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Chapter 1

On efficient trading mechanisms

between one seller and n buyers

1.1 Introduction

Myerson and Satterthwaite (1983) (MS henceforth) analyze an environment in which
an agent (agent 0, a potential seller) owns an indivisible object and faces another agent
(agent 1, a potential buyer) who is interested in the object. Each agent has a valuation
of the object which is private information and views the other agent’s valuation as a
random variable. The buyer regards the valuation of the seller, vy, as distributed over
lag, bo] according to the cumulative function Fp; the seller views the valuation of the
buyer, vy, as distributed over [a,b] according to the cumulative function F'. The two
probability distributions are independent and admit strictly positive and continuous
densities. The agents are risk-neutral and have quasilinear utilities: the expected payoft
of agent i (i = 0,1) is v;y; +1t;, where y; is his probability to obtain the good and ¢; is the
expected payment he receives. This implies that the final allocation is ex post Pareto-
efficient if and only if the good is allocated to the agent with the highest valuation and
no money is wasted.

MS assume that gains from trade are possible (that is, ag < b) but are not common



knowledge (that is, a < by) and consider the problem of designing a mechanism having
a Bayes-Nash equilibrium (BNE henceforth) such that (i) each type of the two agents
obtains nonnegative net expected gains from participation given his private information
(interim individual rationality constraints) and (ii) the outcome of this BNE is the ex
post efficient allocation. Corollary 1 in MS is a non-existence result: it proves that,
whatever F and Fy are, if (ag,bo) N (a,b) # 0 (which is true if and only if a < by and
ap < b) then no mechanism has an individually rational BNE resulting in the ex post
efficient allocation.

In several more recent papers some of the above assumptions are modified and some
existence results arise; among others, see Cramton et al. (1987), Matsuo (1989), Gresik
(1991), McAfee (1991) and McAfee and Reny (1992). In Makowski and Mezzetti (1993)
(MM henceforth) the seller faces n > 2 potential buyers; each of them has a valuation
for the good which is distributed over [a, b] according to the cumulative function F' and
is independent of the other random variables. MM detect the necessary and sufficient
condition for the existence of an individually rational, incentive compatible and ex post
efficient mechanism - from now on such a kind of mechanism will be referred to as
"efficient mechanism”. When such a condition is satisfied they prove that a modified
second price auction is an efficient mechanism.

Under the assumption that the seller faces n > 2 buyers, section 1.2 proves that
if by is not much larger than the expected revenue from a first price auction with no
reserve price then there exists an efficient mechanism which is independent of F. More
precisely, the mechanism designer does not need to know Fj in order to define such a
mechanism - unlike the ones proposed by MM. This is important because, as Cramton
et al. (1987) emphasize, the planner’s information about the environment may not be
very precise; yet, it is still possible to implement the ex post efficient allocation if only
F' is known.

Generally in Bayesian mechanisms the information structure has to be common

knowledge among all agents and the planner. Mookherjee and Reichelstein (1992) argue



against Bayesian mechanisms because of these informational assumptions which they
consider very demanding. Different beliefs between agents and the mechanism designer
may generate sharp differences between the expected and the actual outcome; this would
occur, for example, in the modified second price auction suggested by MM to implement
the efficient allocation. The mechanism we examine in section 1.2, on the other hand,
requires common knowledge of the function F' but not of Fj (when b, is not too large).
In other words, in order to compute their equilibrium strategies and to be willing to
play the mechanism, the agents are not required to have common beliefs about vy nor
the planner needs to share their beliefs. This substantially weakens the informational
assumptions, therefore making the implementability of the ex post efficient allocation
less demanding.

An efficient mechanism which does not require the knowledge of Fj is clearly not
as satisfactory as an efficient mechanism which is independent of both F' and Fj. In a
more general context d’Aspremont and Gérard-Varet (1979) attack this kind of problem
by assuming that each agent privately observes the parameters characterizing his own
preferences while the other agents only know the possible values of these parameters
(the supports). They consider direct mechanisms and prove that requiring that truthful
revelation is an equilibrium for any profile of parameters (which means, for any game
that may arise) is equivalent to require that truthful revelation is a weakly dominant
strategy for every profile of parameters. Furthermore, their theorem 2(b) [which follows
from theorem 3 in Green and Laffont (1977)] can be invoked to establish that, in our
setting, any mechanism allocating the good to the highest valuation agent and such
that truthful revelation is a weakly dominant strategy in any game which may arise

is a Groves mechanism."

However, no Groves mechanism satisfies the ex post budget
balance condition in our environment, while the mechanism which is described in section

1.2 does so and also satisfies the interim individual rationality constraints [d’ Aspremont

See section 23.C in Mas-Colell et al. (1995) for an introduction to Groves mechanisms.



and Gérard-Varet (1979) do not impose such constraints].?

In section 1.3 we show that a simple multi-unit extension displays similar properties
to the one-unit model. In section 1.4, instead, we inquire whether efficient mechanisms
exist in a partially public good environment. For a public good an inefficiency result
similar to the Myerson-Satterthwaite theorem holds: if gains from trade are uncertain
then no efficient mechanism exists.> We show that in our partially public good setting
such a result is isolated: if the good is not perfectly public then the existence of effi-
cient mechanisms cannot be ruled out just because gains from trade are not common
knowledge; rather, it depends on the environment parameters: probability distributions,

number of agents and the degree of ”privateness” of the good.

1.2 An efficient mechanism which is independent of

Fy

1.2.1 Preferences, information and existence of efficient mech-

anisms

A seller owns an indivisible good to which he attaches valuation vy. He faces n > 2
potential buyers and each buyer i, 1 = 1,...,n, has a valuation v; for the good. Each
agent’s valuation is private information and it is regarded by the other agents as an
independent random variable. The seller’s valuation vy is drawn from the probability
distribution Fy with support [ag, by|; each buyer i’s valuation v; is drawn from the distri-
bution F' with support [a,b]. Both Fy and F have continuous and strictly positive (over

the supports) densities fy and f, respectively. To avoid trivial cases we assume that

2Kosmopoulou (1999) proves that if an efficient mechanism exists then there also exists an ex post
individually rational Groves mechanism which implements the efficient allocation of the good in weakly
dominant strategies but it is only ex ante, and not ex post, budget balanced. Moreover, the planner
needs to know both F' and Fp in order to design such a mechanism.

3See Mailath and Postlewaite (1990).



gains from trade are uncertain: (ag,bp) N (a,b) # 0 (ie., 0 < ag < band 0 < a < by).
To simplify the exposition we also assume ay < a; however, all the following results can
easily be extended to the case in which ay > a.

Theorem 1 in MM establishes that an efficient mechanism exists if and only if the

following inequality is satisfied (which requires by < b):

/b 1= F"(2)|dz—n / " Fo(2) P (2)[1— F(2)]dz—n / Frl()[1— F(2)]dz > 0 (1.1)

0 bo

MM prove that if (1.1) holds then a second price auction (in which also the seller
bids) augmented by suitably defined transfer functions is an efficient mechanism; the
definition of such transfer functions requires knowledge of both F' and Fy. The main
purpose of this section is to prove that if by is smaller than a given b, determined by
F, then it is possible to define an efficient mechanism which does not depend on Fj. In
such a case, therefore, the regulator does not need to know Fj in designing the efficient
mechanism and the buyers do not need to have the same common prior about vy as the

planner.

1.2.2 The sequential mechanism

Before describing our proposed mechanism we need to introduce some notation. Suppose
the seller auctions off the good through a first price sealed bid auction with a reserve
price r. Maskin and Riley (1996a,b) prove that this game has a unique BNE; such

equilibrium is symmetric among buyers and is described as follows. If » > a then for
[ Fr1(2)dz
e
and f(v;;r) = 0 if v; < r. On the other hand, if r < a then for any v; in [a,b] each

v; n—1
buyer ¢ with valuation v; bids (v;r) = v; — %Fn,il(ij))dz: any reserve price smaller than

any v; in [a, b] each buyer ¢ with valuation v; bids B(v;;r) = v; — ifo;, >r

a does not affect the equilibrium bids. Let R(r) denote the seller’s expected revenue as
a function of r: R(r) = frb B(z;r)dF™(z).

Now assume that if the owner of the object wants to sell it then he is restricted to use



a first price auction with a reserve price r that he can choose. As we mentioned above, in
the unique BNE of this bidding game each buyer bids according to the function (; hence
the object is not sold if each buyer has a valuation below r and the expected payoff for a
seller with valuation vg from setting a reserve price r is R(r)+voF™(r). Since the bidding
function g is strictly increasing in the valuation, if the object is sold then it is the highest
valuation buyer who obtains it; hence ex post efficiency is guaranteed if each seller with
valuation vy sets r = wvg. It is not difficult to verify that if vy € [a,b) then the reserve
price which maximizes the seller’s payoff is strictly larger than vy [see proposition 3 in
Riley and Samuelson (1981)]. Thus, leaving to the seller complete freedom in choosing
r does not lead to the efficient allocation; this is a typical (and well known) allocative

distortion in unregulated monopolistic markets. To induce the seller to set the reserve

price equal to his valuation, assume that upon choosing r he has to pay @ to each
potential buyer (i.e., including the ones who do not actually bid because each of them
has a valuation below r); T is the function defined on [a, b] as follows,* for some constant

A to be determined:
T(r) = R(r) — A+ rF™(r) — / F"'(2)dz for any r € [a, ] (1.2)

Definition 1.1 In any FPAWF (first price auction with fine) mechanism the seller
decides whether to auction off the good or not. If he decides to auction it off, then he
has to use a first price auction in which his strategic variable is r € [a,b|; upon choosing

r he pays @ to each buyer.

A remarkable feature of these mechanisms is that they do not depend on Fj; hence
the mechanism designer does not need to know the probability distribution for vy in
order to define the mechanism. For what concerns the buyers, we are going to see

that only for some values of A they need to know Fj (in order to verify the validity

4There is no loss of generality in restricting r to lie in [a, b], since any 7 < a is equivalent to 7 = a
(r < a has the same effect on the bidding function as r = a) and, similarly, any r > b is equivalent to
r=b.



of their participation constraints). Indeed, there exist infinitely many FPAWF games
differing because of the value of A. Let FPAWF; denote the FPAWF mechanism in
which A = R(a) in (1.2) and 7} is the resulting fine function; then we can state and

prove the following®

Proposition 1.1 Assume R(a) + fabo F™(z)dz > by. Then FPAWF,, a mechanism
which is independent of Fy, implements the ex post efficient allocation in unique Perfect

Bayesian Equilibrium (PBE).

Proof. We first prove that in any PBE of FPAWF; the agents play according to the
strategies (5€¢, B¢) which we define below. Notice that the outcome of these strategies
is the ex post efficient allocation.

S¢: Any type of seller auctions off the good; any seller with valuation vy > a chooses
r = vg and any seller of type vy < a sets r = a.

B¢: 1If the seller auctions off the good with a reserve price r then any buyer ¢ with
valuation v; bids (v;; 7).

Recall that for any r chosen by the seller the resulting first price auction has a unique
BNE and in such equilibrium each buyer ¢ with valuation v; bids (v;;r) (strategy B¢);
this is true independently of the buyers’ beliefs about vy, since neither the rules of the
first price auction nor the buyers’ preferences depend on vy. Therefore each type vy of
seller knows that - in any PBE - choosing the reserve price r yields him an expected payoff
of V(r;v9) = R(r) + voF™(r) — T1(r) = R(a) + (vo — r)F™(r) + [I F"(z)dz. Integrating
[T F"(z)dz by parts and rearranging yields V (r;vo) = R(a) + [ (vo — z)dF™(z). Since
[T (vo — z)dF™(z) = fab(vo —2)dF™(z) — frb(vo — 2)dF™(2), we find that V(r;v) is equal
to the constant term R(a)+ fab(vo —z)dF"(z) plus j;b(z —vg)dF™(z). The latter quantity

°In proposition 1.1 we refer to definition 8.2 in Fudenberg and Tirole (1991) of Perfect Bayesian
Equilibrium in multi-stage games with observed actions and incomplete information. Any FPAWF game
is a multi-stage game with observed actions and incomplete information according to the definition given
in subsection 8.2.3 in Fudenberg and Tirole (1991), but for the fact that we have a continuum of types
instead of finitely many. This however does not invalidate the applicability of the above mentioned
definition [see example 8.3 in Fudenberg and Tirole (1991)].



is the expected social surplus generated by a first price auction given r and vg; therefore
in this modified first price auction the seller’s interest coincides with society’s welfare.

Since maximizing V' (r; vp) with respect to r is equivalent to maximizing frb(z —vp)dF"(2)

we find
oV (r;
A
Thus, each seller of type vy > a chooses r = vy; if instead vy < a then w < 0 for

any r > a and r is set equal to a. This is strategy S¢ but for the participation choice,
to which we turn in few lines.

Strategy S¢ determines the buyers’ beliefs about vy after any reserve price which is
an equilibrium move, that is after any r € [a, by]. About off-equilibrium reserve prices
in (bo, b],° we let the buyers view vy as uniformly distributed over [ag, bo] if the seller
chooses 7 > by.” If the seller does not auction off the good then the game ends and no
beliefs need to be specified. As we remarked at the beginning of this proof, we do not
need to check any (continuation) equilibrium condition for B¢ given the above beliefs
since, given r, any first price auction is independent of vy.

The participation constraints are the only additional conditions FPAWF; needs to
satisfy in order to implement the efficient allocation in unique PBE. If a seller of type
vo did not auction off the good then his payoff would be vg; hence, for any vy € [ag, byl
the following inequality needs to be satisfied: V]c(vg);v0] = R(a) + f:(vo) F™(z)dz > vy,
where c(vy) = max {vp, a}. Since this condition is tighter the larger vy is, it is sufficient

to check the inequality ,
0
R(a) +/ F™(z)dz > by (1.3)

which is true by assumption. Moving to the buyers’ participation constraints, the ex-

pected equilibrium payoff of any buyer ¢ of type v; is equal to the expected transfer

®Observe that if R(a) + f:o F™(z)dz > by then by < b, hence (bg, ] is not empty.

"Therefore, strictly speaking, FPAWF; has infinitely many PBE differing only because of buyers’
beliefs following out-of-equilibrium reserve prices. However, we proved that the equilibrium strategies
are given by (5¢, B®) in any PBE; hence the equilibrium outcome is the ex post efficient allocation in
any PBE.

10



EUOM she receives from the seller plus the expected payoff from playing the first
price auction. Any type of buyer obtains a non-negative payoff from the auction, but
type a earns exactly 0 in the auction because with probability 1 some other buyer has
a higher valuation. Thus each type of buyer’s participation constraint holds if and only
if the individual rationality constraint of any buyer with valuation a is satisfied, which
occurs if and only if the expected transfer she obtains from the seller is non-negative.
From Ti(a) = 0 and 77(r) > 0 in [a,b] follows T3(r) > 0 for any r € [a,b], thus the

expected value of T7 is non-negative.

Proposition 1.1 proves that if (1.3) holds then it is possible to implement (in unique
PBE) the ex post efficient allocation through a mechanism which is independent of
Fy: the mechanism designer and the agents do not need to know Fy (let alone agree
about it). This contrasts with the modified second price auction proposed by MM to
implement the efficient allocation, a game which cannot be defined without knowing Fy.
In that mechanism slightly different priors about vy between the planner and the buyers
may heavily alter the equilibrium strategies and the outcome of the game. Indeed, it
is relatively straightforward to prove that if the buyers have F, as a common prior
distribution about vy and the mechanism designer’s prior is Fy # Fj, then no BNE of
the mechanism proposed by MM induces the ex post efficient allocation.® On the other

hand, FPAWF; does not suffer from a similar drawback as long as (1.3) is satisfied.

1.2.3 The simultaneous-move mechanism

In any FPAWF first the seller sets a reserve price, then the buyers play a first price
auction with that reserve price. Because of this sequential structure FPAWF mechanisms
are not Bayesian mechanisms and therefore, strictly speaking, proposition 1.1 is not an
improvement on the mechanism proposed by MM. However, it is possible to design a

(direct) simultaneous-move mechanism which is independent of F and is an efficient

8 A formal proof of this claim is available upon request. MM also provide a direct efficient mechanism;
the same criticisms mentioned above apply to such a mechanism.

11



mechanism if and only if (1.3) holds. In such a mechanism, which we call SWF, each

agent reports to the planner a valuation (possibly dishonestly) from the set of his possible

types.

Definition 1.2 In mechanism SMF; (simultaneous-move first price auction with fine)
the seller reports a number wy € [ag, by| and each buyer i announces a number w; € [a, b];
reports are simultaneous. The good is allocated to the agent announcing the highest

—Tl[cflwo)} to each buyer, where c(wg) = max{wg,a}; if the

valuation. The seller pays
seller reports the highest valuation then no other transfer occurs, but if buyer i reports

the highest valuation then she pays Bw;; c(wy)] to the seller.

Observe that the outcome of SMF; under truthful reporting (which means w; = v; for
i=0,1,...,n) is exactly the same as the equilibrium outcome of FPAWF; both in terms
of allocation of the good and of transfers among the agents; therefore truthful reporting
in SMF; results in the efficient allocation. Proposition 1.2 below, whose proof is a slight
modification of the standard proof of the Revelation Principle [see Myerson (1979)],
establishes that in SMF; truthful revelation is a BNE which satisfies the participation
constraints if (1.3) holds. Mechanism SMF; may have several BNE but, by theorem
1 in Palfrey and Srivastava (1991), (essentially) unique implementation of the ex post
efficient allocation is achievable by suitably augmenting SMF, still in a way which does

not require knowledge of Fj.

Proposition 1.2 If (1.3) holds then SMF, is an efficient mechanism which does not

depend on Fy.

Proof. Aswe observed above, under truthful revelation SMF; leads to the same outcome
as the unique PBE in FPAWF,. Therefore, if the buyers report truthfully then the
expected payoff to type vy of seller from announcing wy is equal to V[e(wp);vgl; from
the proof of proposition 1.1 follows that it is optimal for the seller to report wy = vg

and that his participation constraint is satisfied if and only if (1.3) holds (here we mimic

12



the standard proof of the Revelation Principle). Turning to incentive compatibility for
buyers, observe that in FPAWF; each buyer bids after the seller announced a reserve
price; on the contrary, in SMF; moves are simultaneous: each buyer reports without
observing the seller’s report wy. Because of this difference in timing, the standard proof
of the Revelation Principle does not apply to establish incentive compatibility for buyers
- this is why we explicitly prove this proposition. From the definition of SMF; follows
that, under truthful revelation of the other agents, the payoff to buyer ¢ with valuation

v; from announcing w; is

h {vi = Blwg; c(vo) ]} F*~(wy) fo(vo)duvo + EvOM

a

= [vi — B(wi; @) F" Y (w;) Fy(a) + /wi [vi = B(wg; v0)[F™ (w;) fo(vo)dvg + By, A [C:)O)]

By definition of 3, both the term [v; — 3(w;; a)]F" ! (w;) Fy(a) and the argument of the
integral are maximized at w; = v;; moreover, the derivative of the integral with respect
to the upper extreme of integration is equal to (v; — w;)F™ 1 (w;) fo(w;). Hence, the
whole expression is maximized at w; = v;. Individual rationality is guaranteed because
v; — Blvise(vg)] > 0 and Ti[c(vg)] > 0 for any v; and vg. To conclude, w; = v; for
1=20,1,...,n is a BNE of SMF; in which the participation constraints are satisfied - if

(1.3) holds - and its outcome is the ex post efficient allocation. B

Remark 1 Mechanisms FPAWF; and SMF; can dispense, to some extent, with
the exact knowledge of by. To see this, after defining h(z) = R(a) + [ F*(2)dz —
for z € [a,b], consider the equation h(zx) = 0. Since h(a) > 0, h(b) < 0 and K (x) =
F"(z)—1 < 01in (a,b), we conclude that there exists a unique solution b to the equation
h(z) = 0 and that @ < R(a) < b < b. Then, to apply proposition 1.1 or proposition
1.2 it is sufficient to know that by is not larger than b, even without knowing exactly by.
Also notice that ay does not matter since we assumed it is smaller than a.

Remark 2 An interesting implication of proposition 1.2 is that (1.3) implies (1.1)

(that can also be proved directly). Hence, for any given distribution F', if by is not much

13



larger than the expected revenue of an auction with no reserve price (i.e., if by < b) then
any distribution Fy on [ag, by| satisfies (1.1). Unlike in the one buyer-one seller case,
therefore, it is not true that (ag,bo) N (a,b) # 0 prevents the existence of an efficient
mechanism whatever the probability distributions are. On the contrary, an efficient

mechanism surely exists if by is not much larger than R(a) > a.

Remark 3 As it is well known, R(a) converges to b if n tends to infinity.® Hence,
for any given distribution F' and by < b, there is a natural number n such that if
n > 7 then there exists an efficient (sequential or simultaneous-move) mechanism which
is independent of Fyy [R(a) converges to b, hence (1.3) holds if b > by and n is large; then
propositions 1.1 and 1.2 can be applied].

Example Let F be uniform on [0,1]; then R(0) = 2=, hence b > “=. From

nrD
h(z) =21 4+ 220 — ¢ follows b ~ 0.3473 if n = 2 and b ~ 0.6837 if n = 5.

1.2.4 An efficient FPAWF mechanism when (1.3) fails

If (1.3) is violated then FPAWF; does not implement the efficient allocation anymore: in
its unique PBE the participation constraint of type by of seller fails. Clearly, by setting
A sufficiently above R(a) in the definition (1.2) of the fine function we can induce any
type of seller to participate. This however lowers the buyers’ expected payoffs and may
violate the individual rationality constraints of low valuation buyers. Proposition 1.3
proves that the participation constraints of any type of buyer and seller can be satisfied

within the class of FPAWF mechanisms if and only if an efficient mechanism exists.

Proposition 1.3 There exists an FPAWF mechanism implementing the efficient allo-
cation in unique PBE if and only if efficient mechanisms exist, that is if and only if

(1.1) holds.

Proof. Let T5 be the fine function in which A = by — ffo F"(2)dz and let FPAWF; be
the resulting FPAWF mechanism. Since FPAWF, differs from FPAWF; only because of

9See Holt (1980), for example.

14



the constant term in the fine function, the proof of proposition 1.1 applies to establish

that FPAWF; has a unique PBE and that the outcome of such a PBE is the ex post

efficient allocation. Thus, FPAWF; implements the efficient allocation in unique PBE

if and only if the participation constraints are satisfied. Equality A = by — ffo F™(z)dz

takes care of the participation constraint of each type of seller, and we know from the

proof of proposition 1.1 that any type of buyer’s individual rationality constraint holds

if and only if EUOM > 0. Computing E,,Ts[c(vo)] = ffoo Ty[c(vo)] fo(ve)dvy we see

that it is non-negative if and only if (1.1) holds:

By, Ta[e(vo)]

R@)Fa)+ [ (R + 0 (w) - [ " P (2)d2) folon)dug
by — / " Fn()ds]

/abo {b _ /ab F"(2)dz — n/v: Frh(2)[1 — F(Z)]dz} Fol(vo)duo

+R(a)Fy(a) — bo + / " En()ds

R(a)Fy(a) + [b — / " P ()AL — Fo(a)] — byt / " Fn(2)de

n / ” /:Fn—l(z)u — F(2)|d= fo (vo)dvo
{b—/bF”(z)dz—n/bF”_l(z)[l—F(z)]dz}Fo(a)—i—/b[l—F”(z)]dz

n {Fj@) / ’ F”_l(z)[z — F(2)dz - / " Ry F ()L ) F(z)]dz}

b

n / Frl )1 — F(2)ldz — Fo(a)[b — / Fr(2)d2]

bo a

/ 1= F(2)|dz —n / " Fy(2) L (2)[1 — F(2))d2

bo a

—n/ F 1 (2)[1 — F(2)]dz n

bo

15



1.3 A multi-unit case

In this section the model analyzed in section 1.2 is extended by assuming that the seller
owns ¢ > 1 units of the good. We suppose that each buyer is interested in at most one
unit, while the seller may consume all of the units he owns. Although this assumption
appears odd, it is formally equivalent to suppose that the seller initially owns nothing
but he is able to produce up to ¢ units of the good at a constant marginal cost vy
and derives no utility from consuming the good.'® Then, saying that the seller ends up
with j < ¢ units (which yields him a gross payoff equal to jvy) means that he actually

produced only ¢ — j units and bear a total cost of (q — j)vg.!!

We suppose there are
n > q buyers; if it were n < ¢ then at least ¢ — n units would go to the seller and we
would have a setting with n units and n buyers. The agents’ informations are the same
as in section 1.2.

Lemma 1 in MM provides the necessary and sufficient condition in order for a feasible
allocation to be implementable (in individually rational BNE) in a one-good setting.
However, such a lemma can be adapted to deliver the necessary and sufficient condition
for the existence of an efficient mechanism in the present multi-unit environment. That
condition is written in terms of the functions F, and P defined as follows: P, is the
function of vy describing how many units of the good a seller with valuation vy expects
to receive in the efficient allocation; P is the function of v; describing the probability for
any buyer ¢ with valuation v; to obtain one unit of the good in the efficient allocation -

P does not need any subscript since the buyers are ex ante symmetric. Recalling that

ties have zero probability we find

n n

Py(vg) = q(0> F™(v) + (g —1) (1>F”_1(v0)[1 — F(vo)] + ...

10Gimilarly, in the one-unit case we may think that the seller can produce just one unit at a cost vg.

11Tf each buyer’s gross payoff from consuming more than one unit were given by her valuation times
the number of units she receives, then there would be no difference with respect to the model of section
1.2. Indeed, ex post efficiency would require that the highest valuation agent consumes all the ¢ units
and we would have a one-good model in which the good is the bundle of the ¢ units.
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Proposition 1.4 (i) In this g-unit model an efficient mechanism exists if and only if

bp < b and

/ lg— Po(2)|dz — n / P()[1 - F(2)]dz > 0 (1.4)

bo a
(ii) If n = q and gains from trade are uncertain, that is (ag, by) N (a,b) # 0, then no

efficient mechanism exists whatever F and Fy are.

Proof. (i) We adapt lemma 1 in MM to this multi-unit model by taking into account
that the seller now owns ¢ units of good. It can be verified that all the steps in the
proof of lemma 1 in MM go through if we replace 1 — Py(vg) with g — Py(v); as a result,
—bolq— Po(bo)] substitutes —bo[1 — Py(bo)] in the statement of the lemma. In this way we
find (since both Py and P are increasing functions) that an efficient mechanism exists if

and only if

naP(a) — bolg — Po(bo)] + 1 / 21 — F(2)|dP(2) — / " Fo(2)2dPy(2) > 0

ao

Inequality (1.4) is obtained by integrating by parts fab z[1 — F(z)]dP(z) and observing
that Fy(2)Py(2) = nP(2) f(z).!?

12Also theorem 3.1 in Makowski and Mezzetti (1994) could be used to obtain (1.4) (but it requires
more involved computations).
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(ii) If n = g then inequality (1.4) reduces to —q fabo Fy(2)[1 — F(z)]dz > 0, which is
false if (ag, by) N (a,b) # 0. W

Proposition 1.4(i) generalizes theorem 1 in MM [observe that (1.4) reduces to (1.1)
if ¢ = 1] and proposition 1.4(ii) generalizes the Myerson-Satterthwaite theorem: no
efficient mechanism exists when n = ¢ > 1 and (ag, bo)N(a, b) # (). This is not surprising:
since the buyers’ valuations are independent and the seller’s marginal cost is constant,
when n = ¢ this model looks like ¢ one seller-one buyer models.

As in the one-unit (and n > 1 buyers) case, when n > ¢ > 1 we can prove that if by
is not too larger than a then there exists an efficient mechanism which is independent of
Fy. Let FPAWEF,, be the mechanism in which the seller can sell the goods only through
a g-unit first price auction with reserve price r € [a, b] and the function 7}, defined below
determines the amount he must pay to the buyers upon choosing 7;'* more precisely,

( ) to each potential buyer. Then we can state proposition 1.5, a more

the seller pays
general result than proposition 1.1; its proof is omitted as it is virtually the same as the

proof of proposition 1.1.

T14(r) = Ry(r) — Ry(a) + rPo(r) — /T Py(z)dz for any r € [a, b]

a

Proposition 1.5 If R (a) + f Py(z)dz > qby then FPAWF,, a mechanism which
1s independent of Fy, implements the efficient allocation in unique PBE in this q-unit

model.

To verify that proposition 1.1 is a special case of proposition 1.5 just observe that

Py(vg), the number of units a seller with type vy expects to receive in the efficient

13In a g-unit first price auction with reserve price r each buyer submits a sealed bid; each of the ¢
highest bidders (provided her bid exceeds r) receives one unit of good and pays her own bid to the
seller. This game has a unique symmetric BNE [see Weber (1983); Maskin and Riley (1989) claim that
such a BNE is actually the unique BNE]. In that equilibrium each buyer ¢ with valuation v; > r bids

By(visT) = v; — f %dz and B, (vi;r) = 0 if v; < r. The seller’s expected revenue in such a
BNE is R,( f B,(z;7)dPoy(2).
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allocation, equals F"(vy) when ¢ = 1 and compare the inequality in the statement of
proposition 1.5 with (1.3). Moreover, propositions 1.2, 1.3 and the three remarks about

propositions 1.1 and 1.2 can be generalized to this environment.

1.4 Non-private good

In this section we relax a major assumption in the model introduced in section 1.2: we
do not suppose that the good which can be traded is a private good; rather, we analyze
a partially public good model. Formally, assume that the seller can produce a certain
good at a cost vg as suggested in footnote 10. If buyer ¢ obtains the good then her gross
payoff from consuming it equals v; and, moreover (the new assumption), each buyer j # i
earns a gross payoff of av; with a € (0,1). The agents’ informations are exactly as in
section 1.2. In this section we study the conditions under which an efficient mechanism
exists in this setting.

Clearly, if o were equal to 0 then we would be back to the private good environment
of section 1.2, for which we know that inequality (1.1) is necessary and sufficient in order
for an efficient mechanism to exist. On the other hand, if it were v = 1 then the good
would be public. Mailath and Postlewaite (1990) prove that in a public good setting no
efficient mechanism exists if vy is common knowledge and gains from trade are uncertain;
moreover, such a result extends to the case in which the seller privately observes vy. We
consider intermediate cases with a € (0, 1); hence buyer j enjoys a benefit if buyer i # j
wins the good but, for a given own payment, she prefers to buy herself the good.

In the ex post efficient allocation (neglecting ties) the good is produced if and only if

(1 —a)max{vi,...,v,} +ad . v; > vy and in such a case it is obtained by buyer ¢ if

14 A similar model is suitable, for example, when a same office is shared by several people - say
students. If student 1 has a computer on her desk then she gets some benefit from that because she
can use it whenever she wants. Moreover, the other students in the office can use that computer when
student 1 is not there; thus each other student gets a fraction of the utility increase she would enjoy if
she had a computer on her own desk. Oliva (1997) uses a similar functional specification to represent
the cost reductions generated by technology transfers within a group of two firms. Jehiel, Moldovanu
and Stacchetti (1999) analyze a very general model of auctions with externalities.
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v; = max {vy, ..., v, }. In order to establish whether an efficient mechanism exists, once
again we adapt lemma 1 in MM to the present environment. Now let Py(vp; ) denote
the probability that the good is not produced in the efficient allocation given that the
seller’s cost is vg; P(v;; ) is the ”expected quantity” of good any buyer ¢ with valuation
v; receives in the efficient allocation. If o were equal to 0 then P(v;;0) = F™ 1 (v;) Fy(v;)
would be the probability for a buyer ¢ with valuation v; to win the good. When o € (0, 1),
instead, P(v;; ) is an expectation of the numbers 0, a, and 1 in which the weight «
receives is the probability, given v;, that the good is produced but is obtained by a
buyer j # i. Once this is taken into account, lemma 1 in MM implies that an efficient

mechanism exists if and only if [since both Py(.; &) and P(.; @) are increasing functions]

0 < naP(a;a) — bo[l — By(bo; )] + nfabz[l — F(2)|dP(z;a) — ffs 2Fy(2)dPy(z; @)

=—by—n fab P(z;a)d|z — zF(2)] + f:(;) Py(z; a)d[zFy(2)]
(1.5)

where the equality is obtained after integration by parts of fab z[1 — F(2)]dP(z; ) and
ffg 2Fy(2)dPy(z; o).

Observe that if we let 2’ = [14+a(n —1)]a and 2”7 = [1 + a(n — 1)]b then the efficient
production decision is straightforward if and only if (ag, by) N (', 2”) = &; to simplify
the exposition we suppose ag < ' (similarly, in sections 1.2 and 1.3 it is assumed
agp < a). If by < 2’ then the good should always be produced and in that case the
following mechanism implements the ex post efficient allocation in unique (symmetric)
BNE. First each buyer pays aa to the seller; then a first price auction with no reserve
price (and no fines) is run and the highest bidder wins the good by paying her own bid to
the seller. In the present setting such a game has a unique symmetric BNE; it prescribes
that any buyer ¢ with valuation v; bids (1 — «)3(v;; a), which is strictly increasing in
v;.1> The following proposition deals with the case in which the overlap between the

intervals (ag,bg) and (z’,2”) is not very large and it is analogous to remark 2 for the

1>The function § was defined in subsection 1.2.2. Notice that all the participation constraints are
satisfied.
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present setting.

Proposition 1.6 Given any o < 1, if by is not too larger than ' then, for any proba-

bility distribution Fy on [ag, b, there exists an efficient mechanism.

Proof. Assume by = 2/ + ¢ with € € (0,b — a); then it is surely efficient to produce
the good if at least one buyer’s valuation is above a + €. Hence P(z;a) = Q(z;a) =
Fl(2) +a[l — F"7Y(2)] if 2 > a + e: a buyer with valuation z > a + ¢ wins the good
with probability F"!(z); if she does not win then some other buyer obtains the good as
production occurs anyway. As in section 1.2, R(a) = b— fab[nF"_l(z) —(n—=1)F"(2)]dz
is the expected revenue from a first price auction (with no reserve price) of a private

good and it can be verified that
b
~' = [ @zl = ()] = (L= )R(e) ~d
Using such equality and f:oo Py(z;)d[zFy(2)] > 0 we obtain

—bp—n fab P(z;a)d[z — 2F(2)] + ffg Py(z; a)d[zFy(2)]
> -1’ —e— nfab Q(z;a)d[z — 2F(2)] +n [*7°[Q(2; @) — P(z;0)]d[z — 2F(z)] (1.6)
=—c¢+(1—0a)[R(a) —a] + nfaa+6[Q(z; a) — P(z;a)]d[z — 2F(2)]

Since 1 > Q(z;a) — P(z;) > 0 for any z, if M > f(z) for any z € [a,b] (recall that f

is continuous on |[a, b]) then

n [ Qz0) = Pzia)][1 = F(2) — 2f(2)ldz 2 (L7)
nfaa+5[ (z;0) —

P(z;a)|[—2f(2)]dz > —nbMe

O

Therefore, in view of (1.6) and (1.7), inequality (1.5) necessarily holds for any Fy on

[Go, bo] ife = bo —a < —(1_?3_[:;(;\1}_(1] 0w

(-a)[R(a)—a] .

®Notice that both inequalities in (1.7) are in general quite coarse, hence 2’ + ~— o is likely

to be "too pessimistic” as an upper bound for bg.
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When « = 1 no efficient mechanism exists if (ag, bp) N (2/,2”) # &; proposition 1.6
says that such an extreme result is isolated in our setting. Indeed, for any o < 1 the
existence of an efficient mechanism cannot be ruled out just because gains from trade
are not common knowledge; rather, it is guaranteed - independently of the shape of Fy
on [ag, by - if the overlap between (ag, by) and (z’,2”) is not too large. More generally,
if bg > 2’ + % then (1.5) may still hold, depending on Fy, F', n and a.

Example Let F' be uniform on [0, 1]; then R(0) = 2= and, since Q(z;a) > P(z; a)
for any z, it is clear that n [;[Q(z; a) — P(z;a)]d(z — 2%) > 0 if ¢ < 1. Hence, from (1.6)

follows that (1.5) holds for any possible Fy on [0, by] if by < min {%, %}

The proof to proposition 1.6 and the above example suggest that the smaller is «
(the more private the good is) the more likely is an efficient mechanism to exist. This

claim is established for the following example.

Example Let F' be uniform on [0, 1], Fy uniform on [0,by] and n = 2. Then we
can compute exactly bf(«), the largest value of by consistent with the existence of an
efficient mechanism, given a [b(a) > 5% by the above example]. Indeed, after some
manipulations!” inequality (1.5) can be written as 2(1 — ) — 6by + 203 + li—ga > 0 for
bo € (0,1); b8(cv) is the unique solution in (0, 1) to the equation 2(1—@)—6x+2x2+ﬁ—3a =
0. Since b} is a strictly decreasing function,'® in this example it is confirmed that the

conditions for an efficient mechanism to exist are less restrictive the smaller is v in (0, 1).

For instance, b3(0) = 0.396, b3(0.5) = 0.178 and b5(0.95) = 0.017.

1.5 Conclusions

When agents bargain under private information some of them may be tempted to misre-

port the own private information in order to obtain more favorable terms of trade. It is

"Tn carrying out the computations the following equalities are useful: P(v;;a) = f 7 Fo(v; +az)dz+

0
1 2
ozfvi Fo(awv; + z)dz and Py(vo; a) = 135

18Use the implicit function theorem after observing that b3(a) < % for any «, since 2(1 — a) — 6% +

133
23)” + 1 <0
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well known that this may prevent the implementability of the ex post efficient allocation
if participation has to be voluntary. In this chapter we examined some trading models in
which the production side is represented by a unique agent facing several agents willing
to consume the good(s) he can produce. We extended a one-unit private good model
already analyzed in the literature to a multi-unit case and derived the necessary and suf-
ficient condition for the existence of an efficient mechanism in that environment. Then
we moved to a setting of non-private good and showed, in a simple but general model,
that the inefficiency result which holds in a public good environment is not robust to any
degree of ”privateness” of the good. If the good is not perfectly public then, even though
gains from trade are uncertain, the existence of an efficient mechanism depends on the
parameters of the model: probability distributions, etc. These results are summarized

in the following table.

Economic environment Existence of an efficient mechanism
1 one-unit seller, one buyer impossible (Myerson and Satterthwaite)
2 one-unit seller, n > 1 buyers depends on Fy, F' and n (Makowski and Mezzetti)
3 g-unit seller, n < g buyers impossible
4 g-unit seller, n > g buyers depends on Fy, ', n and q
5 public good impossible (Mailath and Postlewaite)
6 partially public good depends on Fjy, F', n and «

Inefficiency appears to be a necessary feature of the environments in which the pro-
duction and consumption technologies are such that it is feasible to satiate all the buyers,
as when there are as many units of good available as buyers or when the good is public:
cases 1, 3 and 5. On the other hand, in cases 2, 4 and 6 it is not feasible to satiate all
the buyers. They will compete among themselves to obtain the available good(s) and
eventually some buyer will still have a positive marginal utility from the consumption

of the good. Then an efficient mechanism may exist, depending on the environment
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parameters.!? An interesting topic for future research is to investigate the validity of
these results in more general models.

In some environments, therefore, efficient mechanisms exist and it is important to
know how they have to be designed. Often it is necessary to assume that the planner
and the agents have common priors about the parameters which are private information;
this assumption is sometimes viewed as a restrictive one and its failure may generate
different outcomes with respect to the ones which are expected when it holds. The
main contribution of this chapter is a new mechanism proposed to implement (when it
is possible) in unique PBE the ex post efficient allocation in the private good(s) case.
More important, however, is that under some conditions this mechanism does not need
to assume any specification for the probability distribution of the seller’s valuation;
hence the agents and the planner are not required to have any (let alone common) prior
about vy. This partially solves the above problem by substantially reducing the amount
of information both the regulator and the agents need to have about the economic
environment, thus making the implementation of the ex post efficient allocation less

demanding.

19 Consistently with this remark, Williams (1999) shows that in a multilateral bargaining model for
private goods an efficient mechanism is more likely to exist when a large fraction of one side of the
market is bound to be not satiated in its trading willingness [see theorem 4 in Williams (1999) and the
remarks following its proof].
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Chapter 2

Optimal Two-Object Auctions with

Synergies

2.1 Introduction

This chapter deals with the design of the revenue-maximizing auction when an agent
has two indivisible goods to sell and each buyer has superadditive values for the objects.
Myerson (1981) provided the solution to the revenue maximization problem for the single
object case, but few not recent papers investigated multi-object selling mechanisms when
the same buyer may consume several objects and observes a specific signal for each good
[see Maskin and Riley (1989) and Branco (1996) about optimal multiunit auctions when
each buyer observes a unique signal|. Examples are Palfrey (1983), McAfee and McMillan
(1988) and McAfee, McMillan and Whinston (1989). Following the US spectrum auction,
however, in the last years several papers concentrated on optimal multi-object selling
mechanisms when each buyer’s private information is multidimensional; among these,
Armstrong (1996), Rochet and Choné (1998), Armstrong (1999), Armstrong and Rochet
(1999), Armstrong (2000) and Avery and Hendershott (2000).! All of these papers

'Even though it is not strictly related to our topic (since we assume private values), we should men-
tion a literature about efficient multi-object auctions with interdependent valuations; see for example
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assume that each buyer’s gross payoft from consuming more than one good is equal to the
sum of her single valuations for those goods.? The analysts of the FCC auction, however,
emphasized that synergies associated with winning more than one licence played an
important role in determining the bidders’ gross payoffs.> Therefore, in some settings,
the existence of synergies should be taken into account by a revenue-maximizing (or
welfare-maximizing) seller.

In our model there are n buyers, two goods on sale and each buyer privately observes
two signals determining the value to her of each item; each signal may be high or low.
Synergies appear in a simple form: if a same buyer receives both goods then her gross
surplus is the sum of her valuations for each single good increased by a > 0 representing
a synergic effect.* The goal of this chapter is to give a first cut in detecting the revenue-
maximizing auction in a setting in which the synergic surplus is the same for each buyer
and is common knowledge.

After formally presenting the model (in section 2.2) we briefly review the results
for the case without synergies (v = 0), which has been analyzed by Armstrong (2000)
(henceforth Ar). In the optimal auction when o = 0 each good m (m = 1,2) is sold to
a buyer with a high valuation for it, provided there is at least one such buyer; hence, a

buyer with low value for good m never obtains it if a high valuation buyer for that good

Perry and Reny (1999), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2000). Bikhchan-
dani (1999) examines simultaneous first and second price auctions for several objects when the buyers’
valuations are common knowledge.

2 Actually, Armstrong (1996) assumes additive separability in the buyers’ utility functions only in
the examples he works out.

3See for example McAfee and McMillan (1996). Ausubel et al. (1997) empirically tested for the
existence of synergies in the FCC auction; their results suggest that synergies were a significant factor
in determining prices, even though their importance was not overwhelming.

4Krishna and Rosenthal (1996) and Branco (1997) use the same analytic formulation to capture
synergies. These papers inquire the features of specific selling mechanisms as simultaneous or sequential
second price auctions or English auctions - in more complex environments with respect to our - without
finding the optimal mechanism and avoiding multidimensional issues.
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is around.” In the terms of Ar, the optimal auction is weakly efficient.5

Another result in the setting with o = 0 is that if each buyer’s valuations for the two
goods are strongly and positively correlated then it is optimal to use separate auctions:
Each good m is allocated only as a function of the buyers’ valuations for it, thus ignoring
the values for good 3—m. The buyers’ valuations for object 3—m matter in the allocation
of good m if correlation is weak or negative and all the buyers value poorly good m,
which is then sold to a buyer with a high valuation for object 3 — m. In both cases
”independence at the top” is optimal: If n,, > 1 buyers value highly good m, then this
is randomly and fairly allocated among them neglecting their valuations for good 3 —m.

When a > 0 we find that independence at the top is suboptimal (hence separate
auctions should never be used), since the seller tends to allocate both goods to a same
buyer in order to generate and extract the synergic surplus. For instance, suppose the
realized buyers’ types are only HH (a type of buyer with a high valuation for each of
the two goods on sale) and HL (a buyer with a high valuation for object 1 and a low
value for good 2); then both the mechanisms described above sell object 2 to a type HH
and allocate randomly good 1 among all the buyers. We show that for any « > 0 this is
inferior with respect to selling both goods to a same buyer with type HH as in the latter
way the seller generates and extracts the synergic surplus with probability 1 rather than
with probability % (and without tightening any binding constraint). More generally,
when there is at least a type HH in the auction then no other type obtains any good.

Having o > 0 implies that in any optimal mechanism, given the probability for each

5This is also a well known property of the one-good model when the buyers’ valuations are i.i.d. over
a binary support. Adapting the analysis of Myerson (1981) to a one-good model with i.i.d. discretely
distributed valuations reveals that when the cardinality of the support is larger than two then a buyer
with a given valuation always beats a buyer with a lower value if and only if the so called ”virtual
valuation function” is monotone increasing (but with discrete values this condition may fail even though
the probability distribution for each buyer’s valuation yields a monotone hazard rate). If that is not so,
then the seller treats in the same way (”bunches”) buyers with different types. See subsection 2.3.4 for
more on this.

6The qualifier ”weakly” refers to the fact that for some parameter values the seller withholds one
or both objects when all the buyers’ valuations for this (these) object(s) are low (yet, strictly positive)
even though he attaches zero value to each good.
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type of buyer to obtain good m (m = 1,2), it is impossible to increase the probability
that the goods are sold to a same buyer. In other words, in any optimal mechanism the
probability that the synergy is produced is maximized given the probability distributions
according to which good 1 and good 2 are allocated among the buyers.

When « is sufficiently large the seller allocates both objects to a same buyer not only
when at least a buyer’s type is H H but also for any possible profile of realized valuations.
This fact may lead to the failure of the weak efficiency property holding when o = 0,
according to which a low valuation buyer for good m never receives it if another buyer
values highly good m. To be clear, in general a mechanism is said to be weakly efficient if
whenever the objects are sold they are allocated in a way that maximizes social surplus
- which coincides with the sum of the buyers’ gross surpluses. It turns out that when
a > 0 revenue-maximizing mechanisms may violate weak efficiency in several ways. In
some cases the synergic surplus is not generated because the goods are not allocated
to a same buyer (even though « is relatively high). In other cases good m is sold to a
buyer with a low valuation for it even though some other buyer values highly good m.
It is clear that when the buyers’ types are HL and LH there is a tension between selling
both goods to a same buyer in order to extract the synergic surplus and selling object 1
to a type HL and good 2 to a type LH. Not surprisingly, given incomplete information,
this dilemma is not always efficiently solved. On the other hand, no similar tension is
apparent when the buyers’ types are HL and LL (or LH and LL); yet, in some cases
good 1 (good 2) is sold to a type LL.

In short, when o > 0 weak efficiency may fail because synergies are generated too
rarely and also because no buyer with a high value for good m receives it when all
the other buyers’ types are LL. Subsection 2.3.4 provides an explanation of the latter
result, but the following is a possible interpretation. If « is large enough to imply that
the goods are always sold as a single unit, then the seller faces a one-good (the bundle)
selling problem in which each buyer’s valuation for the bundle is equal to « plus the

sum of her valuations for the two single objects. Here the probability distribution for
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each buyer’s valuation is derived from the original (bivariate) probability distribution
and it induces non-monotone virtual valuations (mentioned in footnote 5) if correlation
is strong and positive - which means that a same buyer is unlikely to observe different
signals for the two goods. In such a case the seller should treat in the same way buyers
with different valuations for the bundle, like types HL and LL.

A limitation of the present analysis is that it only allows a binary distribution for
each buyer’s valuation for good m (m = 1,2) and it only allows for two objects. Allowing
for more general (discrete) distributions and/or for more than two objects is conceivable,
although this would significantly increase the number of different cases to consider. It
would be very interesting to solve the problem for continuously distributed valuations;
unfortunately this appears hard even when there are no synergies.” Ar finds the optimal
auction for a specific case with n > 2 buyers in which the valuations are continuously
distributed over two rays in the positive orthant of #? (and o = 0). In that environment
the optimal auction is not weakly efficient and Ar expects that feature to extend to more
general settings, about which he conjectures that "numerical simulations will provide the
most tractable method of generating insights into this problem”.

The plan of this chapter is as follows. Next section formally introduces the model;
section 2.3 solves the revenue maximization problem and provides some comments. Sec-

tion 2.4 concludes and suggests possible extensions; proofs are left to the appendix.

2.2 The model

2.2.1 Preferences and information

An agent (the seller) owns two indivisible objects which are worthless to him and faces

n > 2 agents (the buyers) who are interested in these objects; the seller wishes to

"Rochet and Choné (1998) characterize the optimal mechanism when the seller faces an only buyer
with continuously distributed multi-dimensional private information (but no synergies). They employ
control techniques which appear hard to generalize to the case of several buyers. Their results, moreover,
are not constructive.
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maximize his expected revenue from the sale of the two goods. Letting v* and w* denote
buyer i’s valuation (: = 1,...,n) for good 1 and good 2 respectively, we assume there
exists a positive number « such that buyer i’s expected payoff from participating in any

selling mechanism is equal to
v* {prob to win good 1} 4w’ {prob to win good 2} 4 a {prob to win both goods} — ¢

where t is her expected payment to the seller. In words, buyer i’s gross surplus from
consuming both goods is not simply v + w® but rather v* + w® + a with a > 0 due to a
synergic effect; o is common knowledge, it is the same for each buyer and is independent
of a buyer’s valuations for the objects.

The valuations v* and w® are privately observed by buyer i = 1,...,n and can take
on values in {vr,vy} and {wp, wg} respectively, with vy > vy, > 0 and wy > wy > 0;
moreover, ex ante (v, w’) and (v*,w") are i.i.d. bivariate random variables for any two
different buyers ¢ and ¢’. Maskin and Riley (1984) show that when the buyers are ex ante
symmetric the seller does not lose revenue in letting a buyer’s probability to win good
m (m = 1,2) and her payment be a function of her type only and not of her identity.
Thus, henceforth we drop the reference to a buyer’s identity and refer to a generic buyer
with valuations (v, w) € {vr,vg} x {wr, wg}. A buyer’s type is jk if her valuation for
good 1 is v; and her value for object 2 is wy, j,k = L, H. Let n,; denote the number of
buyers with type jk participating in the auction; clearly ngy + nyrp +nrg +nrp = n.

In order to reduce the number of different cases which can arise, we assume that
the goods are symmetric in the sense that vy, = wy = s > 0, vy = wyg = s + A > 52
and Pr{(v,w) = (s+ A, s)} = Pr{(v,w) = (s,s+ A)}; in such a case there is no loss
of generality in letting A = 1, thus vy = wyg = s + 1. The following is the probability
distribution for (v,w) (h>0,¢>0,l>0and h+2g+1=1):

8These assumptions simplify exposition. Actually, only vy — vy, = wy — wy, is really needed for our
results to hold.
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We also let s > @ and we will prove that under this assumption both goods
are sold for any realized profile of buyers’ valuations. In other words, the well known
possibility of ex post inefficiency due to the seller withholding a good (or both) when
all the buyers have low valuation(s) is ruled out if s > % and we can focus on other
kinds of inefficiencies.” The environment analyzed in Ar differs from the present one
because he does not restrict to symmetric goods and because he assumes a = 0. While
allowing for a positive a makes the model more cumbersome, restricting to symmetric
goods is helpful to narrow down the class of mechanisms which can be optimal; among

other things, it implies that the subconstrained problem (as defined in subsection 2.3.2

below) always provides the solution to the complete problem.

2.2.2 Mechanisms

By the virtue of the Revelation Principle we maximize the seller’s expected revenue
within the class of direct mechanisms. Therefore the seller commits to a rule which,
for any possible n—tuple of buyers’ reports of types, specifies which good(s) he sells,
to whom, and the payment he requires from each type of buyer. Such a rule needs to
satisfy the appropriate incentive compatibility and participation constraints.

Let x;, denote the probability that a buyer reporting type jk obtains only good
1, j,k = L, H, under truthtelling of the other buyers. The quantity x;; is a "reduced
form” probability in the sense that it depends on the buyer’s report jk but not on her

9Solving the model without assuming s > @ would increase the number of cases which may

arise and there would also exist optimal mechanisms which are not efficient because of the reason just
described.
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opponents’ reports; it is obtained from ”non-reduced form” probabilities by averaging
out the (sincere) reports of the other buyers.! Similarly, we use y;, (zjx) to denote
the probability that a buyer announcing jk receives only good 2 (both goods) when the
others report truthfully; ¢;; is the expected payment the seller requires from such buyer,

j, k= L,H. Type jk’s expected payoff under truthful reporting is therefore

VjTjk + WrYjk + (Uj + wg + Oé)ij — ik

The incentive compatibility constraints are summarized by (2.1) below; for the sake
of clarity we also write down both the incentive constraints which will be relevant in the

following and the participation constraint for type LL:

Vi (T — Tjnr) + we(Yje — Yiw) + (05 +wi + @) (zjk — 2zjw) > tip — b (2.1)

jk,§'% = HH,HL,LH,LL

vpTr +WaYaa + (Vn Wy +a)2zyg —tar > vaTaL +weyYar + (Vg +wh +o)zpL —tar
(2.2)
vpTpg +wWaYas + (Vg +wy+o)zgg —tpn > varig +weyrn + (g +wp +a)zpg —ton
(2.3)
vaTgg +wrYpg + (Ve +we +o)zpg —tgg > vpror +wpyrr + (v +wh o)z —ton
(2.4)

vprprtwrypr+ptwr+a)zpr—tpn > vprpptwryrn+(vptwp+a)zpL—trn (2.5)
vrxrgtwpyra+(rtwg+a)zrg—toy > vprpptwpyr+(vptwg+o)zpL—trn (2.6)
vaLL+wLyLL+(UL+wL+oz)zLL —tr, >0 (27)

The seller’s revenue is given by the sum of the transfers he obtains from the buyers.

As the buyers are ex ante symmetric, the expected revenue R is equal to n times the

0For example, if n = 2 then we could let Zjkjk denote the probability for a buyer reporting jk to
receive only good 1 when the other buyer announces j'k’; then xj, = hajrpr+92 kL +9% kL EHTjkLL-
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expected revenue from any given buyer:
R
o= htgg + qtar + qtog +ltor

When maximizing £ with respect to {jk, Yjks 2k} j pp gy under the incentive and
participation constraints it should be taken into account that the above variables need
to satisfy some feasibility conditions arising from the fact that there is just one unit
of each good to sell; such conditions are analogous to the resource constraints which
appear in subsection 3.1 in Ar. In our setting the fact that good 1 (2) is sold to a
type jk is represented through the variable z;;, (y;x) or zj;, depending on whether it
is sold alone or together with good 2 (1). This makes harder to write the resource
constraints with respect to the constraints which are imposed in Ar. Nevertheless,
we can avoid considering them explicitly by proceeding as follows. First, we describe
any mechanism by specifying how it allocates the goods for any possible n—tuple of

reports, other than computing the implied values of {zk, yjk, Zjk } Moreover,

jk=L,H"
when proving the optimality of a mechanism with respect to a possible variation of the
sale policy we specify the profiles of buyers’ reports for which the mechanism is modified
in order to produce such a variation. This cannot undermine feasibility and allows to
avoid considering resource constraints written in terms of {z i, yjx, ij}j,k: r.g- In other
words, we describe each auction ”explicitly” in terms of non-reduced form probabilities
and then examine how varying the latter probabilities affects reduced form probabilities
and in turn the seller’s revenue.

To see an example of how this method works, suppose that for a given profile of
reports with ngg > 1 and npg > 1 good 1 is randomly and fairly allocated among types

HH (each of them receives it with probability ﬁ) and that each type LH wins good
2 with probability -2~ (0 < 8 < 1); this gives a contribution to y5 equal to

nNLH

(n _ 1)!hnHanHanLH*1lnLL ﬁ

nHH!nHL!(nLH — 1)'7’LLL' nre
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This is the probability for a buyer of type LH that the given profile of reports occurs
under truthtelling (by using the multinomial distribution) times the probability to win
object 2 in such a case. For the given profile we are examining, consider reducing 3
by AB > 0 while increasing by AS the probability that the same buyer of type HH
winning good 1 obtains also good 2. Then y;y decreases; more precisely, Ayry =

(n—1)!A""HHq"HLq"LH ™1 "LL AR

ngp'ngrL!(npg—1)np!  npg”

Likewise, xgy (the probability that a type HH gets only
good 1) decreases and the probability zy g that a type HH wins both goods increases:

— DIprEE—LgnHL gRLE[PLL A\
Azgyg = (n ) i b = —Azpgy

(TLHH — 1)!nHL!nLH!nLL! Ngg

The middle term is the probability for a buyer of type HH that the given profile of
reports occurs (under truthtelling) times the increase in the probability to win both
goods under such profile. Thus, Azyy = —Aryy = —$Ayry > 0. This makes easy
to evaluate the profitability of reducing ( since the seller’s revenue function and the
constraints he faces are linear in {z;x, yjk, Zj}, —p 5 (after substituting for tyr, try
and tr; by using some binding incentive and participation constraints).

In the proofs (which are found in the appendix) a similar argument is - not explicitly
- used several times, although we report only the ratios among the variations in the

reduced form probabilities which are considered.

2.3 Solving the revenue maximization problem

2.3.1 Results for the model with no synergies

In this subsection we briefly review the known results when there are no synergies in
order to evaluate, later, the effects of @ > 0. Ar proves that, under the assumptions
we made on the parameters, depending on the correlation degree between v and w the
seller should use one of the two following mechanisms. In the first one the goods are sold

separately as it occurs in two independent one-good auctions. For good m (m = 1,2)
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this implies that (i) if n,, > 1 buyers have (report) a high valuation for good m then
each of them obtains it with probability ﬁ; (ii) if all the buyers value poorly object m
then each buyer receives it with probability % This is called mechanism I to recall it
sells the goods through independent auctions.

The second mechanism displays some bundling. For any given good m, nothing
changes with respect to separate auctions when at least one buyer has a high value for
object m. If instead any buyer values poorly good m then two cases may occur: when
all the buyers have type LL then each of them wins object m with probability %; when
n3_m > 1 buyers value highly good 3—m then object m is allocated among those buyers:
each of them receives it with probability n3+m Therefore the probability to win good m
for a buyer with a low valuation for that good is increasing in her value of good 3 — m.
This is called mechanism B to recall it entails a degree of bundling. Corollary 1 in Ar
shows that the choice between I and B is only determined by the correlation between v

and w and does not depend on s:

Proposition 2.1 (Armstrong (2000)) Let s > 4 and o = 0. Mechanism I is

htq
l+q

h+q
l+q

optimal if % >q (that is, if correlation between each v' and w' is positive and strong);

if instead % <q then mechanism B is optimal.

As we mentioned in the introduction, a mechanism is weakly efficient if whenever
the objects are sold they are allocated in a way that maximizes social surplus. When
a = 0 the efficiency of a mechanism is judged object-by-object, as each buyer’s gross
payoff is the sum (over m) of her valuation for good m times the probability to obtain
it. Hence, by proposition 2.1 the optimal mechanism is weakly efficient when a = 0: in
both mechanism I and B good m is always sold to a buyer with a high valuation for it
if there is at least one such buyer in the auction.

When « > 0, on the other hand, weak efficiency cannot be judged object-by-object
because the synergy is generated if and only if the same buyer obtains both goods. When

all the buyers have a same type, maximizing social surplus is equivalent to selling both
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goods to a same buyer in order to generate the synergy; if instead buyers’ types are
different then weak efficiency requires that:

(i) if ngy > 1 (this means that at least one type HH participates in the auction)
then both objects are sold to a same type HH;

(il) if ngg = 0, ngr > 1 and npg > 1 (there is no type HH and at least one buyer’s
type is jk, jk = HL, LH) then both goods are allocated to a same buyer with type HL
or LH if a > 1;' if instead o < 1 then good 1 is sold to a type HL and good 2 is sold
to a type LH (recall that A = 1);

(iii) if ngy > 1, nyp > 1 and ngy = npg = 0 (there are only buyers with type HL
or LL) then both goods are sold to a same buyer with type HL;

(iv) if npg > 1, nprp > 1 and ngy = ngrp = 0 (there are only buyers with type LH

or LL) then both goods are allocated to a same type LH.

2.3.2 The subconstrained problem

Weierstrass’ theorem can be used to prove that for all parameter values there exists a
global maximum point in the seller’s maximization problem.!? To find it, we start by
observing that the participation constraint of type LL, inequality (2.7), binds in the
optimum (this can be proved as in a scalar model); then the incentive constraint which
prevents type jk from reporting LL guarantees that type jk’s participation constraint
is met, jk=HH,HL, LH.

To deal with the incentive constraints, following Ar we consider a subconstrained
maximization problem in which non-downward truthtelling constraints are absent. More
clearly, we neglect all the incentive constraints but (2.2) to (2.6) - (2.2) to (2.6) prevent

buyers with high valuation(s) from reporting low valuation(s) - and maximize the seller’s

Here weak efficiency does not discriminate between types HL and types LH since vy — vy =
wyg —wy,.

2Indeed, setting tjr < 0 for some jk is suboptimal because then each participation constraint would
be slack and the seller could obtain a higher revenue by slightly (and uniformly) increasing each ¢ .
Hence, we can safely assume that ¢;;, is bounded below (by 0) and above (by v; + wy, + &), as &k, Yjk
and z;, are, j,k =L, H.
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expected revenue under these sole (incentive compatibility) constraints. The resulting
subconstrained problem is called problem HH because it includes three constraints for
type H H and one constraint each for type HL and type LH. It turns out that when the
goods are symmetric, as we are assuming, the neglected constraints are satisfied at the
solution of problem HH (we check this ex post); hence solving problem HH provides
the solution to the original maximization problem as in the one-good two-type model
neglecting the truthtelling constraint of the low type yields the solution to the complete
problem.

Inequalities (2.5) and (2.6) bind in the optimum to problem HH (again, by Weier-
strass’ theorem there exists a solution to problem H H) since otherwise the seller could
profitably increase ty; and/or try. From (2.5)-(2.7) written as equalities we find
tor = svop + sy + (2s + &)zpn, thr = (s + Vawr + syar + (25 + 1 + o)zpr —
xrr, — zp and try = sxpg + (s + Dyrg + (28 + 1 + @)zpg — yrr — 2n, which we
substitute into the (per buyer) expected revenue £ and into (2.2)-(2.4) to get, let-

ting p = (tyw,THH,YaH, ZHH, - -, TLL, YLL, 201) |D is the set of feasible values for

(tHH7 THH,YHH,ZHH;--+>LTLL;YLL, ZLL)]

max htau + ql(s + 1)z + syar + (2s + 1+ &)zgp — oo — zo1) +
P

qlserg + (s+ Vyrg + 2s+ 1+ a)zrm — yor — zor) + sz + yor) + (25 + «) 2z
subject to
(s+Dzxpgg + (s+ Vyug + (2s+ 2+ &)zgg — yur — 2aL — Top — 20 > tun (2.8)

(s+Dzxpgg + (s+ Vyug + 25+ 2+ &)zgy — g — 2ow — Yor — 20 > tun (2.9)
(S + l)ZL‘HH + (S + 1>yHH + (28 -+ 2 + a)zHH — TLL —YLr — QZLL Z tHH (210)

From the expressions of tyy, tyg and tr; follows that the seller always extracts

the synergic surplus from the buyers when it arises for type HL or LH or LL; the
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same moreover is true for type HH, since necessarily at least one among (2.8)-(2.10)
binds in the solution to problem H H. Therefore, no type of buyer can ever appropriate
the synergic surplus; that is not surprising as the value «a of the synergy is common
knowledge and it is common knowledge whether it is generated or not.!® This provides
the seller with some incentive to allocate both goods to a same buyer in order to gain
the synergic surplus and such incentive is stronger the larger is a. This chapter basically
investigates how that incentive modifies the optimal auction with respect to the case of
a=0.

Letting A; (A2 and A3, respectively) denote the multiplier for constraint (2.8) [(2.9)
and (2.10), respectively] and A = (A1, A2, A3), the lagrangian function for problem HH

is

L(p,A) = htgu+ M+ X+ X3)[(s + 1)(zun +ymn) + (25 + 2+ &)zun — tuu| +
q(s + 1)xHL + (qs — Al)yHL + [q(2s + 1 + Ck) — )\1]ZHL + (qs — )\Q)QJLH +
q(S + 1)yLH + [q(2s + 1 + Oé) — )\Q]ZLH + (lS —q — )\1 — )\S)xLL

+(ls—q—Xa—A3)yrr + [1(2s + @) — 29 — A1 — A2 — 2)s3)21L

Since this maximization problem is a linear programming problem, the well known
saddle-point theorem [see theorem 1.D.5 in Takayama (1985)] applies to establish the

following lemma, upon which we rely to find the solution to problem HH.

Lemma 2.1 (the saddle-point theorem) For any o € R, p € D solves problem HH
if and only if there exists X\ = (A, A2, A\3) > 0 such that (p, \) is a saddle point for L,

that is L(p, \) < L(p,\) < L(p, A) for any p € D and any A € R?.

13The same would occur if the synergic surplus depended on the buyer’s type (that is, if aj; were
the surplus for type jk) as long as (agm,apr,apm,arr) were common knowledge. Assuming this,
however, would make the analysis which follows more involved.
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2.3.3 Solution of the model with positive synergies

In this section we exploit lemma 2.1 to find the solution to problem HH and then we

prove it also solves the complete maximization problem.

oL
otgy

Lemma 2.1 implies = 0 since tyg lives in R; thus A\ + Ay + A3 = h. Using this
result we prove that when at least one buyer has type HH then no other type should
obtain any good. Specifically, both goods are randomly and fairly allocated to a same

type HH if ngyg > 1.

Lemma 2.2 For any parameter values with o > 0, when at least a type HH participates

in the auction (ngy > 1) then each type HH receives both goods with probability ﬁ

Lemma 2.2 implies that, when a > 0, nor mechanism I or mechanism B ever solves
problem HH. The reason is that both of them display ”independence at the top”, in
the sense that if n; > 2 buyers value highly good 1 then each of them receives it with
probability nil, neglecting their valuations for good 2. However, since a > 0, if these
buyers’ values for object 2 differ then it is better to sell both goods to a same buyer
with type H H; in this way no binding constraint is tightened and the synergic surplus is
extracted with probability 1. On the contrary, in mechanisms I and B good 1 is allocated
among types HH and HL. Ar proves that when o = 0 the seller never gains - in the
subconstrained problem - from letting the probability to win good 1 (2) for type HH
differ with respect to type HL (LH); when o > 0, instead, lemma 2.2 says that there is
a strict incentive to distort these probabilities in favor of type HH.*

Before completely describing a mechanism it is useful to observe that, as the goods are

@), if all the buyers report a same type jk then both objects

always sold (because s >
are allocated to a same buyer since the coefficient of zj; in the lagrangian function is
larger than the sum between the coefficients of x, and y;, j& = HL, LH, LL. Moreover,

lemma 2.2 describes the optimal sale policy when at least one buyer’s type is H H; hence

14 Actually, when o = 0 non-distorted probabilities help in making the solution to problem HH
a solution to the complete problem for the largest range of parameter values; when the goods are
symmetric there is no such an effect.
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the remaining degrees of freedom in defining a mechanism concern the profiles of reports
of types such that ngy = 0 and at least two buyers have different types. Thus, we
describe a mechanism only by specifying how the goods are allocated when the different
types showing up in the auction are HL and LH; HL and LL; LH and LL; HL, LH
and LL. In doing that, we keep in mind that for any mechanism introduced below it
is understood that (i) when nyy > 1 a randomly selected buyer of type HH obtains
both goods and (ii) if n;;, = n for some jk then a randomly selected buyer receives both
goods.

The following two mechanisms are in a sense linked to I and B (introduced in sub-

section 2.3.1), respectively; because of this fact we denote them I1 and BI.

Mechanism 11 If ng;, > 1, npg > 1 and ngy = 0 (both types HL and LH show
up in the auction, possibly together with type LL), then good 1 is (randomly) allocated
among types HL and item 2 is allocated among types LH: each type H L obtains good
1 with probability ﬁ and any type LH wins object 2 with probability ﬁ

Ifngr >1,nyp > 1 and npyg = nyyg = 0 (only types HL and LL are present) then
good 2 is (randomly) allocated among all the buyers; if it is received by a type H L then
the same buyer also wins good 1; if instead a type LL obtains good 2 then good 1 is
randomly allocated among types H L. Thus each type LL wins good 2 with probability

%; each type HL wins both objects with probability % and she wins only good 1 with

probability "k .
Similarly, if npgy > 1, nyp > 1 and ngr, = ngy = 0 then good 1 is allocated among
all the buyers; if it is obtained by a type LH then the same buyer also wins object 2,

otherwise good 2 is allocated among types LH.

Mechanism B1 If ngy, > 1, npg > 1 and ngg = 0 then good 1 is allocated among
types HL and good 2 is allocated among types LH, exactly as in I1.

If ngr, > 1, ny, > 1 and npg = nygy = 0 then both goods are sold to a same type
HL. Similarly, when nyg > 1, n;,;, > 1 and ngr, = ngg = 0 both objects are allocated

to a same type LH.
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Notice that I1 is not weakly efficient if « > 0: when only types HL and LL (LH and
LL) are in the auction, with positive probability the goods are not sold to a same type
HL (LH). Mechanism B1, on the other hand, is weakly efficient if and only if o < 1.

Lemma 1 in Ar helps in computing the values of {z;i, y;k, ij}jk: a1 for 11 and

1—(1—h)"

B1. The same lemma and our lemma 2.2 imply zgg =0, ygg = 0 and 2pg = —

in I1, B1 and in any other mechanism which is described below.

Mechanism 11

Ty = (1—h)"—(1;qh)(l+Q)"7l YL =0 Znr = (l+q73"*1
e =0 AR (S ECEL) 20 L G2
mLL:M yLL:M 2rp = l";
Mechanism B1
e (1—h)"—ig+q)"+l" Yar = 0 HL = (l+q7)lz—l"
— R 0 0
2L =0 yrr =0 2 =00

n

Mechanisms I1 and B1 are somewhat linked to I and B, respectively, because - when
ngg = 0 - for any given type jk = HL, LH, LL of buyer participating in the auction the
probability to win good m (either alone or with object 3—m) given her opponents’ types
is the same in I as in I1 and in B as in B1. The difference is that given these probabilities,
in I1 and B1 it is maximized the probability that a same buyer wins both goods; clearly,
the synergic effect is the root of this result as it delivers lemma 2.2. The same principle
applies to the mechanisms which are introduced below: given the probability that type
jk (j,k = L, H) has to obtain object m (m = 1,2), it is maximized the probability that
both goods are allocated to a same buyer.

It is worthwhile to observe, however, that if & = 0 then I1 (B1) is optimal when I (B)
is optimal. To prove this claim it is sufficient to verify that (i) in I1 and B1 (as in I and

B) good m is allocated to a buyer with a high value for it if such a buyer participates
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in the auction; (ii) the probability to win good 1 for a buyer with type LH or LL is
the same in I1 (B1) as in I (B); (iii) a similar result holds for good 2 and types H L and
LL.Y

As lemma 2.3 below establishes, for large values of « it is quite often convenient to
sell both goods to a same buyer; hence nor I1 or Bl ever solves problem HH when « is

large and the three following mechanisms are needed.

Mechanism WI1 If ng;, > 1, npy > 1 and ngy = 0 then the goods are allocated
exactly as in I1.

If ngr, > 1, nyp, > 1 and npy = nygyg = 0 then both goods are sold to a same
buyer. With probability # € (0,1) the group of buyers with type HL is selected and
with probability 1 — 6 the group of types LL is selected;'¢ within the selected group the
buyer winning both goods is randomly chosen. Thus each type H L obtains both goods
with probability %; for each type LL such probability is }LT_‘LQ.

When nry > 1, nrp, > 1 and ng;p, = ngy = 0 a similar allocation rule is adopted:

each type LH (LL) wins both goods with probability % (%ﬁ)
In the next two mechanisms the goods are always sold as a single unit.

Mechanism B2 If ny;, > 1, nyg > 1 and nygy = 0, then any buyer with type
HL or LH wins both goods with probability m If instead only types HL and
LL (LH and LL) are in the auction, then any type HL (LH) receives both items with

probability ﬁ (=L).

NLH
Mechanism WI2 If ngg = 0 then the goods are allocated to a same buyer who
is randomly selected among all the buyers. In other words, when nyy = 0 each buyer

obtains both objects with probability % independently of her own type.

15More briefly, by using the notation in Ar it is sufficient to verify that the following inequalities are
satisfied both for I, I1 and B, B1: h(l‘HH + ZHH) + q(mHL + ZHL) = h(yHH + ZHH) + q(’yLH + ZLH) =
# [condition (i)]; xry + 2y = p’éH, rrL + 2L = Pé}; [condition (ii)]; yur + 2L = PgLv
yrL + 2zrL = p¥; [condition (iii)].

6The value of @ is such that each of the three constraints (2.8)-(2.10) binds. Details are provided in
the proof to lemma 2.3(iii) in the appendix.
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In B2 the objects are always allocated to a same buyer with the highest realized
sum of valuations (hence no type LL ever wins any good unless ny;, = n). Because of

"17 and proves that it is

this reason, Ar calls this mechanism ”the pure bundling auction
never optimal in his setting. The reason is that the optimal auction is weakly efficient
if & = 0, while B2 is not so if & = 0: when ngy, > 1, npg > 1 and ngg = 0 it generates
a surplus equal to max {vy, + wg, vy + wr} which is smaller than vy + wy, the surplus
generated if good 1 is sold to a type HL and good 2 is sold to a type LH. Clearly, when
a > 0 is large B2 has chances to be optimal because it always generates and extracts
the synergic surplus.

Mechanism B2 is weakly efficient when o > 1, while that is true for Bl if o < 1.
Mechanisms WI1 and WI2, on the other hand, are never weakly efficient as they allocate
with positive probability both goods to a type LL even though her opponents’ types are

HL or LH. The reduced form probabilities for B2, WI1 and WI2 are as follows

Mechanism B2

xpr =0 yar =0 ZHL:(l_}zL#
xrg =0 yrag =0 ZLH:%,
xr, =0 yrr =0 ALL = nﬁl
Mechanism WI1
rpp = SR yur =0 e = 2o
xry =0 YrLH = uih)nii(qlﬂ)uln #LH = %
xrL =0 yrL =0 ZLL:%

17Palfrey (1983) assumes continuously distributed valuations for G > 2 goods and no synergies. He
compares the English auction for the bundle of G goods (the pure bundling auction) to G separate
English auctions. It turns out that for small values of n the seller prefers to bundle the goods rather
than selling them separately. Chakraborty (1999) obtains further results for the case of G = 2.
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Mechanism WI2

_p\yn—1
rur =0 yar =0 2 =4 };)

_pyn—1
vy =0 yrm =0 2 =1 Z)

_p\n—1
rr, =0 yrr, =0 apy = &)

We can now state lemma 2.3 which describes the solution to problem HH.

Lemma 2.3 Let s > @ and a > 0. (i) Mechanism I1 solves problem HH if o <
min {%, ﬁ} [notice that % < = if and only if hl < 2q].

(11) Assume hl < 2q; then mechanism B1 is optimal in problem HH if% <a<
1+ 2—}; and B2 solves problem HH if « > 1+ 2—hq.

(11i) Let hl > 2q; then mechanism WII1 solves problem HH if Tlh <a< IT2h and
WI2 is optimal in problem HH if o > TQh

Given the solution to problem H H, to prove that it also solves the complete (not sub-
constrained) maximization problem we need to check that all of mechanisms mentioned
in lemma 2.3 satisfy the incentive constraints which have been neglected in problem H H.
Actually, this is always the case: in each of the above mechanisms those constraints hold

even though they have not been imposed when solving problem HH.'8 As a consequence

we have the following

Proposition 2.2 For any parameter values such that s > # and o > 0 the solution
to problem HH also solves the complete revenue maximization problem. Hence, lemma

2.8 describes the optimal auction as a function of the parameter values.

2.3.4 Comments

A first remark about the above results is that B1 or B2 is optimal if (h + ¢)l < ¢ as

that implies hl < 2¢ and min { (hg‘gllfq, ﬁ} < 0. Since hl > (1 — ) requires that the

18 As we anticipated above, this result is delivered by the assumption of symmetric goods and would
hold even if s were not larger than #.
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correlation between each v and w® is positive and sufficiently strong, we conclude that
the pure bundling auction B2 or a weaker form of it (B1) is optimal when correlation is
weak or negative; hence, also under independently distributed valuations.

As we remarked in subsection 2.3.1, when a = 0 the choice between mechanism I and
mechanism B only depends on the correlation in the probability distribution and not on
5.1 On the other hand, under positive synergies the buyers’ preferences, as represented
by the parameter «, affect the format of the optimal auction. It is also worthwhile to
notice that the number of buyers does not matter in determining the optimal auction.
Yet, it seems reasonable to conjecture that - as in Ar - n would matter if the goods were
very asymmetric.

Lemma 2.3(ii)-(iii) establishes that when « is sufficiently large and the buyers’ types
are LH and HL then selling good 1 to a type HL and good 2 to a type LH is not
a good idea as the synergic surplus is not generated and the seller cannot extract it;
allocating the two objects to a same buyer is more profitable. Since increasing zz and
zry tightens constraints (2.8) and (2.9), when ny;, > 1, npy > 1 and nyg = 0 the
seller does not bundle the goods if just & > 1 as weak efficiency requires, but only if
a > min{l%h,l + 2%}

The results in lemma 2.3(iii) are maybe more surprising: If o > ﬁ and correlation
is sufficiently strong and positive (hl > 2¢q) then a type LL receives both goods with
positive probability when the other buyers’ types are HL or LH (mechanisms WI1 and
W1I2). This may look strange, since the surplus produced from selling the objects to a
type LL is ”obviously” smaller with respect to selling them to a type HL or LH. Ar
considers an example in which the buyers’ valuations are continuously distributed over
two rays in the positive orthant of #? and there are no synergies; in that case good m is
inefficiently allocated if the buyers’ valuations for good 3 —m are sufficiently different. In

mechanisms WI1 and WI2, instead, good 1 (2) is inefficiently allocated when ngy > 1,

19 Armstrong and Rochet (1999) obtain a similar result in a bi-dimensional screening model in which
the planner faces a unique agent.
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npp > 1and ngg = npg =0 (npyg > 1, npp > 1 and ngg = ngrp = 0), which means
that all the buyers’ valuations for good 2 (1) are low (recall that here each valuation has
a binary support).

To get a simple intuition of why this selling policy may maximize revenue assume
hl > 2q and o > 1+ 2% (hence o > t2;). Lemma 2.3(ii) states that B2 is suboptimal as
hl > 2q; we now show why WI2 is superior to B2 without using saddle-point arguments.
In B2, constraints (2.8) and (2.9) bind while (2.10) is slack: type H H strictly prefers to
reveal her own type rather than reporting LL but she is indifferent between a truthful
report and announcing HL or LH. When ng;, > 1, nyr, > 1 and ngg = nrg = 0
(npg > 1, npr, > 1 and ngy = nyr = 0) B2 allocates both goods to a same type HL
(LH). Now consider moving away from B2 by selling the objects with positive probability
to a same type LL rather than to a type HL (LH). This entails a reduction in zyy, (21.m)
and an increase in zyr; more precisely, Azy;, = Azpy = —¢ and Azyp = %5 for some
e > 0 (we are exploiting the argument introduced at the end of subsection 2.2.2). As
a consequence, the left hand side of both (2.8) and (2.9) is increased and ¢y increases
as (2.10) was initially slack: Atgy = (1 —2%)e > 0 (as hl > 2q). Moreover, from (2.5)-
(2.7) written as equalities we see that both ty; and t;y decrease while ¢y, increases:
since types HL and LH receive less goods in expected value, the payment which can
be extracted from them is smaller; the opposite argument applies to type LL. Indeed,
Aty = Atrg = —(28—1—044—1)5—%5 < 0and Aty = (25—1—04)%5 > 0. The change in the
expected revenue per buyer is A(%) = hAtgy +q(Atgr + Atpg) + 1At L = $(hl — 2q);
thus % increases if we move away from B2 toward WI2 by slightly increasing € above 0
as we assumed hl > 2q (similar arguments can be put forward when comparing WI1 to
B1). Clearly, hl > 2q if and only if ¢ is small enough with respect to h and [, which says
that in expected value the reductions in ¢y, and ¢,y are more than counterbalanced by
the increases in tyg and trr.

Basically, therefore, the problem of minimizing the cost of the incentive constraints

(2.8)-(2.10) induces an inefficient allocation of the goods when hl > 2q. Notice that
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hl > 2q does not imply that it is optimal to sell both goods with probability 1 to a type
LL when ngyp, > 1, nyr, > 1 and ngg = npg = 0 and when npy > 1, ny, > 1 and
ngg = ngr = 0. The reason is that in such a case zy; would be larger than zy; and
zru, hence (2.10) would bind while (2.8) and (2.9) would not. Then it would be possible
to increase tgyy, tyr and tpg by slightly reducing z;; and increasing zgy; and zppy; %
would be higher because the associated decrease in t1; would not counterbalance these
increases.

Since hl > 2q is a condition which does not depend on «, it should be explained
why the weakly inefficient mechanisms WI1 and WI2 are never optimal when a =
0. The reason is that the seller has no incentive to allocate both goods with positive
probability to a type LL when a = 0: no synergic surplus is lost by reducing zy; and
zrg and simultaneously increasing g, yrr, yrg and xr; when hl > 2q the seller would
better follow this strategy, converging to mechanism I (hl > 2¢ implies % > q};TJ“Z, see
proposition 2.1).

An alternative way of explaining the optimality (for some parameter values) of the
weakly inefficient mechanism WI2 exploits a simple remark: When the goods are always
sold as a single item (because « is large), an only object - the bundle - is on sale and each
buyer’s private information is summarized by a one-dimensional variable: her valuation
for the bundle. If b is buyer i’s valuation (i = 1,...,n) for the bundle then ' €
{br, by, b} ={2s + a,2s + 1 + a,2s + 2+ a} with p(br) =1, p(by) = 2q and p(by) =
h.2" Let z, denote the (reduced form) probability for a buyer reporting b, to win the
bundle, u = L, M, H. As it is well known, any incentive compatible mechanism satisfies

the monotonicity constraints zg > zj); > z7. The techniques developed in Myerson

(1981) can be adapted to this setting to prove that if the virtual valuation function

J(b) =b— 1;g)§b) is increasing in b, then the buyer with the highest realized valuation

should obtain the bundle whenever it is sold and this implies that the monotonicity

20We use p to denote the probability mass function for each b%; P is the cumulative distribution
function: P(by) =1, P(by) =1+ 2q and P(by) = 1.
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constraints (zy > zy > zp) are met. If instead J is not monotone increasing then
the seller should bunch different types (each type in the bunching region has the same
probability to receive the bundle); therefore with positive probability the bundle is
inefficiently allocated.

It turns out that J(by) = 2s+2+a, J(by) = 23—1—1+a—2—}; and J(b) = 2s+a— 12,
thus the virtual valuation function is monotone if and only if J(by,) > J(br) which is
equivalent to 2¢ > hl. Indeed, lemma 2.3(ii) establishes that when 2¢g > hl (and « is
large) the pure bundling auction B2 is used; hence the bundle is obtained by a buyer
with the highest realized valuation for it, which means that it is efficiently allocated. If
instead hl > 2q then J(by) < J(br); indeed, by lemma 2.3(iii) (when « is large) WI2
is optimal, in which types by, (types HL and LH in the two-good model) are bunched
with types by (types LL in the two-good model): here the objects are not efficiently
allocated. Observe, however, that the goods are inefficiency allocated when ngp > 1,
nrpr, > 1 and ngyg = npg = 0ornpg > 1, npp, > 1 and ngyg = nyr, = 0 also if « is
not so large that they are always sold as a single object (provided hl > 2q), as it occurs
when mechanism WI1 is optimal.

Up to now we assumed that objects are symmetric. It turns out that relaxing this

"more likely” that the optimal mechanism is weakly inefficient if

assumption makes
the goods are always sold as a single item. To fix the ideas, let Av > Aw, ¢ =
Pr{(v,w) = (vg,wr)} and g = Pr{(v,w) = (vg,wy)}. In a scalar model, if valuations

are discretely distributed with support {b1,...,by} (b, < by41) then the virtual valuation

J(by) is equal to by, — (b1 — by) l;gib)“). Since b1 — b, may vary with u, a monotone
hazard rate does not always imply that .J is monotone increasing. Given that Av > Aw,
the valuations for the bundle are by = vy, +wr + «, by = v +wy + a, b3 = vy +wp + «
and by = vy +wg + . The virtual valuation function is monotone increasing if and only
if J(bg) > J(be) > J(b1), which occurs if and only if goAw > I(h + ¢1)(Av — Aw) and
@1 (1 —1)(Av— Aw) > hgaAw. It is easy to see that here strong and positive correlation

in the distribution of (v,w) is not required in order for the optimal mechanism to be
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weakly inefficient. For instance, let h = ¢ = ¢ = | = Under this distribution v

1
Z.
is independent of w and it is optimal to allocate the bundle efficiently if and only if

1-P(b)
p(b)
Aw

virtual valuation function is not monotone increasing if the ratio X2 is smaller than %

% < Aw < %”. In this example the hazard rate

is monotone decreasing, yet the

or larger than %.

2.4 Conclusions

This chapter analyzed optimal two-object auctions when each buyer’s utility is super-
additive. A first result is that many degrees of freedom existing in the model with no
synergies disappear as positive synergies provide an incentive for the seller to allocate
both objects to a same buyer. Formally, in any optimal mechanism, if good 1 (2) is allo-
cated within a given set S; (S2) of buyers according to a given probability distribution
p1 (p2), then it is maximized the probability that both goods are sold to a same buyer
gwen Sy, Sz, p1 and ps. Furthermore, for any a > 0 the goods are always sold as a
single item to a type H H when such a type of buyer is in the auction. For these reasons
no mechanism put forward in Ar when a = 0 is optimal if @ > 0: in those mechanisms
the probability of generating and extracting the synergic surplus is suboptimally low.
However, the optimal mechanisms when « is positive but close to 0 are optimal also if
a = 0: by the maximum theorem, the solution to the revenue maximization problem is
upper-hemi-continuous with respect to a.

The optimal mechanism is often not weakly efficient. Specifically, I1 is optimal when
a > 0 is small (under strong and positive correlation) even though it generates too rarely
the synergic surplus. When « is large, WI2 (or WI1) is optimal (still under strong and
positive correlation) even though a type LL may win both goods when facing types H L or
LH. Thus, while Ar shows that weak efficiency is consistent with revenue maximization
in a two-object auction if the valuations have binary supports, we find that such a 