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Resum

Aquesta tesi doctoral esta estructurada en quatre capitols. El primer capitol
compren un resum dels projectes de vol en formacié que s’han tingut en
consideracio els ultims anys, especialment els que estan planejats de situar-
se al voltant dels punts de libracié. En aquest capitol també fem un estat de
I’art de les principals tecniques de reconfiguracié de formacions de satellits.

Les principals contribucions noves d’aquesta tesi es troben als capitols 2,
31i4. En el capitol 2 introduim la metodologia general que s’utilitzara en
tota la dissertacid. Aquesta metodologia esta basada en una discretitzacio
del temps usant una aproximacio en elements finits, que al mateix temps la fa
factible d’incorporar en problemes d’optimitzacié. En aquest capitol es con-
sideren les equacions linealitzades al voltant d’una orbita Halo. El problema
d’optimitzacié minimitza el funcional obtingut per la suma dels quadrats de
les maniobres. Encara que aquest funcional no estigui directament relacionat
amb el consum de combustible, es comporta bé a 'hora de minimitzar.

En el capitol 3 es segueixen utilitzant les equacions linealitzades al voltant
de l'orbita Halo, pero ara el funcional que es minimitza és la suma dels
moduls de les maniobres, que esta directament relacionat amb el consum
de combustible. Com a conseqiiéncia, la metodologia permet que es pugui
convergir a controls bang-bang en el cas que sigui possible, o a avang continu
en les altres situacions.

En aquest capitol, el nostre objectiu no consisteix només en estudiar com
fer les reconfiguracions, siné que també considerem el problema d’obtenir una
bona discretitzacié per al nostre problema d’elements finits, i decidir quina
és la millor malla per cada tipus de problema.

Finalment, al capitol 4 considerem problemes no lineals i incloem pertur-
bacions. Comencem considerant les reconfiguracions en el problema restrin-
git de tres cossos, per després veure com es comporta usant les efemerides
JPL. Aquests nous models canvien una mica les trajectories dels satellits re-
specte les que haviem obtingut en els capitols anteriors. Per corregir aquestes
desviacions implementem una metodologia basada en afegir petites correc-
cions a les maniobres que estan donades. També estudiem la magnitud de
les maniobres que cal aplicar quan es produeixen errors d’execucié en les
maniobres nominals. Finalment, aquest capitol acaba amb altres aplicacions
que es poden dur a terme usant la metodologia que hem desenvolupat.
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Abstract

This doctoral dissertation is structured in four chapters as follows. The
first chapter contains a summary of formation flying projects that have been
taken into consideration since few years ago. We specially focus on the
missions that have been planned to be located in a libration point regime.
For completeness, this chapter also contains a general state of the art about
the main reconfiguration techniques for satellite formations.

The main new contributions of the thesis are contained in chapters 2, 3
and 4. Chapter 2 introduces the general methodology that will be considered
in all the dissertation. It is based on a discretization in time by means of a
finite element approximation, and at the same time, is suitable to incorpo-
rate optimal control problems. In this chapter we study the reconfigurations
using linearized equations about a nominal Halo orbit minimizing the func-
tional given by the sum of the square of the magnitude of the maneuvers.
This functional is not directly related to the fuel consumption, but has good
properties concerning minimization and regularity.

In chapter 3 we are still working with the linearized model about the
nonlinear orbit, but the functional that we optimize, given by the sum of the
modulus of the maneuvers, is directly related to fuel consumption. As a con-
sequence, the methodology can be tuned in such a way that, if possible, the
user can choose to converge to bang-bang optimal controls (when possible)
or to low thrust trajectories in general situations.

In this chapter, our objective is not only to study how the reconfigurations
can be accomplished. We also consider the problem of obtaining good meshes
for our finite element discretization, and up to a certain extent, to decide
which is the best mesh for each kind of problem.

Finally, in chapter 4, we deal with non-linear and perturbed problems
In a first step we consider reconfigurations in the Restricted Three Body
Problem and in a second one with JPL ephemeris. This fact slightly changes
the trajectories of the spacecraft with respect to the ones obtained in the
previous chapters. To correct for such deviations we design and implement
a methodology based on adding small corrective maneuvers on top of the
nominal ones. We also study the magnitude of corrective maneuvers that
will need to be applied in case of errors in the execution of the nominal ones.
Finally, this chapter ends with some other applications that can be performed
using the methodology we have developed.
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Chapter 1

Introduction

In recent years, the interest in constellations of spacecraft and formation flight
has increased. One application of formation flight technology is separated
spacecraft interferometry. The aim of the formations of spacecraft is to fly
them in harmony, as if they were a single instrument, obtaining an image with
a resolution equivalent to a bigger telescope. This fact gives the capability
to use a bigger virtual instrument instead of a heavy and complex one that
could be launched from Earth.

There are many advantages in the use of multiple spacecraft formations,
being one of the main ones to be easier to construct multiple small spacecraft
than a larger one. There is also the possibility of having a formation which
performs more than one task, or the chance to use the spacecraft in different
projects, only changing the shape of the formation. Moreover we have always
the possibility of adding more spacecraft to the formation to obtain a virtual
bigger or more powerful instrument.

The spacecraft inside a constellation are connected virtually and must
work together as a single one. This fact needs some new advanced techniques
of control to implement, such as the ability to autonomously coordinate and
synchronize multiple spacecraft.

The aim of this work points towards how to reconfigure a formation of
spacecraft in different situations, like deployment, rotations or change the
pattern of the formation. The main way to proceed is done modelling the
trajectory of each spacecraft with finite elements in time. A methodology
that also is provided with a strong theoretical background of literature.

In this chapter, we study the general background of reconfiguration of
spacecraft. We start with a summary of the projects that are considered to be
in orbits about libration points. Then, we present some other reconfiguration
methods that can be found in the literature.
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1.1 Formation flying

The formation flying concept has been taken into account in some projects
and missions, due to the advantages which gives in the creation of virtual
antennas. The main one is the possibility of coupling two or more telescopes
together to synthetically build an aperture equal to the separation of the
telescopes.

However, the use of these technologies gives rise to some new difficult
problems that must be solved, such as the one of maintaining the spacecraft
within a certain distance with high accuracy (less than centimeters) during
the observations.

Formation flying differs from constellation of spacecraft. A formation fly-
ing system must maintain the relative position and attitude to small margins.
In formation flying, the results of the observation are performed using the
position of the spacecraft. On the other hand, in a constellation of spacecraft,
each spacecraft is maintained in an orbit, and the corrections of position only
affect to this single spacecraft. Also, in the constellations of spacecraft, the
communication of observations is done by each single spacecraft.

1.1.1 Formation flying projects

There are many kinds of formations, and in the following section, we comment
a summary of the more important future projects. In these projects, there
are some small diameter formations, which are the ones we are centering
our work, such as Darwin, where the distance between the spacecraft is of
hundreds of meters. In the other way, other formations, such as MAXIM,
need a bigger formation, of thousands of kilometers between satellites.

Search for terrestrial planets: Darwin and TPF

Darwin (ESA) and Terrestrial Planet Finder (NASA) have been two forma-
tion flying projects which were planned to find planets with the ability to
support life. The goal of the projects was to measure the size, temperature,
and placement of planets similar to Earth in the habitable zones of distant
solar systems.

The use of formation flying in the search for terrestrial planets is essential.
To see planets around nearby stars would require a telescope of roughly 30
meters in size and this is well beyond the current limits of technology. For
this purpose, the two projects were based on a formation of spacecraft with
a virtual aperture of hundreds of meters.
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Figure 1.1: Schema of the Darwin formation with six telescopes. The telescopes are
located in the vertices of an hexagon and the collector on the centroid of this hexagon.

Both projects were planned to be in a Halo orbit about the L, Sun -
Earth4+Moon point. Given the importance of the two projects and the sim-
ilarity of them, it is possible that the two projects join in a single Dar-
win/Terrestrial Planet Finder. Unfortunately, due to technical problems,
mainly in the thruster requirements, the join project has been deferred in-
definitely since 2006, but the idea of the project is still valid to perform
simulations of reconfigurations.

Darwin

The Darwin concept uses a formation of spacecraft composed by some space
telescopes and a collector. The space telescopes are in the vertices of a regular
polygon while the collector is located in the center of this polygon (see figure
1.1). The last design considered uses 4 spacecraft in the formation: three of
the spacecraft should be space telescopes and should be at least three meters
in diameter [31].

Terrestrial Planet Finder (TPF)

The Terrestrial Planet Finder concept sets a large baseline in the order of
a hundred meters, composed by four telescope spacecraft with a diameter
of 3 or 4 meters. These four spacecraft are combined with a collector, in
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Figure 1.2: Artistic representation of the Terrestrial Planet Finder configuration.

an equilateral triangle with the two inner spacecraft of the baseline. The
five spacecraft form a rotating formation (see figure 1.2) [32], and there were
two target orbits initially considered for the formation: one was a Halo orbit
about the Ly Sun-Earth-+Moon system, and the other one was a heliocentric
orbit similar to the SIRTF heliocentric orbit. The Halo orbit about Lo was
finally chosen over the heliocentric orbit because the Halo orbit offers simpler
telecommunications geometry, a lower insertion energy requirement and the
option to launch ground-based spare spacecraft to orbit after the deployment
of the original formation.

X-ray observatories

The observance of the galaxies of deep space are best done with X-ray tele-
scopes. Nevertheless these telescopes need a long focal length, which is not
possible to attain with a single spacecraft. For this reason, some projected
missions to obtain images of deep space consider a formation of two space-
craft. The mirror, carried on one spacecraft, diffracts the rays and concen-
trates them onto the detectors, carried by the second spacecraft, which is
orbiting behind the first.

There are several projects of X-ray observatories using formation flying

to obtain a bigger focal length in this way: LISA (ESA and NASA), XEUS
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Figure 1.3: Representation of the LISA configuration.

(ESA), MAXIM (NASA), Simbol-X (CNES and ASI) and Constellation-X
(NASA).

LISA

The Laser Interferometer Space Antenna (LISA) is a joint project of ESA
and NASA to study the mergers of super massive black holes, tests Einstein’s
Theory of General Relativity, probes the early Universe, and searches for
gravitational waves the primary objective [38].

The LISA formation is a large formation. It has three spacecraft in the
vertices of an equilateral triangle, with a distance of five million kilometers
between each spacecraft (see figure 1.3).

It is planned to put the formation in an orbit behind the Earth at dis-
tances of around 50 million kilometers (the orbit of LISA will be similar to
the Earth orbit, but it would have a phase difference of 20 degrees from the
Earth orbit). The plane of the triangle formed by the spacecraft is inclined
at an angle of 60° to the plane of the ecliptic. This position is chosen to
minimize the gravitational disturbances from the Earth-Moon system and to
admit the communication with Earth.
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Figure 1.4: Representation of the XEUS formation with the two spacecraft: the
mirror and the detector.

XEUS

The X-ray Evolving Universe Spectroscopy (XEUS) mission is designed to
search for the first giant black holes that formed in the Universe. The ob-
jective is to look deep in space to see the galaxies that formed ten billion
years ago. For this purpose, it needs a long focal length of around 50 meters,
which is impractical for a single spacecraft. For this reason, the instrument
is divided in two spacecraft [39].

The formation consists of two spacecraft, separated by 50 meters, to form
a virtual X-ray observatory. One of the spacecraft carries the mirror and the
other one carries the detectors (see figure 1.4). As Darwin and TPF, XEUS
is planned to be placed into orbit at the Ly Sun-Earth region.

MAXIM

MAXIM’s goal is to image a black hole. The objective of the mission is
to have a better resolution than the Chandra observatory currently in orbit
about the Earth [44], which gives a 0.5 arc-seconds resolution. This purpose
requires a big resolution, that will be obtained using a multitude of separate
X-ray reflecting mirrors orbiting Earth in unison. The projected formation
has 32 spacecraft with optical telescopes, located on the perimeter of a cir-
cumference of 200 meters and a spacecraft on the center of the circumference.
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A collector is located 500 kilometers behind the mirrors, with a precision of
20 nanometer. This formation gives a 100 nano-arc-second resolution [40].

Simbol-X

Simbol-X is designed to study the interactions between black holes and their
environment, or the acceleration of particles in the heart of pulsars and galaxy
clusters.

For this purpose, a focal length of at least 30 meters is needed, and this
is achieved considering a formation of two spacecraft flying separated by 30
meters [41].

Constellation-X

The Constellation-X Observatory is designed to investigate black holes, Ein-
stein’s Theory of General Relativity, galaxy formation, the evolution of the
Universe on the largest scales, the recycling of matter and energy, and the
nature of dark matter and dark energy.

The constellation is formed by a combination of four X-ray telescopes.
The spacecraft have a diameter of 1.3 meters, and the data of the telescopes
is collected by a collector satellite. The distance between the collector and
the satellites with the lens is 10 meters, giving in this way a focal length of
10 meters [42].

1.1.2 Reconfiguration of formations

Most of the main objectives of the formations are to use the spacecraft as
virtual telescopes. It is essential to make the observations maintaining con-
stant relative distances between spacecraft. To maintain them, the formation
must be controlled as it was a virtual single spacecraft.

However, when the spacecraft are not performing the observations, there
is another kind of control maneuver which is critical for the tasks of the
formation: the reconfiguration of the formation. The reconfiguration needs
to be done with a minimum fuel consumption and without collision hazards
between spacecraft.

In the initial position of the formation, spacecraft are usually in a clus-
ter and they must achieve the final location inside the formation. In this
first step, the deployment of the formation, needs some techniques to re-
configure them avoiding collision between spacecraft. This is the first time
on the lifetime of the formation where the reconfiguration is needed. The
formation might be reconfigured many times in its lifetime. Some reconfigu-
rations, such as deployments and rotations are usual maneuvers, and other
reconfigurations are more unusual, and must be done in exceptional cases.
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Once the formation is working, there is also the need of reconfigurations.
For telescope like missions, the most usual is the one which changes the
pointing goal of the formation. This reconfiguration can be seen as a rotation
of the formation [1], but in some cases there could be other trajectories of
the spacecraft less expensive in terms of fuel consumption. We also study
how to make rotations of the configuration using our methodology of finding
optimal trajectories.

Other reconfigurations that can be useful are the ones which incorporate
more spacecraft into a given formation, like in the case of adding a new space-
craft to perform a bigger antenna. One could also consider the possibility of
suppressing a spacecraft of the formation, in case of failure.

Anyway, there are other scenarios where reconfigurations can be useful.
During the lifetime of the formation, there could be some spacecraft that
due to its relative position inside the formation spend a bigger consumption
of fuel. Since the lifetime of the formation could run out when one of its
spacecraft ends its fuel, the possibility of switching spacecraft during the
lifetime of the formation, to equilibrate the fuel consumption of the members,
may extend the total lifetime of the mission. This is also a critical case in
the collision avoidance problem, because when swapping two spacecraft, if
each spacecraft follow an optimal fuel consumption trajectory, the spacecraft
would collide.

In any case, the reconfiguration of the formations should avoid collision
risks, and it must do it taking into account that the fuel consumption must
be the minimum possible. The aim of this work is to design a methodology
to compute trajectories in all of these cases.

1.2 Reconfiguration methods in the literature

The reallocation of spacecraft inside a formation is an special case of control
strategy for multiple objects. The objective of the reconfiguration problems
is to move multiple objects (the spacecraft), giving each of the objects a
final goal, and avoiding collisions between them. We note that these kind
of problems of reconfiguration of spacecraft formations are similar to other
optimization problems, such as the ones of guidance of robotic objects or
underwater vehicle guidance.

In this work, we focus on the reconfiguration problem of spacecraft for
orbits around libration points or in free space. Many of the science projects of
formation flying are thought to be in these two scenarios. However there are
some other formations (for example MAXIM [40] or CloudSat [43]) that are
considered about the Earth. Basically, the differences between an scenario
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and the others lies in the obtainment of the equations of motion for the
spacecraft, but the methodology that we develop for reconfiguration could,
in principle, be applied to all of them.

The bibliography referent to this subject can be divided in different sec-
tions, depending on the kind of reconfiguration. Here we report a summary
of the most significant ideas in each of the cases of the vast bibliography
related to formation flying.

1.2.1 Basic maneuvers

When we talk about basic maneuvers, we consider some kind of maneuvers
that must be done many times in the lifetime of the formation and do not
have collision risk in general. Maneuvers like this are the rotation of the
formation (when the rotation angle is small, a bang-bang trajectory if it
does not have collision risk), changes in the pointing direction (that can
be considered as a kind of rotation), changes in the size of the formation
(contractions and expansions, which again do no have collision risk with the
bang-bang trajectory), or the deployment of a set of spacecraft.

Using geometrical properties.

Beard, McLain and Hadaegh [1], use the geometrical properties of rotations
to obtain the reconfiguration. They consider the formation as a rigid body,
and optimize the rotation point to arrive to the next configuration. After
this, they calculate the trajectory of each spacecraft, and this gives the delta-
v that must be applied to each spacecraft. Using this method, there is no
problem of collision between the spacecraft, because mutual distances are
maintained constant.

Initialization of a formation.

Hadaegh et al [15] have studied the problem of initializing a formation of
N spacecraft into a pattern. In a first step, the spacecraft must find the
location of the other spacecraft in the formation. The communication of
the spacecraft is done in three phases: first of all an in-plane search, then
and out-of-plane search and finally a near field search. This assures the
communication between spacecraft and makes possible the final maneuvers
to initialize the formation.

Initialization and resize of a formation using genetic algorithms.

Mailhé and Guzmaén [22] study the problem of initializing a formation of
spacecraft and to resize the formation. The trajectories are found in two
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steps. First of all, a genetic algorithm is applied to find a first approach
to the solution. This genetic algorithm gives a rough idea of the trajectory
for the spacecraft, but in this first step there is no attempt to optimize the
location or the number of maneuvers. Once they have this first approach,
this solution is refined using Lawden’s primer vector theory, to determine the
location and number of maneuvers.

1.2.2 Methods using artificial potentials

The main idea of these methods is to add an artificial potential to the equa-
tions of motion, such as the goal of the spacecraft locations has a minimum
on the potential and the other spacecraft (or the objects and places that
must be avoided) have a maximum of potential. This is an usual method in
control and guidance of robots.

Obtainment of the analytical solution via the second method of
Lyapunov.

The idea of the artificial potential functions can be seen on [23], where C. R.
MclInnes uses this artificial potential function (which essentially are Lyapunov
functions) to control proximity maneuvers in the presence of perturbations,
avoiding collisions. In this case, the problem is solved analytically and the
solution is found via the second method of Lyapunov. This method may
require some tricky scaling of the potential in the final phase of the recon-
figuration, because when the spacecraft is near the final goal, the potential
reduces slowly and the time needed to arrive to the goal is high. This method
can also add some artificial local minimum, which must be avoided in order
to reach the goal. This procedure can be done by changing dynamically the
potential functions.

Artificial potential functions to control a robotic arm.

The method of using artificial potential functions is used in many problems
of robotic control. Richard Volpe uses the artificial potential in the guidance
of a robotic arm [34]. In this case, the potential function has three different
parts:

1. Attraction potential: he uses superquadrics to draw isopotential sur-
faces for the potential function. This potential creates a bowl shaped
energy well centered in the goal point, which drives the arm to it.

2. Avoidance potential: uses functions which surround the objects and
that have a limited range of influence and a spherical symmetry for
large distances.
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3. Approach potential: this potential is used when there is an object in
the goal point and it is used to slow the arm velocity to obtain less
impact forces.

Volpe adds all these potentials to obtain the artificial potential function,
which guides the robotic arm. However, this process can create extra local
minimums in the potential. This could give the problem that the robotic
arm arrives to an extra minimum without achieving the goal. Again, he
solves this problem by dynamically changing the potential shape, assuring
the desired final position.

Use artificial potentials as a penalty term.

Junge and Ober-Blébaum [18] include an artificial potential to control the
formation. The potential is a logarithm of the distance between any two
spacecraft, which assures that the two spacecraft repel each other. The
trajectory for the spacecraft is found by minimizing a functional of the cost,
and this potential is added to the functional as a penalty term.

1.2.3 Reconfigurations by minimizing a functional

The last group of reconfigurations are the ones which minimize a functional
of the delta-v, and where the collision avoidance enters in the problem as
constraints.

Model the trajectory using splines

Singh and Hadaegh [29] use a minimization problem to find the optimal
trajectory. In this case, the trajectory of each spacecraft is modelled using
cubic splines. The parameters of minimization for the functional are the
coefficients of the splines and the function to minimize is a functional of
the accelerations which they must apply to each spacecraft to follow the
trajectory.

To avoid the collision between spacecraft, they define an exclusion sphere
centered on each spacecraft and impose that these spheres can not intersect,
except for a single point.

Deployment for LEO spacecraft formations

Thevenet and Epenoy [33] study the deployment of formations in orbits about
the Earth, basically with LEO orbits. The problem of reconfiguration is
performed in a time interval big enough to note the effect of J,. The solution
of the problem is found by applying an optimal control problem, using the
optimality conditions derived from the Pontryagin’s maximum principle.



12 CHAPTER 1. INTRODUCTION

Use of the Gauss pseudo-spectral method

Huntington, Benson and Rao [17] study the guidance of a formation of space-
craft in a tetrahedron. This method is studied to perform both in orbits about
Earth or in the vicinity of the Lagrangian points. The trajectories can be
the deployment of the formation, or the change of orbit.

The problem is formulated via a reconfiguration problem, and the solution
is found via a pseudospectral method.

1.2.4 Our scenario: orbits about libration points

Most of the projects presented in section 1.1.1 are planned to be in orbits
around the Sun-Earth libration points, specially in L,. The Lagrangian
points and the orbits about them are easy and inexpensive to reach from
the Earth.

The libration point orbits also give other advantages for the future of the
spacecraft located there. First of all, they can provide ballistic planetary
captures, such as the one used by the Hiten mission in 1991. They can also
provide Earth transfer and return trajectories, such as the one used for the
Genesis mission. And they can provide interplanetary transport, such as with
the Petit Grand Tour mission concept designing a low energy cost transfer
orbit to visit Jupiter and several of its moons.

Moreover, the orbits about the Lagrangian points do not have only ad-
vantages from the astrodynamical point of view. They are also a good choice
because of the communication system between them and the Earth (it is also
cheap, since the libration orbits of the Earth-Sun system always remain close
to the Earth - at a distance of roughly 1.5 million kilometers- ). And also,
both L; and L, have good properties in the observance of different targets
(L; for the observance of the Sun, and Ly for the observance of the space).

The Lagrangian point Ly is a good site to study the Sun. Its position,
between the Sun and the Earth, is a good place to study solar wind, and the
Halo orbits, which avoid the interference from the Sun in the communication
with Earth provide good nominal places to accomplish these observations.
The first spacecraft to use this location was ISEE3, which was in a Halo orbit
around the Sun Earth L; point from 1978 to 1982, studying the interaction
between the Earth’s magnetic field and the solar wind [7]. Since then, several
spacecraft, such as ACE, SOHO or Genesis, have used the dynamics about
the L; point as their nominal orbits in order to use the dynamics around the
Lagrangian points to perform some observation missions [6].

On the other hand, the Lagrangian Lo point of the Sun-Earth system is a
good location to observe the space out of the Solar System, since the Earth,
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Moon and Sun remain behind the telescope all the time. As the Ly point
moves around the Sun, during the course of one year, the entire celestial
sphere can be observed. Some of the projects of formation flying, such as
GAIA [16], Darwin [31] and Terrestrial Planet Finder [32] are planning to
orbit around this point. The orbits about L, Sun-Earth system give great
thermal stability, which is suitable for non-cryogenic missions, such as the
ones with highly precise visible light telescopes. Additionally, the libration
orbits about the L, of the Earth-Moon system can be used to establish a
permanent communications link between the Earth and the hidden part of
the Moon.

Currently, the existing literature on formation flight trajectory design
about the collinear libration points focuses mainly on rough estimates of
the mission cost, like in the works of Beichman, Goémez, Lo, Masdemont,
Museth and Romans [2, 14] or on the control strategies for the formation.
With respect to this, Folta, Hartman, Howell, Marchand [20, 10] consider
the formation control of the MAXIM mission about L, and more control
techniques can be found in Farrar, Thein and Folta [8] and references therein.
Also Elosegui, Gémez, Marcote, Masdemont, Mondelo, Perea and Sanchez
have studies concerning the transfer of the formation, suitable geometries
and control procedures (see [13, 28, 26]).

On the other hand reconfigurations and deployments have been mostly
considered for formations about the Earth. Representative techniques of
proximity maneuvering have been studied by McInnes [23, 24] by means of
Lyapounov functions and by Hadaegh, Beard, Wang and McLain [35, 1] con-
sidering rotations of the formations or using a sequence of simple maneuvers
as it has been discussed previously.
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Chapter 2

Fundamentals of the
Methodology

In this chapter, we consider the reconfiguration of N spacecraft about a
nominal Halo orbit, and compute some reconfigurations of the formation in
a fixed time T'. These reconfigurations give a first approach for the reconfig-
uration using a complete model. The methodology to obtain the trajectories
takes into account the collision avoidance between spacecraft and minimizes
a functional related to fuel consumption. In this chapter, we present the
general methodology to compute the reconfiguration, applied to linearized
equations about a Halo orbit. In next chapters we will use this methodol-
ogy applied to a more realistic model, including the JPL ephemeris and a
functional more related to fuel consumption. We also present some results
of the different cases we have studied, that will be revisited in the following
chapters.

2.1 Modelling the problem

2.1.1 The Restricted Three Body Problem

Consider a spacecraft under the gravitational attraction of two big bodies,
such as the Sun and a planet or a planet and a moon. The attraction of the
spacecraft on the big bodies can be ignored, so the two large objects (also
called primaries) move in a Keplerian motion, while the spacecraft moves
attracted by the two larger bodies, this is known as the Restricted Three
Body Problem (RTBP).

To study the RTBP, it is usually chosen an adimensional reference frame,
known as the synodic system, where the units are such as the sum of the

15
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wls
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Figure 2.1: The five Lagrangian points

masses of the primaries and the distance between the primaries are equal to
1 and the period of the primaries is equal to 27. In this synodic coordinate
system, the origin is on the center of mass of the system. The X axis is located
in the line defined by the two primaries, from the smallest primary to the
larger one. The Z axis is normal to the rotation plane, in the direction of the
angular momentum of the primaries, and the Y axis is chosen orthogonal to
the previous ones in order to have a positively orientated coordinate system.
In this system of coordinates, the equations of motion are:

) .00
X -2y = —
0X’

Y +2X =

o0

oy’

7 =

o0

0z’

(2.1)

where Q(X,Y, Z) = (X2+Y?%) )2+ (1—p)/r1+p/ro+ (1 —p)p/2, being p the
mass of the small primary and r; and 7, the distances from the spacecraft to
the big and small primaries respectively.

2.1.2 Lagrange points and Halo Orbits

As it is well known, the RTBP equations have five equilibrium points, known
as the Lagrangian Points. All of them are in the plane Z=0. Three of them
(L1, Ly and L3) are in the X axis and the remaining ones (L4 and Ls) form
an equilateral triangle with the primaries (see figure 2.1).

The L; point is located in (X7,0,0), where X; = —1-4(/3)Y/3—1/3(u/3)%/3+
O(u), and Ly is located in (X5,0,0), with Xy = —1— (u1/3)Y/3 —1/3(11/3)?/3 +
O(p). In the Sun-Earth4+Moon system, both L; and Ly are located approx-
imately 1.5 x 10° km from the Earth.

The Lagrange points L; and L, are in good places for doing astronomical
observations. Since the L; point is located between the Earth and the Sun, it
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is a good place for observations of the Sun, like the ones made by the SOHO
[45]. On the other hand, the Ly point is located in a point which has always
the Sun, the Earth and the Moon in the same direction, and a spacecraft in
that point can view half of the sky without these interferences all time.

Spacecraft that have been sent to these two Lagrangian points are not
positioned exactly in the point. In the case of the L; Lagrange point, the
communication between the spacecraft and the Earth would be impossible,
due to the interference from the Sun: the signal of a spacecraft would be
indistinguishable compared with the radiation of the Sun. In the case of
the Sun - Earth+Moon Ly point, the communication would be impossible
because the Moon would be in between the spacecraft and the Earth.

For these reasons, spacecraft are positioned in orbits about these La-
grangian points, in order to avoid eclipses from the Sun and from the Moon.
We can also consider the advantage to put more than one spacecraft near a
Lagrangian point, in different orbits. The orbits which are usually chosen
are Halo orbits or Lissajous orbits [6, 3].

Halo orbits are a family of periodic three-dimensional orbits that have
been taken into account for nominal orbits in missions such as SOHO [6] or
ISEE3 [7]. The equations of motion about this orbit can be linearized, and
we obtain:

X(t) = A(t)X(t). (2.2)

Since Halo orbits are periodic orbits, A(t) is also a periodic matrix. The
matrix A(¢) has as well some properties related to the characteristics of this
kind of orbits: for a fixed value of t, it has six eigenvalues, two of them are
real with opposite sign (the ones which give the hyperbolic part to the Halo
orbit) and the other 4 ones are pure imaginary numbers and conjugated in
pairs (the ones which are related with the rotations about the orbit), as can
be seen in [12]. In the case of other libration orbits, this is not exactly in
this way, but the hyperbolic and rotation characteristics are maintained.

Let us denote by A; the modulus of the real eigenvalues (they are \; and
—\1), and by Ay and A3 the modulus of the imaginary eigenvalues (they are
Aoi, —Aoi, A3t and —A3i), being Ay > A3. The modulus of these eigenvalues
do not change significantly in the family of Halo orbits with practical appli-
cations and they are always different from zero as can be seen in figure 2.2.
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Using this fact, we obtain the Jordan form of the A(¢) matrix:

A1 (t)
)

2.1.3 The equations of motion

Let us consider the problem of the reconfiguration of a fixed number of space-
craft, N, in a fixed time T". We consider initial and final position of all the
spacecraft also determined. The spacecraft of the formation are moving in
the vicinity of a given Halo orbit, and since we work with formations of a
diameter of few hundreds meters, the size of the formation with respect to
the Halo orbit is very small so it is feasible to use the linearized equations
about the nonlinear orbit to find a first approximation of the trajectories.
In chapters 3 and 4, we study the trajectories using more precise modelling
equations.

Let us fix a nominal Halo orbit for the trajectory of the formation. We
denote by X; the position and velocity of the i-th spacecraft of the formation
with respect to the nominal point on the Halo orbit at time t. Considering
the equations for relative motion, the governing equations for this satellite
inside the formation can be written as:

Xz<t) = A(t)Xi(t)a (2-4)

where A (t) is the Jacobian matrix of the equations of motion about the Halo
orbit.

Since the aim of the work is to perform reconfigurations of a set of space-
craft, the spacecraft must be subjected to a control. Let us consider a control
applied to the spacecraft in a form that it modifies the acceleration. The
equations will be of the form

where the control U;(t) only affects to the acceleration, i. e. it is of the form

[_L(t) = (Oa 0, 07 ﬂf(t)v ﬂy(t), ﬁz(t))t'

i %
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Figure 2.2: In the first column, from top to bottom, A1, A2 and A3, the modulus
of the eigenvalues of A(t) with respect to the RTBP time for Halo orbits in the
range from 100000 km to 250000 km of z-amplitude. Note that they are always

away from zero. In the second column of the panel we plot the derivatives of these
eigenvalues.
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Adding the initial and final positions of the spacecraft in the orbit, we
obtain the equations of the reconfiguration problem:

X;(t) = A(t)X,(t) + Us(t)
X;(0) = X7 (2.5)
Xi(T) = X;[

where X! is the initial state and X7 is the final state of the formation. The
goal is to find optimal controls, Uy, ..., Uy, subjected to certain restrictions.
The fundamental restriction is that the spacecraft cannot collide. We will
discuss how to find this control and how to avoid collisions in section 2.4.

2.1.4 The equations for the uncoupled problem

The solution of the problem consists on finding suitable controls Uj(t) sat-
isfying the requirements (2.5). But the system of equations we obtain for
each spacecraft is coupled with the ones corresponding to the other space-
craft. Our first objective is to separate this big problem in some simpler
ones, which will be more efficient to solve.

In order to do this, we try to uncouple the system of equations using the
properties of the Halo orbits. As we have seen in section 2.1.2, the matrix of
the equation, A(t), has a specified Jordan form, D(t). Using this form, we
introduce a change of coordinates, X = P(¢)Z. In this new set of coordinates,
Z, the equations of motion are

Z =D(t)Z. (2.6)
The advantage of this new set of equations is that from them we can
obtain a set of six equations which are uncoupled, and this fact simplifies the
problem.
To obtain the uncoupled equations, we work with pairs of variables. Con-
sidering the first two variables, which are related to the real eigenvalues (A
and —\;), we obtain the equations:

Zi=MW7Z,  Zy=-\(t)Z (2.7)
We can differentiate these equations in order to obtain a second order
equation. After doing this, we have the uncoupled equations:

Zy = M) Z1 4+ M (t) 2y, Zy = —M(t)Zy — M(t) Zs.

Note that now we can use the relations in equation (2.7) to uncouple the
two equations and obtain:

Zy=MO+XN0) 2, Zo= (M) + A (1) Z. (2.8)
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We can see in figure 2.2 the values of the real eigenvalue. Its range is inside
the interval [2.0,3.5], whereas its derivative moves in the range [—2.5,2.5].
So, the equations obtained with this process can be always considered of the
form

z = \t)z,

with A a positive parameter.

The other equations are similar in pairs, and the uncoupled equations
are obtained in a similar way as the previous ones. Taking the variables
corresponding to eigenvalue Ao,

Zy = \(t) Zs, Zy = —X(t)Z3, (2.9)

and differentiating them, as we have done with the previous ones,

Zs = Mo(t) Zy + \a(t) Zy4, Zy = —(t) Zs — N\a(t) Zs,

and finally using the relations (2.9), we obtain the final uncoupled equations:

Iy =205~ NoZy, Zs= "Ly~ NoZ. (2.10)

Note that, for a Halo orbit with an adequate size for astronomical pur-
poses (see [12]), the eigenvalues given by the \;(¢) functions are away from
zero and there is no numerical problem with the equations we have obtained.

Summarizing, we have seen that, if we use suitable variables Z which
transform equation (2.5) into equation (2.6), we can reduce the problem to
a set of six equations, all of them of the form:

Z=pu(t)z+ A(t)z.
Note also that if we are working on free space, we also have these equa-
tions, but now with A = u = 0.
A note for the controls after uncoupling coordinates

The change of coordinates that uncouple the equations of motion applies also
to the controls and make them to be expressed in a more complex form.
For instance, considering the first equation in (2.7), we have,

Zy = M) Zy + Uy, (2.11)

were Uy is the first component of the control U which results after the ap-
plication of the change of coordinates to the controls U in (2.5).
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Now if we differentiate it to obtain a second order equation, the equation
with controls is transformed into

7y = Ou(t) + X)) Zy + MU + U,

Since we will deal with this type of second order equations, the control
that we will compute will be in fact u; = MUy + Ul, while U; needs to be
obtained from this one. This is conveniently achieved considering U; (u;) and
its Taylor expansion up to first order:

)\1 1 2
Ul(ul) = Uo + (—ITIUO + an)(Ul — Uo), +O((U1 — Uo) ),
where Uy is the change of velocity on the node, that will be obtained via the
piecewise linear function of the finite element method and wg is the control
which U (ug) = Up.

Of course when we consider the equation for Zs, the procedure is similar,

and in the case of Z3, Z; in (2.10) we have attached respectively controls ug

and uy since the equations are already second order which are related to Us
and Uy of (2.10),

Zs = \o(t) Zy + Us, Zy = —M(t)Z3 + Uy,

in the form Us(us,uy), Us(us, uy) that can be also expanded in Taylor series.

We remark that these approximations will be inside an iterative process
where the base values ug and Uy will be updated at each iteration in such a
way that Uy tends to be Uj.

Obtainment of the change of coordinates

We know that looking for a set of coordinates where the equations of the
reconfiguration problem are (2.6), our initial coupled equations can be re-
duced to six uncoupled equations. The objective is to find this change of
coordinates, X = P(t)Z.

We note that the matrix P(¢) must satisfy the differential equation

P(t) = A(t)P(t) — P(t)D(t), (2.12)
since we can differentiate the change of coordinates, X = P(t)Z, obtaining
X =P(t)Z + P(t)Z,

and using equation (2.12) we obtain,

X = (At)P(t) —P(t)D(t) Z +P(t)D(t)Z = A(t)X.
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In section 2.2.2 we will see that we use the finite element method to find
the control. We need to know this change of coordinates in the nodes of the
mesh. For this reason, the matrix P(¢) is obtained on each of the nodes of the
mesh numerically integrating the differential equation P = AP — PD, with a
Runge-Kutta-Fehlberg method. The matrices which appear in the equation,
A(t) and D(t) can be computed on each node: A(t) is the matrix (2.2) of the
linearized equations of motion, and D(¢) is the matrix (2.3) which contains
the eigenvalues of A(t).

We find the initial condition of the differential equation by imposing that
P(t) in the first node (P(0)) satisfies

This P(0) is constructed using the eigenvectors of the A(0) matrix: the first
and second column are the eigenvectors of eigenvalues \; and —\;. The
third and fourth columns are the real and complex part of the eigenvectors
of eigenvalues Ay and — Ay, which are conjugated. The fifth and sixth columns
are obtained in the same way as the third and fourth. This matrix P(0) has
the property that P(0) = A(0)P(0) — P(0)D(0) = 0, which gives the initial
condition to solve the differential equation (2.12).

Once the matrix P(t) is determined, we can use it to change the position
coordinates:

X = PZ, 7Z=P'X.

We obtain the change of coordinates for the velocities and delta-v differ-
entiating the equations of the change of position:

X=PZ+PZ, Z=P X+P'X. (2.13)

2.2 The finite element method

As is well known, the finite element method is a method for obtaining ap-
proximate solutions of differential equations subject to boundary conditions.
The resolution of differential equations is not always possible analytically. In
order to have numerical results, there are different discretization methods,
which transform these problems into discrete problems that approximate the
real solution. These methods find an approximation of the solution, which
can be, up to the numerical limits, as close as we want to the continuous
solution, by increasing the number of nodes of the mesh.

The discretization of the finite element method consists on dividing the
domain of the problem in a finite number of subdomains, which are called
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elements. The set of all elements is called the mesh. These elements are
connected to each other by a finite number of points called nodes. We note
that this discretization is inherent to the problem, and can be a difficult
problem to be obtained when the domain is a two-dimension or a three-
dimension domain. The equations of each element are expressed with a
finite number of parameters, which correspond to the value of some physical
variables at the nodes and the forces or other variables applied to each of
the nodes of the element. The finite element method consists on finding
a solution which satisfies some form of the equation in the elements. This
solution is a discrete approximation of the solution of the initial differential
equation.

The solution of the problem is approximated by looking for a function in
a set of functions which best approximates the real solution. The solution on
each element is found by finding a combination of these base functions which
best approximates the real solution of the problem. In order to do this, the
set of functions must be chosen. It is possible to choose different kinds of
form functions, giving different approximations of the finite element method.
These functions must be independent, but they also have to represent simple
functions. A good choice for these functions are the polynomials.

The solutions obtained using this method, converge to the real solution of
the differential equation, when adding more elements (increasing the density
of the mesh) or increasing the order of the elements.

Once one has a system of equations for each element, all the equations
are merged together, obtaining a system of assembled equations, which only
depends on the nodal values. Solving the assembled system of equations
with suitable boundary conditions we obtain an approximation of the nodal
values, which are used to approximate the real solution of the differential
equation.

In the assembling process, the variables of the problem must be num-
bered inside the whole mesh. In two and three dimensional problems this is
not an easy problem: the variables of the system correspond to values of a
determinate magnitude in the elements. As the number of elements increase,
the assembled matrix increases in size but is more sparse. The objective for
a good numbering is to obtain a matrix with a small band, and this implies
that the nodes which belong to neighbor elements be near in the numeration.
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2.2.1 A summary of finite element method in dimen-
sion one

Let us recall that each equation of our reconfiguration problem is of the form:

() + A(t) () + 7(t) z(t) = u(t),
z(0) = o, z(T) = zr,
ZL’(O) = Vo, J}(T) = V.

In order to solve a problem like this, we consider a variational method
that will be applied to a general second order differential equation of the
form,

d*u du
a(t)ﬁ + b(t)E + c(t)u(t) = g(t), (2.14)
where ¢ € [0, 7.
It is convenient to consider this equation written in the self-adjoint form,
d du
(@05 + aot)u = f(2).

that it is accomplished introducing some auxiliary functions [21]:

- b(s)
ai(t) = e s, ao(t) =

In general words, a variational method considers the residual,

d du

—(aa(t)25) + an(t)u — £(2),

R(t) = R(u(t), 1) = =

and tries to find the solution w(t) in such a way that R(t) = 0.

Since one considers the solution u(t) approximated in a given finite di-
mensional space of functions (i.e. u(t) will be of the form @(t) = SN | ;1 (t)
where v;(t) are given and w; to be determined), it is not possible to accom-
plish R(@(t),t) = 0 inside this finite-dimensional space and one works with
the concept of weighted residuals. This is to consider,

/Tw(t)R(u, t)dt =0,

for a set of functions w(t). (Note that this condition for all w(t), for instance
continuous functions, is equivalent to R(u,t) = 0).

The finite element method is a variational method of approximation that
facilitates in a systematic way the functions v;(t) that traditionally were very
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difficult to obtain in the classical variational methods, due to the properties
they are required to have [25]. The main idea relies in the fact that a complex
domain can be decomposed or approximated by the union of simpler sub-
domains called elements (for instance triangles for a 2D domain) where one
can find suitable 1);(t) easily. Then essentially, the weighted residuals concept
can be translated to each element, QF making

/ wi(t)R(u”, t)dt = 0, for a set of w;(t). (2.15)
Ok

where u* is the expression for @ inside QF.

Also, the choice of the set {w;} gives rise to different methods of the finite
element methodology. A very common one is the Garlekin method, which
takes as {w;} the set of base functions {¢;} used for the approximation of u*,
and is the one selected for our work.

The number of base functions ¢; considered in each element is related to
the degree of the approximation inside the element. This lets us to talk about
the order of the element which is basically given by the number of selected
points (the nodes) inside the element, and as we will see, they essentially play
the role of interpolating points. Typically, in the finite element methodology,
one can improve the approximate solution either considering elements of
smaller size or considering higher order elements (the so called h and p-
convergences).

As a main difference with respect to most finite element applications,
our variable is time instead of spatial coordinates. This is, we are dealing
with one-dimensional problems in the domain [0,7] and the elements are
sub-intervals of this time span. If we consider linear elements (order 1 ap-
proximation) each element has two nodes located at the ends of the interval.
When considering bigger orders more nodes have to added inside the element.
In all this dissertation we consider linear elements which have given very sat-
isfactory results, although some aside computations have also be done using
second order elements. Since the order of the elements is kept fixed, the
convergence towards the solution will be controlled by means of the size of
the elements. This is specially studied in chapter 3.

The weak form

Let us consider an element of the mesh, Q% = [t 4, tg] with n nodes. The finite
element theory provides a way to determine the set of base functions {¢¥(¢)}
to be considered in the definition of u*(¢). These are selected in order u*(t)
be an interpolant for the nodal values in terms of a polynomial of degree
n — 1 and it is convenient to choose ¢¥(t) as a polynomial of degree n — 1
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such that ¥ (¢;) = d;; (8;; is Kronecker’s delta), for all {t;}, j =1,...,n, the
nodes inside ¥, this is, we consider Lagrange interpolation and for the case
of linear elements we have,
gt
Ctp—ta

t—t

k A
t) = .

P5 (1) n ;

Vi (t)

Then, the approximation of the solution inside Q¥ is given by,

wt () = 3 ko),

where uf are constants to be computed and are known as nodal values.

As stated previously, the application of the weighted residuals method
makes us to consider,

ts d, du
——(a1— — fldt =0 2.16
[t gy + aon = =0, (2.16)

that it is usually formulated in the weak form (see [36]) obtained by means
of the formula of parts:

' dwdu du]'®
=== —whdt — =
/tA (a1 g + apwu — wi) {wal dtLA

Taking into account that the desired condition R(u,t) = 0 has been
substituted by R(u”*,t) = 0 in the discretization process, and the set of w(t)
functions are taken as the set {¢¥(¢)} in the Galerkin approximation, the
system of equations (2.15) turns to be,

Kfl KfQ Kfn Ulf Ff"‘@’f
Kk Kk ... Kk uk FF 4+ Q%

.21 22 . .2 .2 _ 2 . 2 : (2.17)
K* Kk, ... KF uf Fr 4+ QF

with
k gkl k,0
Ki; —Kij + K;

ij

bk dyt i
Kk — / C T g KR — / ko dt
ij tA a]_ dt dt ) 1) tA aowz w‘] Y

tp
F = / fokdt,
ta
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du du

Qf = _W<tA)a1(tA)£(tA>» QL = w(tB)al(tB)E(tB),

and Qé‘? =0 for j = 2,...,n, but for convenience when working with higher
order approximations are interesting to be written in this way. Equation
(2.17) can be written in a compact form as

[K*Ju* = F* + QF,

where [K*] is the elemental matriz.

2.2.2 Applying the finite element method to reconfig-
urations

We have seen in section 2.1.4 that the problem we want to solve reduces to
find suitable controls for some uncoupled equations, all of them of the form

() + A(t) x(t) + 7(t) x(t) = u(t),
z(0) = o, z(T) = zr, (2.18)
I(O) = Vo, .CC(T) = V.

where A(t) and 7(t) are computed from the corresponding \;(¢) set.

At this point it is also worth to mention that if one wants to consider the
motion of the formation in free space, which is common in many studies of
formation flight, we need only to take A(t) = 7(¢) = 0.

As stated previously, our problem is one-dimensional in time and our
domain is the time interval considered for the reconfiguration ([0,77]). We
consider this time span split in M sub-interval elements. The elements can
be of different length and can be different for each spacecraft. This use
of different length elements is interesting also to put more elements where
the delta-v needed is bigger, and elements of a bigger length (i. e. less
elements) where the delta-v needed is smaller and in this one can control the
h-convergence someway.

Let us consider linear elements. So taking a set of time values {¢;} inside
[0, 7] with ty = 0 and t); = 0, we have QF = [t;,t,,1] and a phase-space
coordinate, z(t), of the reconfiguration trajectory is approximated inside QF
by,

2 (t) = 2 (1) + Tty (1),

where xp, x;y1 are the nodal values corresponding respectively to times t,
tr+1 and,

let1 — K t— g
iy = 220 gy = L
1( ) tk+1 — tk 2( ) tk—f—l - tk
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We note that in fact the trajectory z(¢) is approximated by a piecewise
linear function forming a polygonal curve with vertices the set of nodes {t}.
These nodes are also the places where it will be allowed to apply (instanta-
neous) maneuvers.

Let us consider the weighted residual approximation briefly explained in
section 2.2 for the equations (2.18) inside Q*:

tet1

/ ) GO+ B (D) +r () 2(t)dt = / w(t)u(t)dt, k=0, M—1.

th th
(2.19)
Note that we can compute the values of the functions A(¢) and 7(¢) at
the nodes: they are 0 in free space and in a Halo orbit we can compute them
using the eigenvalues of A(t). For this purpose we can consider again the
base functions and their nodal values to obtain their approximate expression
inside QF with the same truncation accuracy as the one used for the solution
x(t):
A(t) 22 NE(t) = Aty (t) + Mtrea) 5 (1),
T(t) 2 7(t) = ()Y () + T (th) Y5 (1)
Let us proceed with the weak form of (2.19). In order to incorporate the

impulsive controls in the nodes of the mesh, we assume that in each element
QOF the control u*(t) is of the form,

uF(t) = ult) lor= 8, (t) Aug + Oy, (1) Au .
where &;,(t) stands for the Dirac delta at node t;. For clarity we consider
this weak form split in two parts:

The associated system considering \(¢) =0

In section 2.2 we have obtained an expression of the system for this case.
The elemental matrix associated with this part is symmetrical. If we denote
hi = tg11 — tg, and Ay = A(y), the corresponding system is:

Kfl KfQ Tk _ Auf + QF
K5, K5, Thi Auf +Q5 )

where
1 3k + Apaa 1 Ak + Akt
Ki,=—— h Kiy=—— h

LT 12 b 127 p 12 "
1 M+ A 1 M +3)

k k k+1 k k k+1
— h Kk, =— — h

217 hy, 12 h 227 p 12 b



30 CHAPTER 2. FUNDAMENTALS OF THE METHODOLOGY

and we note also that

trt1

s = [routon, sug = [ wouson

tr tk

The part of the system related with the term \(¢)z(t)

A space-phase coordinate x(t) inside QF is approximated by means of z%(t) =
0¥ (t) + 231905 (t). The derivative 4(¢) can be approximated inside QF as

Tpi1 — @
() ~ @k (1) = Tk
h
We note that since the elements are linear, #*(¢) is constant.
Thus, the contribution of this term to the weak form of the equations is
obtained integrating the part of the residual corresponding to,

R (AR () dE, i = 1,2.

tg

This is,
bt , —2X\, — A
VE () (=N (2" (t))dt ~ %(uﬂ — Zp).
tr
bet1 . “ A — 2\
Vs (E)(=A* ()" (¢))dt ~ %(mﬂ — Zy),

tr
where Ay = A(t). Observe that when \(¢) is constant, these terms are both

—)\(ZL’k_H — .Tk)/Q
As a consequence, the part A\(¢)Z(t) adds to the matrix of the system of
elemental equations [K*]u* = F* 4+ Q* the contribution,

2A+H k1 —2A— g4
6 6
Ae+2041 —Ap—2Xp41

6 6

and the elemental matrix is no longer symmetric.

The assembled system

As we have just seen, for each element QF of the mesh, we have associated a
linear system of the form,

Kf,l Kfz Tk _ AUQ + Qlf
K§,1 K§,2 Th+1 AU’EH +Q5 )7



2.2. THE FINITE ELEMENT METHOD 31

where,
1 3)\19 —+ )\k+1 2Tk + Thk+1 k —1 )\k + )\k+1 2Tk + Thk+1
Kk = — h - By —
Ly, 12 e Mg 2 " 6
=1 Mg+ Aga Tk + 2Tk41 1 e+ 3\ T + 2Tk41
Ky = —— h Kk, = —— Ry —
2T T T 1 T BTy 2 T

Next step in the finite element methodology is to assemble all the elemen-
tal equations in order to obtain a system of equations [K|x = Aw involving
all the nodal values in the mesh and their corresponding maneuvers.

Note that this mesh is in dimension one (the time) and the global num-
bering for the nodes is the natural numeration: the nodes can be ordered in
time.

Thus, node k only belongs to elements Q! and Q. We note that the
equations on QF! are:

k-1 k-1 k=1 k-1
Kiyara + Kyg o = Auy - + Q1

Ky ooy + K§3 ey = Aub ™ + Q571

and on QF,
KF 2+ KF = Aub + QY
1,17k 1,2Tk+1 = AUy 13

k k k k
Ky xp + K50tk = Aug + Q5.

Adding the second equation corresponding to element Q¥ and the first
one of element ), and taking into account the flux matching conditions in
secondary variables of the finite element method that impose ngl +QF=0
see [27, 21], we obtain:

K5 oy + (K5 + Ko+ Kfpaen = Aus ™' + Auf,

Note that, for each node, we have two parts of the control, one for each
of the elements where the node belongs to. The total control on node k can
be obtained by

Ay, = Aub™! + Auk

The matrix obtained in this way is a tridiagonal matrix, since each node
belongs to a maximum of two elements.

This expression is valid for all the interior elements, but for the first and
last element, we must add to the equations the contribution of the initial
velocity in the first one and the desired final velocity in the last one. In the
first element, the delta v that must be applied in the first node is Aug—1uy, and
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in the last element, the delta-v of the last node is supplied by Auy;+v7, where
vp and vr are the initial and final velocity after the change of coordinates
which uncouples the system.

Using the fact that the position at epochs 0 and T are fixed in our pro-
blem, the assembled system is:

0 1 1
KQ,Q —t K1,1 L K1,2 ) 02 T
K2,1 K2,2 + Kl,l K1,2 T2
M—3 M—3 M—2 M—2
KZ(’)I K2’2 KM—Q 1,1 KM—Q fK]\/I—l iﬁ:?
2,1 2,2 1,1
0
Kz,l‘ro Aul
0 AUQ
+ : = : : (2.20)
0 AUM_Q
KM#SCT AUM,1

1,2

We obtain the Aw for the first and last node with the use of the first and
the last equation:

M-1 M-1
Auyr = Ky o+ Koy xy —or.

Other parameters of the equation

In order to apply the finite element method, we need the values of \;(t) and
their derivatives at the nodes. As we have discussed, we find the values of
Ai(t) at node k computing the matrix A(tx) and its eigenvalues.

The values of the derivative of \;(t), are obtained using an approximation
of the same order of the approximated solution using the base functions of
the finite element method.

If we use linear elements, we write \;() inside QF by means of

Xi(t) = () = Xi(tR)0f (£) + it )05 ().
Then, the derivative of \; in this element is:

Jalt) = Xh(t) = Ai(tk“iu: )
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We note that the derivative of X;(¢) is not continuous when we use finite
elements. Except for the first and last nodes, each node belongs to two
different elements and the derivative at the node is different depending on
the element used to calculate it. We use a ponderate combination of the two
expressions to obtain the approximation of the derivative:

\ h—1 \k—1 hy \ k
Nilty) ~ —2=L Nt TR Rk
(t) hi_1 + hi Byt + hi

which can also be written as:

Aitrr1) = Ni(tr—1)

(t) Bt + Iy

(2.21)

2.3 Optimization problems

We reduce our reconfiguration problem to an optimization problem with
constraints. Optimization problems can be formulated as

minimize f(x), x¢€ R"

subject to 1 <c(x) <u, (2:22)

where x is a set of variables (in the case of reconfigurations, x contains
variables related to the position of the spacecraft in the nodes), f(x) is the
function to minimize (which is related to fuel consumption) and c(x) are
some constraints (we have two kinds of constraints: one of them has to be
in all the reconfigurations with the objective of avoiding collisions and the
other ones are geometrical constraints, which will be added depending on the
reconfiguration problem). The constraints can be nonlinear, and 1 and u are
sets of upper and lower bounds defining them.

Note that in this general formulation we include all the cases of con-
strained optimization. Constraints on the values of the optimization vari-
ables (such as imposing that the spacecraft has a given state on a node),
enter easily in the problem with c¢;(x) = x;. Equality constraints enter in
the problem using the same upper and lower bound.

The constrained optimization problems are usually solved by transform-
ing the initial problem into an optimization problem without constraints,
which is easier to solve. The new problem has a penalty function for the
constraints which do not satisfy restrictions. The optimal of the problem
is found as the limit of a sequence of solutions which converge to a feasible
solution of the problem.
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The method we use is a sequential quadratic programming (SQP) method
(see [9], [11]). These methods reduce the initial problem to problems which
can be solved by Newton’s method.

The SQP methods have a procedure that involves major and minor it-
erations. The major iterations are the sequence of solutions which converge
to the solution. On each major iteration, the procedure must solve an opti-
mization problem. This optimization sub-problem is solved iteratively, and
the iterations to find this solution are the minor iterations.

The objective of the SQP method is to generate a sequence of iterates
which converge to a point satisfying two conditions:

e There exists a vector of Lagrange multipliers p such that the gradient
of the Lagrangian f(x) — pc(x) is zero.

e The Lagrange multiplier p; associated with the jth constraint satisfies
wij = 0 if lj < Cj(X) < uj; pj > 0 if lj = Cj(l’); i < 0 if Cj(X) = Uj;
and p; can have any value if [; = u;.

For this purpose, every new major iteration is found by

X = X+ ap,

where « is the step length, o is a non negative scalar, and p is the search
direction.

The search direction, p, is obtained by means of the minor iterations, is
the solution of the minimization problem,

minimize f(x)+ g(x)"p + ip’Hp, pE€R"

subject to 1<c(x)+ J(x)p < u, (2.23)

where H is an approximation to the Hessian of the Lagrangian, g(x) denotes
the gradient vector of first derivatives of the objective function and J(z) is
the Jacobian matrix of first derivatives of r(x).

2.4 The general procedure FEFF

Our reconfiguration problem consists on finding a trajectory for a set of
spacecraft which have a fixed initial state and must arrive to a known final
goal in a fixed time T'.

To obtain the trajectories, all the spacecraft must be subjected to a con-
trol law in the acceleration. In the initial problem (2.5),

{ Xi(t) = A(O)X,(t) + Ui(1),

X;(0) =X? X (T)=XT, (2.24)
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are of the form U;(t) = (0,0,0,u?(t),u?(t), u?(t))* and essentially our objec-
tive is to find the optimal functions for U,(t).

In section 2.1.4, we have studied how to split the general equation Xl(t) =
A(t)X;(t) in six uncoupled equations. Using the same idea we uncoupled

(2.24) in six equations (j = 1...6) for each satellite, namely:

T3 (1) + A(E) 245 (t) + 7(t) 235(F) = ug (1),
(L’,J(O) = Tj0, J]ZJ<T) = XT, (225)
1'1](0) = Vjo0, JZU(T) = U;T-

With the objective of finding the optimal controls U;; but in terms of u;;,
we must note that in 2.25 the variables of the problem are some functions of
the states of the spacecraft, but not the states. For the controls of equation
(2.24), we know that the first three components of the control must be 0 and
the controls uy;,...,uy; do not have this property. However the computa-
tions will be carried out in such a way that only controls u;; giving feasible
Uz-j will be considered.

We also note that the controls are also uncoupled, and so they can be
obtained independently for each spacecraft if we do not take into account
constraints between them.

The optimal solution will be found via an optimal problem. The func-
tional to be minimized is related to fuel consumption being the most impor-
tant restriction the one which avoids collision between the spacecraft.

2.4.1 The objective function

Our objective when computing the reconfiguration of a spacecraft is the
consumption of a minimum amount of fuel. The fuel expenditure of the
spacecraft is directly related to the norm of the delta-v maneuvers. We note
that the Av used in the functional are the delta-v that must be applied to
the spacecraft, and are obtained of the Au via the change of coordinates of
controls. This functional is given by:

N M;
Ji=Y > pirllAvigll, (2.26)

i=1 k=0

where ||*|| denote the Euclidean norm and p; ;, are weight parameters that can
be used, for instance, to penalize the fuel consumption of selected spacecraft
with the purpose of balancing fuel resources (here for clarity we consider that
i, multiplies the modulus of the delta-v, but in a similar we can impose a
weight on each component).
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FEFF Generic name for the reconfiguration
(Finite Elements for Formation Flying)
FEFF-DV2 Opt'lrplz.atlo'n of the functional (2.27)
(minimization of sum of Av-square)
FEFF.DV Optimization of the func_tlf)n.zll (2.26)
(sum of Av-modulus minimization)
FEFF-A Obtain ad-hoc meshes using adaptive remeshing

Table 2.1: Names of the methodologies used to obtain the reconfiguration trajectories.

However, as it is well known, this functional has numerical problems in
the computation of the derivatives when a delta-v norm is small (and this is
exactly what the procedure intents to produce...). For this reason is usual to
consider,

N M,
B=> Y pikllAvig|, (2.27)

1=1 k=0

This function is also related to fuel expenditure, because it is small when
the delta-v are small, but its derivative do not have ill conditioning prob-
lems. Additionally, we have introduced parameters p; ;. These are penalty
parameters, which can be used to penalize the consumption of a spacecraft
with critical fuel resources, for instance. It can also be variable on time, to
penalize the fuel consumption in a determinate time span.

Using the two functionals and some techniques to obtain suitable and
good meshes, we define different methodologies to obtain the trajectories.
The names of the methodologies and a brief description of them are shown
in table 2.1.

In this chapter, we study the methodology associated with FEFF-DV2.
In the following chapter, we study some remeshing techniques to avoid the
ill-conditioned problem using the functional of equation (2.26).

2.4.2 C(Collision avoidance

Like the minimization of fuel consumption, collision avoidance is a key pro-
blem to be considered in the reconfiguration of spacecraft. Collision avoid-
ance enters in the optimal problem as a set of constraints.

One of the advantages of the methodology we use is that we can include
easily constraints in the problem. Due to the nature of the optimization
problems, these constraints can be equality constraints, this is ¢(x) = 0, or
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Figure 2.3: We surround each spacecraft by an imaginary sphere of a radius R/2,
equal to half the security distance between spacecraft. In all the reconfiguration
process, the spheres must not intersect, except maybe for a tangency point.

inequality constraints, ¢(x) > 0. Our most important set of constraints is col-
lision avoidance, but we can add some other constraints to the optimization
problem, to obtain trajectories with geometrical confinements.

For simplicity, in this first approach of the computation of the collision
avoidance constraints, we assume that all the spacecraft have the same mesh:
i. e., a node of the mesh of a given spacecraft is also a node of the mesh of
any other spacecraft.

The methodology to avoid collision between spacecraft consists on assur-
ing a minimum distance between the spacecraft during the reconfiguration
time. To accomplish this objective, we surround each spacecraft by an imag-
inary sphere with a radius half the security distance. The constraint we
impose is that in all the reconfiguration process the spheres do not intersect.
We only accept a tangency point between spheres, as can be seen in figure
2.3.

The collision avoidance constraint can be checked in this way: the time
span is divided in linear elements, and on each element, the trajectory is
a straight line. The idea is that the distance between the spacecraft, d(t),
must be greater than R in at all times. But, since all trajectories are straight
lines inside an element, collision avoidance reduces to a check, for each pair
of spacecraft, and each pair of elements, that

di(t) > Ryj. (2.28)

This is, for each pair (i, 7) of spacecraft and for each element QF, we have
a constraint:

v



38 CHAPTER 2. FUNDAMENTALS OF THE METHODOLOGY

We compute the minimum distance between spacecraft on each element
and then we check whether this distance is greater than R.

Computing the minimum distance between two spacecraft in an
element

Let us focus on an element QF. Let us note the initial nodal position of
spacecraft by p,;, and the final nodal position by q,. We consider a variable
v; = q; — P;, which indicates the direction of motion of the spacecraft inside
the element. Using this notation, the position of the spacecraft in the element
is given by

X; = Pp; +V;s

where s € [0, 1] is a parameter related to time.

We look for the parameter s which makes the minimum distance between
two spacecraft. Instead of minimizing the distance, we equivalently minimize
the square of the distance.

f(s)= (p;+svi—p;— svi)T - (p; + svi — p, — sV;) =
((p; — pj) + s(vi — Vj)T ~((p; — pj) + s(vi — v;j).

Differentiating this equation, we obtain the minimum of the distance.
The derivative is

f(s) =2((p; — py) + s(vi—v;))" - (vi —v;).

We observe that the extreme, in case that the function has a minimum,
is really a minimum, since

f'(s) = 2(vi = vj)" - (vi = v;),

is always positive, except for the case when v; = v;, which corresponds to
the case where the two lines are parallel.

When the two lines are parallel, the minimum distance between the two
straight lines is the distance taken for any value of the parameter s. When
they are not parallel, the value of s where the distances are minimum is,

(pi - Pj)T ) (Vi - Vj)
(vi—=vy)T - (vi—v;)

We are only interested in the minimum distance inside the elements, so
this parameter only will be useful if it is inside [0,1]. If not, the minimum
distance between the straight lines will be outside of the element, but inside
of the elements it is achieved in one of the nodes. When the parameter s is
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less than 0, the minimum will be achieved in the first node of the element.
When s is greater than 1, it will be achieved in the second one.

Effectively, if we write the value of the parameter s where the distance is
minimum as —A/v?, for a given A and v, the distances in the first and last
node are related as:

f(1) = f(0) + 24 +v*.

When s < 0, then A > 0 and f(0) < f(1), so the minimum distance
between the spacecraft is achieved in the first node of the element.

When s > 1, then A < 0 and |A| > v?, so f(0) > f(1) and the minimum
is in the second node of the element.

In the case that s € [0,1], let us write, in order to simplify the notation,
p =p; —p, and v =v; —v;. The minimum distance in this case is given by:

(p1va — pav1)? + (p1vg — p3v1)? + (P2v3 — P3v2)?
v} + v3 + v3 '

Collision avoidance when the security distance is variable

In some cases, like in the case of the deployment of the formation, we need a
security distance which is not constant, but changing with time, because in
the first steps of the deployment, the spacecraft are so close that would not
satisfy the constraints.

In this case, the restriction is of the form f(s) < R(s), and it is not enough
to find the minimum distance between the spacecraft to know whether the
spheres intersect.

Since we have the values of the distances in the nodes, R; and R,, and
since we are using linear elements, we also consider a linear function to ex-
press the security distance inside the elements:

R(s) = Ry + s(Ry — Ry).

Now, the point where the restriction is minimum is found by solving the
equation,

o(d* — R?)

0s
which gives us the parameter s corresponding to the minimum distance:
o (p; —Pp)" - (vi—v;) = Ri(Ry — Ry) (2.20)
(vi—= V)T (vi—v;) = (R — R1)* .
When the security distance is constant, this parameter s can be computed
in any case, except when the spacecraft have parallel trajectories, and it is

=0,
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always a minimum of the distance function. But when the security distance
is not constant, the parameter s gives us the minimum distance only when
the denominator of (2.29) is positive. Effectively, the second derivative of
the function is,

0*(f(s) — R*(s))
0s?

=2(v; —v;)T - (vi = vj) — 2(Ry — Ry)*.

So, if the denominator of the equation (2.29) is not positive, the minimum
distance must be achieved in one of the nodes of the element.

In case that the denominator is positive, we can compute s, and as in
the case with constant distances, when s € [0, 1], this is the time where the
restriction is minimum. If s < 0, the minimum is in the first node of the
element, while when s > 1, the minimum is achieved in the second node.

2.4.3 Obtainment of the initial seed for FEFF-DV2

All the numerical methods which compute optimal values of a function sub-
jected to constrains need an initial seed to start the computations. It is
important that the initial seed of the reconfiguration process be near the
optimum searched, in order to assure the convergence of the method, and
also to converge faster.

In our case, for each spacecraft we must provide a trajectory near the
optimum. In order to find this initial seed, we consider each spacecraft as if
it were alone, without taking into account other spacecraft of the formation.
For a given spacecraft, we can find easily the minimum fuel-consumption tra-
jectory. This gives the optimum of the problem without taking into account
possible collisions between spacecraft. This procedure has the advantage that
in problems where the minimum fuel-consumption trajectories do not collide,
this initial seed is already the optimum.

For a given spacecraft i, we are going to minimize the contribution of
the delta-v in a coordinate [. Since the problem is uncoupled, minimizing
the contribution for each coordinate, minimizes the delta-v of the spacecraft.
The functional we consider to be optimized is

M;
Tio = (Auiyg)’,

k=0

where M; is the number of elements of the mesh for spacecraft i. From now
on, in order to simplify the notation, we do not write the indices for the
satellite () and their components (1), in all the formulae of the procedure.
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Let us write the delta-v values using the expression obtained applying
the finite element methodology. For the interior nodes, the assembled matrix
of the finite element methodology, relates the nodal values of the trajectory,
ug, with the maneuvers applied at the nodes:

Ay Al,O
0
= : +
0
AUM71 A]Wfl,IVI (2 30)
A1,1 A1,2 0 Uy '
A2,1 Az Ags
+ ) e ..
AM—z,M—s AM—Q,M—Q AM—Q,M—1
AMfl,A172 Al\lfl,Mffl UA471

The Awu corresponding to the first and last node are obtained with the
equations resulting from the boundary conditions:

A’U,O = A070u0 -+ Ao’l’ul + 1_)0

Auy = A u +A u,—0

M,M—-1"M-1 M,M M M

where ug, u,,, vop and v,, are constant, because they correspond to the states
at the initial and final time.

The value of the objective function can be written in a compact form.
Denoting by A the assembled matrix of equation (2.30) and by b the vector

(A10,0,...,0,A,, ,,,), the function we want to minimize is,

J = (Au+b)T(Au+b) + (Aug)? + (Au,,)?,

where u is the vector of nodal positions.

The values of u; which minimize J are computed taking into account that
the partial derivatives of J respect all the interior u; must be 0. This gives
us a system of equations,

(ATA+C)u+ (A"b +d) = 0.

The matrix of the system (ATA + C) is a pentadiagonal symmetrical
matrix, because A is a tridiagonal matrix and C' is a matrix with zeros in all
the components, except the one of the first row and first column and the one
of the last row and last column.
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Let us see that the matrix of the system, AT A + C, is non singular, so
the system has a unique solution.

C' is a matrix which has only two elements different from 0 (the elements
Cy1 and Cyrp). These two elements are positive. We can calculate the de-
terminant of the matrix AT A+ C, expanding it along the first row. Denoting
by M; ; the minors of the matrix, the determinant is

det(ATA+C) = (ATA)1 1 +Cra) Mg+ (AT A) oMy o+ -+ (AT A)y My g,
which is the same as:

det(ATA+ C") + C11 My 4,
where C” is a sparse matrix with all the elements zero, except for Cyps.

Then, the determinant of the matrix AT A + C” can be expanded along
the last row, and we obtain:

d@t(ATA + C) = d@t(ATA) + Cl,lMl,l + CM,MMM,M-
The matrix A is not singular, so det(ATA) is positive. The terms of
the matrix C are also positive, and the minors are also positive, because

they come from the assembled matrix of the finite element method. So, the
determinant of the matrix is positive, and the matrix A7 A+C'is not singular.

2.5 Simulations using FEFF-DV2

When treating different reconfiguration problems, we can consider that there
are four main kinds of reconfigurations, with similar behavior. This four
groups are:

e Basic maneuvers without collision risk, such as translations and rota-
tions.

e Switches or transfers with collision risk.
e Reconfigurations with additional restrictions on the trajectories.

e Deployments of formations.
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Figure 2.4: The delta-v profile that we obtain when we compute the optimal
solution for a problem without collision risk using FEFF-DV2.

2.5.1 Basic maneuvers without collision risk

There are some reconfigurations where the spacecraft moving in a straight
line have no collision risk at all. For example, a reconfiguration of a formation
where the satellites keep the same shape, but the distances between space-
craft are longer (expansions) or shorter (contractions), or the case of parallel
shifts. In all of these cases the optimal solution is the solution which mini-
mizes the fuel consumption of each single spacecraft from its initial position
to the final one.

The solution to this problem in free space is known: a bang-bang control.
In our problem, since we work with formations near the Halo orbit in a
short span of time, the optimal solution is similar to a bang-bang control.
Nevertheless, in the first approach of the problem (FEFF-DV2), we do not
consider the functional of equation (2.26), and the optimal solution we obtain
is not the bang-bang solution.

Note that our minimization method always starts with the optimal tra-
jectory for each spacecraft, without taking into account collision risks. Since
in this case the optimal trajectory does not end up with collision, the initial
seed of the minimization algorithm is the solution we are searching, and the
procedure of minimization does not perform any more iterations.

When minimizing the functional of equation (2.27), the typical distribu-
tion of delta-v maneuvers that we obtain is the one of figure 2.4.

The case of rotations can be considered a limiting case between this first
group of reconfigurations and the second one (the ones with collision risk).
When the rotation is of a small angle, the straight-line trajectory gives us
trajectories free of collision risk between the spacecraft being the solution
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essentially the same one as in translations. When for instance the rotation is
of an angle of 180 degrees, then the rotation is in fact a switch of spacecraft
in pairs.

2.5.2 Switches or transfers avoiding collision risk

When we work with reconfigurations where the bang-bang solution is affected
of collision risk, is when the optimization procedure must be specially robust.
A typical case of this is the switch in position of two spacecraft: changing
their position with a bang-bang maneuver, they will produce collision.

To exemplify this situation, we can consider the TPF formation. In the
TPF formation, the spacecraft of the baseline usually will not have the same
fuel consumption: the ones which are near the Halo orbit consume less fuel
than the other ones. In order to correct this situation and equilibrate the
fuel consumption at some point, we can switch the positions of the inner
spacecraft with the ones of the outer positions. But this maneuver implies a
collision risk.

In figure 2.5, we show the maneuver profile and in figure 2.6 the trajecto-
ries of the spacecraft performing the switch between spacecraft in the TPF
formation using the FEFF-DV2 procedure. We can observe that the delta-v
expenditure of each spacecraft are similar when doing the reconfiguration,
and that the spacecraft chose a different plane to switch positions.

This kind of reconfigurations let us work with test bench examples. As
an example, we consider reconfigurations of a big number of spacecraft, that
with a bang-bang control all of them would collide in a point. A simple case
of this considers five spacecraft: four of them located in the vertices of a
square, and the fifth one in the center of the square. Let us assume that we
want to change the position of the spacecraft in opposite vertices. Using a
bang-bang control all of them would collide in the center of the square in
half the transfer time. In this case, to avoid collision, procedure FEFF-DV2
switches the spacecraft using different planes. In figure 2.7, we display the
positions of the spacecraft inside their trajectories for different times.

2.5.3 Reconfigurations with trajectory restrictions

Taking advantage of the properties of procedure FEFF-DV2, that allow us the
possibility of introducing some restrictions in addition to collision avoidance,
we could also consider adding some restrictions in the trajectories or in the
fuel consumption.

The functional we are minimizing (2.27) has a parameter, p, that we use
to penalize the fuel consumption of some spacecraft in a time span, or in
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Figure 2.5: The maneuvers (in cm/s) with respect to time (in hours) we must
apply to the spacecraft of the TPF formation to switch the two pairs of spacecraft
with 20 elements.
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Figure 2.6: Trajectories of the spacecraft of the TPF formation which perform a
reconfiguration of switching two pairs of spacecraft.

all the reconfiguration time. However, using the restrictions, we can also
stop maneuvers during a certain time span. At this point, we note that this
procedure is equivalent to use a new mesh, without certain nodes, and that
this procedure can be implemented using the techniques that we develop in
the following chapter.

We can consider the same example of the previous section: switching
the inner and outer spacecraft of the TPF formation, but now adding the
restriction that two nodes (at times between 0.6 and 1 hours) must have
a zero delta-v (for instance, due to operational reasons). In this case, we
observe (see figure 2.8) that the delta-v profile that we obtain is similar to
the case without any restriction, only slightly bigger values near the nodes
of zero delta-v, to compensate the lack of corrections.

We could also add other restrictions to the problem. For instance other
natural restrictions are geometrical considerations, which would bind the
spacecraft to do some prescribed kind of trajectories. Examples of them are:

e Maintaining three spacecraft in the vertices of an equilateral triangle or
four spacecraft in the vertices of a tetrahedron. In this case, there is no
collision problem, because the natural distances between the spacecraft
are always the same. The spacecraft move as a solid.

e Maintaining the spacecraft inside an sphere. The spacecraft are con-
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Figure 2.7: Trajectories of the five spacecraft switching positions in opposite
vertices of a square. The procedure FEFF-DV2 has made two different planes of
motion in order to avoid collisions.
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Figure 2.8: Delta-v (in cm/s) possible obtained in the problem of switching the
spacecraft of the TPF formation, maintaining the delta-v in the time interval [0.5,1]
(in hours) equal to 0.
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fined in a sphere centered in the Halo orbit.

e Maintaining the spacecraft in the surface of a paraboloid (in order to
make them work as an antenna).

2.5.4 Deployments

In the first steps of the formation, the spacecraft must achieve the final pat-
tern. In some cases, due to the number of spacecraft of the formation, the
spacecraft are not in a single stack and the deployment phase might fol-
low after a rendezvous of several motherships. In this case, we can consider
deployments as special cases of reconfigurations where the satellites depart
from different locations (one location for each mothership) and the final con-
figuration is the pattern of the formation.

In all the reconfiguration examples we have treated before, the security
distance is a fixed value for all the time span. However, when performing
deployments of formations that are in different stacks, in the first steps of
the procedure, the spacecraft are too close (below the usual security distance
required) and procedure FEFF-DV2 could not find a feasible solution. In
order to avoid this fact, we consider a security distance which is a function
of time: it is zero or very small at the beginning (when the spacecraft are
near the mothership) and should increase during the reconfiguration phase.

If properly executed, deployments do not have collision risk using bang-
bang controls, so the final solutions we obtain are similar to the translations.

Once we have two or more stacks with spacecraft, we can check which
is the best place to form the pattern. Let us consider an example with the
Darwin configuration: we consider that the 7 spacecraft of the formation are
in two different stacks, separated by a distance of 1000 m, and they must
form the Darwin pattern in an undefined point in the line between the two
stacks.

It turns out that the optimum place for the rendezvous is the point in the
line joining the two stacks which is located in the center of mass of the initial
configuration, this is, if we work with a stack of 4 spacecraft and another one
of 3 spacecraft, the optimal place to assemble the Darwin formation is the
point of the line joining the initial stacks located 571.4 m far from the stack
of 3 spacecraft and 428.6 m far from the stack of 4 spacecraft. We show the
trajectory in figure 2.9 and the profiles of the delta-v expenditures for stacks
of 3 and 4 spacecraft in figure 2.10 and for 2 and 5 spacecraft in figure 2.11.
Total amounts of Av are given in table 2.2.
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Figure 2.9: A snapshot of a rendezvous trajectory for the Darwin mission.
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Figure 2.10: The profiles of the Av expenditure (in cm/s) for a spacecraft of the
stack of 3 spacecraft (left-hand plot) and for a spacecraft of the stack of 4 (right-hand
plot). Total amounts of Av are given in table 2.2
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Figure 2.11: The profiles of the Av expenditure (in cm/s) for a spacecraft of the
stack of 2 spacecraft (left-hand plot) and for a spacecraft of the stack of 5 (right-hand
plot).

Satellite | 1 2 3 4 5 6 7 Total (cm/s)
Av 1.83 1.83 1.83 133 133 133 133 10.81
Avon-off | 1.32 132 1.32 0.99 0.99 0.99 0.99 7.92

Table 2.2: Av cost corresponding to the rendezvous example for the Darwin forma-
tion. The two groups of satellites depart from 1000 m apart and perform rendezvous
in one day. The example uses 50 linear elements for each satellite.

24
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Figure 2.12: Test problem for an hexagon, where all the spacecraft move to the
position symmetrical with respect to the center of the hexagon.

2.6 Some comments about computational cost
of FEFF-DV2

To analyze in detail the cost of FEFF-DV2, is a complex problem where
we must take into account that when we have a lot of spacecraft or security
distances similar to the initial distance between the spacecraft, the procedure
may need quite a few iterations to find the optimum solution. In this section,
we study how the increment of nodes or of security distances affects to the
total computational load of the algorithm.

The computations are made with a Pentium at 1.73 GHz, with 1GB of
RAM, using a Linux-Debian distribution.

The test problem

In order to calculate the influence of the number of elements and the
security distance on the problem, we have considered some problems affected
of multiple collision risk. In these examples we consider the spacecraft located
in a regular polygon (an n-gon), and the reconfiguration consists on changing
each spacecraft of the polygon, to a symmetrical position with respect to the
center of the polygon (see figure 2.12).

This kind of reconfigurations are subjected to multiple collision risks.
With a bang-bang control, all the spacecraft would collide in the center of
the polygon in half the reconfiguration time.

Computational cost increasing the number of elements
In general, when we carry out the optimization using few elements, we
obtain the solution in a small number of iterations. When we have more
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elements, the number of variables grow, increasing the computational cost
of the procedure. For this purpose, we study how we can obtain a refined
solution using as initial seed the solution obtained using a small number of
elements (that we choose between 6 and 10).

We have considered two different ways to increase the number of elements.
The first one consists on increasing a fixed number of elements on each iter-
ation, and the second one consists on multiplying the number of elements by
a fixed number.

Using the first method, when we add a fixed number of elements on each
iteration, we must take into account that if we add a small number of elements
at each step (for example, 1 or 2), on each step we get the solution with few
iterations, but the total sum is high, because many steps could be required.
On the other hand, if we add a big number of elements in a single step, the
cost to obtain the corresponding optimum can be high.

To exemplify this situation, we have considered a particular case: we
have 4 spacecraft in the vertices of a square and the reconfiguration consists
on switching the spacecraft in the opposite vertices. We have added a fixed
number of elements on each step and the results are displayed in figure 2.13.
Is it clear that the worst case is when we add one element at each step. The
cost for each step is small, but this does not compensate the large amount of
steps needed. We also observe that for small number of elements, the cost is
lower if we do not add a big number of elements to the previous mesh, but
when the number of elements increase, is better to add bigger numbers.

The idea of the second way is a consequence of the results obtained with
the first method. When we have a small number of elements, the optimum
procedure consists in adding a small number of elements, and when we have
already a bigger number of elements, is better to increase with bigger number
of elements. The purpose is then to multiply the number of nodes of the mesh
by a fixed number (i. e., increasing the number in an exponential way).

We have used the same example as in the previous case, and we have
multiplied the number of elements by 1.5, 2, 2.5 and 3. We can see in figure
2.14 that the computational cost is similar with the different values, but that
the best ones are obtained doubling the number of elements at each step.

Once we have the two results, we can compare the best results of each
algorithm, and we observe that the results obtained with the first method
are better in general: using the exponential method, we make less iterations,
but the total cost is bigger, as it can be seen in figure 2.15.

In conclusion, when we want to reduce the computational time of the
algorithm for a given problem with a lot of nodes, the best strategy is to sum
a fixed quantity of nodes, which is less than the number of nodes of the best
trajectory we have, but this quantity must be significant when compared
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Figure 2.13: Computational cost (in seconds) of the reconfiguration of a formation
of spacecraft depending on the number of elements. On each step, we increase the
number of elements by adding a fixed number of elements.
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Figure 2.14: Computational cost (in seconds) of the reconfiguration of a formation of
spacecraft increasing the number of elements by multiplying the number of elements
by a fixed value at each step.
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Figure 2.15: Computational cost (in seconds) of the reconfiguration of a formation
of spacecraft increasing the number of elements by adding a fixed number of elements
on each iteration or by multiplying the number of elements by a fixed number.

with the number of nodes.

We note also that the procedure of adding nodes to the existing mesh can
also be understood as a way to refine the trajectory towards a low thrust
control.

Computational cost increasing the security distance

In problems with multiple collisions, we must take into account that the
FEFF-DV2 procedure may have problems to reach the optimum, specially
when the security distance is big when compared to the size of the formation.
In this case, we can use a continuation method to obtain the reconfiguration
trajectories: we can start computing a solution with a small security distance,
and then to increase it by steps using the previous solution as initial seed.

When computing reconfiguration trajectories in this way there is no need
to have accurate intermediate results since, in fact, they are just initial seeds
for the next step. For this reason, if we want to obtain the solution with a
big number of elements, we first find an approximation of the solution using
few elements and then we refine the obtained solution increasing the mesh
density once the required security distance is attained.

Similar to the study of the computational cost increasing the number of
elements, we study the process of increasing the security distance adding
a fixed amount at each step and trying to find in this way the number of
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Figure 2.16: Computational cost (in seconds) of the reconfiguration of a formation
of spacecraft increasing the security distance with different number of intermediate
steps.

intermediate steps that optimize the process. To illustrate it let us consider
6 spacecraft in the vertices a regular hexagon of 100 meters of edge and the
problem consists in switching the spacecraft located in opposite vertices. We
evaluate the computational time needed to obtain the final solution, with a
security distance of 90 meters, using a continuation method with different
number of intermediate steps. The results are presented in figure 2.16.

We observe that the first iteration is always of the ones with a bigger cost,
because we start from a situation with multiple collision risks and we end up
with a situation without collision. For this particular case, we see that there
is a limit, near the security distance of 40 meters, where the solution cannot
be continued. The local continuation to obtain the optimum can end in a
point with no feasible solution and, in this case, we must obtain the optimum
trajectory for the spacecraft using the initial guess, without the continuation
method.



Chapter 3

Remeshing strategies

In the previous chapter, we have developed a methodology to obtain an
approximation for the reconfiguration of a spacecraft formation, using a fixed
mesh, which has been taken the same one for all of the spacecraft. In this
chapter, we consider elements of different length and different meshes adapted
to each one of the trajectories.

The use of elements of different length is introduced for several reasons.
However, and first of all, there is a main motivation on finding what we
could say "an optimal mesh”. As it can be seen in the examples of chapter
2, the maneuvers that must be applied to the spacecraft are bigger in some
time spans and very small in some other. In the first case, the use of more
elements inside the time span, could make nodal maneuvers smaller, while
in the second case, the elements could be longer, because there are no big
changes in the velocities as a consequence of the applied delta-v.

With the underlying idea that the requirements are different for each
spacecraft and depending on its trajectory, for each spacecraft we are going
to consider its own mesh in time.

Taking advantage of our finite element methodology, we have introduced
a remeshing method, FEFF-A, with the goal to control and optimize the
mesh and the computations involved in reconfigurations.

Moreover, in parallel with the remeshing method, we have also introduced
a modification of the methodology FEFF-DV2, consisting in minimizing the
sum of the modulus of the delta-v applied, not of the sum of squares of
the Awv. This is a functional more related to the fuel consumption of the
satellites. However, the method which minimizes this new penalty function
(3.1), also needs elements of different length, in order to avoid the problems
of computing the derivatives of the function near zero.

57
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3.1 Using elements of different length

To use elements of different length, makes no essential difference in the for-
mulation of our finite element methodology. The matrix of equation (2.20)
associated with each element that we have obtained in section 2.2.2, does not
take into account the fact that all the elements have the same length, and so
it is also valid when the elements are of different size.

In section 2.4.3 we considered all elements of the same length to prove
that matrix ATA + C in this case is not singular. When the elements are
of different length, we cannot prove this fact. However, this matrix would
be singular only in few (degenerate) meshes, and in most of the ordinary
cases we will still be able to find an initial seed following the same algorithm.
Anyway, there is also another way to proceed: we first obtain an initial seed
considering elements of the same length and then we use the methodology of
the previous chapter to continue working with uneven meshes.

We also note that since the value of the penalty function (2.27) is com-
puted for each spacecraft independently, the computation of this function
and its derivatives is carried out in the same way as if all the elements were
of the same length. In fact, the essential difference in this case is related to
collision avoidance. Again, as in section 2.4.2; collision avoidance enters in
the problem in the form of constraints. In this case, since each spacecraft
has a different mesh, in order to compute whether constraints are violated or
not, we consider another mesh considering the union of nodes of the meshes
of the two spacecraft under consideration. We call this mesh the extended
mesh.

With this new mesh, the approximation of the trajectory with the finite
element method for the two spacecraft in all the checking time spans is again
linear. Then, on each element, the functional giving the minimum distance
between the spacecraft can be computed, and we can check whether this
distance is greater than a given security distance or not.

Computing derivatives of the constraints

Consider two different spacecraft, ¢+ and 7 and the extended mesh associ-
ated with them. When we need to compute the derivatives of the constraints
in one of the elements of the extended mesh, we have to consider different
cases depending on the provenance of the nodes of the extended mesh:

e both nodes of an element 2" are also nodes of the mesh of satellite 7

e one of the nodes of an element 2" is also a node of the mesh of spacecraft
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i, but the other one is only a node of the mesh of spacecraft j

e none of the nodes of the element 2" of the extended mesh belongs to
the mesh of spacecraft ¢

This fact generates different ways of computation of derivatives:

Case 1: The nodes of the element Q" of the extended mesh are nodes of
the mesh of spacecraft 7.

This case is the same one we dealt in section 2.4.2, since in fact we
are computing the derivatives in an element that belongs to the mesh of
spacecraft 7.

Case 2: The first node of Q" belongs to the mesh of satellite i, but the
second one is a node only of the mesh of satellite j.

We consider an element Q" of the extended mesh of satellites ¢ and j.
This element has two nodes, at epochs t,, and ¢,,.1. In this case, ¢, is also a
node of the mesh of spacecraft i (the k-th node of this mesh), but the node
at time t,,, does not belong to mesh of spacecraft 7.

The distance between spacecraft (and also the restriction) depends on the
position of spacecraft 7 at node k, but also depends on the position of the
spacecraft ¢ at the following node of the mesh of satellite i: k+ 1, which does
not belong Q" (see figure 3.1).

Inside Q" the position of spacecraft 7 is obtained by interpolation of the
spacecraft positions at nodes k and k + 1 of its own mesh:

t —t t—1t
X (t) = X(tg) =2 + X () .
let1 — tk tet1 — Tk

In particular, the position at node n + 1 of the extended mesh (the node
of " which does not belong to the mesh of spacecraft i) is:

tho1 — tn tpog —t
X (tpar) = X (1) L2 4 X (4 ) 28
tei1 — b ley1 — Tg

Since the position of spacecraft i inside 0" depends on the position of
spacecraft ¢ at nodes k and k + 1, we have to compute two derivatives for
the spacecraft i: the derivative of the function (2.28) with respect to the
position at node k and with respect to the position at node k+ 1 of the mesh
of satellite 1.

Let us also consider the constraint ¢(x) = d(t) — R > 0 as in section 2.4.2.
We want to compute dc/0r,,, the derivative of the constraint with respect to
the nodal value of the function at the first node. We note that this value is
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Figure 3.1: The extended mesh related to spacecraft ¢ and j is obtained by the
union of nodes of meshes of satellite ¢ and satellite j. In this case we are computing
the derivatives with respect to the nodal values of spacecraft ¢. The first node of
the element (node k) belongs to the mesh of spacecraft i, but the second one (node
m) only belongs to the mesh of spacecraft j. However, the value of the differential
depends on the nodal value k, but also on the nodal value k + 1.
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related to the position of spacecraft, but after uncoupling the equations, it
does not have a physical significance. This derivative can be computed as
in section 2.4.2. d¢/0r, 1, the derivative with respect to the value of the
function on the second node, must be computed in a different way. In this
case, we obtain the expression for the derivatives of the constraint:

Jc dc oc tiy1 —tm

Oy Orn  Orpyr teer — b

Oc . Jc tm - tk
Oxpr1 Orpyr ey — b

Case 3: The second node of 2™ belongs to the mesh of satellite i, but
the first one does not.

This case is the opposite of the previous one, and derivatives are computed
in a similar way. Now, the element (2" has two nodes: n and n + 1. The
node n + 1 of the element belongs to the mesh of spacecraft i, but the node
n only belongs to the mesh of spacecraft j.

When computing the derivatives of the constraint in 2" with respect to
the nodal positions of spacecraft i, we must consider the nodal value n + 1
of the extended mesh for spacecraft i (we can denote it as k-th node of the
mesh of spacecraft i) and the previous node of the mesh of spacecraft i, this
is, the node k — 1.

Analogous to the previous case, we can compute the derivatives of the
constraint with respect to the nodal position on nodes k and £+ 1, obtaining;:

Jc . oc tk—tn
8xk n aTntk—Ifk_17

Oc B oc t, — te_1 Oc
Otpyr  Orptpy —t1  Orpgn

Case 4: None of the nodes of 2" belong to the mesh of satellite 7.

Also when the nodes n and n + 1 of element 2" of the extended mesh
belong only to the mesh of spacecraft j, we will need to compute the deriva-
tives with respect to the nodal positions of the mesh of spacecraft i. The
nodes to be considered inside the mesh of spacecraft i are consecutive. Let us
note them as k£ and k 4+ 1, where node k is before the node n of the extended
mesh, and node k + 1 is after the node n + 1 of the extended mesh.

Using similar calculations as in the previous cases, the derivatives that
will be needed are:

dc dc tyy —ty, dc trir —thpa

Oxy,  Orptepr —te  Orpn tepr —te
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dc Octy — 1ty oc tpi1 —t
0T 41 Ory tipr — Orng1 ther — .

3.2 The minimization of ) |Av| (FEFF-DV)

Our goal is the reconfiguration of the formation using the minimum fuel
consumption of the spacecraft. Attending the way the maneuvers are made,
the fuel expenditure of the spacecraft i is directly related to the sum of the
modulus of the maneuvers,

N M,
ST pucllAvll (3.1)

=0 k=0

where || * || denotes the Euclidean norm, M; is the total number of nodes
in the trajectory of spacecraft ¢+ and p is a penalty parameter. However,
the drawback of this expression is the numerical problem when computing
derivatives for small values of delta-v (and this is what we want to achieve
in our computations).

In the previous chapter, we have considered the functional to be optimized

N M;
YD pllAvill® (3.2)

i=0 k=0

This functional is also related to fuel expenditure, moreover it is smooth
and derivable and it is not ill conditioned.

The general idea of the procedure that we are going to develop is to use
the functional of equation (3.2) to obtain a first approximation of the optimal
trajectory, as we have seen in previous chapter. This preliminary solution
avoids collision, and minimizes the fuel in some way, so we can think that
the trajectory we are looking for is close to this one. Once we have this first
guess for the optimal trajectory we are looking for, the idea is to change the
mesh for each spacecraft, depending on the properties of the trajectory we
have obtained when minimizing the delta-v square functional (3.2). Using
this new mesh, we will compute the trajectory which minimizes the delta-v
norm functional (3.1), avoiding ill-conditioned problems..

3.2.1 Remeshing

As it has been stated before, minimizing the delta-v square functional (3.2),
we obtain a rough approximation for the delta-v to be applied on each node.
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In order to make the algorithm more efficient when minimizing the func-
tional (3.1) and at the same time avoiding problems in the derivatives of the
functional when they are near zero, we have developed a technique which
adds or subtracts nodes of the meshes by means of an iterative process in a
controlled way.

In general words, in a first iteration the algorithm suppress some of the
nodes where the associated maneuvers are less than a given threshold V,,
and adds more nodes near the ones with maneuvers bigger than another
threshold V},;. The idea of taking out only some of the nodes, and not all of
them at once, is related to the fact that there exists the possibility that some
consecutive small maneuvers could be replaced by a bigger one. Proceeding
in this way, the algorithm also solves another practical problem: in case that
a spacecraft has a thrust level to maneuver restricted inside a certain range
(i.e. a constraint on the minimum and maximum delta-v allowed in a node),
the addition of neighbor nodes splits the maneuver in longer time spans.

The methodology consists on a serial of tests and procedures according
to the results. The tests check whether the constraints on the delta-v are
achieved or not, and in case they are not achieved, the procedures change
the mesh trying to achieve them. Tests and procedures are iterated until the
mesh we obtain satisfies all the constraints.

Test and Procedure I: Taking out nodes associated with small ma-
neuvers

Nodes with associated maneuvers near zero cause ill-conditioning in the
calculus of the derivative of (3.1). Test I is directed to detect them. To this
end, the test compares all the maneuvers in the trajectories with a given
threshold V,,,. The current mesh passes the test if all them are bigger than
V. Otherwise, some of the nodes are removed using procedure I.

Taking out nodes in procedure I is conditioned by the current Av values
in neighbor nodes. When the candidate nodes to be removed are isolated,
they are taken off. But in case of having a sequence of consecutive nodes
failing test I, one must be be careful, since we could end up with a mesh with
a long time interval without nodes. For example, in figure 3.2 we represent
a sequence of maneuvers corresponding to a certain spacecraft in a case. In
the central part there are five consecutive maneuvers with magnitude smaller
than the threshold. If we suppress all the nodes at once there would be a
long time span without nodes, and this might not be realistic, moreover it
could add some bad behavior to the next iteration. Because of this, the
procedure I counts first the total amount of delta-v inside the time span. If
the total amount is still less than the threshold, we assume that the nodes
can be removed from the mesh, otherwise we decrease the density of nodes
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Figure 3.2: On the left, we represent a sequence of maneuvers obtained at some
iteration of the optimization procedure for a particular satellite. We have some
maneuvers smaller than the threshold (dotted line) in the central part. In this
case, instead of removing all the nodes, we change their density as it is displayed
in the panel on the right.

by a factor depending on the ratio between the total amount of delta-v and
the threshold, as can be seen in the figure.

Test and Procedure II: Adding nodes to split big maneuvers

In some cases, like when in an iteration we have maneuvers larger than
the maximum ones allowed, V), it is necessary to add more nodes to the time
mesh. The task of Test II is to detect maneuvers bigger than the threshold
Vi, whereas the procedure II has been implemented with the capability
of splitting elements in smaller parts when we find nodes failing this test.
This procedure is also the seed idea for computing the low thrust continuous
trajectory controls.

Essentially, if we have only one node with a maneuver greater than Vj,,
say at time ¢;, we can rearrange the two elements sharing this node (the time
interval from node ¢;_; to node ¢;11) in three equal elements. This is an
efficient and easy way to reduce the value of the delta-v in the nodes. In case
we have a sequence of maneuvers greater than the threshold, all the elements
containing these nodes are split in two elements of the same length.
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Test 1II and Procedure III: Re-meshing using relative neighbor
values

In our methodology, tests I and II, and their respective procedures, are
iterated while there exist nodes with maneuvers smaller than V,, or bigger
than V);. However, after the application of this algorithm, one could end
up with some undesired mesh. For example, if we consider a reconfiguration
problem in free space without collision hazards, the optimal solution is a
bang-bang control for each spacecraft. So in the final solution for this case
all maneuvers are zero, except the first and the last ones.

Again the relative small maneuvers could cause (3.1) to be ill conditioned
for the derivatives and the procedure suffer of convergence problems. For
this reason, when test I and II are passed, we check in test III if there exist
small maneuvers when compared to the ones in their neighborhoods (see
figure 3.3). In a positive case we apply procedure III to remove the nodes
corresponding to these relatively small maneuvers.

Procedure I1I compares the ratio between the delta-v of the trajectory in
the current iteration and the length of the elements where the node belongs
to:

Avk

Op = ———.
let1 — th—1

The test considers that the maneuver is small enough to be removed when

5k < 6]6—511 and 5k < %,
where C' is a constant. If this constant is chosen small, then we could remove
more nodes than we expected. If C' is too big, then we may not remove some
nodes that are small enough to be removed. Some explorations have shown
that suitable values for C' are inside the range [8,10].

When the procedure does not pass test III, it means that there are small
maneuvers when compared with the neighboring ones. The nodes that do
not pass test III are isolated, because if the delta-v of a node is small with
compared with its neighbors, the neighboring ones can not be small when
compared with it. Procedure III suppress all the nodes that have not passed
test III.

The limiting case of a bang-bang solution

In a case without collision risk using rectilinear trajectories, as we pointed
out, we know that the optimum trajectory for each spacecraft is a bang-bang
control. Because of the number of nodes with zero delta-v associated, this is
a critical case for the methodology FEFF-DV.
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Figure 3.3: Delta-v corresponding to a trajectory which has passed tests I and
II, and is considered for test III. In this case, we compare the relative value of the
maneuver on node k with the ones on nodes k+ 1 and k£ — 1. In test III we do no
take into account only the amount of delta-v; we also take into account the length
of the elements. In this case, test III detects that the maneuver in node k is small
when compared with neighboring ones, and procedure III will eliminate the node.

We remark that the procedure of minimization of the delta-v square func-
tional (3.2) does not provide a bang-bang solution. Generically, it gives a
trajectory with a delta-v profile similar to the one of figure 3.4. Moreover, af-
ter the first iteration of the algorithm, nodes corresponding to delta-v values
minimizing (3.2) cannot be removed, because the threshold criterion does
not apply to them (it only applies to the node or nodes near the middle
zone of the reconfiguration time interval). Typically, the value of the func-
tional (3.2) evaluated in the bang-bang optimal control trajectory is very
large when compared with its optimum. However, the algorithm FEFF-DV
is robust enough even in this case. Once we have the solution of (3.2), only
few nodes can be eliminated by procedure I, but using the test and procedure
III, all the interior nodes are eliminated in few iterations.

To summarize, our methodology FEFF-DV of optimal control search fol-
lows the scheme represented in figure 3.5. First of all, we find the solution of
the problem using the delta-v square functional (3.2). Using this trajectory
as a initial seed, we minimize the delta-v norm functional (3.1) at the same
time that we control the density of nodes in the mesh. Moreover, convergence
can be directed towards the limiting cases of bang-bang control (when it is
feasible) or towards low thrust controls in general situations.
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Figure 3.4: In the first step of the computation of the reconfiguration of space-
craft without collision hazards, the profile of delta-v has always this shape. If we
apply the tests and procedures I and II to obtain a better mesh, we only suppress
the delta-v corresponding to a node, the one which is smaller than the threshold
represented with a bold line.
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Figure 3.5: Scheme of the procedure FEFF-DV.
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Figure 3.6: Schema of the procedure of adaptive remeshing (FEFF-A).

3.3 Adaptive remeshing (FEFF-A)

Adaptive remeshing is a methodology which can be applied to solving dif-
ferential equations using the finite element method allowing to control both
the error in the obtained solution and the computational cost [21].

The approximation of the solution via the finite element method, gives
some errors associated to each one of the elements of the mesh. The general
idea of adaptive remeshing is that, given a value e, we want to find a mesh
that provides an approximate solution with error (understood as the differ-
ence between the solution of the problem and its approximation inside of an
element) less than e.

In figure 3.6 we give a schema of its general idea. The procedure has
two different phases. In the first one, it starts computing the solution of
a problem using the finite element method with a given mesh, and then it
computes an estimation of the error (this error is essentially obtained by
comparison between the gradient obtained using the finite element model
and the one obtained by integration of the equations of motion, as we will
see in the following section). Once we have this approximation of the error,
we must decide whether the error is below a given tolerance or if we need
to remesh and to recompute the approximate solution. When remeshing is
necessary, the new mesh is adapted using the estimation of errors of the
previous mesh.

Adaptive remeshing methods penalize the elements where the error is
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considered big, dividing them in smaller elements. On the other hand, if
the estimation of the error is small in an element, then this element is made
bigger in the next iteration. Since, essentially our estimation of the error is
related to the value of the delta-v that we must implement, this method tends
to increase the length of the elements which have small delta-v associated
and tends to decrease the length of the elements which have big delta-v
associated. We note that, in fact, the idea is similar to some parts of our
FEFF-DV methodology.

3.3.1 Error estimates

In adaptive remeshing techniques, for each element, the associated error is
computed by comparison of two gradients. The one obtained with the solu-
tion given by finite element interpolation (the estimated gradient from the
finite element interpolation) and the one obtained by integration of the equa-
tions of motion (the exact gradient). This is an ordinary procedure that gives
us an error estimation for each element, which is suitable in order to decide
if our the mesh is good enough.

In our case, the computation of these gradients is simpler than in the
general finite element implementations because our elements are in dimension
one and in fact corresponds to the velocities. Since we work with linear
elements, the estimated gradient is constant on each element. In order to
compute the exact gradient, we integrate the equations of motion, x = A(t)x
(equation 2.4) on each element (from t; to t;.1) and we obtain a gradient
function for each of the elements, that now is not constant.

Let us define v; as the estimated gradient obtained by means of the
approximated solution of the finite element method. This gradient is con-
stant on each element and has only one component because our elements
are one-dimensional. Let us denote v, the gradient obtained integrating the
equations. The error estimation in the element QF is defined as a norm of
the difference between these two gradients:

/ M v va) - (v1 — v2)dt) P )

T (
ty

computed by means of numerical quadrature.

Acceptability criteria
Once we have an estimation of the errors, we need to decide whether the
mesh is good enough for our purposes. We define the global error of the

mesh, ||e|| as the modulus of the vector containing all the elemental errors,
this is,
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lell = /e +ed+...+ ¢, (3.4)

Essentially to decide whether the current mesh is good enough or not is
based in two different criteria [5]: to compare the modulus of the errors with
the modulus of the obtained solution or to compare it with the length of the
elements.

e Comparison with the value of the integrated solution: The first
criterion consists on comparing the modulus of the elemental errors
with the total gradient of the solution,

T
4] :/ vadt.
0

lell < vllull,

We accept the mesh when

where v is the acceptability criteria. This value is usually chosen as
0.05 in the literature.

e Comparison with the length of the elements: We can impose a
criterion to compare the total error with the length of the elements in
the mesh. Since the elements have different lengths, we consider h, the
length of the longest element in the mesh (also known as the diameter
of the mesh) and we impose the acceptability criterion:

lel] < ah™,

where m is a constant that depends on the functions of the problem,
but it is related with the maximum degree of the polynomials included
in the interpolation. In second-order elliptic problems, m is usually
taken as the degree of the interpolating polynomials. In our case, we
take m = 1. a depends on the distortion of the elements, and it is
proportional to a measure of the m + 1 derivatives of function. In our
case, « is proportional to the second derivative of the function and we
have considered it 1.

We note that we must deal with different types of reconfigurations. One
of them is the reconfiguration of a formation where the optimal solution could
be a bang-bang control. In this case, we want to end up with a solution with
a big h. Another class of reconfigurations are the ones that end up with a
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low-thrust trajectory. In this case, the length of the elements will be very
small.

In the reconfigurations that end up in a bang-bang control, we expect that
our final mesh would be a mesh with only one element, with a length equal to
the reconfiguration time. This final mesh, using the criterion of comparison
with the length of the elements, would accept errors proportional to the
reconfiguration time. To avoid this fact, we use the first criterion.

3.3.2 The obtainment of a new mesh

In the literature we can find different methods for remeshing when the error
is bigger than a given threshold. In all of them, the objective is to obtain a
new length for the elements. The calculus of the new length depends on the
elemental error e; of the elements.

In all this section, we denote by ||e|| the modulus of the error as defined in
equation (3.4) for a given spacecraft, and e the estimated error in the k-th
element (3.3). M is the number of elements of the mesh for the spacecraft. To
differentiate the old or previous mesh (the one on which we have just applied
the finite element method) and the new one (the mesh that we recompute
depending on the errors and that will be used in the next iteration of the
finite element method), the parameters of the new mesh are labeled with a
hat.

e Li and Bettess remeshing strategy: The Li and Bettess strategy
[19] is based on the idea that the error distribution on an optimal mesh

is uniform,
lex[| = vllull/V M,

where v is again the acceptability criteria. This method consists on
finding the new length of the elements using the number of elements of
the new mesh, M. Let us denote d the dimension of the problem and
m the maximum degree of the polynomials used in the interpolation.
Then, according to Li and Bettess, the number of elements needed by
the new mesh is,

M (m+d/2)/m
M = (v|fal[)~™ (Z ||6k!|d/(m+d/2)> :

k=1

Working with linear elements (m = 1) in dimension one (d = 1), as is
the case of our study, the recommended number of elements of the new
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mesh is
v 3/2
M = (v|fal])™ (Z !IekH2/3> :
k=1

Once we have the estimation of the number of elements, we can find
the length of the new elements:

3 1/m+d/2
()"
V M ||ex|]

that in our case, turns out to be

~ 3/2
V M|lex]]

Zienkiewicz and Zhu remeshing strategy: The Zienkiewicz and
Zhu remeshing strategy [37] can be seen as a simplified version of the
Li and Bettess strategy. In this case, the new mesh is optimal if the
error distribution of the new mesh is uniform referred to the elements
of the old mesh. With this criterion, the length of the new elements

are: 1
o (AL
e o
Vi[le]

ol
VMl

Onate and Bugeda remeshing strategy: The idea of this strategy
is to refine elements according to the density of errors: we consider that
a mesh is optimal if the square of the error per unit area or volume is the
same over the whole mesh. We note that, working with one dimensional
problems, this area is equal to the length of the elements. We denote
the area of the elements, Aj and the total area A = > Ai. Then, the
length for the new elements is then computed with

1/m
P 71 T
© \lesllar )
We note that with one dimensional problems (A; = hy and A = T')
and using linear elements (m = 1), the new length can be written as

. vl \ 2
hi = ——— | h2.
: (HekuTlﬂ) :

SO in our case,
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Like in the choice of the acceptability criterion, we do not use the Onate
and Bugeda strategy, because in reconfigurations that end up in a bang-bang
solutions, there is only one element, with a length equal to the reconfiguration
time. In our case, the other two criteria give similar results as we will see in
following sections, but we finally recommend the Li and Bettess strategy.

Remeshing in dimension one

The theory based on adaptive remeshing methods (see [5]) is developed for
meshes in two or three dimensions. However in our case, the elements are in
time, and the remeshing method only needs to assign a new length for the
different elements of the mesh.

For our procedure FEFF-A, we have considered the Li and Bettess remesh-
ing strategy (see [19]), applied to dimension one. We accept the mesh if

llell < vllal],

with v the acceptability criteria for the algorithm.
Then the number of elements of the new mesh (M) is then computed by:

= (vllull)” lee [122)7,

and, for each element, the new length is:

no— v||ull )2/3hk-

3.4 Some simulations using remeshing tech-
niques

In the previous sections, we have considered two different techniques with the
purpose of finding a mesh that is optimal in some sense. The first technique,
FEFF-DV, is developed taking into account the fact that we need meshes
where the computation of derivatives be not ill conditioned. The second
technique, FEFF-A, comes from the general theory of the finite element
method.

Now we are going to check both techniques in different kinds of recon-
figurations we are dealing with. These reconfigurations essentially can be
reduced to two different classes: cases where there are no collision hazards
(where we obtain bang-bang solutions) or cases with collision risk (where we
can obtain low-thrust solutions).
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3.4.1 Cases converging to bang-bang solutions

When there are no collision hazards with a rectilinear trajectory, as we
pointed out, we know that the optimum trajectory for each spacecraft is
a bang-bang control. This is a critical case for the methodology, since after a
first iteration of FEFF-DV or FEFF-A, all the delta-v in the interior nodes of
the mesh must be zero, which is the case that gives ill-conditioned problems.

Our objective is to check if FEFF-DV and FEFF-A converge to the bang-
bang control, and which are the differences between these methods.

In this kind of problems, as there are no collision hazards, the trajec-
tory for each spacecraft is independent from the others. For this reason, we
can reduce the computations to obtain the optimal trajectory for a single
spacecraft.

In order to exemplify the procedure, we consider a single spacecraft. The
reference frame for the equations (2.5) is aligned with respect to the RTBP
reference frame, but the origin is located on the nominal point of the base
Halo orbit (when ¢t = 0 this point corresponds to the "upper” position of
the Halo orbit, this is when it crosses the RTBP plane Y = 0 with Z > 0).
The initial condition for this example is taken 100 meters far from the base
nominal Halo orbit in the X direction, and the goal is to transfer it to a
symmetrical position with respect to the Halo orbit in 8 hours. This is to
100 meters in the opposite X direction doing a parallel shift of 200 meters
for a formation (see figure 3.7).

For this particular case we obtain as a solution a bang-bang control with
maneuvers of 0.69 cm/s at departure and arrival.

Both procedures must deal with the same problem: the initial seed for all
of them is obtained minimizing the functional (3.2). The optimal trajectory
for this case is not a bang-bang solution (see figure 3.8).

We use this initial seed, with a mesh of 20 elements of the same length,
to exemplify the different methodologies.

Solution obtained by the procedure FEFF-DV

The procedure FEFF-DV2, which uses functional (3.2) gives us a tra-
jectory with the delta-v profile of figure 3.8. This is a typical profile in
reconfigurations without collision risk.

We note that this initial seed has only a maneuver near zero (the one at
time 4 hours). Test I detects it and the corresponding node is removed by
procedure I (only this node was eliminated in this step). Then the result
is sent to the minimization procedure of J; (3.1) and we obtain the delta-v
profile displayed in the first row of figure 3.9 which is already rather close
to the objective. In the following four iterations all the interior nodes are
suppressed by procedure III delivering this way the bang-bang control.
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Figure 3.7: Reconfiguration of a ”formation” with a single spacecraft to exemplify
the reconfiguration of formations with no collision risk: the spacecraft starts in a
position 100 m far from the Halo orbit and ends up in the symmetrical position
with respect to the orbit (parallel transfer).
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Figure 3.8: Delta-v obtained with the minimization of the delta-v square of func-
tional (3.2) in the case of no collision risk. The optimal trajectory is not a bang-
bang trajectory however the methodologies FEFF-DV and FEFF-A must converge
to a bang-bang solution with this initial seed.
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Figure 3.9: Profile of the delta-v obtained in the first four iterations of FEFF-DV
in the case of 10 elements. On the left-hand plots, there are the profiles for all of
the nodes, where we note that the profile is very close to a bang-bang control. On
the right-hand plots, there is a zoom of the delta-v for the interior nodes. We note
that on each iteration, two nodes are suppressed by procedure III.
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Elements | 10-15 | 16-19 | 20-26 | 27-34 | 35-42
Iterations 3 4 5 6 7
Elements | 43-52 | 53-61 | 62-74 | 75-88 | 89-110
Iterations 8 9 10 11 12

Table 3.1: Number of iterations necessary to obtain the bang-bang solution depending
on the number of nodes of the initial mesh (with elements of the same length), using
Vi, = 1073, Case example of parallel shift.

Vin 1074 [ 5x102 [ 2x102 1072 [ 5x 1072 | 2x 1072 | 107!
It. (10 elem) | 9 7 5 3 3 2 2
It. (20 elem) | 18 12 8 5 5 4 2
It. (50 elem) | 28 19 13 9 6 5 3

Table 3.2: Number of iterations necessary to obtain the bang-bang solution depending
on the threshold V/,,, using an initial mesh of 10, 20 and 50 elements. Case of parallel
shift.

We have to say that the results obtained with this simple example are
the same ones that we obtain using other examples ending in bang bang
controls: at first iteration, procedure FEFF-DV suppress one node. Then,
on each iteration, some nodes are removed via procedures I or III. After a
few iterations, we obtain the bang-bang trajectory. In table 3.1 we present
the number of iterations required to obtain the bang-bang solution for this
problem, considering different initial meshes.

We can also study how the different thresholds affect to the number of
iterations we need to obtain the optimal trajectory. In table 3.2 we show
the number of iterations required to obtain the bang-bang solution with an
initial mesh of 20 elements, for different V,,. As expected, we can see that
when V), is bigger, the number of iterations is lower, since there are more
nodes suppressed by procedure I.

Solution using FEFF-A

Again we consider the problem we have treated using FEFF-DV: the
transfer of a spacecraft from a position 100 m far from a Halo orbit to the
symmetrical position with respect to the Halo orbit in 8 hours (see figure
3.7).

We know that the optimal solution is a bang-bang trajectory, with an
initial and final delta-v of 0.69 cm/s, and we start with the solution that
we obtain with procedure FEFF-DV2, which uses the penalty function (3.2),
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v Elements it. 1 | Iterations
0.0001 3008 Fail
0.001 301 Fail
0.002 149 25
0.005 61 16
0.01 31 14
0.02 15 10
0.03 11 6
0.04 7 4
0.05 6 4
0.06 4 2
0.07 4 Fail

Table 3.3: Number of iterations necessary to obtain the bang-bang solution depending
on v, using an initial mesh of 20 elements and the Li and Bettess remeshing strategy.
We have indicated by "fail” the cases where the procedure does not converge.

and is a trajectory with the delta-v profile of figure 3.8.

Since we are minimizing the same functional, and we must deal with
the same ill-conditioned problems, we expect to obtain similar results to the
previous case. The difference is now the remeshing procedure.

We have some different parameters and criteria to obtain a new mesh
in our iterative procedure. In the first scenario, we use the Li and Bettess
remeshing strategy and consider different values for the parameter v. We
note that this parameter v does not only appear in the acceptability criteria.
It is also used to obtain the new mesh in the procedure of Li and Bettess.
If we take a small value of v, we can end up with a mesh with more nodes
than wanted. In the other way around, if we use a big v, we could end up
accepting some meshes with big errors. In table 3.3, we have a summary
of the results obtained with different values of parameter v, the number of
iterations needed to reach the bang-bang solution and the number of elements
after the first iteration of the methodology.

We note that when v is very small, there is no convergence. In this case,
the number of nodes does not converge to 2. When v is big, there is also no
convergence: the final mesh contains more elements than expected, because it
passes the acceptability criteria before converging to the bang-bang control.

The best values for v are inside the range [0.04,0.06]. With values larger
than 0.06, the algorithm does not converge.

From now on we take v = 0.05 and study which one of the remeshing
strategies converge faster. In table 3.4, we present the number of iterations
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N |10 (20|30 ]40]|50 60|70 |80]|90 | 100
LB| 3 |4 |6 101721 |32|41 |54 63
Z7Z | 3 | 416 | 1118|2331 44|56 | 66

Table 3.4: Number of iterations necessary to obtain the bang-bang solution with
Li and Bettess (LB) and Zienkiewicz Zhu (ZZ) depending on the initial number of
elements.

70
LB ——
7z

35

Number of iterations

L
0 50 100
Number of initial elements

Figure 3.10: Number of iterations necessary to obtain the bang-bang solution
depending on the initial number of elements, using the Li and Bettess (LB) and
the Zienkiewicz Zhu (ZZ) strategies.

to obtain the bang-bang solution, depending on the initial number of ele-
ments and the strategy. We can see than the Li and Bettess strategy and
Zienkiewicz and Zhu are very similar in the number of iterations, but Li and
Bettess seems better. In both cases (see figure 3.10) the number of iterations
to reach the bang-bang trajectory seems exponential depending on the initial
number of elements.

In conclusion, we have seen than with a problem without collision risk,
the adaptive remeshing converges to the bang-bang solution. The value of
v must be in the range [0.4,0.6], and the best remeshing strategy is Li and
Bettess.

3.4.2 Cases converging to low-thrust solutions

In reconfigurations where bang-bang trajectories for all spacecraft end up
with collisions, FEFF obtains trajectories which of course are different from
bang-bang. The objective of this section is to study whether these trajectories
could tend to low thrust arcs.
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Figure 3.11: Example of reconfiguration with collision risk: the switch of two
pairs of spacecraft of the TPF formation.

We start applying the procedures FEFF-DV and FEFF-A to a particular
reconfiguration, to see the general behavior of the methodologies.

For this case we assume that the satellites are initially contained in the
local plane Z = 0, with the interferometry baseline aligned on the X axis.
We simulate the switch between two pairs of satellites in the baseline: each
inner satellite changes its location with the outer satellite which is closest
in position (this is inner satellites are maneuvered to attain outer positions
and vice-versa as shown in figure 3.11). Again we consider 8 hours for the
reconfiguration. The process of switching positions has a collision risk and
simple bang-bang controls are no longer valid.

Solution by means of procedure FEFF-DV

We start applying the methodology FEFF-DV using an initial mesh of
10 elements. The delta-v profile after a first iteration is the one plotted in
figure 3.12.

Now, procedures I and III do not suppress any nodes, and procedure 11
does not add more nodes either. So, the methodology FEFF-DV gives this
trajectory as the optimal one.

In the cases where the solution is not a bang-bang control, the method-
ology can be directed to compute the optimal value using low thrust control
which is the limit case. For this purpose we just need to increase the number
of elements in the time mesh, maintaining for instance an even distribution.
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Figure 3.12: Delta-v (in cm/s) of the switch between inner and outer satellites of
the TPF formation in 8 hours. FEFF-DV has been used starting with 10 elements.
In each row, there are the delta-v profiles of a pair of inner-outer spacecraft.
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Figure 3.13: Delta-v divided by the element length for the case example II, using
10, 20, 50 and 100 elements. The results tend to a low-thrust profile.

In this example, we do the computations with 10, 20, 50 and 100 elements
(also it is much more efficient in term of CPU time to increase gradually the
number of elements than computing at once the low thrust control solution
with a big number of them). In figure 3.13 we plot the delta-v divided by
the element length (acceleration thrust) to see the convergence towards the
low-thrust optimal profile. Additionally, the accumulated delta-v is shown
in figure 3.14. We note that a pair of spacecraft involved in a switch do not
have the same delta-v profile, but at the end, the amount of delta-v is sim-
ilar. In figure 3.14 we also plot the trajectories for the spacecraft using 100
elements. We observe that switchings are performed each one in a different
plane. Due to the symmetry of the problem, the switching plane changes
with small changes in the initial position since in an ideal situation all the
planes have associated the same cost.

Solution by means of procedure FEFF-A
We consider again the problem of switching two pairs of spacecraft of the
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Figure 3.14: In the left-hand plot, delta-v accumulated (cm/s) for each satellite
in the TPF reconfiguration of example II. Computations have been done using
100 elements for each trajectory. In the right-hand plot, the trajectories for the
spacecraft.
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TPF formation, but now applying the adaptive remeshing methodology. As
in the case of the bang-bang solution, we want to study which parameter v
is better and the best remeshing strategy.

As in the previous case, we start with the Li and Bettess remeshing
procedure and we consider different values for the parameter v. Similar
reasoning as in the previous section is valid here: using a small v, we can
end up with a mesh with many elements. For example, taking v = 0.0005, in
the first iteration we have around 1000 elements. We do not only have the
problem of having very small elements; a minimization problem with 1000
elements may not be not desirable. And again, if we take a big v, we can
end up with a mesh with big errors, or a mesh with only a few elements.

In table 3.5, we display a summary of the results obtained for different
values of the parameter v, the number of iterations until the methodology
converges (Iter), the number of elements in the first iteration (N;) and the
number of elements in the last iterate (Ng).

As in the previous case, when v is small, the number of elements is big,
and the computation of the optimum is very expensive. Also, taking v big,
the number of elements may not be enough.

We note that the best values are in the range [0.005,0.05]. With val-
ues larger than 0.05, the number of elements is very small and with values
smaller than 0.005 the number of elements makes the computation much
more expensive.

Since the value v = 0.05 is appropriated for the two cases, we use this v
for our computations.

So, from now on we fix ¥ = 0.05 and study which of the remeshing
strategies converge faster. In table 3.6 we present the number of iterations
to obtain the final solution, depending on the initial number of nodes and the
strategy. In this case, the two strategies give the same number of iterations.

In conclusion, we have seen than with a problem with collision risk, the
adaptive remeshing converges to a solution, depending on the value of v.
Essentially, this value must be in the range [0.005,0.05], and the remeshing
strategies of Li and Bettess and Zienkiewicz Zhu give similar results.

Considerations about the value of v

With the example of the previous section, we have estimated that the
value of ¥ must be in the range [0.005,0.05]. This range gives us an idea of
the value of v we must choose.

We have applied the procedure to a test bench of 25 reconfigurations
which include switches between spacecraft located at opposite vertices of
polygons (6), switches in the TPF formation (9) and parallel shifts (10) of
different size with a number of spacecraft from 3 to 10. 10 of the reconfigu-
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v Ny | Iter | N
0.0001 | 3504 | Fail
0.001 | 350 | 10 | 232
0.002 | 175 8 | 202
0.005 70 8 | 171
0.01 34 7 89
0.02 18 6 45
0.03 12 4 33
0.04 9 3 27
0.05 6 3 15
0.06 6 3 9
0.07 5 2 7
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Table 3.5: Number of iterations and elements obtained with the switching example
of TPF, depending on v. Ej are the number of elements at first iteration, and Er

the number of elements in the last iteration.

N | 10]20| 30|40 |50 |60 |70 80|90 | 100
IB| 3|3 |4 |4 |5 |5 |55 |5]| 6
Z72 | 3|3 |44 |55 5|5 5] 6

Table 3.6: Number of iterations necessary to obtain the switching trajectory depend-

ing on the initial number of elements and the remeshing strategy (with v = 0.05).
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v 0.005 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.055 | 0.06
Iterations | 10.2 | 84 | 7.1 | 42 | 3.7 | 3.2 | 4.3 5.2

Table 3.7: Mean of the number of iterations as a function of v for the 25 test bench
reconfigurations.

rations are converging to a bang-bang solution, the other 15 reconfigurations
are converging to low-thrust. We have applied the methodology using diffe-
rent values of v and we have computed the mean of the number of iterations
of the the adaptive process necessary to converge. The results can be seen
in table 3.7.



Chapter 4

Reconfigurations in the RTBP
and JPL-ephemeris models

In previous chapters, we have developed a methodology to reconfigure space-
craft formations. This methodology gives us a trajectory for each spacecraft
in the linearized model about the nonlinear orbit, and the maneuvers neces-
sary on each node to achieve prescribed states.

Since we work with small formations in size when compared to the Halo
orbit, the linearized equations give a good approximation for the nonlinear
model. The object of this chapter is to study how the truncated nonlinear
terms as well as other perturbations affect to the obtained trajectory, and
the corrections that must be done to the computed and executed maneuvers
in order to reach the same goal. The study of the influence of these new
nonlinearities is done in two steps: the first one, taking into account the full
RTBP equations, and the second one using JPL-ephemeris.

4.1 Nonlinear models and delta-v corrections

With the FEFF-DV and FEFF-A methodologies, we obtain some trajecto-
ries, characterized by the spacecraft positions and the delta-v that must be
applied on each node of the mesh, in order to follow the given paths. Now
we are going to take into account also that the spacecraft will not follow
accurately the nominal trajectory we have obtained, due to several errors.
We will be dealing and considering two kind of errors that need correction:

e Truncation error: using the procedures FEFF-DV or FEFF-A, we
have obtained the delta-v necessary to follow a nominal trajectory com-
puted by means of linearized equations about a nonlinear orbit. When
adding the truncated nonlinear terms, and considering the output of

87



88 RECONFIGURATIONS IN RTBP AND JPL-EPH

the procedures, we have a reminder error due to the influence of these
terms.

e Execution error: this error is due to the accuracy in the execution
of maneuvers. The thrusters that produce the control of the spacecraft
can introduce deviations with respect to the nominal delta-v. This error
can be also considered in two parts, taking into account the direction
and the modulus.

A main objective is then to correct both truncation and execution errors.
For this purpose, we consider first the RI'BP and we study the truncation er-
ror produced by the nonlinear part of the RTBP that was previously skipped.
In a second step, we use the JPL-ephemeris to study the influence of the trun-
cation error. Finally, we introduce a randomized deviation to the nominal
maneuvers, to simulate the execution errors, and to study the influence of
both truncation and execution errors at the same time.

4.1.1 Corrective maneuvers inside the elements

Let us assume that we have computed a reconfiguration trajectory using
FEFF-DV or FEFF-A methodologies. These methodologies give us nodal
positions for each spacecraft and the delta-v that must be applied at these
positions using the linearized model.

Using the linear equations of motion about the Halo orbit, and without
any execution error assumption, the result of applying the corresponding
maneuver on a given node is that the spacecraft reaches the desired state
(position and velocity) in the following one. However, we consider now some
truncation and execution errors that were not previously taken into account,
and the position and velocity we are going to obtain in the following node is
no longer the one assigned by FEFF-DV or FEFF-A.

The corrective maneuvers will be computed using a strategy similar to
[13].  Our nominal path, the one that the spacecraft must follow, is the
trajectory obtained with the finite element methodology. When we use the
full RTBP or the JPL models, or when we add the execution error, we obtain
a trajectory differing from the nominal path, we call it the true state. In each
element, the difference between the nominal path and the true state will be
corrected by the addition of some corrective maneuvers (see figure 4.1).

The correction of the trajectory that we consider uses a fixed num-
ber of small maneuvers (the corrective maneuvers) inside the element QF,
A, ADL, ..., ADP, which will be applied at some given times tg, 11, ..., %,.
Eventually, these maneuvers should be applied as soon as possible in order
to avoid the inherent exponential grow of errors with respect to time.
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Figure 4.1: Corrective maneuvers inside the element QF (from node & to node k+1).

The corrective maneuvers are computed in order to satisfy that the state
of spacecraft at node k 4 1 is the one of the nominal path.

The maneuvers A\Afi are obtained solving an equation that in the case of
two maneuvers is,

Brrcarae | Baoe (364 ( or ) ) ( ane )| =
(1—a)At aAt | Xk A‘A/]i A{/i = Xk+1,

where x; is the initial state, x;,1 the final state and ¢, is the time-t flow of
the RTBP. In case of doing more maneuvers, the equation is constructed in
a similar way.

The delta-v are also chosen to minimize the functional:

n; ]
> 27Ad”,
=0

where the weights 277 grant someway that the corrective delta-v decay at
each step approximately by a factor of two.

4.2 Correction of truncation errors using full
RTBP

In previous chapters we considered a Halo orbit, and the linearized equations
about this non-linear orbit. Now we are going to consider trajectories in the
full RTBP equations for each spacecraft in the formation.

Let us focus on a given reconfiguration problem. Methodologies FEFF-
DV and FEFF-A work with a system of coordinates centered in a Halo orbit.
In order to apply the usual RTBP, we change to the RTBP coordinates (see
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section 2.1.1). The change of coordinates consists essentially on a translation
from the Halo orbit to the origin of the synodic system.

After performing computations, we observe that the corrective maneu-
vers in this case are very small when compared with the nominal maneuvers
obtained by the finite element methodologies. In the following tables, we
present some results obtained by means of this methodology. For the simu-
lations, we take into account different parameters and indicators:

e Awvy: the total delta-v (the total amount considering all the maneuvers
for all the spacecraft in the formation) obtained using the finite element
method. This is the delta-v that we obtained with the methodology of
previous chapters and measures the nominal cost of the reconfiguration.

e n: the number of corrective maneuvers we perform in each element.

® AVUrRpmaz: the maximum of the modulus of the corrective maneuvers.

(AD/1) [ Rmaz: the maximum of the modulus of the corrective maneuvers
divided by the length of the element.

Avrg: the sum of all the corrective maneuvers performed in the RTBP
model.

e %: percentage of Adrr with respect to Avy,.

We first compute some examples using reconfigurations that end up in a
bang-bang solution. The results are displayed in tables 4.1, 4.2 and 4.3. The
different results in the tables are obtained by changing the time span where
the corrective maneuvers are performed. In table 4.1, they are done in half
the length of the element; in table 4.2, the corrective maneuvers are done in
the first third of the time span; and in table 4.3 they are done in the first
quarter of the time span. We note that in this case, since the solution of the
finite element method only has two nodes, n is the total number of corrective
maneuvers in all the reconfiguration process. As in previous chapters, for
this kind of scenarios we use a single spacecraft and we transfer it from its
current position to the symmetrical one with respect to the Halo orbit (figure
3.7). In the first example, the initial position and the final one are 200 meters
apart and the reconfiguration time considered is 8 hours. The total delta-v
needed in the linear model is 0.69 cm/s. In the second example, the distance
is still 200 meters, but the reconfiguration time is 24 hours. In the third
example, the distance is 400 meters and the reconfiguration time is 8 hours.

In tables 4.4, 4.5 and 4.6 we display some results for low thrust examples.
We note that in the case of low thrust, the length of the elements is very
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A"UL n AQA]LRmax A’CAJLR %

0.69 | 3]28x1072|6.1x1073]0.88
0.69 | 4]22x1073|58x1073|0.84
0.69 | 5]22x1073|5.6x 1073 | 0.80
0.69 | 6|1.9x1072|56x 1072 |0.80
0.23 | 3]33x107%]6.9x 1072 | 3.01
023 [ 4]25x107% | 6.4x1073 | 2.77
023 5]22x1072|6.1x1073 | 2.65
0.23 |6 1.9x1073|58x 1073 | 2.53
2.8 |3 ]47x107%]92x10720.33
28 |4 [36x1072|83x10730.30
2.8 | 5]28x1073|7.5x1072|0.27
28 | 6]25x107%|72x1073|0.26
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Table 4.1: Corrective maneuvers in the RTBP for the bang-bang control scenario
(delta-v in cm/s). The first group corresponds to a parallel shift of 200 meters in 8
hours of reconfiguration time. The second one, 200 meters in 24 hours and the third
one, 400 meters in 8 hours time. Corrective maneuvers are performed in the first half

of the elements.

A"UL n A@LRmax A"[JLR %

0.69 | 3]27x1073]6.3x 1072 |0.91
0.69 | 4]24x1072|59x1073|0.86
0.69 | 5]23x1073|55x 1073 | 0.80
0.69 | 6 | 1.8 x1073 | 5.4 x 1073 | 0.78
023 3 ]3.5x1073|6.7x 1073 | 2.91
023 [ 4]24x107%]6.5x107% | 2.83
023 5]21x1072|6.2x 1073 | 2.70
02316 ]1.9x1072|57x1073 | 248
2.8 | 3]46x1073]93x10720.32
2.8 | 4]36x1073|84x10720.30
28 | 5]29x1073 | 7.7x1072|0.28
28 | 6]27x1073|7.3x10720.26

Table 4.2: Corrective maneuvers in the RTBP for the same bang-bang control scenario
as in table 4.1 (delta-v in cm/s). Here corrective maneuvers are performed in the first
third of the elements.
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AUL n AﬁLRmax A?A)LR %
0.69 | 327x1073]6.1x1073|0.88
0.69 | 423x1073|59x1073|0.86
0.69 [ 5]21x107%|56x 1072 | 0.81
0.69 | 6 | 1.8 x 1073 | 5.5 x 1073 | 0.80
023 [ 3]32x1072%|6.8x 1072 | 2.96
0.23 | 4]27x1073|6.5x 1073 | 2.83
023 |5]22x1073|6.3x1073|2.74
02316 ]1.9x1073|58x 1073 | 2.52
2.8 [ 3]49%x107%]92x107°|0.33
2.8 | 4]36x1073|84x10720.30
28 | 5[25x1073|7.6x1073]0.27
28 | 6(24x1073|7.1x1073]0.25

Table 4.3: Corrective maneuvers in the RTBP for the bang-bang control scenario as
in table 4.1 (delta-v in cm/s). Here corrective maneuvers are performed in the first
quarter of the elements.

small, and thus the corrective maneuvers are also very small. In this case we
do not display the maximum of these delta-v (that is very small and tends
to zero with the size of the element); we display instead the maximum of the
delta-v divided by the length of the element (i. e., the acceleration).

As in the case of bang-bang trajectories we also note that the total cost
of corrective maneuvers is always of the same order and essentially does not
depend on the length of the corrective maneuvers time span within certain
ranges. In the following studies we fix this parameter equal to half the length
of the element.

4.3 Corrective maneuvers for truncation er-
rors using JPL ephemeris

Once we have computed the delta-v corrections necessary to follow the nom-
inal path in the full RTBP, we apply the same methodology to obtain the
corrections in a more complete model: the JPL ephemeris. As a result of
the previous section, we have all the positions and delta-v in RTBP synod-
ical coordinates. Now, before performing the computations with the JPL
ephemeris, we must change the system of coordinates to the inertial ones of
these ephemeris.

The change of coordinates consists on changing time scale and distance.
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AUL n (Aﬁ/Z)LRmax A@LR %

063 ]3| 65x10% | 6.9x107% | 1.10
0634 62x103 | 6.7x1073 | 1.06
063 5| 47x1073 | 6.7x 1073 | 1.06
063 6| 43x1073 | 6.1x1073 |0.97
234 [3] 96x103 [1.19x 1072 0.51
234 4| 42x1073 | 1.03x 1072 | 0.44
234 5| 3.3x107% | 9.7x107% |0.42
234 16| 3.0x107% | 86x107% |0.37
1.26 | 3| 6.7x107% | 9.7 x 107 | 0.77
126 | 4] 53x1073 | 9.2x1072 | 0.73
1.26 | 5| 49x1072 | 83x1072 | 0.66
126 | 6| 3.1x10°°% | 7.5 x 107 | 0.60
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Table 4.4: Corrective maneuvers in the RTBP for the low thrust scenarios (delta-v in

cm/s). Corrective maneuvers are performed in the first half of the element.

AUL n (Aﬁ/Z)LRmax A@LR %

0.63 3] 63x1072 | 6.9x1072 | 1.10
063 4] 62x1073 6.8 x 1073 | 1.08
063 |5| 4.8x1073 6.7 x 1073 | 1.06
063|6| 4.1x1073 6.2 x 1072 | 0.98
234 (3] 95x107% | 1.21x107% | 0.52
234 4| 42x107% |1.01x1072]0.43
234 5| 32x1073 9.5 x 1073 | 0.41
234 16| 29x1073 8.6 x 1073 | 0.37
1.26 | 3| 6.5x 1073 9.8 x 1073 | 0.78
1.26 | 4| 54x1073 9.1 x 1073 |0.72
126 | 5| 50x1073 8.5 x 1072 | 0.67
1.26 | 6 | 3.1x1073 7.2 x 1072 | 0.57

Table 4.5: Corrective maneuvers in the RTBP for the low thrust scenarios as in table
4.4 (delta-v in cm/s). Here corrective maneuvers are performed in the first third of

the element.
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AUL n (AQA)/Z)LRmam A@LR %
063[3] 65x102% | 7.1x1073% | 1.13
0634 64x107% | 6.9x107% | 1.10
063|5| 52x107% | 6.8 x1073 | 1.08
0636 46x103 | 6.3x1073 | 1.00
234 (3| 94x107% |[1.23x1072|0.53
234 4| 4.0x107% | 1.11 x1072|0.47
234 |5 | 35x107% | 9.8 x 1072 | 0.42
234 16| 32x1073 | 87x1072 |0.37
1.26 [ 3] 69x107 | 99x107° | 0.79
1.26 | 4| 56x1073 | 9.3 x 1073 | 0.74
1.26 | 5| 49x107* | 85x 107 | 0.67
126 | 6| 34x107% | 7.7x107 | 0.61

Table 4.6: Corrective maneuvers in the RTBP for the low thrust scenarios as in table
4.4 (delta-v in cm/s). Here corrective maneuvers are performed in the first quarter of
the element.

In the RTBP, the period of the primaries is equal to 27, and corresponds to
the sideral period of the chosen primaries. There is also the scaling of the
distance: in the RTBP, the distance between primaries is equal to 1, and
now it must be the physical distance in kilometers.

This change of coordinates can be implemented by means of the trans-
formation defined by (see [12])

R =B+ kCr,

where r are RTBP synodical coordinates and R the JPL ones.

In this change of coordinates, B is a translation vector to put the centroid
of the primaries at the origin in the RTBP reference frame. This vector can
be obtained by means of

m1R1 + m2R2
my + Mo

B =

where m; are the masses of the primaries.

(' is an orthogonal matrix that performs a rotation to keep the primaries
on the z-axis, and k£ is a scaling factor to make the distance between primaries
equal to 1.

We use the model given by the JPL ephemeris (DE403) to obtain the
trajectories of the spacecraft. Since we have done all the computations of
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FEFF-DV and FEFF-A considering the linearized equations, we must correct
for the truncation error. This error can be corrected in two different ways:

e Correcting directly from FEFF-DV or FEFF-A results to JPL ephemeris.

e First making the corrections in the RTBP model, and then correcting
again to obtain the trajectory in JPL ephemeris.

As in the previous section, we present some tables of results obtained
with these procedures. First considering bang-bang scenarios and secondly
in low-thrust scenarios. In all the tables, added to the previous items, we
consider also the following ones:

e AV maz: the maximum of the modulus of the corrective maneuvers
applied, when correcting directly in the JPL model from the solution
of the linearized equations.

o (AD/1)Ljmaz: the maximum of the modulus of the corrective maneuvers
applied divided by the length of the element where we are applying the
corrective maneuver, when correcting directly in the JPL model.

e Ay the total amount of the corrective maneuvers, when correcting
directly in the JPL model.

® AURjmar: the maximum of the modulus of the corrective maneuvers,
when correcting from RTBP equations of motion to JPL ephemeris.

o (AV/l)Rimaz: the maximum of the modulus of the corrective maneu-
vers divided by the length of the element, when correcting from RTBP
equations of motion to JPL ephemeris.

e Avpry: the total amount of the corrective maneuvers, when correcting
from RTBP to JPL ephemeris.

The test examples considered are the same ones of the previous section.
In the case of bang-bang scenarios, the results for the corrective maneuvers
obtained when correcting directly with the JPL ephemeris are presented in
table 4.7. We see that these corrections are slightly bigger than the ones
obtained for the RTBP case although the order of magnitude is the same.

In table 4.8 we present the corrective maneuvers using the two ways con-
sidered: the first delta-v correspond to the corrective maneuvers obtained
when applying the corrections directly to the JPL ephemeris. The sec-
ond ones correspond to the case of the correction using first the RTBP and
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AUL n A@ijax Af}L] %
0.69 | 3]3.3x107°|6.7x 1073 | 0.96
069 | 4]25x1072|6.1x1073]0.88
0.69 [ 5[22x107% |58 x 1072 | 0.84
0.69 | 6 |22x1073|5.6x1073|0.80
023 [ 3]36x1072|75x1073|3.25
0.23 | 4 27x1073|6.7x1073 | 2.89
023 ]5]22x1072|6.4x1073 | 2.77
02316 ]22x1072|6.1x1073 | 2.65
2.8 [ 3]53x1073]9.7x107°0.35
2.8 | 4]39%x1073]92x10720.33
28 | 5]31x107%|81x107?0.29
28 | 6|27x1073|7.5x1073]0.27

Table 4.7: Corrective maneuvers in JPL ephemeris for the bang-bang control scenarios
considered in table 4.1

then correcting the delta-v obtained with the RTBP model using the JPL
ephemeris. We can see that the corrections in this second case are slightly
bigger than when doing the JPL correction directly, although again the order
of magnitude is essentially the same.

We have performed similar studies for low-thrust cases, and again we
encounter with the same result: performing directly the JPL corrections
(table 4.9) we obtain somewhat better results than making first a RTBP
correction and then the JPL correction (table 4.10).

4.4 Corrective maneuvers for the execution
error

Finally, we consider errors produced by the thrusters. We introduce them
inside the maneuvers, scaling by a factor which depends on the percentage
of the error p, and a random variable 7, which follows a normal distribution
N(0,1). The nodal values of delta-v we apply to the spacecraft are then,

Av = Av(1 +np),

where Av are the nominal maneuvers obtained by FEFF-DV or FEFF-A.
In table 4.11, we present some results for a low thrust example, changing

the error of the thrust. For each value of the parameters (p and n), we

calculate the mean for AVrpmaer, AU and % in Avg with 500 simulations.
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Avy, | n | ADpRmae Atrg ADR jmaz Adpy %

069 | 3]28x1072[6.1x1073]26x10"*]8.6x10"*]1.00
069 | 4]22x1072]58x1073|22x107*|6.7x107*|0.92
069 | 5122x103|56x1072]20x107*|6.1x107*1{0.92
069 | 6]1.9x103|56x1073|1.9x107*|3.5x10"*|0.84
0233[33x103[69x102[32x107*|1.4x102]3.61
023 ]4[25x103[64x1073|27x107*|1.1x1072|3.25
0235 [122x103]6.1x1072%]24x107*[87x107*]3.01
023]6]19x1073|58x1073]22x107*|83x107*|2.89
28 |3[47%x103]192x103[35x107*]1.7x10*]0.39
28 | 4[36x1073|83x1072[32x107*|1.1x1073]0.34
28 |5]128x1073|75x1073|25x107*]82x107*|0.30
28 |6]25x103|72x107%|24x107*]6.7%x107*|0.28

Table 4.8: Corrective maneuvers in RTBP and in JPL ephemeris for bang-bang control
scenarios considered in table 4.1

AUL n (Aﬁ/l)LJmax A@LJ %

0.63 3] 91x103 |7.5x1073|1.19
063 ] 4] 85x107% [6.9x1073 ]| 1.10
0.63|5| 7.7x107% | 6.7x 1073 | 1.06
0.63 6| 59x1073 |6.4x1073]1.01
234 3] 99x10% | 1.3x107%2]0.51
234 4| 82x107% | 1.1 x107% | 0.44
234 5| 64x1073 | 1.0 x 1072 | 0.42
234 16| 26x107% |9.2x1073]0.37
1.26 | 3| 83x107% [1.0x107%]0.77
1.26 | 4| 8.0x107% |9.4x1073]0.73
1.26 | 5| 59x1073 | 89x1073 | 0.66
1.26 | 6 | 5.5x 1072 | 81x1072|0.60

Table 4.9: Corrective maneuvers in the JPL model for low thrust scenarios considered

in table 4.4
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AUL n (Aﬁ/l)LRmax A’IAJLR (A@/Z)ijax A@RJ %
063]3] 65x103 [ 69x103 | 21x10% [56x10"*]1.10
0634 62x1073 | 6.7x103 | 1.3x107% |[4.7x107*| 1.06
0635 47x1072 | 6.7x1072 | 1.1 x107% |42x107*]|1.06
063]6| 43x103 | 6.1x1073 | 1.0x1073 |3.7x107*|0.97
234 3| 96x107% [1.19x1072| 1.7x107% |6.5x107* | 0.51
234 4| 42x1073 [1.03x1072| 1.5x107% [57x107*|0.44
234 5] 33x1073 | 9.7x1073 | 1.3x107% |51x107*|0.42
234 16| 3.0x107% | 86x107% | 1.1 x10~% |4.4x10"*|0.37
1.26 | 3] 67x103 | 9.7x103 | 26x 103 |[6.5x 10°*]0.77
1.26 | 4] 53x1073 | 92x1073 | 23x1073 |6.2x107*]0.73
126 | 5] 49%x10™3 | 83x1073 | 1.9x10™3 |6.0x107* | 0.66
126 | 6] 31x10™® | 7.5x107® | 1.5x 1073 |5.7x107* | 0.60

Table 4.10: Corrective maneuvers in the RTBP and then in the JPL ephemeris for
low thrust scenarios in table 4.4

We have not continued after 20% of execution error, because the corrections
would be considered very big and the accuracy of the thruster is too poor.
However, we have performed computations up to this big execution error to
prove the robustness of the methodology.

In figure 4.2 we present the result of a simulation using 25 different ex-
amples of reconfigurations, making 500 simulations for each of the examples.
We fix n = 4, and we study how the percentage of error grows depending on
the parameter p. Essentially we find a linear behavior with respect to this
variable.

4.5 An application to transfers between Halo
orbits

The methodology presented in this work can be applied to many other situ-
ations, that we want to study in the future. For instance, it can be applied
to the reconfiguration of spacecraft in some other scenarios, not only on free
space or about Halo orbits. It particularly may work reconfiguring formations
about the Earth. Also, with appropriated changes, it can be useful for other
kind of problems not involving spacecraft formations, such as monitoring
submarine robots or other kind of vehicles.

The application we consider in this section is the solution of a problem
slightly different from the ones we have considered before. The objective is to
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Avp | %inp | n | AVrpmee | AVr | % in Adg
0.63 0 4 18.7%x107°]0.007 1.06
0.63 2 4125x%x107*|0.011 1.80
0.63 4 413.2x107*10.019 3.08
0.63 6 416.5%x107*1{0.029 4.62
0.63 8 4194 x107*|0.034 5.41
0.63 10 411.3x10731]0.042 6.64
0.63 12 412.0x107%1{0.056 8.84
0.63 14 |[4]25x1073|0.064 10.16
0.63 16 4128x%x107%1{0.070 11.13
0.63 18 413.1x107%1]0.075 11.92
0.63 20 413.6x107°1{0.085 13.42

Table 4.11: Corrective maneuvers for execution error in the JPL model.

14

Percent of corrections
~
T

10

20

99

Percent of engine error

Figure 4.2: Percentage of the corrective maneuvers with respect to the total amount
of nominal delta-v of the reconfiguration, as a function of p, using a test bench of 25
reconfigurations, with n = 4.
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Initial Halo

Transfer orbit

Final Halo

Figure 4.3: Schema of the transfer of a formation of 2 pairs of spacecraft from an
initial Halo orbit to a neighboring one.

transfer a formation of spacecraft from a Halo orbit to the neighborhood of
another Halo orbit about the same libration point. Under the specifications
in project [4], the objective is to transfer the cluster from a initial Halo orbit
to a final Halo orbit in 210 days.

The formations considered for this project have an even number of space-
craft, all of them flying in the initial orbit. The only restriction in the position
of the spacecraft is that they must have the positions grouped in pairs: for
each pair of spacecraft, the position of one of them is free, and the position of
the other must be symmetrical to the first one which respect to the Halo orbit
(by this we mean that the line joining the satellites intersects the Halo orbit
in its middle point). In figure 4.3, we present a sketch of such a formation of
four spacecraft symmetrical in pairs with respect to the Halo orbit.

This problem could also be considered using the Cucker-Smale control
law [26], but including the collision avoidance. In our case, we use the same
methodology we have used in the previous chapters.

We consider the spacecraft subjected to two types of constraints: they
must avoid collisions (restriction that we introduce as in all the previous
computations) and we also impose that during the reconfiguration time the
spacecraft must keep a minimum security distance between them and the
transfer orbit (i.e., we also impose that the spacecraft must be confined inside
a sphere centered on the transfer orbit).

We note that our reconfiguration methodology FEFF-DV2 finds an opti-
mal trajectory in terms of delta-v square expenditure to perform a reconfig-
uration with fixed initial and final states and with prescribed transfer time,
while FEFF-DV and FEFF-A give us the optimal trajectory in terms of the
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Figure 4.4: Delta-v obtained to make a transfer, using 200 elements and with a
random initial and final position.

delta-v. With the transfers we are studying, the transfer time is fixed, but
the initial and final positions are free for half of the spacecraft (except for the
usual requirements of security distances at the initial and final positions).

Initial and final positions for the spacecraft

Since the initial and final positions for the spacecraft are free, our ob-
jective is to find if there are some initial and final positions where the total
amount of delta-v is smaller. For this purpose, we consider a formation of
two spacecraft (in symmetrical positions with respect to the Halo orbit at
initial and final epochs), and we fix an initial (and final) distance of 100 me-
ters between the spacecraft and the transfer orbit, and a sphere of 300 meters
centered in the orbit, which is the sphere where all the spacecraft must be
confined.

Taking 200 elements and random initial and final positions (but always
100 meters away from the orbit), we obtain profiles like the one on figure 4.4.
The mean of total delta-v using 100 different initial and final positions is of
the order of 19 cm/s.

As is stated in [13] privileged locations for this problem can be initial and
final states with zero radial acceleration in the linearized equations about the
Halo orbit.
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These relative states are such that with ¥ = 0 (relative radial velocity
zero) the relative radial acceleration is also zero. They can be obtained using
the linear equations about the orbit:

(+)- () (5) a

where (r, 1) are the states and

0O 0 0|1 0O

0O 0 0] 0 10

ojr\y | 0 0 00 01
(FJ)— I Ao 2o |

£f =20 0

£ 0 00

where f' is the derivative with respect to k of the n-th component of the
vector field.
Taking r = 0, we see that the points with zero acceleration are the ones
which
r=Fr.

Then the radial component of the acceleration will be zero when ¥.r = 0,
this is, for the points which r” Fr = 0. The solution of this equation is a
quadric, that in a Halo orbit represents a set of cones, as can be seen in
figure 4.5.

Let us now consider consider that the initial and final positions are ran-
dom, but constrained to be in a cone. We compute again the cost of the
transfer considering 100 configurations. The mean of the reconfiguration cost
obtained is of 13 c¢cm/s, which is better than the result using pure random
configurations.

We have checked initial and final positions at random places and in the
cones of zero radial acceleration. Computations give the result that the best
position in terms of fuel consumption for the initial and final states is to
chose them on the cones of the initial and final orbit. In figure 4.6 we can
see the delta-v profile of this example, and we see that the profile is similar
to the ones of the random position, but the cost is lower.

Once we have confirmed that the best place to put the spacecraft is on
the cones of zero radial acceleration, we want to know if some positions of the
cones have a smaller fuel consumption than others. We have computed the
total amount of maneuvers depending on the initial position of the cone. As
we can see in figure 4.7, the initial position inside the cone is not important
in terms of the delta-v cost.
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Figure 4.5: Zero relative radial acceleration cones along a Halo orbit.
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Figure 4.6: Delta-v for the transfer of the formation between Halo orbits (in cm/s)

depending on time (days), with the initial and final position located in a cone of zero
radial acceleration.
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Figure 4.7: Delta-v for the transfer to another Halo orbit, changing the initial position
of the spacecraft. The initial position is the angle on the cone and the delta-v are in
m/s.



Conclusions and future work

The aim of this work has been to obtain a methodology to perform the
reconfigurations of a formation of spacecraft, consisting mainly on changing
the relative position of the spacecraft in the formation.

The reconfigurations are considered to be on an Halo orbit about the La-
grangian Sun-Earth+Moon system, or in free space. They are usually small
formations (hundreds of meters of diameter), and the reconfiguration time
is usually small when compared with the period of the Halo (reconfiguration
time ranging from 8 to 24 hours). Due to this fact, the linearized equations
of motion about the orbit are a good approximation of the model, and have
been the primary focus of interest.

In our methodology, the reconfiguration time span of the formation is
divided into elements, suitable to apply the finite element method. The pro-
cedure to obtain the trajectories is via an optimal control problem, where
the variables of the optimization are the position and velocity of the space-
craft on the nodes, and the functional to be minimized is related to the sum
of modulus of the delta-v. Collision avoidance enters in the optimization
problem as restrictions.

The procedure to obtain the trajectory in the linearized model is an it-
erative process. The first step of the process is to obtain a trajectory which
minimizes the square of the modulus of delta-v (procedure FEFF-DV2). This
functional is necessary to avoid ill-conditioned problems that we can find in
the process. Once we have this first approach, we use it as an initial seed to
find the trajectory which minimize the sum of delta-v. The optimal solution
is found again by an iterative process, where the nodes of the finite element
method mesh are changing depending on the trajectory obtained. We have
implemented two methodologies to change the mesh, which have a similar
behavior. The first one (FEFF-DV) is a methodology based on the obtain-
ment of the mesh avoiding ill-conditioned problems and big maneuvers. The
second one (FEFF-A) is the adaptive remeshing.

Once we have the optimal trajectories for the functional which is more
related to fuel consumption, we consider these trajectories for a more real-

105
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istic model, such as full RTBP or JPL ephemeris. We consider also some
errors in the execution of the maneuvers that must be corrected. We have
concluded that the linear approximation is good to obtain nominal recon-
figuration trajectories, since the corrections due to the truncation of the
equations of motion are small for the cases under consideration.

In the future, we will try to adapt this method to formations of spacecraft
flying in orbits about Earth, and the influence of the J; perturbation on the
motion of the formation. We note that when we take the equations about the
Earth, the perturbations due to J; are bigger than the ones that we obtain in
the case of Halo orbits, and the linearized equations may not be good enough
to obtain a first guess of the solution.
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