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Chapter 1

On efficient trading mechanisms

between one seller and n buyers

1.1 Introduction

Myerson and Satterthwaite (1983) (MS henceforth) analyze an environment in which

an agent (agent 0, a potential seller) owns an indivisible object and faces another agent

(agent 1, a potential buyer) who is interested in the object. Each agent has a valuation

of the object which is private information and views the other agent’s valuation as a

random variable. The buyer regards the valuation of the seller, v0, as distributed over

[a0, b0] according to the cumulative function F0; the seller views the valuation of the

buyer, v1, as distributed over [a, b] according to the cumulative function F . The two

probability distributions are independent and admit strictly positive and continuous

densities. The agents are risk-neutral and have quasilinear utilities: the expected payoff

of agent i (i = 0, 1) is viyi+ ti, where yi is his probability to obtain the good and ti is the

expected payment he receives. This implies that the final allocation is ex post Pareto-

efficient if and only if the good is allocated to the agent with the highest valuation and

no money is wasted.

MS assume that gains from trade are possible (that is, a0 < b) but are not common
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knowledge (that is, a < b0) and consider the problem of designing a mechanism having

a Bayes-Nash equilibrium (BNE henceforth) such that (i) each type of the two agents

obtains nonnegative net expected gains from participation given his private information

(interim individual rationality constraints) and (ii) the outcome of this BNE is the ex

post efficient allocation. Corollary 1 in MS is a non-existence result: it proves that,

whatever F and F0 are, if (a0, b0) ∩ (a, b) 9= ∅ (which is true if and only if a < b0 and
a0 < b) then no mechanism has an individually rational BNE resulting in the ex post

efficient allocation.

In several more recent papers some of the above assumptions are modified and some

existence results arise; among others, see Cramton et al. (1987), Matsuo (1989), Gresik

(1991), McAfee (1991) and McAfee and Reny (1992). In Makowski and Mezzetti (1993)

(MM henceforth) the seller faces n ≥ 2 potential buyers; each of them has a valuation

for the good which is distributed over [a, b] according to the cumulative function F and

is independent of the other random variables. MM detect the necessary and sufficient

condition for the existence of an individually rational, incentive compatible and ex post

efficient mechanism - from now on such a kind of mechanism will be referred to as

”efficient mechanism”. When such a condition is satisfied they prove that a modified

second price auction is an efficient mechanism.

Under the assumption that the seller faces n ≥ 2 buyers, section 1.2 proves that

if b0 is not much larger than the expected revenue from a first price auction with no

reserve price then there exists an efficient mechanism which is independent of F0. More

precisely, the mechanism designer does not need to know F0 in order to define such a

mechanism - unlike the ones proposed by MM. This is important because, as Cramton

et al. (1987) emphasize, the planner’s information about the environment may not be

very precise; yet, it is still possible to implement the ex post efficient allocation if only

F is known.

Generally in Bayesian mechanisms the information structure has to be common

knowledge among all agents and the planner. Mookherjee and Reichelstein (1992) argue
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against Bayesian mechanisms because of these informational assumptions which they

consider very demanding. Different beliefs between agents and the mechanism designer

may generate sharp differences between the expected and the actual outcome; this would

occur, for example, in the modified second price auction suggested by MM to implement

the efficient allocation. The mechanism we examine in section 1.2, on the other hand,

requires common knowledge of the function F but not of F0 (when b0 is not too large).

In other words, in order to compute their equilibrium strategies and to be willing to

play the mechanism, the agents are not required to have common beliefs about v0 nor

the planner needs to share their beliefs. This substantially weakens the informational

assumptions, therefore making the implementability of the ex post efficient allocation

less demanding.

An efficient mechanism which does not require the knowledge of F0 is clearly not

as satisfactory as an efficient mechanism which is independent of both F and F0. In a

more general context d’Aspremont and Gérard-Varet (1979) attack this kind of problem

by assuming that each agent privately observes the parameters characterizing his own

preferences while the other agents only know the possible values of these parameters

(the supports). They consider direct mechanisms and prove that requiring that truthful

revelation is an equilibrium for any profile of parameters (which means, for any game

that may arise) is equivalent to require that truthful revelation is a weakly dominant

strategy for every profile of parameters. Furthermore, their theorem 2(b) [which follows

from theorem 3 in Green and Laffont (1977)] can be invoked to establish that, in our

setting, any mechanism allocating the good to the highest valuation agent and such

that truthful revelation is a weakly dominant strategy in any game which may arise

is a Groves mechanism.1 However, no Groves mechanism satisfies the ex post budget

balance condition in our environment, while the mechanism which is described in section

1.2 does so and also satisfies the interim individual rationality constraints [d’Aspremont

1See section 23.C in Mas-Colell et al. (1995) for an introduction to Groves mechanisms.

5



and Gérard-Varet (1979) do not impose such constraints].2

In section 1.3 we show that a simple multi-unit extension displays similar properties

to the one-unit model. In section 1.4, instead, we inquire whether efficient mechanisms

exist in a partially public good environment. For a public good an inefficiency result

similar to the Myerson-Satterthwaite theorem holds: if gains from trade are uncertain

then no efficient mechanism exists.3 We show that in our partially public good setting

such a result is isolated: if the good is not perfectly public then the existence of effi-

cient mechanisms cannot be ruled out just because gains from trade are not common

knowledge; rather, it depends on the environment parameters: probability distributions,

number of agents and the degree of ”privateness” of the good.

1.2 An efficient mechanism which is independent of

F0

1.2.1 Preferences, information and existence of efficient mech-

anisms

A seller owns an indivisible good to which he attaches valuation v0. He faces n ≥ 2

potential buyers and each buyer i, i = 1, . . . , n, has a valuation vi for the good. Each

agent’s valuation is private information and it is regarded by the other agents as an

independent random variable. The seller’s valuation v0 is drawn from the probability

distribution F0 with support [a0, b0]; each buyer i’s valuation vi is drawn from the distri-

bution F with support [a, b]. Both F0 and F have continuous and strictly positive (over

the supports) densities f0 and f , respectively. To avoid trivial cases we assume that

2Kosmopoulou (1999) proves that if an efficient mechanism exists then there also exists an ex post
individually rational Groves mechanism which implements the efficient allocation of the good in weakly
dominant strategies but it is only ex ante, and not ex post, budget balanced. Moreover, the planner
needs to know both F and F0 in order to design such a mechanism.

3See Mailath and Postlewaite (1990).
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gains from trade are uncertain: (a0, b0) ∩ (a, b) 9= ∅ (i.e., 0 ≤ a0 < b and 0 ≤ a < b0).
To simplify the exposition we also assume a0 ≤ a; however, all the following results can
easily be extended to the case in which a0 > a.

Theorem 1 in MM establishes that an efficient mechanism exists if and only if the

following inequality is satisfied (which requires b0 < b):] b

b0

[1−F n(z)]dz−n
] b0

a

F0(z)F
n−1(z)[1−F (z)]dz−n

] b

b0

Fn−1(z)[1−F (z)]dz ≥ 0 (1.1)

MM prove that if (1.1) holds then a second price auction (in which also the seller

bids) augmented by suitably defined transfer functions is an efficient mechanism; the

definition of such transfer functions requires knowledge of both F and F0. The main

purpose of this section is to prove that if b0 is smaller than a given b̄, determined by

F , then it is possible to define an efficient mechanism which does not depend on F0. In

such a case, therefore, the regulator does not need to know F0 in designing the efficient

mechanism and the buyers do not need to have the same common prior about v0 as the

planner.

1.2.2 The sequential mechanism

Before describing our proposed mechanism we need to introduce some notation. Suppose

the seller auctions off the good through a first price sealed bid auction with a reserve

price r. Maskin and Riley (1996a,b) prove that this game has a unique BNE; such

equilibrium is symmetric among buyers and is described as follows. If r ≥ a then for
any vi in [a, b] each buyer i with valuation vi bids β(vi; r) = vi −

U vi
r Fn−1(z)dz
Fn−1(vi)

if vi ≥ r
and β(vi; r) = 0 if vi < r. On the other hand, if r < a then for any vi in [a, b] each

buyer i with valuation vi bids β(vi; r) = vi−
U vi
a Fn−1(z)dz
Fn−1(vi)

: any reserve price smaller than

a does not affect the equilibrium bids. Let R(r) denote the seller’s expected revenue as

a function of r: R(r) ≡ U b
r
β(z; r)dFn(z).

Now assume that if the owner of the object wants to sell it then he is restricted to use
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a first price auction with a reserve price r that he can choose. As we mentioned above, in

the unique BNE of this bidding game each buyer bids according to the function β; hence

the object is not sold if each buyer has a valuation below r and the expected payoff for a

seller with valuation v0 from setting a reserve price r is R(r)+v0Fn(r). Since the bidding

function β is strictly increasing in the valuation, if the object is sold then it is the highest

valuation buyer who obtains it; hence ex post efficiency is guaranteed if each seller with

valuation v0 sets r = v0. It is not difficult to verify that if v0 ∈ [a, b) then the reserve
price which maximizes the seller’s payoff is strictly larger than v0 [see proposition 3 in

Riley and Samuelson (1981)]. Thus, leaving to the seller complete freedom in choosing

r does not lead to the efficient allocation; this is a typical (and well known) allocative

distortion in unregulated monopolistic markets. To induce the seller to set the reserve

price equal to his valuation, assume that upon choosing r he has to pay T (r)
n
to each

potential buyer (i.e., including the ones who do not actually bid because each of them

has a valuation below r); T is the function defined on [a, b] as follows,4 for some constant

A to be determined:

T (r) = R(r)−A+ rF n(r)−
] r

a

F n(z)dz for any r ∈ [a, b] (1.2)

Definition 1.1 In any FPAWF (first price auction with fine) mechanism the seller

decides whether to auction off the good or not. If he decides to auction it off, then he

has to use a first price auction in which his strategic variable is r ∈ [a, b]; upon choosing
r he pays T (r)

n
to each buyer.

A remarkable feature of these mechanisms is that they do not depend on F0; hence

the mechanism designer does not need to know the probability distribution for v0 in

order to define the mechanism. For what concerns the buyers, we are going to see

that only for some values of A they need to know F0 (in order to verify the validity

4There is no loss of generality in restricting r to lie in [a, b], since any r < a is equivalent to r = a
(r < a has the same effect on the bidding function as r = a) and, similarly, any r > b is equivalent to
r = b.
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of their participation constraints). Indeed, there exist infinitely many FPAWF games

differing because of the value of A. Let FPAWF1 denote the FPAWF mechanism in

which A = R(a) in (1.2) and T1 is the resulting fine function; then we can state and

prove the following5

Proposition 1.1 Assume R(a) +
U b0
a
F n(z)dz ≥ b0. Then FPAWF1, a mechanism

which is independent of F0, implements the ex post efficient allocation in unique Perfect

Bayesian Equilibrium (PBE).

Proof. We first prove that in any PBE of FPAWF1 the agents play according to the

strategies (Se, Be) which we define below. Notice that the outcome of these strategies

is the ex post efficient allocation.

Se: Any type of seller auctions off the good; any seller with valuation v0 ≥ a chooses
r = v0 and any seller of type v0 < a sets r = a.

Be: If the seller auctions off the good with a reserve price r then any buyer i with

valuation vi bids β(vi; r).

Recall that for any r chosen by the seller the resulting first price auction has a unique

BNE and in such equilibrium each buyer i with valuation vi bids β(vi; r) (strategy Be);

this is true independently of the buyers’ beliefs about v0, since neither the rules of the

first price auction nor the buyers’ preferences depend on v0. Therefore each type v0 of

seller knows that - in any PBE - choosing the reserve price r yields him an expected payoff

of V (r; v0) ≡ R(r) + v0Fn(r)− T1(r) = R(a) + (v0 − r)F n(r) +
U r
a
F n(z)dz. IntegratingU r

a
Fn(z)dz by parts and rearranging yields V (r; v0) = R(a) +

U r
a
(v0 − z)dFn(z). SinceU r

a
(v0− z)dF n(z) =

U b
a
(v0− z)dFn(z)−

U b
r
(v0− z)dF n(z), we find that V (r; v0) is equal

to the constant term R(a)+
U b
a
(v0−z)dFn(z) plus

U b
r
(z−v0)dF n(z). The latter quantity

5In proposition 1.1 we refer to definition 8.2 in Fudenberg and Tirole (1991) of Perfect Bayesian
Equilibrium in multi-stage games with observed actions and incomplete information. Any FPAWF game
is a multi-stage game with observed actions and incomplete information according to the definition given
in subsection 8.2.3 in Fudenberg and Tirole (1991), but for the fact that we have a continuum of types
instead of finitely many. This however does not invalidate the applicability of the above mentioned
definition [see example 8.3 in Fudenberg and Tirole (1991)].
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is the expected social surplus generated by a first price auction given r and v0; therefore

in this modified first price auction the seller’s interest coincides with society’s welfare.

Since maximizing V (r; v0) with respect to r is equivalent to maximizing
U b
r
(z−v0)dF n(z)

we find
∂V (r; v0)

∂r
= (v0 − r)[Fn(r)]�

Thus, each seller of type v0 ≥ a chooses r = v0; if instead v0 < a then ∂V (r;v0)
∂r

< 0 for

any r > a and r is set equal to a. This is strategy Se but for the participation choice,

to which we turn in few lines.

Strategy Se determines the buyers’ beliefs about v0 after any reserve price which is

an equilibrium move, that is after any r ∈ [a, b0]. About off-equilibrium reserve prices

in (b0, b],6 we let the buyers view v0 as uniformly distributed over [a0, b0] if the seller

chooses r > b0.7 If the seller does not auction off the good then the game ends and no

beliefs need to be specified. As we remarked at the beginning of this proof, we do not

need to check any (continuation) equilibrium condition for Be given the above beliefs

since, given r, any first price auction is independent of v0.

The participation constraints are the only additional conditions FPAWF1 needs to

satisfy in order to implement the efficient allocation in unique PBE. If a seller of type

v0 did not auction off the good then his payoff would be v0; hence, for any v0 ∈ [a0, b0]
the following inequality needs to be satisfied: V [c(v0); v0] = R(a) +

U c(v0)
a

F n(z)dz ≥ v0,
where c(v0) ≡ max {v0, a}. Since this condition is tighter the larger v0 is, it is sufficient
to check the inequality

R(a) +

] b0

a

Fn(z)dz ≥ b0 (1.3)

which is true by assumption. Moving to the buyers’ participation constraints, the ex-

pected equilibrium payoff of any buyer i of type vi is equal to the expected transfer

6Observe that if R(a) +
U b0
a
Fn(z)dz ≥ b0 then b0 < b, hence (b0, b] is not empty.

7Therefore, strictly speaking, FPAWF1 has infinitely many PBE differing only because of buyers’
beliefs following out-of-equilibrium reserve prices. However,we proved that the equilibrium strategies
are given by (Se, Be) in any PBE; hence the equilibrium outcome is the ex post efficient allocation in
any PBE.
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Ev0
T1[c(v0)]

n
she receives from the seller plus the expected payoff from playing the first

price auction. Any type of buyer obtains a non-negative payoff from the auction, but

type a earns exactly 0 in the auction because with probability 1 some other buyer has

a higher valuation. Thus each type of buyer’s participation constraint holds if and only

if the individual rationality constraint of any buyer with valuation a is satisfied, which

occurs if and only if the expected transfer she obtains from the seller is non-negative.

From T1(a) = 0 and T �1(r) ≥ 0 in [a, b] follows T1(r) ≥ 0 for any r ∈ [a, b], thus the
expected value of T1 is non-negative.

Proposition 1.1 proves that if (1.3) holds then it is possible to implement (in unique

PBE) the ex post efficient allocation through a mechanism which is independent of

F0: the mechanism designer and the agents do not need to know F0 (let alone agree

about it). This contrasts with the modified second price auction proposed by MM to

implement the efficient allocation, a game which cannot be defined without knowing F0.

In that mechanism slightly different priors about v0 between the planner and the buyers

may heavily alter the equilibrium strategies and the outcome of the game. Indeed, it

is relatively straightforward to prove that if the buyers have F0 as a common prior

distribution about v0 and the mechanism designer’s prior is F̃0 9= F0, then no BNE of
the mechanism proposed by MM induces the ex post efficient allocation.8 On the other

hand, FPAWF1 does not suffer from a similar drawback as long as (1.3) is satisfied.

1.2.3 The simultaneous-move mechanism

In any FPAWF first the seller sets a reserve price, then the buyers play a first price

auction with that reserve price. Because of this sequential structure FPAWFmechanisms

are not Bayesian mechanisms and therefore, strictly speaking, proposition 1.1 is not an

improvement on the mechanism proposed by MM. However, it is possible to design a

(direct) simultaneous-move mechanism which is independent of F0 and is an efficient

8A formal proof of this claim is available upon request. MM also provide a direct efficient mechanism;
the same criticisms mentioned above apply to such a mechanism.
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mechanism if and only if (1.3) holds. In such a mechanism, which we call SWF1, each

agent reports to the planner a valuation (possibly dishonestly) from the set of his possible

types.

Definition 1.2 In mechanism SMF1 (simultaneous-move first price auction with fine)

the seller reports a number w0 ∈ [a0, b0] and each buyer i announces a number wi ∈ [a, b];
reports are simultaneous. The good is allocated to the agent announcing the highest

valuation. The seller pays T1[c(w0)]
n

to each buyer, where c(w0) = max {w0, a}; if the
seller reports the highest valuation then no other transfer occurs, but if buyer i reports

the highest valuation then she pays β[wi; c(w0)] to the seller.

Observe that the outcome of SMF1 under truthful reporting (which means wi = vi for

i = 0, 1, . . . , n) is exactly the same as the equilibrium outcome of FPAWF1 both in terms

of allocation of the good and of transfers among the agents; therefore truthful reporting

in SMF1 results in the efficient allocation. Proposition 1.2 below, whose proof is a slight

modification of the standard proof of the Revelation Principle [see Myerson (1979)],

establishes that in SMF1 truthful revelation is a BNE which satisfies the participation

constraints if (1.3) holds. Mechanism SMF1 may have several BNE but, by theorem

1 in Palfrey and Srivastava (1991), (essentially) unique implementation of the ex post

efficient allocation is achievable by suitably augmenting SMF1, still in a way which does

not require knowledge of F0.

Proposition 1.2 If (1.3) holds then SMF1 is an efficient mechanism which does not

depend on F0.

Proof. As we observed above, under truthful revelation SMF1 leads to the same outcome

as the unique PBE in FPAWF1. Therefore, if the buyers report truthfully then the

expected payoff to type v0 of seller from announcing w0 is equal to V [c(w0); v0]; from

the proof of proposition 1.1 follows that it is optimal for the seller to report w0 = v0

and that his participation constraint is satisfied if and only if (1.3) holds (here we mimic
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the standard proof of the Revelation Principle). Turning to incentive compatibility for

buyers, observe that in FPAWF1 each buyer bids after the seller announced a reserve

price; on the contrary, in SMF1 moves are simultaneous: each buyer reports without

observing the seller’s report w0. Because of this difference in timing, the standard proof

of the Revelation Principle does not apply to establish incentive compatibility for buyers

- this is why we explicitly prove this proposition. From the definition of SMF1 follows

that, under truthful revelation of the other agents, the payoff to buyer i with valuation

vi from announcing wi is] wi

a0

{vi − β[wi; c(v0)]}Fn−1(wi)f0(v0)dv0 +Ev0
T1[c(v0)]

n

= [vi − β(wi; a)]F
n−1(wi)F0(a) +

] wi

a

[vi − β(wi; v0)]F
n−1(wi)f0(v0)dv0 +Ev0

T1[c(v0)]

n

By definition of β, both the term [vi − β(wi; a)]F
n−1(wi)F0(a) and the argument of the

integral are maximized at wi = vi; moreover, the derivative of the integral with respect

to the upper extreme of integration is equal to (vi − wi)F n−1(wi)f0(wi). Hence, the
whole expression is maximized at wi = vi. Individual rationality is guaranteed because

vi − β[vi; c(v0)] ≥ 0 and T1[c(v0)] ≥ 0 for any vi and v0. To conclude, wi = vi for

i = 0, 1, . . . , n is a BNE of SMF1 in which the participation constraints are satisfied - if

(1.3) holds - and its outcome is the ex post efficient allocation.

Remark 1 Mechanisms FPAWF1 and SMF1 can dispense, to some extent, with

the exact knowledge of b0. To see this, after defining h(x) = R(a) +
U x
a
Fn(z)dz − x

for x ∈ [a, b], consider the equation h(x) = 0. Since h(a) > 0, h(b) < 0 and h�(x) =

Fn(x)−1 < 0 in (a, b), we conclude that there exists a unique solution b̄ to the equation
h(x) = 0 and that a < R(a) < b̄ < b. Then, to apply proposition 1.1 or proposition

1.2 it is sufficient to know that b0 is not larger than b̄, even without knowing exactly b0.

Also notice that a0 does not matter since we assumed it is smaller than a.

Remark 2 An interesting implication of proposition 1.2 is that (1.3) implies (1.1)

(that can also be proved directly). Hence, for any given distribution F , if b0 is not much
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larger than the expected revenue of an auction with no reserve price (i.e., if b0 ≤ b̄) then
any distribution F0 on [a0, b0] satisfies (1.1). Unlike in the one buyer-one seller case,

therefore, it is not true that (a0, b0) ∩ (a, b) 9= ∅ prevents the existence of an efficient
mechanism whatever the probability distributions are. On the contrary, an efficient

mechanism surely exists if b0 is not much larger than R(a) > a.

Remark 3 As it is well known, R(a) converges to b if n tends to infinity.9 Hence,

for any given distribution F and b0 < b, there is a natural number ñ such that if

n > ñ then there exists an efficient (sequential or simultaneous-move) mechanism which

is independent of F0 [R(a) converges to b, hence (1.3) holds if b > b0 and n is large; then

propositions 1.1 and 1.2 can be applied].

Example Let F be uniform on [0, 1]; then R(0) = n−1
n+1
, hence b̄ ≥ n−1

n+1
. From

h(x) = n−1
n+1

+ xn+1

n+1
− x follows b̄ * 0.3473 if n = 2 and b̄ * 0.6837 if n = 5.

1.2.4 An efficient FPAWF mechanism when (1.3) fails

If (1.3) is violated then FPAWF1 does not implement the efficient allocation anymore: in

its unique PBE the participation constraint of type b0 of seller fails. Clearly, by setting

A sufficiently above R(a) in the definition (1.2) of the fine function we can induce any

type of seller to participate. This however lowers the buyers’ expected payoffs and may

violate the individual rationality constraints of low valuation buyers. Proposition 1.3

proves that the participation constraints of any type of buyer and seller can be satisfied

within the class of FPAWF mechanisms if and only if an efficient mechanism exists.

Proposition 1.3 There exists an FPAWF mechanism implementing the efficient allo-

cation in unique PBE if and only if efficient mechanisms exist, that is if and only if

(1.1) holds.

Proof. Let T2 be the fine function in which A = b0 −
U b0
a
F n(z)dz and let FPAWF2 be

the resulting FPAWF mechanism. Since FPAWF2 differs from FPAWF1 only because of

9See Holt (1980), for example.
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the constant term in the fine function, the proof of proposition 1.1 applies to establish

that FPAWF2 has a unique PBE and that the outcome of such a PBE is the ex post

efficient allocation. Thus, FPAWF2 implements the efficient allocation in unique PBE

if and only if the participation constraints are satisfied. Equality A = b0 −
U b0
a
Fn(z)dz

takes care of the participation constraint of each type of seller, and we know from the

proof of proposition 1.1 that any type of buyer’s individual rationality constraint holds

if and only if Ev0
T2[c(v0)]

n
≥ 0. Computing Ev0T2[c(v0)] =

U b0
a0
T2[c(v0)]f0(v0)dv0 we see

that it is non-negative if and only if (1.1) holds:

Ev0T2[c(v0)] = R(a)F0(a) +

] b0

a

[R(v0) + v0F
n(v0)−

] v0

a

F n(z)dz]f0(v0)dv0

−[b0 −
] b0

a

Fn(z)dz]

=

] b0

a

�
b−

] b

a

F n(z)dz − n
] b

v0

F n−1(z)[1− F (z)]dz
�
f0(v0)dv0

+R(a)F0(a)− b0 +
] b0

a

F n(z)dz

= R(a)F0(a) + [b−
] b

a

Fn(z)dz][1− F0(a)]− b0 +
] b0

a

F n(z)dz

−n
] b0

a

] b

v0

Fn−1(z)[1− F (z)]dzf0(v0)dv0

=

�
b−

] b

a

Fn(z)dz − n
] b

a

Fn−1(z)[1− F (z)]dz
�
F0(a) +

] b

b0

[1− F n(z)]dz

+n

�
F0(a)

] b

a

Fn−1(z)[1− F (z)]dz −
] b0

a

F0(z)F
n−1(z)[1− F (z)]dz

�
−n

] b

b0

Fn−1(z)[1− F (z)]dz − F0(a)[b−
] b

a

F n(z)dz]

=

] b

b0

[1− F n(z)]dz − n
] b0

a

F0(z)F
n−1(z)[1− F (z)]dz

−n
] b

b0

Fn−1(z)[1− F (z)]dz
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1.3 A multi-unit case

In this section the model analyzed in section 1.2 is extended by assuming that the seller

owns q > 1 units of the good. We suppose that each buyer is interested in at most one

unit, while the seller may consume all of the units he owns. Although this assumption

appears odd, it is formally equivalent to suppose that the seller initially owns nothing

but he is able to produce up to q units of the good at a constant marginal cost v0

and derives no utility from consuming the good.10 Then, saying that the seller ends up

with j ≤ q units (which yields him a gross payoff equal to jv0) means that he actually

produced only q − j units and bear a total cost of (q − j)v0.11 We suppose there are
n ≥ q buyers; if it were n < q then at least q − n units would go to the seller and we
would have a setting with n units and n buyers. The agents’ informations are the same

as in section 1.2.

Lemma 1 in MM provides the necessary and sufficient condition in order for a feasible

allocation to be implementable (in individually rational BNE) in a one-good setting.

However, such a lemma can be adapted to deliver the necessary and sufficient condition

for the existence of an efficient mechanism in the present multi-unit environment. That

condition is written in terms of the functions P0 and P defined as follows: P0 is the

function of v0 describing how many units of the good a seller with valuation v0 expects

to receive in the efficient allocation; P is the function of vi describing the probability for

any buyer i with valuation vi to obtain one unit of the good in the efficient allocation -

P does not need any subscript since the buyers are ex ante symmetric. Recalling that

ties have zero probability we find

P0(v0) ≡ q

�
n

0

�
Fn(v0) + (q − 1)

�
n

1

�
Fn−1(v0)[1− F (v0)] + . . .

10Similarly, in the one-unit case we may think that the seller can produce just one unit at a cost v0.
11If each buyer’s gross payoff from consuming more than one unit were given by her valuation times

the number of units she receives, then there would be no difference with respect to the model of section
1.2. Indeed, ex post efficiency would require that the highest valuation agent consumes all the q units
and we would have a one-good model in which the good is the bundle of the q units.
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+

�
n

q − 1
�
F n−q+1(v0)[1− F (v0)]q−1

=

q−1[
j=0

(q − j)
�
n

j

�
Fn−j(v0)[1− F (v0)]j

P (vi) ≡ F0(vi)

��
n− 1
0

�
Fn−1(vi) +

�
n− 1
1

�
Fn−2(vi)[1− F (vi)] + ...

+

�
n− 1
q − 1

�
Fn−q(vi)[1− F (vi)]q−1

�
= F0(vi)

q−1[
j=0

�
n− 1
j

�
F n−1−j(vi)[1− F (vi)]j

Proposition 1.4 (i) In this q-unit model an efficient mechanism exists if and only if

b0 < b and ] b

b0

[q − P0(z)]dz − n
] b

a

P (z)[1− F (z)]dz ≥ 0 (1.4)

(ii) If n = q and gains from trade are uncertain, that is (a0, b0) ∩ (a, b) 9= ∅, then no
efficient mechanism exists whatever F and F0 are.

Proof. (i) We adapt lemma 1 in MM to this multi-unit model by taking into account

that the seller now owns q units of good. It can be verified that all the steps in the

proof of lemma 1 in MM go through if we replace 1−P0(v0) with q−P0(v0); as a result,
−b0[q−P0(b0)] substitutes −b0[1−P0(b0)] in the statement of the lemma. In this way we
find (since both P0 and P are increasing functions) that an efficient mechanism exists if

and only if

naP (a)− b0[q − P0(b0)] + n
] b

a

z[1− F (z)]dP (z)−
] b0

a0

F0(z)zdP0(z) ≥ 0

Inequality (1.4) is obtained by integrating by parts
U b
a
z[1 − F (z)]dP (z) and observing

that F0(z)P �0(z) = nP (z)f(z).
12

12Also theorem 3.1 in Makowski and Mezzetti (1994) could be used to obtain (1.4) (but it requires
more involved computations).
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(ii) If n = q then inequality (1.4) reduces to −q U b0
a
F0(z)[1− F (z)]dz ≥ 0, which is

false if (a0, b0) ∩ (a, b) 9= ∅.

Proposition 1.4(i) generalizes theorem 1 in MM [observe that (1.4) reduces to (1.1)

if q = 1] and proposition 1.4(ii) generalizes the Myerson-Satterthwaite theorem: no

efficient mechanism exists when n = q > 1 and (a0, b0)∩(a, b) 9= ∅. This is not surprising:
since the buyers’ valuations are independent and the seller’s marginal cost is constant,

when n = q this model looks like q one seller-one buyer models.

As in the one-unit (and n > 1 buyers) case, when n > q > 1 we can prove that if b0

is not too larger than a then there exists an efficient mechanism which is independent of

F0. Let FPAWF1q be the mechanism in which the seller can sell the goods only through

a q-unit first price auction with reserve price r ∈ [a, b] and the function T1q defined below
determines the amount he must pay to the buyers upon choosing r;13 more precisely,

the seller pays T1q(r)
n

to each potential buyer. Then we can state proposition 1.5, a more

general result than proposition 1.1; its proof is omitted as it is virtually the same as the

proof of proposition 1.1.

T1q(r) = Rq(r)−Rq(a) + rP0(r)−
] r

a

P0(z)dz for any r ∈ [a, b]

Proposition 1.5 If Rq(a) +
U b0
a
P0(z)dz ≥ qb0 then FPAWF1q, a mechanism which

is independent of F0, implements the efficient allocation in unique PBE in this q-unit

model.

To verify that proposition 1.1 is a special case of proposition 1.5 just observe that

P0(v0), the number of units a seller with type v0 expects to receive in the efficient

13In a q-unit first price auction with reserve price r each buyer submits a sealed bid; each of the q
highest bidders (provided her bid exceeds r) receives one unit of good and pays her own bid to the
seller. This game has a unique symmetric BNE [see Weber (1983); Maskin and Riley (1989) claim that
such a BNE is actually the unique BNE]. In that equilibrium each buyer i with valuation vi ≥ r bids
βq(vi; r) = vi −

U vi
r

P (z)/F0(z)
P (vi)/F0(vi)

dz and βq(vi; r) = 0 if vi < r. The seller’s expected revenue in such a

BNE is Rq(r) ≡
U b
r
βq(z; r)dP0(z).
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allocation, equals Fn(v0) when q = 1 and compare the inequality in the statement of

proposition 1.5 with (1.3). Moreover, propositions 1.2, 1.3 and the three remarks about

propositions 1.1 and 1.2 can be generalized to this environment.

1.4 Non-private good

In this section we relax a major assumption in the model introduced in section 1.2: we

do not suppose that the good which can be traded is a private good; rather, we analyze

a partially public good model. Formally, assume that the seller can produce a certain

good at a cost v0 as suggested in footnote 10. If buyer i obtains the good then her gross

payoff from consuming it equals vi and, moreover (the new assumption), each buyer j 9= i
earns a gross payoff of αvj with α ∈ (0, 1). The agents’ informations are exactly as in
section 1.2. In this section we study the conditions under which an efficient mechanism

exists in this setting.

Clearly, if α were equal to 0 then we would be back to the private good environment

of section 1.2, for which we know that inequality (1.1) is necessary and sufficient in order

for an efficient mechanism to exist. On the other hand, if it were α = 1 then the good

would be public. Mailath and Postlewaite (1990) prove that in a public good setting no

efficient mechanism exists if v0 is common knowledge and gains from trade are uncertain;

moreover, such a result extends to the case in which the seller privately observes v0. We

consider intermediate cases with α ∈ (0, 1); hence buyer j enjoys a benefit if buyer i 9= j
wins the good but, for a given own payment, she prefers to buy herself the good.14

In the ex post efficient allocation (neglecting ties) the good is produced if and only if

(1− α)max {v1, . . . , vn}+ α
Sn

i=1 vi > v0 and in such a case it is obtained by buyer i if

14A similar model is suitable, for example, when a same office is shared by several people - say
students. If student 1 has a computer on her desk then she gets some benefit from that because she
can use it whenever she wants. Moreover, the other students in the office can use that computer when
student 1 is not there; thus each other student gets a fraction of the utility increase she would enjoy if
she had a computer on her own desk. Oliva (1997) uses a similar functional specification to represent
the cost reductions generated by technology transfers within a group of two firms. Jehiel, Moldovanu
and Stacchetti (1999) analyze a very general model of auctions with externalities.
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vi = max {v1, . . . , vn}. In order to establish whether an efficient mechanism exists, once
again we adapt lemma 1 in MM to the present environment. Now let P0(v0;α) denote

the probability that the good is not produced in the efficient allocation given that the

seller’s cost is v0; P (vi;α) is the ”expected quantity” of good any buyer i with valuation

vi receives in the efficient allocation. If α were equal to 0 then P (vi; 0) = F n−1(vi)F0(vi)

would be the probability for a buyer i with valuation vi to win the good. When α ∈ (0, 1),
instead, P (vi;α) is an expectation of the numbers 0, α, and 1 in which the weight α

receives is the probability, given vi, that the good is produced but is obtained by a

buyer j 9= i. Once this is taken into account, lemma 1 in MM implies that an efficient

mechanism exists if and only if [since both P0(.;α) and P (.;α) are increasing functions]

0 ≤ naP (a;α)− b0[1− P0(b0;α)] + n
U b
a
z[1− F (z)]dP (z;α)− U b0

a0
zF0(z)dP0(z;α)

= −b0 − n
U b
a
P (z;α)d[z − zF (z)] + U b0

a0
P0(z;α)d[zF0(z)]

(1.5)

where the equality is obtained after integration by parts of
U b
a
z[1 − F (z)]dP (z;α) andU b0

a0
zF0(z)dP0(z;α).

Observe that if we let x� = [1+α(n− 1)]a and x” = [1+α(n− 1)]b then the efficient
production decision is straightforward if and only if (a0, b0) ∩ (x�, x”) = ∅; to simplify
the exposition we suppose a0 ≤ x� (similarly, in sections 1.2 and 1.3 it is assumed

a0 ≤ a). If b0 ≤ x� then the good should always be produced and in that case the

following mechanism implements the ex post efficient allocation in unique (symmetric)

BNE. First each buyer pays αa to the seller; then a first price auction with no reserve

price (and no fines) is run and the highest bidder wins the good by paying her own bid to

the seller. In the present setting such a game has a unique symmetric BNE; it prescribes

that any buyer i with valuation vi bids (1 − α)β(vi; a), which is strictly increasing in

vi.15 The following proposition deals with the case in which the overlap between the

intervals (a0, b0) and (x�, x”) is not very large and it is analogous to remark 2 for the

15The function β was defined in subsection 1.2.2. Notice that all the participation constraints are
satisfied.
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present setting.

Proposition 1.6 Given any α < 1, if b0 is not too larger than x� then, for any proba-

bility distribution F0 on [a0, b0], there exists an efficient mechanism.

Proof. Assume b0 = x� + ε with ε ∈ (0, b − a); then it is surely efficient to produce
the good if at least one buyer’s valuation is above a + ε. Hence P (z;α) = Q(z;α) ≡
Fn−1(z) + α[1− Fn−1(z)] if z > a+ ε: a buyer with valuation z > a+ ε wins the good

with probability F n−1(z); if she does not win then some other buyer obtains the good as

production occurs anyway. As in section 1.2, R(a) = b− U b
a
[nF n−1(z)− (n− 1)F n(z)]dz

is the expected revenue from a first price auction (with no reserve price) of a private

good and it can be verified that

−x� − n
] b

a

Q(z;α)d[z − zF (z)] = (1− α)[R(a)− a]

Using such equality and
U b0
a0
P0(z;α)d[zF0(z)] ≥ 0 we obtain

−b0 − n
U b
a
P (z;α)d[z − zF (z)] + U b0

a0
P0(z;α)d[zF0(z)]

≥ −x� − ε− n U b
a
Q(z;α)d[z − zF (z)] + n U a+ε

a
[Q(z;α)− P (z;α)]d[z − zF (z)]

= −ε+ (1− α)[R(a)− a] + n U a+ε
a
[Q(z;α)− P (z;α)]d[z − zF (z)]

(1.6)

Since 1 ≥ Q(z;α)− P (z;α) ≥ 0 for any z, if M ≥ f(z) for any z ∈ [a, b] (recall that f
is continuous on [a, b]) then

n
U a+ε
a
[Q(z;α)− P (z;α)][1− F (z)− zf(z)]dz ≥

n
U a+ε
a
[Q(z;α)− P (z;α)][−zf(z)]dz > −nbMε

(1.7)

Therefore, in view of (1.6) and (1.7), inequality (1.5) necessarily holds for any F0 on

[a0, b0] if ε = b0 − x� ≤ (1−α)[R(a)−a]
1+nbM

.16

16Notice that both inequalities in (1.7) are in general quite coarse, hence x3 + (1−α)[R(a)−a]
1+nbM is likely

to be ”too pessimistic” as an upper bound for b0.
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When α = 1 no efficient mechanism exists if (a0, b0) ∩ (x�, x”) 9= ∅; proposition 1.6
says that such an extreme result is isolated in our setting. Indeed, for any α < 1 the

existence of an efficient mechanism cannot be ruled out just because gains from trade

are not common knowledge; rather, it is guaranteed - independently of the shape of F0

on [a0, b0] - if the overlap between (a0, b0) and (x�, x”) is not too large. More generally,

if b0 > x� +
(1−α)[R(a)−a]

1+nbM
then (1.5) may still hold, depending on F0, F , n and α.

Example Let F be uniform on [0, 1]; then R(0) = n−1
n+1

and, since Q(z;α) ≥ P (z;α)
for any z, it is clear that n

U ε

0
[Q(z;α)−P (z;α)]d(z−z2) ≥ 0 if ε ≤ 1

2
. Hence, from (1.6)

follows that (1.5) holds for any possible F0 on [0, b0] if b0 ≤ min
q
(1−α)(n−1)

n+1
, 1
2

r
.

The proof to proposition 1.6 and the above example suggest that the smaller is α

(the more private the good is) the more likely is an efficient mechanism to exist. This

claim is established for the following example.

Example Let F be uniform on [0, 1], F0 uniform on [0, b0] and n = 2. Then we

can compute exactly b•0(α), the largest value of b0 consistent with the existence of an

efficient mechanism, given α [b•0(α) ≥ 1−α
3
by the above example]. Indeed, after some

manipulations17 inequality (1.5) can be written as 2(1 − α) − 6b0 + 2b20 + b30
1+α
≥ 0 for

b0 ∈ (0, 1); b•0(α) is the unique solution in (0, 1) to the equation 2(1−α)−6x+2x2+ x3

1+α
=

0. Since b•0 is a strictly decreasing function,
18 in this example it is confirmed that the

conditions for an efficient mechanism to exist are less restrictive the smaller is α in (0, 1).

For instance, b•0(0) = 0.396, b
•
0(0.5) = 0.178 and b

•
0(0.95) = 0.017.

1.5 Conclusions

When agents bargain under private information some of them may be tempted to misre-

port the own private information in order to obtain more favorable terms of trade. It is

17In carrying out the computations the following equalities are useful: P (vi;α) =
U vi
0
F0(vi+αz)dz+

α
U 1
vi
F0(αvi + z)dz and P0(v0;α) =

v20
1+α .

18Use the implicit function theorem after observing that b•0(α) <
1
2 for any α, since 2(1− α)− 612 +

2( 12)
2 +

( 12 )
3

1+α < 0.
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well known that this may prevent the implementability of the ex post efficient allocation

if participation has to be voluntary. In this chapter we examined some trading models in

which the production side is represented by a unique agent facing several agents willing

to consume the good(s) he can produce. We extended a one-unit private good model

already analyzed in the literature to a multi-unit case and derived the necessary and suf-

ficient condition for the existence of an efficient mechanism in that environment. Then

we moved to a setting of non-private good and showed, in a simple but general model,

that the inefficiency result which holds in a public good environment is not robust to any

degree of ”privateness” of the good. If the good is not perfectly public then, even though

gains from trade are uncertain, the existence of an efficient mechanism depends on the

parameters of the model: probability distributions, etc. These results are summarized

in the following table.

Economic environment Existence of an efficient mechanism

1 one-unit seller, one buyer impossible (Myerson and Satterthwaite)

2 one-unit seller, n > 1 buyers depends on F0, F and n (Makowski and Mezzetti)

3 q-unit seller, n ≤ q buyers impossible

4 q-unit seller, n > q buyers depends on F0, F , n and q

5 public good impossible (Mailath and Postlewaite)

6 partially public good depends on F0, F , n and α

Inefficiency appears to be a necessary feature of the environments in which the pro-

duction and consumption technologies are such that it is feasible to satiate all the buyers,

as when there are as many units of good available as buyers or when the good is public:

cases 1, 3 and 5. On the other hand, in cases 2, 4 and 6 it is not feasible to satiate all

the buyers. They will compete among themselves to obtain the available good(s) and

eventually some buyer will still have a positive marginal utility from the consumption

of the good. Then an efficient mechanism may exist, depending on the environment
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parameters.19 An interesting topic for future research is to investigate the validity of

these results in more general models.

In some environments, therefore, efficient mechanisms exist and it is important to

know how they have to be designed. Often it is necessary to assume that the planner

and the agents have common priors about the parameters which are private information;

this assumption is sometimes viewed as a restrictive one and its failure may generate

different outcomes with respect to the ones which are expected when it holds. The

main contribution of this chapter is a new mechanism proposed to implement (when it

is possible) in unique PBE the ex post efficient allocation in the private good(s) case.

More important, however, is that under some conditions this mechanism does not need

to assume any specification for the probability distribution of the seller’s valuation;

hence the agents and the planner are not required to have any (let alone common) prior

about v0. This partially solves the above problem by substantially reducing the amount

of information both the regulator and the agents need to have about the economic

environment, thus making the implementation of the ex post efficient allocation less

demanding.

19Consistently with this remark, Williams (1999) shows that in a multilateral bargaining model for
private goods an efficient mechanism is more likely to exist when a large fraction of one side of the
market is bound to be not satiated in its trading willingness [see theorem 4 in Williams (1999) and the
remarks following its proof].
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Chapter 2

Optimal Two-Object Auctions with

Synergies

2.1 Introduction

This chapter deals with the design of the revenue-maximizing auction when an agent

has two indivisible goods to sell and each buyer has superadditive values for the objects.

Myerson (1981) provided the solution to the revenue maximization problem for the single

object case, but few not recent papers investigated multi-object selling mechanisms when

the same buyer may consume several objects and observes a specific signal for each good

[see Maskin and Riley (1989) and Branco (1996) about optimal multiunit auctions when

each buyer observes a unique signal]. Examples are Palfrey (1983), McAfee andMcMillan

(1988) andMcAfee, McMillan andWhinston (1989). Following the US spectrum auction,

however, in the last years several papers concentrated on optimal multi-object selling

mechanisms when each buyer’s private information is multidimensional; among these,

Armstrong (1996), Rochet and Choné (1998), Armstrong (1999), Armstrong and Rochet

(1999), Armstrong (2000) and Avery and Hendershott (2000).1 All of these papers

1Even though it is not strictly related to our topic (since we assume private values), we should men-
tion a literature about efficient multi-object auctions with interdependent valuations; see for example
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assume that each buyer’s gross payoff from consuming more than one good is equal to the

sum of her single valuations for those goods.2 The analysts of the FCC auction, however,

emphasized that synergies associated with winning more than one licence played an

important role in determining the bidders’ gross payoffs.3 Therefore, in some settings,

the existence of synergies should be taken into account by a revenue-maximizing (or

welfare-maximizing) seller.

In our model there are n buyers, two goods on sale and each buyer privately observes

two signals determining the value to her of each item; each signal may be high or low.

Synergies appear in a simple form: if a same buyer receives both goods then her gross

surplus is the sum of her valuations for each single good increased by α > 0 representing

a synergic effect.4 The goal of this chapter is to give a first cut in detecting the revenue-

maximizing auction in a setting in which the synergic surplus is the same for each buyer

and is common knowledge.

After formally presenting the model (in section 2.2) we briefly review the results

for the case without synergies (α = 0), which has been analyzed by Armstrong (2000)

(henceforth Ar). In the optimal auction when α = 0 each good m (m = 1, 2) is sold to

a buyer with a high valuation for it, provided there is at least one such buyer; hence, a

buyer with low value for good m never obtains it if a high valuation buyer for that good

Perry and Reny (1999), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2000). Bikhchan-
dani (1999) examines simultaneous first and second price auctions for several objects when the buyers’
valuations are common knowledge.

2Actually, Armstrong (1996) assumes additive separability in the buyers’ utility functions only in
the examples he works out.

3See for example McAfee and McMillan (1996). Ausubel et al. (1997) empirically tested for the
existence of synergies in the FCC auction; their results suggest that synergies were a significant factor
in determining prices, even though their importance was not overwhelming.

4Krishna and Rosenthal (1996) and Branco (1997) use the same analytic formulation to capture
synergies. These papers inquire the features of specific selling mechanisms as simultaneous or sequential
second price auctions or English auctions - in more complex environments with respect to our - without
finding the optimal mechanism and avoiding multidimensional issues.
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is around.5 In the terms of Ar, the optimal auction is weakly efficient.6

Another result in the setting with α = 0 is that if each buyer’s valuations for the two

goods are strongly and positively correlated then it is optimal to use separate auctions:

Each goodm is allocated only as a function of the buyers’ valuations for it, thus ignoring

the values for good 3−m. The buyers’ valuations for object 3−mmatter in the allocation
of good m if correlation is weak or negative and all the buyers value poorly good m,

which is then sold to a buyer with a high valuation for object 3 − m. In both cases
”independence at the top” is optimal: If nm ≥ 1 buyers value highly good m, then this
is randomly and fairly allocated among them neglecting their valuations for good 3−m.
When α > 0 we find that independence at the top is suboptimal (hence separate

auctions should never be used), since the seller tends to allocate both goods to a same

buyer in order to generate and extract the synergic surplus. For instance, suppose the

realized buyers’ types are only HH (a type of buyer with a high valuation for each of

the two goods on sale) and HL (a buyer with a high valuation for object 1 and a low

value for good 2); then both the mechanisms described above sell object 2 to a type HH

and allocate randomly good 1 among all the buyers. We show that for any α > 0 this is

inferior with respect to selling both goods to a same buyer with type HH as in the latter

way the seller generates and extracts the synergic surplus with probability 1 rather than

with probability 1
n
(and without tightening any binding constraint). More generally,

when there is at least a type HH in the auction then no other type obtains any good.

Having α > 0 implies that in any optimal mechanism, given the probability for each

5This is also a well known property of the one-good model when the buyers’ valuations are i.i.d. over
a binary support. Adapting the analysis of Myerson (1981) to a one-good model with i.i.d. discretely
distributed valuations reveals that when the cardinality of the support is larger than two then a buyer
with a given valuation always beats a buyer with a lower value if and only if the so called ”virtual
valuation function” is monotone increasing (but with discrete values this condition may fail even though
the probability distribution for each buyer’s valuation yields a monotone hazard rate). If that is not so,
then the seller treats in the same way (”bunches”) buyers with different types. See subsection 2.3.4 for
more on this.

6The qualifier ”weakly” refers to the fact that for some parameter values the seller withholds one
or both objects when all the buyers’ valuations for this (these) object(s) are low (yet, strictly positive)
even though he attaches zero value to each good.
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type of buyer to obtain good m (m = 1, 2), it is impossible to increase the probability

that the goods are sold to a same buyer. In other words, in any optimal mechanism the

probability that the synergy is produced is maximized given the probability distributions

according to which good 1 and good 2 are allocated among the buyers.

When α is sufficiently large the seller allocates both objects to a same buyer not only

when at least a buyer’s type isHH but also for any possible profile of realized valuations.

This fact may lead to the failure of the weak efficiency property holding when α = 0,

according to which a low valuation buyer for good m never receives it if another buyer

values highly goodm. To be clear, in general a mechanism is said to be weakly efficient if

whenever the objects are sold they are allocated in a way that maximizes social surplus

- which coincides with the sum of the buyers’ gross surpluses. It turns out that when

α > 0 revenue-maximizing mechanisms may violate weak efficiency in several ways. In

some cases the synergic surplus is not generated because the goods are not allocated

to a same buyer (even though α is relatively high). In other cases good m is sold to a

buyer with a low valuation for it even though some other buyer values highly good m.

It is clear that when the buyers’ types are HL and LH there is a tension between selling

both goods to a same buyer in order to extract the synergic surplus and selling object 1

to a type HL and good 2 to a type LH. Not surprisingly, given incomplete information,

this dilemma is not always efficiently solved. On the other hand, no similar tension is

apparent when the buyers’ types are HL and LL (or LH and LL); yet, in some cases

good 1 (good 2) is sold to a type LL.

In short, when α > 0 weak efficiency may fail because synergies are generated too

rarely and also because no buyer with a high value for good m receives it when all

the other buyers’ types are LL. Subsection 2.3.4 provides an explanation of the latter

result, but the following is a possible interpretation. If α is large enough to imply that

the goods are always sold as a single unit, then the seller faces a one-good (the bundle)

selling problem in which each buyer’s valuation for the bundle is equal to α plus the

sum of her valuations for the two single objects. Here the probability distribution for
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each buyer’s valuation is derived from the original (bivariate) probability distribution

and it induces non-monotone virtual valuations (mentioned in footnote 5) if correlation

is strong and positive - which means that a same buyer is unlikely to observe different

signals for the two goods. In such a case the seller should treat in the same way buyers

with different valuations for the bundle, like types HL and LL.

A limitation of the present analysis is that it only allows a binary distribution for

each buyer’s valuation for goodm (m = 1, 2) and it only allows for two objects. Allowing

for more general (discrete) distributions and/or for more than two objects is conceivable,

although this would significantly increase the number of different cases to consider. It

would be very interesting to solve the problem for continuously distributed valuations;

unfortunately this appears hard even when there are no synergies.7 Ar finds the optimal

auction for a specific case with n ≥ 2 buyers in which the valuations are continuously
distributed over two rays in the positive orthant of ?2 (and α = 0). In that environment

the optimal auction is not weakly efficient and Ar expects that feature to extend to more

general settings, about which he conjectures that ”numerical simulations will provide the

most tractable method of generating insights into this problem”.

The plan of this chapter is as follows. Next section formally introduces the model;

section 2.3 solves the revenue maximization problem and provides some comments. Sec-

tion 2.4 concludes and suggests possible extensions; proofs are left to the appendix.

2.2 The model

2.2.1 Preferences and information

An agent (the seller) owns two indivisible objects which are worthless to him and faces

n ≥ 2 agents (the buyers) who are interested in these objects; the seller wishes to

7Rochet and Choné (1998) characterize the optimal mechanism when the seller faces an only buyer
with continuously distributed multi-dimensional private information (but no synergies). They employ
control techniques which appear hard to generalize to the case of several buyers. Their results, moreover,
are not constructive.
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maximize his expected revenue from the sale of the two goods. Letting vi and wi denote

buyer i’s valuation (i = 1, . . . , n) for good 1 and good 2 respectively, we assume there

exists a positive number α such that buyer i’s expected payoff from participating in any

selling mechanism is equal to

vi {prob to win good 1}+ wi {prob to win good 2}+ α {prob to win both goods}− ti

where ti is her expected payment to the seller. In words, buyer i’s gross surplus from

consuming both goods is not simply vi +wi but rather vi +wi + α with α > 0 due to a

synergic effect; α is common knowledge, it is the same for each buyer and is independent

of a buyer’s valuations for the objects.

The valuations vi and wi are privately observed by buyer i = 1, . . . , n and can take

on values in {vL, vH} and {wL, wH} respectively, with vH > vL > 0 and wH > wL > 0;
moreover, ex ante (vi, wi) and (vi

�
, wi

�
) are i.i.d. bivariate random variables for any two

different buyers i and i�. Maskin and Riley (1984) show that when the buyers are ex ante

symmetric the seller does not lose revenue in letting a buyer’s probability to win good

m (m = 1, 2) and her payment be a function of her type only and not of her identity.

Thus, henceforth we drop the reference to a buyer’s identity and refer to a generic buyer

with valuations (v, w) ∈ {vL, vH} × {wL, wH}. A buyer’s type is jk if her valuation for
good 1 is vj and her value for object 2 is wk, j, k = L,H. Let njk denote the number of

buyers with type jk participating in the auction; clearly nHH + nHL + nLH + nLL = n.

In order to reduce the number of different cases which can arise, we assume that

the goods are symmetric in the sense that vL = wL = s > 0, vH = wH = s +∆ > s,8

and Pr {(v, w) = (s+∆, s)} = Pr {(v, w) = (s, s+∆)}; in such a case there is no loss
of generality in letting ∆ = 1, thus vH = wH = s + 1. The following is the probability

distribution for (v, w) (h > 0, q > 0, l > 0 and h+ 2q + l = 1):

8These assumptions simplify exposition. Actually, only vH − vL = wH −wL is really needed for our
results to hold.
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w = s w = s+ 1

v = s l q

v = s+ 1 q h

We also let s ≥ h+q
l
and we will prove that under this assumption both goods

are sold for any realized profile of buyers’ valuations. In other words, the well known

possibility of ex post inefficiency due to the seller withholding a good (or both) when

all the buyers have low valuation(s) is ruled out if s ≥ h+q
l
and we can focus on other

kinds of inefficiencies.9 The environment analyzed in Ar differs from the present one

because he does not restrict to symmetric goods and because he assumes α = 0. While

allowing for a positive α makes the model more cumbersome, restricting to symmetric

goods is helpful to narrow down the class of mechanisms which can be optimal; among

other things, it implies that the subconstrained problem (as defined in subsection 2.3.2

below) always provides the solution to the complete problem.

2.2.2 Mechanisms

By the virtue of the Revelation Principle we maximize the seller’s expected revenue

within the class of direct mechanisms. Therefore the seller commits to a rule which,

for any possible n−tuple of buyers’ reports of types, specifies which good(s) he sells,
to whom, and the payment he requires from each type of buyer. Such a rule needs to

satisfy the appropriate incentive compatibility and participation constraints.

Let xjk denote the probability that a buyer reporting type jk obtains only good

1, j, k = L,H, under truthtelling of the other buyers. The quantity xjk is a ”reduced

form” probability in the sense that it depends on the buyer’s report jk but not on her

9Solving the model without assuming s ≥ h+q
l would increase the number of cases which may

arise and there would also exist optimal mechanisms which are not efficient because of the reason just
described.
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opponents’ reports; it is obtained from ”non-reduced form” probabilities by averaging

out the (sincere) reports of the other buyers.10 Similarly, we use yjk (zjk) to denote

the probability that a buyer announcing jk receives only good 2 (both goods) when the

others report truthfully; tjk is the expected payment the seller requires from such buyer,

j, k = L,H. Type jk’s expected payoff under truthful reporting is therefore

vjxjk + wkyjk + (vj + wk + α)zjk − tjk

The incentive compatibility constraints are summarized by (2.1) below; for the sake

of clarity we also write down both the incentive constraints which will be relevant in the

following and the participation constraint for type LL:

vj(xjk − xj�k�) + wk(yjk − yj�k�) + (vj + wk + α)(zjk − zj�k�) ≥ tjk − tj�k� (2.1)

jk, j�k� = HH,HL,LH,LL

vHxHH+wHyHH+(vH+wH+α)zHH−tHH ≥ vHxHL+wHyHL+(vH+wH+α)zHL−tHL
(2.2)

vHxHH+wHyHH+(vH+wH+α)zHH−tHH ≥ vHxLH+wHyLH+(vH+wH+α)zLH−tLH
(2.3)

vHxHH+wHyHH+(vH+wH+α)zHH− tHH ≥ vHxLL+wHyLL+(vH+wH+α)zLL− tLL
(2.4)

vHxHL+wLyHL+(vH+wL+α)zHL−tHL ≥ vHxLL+wLyLL+(vH+wL+α)zLL−tLL (2.5)

vLxLH+wHyLH+(vL+wH+α)zLH−tLH ≥ vLxLL+wHyLL+(vL+wH+α)zLL−tLL (2.6)

vLxLL + wLyLL + (vL + wL + α)zLL − tLL ≥ 0 (2.7)

The seller’s revenue is given by the sum of the transfers he obtains from the buyers.

As the buyers are ex ante symmetric, the expected revenue R is equal to n times the

10For example, if n = 2 then we could let xjkj k denote the probability for a buyer reporting jk to
receive only good 1 when the other buyer announces j3k3; then xjk = hxjkHH+qxjkHL+qxjkLH+lxjkLL.
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expected revenue from any given buyer:

R

n
= htHH + qtHL + qtLH + ltLL

When maximizing R
n
with respect to {xjk, yjk, zjk}j,k=L,H under the incentive and

participation constraints it should be taken into account that the above variables need

to satisfy some feasibility conditions arising from the fact that there is just one unit

of each good to sell; such conditions are analogous to the resource constraints which

appear in subsection 3.1 in Ar. In our setting the fact that good 1 (2) is sold to a

type jk is represented through the variable xjk (yjk) or zjk, depending on whether it

is sold alone or together with good 2 (1). This makes harder to write the resource

constraints with respect to the constraints which are imposed in Ar. Nevertheless,

we can avoid considering them explicitly by proceeding as follows. First, we describe

any mechanism by specifying how it allocates the goods for any possible n−tuple of
reports, other than computing the implied values of {xjk, yjk, zjk}j,k=L,H . Moreover,
when proving the optimality of a mechanism with respect to a possible variation of the

sale policy we specify the profiles of buyers’ reports for which the mechanism is modified

in order to produce such a variation. This cannot undermine feasibility and allows to

avoid considering resource constraints written in terms of {xjk, yjk, zjk}j,k=L,H . In other
words, we describe each auction ”explicitly” in terms of non-reduced form probabilities

and then examine how varying the latter probabilities affects reduced form probabilities

and in turn the seller’s revenue.

To see an example of how this method works, suppose that for a given profile of

reports with nHH ≥ 1 and nLH ≥ 1 good 1 is randomly and fairly allocated among types
HH (each of them receives it with probability 1

nHH
) and that each type LH wins good

2 with probability β
nLH

(0 < β ≤ 1); this gives a contribution to yLH equal to

(n− 1)!hnHHqnHLqnLH−1lnLL
nHH !nHL!(nLH − 1)!nLL!

β

nLH
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This is the probability for a buyer of type LH that the given profile of reports occurs

under truthtelling (by using the multinomial distribution) times the probability to win

object 2 in such a case. For the given profile we are examining, consider reducing β

by ∆β > 0 while increasing by ∆β the probability that the same buyer of type HH

winning good 1 obtains also good 2. Then yLH decreases; more precisely, ∆yLH =

− (n−1)!hnHH qnHLqnLH−1lnLL
nHH !nHL!(nLH−1)!nLL!

∆β
nLH

. Likewise, xHH (the probability that a type HH gets only

good 1) decreases and the probability zHH that a type HH wins both goods increases:

∆zHH =
(n− 1)!hnHH−1qnHLqnLH lnLL
(nHH − 1)!nHL!nLH !nLL!

∆β

nHH
= −∆xHH

The middle term is the probability for a buyer of type HH that the given profile of

reports occurs (under truthtelling) times the increase in the probability to win both

goods under such profile. Thus, ∆zHH = −∆xHH = − q
h
∆yLH > 0. This makes easy

to evaluate the profitability of reducing β since the seller’s revenue function and the

constraints he faces are linear in {xjk, yjk, zjk}j,k=L,H (after substituting for tHL, tLH

and tLL by using some binding incentive and participation constraints).

In the proofs (which are found in the appendix) a similar argument is - not explicitly

- used several times, although we report only the ratios among the variations in the

reduced form probabilities which are considered.

2.3 Solving the revenue maximization problem

2.3.1 Results for the model with no synergies

In this subsection we briefly review the known results when there are no synergies in

order to evaluate, later, the effects of α > 0. Ar proves that, under the assumptions

we made on the parameters, depending on the correlation degree between v and w the

seller should use one of the two following mechanisms. In the first one the goods are sold

separately as it occurs in two independent one-good auctions. For good m (m = 1, 2)
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this implies that (i) if nm ≥ 1 buyers have (report) a high valuation for good m then

each of them obtains it with probability 1
nm
; (ii) if all the buyers value poorly object m

then each buyer receives it with probability 1
n
. This is called mechanism I to recall it

sells the goods through independent auctions.

The second mechanism displays some bundling. For any given good m, nothing

changes with respect to separate auctions when at least one buyer has a high value for

object m. If instead any buyer values poorly good m then two cases may occur: when

all the buyers have type LL then each of them wins object m with probability 1
n
; when

n3−m ≥ 1 buyers value highly good 3−m then objectm is allocated among those buyers:
each of them receives it with probability 1

n3−m
. Therefore the probability to win good m

for a buyer with a low valuation for that good is increasing in her value of good 3−m.
This is called mechanism B to recall it entails a degree of bundling. Corollary 1 in Ar

shows that the choice between I and B is only determined by the correlation between v

and w and does not depend on s:

Proposition 2.1 (Armstrong (2000)) Let s ≥ h+q
l
and α = 0. Mechanism I is

optimal if h
2
≥ q h+q

l+q
(that is, if correlation between each vi and wi is positive and strong);

if instead h
2
< q h+q

l+q
then mechanism B is optimal.

As we mentioned in the introduction, a mechanism is weakly efficient if whenever

the objects are sold they are allocated in a way that maximizes social surplus. When

α = 0 the efficiency of a mechanism is judged object-by-object, as each buyer’s gross

payoff is the sum (over m) of her valuation for good m times the probability to obtain

it. Hence, by proposition 2.1 the optimal mechanism is weakly efficient when α = 0: in

both mechanism I and B good m is always sold to a buyer with a high valuation for it

if there is at least one such buyer in the auction.

When α > 0, on the other hand, weak efficiency cannot be judged object-by-object

because the synergy is generated if and only if the same buyer obtains both goods. When

all the buyers have a same type, maximizing social surplus is equivalent to selling both
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goods to a same buyer in order to generate the synergy; if instead buyers’ types are

different then weak efficiency requires that:

(i) if nHH ≥ 1 (this means that at least one type HH participates in the auction)

then both objects are sold to a same type HH;

(ii) if nHH = 0, nHL ≥ 1 and nLH ≥ 1 (there is no type HH and at least one buyer’s

type is jk, jk = HL,LH) then both goods are allocated to a same buyer with type HL

or LH if α > 1;11 if instead α ≤ 1 then good 1 is sold to a type HL and good 2 is sold
to a type LH (recall that ∆ = 1);

(iii) if nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 (there are only buyers with type HL
or LL) then both goods are sold to a same buyer with type HL;

(iv) if nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0 (there are only buyers with type LH
or LL) then both goods are allocated to a same type LH.

2.3.2 The subconstrained problem

Weierstrass’ theorem can be used to prove that for all parameter values there exists a

global maximum point in the seller’s maximization problem.12 To find it, we start by

observing that the participation constraint of type LL, inequality (2.7), binds in the

optimum (this can be proved as in a scalar model); then the incentive constraint which

prevents type jk from reporting LL guarantees that type jk’s participation constraint

is met, jk = HH,HL,LH.

To deal with the incentive constraints, following Ar we consider a subconstrained

maximization problem in which non-downward truthtelling constraints are absent. More

clearly, we neglect all the incentive constraints but (2.2) to (2.6) - (2.2) to (2.6) prevent

buyers with high valuation(s) from reporting low valuation(s) - and maximize the seller’s

11Here weak efficiency does not discriminate between types HL and types LH since vH − vL =
wH − wL.
12Indeed, setting tjk < 0 for some jk is suboptimal because then each participation constraint would

be slack and the seller could obtain a higher revenue by slightly (and uniformly) increasing each tjk.
Hence, we can safely assume that tjk is bounded below (by 0) and above (by vj + wk + α), as xjk, yjk
and zjk are, j, k = L,H.
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expected revenue under these sole (incentive compatibility) constraints. The resulting

subconstrained problem is called problem HH because it includes three constraints for

type HH and one constraint each for type HL and type LH. It turns out that when the

goods are symmetric, as we are assuming, the neglected constraints are satisfied at the

solution of problem HH (we check this ex post); hence solving problem HH provides

the solution to the original maximization problem as in the one-good two-type model

neglecting the truthtelling constraint of the low type yields the solution to the complete

problem.

Inequalities (2.5) and (2.6) bind in the optimum to problem HH (again, by Weier-

strass’ theorem there exists a solution to problem HH) since otherwise the seller could

profitably increase tHL and/or tLH . From (2.5)-(2.7) written as equalities we find

tLL = sxLL + syLL + (2s + α)zLL, tHL = (s + 1)xHL + syHL + (2s + 1 + α)zHL −
xLL − zLL and tLH = sxLH + (s + 1)yLH + (2s + 1 + α)zLH − yLL − zLL which we
substitute into the (per buyer) expected revenue R

n
and into (2.2)-(2.4) to get, let-

ting p = (tHH , xHH , yHH , zHH , . . . , xLL, yLL, zLL) [D is the set of feasible values for

(tHH , xHH , yHH , zHH , . . . , xLL, yLL, zLL)]

max
p∈D

htHH + q[(s+ 1)xHL + syHL + (2s+ 1 + α)zHL − xLL − zLL] +
q[sxLH + (s+ 1)yLH + (2s+ 1 + α)zLH − yLL − zLL] + l[s(xLL + yLL) + (2s+ α)zLL]

subject to

(s+ 1)xHH + (s+ 1)yHH + (2s+ 2 + α)zHH − yHL − zHL − xLL − zLL ≥ tHH (2.8)

(s+ 1)xHH + (s+ 1)yHH + (2s+ 2 + α)zHH − xLH − zLH − yLL − zLL ≥ tHH (2.9)

(s+ 1)xHH + (s+ 1)yHH + (2s+ 2 + α)zHH − xLL − yLL − 2zLL ≥ tHH (2.10)

From the expressions of tHL, tLH and tLL follows that the seller always extracts

the synergic surplus from the buyers when it arises for type HL or LH or LL; the
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same moreover is true for type HH, since necessarily at least one among (2.8)-(2.10)

binds in the solution to problem HH. Therefore, no type of buyer can ever appropriate

the synergic surplus; that is not surprising as the value α of the synergy is common

knowledge and it is common knowledge whether it is generated or not.13 This provides

the seller with some incentive to allocate both goods to a same buyer in order to gain

the synergic surplus and such incentive is stronger the larger is α. This chapter basically

investigates how that incentive modifies the optimal auction with respect to the case of

α = 0.

Letting λ1 (λ2 and λ3, respectively) denote the multiplier for constraint (2.8) [(2.9)

and (2.10), respectively] and λ = (λ1,λ2,λ3), the lagrangian function for problem HH

is

L(p,λ) = htHH + (λ1 + λ2 + λ3)[(s+ 1)(xHH + yHH) + (2s+ 2 + α)zHH − tHH ] +
q(s+ 1)xHL + (qs− λ1)yHL + [q(2s+ 1 + α)− λ1]zHL + (qs− λ2)xLH +

q(s+ 1)yLH + [q(2s+ 1 + α)− λ2]zLH + (ls− q − λ1 − λ3)xLL

+(ls− q − λ2 − λ3)yLL + [l(2s+ α)− 2q − λ1 − λ2 − 2λ3]zLL

Since this maximization problem is a linear programming problem, the well known

saddle-point theorem [see theorem 1.D.5 in Takayama (1985)] applies to establish the

following lemma, upon which we rely to find the solution to problem HH.

Lemma 2.1 (the saddle-point theorem) For any α ∈ ?, p̄ ∈ D solves problem HH

if and only if there exists λ̄ = (λ̄1, λ̄2, λ̄3) ≥ 0 such that (p̄, λ̄) is a saddle point for L,
that is L(p, λ̄) ≤ L(p̄, λ̄) ≤ L(p̄,λ) for any p ∈ D and any λ ∈ ?3+.

13The same would occur if the synergic surplus depended on the buyer’s type (that is, if αjk were
the surplus for type jk) as long as (αHH ,αHL,αLH ,αLL) were common knowledge. Assuming this,
however, would make the analysis which follows more involved.
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2.3.3 Solution of the model with positive synergies

In this section we exploit lemma 2.1 to find the solution to problem HH and then we

prove it also solves the complete maximization problem.

Lemma 2.1 implies ∂L
∂tHH

= 0 since tHH lives in ?; thus λ1 + λ2 + λ3 = h. Using this

result we prove that when at least one buyer has type HH then no other type should

obtain any good. Specifically, both goods are randomly and fairly allocated to a same

type HH if nHH ≥ 1.

Lemma 2.2 For any parameter values with α > 0, when at least a type HH participates

in the auction (nHH ≥ 1) then each type HH receives both goods with probability 1
nHH

.

Lemma 2.2 implies that, when α > 0, nor mechanism I or mechanism B ever solves

problem HH. The reason is that both of them display ”independence at the top”, in

the sense that if n1 ≥ 2 buyers value highly good 1 then each of them receives it with

probability 1
n1
, neglecting their valuations for good 2. However, since α > 0, if these

buyers’ values for object 2 differ then it is better to sell both goods to a same buyer

with type HH; in this way no binding constraint is tightened and the synergic surplus is

extracted with probability 1. On the contrary, in mechanisms I and B good 1 is allocated

among types HH and HL. Ar proves that when α = 0 the seller never gains - in the

subconstrained problem - from letting the probability to win good 1 (2) for type HH

differ with respect to type HL (LH); when α > 0, instead, lemma 2.2 says that there is

a strict incentive to distort these probabilities in favor of type HH.14

Before completely describing a mechanism it is useful to observe that, as the goods are

always sold (because s ≥ h+q
l
), if all the buyers report a same type jk then both objects

are allocated to a same buyer since the coefficient of zjk in the lagrangian function is

larger than the sum between the coefficients of xjk and yjk, jk = HL,LH,LL. Moreover,

lemma 2.2 describes the optimal sale policy when at least one buyer’s type is HH; hence

14Actually, when α = 0 non-distorted probabilities help in making the solution to problem HH
a solution to the complete problem for the largest range of parameter values; when the goods are
symmetric there is no such an effect.
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the remaining degrees of freedom in defining a mechanism concern the profiles of reports

of types such that nHH = 0 and at least two buyers have different types. Thus, we

describe a mechanism only by specifying how the goods are allocated when the different

types showing up in the auction are HL and LH; HL and LL; LH and LL; HL, LH

and LL. In doing that, we keep in mind that for any mechanism introduced below it

is understood that (i) when nHH ≥ 1 a randomly selected buyer of type HH obtains

both goods and (ii) if njk = n for some jk then a randomly selected buyer receives both

goods.

The following two mechanisms are in a sense linked to I and B (introduced in sub-

section 2.3.1), respectively; because of this fact we denote them I1 and B1.

Mechanism I1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0 (both types HL and LH show

up in the auction, possibly together with type LL), then good 1 is (randomly) allocated

among types HL and item 2 is allocated among types LH: each type HL obtains good

1 with probability 1
nHL

and any type LH wins object 2 with probability 1
nLH

.

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0 (only types HL and LL are present) then
good 2 is (randomly) allocated among all the buyers; if it is received by a type HL then

the same buyer also wins good 1; if instead a type LL obtains good 2 then good 1 is

randomly allocated among types HL. Thus each type LL wins good 2 with probability
1
n
; each type HL wins both objects with probability 1

n
and she wins only good 1 with

probability nLL
n

1
nHL

.

Similarly, if nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 then good 1 is allocated among
all the buyers; if it is obtained by a type LH then the same buyer also wins object 2,

otherwise good 2 is allocated among types LH.

Mechanism B1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0 then good 1 is allocated among
types HL and good 2 is allocated among types LH, exactly as in I1.

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0 then both goods are sold to a same type
HL. Similarly, when nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 both objects are allocated
to a same type LH.
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Notice that I1 is not weakly efficient if α > 0: when only types HL and LL (LH and

LL) are in the auction, with positive probability the goods are not sold to a same type

HL (LH). Mechanism B1, on the other hand, is weakly efficient if and only if α ≤ 1.
Lemma 1 in Ar helps in computing the values of {xjk, yjk, zjk}jk=HL,LH,LL for I1 and

B1. The same lemma and our lemma 2.2 imply xHH = 0, yHH = 0 and zHH =
1−(1−h)n

nh

in I1, B1 and in any other mechanism which is described below.

Mechanism I1

xHL =
(1−h)n−(1−h)(l+q)n−1

nq
yHL = 0 zHL =

(l+q)n−1
n

xLH = 0 yLH =
(1−h)n−(1−h)(l+q)n−1

nq
zLH =

(l+q)n−1
n

xLL =
(l+q)n−1−ln−1

n
yLL =

(l+q)n−1−ln−1
n

zLL =
ln−1
n

Mechanism B1

xHL =
(1−h)n−2(l+q)n+ln

nq
yHL = 0 zHL =

(l+q)n−ln
nq

xLH = 0 yLH =
(1−h)n−2(l+q)n+ln

nq
zLH =

(l+q)n−ln
nq

xLL = 0 yLL = 0 zLL =
ln−1
n

Mechanisms I1 and B1 are somewhat linked to I and B, respectively, because - when

nHH = 0 - for any given type jk = HL,LH,LL of buyer participating in the auction the

probability to win goodm (either alone or with object 3−m) given her opponents’ types
is the same in I as in I1 and in B as in B1. The difference is that given these probabilities,

in I1 and B1 it is maximized the probability that a same buyer wins both goods; clearly,

the synergic effect is the root of this result as it delivers lemma 2.2. The same principle

applies to the mechanisms which are introduced below: given the probability that type

jk (j, k = L,H) has to obtain object m (m = 1, 2), it is maximized the probability that

both goods are allocated to a same buyer.

It is worthwhile to observe, however, that if α = 0 then I1 (B1) is optimal when I (B)

is optimal. To prove this claim it is sufficient to verify that (i) in I1 and B1 (as in I and

B) good m is allocated to a buyer with a high value for it if such a buyer participates
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in the auction; (ii) the probability to win good 1 for a buyer with type LH or LL is

the same in I1 (B1) as in I (B); (iii) a similar result holds for good 2 and types HL and

LL.15

As lemma 2.3 below establishes, for large values of α it is quite often convenient to

sell both goods to a same buyer; hence nor I1 or B1 ever solves problem HH when α is

large and the three following mechanisms are needed.

Mechanism WI1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0 then the goods are allocated
exactly as in I1.

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0 then both goods are sold to a same

buyer. With probability θ ∈ (0, 1) the group of buyers with type HL is selected and
with probability 1− θ the group of types LL is selected;16 within the selected group the

buyer winning both goods is randomly chosen. Thus each type HL obtains both goods

with probability θ
nHL

; for each type LL such probability is 1−θ
nLL
.

When nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 a similar allocation rule is adopted:
each type LH (LL) wins both goods with probability θ

nLH
( 1−θ
nLL
).

In the next two mechanisms the goods are always sold as a single unit.

Mechanism B2 If nHL ≥ 1, nLH ≥ 1 and nHH = 0, then any buyer with type

HL or LH wins both goods with probability 1
nHL+nLH

. If instead only types HL and

LL (LH and LL) are in the auction, then any type HL (LH) receives both items with

probability 1
nHL

( 1
nLH

).

Mechanism WI2 If nHH = 0 then the goods are allocated to a same buyer who

is randomly selected among all the buyers. In other words, when nHH = 0 each buyer

obtains both objects with probability 1
n
independently of her own type.

15More briefly, by using the notation in Ar it is sufficient to verify that the following inequalities are
satisfied both for I, I1 and B, B1: h(xHH + zHH) + q(xHL + zHL) = h(yHH + zHH) + q(yLH + zLH) =
1−(l+q)n

n [condition (i)]; xLH + zLH = ρALH , xLL + zLL = ρALL [condition (ii)]; yHL + zHL = ρBHL,
yLL + zLL = ρBLL [condition (iii)].
16The value of θ is such that each of the three constraints (2.8)-(2.10) binds. Details are provided in

the proof to lemma 2.3(iii) in the appendix.
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In B2 the objects are always allocated to a same buyer with the highest realized

sum of valuations (hence no type LL ever wins any good unless nLL = n). Because of

this reason, Ar calls this mechanism ”the pure bundling auction”17 and proves that it is

never optimal in his setting. The reason is that the optimal auction is weakly efficient

if α = 0, while B2 is not so if α = 0: when nHL ≥ 1, nLH ≥ 1 and nHH = 0 it generates
a surplus equal to max {vL + wH , vH + wL} which is smaller than vH +wH , the surplus
generated if good 1 is sold to a type HL and good 2 is sold to a type LH. Clearly, when

α > 0 is large B2 has chances to be optimal because it always generates and extracts

the synergic surplus.

Mechanism B2 is weakly efficient when α > 1, while that is true for B1 if α ≤ 1.
Mechanisms WI1 and WI2, on the other hand, are never weakly efficient as they allocate

with positive probability both goods to a type LL even though her opponents’ types are

HL or LH. The reduced form probabilities for B2, WI1 and WI2 are as follows

Mechanism B2

xHL = 0 yHL = 0 zHL =
(1−h)n−ln

2qn

xLH = 0 yLH = 0 zLH =
(1−h)n−ln

2qn

xLL = 0 yLL = 0 zLL =
ln−1
n

,

Mechanism WI1

xHL =
(1−h)n−2(l+q)n+ln

nq
yHL = 0 zHL =

2(q+l)n−ln
n(1−h)

xLH = 0 yLH =
(1−h)n−2(l+q)n+ln

nq
zLH =

2(q+l)n−ln
n(1−h)

xLL = 0 yLL = 0 zLL =
2(q+l)n−ln
n(1−h)

17Palfrey (1983) assumes continuously distributed valuations for G ≥ 2 goods and no synergies. He
compares the English auction for the bundle of G goods (the pure bundling auction) to G separate
English auctions. It turns out that for small values of n the seller prefers to bundle the goods rather
than selling them separately. Chakraborty (1999) obtains further results for the case of G = 2.
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Mechanism WI2

xHL = 0 yHL = 0 zHL =
(1−h)n−1

n

xLH = 0 yLH = 0 zLH =
(1−h)n−1

n

xLL = 0 yLL = 0 zLL =
(1−h)n−1

n

We can now state lemma 2.3 which describes the solution to problem HH.

Lemma 2.3 Let s ≥ h+q
l
and α ≥ 0. (i) Mechanism I1 solves problem HH if α ≤

min
q
(h+q)l−q

2ql
, 1
1−h
r
[notice that (h+q)l−q

2ql
≤ 1

1−h if and only if hl ≤ 2q].
(ii) Assume hl ≤ 2q; then mechanism B1 is optimal in problem HH if (h+q)l−q

2ql
< α ≤

1 + h
2q
and B2 solves problem HH if α > 1 + h

2q
.

(iii) Let hl > 2q; then mechanism WI1 solves problem HH if 1
1−h < α ≤ 2

1−h and

WI2 is optimal in problem HH if α > 2
1−h .

Given the solution to problemHH, to prove that it also solves the complete (not sub-

constrained) maximization problem we need to check that all of mechanisms mentioned

in lemma 2.3 satisfy the incentive constraints which have been neglected in problemHH.

Actually, this is always the case: in each of the above mechanisms those constraints hold

even though they have not been imposed when solving problemHH.18 As a consequence

we have the following

Proposition 2.2 For any parameter values such that s ≥ h+q
l
and α ≥ 0 the solution

to problem HH also solves the complete revenue maximization problem. Hence, lemma

2.3 describes the optimal auction as a function of the parameter values.

2.3.4 Comments

A first remark about the above results is that B1 or B2 is optimal if (h + q)l ≤ q as
that implies hl < 2q and min

q
(h+q)l−q

2ql
, 1
1−h
r
≤ 0. Since hl > q(1− l) requires that the

18As we anticipated above, this result is delivered by the assumption of symmetric goods and would
hold even if s were not larger than h+q

l .
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correlation between each vi and wi is positive and sufficiently strong, we conclude that

the pure bundling auction B2 or a weaker form of it (B1) is optimal when correlation is

weak or negative; hence, also under independently distributed valuations.

As we remarked in subsection 2.3.1, when α = 0 the choice between mechanism I and

mechanism B only depends on the correlation in the probability distribution and not on

s.19 On the other hand, under positive synergies the buyers’ preferences, as represented

by the parameter α, affect the format of the optimal auction. It is also worthwhile to

notice that the number of buyers does not matter in determining the optimal auction.

Yet, it seems reasonable to conjecture that - as in Ar - n would matter if the goods were

very asymmetric.

Lemma 2.3(ii)-(iii) establishes that when α is sufficiently large and the buyers’ types

are LH and HL then selling good 1 to a type HL and good 2 to a type LH is not

a good idea as the synergic surplus is not generated and the seller cannot extract it;

allocating the two objects to a same buyer is more profitable. Since increasing zHL and

zLH tightens constraints (2.8) and (2.9), when nHL ≥ 1, nLH ≥ 1 and nHH = 0 the

seller does not bundle the goods if just α > 1 as weak efficiency requires, but only if

α > min
q

2
1−h , 1 +

h
2q

r
.

The results in lemma 2.3(iii) are maybe more surprising: If α > 1
1−h and correlation

is sufficiently strong and positive (hl > 2q) then a type LL receives both goods with

positive probability when the other buyers’ types are HL or LH (mechanisms WI1 and

WI2). This may look strange, since the surplus produced from selling the objects to a

type LL is ”obviously” smaller with respect to selling them to a type HL or LH. Ar

considers an example in which the buyers’ valuations are continuously distributed over

two rays in the positive orthant of ?2 and there are no synergies; in that case good m is

inefficiently allocated if the buyers’ valuations for good 3−m are sufficiently different. In
mechanisms WI1 and WI2, instead, good 1 (2) is inefficiently allocated when nHL ≥ 1,

19Armstrong and Rochet (1999) obtain a similar result in a bi-dimensional screening model in which
the planner faces a unique agent.
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nLL ≥ 1 and nHH = nLH = 0 (nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0), which means
that all the buyers’ valuations for good 2 (1) are low (recall that here each valuation has

a binary support).

To get a simple intuition of why this selling policy may maximize revenue assume

hl > 2q and α > 1+ h
2q
(hence α > 2

1−h). Lemma 2.3(ii) states that B2 is suboptimal as

hl > 2q; we now show why WI2 is superior to B2 without using saddle-point arguments.

In B2, constraints (2.8) and (2.9) bind while (2.10) is slack: type HH strictly prefers to

reveal her own type rather than reporting LL but she is indifferent between a truthful

report and announcing HL or LH. When nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0

(nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0) B2 allocates both goods to a same type HL
(LH). Now consider moving away fromB2 by selling the objects with positive probability

to a same type LL rather than to a typeHL (LH). This entails a reduction in zHL (zLH)

and an increase in zLL; more precisely, ∆zHL = ∆zLH = −ε and ∆zLL =
2q
l
ε for some

ε > 0 (we are exploiting the argument introduced at the end of subsection 2.2.2). As

a consequence, the left hand side of both (2.8) and (2.9) is increased and tHH increases

as (2.10) was initially slack: ∆tHH = (1− 2 ql )ε > 0 (as hl > 2q). Moreover, from (2.5)-

(2.7) written as equalities we see that both tHL and tLH decrease while tLL increases:

since types HL and LH receive less goods in expected value, the payment which can

be extracted from them is smaller; the opposite argument applies to type LL. Indeed,

∆tHL = ∆tLH = −(2s+α+1)ε− 2q
l
ε < 0 and∆tLL = (2s+α)2q

l
ε > 0. The change in the

expected revenue per buyer is ∆(R
n
) = h∆tHH + q(∆tHL+∆tLH) + l∆tLL =

ε
l
(hl− 2q);

thus R
n
increases if we move away from B2 toward WI2 by slightly increasing ε above 0

as we assumed hl > 2q (similar arguments can be put forward when comparing WI1 to

B1). Clearly, hl > 2q if and only if q is small enough with respect to h and l, which says

that in expected value the reductions in tHL and tLH are more than counterbalanced by

the increases in tHH and tLL.

Basically, therefore, the problem of minimizing the cost of the incentive constraints

(2.8)-(2.10) induces an inefficient allocation of the goods when hl > 2q. Notice that
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hl > 2q does not imply that it is optimal to sell both goods with probability 1 to a type

LL when nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 and when nLH ≥ 1, nLL ≥ 1 and
nHH = nHL = 0. The reason is that in such a case zLL would be larger than zHL and

zLH , hence (2.10) would bind while (2.8) and (2.9) would not. Then it would be possible

to increase tHH , tHL and tLH by slightly reducing zLL and increasing zHL and zLH ; Rn

would be higher because the associated decrease in tLL would not counterbalance these

increases.

Since hl > 2q is a condition which does not depend on α, it should be explained

why the weakly inefficient mechanisms WI1 and WI2 are never optimal when α =

0. The reason is that the seller has no incentive to allocate both goods with positive

probability to a type LL when α = 0: no synergic surplus is lost by reducing zHL and

zLH and simultaneously increasing xHL, yLL, yLH and xLL; when hl > 2q the seller would

better follow this strategy, converging to mechanism I (hl > 2q implies h
2
> q h+q

l+q
, see

proposition 2.1).

An alternative way of explaining the optimality (for some parameter values) of the

weakly inefficient mechanism WI2 exploits a simple remark: When the goods are always

sold as a single item (because α is large), an only object - the bundle - is on sale and each

buyer’s private information is summarized by a one-dimensional variable: her valuation

for the bundle. If bi is buyer i’s valuation (i = 1, . . . , n) for the bundle then bi ∈
{bL, bM , bH} = {2s+ α, 2s+ 1 + α, 2s+ 2 + α} with p(bL) = l, p(bM) = 2q and p(bH) =
h.20 Let zu denote the (reduced form) probability for a buyer reporting bu to win the

bundle, u = L,M,H. As it is well known, any incentive compatible mechanism satisfies

the monotonicity constraints zH ≥ zM ≥ zL. The techniques developed in Myerson

(1981) can be adapted to this setting to prove that if the virtual valuation function

J(b) = b − 1−P (b)
p(b)

is increasing in b, then the buyer with the highest realized valuation

should obtain the bundle whenever it is sold and this implies that the monotonicity

20We use p to denote the probability mass function for each bi; P is the cumulative distribution
function: P (bL) = l, P (bM ) = l + 2q and P (bH) = 1.
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constraints (zH ≥ zM ≥ zL) are met. If instead J is not monotone increasing then

the seller should bunch different types (each type in the bunching region has the same

probability to receive the bundle); therefore with positive probability the bundle is

inefficiently allocated.

It turns out that J(bH) = 2s+2+α, J(bM) = 2s+1+α− h
2q
and J(bL) = 2s+α− 1−l

l
;

thus the virtual valuation function is monotone if and only if J(bM) ≥ J(bL) which is
equivalent to 2q ≥ hl. Indeed, lemma 2.3(ii) establishes that when 2q ≥ hl (and α is

large) the pure bundling auction B2 is used; hence the bundle is obtained by a buyer

with the highest realized valuation for it, which means that it is efficiently allocated. If

instead hl > 2q then J(bM) < J(bL); indeed, by lemma 2.3(iii) (when α is large) WI2

is optimal, in which types bM (types HL and LH in the two-good model) are bunched

with types bL (types LL in the two-good model): here the objects are not efficiently

allocated. Observe, however, that the goods are inefficiency allocated when nHL ≥ 1,
nLL ≥ 1 and nHH = nLH = 0 or nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0 also if α is

not so large that they are always sold as a single object (provided hl > 2q), as it occurs

when mechanism WI1 is optimal.

Up to now we assumed that objects are symmetric. It turns out that relaxing this

assumption makes ”more likely” that the optimal mechanism is weakly inefficient if

the goods are always sold as a single item. To fix the ideas, let ∆v > ∆w, q1 =

Pr {(v, w) = (vH , wL)} and q2 = Pr {(v, w) = (vL, wH)}. In a scalar model, if valuations
are discretely distributed with support {b1, . . . , bU} (bu < bu+1) then the virtual valuation
J(bu) is equal to bu − (bu+1 − bu)1−P (bu)p(bu)

. Since bu+1 − bu may vary with u, a monotone
hazard rate does not always imply that J is monotone increasing. Given that ∆v > ∆w,

the valuations for the bundle are b1 = vL+wL+α, b2 = vL+wH +α, b3 = vH +wL+α

and b4 = vH+wH+α. The virtual valuation function is monotone increasing if and only

if J(b3) ≥ J(b2) ≥ J(b1), which occurs if and only if q2∆w ≥ l(h + q1)(∆v −∆w) and

q1(1− l)(∆v−∆w) ≥ hq2∆w. It is easy to see that here strong and positive correlation
in the distribution of (v, w) is not required in order for the optimal mechanism to be
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weakly inefficient. For instance, let h = q1 = q2 = l = 1
4
. Under this distribution v

is independent of w and it is optimal to allocate the bundle efficiently if and only if
∆v
3
≤ ∆w ≤ 3∆v

4
. In this example the hazard rate 1−P (b)

p(b)
is monotone decreasing, yet the

virtual valuation function is not monotone increasing if the ratio ∆w
∆v
is smaller than 1

3

or larger than 3
4
.

2.4 Conclusions

This chapter analyzed optimal two-object auctions when each buyer’s utility is super-

additive. A first result is that many degrees of freedom existing in the model with no

synergies disappear as positive synergies provide an incentive for the seller to allocate

both objects to a same buyer. Formally, in any optimal mechanism, if good 1 (2) is allo-

cated within a given set S1 (S2) of buyers according to a given probability distribution

p1 (p2), then it is maximized the probability that both goods are sold to a same buyer

given S1, S2, p1 and p2. Furthermore, for any α > 0 the goods are always sold as a

single item to a type HH when such a type of buyer is in the auction. For these reasons

no mechanism put forward in Ar when α = 0 is optimal if α > 0: in those mechanisms

the probability of generating and extracting the synergic surplus is suboptimally low.

However, the optimal mechanisms when α is positive but close to 0 are optimal also if

α = 0: by the maximum theorem, the solution to the revenue maximization problem is

upper-hemi-continuous with respect to α.

The optimal mechanism is often not weakly efficient. Specifically, I1 is optimal when

α > 0 is small (under strong and positive correlation) even though it generates too rarely

the synergic surplus. When α is large, WI2 (or WI1) is optimal (still under strong and

positive correlation) even though a type LLmay win both goods when facing typesHL or

LH. Thus, while Ar shows that weak efficiency is consistent with revenue maximization

in a two-object auction if the valuations have binary supports, we find that such a result

is not robust to the presence of synergies. The weak inefficiency of WI2 and WI1 can be
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viewed as due to the interplay among the incentive constraints for type HH. However,

as we stressed in subsection 2.3.4, synergies make the model closer to a single-object

setting, for which we know that inefficiency arises when the virtual valuation function

is not monotone; that is ”more likely” to occur if the goods are asymmetric.

In sum, how should two goods be sold when the buyers’ utilities for them are super-

additive? When α is quite large and each buyer’s valuations are negatively or weakly

correlated then both goods are allocated to a same buyer with the highest realized sum

of valuations (mechanism B2). If instead correlation is strong and positive then it is

optimal to bunch types HL, LH and LL (WI2); this reduces the consumption of types

HL and LH with respect to B2 and any type LL obtains the goods with positive prob-

ability not only when nLL = n. When α is not large the above sale policies are amended

(depending on the correlation degree) by not always bundling the goods. This sometimes

implies ”underproduction” of the synergic surplus.

The present model may be extended along many directions, for example by allowing

for more than two possible valuations for each good. Solving the problem with contin-

uously distributed values would be very interesting but it appears difficult even though

some results exist when there are no synergies. An interesting extension may allow for

more than two objects and different synergies depending on how many and which goods

are obtained by the same buyer. This may capture the differences between local syner-

gies and global synergies, a perceived dichotomy in the FCC auction [see Ausubel et al.

(1997)].

2.5 Appendix

Proof of lemma 2.2 We prove that if a mechanism is such that for some profile of

buyers’ reports with nHH ≥ 1 no type HH obtains both goods then the value of the

lagrangian function L can be increased; therefore, by lemma 2.1 the mechanism does

not solve problem HH.
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Suppose first that for some profile of buyers’ reports with nHH ≥ 1 no type HH

receives any good. That may occur because (i) no good is sold at all; (ii) only one good,

say good 1, is sold, say to a type HL; (iii) the goods are sold to different types of buyer,

say good 1 to a type HL and good 2 to a type LH; (iv) both goods are sold to a same

buyer, say to a type HL.

In any of the above cases the value of L is increased by selling both goods to a same

buyer of typeHH. In case (i) this is obvious, since zHH is increased and ∂L
∂zHH

> 0; in case

(ii), allocating the goods to a same type HH rather than good 1 to a type HL increases

zHH by some ε > 0 and decreases xHL by h
q
ε: ∆L = εh(2s + 2 + α) − h

q
εq(s + 1) =

εh(s + 1 + α) > 0. In case (iii), ∆zHH = ε > 0 and ∆xHL = ∆yLH = −h
q
ε; hence

∆L = εh(2s+2+α)−2h
q
εq(s+1) = εhα > 0. Last, in case (iv) we have ∆zHH = ε > 0

and ∆zHL = −hq ε, thus ∆L = εh(1 + λ1
q
) > 0.

Now assume that for some profile of buyers’ reports with nHH ≥ 1 some type HH
receives an only good, say good 1; again, we show that the value of L can be increased

by allocating both goods to a same type HH. There are three possible cases: (i) good

2 is not sold at all; (ii) good 2 is sold to a type HH who is not the same buyer receiving

good 1; (iii) good 2 is allocated to a buyer with a different type, say a type LH. Now

we argue (about) as above: in case (i) zHH is increased by some ε > 0 and xHH is

decreased by ε: ∆L = hε(s+1+α) > 0. In case (ii) we set ∆zHH = ε > 0, ∆xHH = −ε
and ∆yHH = −ε; hence ∆L = hεα > 0. Finally, in case (iii) it is ∆zHH = ε > 0,

∆xHH = −ε and ∆yLH = −hq ε (this is the example which was examined at the end of
subsection 2.2.2); thus ∆L = hεα > 0.

Next lemma helps in proving lemma 2.3 by providing the conditions under which

different allocations are optimal in problem HH when two or three different types of

buyer show up in the auction.

Lemma 2.4 (i) If nHL ≥ 1, nLH ≥ 1 and nHH = nLL = 0 then

• (a) sell good 1 among buyers of type HL and good 2 among types LH ifmin {λ1,λ2} ≥
q(α− 1)
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• (b) sell both goods to a same buyer of type HL (LH) if λ1 ≤ min {λ2, q(α− 1)}
(λ2 ≤ min {λ1, q(α− 1)})

• (c) sell both goods to a same buyer of type HL or LH if λ1 = λ2 ≤ q(α− 1).

(ii) If nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 then

• (a) sell both goods to a same type HL if (l+ q)λ1+ qλ2 ≤ q(1+h) and (l+ q)λ1 ≤
q(αl + h+ q)

• (b) allocate both goods to a same buyer which is selected with probability θ ∈ (0, 1)
among types HL and with probability 1 − θ among types LL if (l + q)λ1 + qλ2 =

q(1 + h) and (l + q)λ1 ≤ q(αl + h+ q)

• (c) if (l+ q)λ1 = q(αl+ h+ q) and (l+ q)λ1+ qλ2 ≤ q(1 + h) then allocate good 2
randomly among all the buyers; if it is received by a type HL then the same buyer

also wins good 1; if instead a type LL obtains good 2 then good 1 is allocated among

types HL.

(iii) If nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0 then

• (a) sell both goods to a same type LH if (l+ q)λ2+ qλ1 ≤ q(1+h) and (l+ q)λ2 ≤
q(αl + h+ q)

• (b) allocate both goods to a same buyer which is selected with probability θ ∈ (0, 1)
among types LH and with probability 1 − θ among types LL if (l + q)λ2 + qλ1 =

q(1 + h) and (l + q)λ2 ≤ q(αl + h+ q)

• (c) if (l+ q)λ2 = q(αl+ h+ q) and (l+ q)λ2+ qλ1 ≤ q(1 + h) then allocate good 1
randomly among all the buyers; if it is received by a type LH then the same buyer

also wins good 2; if instead a type LL obtains good 1 then good 2 is allocated among

types LH.

(iv) If nHL ≥ 1, nLH ≥ 1, nLL ≥ 1 and nHH = 0 then
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• (a) allocate good 1 among types HL and good 2 among types LH if min {λ1,λ2} ≥
q(α− 1) and λ1 + λ2 ≤ 1 + l + h− αl

• (b) sell both goods to a same type HL or LH if λ1 = λ2 ≤ q(α−1) and (l+ q)λ1+
qλ2 ≤ q(1 + h)

• (c) allocate both goods to a same type HL or LH or LL if λ1 = λ2 ≤ q(α− 1) and
(l + q)λ1 + qλ2 = q(1 + h).

Proof. (ia) Suppose good 1 is allocated among types HL and good 2 is sold among

types LH; this is the best way of allocating the objects to buyers with different types

given that nHL ≥ 1, nLH ≥ 1 and nHH = nLL = 0. Increasing the probability to sell

the goods as a single object to a type HL requires to decrease both xHL and yLH by

ε > 0 and to increase zHL by ε. Since ∆L = [q(α − 1) − λ1]ε, this is not profitable if

λ1 ≥ q(α−1). Similarly, if λ2 ≥ q(α−1) then the seller should not reduce the probability
that types HL obtain object 1 to increase the probability that a same type LH receives

both goods.

(ib,ic) Reasoning as in part (ia), if zHL > 0 (zLH > 0) then reducing zHL (zLH) and

increasing xHL and yLH is not profitable if λ1 ≤ q(α− 1) [λ2 ≤ q(α− 1)]; reducing zHL
(zLH) to increase zLH (zHL) decreases L if λ1 ≤ λ2 (λ2 ≤ λ1).

(iia) We consider three alternatives to the policy of selling both objects to a same

type HL: (i) selling both goods to a same type LL with positive probability; (ii) selling

only item 2 among types LL (therefore allocating only good 1 among types HL) with

positive probability; (iii) selling only good 1 to a type LL and only object 2 to a typeHL

with positive probability. The first alternative is implemented by reducing zHL by ε > 0

and increasing zLL by
q
l
ε; this implies∆L = −ε[q(2s+1+α)−λ1]+ q

l
ε[l(2s+α)−1+l−λ3]

which has the same sign as (l + q)λ1 + qλ2 − q(1 + h). Hence, the seller is indifferent
between allocating the goods to a same buyer among types HL or among types LL if

and only if (l+ q)λ1+ qλ2 = q(1+h). The second alternative implies reducing zHL by ε

and increasing xHL by ε and yLL by
q
l
ε; then ∆L = −ε[q(2s+ 1+ α)− λ1 − q(s+ 1)] +
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q
l
ε(ls − q − λ2 − λ3) which has the same sign as (l + q)λ1 − q(αl + h + q). Therefore,
the seller is indifferent between selling both objects to a type HL and allocating good

1 to a type HL and good 2 among types LL if and only if (l + q)λ1 = q(αl + h + q).

Finally, in the third alternative ∆zHL = −ε < 0, ∆yHL = ε and ∆xLL =
q
l
ε; hence

∆L = ε[qs− λ1 − q(2s+ 1 + α) + λ1] +
q
l
ε(ls− q − λ1 − λ3) < 0.

(iib) From the proof of part (iia) we know that the seller is indifferent between selling

both goods to a type LL or to a type HL if (l + q)λ1 + qλ2 = q(1 + h). Furthermore,

allocating with positive probability only object 2 among types LL and only item 1 among

types HL by not always selling the two goods to a same type HL or LL is unprofitable

if (l + q)λ1 ≤ q(αl + h+ q).
(iic) We know that if good 1 is allocated among types HL, then varying the prob-

ability that good 2 is allocated among types LL rather than to the same type HL

who wins good 1 has no effect on L if (l + q)λ1 = q(αl + h + q). Moreover, reduc-

ing the probability that object 1 is sold to a type HL in favor of types LL is equiv-

alent to reduce xHL by ε while increasing zLL by
q
l
ε and reducing yLL by

q
l
ε; then

∆L = εq
l
(αl + λ2 + q − 1). Exploiting the equality αl = (l+q)λ1

q
− h − q we find that

∆L ≤ 0 if and only if (l + q)λ1 + qλ2 ≤ q(1 + h).
(iii) We omit the proof to this part as it is just a relabeling of the proof to part (ii).

(iva) From part (ia) we know that no modification (of the proposed selling policy)

involving only types HL and LH is profitable as long as min {λ1,λ2} ≥ q(α−1). Selling
only good 1 (say) to a type LL decreases L (∆xHL = −ε, ∆xLL = q

l
ε). Selling with

positive probability both objects to a same type LL entails reducing both xHL and yLH

by ε while increasing zLL by
q
l
ε; then ∆L = −ε2q(s + 1) + q

l
ε[l(2s + α) − 1 + l − λ3],

which has the same sign as λ1 + λ2 − 1− h− l + αl.

(ivb) In view of part (ic), no modification involving only types HL and LH increases

L if λ1 = λ2 ≤ q(α − 1). It can be verified that this condition also implies that selling
with positive probability only one good to a type LL is not profitable. If both items

are allocated with positive probability to a same type LL then ∆zHL = −ε < 0 (or
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∆zLH = −ε) and ∆zLL =
q
l
ε > 0, hence ∆L = ε

l
[(q + l)λ1 + qλ2 − q(1 + h)].

(ivc) The proof to part (ivb) shows that the seller is indifferent between allocating

both goods to a type HL or to a type LH or to a type LL if and only if (q+ l)λ1+qλ2 =

q(1 + h) and λ1 = λ2. The best way of selling the objects separately is to allocate item

1 among types HL and good 2 among types LH. Then ∆zHL = −ε (or ∆zLH = −ε,
or ∆zLL = −ql ε), ∆xHL = ∆yLH = ε and ∆L ≤ 0 if and only if λ1 ≤ q(α − 1) (as
λ1 = λ2).

Proof of lemma 2.3 Lemma 2.4 takes for granted that both goods are always sold.

That is actually optimal if, when xjk > 0 (yjk > 0 or zjk > 0) then ∂L
∂xjk
≥ 0 ( ∂L

∂yjk
≥ 0

or ∂L
∂zjk
≥ 0), j, k = L,H. This is the case for any mechanism which is mentioned in the

present lemma, given the values of the multipliers which are provided below and given

that s ≥ h+q
l
.

(i) We prove that mechanism I1 solves problem HH if α ≤ min
q
(h+q)l−q

2ql
, 1
1−h
r
.

To this purpose set λ1 = λ2 = qαl+q+h
l+q

and λ3 = h − 2λ1; λ3 ≥ 0 as α ≤ (h+q)l−q
2ql

.

Having λ1 > 0, λ2 > 0 and λ3 ≥ 0 is consistent with lemma 2.1 as (2.8)-(2.10) bind
in I1. Indeed, from the heuristic description of I1 follows that any type HL (LH) has

the same probability to win good 2 (1) as any type LL: yHL + zHL = yLL + zLL and

xLH + zLH = xLL + zLL; hence (2.8)-(2.10) bind.

Given the above values for λ1, λ2 and λ3, by using lemma 2.4 we verify that if

nHH = 0 and at least two different types of buyer show up in the auction then the

allocation prescribed by I1 maximizes L. By lemma 2.4(ia), 2.4(iic), 2.4(iiic) and 2.4(iva)

we need to check the inequalities qαl+q+h
l+q

≥ q(α − 1), (l + 2q)qαl+q+h
l+q

≤ q(1 + h) and
2qαl+q+h

l+q
≤ 1 + l + h− α; these are satisfied since α ≤ 1

1−h .

(ii) Assume hl ≤ 2q and (h+q)l−q
2ql

< α ≤ 1 + h
2q
; set λ1 = λ2 =

h
2
and λ3 = 0. In

B1 constraints (2.8) and (2.9) bind while (2.10) is slack as yHL + zHL + xLL + zLL =

xLH + zLH + yLL+ zLL > xLL+ yLL+2zLL: the probability to win good 2 (good 1) for a

type HL (LH) is higher than for a type LL; indeed, a type LL never receives any object

unless nLL = n. From lemma 2.4(ia), 2.4(iia), 2.4(iiia) and 2.4(iva) follows that B1 is
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optimal if h
2
≥ q(α− 1), (l + 2q)h

2
≤ q(1 + h), (l + q)h

2
≤ q(αl + h+ q) and αl ≤ 1 + l.

These inequalities hold because hl ≤ 2q and (h+q)l−q
2ql

< α ≤ 1 + h
2q
.

If instead α > 1 + h
2q
but still hl ≤ 2q, then we prove that B2 solves problem HH

by setting again λ1 = λ2 =
h
2
and λ3 = 0. As in B1, (2.8) and (2.9) bind while (2.10)

does not in B2 (actually, both yHL + zHL and xLH + zLH increase in B2 with respect

to B1); hence the values of the multipliers are consistent with lemma 2.1. In view

of lemma 2.4(ic), 2.4(iia), 2.4(iiia) and 2.4(ivb) we have to check that h
2
≤ q(α − 1),

(l+2q)h
2
≤ q(1+h), (l+ q)h

2
≤ q(αl+h+ q) and (l+2q)h

2
≤ q(1+h); these inequalities

follow from 1 + h
2q
< α and hl ≤ 2q.

(iii) Assume hl > 2q and 1
1−h < α ≤ 2

1−h ; then WI1 is optimal in problem HH.

In order to prove this claim set λ1 = λ2 = q 1+h
1−h and λ3 = h − 2λ1; λ3 > 0 since

hl > 2q. The value of θ in WI1 is determined in order to let (2.8)-(2.10) bind. This

occurs if and only if zLH = zHL = zLL (as xLH = xLL = yHL = yLL = 0) and, since

zLH = zHL, we just take care of the equality zHL = zLL. Using lemma 1 in Ar we find

zHL =
qn−1
n
+ θ[

�
n−1
1

�
qn−2l
n−1 +

�
n−1
2

�
qn−3l2
n−2 + · · ·+

�
n−1
n−1
�
ln−1] = θ (l+q)

n−ln
nq

+ (1− θ) q
n−1
n
and

zLL =
ln−1
n
+2(1− θ)

k�
n−1
1

�
ln−2q
n−1 +

�
n−1
2

�
ln−3q2
n−2 + · · ·+

�
n−1
n−1
�
qn−1

l
= (2θ− 1) ln−1

n
+2(1−

θ) (l+q)
n−qn
nl

. There exists a unique value of θ such that zHL = zLL; that value lies in

(0, 1). To be exact, θ = 2q(l+q)n−(1−h)qn−qln
(1−h)[(l+q)n−ln−qn] and zHL = zLL =

2(l+q)n−ln
n(1−h) .

By lemma 2.4(ia), 2.4(iib), 2.4(iiib) and 2.4(iva) the conditions q 1+h
1−h ≥ q(α − 1),

(l + 2q)q 1+h
1−h = q(1 + h), (l + q)q

1+h
1−h ≤ q(αl + h + q) and 2q 1+h1−h ≤ 1 + l + h − αl are

necessary and sufficient in order for WI1 to be optimal. It turns out that the first one

and the fourth one are equivalent to α ≤ 2
1−h ; the third one is implied by α > 1

1−h .

Now assume still hl > 2q but 2
1−h < α and set again λ1 = λ2 = q

1+h
1−h and λ3 = h−2λ1.

In WI2, (2.8)-(2.10) bind as each typeHL, LH and LL is treated in the same way; hence

any type HL (LH) has the same probability to win good 2 (good 1) as any type LL.

The main difference between WI1 andWI2 concerns the allocation of the goods when

nHL ≥ 1, nLH ≥ 1 and nHH = 0. In that case WI2 allocates both goods to a same buyer
who is randomly chosen among all the buyers in the auction; lemma 2.4(ic) and 2.4(ivc)
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require q 1+h
1−h ≤ q(α − 1) and (l + 2q)q 1+h1−h = q(1 + h) which hold since α ≥ 2

1−h . The

two mechanisms do not allocate the goods in the same way when nHL ≥ 1, nLL ≥ 1
and nLH = nHH = 0 and when nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0: in WI1 the

value of θ is determined as we have seen above, while in WI2 it is equal to nHL
n
or nLH

n
,

respectively. The conditions for optimality, however, are the same [described by lemma

2.4(iib) and 2.4(iiib)] and they are satisfied for WI2 as they hold for WI1 with the same

multipliers and a smaller α.

Proof of proposition 2.2 In problem HH several incentive constraints are ne-

glected. We need to verify that they are satisfied in any mechanism which is mentioned

in lemma 2.3. In the proof to lemma 2.3 we have seen that (2.8) and (2.9) bind in any

such mechanism; the same is true for (2.5) and (2.6). For any other incentive constraint

we write down the condition under which it holds

jk j�k� inequality (2.1) given jk and j�k�

HH LL yHL + zHL ≥ yLL + zLL
HL HH yHH + zHH ≥ yHL + zHL
HL LH yLH + xLL ≥ xLH + yLL
LH HH xHH + zHH ≥ xLH + zLH
LH HL xHL + yLL ≥ yHL + xLL
LL HH xHH + yHH + 2zHH ≥ yHL + zHL + xLL + zLL
LL HL xHL + zHL ≥ xLL + zLL
LL LH yLH + zLH ≥ yLL + zLL

For any of mechanisms I1, B1, WI1, B2 and WI2 the values of {xjk, yjk, zjk}j,k=L,H
which characterize that mechanism satisfy all of the above inequalities.
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Chapter 3

Optimal Auctions Under Collusion

of Buyers with Correlated

Valuations

3.1 Introduction

The mechanism design literature has devoted a lot of attention to the problem of finding

the expected revenue maximizing auction for an indivisible good when each buyer’s

willingness to pay is unknown to the seller. The seminal paper by Myerson (1981)

covers the case of risk-neutral buyers with independently (and possibly not identically)

distributed private values. Many following papers have extended his early analysis to

more general settings.1

Most of the papers about this topic assume that buyers behave according to some

Bayes-Nash equilibrium (BNE henceforth) of the mechanism designed by the seller.

Yet, if communication among buyers is feasible then they may be expected to form a

1In Matthews (1983) and Maskin and Riley (1984) the buyers are risk averse; Crémer and McLean
(1985, 1988) assume correlated valuations; Bulow and Klemperer (1996) and Branco (1997) deal with
interdependent values [actually, also Myerson (1981) allows for a specific case of interdependent valua-
tions]. Also see the survey by Klemperer (1999) and the references therein.
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coalition to collectively manipulate the sale mechanism. Indeed, anecdotal evidence [see

for example Graham and Marshall (1987) and Hendricks and Porter (1989)] suggests

that collusion in auctions is quite widespread. This is particularly important if collusion

considerably reduces the revenue and modifies the allocation of the good with respect to

noncooperative behavior. In this chapter we analyze the effects of collusion in a specific

auction setting.

Myerson (1981) shows that, in the standard environment described in section 1.2, un-

der (Bayes-)Nash behavior a first price auction with a suitable reserve price r maximizes

expected revenue (as many other sale mechanisms do) if the probability distribution

F satisfies the monotone virtual valuation condition mentioned in chapter 2. Such an

optimal auction leaves positive rents to buyers with high valuations: the expected payoff

of any buyer with valuation r + ε > r is
U r+ε
r

Fn−1(z)dz > 0. Nevertheless, collusion

increases the buyers’ expected payoffs with respect to noncooperative behavior [see for

instance McAfee and McMillan (1992)]. When the valuations are (even slightly) cor-

related, on the other hand, Crémer and McLean (1985, 1988) show that the seller can

design a mechanism which extracts (in individually rational BNE) all of the buyers’

expected surplus as if he could observe the valuations.2 This implies that no type of

buyer gains anything from participating in the auction; therefore under correlated values

the buyers’ incentives to collude are likely to be stronger than when the valuations are

independently distributed.

This chapter examines - assuming positively correlated values - the effects of collusion

on the seller’s revenue, his optimal reaction, the efficiency of the resulting allocation and

whether collusion awards rents to the buyers. For the sake of tractability we focus on

a setting with two risk-neutral and ex ante symmetric buyers; each of them privately

2In Crémer and McLean (1985, 1988) the buyers’ valuations are discretely distributed. McAfee and
Reny (1992) assume continuously distributed valuations and provide conditions on the joint density
under which full surplus extraction is achievable. McAfee, McMillan and Reny (1989) examine a
common value environment in which the buyers’ signals are correlated (even though they are not so,
conditional on the true, unknown, value of the object); they prove that the seller can extract almost all
of the rents.
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observes her own valuation for the good, which may be high (type H) or low (type L).

Section 3.2 introduces an above mentioned result: Under correlated valuations, if the

buyers play noncooperatively then the seller can obtain the same expected revenue as

a perfectly informed monopolist. In section 3.3 we model collusion as in Laffont and

Martimort (2000) (henceforth LM). Specifically, we assume that an uninformed third

party proposes to the buyers a side-contract to collectively manipulate their reports into

the sale mechanism. This new agent aims at maximizing the sum of the buyers’ expected

payoffs but ignores their valuations (collusion occurs under asymmetric information) and

therefore needs to provide each type of buyer with incentives in order for her not to lie in

the side mechanism. Furthermore, each buyer accepts the collusive agreement only if by

doing that she expects to obtain a higher payoff than from playing the sale mechanism

noncooperatively.3

Even though it takes place under asymmetric information, collusion restricts the set

of allocations which the seller can implement and it turns out that he cannot extract

anymore the full surplus. Specifically, full surplus extraction requires ex post efficiency

in the allocation of the good and, under collusion, that implies strictly positive rents for

each buyer of type H. As in the setting with uncorrelated valuations and no collusion,

the seller can appropriate these rents by refusing to sell to any type L and for some

parameter values this is profitable for him. Therefore it is not anymore possible to

screen the buyers’ types at no cost: collusion generates the well known trade-off between

ex post efficiency and revenue maximization which disappeared under correlation and

Nash behavior. As LM remark, introducing collusion restores continuity between the

correlated and uncorrelated environments. It is worth noticing that the revenue loss due

to collusion is negligible when correlation is very strong: in that case the seller nearly

extracts the entire surplus from the buyers, as if they played noncooperatively (but see

the caveat at the end of this section and in subsection 3.4.3). Also with uncorrelated

3Since the side mechanism is designed by an uninformed third party, no information is leaked by its
selection as it would occur if one buyer offered it. In this way a problem of information signalling is
avoided. LM’s approach concentrates on collusion issues and provides an upper bound on its effects.
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valuations the revenue is not reduced by collusion, but it is well known that in such a

setting the expected revenue is strictly smaller than under complete information even if

buyers play noncooperatively. Hence collusion is very effective when correlation is not

zero but is not very strong.

We highlight the differences between the above model and the one in which the

buyers freely share their private information at the collusion stage, which means that the

coalition is formed under symmetric information;4 this makes collusion more powerful.

In this setting the seller is more likely to withhold the good when facing two buyers with

type L with respect to the previous environment and his revenue loss is bounded away

from zero also when correlation is very strong.

This chapter is basically an application of the collusion model in LM to an auction

setting; nevertheless, their results are not really analogous to ours. LM consider the

problem of implementing the efficient production level of a public good when two agents

have positively correlated (privately observed) valuations for the public good and may

collude. They solve this problem when correlation is very weak or very strong. Under

weak correlation it does not matter whether the coalition forms under symmetric or

asymmetric information, as the planner cannot exploit the fact that the colluding agents

ignore each other’s valuation. On the other hand, when correlation is strong the planner

can almost completely undermine the effects of collusion under asymmetric information.

While the latter result holds in our setting as well, we find that the seller (weakly)

prefers asymmetric to symmetric information for any degree of positive correlation. A

further difference is that in LM production is shut down when correlation is strong and

the agents have different types, as this event is ex ante quite unlikely (given strong and

positive correlation) and a no-collusion constraint is considerably relaxed. In our model

nothing like that can be optimal: a type H always wins the good when facing a type

L. The common root of these two differences is the different shape of a no-collusion

4This was sometimes assumed in early studies of collusion; see for example Green and Laffont (1979),
Robinson (1985) and von Ungern-Sternberg (1988).

62



constraint.

In an auction environment one more issue arises with respect to a public good setting.

If the buyers have different types (one type H and one type L) and collude by claiming

they have a same type, then there is a chance that the good will be allocated to type

L even though a type H is around. Thus, the effectiveness of collusion between buyers

with different types depends on the possibility to transfer the good ex post in case it

is ”misallocated within the coalition”. If that is feasible, then it turns out that the

seller never gains from the fact that the coalition forms under asymmetric information.

More than the intrinsic results (which are similar to those obtained under symmetric

information within the coalition and no ex post transfer of the good) we observe that the

modelling ”details” are pretty important: Collusion is quite effective if the buyers are

able to commit to ex post efficiency within the coalition and its effects are not mitigated

by asymmetric information at the collusion stage.

In section 3.4 we perform some robustness checks on the optimal sale mechanism.

Buyer i’s acceptance of a side mechanism depends on the equilibrium payoff she would

obtain if the sale mechanism were played noncooperatively, which in turn may depend

on buyer 3 − i’s beliefs following buyer i’s veto of the collusive agreement. Thus the
proposed side contract may depend on what a buyer is expected to learn if her opponent

rejects the side mechanism. Actually, in subsection 3.4.1 we show that the proposed

side mechanism does not depend on such beliefs, hence the same can be said of the

optimal sale mechanism. A further (and related) robustness check involves the game

beginning after the third party’s proposal of a side mechanism. There each buyer may

signal her own private information in a preplay cheap-talk stage and thereby affect

the subsequent play. Yet, we find that the optimal sale mechanism is always strongly

ratifiable according to the definition of Cramton and Palfrey (1995). Unfortunately, for

some parameter values a multiplicity problem arises: the optimal sale mechanism has

a non-truthful BNE which each type H prefers to the truthful BNE; by contrast, each

type L earns a negative payoff in it. This problem can be eliminated by imposing a
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suitable constraint on the sale mechanism, clearly at the cost of a smaller revenue. In

this setting the known approach of resorting to a sequential mechanism to knock out

”undesired” equilibria, without reducing the planner’s welfare, may help when the sale

mechanism is played noncooperatively. However, this is not sufficient to eliminate the

non-truthful equilibrium when the buyers play the side mechanism.5

3.2 The model and the full surplus extraction out-

come

3.2.1 Preferences and information

A risk neutral seller owns an indivisible object which he values 0 and faces two potential

buyers. Buyer i privately observes her own valuation for the good vi ∈ V i ≡ {vL, vH}
(i = 1, 2) with vL = s > 0 and vH = s + 1;6 v = (v1, v2) and V ≡ V 1 × V 2. Each
buyer’s payoff is equal to her valuation times her probability to win the good minus her

expected payment. The probability distribution for (v1, v2) from the seller’s viewpoint

is (h > 0, q > 0, l > 0 and h+ 2q + l = 1)

v2 = vL = s v2 = vH = s+ 1

v1 = vL = s l q

v1 = vH = s+ 1 q h

Buyer i’s (i = 1, 2) beliefs about v3−i are consistent with this probability distribution:

she attaches probability pHH = h
h+q

to the event v3−i = vH if vi = vH and probability

pHL =
q
q+l

to the same event if vi = vL (pLH and pLL are defined likewise). Correlation

between v1 and v2 is measured by ρ ≡ hl− q2; if ρ = 0 then v1 and v2 are independently
distributed, otherwise they are - positively or negatively - correlated.

5LM’s optimal mechanism under strong correlation is plagued by the same problem, even though
LM do not remark it.

6As we observed in chapter 2, there is no loss of generality in assuming vH − vL = 1.
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We will focus on positive correlation, which is sometimes proposed as a more realistic

assumption with respect to the assumption of independent valuations. An example in

Crémer and McLean (1985) is about an auction for oil drilling rights when two competi-

tors have carried out geological tests which provide information about the profitability

of the tract on sale. Since the results of the tests are likely to be positively correlated,

by observing her own value each agent has a more detailed information about the op-

ponent’s valuation with respect to an outside observer as the seller. We retain however

the assumption of private values.

3.2.2 Extracting the whole surplus

Consider the seller’s problem of designing the revenue maximizing mechanism in the

above setting assuming that the buyers behave noncooperatively. In view of the Rev-

elation Principle he restricts to direct mechanisms. Let xwiw3−i and twiw3−i denote the

probability for a buyer to win the good and her payment to the seller, respectively, when

she reports wi ∈ V i and her opponent reports w3−i ∈ V 3−i. A mechanism is defined

by the four-tuples t = (tHH , tHL, tLH , tLL) ∈ ?4 and x = (xHH , xHL, xLH , xLL) ≥ 0 such
that xHH ≤ 1

2
, xHL + xLH ≤ 1 and xLL ≤ 1

2
; the restrictions on x are obvious feasibility

conditions.7

Crémer and McLean (1985) prove that under correlated valuations any allocation

rule x is implementable in BNE and the seller can extract from both types of buyer the

whole surplus generated by such allocation. To see how this is attained, consider any

feasible x and write the participation and incentive constraints as follows, with kL ≥ 0
and kH ≥ 0 [the payoff to type L (H) is not divided by l + q (q + h) but this has no
consequences]

l(sxLL − tLL) + q(sxLH − tLH) = 0 (3.1)

7Unlike in chapter 2, here we use non-reduced form probabilities: as there are only two buyers this
does not entail a significant increase in complexity compared to clarity.
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l(sxHL − tHL) + q(sxHH − tHH) = −kL (3.2)

q[(s+ 1)xHL − tHL] + h[(s+ 1)xHH − tHH ] = 0 (3.3)

q[(s+ 1)xLL − tLL] + h[(s+ 1)xLH − tLH ] = −kH (3.4)

Given any x, (3.1)-(3.4) is a linear system of equations in t = (tHH , tHL, tLH , tLL)

and the determinant of the matrix of the unknowns equals ρ2. Therefore, in a correlated

environment, for any sale policy as described by x there exists a (unique) t ∈ ?4 solving
(3.1)-(3.4). The expected payoff to each type of buyer equals 0, hence the seller earns

the entire surplus generated by trade. In other words, his expected revenue R is equal

to the expected social surplus, as it is clear by substituting (3.1) and (3.3) into R:

R = 2ltLL + 2q(tHL + tLH) + 2htHH = 2lsxLL + 2q[sxLH + (s+ 1)xHL] + 2h(s+ 1)xHH

Hence, R is maximized in x•HH = x•LL =
1
2
, x•HL = 1 and x•LH = 0, the allocation

which maximizes social surplus. Given x•, the transfers which solve (3.1)-(3.4) are

t•HH =
s
2
+ (1−l)l

2ρ
− q

ρ
kL, t•LL =

s
2
− q2

2ρ
− q

ρ
kH , t•HL = s− (1−l)q

2ρ
+ h

ρ
kL and t•LH =

ql
2ρ
+ l

ρ
kH .

Therefore in the truthful BNE of (x•, t•) the seller obtains the same expected revenue

as under complete information.8 However, observe that if kL = 0 and kH = 0 then the

sale mechanism has other BNE in addition to truthtelling; in one of them both types

of buyer 1 (2) report L and both types of buyer 2 (1) report H. To avoid multiplicity,

the seller could arbitrarily fix kL ≥ 0 and kH ≥ 0 and use the sequential mechanism
proposed in Brusco (1998) or exploit the following result, which states that it is possible

to implement the full surplus extraction outcome in unique BNE.

Proposition 3.1 If kH = k•H ≡ bδ and kL = k•L ≡ q+l
2
− δ with a small δ > 0 and

b ∈ ( q
l
, h
q
), then truthtelling is the unique BNE of (x•, t•).

The expressions for t• reveal how mechanism (x•, t•) screens the buyers’ types at no

8Crémer and McLean (1988) characterize the information structures in which this goal can be
achieved when the buyers’ valuations are discretely distributed.
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cost: if kL and kH increase, then each type has a stronger incentive to report truthfully

and we see that t•HH and t
•
LL decrease while t

•
HL and t

•
LH increase. In words, given the

report w2 of buyer 2, the payment of buyer 1 is relatively low if w1 = w2 with respect

to the case of w1 9= w2: a buyer is punished in the relatively unlikely case (given ρ > 0)

that her value differs from the opponent’s valuation and is rewarded in the opposite

case.9

The starting point for our analysis is (about) the following: Assume that both buyers

accept to play the sale mechanism when each of them only knows her own valuation

but, before reporting to the seller, v1 and v2 become common knowledge between the

buyers. Then, if v1 = v2 = vH , by announcing LL the buyers can Pareto improve their

payoffs with respect to truthful reporting. Indeed, the sale policy would not change

(x•HH = x•LL) but their payments would be smaller (t
•
LL < t•HH when kL = k•L and

kH = k
•
H). Mechanism (x•, t•) is therefore not robust to collusion if buyers freely share

their private information and they can coordinate their reports.

3.3 Collusion under asymmetric information

We model collusion as in LM by considering a game with the following timing. First

each buyer learns her own valuation for the good on sale; then the seller proposes a sale

mechanism (x, t). If both buyers accept to play (x, t) then10 a benevolent and uninformed

third party proposes them a (direct) side mechanism to collusively manipulate their

reports into (x, t). If both buyers accept the collusion mechanism then each of them

reports a valuation (possibly dishonestly) to the third party who enforces, as a function

of the reports, zero-sum side transfers between the buyers and (possibly manipulated)

announcements into (x, t). If instead at least one buyer vetoes the side mechanism then

9The first-best revenue cannot be achieved if ρ = 0 as setting xLL > 0 implies that the expected
payoff of type H is strictly positive; see subsection 7.1.2 in Fudenberg and Tirole (1991).
10If both buyers veto (x, t) then the game ends. If only one buyer accepts (x, t) then the seller makes

her a take-or-leave-it offer: the proposed price is s if s ≥ (h+ q)(s+ 1), otherwise it is s+ 1. As usual,
a buyer obtains a payoff equal to 0 if she does not participate in the auction.
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(x, t) is played noncooperatively. The buyers’ decisions about accepting or rejecting the

side mechanism are simultaneous.

We denote by z = (z1, z2) ∈ V the buyers’ reports to the side mechanism, which is

described by (φ, τ). Let φz designate the manipulated reports into (x, t) as a function of

z (we assume these manipulated reports can be chosen stochastically, as this convexifies

the third party’s feasible set); τ iz is the payment of buyer i in the side mechanism,

i = 1, 2; τ 1z + τ 2z = 0 for any z ∈ V . If (w1, w2) = φz1z2 is a non-stochastic third

party’s report into (x, t) then we let x1(φz1z2) ≡ xw1w2 and x2(φz1z2) ≡ xw2w1; similarly,
t1(φz1z2) ≡ tw1w2 and t2(φz1z2) ≡ tw2w1 . The extension to stochastic reports by the third
party is straightforward.11

The third party designs (φ, τ) to maximize the sum of the buyers’ expected pay-

offs subject to incentive compatibility (because it ignores v1 and v2) and participation

constraints with respect to (x, t) played noncooperatively. If collusion took place under

symmetric information (that is, if the third party observed v1 and v2) then a Pareto

optimum for the coalition given (x, t) would always be reached; under asymmetric infor-

mation that is not necessarily true.

After the third party proposed (φ, τ) a two stage game is played: in its first stage each

buyer accepts or rejects (φ, τ); in the second stage the buyers report types either into

(x, t) or into (φ, τ) depending on their decisions at the first stage. In the following we

refer to the ”game of coalition formation” as the one which starts with the third party’s

proposal of a side mechanism. We are interested in (collusive continuation) equilibria of

the coalition formation game in which both buyers accept (φ, τ), thus no learning occurs

along the equilibrium path.12 We look for the optimal (x, t) knowing that in the game

of coalition formation the third party will optimally design (φ, τ) and that the above

11To be rigorous, the Revelation Principle applies to the third party’s design of the side mechanism
but does not apply to the seller’s design of the sale mechanism. Thus we should allow the seller to use
non-direct sale mechanisms. Nevertheless, as in LM (see their proposition 3) it can be proved that any
perfect Bayesian equilibrium outcome arising from a non-direct sale mechanism can be obtained as a
perfect Bayesian equilibrium outcome induced by a direct sale mechanism.
12Observe that there also exists an equilibrium in which each buyer rejects any side mechanism: if

buyer i is vetoing any side mechanism, then rejecting is a best reply for buyer 3− i.
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mentioned two stage game between the buyers follows the proposal of (φ, τ).

In designing (φ, τ) the third party needs to take into account each buyer’s incentives

to accept the side mechanism. If buyer i vetoes (φ, τ) (an out-of-equilibrium move) then

buyer 3− i may change her own beliefs about vi with respect to prior beliefs and, as long
as the noncooperative play of (x, t) is affected by buyer 3− i’s beliefs about vi, this may
alter buyer i’s incentive to accept the collusive agreement. Hence, the side mechanism

which is offered by the third party may depend on what each buyer is expected to infer

following the rejection of (φ, τ) by her opponent. Equivalently, there may exist different

equilibria in the game of coalition formation depending on a buyer’s updated beliefs

after the other buyer vetoed the side mechanism. In this section we assume that, after a

buyer i rejected the side mechanism, buyer 3− i does not change her own beliefs about
vi; in subsection 3.4.1 we allow for more general beliefs.

3.3.1 Weakly collusion-proof mechanisms

In this subsection we introduce the third party’s design problem and examine the con-

ditions under which the seller can prevent collusion.

We use σ to denote a generic strategy profile in (x, t); σ = (LH,LL), for example,

is the (pure-strategy) profile in which both types of buyer 1 report truthfully and buyer

2 always claims L; σ• = (LH,LH) is the truthful reporting profile. Let p̄i represent a

belief system of buyer 3− i about vi which may differ from prior beliefs. More clearly,

p̄ikj is the probability that buyer 3− i attaches, according to the belief system p̄i, to the
event vi = vk given that her own type is j (j, k = L,H); p̄ikj may not be equal to pkj

as defined in subsection 3.2.1. Let BNE[(x, t)p̄i,p] denote the set of BNE of (x, t) when

buyer i has prior beliefs (p) about v3−i and buyer 3− i’s beliefs about vi are given by p̄i.
Clearly, (x, t) is an incentive compatible mechanism if and only if σ• ∈ BNE[(x, t)p,p].
Finally, U ij(σ) is the payoff to type j of buyer i when σ is played in (x, t), computed with

prior beliefs; U•j ≡ U1j (σ•) = U2j (σ•), hence U•j = pLj(vjxjL − tjL) + pHj(vjxjH − tjH),
j = L,H.
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Assume that if buyer i refuses the side mechanism then buyer 3 − i’s beliefs about
vi are given by p̄i and σi ∈ BNE[(x, t)p̄i,p] is played in (x, t). Then each type j of
buyer i accepts (φ, τ) if her payoff uij in the truthful BNE of (φ, τ) (as we remarked in

footnote 11, there is no loss of generality in letting the third party propose a direct side

mechanism) is at least as high as U ij(σ
i), her payoff if σi is played in (x, t).13 Truthtelling

is a BNE in (φ, τ) if and only if (3.6) below holds; we assume that (3.5) and (3.6) are

necessary and sufficient in order for each type of each buyer to accept (φ, τ).⎧⎨⎩ u1j ≡ pLj[vjx1(φjL)− t1(φjL)− τ 1jL] + pHj[vjx
1(φjH)− t1(φjH)− τ 1jH ] ≥ U1j (σ1) j = L,H

u2j ≡ pLj[vjx2(φLj)− t2(φLj)− τ 2Lj] + pHj[vjx
2(φHj)− t2(φHj)− τ 2Hj] ≥ U2j (σ2) j = L,H

(3.5)⎧⎨⎩ u1j ≥ pLj[vjx1(φkL)− t1(φkL)− τ 1kL] + pHj[vjx
1(φkH)− t1(φkH)− τ 1kH ] j, k = L,H

u2j ≥ pLj[vjx2(φLk)− t2(φLk)− τ 2Lk] + pHj[vjx
2(φHk)− t2(φHk)− τ 2Hk] j, k = L,H

(3.6)

Definition 3.1 Given (x, t), a (collusive continuation) equilibrium of the game of coali-

tion formation is made up of (i) beliefs systems p̄1 and p̄2, (ii) associated equilibria

σ1 ∈ BNE[(x, t)p̄1,p] and σ2 ∈ BNE[(x, t)p̄2,p] respectively and (iii) a side mechanism
that maximizes the third party’s objective function

h[(s+ 1)x1(φHH)− t1(φHH) + (s+ 1)x2(φHH)− t2(φHH)] + q[sx1(φLH)
−t1(φLH) + (s+ 1)x2(φLH)− t2(φLH) + (s+ 1)x1(φHL)− t1(φHL)
+sx2(φHL)− t2(φHL)] + l[sx1(φLL)− t1(φLL) + sx2(φLL)− t2(φLL)]

subject to budget balance (τ 1z + τ 2z = 0 for any z ∈ V ) and (3.5)-(3.6) (i.e., the side
mechanism is incentive compatible and is unanimously accepted).

Clearly, different equilibria of the game of coalition formation may arise depending

on the beliefs systems p̄1 and p̄2 and on the BNE σ1 and σ2. In the following of this

13Both U ij(σ
i) and uij are computed by using prior beliefs because buyer i expects buyer 3 − i to

accept the side mechanism, hence she has no reason to hold non-prior beliefs about v3−i.
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section we assume that if buyer i vetoes (φ, τ) then buyer 3− i does not update her own
beliefs about vi, that is p̄1 = p̄2 = p, and that σ1 = σ2 = σ•.

Given any (x, t), the seller can find the solution to the third party’s maximization

problem and compute his resulting expected revenue; thus he needs to design (x, t)

to maximize R taking into account the foreseeable [given (x, t)] reports manipulations

which are implemented by the third party. However, a principle similar to the Revelation

Principle applies here: Any (perfect Bayesian) equilibrium outcome that the seller can

achieve through a mechanism (x, t) which is prone to collusive behavior for some couple of

types z ∈ V (that means φz 9= z) can be obtained as an equilibrium outcome by designing
a sale mechanism which is not changed through the process of coalition formation. In

other words, without loss of generality the seller can design a sale mechanism such that

the coalition does not lie to him (that is, φz = z for any z ∈ V ) and no monetary side
transfers occur between buyers. Next definition identifies such mechanisms when buyers

hold prior beliefs and σ• is played in (x, t) if a buyer vetoes the side mechanism. Let

(φ•, τ •) denote the null side mechanism: φ•z = z and τ •1z = τ •2z = 0 for any z ∈ V .

Definition 3.2 (Weakly collusion-proof mechanisms) Mechanism (x, t) is weakly

collusion-proof if and only if it is incentive compatible and there exists an equilibrium in

the coalition formation game in which p̄1 = p̄2 = p, σ1 = σ2 = σ•, the third party offers

(φ•, τ •) and both buyers accept to play (truthfully) (φ•, τ •).

Hence (x, t) is weakly collusion-proof if, when p̄1 = p̄2 = p and σ1 = σ2 = σ•, the

third party’s problem is solved by recommending to not misreport to the seller and

implementing no transfers between buyers. As we mentioned above, the reason of this

definition is that any equilibrium outcome arising from a mechanism (x, t) which allows

collusive behavior [i.e., a side mechanism (φ, τ) 9= (φ•, τ •) is selected by the third party]
can be achieved with a weakly collusion-proof sale mechanism which is the composition

of (x, t) with (φ, τ).14 The notion of weakly collusion-proof mechanism is relatively weak,

14LM provide a rigorous proof of this claim (see their proposition 3) which basically exploits the
argument proving the Revelation Principle.
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as the game of coalition formation may have different equilibria when p̄1 (σ1) and/or p̄2

(σ2) differ from p (σ•). In subsection 3.4.1, however, we prove that the optimal weakly

collusion-proof sale mechanism is such that the third party proposes (φ•, τ •) in all the

equilibria of the coalition formation game.

The following lemma characterizes the conditions under which (x, t) is weakly collusion-

proof.15 Such conditions can be interpreted as the constraints which collusion imposes

in the design of (x, t).

Lemma 3.1 A mechanism (x, t) is weakly collusion-proof if and only if it is incentive

compatible and there exists ε ∈ [0, 1) such that, for any w ∈ V ,

2(s+ 1)xHH − 2tHH ≥ (s+ 1)xw1w2 − tw1w2 + (s+ 1)xw2w1 − tw2w1
(s+ 1)xHL − tHL + sxLH − tLH ≥ (s+ 1)xw1w2 − tw1w2 + sxw2w1 − tw2w1 + εh

q
(xLH − xw2w1)

2sxLL − 2tLL ≥ sxw1w2 − tw1w2 + sxw2w1 − tw2w1 + εq
2xLL−xw1w2−xw2w1

l+ ρ
q
ε

(3.7)

If ε > 0 then the incentive constraint of type H in the side mechanism is binding.

Broadly speaking, ε is the multiplier of the incentive constraint of type H in the

third party’s maximization problem. The seller has some flexibility in choosing ε because

(φ•, τ •) satisfies the necessary and sufficient conditions for optimality in the third party’s

problem for any ε ∈ [0, 1). In subsection 3.3.3 we deal with collusion under symmetric
information, which would occur if the buyers could credibly commit to truthfully reveal

their valuations within the coalition. In such a setting the side mechanism does not need

to satisfy any incentive constraint; then ε is equal to 0 and, according to (3.7), types

are misreported into (x, t) whenever by doing that it is possible to increase the sum

of the buyers’ payoffs. In a sense, therefore, ε > 0 represents the effect of asymmetric

information between buyers at the collusion stage, something which the seller may be

expected to exploit.

15We skip the proof of lemma 3.1 as it closely mimics the proof of proposition 4 in LM.
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3.3.2 The optimal weakly collusion-proof mechanism

We now maximize the expected revenue subject to the no-collusion condition (3.7) in ad-

dition to the standard participation and incentive constraints [inequalities (3.8)-(3.11)]:16

max
(x,t)

R

2
= htHH + qtHL + qtLH + ltLL

subject to

l(sxLL − tLL) + q(sxLH − tLH) ≥ 0 (3.8)

l(sxLL − tLL) + q(sxLH − tLH) ≥ l(sxHL − tHL) + q(sxHH − tHH) (3.9)

q[(s+ 1)xHL − tHL] + h[(s+ 1)xHH − tHH ] ≥ 0 (3.10)

q[(s+1)xHL−tHL]+h[(s+1)xHH−tHH ] ≥ q[(s+1)xLL−tLL]+h[(s+1)xLH−tLH ] (3.11)

2(s+ 1)xHH − 2tHH ≥ (s+ 1)(xHL + xLH)− tHL − tLH (3.12)

2(s+ 1)xHH − 2tHH ≥ 2(s+ 1)xLL − 2tLL (3.13)

(s+ 1)xHL + sxLH − tLH − tHL ≥ (2s+ 1)xHH − 2tHH + h
q
ε(xLH − xHH) (3.14)

(s+ 1)xHL + sxLH − tLH − tHL ≥ (2s+ 1)xLL − 2tLL + h
q
ε(xLH − xLL) (3.15)

2sxLL − 2tLL ≥ 2sxHH − 2tHH + 2εqxLL − xHH
l + ρ

q
ε

(3.16)

2sxLL − 2tLL ≥ s(xHL + xLH)− tHL − tLH + εq
2xLL − xHL − xLH

l + ρ
q
ε

(3.17)

The solution to this maximization problem, (x̂, t̂), is described by the following propo-

sition 3.2. The results in propositions 3.2 and 3.3 below rely on the assumption that the

buyers report truthfully in (φ•, τ •). Even though truthtelling is a BNE in (φ•, τ •), in

subsection 3.4.3 we point out a multiplicity problem in mechanism (x̂, t̂) when x̂LL = 1
2
.

16We do not write the constraint preventing a couple of buyers with types HL from reporting LH as
it turns out to be (trivially) satisfied in the optimal weakly collusion-proof mechanism.
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Proposition 3.2 (i) For any fixed ε ∈ [0, 1) an ”optimal mechanism given ε” (x̂, t̂)

exists; x̂HH = 1
2
, x̂HL = 1 and x̂LH = 0; x̂LL = 1

2
if

(sl − q)(ρ+ q) > hρ(1− ε) (3.18)

and x̂LL = 0 otherwise. The transfers t̂ are determined by (3.8), (3.11), (3.13) and

(3.15) written with equality.

(ii) No ”globally optimal” mechanism exists if sl > q, as in that case the revenue is

strictly increasing in ε and ε ∈ [0, 1).
(iii) If x̂LL = 1

2
then the payoff to each type H is q

2(h+q)
+ hρ(1−ε)

2(ρ+q)(h+q)
> 0, thus the

seller never extracts the full surplus; yet, by setting ε close to 1 he can nearly achieve

the first best revenue when q is close to 0.

When the buyers may collude the seller cannot extract the full surplus as under

Nash behavior, since the no-collusion constraints (3.12)-(3.17) narrow down the set of

mechanisms among which he can choose. More precisely, (3.13) and (3.15) bind; thus

tHH cannot be very large otherwise (3.13) fails and the buyers would report LL if they

had types HH; similarly, tHL+ tLH cannot be too large because of (3.15). On the other

hand, when ρ > 0 is close to 0 (and kH = k•H , kL = k•L) then both t
•
HH and t•LH are

very large. Setting xLL = 0 relaxes both (3.13) and (3.15) [as well as (3.11)] and it is

profitable when (3.18) fails; therefore collusion may reduce the social surplus generated

by the revenue-maximizing mechanism. In other words, the well known trade-off between

revenue maximization and ex post efficiency appears, as in the setting with independent

values and Nash behavior; in this sense, as LM emphasize, collusion restores continuity

between the correlated and uncorrelated environments.17 Observe that (3.18) fails when

s is close to 0 and/or l is close to 0: if it is unlikely that (v1, v2) = (s, s) then setting

17Robert (1991) shows that such a result arises under Nash behavior if the buyers are risk-averse
and/or have limited budget. Kosmopoulou andWilliams (1998) make a similar point about the existence
of efficient mechanisms in a quite general setting: If no efficient mechanism exists when the agents
observe uncorrelated signals, then non-existence is robust to the introduction of a small amount of
correlation in the agents’ signals if the transfers the planner can use are bounded.
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xLL = 0 implies a small loss for the seller compared to the rents that would be left to

type H. On the other hand, if (3.18) holds (for example because s is large) then the

good is efficiently allocated; yet, since type H earns a strictly positive expected payoff

the seller does not gain the whole surplus as if he could prevent collusion for free.

Proposition 3.2(iii) states that the seller almost achieves the first best revenue if v1

and v2 are strongly correlated: in such a case collusion has almost no effect. The reason

of this result is the following. Since xLH is set equal to 0, by using (3.8) written with

equality it turns out that the payoff to type H from reporting L is equal to qxLL− ρ
l
tLH

h+q
.

This implies that, when q * 0, setting xLL = 1
2
does not award significative rents to

type H at least for what the term qxLL
h+q

is concerned (intuitively, by reporting L type

H may obtain the good only if the other buyer claims L; this is unlikely if q is close to

0, hence reporting L is not very appealing for type H for what concerns winning the

good). Actually, if ε * 1 then tLH is about 0, hence the term −ρtLH
l(h+q)

is close to 0. Indeed,

if q * 0 and ε * 1 then setting xLL = 1
2
considerably relaxes (3.15) by making its right

hand side very negative, which allows to set a large tHL and tLH close to 0 in a way

which is consistent with (3.11) written with equality.18 If ε is not close to 1 then tHL

cannot be sufficiently large to extract almost all of the rents from type H; moreover,

tHH is not large because tLL = tHH [by (3.13)] cannot be much larger than s
2
otherwise

(3.8) requires a largely negative tLH .

Collusion has no bite at all when the valuations are independently distributed. The

reason is that under uncorrelated valuations and no collusion the optimal transfers are

not uniquely determined: t ∈ ?4 only needs to satisfy two linear equations (the par-
ticipation constraint of type L and the incentive constraint of type H). Hence, there

exist infinitely many optimal t in that setting and it turns out that one of them satisfies

(3.12)-(3.17) (also with ε = 0).19 Given this result it is not surprising that, if we let

18Consistently with this remark, the proof of proposition 3.2(i) in appendix shows that the multiplier
of (3.11) is close to 0 if q is about 0.
19Consistently with this fact, if ρ = 0 then the multipliers of the binding no-collusion constraints,

(3.13) and (3.15), are zero [again, see the proof of proposition 3.2(i)].
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π ≡ Pr {v1 = s+ 1} = Pr {v2 = s+ 1} when ρ = 0, then (3.18) reduces to s(1−π) > π;

this is the inequality implying x̂LL = 1
2
rather than x̂LL = 0 under uncorrelated values

and Nash behavior [see subsection 7.1.2 in Fudenberg and Tirole (1991)]. As in Laffont

and Martimort (1997), if ρ = 0 then the seller can deter collusion at zero cost, a quite

different result with respect to what occurs in the correlated case. Recall however that,

absent collusion, when ρ = 0 the seller cannot extract the whole surplus from the buyers

as when the valuations are correlated.

As we remarked in the introduction, this chapter applies the collusion model in LM to

an auction setting. There are several analogies between our results and those in LM (they

have just been pointed out), but also some remarkable differences. The most striking

one is related to the effects of buyers’ asymmetric information within the coalition. In

our environment ε = 1 (broadly speaking) weakly dominates any smaller ε, while in LM

it is strictly better to set ε = 0 when correlation is weak. Our finding arises because

(3.15) binds and, as x̂LH = 0, the larger is ε > 0 the more (3.15) is relaxed if x̂LL = 1
2
.20

This says that the seller is better off if the coalition forms under asymmetric information

rather than with symmetric information. The reason why in LM this ”intuitive” result

does not always hold is that a constraint which is analogous to (3.15) (call it constraint

A) binds and it is relaxed the higher is ε(yLL−yHL) (yjk is the level of public good when
the agents report types j and k). Under weak correlation the no-collusion constraints

imply yHL ≥ yLL; thus constraint A is relaxed by setting ε = 0, as if the agents had

symmetric information when colluding.

A second difference is linked to the first one: in LM the public good is not produced

at all when correlation is strong and the types are HL or LH, while we find that it is

always optimal to set xHL = 1 and xLH = 0. The reason is that, in LM, under strong

correlation it is feasible to set yLL > yHL; hence constraint A is relaxed by not producing

when types are different (yHL = 0), producing about the efficient level when both agents

20This explains why proposition 3.2(ii) states that no optimal mechanism exists if sl > q: ε cannot
be maximized in [0,1), though the sup of the possible revenues can be arbitrarily closely approximated.
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have type L and setting ε close to 1. This is not very expensive for the planner from

an ex ante point of view, since 2q (the probability that the buyers have different types)

is small when correlation is strong. Our constraint (3.15) instead is relaxed the higher

is ε(xLL − xLH); xLH is optimally set equal to 0 under Nash behavior, hence a fortiori
x̂LH = 0 under collusion as this relaxes (3.15). The variable xHL, on the other hand,

appears in the binding no-collusion constraints only to relax (3.15); hence its optimal

value is 1 as without collusion.

3.3.3 The case of symmetric information

As we mentioned above, the fact that collusion occurs under asymmetric information is

captured by ε > 0 in (3.7) and proposition 3.2(ii) establishes that the seller weakly prefers

ε close to 1 to any smaller ε. To better evaluate the effects of asymmetric information it

is useful to examine the case in which collusion takes place under symmetric information.

In this subsection we assume that the buyers can freely share their private information

when forming the coalition or, equivalently, that the third party owns a technology

allowing for credible disclosure of information.21 Then collusion occurs under symmetric

information and lemma 3.1 is amended by writing (3.7) with ε = 0.

Now the optimal mechanism (x̄, t̄) is more often inefficient than (x̂, t̂), as the condition

for x̄LL = 1
2
is more restrictive than (3.18); actually, it is (3.18) written with ε = 0:

(sl − q)(ρ+ q) > hρ (3.19)

Therefore the seller is more likely to sell the good when both buyers have type L if the

coalition forms under asymmetric information; this is intuitively sensible since the latter

environment is a closer setting to noncooperative behavior (which implies x•LL =
1
2
for

any parameter values) than collusion under symmetric information.

21Each buyer learns the opponent’s valuation only when the coalition forms, hence the participation
and incentive constraints (3.8)-(3.11) still need to be satisfied.
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More interestingly, in this environment the revenue is bounded away (below) from

the first best revenue for any degree of correlation: from proposition 3.2(iii) follows that

the payoff to type H if ε = 0 and x̄LL = 1
2
is equal to ρ

2(ρ+q)
+ q2

2(ρ+q)(h+q)
. The reason

is that now setting xLL = 1
2
does not relax anymore (3.15) as it occurs when ε > 0;

this was very powerful for small q. As a consequence, if xLL = 1
2
then tHL cannot be

sufficiently large to extract (almost) the full surplus from type H.

Observe that if q is close to 0 then (3.19) reduces to (about) sl > 1 − l. If the
seller faced a single buyer whose valuation equals s with probability l and is s+ 1 with

probability 1− l, then he should sell the good to type L if and only if sl > 1− l. Thus,
the two buyers are about treated as if they were a single buyer when collusion takes

place under symmetric information and q * 0; this means that collusion completely

eliminates the gains which the seller could obtain from facing more than one buyer.

Therefore, especially under strong correlation, it is quite important to establish whether

the coalition forms under symmetric or asymmetric information. In the latter case the

first best outcome is nearly attained [by proposition 3.2(iii)], while that is impossible in

the former setting as the seller virtually faces a single buyer.

3.3.4 Ex post efficiency within the coalition

An auction setting displays a peculiar difference with respect to the public good envi-

ronment examined in LM: The buyers can modify the allocation of the good determined

by the seller. Our previous analysis implicitly assumed that the good cannot be trans-

ferred between buyers after the seller has allocated it to a given buyer. To see what this

implies, suppose v1 = s+1, v2 = s and xLL = 1
2
; if the buyers collude by announcing LL

then there is a chance that buyer 2 (a type L) wins the good. Collusion is more effective

if the third party is able to let type H always receive the good whenever it is sold and

the buyers have different types. In this way the good is never misallocated within the

coalition, hence collusion is harder to prevent when buyers have different types. In this

subsection we suppose that the seller cannot prevent the transfer of the good within the
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coalition and examine how this new assumption affects the results of the model.

Since the good can be transferred ex post by the third party, the incentive and partic-

ipation constraints in the side mechanism need to be amended accordingly. Specifically,

given any (x, t) and (φ, τ) the payoff to type H of buyer 1 in the side mechanism under

truthtelling is

u1eH ≡ pLH [vHx1(φHL)+vHx2(φHL)−t1(φHL)−τ 1HL]+pHH [vHx
1(φHH)−t1(φHH)−τ 1HH ]

and her incentive constraint is

u1eH ≥ pLH [vHx1(φLL)− t1(φLL)− τ 1LL] + pHH [−t1(φLH)− τ 1LH ]

Likewise, in writing the payoff and the incentive constraints for type L of buyer i = 1, 2

and for type H of buyer 2 in the side mechanism, we need to take into account that if

the buyers report different types to the third party then the one who reportedH receives

the good if it is sold. The third party’s objective function is modified as follows (clearly,

the budget balance constraint is not altered)

h[(s+ 1)x1(φHH)− t1(φHH) + (s+ 1)x2(φHH)− t2(φHH)] + q[(s+ 1)x1(φLH)
−t1(φLH) + (s+ 1)x2(φLH)− t2(φLH) + (s+ 1)x1(φHL)− t1(φHL)
+(s+ 1)x2(φHL)− t2(φHL)] + l[sx1(φLL)− t1(φLL) + sx2(φLL)− t2(φLL)]

It turns out that in this setting a result which is analogous to lemma 3.1 states that

(x, t) is weakly collusion-proof if and only if it is incentive compatible and there exists

ε ∈ [0, 1) such that, for any w ∈ V ,

2(s+ 1)xHH − 2tHH ≥ (s+ 1)xw1w2 − tw1w2 + (s+ 1)xw2w1 − tw2w1
(s+ 1)(xHL + xLH)− tHL − tLH ≥ (s+ 1)(xw1w2 + xw2w1)− tw1w2 − tw2w1
2sxLL − 2tLL ≥ sxw1w2 − tw1w2 + sxw2w1 − tw2w1 + εq

2xLL−xw1w2−xw2w1
l+ρ

q
ε

(3.20)
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The difference with respect to (3.7) is that now the no-collusion constraints are written

with ε = 0 when buyers have different types (as if they had symmetric information at

the collusion stage); moreover, if buyers report HL or LH in the side mechanism now

the good (if it is sold) is allocated to the buyer who reported H. Therefore, in the

revenue maximization problem constraints (3.8) to (3.13), (3.16) and (3.17) are imposed

but (3.14) and (3.15) are substituted by

(s+ 1)(xHL + xLH)− tLH − tHL ≥ 2(s+ 1)xHH − 2tHH (3.21)

(s+ 1)(xHL + xLH)− tLH − tHL ≥ 2(s+ 1)xLL − 2tLL (3.22)

The solution (x̃, t̃) to this problem is described in the following22

Proposition 3.3 (i) If

(s+ 1)ρ+ sq > h (3.23)

then x̃LL = 1
2
; if instead (3.23) fails then x̃LL = 0. In either case x̃HH = 1

2
, x̃HL = 1,

x̃LH = 0 and t̃ is determined by (3.8), (3.11), (3.13) and (3.22) written with equality.

(ii) If x̃LL = 1
2
then each type H earns a rent equal to l

2(q+l)
> 0, therefore the seller

never obtains (or is close to obtain) the first best revenue.

The results of proposition 3.3 are qualitatively close to those found for the model

with collusion under symmetric information and no commitment to ex post efficiency

within the coalition (see subsection 3.3.3). However, in the present setting the payoff

of each type H if x̃LL = 1
2
is higher with respect to the above model.23 Also observe

that (3.23) implies (3.19) which in turn is stronger than (3.18): to countervail the higher

22Actually, also (3.8)-(3.11) should be amended by taking into account that when the buyers report
different types in the side mechanism then type H will receive the good if it is sold. That however would
result in no substantial modification of the mechanism which is described in proposition 3.3. Rather
than finding x̃HL = 1 and x̃LH = 0, we would obtain the condition x̃HL + x̃LH = 1, x̃HL ≥ 0 and
x̃LH ≥ 0, knowing that however type L would never win the good when facing a type H.
23That is not true if ρ = 0: even though now the good can be transferred within the coalition,

the revenue is still not reduced by collusion if ρ = 0 (the same result was found when the allocation
determined by the seller cannot be modified).
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collusion effectiveness the seller is more likely to withhold the good if both buyers have

type L.

Maybe it is more interesting to observe that in this environment the seller is not

better off if collusion occurs under asymmetric information. Indeed, setting ε > 0

relaxes no binding constraint [because (3.22) is written as if the buyers had symmetric

information when colluding], which instead occurs when the good cannot be transferred

within the coalition. Hence, if the buyers are able to allocate the good efficiently within

the coalition then it does not matter whether collusion takes place under symmetric

or asymmetric information. Proposition 3.2(ii) establishes an opposite result when the

good cannot be transferred between the buyers.

3.4 Robustness

In the game of coalition formation first the third party proposes a side mechanism

(φ, τ); then each buyer announces whether she accepts or refuses (φ, τ); after these

announcements the buyers report either in (x, t), if some buyer vetoed (φ, τ), or in the

side mechanism otherwise. In section 3.3 we predicted that if the sale mechanism is

(x̂, t̂) [or (x̃, t̃) when the good can be transferred within the coalition] then the third

party proposes (φ•, τ •), both buyers accept it and they report truthfully in (φ•, τ •). We

now try to test the robustness of these predictions at the various stages of the game of

coalition formation.

3.4.1 Strong collusion-proofness

A weakly collusion-proof mechanism (x, t) is such that there exists an equilibrium in

the coalition formation game in which the third party proposes (φ•, τ •) and both buyers

accept it, given that if buyer i rejects (φ•, τ •) then buyer 3 − i keeps having prior
beliefs about vi and σ• is played in (x, t). However, following buyer i’s rejection of

(φ•, τ •) a different equilibrium of the sale mechanism may be played, possibly under
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non-prior beliefs for buyer 3− i; that could alter the participation constraints of buyer
i in the side mechanism design problem and induce the third party to select a non-null

side mechanism. This problem is avoided if the sale mechanism satisfies the following

definition [from Laffont and Martimort (1997)].

Definition 3.3 (Strongly collusion-proof mechanisms) Amechanism (x, t) is strongly

collusion-proof if and only if (i) it is weakly collusion-proof and (ii) there is no equilib-

rium of the coalition formation game in which the third party offers (φ, τ) 9= (φ•, τ •) and
each type of both buyers accepts (φ, τ).

If (x, t) is strongly collusion-proof then it is ”robust” to any equilibrium of the game

of coalition formation. Clearly, a weakly collusion-proof mechanism is not necessarily

strongly collusion-proof. Nevertheless, proposition 3.4 below establishes that both (x̂, t̂)

and (x̃, t̃) are strongly collusion-proof; hence (x̂, t̂) and (x̃, t̃) satisfy a relatively strong

implementation concept. The proof shows that if we do not impose p̄1 = p̄2 = p and

σ1 = σ2 = σ• then either (i) the game of coalition formation has no equilibrium or (ii)

the buyers’ participation constraints in the third party’s design problem are not altered.

In the latter case (φ•, τ •) is feasible and maximizes the third party’s payoff given that

(x̂, t̂) and (x̃, t̃) satisfy (3.7) and (3.20), respectively.24

Proposition 3.4 Both (x̂, t̂) and (x̃, t̃) are strongly collusion-proof.

3.4.2 Ratifiability

Strong collusion-proofness tests the robustness of (φ•, τ •), in the design of the side

mechanism, to the various BNE of the sale mechanism the buyers may coordinate on

after one of them vetoed (φ•, τ •) (and allowing for arbitrary beliefs for the non-deviant

buyer). We now consider a different, although related, issue. As we mentioned at the

24Actually, in some cases there exists a side mechanism (φ, τ) 9= (φ•, τ•) which is accepted by both
buyers but yields them, and to the third party, the same payoffs as (φ•, τ•).
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beginning of section 3.3, a two stage game is entered after (φ•, τ •) is proposed by the

third party. In the first stage each buyer i makes a preplay announcement (veto or

accept) which may signal some information about vi; in the second stage buyers report

types either in (x, t) or in the side mechanism (φ•, τ •). In any case, however, in the

second stage (x, t) is actually played since (φ•, τ•) is the null side mechanism; the first

stage is therefore a sort of cheap-talk stage in which buyers may signal their types. We

focused above on unanimous ratification of (φ•, τ •) and on the truthful BNE of (x, t)

(supported by prior beliefs) in case (φ•, τ •) is vetoed; yet, a buyer’s acceptance decision

of (φ•, τ •) may be affected if she expects her opponent to infer non-prior beliefs from

her veto of (φ•, τ •). The notion of strong ratifiability of a mechanism against itself

provided by Cramton and Palfrey (1995) can be used to test whether (x̂, t̂) and (x̃, t̃)

(or better, their respective truthful BNE) are robust to the preplay announcements at

the first stage. In presenting ratifiability we follow LM and use some notation which has

been introduced at the beginning of subsection 3.3.1. We denote with i the buyer who

contemplates rejecting (φ•, τ •).

Definition 3.4 Given an incentive compatible (x, t), a belief system p̄i is a credible veto

system of σ• if there exists σ ∈ BNE[(x, t)p̄i,p] and refusal probabilities rij (j = L,H)
such that riL + r

i
H > 0 and

(i) p̄ijk =
pjkr

i
j

pLkr
i
L+pHkr

i
H
, j, k = L,H

(ii) rij = 1 for any j such that U
i
j(σ) > U

•
j and r

i
j = 0 for any j such that U

i
j(σ) < U

•
j .

Thus, buyer 3 − i’s beliefs following rejection of buyer i are required to satisfy a
consistency condition similar to the one underlying the definition of perfect sequential

equilibrium in Grossman and Perry (1986). In words, the non-deviant buyer 3 − i
rationalizes a veto of buyer i by finding beliefs about vi which are consistent with i’s

incentive to veto. In our context, if buyer i vetoes (φ•, τ •) then she is actually vetoing

σ•. Hence, if buyer 3− i observes buyer i rejecting (φ•, τ •), then she should infer that
her opponent’s type is j such that i will improve her own payoff over U•j by not playing
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σ• in (x, t); if it is common knowledge that σ is played in (x, t) after a veto of buyer i,

that means U ij(σ) > U
•
j . On the other hand, types j of buyer i who are going to lose if

σ is played [U ij(σ) < U
•
j ] should not have vetoed σ•; thus they receive zero probability

in the revised beliefs of buyer 3 − i. Buyer 3 − i’s belief system p̄i is consistent with

bayesian updating given the prior beliefs p and the above argument, as embodied in

refusal probabilities.25 Observe that σ is required to be a BNE of (x, t) when buyer 3− i
updated her beliefs about vi as indicated above. The types j such that rij > 0 make up

the so called credible veto set.

Definition 3.5 An incentive compatible mechanism (x, t) is strongly ratifiable if no

credible veto system exists or if, for any given credible veto system p̄i and associated

credible veto set, there exists σ̇ ∈ BNE[(x, t)p̄i,p] such that U ij(σ̇) = U•j for any j belong-
ing to the credible veto set.

This definition says that (x, t) is strongly ratifiable if no subset of V i can credibly

veto (φ•, τ •) and be sure to obtain a strictly higher payoff than if σ• is played.26 It is

quickly proved that (x̃, t̃) and (x̂, t̂) (when x̂LL = 0) are strongly ratifiable. Indeed, the

proof of proposition 3.4 in appendix establishes that for these mechanisms there exist

no p̄i and σ ∈ BNE[(x, t)p̄i,p] such that U ij(σ) > U•j for some j. Hence, no type in any
credible veto set may strictly gain from vetoing σ•.

Matters are less straightforward for (x̂, t̂) when x̂LL = 1
2
; in the remaining of this

section this mechanism is simply referred to as ”(x̂, t̂)”. First observe that, for any p̄i,

σ̄ = (LL,LL) is the unique BNE of (x̂, t̂)p̄i,p in which some type j of buyer i obtains a

25Cramton and Palfrey (1995) emphasize that strong ratifiability satisfies the following ”rational
expectations” condition: When agent 3− i observes a veto of agent i, then she believes that the types
who may have vetoed belong to a subset S of types such that each type in S (and only the types in
S) benefits from veto given that agent 3 − i believes that the types in S veto. By contrast, such a
condition is not always satisfied by somewhat related notions as the intuitive criterion [Cho and Kreps
(1987)], divinity and universal divinity [Banks and Sobel (1987)]. Following an out-of-equilibrium move
of an agent, for each of these refinements a set S3 of types who may have deviated is determined, but
S3 is not necessarily the set of types who benefit from deviation when the other agent believes that her
opponent’s type is in S3.
26Actually, Cramton and Palfrey (1995) define strong ratifiability for a more general setting. In their

words, if (x, t) satisfies definition 3.5 then it is ”strongly ratifiable against itself”.
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higher payoff than U•j [see the payoff matrices of (x̂, t̂) in the proof to proposition 3.4];

more precisely, U iH(σ̄) =
1
2
− hq(1−ε)

2(ρ+q)
> U•H =

q
2(h+q)

+ hρ(1−ε)
2(ρ+q)(h+q)

while U iL(σ̄) =
−hq(1−ε)
2(ρ+q)

<

U•L = 0. Hence, letting riH = 1 and riL = 0 we see that p̄iHL = p̄iHH = 1 is a credible

veto system of σ• according to definition 3.4. Yet, it turns out that σ• is an equilibrium

of the sale mechanism even with the modified beliefs: σ• ∈ BNE[(x̂, t̂)p̄i,p]. Since, by
definition, U iH(σ

•) = U•H , mechanism (x̂, t̂) is strongly ratifiable in view of definition 3.5

because σ• plays the role of σ̇ for the credible veto system p̄iHL = p̄
i
HH = 1 and there

exists no other credible veto system.

3.4.3 Multiplicity in (x̂, t̂)

Even though the two previous subsections provide positive results, the fact that σ̄ is

BNE of (x̂, t̂)p,p reduces the confidence in mechanism (x̂, t̂). Indeed, even though each

buyer accepts (φ•, τ •), the profile (LL,LL) is an equilibrium when the side mechanism

(φ•, τ •) is played. Moreover, such an equilibrium is ”focal” in the following sense. By

checking the payoff matrices of (x̂, t̂) in the proof to proposition 3.4 it can be verified

that truthtelling is strictly dominant for type L; therefore (x̂, t̂) is a strategically non-

trivial game only from the point of view of 1H (type H of buyer 1) and 2H (type H of

buyer 2). If these agents have prior beliefs, as they have after unanimous acceptance of

(φ•, τ •), then 1H is indifferent between reporting L and playing H if 2H plays H (given

that 2L claims L). If instead 2H plays L with positive (even small) probability, then 1H

strictly prefers to report L; in turn, this implies that also 2H wishes to play L. In other

words, after deleting announcement H for 1L and 2L because it is strictly dominated,

both for 1H and 2H reporting H is weakly dominated by misreporting. Thus, σ̄ seems

strategically more stable than σ•; in addition, it Pareto dominates σ• from the point of

view of 1H and 2H . Therefore, when the seller proposes (x̂, t̂) it appears more sensible

to expect that σ̄ is played in (φ•, τ •) rather than σ•. Recall, however, that both 1L and

2L earn a negative payoff in σ̄.

This result undermines the confidence in (x̂, t̂) not only because the revenue is smaller
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in σ̄ than in σ•. Indeed, if also 1L and 2L believe that σ̄ will be played in (φ•, τ •), then

they expect to earn a non-stochastic payoff equal to s
2
− t̂LL < 0 from playing the

auction. Therefore, by proposing (x̂, t̂) the seller should expect that no type L is going

to participate in the auction; that would induce a quite different outcome (and a different

revenue) with respect to unanimous participation and truthtelling. Also notice that this

result does not depend on setting ε close to 1: it arises also if the transfers are obtained

with ε = 0. LM’s optimal mechanism under strong correlation is plagued by the same

multiplicity problem; LM do not remark it because they consider the issues of strong

ratifiability and multiplicity only under weak correlation.

One way to get rid of this problem is to impose additional constraints in the sell-

er’s design problem of (x, t) in order to eliminate equilibria which 1H and 2H prefer to

σ•; clearly, this reduces the revenue. In a model with risk-averse agents and without

collusion, Demski and Sappington (1984) adopted a similar approach to knock out a

non-truthful BNE which Pareto dominates (from the agents’ point of view) the truthful

equilibrium. We follow this approach in next subsection. Before that, we need to recall

that in related settings (still abstracting from collusion issues) Ma (1988), Ma, Moore

and Turnbull (1988) and Brusco (1998) used mechanisms with larger strategy spaces

with respect to direct mechanisms in order to eliminate ”undesired” equilibria. More

precisely, they consider multi-stage games and, by appealing to suitable extensive form

refinements as sequential equilibrium or perfect BNE, they are able to uniquely imple-

ment the outcome which is obtained in the truthtelling equilibrium of the optimal direct

mechanism. In these cases, therefore, the planner’s welfare is not reduced by requiring

unique implementation. Likewise, in our context we could consider the mechanism de-

fined by Brusco (1998) to obtain a sale mechanismM with a unique perfect BNE when it

is played noncooperatively; the equilibrium outcome would be the same as the outcome

of σ• played in (x̂, t̂). Moreover, M would be strongly ratifiable. However, we believe

that also M would not be very reliable. The reason is easy to explain: when the buyers

report into (φ•, τ •) (a direct mechanism) truthful reporting is not the only equilibrium
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since also (LL,LL) is an equilibrium in (φ•, τ •). In other words, even though M is a

sale mechanism with a unique (perfect or sequential) equilibrium outcome when it is

played noncooperatively, the undesired equilibrium is not eliminated in (φ•, τ •); indeed,

(LL,LL) is a BNE of (φ•, τ •) and it induces the same outcome as (LL,LL) played in

(x̂, t̂). At the end of next subsection we provide some comments about attempting to

get rid of untruthful equilibria by resorting to a multi-stage collusion mechanism.

3.4.4 A ”robust” mechanism

The problem with mechanism (x̂, t̂) is that (for any buyers’ beliefs) σ̄ = (LL,LL) is

a BNE of (x̂, t̂) if it is played noncooperatively [hence σ̄ is a BNE also in the side

mechanism (φ•, τ •)] and U iH(σ̄) > U
•
H . This problem can be avoided by imposing, when

designing the sale mechanism, the following constraint on top of (3.8)-(3.17)

q[(s+ 1)xHL − tHL] + h[(s+ 1)xHH − tHH ] ≥ (h+ q)[(s+ 1)xLL − tLL] (3.24)

Inequality (3.24) does not rule out σ̄ as a BNE of the sale mechanism; rather, it guaran-

tees that the payoff to type H in σ̄ is not larger than U•H , her payoff when σ• is played.

Next proposition describes the mechanism (x̌, ť) which maximizes expected revenue sub-

ject to (3.8)-(3.17) and (3.24). It turns out that σ• is not the unique BNE of (x̌, ť)p,p,

but U iH(σ) ≤ U•H and U iL(σ) ≤ U•L for any p̄i and σ ∈ BNE[(x̌, ť)p̄i,p]. This implies that
(x̌, ť) is strongly ratifiable and it can be shown that when playing the side mechanism

(φ•, τ •) the buyers cannot coordinate on an equilibrium which some type strictly prefers

to σ•. In this sense (x̌, ť) is a ”robust” mechanism.27

27Instead of imposing (3.24) we could have required that type H prefers to play H rather than L if
her opponent reports L: (s+ 1)xHL − tHL > (s+ 1)xLL − tLL (actually, weak inequality is necessary
to get existence) but then we would have obtained the same mechanism described by proposition 3.5
below. Likewise, we could have imposed that type L prefers to play H when her opponent reports L:
sxHL − tHL ≥ sxLL − tLL. Yet, since it is optimal to set xHL = 1, sxHL − tHL ≥ sxLL − tLL implies
(s+1)xHL−tHL > (s+1)xLL−tLL. Hence, imposing (3.24) is the least costly way to obtain a ”robust”
mechanism.
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Proposition 3.5 (i) If

s(q + l) > h+ q (3.25)

then x̌LL = 1
2
; if instead (3.25) fails then x̌LL = 0. In either case x̌HH = 1

2
, x̌HL = 1,

x̌LH = 0 and ť is determined by (3.8), (3.11), (3.13) and (3.24) written with equality.

(ii) There exists no BNE of (x̌, ť)p,p which some type of buyer strictly prefers to σ•.

The proof of proposition 3.5(ii) is actually straightforward, since the transfers in

(x̌, ť) are the same as in (x̃, t̃) (the optimal mechanism if the buyers commit to ex post

efficiency within the coalition). To be exact, (x̌, ť) differs with respect to (x̃, t̃) in the

condition under which the good is sold when both buyers have type L [(3.25) instead of

(3.23)]. However, in the proof to proposition 3.4 we established that (x̃, t̃)p,p has no BNE

which some type of buyer prefers to σ•; such a proof applies to (x̌, ť)p,p as well. Also

notice that in (x̌, ť) it does not matter whether collusion takes place under symmetric

or asymmetric information.

We infer that imposing (3.24) weakens the seller’s position in a way which is about

equivalent to not being able to prevent the transfer of the good within the coalition.

Observe that (3.18) (with ε close to 1) does not imply (3.25): if q
l
< s ≤ h+q

q+l
then

x̂LL =
1
2
but imposing (3.24) induces the seller to withhold the good when both buyers

have type L. In such a case his revenue loss with respect to the truthful equilibrium of

(x̂, t̂) is equal to sl− q; on the other hand, if s > h+q
q+l

then the revenue loss due to (3.24)

is ρ
l+q
.28

To conclude we offer some remarks about attempting to rule out untruthful equilibria

by considering a collusion mechanism which is different from the side mechanism we have

described in section 3.3. Following the literature cited in the previous subsection, we may

try to design a multi-stage collusion mechanism having a unique sequential equilibrium

or perfect BNE when (x̂, t̂) is the sale mechanism. This does not appear to be an easy

28We should also remark that we ”solved” the multiplicity problem within the class of symmetric
mechanisms. However, in principle, asymmetric mechanisms may help, as it occurs in Demski and
Sappington (1984).
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task and, moreover, before doing that we should inquire whether the third party is

interested in solving the multiplicity problem. Recall that if the buyers report truthfully

in (φ•, τ •) when (x̂, t̂) is the sale mechanism, then each type H gets an expected payoff

equal to about q
2(h+q)

and each type L earns 0; yet, as we know, the fact that σ̄ is an

equilibrium of (φ•, τ •) is a threat to the seller’s revenue. If the seller avoids that threat

by imposing (3.24) on the sale mechanism, then each type L still obtains a payoff equal

to 0; each type H earns instead l
2(l+q)

> q
2(h+q)

if (3.25) holds and 0 otherwise. Thus

the third party is better off with (x̌, ť) rather than with (the truthful equilibrium of)

(x̂, t̂) if x̌LL = 1
2
. The only case in which it prefers (x̂, t̂) to (x̌, ť) is when x̂LL = 1

2
but

x̌LL = 0, which occurs if q
l
< s ≤ h+q

l+q
; for these parameter values each type of buyer

earns 0 in (x̌, ť). Thus, when q
l
< s ≤ h+q

l+q
both the seller and the buyers prefer (x̂, t̂)

to (x̌, ť). Apart from this case, the third party should not help the seller to solve the

multiplicity problem in a less expensive (for the seller) way with respect to satisfying

(3.24). Designing a collusion mechanism with a unique sequential equilibrium or perfect

BNE when q
l
< s ≤ h+q

l+q
appears to be a complicated task (among other things, recall

that the collusion mechanism needs to be budget balanced) and it is out of the scope of

this chapter.

3.5 Appendix

Proof of proposition 3.1 The following are the payoff matrices for type L and H,

respectively, in mechanism (x•, t•). For example, the entry in the first matrix corre-

sponding to row H and column HL is the expected payoff to type L from announcing

H when the opponent always misreports her own valuation (type L of the opponent

reports H and type H claims L)

type L LL LH HL HH

L q2

2ρ
+ q

ρ
kH 0 q(q−l)

2ρ
+ q−l

ρ
kH − ql

2ρ
− l

ρ
kH

H (1−l)q
2ρ
− h

ρ
kL − kL

l+q
(1−l)(q−l)

2ρ
+ q(l−h)

ρ(l+q)
kL − (1−l)l2ρ

+ q
ρ
kL
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type H LL LH HL HH

L hl
2ρ
+ q

ρ
kH − kH

q+h
l(h−q)
2ρ

+ q(h−l)
ρ(q+h)

kH − ql
2ρ
− l

ρ
kH

H h(2l+q)
2ρ
− h

ρ
kL 0 (2l+q)(h−q)

2ρ
+ q−h

ρ
kL −q(2l+q)2ρ

+ q
ρ
kL

As we remarked in subsection 3.2.2, if kH = kL = 0 then (HH,LL) is a BNE (in it,

both types of buyer 1 report H and both types of buyer 2 report L) as well as (LL,HH).

Yet, if kH = k•H and kL = k•L as defined in the statement of proposition 3.1, then for

type H it is strictly dominant to report H and type L strictly prefers truthtelling when

her opponent plays LH or HH. Therefore, by iterative deletion of strictly dominated

strategies we find that (LH,LH) is the unique BNE of (x•, t•) if (kH , kL) = (k•H , k
•
L).

Proof of proposition 3.2(i) Fix any given ε ∈ [0, 1). By theorem 1.D.5 in

Takayama (1985), in our setting the first order conditions are necessary and sufficient for

optimality. In the lagrangian function, let λ1 denote the multiplier of constraint (3.8),

λ2 is the multiplier of constraint (3.9), ... and λ10 is the multiplier of (3.17). Then we

find, since t ∈ ?4⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂L
∂tHH

= h+ qλ2 − hλ3 − hλ4 − 2λ5 − 2λ6 + 2λ7 + 2λ9 = 0
∂L

∂tHL
= q + lλ2 − qλ3 − qλ4 + λ5 − λ7 − λ8 + λ10 = 0

∂L
∂tLH

= q − qλ1 − qλ2 + hλ4 + λ5 − λ7 − λ8 + λ10 = 0

∂L
∂tLL

= l − lλ1 − lλ2 + qλ4 + 2λ6 + 2λ8 − 2λ9 − 2λ10 = 0

(3.26)

Assuming that only multipliers λ1, λ4, λ6 and λ8 are different from 0, the unique solution

to (3.26) is λ̂1 = 1
q+l
, λ̂4 =

q
ρ+q
, 2λ̂6 =

hρ
ρ+q

and λ̂8 =
ρq
ρ+q
. These values imply ∂L

∂xHH
> 0

and ∂L
∂xHL

> max
q

∂L
∂xLH

, 0
r
; hence x̂HH = 1

2
, x̂HL = 1 and x̂LH = 0. To determine x̂LL

we compute ∂L
∂xLL

= slλ1− q(s+1)λ4− 2(s+1)λ6− (2s+1− h
q
ε)λ8 =

(sl−q)(ρ+q)−hρ(1−ε)
ρ+q

.

If (3.18) fails then x̂LL = 0 and the constraints corresponding to λ1, λ4, λ6 and λ8

[i.e., (3.8), (3.11), (3.13) and (3.15)] written as equalities yield, given x̂, t̂HH = s+1
2
,

t̂HL = s + 1 and t̂LH = t̂LL = 0. Also the neglected constraints (3.9), (3.10), (3.12),

(3.14), (3.16) and (3.17) hold in this mechanism, therefore it is optimal when (3.18) fails.

90



If instead (3.18) holds then x̂LL = 1
2
and (3.8), (3.11), (3.13) and (3.15) written with

equality imply t̂HH = t̂LL = s
2
+ hq(1−ε)

2(ρ+q)
, t̂LH =

−hl(1−ε)
2(ρ+q)

and t̂HL = s+
h+q
2q
− h(ρ+hq)(1−ε)

2q(ρ+q)
.

Since also the neglected constraints are met, this mechanism is optimal if (3.18) holds.

(ii) From x̂LH = 0 follows x̂LH− x̂LL ≤ 0. If sl ≤ q then (3.18) fails for any ε ∈ [0, 1),
hence x̂LL = x̂LH − x̂LL = 0 and the exact value of ε does not matter. If instead sl > q
then (3.18) holds if ε is close to 1; thus x̂LL = 1

2
, x̂LH − x̂LL = −12 and ε should be

as close as possible to 1 in order to relax (3.15). Since λ̂8 > 0, the revenue is strictly

increasing in ε and no ”globally optimal” mechanism exists.

(iii) By considering ε = 1 we obtain the sup of the revenue. If sl ≤ q then

x̂LL = 0 and the good is not efficiently allocated; hence the first best outcome is not

achieved. If instead sl > q then x̂LL = 1
2
but the expected payoff of type H equals

q[(s+1)x̂HL−t̂HL]+h[(s+1)x̂HH−t̂HH ]
h+q

= q(ρ+q)+hρ(1−ε)
2(ρ+q)(h+q)

* q
2(h+q)

> 0; this reduces the revenue

with respect to full surplus extraction. Yet, such a reduction is negligible if q is close to

0 (i.e., if v1 and v2 are strongly correlated). Hence, in that case the seller almost obtains

the first best revenue: the good is efficiently allocated and each type’s rent is nearly 0.

Proof of proposition 3.3(i) As in the proof to proposition 3.2(i), λ1 is the multiplier

of (3.8), ... and λ10 is the multiplier of (3.17) [λ7 and λ8 are the multipliers of (3.21)

and (3.22), respectively]; again, since t ∈ ?4, we obtain (3.26) from ∂L
∂t
= 0. As above,

we suppose that only multipliers λ1, λ4, λ6 and λ8 are different from 0, which yields

λ̃1 =
1
q+l
, λ̃4 =

q
ρ+q
, 2λ̃6 =

hρ
ρ+q

and λ̃8 =
ρq
ρ+q
; hence ∂L

∂xHH
> 0, ∂L

∂xHL
> max

q
∂L

∂xLH
, 0
r

and ∂L
∂xLL

= slλ1−q(s+1)λ4−2(s+1)(λ6+λ8) =
l

q+ρ
[(s+1)ρ+sq−h]. Thus x̃HH = 1

2
,

x̃HL = 1, x̃LH = 0 and x̃LL = 0 if (3.23) fails. In this case (3.8), (3.11), (3.13) and (3.22)

written with equality imply t̃HH = s+1
2
, t̃HL = s+ 1 and t̃LH = t̃LL = 0. Since also the

neglected constraints are met by this mechanism, (x̃, t̃) is optimal when (3.23) fails.

If (s + 1)ρ + sq > h then x̃LL = 1
2
and (3.8), (3.11), (3.13) and (3.22) written with

equality give t̃HH = t̃LL =
s
2
+ q

2(l+q)
, t̃LH = −l

2(l+q)
and t̃HL = s + 1−h

2(l+q)
(given that

x̃HH = 1
2
, x̃HL = 1 and x̃LH = 0). The neglected no-collusion constraints hold as

2t̃HH = 2t̃LL = t̃HL + t̃LH : the total sum the buyers are required to pay to receive the
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good does not depend on their reports, a fact which deters collusion. Moreover, the

expected payoff of each type H is l
2(q+l)

> 0 and also (3.9) is satisfied.

(ii) If l is close to 0 then also ρ and q are about 0 (as ρ > 0); thus (3.23) fails and

x̃LL = 0. Therefore the seller never gets close to extract the full surplus.

Proof of proposition 3.4 We examine what buyer i can obtain by rejecting the

side mechanism if we do allow arbitrary beliefs p̄i of buyer 3− i about vi after a veto of
buyer i and do not require σi = σ•. Often, that does not alter the buyers’ participation

constraints in the side mechanism. In such a case (φ•, τ •) still solves the third party’s

problem since it is feasible and (x̂, t̂) and (x̃, t̃) satisfy (3.7) and (3.20), respectively.

In one case the buyers’ participation constraints in the side mechanism are tightened;

then no feasible side mechanism exists, hence the game of coalition formation has no

equilibrium.

First of all, notice that in both (x̂, t̂) and (x̃, t̃) truthtelling is always strictly dominant

for type L. Let us start by examining (x̂, t̂) when x̂LL = 0 [the same following argument

applies to (x̃, t̃) when x̃LL = 0, since (x̂, t̂) = (x̃, t̃) if x̂LL = x̃LL = 0]. We report below

the payoff matrices for type L and type H in (x̂, t̂) when x̂LL = 0. For example, the

entry in the left table corresponding to row H and column L (that is, −1) is the payoff
to type L if she claims H and her opponent reports L.

type L L H

L 0 0

H −1 −1
2

type H L H

L 0 0

H 0 0

Observe that the payoff to type H is 0 regardless of both buyers’ reports; the payoff

to type L is 0 if she plays L (which is strictly dominant for her) regardless of the

opponent’s report. Therefore U ij(σ) = 0 = U
•
j , j = L,H, for any belief system p̄i and

σ ∈ BNE[(x̂, t̂)p̄i,p].

92



The payoff matrices for (x̃, t̃) with x̃LL = 1
2
are

type L L H

L − q
2(q+l)

l
2(q+l)

H − 1−h
2(q+l)

− q
2(q+l)

type H L H

L l
2(q+l)

l
2(q+l)

H l
2(q+l)

l
2(q+l)

Again, the payoff to type H is constant, equal to l
2(l+q)

= U•H , with respect to both

her report and the opponent’s report. Type L of buyer i obtains a higher expected

payoff than U•L = 0 if the probability (given her information v
i = vL) that buyer 3 − i

reports H is higher than q
q+l
. Yet, since for type L of buyer 3 − i truthful reporting

is strictly dominant, there exists no p̄i and σ ∈ BNE[(x̃, t̃)p̄i,p] such that U iL(σ) > 0

(recall that the deviating buyer i has prior beliefs about v3−i). There actually exist

σ ∈ BNE[(x̃, t̃)p̄i,p] such that U iL(σ) < 0, but for sure type L would reject a side

mechanism yielding her a negative payoff even under the threat that the noncooperative

play of the sale mechanism gives her a more negative payoff: she would rather quit the

game. Hence it looks reasonable to fix to 0 = U•L the payoff to each type L from rejecting

the side mechanism.

We now examine (x̂, t̂) when x̂LL = 1
2
:

type L L H

L −hq(1−ε)
2(q+ρ)

hl(1−ε)
2(q+ρ)

H −h+q
2q
+ h(ρ+hq)(1−ε)

2q(q+ρ)
−hq(1−ε)

2(q+ρ)

type H L H

L 1
2
− hq(1−ε)

2(ρ+q)
hl(1−ε)
2(q+ρ)

H q−h
2q
+ h(ρ+hq)(1−ε)

2q(q+ρ)
1
2
− hq(1−ε)

2(ρ+q)

Since type L of buyer i reports L (and also type L of buyer 3− i reports L), her payoff
is equal to 0 = U•L if type H of buyer 3 − i plays H and it is negative otherwise;

hence, arguing as above, the participation constraint of type L of buyer i in the side

mechanism should be uiL ≥ 0. The only BNE of (x̂, t̂)p̄i,p in which type H of buyer i

earns a payoff which is not equal to U•H * q
2(h+q)

is σ̄ = (LL,LL): U iH(σ̄) * 1
2
> q

2(h+q)
.

However, letting σ̄ play the role of σ1 (or σ2) in definition 3.1 is troublesome because

93



U1L(σ̄) = −hq(1−ε)2(q+ρ)
< 0 and, as we made clear above, we do think that any type of

buyer would quit the auction rather than accepting a side mechanism which yields her

a negative payoff.

For the sake of completeness (or curiosity) we may consider the third party’s design

problem with the following participation constraints: u1L ≥ 0 = U•L, u
1
H ≥ U1H(σ̄),

u2L ≥ 0 = U•L and u
2
H ≥ U•H ; in this way we are violating definition 3.1 because we

implicitly assume that the BNE of (x̂, t̂) which is played following a veto of buyer 1

depends on the type of buyer 1 (σ̄ if v1 = vH and σ• if v1 = vL). Nevertheless, in this

case no equilibrium of the game of coalition formation exists; hence (x̂, t̂) is strongly

collusion-proof. Indeed, if an incentive compatible side mechanism (φ̈, τ̈) satisfied the

participation constraints written above [(φ•, τ •) does not since it violates inequality

u1H ≥ U1H(σ̄)], then it would be feasible also when σ1 = σ2 = σ• and p̄1 = p̄2 = p as in

that case the participation constraint of type H of buyer 1 is relaxed. Since the third

party’s payoff would be higher with (φ̈, τ̈) than with (φ•, τ •), it would be contradicted

the fact that (φ•, τ •) is optimal for the third party when σ1 = σ2 = σ• and p̄1 = p̄2 = p.

Proof of proposition 3.5(i) Once again, λ1 is the multiplier of constraint (3.8), ...,

λ10 is the multiplier of (3.17) and λ11 is the multiplier of (3.24). From ∂L
∂t
= 0 we find

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂L
∂tHH

= h+ qλ2 − hλ3 − hλ4 − 2λ5 − 2λ6 + 2λ7 + 2λ9 − hλ11 = 0
∂L

∂tHL
= q + lλ2 − qλ3 − qλ4 + λ5 − λ7 − λ8 + λ10 − qλ11 = 0
∂L

∂tLH
= q − qλ1 − qλ2 + hλ4 + λ5 − λ7 − λ8 + λ10 = 0

∂L
∂tLL

= l − lλ1 − lλ2 + qλ4 + 2λ6 + 2λ8 − 2λ9 − 2λ10 + (h+ q)λ11 = 0

(3.27)

Consider the solution to (3.27) in which λ̌1 =
1
q+l
, λ̌4 =

q(h+q)
h(q+l)

, λ̌11 =
ρ

h(q+l)
and each

other multiplier is equal to 0; then x̌HH = 1
2
, x̌HL = 1 and x̌LH = 0. Moreover,

∂L
∂xLL

= lsλ1 − q(s + 1)λ4 − (s + 1)(h + q)λ11 = l
q+l
[s(q + l) − h − q]; thus x̌LL = 0 if

(3.25) fails and x̌LL = 1
2
otherwise. In the first case (3.8), (3.11) and (3.24) written with
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equality [in addition to constraints (3.13) and (3.15)] imply ťHH = s+1
2
, ťHL = s+1 and

ťLH = ťLL = 0; instead, ťHH = ťLL = s
2
+ q

2(l+q)
, ťLH = −l

2(l+q)
and ťHL = s+ 1−h

2(l+q)
in the

second case [using (3.8), (3.11) and (3.24) written with equality in addition to (3.13)

and (3.16)]; in both cases (3.13) binds even though λ̌6 = 0. Observe that we obtained

the same transfers as in mechanism (x̃, t̃), derived in proposition 3.3.
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