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Abstract

Oscillatory neuronal activity is an omnipresent phenomenon in the cere-
bral cortex. However, the actual function of these oscillations remains
unclear. Are they just an epiphenomenon of elevated firing rates or do
they represent a fundamental process on their own? Based on experimen-
tal work, we apply computational modeling to address this question. We
first study the role of oscillations in attentional processes and then in a
more general, information theoretical context. Our results support the
idea that oscillations represent an independent mechanism. In particular,
we show that attention modulates gamma oscillations independently of
rates and that the flow of information between brain areas depends both
on the phase and on the spectral power of oscillations. Moreover, we show
that the speed of information exchange increases as a function of spectral
power in specific frequency bands. Taken together, these results suggest
that oscillations are a mechanism employed by the brain to control actual
interactions between brain areas and thus likely have a link to behavior.
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Resum

Les oscil-lacions d’activitat neuronal sén un fenomen omnipresent a 1’escor-
¢a cerebral. La funcié d’aquestes oscil-lacions, pero, no esta clara. ;So6n
només un epifenomen de les elevades taxes de descarrega de potencials
d’accié, o representen un procés fonamental? Per tal d’aclarir aquesta
qiiestiod, en aquest treball hem aplicat models computacionals basats en
xarxes neurobiologicament plausibles per tal d’investigar alguns dels re-
sultats experimentals recents més rellevants. Primerament, estudiem la
rellevancia de les oscil-lacions en processos d’atenci6 i després en un con-
text més general de teoria d’informacié. Els resultats donen suport a la
idea que les oscil-lacions representen un mecanisme independent. Demos-
trem que 'atencié modula les oscil-lacions gamma de manera independent
de la taxa de descarrega de potencials d’acci6. També es mostra que la
transmissi6é d’informacié entre arees corticals depén tant de la fase com de
la poténcia espectral de les oscil-lacions. A més, la velocitat amb qué es
produeix aquesta transmissié d’informacié augmenta en funcié de la po-
téncia espectral en bandes de freqiiéncies especifiques. Aquests resultats
suggereixen que les oscil-lacions representen un mecanisme biologicament
plausible per mitjancar les interaccions entre arees cerebrals i, per tant,
per establir un vincle entre activitat neuronal i comportament.
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Introduction

Temporally correlated activity is a phenomenon widely observed in the
brain. Gamma band oscillations were found in anesthetized cats and mon-
keys (Eckhorn et al., 1988; Gray et al., 1989; Gray & Singer, 1989; Engel
et al., 1991a,b,c) using moving gratings or stationary squares as stimuli
(Rols et al., 2001). Gamma band oscillations were also found in awake cats
and monkeys (Frien et al., 1994; Kreiter & Singer, 1996; Gray & Prisco,
1997; Fries et al., 1997; Friedman-Hill et al., 2000; Maldonado et al., 2000;
Fries et al., 2001, 2002, 2008; Bichot et al., 2005; Taylor et al., 2005; Wom-
elsdorf et al., 2006, 2007), and subsequently in other species, such as rats
and mice (Bragin et al., 1995; Buhl et al., 2003; Csicsvari et al., 2003;
Montgomery & Buzsaki, 2007) and invertebrates (Wehr & Laurent, 1996;
Stopfer et al., 1997; Laurent, 2002). Such oscillations were also found in
other neocortical areas, such as the monkey auditory cortex (Brosch et al.,
2002) and the monkey lateral intraparietal area (Pesaran et al., 2002), and
even outside the neocortex, e.g., in the hippocampus of rats (Bragin et al.,
1995; Csicsvari et al., 2003; Montgomery & Buzsaki, 2007; Montgomery
et al., 2008) or the olfactory system of invertebrates (Wehr & Laurent,
1996; Stopfer et al., 1997; Laurent, 2002).

This omnipresence of rhythmic activity raises the question of whether
oscillations are just an epiphenomenon, present whenever neurons are fir-
ing at elevated rates, or whether they have a function of their own. This
will be the underlying question of this thesis. To get to the possible func-
tions of oscillations, we will first have to understand how oscillations are
generated. We will therefore first outline the basic mechanisms involved
in oscillation generation in a network (1.1) and then briefly review exist-
ing literature on the function of oscillations (1.2). Many studies on the
function of oscillations were done in the context of attention. We will thus
review existing literature on attention (1.3) and then summarize our own
work (1.4). In chapters 2 and 3 we will present our results in detail and
finally discuss these results in chapter 4.
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1.1 Mechanisms of oscillation generation in
computational modeling

How are oscillations generated? Different mechanisms can give rise to
oscillatory activity in models of recurrent networks of spiking neurons,
like mutual inhibitory interactions (Wang & Buzsaki, 1996; Bartos et al.,
2007) or feedback loop between excitatory and inhibitory neurons (Jefferys
et al., 1996; Mann et al., 2005).

Wang & Buzsaki (1996) systematically examined the conditions under
which gamma oscillations were generated in interneuron networks. They
parted from the hypothesis that rhythmic activity could emerge in a ran-
dom network of interconnected GAGAergic fast-spiking interneurons and
showed that this was true under specific conditions. First, the amplitude
of the spike afterhyperpolarization had to be above the GABA 5 synaptic
reversal potential, because then the effect of synaptic input was always
hyperpolarizing during the time course of an active potential and its re-
polarization. Second, the ratio between the synaptic decay time constant
(7syn) and the oscillation period had to be sufficiently large, because with
small 74y, the network synchronization decreased due to synaptic effects.
Third, the network had to present few heterogeneities as network coher-
ence deteriorated rapidly if applied currents varied. In their study, Wang
& Buzsaki (1996), made the assumption that inhibition is slow, weak and
hyperpolarizing. Under these circumstances, inhibitory interneuron net-
works can generate coherent oscillation in the gamma frequency range if
neurons are exposed to tonic excitatory drive. This synchronization is
sensitive to changes in kinetics of synaptic conductance, connectivity and
reversal potential. But the requirement for minimal heterogeneity is incon-
sistent with experimental data (van Hooft et al., 2000; Fisahn et al., 2004).
Robustness against heterogeneity can be improved by incorporating fast
and strong rather than slow and weak inhibitory synapses (Neltner et al.,
2000). However, under these conditions, large excitatory drive is needed
to counterbalance increased inhibition. More robustness to oscillation in
inhibitory networks can be achieved by adding delays (Bartos et al., 2001,
2002). In the presence of short delays, fast inhibition consistently sup-
ports synchronization independently of whether delays are assumed to be
constant (Bartos et al., 2001) or distance-dependent (Bartos et al., 2002).
A rapid inhibitory synaptic event generated after a short delay is a maxi-
mally synchronizing signal. It precisely defines an early time interval with
strong inhibition. Accordingly, temporal windows of firing and suppression
follow in an alternating manner.
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Another factor: How does addition of fast glutamatergic synapses af-
fect synchronization in interneuron network models? It certainly implies
several additional parameters. In a simple two-population network, there
are now four types of chemical synapses (I-I, E-I, I-E, E-E, where E stands
for excitatory neurons and I for inhibitory ones). Several different (and
sometimes reduced) cases of this type of network have been studied.

Eeckman & Freeman (1990) developed a model for induced rhythms in
olfactory structures, in which synchronous oscillation was generated by a
feedback loop between excitatory and inhibitory neurons. They proposed
that some mutual connectivity was also required within the pools of both
excitatory and inhibitory neurons to stabilize the oscillations. Similar
models were made for the piriform cortex (Wilson & Bower, 1992) and the
primary visual cortex (Wilson & Bower, 1991). The geometric structure of
these models differed, but the essential idea in both was that the amplitude
and the frequency of coherent 30-60 Hz oscillation were determined by a
fast-feedback inhibitory loop. Essentially, if the stimulus was appropriate
(not too strong), enough activity in the recurrent excitatory connections
between pyramidal cells persisted after each recurrent inhibition wave in
order to re-excite the pyramidal cell population. They showed that the
time constant of inhibition tuned the frequency of the gamma rhythm, so
that longer time spent open for the chloride channels resulted in slower
rhythms. In both the visual cortex and the piriform cortex versions of
the model, gamma rhythms arose from interactions between networks of
excitatory neurons, could depend on the conduction velocities of intrinsic
cortical connections and were tuned by the time constants of excitatory
and inhibitory synapses.

Traub et al. (1997) studied a network of hippocampal pyramidal cells
and interneurons. They showed that pools of synaptically interconnected
inhibitory cells were sufficient to produce gamma frequency rhythms, but
the network behavior could be modified by participation of pyramidal
cells as follows: Tonic excitation of the principal neurons caused them
to fire repetitively. This firing induced both slow and fast excitation of
interneurons. The slow excitation triggered interneuron network gamma
oscillations (Whittington et al., 1995). The synchronized IPSPs interacted
with the repetitive firing of pyramidal cells, and with the intrinsic oscil-
latory properties of pyramidal cells, to shape a coherent pyramidal cell
network oscillation. When this happened, the fast excitation of interneu-
rons appeared as brief, large EPSP following the interneuronal network
spike.

Mann et al. (2005) showed in vitro that an AMPA receptor-specific
antagonist blocked both the field oscillations and rhythmic inhibitory cur-
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rents on pyramidal neurons, suggesting that interneuronal synchroniza-
tion was mediated by fast recurrent excitation. Therefore, cholinergi-
cally induced fast network oscillations in the hippocampus appeared to
be generated by a synaptic feedback circuit between pyramidal cells and
perisomatic-targeting interneurons, consistent with the model originally
suggested for the piriform cortex by Freeman (1968).

Several studies showed that single cell discharge rates are typically
much lower than local field potential (LFP) oscillation frequency (Csicsvari
et al., 1998, 1999; Hajos et al., 2004). This was taken into account in a
modeling study with integrate-and-fire neurons by Brunel & Wang (2003).
These authors studied several different types of networks: (i) networks
consisting exclusively of interneurons (I-I), (ii) networks with pyramidal-
interneuron feedback loop (E-I, I-E) and (iii) networks with both types
of connections. Networks consisting only of inhibitory neurons needed a
strong external input to be activated. Once activated, the neurons exhib-
ited strong inhibitory firing. Consequently, every neuron in the network
got a massive inhibitory input. Due to this inhibitory current, the activity
went down and there was a trough in global activity. Subsequently, the
inhibitory synaptic currents decayed away, after which the total input be-
came high again due to strong external input, which caused another surge
of activity, the cycle thus starting over again. In a network with both exci-
tatory and inhibitory neurons that had a pyramidal-interneuron feedback
loop (i.e., E-I, I-E), pyramidal neurons excited interneurons. Activity in
the interneurons went up and consequently, the interneurons sent inhi-
bition back on pyramidal cells and hence decreased their activity. Once
the excitatory activity was inhibited, the inhibitory activity also decayed.
The population frequency was determined by the sum of excitatory and
inhibitory lags. This frequency was therefore lower than the population
frequency of a purely inhibitory network. Adding recurrent inhibitory
connections (I-I) lead to a mixture of the two types of network and lead
to a frequency that lay in-between the two types of network mentioned
above. Adding pyramidal to pyramidal connections with all other types
of connection tended to decrease the oscillation frequency of the network.
This was because these connections tended to prolong the positive phase
of each cycle. The recurrent excitatory connections helped keeping the
activity of the pyramidal neurons up and, in turn, it took the inhibitory
neurons longer to shut this activity down.

In the model of Brunel & Wang (2003), the population frequency of
a network depended on the interplay between excitatory and inhibitory
neurons. Therefore, the oscillation frequency depended on the balance
between AMPA and GABA currents, as both E-I and E-E connections
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Figure 1.1: Population oscillation frequency decreases with the recurrent
excitation/inhibition balance. The ratio Iyypa/Icasa iS the same for both
pyramidal cells and interneurons and is changed by varying the AMPA
conductance on both pyramidal cells and interneurons. Solid line: an-
alytical prediction. Symbols: network simulation data (circles, 12 kHz
external inputs; squares, 6 kHz external inputs; stars, 4 kHz external in-
puts). Adapted from Brunel & Wang (2003).

decreased the population frequency (Fig. 1.1). Different values of synaptic
temporal parameters could favor one of the two competing oscillation in-
stabilities. If the AMPA decay time (Tayps) was sufficiently shorter than
the GABA decay time (7gapa), the network exhibited oscillations of the
E-I loop type. On the other hand, if 7,5, was sufficiently shorter than
Tampa, & purely inhibitory loop (I-I) established itself. If the two decay con-
stants were too similar, no stable oscillatory activity built up (Fig. 1.2a).
In other words, if Tgapa Was kept fix, a short 7,yups implied a slow E-I
type oscillation frequency, while a long 7,ypa implied a high oscillation
frequency of the I-I type (Fig. 1.2b).

The question of whether oscillations are generated mostly by interneu-
rons or by an inhibitory-excitatory feedback loop has still not been an-
swered conclusively. Tiesinga & Sejnowski (2009), after comparing mod-
eling and experimental studies, concluded that both these sources of ev-
idence were consistent with the pyramidal-interneuron gamma (PING)
mechanism in the cortex but were not strong enough to rule out the in-
terneuron gamma (ING) mechanism.
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Figure 1.2: Dependence of coherent fast oscillations on the relative time
constants and balance of synaptic excitation and inhibition. The balance
between the AMPA and GABA currents (Iayps/lcasa) is 0.2 (solid line)
and 0.8 (dashed line). (a) Network dynamical behavior on the parameter
plane of 7 upa and 7gapa. There are two kinds of coherent oscillations. For
a fixed Tgapa, Oscillations develop through delayed negative feedback when
Tampa 18 much smaller than 7g.p.. On the other hand, when 7,yps is suf-
ficiently large, the interneuronal network by itself generates synchronous
oscillations. (b) Population frequency as a function of the excitatory
synaptic delay time constant 7,up, with a fixed 7gapa of 5 ms. Adapted
from Brunel & Wang (2003).
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1.2 Functional role of oscillations

Correlations in neuronal signals are very abundant. But correlations are
likely not very important per se, as they could be due to common in-
put or receptive field (RF) overlay. However, things look differently when
change in correlation structure reflects changes in functional connectivity.
To measure such change, several things have to be taken into account.
Recordings should be from multiple sites and across multiple conditions,
and neuronal activity, apart from correlations, should change as little as
possible across conditions. In the following, we will look at several particu-
larly interesting experiments. Note that synchronization between neuronal
signals takes place at different levels, it can be very local or across distant
brain areas. The first recordings of neuronal synchrony were thus exam-
ples of local synchrony, where neurons acted mostly as coincidence detec-
tors and the correlations were stimulus-dependent. These experiments led
to the hypothesis of binding-by-synchronization. Later, synchronization
was also detected across different brain areas, where they acted more as
neuronal gain modulator. Synchronization was found to be stimulus inde-
pendent, controlling the flow of information. These experiments have led
to the hypothesis of communication through coherence, as described be-
low. Synchronization as a local phenomenon is treated in section 1.2.1 and
synchronization as a large scale phenomenon is treated in section 1.2.2.

1.2.1 Local synchronization

Several authors have provided evidence supporting synchronization as a
mechanism for the integration of signals in the brain. This mechanism has
been explored most intensively in relation to the so called binding prob-
lem, which reflects the task of binding together representations of different
properties of an object. One proposed solution is that the different fea-
tures of an object are integrated by cell assemblies that fire synchronously
(Gray et al., 1989; for a review see Roskies, 1999). This integration takes
place on a local scale, within neighboring cortical areas, specialized in the
same modality. Here, local integration refers to a network distributed over
an area of maximally 1 cm with conduction delays of about 4-6 ms (Girard
et al., 2001). On a scale of 2 mm and below, clusters of excitatory and
inhibitory neurons tend to synchronize (Gray, 1999). Cortical columns in
the primary visual cortex, slightly further apart (2-7 mm) are prone to
synchronize if their neurons share similar feature properties (Gray, 1999).
Traub et al. (1999) observed similar synchronizations over distances of
several millimeters in hippocampal slices. Destexhe et al. (1999) observed
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oscillatory activity in the cat visual cortex between electrodes separated
by up to 5 mm. The correlations decreased as a function of distance.

An example from the primary auditory cortex showed that, following
a stimulus, neurons responded by changing both their firing rates and
their correlations. In many cases, the changes in correlation were more
persistent than the changes in rates. This implied that the stimulus could
be represented even in the absence of firing rate changes (deCharms &
Merzenich, 1996).

In an example from the visual cortex, the RF of neurons was stimulated
by either one or two objects, in a way that the evoked firing rates were
practically identical for both conditions. However, whether one or two
stimuli were shown was reflected in the synchronization between pairs of
neurons (Kreiter & Singer, 1996).

In sum, as the summation of postsynaptic neurons is only effective
when postsynaptic potentials are within a few milliseconds, local synchro-
nization can act as a feedforward coincidence detector; postsynaptic im-
pact is greater if spikes are focused in time. Neuronal codes are therefore
more efficient if correlations are taken into account (Salinas & Sejnowski,
2000). But all these correlations happen within reciprocal connections be-
tween areas at the same level of the network (Phillips & Singer, 1997).
Also, the correlations are driven by a stimulus: they either represent fea-
tures of the stimulus or group several stimulus features together.

1.2.2 Large scale integration

Correlations can also change as a function of internal events rather than
being driven by a stimulus, and such correlations have been observed over
large distances in the brain, between different areas, linking different levels
of the network. We will refer to this as large scale synchronization. Large
scale means synchronization between neuronal clusters separated by more
than 1 cm, which implies transmission delays greater than 8-10 ms (Girard
et al., 2001). Evidence for large-scale synchronization has been presented
by several authors.

Roelfsema et al. (1997) recorded from several electrodes implanted in
the cortex of cats. Cats had to detect a change in the orientation of a
grating. Electrodes were placed in visual, association, somatosensory and
motor areas. Correlations between area 17 (the primary visual cortex)
and area 7 of the parietal cortex, as well as correlations between area 4
of the motor cortex and the medial subdivision of area 5 of the parietal
cortex increased until the task was completed (see Fig. 1.3). Significant
correlations occurred also between the areas of the parietal cortex (5mc,
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Figure 1.3: Pattern of interactions among areas of the visual (17c),
parietal (5lc, bme, 7c) and motor (4c) cortex. Shown are the correlation
functions of one cat averaged over trials. ¢ indicates that recordings were
made in the hemisphere contralateral to the paw that the animal used for
pressing the lever, [ stands for lateral and m for medial. Adapted from
Roelfsema et al. (1997).

5le, 7c). The correlations disappeared after the task was completed.

Bressler et al. (1993) recorded from the cortex of monkeys during a
preparation and discrimination task. Broadband frequency coherence was
observed between widely spaced cortical areas and changed dynamically
during task performance. Frequency coherence between striate and motor
cortex was elevated at the time of response. Frequency coherence between
striate and parietal cortex was elevated between 100 and 200 ms after
stimulus onset.

Vaadia et al. (1995) showed changes in synchronization independent
of variations in the firing rates. Their recording supports the idea that
neurons might change its coupling to other groups of neurons (both lo-
cally and over larger distances) and can participate in different neuronal
ensembles.

Several studies have shown that correlations can vary independently
of firing rates. Riehle et al. (1997) trained monkeys to perform a delayed-
response task in which two cues were presented. The first cue indicated the
target position, the second cue gave the go signal for the requested hand
movement. The second cue could appear after 600, 900, 1200 or 1500 ms.
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Figure 1.4: Numbers of pairs of neurons with coincident spike constel-
lations that occurred significantly more often than expected by chance
when the stimulus was either expected (left) or when it actually appeared
(right). Increase in synchrony was only accompanied by increase in rate
when the stimulus actually appeared. Adapted from Riehle et al. (1997).

Neurons in primary motor cortex showed increased synchrony both when
the stimulus appeared and when the monkey expected the signal but the
stimulus did not appear. When the stimulus actually appeared, the in-
crease in synchrony was accompanied by an increase in firing rate, but if
the stimulus did not appear, there was no such accompanying rise in firing
rate. In other words, in the first case, which was like a sensory evoked
response, the rates changed, but in the second case, which depended en-
tirely on the internal state of the brain, they did not change (Fig. 1.4).

Steinmetz et al. (2000) trained monkeys to do two tasks, a tactile and
a visual one. In the tactile task, the monkey had to indicate whether
a stimulus presented to the fingertip matched a visual pattern. In the
visual task, the same stimulus was applied to the finger, but the monkey
had to ignore it and instead detect a dimming of the target spot on the
monitor. During both tasks, these authors measured from somatosensory
cortex (S2). That way, they obtained data from the same neurons under
two conditions, once with attention directed to the tactile stimulus, once
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Figure 1.5: Crosscorrelogram for a pair of neurons. Crosscorrelograms
are shown for the tactile (solid line) and the visual (dashed line) task.
Adapted from Steinmetz et al. (2000).

not. These authors observed an increase in synchrony when attention was
directed to the fingertips (Fig. 1.5).

Fries et al. (2001) studied how correlations between neurons in visual
area V4 change with attention. Monkeys had to detect a color change
in one of two stimuli presented at the same time while fixating a central
spot, at the same time ignoring color changes in the other stimulus. One
of the two stimuli was inside the RF of a recorded neuron, while the
other was outside. At the same time, the LFP was recorded. They found
that if attention was directed to the stimulus inside the RF, power in the
gamma band increased while power in the low frequency band decreased,
i.e., neuronal activity was more synchronized in the gamma band under
attention (Fig. 1.6).

Pesaran et al. (2002) trained monkeys to do a memory saccade task.
The monkey had to fixate a central spot and was then cued to one of four
possible locations. He had to keep the location in memory for 1000 ms
and then do the corresponding saccade. These authors found that, during
the delay period, spikes and LFP measured from the lateral intraparietal
area showed increased synchronization in the gamma band. They also
showed that the direction of an upcoming saccade could be decoded from
the LFP spectrum in the range of 30-100 Hz. This is a further example
that gamma band synchronization is not restricted to cortical areas driven
by sensory stimuli.
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Figure 1.6: Power spectra of the STA during the stimulus presentation.
Dashed curve: attention outside the RF'; solid curve: attention inside the
RF. Adapted from Fries et al. (2001).

Bichot et al. (2005) tested for parallel and serial attentional mecha-
nisms in area V4 in monkeys performing a search task with free gaze.
They recorded neuronal responses and LFP, and studied the synchroniza-
tion between the two. Monkeys were cued to either shape or color and had
to find a matching target among several distractors. The neurons showed
feature-selective firing. The recorded data was divided into four sets: (i)
both the stimulus in the RF and the cue had the neuron’s preferred feature;
(ii) the stimulus had the preferred feature but the cue had the neuron’s
non-preferred feature; (iii) the RF stimulus had the non-preferred feature
but the cue had the preferred feature; (iv) both the RF and the cue had
the non-preferred feature. Bichot et al. (2005) found that the coherence
between spikes and LFP (spike-field-coherence, SFC) in the gamma band
was greater when the RF stimulus had the preferred feature compared
to when it had a non-preferred feature (comparison of conditions (i) and
(iii), solid and dash-dotted line in Fig. 1.7). But more importantly, the
coherence for the preferred feature in the RF was enhanced when the RF
contained the target feature that the animal was searching for but had
not yet found (comparison of conditions (i) and (ii), solid and dashed line
in Fig. 1.7). While the former is an example of stimulus-driven rhythmic
activity, the latter is independent of the stimulus in the RF.

Similarly, Taylor et al. (2005) measured from visual area V4 in monkeys
performing a shape-tracking task. They found that attention strongly
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Figure 1.7: SFC for the color task. The SFC is higher for the preferred
stimulus (solid line) than for the non-preferred stimulus (dashed line). The
SFC is also higher in the condition where the stimulus is the preferred
one and the animal has to look for this preferred stimulus (solid line) as
compared to when the stimulus is the preferred one but the animal is cued
to look for the non-preferred stimulus (dash-dotted line). Adapted from
Bichot et al. (2005).

increases oscillatory currents in the local field potential in the gamma
frequency range.

A direct link between neuronal synchrony and behavior was shown in
Womelsdorf et al. (2006). They analyzed the data from Fries et al. (2001),
where the monkey had to detect a change in one stimulus while ignoring
the other. They showed that the behavioral response times to the stimulus
change could be predicted by the degree of gamma band synchronization
among those neurons in monkey visual area V4 that were activated by the
cued stimulus. SFC was calculated separately for the 25% trials with the
slowest behavioral reaction and the 25% trials with the fastest reactions.
Trials leading to fast reactions times contained more gamma band power
and had a higher gamma band SFC before and after the stimulus change
(Fig. 1.8).

All these experiments show evidence of large scale synchronization and
changes of synchronization independent of changes in the firing rate. Many
of these experiments are related to attention and rivalry, which represent
internal states of the brain. They point to a role for synchronization that
is independent of stimulus representation. In particular, synchronization
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Figure 1.8: Neuronal activity parameters in trials with fast (solid line)
and slow (dashed line) change detection. (a) Relative power in the gamma
band. (b) SFC in the gamma band. Both power and SFC are higher in
the trials with fast change detection. Grey shading indicates significance.
Adapted from Womelsdorf et al. (2006).
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adjusts the flow of information by a mechanism of gain modulation, and it
controls the strength of a signal rather than representing the signal itself.
If correlations can control the flow of information, they can also be used
to control which neuronal clusters connect and interact with each other.
Synchronization could generate effective networks on the basis of exist-
ing anatomical networks (Salinas & Sejnowski, 2001; Varela et al., 2001).
This hypothesis has been named communication-through-coherence (Fries,
2005). If rhythmical activity really has an influence on the correlations be-
tween neuronal clusters, the correlations between them have to depend on
the phase relation between the groups of neurons. This idea was explored
in Womelsdorf et al. (2007).

More specifically, Womelsdorf et al. (2007) explored the mutual influ-
ence of two groups of neurons as a function of their phase shift. These
authors quantified the mutual influence of the multi unit activity (MUA)
in the two groups as the Spearman rank correlation coefficient of the two
MUA’s 60 Hz power. They showed evidence that the correlation between
the two groups of neurons varied as a function of the phase shift of the
oscillations at 60 Hz. There was a specific phase shift at which the cor-
relation between the two groups was highest. Womelsdorf et al. (2007)
concluded that the effective connectivity in a network could thus be max-
imized or minimized through synchronization of a specific phase relation,
resulting in an effective interaction pattern.

1.3 Attention

Over 100 years ago William James wrote in his Principles of Psychology:

Millions of items |...]| are present to my senses which never
properly enter my experience. Why? Because they have no
interest for me. My experience is what I agree to attend to.
[...] Everyone knows what attention is. It is the taking pos-
session by the mind, in clear and vivid form, of one out of
what seem several simultaneously possible objects or trains of
thought. Focalization, concentration, of consciousness are of
its essence. It implies withdrawal from some things in order to
deal effectively with others |[...]

Attention should be distinguished from arousal. Arousal can be de-
fined as the state of physiological reactivity (Broadbent, 1971), ranging
from sleep at one end to excitement or panic at the other. Robbins (1984)
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has discussed experimental evidence suggesting that arousal may be mod-
ulated by dopaminergic and noradrenergic mechanisms. So while arousal
describes the general activation of mind, attention would be the focused
activation of mind. Attention can be subdivided into (a) attentional ori-
entation (the direction of attention to a particular stimulus); (b) selective
attention (giving attentional priority to one stimulus in favor of another);
and (c) divided attention (dividing attention between two or more different
stimuli; Coull, 1998).

1.3.1 Biased competition model

Attention has been studied most thoroughly in the visual system. Given
that not all of the many different visual inputs received by the retina
can be fully processed, attention is needed as a mechanism to filter these
inputs and separate relevant from non-relevant stimuli. An early model
of attention was the spotlight of attention, where attention enhances the
responses of neurons representing stimuli at a single behaviorally relevant
location in the visual field. But attention can both increase and decrease
neuronal activity, as was shown, e.g., by Moran & Desimone (1985). This
lead to the biased competition hypothesis (Desimone & Duncan, 1995).
According to Desimone (1998), there are five main principles in the biased
competition model: (i) objects in the visual field compete for the responses
of cells in the visual cortex; (ii) competitive interactions are strongest in a
given cortical area when competing stimuli activate cells in the same local
region of the cortex; (iii) these competitive interactions can be biased in
favor of one stimulus by virtue of different mechanisms which include both
bottom-up (stimulus-driven) and top-down (feedback) mechanisms; (iv)
the bias is not purely spatial: processing can be biased in favor of relevant
features such as color, shape, texture, and so on; (v) a main source of
top-down biasing derives from structures involved in working memory.
Experimental results that demonstrated many of these points were pre-
sented in Reynolds et al. (1999). They started with two basic assumptions:
(a) When multiple stimuli appeared together, they activated populations
of neurons that automatically competed with one another; (b) Attending
to a stimulus biased this competition in favor of neurons that responded
to the attended stimulus. They ran two experiments. First, these authors
measured neuronal responses to the probe (preferred stimulus) and the ref-
erence (non-preferred stimulus) which both fell within the RF, while the
monkey was not required to attend to either of them. The stimuli were
presented one at a time and also together as a pair. Reynolds et al. (1999)
found that the neuronal response to the paired stimuli was in-between the
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Figure 1.9: The response of a single V4 neuron to the reference, a probe
and the corresponding pair. The solid line represents the response to the
probe (a 45° green bar), the dashed line the response to the reference (a
vertical green bar), and the dotted line the pair response. Figure adapted
from Reynolds et al. (1999).

responses to each of the stimuli presented alone (Fig. 1.9). In the second
experiment, they measured the response to the pair of stimuli while the
monkey attended to each individual stimulus. They found that attending
to only one element of the pair drove the neuronal response toward the
response elicited when the attended stimulus appeared alone (Fig. 1.10).

1.3.2 Multiplicative gain modulation

McAdams & Maunsell (1999) studied the effects of attention on orientation
tuning curves. They found that the effects of attention were consistent
with a multiplicative scaling of the driven response.

In a similar study, Treue & Martinez Trujillo (1999) presented data
studying tuning curves of neurons while placing two stimuli side-by-side
inside the RF. In any given trial, either one of the patterns was designated
as the target. They found that attention to one of the two stimuli either
enhanced or decreased the neuronal response, depending on whether the
target was the preferred or the non-preferred stimulus (Fig. 1.11). As the
stimuli in this experiment were moving random dots, the monkey did not
have to shift attention spatially. Therefore, these results indicate non-
spatial, feature-based modulation of sensory responses. The results from



18 CHAPTER 1. INTRODUCTION

Reference (at-

A %00 tention away)
FI\ Pair (attention
Foxe -
e away)
= H PP
g B ‘f \\ R Probe (atten-
S i N tion away)
% H \
- [ A s g \
g 100 S N
- f
3
=
(o
[9p]
0 1 I 1 I 1 I ]
0 100 200 300
ms. after stimulus onset
B Pair (attention
200 — on reference)
”\ Pair (attention
5 -=-
Y away)
o P
g B _;I \\"» ........ e, FREEIEE Probe (atten-
o ; N tion away)
: =
~
D
o
n
<
=
o
n
| L | L | )

0 100 200 300
ms. after stimulus onset

Figure 1.10: Attention filtering out the effects of a suppressive probe
in V2. (a) The dotted line shows the response to the reference stimulus.
The solid line shows the response elicited by the probe. The response to
the pair (dashed line) was suppressed by the addition of the probe. (b)
The upper dotted line shows the pair response when attention was di-
rected to the reference stimulus. The responses to the unattended probe
(solid line) and pair (dashed line), taken from (a), are repeated for com-
parison. Attention to the reference stimulus caused the cell’s response to
move upward, toward the response that was elicited by the unattended
reference stimulus presented alone (dotted line in (a)). Figure adapted
from Reynolds et al. (1999).
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Figure 1.11: Effect of directing attention to one of two stimuli inside the
RFs. Tuning curves when pattern B was the target (upper curve), when
pattern A was the target (lower curve) and when neither pattern was
behaviorally relevant (central curve), because the animal was instructed
to respond to a luminance change at the fixation point. Figure adapted
from Treue & Martinez Trujillo (1999).

both experiments are compatible with the biased competition hypothesis.

1.3.3 Attention and oscillations

The question remains of how the response enhancement caused by atten-
tion (as described in sec. 1.3) is achieved. One possible mechanism is an
increase in response synchronization (Salinas & Sejnowski, 2001). And
starting with Steinmetz et al. (2000) and Fries et al. (2001), many experi-
ments have linked attention and neuronal oscillations, as described in the
previous chapter.

1.4 Short summary of PhD work

Given all this experimental evidence, the main goal of this thesis is to com-
plement these results using computational modeling, and study the role of
oscillations in attentional processes as well as in information transmission.
We start by presenting the network model we used for the simulations and
then summarize the main results.
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1.4.1 Neuronal network

Our neural network simulations are based on the recurrent network model
developed for working memory properties of the prefrontal cortex (Brunel
& Wang, 2001). Each IF unit charges up to its stationary value as long as
its membrane potential stays below a threshold. The membrane potential
V (t) is given by:

aviy) _

Cm
dt

_gm(V(t) - VL) - Isyn(t)' (11)
C), is a membrane capacitance, g,,, a membrane leak conductance, V7, a
resting potential and Igyy,, the total synaptic current flowing into the cell.
When the membrane potential reaches the threshold potential, it sends
out a spike to all connected neurons and resets its membrane potential to
the reset potential. The circuit remains shunted for a refractory period.
Synaptic currents are mediated by excitatory (AMPA and NMDA) and
inhibitory (GABA) receptors. The total synaptic current is given by

Isyn (t) = LawmPa,ext + IAMPA,rec + INMDA + IGABA- (1~2)

Each current is of the form I = gVV. AMPA has a very short decay time
(2 ms) while NMDA has a long one (100 ms) and the GABA decay time
lies in-between (10 ms). The rise times of AMPA and GABA currents are
neglected, as they are typically very short (< 1 ms). The equations are
integrated using a fourth order Runge-Kutta method with a time step of
0.02 ms. The network is organized in pools (Fig. 1.12).

Pools are created because different parts of the network get different
exposure to stimuli. Neurons in one pool are defined by increased mutual
connection strength and by the input they receive. The synaptic efficacies
are kept fixed through the simulation. They are set consistent with a Heb-
bian rule: the synapse between two cells is strong if they were active in a
correlated manner in the past. Therefore, cells within one pool have strong
recurrent connections while the connections between pools are weak. All
our different network models consisted of 80% excitatory neurons and 20%
inhibitory interneurons. These are the proportions observed in the cerebral
cortex. The networks are fully connected. A network typically consists
of several pools of excitatory neurons that are selective to input. These
pools are connected to a pool of inhibitory neurons, accounting for global
inhibition. Both excitatory and inhibitory neurons are exposed to an ex-
ternal firing rate of 2.4 kHz, mimicking the spontaneous activity of the
surrounding cortex. The random fluctuations in this external input make
the whole system behave stochastically. Inputs to the neuronal pools are
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Figure 1.12: Schematic representation of a generic network module. The
network module consists of excitatory and inhibitory neurons. The excita-
tory neurons are organized in a pool of selective neurons (S) and a pool of
nonspecific neurons (NS). The selective neurons receive the input encoding
the stimulus (4,). All the neurons get an input (vex;) that simulates the
spontaneous activity in the surrounding cerebral cortex. The connection
weight of the recurrent connections is w4 for the selective pool and 1 for
the nonspecific and inhibitory neurons. The inhibitory pool connects to
the excitatory pools with a connection weight of w; and the excitatory
pools connect with the inhibitory pool with a connection weight of 1.

modeled as Poisson spike trains. Detailed mathematical descriptions and
all parameter values for the studies are given in the Appendix.

Different variants of this basic model are presented in chapters 2 and
3. In the following, we briefly summarize this work.

1.4.2 The neuronal basis of attention: Rate vs.
synchronization modulation

In this part, we study the role of oscillations in attentional processes. The
starting point was the article by Fries et al. (2001). They found that
neurons activated by the attended stimulus showed increased gamma-
frequency synchronization compared with neurons activated by the dis-
tractor (see Fig. 1.6). A computational model for biased competition has
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been proposed by Deco & Rolls (2005). They have shown that compe-
tition between pools of neurons combined with top-down biasing of this
competition gives rise to a process that can be identified as attentional
processing. However, they limit their analysis to studying rate effects. Ef-
fects on gamma synchronization are not addressed. This leaves open ques-
tions: Does attention modulate both rates and gamma synchronization?
Are both types of modulation mutually exclusive or are they concomitant
effects?

In our work (see also chapter 2), we address these questions by model-
ing one layer of the visual cortex with a network of integrate-and-fire (IF)
neurons. Attention is modeled as an additional Poisson input to the neu-
rons encoding the attended stimulus. First we show that our model can
reproduce several of the experimental findings. There are two dominant
frequency bands in the power spectrum, one at low frequencies and one
in the gamma frequency range (40-60 Hz). The peak in the gamma fre-
quency band is only present during the stimulus period. The height of the
peak in the gamma band can be controlled by adjusting the AMPA (gaupa)
and NMDA (gyupa) conductances. Increasing gaupa and decreasing guwpa
increases the gamma oscillations. We then study the attentional modula-
tions as a function of the power in the gamma band. The rate modulation
shows a constant decrease. The gamma-frequency modulation in turn in-
creases until a gaypa/gnupa modification ratio of about 0.12 is reached and
then decreases. In sum, rate and gamma frequency modulations do not
covary (Fig. 1.13). In addition, we studied the effects of gamma synchro-
nization on the efficiency of stimulus representation. There is a latency
from presenting a stimulus to the network until this stimulus has an effect
on the firing rates. We find that this latency is shortest in the same range
of gamma power as modulation is highest (Fig. 1.14). Thus, our results
suggest that gamma modulations make the system more efficient, which
implies that gamma modulation has behavioral relevance. In a next step,
we extended our model to two layers. This permitted us to study the vari-
ation of attentional modulation along the visual pathway. We show that
the modulatory effects in both layers are qualitatively similar, but more
pronounced in the upper layer. These modeling results are compatible
with an increase of gamma modulation along the visual pathway.

1.4.3 Optimal information transfer in the cortex through
synchronization

In the previous section we presented work studying the link between syn-
chronization and attention. But as described in section 1.2.2, temporally
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Figure 1.13: Rate modulation (solid curve) and gamma modulation
(dashed curve) as a function of gaypa/gnupa modification ratio. Increasing
the gampa/gnupa modification ratio has the effect of increasing the oscil-
lations in the gamma band (dotted curve). Rate modulation decreases
monotonically while gamma modulation has a peak at & gaypa/gnupa mod-
ification ratio of about 0.12. Either of the two modulations can be dom-
inant, depending on the strength of the oscillations. Results obtained in
chapter 2.

correlated neuronal activity could also have a role independent of atten-
tion, i.e., adjusting the flow of information in the brain as a whole. Wom-
elsdorf et al. (2007) studied the correlation between neuronal areas as a
function of phase shifts in the gamma frequency band. They show evidence
that there is a specific phase shift at which the correlation is highest. The
correlations are lower the further away the phase shift is from this opti-
mal phase shift. These authors conclude that the effective connectivity
in a network can thus be maximized or minimized through synchroniza-
tion of a specific phase. While this result is compatible with the CTC
hypothesis, it leaves open questions. Correlations do not tell us anything
about functional dependences. If phase shifts shape effective network con-
nections, there must be a measurable effect on information throughput.
Other questions are whether this dependency is restricted to the gamma
band or it can be generalized to other frequencies, and what the influence
of the gamma power is in the signal.

We address these questions using a detailed biophysical model net-
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Figure 1.14: Average time to reach the mean firing rate after stimu-
lus presentation to the selective pools. There is an optimal gaypa/Gxmpa
modification ratio at which these reaction time is shortest. This ratio co-
incides with the one at which attentional gamma modulation is strongest
(compare Fig. 1.13). The latencies in the upper layer (dashed line) are
generally shorter than the latencies in the lower layer (solid line). Results
obtained in chapter 2.

work (see also chapter 3). Using a modeling approach for this purpose has
several advantages. First, we are able to generate more data then in an
experiment, which enables us to use a better statistical measure for the
mutual interaction than just rank correlation. We opted to use transfer
entropy (TE), introduced by Schreiber (2000). TE is an information theo-
retical measure that quantifies the statistical coherence between systems.
It has the advantage that it does not only measure the coherence between
two signals, but is able to distinguish between driving and responding el-
ements and therefore between shared and transported information. We
measure the TE between the MUA of two neuronal clusters, allowing us
to study the interdependence of the spiking activity in each of them and
not just the correlation of the spectral power in a specific frequency band,
as was done in the experimental work. Second, the modeling approach
enables us to vary network parameters systematically and therefore to ex-
plore the dynamical range of the network. Our model network consists of
IF neurons. Two pools of excitatory neurons are connected to each other
by feedforward and feedback connections. An input is applied to one of
the pools, which is then passed on to the second pool. TE is used to mea-
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Figure 1.15: TE as a function of phase shifts. The phases are aligned
relative to the mean phase, i.e., a phase shift of zero represents mean phase
shift. TE is highest for the mean phase shift. The solid line represents TE
from the first neuronal pool to the second (forward), the dashed line from
the second pool to the first (backward). Results obtained in chapter 3.

sure the information exchange between the two pools. Each excitatory
pool is connected to an inhibitory pool, which generates oscillations in the
gamma frequency band through a pyramidal-interneuron feedback loop.

In support of the experimental results, we show that the correlation
between the neuronal activity in the two pools depends on the phase in the
gamma frequency band. After applying TE to measure the information
exchange between the two pools, we find that TE very similarly depends
on the phase shift, i.e., there is an optimal phase relation where the infor-
mation exchange between the two neuronal clusters is maximal (Fig. 1.15).
In addition, if the network is modified to oscillations in the beta band, we
find a dependence of TE on the power in the beta band. We then sort
the trials according to the power in the gamma band. We find that TE
increases as a function of the gamma band power (Fig. 1.16). Finally, we
show that the information exchange is not only stronger but also fast, if
gamma oscillations are present (Fig. 1.17).
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Figure 1.16: TE as a function of gamma frequency power. TE is shown
for six different values of the gaupa/gnupa modification ratio (solid line).
A higher gaupa/gnupa modification ratio causes the network to oscillate in
the gamma frequency range and thus increases the power in this frequency
band (dashed line). Results obtained in chapter 3.
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Figure 1.17: Average latency to reach 50% of the average TE as a func-
tion of the gaupa/gnupa modification ratio. The higher the gaypa/gnmpa
modification ratio, the shorter the latencies, and therefore the stronger the
oscillations. Results obtained in chapter 3.
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1.5 Conclusions

Oscillations in both single cortical neurons and in neuronal clusters have
been reported for years. However, it has remained unclear how these
oscillations link to behavior. Here, we approach this question by means
of computational modeling. Our results indicate that attention modulates
gamma synchronization independently of firing rates, which suggests that
the two mechanisms are independent of each other. In addition, we show
that input to the part of the network that encodes the attended stimulus
is passed on faster the stronger the oscillations in the gamma band are.
This signal transmission can be interpreted in terms of reaction time and
provides a link to behavior.

We also present results showing that information transfer between two
neuronal areas depends on the relative phase in the dominant frequency
band. There is an optimal phase relation ship between the two signals.
If the phase shift deviates from this optimal phase shift, the exchanged
information decreases. Therefore, shifting the phases in the oscillations
provides a mechanism to control the actual connectivity between differ-
ent brain areas. These results clearly support the CTC hypothesis which
proposes that neuronal synchronization can control effective network con-
nections. We show that this result is not restricted to the gamma band,
suggesting that this could be a more general mechanism for controlling
brain signals.

Furthermore, we show that both the amount and the speed of the
information exchange depend on the strength of the oscillations, which
again provides a link between oscillations and behavior. As neuronal os-
cillations improve the signal transmission in a network, they could have
direct behavioral relevance.

In the following, we proceed to present the results comprising this
dissertation in detail.






The neuronal basis of
attention: Rate vs.
synchronization modulation

The work presented in this chapter is published in the Journal of Neuro-
science! and in New Mathematics and Natural Computation?.

2.1 Introduction

In this chapter, we focus on the role of oscillations in attentional process-
ing. Experimental work has shown evidence of two neuronal correlates of
attention, namely modulation of firing rates and modulation of neuronal
synchronization. Biased competition has been suggested as a mechanism
to account for the modulation of firing rates (Moran & Desimone, 1985;
Chelazzi et al., 1993; Desimone & Duncan, 1995; Chelazzi, 1999), while
modulation of synchronization has been reported in several recent studies
(Gruber et al., 1999; Steinmetz et al., 2000; Fries et al., 2001). A compu-
tational model for biased competition has been proposed by Deco & Rolls
(2005). They have shown that competition between pools of neurons com-
bined with top-down biasing of this competition gives rise to a process that
can be identified as attentional processing (see appendix 2.A.1 on p. 46).
However, they limit their analysis to studying rate effects. The effects on
gamma synchronization are not addressed. This leaves some open ques-
tions: Is attention modulated by both rates and gamma synchronization?
Are they both mutually exclusive or are they concomitant effects? We

! Buehlmann, A. & Deco, G. (2008). The neuronal basis of attention: Rate versus
synchronization modulation. Journal of Neuroscience, 28:7679-7686.

2 Buehlmann, A. & Deco, G. (2009). Rate and gamma modulation in attentional
tasks. New Mathematics and Natural Computation, 5(1).

29



30 CHAPTER 2. THE NEURONAL BASIS OF ATTENTION

address these questions by modeling one layer of the visual cortex with a
network of integrate-and-fire neurons.
Our main results are the following:

e The effect of the attentional bias can be both an increase in the
rates or an increase in the gamma synchronization. Depending on
the dynamical working regime, one of the two effects is dominant.

e Gamma modulation can be altered without affecting the present rate
modulation.

e The mean rate in the pools encoding the stimulus is reached fastest
in the working regime where gamma modulation is strongest.

e Altogether, gamma modulation and rate modulation are not con-
comitant effects. However, if both are present, information is pro-
cessed advantageously.

2.2 Methods

2.2.1 Experimental paradigm

We propose a model to account for the results from the attentional visual
task used by Fries et al. (2001). In this task, the monkey had to fixate a
central spot. After 1500 to 2000 ms, two stimuli, consisting of black and
white luminance grating, appeared. We will call the attended stimulus
target and the one that is unattended distractor. A cue indicated where
to locate attention. The cue was either the color of the fixation spot or a
line next to the fixation spot, pointing to the location of the target. After
500 to 5000 ms one of the two stimuli changed its color to yellow. This
change was close to the monkey’s detection threshold. If the color change
occurred in the target, the monkey had to respond by releasing a bar. If it
occurred in the distractor, the monkey had to ignore it. The monkey was
only rewarded if it released a bar upon change in the target. The monkeys
performed about 85% correctly.

All recordings were done in the extrastriate cortical area V4 of the
visual cortex. From the two presented stimuli, one was inside the recorded
receptive field (RF), one outside. The condition where the monkey was
attending to the stimulus inside the RF is referred to as “with attention”,
and the condition with attention outside the RF as “without attention”. To
measure the synchronization between spikes and the local field potential
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Figure 2.1: STA power spectra. Dashed curve: attention outside the
RF; solid curve: attention into the RF. Adapted from Fries et al. (2001).
(a) Power spectrum of the delay period STAs. The delay period was the
1 s interval before stimulus onset. (b) Power spectrum of the stimulus-
period STAs. The stimulus period lasted from 300 ms after stimulus onset
until one of the stimuli changed its color.

(LFP), the spike triggered average (STA) and its power spectrum are used
(see below).

Fries et al. (2001) found that there are two dominating frequency bands
in the STA during the stimulus period: One below 10 Hz and another
between 35 to 50 Hz. During the delay period, in the “with attention”
condition, there was a reduction in the low frequency synchronization
(Fig. 2.1a). During the stimulus period, in the “with attention” condi-
tion, there was a reduction in the low frequency synchronization and an
increase in the gamma frequency synchronization (Fig. 2.1b). Simultane-
ously, the median of the firing rates was enhanced by 16% during the state
of attention.

2.2.2 Theoretical framework

As a description at the neural level, we use models of neurons with leaky
integrate-and-fire (IF) dynamics. We follow the model of Brunel & Wang
(2001). Synaptic currents are mediated by the excitatory receptors AMPA
and NMDA and the inhibitory receptor GABAA. There are two types
of excitatory synapses, AMPA and NMDA, that have different time con-
stants. AMPA decays very fast (2 ms) while NMDA decays slowly (100 ms).
The decay constant of GABA (10 ms) lies in between the two. The net-
work is organized in pools. Cells within one pool have strong recurrent
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Pool S2

V 1 Neurons . 1

Pool S1

Figure 2.2: Schematic representation of the network. The network con-
sists of inhibitory and excitatory neurons. The excitatory neurons are
organized in three pools per layer: the nonspecific neurons and the two
selective pools (S1, S2 or S1’, S2’) that receive the input encoding the
stimulus v,. One of the two selective pools gets an additional bias vpj,s.
All neurons in the network get an input vext that simulates the sponta-
neous activity in the cerebral cortex. The selective pools of the two layers
are connected. There are strong (Jf) and weak (Ky) feedforward con-
nections and strong (J;) and weak (K}) feedback connections. Recurrent
connections are denoted as w4, between-pool connection as w_. wy, w}
are the connection weights from the inhibitory to the excitatory pools and
Wy, w), the connection weights from the nonspecific to the selective pools.
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connections while the connections between pools are weak. Our model,
shown in Fig. 2.2, consists of two layers (corresponding to V1 and V4).
Each layer consists of 800 pyramidal neurons and 200 interneurons. The
network is fully connected. Each layer is subdivided into four pools. There
are three pools of excitatory neurons (the two selective pools and the non-
specific neurons) that are all connected to one pool of inhibitory neurons.
The selective pools are the ones that receive the input, either externally
(as in V1) or from the lower layer (as in V4). The nonspecific pool em-
ulates the spontaneous activity in surrounding brain areas. The selective
pools (S1, S2, S1’, S2’) of the two layers are connected to each other. Be-
tween the layers, we take into account that a stimulus that is a preferred
one for S1 (S2) also provokes a strong stimulation of S1’ (S2’). Therefore,
the J connections are stronger than the K connections. The two selective
pools in layer V1 (S1, S2) encode two non-overlapping RF. The RFs in
layer V4 are larger, each covering the two selective pools in V1. By having
overlapping RFs, the competition in V4 is stronger than in V1. This is
taken into account by setting the inhibitions in V4 to be stronger than in
V1. In our model of attention, we assume that the stimulus is passed on
to the modeled brain area V1 as a Poisson spike train. The attentional
bias is modeled as an additional Poisson spike train, received only by the
attended pool S1. In addition to the recurrent connection, the network
is exposed to an external current, modeling the spontaneous activity ob-
served in the cerebral cortex. In our network, oscillations are generated by
adjusting the conductances gayupa and guumpa- An increase of g upa and a
decrease of guupa is equivalent to an increase in the excitation/inhibition
ratio and will increase the power of oscillations (Brunel & Wang, 2003).

Full details of the network and a table with the default values for all
the parameters can be found in appendices A.1, A.2 and A.3, respectively,
on p. 79 and following.

2.2.3 Analysis
Local Field Potential

In their experiment, Fries et al. (2001) use separate extracellular electrodes
to record spikes and local field potential (LFP) activity. The spikes mea-
sured from one electrode belong to 2 to 10 neurons. They state that the
LFP reflects the average transmembrane currents of neurons in a volume
of a few hundred micrometers’ radius around the electrode tip.

In our simulations, we have access to all the spikes of all the neurons in
one pool and therefore we calculate the LFP as an average over all neurons
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in one pool. The LFP is thought to be a weighted average of the input
signals of a neural population; see Logothetis (2003) for a revision. As it
is not exactly clear what measure in a simulation corresponds to this, we
used three different ways of calculating the LFP. The first method was
to average the spike rates of all neurons in one pool. The second one was
to average the membrane potentials of all neurons in one pool. The third
one was to average the incoming synaptic currents to a neuron over all
neurons. We found that in our case these three measurements were highly
correlated and that the qualitative results did not depend on the way we
computed the LFP. The results reported here are obtained using method
one. From the similarity of the three measurements one could deduce that
looking at spike-spike correlations instead of spike-LFP correlations might
suffice. However, to be able to compare our results with the experimental
results, we still need to calculate the LFP.

Spike Triggered Average

To measure the synchronization between spikes and the LFP, we used
the spike triggered average (STA). We used the same method as Fries
et al. (2001) in order to be able to compare our modeling results with the
experimental ones. An explanatory figure of the way the STA is calculated
is plotted in Fig. 2.3. Around each spike time, a window of predefined size
(typically £100 ms) is cut out of the LFP. These time windows are plotted
as shaded areas. The average over all these windows is called the STA. In
order to characterize the STA, we calculate its power spectrum, using a fast
Fourier transformation. The resulting power spectrum is then normalized
by dividing it by the total power in the spectrum. The idea behind the
STA is that, if spike times have a reliable temporal relation to the local
neuronal activity as measured by the LFP, these fluctuations add up during
the averaging process. Otherwise, if there is no temporal relation between
spike times and the activity of surrounding neurons, fluctuations in the
LFP average out during averaging. We define the low frequency range as
0-20 Hz and the gamma frequency range as 35—-65 Hz.

Attentional Modulation

We denote the stationary values of the averaged firing rate in the attended
state with % and in the unattended state with ©™°?  The firing rate is
averaged over the period from 200 ms after the stimulus onset until the
end of the stimulus presentation. Similarly, we calculate the STA with all
the spikes occurring in the period from 200 ms after the stimulus onset
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Figure 2.3: Calculation of the STA: The figure shows an example LFP
(gray curve) in arbitrary units and three spikes depicted as black bars.
Around each spike, a window of £100 ms (shaded area) is cut out of the
LFP. The average over these LFP segments is called the STA.

until the end of the stimulus presentation, once for the pool of neurons
encoding the attended stimulus (STA**) and once for the pool encoding
the unattended stimulus (STA™°%*). The power spectrum of these two
STAs we denote as pSTA™ and pSTA™% respectively. The attentional
modulation in the selective pools is then given by

gatt _ gnoatt

ME = é‘noatt + gatt’

& being one of v or pSTA.

2.3 Results

The aim of this study is to show the relationship between attentional rate
modulation and attentional gamma modulation. First, we show how oscil-
lations are generated in the network and that there are only oscillations in
the gamma band if a stimulus is present. Then, we study the parameters
that influence attentional modulation, in particular the attentional bias,
inhibition and the synchronization in the network. We show that rate
modulation and gamma modulation are not concomitant, but that it is
advantageous if both are present. This suggests behavioral relevance for
gamma modulation. Finally we study attentional modulation in different
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Figure 2.4: Raster plot of 40 neurons from the selective pools in V1.
Stimulus onset is at 1000 ms and stimulus offset at 2000 ms. (a)—(d):
Neurons in the oscillatory regime (gaupa/gnupa modification ratio=0.12).
(a) Average rate with attention, (b) Spikes with attention, (c) Average
rate without attention, (d) Spikes without attention. (e)—(h): Neurons
outside the oscillatory regime (gampa/gnupa modification ratio=0.0).

layers and show that both gamma and rate modulation are stronger in the
upper layer. This is compatible with an increase of attentional modulation
along the visual pathway. Fig. 2.4 shows a raster plot of a typical trial
with neurons synchronizing after the stimulus onset at 1000 ms.

2.3.1 Oscillation generation

As explained in the Methods section, the crucial parameter to generate
oscillations in the network is the relative contribution of the slow NMDA
and the fast AMPA receptors to the total synaptic currents.

Fig. 2.5 shows the power spectrum of the STA during the stimulus
period for selected values of the gaypa/gnupa modification ratio. For low
contributions of gaypa (€.g., solid curve), there is little power in the gamma
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Figure 2.5: Changes in the STA power spectrum depending on the
Jamra/gnupa modification ratio. For a selection of gaupa/gnupa modifi-
cation ratios (indicated in the figure legend) we plot the power spectrum
of the corresponding STAs. Averaged over 20 trials.

frequency band and for a high contribution of g,upa (e.g., dash dotted
curve), there is a lot of power in the gamma frequency band.

The effects on the low frequency and the gamma frequency band are
shown separately in Fig. 2.6. We plot the percentage of power in the
STA for the low frequency (dashed curve) and the gamma frequency band
(solid curve) against different values of the gaypa /gaupa modification ratio.
The more g,upa is increased, the stronger the oscillations in the gamma
frequency band and the weaker the oscillations in the low frequency band.
In the experiment by Fries et al. (2001), the peak values in the power
spectrum of the STA were about equal for the low frequency and the
gamma frequency band. Therefore, in the range of gaupa/gnupa from 0.11
to 0.13, the network exhibits the same power distribution as found in the
experiment by Fries et al. (2001).

Stimulus Presentation

In the experimental findings by Fries et al. (2001), the peak in the gamma
band of the power spectrum of the STA is only observed during the stimu-
lus presentation. Our model has the same property (illustrated in Fig. 2.7).
We plot the power spectrum of the STA on the y-axis against the frequen-
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Figure 2.6: Power in the low frequency (0-20 Hz) and gamma frequency
band (35-65 Hz) of the STA depending on the gaypa/gnupa modification
ratio. For each value of the gxyps/gnupa modification ratio we plot the
percentage of power in the low frequency band (dashed curve) and in the
gamma frequency band (solid curve). The error bars indicate the 95%
confidence intervals. Averaged over 20 trials.

cies on the x-axis. It demonstrates clearly the desired behavior, namely
that almost all the power is in the low frequency band during the delay
(spontaneous) period before stimulus onset (dashed curve). During the
stimulus presentation (solid curve), the percentages of power in the low
frequency band and in the gamma frequency band are equilibrated.

2.3.2 Parameters that modify attentional modulation

What parameters does the attentional modulation of the rates and gamma
frequency synchronization depend on?

Bias

The most obvious parameter that influences attentional modulation is the
applied bias (Vpias). The modulation of the rates and the gamma frequency
synchronization both correlate positively with the bias (see Fig. 2.8a).
Additionally, we observe that also the total gamma power in the STA
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Figure 2.7: Example power spectrum of an STA comparing stimulus and
delay (spontaneous) period. The power spectrum of an STA is plotted for
the stimulus period (solid curve) and the delay period (dashed curve).
(Averaged over five trials.)

spectrum increases with the bias. The gamma power shown is the average
of the gamma power in the two selective pools (S1, S2).

Inhibition

Another parameter modifying attentional modulation is the inhibition in
the network(wy). To study its influence, we modify the connection weights
of the inhibitory pool to the selective pools. Again we observe that both
the rate and the gamma frequency modulation correlate positively with
the inhibitory weights (see Fig. 2.8b). But contrary to the bias, the total
power in the gamma frequency band decreases with more inhibition and
therefore shows a negative correlation with the attentional modulation.

Altogether, we observe that with increasing competition (either higher
bias or stronger inhibition) the attentional modulation in the network also
increases. However, synchronization increases as a function of bias and
decreases as a function of inhibition.
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Figure 2.8: Dependences of attentional modulation on inhibition and
bias. Gamma power (dotted curve) shows how much of the power of
the spectrum is in the gamma band. Rate modulation (solid curve) and
gamma modulation (dashed curve) show the difference between attended
and unattended pools in percents. (Averaged over 200 trials.) (a) Gamma
power, rate modulation and gamma modulation as a function of bias. For
increasing bias, synchronization, rate modulation and gamma modulation
increase. (b) Gamma power, rate modulation and gamma modulation as a
function of inhibition. For increasing inhibition, synchronization decreases
while both rate modulation and gamma modulation increase.
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Level of Synchronization in the Network

Next we studied how the attentional modulations were affected by directly
modifying the level of gamma frequency oscillation in the network. In or-
der to do so, we adjusted the gaypa/gxupa modification ratio. The power
in the gamma frequency band increases monotonically with this ratio un-
til reaching a level of more than 0.9, meaning that more than 90% of the
power is concentrated in the gamma frequency band (see Fig. 2.9). The
rate modulation as a function of gaupa/gnupa modification ratio shows
a constant decrease. The gamma frequency modulation increases until a
Jamra/ gnupa modification ratio of about 0.12 is reached and then decreases.
In summary, rate and gamma frequency modulation do not covary. The
fact that rate modulation and gamma modulation can vary independently
of each other should be considered as one of our main results. A compar-
ison with the experimental findings by Fries et al. (2001) shows that for a
Jamra/gnupa modification ratio between 0.10 and 0.13, our model reveals
similar attentional modulations.

If a stimulus is presented to the network, the rates in the selective pools
(S1, S2) rise. The time from stimulus onset it takes a pool to reach its
mean frequency is here referred to as reaction time (RT). RTs are shortest
for a gaupa/9gnupa modification ratio of 0.12 (Fig. 2.10a). Furthermore,
we observe that these RTs are different for the attended and the unat-
tended pool, the ones of the attended pool being shorter. The difference
in RT is shown in Fig. 2.10b. The biggest difference in RT we find for a
Jamra/ Inupa modification ratio of about 0.12, which is also the range where
attentional gamma modulations are strongest. A crucial observation is the
fact that the inversely RTs correlate with the attentional modulation in the
gamma band, i.e., the higher the attentional modulation, the shorter the
RTs. Thus, our results show that gamma modulations make the system
more efficient in terms of RTs, which suggests that gamma modulation has
behavioral relevance.

2.3.3 Comparison of two different layers

One of the goals of this work was to study the variation of attentional mod-
ulation along the visual pathway. To address this question we compare the
attentional modulation in two connected layers (V1, V4). The comparison
shows that the modulatory effects in both layers are quite similar, though
more pronounced in the upper layer (V4). The gamma modulation in the
upper layer (V4) is up to 50% stronger than in the lower layer (V1). The
rate modulation in V4 is about 28% stronger than in V1. See Fig. 2.11a.
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Figure 2.9: Rate modulation (solid) and gamma modulation (dashed)
as a function of the gaupa/gnupa modification ratio. The main effect of
increasing the gawpa/gnupa modification ratio is an increase in the net-
work synchronization in the gamma band (dotted). The rate modulation
decreases monotonically with the gaypa/gxupa modification ratio. The
gamma modulation increases until a gaupa/gnupa modification ratio of
about 0.12 and then decreases to almost zero. The figure shows that
either of the two types of attentional modulation can be predominant.
(Averaged over 200 trials.)

In summary, we find that the attentional modulation is stronger in the
upper layer than in the lower one. These modeling results are thus consis-
tent with an increase of the gamma frequency modulation along the visual
pathway.

In sum, we show that there is an increase in the gamma modulation
from the lower layer to the upper layer even if the gaupa/gnmpa modifica-
tion ratio is the same in both layers. If we now modify this ratio inde-
pendently in the different layers, we observe that whichever layer has its
Jamra/Inupa modification ratio closer to 0.12 (which is the optimal ratio to
evoke gamma oscillations) has the higher gamma synchronization and the
higher gamma modulation. This means that the upper layer can oscillate
at gamma frequency even though the lower layer shows no or very little
synchronization in the gamma band. See Fig. 2.11b.

In our model, we make the assumption that the gaupa/gnupa modifi-
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Figure 2.10: Reaction times. (a) Average time to reach the mean ac-
tivity level after stimulus presentation in the selective pools. A higher
Jamra/Inupa Modification ratio makes the rates rise faster. The mean ac-
tivity level is reached fastest for a gaypa/gnmpa modification ratio between
0.10 and 0.13. In this range also the attentional gamma modulation is
maximal. (b) Time difference in reaching the mean activity level after
stimulus presentation between the pools encoding the attended and the
unattended stimulus. This difference is biggest for a gaupa/gnupa modifi-
cation ratio around 0.12, which is also the range where attentional gamma
modulation is maximal.
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cation ratio increases in the posterior ventral cortex. On the other hand,
it is often claimed that the gaypa/gnupa modification ratio decreases to-
wards prefrontal cortex, in order to stabilize memory. We assume here
that the gaypa/gxupa modification ratio increases only along the posterior
ventral cortex (where memory is of less importance) and then decreases
again towards prefrontal cortex.
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Figure 2.11: Comparison of attentional modulation in two layers.
(a) Differences in attentional modulation between the two layers V1 and
V4. The gamma modulation in the upper layer is up to 50% stronger than
in the lower layer. The rate modulation in V4 is up to 28% stronger than
in V1. In general, modulations in V4 are stronger than modulations in
V1. (b) Different gaypa/gnupa modification ratio in the two layers. The
Jampa/gnupa 10 layer V1 is 0.0 and in layer V4 0.15. Layer V4 clearly
synchronizes in the gamma frequency band while V1 does not.
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Supplementary Figure 2.1: Experimental Results. Attention filtering
out the effect of a suppressive probe in V2. Dotted line: Response to
reference stimulus. Solid line: Response to probe stimulus. Dashed line:
Response to pair (suppressed by addition of probe). Dash dotted line: Pair
response when attention is directed to reference stimulus. The response
is almost equal as when only the reference stimulus is present. Figure
adapted from Reynolds et al. (1999).

2.A Chapter appendix

2.A.1 Biased competition in experiment and model

Experiment

Reynolds et al. (1999) measured cell responses in V2 and V4 from monkeys
performing an attentional task. In this task, stimuli could appear at four
positions: Two within the receptive field (RF), and two outside. On each
trial, the reference, the probe or the pair appeared within the RF. The
monkey was cued to attend to one of the locations and had to respond
when a diamond shaped target appeared at the attended location while
ignoring distractor targets. They found that the presentation of the two
stimuli together caused a response that lay in-between the responses to
either of the single stimuli, when the monkey was attending to a location
outside the RF. Then the monkey had to attend one of the two stimuli
inside the RF. This caused a cell response similar to when the attended
stimulus was presented alone. Their results are depicted in Suppl. Fig. 2.1.
Their findings are consistent with the biased competition hypothesis for
attention that states that attention biases the competition among neurons
in the direction of the attended stimulus.
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Supplementary Figure 2.2: Simulation corresponding to the experi-
ment from Reynolds et al. (1999). Development of the firing rate under
simultaneous presentation of a good and a poor stimulus inside the RF.
Solid line: response when attention is outside the RF. Dashed line: Re-
sponse when attention is directed to the poor stimulus (attentional sup-
pression). Dash dotted line: Response when attention is directed to the
good stimulus (attentional enhancement). Figure adapted from Deco &
Rolls (2005).

Model

Using the model described above, we showed that top-down attentional
effects can be explained by external attentional inputs biasing neurons
(Deco & Rolls, 2005). This bias moves the activity of neurons towards
different parts of their nonlinear activation functions. It is important
to note that we are not assuming any kind of multiplicative effects but
only additive synaptic effects. Therefore, attention seems to be a network
phenomenon. The results from Reynolds et al. (1999) can be successfully
reproduced, as shown in Suppl. Fig. 2.2. The middle line (solid) is the
neural response when both stimuli are present in the RF, but the attended
location is outside the RF. The top line (dash-dotted) shows the enhanced
neural response when attention is directed to the reference (good) stimulus.
The bottom line (dashed) shows the suppressed response, when attention
is directed to the probe (bad stimulus).






Optimal information
transfer in the cortex
through synchronization

The work presented in this chapter is submitted. Abstract is published'.

3.1 Introduction

In this chapter, we focus on the role of oscillations in information trans-
mission.

Several authors have proposed that the interactions among neuronal
groups depend on neuronal synchronization (Varela et al., 2001; Salinas
& Sejnowski, 2001). Fries (2005) has referred to this hypothesis as com-
munication through coherence (CTC). Several experimental studies have
presented results supporting the CTC hypothesis (Buschman & Miller,
2007; Saalmann et al., 2007; Womelsdorf et al., 2007; Pesaran et al., 2008;
Gregoriou et al., 2009).

We concentrate on the results shown by Womelsdorf et al. (2007).
These authors conclude that the effective connectivity in a network can
be maximized or minimized through synchronization of a specific phase
relation, resulting in an effective interaction pattern.

While the results presented by Womelsdorf et al. (2007) clearly sup-
port the CTC hypothesis, they leave some open questions. Is it only the
60 Hz power that depends on the 60 Hz phase? Do phase and power only
correlate or is there a causal dependence between the two? Is this effect
restricted to the gamma band or can it be generalized to other frequency
bands? What is the influence of the total gamma power in the signal?

! Buehlmann, A. & Deco, G. (2010). Optimal information transfer in the cortex
through synchronisation.  Conference Abstract: Computational and systems neuro-
science 2010. doi: 10.3389/conf.fnins.2010.03.00104.
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Here, to address these questions, we use a detailed biophysical, con-
ductance based model network with realistic spiking properties. Many
different interdependence measures such as mutual information, transfer
information, nonlinear regression, phase synchronization and generalized
synchronization have recently been proposed (see Ishiguro et al., 2008 and
Wendling et al., 2009 for comparisons of the different methods). It has
become evident that the appropriateness of each measure is determined
by the data it is applied to. Thus, given our current data set, we opted to
use transfer entropy (TE), introduced by Schreiber (2000). We measure
the TE between the MUA of the two neuronal clusters, which allows us
to study the interdependence of the spiking activity in each of them and
not just the correlation of the spectral power in a specific frequency band,
as was done in the experimental work. A further crucial advantage of the
model is that we can change network parameters systematically and ex-
plore the dynamical range of the network. In all simulations, firing rates
were normalized to rule out the possible influence of rate changes.

Our main results are:

e Correlation as measured by the Spearman rank correlation coefficient
depends on the phase relation in the gamma band, confirming the
experimental finding of Womelsdorf et al. (2007).

e TE depends very similarly on the phase shift, i.e., there is an optimal
phase relation where the TE is maximal.

e TE increases as a function of the power in the gamma band.

e Information exchange gets faster if the gamma band synchronization
increases.

3.2 Methods

3.2.1 Experimental analysis

Womelsdorf et al. (2007) analyzed four different data sets. The first data
set consisted of measures from awake cats in area 17 (Fries et al., 1997),
the second from awake cats in areas 18 and 21a (Fries et al., 2002), the
third from awake monkeys in area V1 and the fourth from awake monkeys
in area V4 (Fries et al., 2001; Womelsdorf et al., 2006). In all four data sets
they recorded multi unit activity simultaneously from 4 to 8 electrodes.
For each pair of neuronal groups, they quantified the synchronization by
MUA-MUA phase coherence spectrum, which showed a peak in the gamma
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Figure 3.1: Spearman rank correlation coefficient. The rank correlation
coefficient between the two MUAs’ 60 Hz power is plotted as a function
of their phase relation. The solid line indicates a cosine fit. Adapted from
Womelsdorf et al. (2007).

frequency band. These authors then calculated the Spearman rank corre-
lation coefficient between the two MUAs’ 60 Hz power. They found that
the fluctuations of the 60 Hz power were most strongly correlated when
the 60 Hz phase relation was close to its mean, as illustrated in Fig. 3.1.
From this they concluded that effective connectivity can be maximized or
minimized through synchronization at a favorable or unfavorable phase
relation.

3.2.2 Theoretical framework

We use a model with leaky integrate-and-fire (IF) dynamics, following
Brunel & Wang (2001). Synaptic currents are mediated by excitatory
(AMPA and NMDA) and inhibitory (GABA) receptors. AMPA has a very
short decay time (2 ms) while NMDA has a long one (100 ms) and the
GABA decay time lies in-between (10 ms). The rise times of AMPA and
GABA currents are neglected, as they are typically very short (< 1 ms).
The network is organized in pools. Neurons within a specific pool have
stronger recurrent connections than neurons between the pools. The in-
tention of this work is to study cortical neural interactions not limited to
a specific brain area. However, as our simulations needed to be directly
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Figure 3.2: Schematic representation of the network. The network con-
sists of two parts. In each part, there are excitatory (S, NS) and inhibitory
(I) neurons. The excitatory neurons are divided into two pools. The se-
lective pool (S) receives the external input (v4,) and has strong recurrent
connections (w4 ). The non-selective pool (NS) simulates the surrounding
cerebral cortex. In each part of the network, the excitatory neurons are
connected to a pool of inhibitory neurons (I) via connection weights wy.
The two parts of the network are connected via the selective pools. There
are both feedforward (J¢) and feedback (J;) connections. The network
is exposed to an external current vey, modeling the spontaneous activity
observed in the cerebral cortex.

comparable to Womelsdorf et al. (2007), and have specific parameter sets,
our network models two clusters of cortical neurons in visual cortex V4.
The network model consists of two parts (Fig. 3.2). In each part there
are pools of excitatory and inhibitory neurons, with a total of 800 excita-
tory and 200 inhibitory neurons. The excitatory neurons are subdivided
into a selective pool and a non-selective pool. The neurons in the selective
pools (S,S’) are the ones that receive input either from outside or from
the connected selective pool. The non-selective neurons (NS, NS’) simu-
late the surrounding brain areas. Each population of excitatory neurons is
connected to a pool of inhibitory neurons (I, I’). This allows for generating
oscillations in each population separately. The two parts of the network are
connected via feedforward and feedback connections that project onto the
selective pools. The external input is a Poisson spike train that projects
to the selective pool (S) of the first part of the network. In addition to
the recurrent connections, the network is exposed to an external current,
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modeling the spontaneous activity observed in the cerebral cortex. The
network is fully connected.

Gamma oscillations in a network with excitatory and inhibitory neu-
rons are generated through a pyramidal-interneuron feedback loop (Traub
et al., 1997; Brunel & Wang, 2003). Pyramidal neurons excite interneu-
rons and interneurons in turn send inhibition back on pyramidal cells. In
our network we can therefore generate and control the oscillations in the
gamma frequency band by adjusting the AMPA and NMDA conductances.
By adjusting the synaptic decay constants, the oscillation frequency can
be shifted into the beta band. The crucial parameter is Tcxs,. An increase
of Tgapa slows down the rhythm of the pyramidal-interneuronal loop and
will therefore yield an oscillation at a lower frequency. To generate phase
shifts in the gamma oscillations between the two parts of the network,
we introduce a delay. The delay is set bidirectionally in the feedforward
and feedback connections of the selective pools. FEach spike emitted in S
arrives at S’ after At and vice versa. This lag in spike transmission gener-
ates a phase lag in the oscillations. Full details of the network and a table
with the default values for all the parameters can be found in appendices
A.4 and A.5, respectively, on p. 83 and following.

3.2.3 Analysis
Multi unit activity

From our spiking simulations we calculate the multi unit activity (MUA)
to analyze our simulations, in order to be able to compare our results
directly with the experiments. The MUA in the simulations is defined as
the spikes of 10 randomly chosen neurons in each of the selective pools.
This point process data is converted to a time series by binning the spikes
in windows of 5 ms. The binning window is shifted in steps of 1 ms. The
time series is then normalized by subtracting the mean and dividing by
the standard deviation. We use the normalized time series to estimate
power spectrum and TE. Normalization is applied to rule out the possible
influence of rate changes.

Power spectrum and phase estimation

We use the multitaper method (Percival & Walden, 1993; Mitra & Pesaran,
1999) to calculate the spectral power of our data. The signal in each time
window (1000 ms) is multiplied with a set of Slepian data tapers. The
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tapered signal is then Fourier transformed, according to:

N
Ep(v) =Y wi(t)z(t)e ™ (3.1)
t=1

where wy(t) are K orthogonal taper functions, x(t) is the time series of
our signal, and N is the number of elements in each time window. The
power spectrum is then the squared amplitude of Zj(v), averaged over the
K tapers. We used K = 4 tapers in our study. The cross spectrum (Sy,)
between two signals Z(v) and g (v) (averaged over K tapers) is given by

Syz = T U (W) T3 (v). (3:2)
k=1

The phase relation between two signals Z(v) and gx(v) is defined as the
angle of the cross spectrum. We use this method for phase estimation to
be able to compare directly to the experimental results.

Transfer entropy

Womelsdorf et al. (2007) quantify the mutual influence between two neu-
ronal groups as the Spearman rank correlation coefficient of spectral power.
The Spearman rank correlation is a non-parametric measure of correlation,
which makes no assumptions about normality or linearity of the data.
However, it is a symmetric measure and therefore fails to measure direc-
tionality of the flow of information. Thus, to overcome this limitation,
here we use TE (Schreiber, 2000), which enables us to distinguish between
shared and transported information. TE measures the deviation from the
following generalized Markov property:

p(zelar) = plaeelat, vi), (3-3)

where p is the transition probability and k£ and [ are the dimensions of the
delay vectors. z; and y; are the time series of the signal. We write x; and y;
instead of z(t) and y(t), respectively, for better readability. If the deviation
is small, then Y has no relevance for the transmission probability of X.
The incorrectness of this assumption can be quantified by the Kullback
entropy

k .l
Z p(zep1lzs, ys)
Tyﬂx — p(xt+17 :L‘f) y1lf) 1Og ( koot

t plarileh) (34

In other words, TE represents the information about a future observation
of variable x; obtained from the simultaneous observation of past values
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of both z; and y;, after discarding the information about the future of x;
obtained from the past of z; alone (Ishiguro et al., 2008). In this study
we use k = [ = 1. Conditional probabilities required in equation 3.4 are
calculated from the joint probabilities. We approximate the joint proba-
bilities by using the histograms of the embedding vector (naive histogram
technique; Lungarella et al., 2007). When the available data is limited
(number of samples N < 1000) and the coupling between the time series
is small, TE suffers from a finite sample effect, in particular for small res-
olution (r < 0.05), which makes the assessment of the significance of the
obtained values difficult (Lungarella et al., 2007). However, for all our
simulations N > 1000 and r > 0.05, so we can assume that the finite
sample issue affects our results to a negligible extent. We calculate the
TE between the MUA in the two neuronal pools.

3.3 Results

We test the hypothesis that neuronal synchronization modulates neuronal
interactions. First we describe how the mean phase shift between pools
of neurons is set by the delay in the feedforward and feedback connec-
tions. In accordance with the experimental results of Womelsdorf et al.
(2007), we show that the correlation between the gamma power in the two
pools, measured by the Spearman rank coefficient, depends on the phase
relation in the gamma band. Then we measure the information exchange
between the rates of the two pools with TE, an information theoretical
measurement. We demonstrate that TE has a very similar dependence on
the phase shift. By varying the amount of power in the gamma band in
our model, we then show how TE increases as a function of gamma power.
Furthermore, we reveal that if gamma power is high, information flow as
measured by TE commences earlier.

3.3.1 Delay—Phase relation

Raster plots for 20 neurons from each neuronal pool are shown in (Fig. 3.3).
The power spectrum of the MUA in our network shows a clear peak in
the gamma band (Fig. 3.4), in accordance with the experimental results.
Therefore, the introduced delay sets the phase shift for oscillations in the
gamma band. The delay, however, sets only the mean phase shift, but the
phase shifts fluctuate over time. Thus, even for a fixed delay they show
a broad distribution around this mean phase shift. This distribution is
shown in Fig. 3.5a. The mean phase in this specific simulation is 91.4°.
This, however, is just an example, as the mean phase shift in the simu-
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Figure 3.3: Raster plots. Raster plot of spikes of 20 neurons from the
default simulations (gaypa/gnupa modification ratio = 0.12). (a) Neurons
from selective pool 1. (b) Neurons from selective pool 2.

lations can be set to any value by adjusting the delays accordingly. The
phases are similarly widely distributed as in the experimental results by
Womelsdorf et al. (2007), shown in Fig. 3.5b.

3.3.2 Dependence of correlations on phase

The phase shifts at 60 Hz between the two pools show a broad range of
phases. We determine the phase shift in each time window of 500 ms. Then
we calculate the correlation between the two pools for this time window
by calculating the Spearman rank coefficient for the 60 Hz power in the
two pools. The obtained correlation can now be sorted into different bins
for the different phase shifts. We find that the correlation of the gamma
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Figure 3.4: Power spectrum. The power spectrum of the MUA signal
from a simulation with default parameters is shown. gxupa/gnmpa modifi-
cation ratio = 0.12, averaged over 100 trials.

Figure 3.5: Phase distribution. The phases are widely distributed around
the mean (marked with an asterix). The dark and light segments around
the figures represent the phase bins into which trials were sorted. (a) Sim-
ulation: Phase distribution with an exemplary mean of 91.4° from the
default simulations (gampa/gnupa modification ratio = 0.12). (b) Experi-
ment: Phase distribution with a mean of 45.8°. Adapted from Womelsdorf
et al. (2007).
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Figure 3.6: Spearman rank correlation coefficient. The rank correlation
between the 60 Hz power in two neuronal pools is plotted as a function of
the phase shift in the gamma band. A phase shift of zero represents the
mean phase shift which is the point where the rank correlation is highest.
The solid line indicates a cosine fit.

band power between the two pools depends on the mean phase shift in
the gamma band. We emphasize that a change in firing rates could not
account for this result, as they have been normalized. Fig. 3.6 shows the
rank correlation plotted against the phase shifts. The correlation is highest
for the bin containing the mean phase shift and drops as it moves away
from the mean. This confirms the experimental results of Womelsdorf
et al. (2007).

3.3.3 Dependence of TE on phase

The Spearman rank coefficient as used in the previous section gives only an
estimate of the correlation between the two connected pools. It contains
no information about which the driving and which the responding pool
is. Therefore, we use an information theoretical measure, the so called
transfer entropy (TE). The TE is able to quantify the directionality of
the exchanged information between the pools (see Methods). We apply
this measure now to the same data as in the previous section. However,
we measure the TE between the MUA in the two pools and not only the
60 Hz power. We find that the TE depends strongly on the phase relation
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Figure 3.7: TE as a function of phase shifts and directionality. The
phases are aligned relative to the mean phase, i.e., a phase shift of zero
represents mean phase shift. TE is highest for the mean phase shift and
gets lower the more it differs from it. The solid line represents TE from
neuronal pool 1 to pool 2 (forward), the dashed line from pool 2 to
pool 1 (backward). Forward TE is clearly stronger than backward TE.
Jamra/gnupa modification ratio = 0.12, averaged over 100 trials.

in the gamma band between the spiking activities of the two groups of
neurons. It is highest for the mean phase between the two signals and
drops as it moves away from the mean. This is consistent with our results
for correlation. The phase dependence is illustrated in Fig. 3.7. TE is
plotted as a function of the mean phase shift. The solid line represents
TE from the first to the second pool (forward) and the dashed line TE
from the second to the first one (backward). Forward TE is stronger than
backward TE, implying that TE correctly detects the causal dependence
of the second neuronal pool on the first one. Forward TE is stronger
than backward TE even if the feedforward and feedback connections are
symmetrical (not shown). The stronger the feedforward and the weaker
the feedback connections, the bigger the difference in the TE for the two
directions, as shown in Fig. 3.8. We plot the relative difference in the
TE, calculated as (TE; — TEy)/TEj. The feedback/feedforward ratio
is defined as Ji,/Jy. We use a feedback/feedforward ratio of 1/3 in the

baseline simulations.
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Figure 3.8: Relative differences in forward and backward TE. Differ-
ences in forward and backward TE are shown as a function of feed-
back/feedforward connection ratio, which is defined as Ji/J;. The differ-
ence between forward and backward TE becomes smaller as the feedfor-
ward and feedback connections become more similar. Error bars indicate
95% confidence intervals, gaupa/gnupa modification ratio = 0.12, averaged
over 100 trials.

3.3.4 Different frequency bands

Another result we obtain is that an optimal phase relation for informa-
tion transport is not restricted to the gamma band. We find that even in
simulations with a network oscillating strongly in the beta band (around
20 Hz), the TE is again highest for the mean phase shift. In Fig. 3.9,
we compare the results for networks oscillating in the beta and gamma
frequency band. Fig. 3.9a shows the TE for a network oscillating in the
gamma band. The trials are sorted according to their phase relation in
the gamma band. Fig. 3.9b shows the same network but with the trials
now sorted according to their phase relation in the beta band. The phase
dependence curve becomes a lot flatter and the optimal phase for maximal
TE is much less pronounced. Fig. 3.9c shows the TE for a network oscil-
lating in the beta band with trials sorted according to the phase relation
in the gamma band. And Fig. 3.9d shows the TE for a network oscillating
in the beta band with trials sorted according to the phase relation in the
beta band. It becomes clear that it is the phase of the dominating fre-
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Figure 3.9: TE as a function of the mean phase shift in the gamma
and beta band. The network oscillates strongly in one frequency band
(either beta or gamma). The trials are sorted according to their phase
shift either in the beta or gamma band. (a) Network oscillating in the
gamma band. The trials are sorted according to their phase shift in the
gamma band. (b) Network oscillating in the gamma band. The trials
are sorted according to their phase shift in the beta band. (c) Network
oscillating in the beta band. The trials are sorted according to their phase
shift in the gamma band. (d) Network oscillating in the beta band. The
trials are sorted according to their phase shift in the beta band. In all four
graphics, gampa/gxupa modification ratio = 0.12, averaged over 100 trials.
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Figure 3.10: TE of trials sorted by power in the gamma band. Network
parameters are kept fixed. The TE increases as a function of gamma
pOwWer. gaupa/9xupa modification ratio = 0.12, averaged over 100 trials.
Error bars indicate 95% confidence intervals.

quency band that is responsible for high of low TE. We therefore conclude
that it is not only the gamma band that has the ability to shape effective
network connections via the phase, but that it is a general mechanism,
observable in different frequency bands.

3.3.5 Dependence of TE on gamma band power (without
parameter modification)

We further find that TE depends on the spectral power in the gamma band
(30-85 Hz). For a fixed parameter set, we first sort all the trials according
to their power in the gamma band into bins. In each of these bins, we
measure the TE for the mean phase relation. The TE as a function of the
power in the gamma band is plotted in Fig. 3.10. We find that the TE
increases as a function of power. Note, however, that instead of sorting
the trials according to their gamma band power for a fixed parameter set,
we can also vary the parameters in the network. This allows us to vary
the power over a wider range and the effect becomes clearer (see the next
section).
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3.3.6 Dependence of TE on gamma band power (with
parameter modification)

In the previous section we have shown how TE depends on power in the
gamma band for a fixed parameter set. Now we explicitly vary the amount
of gamma power and study the TE dependence. Gamma band oscillations
in a network of excitatory and inhibitory integrate-and-fire neurons appear
when excitation is faster then inhibition (Brunel & Wang, 2003). Thus,
we made the network oscillate by increasing AMPA conductance and de-
crease NMDA conductance. This change was applied to both excitatory
and inhibitory neurons. In our simulations, we vary the gaupa/gnmpa mod-
ification ratio from 0 to 0.12, which results in a gamma band that contains
from 10 to 65% of power. If we sort the data according to its shift as in
the previous section, we find that, for the different g,yps/grnupa modifica-
tion ratios, the TE shows a similar dependence on the phases. However,
if the gampa/gnupa modification ratio is too low, the phase measurement is
not reliable any more and the curve gets flat, consistent with the case of
random phase distribution. Fig. 3.11 shows the TE as a function of phase
shift for several different gaupa/gnupa modification ratios. To summarize
this result, we take the TE at the mean phase shift and plot it against
the gampa/gnupa modification ratio. As the spectral power in the gamma
band increases from 10 to 65%, the TE increases from 0.38 to 0.65 and
thus shows strong positive correlation with the level of gamma band power
(Fig. 3.12). In other words, the higher the gamma band synchronization
between the two pools, the higher the information throughput. Again, this
cannot be an effect of firing rate changes, as all trials have been normalized
for firing rate. This result suggests that gamma band oscillations improve
the signal processing in a network of IF neurons, as they increase the
amount of transmitted information. This in turn confirms the idea that
gamma band synchronization can shape effective networks, especially as it
can influence the information transmission in a given direction, as shown
above.

3.3.7 Timing

Finally, we are interested in whether the gamma band oscillations also
have an influence on the speed of information exchange, on top of the
increased amount of information exchange. To do this, we measure the
time required until the stimulus presentation to the first pool leads to an
increase in TE towards the second pool. We find that the onset of TE
increase is significantly earlier when there is a lot of power in the gamma
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Figure 3.11: TE as a function of phase shifts and gamma oscillations. If
the oscillations are strong in the gamma band (gaupa/gnmpa modification
ratio = 0.12), there is a clear phase shift between the two groups of neurons
and the phase dependence curve is clearly bell shaped. If the oscillations
are too low, there is no meaningful phase shift and the curve becomes flat
(gampa/guupa modification ratio = 0.02). Averaged over 100 trials.

band. While for a gypa/gnupa modification ratio of 0.02 it requires 28 ms
to reach 50% of the average TE, for a gaupa/gnupa modification ratio of
0.12 it takes only 17 ms. The onset of information flow is clearly faster
for higher levels of gamma band power (Fig. 3.13). This increase in speed
is a further demonstration of how gamma oscillations increase network
performance and shows how a network can be made more competitive.
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Figure 3.12: Mean TE as a function of gamma frequency band power.
We plot the TE for six different gaupa/gnupa modification ratios (solid
line). A higher gaupa/gnupa modification ratio causes the network to os-
cillate in the gamma frequency range and thus increases the power in the
gamma frequency band (dashed line). Error bars indicate 95% confidence
intervals; averaged over 100 trials.
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Figure 3.13: Rise times of TE as a function of gamma band power.
Information starts flowing after stimulus onset when, consequently, TE
starts rising. The plot shows the time required to reach 50% of the av-
erage TE. TE clearly rises faster for higher power in the gamma band
(high gampa/gnupa modification ratio). Error bars indicate 95% confidence
intervals; averaged over 100 trials.
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Supplementary Figure 3.1: Histogram of the power in the gamma
band over trials. (a) lower layer, (b) upper layer.

3.A Chapter appendix

3.A.1 Is phase distribution an artifact of measuring
phase?

Not all the trials have the same power at 60 Hz. Suppl. Fig. 3.1 shows a
histogram with the distribution of power of all the trials.

One concern was that the peak in the phase dependence stems from
this distribution, i.e., that trials with high gamma would lead to high
coherence and trials with low gamma to low coherence and that therefore
only trials with high gamma would contribute to the phase dependency
as shown in Fig. 3.7. This seems not to be the case. Suppl. Fig. 3.2a
and Suppl. Fig. 3.2b show the phase dependency for all trials with gamma
power below median and above median, respectively. In both cases, the
phase dependency is very similar to the original one.
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Supplementary Figure 3.2: TE as a function of the phase shift for high
and low gamma power. (a) Trials with gamma power below the median.
(b) Trials with gamma power above the median.

3.A.2 Transfer entropy dependence on connection weights

To check whether the measure of TE would give meaningful results in
the context of our network model, we measured the TE as a function of
the feedforward connection (Jy). If there is no connection between the
two pools, there is no flow of information and TE should be zero. If we
increase the connection strength, the signal can pass through to the second
pool and the TE should increase. In Suppl. Fig. 3.3 we plot TE against
the feedforward connection weights. As expected, for a zero feedforward
connection weight, the TE is zero and then increases as a function of the
feedforward connection weights.



3.A. CHAPTER APPENDIX 69

Transfer entropy
o o o o o
vow R O O
T | T | T | T | T | T | T

o
.

| | |
0.6 1.2 1.8
Forward connection weight

o

Supplementary Figure 3.3: Transfer entropy as a function of the feed-
forward connection weights. We plot the TE for four different weights J.
The data shown is for a simulation with a gupa/gnupa modification ratio
of 0.12.






Discussion

4.1 Neuronal correlates of attention

In the first part of this thesis, we study the underlying mechanisms of
neuronal correlates of visual attention by means of a computational frame-
work. We implement a minimal model of leaky integrate-and-fire neurons
that has global inhibition and is fully connected. Our network shows os-
cillations in the gamma frequency range. Whether there are oscillations
or not depends on the relative contributions of AMPA and NMDA medi-
ated currents (gampa/gnupa modification ratio). As Brunel & Wang (2003)
state, the properties of the firing rhythm are determined essentially by
the ratio of time scales of excitatory and inhibitory currents and by the
balance between the mean recurrent excitation and inhibition. Faster ex-
citation than inhibition, or a higher excitation/inhibition ratio, favors the
feedback loop and oscillations in the gamma range.

These oscillations appear only when the stimulus is present. If one
of the two types of input to the network is enhanced by an attentional
bias, the synchronization between spikes and the local field potential in
the gamma frequency band is enhanced. The increase in gamma frequency
oscillations is stable over a wide range of input. We find that, depending
on the gaupa/gnupa modification ratio, there is a range where the atten-
tional bias leads either to an increase in the firing rate or to an increase
in the gamma frequency band synchronization. About a possible origin of
this ratio in the brain we can only speculate. The gaypa/gnupa modifica-
tion ratio could be changed through slow synaptic plasticity or short-term
synaptic plasticity induced by the attentional input.

Rate modulation can occur without gamma modulation, but gamma
modulation never appears without rate modulation. However, the strength
of gamma modulation can vary independently of rate modulation, which
leads to the main finding of this study, namely that the two proposed
neural correlates of selective attention (increase in firing rate and increase
in gamma frequency synchronization) are not concomitant. Both seem to
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have a role of their own in the attentional process.

We also show that, after stimulus presentation, rates rise the quickest
when the gamma modulations are the strongest. This rise time can be
interpreted as a reaction time (RT) of the system to a stimulus under
attention. The RTs get shorter in the presence of gamma synchronization.
The main reason is that the probability to generate a postsynaptic spike
is higher if the presynaptic spikes arrive synchronously and therefore in
a more concentrated way in time (Salinas & Sejnowski, 2001). A more
theoretical explanation for this behavior can be found in the work of Deco
& Schiirmann (1999). They study a dynamical neural system that has
to discriminate different stimuli. They show that, if the discrimination
is tuned to maximal reliability in minimal time, the network responds
for different stimuli with different clusters of synchronized neurons. These
synchronizations can be tuned to 40 Hz. In other words, if the information
in spikes has to be maximal in minimal time, synchronization appears,
which is consistent with the energy-based arguments of Abeles (1982).
Synchronous firing generates spatiotemporal patterns in minimal time,
because its energy is concentrated in time.

Furthermore, the difference in the RT between the attended and the
unattended pool correlates with gamma modulation. This suggests that
the presence of gamma modulation is advantageous for the processing of
the attended stimulus. Altogether, we show that rate and gamma modu-
lation can vary independently, but to obtain an optimal information flow,
gamma synchronization is necessary and the gaupa/gnupa modification ra-
tio has to stay within a certain range. This sensibility has its origin in the
nature of the network and only experiments can show how sensitive the
real brain is to this ratio. Gamma modulation therefore seems to have an
essential behavioral relevance. This corresponds well with experimental
findings. Pesaran et al. (2002) have shown that pre-stimulus fluctuations
in visual gamma band synchronization predict the efficiency of detecting
a subsequent change in a visual stimulus. Womelsdorf et al. (2006) ana-
lyze how RTs are related to gamma band synchronization in visual areas.
They show that the behavioral response time to a stimulus change can
be predicted specifically by the degree of gamma band synchronization
among those neurons in monkeys’ V4 visual area that are activated by the
behaviorally relevant stimulus. In other words, trials leading to fast RTs
contain more gamma band power. Their results also indicate that this
increase in gamma band power is indeed an effect of selective attention
and not just a general increase in arousal. Our findings about the RTs
confirm this experimental result.

Extending our model to two layers, our results show that gamma fre-
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quency synchronization is higher in the upper layer (V4) than in the lower
layer (V1). We think that this is due to the fact that input to V1 is Pois-
sonian, but input to V4 comes from V1. As a one-layer network already
shows oscillations in the gamma range, the input to V4 is not Poisso-
nian any more but oscillating in the gamma range. This facilitates the
synchronization in V4. Moreover, we show that attentional modulations
are stronger in V4 than in V1. Our findings are thus consistent with an
increase of the gamma frequency modulation along the visual pathway.
Furthermore, if the gampa/gxupa modification ratio is different in the dif-
ferent layers and is high enough in the upper layer, the neurons in this
layer start to synchronize even when there is no or very little synchroniza-
tion in the lower layer. Together, this might explain why in experimental
work these modulations have been found in V4 (Fries et al., 2001), but
not in V1 (Roelfsema et al., 2004).

4.2 Communication through coherence

In the second part of this thesis, we study the hypothesis that interactions
among neuronal groups depend on neuronal synchronization. Recent re-
sults show that gamma band oscillations and especially the phase relation
in the gamma band can modify the strength of correlations in a network
and therefore influence the effective connections in it (Womelsdorf et al.,
2007). These effects could be used as a mechanism to connect and discon-
nect areas in a network without altering the physical connections. Here,
using a model network of IF neurons, we intend to test this hypothesis.
We demonstrate that also in a model network, the correlation between two
areas depends on the phase shift in the gamma band between these two
areas. Our modeling approach enables us to generate more data than in
an experiment and, therefore, to use a better statistical measure. Thus, we
use transfer entropy (TE), which has the advantage of being able to dis-
tinguish driving and responding elements in a network. We show that also
for TE there is an optimal phase shift between two neuronal groups, where
TE is highest. We study this phase dependence in different bands (beta
and gamma). Our results demonstrate that, in a network with strong beta
oscillations, TE depends on the phase shift in the beta band similarly to
the way TE depends on the phase shift in the gamma band in a network
with strong gamma oscillations. The ability to shape network connections
seems therefore not to depend on the frequency range and seems to be a
general mechanism. We also study how TE depends on power in a specific
frequency band. We do this here for the gamma band. For a fixed set
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of parameters, we sort the trials in a simulation according to their power
in the gamma band. We find that, within a simulation, the trials with
high gamma power have a high TE. Then we modify the parameters and
vary the gamma power over a wider range. Again, we find that TE in-
creases as a function of gamma power. Finally, we reveal that it is not only
the amount of exchanged information that increases but also the speed:
The higher the power in the gamma band, the earlier the onset of the
information flow.

Our results support the CTC hypothesis. If the effective connections
in a network are to be influenced by the phase lock in a specific frequency
band between two areas, it is important that it not only affects the coher-
ence between them, but also the throughput of information in a specific
direction. We achieve this by measuring TE, which is capable of detecting
directionality. This is an extension of the work by Womelsdorf et al. (2007)
who used the Spearman rank correlation, which is a symmetric measure
and therefore not capable of distinguishing between driving and respond-
ing elements in a network. Our result is also more general, as we use the
rates to measure TE and not only the 60 Hz power. Our study of different
frequency bands is a further extension. We provide evidence that the CTC
mechanism is not restricted to the gamma band, but also functions in dif-
ferent frequency bands. In addition, our modeling approach also enables
us to study how the information transport depends on the total power in
a specific frequency band. Our finding that TE increases as a function of
power suggests that both the phase and the power in a specific frequency
band are important to shape effective connections in a network. Based
on our modeling work, we make the prediction that the increase of TE
as a function of the power can also be found in experimental data. This
could easily be verified by sorting trials according to their power in the
gamma band. Furthermore, we demonstrate that the onset of information
exchange depends on the power, which contributes to effectively shaping
the connections in a network. In the previous section on attention (4.1),
we have already shown that gamma power increases the network effect of
an attentional bias and that it makes the network more efficient. Here, we
can confirm this finding and put it in a more general context, independent
of attention.
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4.3 Implications for visual information
transmission

As we are modeling results from visual cortical areas, we can assume that
the neuronal clusters in the model transmit largely visual information.
Our results indicate that gamma oscillations improve information trans-
mission in the visual system. These results are complemented by several
recent studies. Henrie & Shapley (2005) found that LFP power gradually
increases as a function of stimulus contrast and gamma band LFP power
increases differentially, that is, to a higher extent with respect to the base-
line than relative to either higher or lower bands. For the highest stimulus
contrast, these authors report a clear peak in the gamma frequency band.
In other words, the contrast dependence of the LFP is different in different
frequency bands and the LFP power spectrum changes shape depending
on contrast, with a peak in the gamma band emerging at high contrast.
Belitski et al. (2008) studied the encoding of naturalistic sensory stimuli
in LFPs and spikes. They found that the most informative LFP frequency
ranges were 1-8 Hz and 60-100 Hz. They showed that the LFP in the
60-100 Hz high gamma band showed little noise correlation during visual
stimulation but showed the highest observed signal correlation across all
LFP frequencies. The high gamma band also had the highest proportional
power increase during visual stimulation. These experimental results are
supported by the modeling work of Mazzoni et al. (2008). These authors
showed that their modeling network encoded static input spike rates into
gamma-range oscillations generated by inhibitory-excitatory neural inter-
actions. In sum, these reports indicate that the gamma frequency range is
the one used most frequently to encode visual information in the visual cor-
tex and that visual information is encoded by the power of gamma range
oscillations. These observations, together with our result that gamma os-
cillations increase both the overall amount and the speed of information
indicate that information about preferred stimuli is treated preferentially
and, in consequence, that cortical modules mostly exchange information
about their preferred stimuli.

4.4 Link to behavior

As described earlier, gamma, oscillations appear in a multitude of species,
brain areas and during very different tasks. But it has been and still
is very difficult to link these gamma oscillations to behavior. Our work
shows that gamma synchronization improves both the speed and amount
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of information transmission. The processing of sensory stimuli could then
be improved by these oscillations, by making it faster and more efficient
and enabling it to process weak stimuli. Altogether, on a very speculative
side, we argue that this does establish a link between neuronal oscillations
and behavior.

4.5 Outlook

4.5.1 Influence of input characteristics

Most experimental work showing oscillations in the visual system discussed
in this thesis use some form of moving gratings as input. It has been argued
that these oscillations are in part a consequence of the specific stimuli used,
and that with more naturalistic input these oscillations would not appear.
It is therefore important to understand the relation between the input and
its neuronal encoding. In recent experimental (Belitski et al., 2008) and
theoretical (Mazzoni et al., 2008) studies, it has been shown that static
input spike rates are encoded into gamma range oscillations generated by
inhibitory-excitatory neural interactions and slow dynamic features of the
input into slow LFP fluctuations.

In a future project, we plan to extend this work by studying how
the information transmission between two neuronal clusters depends on
stimulus features. One can for example study how the TE between phase
in a specific frequency band in one cluster and rates in the other cluster
depend on the different types of input, like constant input, oscillating
input or naturalistic input. We plan to use the LFP measured in the
lateral geniculate nucleus of macaque monkeys while they are exposed
to naturalistic movies. It is planned to study which frequency band will
control the effectiveness of information transmission, whether it is still the
gamma band (as with the artificial stimuli) or shifts to different frequency
bands.

4.5.2 Synaptic facilitation

The current theoretical framework of working memory holds that the de-
lay activity emerges either from intrinsic cell properties (Loewenstein &
Sompolinsky, 2003; Fransen et al., 2006) or as persistent reverberations in
selective neural populations, coding for different memories (Wang, 2001;
Brunel, 2003; Goldman et al., 2003; Machens et al., 2005). However, de-
lay activity can be very modest (Naya et al., 1996; Shafi et al., 2007) or
nonexistent. Working memory might therefore not reside entirely in the
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spiking activity. Furthermore, holding information in a spiking form is
energetically expensive because of high metabolic cost. Mongillo et al.
(2008) propose an alternative account, based on properties of excitatory
synaptic transmission in the prefrontal cortex. They propose that working
memory is sustained by calcium-mediated synaptic facilitation. Accumu-
lation of residual calcium in the presynaptic terminals could carry the
information about the recalled memory in a working form, reducing the
need for metabolically costly action potentials. However, not all encoun-
tered stimuli enter working memory, and which stimuli enter and which not
is probably mediated by attention. Given the relation between attention
and oscillations, this opens intriguing perspectives for studying the rela-
tion between synaptic facilitation and neuronal oscillations. In particular,
it would be interesting to study how synaptic facilitation affects neuronal
oscillations and how speed and amount of transferred information depend
on synaptic facilitation.

4.5.3 What controls the oscillations?

One fundamental question that remains to be answered is how oscillations
are actually controlled. One could argue that identifying oscillations as
being responsible for controlling communication between cortical areas is
effectively only pushing the problem of cortical communication one level
back, as there is still a mechanism required for controlling the oscillations.
In particular, it would be interesting to study what controls and establishes
the correlations. Thus, this is another issue which future research needs
to approach.

4.6 Summary

We have presented results that suggest that attention can modify firing
rates and neuronal oscillations independently, that information is pro-
cessed advantageously under attention if both rate and synchronization
modulation is present, and that both the amount and speed of informa-
tion transmission increases as a function of neuronal oscillations. There-
fore, oscillations are a plausible mechanism to effectively shape the flow of
information in a network. Our results thus support the CTC hypothesis.






Appendix

A.1 Theoretical framework (The neuronal basis
of attention)

As a description at the neural level, we use models of neurons with leaky
integrate-and-fire (IF) dynamics. We follow the model of Brunel & Wang
(2001). A leaky IF unit consists of a single membrane capacitance C,, for
integrating the charge delivered by synaptic input, a membrane resistance
R,,, accounting for leakage currents through the membrane and a fixed
voltage threshold Vi, for spike initiation. The membrane charges up to its
stationary value as long as the membrane potential stays below Viy,,. If it
reaches the threshold potential, an action potential is fired. All connected
neurons receive an input, the circuit is shunted for a refractory time period
Trefr and the membrane potential is reset to Vieset.

Synaptic currents are mediated by the excitatory receptors AMPA and
NMDA (activated by glutamate) and the inhibitory receptor GABA (ac-
tivated by GABA). There are two types of excitatory synapses. AMPA
and NMDA receptors have different time constants, AMPA decays very
fast (2 ms) while NMDA decays slowly (100 ms). The decay constant of
GABA (10 ms) lies in between the two. These decay constants determine
the oscillation frequency of the network (see below).

The network is organized in pools. Pools are created because different
parts of the network get different exposure to stimuli. Neurons in one
pool are defined by increased mutual connection strength and by the input
they receive. The synaptic efficacies are kept fixed through the simulation.
They are set consistent with a Hebbian rule: the synapse between two cells
is strong if they were active in a correlated manner in the past. Therefore,
cells within one pool have strong recurrent connections (w4) while the
connections between pools are weak (w_). Details for all the weights in
the network (w4, w_, wr, wy) are given below.

Our model, shown in Fig. 2.2 on p. 32, consists of two layers (corre-

79



80 APPENDIX A.

sponding to V1 and V4). Each layer consists of 800 pyramidal neurons
and 200 interneurons. These proportions are the ones observed in the cere-
bral cortex. The network is fully connected. Sparse connectivity has been
shown to increase mainly the noise in the network due to finite size effects
(Mattia & Giudice, 2002, 2004). As noise was not an explicit point of this
study, we used the simplification of all-to-all connectivity. Each layer is
subdivided into four pools. There are three pools of excitatory neurons
(the two selective pools and the nonspecific neurons) that are all connected
to one pool of inhibitory neurons. The selective pools are the ones that
receive the input, either externally (as in V1) or from the lower layer (as in
V4). They have strong recurrent connections (w4). The nonspecific pool
emulates the spontaneous activity in surrounding brain areas. Neurons in
the nonspecific pool are connected to the selective excitatory pools by a
feed forward connection of w, = (—fJr — fKy)/(1 —2f) 4+ w_ in layer V4
and w), = (—fJ; — fKf)/(1 —2f) 4+ w— in layer V1. (f is the fraction of
excitatory neurons in each selective pool, i.e., each selective pool contains
f - Ng neurons, Ng being the total number of excitatory neurons in the
network.) These connections normalize each layer so that the overall recur-
rent excitatory synaptic drive in the spontaneous state remains constant
as the external connections J¢, Ji, Ky and K}, are varied. The selective
pools (S1, S2, S1’, S2’) of the two layers are connected to each other.
Within one layer, this connection is given by w_ =1— f(wy —1)/(1 - f),
so that the overall recurrent excitatory drive in the spontaneous state re-
mains constant as w is varied. Between the layers, we take into account
that a stimulus that is a preferred one for S1 (S2) also provokes a strong
stimulation of S1’ (S2’). Therefore, the J connections are stronger than
the K connections (K, = c¢Jg, with ¢ = 0.1). The two selective pools in
layer V1 (S1, S2) encode two non-overlapping RF. The RFs in layer V4 are
larger, each covering the two selective pools in V1. By having overlapping
RFs, the competition in V4 is stronger than in V1. This is taken into
account by setting the inhibitions to wy =1 in V1 and w} = 1.35 in V4.
By having only one inhibitory pool per layer, each layer has global
inhibition. Deco & Rolls (2004) showed that in a model with biased com-
petition, inhibition has gradually increasing global character along the
visual pathway. As we implement only a minimal model in this study, we
use global inhibition directly. The more active the excitatory pools are, the
more active the inhibitory pool will be and consequently, excitatory pools
will compete. By introducing an external top-down bias, i.e., an increase
of excitatory input to the pool representing the attended stimulus, the
competition can be shifted in favor of a specific pool. This computational
model implements therefore the biased competition hypothesis. Deco and
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colleagues have shown that local competition of neurons between pools
combined with top-down biasing of this competition gives rise to a pro-
cess which can be identified with attentional filtering (Deco et al., 2002;
Szabo et al., 2004). This is in line with the biased-competition model of
attention by Chelazzi et al. (1993).

In our model of attention, we assume that the stimulus (14,) is passed
on to the modeled brain area V1 as a Poisson spike train of typically
250 Hz. The attentional bias (1}i,5) was modeled as a Poisson spike train
of typically 4 to 8 Hz, received only by the attended pool S1. In addition
to the recurrent connection, the network is exposed to an external current
(Vext), modeled as a Poisson spike train of 800 neurons, firing at 3 Hz.
This is consistent with the spontaneous activity observed in the cerebral
cortex.

In a network consisting of excitatory and inhibitory neurons with recur-
rent connections, oscillations are generated by a pyramidal-to-interneuron
loop (Brunel & Wang, 2003). This oscillation frequency depends on the rel-
ative time scales of the decay constants. Faster excitation than inhibition,
or a higher excitation/inhibition ratio favors the feedback loop and gives
rise to oscillations in the gamma range (Brunel & Wang, 2003). In our net-
work, oscillations are therefore generated by adjusting the conductances
Jamra a0d gyvpa. An increase of g,upa and a decrease of gyupa is equivalent
to an increase in the excitation/inhibition ratio and would increase oscilla-
tions. The conductances in our network are varied according to the follow-
ing rule: guupa = gnmpa(l—0) and gampa = gampa (14108). Throughout the
chapter, we will refer to the parameter § as the gaypa/gnupa modification
ratio. The factor 10 stems from the fact that near the firing threshold, the
ratio of NMDA:AMPA components becomes 10 in terms of charge entry,
as stated in Brunel & Wang (2001). Therefore, in order not to change
the spontaneous state, a decrease in gyupa is compensated by a tenfold
increase in gaypa. All recurrent conductances (both inhibitory and exci-
tatory) are changed according to these rules. The excitation/inhibition
ratio is adjusted so that the network only shows oscillations during the
stimulus presentation.

All simulations were initiated with a period of 1000 ms where no stim-
ulus was presented, followed by a period of 1000 ms composed of the
presentation of the stimuli and the attentional bias, followed by another
200 ms where no stimulus was presented. The evolution of spiking activity
was averaged over all the neurons in the pool and over 200 trials initialized
with different random seeds.

The mathematical details of the network and a table with the default
values for all the parameters can be found in appendices A.2 and A.3,
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respectively.

A.2 Mathematical description (The neuronal
basis of attention)

The membrane potentials of a neuron in the subthreshold regime is given

by:

v(y) V() -V
dt R,

C)y, is the membrane capacitance, R,, is the membrane resistance, Igyy,
are the synaptic currents and Vi, is the resting potential. The synap-
tic currents are the sum of the external current I.ypext driven by the
background noise veyt, the stimulus 14, and the attentional bias 1y;,s, the
recurrent excitatory currents Isypa rec and Iyupa and the inhibitory recur-
rent current Igapa:

Com = Loyn(?) (A1)

Isyn(t) = IAMPA,ext (t) + IAMPA,rec(t) + INMDA(t) + IGABA(t) (AQ)

Every current is of the form I = % and thus I = gV. They are defined
by:

Next

IAMPA,ext (t):gAMPA,eXt (V(t) - VE) S;MPA7eXt (t) (AS)
jfl

IAMPA,I‘ec(t):gAMPA,reC VE ng AMPA, rec (A4)

gNMDA (V( ) - VE NMDA
X (t) (A5
+ [Mg? ] exp (—0.062V (£)) /3.57 ij (4.5)

INMDA (t): 1

IGABA<t):gGABA VI ij GABA (A.G)

The g¢’s are the synaptic conductances, the s;’s the fractions of open chan-
nels and the w;’s the synaptic weights. Vg and V} are the reverse potentials
of the excitatory and inhibitory neurons, respectively, Next is the number
of neurons encoding the spontaneous activity in the cortex, Ny and Ny
are the numbers of excitatory and inhibitory neurons in the network. The
sum in each expression runs over all neurons, summing their open chan-
nels, weighted by the w;’s that implement the connection strengths be-
tween neurons, organizing them into pools. The NMDA synaptic current



A.3. PARAMETER SET (NEURONAL BASIS OF ATTENTION) 83

is dependent on the membrane potential and controlled by the extracellu-
lar concentration of [Mg2+]. Janpa,ext, Gamparec, Gnupa aNd goapa are the
receptor-specific conductances.

The fractions of open channels are given by:

dSAMPA,eXt (t) SAMPA ext
B A S _ 4k
= — 5 W, 25 <t ¢k ) (A7)
dséMPA,reC (t) SAMPA rec
M R A, 6(t—th A8
de T anpA + Z < > (A-8)
dsNMDA (t) SNMDA (t)
J _ J
= _W + ax;(t) (1 — S;IMDA(t)) (A.9)

dx({t(t) = Y g Z 5 (t—1t) (A.10)

TNMDA rise

dSGABA (t) SGABA

—— = —l—Z(S(t—tk) (A.11)

TaABA

Tampas Tampa,decay alld Tgapa are the decay times and Twupa rise i the rise
time for the corresponding synapses. The rise times of AMPA and GABA
currents are neglected, as they are typically very short (< 1 ms). The sums
over k represent a sum over spikes formulated as J-peaks (d(t)) emitted
by presynaptic neuron k at time t;‘?.

A.3 Default parameter set (The neuronal basis
of attention)

The default parameter set for the numerical simulations presented in chap-
ter 2 is listed in Table A.1.

A.4 Theoretical framework (Optimal
information transfer)

We use a model with leaky integrate-and-fire (IF) dynamics, following
Brunel & Wang (2001). Each IF unit charges up to its stationary value as
long as its membrane potential stays below a threshold. The membrane
potential V' (¢) is given by:

avit)

Cm dt

= =gm(V(t) = VL) = Lyyn (1), (A.12)
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Table A.1: The default parameter set used in the integrate-and-fire sim-

ulations.
Parameter Value Parameter Value
Cy, (excitatory) 0.5 nF Ve 0 mV
Cy, (inhibitory) 0.2 nF Vi —70 mV
f 0.10 Vi, —70 mV
Jampacxt (excitatory) 2.08 nS Vieset —55 mV
Jampaext (inhibitory) 1.62 nS Vibr —50 mV
Gampa rec (€xcitatory) 0.104 nS || wy 1.5
Jampa rec (inhibitory)  0.081 nS || wr 1.0
Jeapa (excitatory) 1.287 nS || w} 1.35
goasa (inhibitory) 1.002 nS || « 0.5 ms~!
Inupa (excitatory) 0.327 nS || vin 250 Hz
Inupa (inhibitory) 0.258 1S || Vbias 8 Hz
gm (excitatory) 25 nS Vext 2.4 kHz
gm (inhibitory) 20 nS TaMPA 2 ms
Jf 1.8 TaABA 10 ms
Ji 0.6 Tampa,decay 100 ms
Ng 800 TNMDA,rise 2 ms
Next 800 Trefr (€xcitatory) 2 ms
Ny 200 Trefr (inhibitory) 1 ms

(), is a membrane capacitance, g,, a membrane leak conductance, V;, a
resting potential and Iy, is the total synaptic current flowing into the cell.
When the membrane potential reaches the threshold potential, it sends
out a spike to all connected neurons and resets its membrane potential to
the reset potential. The circuit remains shunted for a refractory period.
Synaptic currents are mediated by excitatory (AMPA and NMDA) and
inhibitory (GABA) receptors. The total synaptic current is given by

Isyn (t) = IAMPA,ext + IAMPA,rec + INMDA + IGABA'

(A.13)
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The currents are defined as follows:

Next
IAMPA,ext (t):gAMPA,ext (V t) — VE) Z S?MPA’eXt (t) (A-14)
Lawpa rec(t)=gamparec (V () — Vi) Zw] PR (A.15)
graon (V (1) = Vo) -
INMD t)= A £ w;sHMPA(t A.16
A () 1+ [Mg?*] exp(—0.0GQV(t))/3.57 ]; 557 () (A16)
IGABA(t):gGABA VI Zw] GABA (A17)

g denotes the receptor specific synaptic conductances, s; the fractions of
open channels and the w; the synaptic weights. Vg and V; are the reversal
potentials of the excitatory and inhibitory neurons, respectively, Neyt is
the number of neurons encoding the spontaneous activity in the cortex,
and Ng and Ny are the numbers of excitatory and inhibitory neurons in
the network. The sum in each expression runs over all neurons, summing
their open channels, weighted by the synaptic weights that implement the
connection strengths between neurons. The NMDA synaptic current is
dependent on the membrane potential and controlled by the extracellular
concentration of [Mg”}.
The fractions of open channels are given by:

A" +Z§(t—tk> (A.18)
dt TamPA

A0 MTM< o) (219
T e e
o Sy o
o igan o

Tampa, Tnmpa,decay ald Tgapa are the decay times and Twuparise i the rise
time for the corresponding synapses. AMPA has a very short decay time



86 APPENDIX A.

(2 ms) while NMDA has a long one (100 ms) and the GABA decay time
lies in-between (10 ms). The rise times of AMPA and GABA currents
are neglected, as they are typically very short (< 1 ms). The sums over
k represent a sum over spikes formulated as d-peaks (0(t)) emitted by
presynaptic neuron k at time t?.

The equations are integrated using a fourth order Runge-Kutta method
with a time step of 0.02 ms. The network is organized in pools. Neurons
within a specific pool have stronger recurrent connections than neurons
between the pools. The intention of this work is to study cortical neural
interactions not limited to a specific brain area. However, as our simula-
tions needed to be directly comparable to Womelsdorf et al. (2007), and
have specific parameter sets, our network models two clusters of cortical
neurons in visual cortex V4.

The network model consists of two parts (Fig. 3.2 on p. 52). In each
part there are pools of excitatory and inhibitory neurons, with a total of
800 excitatory and 200 inhibitory neurons. The excitatory neurons are
subdivided into a selective pool and a non-selective pool. The neurons in
the selective pools (S,S’) are the ones that receive input either from out-
side or from the connected selective pool. The non-selective neurons (NS,
NS’) simulate the surrounding brain areas. Each population of excitatory
neurons is connected to a pool of inhibitory neurons (I, I’). This allows for
generating oscillations in each population separately. The two parts of the
network are connected via feedforward (J¢) and feedback (J) connections
that project onto the selective pools. The external input (v4,) is a Poisson
spike train that projects to the selective pool (S) of the first part of the
network. In addition to the recurrent connections, the network is exposed
to an external current (Vext), modeled as a Poisson spike train of 800 neu-
rons, firing at 3 Hz. This models the spontaneous activity observed in the
cerebral cortex. The network is fully connected.

Gamma oscillations in a network with excitatory and inhibitory neu-
rons are generated through a pyramidal-interneuron feedback loop (Traub
et al., 1997; Brunel & Wang, 2003). Pyramidal neurons excite interneurons
and interneurons in turn send inhibition back on pyramidal cells. The pop-
ulation frequency is determined by the sum of excitatory and inhibitory
lags. The recurrent excitatory connections tend to decrease the oscilla-
tion frequency (as compared to only excitatory-inhibitory and inhibitory-
excitatory connections) as they tend to prolong the positive phase in each
cycle. In our network we can therefore generate and control the oscillations
in the gamma frequency band by adjusting the AMPA and NMDA conduc-
tances. For example, increasing the g,yps and decreasing gyupa shifts the
balance in the network towards fast excitation (AMPA) and slow inhibi-
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tion (GABA) and thus increases the gamma frequency band oscillations.
The conductances in our network are varied according to the following
rule: gyupa = gnupa(l — 6) and gaupa = gamra (1 + 105). Throughout the
chapter, we will refer to the parameter § as the gaypa/gnupa modification
ratio. The factor 10 stems from the fact that near the firing threshold, the
ratio of NMDA:AMPA components becomes 10 in terms of charge entry,
as stated in Brunel & Wang (2001). Therefore, in order not to change the
spontaneous state, a decrease in gyypa 1S compensated by a tenfold increase
in gampa. All recurrent conductances (both inhibitory and excitatory) are
changed according to these rules. By adjusting the synaptic decay con-
stants, the oscillation frequency can be shifted into the beta band. The
crucial parameter i Tgapa. An increase of 7gaps slows down the rhythm
of the pyramidal-interneuronal loop and will therefore yield an oscillation
at a lower frequency. To generate oscillations in the beta range (around
20 Hz), we use Taypa = 1.5 ms and 7¢apa = 38 ms. To generate phase
shifts in the gamma oscillations between the two parts of the network,
we introduce a delay. The delay is set bidirectionally in the feedforward
and feedback connections of the selective pools. Each spike emitted in S
arrives at S’ after At and vice versa. This lag in spike transmission gen-
erates a phase lag in the oscillations. A delay of, e.g., 4 ms yields a phase
shift of about 90° in a 60 Hz oscillation. All trials are initiated with a
period of 400 ms in which no stimulus is presented, followed by a period of
5500 ms composed of the presentation of the stimulus, followed by 100 ms
in which no stimulus is present. Each simulation consists of 100 trials. All
parameter values are listed in Table A.2.

A.5 Default parameter set (Optimal
information transfer)

The default parameter set for the numerical simulations presented in chap-
ter 3 is listed in Table A.2.
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Table A.2: The default parameter set used in the integrate-and-fire sim-
ulations.

Parameter Value Parameter Value
Cy, (excitatory) 0.5 nF VL —70 mV
Cy, (inhibitory) 0.2 nF Vieset —55 mV
Gampa,ext (excitatory) 2.08 nS Vinr —50 mV
Gampa,ext (inhibitory)  1.62 nS wy 1.5
Gamparec (€xcitatory) 0.104 nS || wy 1.0
Gamparec (inhibitory) 0.081 nS || « 0.5 ms—!
Jeana (excitatory) 1.287 nS || vin 250 Hz
Jcasa (inhibitory) 1.002 nS || Vext 2.4 kHz
Inupa (€xcitatory) 0.327 nS || Tamea 2 ms
Inupa (inhibitory) 0.258 nS || Tampa (beta osc.) 1.5 ms
gm (excitatory) 25 nS TaABA 10 ms
gm (inhibitory) 20 nS Taasa (beta osc.) 38 ms
Jy 1.8 Tnmpa,decay 100 ms
Jk 0.6 TNMDA,rise 2 ms
Ng 800 Trefr (€XCitatory) 2 ms
Next 800 Trefr (inhibitory) 1 ms
N 200 At (delay) 4 ms

Vi 0 mV feedback/feedforward ratio 1/3

\%; —70 mV




List of Abbreviations

AMPA  a-amino-3-hydroxy-5-methyl-4-isoazoleproprionic acid
CTC communication through coherence
GABA ~y-aminobutyric acid
EPSP excitatory postsynaptic potential
IF integrate-and-fire
IPSP  inhibitory postsynaptic potential
LFP local field potential
MUA multi unit activity
NMDA N-methyl-D-aspartate acid
RF receptive field
RT reaction time
STA spike triggered average
SFC  spike field coherence
TE transfer entropy
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