and many might not even be diagnosed

at all.

In such context, unsupervised models are an adequate tool for a first ex-

ploratory approach. The available class labels can then be used to refine the un-

supervised procedure. This becomes a task on the interface between supervised

and unsupervised models: semi-supervised learning (Chapelle et al., 2006). This

type of learning is commonly understood as a way to improve supervised tasks

(usually with few available labeled samples) with the use of unlabeled samples

(Blum & Mitchell, 1998; Ghahramani & Jordan, 1994; Joachims, 1999; Nigam

et al., 2000; Seeger, 2000). In this thesis, the approach is a less typical one:

improving and refining unsupervised learning by using class labeled data.

The baseline method we will resort to in order to follow this approach is a

generative constrained mixture model of the manifold learning family: namely,

Generative Topographic Mapping (GTM: Svensén 1998). This model has been

quoted to be “a very powerful architecture in such situations, obtaining the la-

tent manifold as a smooth nonlinear mapping of a uniform distribution over a

low-dimensional space, represented by a regular grid” (Seeger, 2000). This regu-

lar grid low-dimensional representation allows GTM to be used for the intuitive

visualization of both the multivariate data and the obtained clustering results.

The standard GTM, though, was defined to deal with data that could be rep-

resented reasonably well through low dimensional manifolds of smooth curvature

(Svensén, 1998). Unfortunately, it has a limited capability to represent data of

convoluted curvature. Another part of this thesis deals with this problem. In it

we define a variation on GTM, namely the Geo-GTM, that replaces the commonly

used Euclidean distance by a geodesic metric that favours data point similarities

along the learned manifold. This alternative (dis)similarity measure can help to

uncover the underlying structures of convoluted datasets, while still performing

well in the modelling of datasets of smooth curvature.

1.1 Thesis’ Goals and Contributions

In this section the main goals and the novel contributions of the thesis are sum-

marily listed for the benefit of the reader. Amongst the main goals:

4



1.1 Thesis’ Goals and Contributions

• The design and implementation of an extension of GTM that can face mul-

tivariate datasets with underlying convoluted geometric properties. The

main task of the corresponding extension is the same as for standard GTM:

clustering and visualization. It represents a first unsupervised exploratory

approach and it will be the base for posterior semi-supervised models.

• The design and implementation of some semi-supervised methods based on

the baseline manifold learning GTM model and its extensions. These semi-

supervised methods aim to assist unsupervised data analysis strategies with

the addition of class label information. All methods will be deployed within

the framework of Statistical Machine Learning.

• The evaluation of the performance of these methods, as well as its compar-

ison with the performance of alternative ones. In order to accomplish such

evaluation, both adequate artificial and real datasets will be used.

• In the final version of this thesis, we plan to complete the application of

these methods to a benchmark problem concerning the analysis of NMR

spectra in a human oncology context. The obtained knowledge should be-

come part of the outcome of the I+D+I TIN-2006-08114 research project

of the Soft Computing group at the department of Llenguatges i Sistemes

Informàtics, Universitat Politècnica de Catalunya, which deals with the de-

sign and development of a decision support system for the assistance of

clinicians in the diagnosis of human brain tumours.

Main theoretical novelties:

• Definition of a two-stage clustering procedure as a principled extension of

GTM by explicitly using class-GTM in the first stage and K-means in the

second one. Also, two novel initialization procedures for the second stage,

derived from class-GTM training, are defined.

• Definition of Geo-GTM as a principled extension of GTM to uncover un-

derlying structures in convoluted datasets, by explicitly penalizing the dif-

ferences between the Euclidean and the alternative geodesic distance from

data to prototypes in the original constrained mixture model.
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• Definition of SS-Geo-GTM as a principled extension of Geo-GTM to semi-

supervised problems, by explicitly introducing a modified label propagation

algorithm on top of Geo-GTM.

Main expected application novelty:

• Novel application of semi-supervised models of the manifold learning fam-

ily to the assistance of exploratory unsupervised clustering of real NMR

spectrometric data with uncertain prognostic labeling, including the char-

acterization of brain tumour typology and degree.

1.2 Thesis Overview

For an improved interpretability, the thesis contents are split into four parts.

The rest of the thesis outline is structured as follows: In Part I, the necessary

theoretical background is summarily reviewed. Chapter 2 provides a general

overview of the semi-supervised learning problem in Pattern Recognition, aiming

to stick to the viewpoint provided by the Statistical Machine Learning field.

Out of the different modalities of semi-supervised learning, the focus will be

placed in generative models. Chapter 3 is a self-contained summary of the basics

of Generative Manifold Learning, including a more detailed description of the

baseline model that will be used throughout the thesis: GTM.

The second part concerns data explorations without class information. In

chapter 4, an unsupervised exploratory method dealing with datasets of convo-

luted geometric properties is presented. The basic idea is to uncover underlying

structures in convoluted datasets. Part of the results presented in this chapter

were published in Cruz-Barbosa & Vellido (2008a,b,d).

Part III deals with data explorations using class information. Chapter 5

presents an extension of GTM model using class information for clustering pur-

poses. The early ideas for experimentation in this chapter were published in

Cruz-Barbosa & Vellido (2006, 2007a,b,d), and applied to a preliminary human

brain tumour characterization reflected in the final results of this chapter. Part

of these results were published in Cruz-Barbosa & Vellido (2007c, 2008c).
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In chapter 6, semi-supervised versions of GTM and Geo-GTM (the model

developed in chapter 4) are described. Unlike in chapter 5, classification is here

the main task these models are put to. Most of the contents of this chapter

have been submitted for publication in Cruz-Barbosa & Vellido (2009c). Partial

results, including the comparison of the proposed semi-supervised models with

the alternative Laplacian Eigenmaps method were published in Cruz-Barbosa

& Vellido (2009a). Also, a prognostic analysis (in a semi-supervised fashion)

of a human brain tumour dataset using survival information as class labels has

recently been submitted for publication in Cruz-Barbosa & Vellido (2009b). In

the concluding part IV of the thesis, chapter 7 briefly summarizes the impact of

the main contributions and provides a few pointers for future research.
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Chapter 2

The Semi-Supervised Learning

Problem in Pattern Recognition

2.1 Introduction

This chapter introduces some of the basic concepts underlying the field of semi-

supervised learning, within the general framework of Machine Learning. It must

be noted from the onset that this research area is still far from fully established

and standardized, and that disparate approaches to deal with it can be found

in the recent academic literature. In what follows, we shall stick to the view

provided by the Statistical Machine Learning field.

Modern Pattern Recognition has for long been well served by Machine Learn-

ing techniques, many of them widely applied and accepted. There are many ways

to categorize these techniques; amongst them, we are interested in that which

divides them between supervised and unsupervised, according to the availability

of data labels to accompany the data observations. It is common knowledge that,

in supervised Machine Learning, the aim is to learn a mapping from the observed

input data to an output whose correct values, or target labels, are provided by

a supervisor. In unsupervised learning, instead, there is no such supervisor, and

only unlabeled observed input data are available. The aim in this case is to find

regularities that might exist in the input data.

Semi-Supervised Learning (SSL) is an emergent discipline that incorporates

prior knowledge into supervised or unsupervised methods (classification and clus-
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tering, mainly). The need for SSL, understood as learning from a combination of

both labeled and unlabeled data, rises naturally in cases for which there exists

a large supply of unlabeled data but a limited one of labeled data (bearing in

mind that in many practical domains it can be very difficult and/or expensive to

generate the labeled data). When SSL is used for classification, the main goal is

to improve the classification accuracy aided by unlabeled data.

SSL for classification has become popular over the past few years. Some of

the proposed methods include: co-training (Blum & Mitchell, 1998), in which

there are two kinds (views) of information for training – about examples and the

availability of both labeled and unlabeled data; Transductive Support Vector Ma-

chines (TSVM, Joachims 1999), in which transduction follows Vapnik’s principle:

when trying to solve some problems, one should not solve a more difficult prob-

lem as an intermediate step; and Expectation-Maximization (EM), within the

Maximum Likelihood framework, to incorporate unlabeled data into the training

processes (Ghahramani & Jordan, 1994; Nigam et al., 2000).

In Seeger (2000) this task is defined as follows: Given an unknown probabilistic

relationship p(x, y) between input points x and class labels y ∈ Y = {1, ..., c},
the problem is to predict y from x, i.e. to find a predictor ŷ = ŷ(x) such that the

generalization error of ŷ,

px,y{ŷ(x) 6= y}, (2.1)

is small and ideally close to the Bayes error, being this the minimum of the

generalization errors of all predictors. We are looking for algorithms to compute

ŷ from

• a labeled sample Dl = {(xi, yi)|i = 1, ..., n}, where the (xi, yi) are drawn

independently from p(x, y),

• an unlabeled sample Du = {xi|i = n+1, ..., n+m}, where the xi are drawn

independently from the marginal input distribution p(x) =
∑c

y=1 p(x, y).

Du is sampled independently from Dl.

• Prior knowledge (or assumptions) about the unknown relationship.
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In unsupervised learning, one of the most widely used methods for data anal-

ysis is clustering. Clustering tries to group a set of points into clusters such that

points in the same cluster are more similar to each other than to points in dif-

ferent clusters, under a particular cluster distortion or distance measure (Jain &

Dubes, 1998).

Semi-supervised clustering (SSC) uses class labels or pairwise constraints

(specifying wether two instances should be in same or different clusters) on some

examples to aid unsupervised clustering. SSC is useful when knowledge of the

relevant categories of a problem is incomplete. When it happens, SSC can group

data using the categories in the initial labeled data as well as extend and modify

the existing set of categories as needed to reflect other regularities in the data.

Two general approaches for SSC can be found in existing methods (Basu,

2005), namely: constraint-based and distance-based methods. In the former, the

clustering algorithm itself is modified so that the available labels or constraints

are used to bias the search for an appropiate clustering of the data. In the

latter approaches, an existing clustering algorithm that uses a distance measure

is employed; however, the distance measure is first trained to satisfy the labels or

constraints in the supervised data.

At the present time, there is a tendency to consider as “standard” SSL meth-

ods (Chapelle et al., 2006) only those which use it for classification tasks (as it is

defined in Seeger 2000). However, SSC should be considered a more general SSL

setting when the number and nature of the classes are not known in advance but

have to be inferred from the data.

A problem related to SSL is transductive learning. Here a (labeled) training

set and an (unlabeled) test set are provided. The idea of transduction is to

perform predictions only for the test data.

2.2 Semi-Supervised Learning Categories

SSL methods work on the basis of some assumptions, which allow a general

classification of the different techniques (Chapelle et al., 2006):
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• The semi-supervised smoothness assumption: if two points x1,x2 in a high

density region are close, then so should be the corresponding outputs y1, y2.

This assumption implies that if two points are separated by a low density

region, then their outputs need not be close to each other.

• The cluster assumption: if points are in the same cluster, they are likely

to be of the same class. This can be equivalently formulated as a low den-

sity separation criterion: the decision boundary should lie in a low-density

region. Both formulations are conceptually equivalent but can inspire dif-

ferent algorithms.

• The manifold assumption: the (high-dimensional) data lie (roughly) on a

low-dimensional manifold. This assumption allows to avoid the curse of di-

mensionality in the sense that when data happen to lie on a low-dimensional

manifold, the learning algorithm can essentially operate in a space of cor-

responding dimension.

• Vapnik’s principle: when trying to solve some problem, one should not solve

a more difficult problem as an intermediate step. Transduction follows this

principle, in this kind of problems as in supervised learning we want to

predict a set of labels y corresponding to some objects x. Transduction

consists of directly estimating the finite set of test labels (a function f :

Xu (Du) → Y only defined on the test set) instead of inferring a function

f : X → Y on the entire space X as in inductive methods.

Following the assumptions mentioned above, the SSL methods can be classi-

fied as (Chapelle et al., 2006): generative models, low-density separation, graph-

based methods and change of representation methods.

Inference in generative models involves the estimation of the conditional den-

sity p(x|y), where y represents class information. In this way, any additional

information implicitly contained in the input data, reflected on p(x), becomes

useful. The cluster assumption is implemented using these models since a given

cluster is assumed belong to only one class. Knowledge of the structure of the

problem or the data can naturally be incorporated to the model (Nigam et al.,
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2006). It is important to note, though, that unlabeled data can decrease predic-

tion accuracy, when modeling assumptions are not correct (Cozman & Cohen,

2006).

The algorithms which try to implement the low-density separation assumption

push the decision boundary away from the unlabeled points. To achieve this goal

the most common method is Transductive Support Vector Machines, which try to

implement transductive learning ideas (though some authors consider TSVM as

a semi-supervised algorithm, see chapter 25 of Chapelle et al. 2006). The TSVM

method maximizes the margin for unlabeled as well as for labeled points. Some

alternatives to TSVM have been formulated in a probabilistic and in an infor-

mation theoretic framework (Grandvalet & Bengio, 2006; Lawrence & Jordan,

2006).

In graph-based methods, the data are represented by the nodes of a graph, the

edges of which are labeled with the pairwise distances of the incident nodes (and a

missing edge corresponds to infinite distance). The way the distance between two

points is computed can be seen as an approximation of the geodesic distance of the

two points with respect to the manifold of data points (Belkin & Niyogi, 2004).

Thus, the manifold assumption is the appropriate base to build graph methods.

Usually some graph methods are transductive because of the prediction consists

of labels for the unlabeled nodes, although recent work has extended graph-based

methods to produce inductive solutions (Sindhwani et al., 2006). Directed graphs

used for information propagation have also been researched in this field (Burges

& Platt, 2006).

Change of representation methods include algorithms that are not intrinsically

semi-supervised, but instead perform two-step learning:

1. Perform an unsupervised step on all data, labeled and unlabeled, but ig-

noring the available labels.

2. Ignore the unlabeled data and perform plain supervised learning using the

new distance, representation, or kernel built in step 1.

The semi-supervised smoothness assumption is implemented here since the

representation is changed in such a way that small distances in high-density re-

gions are conserved. Some graph-based methods are related to these algorithms
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since the construction of the graph from the data can be seen as an unsupervised

change of representation (Saul et al., 2006; Zhu et al., 2006).

2.3 Semi-Supervised Generative Models

2.3.1 Generative Models

As mentioned in the introduction, the main thrust of the thesis concerns genera-

tive baseline methods, which we now describe within the SSL framework.

The basic problem consists on modelling a probability density function p(x),

given a finite number of data points X = {xn}N
n=1 drawn from that density

function. Several approaches to face this problem stand out, including parametric,

non-parametric and semi-parametric methods (Bishop, 1995).

In parametric methods, a specific functional form for the density model is

assumed. The drawback of such an approach is that the particular form of para-

metric function chosen might be incapable of providing a good representation of

the true density (model). Instead, no particular functional form is assumed in

non-parametric methods, and the form of the density is determined entirely by

the data. The problem in these methods is that the number of parameters in the

model grows with the size of the data set.

The best of both approaches is merged in the semi-parametric estimation.

Here, a very general class of functional forms is allowed, in which the number

of adaptive parameters can be increased in a systematic way to build ever more

flexible models, but where the total number of parameters in the model can be

varied independently from the size of the data set.

The last approach is the one we are interested in. In particular, we focus

on mixture of distributions models. In these models, the density function is

formed from a linear combination of basis functions, where the number M of

basis functions is treated as a parameter of the model and is typically much less

than the number N of data points. Thus, the model for the density can be written

as a linear combination of component densities p(x|j) in the form

p(x) =
M∑

j=1

p(x|j)p(j). (2.2)
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This representation is called a mixture distribution (Titterington et al., 1985),

McLachlan & Basford (1988) and the coefficients p(j) are called the mixing pa-

rameters. The next constraints should be satisfied by p(j) (which is the prior

probability of the data point having been generated from component j of the

mixture)
M∑

j=1

p(j) = 1, (2.3)

0 ≤ p(j) ≤ 1. (2.4)

In the same way, the component density functions p(x|j) are normalized so

that ∫
p(x|j)dx = 1. (2.5)

To generate a data point from the probability distribution (2.2), one of the com-

ponents j is first selected at random with probability p(j), and then a data point

is generated from the corresponding component density p(x|j).
The way p(x|j) is computed depends on the type of distributions chosen for

the individual component densities. For example, if Gaussian distributions are

selected, then we say we are working with a Gaussian mixture model and p(x|j) is

computed as (assuming the Gaussians each have a covariance matrix
∑

j = σ2
j I,

where I is the identity matrix, and a mean µj):

p(x|j) =
1

(2πσ2
j )

d/2
exp

{
−‖x− µj‖2

2σ2
j

}
(2.6)

A Maximum Likelihood approach is often used to determine the parameters

of a (Gaussian or other) mixture model from a set of data. An elegant, practical

and iterative procedure for estimating the mixture parameters is the Expectation-

Maximization or EM algorithm (Dempster et al., 1977).

These kind of generative models are the background for posterior chapters in

which we will consider generative methods.

2.3.2 Semi-supervision in Generative Models

In this section we describe the way in which a generative model can be seen as a

semi-supervised method.
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We can find a description of how a generative method can be used for semi-

supervised learning tasks in Seeger (2000), specially for classification ones. Within

this context the class distributions p(x|y)1 can be modeled using model families

{p(x|y, θ)}, where θ is a latent or hidden variable, and the class priors p(y) by

πy = p(y|π), π = (πy)y. An architecture of this type is referred to as a joint

density model, since the full joint density p(x, y) is modeled by πyp(x|y, θ). For

any fixed θ̂, π̂, an estimate of p(y|x) can be computed by Bayes’ formula:

p(y|x, θ̂, π̂) =
π̂yp(x|y, θ̂)∑M

y′=1 π̂y′p(x|y′, θ̂) . (2.7)

A model for the marginal p(x) is

p(x|θ, π) =
M∑

y=1

πyp(x|y, θ). (2.8)

If labeled and unlabeled data are available, a natural criterion emerges as the

joint log likelihood of both Dl and Du
2,

n∑
i=1

log πyi
p(xi|yi, θ) +

n+m∑
i=n+1

log
M∑

y=1

πyp(xi|y, θ), (2.9)

It is straightforward to consider this as an issue of Maximum Likelihood in

the presence of missing data (treating y as a latent or unobservable variable3),

which can in principle be tackled by the EM algorithm, or alternative methods

such as direct gradient descent.

Limitations of generative techniques in SSL

In summary, generative techniques use a model family {p(x, y|θ, π)} in order to

model the joint data distribution p(x, y). These techniques use a mixture density

estimation method for p(x) on Xl ∪ Xu (Dl ∪ Du), treating y as a latent class

variable, then using the labeled sample Dl in order to associate latent classes with

actual ones. A problem with this approach is that the labeling provided by the

1y plays the role of j as in section 2.3.1
2Dl and Du follow the corresponding definitions on section 2.1
3For a general description on latent variable models, the reader is referred to section 3.2.
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unsupervised method may be inconsistent with Dl, in which case the clustering

should be modified to achieve such consistency. Another problem when following

the aforementioned strategy is that, for classification problems, generative meth-

ods might not always provide good solutions. That is, the maximization of the

joint likelihood of a finite sample (for example) does not necessarily lead to a

small classification error, because depending on the model it might be possible to

make the likelihood increase more by improving the fit of p(x) instead of that of

p(y|x). Some recent work describing these limitations can be found in Bouchard

& Triggs (2004), Lasserre et al. (2006), Kaski et al. (2005), and Peltonen et al.

(2004).
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Chapter 3

Theoretical Foundations of

Generative Manifold Learning

3.1 Introduction

The non-linear dimensionality reduction problem of manifold learning can be

expressed as the recovery of meaningful low-dimensional structures hidden in

high-dimensional data. This recovery should allow us to extract useful informa-

tion and discover meaningful features, patterns and rules from data. This kind

of techniques are used, amongst others, in the fields of data mining, knowledge

management, engineering and retrieval, bioinformatics and neuroinformatics, de-

cision support, signal processing, etc. As an example, let us think of a set of

pixel images of an individual’s face observed under different posing and light-

ing conditions; the manifold learning task would consist on the identification of

the underlying face-characterizing variables (angle of elevation, direction of light,

face-feature interdistances, etc.), given only the high-dimensional observed pixel

image data (Tenenbaum et al., 2000).

When the manifold assumption is taken up for clustering analysis, one impor-

tant question is how to incorporate intrinsic geometric information of multivariate

data in the corresponding clustering method. Identifying the underlying mani-

folds defining the data is of critical importance for their understanding. Usually,

the methods used for finding embedded data structures look for global structures

and/or local geometry.
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Amongst the methods that identify global structures, mainly embedded linear

subspaces, we find, for instance, Principal Component Analysis (PCA) and Sin-

gular Value Decomposition (SVD). PCA (for general reference, see Jolliffe 2002,

2nd edition) is used to find the directions in which the variances are maximized.

SVD (see, for instance, Golub & Reinsch 1970) finds the linear subspace that best

preserves the information of the data. For both PCA and SVD, the constraint

that the embedded structure must be globally linear is too restrictive for many ap-

plications (as it cannot capture nonlinear relationships defined by beyond second

order statistics). Another method close to PCA and SVD is Multi-Dimensional

Scaling (MDS or metric MDS). Metric MDS is used to map the high dimensional

data into a low dimensional space, trying to preserve the inter-data distances

(Young, 1981).

In methods that look for local geometry, the global linearity condition is usally

left out. Recent years have witnessed the rapid development of nonlinear manifold

methods. Four main approaches can be distinguished: The first one, based on

projection methods, aims to find principal surfaces covering data-populated areas,

such as principal curves (Hastie & Stuetzle, 1988; Kégl et al., 2000).

The second entails local and global embedding algorithms. Amongst the for-

mer, Locally Linear Embedding (LLE, Roweis & Lawrence 2000) and Laplacian

Eigenmaps (Belkin & Niyogi, 2003a), which focus on the local data neighbouring

structure. Amongst the latter, Isometric Feature Mapping or ISOMAP (Tenen-

baum et al., 2000).

The third resorts to mutual information, which is a measurement of the dif-

ferences of probability distribution between the observed and embedded spaces.

Examples of these are Stochastic Nearest Neighbor (Hinton & Roweis, 2003) and

Manifold Charting (Brand, 2003).

The fourth concerns generative models (GTM: Bishop et al. 1998), and hy-

pothesizes that observed data are generated from a low-dimensional latent space.

Manifold learning models can also be considered according to the machine

learning task they are fit for: supervised or unsupervised. In recent times, semi-

supervised learning methods have made use of manifolds for classification tasks.

Here, the fact that the data lie on a submanifold embedded in a high-dimensional
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space, is assumed. In addition, learning algorithms developed under this assump-

tion avoid the ubiquitous curse of dimensionality problem because they essentially

operate in a space of corresponding (low) dimension.

In Chapelle et al. (2006), it is shown how several graph-based methods can be

built under the manifold assumption. The main idea stemming for these methods

is that the data are represented by the nodes of a graph (forming a manifold of

data points) and the edges are labeled with the pairwise distances of the incident

nodes. For example, in Belkin & Niyogi (2004) the approach is that classification

functions are naturally defined only on the submanifold in question rather than

the total ambient space. The problem with this approach is that a relatively small

amount of noise or a few outliers can change the results dramatically. There are

other approaches that take the problem in different directions (see Chapelle et al.

2006).

Not all generative models for manifold learning concern supervised learning

(e.g. Bishop et al. 1998; de Silva & Tenenbaum 2003; Tenenbaum et al. 2000).

The unsupervised problem is stated as follows: Let Y be a d-dimensional

domain contained in the Euclidean space Rd, and let f : Y → RN be a smooth

embedding, for some N > d. Data points {yi} ⊂ Y are generated by some random

process, and are mapped by f to give the data observed, {xi = f(yi)} ⊂ RN . Y is

referred as the latent space and {yi} as the latent data. The task is to reconstruct

f and {yi} from the observed data {xi} alone. In the next section we describe the

Generative Topographic Mapping, mentioned in previous chapters, as a model of

this kind.

3.2 Generative Topographic Mapping

In this section we describe the Generative Topographic Mapping (GTM: Bishop

et al. 1998; Svensén 1998). Since GTM is a latent variable model, we first provide

a brief introduction to this kind of models.

Let x = (x1, x2, . . . , xd) and u = (u1, u2, . . . , uq) be, in turn, a set of observable

variables and a set of latent, hidden or unobservable variables. A latent variable

model try to express the distribution p(x) in terms of a smaller number of latent

variables u, where q < d (Bishop, 1999). This can be achieved by decomposing
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the joint distribution p(x,u) into the product of the marginal distribution p(u) of

the latent variables and the conditional distribution p(x|u) of the data variables

given the latent variables, i.e. p(x,u) = p(u)p(x|u). The conditional distribution

p(x|u) is expressed in terms of a mapping from latent variables to data variables

in the following way: x = y(u;w) + β, where y(u;w) is a function of the latent

variable u with parameters w, and β is an u-independent noise process.

A latent variable model is said to be defined when the distribution p(β), the

mapping y(u;w), and the marginal distribution p(u) are specified. Geometrically

the function y(u;w) defines a manifold in data space given by the image of the

latent space.

Finally, the desired model for the distribution p(x) of the data is obtained by

marginalizing over the latent variables p(x) =
∫

p(x|u)p(u)du.

The GTM is a generative non-linear latent variable model that, in its original

definition, was intended for modelling continuous, intrinsically low-dimensional

data distributions, embedded in high-dimensional spaces. It can also be under-

stood both as a sound probabilistic alternative to the well-known and widely used

Self-Organizing Maps (SOM: Kohonen 1995) and as a constrained mixture of dis-

tributions model. Its constraints make it less flexible than general mixtures of

distributions, but such renounce to flexibility is compensated by computational

expediency and by data visualization capabilities akin to those of the SOM, which

general mixture models lack. Like SOM, GTM is used for unsupervised clustering

and visualization.

3.2.1 The Standard GTM Model

The GTM is a non-linear latent variable model of the manifold learning family

defined as a mapping from a low dimensional latent space onto the multivariate

space where observed data reside. The mapping is carried through by a number

of basis functions generating a constrained mixture density distribution. It is

defined as a generalized linear regression model:

y(u;w) = φ(u)W (3.1)
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where φ are M basis functions φ(u) = (φ1(u), ..., φM(u)). For continuous data of

dimension D, spherically symmetric Gaussians

φm(u) = exp
{−1/2σ2‖u− µm‖2

}
(3.2)

are an obvious choice of basis function, with centres µm and common width σ;

W is a M ×D matrix of adaptive weights wmd that defines the mapping, and u

is a point in latent space. To avoid computational intractability a regular grid of

K points uk can be sampled from the latent space. Each of them, which can be

considered as the representative of a data cluster, has a fixed prior probability

p(uk) = 1/K and is mapped, using Eq. 3.1, into a low dimensional manifold

non-linearly embedded in the data space. This latent space grid is similar in

design and purpose to that of the visualization space of the SOM. A probability

distribution for the multivariate data X = {xn}N
n=1 can then be defined, leading

to the following expression for the log-likelihood:

L(W, β|X) =
N∑

n=1

ln

{
1

K

K∑

k=1

(
β

2π

)D/2

exp
{−β/2‖yk − xn‖2

}
}

(3.3)

where yk, usually known as reference or prototype vectors, are obtained for each

uk using Eq. 3.1; and β is the inverse of the noise variance, which accounts for

the fact that data points might not strictly lie on the low dimensional embedded

manifold generated by the GTM.

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is an

straightforward alternative to obtain the maximum likelihood estimates of the

adaptive parameters of the model, which are the adaptive matrix of weights W

and β (the EM algorithm for GTM is described in appendix A.1). In the E-step

of the EM algorithm, the mapping is inverted and the responsibilities zkn (the

posterior probability of cluster k membership for each data point xn) can be

directly computed as

zkn = p(uk|xn,W, β) =
p(xn|uk,W, β)p(uk)∑
k′ p(xn|uk′ ,W, β)p(uk′)

, (3.4)

where p(xn|uk,W, β) = N(y(uk,W), β).
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3.2.2 Visualization using GTM

The interpretation of clustering results usually requires a drastic reduction of the

dimensionality of the data. Latent variable models can provide such interpreta-

tion through visualization, as they describe the multivariate data in intrinsically

low-dimensional spaces. The GTM was originally defined as an alternative to

the SOM, defined within a probabilistic framework. As a result, the data visual-

ization capabilities of the latter are fully preserved and even augmented by the

former. The main advantage of GTM and any of its extensions over general finite

mixture models consists precisely on the fact that both data and results can be

intuitively visualized on a low dimensional representation space.

Each of the cluster representatives uk in the latent visualization space is

mapped, following Eq. 3.1, into a point yk belonging to a manifold embed-

ded in data space. Given that the posterior probability of every GTM cluster

representative for being the generator of each data point xn can be calculated,

using Bayes’ theorem, in the expectation step of the EM algorithm (Eq. 3.4),

both data points and cluster prototypes can be visualized as a function of the

latent point locations. The assignment of a probability of cluster membership to

each data point n is a neat improvement on the SOM sharp map unit member-

ship attribution for each data point, and leads to 2-dimensional representations of

each multivariate data point in the form of the mean of the posterior distribution

umean
n =

K∑

k=1

ukzkn, (3.5)

or in the form of attributions to the latent space locations bearing maximum

responsibility:

umaxresp
n = arg max

uk

zkn. (3.6)

3.2.3 t-GTM

For the standard Gaussian GTM (described in section 3.2.1), the presence of

outliers is likely to negatively bias the estimation of the adaptive parameters,

distorting the clustering results. In order to overcome this limitation, the GTM

was recently redefined (Vellido, 2006; Vellido & Lisboa, 2006) as a constrained
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mixture of Student’s t distributions: the t-GTM, aiming to increase the robust-

ness of the model towards outliers. The mapping described by Equation 3.1

remains, with the basis functions now being Student’s t distributions and leading

to the definition of the following mixture density:

p(x|W, β, ν) =
1

K

K∑

k=1

Γ(ν+D
2

)βD/2

Γ(ν
2
)(νπ)D/2

(
1 +

β

ν
‖yk − x‖2

) ν+D
2

(3.7)

where Γ(·) is the gamma function and the parameter ν = (ν1, . . . , νK) represents

the degrees of freedom for each component k of the mixture, so that it can be

viewed as a tuner that adapts the level of robustness (divergence from normality)

for each component. This density leads to the redefinition of the model log-

likelihood as

L(W, β, ν|X) =
N∑

n=1

log

{
1

K

K∑

k=1

Γ(ν+D
2

)βD/2

Γ(ν
2
)(νπ)D/2

(
1 +

β

ν
‖yk − xn‖2

) ν+D
2

}
(3.8)

and, again, the estimation of the corresponding adaptive parameters is carried

out by EM.

3.3 Distance Measure or Metric

Most manifold learning and non-linear dimensionality reduction methods use a

specified metric to represent (dis)similarities between data points, and its defini-

tion is fundamental to the performance of their main tasks. The choice of metric

or distance measure in a model such as GTM, which is based on the calcula-

tion of distances between data points and model prototypes, can be of critical

importance to the performance of the method. Euclidean distances are one of

the standard choices in mixture models such as GTM. Nevertheless, GTM is a

constrained mixture in the sense that its defined prototypes are bound to lay in a

manifold embedded in data space. GTM can therefore be considered a manifold

learning model. In the process of non-linear mapping between the latent and

data spaces, this manifold may fold in a way that makes the standard Euclidean

distance a compromising choice. This becomes especially relevant in the analysis

of multivariate datasets with convoluted geometries in the input data space.
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A metric defines a distance between the items of a given data set. If X is

such data set, then the corresponding distance function is d : X ×X → R, where

R is the set of real numbers. This function is required to abide to the following

conditions, for all x, y and z in X:

1. Non-negativity: d(x, y) ≥ 0

2. Identity: d(x, y) = 0 if and only if x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

The Euclidean distance (or 2-norm distance) is widely-known to satisfy the

conditions of a metric. Given two points x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn)

in Rn (Euclidean space), the Euclidean distance is defined as

d(x,y) =

(
n∑

i=1

|xi − yi|2
)1/2

. (3.9)

Most clustering algorithms use the Euclidean distance to find (dis)similarities

between data points. However, this choice of distance may be problematic for the

modelling of datasets of certain geometric properties. For example, in Fig. 3.1,

it is obvious that a Euclidean distance-based method would assign the ‘?’ data

point to the ‘x’ class without hesitation, although an analyst might argue that,

for reasons of geometric continuity, the data point should have been assigned to

the ‘o’ class.

Since, as previously explained, the GTM defines a manifold embedded in the

data space, we will surely face situations similar to the one sketched in Fig. 3.1.

This problem might be alleviated by the use of an alternative metric. In this

thesis, we propose an alternative, more adequate type of distance, thought to be

more suitable for these situations: the Geodesic distance, which is described in

section 4.2.
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Figure 3.1: Two classes in a 2-D space. ‘o’ and ‘x’ are labeled examples, ‘?’ is a

point to be classified. The remaining ‘.’ are unlabeled data points.
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Chapter 4

Geodesic Generative Topographic

Mapping

4.1 Introduction

The nonlinear dimensionality reduction (NLDR) methods belonging to the man-

ifold learning family attempt to model high-dimensional multivariate data under

the assumption that these can be faithfully represented by a low-dimensional

manifold embedded in the observed data space. This simplifying assumption

may, at worst, limit the faithfulness of the generated data mapping due to either

data point neighbourhood relationships that do not hold in their low-dimensional

representation, hampering its continuity, or spurious neighbouring relationships

in the representation that do not have a correspondence in the observed space,

which limit the trustworthiness of the low-dimensional representation. As de-

scribed in the following sections, these concepts of continuity and trustworthiness

can be transformed into operative metrics that will help us to qualify, without re-

sorting to any element of subjectivity, how well the visualization (low-dimensional

representation) obtained by dimensionality reduction represents the underlying

data (Venna, 2007). These metrics find their motivation in the field of informa-

tion retrieval, where the trustworthiness and continuity are related, in turn, to

the concepts of precision and recall, of common use in machine learning as well.

The GTM (Bishop et al., 1998), described in section 3.2, is a flexible manifold

learning NLDR model for simultaneous data clustering and visualization whose
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4. GEODESIC GENERATIVE TOPOGRAPHIC MAPPING

probabilistic nature makes possible to extend it to perform tasks such as missing

data imputation (Vellido, 2006), robust handling of outliers and unsupervised

feature selection (Vellido et al., 2006), or time series analysis (Olier & Vellido,

2008), amongst others.

In the original formulation, GTM is optimized by minimization of an error

that is a function of Euclidean distances, making it vulnerable to the aforemen-

tioned continuity and trustworthiness problems, especially for datasets of convo-

luted geometry. Such data may require plenty of folding from the GTM model,

resulting in an unduly entangled embedded manifold that would hamper both

the visualization of the data and the definition of clusters the model is meant

to provide. Following an idea proposed in Archambeau & Verleysen (2005), the

learning procedure of GTM is here modified by penalizing the divergences be-

tween the Euclidean distances from the data points to the model prototypes and

the corresponding approximated geodesic distances along the manifold. By doing

so, we prioritize neighbourhood relationships between points along the generated

manifold, which makes the model more robust to the presence of off-manifold

noise. In this chapter, we first assess to what extent the resulting Geodesic GTM

(or Geo-GTM) model (which incorporates the data visualization capabilities that

the model proposed in Archambeau & Verleysen 2005 lacks) is capable of preserv-

ing the trustworthiness and continuity of the mapping. Then we assess whether

Geo-GTM shows better behaviour in the presence of noise than its standard GTM

counterpart.

4.2 Manifolds and Geodesic Distances

As stated in the introduction, manifold learning methods work on the assump-

tion that multivariate data can be faithfully represented by lower-dimensional

manifolds embedded in the data space. Manifold methods such as ISOMAP

(Tenenbaum et al., 2000) and Curvilinear Distance Analysis (Lee et al., 2002),

for instance, use the geodesic distance as a basis for generating the data mani-

fold. ISOMAP, in fact, can be seen as an instance of Multi-Dimensional Scaling

(MDS) in which the Euclidean distance is replaced by the geodesic one. This met-

ric measures similarity along the embedded manifold, instead of doing it through
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the embedding space. In doing so, it may help to avoid some of the distortions

(such as breaches of topology preservation) that the use of a standard metric such

as the Euclidean distance may introduce when learning the manifold, due to its

excessive folding (that is, undesired manifold curvature effects).

The otherwise computationally intractable geodesic metric can be approxi-

mated by graph distances (Bernstein et al., 2000), so that instead of finding the

minimum arc-length between two data points lying on a manifold, we would set

to find the shortest path between them, where such path is built by connecting

the closest successive data points. In this thesis, this is done using the K-rule,

which allows connecting the K-nearest neighbors. A weighted graph is then con-

structed by using the data and the set of allowed connections. The data are

the vertices, the allowed connections are the edges, and the edge labels are the

Euclidean distances between the corresponding vertices. If the resulting graph is

disconnected, some edges are added using a minimum spanning tree procedure

in order to connect it. Finally, the distance matrix of the weighted undirected

graph is obtained by repeatedly applying Dijkstra’s algorithm (Dijkstra, 1959),

which computes the shortest path between all data samples. See appendix B for

more details about graph construction.

There exist alternative rules for building graphs (Lee & Verleysen, 2007).

Amongst them, those solely based on the data set, such as the ε − rule (which

defines a fixed ε-radius neighborhood criterion) or the τ − rule (a more complex

local data density-adaptive neighborhood criterion), or those in which prototype-

based models are used, such as the Data-rule and the Histogram-rule (Aupetit,

2003). A comparison between the performance of different graph rules goes,

nevertheless, beyond the aims of our research.

4.3 Geo-GTM

The Geo-GTM model is an extension of GTM that favours the similarity of points

along the learned manifold, while penalizing the similarity of points that are not

contiguous in the manifold, even if close in terms of the Euclidean distance. This

is achieved by modifying the standard calculation of the responsibilities in Eq.

3.4 proportionally to the discrepancy between the geodesic (approximated by
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the graph) and the Euclidean distances. Such discrepancy is made operational

through the definition of the exponential distribution, as in Archambeau & Ver-

leysen (2005):

E(dg|de, α) =
1

α
exp

{
−dg(xn,ym)− de(xn,ym)

α

}
, (4.1)

where de(xn,ym) and dg(xn,ym) are, in turn, the Euclidean and graph distances

between data point xn and the GTM prototype ym. Responsibilities are redefined

as:

zgeo
mn = p(um|xn,W, β) =

p′(xn|um,W, β)p(um)∑
m′ p′(xn|um′ ,W, β)p(um′)

, (4.2)

where

p′(xn|um,W, β) = N(y(um,W), β)E(dg(xn,ym)2|de(xn,ym)2, 1). (4.3)

Here dg and de are used as squared distances in order to be consistent with

standard GTM (Bishop et al., 1998). By setting α (the scale parameter of the

distribution) to 1 in Eq. 4.1 we obtain the following required behaviour in Eq.

4.2. When dg and de distances are similar the new responsibility, zgeo
mn, is almost

not adjusted (the penalizing factor, Eq. 4.1, approaches to 1) then behaving as

zmn in standard GTM. However, when there is no agreement between the graph

approximation of the geodesic distance and the Euclidean distance, the value of

the numerator of the fraction within the exponential in Eq. 4.1 increases, pushing

the modified responsibility in Eq. 4.2 towards smaller values, i.e., automatically

punishing the discrepancy between metrics. In other words, we use the exponen-

tial distribution (Eq. 4.1) as a penalizing factor in Eq. 4.3 to follow the behaviour

previously described for zgeo
mn. Once the responsibility is calculated in the modified

E-step, the rest of the model’s parameters are estimated following the standard

EM procedure (as in appendix A.1).

The only additional computational effort incurred by Geo-GTM is the result

of building a graph and the computation of its corresponding distance matrix,

which is calculated only once before the EM algorithm is run. The dominant

computational complexity of Geo-GTM is therefore similar to that of GTM.

34



4.4 Experiments

4.3.1 Data Visualization using Geo-GTM

As for standard GTM, each of the cluster representatives um in the latent visu-

alization space is mapped, following Eq. 3.1, into a point ym (the center of a

mixture component) belonging to a manifold embedded in data space. It is this

mapping (and the possibility to invert it, defined by the responsibilities in Eq.

4.2) what provides Geo-GTM with the data visualization capabilities that the

alternative Manifold Finite Gaussian Mixtures model proposed in Archambeau

& Verleysen (2005) lacks. Given that the posterior probability of every Geo-GTM

cluster representative for being the generator of each data point, or responsibility

zgeo
mn, is calculated as part of the modified EM algorithm, data points can, once

again, be visualized as a function of the latent point locations as the mean of the

estimated posterior distribution:

umean
n =

M∑
m=1

umzgeo
mn, (4.4)

or in the form of attributions to the latent space locations bearing maximum

responsibility:

umaxresp
n = arg max

um

zgeo
mn . (4.5)

4.4 Experiments

Geo-GTM was implemented in MATLAB R©. For the experiments reported next,

the adaptive matrix W was initialized, following a procedure described in Bishop

et al. (1998), as to minimize the difference between the prototype vectors ym

and the vectors that would be generated in data space by a partial Principal

Component Analysis (PCA). The inverse variance β was initialised to be the

inverse of the 3rd PCA eigenvalue. The initialization of W and β using a PCA-

based procedure ensures the replicability of the results. The latent grid was fixed

to a square layout of approximately (N/2)1/2× (N/2)1/2, where N is the number

of points in the dataset. The corresponding grid of basis functions was equally

fixed to a 5× 5 square layout for all datasets.

The goal of the experiments is threefold. Firstly, we aim to assess whether the

proposed Geo-GTM model could capture and visually represent the underlying
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structure of datasets of smooth but convoluted geometry better than the standard

GTM. Secondly, we aim to quantify the faithfulness of the generated mappings.

Finally, we aim to evaluate the capability of Geo-GTM to uncover the underlying

structure of the data in the presence of noise, and compare its performance with

that of the standard GTM.

4.4.1 Results and Discussion

Three artificial 3-dimensional datasets, represented in Fig. 4.1, were used in the

experiments that follow. The first one is Swiss-Roll, consisting on 1000 randomly

sampled data points generated by the function: (x1, x2, x3) = (t cos(t), t2, t sin(t)),

where t and t2 follow uniform distributions U(3π/2, 9π/2) and U(0, 21), respec-

tively. The second dataset, herein called Two-Spirals, consists of two groups of

300 data points each that are similar to Swiss-Roll although, this time, the first

group follows the uniform distribution U(3π/4, 9π/4), while the second group

was obtained by rotating the first one by 180 degrees in the plane defined by

the first and third axes and translating it by 2 units along the resulting third

axis. The third dataset, herein called Helix, consists of 500 data points that are

images of the function x = (sin(4πt), cos(4πt), 6t−0.5), where t follows U(−1, 1).

These data are contaminated with a small level of noise. Also, and specifically

for the experiments to assess the way the models deal with the presence of noise,

Gaussian noise of zero mean and increasing standard deviation, from σ = 0.1 to

σ = 0.5, was added to a noise-free version of Helix to produce the 5 datasets

represented in Fig. 4.2.

The posterior mean distribution visualization maps for all datasets are dis-

played in Figs. 4.3 to 4.5. Geo-GTM, in Fig. 4.3, is shown to capture the

spiral structure of Swiss-Roll far better than standard GTM, which misses it

at large and generates a poor data visualization with large overlapping between

non-contiguous areas of the data.

A similar situation is reflected in Fig. 4.4: The two segments of Two-Spirals

are neatly separated by Geo-GTM, whereas the standard GTM suffers a lack of

contiguity of the segment represented by circles as well as overlapping of part of

the data of both segments.
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Figure 4.1: The three datasets used in the experiments. (Top-left): Swiss-Roll,

where two contiguous fragments are identified with different symbols in order to

check manifold contiguity preservation in Fig. 4.3. (Top-right): Two-Spirals,

again with different symbols for each of the spiral fragments. (Bottom): Helix.
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Figure 4.2: The five noisy variations of Helix used in the experiments. From

left to right and top to bottom, with increasing noise of standard deviation from

σ = 0.1 to σ = 0.5.
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Figure 4.3: Data visualization maps for the Swiss-Roll set. (Left): standard

GTM; (right): Geo-GTM. The axes of these latent spaces correspond to the

components of the latent vectors of the model. They are, therefore, meaningless

and, for this reason, they remain unlabeled. The same holds for figures 4.4 and

4.5.

Figure 4.4: Visualization maps for the Two-Spirals set. (Left): standard GTM;

(right): Geo-GTM.
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Figure 4.5: Data visualization maps for the Helix set. (Left): standard GTM;

(right): Geo-GTM.

The results are even more striking for Helix, as shown in Fig. 4.5: the he-

licoidal structure is neatly revealed by Geo-GTM, whereas it is mostly missed

by the standard GTM. The former also faithfully preserves data continuity, in

comparison to the breaches of continuity that hinder the visualization generated

by the latter.

In order to evaluate and compare the mappings generated by GTM and Geo-

GTM, we use the trustworthiness and continuity measures developed in Venna

& Kaski (2001). Trustworthiness is defined as:

T (K) = 1− 2

NK(2N − 3K − 1)

N∑
i=1

∑

xj∈UK(xi)

(r(xi, xj)−K), (4.6)

where Uk(xi) is the set of data points xj for which xj ∈ ĈK(xi) ∧ xj /∈ CK(xi)

and CK(xi) and ĈK(xi) are the sets of K data points that are closest to xi in the

observed data space and in the low-dimensional representation space, respectively.

In other words, it measures the error when data points that are not neighbours in

the input space can be mapped close-by in the output space causing data points

to be falsely identified as neighbours. Expressed in information retrieval terms,

this kind of error decreases the precision of the visualization (low-dimensional
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representation). Continuity is in turn defined as:

Cont(K) = 1− 2

NK(2N − 3K − 1)

N∑
i=1

∑

xj∈VK(xi)

(r̂(xi, xj)−K), (4.7)

where VK(xi) is the set of data points xj for which xj /∈ ĈK(xi) ∧ xj ∈ CK(xi).

The terms r(xi, xj) and r̂(xi, xj) are the ranks of xj when data points are ordered

according to their distance from the data vector xi in the observed data space

and in the low-dimensional representation space, respectively, for i 6= j. Here, it

measures the error when data points that are originally close-by are mapped far

away in the representation space. This kind of error is reflected by discontinuities

in the mapping. In information retrieval terms, it reduces recall.

The measurements of trustworthiness and continuity for all datasets are shown

in Fig. 4.6. As expected from the visualization maps in Figs. 4.3-4.5, the

Geo-GTM mappings are far more trustworthy than those generated by GTM

for neighbourhoods of any size across the analyzed range. The differences in

continuity preservation are smaller although, overall, Geo-GTM performs better

than GTM model, specially with the noisier Helix dataset.

We finally evaluate, through some illustrative experiments, the capability

of Geo-GTM to uncover the underlying structure of the data in the presence

of noise, comparing it with that of the standard GTM. We quantify it using

the log-likelihood (Eq. 3.3), as applied to a test dataset consisting of 500 ran-

domly sampled data points from a noise-free version of Helix. For further test-

ing, we repeat the experiment with noisy variations of a basic dataset, herein

called Two-Helix consisting of two sub-groups of 300 data points each, which

are, in turn, images of the functions x1 = (sin(4πt), cos(4πt), 6t − 0.5) and

x2 = (−sin(4πt),−cos(4πt), 6t− 0.5), where t follows U(−1, 1). This is, in fact,

a DNA-like shaped duplication of the Helix dataset. The corresponding results

are shown in Fig. 4.7.

Remarkably, Geo-GTM is much less affected by noise than the standard GTM,

as it recovers with much higher likelihood the underlying noise-free functions.

This corroborates the visualization results reported in Fig. 4.5, in which the

standard GTM generates a far less faithful representation of the underlying form
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Figure 4.6: Trustworthiness (left column) and continuity (right column) for (top

row): Swiss-Roll, (middle row): Two-Spirals, and (bottom row): Helix, as a

function of the neighbourhood size K.
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Figure 4.7: Test log-likelihood results for the Helix (left) and Two-Helix (right)

datasets, for increasing levels of added uninformative noise.

and with breaches of continuity. This is probably due to the fact that Geo-GTM

favours directions along the manifold, minimizing the impact of off-manifold noise.

4.5 Summary

In this chapter, we have introduced a variation of the NLDR manifold learn-

ing GTM model, namely Geo-GTM, which limits the effect of manifold folding

through the penalization of the discrepancies between inter-point Euclidean dis-

tances and the approximation of geodesic distances along the model manifold.

Through several experiments, evaluated by trustworthiness and continuity mea-

sures, it has been shown to faithfully recover and visually represent the underlying

structure of datasets of smooth but convoluted geometries. The reported experi-

ments also show that Geo-GTM behaves more robustly than the standard GTM

in the presence of a considerable amount of noise in the datasets. The proposed

model is the base of several developments in next chapters of this thesis.

A limitation of the proposed model is that it assumes an intrinsic continuity of

the data (so that Continuity itself is a measure of performance). This, obviously,

does not necessarily hold for data that are, even if partially, multi-modal. It

has to be noted, though, that GTM and all its variants, as developed in this

thesis, allow for both the direct visual and quantitative assessment of how multi-

modality affects data representation. This can be achieved by calculating and
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plotting together the mean (Eq. 4.4) and the mode (Eq. 4.5) for each data point

and comparing them.
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Part III

Explorations with class

information
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In Chapter 4, we have defined an evaluated a variant of GTM that favours

the similarity of points along the learned manifold, increasing the faithfulness

of the data representation. In Part III of this thesis, we take a step further to

also account for the available class information. In Chapter 5, a novel two-stage

clustering model, based on GTM and its variants, is improved by the use of

class information. In Chapter 6, the Geo-GTM model presented in Chapter 4 is

extended to a semi-supervised setting: the resulting SS-Geo-GTM is intended to

assist classification tasks.
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Chapter 5

Two-stage Clustering with

class-GTM

5.1 Introduction

Class information is most commonly used for supervised classification problems.

The use of class information in unsupervised clustering, instead, is a far less

frequently investigated problem. This is the starting point for the current chapter,

in which class labels are used to enrich and refine the cluster structure discovered

in a two-stage clustering process.

Amongst density-based methods, Finite Mixture Models have established

themselves as a flexible and robust tool for multivariate data clustering (Figueiredo

& Jain, 2002). In many practical data analysis scenarios, though, the available

knowledge concerning the cluster structure of the data may be quite limited. In

these cases, data exploration techniques are valuable tools and, amongst them,

multivariate data visualization can be of great help by providing the analyst

with intuitive cues about data structural patterns. In order to endow Finite

Mixture Models with data visualization capabilities, certain constraints must be

enforced. One alternative is forcing the model components to be centred in a

low-dimensional manifold embedded into the usually high-dimensional observed

data space. Such approach is the basis of the definition of GTM, which has been

introduced in section 3.2.
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Finite Mixture Models can also be used beyond unsupervised learning in order

to account for class-related information in supervised or semi-supervised settings

(Hastie & Tibshirani, 1996). Class information can be integrated as part of the

GTM training to enrich the cluster structure definition provided by the model

(Cruz-Barbosa & Vellido, 2006; Sun et al., 2002). The resulting class-GTM model

is the basis of this chapter.

GTM in general and class-GTM in particular do not place any strong restric-

tion on the number of mixture components (or clusters), in order to achieve an

appropriate visualization of the data. This richly detailed cluster structure, which

exploits the substructure in the input data, does not necessarily match the more

global cluster and class distributions of the data. For that reason, a two-stage

clustering procedure may be useful in this scenario (Vesanto & Alhoniemi, 2000).

Class-GTM can be used in the first stage to generate a detailed cluster partition

in the form of a mixture of components. The centres of these components, also

known as prototypes, can be further clustered in the second stage. For that role,

the well-known K-means algorithm is used in this study. The issue remains of

how we should initialize K-means in the second clustering stage. Random initial-

ization, with the subsequent choice of the best solution, was the method selected

in Vesanto & Alhoniemi (2000). This approach, though, does not make use of

the prior knowledge generated in the first stage of the procedure. Here, we pro-

pose two different ways of introducing such prior knowledge in the initialization

of the second stage K-means, without compromising the final clusterwise class

separation capabilities of the model. This fixed initialization procedures allow

significant computational savings.

5.2 Two-Stage Clustering

The two-stage clustering procedure outlined in the introduction is described in

this section. The first stage model, namely class-GTM, is introduced first. This is

followed by the details of different initialization strategies for the second stage. We

propose two novel second stage fixed initialization strategies that take advantage

of the prior knowledge obtained in the first stage.
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5.2 Two-Stage Clustering

5.2.1 The class-GTM Model

In model-based clustering, we attempt to discover the cluster structure of the

multivariate data X through the modelling of their distribution p(X). In classifi-

cation problems, instead, for which class labels are available for all data records,

we attempt to model the relationship between these labels t and the data, in the

form of the class probability p(t|X). It is not unusual to find that classes overlap

to a varying extent; that is, finding class distributions that do not correspond

completely to the cluster distribution of the data. These two approaches are not

necessarily incompatible, and we can aim to discover the cluster structure of the

data while taking into account the available class information in a semi-supervised

approach. This can be achieved by explicitly modelling the joint density p(t,X).

The class-GTM model is an extension of GTM and therefore inherits most of

its properties. The main goal of this extension is to improve class separability in

the clustering results of GTM. For this purpose, we assume that the clustering

model accounted for the available class information. This can be achieved by

modelling the joint density p(t,X), instead of p(X), for a given set of classes {Ti}.
For the Gaussian version of the GTM model (Cruz-Barbosa & Vellido, 2006; Sun

et al., 2002), such approach entails the calculation of the posterior probability of

a cluster representative uk given the data point xn and its corresponding class

label tn, or class-conditional responsibility zt
kn = p(uk|xn, tn), as part of the E

step of the EM algorithm. It can be calculated as:

zt
kn =

p(xn, tn|uk)
K∑

k′=1

p(xn, tn|uk′)

=
p(xn|uk)p(tn|uk)

K∑

k′=1

p(xn|uk′)p(tn|uk′)

=
p(xn|uk)p(uk|tn)

K∑

k′=1

p(xn|uk′)p(uk′|tn)

,

(5.1)

and, being Ti each class,

p(uk|Ti) =

∑
n;tn=Ti

p(xn|uk)/
∑

n p(xn|uk)∑
k′

∑
n;tn=Ti

p(xn|uk′)/
∑

n p(xn|uk′)
. (5.2)

Equation 5.1 differs from the standard responsibility zkn of GTM in that,

instead of imposing a fixed prior p(uk) = 1/K on latent space, we consider a class-

conditional prior p(uk|Ti). Once the class-conditional responsibility is calculated,
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5. TWO-STAGE CLUSTERING WITH CLASS-GTM

the rest of the model’s parameters are estimated following the standard EM

procedure.

In a similar way a class-t-GTM model is obtained, but the corresponding

p(xn|uk) is defined as

p(xn|uk) =
Γ(νk+D

2
)βD/2

Γ(νk

2
)(νkπ)D/2

(
1 +

β

νk

‖yk − x‖2

) νk+D

2

. (5.3)

5.2.2 Two-stage Clustering Based on GTM

In the first stage of the proposed two-stage clustering procedure, a class-GTM

is trained to obtain the representative prototypes (detailed clustering) of the ob-

served dataset X. As mentioned in the introduction, the number of prototype

vectors is usually chosen to be large for visualization purposes, and does not nec-

essarily reflect the global cluster and class structure of the data. In this study,

the resulting prototypes yk of the class-GTM are further clustered using the well-

known K-means algorithm (a description of which can be found, for instance,

in Duda et al. 2000). In a similar two-stage procedure to the one described in

Vesanto & Alhoniemi (2000), based on SOM, the second stage K-means initial-

ization in this study is first randomly replicated 100 times, subsequently choosing

the best available result, which is the one that minimizes the error function

E =
C∑

c=1

∑
x∈Gc

‖x− µc‖2, (5.4)

where C is the final number of clusters in the second stage and µc is the centre

of the K-means cluster Gc. This approach seems somehow wasteful, though, as

the use of GTM instead of SOM can provide us with richer a priori information

to be used for fixing the K-means initialization in the second stage.

Two novel fixed initialization strategies that take advantage of the prior knowl-

edge obtained by class-GTM in the first stage are proposed. They are based on

two features of the model, namely: the Magnification Factors (MF, Bishop et al.

1997) and the Cumulative Responsibility (CR, Vellido et al. 2000). The MF mea-

sure the level of stretching that the mapping undergoes from the latent to the

data spaces. Areas of low data concentration correspond to high distorsions of
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the mapping (i.e., high MF), whereas areas of high data density correspond to

low MF. The MF is described in terms of the derivatives of the basis functions

φj(u) in the form:

MF =
dA′

dA
= det 1/2

(
ψTWTWψ

)
, (5.5)

where ψ has elements ψji = ∂φj/∂ui (Bishop et al., 1997). If we choose C to be the

final number of clusters for K-means in the second stage, the first proposed fixed

initialization strategy will consist on the selection of the class-GTM prototypes

corresponding to the C non-contiguous latent points with lowest MF for K-means

initialization. That way, the second stage algorithm is meant to start from the

areas of highest data density.

As its name suggests, the CR is the sum of responsibilities over all data points

in X for each cluster k:

CRk =
N∑

n=1

zt
kn . (5.6)

The second proposed fixed initialization strategy, based on CR, is similar in spirit

to that based on MF. Again, if we choose C to be the final number of clusters for

K-means in the second stage, the fixed initialization strategy will now consist on

the selection of the class-GTM prototypes corresponding to the C non-contiguous

latent points with highest CR. That is, the second stage algorithm is meant to

start from those cluster prototypes that are found to be most responsible for the

generation of the observed data.

5.3 Experiments with Publicly Available Data-

sets

In this section, we first describe the experimental design and settings. Two

publicly available data sets, described in some detail in section 5.3.2 will be used,

namely e-coli1 and oil-flow 2. This is followed by a presentation and discussion of

the corresponding results.

1http://archive.ics.uci.edu/ml/
2http://research.microsoft.com/∼cmbishop/PRML/webdatasets/datasets.htm

53



5. TWO-STAGE CLUSTERING WITH CLASS-GTM

5.3.1 Experimental Design and Settings

The class-GTM model was implemented in MATLAB R©. For the experiments

reported next, the adaptive matrix W was initialized, following a procedure de-

scribed in Bishop et al. (1998), as to minimize the difference between the pro-

totype vectors yk and the vectors that would be generated in data space by a

partial PCA, mk = V2uk, where the columns of matrix V2 are the two princi-

pal eigenvectors (given that the latent space considered here is 2-dimensional).

Correspondingly, the inverse variance β was initialised to be the inverse of the

3rd PCA eigenvalue. This ensures the replicability of the results. The value of

parameter σ, describing the common width of the basis functions, was set to 1.

The grid of latent points uk was fixed to a square 13 × 13 layout for the e-coli

dataset and to a 20× 20 layout for the oil-flow dataset. Both datasets are sum-

marily described in section 5.3.2. The corresponding grid of basis functions φ was

equally fixed to a 5× 5 square layout for both datasets.

The goals of these experiments are twofold. First, we aim to assess whether a

two-stage clustering procedure, where the first stage involves class-GTM and the

second stage involves K-means, improves on the class separation capabilities of

the straight clustering of the data using the K-means algorithm alone. Secondly,

we aim to test whether the second stage initialization procedures based on the

Magnification Factors and the Cumulative Responsibility of the class-GTM, de-

scribed in section 5.2.2, retain the class separability capabilities of the two-stage

clustering procedure in which K-means is randomly initialized. If this is the case,

a fixed second stage initialization strategy should entail a substantial reduction of

computational time compared to a random second stage initialization requiring a

large number (100 in the reported experiments and also in Vesanto & Alhoniemi

2000) of algorithm runs.

Beyond the visual exploration that could be provided by class-GTM, the sec-

ond stage clustering results should be explicitly quantified in terms of class sep-

arability. For that purpose, the following entropy-like measure is proposed:

EGc({Ti}) = −
∑

{Gc}
P (Gc)

∑

{Ti}
P (Ti|Gc) ln P (Ti|Gc) = −

C∑
c=1

KGc

K

|{Ti}|∑
i=1

pci ln pci .

(5.7)
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Sums are performed over the set of classes {Ti} and the K-means clusters {Gc};
K is the total number of prototypes; KGc is the number of prototypes assigned

to the cth cluster; pci = KGci/KGc , where KGci is the number of prototypes from

class i assigned to cluster c; and, finally, |{Ti}| is the cardinality of the set of

classes. The minimum possible entropy value is 0, which corresponds to the case

of no clusters being assigned prototypes corresponding to more than one class.

Given that the use of a second stage in the clustering procedure is intended

to provide final clusters that best reflect the overall structure of the data, the

problem remains of what is the most adequate number of clusters. This is a

time-honoured matter of debate, which goes beyond the scope of this thesis, and

many cluster validity indices have been defined over the years. In this experiment

we use the widely known Davies-Bouldin (DB) index (Davies & Bouldin, 1979;

Vesanto & Alhoniemi, 2000) to provide us with some indication of what the

adequate number of final clusters might be. According to the DB index, the best

clustering minimizes

1

C

C∑

k=1

max
l 6=k

{
Sc(Gk) + Sc(Gl)

dce(Gk, Gl)

}
, (5.8)

where C is the number of clusters; Sc is a within-cluster distance named centroid

distance and is calculated as Sc =
∑

yi∈Gk
‖yi−µk‖

Nk
, Nk is the number of samples in

cluster Gk, and µk is the center or mean of cluster Gk; and dce is a between-clusters

distance named centroid linkage defined as dce(Gk, Gl) = ‖µk − µl‖.

5.3.2 Results and Discussion

In the first stage of the two-stage clustering procedure, class-GTM was trained

to model the e-coli and oil-flow datasets. The resulting prototypes yk were then

clustered in the second stage using the K-means algorithm. This last stage was

performed in three different ways, as described in section 5.2.2. In the first one,

K-means was randomly initialized 100 times, selecting the results corresponding

to the minimum of the error function in Eq. 5.4. In the second, we used the

Magnification Factors of class-GTM as prior knowledge for the initialization of

K-means. In the third, Cumulative Responsibility was used as prior knowledge.
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5. TWO-STAGE CLUSTERING WITH CLASS-GTM

In all cases, K-means was forced to yield a given number of final clusters, from 2

up to 13. The DB index and the final entropy were calculated for all the above

procedures and numbers of clusters.

The DB index results for the experiments with e-coli, including the direct

clustering of the data with K-means alone, are reported in Fig. 5.1. E-coli consists

of 336 7-dimensional points belonging to 8 classes representing protein location

sites, 3 of which are very small, i.e., the data set is strongly class-unbalanced.

The sensibility of the DB-index to class-unbalance might perhaps explain why

the results in Fig. 5.1 do not provide a clear pattern.

The DB index results for the experiments with e-coli, including the direct

clustering of the data with K-means alone, are reported in Fig. 5.1. E-coli consists

of 336 7-dimensional points belonging to 8 classes representing protein location

sites, 3 of which are very small, i.e., the data set is strongly class-unbalanced.

The sensibility of the DB-index to class-unbalance might perhaps explain why

the results in Fig. 5.1 do not provide a clear pattern. They nevertheless suggest

that no more of 4 clusters (for two-stage clustering) or 5 (for direct K-means)

represent an adequate solution. In fact, there are only 4 main groups in e-coli,

namely: cytoplasm, periplasm, inner membrane and outer membrane. Some

relatively good solutions are also suggested for 8 or 9 clusters using the two-stage

procedure.

The entropy results for e-coli are shown in Fig. 5.2. Two immediate con-

clusions can be drawn: First, all the two-stage clustering procedures based on

class-GTM perform much better than direct K-means clustering in terms of class

separation in the resulting clusters. Second, random initialization in the second

stage of the clustering procedure does not entail any significant advantage over

the proposed fixed initialization strategies across the whole range of possible final

number of clusters, while being far more costly in computational terms.

The DB index results for the experiments with oil-flow, also including the

direct clustering of the data with K-means, are reported in Fig. 5.3. Oil-flow,

firstly used in Bishop & James (1993), simulate non-intrusive measurements by

gamma densitometry from a pipeline transporting a mixture of gas, oil, and

water. It consists of 1000 points described by 12 attributes. Three types of flow

configuration are used as class information labels. The results in Fig. 5.3 do not
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Figure 5.1: DB index for the clustering of e-coli using two-stage clustering with

different initializations (based on Magnification Factors (MF init), Cumulative

Responsibility (CR init) and random (rand init)), and K-means alone.
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Figure 5.2: Entropy measurements for two stage and K-means alone clusterings

of e-coli. Legend as in Fig. 5.1.
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Figure 5.3: DB index for the clustering of oil-flow using two-stage clustering with

different initializations and K-means alone. Legend as in Fig. 5.1.

indicate any clear number of clusters when data are grouped directly by K-means

without any class information. Instead, for the two-stage procedure based on

class-GTM there is no indication that more than 4 clusters would provide any

substantial improvement.

The entropy results for oil-flow are shown in Fig. 5.4 and they are fully

consistent with the results for e-coli. Again, the two-stage clustering procedures

based on class-GTM perform much better than direct K-means clustering in terms

of class separation, and the two-stage random and fixed initialization strategies

yield almost identical results, with the former being computationally more costly.

5.4 Experiments on a Human Brain Tumour Da-

taset

Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of pro-

viding a detailed fingerprint of the biochemistry of living tissue. The data used in

this study consist of 304 single voxel PROBE (PROton Brain Exam system) spec-
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Figure 5.4: Entropy measurements for two stage and K-means alone clusterings

of oil-flow. Legend as in Fig. 5.1.

tra acquired in vivo for fourteen viable tumour types: meningiomas (58 cases),

glioblastomas (86), metastases (38), astrocytomas of 2 (22) and 3 (7) grades,

PNETs (9), oligoastrocytomas (6), oligodendrogliomas (7), rare (19), pilocytic

astrocytoma (3), malignant lymphomas (10), haemangioblastomas (5), abscesses

(8), and schwannomas (4); as well as from adjacent normal brain tissue (22).

This typology will be used in this study as class information. A description of

the automated protocol used for the acquisition of these data can be found in

Tate et al. (2003). The clinically relevant regions of the spectra were sampled

to obtain 200 frequency intensity values. For a second interesting analysis, the

spectra can be grouped into three types (typology that will be used in this study

as class information), as in Tate et al. (2006): high grade malignant (metas-

tases and glioblastomas), low grade gliomas (astrocytomas, oligodendrogliomas

and oligoastrocytomas) and meningiomas. These groups will be considered as a

second dataset in section 5.4.2. The complexity of the problem, in terms of high

dimensionality, was compounded by the small number of spectra available, which

is commonplace in MRS data analysis (Lisboa et al., 2000). This makes either

clustering or visualization almost compulsory for automated data analysis.
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5.4.1 Experimental Design and Settings

For the experiments reported next, the adaptive matrix W, the inverse variance

β and the value of parameter σ were initialized as in section 5.3.1. The grid of

latent points uk was fixed to a square 12× 12 layout. The corresponding grid of

basis functions φ was equally fixed to a 5× 5 square layout.

This time, the goals of these experiments are fourfold. First, we aim to assess

whether the inclusion of class information using class-GTM in the first stage

of the two-stage procedure results in any improvement in terms of clusterwise

class separability (and under what circumstances) compared to the procedure

using standard GTM. Second, as in the previous experiments, we aim to assess

whether the two-stage procedure improves, in the same terms, on the use of

direct clustering of the data using K-means. Third, and again as in the previous

experiments, we aim to test whether the second stage initialization procedures

based on MF and CR of the class-GTM, described in section 5.2.2, retain the

class separability capabilities of the two-stage clustering procedure in which K-

means is randomly initialized. If this is the case, a fixed second stage initialization

strategy should entail a substantial reduction of computational time compared

to a random second stage initialization. In fourth place, we aim to explore the

properties of the structure of the dataset concerning atypical data. For that,

we use a variant of the GTM (with and without class information) that behaves

robustly in the presence of outliers, which was described in section 3.2.3: the

t-GTM (Vellido, 2006).

The MRS data, described in section 5.4, will be first clustered using both

GTM and class-GTM to illustrate the differences between these models. The

results will be first compared visually, which should help to illustrate the visual-

ization capabilities of the models. Beyond the visual exploration that could be

provided by class-GTM and GTM, the second stage clustering results should be

explicitly quantified in terms of clusterwise class separability. For that purpose,

the proposed entropy-like measure in Eq. 5.7 is used.

In this experiment we do not use any cluster validity index and we simply

evaluate the entropy measure for solutions from 2 up to 15 clusters.
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5.4.2 Results and Discussion

In the first stage of the two-stage clustering procedure, GTM, t-GTM and their

class-enriched variants class-GTM and class-t-GTM were trained to model the

human brain tumour dataset described in section 5.4. The resulting prototypes

yk were then clustered in the second stage using the K-means algorithm. This

last stage was performed in three different ways, as described in section 5.2.2. In

the first one, K-means was randomly initialized 100 times, selecting the results

corresponding to the minimum of the error function in Eq. 5.4. In the second,

we used the Magnification Factors of class-GTM as prior knowledge for the ini-

tialization of K-means. In the third, Cumulative Responsibility was used as prior

knowledge. In all cases, K-means was forced to yield a given number of final

clusters, from 2 up to 15 (and from 2 up to 10 for the second dataset). The final

entropy was calculated for all the above procedures and numbers of clusters.

Before considering the entropy results, visualization maps (obtained using

the mean of the posterior distribution:
∑K

k=1 ukzkn or
∑K

k=1 ukz
t
kn) of all the

trained models in the first stage were generated. Three hypotheses are made for

the clustering results visualized here. First, the use of class information in the

clustering models should yield visualization maps where the classes are separated

better than in those models which do not use it. Second, the use of t-GTM

should help to diminish the influence of outliers. Consequently, the visualization

maps generated with these models should show the data more homogeneously

distributed throughout the visualization maps than in Gaussian GTM models

which do no use it. Thirdly, since the tumour dataset is mainly compound of

poorly represented classes, we hypothesize that these “small” classes will consist

mainly of atypical data.

The clustering model proposed to test the second and third hypothesis is t-

GTM, a variant of the standard GTM that replaces the mixture of Gaussians

by a mixture of Student’s t-distributions, which are known to be best at deal-

ing with atypical data, given their heavier tails. Details on the formulation of

t-GTM can be found in Vellido (2006) (also a brief summary is presented in

section 3.2.3). The two-stage clustering experiments were repeated for t-GTM
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without class information and for class-t-GTM (Cruz-Barbosa & Vellido, 2006),

the corresponding variant of the model with class information.

Given the complexity of the entire dataset, we only provide one of these

illustrative visualizations in Fig. 5.5. Here, two tumour types (meningioma and

glioblastoma, the most represented classes) are shown. The right column of Fig.

5.5, where the models that include class information are located, suggests that

the first hypothesis is sustained, since the class separability between both classes

(‘o’ and ‘+’) is better than that of the models that do not make use of class

information, located in the left column. This is the result of a more pronounced

overlapping of both classes, clearly seen in the left hand-side models of Fig. 5.5.

The use of t-distributions in the models represented in the bottom row is

more spread throughout the map than that of the Gaussian models of the top

row. This is an indication that the t-GTM models are moderating the effect of

outliers. The differences are not huge and, again, this is an indication that there

might be not too many outliers in the dataset. All the previous results were

generally supported for the rest of the data as well. The two first hypotheses are,

therefore, preliminarily supported.

A similar situation can be appreciated in Fig. 5.6 for the second dataset

(described in section 5.4), where two tumour groups (low grade gliomas and

meningiomas) are shown, although the differences in class overlapping are less

obvious in this case.

We now turn our attention to the third hypothesis. It was shown in Vellido

& Lisboa (2006) that a given data instance could be characterized as an outlier

if the value of

O∗
n =

∑

k

zknβ‖yk − xn‖2 (5.9)

was sufficiently large. Here, the right-side elements of Eq. 5.9 are as in (t-

GTM) section 3.2.3. The histogram in Fig. 5.7 displays the values of O∗
n from

Eq. 5.9 for the entire brain tumour dataset. First of all, and supporting our

previous impression, not too many data could be clearly characterized as outliers

according to this histogram. We did the same for the class-t-GTM model and,

for illustration, proposed an artificial threshold. The 20 largest values of O∗
n

were taken as outliers. The results are summarized in Table 5.1. Surprisingly,
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Figure 5.5: Representation, on the 2-dimensional latent space of GTM and its

variants, of part of the entire tumour data set described in the main text. The

representation is based on the mean posterior distributions for the data points

belonging to meningioma (‘o’) and glioblastoma (‘+’) tumour types. The axes

of the plot are the elements of the latent vector u and convey no meaning by

themselves. For that reason, axes are kept unlabeled. (Top left): GTM without

class information. (Top right): class-GTM. (Bottom left): t-GTM without class

information. (Bottom right): class-t-GTM.
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5. TWO-STAGE CLUSTERING WITH CLASS-GTM

Figure 5.6: Representation, on the 2-dimensional latent space of GTM and its

variants, of a part of the second tumour dataset. It is based on the mean pos-

terior distributions for the data points belonging to low grade gliomas (‘*’) and

meningiomas (‘o’). The axes of the plot convey no meaning by themselves and

are kept unlabeled. (Top left): GTM without class information. (Top right):

class-GTM. (Bottom left): t-GTM without class information. (Bottom right):

class-t-GTM.
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Figure 5.7: Histogram of the statistic (Eq. 5.9); outliers are characterized by its

large values. For illustration, the ten largest values are labeled. See tumour type

acronyms in Table 5.1.
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5. TWO-STAGE CLUSTERING WITH CLASS-GTM

Tumour type # of outliers (%): t-GTM # of outliers (%): class-t-GTM
Meningioma (mn) 6 (10.3%) 4 (6.9%)
Glioblastoma (gl) 6 (7.0%) 5 (5.8%)
Metastases (me) 1 (2.6%) 2 (5.3%)

Astrocytoma 2 (a2 ) 1 (4.5%) 4 (18.2%)
PNET (pn) 2 (22.2%) 2 (22.2%)
Rare (ra) 2 (10.5%) 2 (10.5%)

Lymphoma (ly) 1 (10.0%) 0 (0.0%)
Haemanglioblastoma (hb) 1 (20.0%) 1 (20.0%)

Table 5.1: Outlier count and percentage (in brackets) by tumour type (see figures

in section 5.4) given a threshold for Eq. 5.9.

given the complex tumour typology of the dataset, these results do not support

the third hypothesis, as many outliers belong to the tumour types with better

representation in the dataset (mn, gl, me, and a2 ).

The histograms in Figs. 5.8 and 5.9 reflect similar results for the second

dataset.

The entropy measurements quantifying the clusterwise class separation for

the entire brain tumour dataset are shown in Fig. 5.10. Two immediate con-

clusions can be drawn. Firstly, all the two-stage clustering procedures based on

class-GTM perform much better than the direct clustering of the data through

K-means, in terms of class separation, but also better than the two-stage proce-

dure without class information based on the standard GTM. Also, this situation

is reflected in right hand side of Fig. 5.11 for the second dataset. However, it

can also be observed in Fig. 5.11 that the two-stage clustering based on t-GTM

performs slightly better than the class-t-GTM model. This is explained by the

fact that the adjustment of the model provided by t-GTM, which is blind to class

information by itself, may alter the accordance between class and cluster distri-

butions, especially in a strongly class-unbalanced dataset such as the one under

analysis. This result draws the limits out of which the addition of class informa-

tion is not necessarily useful in terms of cluster-wise separation. Secondly, in both

datasets, random initialization in the second stage of the clustering procedure,

with or without class information, does not entail any significant advantage over
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Figure 5.8: Histogram of the statistic (Eq. 5.9) for the t-GTM model; outliers

are characterized by its large values. As an example, the ten largest values are

labeled.
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Figure 5.9: Histogram of Eq. 5.9 for class-t-GTM. As an example, the four largest

values are labeled.
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5. TWO-STAGE CLUSTERING WITH CLASS-GTM

the proposed fixed initialization strategies across the whole range of possible final

number of clusters, while being far more costly in computational terms.

The entropy measure in Eq. 5.7 quantifies the level of agreement between the

clustering solutions and the class distributions. In terms of the overall cluster-

wise class separation provided by the Gaussian distributions-based GTM clus-

tering models, it has been shown that the addition of class information con-

sistently helps. As a result, these class-enriched models would be useful in a

semi-supervised setting in which new undiagnosed tumour cases were added to

the database.

5.5 Summary

In this chapter, we have carried out an analysis of the influence exerted by the

inclusion of class information in a two-stage clustering procedure. We have also

introduced and tested different strategies of initialization for the second stage

of this procedure. The first stage is based on the manifold learning class-GTM

model. The second stage is based on the well-known K-means algorithm, which

was initialized either multiple times randomly, or in a fixed manner making use

of the prior knowledge provided by class-GTM in the first stage following a novel

procedure based on its Magnification Factors and Cumulative Responsibility. The

reported experiments have shown that the two-stage random and fixed initializa-

tions yield almost identical results in terms of clusterwise class separation, with

the former being computationally more costly. It has also been shown that the

two-stage clustering procedures based on standard GTM and class-GTM perform

better than the direct K-means clustering of the data in terms of this clusterwise

class separation and that the inclusion of class information improves the cluster-

wise class separation. The existence of atypical data or outliers in the human

brain tumours MRS dataset under study, and its influence on the clustering pro-

cess, have also been explored.

We must note that there is a limitation for the two-stage clustering proce-

dure proposed in this chapter. At all time, we have assumed that the sources

generating the available data were unimodal and, therefore, that there was an

intrinsic continuity property in the data. This is not always the case, as data can
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Figure 5.10: Entropies for the clustering of the entire tumour dataset using two-

stage clustering with different initializations (based on MF (MF init), CR (CR

init) and random (rand init)), and K-means alone. The ‘c’ symbol means that

the corresponding model using class information was used in the first stage and

‘nc’ for the opposite. The ‘t’ in the legend label means that t-GTM was used in

the first stage.
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Figure 5.11: Entropy for the two-stage clustering of the second tumour dataset,

with different initializations (MF init, CR init and rand init) and K-means alone.

The ‘c’ and ‘nc’ symbols refer to models that, in turn, use and not use class

information. The ‘t’ in the legend means that t-GTM was used in the first stage.

(Top): all models are shown. (Bottom): only the GTM, t-GTM and their class-

enriched variants are shown.
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5.5 Summary

be at least partially multi-modal. As soon as we introduce class information in

the GTM modeling process, data multi-modality, if existing, is likely to generate

discordance between the grouping or clustering structure of the data by itself and

the distribution of classes. This would be reflected in a worsening of the results

in terms of entropy.

71



5. TWO-STAGE CLUSTERING WITH CLASS-GTM

72



Chapter 6

Semi-Supervised Geodesic

Generative Topographic Mapping

6.1 Introduction

In many of the databases generated in some of the currently most active areas of

research, such as, for instance, biomedicine, bioinformatics, or web mining, class

labels are either completely or partially unavailable. The first case scenario is that

of unsupervised learning, where the most common task to be performed is that of

data clustering, which aims to discover the group structure of multivariate data

(Jain & Dubes, 1998). The second case is less frequently considered despite the

fact that, quite often, only a reduced number of class labels is readily available

and even that can be difficult and/or expensive to obtain. This becomes a task

at the interface between supervised and unsupervised models: semi-supervised

learning (SSL, Chapelle et al. 2006).

As was stated in section 2.1, SSL methods can be developed to assist either

classification or clustering tasks mainly. The former task is the purpose of the

models described in this chapter, but using a clustering method as a basis.

From the SSL categories summarized in section 2.2, this chapter specifically

concerns graph-based methods that use, as a basis, generative unsupervised mod-

els for clustering and visualization. As a reminder, in graph-based methods, the

nodes of a graph come to represent the observed data points, while its edges

are assigned the pairwise distances between the incident nodes. The way the
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distance between two data points is computed can be seen as an approximation

of the geodesic distance between the two points with respect to the overall data

manifold (Belkin & Niyogi, 2004).

In Zhu & Ghahramani (2002), a label propagation (LP) algorithm for SSL was

introduced, working under the assumption that close data points tend to have

similar class labels. Here, the label of a node (label vector) propagates to neigh-

bouring nodes according to their proximity in a fully connected graph (formed by

the input samples, labeled and unlabeled). Thus, labels are propagated through

dense unlabeled data regions. An alternative method, (Laplacian Eigenmaps:

LapEM) presented in Belkin & Niyogi (2003b), assumes that the data lie on

a manifold in a high dimensional space. The learning of the underlying mani-

folds is accomplished using all the available input samples. A proximity graph is

then constructed, using node adjacencies, as a model for the manifold. The pro-

posed graph Laplacian approximates the Laplace-Beltrami operator, which can

be thought of as an operator on functions defined on nodes of the proximity graph.

Recently, in Herrmann & Ultsch (2007), a two-stage SSL method was proposed.

In the first stage, data points are clustered using the Emergent Self-Organizing

Map (ESOM, Ultsch 2003). Then, ESOM is considered as a proximity graph and

a modified LP is carried out in the second stage.

In this thesis, we present a semi-supervised approach, inspired by that pro-

posed in Herrmann & Ultsch (2007). It is based on Geo-GTM (Cruz-Barbosa &

Vellido, 2008d), which is an extension of the statistically principled GTM (Bishop

et al., 1998) that has been described in chapter 4 of the thesis. Geo-GTM prior-

itizes neighbourhood relationships along a generated manifold embedded in the

observed data space. This model has been shown to improve both the trustwor-

thiness and the continuity of the low-dimensional data representations, and also

to behave robustly in the presence of noise (Cruz-Barbosa & Vellido, 2008a,b). In

our proposal, the prototypes are inserted and linked by the nearest neighbour to

the data manifold constructed by Geo-GTM. The resulting graph is considered

as a proximity graph for which an ad hoc version of LP is defined. The result-

ing semi-supervised Geo-GTM (SS-Geo-GTM) uses the information derived from

Geo-GTM training to accomplish the semi-supervised task. Following the same

methodology, we have also developed in this thesis a semi-supervised version for
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6.2 Semi-Supervised Geo-GTM

the standard GTM (SS-GTM) and compared its performance with that of SS-

Geo-GTM. Several experiments using artificial and real datasets show that the

performance of SS-Geo-GTM, measured as a fraction of correctly classified input

samples, is significantly better than that of SS-GTM for data sets of convoluted

geometry. Also, we compare the performance of the proposed SS-Geo-GTM with

that of Laplacian Eigenmaps (a popular graph-based semi-supervised method).

Several experiments with artificial and real data sets, using different percentages

of available class labels and also with the presence of different levels of unin-

formative noise, show that SS-Geo-GTM overall outperforms both SS-GTM and

LapEM.

In this thesis, we conclude the evaluation of the capabilities of the SS-Geo-

GTM model with the analysis of a real and considerably difficult problem: that

of inferring survival stages in an aggressive human brain tumour pathology from

a very limited amount of available survival stage labels and Magnetic Reso-

nance Spectroscopy (MRS) data corresponding to these tumours. This pathology,

namely Glioblastomas, is known for its heterogeneity. To the best of the author

knowledge, this approach to survival stage analysis has never been attempted

before using this type of data. Here, the performance criterion is the retrieval

accuracy of labels, defined as the ratio of correctly retrieved labels to the total

number of retrievable labels. The performance of SS-Geo-GTM for the prognostic

problem at hand compares favourably with those of SS-GTM and the alternative

LapEM models.

6.2 Semi-Supervised Geo-GTM

If only unlabeled data were available and our analyses only concerned data clus-

tering, the previously described Geo-GTM would suffice. In many real situations,

though, we may well count with only a limited amount of labeled cases. If this is

the case, and we are also interested in classification, the problem can be addressed

as a semi-supervised one. The goal in such problem is inferring the unavailable

class labels using the information provided by the few available ones as well as

by the cluster structure defined by Geo-GTM. The latter is contained in the pro-
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totypes ym, the responsibilities zgeo
mn defined in Eq. 4.2, and the data manifold

obtained for computing the graph distance.

The basic idea underlying the proposed semi-supervised approach is that

neighbouring points are most likely to share their label and that these labels are

best propagated through neighbouring nodes according to proximity. Assuming

that the Geo-GTM prototypes and the corresponding constructed data manifold

can be seen as a proximity graph, we modify an existing label propagation (LP)

algorithm (Zhu & Ghahramani, 2002) to account for the information provided

by the trained Geo-GTM. The result is the proposed semi-supervised Geo-GTM

(SS-Geo-GTM, for short).

The LP method is adapted to Geo-GTM as follows. A label vector Lm ∈ [0, 1]k

is first associated to each Geo-GTM prototype ym. These label vectors can be

considered as nodes in a proximity graph. The weights of the edges are derived

from the graph distances dg between prototypes. For this, the prototypes are

inserted and linked to the graph through the nearest data point. It is important

to note that, in this process, empty clusters (that is, those associated to a given

prototype ym, to which no data point is assigned, or, in other words, those that

do not bear a maximum of responsibility zgeo
mn for any data point n) are omitted.

The edge weight between nodes m and m′ is calculated as

wmm′ = exp(−d2
g(m,m′)

σ2
), (6.1)

where the σ parameter defines the level of sparseness in the graph for label in-

formation. One possible choice for the value of this parameter is the minimal

inter-prototype distance. An alternative choice is defined in section 6.2.1 and

evaluated in section 6.3.

Following Herrmann & Ultsch (2007), the available label information of xn ∈
X with class attribution c(xn) = Ct ∈ {C1, . . . , Ck} will be used to fix the

label vectors of the prototypes to which they are assigned (xn is assigned to ym

through um = arg maxui
zgeo

in ), so that Lm,j = 1 if j = t, and Lm,j = 0 otherwise.

Unlabeled prototypes will then update their label by propagation according to

Lnew
m =

∑
m′ wmm′Lm′∑

m′ wmm′
, (6.2)
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until no further changes occur in the label updating. Subsequently, unlabeled

data items are labeled by assignment to the class more represented on the label

vector of the prototype ym bearing the highest responsibility for them, according

to c(xn) = arg maxCj∈{C1,...,Ck} Lm,j. The same methodology is used to build a

semi-supervised version of a standard GTM model (SS-GTM).

For illustration, the process of computing the graph distances between pro-

totypes is shown in Fig. 6.1 (bottom), using the Daĺı set described in section

6.3.1.

6.2.1 Choice of the σ Parameter

As stated in Zhu & Ghahramani (2002), an essential problem in LP for semi-

supervised learning is finding an adequate value for parameter σ in Eq. 6.1. It

is known that for σ →∞, all unclassified data cases are assigned the same label

vector because of label vectors shrinking to a single point (with large σ, unlabeled

cases tend to have similar class probabilities, then receiving the same influence

from all labeled cases). On the other hand, when σ → 0, the performance of LP

is similar to that of a 1-nearest neighbour classifier. Therefore, a suitable value

for the parameter should lie between these two extremes.

Here, we propose an ad hoc criterion that consists on assigning σ the value

of what we call the main reference inter-prototype (MRIP) distance. For this,

we first calculate the Cumulative Responsibility (CR), which is the sum of re-

sponsibilities over all data items in X, for each cluster m, CRm =
∑N

n=1 zgeo
mn.

The prototypes with highest CR are considered as the most representative in

the dataset (this was evaluated and showed in chapter 5 and in Cruz-Barbosa &

Vellido 2007c,d). We then choose MRIP to be the graph distance dg(ym1,ym2)

between the two non-contiguous prototypes ym1,ym2 of highest CR. Note that

the use of the graph distance assures the minimal inter-prototype path.

6.2.2 Summary of the SS-Geo-GTM algorithm

For the sake of clarity, we provide in this section some details of the proposed

SS-Geo-GTM algorithm. It is assumed that the analysed dataset has previously

been modeled by Geo-GTM (as defined en chapter 4) and that the corresponding
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Figure 6.1: (Top): The artificial 3-D Daĺı dataset, where the two contiguous

fragments are assumed to correspond to different classes, identified with different

symbols. (Bottom): Results of the Geo-GTM modeling of Daĺı. The prototypes

are represented by ‘◦’ symbols (only the non-empty prototypes are preserved and

linked to the graph through the nearest data point). The graph constructed using

4-nearest neighbours is represented by lines connecting the data points, which are,

in turn, represented by ‘·’ symbols.
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cluster structure is provided. This cluster structure contains the M prototypes,

the responsibilities zgeo
mn (defined in Eq. 4.2) and the data manifold obtained for

computing the graph distance. Also, the general settings for LP are assumed:

the class label availability of a dataset X (l labeled and u unlabeled data points)

is known, and it is assumed that the number of classes C is known and that

all classes are present in the labeled data. The LP algorithm, summarized in

appendix A.2, has been modified in the following way:

• Pre-processing stage

– Create a connected graph by inserting and linking the M prototypes to

the nearest neighbour of the data manifold constructed by Geo-GTM.

Here, the nodes are all prototypes.

– Compute the graph distance among prototypes using the constructed

graph in step 1.

– Compute the weights wij of the edges between nodes i, j as in Eq. 6.1,

where σ is obtained as showed in section 6.2.1.

– Compute a M ×M transition matrix T as Tij =
wij∑l+u

k=1 wkj
, where Tij is

the probability of propagation from node j to node i.

– Define a (l +u)×C label matrix L, whose ith row represents the label

probability distribution of data point xi.

– Define a M × C prototypes label matrix L′, whose ith row represents

the label probability distribution of node (prototype) yi. Here, the

available label information of xn ∈ X (given by L) with class attribu-

tion c(xn) = Ct ∈ {C1, . . . , Ck} is used to fix the label vectors of the

prototypes to which they are assigned (xn is assigned to ym through

um = arg maxui
zgeo

in ), so that L′m,j = 1 if j = t, and L′m,j = 0 other-

wise. The initialization of unlabeled nodes is not relevant.

SS-Geo-GTM algorithm

1. Propagate L′ ← TL′, as in Eq. 6.2.

2. Row-normalize L′ as L′ij = L′ij/
∑

k L′ik.
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3. Clamp the labeled data. Repeat from step 1 until L′ converges.

Finally, unlabeled data points in L are labeled by assignment to the class

more represented on the label vector of the prototype ym bearing the highest

responsibility for them, according to c(xn) = arg maxCj∈{C1,...,Ck} L′m,j.

6.3 Experiments on Standard Datasets

In this section, we first describe the experimental design and settings. This is

followed by a presentation and discussion of the corresponding results.

6.3.1 Experimental Design and Settings

Geo-GTM, SS-Geo-GTM, and SS-GTM were implemented in MATLAB R©. For

the experiments reported next, the adaptive matrix W was initialized, following a

procedure described in Bishop et al. (1998), as to minimize the difference between

the prototype vectors ym and the vectors that would be generated in data space

by a partial Principal Component Analysis (PCA). The inverse variance β was

initialised to be the inverse of the 3rd PCA eigenvalue. This initialization ensures

the replicability of the results. The latent grid was fixed to a square layout

of approximately (N/2)1/2 × (N/2)1/2, where N is the number of points in the

dataset. The corresponding grid of basis functions was equally fixed to a 5 × 5

square layout for all datasets.

Three datasets were selected for the reported experiments, where two of them

(Daĺı and Oil-Flow) can be represented by two-dimensional manifolds:

• The first one is the artificial 3-D Daĺı set (inspired by one of the common

patterns in Salvador Daĺı’s artworks), as shown in Fig.6.1(top). It consists

of two groups of 300 data points each that are images of the functions

x1 = (t cos(t), t2, t sin(t)) and x2 = (t cos(t), t2,−t sin(t) + 20), where t and

t2 follow U(π, 3π) and U(0, 10), respectively.

• The second set is the well-known Iris data, available from the UCI repos-

itory (Asuncion & Newman, 2007), which consists of 150 4-dimensional
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items representing several measurements of Iris flowers, which belong to 3

different classes.

• The third is the more complex Oil-Flow set, also available online1, which

simulates measurements in an oil pipe corresponding to three possible con-

figurations (classes). It consists of 1,000 items described by 12 attributes.

The central goal of the experiments is the comparison of the performances

of SS-Geo-GTM and SS-GTM in terms of classification accuracy. We hypoth-

esize that SS-GTM will yield lower rates of classification accuracy in the semi-

supervised task than its geodesic distance-based counterpart, especially for datasets

of convoluted geometry such as Daĺı and Oil-Flow.

We first assume that the choice of the MRIP, described in section 6.2.1, as a

value for σ is appropriate. In this setting, we evaluate the models in the most

extreme semi-supervised setting, that is, when the class label is only available

for a single input sample for each class and the remaining samples are considered

as unlabeled data. We then proceed to evaluate the performance of the models

in this same setting for a range of different values of σ, both higher and lower

than the MRIP. With this, it should be possible to assess the adequacy of the

MRIP choice. In the next step, the label availability condition is relaxed, and

the models are evaluated in the presence of higher ratios of labels.

Finally, we aim to gauge and compare the robustness of the methods in the

presence of noise. In previous research (Cruz-Barbosa & Vellido, 2008a), the Geo-

GTM model has been shown to behave better in this respect than the standard

GTM model (with the Euclidean metric) as measured by the test log-likelihood.

In the semi-supervised extension defined in this thesis, the performance criterion

is the classification accuracy.

6.3.2 Results and Discussion

All datasets are first modeled using GTM and Geo-GTM. SS-GTM and SS-Geo-

GTM are then built on top of these. As mentioned in the previous section, at

first only a single randomly selected input sample per class is kept labeled in each

1http://research.microsoft.com/∼cmbishop/PRML/webdatasets/datasets.htm
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Dataset SS-Geo-GTM (% ± std) SS-GTM (% ± std)

Daĺı* 99.54± 2.24 90.71± 7.99

Iris** 88.71 ± 7.88 85.74 ± 8.72

Oil-Flow* 77.43±8.31 36.74±3.29

Table 6.1: Classification accuracy as an average percentage over hundred runs

(with its corresponding standard deviation). The semi-supervised models are

here presented with a single randomly selected labeled input sample per class.

The statistical significance of the differences between SS-Geo-GTM and SS-GTM

is indicated with ‘*’ if p < 0.01 and with ‘**’ if p < 0.05.

run of the algorithm, while the remaining samples are considered as unlabeled

data. The semi-supervised performance of the models is measured as the average

percentage of correctly classified input samples over one hundred runs. The cor-

responding results are shown in Table 6.1. SS-Geo-GTM significantly (according

to a one-way analysis of variance ANOVA) outperforms SS-GTM in all datasets

and, as hypothesized, most notoriously for the datasets of more convoluted ge-

ometry, namely Daĺı and Oil-Flow. The differences are less notorious for the less

convoluted Iris dataset. The extreme differences observed for the Oil-Flow set are

of special interest, given that its high dimensionality precludes straightforward

exploratory visualization.

As stated in section 6.3.1, the previous results are obtained by setting the

value of σ = MRIP . We then proceed to evaluate the performance of the models

in this same setting for a range of different values of σ, both higher and lower than

the MRIP, to assess the adequacy of the proposed MRIP choice. We explore the

interval σ ∈ [MRIP − ε,MRIP + ε], where ε > 0, and measure the performance

of SS-Geo-GTM over a hundred runs. These results are reported in Table 6.2.

The models with σ = MRIP yield the best results in the range of selected σ

values, which confirms the fact that the MRIP value is at least near the optimum

value for σ. Consequently, from here on MRIP will be used as the default value

for σ.

The proposed SS-Geo-GTM model has been shown to perform well and better

than the SS-GTM in the most extreme semi-supervised setting. The question

82



6.3 Experiments on Standard Datasets

Daĺı Iris Oil-Flow
σ < MRIP % ± std σ < MRIP % ± std σ < MRIP % ± std

5.0 98.06±3.73 0.05 85.72±8.93 0.10 74.74±8.63
10.0 98.46±4.69 0.10 87.24±8.97 0.20 75.03±9.08
15.0 99.19±2.44 0.12 87.37±7.46 0.25 75.24±9.26
20.0 99.37±2.22 0.14 86.94±9.73 0.30 74.38±10.10
25.0 99.48±2.13 0.15 88.20±8.14 0.35 75.74±8.98

MRIP = 31.36 99.54±2.24 MRIP= 0.21 88.71±7.88 MRIP = 0.43 77.43±8.31
σ > MRIP σ > MRIP σ > MRIP

35.0 98.54±3.96 0.30 88.30±7.46 0.50 75.97±8.51
40.0 98.43±4.54 0.40 88.69±8.93 0.55 74.71±8.56
45.0 97.95±4.77 1.0 88.64±7.63 0.60 74.70±8.80
50.0 96.84±6.55 3.0 88.59±5.32 0.65 73.98±8.77
55.0 95.35±8.01 4.0 83.03±7.29 0.75 72.08±9.88

Table 6.2: Average classification accuracy (as a percentage) and its standard

deviation over one hundred runs for different values of σ parameter in the SS-

Geo-GTM setting.

remains: will this difference of performance remain the same when the label

availability condition is relaxed? To answer this question, the ratio of randomly

selected labeled data is increased from a single one to a 1%, and from there, up

to a 10%. The experiment is again carried out a hundred times for each dataset.

The corresponding results are shown in Table 6.3.

SS-Geo-GTM clearly (and again significantly according to an ANOVA test)

outperforms SS-GTM for Daĺı and Oil-Flow and, as expected, the performance

monotonically improves with the increasing percentage of labels. The differences

for the latter set, more complex and high-dimensional, are striking. For Daĺı,

SS-Geo-GTM achieves a 100% accuracy even with a 1% of labeled data, while

SS-GTM does not reach that average accuracy even with a 10%. The Iris data set

benefits less of the addition of class labels and the performances of both models

are comparable. This is consistent with the previous results and supports the

hypothesis that the use of the geodesic metric is likely to improve the results

mainly for data sets of convoluted underlying geometry. Notice also that the

standard deviation from the mean results monotonically decreases for all datasets

with the increasing percentage of available labels, reducing the uncertainty of the
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% of Classification accuracy (% ± std)
avail. Daĺı∗ Iris∗∗ Oil-Flow∗

labels SS-Geo SS-GTM SS-Geo SS-GTM SS-Geo SS-GTM
1 100±0 93.43±5.46 ? ? 83.93±5.60 39.96±3.44
2 100±0 96.96±3.41 ? ? 90.08±3.49 55.88±10.95
3 100±0 97.74±2.05 ? ? 91.79±3.07 64.71±7.95
4 100±0 98.29±1.80 90.00±8.11 89.46±5.24 94.28±2.60 70.69±6.06
5 100±0 98.61±1.32 89.96±6.98 89.18±6.48 95.14±2.20 74.11±5.05
6 100±0 98.66±1.64 91.30±7.37 91.66±3.02 95.97±2.01 76.51±4.30
7 100±0 98.98±0.80 90.74±7.62 90.94±3.03 96.43±1.81 79.10±4.24
8 100±0 99.19±0.82 91.91±5.31 91.90±3.03 96.65±1.53 80.88±4.27
9 100±0 99.30±0.70 92.35±4.90 91.88±2.48 97.11±1.66 82.19±3.43
10 100±0 99.24±0.73 93.19±4.36 92.32±2.42 97.53±1.22 83.91±3.58

Table 6.3: Average classification accuracy (as a percentage) and its standard

deviation over one hundred runs, for SS-GeoGTM and SS-GTM. A randomly

increasing percentage of pre-labeled items per class was chosen in each run. The

‘?’ symbol replacing results means that the experiment was not carried out be-

cause the corresponding percentage of available labels was less than or equal to

one label per class. A super-index ‘∗’ indicates that the differences between both

models were significant at level p < 0.01 in the ANOVA test for all percentages

of class label availability. A super-index ‘∗∗’ indicate that no differences were

significant.

results.

It was shown in Cruz-Barbosa & Vellido (2008a) that Geo-GTM can recover

the true underlying data structure far better than the standard GTM (as reflected

in a lower test log-likelihood), even in the presence of a considerable amount of

noise in the data. We now extend these results to the semi-supervised setting

to gauge and compare the robustness of the analyzed methods in the presence

of noise in some illustrative experiments. For this, Gaussian noise of zero mean

and increasing standard deviation was added to: a noise-free version of the Daĺı

set (added noise from σ = 0.1 to σ = 2.0, partially illustrated in left column of

Fig. 6.2) and the most difficult dataset, Oil-Flow (added noise from σ = 0.01

to σ = 0.2, partially illustrated in right column of Fig. 6.2). As in the previous
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Figure 6.2: Noisy variations of some of the data used in the experiments, provided

for illustration. The noise scale magnitude is in correspondence with the data

scale. For Daĺı, from top-left to bottom-left, noise of standard deviations σ = 0.1,

σ = 0.5, and σ = 2.0. For Oil-Flow, we provide three views of variable 5 versus

variable 9: From top-right to bottom-right, noise of standard deviations σ = 0.01,

σ = 0.05, and σ = 0.2.

85



6. SEMI-SUPERVISED GEODESIC GENERATIVE
TOPOGRAPHIC MAPPING

Dataset noise model Percent of available labels

level 2 4 6 8 10

0.1 SS-Geo 100±0 100±0 100±0 100±0 100±0

SS-GTM 96.29±3.37 98.15±1.97 99.09±1.0 99.31±0.99 99.28±0.89

0.3 SS-Geo 99.83±1.11 100±0 100±0 100±0 100±0

SS-GTM 95.57±4.0 98.11±1.45 98.56±0.83 98.77±0.75 98.88±0.69

Daĺı 0.5 SS-Geo 99.04±3.16 100±0 100±0 100±0 100±0

SS-GTM 96.52±3.09 98.05±2.16 98.99±1.40 99.31±1.06 99.39±0.78

1.0 SS-Geo 95.14±5.52 97.75±2.94 98.71±1.98 99.23±0.73 99.28±0.92

SS-GTM 96.12±3.79 98.36±1.53 98.66±1.21 99.04±0.45 99.06±0.35

2.0 SS-Geo 94.78±3.66 96.45±1.63 96.96±0.67 97.11±0.58 97.19±0.48

SS-GTM 92.96±3.0 94.28±1.96 94.73±1.75 95.45±1.01 95.36±1.07

0.01 SS-Geo 88.13±4.05 93.87±2.71 95.63±2.24 96.87±1.45 97.26±1.18

SS-GTM 55.54±11.94 70.66±5.84 77.14±4.65 80.25±3.58 84.15±3.39

0.03 SS-Geo 88.60±4.06 93.34±2.94 95.46±1.94 96.31±1.64 96.98±1.23

SS-GTM 55.14±10.71 71.54±6.00 77.26±4.53 81.40±3.63 82.60±3.24

Oil- 0.05 SS-Geo 90.10±4.38 94.94±2.49 96.34±1.93 97.42±1.69 97.84±1.23

Flow SS-GTM 53.39±11.81 70.52±7.42 75.79±4.77 81.32±4.52 83.84±4.34

0.1 SS-Geo 60.40±12.81 81.48±8.91 88.95±4.89 91.19±3.59 92.49±2.59

SS-GTM 49.88±10.11 70.30±8.63 78.20±4.48 82.68±4.50 85.08±4.23

0.2 SS-Geo 59.89±11.38 75.76±6.16 79.50±5.03 83.0±3.78 85.41±2.63

SS-GTM 44.94±9.92 56.18±10.59 66.01±7.04 72.31±5.55 75.37±4.27

Table 6.4: Average classification accuracy (as a percentage) and its standard

deviation over one hundred runs, for SS-GeoGTM and SS-GTM models in the

presence of increasing levels of uninformative noise. An increasing percentage of

pre-labeled items per class was randomly chosen in each run.
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experiment, we also analyze the evolution of the performance of these models as

the percentage of available labels for each dataset is increased from 2% to 10%.

These new results are shown in Table 6.4. In accordance to the results pre-

sented in Cruz-Barbosa & Vellido (2008a), the geodesic variant SS-Geo-GTM con-

sistently outperforms SS-GTM across data sets and noise levels (with a couple of

exceptions for high noise levels in Daĺı). The robustness of the semi-supervised

procedure for SS-GTM is surprisingly good, though. This means that, even if

SS-GTM is worst at recovering the underlying data structure, the label propaga-

tion procedure is affected by noise in a similar manner for both models. For the

more complex Oil-Flow set, both models deteriorate significantly at high noise

levels. Overall, these results seem to indicate that the resilience of the models is

mostly due to the inclusion of the geodesic metric and not to the semi-supervised

procedure itself.

6.4 Experimental comparison of SS-Geo-GTM

with Laplacian Eigenmaps

In this section, a comparison of the previous results of SS-Geo-GTM and SS-

GTM with the alternative Laplacian Eigenmaps (LapEM) method is presented.

First, the LapEM method is described. Then, the corresponding results of the

comparison are shown.

6.4.1 Laplacian Eigenmaps

Laplacian Eigenmaps (LapEM) were defined under the assumption that the ob-

served data lie on a low-dimensional submanifold of the high-dimensional data

space (Belkin & Niyogi, 2003b). As a model for a manifold (in the sense of

Riemannian manifolds), an adjacency graph is constructed using the input data

points as nodes. Edge weights between nodes i, j can be derived from the dis-

tances between the corresponding nodes or simply by taking wi,j = 1 if data

points xi and xj are connected, and wij = 0 otherwise. Then, in order to exploit

the structure of the model, the graph Laplacian L is obtained for the adjacency

graph. L is a symmetric, positive semidefinite matrix which can be thought of as
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an operator (Laplace Beltrami operator) on functions defined on vertices of the

graph.

The classifier is constructed using the eigenfunctions of the Laplace Beltrami

operator, which provide a natural basis for functions on the manifold. In other

words, only input data points (labeled and unlabeled) information is needed to

recover the manifold. Then, the labeled data are used to develop a classifier

defined on this manifold.

6.4.2 Results and Discussion

Geo-GTM, SS-Geo-GTM, and SS-GTM were initialized following a procedure

described in Bishop et al. (1998). The latent grid was fixed to a square layout of

approximately (N/2)1/2× (N/2)1/2, where N is the number of points in the data

set.

The same three data sets described in section 6.3.1 were selected for the

reported experiments: Daĺı, Iris and Oil-Flow.

The central goal of the experiments is the comparison of the performances

of SS-Geo-GTM, SS-GTM and the alternative method of Laplacian Eigenmaps

(LapEM, Belkin & Niyogi 2003b) in terms of classification accuracy. We then

evaluate (average accuracy over one hundred runs) the models in the most extreme

semi-supervised setting: when the class label is available for only one input item

for each class while the rest is unlabeled. The corresponding results are shown in

Table 6.5. SS-Geo-GTM significantly outperforms SS-GTM and LapEM for all

data sets and, most notoriously, for the data sets of more convoluted geometry.

The differences with SS-GTM are less notorious for the less convoluted Iris data

set. LapEM yields a very poor behaviour in this setting.

As in section 6.3.2, the label availability condition is relaxed in order to assess

whether the difference of performance remain. Then, the ratio of randomly se-

lected labeled data is increased from a single one to a 1%, and from there, up to

a 10%. The corresponding results are shown in Table 6.6. SS-Geo-GTM clearly

(and again significantly according to an ANOVA test) outperforms SS-GTM for

Daĺı and Oil-Flow and, as expected, the performance monotonically improves

with the increasing percentage of labels. The differences for the latter set, more
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data set SS-Geo-GTM (% ± std) SS-GTM (% ± std) LapEM (% ± std)

Daĺı* 99.54± 2.24 90.71± 7.99 54.57±3.13
Iris** 88.71 ± 7.88 85.74 ± 8.72 50.39±3.37

Oil-Flow* 77.43±8.31 36.74±3.29 63.50±12.08

Table 6.5: Classification accuracy as an average percentage over one hundred

runs (with its corresponding standard deviation). The statistical significance

(calculated through a one-way ANOVA test) of the differences between SS-Geo-

GTM and SS-GTM is indicated with ‘*’ if p < 0.01 and with ‘**’ if p < 0.05.

Also, p < 0.01 was obtained between any SS version and LapEM.

complex and high-dimensional, are striking. Also, SS-Geo-GTM outperforms

LapEM for all data sets. For Daĺı, SS-Geo-GTM achieves a 100% accuracy even

with a 1% of labeled data, while SS-GTM and LapEM do not reach that average

accuracy even with a 10%. The Iris data set benefits less of the addition of class

labels and the performances of SS-Geo-GTM and SS-GTM models are compara-

ble. This confirms that the use of the geodesic metric is likely to improve the

results mainly for data sets of convoluted underlying geometry.

We now extend these results, as in Cruz-Barbosa & Vellido (2008a) and section

6.3.2, to the semi-supervised setting to gauge and compare the robustness of the

analyzed methods in the presence of noise in some illustrative experiments. For

this, Gaussian noise of zero mean and increasing standard deviation was added

to: a noise-free version of the Daĺı set (added noise from σ = 0.1 to σ = 2.0)

and the most difficult dataset, Oil-Flow (added noise from σ = 0.01 to σ = 0.2).

The noise scale magnitude is in correspondence with the data scale. As in the

previous experiment, we also analyze the evolution of the performance of these

models as the percentage of available labels for each dataset is increased from 2%

to 10%.

These new results are shown in Table 6.7. In accordance to the results pre-

sented in Cruz-Barbosa & Vellido (2008a), the geodesic variant SS-Geo-GTM

consistently outperforms SS-GTM (and LapEM) across data sets and noise lev-

els, with few exceptions. The robustness of the semi-supervised procedure for

SS-GTM is surprisingly good, though. For the more complex Oil-Flow set, both

models deteriorate significantly at high noise levels. Overall, these results indi-
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% of Classification accuracy (% ± std)
avail. Daĺı Iris
labels SS-Geo SS-GTM ∗ LapEM ∗ SS-Geo SS-GTM ∗∗ LapEM ∗

1 100±0 93.43±5.46 64.91±4.52 ? ? ?

2 100±0 96.96±3.41 76.00±5.88 ? ? ?

3 100±0 97.74±2.05 79.65±9.29 ? ? ?

4 100±0 98.29±1.80 75.24±10.56 90.00±8.11 89.46±5.24 58.10±4.01
5 100±0 98.61±1.32 88.72±8.05 89.96±6.98 89.18±6.48 57.01±4.57
6 100±0 98.66±1.64 95.01±4.95 91.30±7.37 91.66±3.02 63.68±4.48
7 100±0 98.98±0.80 97.68±3.16 90.74±7.62 90.94±3.03 64.22±4.86
8 100±0 99.19±0.82 98.64±2.13 91.91±5.31 91.90±3.03 69.84±5.26
9 100±0 99.30±0.70 98.88±1.87 92.35±4.90 91.88±2.48 70.19±4.97
10 100±0 99.24±0.73 99.39±1.39 93.19±4.36 92.32±2.42 74.87±5.92

% of avail. Oil-Flow (% ± std)
labels SS-Geo SS-GTM ∗ LapEM ∗

1 83.93±5.60 39.96±3.44 76.43±7.55
2 90.08±3.49 55.88±10.95 83.36±5.48
3 91.79±3.07 64.71±7.95 87.56±4.42
4 94.28±2.60 70.69±6.06 89.71±3.51
5 95.14±2.20 74.11±5.05 91.63±3.25
6 95.97±2.01 76.51±4.30 92.63±2.76
7 96.43±1.81 79.10±4.24 93.77±2.36
8 96.65±1.53 80.88±4.27 94.41±2.11
9 97.11±1.66 82.19±3.43 95.18±2.07
10 97.53±1.22 83.91±3.58 95.58±1.53

Table 6.6: Average classification accuracy and its std. deviation over 100 runs, for

all models. A randomly increasing percentage of pre-labeled items per class was

chosen in each run. The ‘?’ symbol means that the experiment was not carried out

because the corresponding percentage of available labels was less than or equal

to one label per class. A super-index ‘∗’ indicates that the differences between

the corresponding model and SS-Geo-GTM were significant at p < 0.01 in the

ANOVA test for all percentages of class labels. A super-index ‘∗∗’ indicates that

no differences were significant.
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Dataset noise model Percent of available labels

level 2 4 6 8 10

0.1 SS-Geo 100±0 100±0 100±0 100±0 100±0

SS-GTM 96.29±3.37 98.15±1.97 99.09±1.0 99.31±0.99 99.28±0.89

LapEM 75.48±6.56 75.73±10.38 94.48±4.66 98.07±2.02 98.50±1.96

0.3 SS-Geo 99.83±1.11 100±0 100±0 100±0 100±0

SS-GTM 95.57±4.0 98.11±1.45 98.56±0.83 98.77±0.75 98.88±0.69

LapEM 74.47±5.27 75.11±11.11 95.55±4.82 99.03±1.96 99.54±1.12

Daĺı 0.5 SS-Geo 99.04±3.16 100±0 100±0 100±0 100±0

SS-GTM 96.52±3.09 98.05±2.16 98.99±1.40 99.31±1.06 99.39±0.78

LapEM 77.67±6.79 76.56±10.30 95.06±4.53 97.49±2.76 98.87±1.61

1.0 SS-Geo 95.14±5.52 97.75±2.94 98.71±1.98 99.23±0.73 99.28±0.92

SS-GTM 96.12±3.79 98.36±1.53 98.66±1.21 99.04±0.45 99.06±0.35

LapEM 73.86±6.07 70.73±10.57 92.15±5.34 97.23±3.09 98.93±1.39

2.0 SS-Geo 94.78±3.66 96.45±1.63 96.96±0.67 97.11±0.58 97.19±0.48

SS-GTM 92.96±3.0 94.28±1.96 94.73±1.75 95.45±1.01 95.36±1.07

LapEM 74.02±5.72 72.11±11.66 90.00±5.91 94.54±3.37 95.99±1.86

0.01 SS-Geo 88.13±4.05 93.87±2.71 95.63±2.24 96.87±1.45 97.26±1.18

SS-GTM 55.54±11.94 70.66±5.84 77.14±4.65 80.25±3.58 84.15±3.39

LapEM 81.35±5.67 88.17±3.41 91.80±2.67 93.20±2.30 94.77±1.70

0.03 SS-Geo 88.60±4.06 93.34±2.94 95.46±1.94 96.31±1.64 96.98±1.23

SS-GTM 55.14±10.71 71.54±6.00 77.26±4.53 81.40±3.63 82.60±3.24

LapEM 79.79±7.18 90.50±3.72 94.00±2.72 95.91±1.98 96.59±1.13

Oil- 0.05 SS-Geo 90.10±4.38 94.94±2.49 96.34±1.93 97.42±1.69 97.84±1.23

Flow SS-GTM 53.39±11.81 70.52±7.42 75.79±4.77 81.32±4.52 83.84±4.34

LapEM 78.26±7.82 92.04±2.81 94.86±2.22 95.79±1.68 96.62±1.37

0.1 SS-Geo 60.40±12.81 81.48±8.91 88.95±4.89 91.19±3.59 92.49±2.59

SS-GTM 49.88±10.11 70.30±8.63 78.20±4.48 82.68±4.50 85.08±4.23

LapEM 66.78±11.12 87.81±4.79 92.50±2.95 94.23±2.23 95.42±1.78

0.2 SS-Geo 59.89±11.38 75.76±6.16 79.50±5.03 83.0±3.78 85.41±2.63

SS-GTM 44.94±9.92 56.18±10.59 66.01±7.04 72.31±5.55 75.37±4.27

LapEM 63.75±7.44 77.32±4.55 82.22±3.31 85.47±2.15 86.58±1.84

Table 6.7: Average classification accuracy and its std. deviation over 100 runs,

for all models in the presence of increasing levels of uninformative noise. An

increasing percentage of pre-labeled items per class was randomly chosen in each

run. Bold and italic lettering is used to distinguish between the results of the

models and ease their interpretation.
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Figure 6.3: Average classification accuracy results taken from Table 6.7 using

different and increasing levels of noise for Daĺı set. From left to right and from

top to bottom, noise of standard deviations σ = 0.1, 0.3, 0.5, 1.0, 2.0.
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Figure 6.4: Average classification accuracy results taken from Table 6.7 using

different and increasing levels of noise for Oil-Flow set. From left to right and

from top to bottom, noise of standard deviations σ = 0.01, 0.03, 0.05, 0.1, 0.2.
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Figure 6.5: Average classification accuracy results taken from Table 6.7 using

different and increasing percentage of labels per class for Daĺı set. From left to

right and from top to bottom, percent of labels % = 2, 4, 6, 8, 10.
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Figure 6.6: Average classification accuracy results taken from Table 6.7 using

different and increasing percentage of labels per class for Oil-Flow set. From left

to right and from top to bottom, percent of labels % = 2, 4, 6, 8, 10.
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cate that the resilience of the models is mostly due to the inclusion of the geodesic

metric and not to the semi-supervised procedure itself. It is worth noting that

the results for LapEM only become comparable as the percentage of available

labels increases.

For a better appreciation of the results in Table 6.7, four figures (Fig. 6.3

to Fig. 6.6) were elaborated from it. In each of the graphics in Figs. 6.3 and

6.4 (for, in turn, the Daĺı and Oil-Flow sets), the average classification accuracy

for all models as a function of the percentage of available labels is shown for a

specific level of noise. Likewise, in each of the graphics in Figs. 6.5 and 6.6,

the average classification accuracy for all models as a function of the level of

noise is shown for a specific percentage of available labels. From the first two

figures, the advantage of SS-Geo-GTM in a convoluted but smooth dataset such

as Daĺı is clear at low levels of noise, and for small percentages of available labels;

it is less so once we reach a 10% of label availability. For high levels of noise,

the use of the geodesic metric becomes less relevant. With the less smooth and

more heterogeneous Oil-Flow set1, Laplacian Eigenmaps behave more robustly

at higher noise level. The latter pair of figures provide a clear evidence of the

differential and excellent behaviour of the label propagation procedure in SS-Geo-

GTM in the most extreme conditions of label availability.

6.5 Experiments on a Human Brain Tumour Da-

taset

In this section, we leave artificial datasets and turn our attention to the analysis

of a real problem in the field of biomedical applications. The problem of infer-

ring survival stages in the development of an aggressive human brain tumour

pathology is considered here from a semi-supervised point of view. This is a hard

1From Svensén (1998), we know that one of the classes in this data set, namely the stratified
configuration flow, is discontinuous in nature and, therefore, its data are distributed over several
separate manifolds. For this reason, a model that pays attention to local manifolds, such as
Laplacian Eigenmaps, should in theory have at least a partial advantage in the task of modelling
these data. Yet, in practice, SS-Geo-GTM is shown to perform overall better at low levels of
noise.
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problem because only a very limited amount of survival stage labels is available.

It is also uncertain in its outcome because inference is based on the use of Mag-

netic Resonance Spectroscopy (MRS) data corresponding to these tumours (A

description of the automated protocol used for the acquisition of these data can

be found in Tate et al. 2003). To date, there is very limited evidence supporting

the ability of MRS data to predict the survival of patients suffering from aggres-

sive brain tumours. The analyzed pathology, namely glioblastomas, is known for

its heterogeneity. As mentioned in the introduction to this chapter, to the best of

our knowledge, this approach to survival stage analysis has never been attempted

before using this type of data.

The data1 used in this study consist of 86 single voxel PROBE (PROton

Brain Exam system) MRS corresponding to glioblastomas: an aggressive type of

brain tumour. They are a subset of the data described in section 5.4. For the

analyses in this study, the available survival information of a patient was used as

class labels. This corresponds to three stages describing the following outcomes,

three months after diagnosis: “Deficits not impairing work or leisure” (8 cases),

“Dependent but conscious” (11) and “Dead” (11). Notice that this means that

less than 35% of the class labels are available.

The clinically relevant regions of the MRS were sampled to obtain 195 fre-

quency intensity values. Given the scarcity of MRS data and their high di-

mensionality, the reported analyses do not resort to the full set of 195 spectral

frequencies, but to a selection of 11 frequencies (as in Romero et al. 2009), known

to be relevant for the characterization of aggressive tumours.

6.5.1 Experimental Design and Settings

Two problems are separately considered: The first is the discrimination between

the “Deficits not impairing work or leisure” and the “Dead” prognostic stages;

1We gratefully acknowledge the members of the GABRMN research group at UAB,
Barcelona, Spain, as well as former members of the INTERPRET European research project,
for making these data available to us. We specifically thank Prof. Carles Arús and Dr. Mar-
garida Julià-Sapé at GABRMN for supervising the medical quality of the research and for their
valuable insights in the interpretation of MRS data.
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the second is the discrimination between “Dependent but conscious” and “Dead”.

For none of these separate problems we have more of 26% of the class labels.

Geo-GTM, SS-Geo-GTM, and SS-GTM were all initialized following a proce-

dure described in Bishop et al. (1998). The grid of latent points um was fixed to

a square 7 × 7 layout. The corresponding grid of basis functions φ was equally

fixed to a 5×5 square layout. We assume that the choice of the MRIP, described

in section 6.2.1, as a value for σ is appropriate (as shown in section 6.3.2 and in

Cruz-Barbosa & Vellido 2009a).

Given that there is no way for us to assess the performance of the models on

the unavailable prognostic stage labels, we instead proceed in our experiments by

subtracting a certain percentage of the available class labels from each dataset.

Then, we aim to retrieve them, in a semi-supervised fashion, using SS-Geo-GTM,

SS-GTM and the alternative method of Laplacian Eingenmaps (LapEM, Belkin

& Niyogi 2003b). Only this way we can gauge the potential of the methods when

faced with a real task of inferring the unavailable labels, that is, of inferring the

prognostic stage.

In this setting, we evaluate SS-Geo-GTM, SS-GTM and LapEM models as

follows: We subtract from 30 to 90 percent (percentages are rounded to the

nearest whole number) of the available class labels from each class in each dataset,

i.e., we only use from 70 to 10 percent of them. The remaining samples are

considered as unlabeled data. The performance criterion is the retrieval accuracy

of labels defined as the ratio of correctly retrieved labels to the total number of

retrievable labels.

6.5.2 Results and Discussion

The two problems described in the previous section are first modeled using GTM

and Geo-GTM. SS-GTM and SS-Geo-GTM are then built on top of these. As

mentioned in the previous section, the randomly selected (from the total of avail-

able labels) labeled data per class is decreased from a 70% to a 10%. The remain-

ing samples, both the corresponding to the subtracted labels and those without

assigned survival type, are considered as unlabeled data. The semi-supervised
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% of eliminated Retrieval accuracy (ratio)

labels Problem 1

SS-Geo SS-GTM LapEM

30 5.03/7 3.38/7 3.51/7

40 5.74/9 4.41/9 5.09/9

50 6.42/10 4.87/10 5.87/10

60 7.04/12 6.08/12 7.21/12

70 8.10/14 7.04/14 8.43/14

80 9.19/16 8.36/16 9.56/16

90 9.34/17 8.54/17 9.11/17

Table 6.8: Average retrieval accuracy (as a ratio) over one hundred runs, for SS-

GeoGTM, SS-GTM and LapEM. A randomly increasing percentage of pre-labeled

items per class was chosen to be eliminated in each run.

performance of the models is measured as the average ratio of number of re-

trieved labels to the total number of labels to be retrieved (not including those

without assigned survival type) over one hundred runs.

The corresponding results for the first problem (“Deficits not impairing work

or leisure” vs. “Dead”) are shown in Table 6.8. In the easiest case - the row

corresponding to the 30% of eliminated labels (i.e. 70% of available labels out of

the originally labeled data, or just over 15% of available labels out of all data)-,

we observe that SS-Geo-GTM clearly outperforms the other models. In the most

extreme case, when 90% of the available labels are eliminated (only 10% are kept

labeled, which corresponds to about a 2% of cases overall) similarly poor results

are obtained for all analysed models. Here, the complexity of the problem, in

terms of the scarcity of spectra and the extreme paucity of class information

seriously damage the performance of the models.

The results for the second problem (“Dependent but conscious” vs. “Dead”)

are shown in Table 6.9. They are overall similar to the results reported in Table

6.8. Here, SS-Geo-GTM outperforms SS-GTM and LapEM almost for all cases.

The differences between the results obtained for SS-Geo-GTM and SS-GTM are

never too high. This could mean that the analysed human brain tumour data do
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% of eliminated Retrieval accuracy (ratio)

labels Problem 2

SS-Geo SS-GTM LapEM

30 5.73/8 4.89/8 3.67/8

40 7.10/10 6.32/10 4.91/10

50 8.06/12 8.05/12 5.71/12

60 9.71/14 8.80/14 6.95/14

70 9.92/16 9.58/16 7.88/16

80 10.51/18 9.78/18 8.57/18

90 10.69/20 10.90/20 9.43/20

Table 6.9: Average retrieval accuracy (as a ratio) over one hundred runs, for SS-

GeoGTM, SS-GTM and LapEM. A randomly increasing percentage of pre-labeled

items per class was chosen to be eliminated in each run.

not present an excessively convoluted curvature. When there is no discrepancy

between the graph and the Euclidean distance in the models (that is, when there

is little convolution in the manifold), Geo-GTM tends to behave similarly to the

standard GTM.

The analysed brain tumour MRS dataset has shown, overall, only a limited

capability to inform the regeneration of missing labels through the proposed semi-

supervised learning models. These results should therefore be used with extreme

caution as an indicator of certain power to infer prognostic stages in human brain

tumours (which is not to be underestimated, given that in real clinical settings

there is a very limited posibility to offer aggresive brain tumour prognosis on the

basis of MRS information). In any case, SS-Geo-GTM consistently outperformed

the alternative methods.

6.6 Summary

A semi-supervised version of Geo-GTM, namely SS-Geo-GTM, has been theo-

retically defined and experimentally evaluated in this chapter. The main goal is

inferring the unavailable class labels using the information provided by the few
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available ones, as well as by the cluster structure defined by Geo-GTM. This

model makes use of its defined prototypes as nodes in a proximity graph, where

the edges are obtained using graph distances as approximation of the geodesic

metric. From this setting, a modified class label propagation algorithm performs

the semi-supervised task. Information derived from the training of Geo-GTM

is used to derive a criterion (MRIP) for the selection of the σ parameter in the

modified LP algorithm.

Through several experiments, the performance of SS-Geo-GTM has been as-

sessed and it has been shown to be consistently better than that of the semi-

supervised version of the standard GTM trained using the Euclidean metric,

even in the presence of high levels of noise. Its performance has also been com-

pared to that of LapEM in several synthetic datasets. It has been shown that

SS-Geo-GTM significantly outperforms LapEM for all data sets and noise levels,

with few exceptions. Further experiments concerning real data corresponding to

the biomedical problem of survival stage inference using MRS information have

been designed and carried out. Although the results are, overall, far from optimal,

they are still useful and SS-Geo-GTM consistently outperformed the alternative

methods.

As in the previous chapter, we must note that there is a limitation in the

proposed models in the case of data multi-modality. As we introduce class in-

formation in the GTM and Geo-GTM modeling process, data multi-modality,

if existing, is likely to generate discordance between the grouping or clustering

structure of the data by itself and the distribution of classes, affecting the semi-

supervised results, which are based on assumptions of class continuity. It must

be noted, though, that the proposed semi-supervised Geo-GTM still performs

quite well in a dataset likely to be affected by multi-modality, such as Oil-Flow,

even when compared with Laplacian Eigenmaps, which is a model defined with

locality in mind.
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Chapter 7

Conclusion

This chapter wraps up the thesis providing the reader with a summary of all its

main developments. Its first section provides and overview of the main contri-

butions of the previous chapters. This is followed by an assessment on the main

novelties in this contributions and by an outline of some perspectives for future

research that could build on this body of work.

7.1 Thesis Overview

The ultimate goal of this thesis was the development of novel generative manifold

learning methods for the exploration of partially labeled data. Uncompletely

labeled data sets are common in many of the databases generated in some of

the currently most active areas of research, such as, for instance, biomedicine,

bioinformatics, or web mining. That is one of the reasons why research on semi-

supervised learning has steeply increased over the past few years. This thesis

has indeed been driven by the same motivation. From the point of view of

the application of the developed methods, we were specifically interested in the

analysis of data corresponding to a diagnostic assistance problem in the field of

oncology of human brain tumours. This interest is reflected in several chapters

of this document.

Also, manifold learning methods research has attracted much attention of

late because of their ability to model high-dimensional multivariate data under

the assumption that these can be faithfully represented by a low-dimensional
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manifold embedded in the observed data space. Again, this high dimensionality is

increasingly common in datasets resulting from real-world problems. It is usually

accompanied by a limitation in the interpretability of the experimental results,

which can be alleviated by dimensionality reduction methods. In particular, in

this thesis we used manifold learning methods for dimensionality reduction that

stem from the generative approach.

At the beginning of this thesis, in part I, chapter 2, the state of the art on

semi-supervised learning was presented. Also in this part, the foundations of

generative manifold learning were described in chapter 3. The baseline method:

Generative Topographic Mapping (GTM), which belongs to the manifold learning

family, was described as well. GTM, with its focus on interpretability through

visualization and clustering, has been shown to have several practical advantages

over general finite mixture models.

In part II, chapter 4, a first exploration of a novel generative manifold learning

method without assistance of class information was presented. Here, the Geodesic

Generative Topographic Mapping (Geo-GTM) method was introduced. The Geo-

GTM is an extension of GTM developed to favour the similarity of points along

the learned manifold, while penalizing the similarity of points that are not con-

tiguous in the manifold, even if close in terms of the Euclidean distance. This

was achieved by modifying the standard calculation of the responsibilities in Eq.

3.4 in proportion to the discrepancy between the geodesic (approximated by the

graph) and the Euclidean distances. Geo-GTM was shown in this chapter to

be able to faithfully recover and visually represent the underlying structure of

datasets of smooth but convoluted geometries. The reported experiments also

showed that Geo-GTM was capable of recovering the true underlying data struc-

ture far better than the standard GTM, even in the presence of a considerable

amount of noise.

Two models of the generative manifold learning family using class informa-

tion were explored in part III of the thesis. A first exploration using labeled

data in a two-stage clustering method was presented in chapter 5. A variation

on class-GTM model was developed to assist a two-stage clustering procedure in

this chapter. Class-GTM is an extension of GTM, where the main goal of this

extension is to improve class separability in the clustering results of GTM. In
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the two-stage clustering procedure proposed in this chapter, the first stage in-

volves class-GTM and the second stage involves K-means. Also, two novel fixed

initialization strategies that take advantage of the prior knowledge obtained by

class-GTM in the first stage were introduced. They are based on two features

of the model, namely: the Magnification Factors (MF) and the Cumulative Re-

sponsibility (CR). Several experiments in this chapter showed that the two-stage

random and fixed initializations yield almost identical results in terms of cluster-

wise class separation, with the former being computationally more costly. It was

also shown that the two-stage clustering procedures based on class-GTM perform

much better than direct K-means and GTM clustering of the data in terms of

this clusterwise class separation. The existence of atypical data or outliers in a

human brain tumours MRS dataset, and its influence on the clustering process,

were also explored in this chapter. For this last analysis, the class-t-GTM model

was developed.

A more powerful model, in terms of items’ labeling capability, was developed in

chapter 6. Here, the Semi-Supervised Geodesic Generative Topographic Mapping

(SS-Geo-GTM) model was introduced. The basic idea underlying the proposed

semi-supervised approach is that neighbouring points are most likely to share

their label and that these labels are best propagated through neighbouring nodes

according to proximity. Unlike models in chapter 5, SS-Geo-GTM was designed

for classification tasks. For this purpose, an existing label propagation (LP)

algorithm was modified to account for the information provided by the trained

Geo-GTM (previously developed in chapter 4). We profited from experiments

carried out in chapter 5 (in which clear indications were found suggesting that the

prototypes with highest CR could be considered as the most representative in the

dataset), as well as from the information provided by Geo-GTM training, in order

to conclude that the proposed main reference inter-prototype (MRIP) distance

was an appropriate value for the parameter σ of the corresponding modified LP

algorithm. In a similar way, a semi-supervised version of the standard GTM

(SS-GTM) was developed. Through several experiments, the performance of

SS-Geo-GTM, in terms of classification accuracy, was assessed and shown to

be consistently better than that of the semi-supervised version of the standard

GTM trained using the Euclidean metric, even in the presence of high levels of
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noise. Its performance was also compared to that of LapEM in several synthetic

datasets and shown that it significantly outperformed LapEM for all datasets

and noise levels, with few exceptions. Further experiments concerning real data

corresponding to the biomedical problem of survival stage inference, using MRS

information, were designed and carried out. Although the results are preliminary

and not completely satisfactory, they are still useful in medical terms and SS-

Geo-GTM consistently outperformed the alternative methods.

7.2 Impact of the Main Contributions

The major contributions of this thesis are highlighted in this section. The first

one is the definition of Geo-GTM as a principled extension of GTM to uncover

underlying structures in convoluted datasets. The second one is the definition of a

two-stage clustering procedure as an extension of GTM. The third one is the defi-

nition of SS-Geo-GTM as a principled extension of Geo-GTM to semi-supervised

problems. The last one is the novel application of semi-supervised models of the

manifold learning family to the assistance of exploratory unsupervised clustering

of real NMR spectroscopy data with uncertain prognostic labeling.

7.2.1 Geodesic Generative Topographic Mapping

In chapter 4, we define Geo-GTM as a principled extension of GTM to uncover

underlying structures in convoluted datasets, by explicitly penalizing the differ-

ences between the Euclidean and the alternative geodesic distance from data to

prototypes in the original constrained mixture model. This penalization helps to

alleviate, in part, the trustworthiness and continuity problems defined in section

4.4.1, which are particularly common in convoluted datasets. Some examples of

results on this kind of datasets are presented in section 4.4.1. Also Geo-GTM, by

definition, can represent low dimensional manifolds of smooth curvature as well

as GTM does.

For its definition and characteristics, Geo-GTM can be used for clustering and

visualization analysis in many real application areas datasets. Since the intrinsic

high dimensionality of this kind of data does not allow to directly visualize them,
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we can apply GTM and Geo-GTM models to determine whether it presents con-

voluted curvature. When the results of both models are similar, it means that

the dataset can be represented by a low dimensional manifold of smooth curva-

ture, otherwise it presents convoluted geometry. Some examples corroborating

this procedure are (implicitly) presented in chapter 6.

7.2.2 Two-stage Clustering with class-GTM

In chapter 5, we define a two-stage clustering procedure as a principled extension

of GTM by explicitly using class-GTM in the first stage and K-means in the

second one. That is, class labels are used to enrich and refine the cluster structure

discovered in a two-stage clustering process. Class-GTM model integrates class

information as part of the GTM training to enrich the cluster structure definition

provided by the model. For visualization purposes, Class-GTM do not place

any strong restriction on the number of mixture components (or clusters, which

exploits the substructure in the input data). This mixture of components does

not necessarily match the more global cluster and class distributions of the data.

Thus, the centres of these components, also known as prototypes, are further

clustered in the second stage by using K-means. In this way, we explore the

use of class information in unsupervised clustering, which is a far less frequently

investigated problem in comparison with supervised classification problems.

Two novel initialization procedures for the second stage (K-means), derived

from class-GTM training, are also defined in chapter 5. These fixed initializa-

tion strategies are based on two features of the class-GTM model, namely: the

Magnification Factors (which measure the level of stretching that the mapping

undergoes from the latent to the data spaces) and the Cumulative Responsibility

(which is the sum of responsibilities over all data points for each cluster). Then,

making use of the prior knowledge generated by class-GTM and without compro-

mising the final clusterwise class separation capabilities of the model, these fixed

initialization procedures allow significant computational savings compared with

a random initialization procedure, as showed in section 5.3.2. The assumption

that the prototypes with highest Cumulative Responsibility are the most repre-

sentative in the dataset is used by taking the prototypes with highest CR as seeds
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for the initialization of K-means. Obviously, this technique might be used with

other clustering methods requiring seeds for its initialization procedure. Also,

this result was a key factor to select the suitable value for parameter σ in chapter

6.

7.2.3 Semi-Supervised Geodesic Generative Topographic

Mapping

In semi-supervised problems, only a reduced number of class labels is readily

available and even those could be difficult and/or expensive to obtain. This sce-

nario es very common in many of the databases generated in some of the currently

most active areas of research, such as, for instance, biomedicine, bioinformatics,

or web mining.

A principled extension of Geo-GTM to semi-supervised problems is defined

as SS-Geo-GTM in chapter 6 by explicitly introducing a modified label propa-

gation algorithm on top of Geo-GTM. The classification task is the purpose of

the SS-Geo-GTM model, but using a clustering method (Geo-GTM) as a basis.

That is, the resulting SS-Geo-GTM uses the information derived from Geo-GTM

training to accomplish the semi-supervised task. In this sense, the MRIP crite-

rion is proposed to select the suitable value for σ in the modified LP algorithm.

Experimental results showed that MRIP is near the optimal value for σ.

The results presented in chapter 6 show that SS-Geo-GTM outperformed SS-

GTM and the alternative LapEM method when applied to datasets with differ-

ently convoluted geometries. Further experiments using different percentages of

available class labels and also with the presence of different levels of uninfor-

mative noise, show that SS-Geo-GTM overall outperforms both SS-GTM and

LapEM. Thus, through this contribution (SS-Geo-GTM model), researchers on

semi-supervised learning could explore the areas mentioned at the beginning of

this section, as illustrated by sections 6.4.2 and 6.5.2 of the thesis.
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7.2 Impact of the Main Contributions

7.2.4 Analysis of a Human Brain Tumour Dataset using

Class Information

A first analysis of the human brain tumour dataset, described in section 5.4, is

presented in section 5.4.2. The data in this study are spectra obtained through

Nuclear Magnetic Resonance spectroscopy. These spectra, by themselves, are

difficult to obtain, standardize and preprocess for analysis. This study is based

on a two-stage clustering procedure. In section 5.4.2, the results show that the

inclusion of class information improves the clusterwise tumour type separation

both using the fourteen tumour types and using three important groups of them.

Also, the existence of atypical data or outliers in the datasets under study, and

their influence on the clustering process was explored. This analysis concluded

that not too many data could be clearly characterized as outliers, most of them

belonging to the best represented tumour types in the dataset. These kinds of

presented analyses could be used as a guide to apply with other MRS datasets.

In chapter 6, a second study using human brain tumour spectra obtained

through NMR spectroscopy is presented. This time, we evaluated the capability

of SS-Geo-GTM model in the difficult problem of inferring survival stages in an

aggressive human brain tumour pathology from a very limited amount of available

survival stage labels and Magnetic Resonance Spectroscopy data corresponding

to these tumours. Given that there was no way for us to assess the performance

of the models on the unavailable prognostic stage labels, we instead proceeded in

our experiments by subtracting a certain percentage of the available class labels

from each dataset. Then, we aimed to retrieve them, in a semi-supervised fashion,

using SS-Geo-GTM, SS-GTM and the alternative method of LapEM. The results

in the analysed brain tumour MRS dataset show, overall, only a limited capability

to inform the regeneration of missing labels through the proposed semi-supervised

learning models. Although the results are, overall, far from optimal, they are still

useful (which is not to be underestimated, given that in real clinical settings there

is a very limited posibility to offer aggresive brain tumour prognosis on the basis

of MRS information).
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7. CONCLUSION

7.3 Future Work

Some novel models, contributing to the fields of data clustering and visualization

and semi-supervised learning have been presented in this thesis. From here, there

exist several research avenues open to exploration. Next, we suggest some possible

extensions on the body of this work.

All of the manifold learning models this thesis has dealt with are likely to

struggle in the modelling of high-dimensional sparse datasets. This includes GTM

itself and the proposed Geo-GTM, as well as their semi-supervised counterparts,

SS-GTM and SS-Geo-GTM. This is because the own geometric properties of

sparsely populated high-dimensional data spaces are likely to influence the data

modelling process very strongly. This problem could be alleviated by using an

approach similar to that presented in Kabán (2005) to deal with sparse data

sequences. This approach is feasible with Geo-GTM, in the sense that the di-

vergences between the Euclidean distances from the data points to the model

prototypes or means (in this case) and the corresponding approximated geodesic

distances along the manifold could still be penalized in the E-step of the E-M

algorithm proposed in Kabán (2005).

Moving now to SSL, semi-supervised clustering is a challenging and not too

investigated problem in this field. In this context, a very interesting task is semi-

supervised clustering using only constraints information instead of cluster labels.

Semi-supervised clustering with pairwise constraints emerges because it can be a

more natural form of supervision than labels in certain clustering tasks. In this

approach, pairwise supervision is typically provided as a must-link constraint on

data points (indicating that both points in a pair should be placed in the same

cluster) or a cannot-link constraint (indicating that both points in a pair should

belong to different clusters). In this sense, a semi-supervised extension of Geo-

GTM (different but following some ideas from that defined in chapter 6) using

pairwise constraints might be defined in the following way. The pairwise con-

straints information of data points could be used to fix the pairwise constraints

of Geo-GTM prototypes to which they are assigned. Then, The Geo-GTM pro-

totypes and their corresponding pairwise constraints could be adapted and used

as inputs for the HMRF-KMeans algorithm proposed in Basu (2005).
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7.3 Future Work

As acknowledged in previous chapters, the models developed in this thesis

(as well as many other manifold learning models) implicitly assume the intrinsic

continuity of the data. This implies a limitation when dealing with multi-modal

data. An approach to deal with such limitation that could be used in future

research would entail the definition of hierarchical extensions of Geo-GTM and

of its semi-supervised counterpart. They would allow dealing with unconnected

regions sharing a common data generator. This would be inspired in hierarchical

extensions of GTM such as those defined in Tiňo & Nabney (2002) and Nabney

et al. (2005).

113



7. CONCLUSION

114



Bibliography

Archambeau, C. & Verleysen, M. (2005). Manifold constrained finite gaus-

sian mixtures. In J. Cabestany, A. Prieto & D.F. Sandoval, eds., Proceedings

of IWANN , vol. LNCS 3512, 820–828, Springer-Verlag. 32, 34, 35

Asuncion, A. & Newman, D. (2007). UCI machine learning repository

[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. University of Califor-

nia, Irvine, School of Information and Computer Sciences. 80

Aupetit, M. (2003). Robust topology representing networks. In Proceedings of

the 11th European Symposium on Artificial Neural Networks (ESANN 2003),

45–50, d-side. 33

Basu, S. (2005). Semi-supervised Clustering: Probabilistic Models, Algorithms

and Experiments . Ph.D. thesis, The University of Texas at Austin, U.S.A. 11,

112

Belkin, M. & Niyogi, P. (2003a). Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Computation, 15, 1373–1396. 20

Belkin, M. & Niyogi, P. (2003b). Using manifold structure for partially la-

belled classification. In Advances in Neural Information Processing Systems

(NIPS), vol. 15, MIT Press. 74, 87, 88, 98, 129

Belkin, M. & Niyogi, P. (2004). Semi-supervised learning on Riemannian

manifolds. Machine Learning , 56, 209–239. 13, 21, 74

Bernstein, M., de Silva, V., Langford, J. & Tenenbaum, J. (2000).

Graph approximations to geodesics on embedded manifolds. Tech. rep., Stan-

ford University, CA, U.S.A. 33, 129

115



BIBLIOGRAPHY

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford Univer-

sity Press. 14

Bishop, C.M. (1999). Latent variable models. In M.I. Jordan, ed., Learning in

Graphical Models , 371–403, MIT Press. 21

Bishop, C.M. & James, G.D. (1993). Analysis of multiphase flows using dual-

energy gamma densitometry and neural networks. Nuclear Instruments and

Methods in Physics Research A, 327, 580–593. 56

Bishop, C.M., Svensén, M. & Williams, C.K.I. (1997). Magnification

Factors for the GTM algorithm. In Proceedings of the IEE fifth International

Conference on Artificial Neural Networks , 64–69. 52, 53

Bishop, C.M., Svensén, M. & Williams, C.K.I. (1998). The Generative

Topographic Mapping. Neural Computation, 10, 215–234. 20, 21, 31, 34, 35,

54, 74, 80, 88, 98, 126

Blum, A. & Mitchell, T. (1998). Combining labeled and unlabeled data

with co-training. In Proceedings of the Eleventh Annual Conference on Com-

putational Learning Theory (COLT 98), 92–100. 4, 10

Bouchard, G. & Triggs, B. (2004). The trade-off between generative and

discriminative classifiers. In IASC 16th International Symposium on Computa-

tional Statistics , 721–728. 17

Brand, M. (2003). Charting a manifold. In Advances in Neural Information

Processing Systems , 857–864. 20

Burges, C.J.C. & Platt, J.C. (2006). Semi-supervised learning with condi-

tional harmonic mixing. In O. Chapelle, B. Schölkopf & A. Zien, eds., Semi-

Supervised Learning , The MIT Press. 13

Chapelle, O., Schölkopf, B. & Zien, A., eds. (2006). Semi-Supervised

Learning . The MIT Press. 4, 11, 12, 13, 21, 73

116



BIBLIOGRAPHY

Cozman, F. & Cohen, I. (2006). Risks of semi-supervised learning. In

O. Chapelle, B. Schölkopf & A. Zien, eds., Semi-Supervised Learning , The

MIT Press. 13

Cruz-Barbosa, R. & Vellido, A. (2006). On the improvement of brain tu-

mour data clustering using class information. In Proceedings of the 3rd Euro-

pean Starting AI Researcher Symposium (STAIRS’06), Riva del Garda, Italy .

6, 50, 51, 62

Cruz-Barbosa, R. & Vellido, A. (2007a). Evaluation of a two-stage cluster-

ing procedure using class information in Generative Topographic Mapping. In

I. Rojas-Ruiz & H. Pomares-Cintas, eds., Actas del II Simposio de Inteligencia

Computacional (IEEE SICO 2007), 17–24, Thomson. 6

Cruz-Barbosa, R. & Vellido, A. (2007b). Limits to the use of class infor-

mation in a GTM-based two-stage clustering procedure. In F. Ferrer-Troyano,

A. Troncoso & J. Riquelme, eds., Actas del IV Taller Nacional de Minera de

Datos y Aprendizaje (TAMIDA 2007), 303–312, Thomson. 6

Cruz-Barbosa, R. & Vellido, A. (2007c). On the influence of class informa-

tion in the two-stage clustering of a human brain tumour dataset. In A. Gel-

bukh & A. Kuri-Morales, eds., Proceedings of the 6th Mexican Conference on

Artificial Intelligence (MICAI 2007), vol. 4827 of LNAI , 472–482, Springer. 6,

77

Cruz-Barbosa, R. & Vellido, A. (2007d). On the initialization of two-stage

clustering with class-GTM. In D. Borrajo, L. Castillo & J. Corchado, eds.,

Proceedings of the 12th Conference of the Spanish Association for Artificial

Intelligence, CAEPIA+TTIA 2007 , vol. 4788 of LNAI , 50–59, Springer. 6, 77

Cruz-Barbosa, R. & Vellido, A. (2008a). Geodesic Generative Topographic

Mapping. In H. Geffner, R. Prada, I. Alexandre & N. David, eds., Proceedings

of the 11th Ibero-American Conference on Artificial Intelligence (IBERAMIA

2008), vol. 5290 of LNAI , 113–122, Springer. 6, 74, 81, 84, 87, 89

117



BIBLIOGRAPHY

Cruz-Barbosa, R. & Vellido, A. (2008b). On the improvement of the map-

ping trustworthiness and continuity of a manifold learning model. In C. Fyfe,

D. Kim, S.Y. Lee & H. Yin, eds., Proceedings of the 9th International Confer-

ence on Intelligent Data Engineering and Automated Learning (IDEAL 2008),

vol. 5326 of LNCS , 266–273, Springer. 6, 74

Cruz-Barbosa, R. & Vellido, A. (2008c). Two-stage clustering of a hu-

man brain tumour dataset using manifold learning models. In Proceedings of

the International Conference on Bio-inspired Systems and Signal Processing,

BIOSIGNALS 2008 , 191–196, INSTICC Press. 6

Cruz-Barbosa, R. & Vellido, A. (2008d). Unfolding the manifold in Gener-

ative Topographic Mapping. In E. Corchado, A. Abraham & W. Pedrycz, eds.,

Proceedings of the 3rd International Workshop on Hybrid Artificial Intelligence

Systems (HAIS 2008), vol. 5271 of LNAI , 392–399, Springer. 6, 74

Cruz-Barbosa, R. & Vellido, A. (2009a). Comparative evaluation of semi-

supervised Geodesic GTM. In E. Corchado et al., ed., Proceedings of the 4th In-

ternational Conference on Hybrid Artificial Intelligence Systems (HAIS 2009),

vol. 5572 of LNAI , 344–351, Springer. 7, 98

Cruz-Barbosa, R. & Vellido, A. (2009b). Semi-supervised analysis of a hu-

man brain tumour type using survival infomation. Submitted to the 10th Inter-

national Conference on Intelligent Data Engineering and Automated Learning

(IDEAL 2009). 7

Cruz-Barbosa, R. & Vellido, A. (2009c). Semi-supervised geodesic Gener-

ative Topographic Mapping. Submitted to Pattern Recognition Letters journal .

7

Davies, D.L. & Bouldin, D.W. (1979). A cluster separation measure. IEEE

Trans. on Pattern Analysis and Machine Intelligence,, 1, 224–227. 55

de Silva, V. & Tenenbaum, J. (2003). Unsupervised learning of curved mani-

folds. In D. Denison, M. Hansen, C. Holmes, B. Mallick & B. Yu, eds., Nonlinear

Estimation and Classification, Lecture Notes in Statistics , vol. 171, 453–466,

Springer Verlag, New York. 21

118



BIBLIOGRAPHY

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical

Society B , 39, 1–38. 15, 23

Dijkstra, E.W. (1959). A note on two problems in connection with graphs.

Numerische Mathematik , 1, 269–271. 33, 130

Duda, R.O., Hart, P.E. & Stork, D.G. (2000). Pattern Classification.

Wiley-Interscience, 2nd edition. 52

Figueiredo, M.A.T. & Jain, A.K. (2002). Unsupervised learning of finite

mixture models. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 24, 381–396. 49

Ghahramani, Z. & Jordan, M.I. (1994). Supervised learning from incomplete

data via the EM approach. In Advances in Neural Information Processing

Systems , 6, 120–127. 4, 10

Golub, G.H. & Reinsch, C. (1970). Singular value decomposition and least

squares solutions. Numerische Mathematik , 14, 403–420. 20

Grandvalet, Y. & Bengio, Y. (2006). Entropy regularization. In O. Chapelle,

B. Schölkopf & A. Zien, eds., Semi-Supervised Learning , The MIT Press. 13

Hastie, T. & Stuetzle, W. (1988). Principal curves. Journal of the American

Statistical Association, 84, 502–516. 20

Hastie, T. & Tibshirani, R. (1996). Discriminant analysis by Gaussian mix-

tures. Journal of the Royal Statistical Society (B), 58, 155–176. 50

Herrmann, L. & Ultsch, A. (2007). Label propagation for semi-supervised

learning in self-organizing maps. In Proceedings of the 6th WSOM 2007 . 74,

76

Hinton, G. & Roweis, S. (2003). Stochastic neighbor embedding. In Advances

in Neural Information Processing Systems , 857–864. 20

119



BIBLIOGRAPHY

Jain, A.K. & Dubes, R.C. (1998). Algorithms for Clustering Data. Prentice

Hall, New Jersey. 3, 11, 73

Joachims, T. (1999). Transductive inference for text classification using support

vector machines. In Proceedings of the Sixteenth International Conference on

Machine Learning (ICML-99), 200–209. 4, 10

Jolliffe, I.T. (2002, 2nd edition). Principal Component Analysis . Springer

Series in Statistics, Springer Verlag. 20

Kabán, A. (2005). A scalable generative topographic mapping for sparse data

sequences. In Proceedings of the International Conference on Information Tech-

nology: Coding and Computing (ITCC’05), IEEE Computer Society. 112

Kaski, S., Sinkkonen, J. & Klami, A. (2005). Discriminative clustering.

Neurocomputing , 69, 18–41. 17
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Appendix A

Pseudocode for Some Algorithms

Used in this Thesis

In this first appendix, two algorithms at the basis of some of the models used in the

thesis are described. The first is the EM algorithm for GTM, which was modified

to obtain the Geo-GTM model described in chapter 4. A second algorithm, label

propagation, was modified and used with information derived from Geo-GTM to

develop the SS-Geo-GTM model. This model is described in chapter 6.

A.1 EM algorithm for GTM

The steps for constructing a GTM model are:

• Generate the grid of latent points {uk}, k = 1, . . . , K.

• Generate the grid of basis function centres {µm},m = 1, . . . , M .

• Select the basis function width σ.

• Compute the matrix of basis function activations, Φ, from Eq. 3.2.

• Initialize W, either randomly or with a fixed scheme (e.g., PCA-based).

• Initialize β, either randomly or with a fixed scheme (e.g., PCA-based).

• Compute ∆, ∆kn = ‖xn −ΦkW‖2.
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• repeat

–

Compute Z from Eq. 3.4 using ∆ and β.
Compute G (a K ×K diagonal matrix), where

gkk =
∑N

n zkn.



 E− step

–

W = (ΦTGΦ + λI)−1ΦTZX, where λ may be zero.
Compute ∆, ∆kn = ‖xn −ΦkW‖2.
update β according to

β−1 = 1
ND

∑N
n

∑K
k zkn‖y(uk,W̃)− xn‖2.





M− step

• until convergence

Here, X = {xn}N
n=1 is a set of data points, where each point xn has dimension

D.

For details on PCA-based initialization of W the reader is referred to Bishop

et al. (1998) or Svensén (1998).

A.2 Label Propagation

The basic label propagation algorithm assumes that a set of data points X =

{x1, . . . , xl+u} (where xi ∈ RD) can be decomposed in available labeled data

(x1, y1), . . . , (xl, yl) and unlabeled data (xl+1, yl+1), . . . , (xl+u, yl+u). Here, YL =

{y1, . . . , yl} and YU = {yl+1, . . . , yl+u} are, in turn, the observed and unobserved

class labels, where, usually l ¿ u. It is also assumed that the number of classes

C is known and that all classes are present in the labeled data.

Some preprocessing is needed before the algorithm is run. Thus, we first

introduce the preprocessing stage, and then the LP algorithm is described.

• Pre-processing stage

– Create a fully connected graph where the nodes are all data points,

both labeled and unlabeled.

– Compute the weights of the edges between nodes i, j as:

wij = exp

(
−

∑D
d=1(x

d
i−xd

j )2

σ2

)
, where σ controls the weights of the edges.

– Compute a (l + u) × (l + u) transition matrix T as Tij =
wij∑l+u

k=1 wkj
,

where Tij is the probability of propagation from node j to node i.
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A.2 Label Propagation

– Define a (l+u)×C label matrix Y , whose ith row represents the label

probability distribution of node xi. The initialization of unlabeled data

points is not relevant.

Label propagation algorithm

1. Propagate Y ← TY

2. Row-normalize Y as Yij = Yij/
∑

k Yik.

3. Clamp the labeled data. Repeat from step 1 until Y converges.

For more details on this algorithm the reader is referred to Zhu & Ghahramani

(2002).
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A. PSEUDOCODE FOR SOME ALGORITHMS USED IN THIS
THESIS
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Appendix B

Graph Construction

This appendix provides further detail on the issue of graph construction on the

basis of a given dataset. It is important to note that the way the graph is

constructed may influence both the accuracy of the underlying structures revealed

by the model and, therefore, the subsequent semi-supervised process.

As we have seen in section 4.2, the geodesic metric can be approximated by

graph distances (Bernstein et al., 2000). To be considered as a distance, the

graph metric must comply with the conditions of a distance function as described

in section 3.3. Given two data points lying on a manifold, the graph distance

finds the shortest path between them, where such path is built by connecting

the closest successive data points. This can be done using the K -rule, which

allows connecting the K -nearest neighbors, or the ε-rule, which allows connecting

data points x and y whenever ‖x − y‖ < ε, for some ε > 0, or even the more

sophisticated Data- and Histogram- rules (Lee & Verleysen, 2007), which work

with representative prototypes of data instead of input data points.

After an appropriate rule is selected, a weighted graph G = (V, E) is then

constructed by using the data and the set of allowed connections. The data are

the vertices V , the allowed connections are the edges E, and the edge labels

are the Euclidean distances between the corresponding vertices. Sometimes the

resulting graph is disconnected and, in order to connect it, some edges must be

added using a minimum spanning tree procedure (it must be noted here that

not all the similar methods available add edges to connect the resulting graph, as

Laplacian Eigenmaps (Belkin & Niyogi, 2003b), for instance, which work with the
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B. GRAPH CONSTRUCTION

connected subgraphs). Finally, the distance matrix of the weighted undirected

graph is obtained by repeatedly applying Dijkstra’s algorithm (Dijkstra, 1959).

The computed path lengths obtained using the graph construction described

above complies with the non-negativity, identity and triangle inequality condi-

tions of a distance function by construction: all the edge labels are greater or

equal than zero; the distance between two vertices is zero i.f.f. both vertices are

the same; and because of Dijkstra’s algorithm. The symmetry condition holds

when the graph is undirected, as used in the models defined in this thesis.

Next, we provide some details about the minimum spanning tree procedure

used to connect the resulting graph (constructed utilizing a r-rule, where r can be

any of the above mentioned rules). In this thesis, we resort to Prim’s algorithm

(Prim, 1957) in order to find the minimum spanning tree of a given graph, but

alternative procedures can be used, as Kruskal’s algorithm (Kruskal, 1956), for

instance. As a reminder, we summary describe Prim’s algorithm.

Algorithm: Prim

Input: A connected weighted graph with vertices V and edges E.

Output: Vnew and Enew describe a minimal spanning tree

Method:

1. Vnew = x, where x is an arbitrary node (starting point) from V , Enew = {}

2. Repeat until Vnew = V :

(a) Choose edge (u, v) from E with minimal weight such that u ∈ Vnew

and v is not (if there are multiple edges with the same weight, choose

arbitrarily)

(b) Add v to Vnew, add (u, v) to Enew

We illustrate the procedure with an example that uses the Swiss-Roll dataset

described in section 4.4.1. The corresponding constructed graph using the K-rule

(which is the most commonly used in graph construction) is shown in Fig. B.1
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Figure B.1: Graph construction for the Swiss-Roll set using the K-rule. (Left):

K = 2; (right): K = 4.

(left), for K = 2. Here, we can observe that several connected subgraphs are

obtained. However, by setting K ≥ 3, a connected graph such as the one shown

in Fig. B.1 (right, for K=4) is obtained.

When Prim’s algorithm is required, some aspects about how the subgraphs

are connected should be taken into account. Since we have several connected

subgraphs, we use Prim’s algorithm to find them. This was accomplished by

modifying the step 2.a): when an edge (u, v) cannot be chosen means that we

have found a subgraph. It is listed and saved, and Prim’s algorithm is run again

using only the rest of the vertices. Once all the subgraphs are found, they are

linked. For this, two alternatives, of many, can be followed. The first one is

linking the first two subgraphs and considering the union of the corresponding

vertices as a new component which will be linked with the rest of the subgraphs.

The second alternative consists on linking the first two subgraphs and using only

the second one to be linked with the rest of the subgraphs.

The connected graphs using the two alternatives for Fig. B.1 (left) are shown

in Fig. B.2. It is clear that none of the resulting connected graphs following

these alternatives capture the real structure of the dataset. A better and simpler

alternative was designed. As in the previous alternatives, the step 2.a) was mod-

ified: when the first connected subgraph is found, it is immediately linked with

the nearest vertex of the rest of the vertices. This vertex is added to the tree as
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B. GRAPH CONSTRUCTION

in step 2.b), which allows to follow Prim’s algorithm as usual. This modification

allows to connect the graph and, at the same time, to find the corresponding

minimum spanning tree. Figure B.3 shows the connected graph for Fig. B.1

(left) using this alternative. Now, it is observed that the connected graph follows

the real structure of the dataset. This last alternative was used in this thesis.

Once a connected graph is obtained, some modifications to the edge weights

can be made in order to emphasize some properties of the data and to help to

the developed method. For example, in Zhao (2006), a type of similarity that

considers both the local geometry information (of both labeled and unlabeled

data) and the class information (of labeled data) was used to modify the edge

weights of the graph. Another example was presented in Shin et al. (2006),

where the edge weights are adjusted considering directionality. Note that these

edge weights modifications will demand some extra computational time in the

entire learning task.
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Figure B.2: Connection of subgraphs of Fig. B.1 (left) using the two alternatives

described in the main text.
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Figure B.3: Connection of subgraphs of Fig. B.1 (left) using the best alternative

described in the main text.
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