
Markets with Frictions  

[Nota: La plantilla combina les fonts ARIAL per a la portada i el títol dels 

capítols (escrits en 

majúscules). Per a la resta del text es poden utilitzar les fonts Times New Roman  

o Garamond] 

Subtítol de la tesi [arial Opcional] [14 punts] 

 

Sandro Shelegia 

 

 

TESI DOCTORAL UPF / 2009 

 
 

DIRECTORS DE LA TESI 

Prof. Antonio Cabrales (Universtiat Carlos III, Departament 

d’Economia) i Prof. Andreu Mas-Colell (Departament 

d’Economia i Empresa) 

 

 



To my father

iii





Acknowledgments

First and foremost, I am greatly indebted to my advisor Antonio Cabrales,
for his thoughtful guidance at all stages of writing this thesis, and to co-
advisor Andreu Mas-Colell for his advices and encouragement. Both have
spent more time and effort than an advisee can hope for.

I am specially grateful to Karl Schlag for his continuous help and stimu-
lation of scientific discipline in me. His advices during the academic job
market were invaluable.

Over the years I have received many helpful comments and criticism from
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Abstract

This thesis consists of three chapters analyzing markets with frictions. In
the first two chapters frictions result from consumers not knowing all the
prices and searching for them. In the first chapter I study multiproduct
price competition in this environment. I find that consumer search induces
firms to negatively correlate prices of complements in order to rip-off con-
sumers who do not search enough. In the second chapter I study the
effects of consumer search on price competition when firms have different
marginal costs. I demonstrate that firms with different costs cannot charge
common prices in equilibrium. Due to this, the higher are the costs the
higher are the average prices charged by firms. In the third chapter fric-
tions emerge because firms do not have access to all the markets. I analyze
quantity competition following a capacity investment stage to show that
equilibrium capacity is larger than in a standard Cournot model because
of pro-competitive incentives in fragmented markets.

Resumen

Esta tesis consta de tres caṕıtulos en donde analizo mercados con fricciones.
En los dos primeros caṕıtulos, estas fricciones surgen debido a la carencia
información completa acerca de los precios por parte de los consumidores.
Puntualmente, en el primer caṕıtulo, estudio como se desarrolla la com-
petición de precio multiproducto en este tipo de ambiente. Encuentro que
la búsqueda por precios bajos por parte de los consumidores conlleva a que
las firmas fijen los precios de los productos complementarios de manera cor-
relativamente inversa. De esta manera, las firmas buscan incrementar sus
ganancias valiéndose de aquellos consumidores que no investigan lo sufi-
ciente. En el siguiente caṕıtulo analizo cuales son los efectos que genera la
búsqueda de mejores precios en la determinación de los mismos cuando las
firmas tienen diferentes costos marginales. Demuestro que firmas con difer-
entes estructuras de costos no pueden fijar los mismos precios en equilibrio.
Debido a esto, mayores costos conllevan a mayores precios promedios. Fi-
nalmente, en el tercer caṕıtulo, las fricciones emergen debido a que las
firmas no tienen acceso a todos los mercados. Analizo la competición en
cantidades que se desarrolla luego de la etapa de inversión en capacidad
productiva. Demuestro que la capacidad productiva es mayor que la gener-
ada en un modelo Cournot estándar debido los incentivos pro-competitivos
presentes en los mercados fragmentados.
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Foreword

This dissertation is a collection of three essays that analyze various aspects
of fragmented markets. My efforts on this topic are the result of the
conviction that traditional models of competition, which assume that all
firms have access to the same market and compete for all the consumers
there, is inadequate for many purposes. Market fragmentation can arise
for several reasons. Often consumers do not have easy access to all the
firms and confine themselves to visiting only a few before making their
purchases. Sometimes firms themselves cannot access markets due to lack
of licenses, distribution networks etc. Once the market in the traditional
sense has been separated into smaller and interconnected markets many
conventional rules as fundamental as the “law of one price” can fail.

All three chapters that form this thesis are written with this consid-
eration in mind. In the first two chapters I analyze traditional pricing
situations under market fragmentation. These two chapters are closely
related to each other due to the shared assumption on the consumer be-
havior. I assume that consumers do not know all the prices charged by
firms in the market and conduct costly search for the best prices.1 Search
for the best price, or rather lack of one, gives firms market power even if
the products they sell are assumed to be undifferentiated. The last chapter
is somewhat different from the previous two because I assume that it is
the firms who do not have access to all the markets. In effect, firms end up
competing only with those who serve the markets they serve themselves
but still remain in interaction with all others through indirect competition.
From here I proceed to a more detailed account of each chapter.

As mentioned above, in the first chapter consumers search for the best
prices in the market and in doing so incur search costs. This process
inevitably leads to a situation where some consumers visit several shops
while others visit only one, giving ground for firms to price above marginal
costs. Multiproduct pricing is a textbook matter if consumers have access
to only one firm (monopolist) or to all the firms. In the former case
pricing depends on the relationship between the two goods, while in the
latter firms are forced to price each good at marginal cost regardless of
the nature of their interrelation. In the first chapter I study implications

1Diamond (1971) was one of the first to point out that even negligible search costs can
lead to paradoxical equilibrium outcomes.
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for pricing of multiple goods when demand for these goods is dependent.
Price competition between firms emerges because of the consumers who are
willing to search for the lowest price in the market, thus forcing retailers
to undercut each other’s prices, while it is softened by consumers who buy
from a randomly chosen firm. When firms are induced to frequently change
prices (or hold sales) due to price seeking consumers, the interdependency
between products becomes an immediate concern if contemplating such
changes, providing a link to monopolist pricing.

To study this phenomenon I build a model of price competition between
retailers that all sell two interdependent but homogeneous products. I con-
sider the full range of interdependency between the two products from per-
fect complementarity to independent valuations to perfect substitutability.
The informational frictions are introduced by assuming two types of con-
sumers - captives, who visit only one retailer, and shoppers who visit two
and buy each good at the lowest price. I show that in equilibrium re-
tailers will use mixed strategies for both prices leading to price dispersion
in the market. The dichotomy between complements and substitutes is
particularly noteworthy: if the goods are complements their prices within
every shop will be negatively correlated, while if they are substitutes or
independently valued, the prices will be uncorrelated.

Negative correlation between prices of complements has its roots in the
monopoly pricing. When facing consumers who want to buy two comple-
ments a monopolist is willing to charge any price combination such that
the sum of prices is equal to the highest price consumers are willing to pay
for the two goods together. When firms are competing for some consumers
but hold a monopoly position with respect to others they offer price combi-
nations with a sum close to the desired monopoly level but vary individual
prices to attract the price sensitive consumers. In effect, prices move in
opposite directions leading to negative correlation.

In addition to the previous result I demonstrate that product comple-
mentarity has an interesting implication for the profitability of retailers.
It turns out that when the two goods are complements, the multiproduct
offering allows retailers to jointly discriminate between captives and shop-
pers. When retailers are selling two complements, they can keep the sum
of the two prices constant at the joint reservation price of the two goods
(ensuring that the profits earned from captives are maximized) while low-
ering one of the prices and thus engaging aggressively in price competition
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for shoppers. This practice yields higher profits than selling one composite
good because it allows selling one of the complements to shoppers even
though the sum of the two prices is kept at the monopoly level. The first
chapter provides a number additional insights into pricing of substitutes,
product bundling and some other issues that are described in detail there.

In the second chapter I take the same search environment to study
price competition in a single good when firms have different marginal costs.
Pricing under marginal cost heterogeneity is of great empirical relevance
yet is largely understudied. The main contribution of this chapter is to
identify a simple equilibrium regularity. I prove that in an equilibrium in
which expected demand is equal over a range of prices for two firms with
different marginal costs then at most one of these prices can be charged by
both. This statement concerns equilibrium demand that generally depends
not only on consumer behavior but also on the strategies chosen by other
firms. The purpose of this argument is to facilitate finding equilibrium
strategies so the fact that this statement involves expected demand that
depends on these strategies makes its application nontrivial. Fortunately,
several widely used consumer search frameworks allow such application
that, in turn, allows to solve the asymmetric generalization relatively easily.

In the second chapter I apply the above mentioned requirement on equi-
librium prices to the “clearinghouse” model from Varian (1980) and the
“nonsequential search” model from Burdett and Judd (1983). Both mod-
els are originally solved for symmetric equilibrium with identical firms. I
demonstrate that there is a certain discontinuity in the symmetric equi-
librium. Even if firms have slightly different marginal costs in equilibrium
they adopt disjoint pricing strategies. By definition, disjoint price distri-
butions cannot converge to the same symmetric mixed strategy even when
heterogeneity disappears in the limit.

The empirical relevance of this chapter is rather immediate. My results
confirm an obervation by Salop (1979) that most efficient firms will gen-
erally have larger market shares. In equilibrium of the two models that I
generalize more efficient firms tend to charge lower prices and obtain larger
market shares. If consumers who visit one firm can identify firms by their
marginal costs (and thus expected price levels) and gradually migrate to
the ones that charge lowest prices, the more efficient firms will gain even
larger market shares in equilibrium. As expected, migration of loyal con-
sumers towards more efficient firms equates average prices across the firms
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in equilibrium. This result can help identify marginal cost heterogeneity
when product quality across firms is different. Unlike cost heterogene-
ity, quality differentials translate into long-term price differentials between
firms.

The last chapter differs considerably from the previous two in the nature
of fragmentation considered there. Unlike before, in the last part of my
thesis it is the firms who do not have full access to all the existing markets.
This in itself, as long as two or more firms access each market, has no
substantial consequence for price or quantity competition. In the former
case firms in each market will have to price at marginal cost while in
the latter case the actions of firms in each market will be independent of
competitive conditions in other markets. What is shown though is that
such a market structure will be pivotal for determination of production
capacities prior to the competition stage.

Until now, capacity building prior to quantity competition has solely
been considered under full market access. Under this scenario simultaneous
capacity building is of no interest as it results in a model where costs of
production are incurred on two stages but actual outcome only depended
on the sum of the two costs and not on their timing. As a result, most
of the literature has concentrated on sequential capacity building in the
context of entry deterrence. We relax the assumption of full market access
and show that even with simultaneous capacity building the model has
non-trivial implications.

I model the idea of partial market access by assuming that firms are
located on a circle with markets located in between firms. Firms are as-
sumed to have access only to the two neighboring markets. In the first
stage firms simultaneously choose how many units of capacity to build at
a constant marginal cost. In the second stage, after having observed all
others’ capacities, each firm decides how many units of the final good to
produce (at a constant marginal cost of production) within its capacity
and how to allocate this quantity between the two markets that the firm
supplies to. The price in each market is then determined by the sum of
the two quantities supplied to the market by the two neighboring firms.

The most important result of this chapter is that even though there is
no unused capacity in the second stage of competition, the level of capacity
built is larger than what would have prevailed if the pairs of firms competed
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only in one market. If the latter holds then firms have no other destina-
tion for their production so observing that one’s competitor has built a
larger capacity than was expected cannot force the firm to redirect its own
production elsewhere. This is not true in the model of this chapter. If a
firm builds two additional units of capacity on the first stage, it commits
to suppling one more unit to each market it serves and thus will induce
its competitors to supply less to the affected markets. In effect, firms
have a Stackelberg leader’s incentive to overproduce capacity even though
they do not have the first-mover advantage. As a result, marginal revenue
generated by one more unit of capacity will be larger than marginal rev-
enue from one more unit shipped to a market in the second stage and will
induce overcapacity relative to a standard Cournot model. I argue that
this result holds for any symmetric market structures including all regu-
lar networks provided that all firms have identical marginal costs. Even
more importantly, this insight has a potential to be applied to a very gen-
eral class of fragmented markets and change the state of discourse on the
anti-competative nature of irreversible capacity investments.

xiii





CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Multiproduct Pricing in Oligopoly 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

a Assumptions . . . . . . . . . . . . . . . . . . . . . . 5
b Consumer Behavior and Monopolist . . . . . . . . . 6

1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
a Complements . . . . . . . . . . . . . . . . . . . . . . 8

a.1 Strong Complements . . . . . . . . . . . . 11
a.2 Weak Complements . . . . . . . . . . . . . 16
a.3 Intermediate Complements . . . . . . . . . 18

b Substitutes . . . . . . . . . . . . . . . . . . . . . . . 20
b.1 Weak Substitutes . . . . . . . . . . . . . . 20
b.2 Intermediate Substitutes . . . . . . . . . . 22
b.3 Strong Substitutes . . . . . . . . . . . . . . 25

1.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
a Bundling . . . . . . . . . . . . . . . . . . . . . . . . 26
b Generalization to n Firms . . . . . . . . . . . . . . . 31

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Heterogeneous Price Dispersion 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Clearinghouse Model . . . . . . . . . . . . . . . . . . . . . . 42

a Consumers and Firms . . . . . . . . . . . . . . . . . 42
b Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 43

b.1 Several Type One Firms . . . . . . . . . . 46
b.2 Single Type One Firm . . . . . . . . . . . . 47

c Endogenous Allocation of the Captive Consumers . 49
2.5 Nonsequential Search Model . . . . . . . . . . . . . . . . . . 50

a Consumers and Firms . . . . . . . . . . . . . . . . . 50
b Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xv



3 Is a Competitor of My Competitor Also My Competitor? 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Identical Firms . . . . . . . . . . . . . . . . . . . . . . . . . 64

a Identical Firms and Linear Demand . . . . . . . . . 69
3.4 Asymmetric Firms and Linear Demand . . . . . . . . . . . 71
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

Appendix 79

xvi



1 MULTIPRODUCT PRICING IN
OLIGOPOLY

1.1 Introduction

Traditionally, a vast majority of goods are delivered to final consumers
through retail stores. While small retailers could carry hundreds of items,
the largest ones like Fnac or Tesco offer tens of thousands of goods for
sale. Managers of such stores make pricing decisions for many products
bearing in mind that the price of nearly any of them has an impact on the
demand for its substitutes and complements. Furthermore, these pricing
decisions are often taken in the context of competition with other retailers
selling similar products. Price competition emerges due to consumers who
are willing to search for the lowest price in the market thus forcing retail-
ers to undercut each other’s prices while it is softened by those consumers
who do not observe all the prices in the market and shop randomly. It
has been shown by Varian (1980) and many others in the one-good setting
that such consumer behavior leads to price randomization in equilibrium.1

When firms are induced to frequently change prices due to the consumer
search, the interdependency between products becomes an immediate con-
cern when contemplating such changes.2 It is such environment, charac-
terized by price competition and dependent demands across goods, that
appears to be shaping retail pricing decisions. However, most of the previ-
ous literature on multiproduct pricing has either analyzed pricing strategy
of a monopolist selling interdependent goods (Venkatesh and Kamakura
(2003)) or competition with independent goods (Lal and Matutes (1989),
McAfee (1995)).

This paper builds a model of price competition between retailers that
all sell two interdependent but homogeneous products. We consider the
full range of interdependency between the two products from perfect com-
plementarity to independent valuations to perfect substitutability. The
information frictions are introduced by assuming two types of consumers
- captives, who visit only one retailer and shoppers who visit two and

1For one-good models with information frictions see Diamond (1971), Salop and Stiglitz
(1977) and Stahl, II (1989) among others.

2Hosken and Reiffen (2004) estimate that temporary price discounts account for 20%
to 50% of the annual variation in retail prices for most product categories in the United
States.
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buy each good at the lowest price. We show that, in the static Nash
Equilibrium, retailers use mixed strategies for both prices leading to price
dispersion in the market. The dichotomy between complements and sub-
stitutes is particularly noteworthy: if the goods are complements their
prices within every shop will be negatively correlated, while if they are
substitutes or independently valued, the prices will be uncorrelated.

The reason for the negative correlation is that if a price of one of the
two complements is at its highest equilibrium level then this good is never
sold to shoppers because some other retailer is surely setting a lower price.
If so, the retailer will want to increase this price further until even captive
consumers are about to stop buying the good. While doing so, the retailer
has the incentive to combine the highest price for the first good with a
relatively low price for the other to be able to increase the former as much
as possible and yet sell both goods. Such reasoning leads to negative
relationship between prices of complements.

Empirical literature has documented negative relationship between the
prices of complementary goods within shops which would be hard to ac-
count for with deterministic pricing subject to demand or supply shocks.
Van den Poel, Schamphelaereb and Wets (2004) have analyzed consumer
decisions based on their baskets of purchases in a large do-it-yourself re-
tailer and found that simultaneous large discounts on two complementary
products occur rarely. This is precisely what our model predicts - when
one of the complements is at a discount the other one is priced high. Even
before disintegrated data on purchases became available, there has been a
consensus in the empirical marketing literature that if one of the comple-
mentary goods is on sale the other ones are unlikely to be at a discount as
well (Mulhern and Leone (1991) and Mulhern and Padgett (1995)). In fact,
this view is so well accepted that Van den Poel et al. (2004) proceed to
asking what would have happened if, unorthodoxly, prices of complements
were reduced simultaneously? Theoretical justification for this negative
relationship, until now, has been grounded in the monopoly paradigm: if
a store lowers the price for one of the goods the profit-maximizing price
for the other rises as the demand for it increases. As a result, having both
goods on sale cannot be optimal. It is not obvious why, in the first place,
a monopolist would lower one of the prices from its optimal monopoly
level. One would imagine that, in equilibrium, all observed prices should
give equal expected profits so, unless one explicitly models multiproduct
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competition, the relationship between prices of complements is a priori
ambiguous.

Product complementarity has an interesting implication for the prof-
itability of retailers. It turns out that when the two goods are comple-
ments, the multiproduct offering allows retailers to jointly discriminate
between captives and shoppers. In the one-good version of this model
(Burdett and Judd (1983)) retailers are setting only one price so when
lowering it to attract shoppers they also lose the guaranteed profits they
could have earned from captives. In contast, if the retailers are selling two
complements, they can keep the sum of the two prices constant at the joint
reservation price of the two goods (ensuring that the profits earned from
captives are maximized) and lower one of the prices, engaging aggressively
in price competition for shoppers. This practice yields higher profits than
selling one composite good because it allows selling one of the complements
to shoppers even if the sum of the two prices is kept at the monopoly level.

The rational behind no correlation between the prices of substitutes
is that unless the substitutability is near perfect, in which case retailers
abandon the less valued good, retailers still want to sell both substitutes.
In order to do so, they have to keep both prices low because the two goods,
as substitutes, “compete” with each other. When prices are capped in this
way even the highest price ever charged for one of the substitutes can be
combined with any price for the other one and, nevertheless, lead to selling
both goods. As a result, there is no need to take into account the price
of one of the substitutes when pricing the other. The lack of correlation
between prices of substitutes does not imply that their prices are chosen as
if retailers were selling only one of them. Quite to the contrary, equilibrium
price ranges and distributions are determined by the characteristics of
the entire product assortment, it is just that in equilibrium there is no
correlation between the prices chosen from these distributions. To the best
of our knowledge, in the literature, there are no stylized empirical facts on
co-pricing of substitutes in a competitive environment. To a certain degree
our model rationalizes this absence by predicting no correlation between
the prices of substitutes.

We also demonstrate that the kind of joint discrimination that was
possible with complements is not feasible if the two goods are substitutes.
Substitutes compete with each other so a retailer cannot keep the sum of
their prices high and decrease one of them to attract shoppers because
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by doing so she induces captives to buy only the cheaper good. Not only
are retailers incapable of earning additional profits through discriminating
between the two groups of consumers, but they also earn lower profits than
in the one-good model. When the consumers have to buy a bundled good
retailers do not have to take into account the competition between the
two substitutes within their store and are able to earn higher profits. This
reasoning is unrelated to the nature of competition and is also applicable
to a monopolist.

Finally, this paper is the first to point out that bundling can play an
important role in the multiproduct competition even if consumers have
identical tastes and thus price discrimination through bundling among
such consumers is not of interest. We show that price randomization by
competitors creates a novel incentive to bundle goods, a consideration that
has been overlooked by the previous literature.

Sequential Search Literature

As noted in the introduction, prior literature on multiproduct price com-
petition has concerned itself with independent goods. While several au-
thors worked on models with horizontally differentiated retailers (Lal and
Matutes (1989), Matutes and Regibeau (1992)), others have analyzed mul-
tiproduct competition in homogeneous goods under some form of sequen-
tial price search. Our work is closest to the latter group in that, under
product homogeneity, sequential search induces price randomization. Bur-
dett and Malueg (1981) were the first to look at consumer behavior (with a
fixed and exogenously given market price distribution) under a sequential
skim with multiple products. In a generalization of the concept of reser-
vation price used in one-good sequential search models, they introduce a
concept of “acceptance set” that serves a similar purpose. Namely, price
vectors in the acceptance set preclude further search. McAfee (1995) in-
troduces competition, and thus market price distribution choice, into the
Burdett and Judd (1983) noisy search model.3 The author shows that, in
addition to an equilibrium which is largely a n-good version of a one-good
equilibrium, for certain parameter values there is a continuum of equilibria
where prices within every shop are highly dependent. McAfee finds that

3In the noisy search model Burdett and Judd (1983) assume that consumers incur a
cost for sampling a random number of firms where probability of obtaining a sample of
size n is exogenously given.
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under certain conditions there always exist a continuum of equilibria where
the prices are set at the frontier of the acceptance set. In a striking re-
semblance to our results, McAfee shows that in such equilibria the highest
price for one of the goods is always charged along with the lowest prices for
all other goods. This result is driven by the sequential search procedure
and does not apply to models, including the one presented here, where
consumers cannot pay to get additional information. If consumers do not
search sequentially then the prices of independent goods are evaluated
against willingness to pay and co-pricing motive disappears completely.
To show this we demonstrate that in our model with independent goods
the unique marginal distribution for the price of each good is that of the
one-good model. In our setting incentives to co-price emerge only if we
introduce complementarity between the two goods. One could only hy-
pothesize about the effect of sequential search in our model but it is clear
outright that negative relationship between the prices of complements can
only be strengthened by sequential search assumption.

The rest of the paper is organized as follows: in Section 2 we specify the
model and analyze optimal behavior of the consumers and a hypothetical
monopolist, in Section 3 we solve the oligopoly model for all the cases, in
Section 4 we provide discussion of some extensions of the main model and
in Section 5 we conclude.

1.2 The Model

a Assumptions

Consider a market with two retailers selling two homogeneous goods la-
beled a and b. The marginal cost of production of both goods is assumed
to be zero. There is a continuum of consumers who have identical tastes
and their mass per retailer is normalized to one. The consumers demand
exactly one unit of each good and the triplet {va, vb, vab} describes their
reservation prices for one unit of good a, one unit of good b and one unit
of each good consumed together. We will assume that consumers get util-
ity of zero if they do not consume anything and can freely dispose the
goods they own so vab ≥ max(va, vb). The triplet of unit valuations de-
scribes the entire possible set of demand interrelations between the two
goods. If va = vb = 0 then good a and good b are perfect complements, if
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va + vb = vab they have independent valuations, and if vab = va = vb then
they are perfect substitutes. We allow the two goods to be asymmetric
and without loss of generality we assume that:

Assumption 1.1. vb ≥ va.

While identical in tastes, consumers differ in their shopping behavior
and come in two types: proportion θ of the consumers visits only one
retailer at random (we refer to these consumers as captives) while the
rest of the consumers (proportion 1 − θ) visit both retailers (shoppers).4

Shoppers can buy each good at the lowest price they observe without
paying any extra transportation cost if they choose to buy the goods at
different shops.5 If two retailers charge the same price for a good shoppers
are equally likely to purchase from either of them.

Finally, in order to simplify the treatment of border cases we assume
that:

Assumption 1.2. In the event of indifference the consumers respect the
following order: buy both goods, buy only good b, buy only good a and do
not buy anything.

Firms compete by setting prices for the two goods simultaneously and
we use static Nash Equilibrium as the solution method. We assume that
the retailers will not, in addition, set a separate price for a bundle of the
two goods. The implications for the model when the retailers are allowed
to bundle the two goods are discussed in Section a.

b Consumer Behavior and Monopolist

Since each retailer has monopoly power through captive consumers, the
strategies employed in the oligopolistic equilibrium depend on the pricing
behavior of a hyphotetical monopolist facing captive consumers. Before
proceeding to solving the oligopoly model we will illustrate the optimal
behavior of consumers facing any price pair and, subsequently, the profit-
maximizing strategy of the monopolist. This section will demonstrate that
the pricing by the monopolist is fundamentally different depending on

4In this model θ is given exogenously but it can be endogenized as in Burdett and
Judd (1983) fixed sample search model.

5This amounts to requiring free recall by shoppers, an assumption widely used in the
consumer search literature.
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whether the two goods are substitutes or complements and so we shall
solve the oligopoly model for these two cases separately.

Assume a consumer can buy the goods at a price pair (pa, pb). For a
captive consumer this pair is the one charged by the only retailer she visits
while for a shopper each price is the minimum between the prices of each
good from the two retailers. The consumer has a choice of buying both
goods, only good a, only good b and none at all, and gets a surplus of
vab − pa − pb, va − pa, vb − pb and 0, respectively.

The consumer will buy both goods if and only if:

vab ≥ pa + pb (1.1)

vab ≥ pa + vb (1.2)

vab ≥ pb + va. (1.3)

She will buy only good i if vi ≥ pi, vi − vj ≥ pi − pj and vab − vi ≤ pj

hold at the same time (when used along i, subscript j denotes the other
good). Figure 1.1 illustrates the consumer choices depending on the prices
and the relation between vab and va + vb.

←
pb

vb

pavavab − vb

vab − va

0

x1

x2

x3

pa + pb = vab

x3

pb

vb

pava vab − vb

vab − va

0

x2

x1

pa + pb = vab

←

a) b)

b

a

a + b
a + b

b

a

Figure 1.1: Consumer choice when the goods are a) substitutes and b)
complements. Labels a, b and a + b indicate the price pairs such that
consumers buy only good a, only good b and both goods, respectively.
These areas are delimited with solid lines.

If the two goods are complements the most the monopolist can earn
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when selling both good a and good b is vab. In this case Inequality 1.1 is
binding so she can charge any point on the line connecting x2 and x3 in
Figure 1.1 b). It is easy to see that this pricing is only feasible when the
goods are complements. Figure 1.1 a) shows that if vab = pa + pb then
consumers will not buy the two substitutes together, hence the monopolist
is unable to earn vab. When the monopolist aims to sell both substitutes
Inequalities 1.2 and 1.3 bind and she earns 2vab−va−vb < vab by charging
the price pair x1. The inability to earn vab is the result of substitutability
between the goods. When good a and good b are substitutes they effec-
tively compete with each other not allowing the monopolist to extract their
joint value from the consumer.6 It needs to be noted that under unit de-
mands price of one of the substitutes does not affect the profit maximizing
price for the other, an artifact that seems to drive the lack of co-pricing in
the case of substitutes.

If the monopolist sells only one of the substitutes then she should sell
good b (recall Assumption 1.1). She will charge pb = vb and any pa ≥ va

to do so and will earn vb. Hence, if 2vab−va−vb < vb ⇐⇒ vab < vb+ 1
2va

the monopolist will choose to sell only b, otherwise she will sell both goods.

Having verified the pricing by the monopolist we turn to our oligopolis-
tic model. We will consider complements and substitutes separately as
suggested by the analysis of this section.

1.3 Equilibrium

a Complements

In this section we assume that vab > va + vb. Previously, we have demon-
strated that in this case the monopolist will charge a pair of prices such that
their sum is equal to vab (e.g. pa = va and pb = vab−va). The competition
will force the retailers to undercut each other from the monopoly prices.
This pressure on prices is downwards so the retailers will nevertheless sell
both goods to captives in equilibrium.

Lemma 1.1. When the goods are complements, in equilibrium retailers
set such prices that captives always buy both goods, that is, Inequalities

6In Section a we discuss the implications for the behavior of the monopolist if she can
bundle substitutes. It is shown that the monopolist can sell both goods and still earn vab

if she refuses to sell the goods separately.
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1.1-1.3 hold.

Proof. Assume the opposite. For simplicity assume that good a is the one
that captives do not buy. It should be clear that shoppers will not buy any
good that captives do not buy so the retailer will not sell good a at all. If
that is so, the retailer can lower the price of good a to a level such that
it is still positive and captives buy both goods, a strategy that increases
profits. In terms of Figure 1.1, good b is the only good sold if the price
vector is in region b. For any point in this region the retailer can fix the
price of good b and lower the price of good a before the price pair is in the
region a + b. By doing so the retailer will increase her profit because she
will be selling good a at a price vab − vb > 0. More formally good b is the
only good sold to captives iff all of the following are true:

vab − vb < pa

vb − va + pa ≥ pb
vb ≥ pb.

Let the retailer, instead of pa, charge p̂a = vab − vb. One can show that
at (p̂a, pb) captive consumers will buy both goods and p̂a + pb > pb so
the profit earned from captives will increase. Shoppers were not buying
good a before and by lowering its price the profit earned from them cannot
decrease.

Once we have verified that firms never charge prices that do not attract
consumers we can move to characterizing the equilibrium pricing strategies.
First we demonstrate that, in analogy to the one-good models of price
dispersion, equilibrium distributions of both prices will be atomless and
gapless, defined over a closed and connected support.

Lemma 1.2. In equilibrium, pi (i = a, b) will be randomized according to
the continuous distribution function Fi(pi) defined over the interval [p

i
, pi].

The reason why there are no atoms in the equilibrium distributions is
clear: if some price was charged with a strictly positive probability, there
would be a positive probability of a tie at that price and all retailers would
have incentive to charge a slightly lower price with the same probability as
the old one and serve all shoppers in the case of a tie by others. Moreover,
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there will be no gaps in the equilibrium price distributions. This is because
charging the price at the lower edge of the gap attracts shoppers with the
same probability as charging the price at the upper edge of the gap does
but the latter price yields higher profits.

Proof. See proofs of Lemmas 3 and 8 from Varian (1980).

Next we will argue that charging any pi along with pj such that both
goods are sold to captive will give the same expected profits earned from
selling i.

Lemma 1.3. Expected profits earned from selling good i when charging
any pi ∈ [p

i
, pi] are constant for all such pi and are independent from the

price charged for good j.

Proof. See Appendix.

Now we proceed to identifying Fi in the equilibrium. We know that
due to the fact that Fi is atomless, if any retailer is charging pi for good
i then she will not sell i to shoppers because other retailers will charge a
lower price for it with probability one. Hence, she should increase pi until
captive consumers are indifferent between buying the two goods and either
buying only good j or not buying anything at all. Formally,

pi = max{pi | vab − vj ≥ pi and vab − pj ≥ pi}. (1.4)

Using the last expression and Lemma 1.3 we conclude that the highest
price for i will be charged along with the lowest price for good j when
p
j
≥ vj . If p

j
< vj then pi will be charged along with some pj ≤ vj and

will be equal to vab − vj .

Lemma 1.4. If p
j
≥ vj then pi will be charged along with p

j
and their

sum will be equal to vab.

Proof. Assume the opposite so that a pair (pi, p̂j) is charged such that
p̂j > p

j
when p

j
≥ vj . The last two inequalities combined imply p̂j > vj .

In the maximization problem in Equation 1.4 the second restriction will
bind so pi = vab−p̂j . But then, the retailer can charge the pair (vab−pj , pj)
and earn higher profits on i without changing the profits earned on j

10



(Lemma 1.3). From the last argument it follows that if p
j
≥ vj then

pi = vab − pj .

If the highest price of good i is restricted by the price of good j (in the
sense of Equation 1.4) a retailer should always choose the lowest price for
j in order to increase the highest price for i as much as possible.

Now consider the case when p
j
≤ vj . It should be clear that because the

retailer wants to increase pi as much as possible she should always charge
pi with some pj ≤ vj so because of Equation 1.4 we have pi = vab − vj .

Lemma 1.5. If p
j
≤ vj then pi is always charged along with some pj ≤ vj

and pi = vab − vj.

Proof. Assume the opposite so that a retailer charges pi with some p̂j > vj

in equilibrium. We know that pi + p̂j ≤ vab so vab − vj > pi. In this case
the retailer can increase her profits by charging a price pair (vab − vj , vj)
instead. By doing so she will earn the same profits from selling good j

(Lemma 1.3) but will earn strictly higher profits from selling good i, a
contradiction.

Lemmas 1.4 and 1.5 imply that there are four possible cases when good
a and good b are complements:

1. p
a
≥ va and p

b
≥ vb =⇒ pa = vab − pb and pb = vab − pa. In this

case we refer to good a and good b as Strong Complements.

2. p
a
≤ va and p

b
≤ vb =⇒ pa = vab − vb and pb = vab − va. Weak

Complements.

3. p
a
> va and p

b
< vb =⇒ pa = vab−vb and pb = vab−pa. Intermediate

Complements.

4. p
a
< va and p

b
> vb =⇒ pa = vab−pb and pb = vab−va. Intermediate

Complements II, is impossible due to Assumption 1.1.

Next we will consider each case separately.

a.1 Strong Complements

In this case p
b
≥ vb and p

a
≥ va. We will demonstrate that these two

inequalities hold only if the complementarity is strong enough (i.e. vab
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is large enough with respect to va + vb), hence the name for the case.
When vab is large, retailers increase pi up to the point where consumers
are indifferent between buying both products or not buying anything at all
(vab−pa−pb = 0). Retailers never have to be concerned that by increasing
pi they may induce consumers to switch to buying only j because prices
of both goods are above the individual valuations for the goods.

Using p
i
≥ vi (i = a, b) along with Lemma 1.4 gives:

pi = v − p
j
. (1.5)

Since pi never attracts shoppers and p
i

attracts them with probability one,
the expected profits from charging either of these two have to be equal so:

(2− θ)p
i

= θpi. (1.6)

Using the last equation along with Equation 1.5 we get:

pa =
(2− θ)

2
vab (1.7)

pb =
(2− θ)

2
vab (1.8)

p
a

=
θ

2
vab (1.9)

p
b

=
θ

2
vab. (1.10)

Recall that p
a
≥ va and p

b
≥ vb should hold in this case so:

vab ≥
2
θ
va

vab ≥
2
θ
vb.

Using assumption 1.1 we find that if good a and good b are strong Substi-
tutes:

vab ≥
2
θ
vb. (1.11)

At this point we need to verify that captive consumers buy both goods
at all the price pairs charged in equilibrium or:

pa =
2− θ

2
vab ≤ vab − vb

pb =
2− θ

2
vab ≤ vab − va.
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These reduce to:

vab ≥
2
θ
va

vab ≥
2
θ
vb,

the two conditions we have obtained for Strong Complements.

As mentioned above, we refer to this case as Strong Complements be-
cause if vab is large enough the prices for both goods will always exceed
their individual reservation values (p

i
≥ vi) and the price ranges and equi-

librium strategies are independent of va and vb.

The expected profits for a retailer charging a price pair (pa, pb) such
that pa + pb ≤ vab are given by πab = πa + πb where πi (i = a, b) are:

πi = pi [θ + 2(1− θ)(1− Fi(pi))] . (1.12)

Given that pa+pb ≤ vab, the expected profits from selling i is constant for
all pi ∈ [p

i
, pi] and is equal to πi = θpi. As a result, the unique cumulative

marginal distribution functions for prices of good a and good b in the
equilibrium will be:

Fa(pa) =
(2− θ) (2pa − vabθ)

4(1− θ)pa
(1.13)

Fb(pb) =
(2− θ) (2pb − vabθ)

4(1− θ)pb
, (1.14)

respectively.

What remains to be shown is that there exists a joint distribution
function F (pa, pb) such that pa + pb ≤ vab for all price pairs and the
derived marginal distributions are Fa(pa) and Fb(pb).

There is no such range of pa and pb where the two prices can be
randomized independently because for any pi ∈ [p

i
, pi] the restriction

pi + pj ≤ vab is binding for some pj . This in particular implies that
F (pa, pb) = Fa(pa) · Fb(pb) cannot be the equilibrium joint distribution.

Next we will solve for a simple randomization rule: randomize the price
of good a according to the marginal distribution function in Equation 1.13
and set pb according to some monotonically decreasing function b(pa) such
that the resulting marginal distribution of the price of good b is exactly
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as in Equation 1.14. Such function exists and is unique, defined by the
equation Fa(pa) = 1 − Fb(b(pa)). This is because if pb is a decreasing
function of pa then the probability a price of good a is below pa should be
equal to the probability that a price of good b is above b(pa). We find:

b(pa) =
θ(vab − vb)pa

(1 + θ)pa − θ(1− θ)vab − θ2vb

After some algebra one can check that the function pa + b(pa) (the
sum of prices) is decreasing at pa, increasing at p

a
(at both points it is

equal to vab) and the derivative ∂(pa + b(pa))/∂pa changes its sign only
once on the interval [p

a
, pa] so pa + b(pa) ≤ vab for all pa ∈ [p

a
, pa]. It

is possible to introduce noise to the function b(pa) and obtain some other
joint distribution function which has the necessary marginals so this could
lead to a multiplicity of such functions. Notably, the joint distribution
we have derived is unique in the class of monotone single-valued functions
(that is when for every pa there is a unique pb):

Proposition 1.1. When vab ≥ 2
θvb the equilibrium marginal distributions

given in Equations 1.13 and 1.14 are unique. Moreover, the joint distribu-
tion function defined by b(pa) along with Fa(pa) is unique in the class of
single-valued monotone joint distribution functions.

Proof. Lemmas 1.1 to 1.5 suffice to show that the equilibrium distribution
functions given in Equations 1.13 and 1.14 are unique. We have already
argued that there exists strictly decreasing function pb = b(pa) such that
if pa is randomized according to the marginal distribution function given
in Equation 1.13 then the resulting marginal distribution for pb is exactly
that in Equation 1.14 while pa + pb ≤ vab holds for all pa ∈ [p

a
, pa]. This

is sufficient to prove that the joint distribution function described above
satisfies all the conditions for the equilibrium. It is also unique in the
class of monotone single-valued function becuase b(·) cannot be strictly
increasing given that pa + pb > vab.

Equilibrium marginal densities and the function b(pa) are illustrated in
Figure 1.2. In the equilibrium, only the prices along the curve b(pa) will
be charged, starting from the price pair (p

a
, pb) and ending with the pair

(pa, pb).

It seems natural that any retailer, if possible, would want to have no
coordination between the two pricing strategies. If that is not feasible
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p
b

p
a

pb

vb

pava0

pa + pb = vab

←

p̄a

p̄b

b(pa)

←

fa(pa)

f
b (p

b )

Figure 1.2: Strong Complements. The shaded area indicates price pairs
that can be charged in equilibrium (pa + pb ≤ vab). Short axis are the
marginal densities for the price of each good.

then, as in Strong Complements, the retailer would find it easiest to draw
one of the prices, say pa, from the equilibrium price distribution and set pb
according to some monotonic function such that the resulting distribution
of pb is the equilibrium one. In order to pick from potentially multiple
equilibria we will introduce intuitive criterion that will be used throughout
the paper:

Assumption 1.3. When indifferent the retailers use the following order-
ing of the pricing strategies: they charge uncorrelated prices. If the the
latter is not possible then they randomize one of the prices and set the
other one as a monotonic function of the first, and finally they jointly
randomize both prices.

Given Assumption 1.3 the joint distribution function defined by Fa and
b(·) will be unique.

When the goods are Strong Complements retailers earn expected profits
of πab = θ(2 − θ)vab which are larger than the profits they would have
obtained if they sold one good with a valuation vab (π = θvab). Intuition
for this profit bump is the following: when setting the sum of prices equal
to vab the retailers can surely sell one of the goods to shoppers by setting
its price low enough. By doing so, they will earn θvab from captives and
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θ(1− θ)vab from shoppers. If instead, they sold only the composite good,
vab would be the highest price ever charged and at that price only captives
would buy the good giving the retailer excepted profits of only θvab. As
this case demonstrates, when the two goods are complements retailers can
jointly discriminate between captives and shoppers and earn higher profits
than in the one-good model.

a.2 Weak Complements

Here we assume that p
i
≤ vi for i = a, b. The goods in this section are

called Weak Complements because their individual valuations are large
enough (relative to vab) to be higher than at least some prices charged
for them. Unlike the case of Strong Complements, here the process of
increasing pi stops when consumers are ready to switch to buying only
good j and this is a concern because p

j
≤ vj . We will show that here vab

has to be close enough to va + vb so the case of independent valuations
(vab = va + vb) will be approached in the limit.

As in the previous section it should be the case that expected profits
at p

i
and pi are equal so (2 − θ)p

i
= θpi. Given this and Lemma 1.5 the

boundaries for price distributions will be given by:

pb = vab − va (1.15)

pa = vab − vb (1.16)

p
a

=
θ (vab − vb)

2− θ (1.17)

p
b

=
θ (vab − va)

2− θ . (1.18)

We impose p
a
≤ vb and p

b
≤ vb to get:

va ≥
θ (vab − vb)

2− θ
vb ≥

θ (vab − va)
2− θ .

Rewriting in terms of vab and remembering Assumption 1.1 reduces the
last two inequalities to:

vab ≤
(2− θ)
θ

vb + va. (1.19)
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The marginal price distributions for good a and good b in the equilib-
rium can be derived as in Section a.1 using Equation 1.12 and we get:

Fa(pa) =
(2− θ)pa − θ(vab − vb)

2(1− θ)pa
(1.20)

Fb(pb) =
(2− θ)pb − θ(vab − va)

2(1− θ)pb
. (1.21)

As in the previous case, the equilibrium joint distribution function
should satisfy the following conditions: the derived marginal distributions
should coincide with the two we have obtained and for all equilibrium price
pairs (pa, pb) the sum of prices should be no larger than vab (pa+pb ≤ vab).

Note that when vab = va + vb, that is when the goods are independent,
pa = va and pb = vb so pa + pb ≤ vab for all pairs. In this case there
will be no restriction linking the marginal pricing strategies for the two
goods so in the equilibrium the strategies can be independent and the
joint distribution function can be written as a product of the marginal
distributions: F (pa, pb) = Fa(pa)Fb(pb).7 Prices of weak complements can
be randomized independently, albeit for a subset of the equilibrium range,
even when vab > va+vb. To see this note that for any pi ≤ vi the restriction
pi + pj ≤ vab is not binding for any pj ∈ [p

j
, pj ]. Latter implies that if a

price of one of the goods is set below its reservation price then the price of
the other good can be randomized independently of the first price. When
vab approaches va + vb the probability of pi ≤ vi approaches one allowing
the randomization of the two prices independently as noted above. Figure
1.3 c) illustrates the set of possible price pairs in equilibrium for the case
of Weak Complements.

We will use Assumption 1.3 to identify single joint distribution func-
tion that supports the equilibrium. It is easy to see that both firms will
randomize price of good a according to Fa(pa) and will set price of good b
from a monotonically decreasing function b(pa) which is implicitly define
by Fa(pa) = 1− Fb(b(pa)).

Proposition 1.2. When vab ≤ (2−θ)
θ vb + va the equilibrium marginal dis-

tributions given in Equations 1.20 and 1.21 are unique. Moreover, the
joint distribution function defined by b(pa) along with Fa(pa) is unique in
the class of single-valued monotone joint distribution functions.

7When vab = va +vb the marginal distribution we derive are identical to those derived
by Burdett and Judd (1983).
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Proof. See proof of Proposition 1.1.

For any retailer the expected profits in equilibrium will be equal to
πab = θ(2vab − va − vb) ≥ θvab so they are at least as large as the profits
obtained in a one-good model. As expected, the profits converge to the
sum of individual goods equilibrium profits when vab approaches va + vb.
That is, the additional gain from discriminating between the two groups
of consumers disappears as goods become independently valued.

a.3 Intermediate Complements

Here we assume that p
b
< vb and p

a
> va. The two goods are evidently

asymmetric here and we will prove that the case of Intermediate Comple-
ments exists if and only if Assumption 1.1 holds with the strict inequality.
The latter implies that selling good b yields more profits than selling good
a holding the surplus obtained by consumers fixed. This case is a mixture
of the previous two in the sense that pa is constrained by vab− vb while pb
is constrained by p

a
. For this range of vab the price charged for good a will

always exceed its individual reservation price. One could think of a laptop
and a laptop bag as an illustrative example. In equilibrium the prices of
laptop bags will be always higher than their individual value, pricing that
can be frequently observed.

Lemmas 1.4 and 1.5 imply that pb = vab − p
a

and pa = vab − vb.
Remembering that pa attracts only captives and p

a
attracts shoppers with

probability one we write:

p
a

=
θ

2− θ (vab − vb). (1.22)

From the previous equation we get

pb = vab − pa =
2(1− θ)vab + θvb

2− θ (1.23)

p
b

=
2(1− θ)θvab + θ2vb

(2− θ)2 . (1.24)

We have to impose the restrictions for Intermediate Complements to
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get:

va <
θ

2− θ (vab − vb)

vb >
2(1− θ)θvab + θ2vb

(2− θ)2

which simplify to
2
θ
vb > vab >

(2− θ)
θ

vb + va. (1.25)

Note that the goods are Intermediate Complements if and only if vb >
va. If the two goods are equally valuable then it is impossible that only
one of the goods is always sold at a price above its individual reservation
price. Possible price pairs for Intermediate Complements are illustrated in
Figure 1.3 b).

The marginal distribution functions for the prices of good a and good
b in the equilibrium will be:

Fa(pa) =
(2− θ)pa − θ(vab − vb)

2(1− θ)pa
(1.26)

Fb(pb) =
(2− θ)2pb − 2θ(1− θ)vab − θ2vb

(2− θ)(1− θ)pb
. (1.27)

The joint distribution function should have derived marginal distributions
as in the previous two equations and for all pairs (pa, pb) such that pa+pb ≤
vab. Invoking Assumption 1.3 we conclude that the only equilibrium in this
case is when both firms randomize price of good a according to Fa(pa) and
set price of good b from a monotonically decreasing function b(pa) which
is implicitly define by Fa(pa) = 1− Fb(b(pa)).

Proposition 1.3. When 2
θvb > vab >

(2−θ)
θ vb+va the equilibrium marginal

distributions given in Equations 1.26 and 1.27 are unique. Moreover, the
joint distribution function defined by b(pa) along with Fa(pa) is unique in
the class of single-valued monotone joint distribution functions.

Proof. See proof of Proposition 1.1.

The equilibrium expected profits are equal to:

π =
θ

2− θ [(4− 3θ)vab − (1− θ)vb] (1.28)
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and are strictly larger than θvab. In this case, as well as in the previous two,
the retailers are able to increase their profits through joint discrimination
of captive consumers.

We have already exhausted all the cases of vab > va + vb. It is trivial
to show that the case of Intermediate Complements II cannot occur. To
see this one can derive similar conditions for this case and verify that they
cannot be satisfied given Assumption 1.1.

b Substitutes

In this section we assume that vab ≤ va + vb. In Section b we have demon-
strated that the monopolist compares 2vab − va − vb and vb and prices
accordingly. If vab ≥ 1

2va+vb the monopolist will charge pa = vab−vb and
pb = vab−va, a price pair at which captive consumers buy both goods. In-
stead, if vab < 1

2va + vb the prices charged will be pb = vb and pa ≥ va and
captive consumers buy only good b. It turns out that these two ranges for
vab are important even when the competition is present. We will call the
two goods Weak Substitutes when all the retailers sell both goods which is
the case when vab ≥ 1

2va + vb. When the goods are close enough to being
independently valued, all the retailers still choose to sell them both. As
the goods become better substitutes the retailers will find it less and less
profitable to sell both as this requires lowering both prices and at some
point they switch to selling only good b.

When vab <
1
2va + vb the monopolist would sell only good b. We will

show that in our model retailers attach a positive probability to selling
both goods.

b.1 Weak Substitutes

Here we assume that in the equilibrium retailers sell both goods to captives
with probability one. We will prove that this is the case if and only if vab ≥
1
2va + vb, that is the two goods are relatively close to being independently
valued. One could think of photo and video cameras as an example of
weak substitutes. Both devices can perform overlapping tasks but their
functions are distinct enough to induce consumers to buy both.

Lemma 1.6. Both goods are sold to captives with the probability one iff
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vab ≥ 1
2va + vb.

Proof. Assume retailers sell both goods. If this is true then we can use
Lemma 1.2 to argue that the distribution function Fi(pi) will be atomless
and defined over a closed and connected support so the price of i will be
randomized over an interval [p

i
, pi]. In order for the retailers to sell both

goods it has to be true that pa ≤ vab− vb and pb ≤ vab− va. Note that for
each price the condition of selling both goods depends only on the price of
that good so provided these are true, the expected profits earned on each
good will be independent of the price of the other. Since the distribution
functions are atomless shoppers will not buy the good priced at pi. So any
retailer will increase this price up to the maximum possible provided that
both goods are sold, that is:

pa = vab − vb (1.29)

pb = vab − va. (1.30)

The expected profits earned in equilibrium will be π = θ(2vab−va−vb).
We have to make sure no retailer wants to deviate and sell only one of the
goods. It is obvious that if i is the only good sold then pi > pi, otherwise
the retailer can decrease the price of the other good and sell both which
leads to higher profits. If only i is sold to captives when pi > pi it will
never be sold to shoppers because of the competitor so pi = vi. If this is
true the retailer will earn θvb. For both goods to be sold in equilibrium it
has to be the case that θ(2vab − va − vb) ≥ θvb ⇐⇒ vab ≥ 1

2va + vb.

Now assume that vab ≥ 1
2va + vb. We will argue that in this case

all the retailers will choose to sell both goods. Assume the opposite so
retailers in the equilibrium sell only good b. As before, we can argue that
the highest price of good b is equal to vb and the equilibrium profits will
be θvb. Charging pa = vab − vb and pb = vab − va will yield larger profit
than θ(2vab − va − vb) because in this case retailer will sell good a with
probability one and good b with a probability strictly larger than zero.
Given vab ≥ 1

2va + vb is at least as larger as θvb. As a result, selling only
good b yields strictly less profits than selling both goods at the price pair
(vab − vb, vab − va).

The lowest prices ever charged for good a and good b are the ones
that attract shoppers with probability one and yield the same profits as
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charging the highest price for the good and attracting no shoppers so:

p
a

=
θ

2− θ (vab − vb) (1.31)

p
b

=
θ

2− θ (vab − va) . (1.32)

In equilibrium, price of good i will be randomized in the interval [p
i
, pi]

according to the unique marginal distributions:

Fa(pa) =
(2− θ)pa − θ(vab − vb)

2(1− θ)pa
(1.33)

Fb(pb) =
(2− θ)pb − θ(vab − va)

2(1− θ)pb
, (1.34)

for good a and good b, respectively. The price ranges for Weak Sub-
stitutes are illustrated in Figure 1.4 a). Note that the marginal price
distributions are identical to those from the case of Weak Complements
but the marginal distribution functions in the latter case can never be
independent.

Proposition 1.4. When vab ≥ 1
2va+vb the equilibrium marginal distribu-

tions given in Equations 1.33 and 1.34 are unique. Given Assumption 1.3
the equilibrium joint distribution function will be the product of marginal
distribution functions, that is F (pa, pb) = Fa(pa) · Fb(pb).

Proof. The first part of the proposition results from Lemma 1.6 and the
proof of Proposition 1.1. The second part follows from Assumption 1.3
and from the fact that pa + pb ≤ vab.

Equilibrium profits in this case (π = θ(2vab − va − vb)) are less than in
the one-good model (θvab). The reason is that the goods are substitutes so
there is no opportunity to “discriminate” between captives and shoppers.
Monopoly profits from captives obtain only for one price pair (vab−vb, vab−
va) and as a result the retailers do not have the opportunity to keep the
monopoly sum constant while lowering one of the prices.

b.2 Intermediate Substitutes

In the previous section we demonstrated that both goods are always sold
iff vab ≥ 1

2va + vb. So if vab < 1
2va + vb with some probability only one
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good will be bought by captives. In this section we consider the case when
probability of selling both goods is still more than zero, albeit less than
one. We will argue that in the presence of the price competition good a

will never be the only good sold to captives.

Lemma 1.7. When vab <
1
2va + vb good a will never be the only good sold

to captives.

Proof. Assume the opposite so that for some (pa, pb) good a is the only
good sold. There are two possibilities: either va ≥ pa > vab − vb and
then it has to be true that pb > vb − va + pa, or vab − vb ≤ pa and then
pb > vab − va. Let us consider the latter case first. As before, good b

will not be bought by shoppers so the retailer can decrease her price to
vab − va and earn strictly higher profits by selling both goods instead of
selling only good a. If va ≥ pa > vab − vb then decreasing the price of
good b can only induce captives and shoppers to switch to buying good b

but will never lead to selling both goods. Assume that shoppers in this
case were buying good a with a probability λa. Since pa > vab − vb in the
case shoppers buy good a they do not buy anything else from the other
retailers and they get overall surplus of va − pa. Now consider setting the
price of good b at vb − va + pa. Then with the probability λa shoppers
will buy good b instead of good a. The expected profits will be at least
(vb − va + pa)(θ + 2(1 − θ)λa) which is larger than the previous profit of
pa(θ + 2(1− θ)λa), a contradiction.

We have established that either both goods are bought or only good b

is bought by captives. It should be clear that when retailers sell only good
b (pb > vab − va and vb − pb ≥ va − pa) they will randomize pb in some
interval [p̃b, vb] where p̃b > vab− va. Charging p̃b the retailer will sell good
b to captives with the same probability they would sell both goods to them
if they were to charge pa = vab−vb and pb = vab−va so p̃b = 2vab−va−vb.
Because vab < va + vB the last inequality on p̃b will always hold.

If the retailer charges the highest price for good b she will only sell good
b and only to captives so pb = vb and the quilibrium profits have to be θvb.
When pb > vab − va the distribution function of pb is:

Fb(pb) =
2pb − (pb + vb)θ

2(1− θ)pb
(1.35)
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while pa can be chosen arbitrarily provided that pa ≥ vb − va + pb. Note
that the distribution function for pb coincides with the one from a one-good
model.

Now we will require that:

p̃b ≥
θ

2− θ vb.

The latter is necessary because no retailer aiming to sell only good b would
ever charge a price below θ

2−θvb. Hence, the condition for Intermediate
Substitutes is

2vab − va − vb ≥
θ

2− θ vb ⇒ vab ≥
va
2

+
vb

2− θ . (1.36)

Now let us turn to price pairs such that captives buy both goods. This
is the case when pa ≤ vab − vb and pb ≤ vab − va. In this case, if the
price of good a is such that it never attracts shoppers then it will be set
to the maximum so pa = vab− vb. Now assume the retailer is charging the
highest price for good b of those below vab − va. This price will attract
shoppers only when other retailers charge pb above vab− va so the retailer
will get the highest profit only when this price is equal to vab − va. The
expected profits from charging any price pair such that pa ≤ vab − vb and
pb ≤ vab − va should be equal so for such prices:

pa [θ + 2(1− θ)(1− Fa(pa))] + pb [θ + 2(1− θ)(1− Fb(pb))] = θvb. (1.37)

The expected profits from charging (vab − vb, vab − va) should be such
that:

θvb = [θ + 2(1− θ)(1− Fb(vab − va))] (2vab − va − vb), (1.38)

which defines Fb(vab − va). We know that Fb(vab − va) = Fb(p̃b) and
we verify that p̃b = 2vab − va − vb as derived before.

If a retailer charges pb = vab − va along with some pa ≤ vab − vb the
profit earned from selling good b is equal to:

θ(vab − vb)vb
2vab − va − vb

. (1.39)

The lowest price charged for good b attracts shoppers with probability
one and should give the same expected profits so:

p
b

=
θ(vab − vb)vb

(2− θ)(2vab − va − vb)
. (1.40)
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The distribution function Fb(pb) for pb ∈ [p
b
, vab − va] is defined by:

pb [θ + 2(1− θ)(1− Fb(pb))] =
θ(vab − vb)vb
2vab − va − vb

. (1.41)

If a retailer charges pa = vab−vb along with some pb ≤ vab−va the profits
earned from selling good a are equal to:

(vab − vb) [θ + 2(1− θ)(1− Fb(vab − va))] =
θ(vab − va)va
2vab − va − vb

. (1.42)

The lowest price charged for good a attracts shoppers with probability
one and earns the same profit so:

p
a

=
θ(vab − va)va

(2− θ)(2vab − va − vb)
. (1.43)

The distribution function Fa(pa) for pa ∈ [p
a
, vab − vb] is defined by:

pa [θ + 2(1− θ)(1− Fa(pa))] =
θ(vab − vb)vb
2vab − va − vb

. (1.44)

To summarize:

Proposition 1.5. When max[vb, 1
2va + vb

2−θ ] ≤ vab < 1
2va + vb the unique

equilibrium marginal distribution for pa is defined by Equation 1.44. The
unique equilibrium marginal distribution for pb ∈ [p

b
, vab−va] is defined by

Equation 1.41 and for pb ∈ [p̃b, pb] by Equation 1.38. For pi ≤ vab−vj (i =
a, b) the joint distribution function is given by F (pa, pb) = Fa(pa) · Fb(pb).

The price ranges for Intermediate Substitutes are illustrated in Figure
1.4 b). Note that for the range of parameters discussed in this section
the oligopolistic industry provides both goods to captives with some prob-
ability while the monopolist would only sell good b. In this range the
competition leads to a larger variety offered to consumers.

b.3 Strong Substitutes

In this section we consider the case when the only good sold to captives is
good b (We have established in the previous section that good a cannot be
the only good sold). We have shown so far that if vab ≥ 1

2va + vb

2−θ both
goods are sold with nonzero probability. As a result we consider the case
when:

vab ∈
[
vb,max

(
vb,

1
2
va +

vb
2− θ

)]
. (1.45)
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We have shown that for such vab the retailers will choose to sell only good b
in the equilibrium. In absence of horizontal differentiation, if the two goods
are close enough substitutes, it does not pay off for retailers to charge such
pairs of prices that consumers buy both goods. Instead, they will abandon
the less valued good. The most retailer can charge for good a if she aims to
sell both goods to captives is vab−vb which is either less than zero or yields
less profits than charging vb and selling only good b would. Hence, she will
sell only good b and earn expected profits of θvb in the equilibrium. The
equilibrium distribution of pb will be atomless and defined over a closed
interval. The highest price ever charged will never attract shoppers so it
will be equated to vb. As a result, the price of good b will be randomized
over the interval [p

b
, vb] according to the unique equilibrium distribution

function:
Fb(pb) =

2pb − (pb + vb)θ
2(1− θ)pb

, (1.46)

and p
b

= θ
2−θvb.

Proposition 1.6. If vab ∈
[
vb,max

[
vb,

1
2va + vb

2−θ

]]
retailers set pb ac-

cording to the distribution function given in 1.46 over the interval [ θ
2−θvb, vb]

and set pa ≥ vb − va − pb.

Retailers randomize pb as if good b is the only good available and charge
pa such that consumers never choose to buy good a. The price ranges for
Strong Substitutes are illustrated in Figure 1.4 c).

1.4 Extensions

a Bundling

We start with a brief clarification of the terminology used in the bundling
literature. As is well understood bundling refers to the practice of selling
several goods together at a joint price. Pure bundling (PB) occurs when
the goods are not sold separately but only as a bundle while mixed bundling
(MB) is, as the name indicates, a pricing strategy where the goods are
offered for sale both as separate items and as a bundle. The practice of
selling individual goods separately without bundling them is referred to as
pure components (PC). In our model we have explicitly solved for the pure
components equilibrium while the pure bundling equilibrium is identical
to the one-good model solved by Burdett and Judd (1983).
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Traditional bundling literature (Adams and Yellen (1976), McAfee,
McMillan and Whinston (1989), Lewbel (1985)) deals with consumers that
have heterogeneous willingness to pay for goods but observe all the prices.
In such environment bundling allows to charge higher overall price while
still selling both goods to most of the consumers, especially when the
willingness to pay is negatively correlated across goods. It is generally
shown that mixed bundling which, by definition, encompasses the other
two strategies, is the only one that is deployed in equilibrium (Ander-
son and Leruth (1993)). Even though one would be tempted to analyze
mixed bundling in our framework we will not do so. Importantly, while
implementing pure bundling is not necessarily associated with high costs,
implementation of mixed bundling is as it requires larger shelve space and
more complex logistics than any of the two other strategies. Moreover,
whenever expected demand depends on the joint distributions of the two
prices and goods are allowed to be complements or substitutes, writing
down expected profits in a closed form becomes cumbersome.8

Here we will extend our model to allow retailers to use pure bundling
in addition to the pure components strategies we have analyzed so far. As
such, it is the first such analysis in the price dispersion literature. This
omission is probably due to the demand structure associated with the
price dispersion. Traditionally, as in our model, consumers are assumed
to have identical willingness to pay for the goods and thus the discrimi-
natory ability of bundling cannot be used. Due to this, contrary to what
one would initially expect, monopolist in our model has no incentive to
bundle complements even if bundling is costless. Monopolist can achieve
maximal profits with pure components strategy (any price pair such that
pa+pb = vab) and would strictly prefer to do so if there were positive costs
of bundling. From now on we assume that cost of assembling a bundle is
equal to c ≥ 0.

First important feature to note here is that bundling in our model
cannot be a better type of strategy per se. If one of the firms chooses to
bundle the two goods she effectively makes the other firm to bundle the
goods as well. Bundling here is a refusal to allow consumers to buy one
of the goods from the firm itself and the other one from the competitor so
one firm bundling the goods is sufficient to make both bundle.

8Venkatesh and Kamakura (2003) use numerical methods even when the distributions
are uniform.
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If bundling cannot be attractive in itself what additional benefit can it
give to a deviating firm? The answer to this question lies in the pricing
strategy absent bundling: firm that does not bundle might be randomizing
the sum of prices in such a way that allows the other firm to earn additional
profits through bundling.

For a simple illustration let us consider the case of independent valua-
tions in our model (vab = va+vb). Assume that one of the retailers random-
izes the two prices independently according to the distribution functions
given in Equations 1.33 and 1.34. It turns out that charging only one price
for a bundle pab above but close enough to p

a
+ p

b
outperforms any pure

components strategy (pa, pb) : pi ∈ [p
i
, pi] where i = a, b. This is because

the density of pa+pb chosen by the complying firm does not give the same
expected profits for all pab ∈ [p

a
+ p

b
, pa + pb] chosen by the deviator.

Remember that equilibrium profits are given by θvab = (2− θ)(p
a

+ p
b
) so

for the deviating firm to be indifferent between any p ∈ [p
a

+ p
b
, pa + pb]

the distribution of pa + pb has to be defined by:

θvab = pab(θ + 2(1− θ)(1− Fab(pab))). (1.47)

This distribution is much more concentrated around p
a

+ p
b

then is
the distribution of the sum of pa and pb when a firm randomize prices
independently. To see this remember that Fa+b will be of the order FaFb
and thus will be going to zero around p

a
+ p

b
at a larger speed then Fab.

This means that charging a bundle price pab above but sufficiently close to
p
a

+ p
b

will do better than charging bundle price p
a

+ p
b

or equivalently
any component price pair. For independent goods this problem can be
removed if firms sell goods separately but positively correlate prices. If pb
is chosen as an increasing function of pa then the probability distribution of
pa+pb will be as in Equation 1.47, which eliminates a profitable deviation
to bundling.

As has been illustrated with the previous example, attractiveness of
bundling is not in using different strategy type (the other firm also effec-
tively bundles) but rather in the fact that competitor does not anticipate
it. If he did then he would have chosen his sum of prices accordingly and
both firms would play an equilibrium of a single good model with a reser-
vation price equal to vab. In effect, for complementary goods firms would
switch to equilibrium with lower profits.
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Anderson and Leruth (1993) and Thisse and Vives (1988) have sug-
gested that firms might choose the type of pricing strategy first (whether
to bundle or not) and only having observed each other’s choices set actual
prices. This is motivated by a premise that bundling decision is harder
to change then the pricing one. If we adopt this idea and introduce an
additional stage before the pricing game where firms choose what kind of
strategy they will use, provided that vab ≥ va + vb, the game reduces to:

Firm 1\Firm 2 Pure Bundling Pure Components
Pure Bundling θvab − c, θvab − c θvab − c, θvab

Pure Components θvab, θvab − c πpc(vab), πpc(vab)

Table 1.1: Game of choosing type of pricing for complements. πpc(vab) is
the equilibrium profit when both firms play pure components strategy.

Proposition 1.7. Depending on c there are the following equilibria of the
two stage game when the goods are complements or independently valued:

(i) When c = 0 there are two equilibria: (PB, PB) and (PC, PC). Out
of these only (PC, PC) survives elimination of weakly dominated
strategies.

(ii) When c > 0 there is a unique equilibrium (PC,PC).

The previous proposition shows that pure components pricing is the
most natural solution even if bundling is costless and is the only solution
if there are any costs of bundling.

Situation for substitutes is a bit different. Here we will only consider
weak substitutes for illustration. We have established in Section b.1 that,
unlike complements, the monopolist would bundle substitutes by the fact
that 2vab−va−vb < vab. In the oligopolistic competition this consideration
is still present. We have shown that both goods are sold in equilibrium
and the highest price charged for good i is vab − vj . Since all the price
pairs yield the same profits so does (vab−vb, vab−va). At this price vector
none of the goods are sold to shoppers. If the retailer, instead, bundles the
two goods and charges vab for the bundle she will sell it to captives but
will earn strictly higher profits. This creates a profitable deviation from
pure components equilibrium we found.
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Next we adopt the two stage game to the weak substitutes. We will not
provide proof here but it is fairly straightforward to show that if one of the
firms bundles the goods and the other one chooses to sell them separately
the equilibrium profits for both firms are equal to θvab. Remembering that
for weak substitutes πpc(vab) < θvab the new game becomes:

Firm 1\Firm 2 Pure Bundling Pure Components
Pure Bundling θvab − c, θvab − c θvab − c, θvab

Pure Components θvab, θvab − c πpc(vab), πpc(vab)

Table 1.2: Game of choosing type of pricing for substitutes. πpc(vab) is
the equilibrium profit when both firms play pure components strategy.

Proposition 1.8. Depending on c there are the following equilibria of the
two stage game when the goods are weak substitutes:

(i) When c = 0 there are three equilibria: (PB, PB), (PB, PC) and
(PC, PB). Only (PB, PB) survives elimination of weakly dominated
strategies.

(ii) When c > 0 and θvab − c = πpc(vab) there are three equilibria: (PB,
PC), (PC, PB) and (PC, PC). Only (PC, PC) survives elimination
of weakly dominated strategies.

(iii) When c > 0 and θvab − c > πpc(vab) there are two equilibria: (PB,
PC) and (PC, PB).

(iv) When c > 0 and θvab − c < πpc(vab) there is a unique equilibrium
(PC, PC).

As expected, if cost of bundling is sufficiently large there will be no
bundling in equilibrium. Even if monopolist would bundle the goods
(θvab − c > θ(2vab − va − vb)) but c > 0 we have that only one of the
firms bundles. Finally, if there are no costs of bundling then as a monop-
olist both competitors in equilibrium use bundling.

All the previous analysis, both in the literature and here, assumes that
there are two firms in the market. Under such assumption if one of the
firms uses pure bundling strategy it effectively forces the other firm to do
the same. If there are more than two firms in the market and we are
considering a pure components equilibrium, then bundling is weakened as
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a deviation. This is because now the deviating firm has to undercut not
the sum of prices charged by the only remaining firm but rather the sum
of minimum prices in the market. Hence, increasing competition further
strengthens the pure components equilibrium and we are confident that
such study will be an important next step in the analysis of bundling.

b Generalization to n Firms

The analysis so far has be concerned with a duopoly. Clearly one would
wish to extend the model to more firms to explore the effect that increase
in their number brings. The main ambiguity when generalizing our model
to n firms is the behavior of the shoppers. It is easy to see that if they are
still visiting two shops as before then the equilibrium we presented is still
unique. The reason is that if all the retailers employ identical strategies in
the equilibrium and shoppers randomly choose two of them then expected
profits of every given retailer from selling good i are still given by Equation
1.12.

Natural question that arises is why would shoppers search only two
firms and not more? One way to address this issue is to assume that all the
consumers are identical ex ante and they engage themselves in the fixed-
sample search, that is they decide upfront how many shops to visit and pay
a cost t for each visit. Then, as in Burdett and Judd (1983), two symmetric
equilibria emerge. In the first equilibrium all the consumers search once
and all the retailers charge the same monopoly price pairs. In the second
equilibrium some consumers search once (these will be captives) and some
search twice (these will be shoppers) and the proportion of captives θ is
adjusted in such a way that consumers are indifferent between searching
once and searching twice. They will not search three times because the
marginal benefit of additional search is decreasing so if the second search
decreased average sum of prices by t the third search will not be worth the
additional cost of searching.

Another way to address the issue of shoppers is to assume that, as in
Varian (1980), shoppers can buy from any of the n retailers while captives
are still forced to buy from only one retailer. This slightly changes the
equilibria but should not change the main findings of the paper. It proved
impossible to show that when the goods are complementary for any n there
exists a monotonically decreasing function bn(pa) such that pa + bn(pa) ≤
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vab. If this function does not exsit for some n then we have to prove
that for that n there is some joint distribution function that generates the
equilibrium marginal distributions and satisfies the constraint on the sum
of the prices. We leave this as an open question for another paper.

1.5 Conclusion

We have presented a two-good price competition model where the goods
are complements or substitutes. The model exposed substantial differences
between these two kinds of demand dependencies between goods. Namely,
it was shown that in the Nash Equilibrium of our model the prices of both
goods are randomized in an atomless fashion. This leads to price disper-
sion and our model is one of the first attempts to study price dispersion
in multiproduct setting. When the goods are complements and one of the
goods is priced high the other can not be priced high as well, implying a
negative correlation between the two prices. The stronger is the comple-
mentarity between the goods the more restrictive is the price of one of them
for the price of other. This results are supported by the empirical studies
on pricing of complementary goods that document the infrequency of si-
multaneous discounts on complements. We have shown that only when the
goods are either independently valued or are substitutes it is feasible that
the two prices are randomized independently. This result could suggest
why we lack any stylized facts on the co-pricing of substitutes.

It was shown that if the two goods are complements, then retailers are
able to discriminate between the more informed consumers (shoppers) and
the less informed ones (captives) by enticing the former with one of the
goods at a deep discount while taxing the latter by keeping the overall
price tag high. This practice requires that the retailers are able to charge
different combinations of prices that have a fixed sum and still induce
consumers to buy both goods. Through this discrimination the retailers
are able to improve their profitability relative to the one-good model. It
turns out that when the two goods are substitutable retailers lack this
space for manoeuvre and are incapable of discriminating between the two
groups of consumers.

Bundling was shown to be a profitable deviation in a pure components
equilibrium even if all the consumers have identical willingness to pay.
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This is not because bundling is an effective strategy per se but rather
because competitors price without anticipating such deviation. If, on the
other hand, type of pricing is decided before actual prices are chosen then
bundling is no longer used in equilibrium when the goods are complements.
If the goods are substitutes tendency to bundle in the competitive industry
is lower than for monopolist.
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Figure 1.3: Permitted equilibrium price pairs in the case of strong, inter-
mediate and week complements are illustrated with a shaded area in a),
b) and c), respectively.
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b is sold, respectively.
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2 HETEROGENEOUS PRICE DISPERSION

2.1 Introduction

The law of one price is so well known to fail that Varian (1980) has fa-
mously proclaimed that it is no law at all. All of us have experienced that
the same product is frequently sold at different prices in various shops of
similar characteristics. There has been no lack of theoretical or empirical
studies on the subject but what seems to have been left unexplained is the
heterogeneity of its nature. It is clear that some shops vary prices more of-
ten than others while some charge higher prices on average than others do.
Infrequently you will find discounts in a corner shop or two supermarkets
that charge equal average prices. Our paper provides an explanation to
both of these phenomena. We argue that (marginal) cost heterogeneity is
sufficient to explain why some shops are more expensive than others while
different shops have diverse levels of variation in prices. In order to do
so we introduce cost asymmetry among firms in two important theoretical
models that have been used to explain price dispersion before.

First we generalize Varian (1980) clearinghouse model to allow firms to
have different marginal costs and we find that only the two most efficient
firms are involved in the competition for informed consumers while all the
rest charge monopoly prices. This result can be understood by contrast-
ing the motives of cost-efficient retailers with those of inefficient ones. A
retailer has an incentive to lower price of a product if she can rip the bene-
fits of larger demand that this price reduction brings. Since the higher the
marginal costs the sharper is the fall in margins from the price reduction,
only the most efficient retailers can compete by randomizing prices while
the less efficient ones do not change prices at all. Yang (2008) has shown
that about 70% of the firms posting prices at shopping.com persistently
charge monopoly prices and only 30% compete for price-comparing con-
sumers. Our model also justifies anecdotal evidence that small retailers
give discounts mostly for logistical purposes and never actually intend to
compete with large retailers by doing so.

In the second part of the paper we extend Burdett and Judd (1983)
nonsequential search model in a similar fashion by breaking down the con-
tinuum of competing firms into groups with different marginal costs. Equi-
librium of this model is similar to, but different from, equilibrium of the
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first part of this paper. As before, firms of lower efficiency cannot share the
same price range with more efficient firms, hence each cost type randomizes
in its own interval. Unlike the clearinghouse model, in the nonsequential
search model firms have the luxury of contesting bits of the informed mar-
ket exclusively with other firms of their cost type, so less efficient retailers
are not forced to charge monopoly prices. That is why, in the price range
adequate to their cost level, identical retailers compete by randomize prices
and give birth to the second result of our paper: all firms randomize prices,
that is give price discounts, but the higher the marginal costs the higher
is the average price that the firms charge.

2.2 Literature Review

Starting with the seminal work by Salop and Stiglitz (1977) theoretical
economist have provided several explanations of price dispersion in con-
sumer markets. The basic reason for price dispersion in the models that
followed are captive or uninformed consumers. In their presence firms are
torn between lowering prices to attract shopper and charging monopoly
price to rip off captives (see for example Varian (1980), Burdett and Judd
(1983), Stahl, II (1989) and Baye and Morgan (2001) among others). These
authors analyze price competition among symmetric firms and generally
focus on symmetric Nash Equilibrium as the solution method. While plau-
sible in markets where retailers are similar, symmetric models sometimes
fail to rationalize the price distributions in markets where retailers are
different in their costs, market shares or capacities.

The independent works by Baye, Kovenock and Vries (1992) and Ko-
cas and Kiyak (2006) are remarkable exceptions where the authors con-
sider asymmetric firm equilibria of Varian (1980). Baye et al. (1992) have
characterized all the asymmetric solutions of the symmetric Varian (1980)
model. Moreover, as Kocas and Kiyak (2006), they consider the clearing-
house model when number of captive consumers per firm is different. They
find that, much like in the first part of this paper, firms with larger captive
base have less incentives to lower prices and only the two “smallest” firms
randomize below the monopoly price. This conclusion (empirically tested
by Kocas and Kiyak (2006) for online books market) is counterintuitive
in most settings as it suggests that the largest retailers are the ones who
charge the highest prices. In contrast, our generalization of the clearing-
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house model suggests that the most efficient firms (i.e. large firms who’s
marginal costs are usually low due to efficiency in operations and bargain-
ing power with suppliers) will charge lowest prices. Unlike the captive base
asymmetry, the cost heterogeneity is easily defined and, most importantly,
readily modeled in the random search setting, which we illustrate in the
second part of this paper.

There is a lot of scientific as well as anecdotal evidence on the price
dispersion of homogeneous goods. Lach (2002) has shown that there is
persistent asymmetry in the pricing strategies of different retailers in that
many of them retain the same relative position in the price distribution in
the market from period to period. Also, casual observation suggests that
smaller retailers are less prone to giving discounts while large supermarkets
do it frequently. Our paper can explain both of these observations. The
first part of our model shows that if inefficient (small) retailers directly
compete with the efficient (large) ones for consumers then only the most
efficient retailers charge price below the monopoly price while other charge
monopoly prices only.1 Our second model shows that if the market is
fragmented enough so that bits of it are contested bilaterally then even
the least efficient firms compete by randomizing below the monopoly price
but they do so at the price level appropriate for their cost type. That is,
all the retailers randomize price but different types of retailers do so at
different levels.

The rest of the paper is organized as follows: in the next section we state
formal conditions on equilibrium demand necessary for our non-overlap
argument to hold. We also introduce notation that will be used throughout
the two subsequent theoretical sections. In the third section we present
a clearinghouse model with a finite number of heterogeneous firms. This
section will also lay some groundwork for the fourth section where we
present a nonsequential search model with infinite number of firms grouped
into finite number of cost types.

2.3 Preliminaries

In the previous section we hinted to the heterogeneous costs as the reason
for the pricing strategy asymmetry among dissimilar firms. In this section

1Yang (2008) shows that substantial number of firms that advertise price on shop-
ping.com do not actually compete for shoppers and set high prices all the time.
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we will provide two propositions (the second is a generalization of the first)
to formally state our argument. We will also introduce some notation for
the cost structure that will be used in the subsequent sections.

Consider a one shot game in a competitive multi-firm setting where
firms produce using a constant returns to scale technology and compete
by setting prices simultaneously. Let Fi(pi) denote the equilibrium pricing
strategy employed by firm i while fi(pi) is the associated density func-
tion. For the moment assume that firms face some demand structure that
depends on their pricing strategies and demand behavior of consumers.
Namely, Di(pi, F−i) will denote the expected demand firm i faces when
charging price pi against pricing strategies of all opponents F−i. Assume
the expected demand is strictly decreasing in pi.

Proposition 2.1. If firms i and j have different marginal costs then there
does not exist a Nash Equilibrium in which at two different prices p and p′

have positive probability measures and at each price firms get equal expected
demand, that is Di(p) = Dj(p) and Di(p′) = Dj(p′).

Proof. Without loss of generality let us assume that p < p′ and ci < cj .
Assume that it is possible that in equilibrium Di(p) = Dj(p) and Di(p′) =
Dj(p′). Since both firms charge the two prices in equilibrium they should
get equal expected profits at these prices. As a result Dk(p)(p − ck) =
Dk(p′)(p′ − ck) where k = i, j.

D(p)(p− ci) = D(p′)(p′ − ci) = D(p′)(p′ − cj) +D(p′)(cj − ci)
= D(p)(p− cj) +D(p′)(cj − ci) < D(p)(p− cj) +D(p)(cj − ci)
= D(p)(p− ci)

where D(p) = Di(p) = Dj(p) and D(p′) = Di(p′) = Dj(p′). We arrive at
contradiction which proves the proposition.

Intuitively, demand increases by an equal amount for both firms but
the reduction in profit margin per unit is larger for the firm which has
higher marginal costs so her profitability has to fall.

This argument can be generalized in two ways. First, expected demand
need not be equal at both prices for our argument to hold. It is sufficient
that lowering the price brings larger increase in expected demand for the
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more efficient firm. Second, the two prices need not be charged in equilib-
rium, but rather, for both firms expected profits at those prices should be
equal to the equilibrium profits.

Proposition 2.2. Let firms i and j produce at the marginal cost ck where
k = i, j and ci < cj. Assume they earn expected profits πi and πj in
Nash Equilibrium, respectively. There can be no pair of prices p1 and p2

(p1 < p2) such that the expected profits at those prices for firm k (k =
i, j) are equal to πk while Di(p1, F−i) ≥ Dj(p1, F−j) and Di(p2, F−i) ≤
Dj(p2, F−j).

Proof. Let us prove by contradiction. Expected demand from charging
ps for firm k will be denoted by Dsk (where k = i, j and s = 1, 2) so
πk = D1k(p1 − ck) = D2(p2 − ck). Using the definitions above we get:

D1i(p1 − ci) = D2i(p2 − ci) = D2i(p2 − cj) +D2i(cj − ci)
= D2j(p2 − cj) +D2i(cj − ci) < D1j(p1 − cj) +D1j(cj − ci)
= D1j(p1 − ci) ≤ D1i(p1 − ci).

We arrive at a contradiction which completes the proof.

The last proposition will be used to solve both models we present next.
It is worth noting that if the number of firms is infinite then expected
demand in equilibrium is equal for all the firms (expected demand does
not depend on the identity of the firm). If so, Proposition 2.1 can be
invoked to prove separation of pricing strategies. It is also clear that with
infinite number of firms arbitrary difference in marginal costs will lead to
asymmetric pricing which will not disappear even if the cost difference goes
to zero in the limit.

When number of firms is finite, unless the two firms use identical pricing
strategies, expected demand they face will be different at least for some
prices. Even so, in the model we present next, equilibrium demand will
have enough regularity to satisfy restrictions imposed by Proposition 2.2.

Throughout the paper we will assume there are K different types of
firms, type referring to a production technology employed by firms. There
is a large, possibly, infinite number of firms in the market. They employ
production technology with associated cost function C(Q) which is char-
acterized by non-increasing average costs. We will assume that:
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Assumption 2.1. All cost functions are continuous for Q > 0 and ∀k′ > k

and ∀Q′ > Q we have Ck
′
(Q′)− Ck′(Q) > Ck(Q′)− Ck(Q) .

The second part of Assumption 2.1 implies that types are ranked ac-
cording to their marginal costs. An illustrative example of cost functions
that satisfy the assumption above is when Ck(Q) = Gk + ckQ where
c1 < c2 < . . . < cK−1 < cK . We will use this linear example throughout
the paper even though all of our results are valid under the more general
formulation. In particular, both Proposition 2.1 and 2.2 hold if instead of
the linear formulation of cost functions one specifies any cost function that
satisfies Assumption 2.1. In the next section we present a clearinghouse
model with finite number of firms where we will use Proposition 2.2 to
solve for equilibrium in presence of heterogeneous firms.

2.4 Clearinghouse Model

a Consumers and Firms

The model of this section is derived from Varian (1980). There will be
two types of consumers - informed and uninformed. The mass of informed
consumers is denoted by I while mass of uninformed consumers is denoted
by M . Both types of consumers demand at most one unit of a good and are
ready to pay up to an amount v, their reservation price. The consumers
differ in the information available to them. Informed consumer are able to
consult a clearinghouse and obtain prices charged by all the active firms
and will buy from the one who charges the lowest price. In case there are
several firms charging the lowest price the mass of informed consumers will
be divided equally among tying firms. In contrast, uninformed consumers
can only observe one price quote and are randomly allocated among all
the firms where each firm is equally likely.

There are N firms competing in the market. We will denote mass of
uninformed consumers per firm by U = M

N . As discussed in the previous
section there are K different types of firms where K ≤ N . We will denote
number of firms with a cost function Ck(Q) by Nk where

∑K
k=1(Nk) = N

and Nk ≤ N for all k. When K = 1 all the firms are identical (the Varian
model) and whenK = N all the firms are different from each other. We will
also assume (for reasons which will become apparent in the next section)
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that vU > Ck(U) for all k.

In the next section we will describe all the symmetric equilibria of this
model.

b Equilibrium

Two important cases emerge in this model. In the first case there are at
least two most efficient firms (N1 > 1). If that is so, we prove that all
other firms are driven out of competition for the informed consumers and
charge prices equal to v. The second case is when there is only one most
efficient firm (N1 = 1). In this case, type one firm and type two firms will
randomize over a certain interval while all of the other types will charge v
with probability one thus withdrawing from competition for the informed.

We define π̄k = vU−Ck(U). It should be clear that π̄k is the minimum
profit that any type k firm can surely get and is positive.2 The lowest price
that will ever be charged by type k firm in equilibrium is a solution to:

p(U + I)− Ck(U + I) = vU − Ck(U), (2.1)

will be denoted by pk and is equal to:

pk =
vU + Ck(U + I)− Ck(U)

U + I
. (2.2)

Note that the left hand side of Equation 2.1 is the profit that type
k firm gets if she charges price p and sells to informed consumers with
probability one. Charging any price below pk will necessarily bring less
profit than charging v does. Charging prices above v yields negative profit
so in equilibrium a type k firm can only charge prices in the interval [pk, v].
It is important to note that pk is increasing in Ck(U + I) − Ck(U) so
p1 < p2 < ... < pK−1 < pK .

Theorem 2.1. The following are the only symmetric equilibria of the
clearinghouse model:

(i) When N1 > 1, all the type one firms randomize continuously over
the interval [p1, v] using the cumulative price distribution F 1(p) =

1−
[

(v−p)U
(p−c1)I

]1/(N1−1)

. All other types charge v with probability 1.

2Recall that we have assumed vU > Ck(U).
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(ii) When N1 = 1 the only type one firm randomizes continuously over
the interval [p2, v) using the cumulative price distribution F 1(p) =
1 − (v−p)U

(p−c2)I(1−F 2(p))N2−1 . All the type two firms randomize over the
interval [p2, v) using the cumulative price distribution F 2(p) = 1 −[

(v−c1)U+(c2−c1)I
(p−c1)I

] 1
N2 and put the probability mass

[
c2−c1
v−c1

] 1
N2 on v.

All the remaining types charge v with probability 1.

We will prove Theorem 1 in a sequence of lemmas of the next section.
Lemmas 1 through 6 will be necessary to prove both parts (i) and (ii) of
the Theorem 1. Lemmas 7 through 9 will conclude the proof of the part
(i) while Lemmas 9 completes the proof of part (ii).

Proof of Theorem 2.1

Following Baye et al. (1992) let ski and ski denote the upper and lower
bound for firm i’s equilibrium price distribution F ki (p), respectively.3 We
will refer to the expected profits of firm i when it charges p against pricing
strategies of opponents F−i(p) by πi(p, F−i(p)).

A winning tie is defined as situation where two or more firms charge the
same price simultaneously and attract informed consumers with a positive
probability

Lemma 2.1. There cannot be a winning tie at any price p ∈ [p1, v].

Proof. Suppose not. Any firm that has a point mass at p will find it
profitable to transfer that mass to p−ε, lose profit of order ε and gain a fixed
profit by getting all the informed consumers that were being shared them
when tying at p. For formalities see proof of Proposition 3 from Varian
(1980). Varian proves that in a symmetric equilibrium there are no point
masses in equilibrium pricing strategies but the reason his proposition
holds is the impossibility of a winning tie at any price.

Lemma 2.2. For ∀i the upper bound of the equilibrium price distribution
si is equal to v.

Proof. Baye et al. (1992) provide a proof of a similar proposition when
K = 1. Nevertheless, their proof is valid even when number of types is

3Superscript k, if present, will indicate that firm i is of type k
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larger then one. The proof of Lemma 2.2 follows from Lemmas 1 to 6 from
Baye et al.

The proof of this lemma is technically involved and of little economic
interest so we will only provide intuition here. Suppose Lemma 2.2 does
not hold so ∃j such that sj < v. If that is so, no other firm would charge
any price in the open interval (sj , v) as these prices would never attract
informed consumers (firm j always charges below) so charging v brings
strictly larger profit. There can be no winning tie at sj (Lemma 2.1)
which implies that firm j itself prefers charging any price from (sj , v] to
charging sj .

Lemma 2.3. Any firm of type k that charges v in equilibrium earns profit
equal to π̄k.

Proof. There can be no winning tie at v (Lemma 2.1) , so probability
of getting informed consumers at v is equal to zero thus expected profits
earned are π̄k

Lemma 2.4. Only one firm i can earn more than π̄i in equilibrium.

Proof. Assume not. Using Lemma 2.3 we conclude that there are at least
two firms that do not charge v in equilibrium. Since at least two firms
completely randomize (say i and j), for prices close to v, the probability of
serving informed consumers approaches zero so their profit cannot be larger
than π̄. More formally: limp→v πl(p, F−l(p)) = π̄l where l = i, j and since
sl = v we conclude that both firms can only earn π̄l in equilibrium.

Lemma 2.5. In equilibrium all firms of the same type earn equal profit.

Proof. Assume the opposite. There are two firms i and j of type k which
earn different equilibrium profit (say πkj > πki ). Expected demand for
firm i at sj is no smaller than expected demand for firm j at that price
(Di(sj) ≥ Dj(sj)) so if firm i charges sj with probability one her profit
πki (sj) ≥ πkj (sj) = πkj > πki , a contradiction.

Lemma 2.6. No type k firm can earn profit larger than π̄k for k > 1.

Proof. Suppose not. There can only be one type k firm which has profit
π̃ > π̄k (Lemma 2.4). From Lemma 2.2 we know that the upper limit of
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an equilibrium price distribution for this firm is v. This implies that all
other firms charge v with a positive probability and expected demand for
firm j at v is larger than U while for all others it is precisely U. The lower
bound of firm j′s equilibrium distribution is sj . Demand for any firm of
type one is at least as large as demand for firm j at sj . Using Proposition
2.2 we arrive at contradiction.

From this point on our discussion will depend on the number of type
one firms (N1). As outlined in the Theorem 1 there are two important
cases: when N1 = 1 and N1 > 1.

b.1 Several Type One Firms

Let us first consider the case when N1 > 1. We will argue that all other
types will charge v with probability one in equilibrium.

Lemma 2.7. All type one firms earn profit equal to π̄1.

Proof. Immediate from Lemmas 2.4 and 2.5, and the fact that N1 > 1.

Let sk>1denote the lowest price any non-type one firm charges in equi-
librium. This price will satisfy sk>1 ≥ p2 by definition of p2.4

Lemma 2.8. There exist firms i and j of type 1 such that s1i = s1j = p1.

Proof. Suppose not. As a result there is at most one firm i for which
s1i = p1. Since for all others s1j 6=i > p1 firm i can earn profit larger than
π̄1 by charging a price slightly below min{s1j}j 6=i but still above p1 while
getting all the informed consumers. A contradiction with Lemma 2.7. If
s1j > p1 for all j then every firm of type 1 can charge some price slightly
below min{s1j}j but still above p1 and earn profit larger than π̄1, again a
contradiction with Lemma 2.7.

Lemma 2.9. For all k > 1 sk = v.

Proof. Let us prove by contradiction. Assume there is some firm j of type
k > 1 such that skj < v. Expected demand for any firm at v is equal to U
(implication of Lemmas 2.2 and 2.7). Expected demand for at least one

4Recall that p1 < p2.
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(in fact two) type one firms at skj is larger than it is for firm j (Lemma
2.8). Invoking Proposition 2.2 we arrive at a contradiction.

We have proven that only type one firms can (and two of them certainly
will) randomize prices. We are looking for a symmetric equilibrium so all
type one firms will randomize over the same interval. One can easily
construct an asymmetric solution where only two or more type one firms
randomize over the entire interval while other randomize over its proper
subsets or charge only v. Baye et al. (1992) provide a detailed guide to
constructing such equilibria in the case of only one type but since we
have proven that only one type randomizes their solution can be used
directly. Let F 1(p) denote the symmetric equilibrium price distribution
for the type one firms. As a result, for any price p ∈

[
p1, v

)
we have:

(v − c1)U = (p− c1)(U + I(1− F 1(p))N1−1 which defines F 1(p).

Equilibrium when N1 > 1 is the following:

Ñ1(N1 ≥ N1 ≥ 2) type one firms randomize using a cumulative distri-
bution function:

F 1(p) = 1−
[

(v − p)U
(p− c1)I

]1/(N1−1)

. (2.3)

All other types will charge v with probability one. This completes the
proof for Theorem 1 part (i). The equilibrium density functions for this
case are illustrated in Figure 2.1 a).

Note that, given the information structure of the consumers, production
allocation is efficient since only type one firms (who produce at the lowest
marginal costs) serve the informed consumers

b.2 Single Type One Firm

In this section we consider the case when N1 = 1. Note that this is
necessarily the case when K = N , that is, all firms are different. In this
subsection we show that Propositions 2.1 and 2.2 do not necessarily apply
in all the cases. Because there is a single type one firm, she will be forced
to randomize in the same interval where other types (namely type two)
firms randomize. This will be possible by constructing equilibrium where
with lowering price demand for type two firms increases more than for type
one firm which means that proposition 2.2 cannot be invoked.
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Directly, we can conclude that the only type one firm can always charge
a price slightly below p̄2, capture the entire informed market and earn
π̃1 = vU +C2(U + I)−C2(U)−C1(U + I) = (v− c1)U + (c2 − c1)I > π̄1.
We have proven that at most one firm can earn profit larger than π̄ (Lemma
2.4) so we conclude that the only type one firm is the only one that earns
abnormal profit. Next we will argue that the lower bound for its pricing
distribution will be equal to p2.

Lemma 2.10. The lower bound of the type one firm’s equilibrium price
distribution s1 will be equal to p2.

Proof. Suppose s1 6= p2.There are two cases: s1 > p2 and s1 < p2. The
former is impossible because no type two firm charges prices below p2 so
charging any price strictly less than that is not optimal for type one firm.
The latter case is more involved. Imagine s1 > p2. All type two firms
that randomize over [p2, s1) will use price distribution F 2(p) that satisfies:
(v − c2)U = (p − c2)(U + I(1 − F 2(p))N2−1). In such a case profit for
type one firm at s1 will be smaller than profit at p2 which completes the
proof.

As a result of Lemma 2.10 equilibrium profit for type one firm will be
precisely π̃1. Because s1 = v we conclude that probability of a tie for all
other firms at v should be equal to c2−c1

v−c1 .5

The lower bound for the equilibrium pricing distribution of type two
firms will also be p2. If all of them charge above p2 then the type one firm
will have no incentive to randomize near p2. Using these two observations
we can prove (in the spirit of Lemma 2.11) that all firms of type three and
up will charge v with probability one.

Lemma 2.11. For all k > 2 sk = v.

Proof. Identical to the proof of Lemma 2.11.

We are ready to characterize equilibrium in the case when N1 = 1:

5Type one firm should not charge v in equilibrium. It will, of course, charge prices very
close to v and at those prices it should earn expected profits equal to (v−c1)U+(c2−c1)I =

(v − c1)(U + c2−c1
v−c1

I). As p approaches v, probability of getting informed consumers (tie

of all others at v) should approach c2−c1
v−c1

.
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In equilibrium, type one firm will randomize completely on interval[
p2, v

)
. Since the probability of a tie at v has to be equal to c2−c1

v−c1 each of

the N2 type two firms will charge v with probability
[
c2−c1
v−c1

] 1
N2 .

The pricing strategy of type two firms that randomize will be defined
by:

(v − c1)U + (c2 − c1)I = (p− c1)(U + I(1− F 2(p))N2). (2.4)

From the Equation 2.4 we derive F 2(p):

F 2(p) = 1−
[

(v − p)U + (c2 − c1)I
(p− c1)I

] 1
N2

. (2.5)

The pricing strategy of the only type one firm is given by:

(v − c2)U = (p− c2)(U + I(1− F 2(p))N2−1(1− F 1(p))) (2.6)

From the Equation 2.6 we derive that:

F 1(p) = 1− (v − p)U
(p− c2)I(1− F 2(p))N2−1

. (2.7)

The equilibrium cumulative density functions are illustrated in Fig-

ure 2.1 b). Note that, as expected, limp→v F 2(p) = 1 −
[
c2−c1
v−c1

] 1
N2 and

limp→v F 1(p) = 1. This completes the proof of Theorem 1 part (ii).

The only case when the equilibrium derived here converges to Varian’s
equilibrium is when K = 2, N1 = 1.

In this case as c2 approaches c1 we have that

lim
c2→c1

F 1(p) = lim
c2→c1

F 2(p) =
[

(v − c1)U
(p− c1)I

] 1
N−1

= F (p). (2.8)

Production allocation is inefficient given the information structure.
Type two firms will serve informed consumers with a strictly positive prob-
ability which leads to inefficiency in production.

c Endogenous Allocation of the Captive Consumers

In the introduction we have stated that the asymmetry in the number of
captive consumers per firm has a similar effect on the equilibrium strategies
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of firms. Specifically, the two smallest firms in that regard will be the only
ones randomizing below the monopoly price. It has to be pointed out
that if the captive consumers can choose the firm to stick with in the
stage prior to the price competition the two effects can cancel each other
out.6 That is, firms with lower marginal costs will charge on average lower
prices if the number of captive consumers is equal among all the firms
so the captive consumers who chose other firms will have the incentive
to switch to the most efficient firms. Increasing the number of captive
consumers per efficient firms lowers their incentive to undercut others and
the equilibrium will arise where all the firms randomize in the same interval
and the average price charged by any of them is equal. The more efficient
the firm is the more captive consumers it will have in such equilibrium,
reflecting its cost advantage over others. Technicalities of such a solution
are not presented here since the model of the next section does not readily
allow captive consumers to choose their firm.

In the next section we present a search-theoretic model with an infinite
number of firms. Strictly speaking, one can also specify this model when
number of firms is finite making it directly comparable to the clearinghouse
model. Moreover, in the spirit of Janssen and Moraga-González (2004) we
can nest the two into one model. The reason why we abstain from doing
so is the loss in elegance and tractability that arises when there is only
one firm of some type(s). In this case, solution of the model we present
next, becomes obscure. In cases where number of firms of each type is no
less than two the solution to the finite firm model is identical to the one
presented here subject to a slight reformulation.7

2.5 Nonsequential Search Model

a Consumers and Firms

The model of this section is derived from Burdett and Judd (1983). Sup-
pose there is a large number of firms which produce a good that they sell to
a fixed number of consumers. Mass of consumers per firm will be denoted

6Baye et al. (1992) allow the captives to choose their firm and show that the only
equilibrium that survives is the symmetric equilibrium of the Varian (1980) model.

7If we require that number of firms of each type Nk is no less than two, solution of the
nonsequential search model (presented in the next section) with infinite number of firms

can be used if we substitute Nk
N

for nk everywhere. Of course it is necessary to construct
a different sequence of lemmas to prove that such equilibrium is the only one possible.

50



by µ.

There are K types of firms with different marginal costs. Proportion of
firms with marginal cost ck is nk where

∑K
k=1 nk = 1 and nk ≤ 1. Burdett

and Judd model is a special case of ours when k = 1. We will assume that
vµ ≥ Gk + ckµ for all k. The latter assumption guarantees that there is
at least one equilibrium where all firms participate in the market.8 Firms
are free to choose a price they charge for the good. Let F denote the
cumulative distribution function of prices charged in the market. It is easy
to see that F (v) = 1 and F (c1 − ε) = 0 for all ε > 0.

Consumers are assumed to know F or act as if they do. They will not
know which firm charges which price though. Consumers will choose to
get informed about a subset of firms which will be chosen randomly. Con-
sumers can only buy from a firm who’s price quotation they got informed
about. Consumer will buy one unit of a good if she decides to buy from
a firm who charges no more than v for it, otherwise she buys no units.
Expected profits a firm gets from charging a certain price depend on the
price she charges, prices that other firms charge and the way consumers
obtain price quotations.

Consumers decide how many price quotations to obtain upfront, pay
amount t for each quotations and then buy from a firm who quotes the
lowest price in their sample provided that the price is not larger than v.

Consumers decide how many price quotations to obtain and pay tm if they
choose to obtain m price quotes. Value of the parchase is such that it is
always optimal for a consumer to obtain at least one quotation. All the
prices are drawn randomly from population of firms. Price of purchase
for a consumer who searches m firms is cm+

∫∞
0 mp(1− F (p))m−1dF (p).

This function is convex in m and thus has a unique minimum if m is a real
number. Since m can only be an integer there can be either one integer
m∗ or two integers m∗ and m∗ + 1 that minimize the function.

Here we introduce additional notation. Proportion of consumers who
decide to obtain m quotations will be denoted by θm where m = 1, 2, 3, . . .
and

∑∞
m=1 θm = 1.

8We will need to further restrict Ck(Q) to make sure that all types earn non-negative
profit in a dispersed equilibrium. It will be sufficient to assume that (pk− ck)D(p

k
) ≥ Gk

where D(p) and pk will be defined in the next subsection. The former is the expected
demand at price p while the latter is the lowest price that type k firms charge in equilib-
rium.
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b Equilibrium

There always is a simple equilibrium in this model. If all firms charge price
equal to v then all consumers should search once in equilibrium. Clearly,
consumers do not have an incentive to search more than once as the only
price they can encounter is v. Firms also do not have incentive to charge
price below v as consumers only search one firm and there is no way to
attract additional consumers by charging a lower price.

It is easy to see that when k = 1 (Burdett and Judd (1983) model) the
only equilibrium with some consumers searching more than once is where
1 > θ1 > 0 and θ2 = 1− θ1. The reason why θ1 has to be more than zero
is intuitive. If all consumers obtain two or more quotations then all firms
engage in Bertrand competition and thus single equilibrium price is c1. If
all firms charge the same price it is optimal for consumers to search only
once thus θ1 = 1 which leads to a contradiction. Note that if k > 1 this
argument is not necessarily true. If θ1 = 0 then all type K firms will have
to charge price equal to cK . Charging price equal to marginal cost is not an
equilibrium strategy for all other types. Some of their consumers will only
search them and firms of “higher” types which means that charging price
equal to ck is not an equilibrium for type k (k < K) firms. For small enough
ε type k firm can always charge ck+1 − ε and surely earn positive profit.
Even if all firms charged prices equal to their marginal costs consumers
would still have incentive to search more than once because, in equilibrium,
different firm types charge different prices. For this reason there can exist
equilibria where no consumers search once. In this paper we will only
discuss the case when θ1 6= 0. Our conjecture is that for a range of search
cost parameter t only equilibrium when θ1 > 1 exists. Furthermore, we
also focus on analyzing how Burdett and Judd’s symmetric equilibrium
can be approached so dropping the model with all consumers searching at
least twice is only natural. Analyzing all the equilibria in this framework
is a subject of another paper.

Having established that the consumers search either once or twice we
turn to characterizing such equilibrium. First, consumers should be indif-
ferent between searching once or twice. Second, firms should only charge
prices that earn equal expected profits and all other prices should yield
expected profits no larger than the equilibrium one.
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We will define:

S(F ) =
∫ v

0

pdF (p)− 2
∫ v

0

p(1− F (p))dF (p) (2.9)

as a reduction in expected price of purchase from searching twice insted
of searching once. D(p) will denote expected demand from charging p (for
any firm) and will be equal to:

D(p) = µ(θ + 2(1− θ)(1− F (p))) = µθ + 2µ(1− θ)(1− F (p)). (2.10)

The first part on the left-hand side of the last expression is demand from
those who search only once (µθ), the number of consumers per firm times
the proportion of consumers who search only once) and the second part is
expected demand from those consumers who search twice (2µ(1 − θ)), is
the number of queries that end up at any firm so by charging p that firm
expects to grab 1− F (p) proportion of those who searched it).

Theorem 2.2. Nonsequential search model has the following symmetric
equilibria when θ1 > 0:

(i) All firms charge v with probability one and all consumers search once
(θ1 = 1).

(ii) Exists t̃ such that for all t < t̃ type k firms randomize continuously
over subsequent intervals [pk, pk+1] using the cumulative distribution
F k(p). Proportion θ̃(t) of the consumers searches once and the rest
search twice.

We have already argued that the equilibrium described in Theorem 2
part (i) always exists. We will prove part (ii) of Theorem 2 in a sequence
of lemmas.

Lemma 2.12. The equilibrium distribution of prices F (p) is continuous
with connected support.

Proof. Suppose there is p′ at which F (p) has discontinuity. That is:

lim
ε→0

F (p′ − ε) < lim
ε→0

F (p′ + ε).

There is a positive probability that consumers search two firms which
charge p′ which means that those firms have incentive to charge some
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slightly lower price and get all of those consumers insted of sharing them.
While doing so they loose profit of order zero and gain a discrete amount.
No assume F (p) is constant on some interval [p′, p′′] in the convex hull of
its support. Charging p′attracts those who search twice exactly with the
same probability as p′ + ε < p′′ does. As a result, charging p′ + ε brings
higher profit which can not be the case in equilibrium.

Note that, unlike the clearinghouse model, v can not be charged with a
positive probability in equilibrium. In the clearinghouse model so as long
as two firms never charged v there was no tie at v and undercutting it
did not give any obvious advantage. In this model firms compete pairwise
meaning that if a mass of firms charges v then there are consumers who
search two firms only out of those who charge v and undercutting it slightly
becomes profitable.

Expected demand for any firm of any type charging price p is equal
because the number of firms is infinite. As a result we can use Proposition
2.1 to conclude that firms of different types will not randomize over any
common interval.

Lemma 2.13. If, in equilibrium, price p is charged by firms of two differ-
ent types k and k′ (assume k < k′) then type k firms will not charge any
prices above p and type k′ firms will not charge any prices below p.

Proof. If p is charged by the two types we can deduce their equilibrium
profits: πk(p, F ) = (p − ck)D(p) and πk

′
(p, F ) = (p − ck′)D(p) where

D(p) = µθ+ 2µ(1− θ)(1−F (p)) is expected demand for any firm charging
p. Take any price p′ > p. If type k firms charge that price as well we should
have that πk(p, F ) = (p′−ck)D(p′) but then any type k′ firm would want to
charge p′ and never p because (p′−ck′)µ(θ+2(1−θ)(1−F ′(p′))) > πk

′
(p, F ).

In the same fashion we can prove that any price p′′ < p will not be charged
by type k′ firms.

Lemma 2.14. If firms of type k charge p′ and p′′ in equilibrium then they
will charge all the prices in the the interval [p′, p′′] and will be the only type
that does so.

Proof. Assume the opposite. There is type k that charges p′ and p′′ but not
some p ∈ (p′, p′′) which is charged by some other type k′. Charging p′ and
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p′′ should give equal profits to type k while p should give at most that profit
which gives an inequality: (p′−ck)D(p′) = (p′′−ck)D(p′′) ≥ (p−ck)D(p).
For type k′ charging p′ and p′′should not be more profitable than charging
p so (p− ck′)D(p) ≥ (p′ − ck′)D(p′) and (p− ck′)D(p) ≥ (p′′ − ck′)D(p′′).

There are two cases: ck > ck′ or ck < ck′ . Let us consider the latter
case first.

(p′ − ck)D(p′) ≥ (p− ck)D(p)⇒
(p′ − ck′)D(p′) + (ck′ − ck)D(p′) ≥ (p− ck′)D(p) + (ck′ − ck)D(p).

Since p′ < p we know that D(p′) > D(p) and we get (p′ − ck′)D(p′) >
(p− ck′)D(p) which contradicts (p− ck′)D(p) ≥ (p′ − ck′)D(p′).

Now assume that ck < ck′ . (p′′ − ck)D(p′′) ≥ (p − ck)D(p) ⇒ (p′′ −
ck′)D(p′′) + (ck′ − ck)D(p′′) ≥ (p− ck′)D(p) + (ck′ − ck)D(p). Since p′′ > p

we get that D(p′′) < D(p) which along with ck < ck′ implies that (p′′ −
ck′)D(p′′) > (p− ck′)D(p), a contradiction.

Lemma 2.15. The reservation price v will be the upper limit of the support
of F (p).

Proof. Suppose the upper bound is some x < v. Firms that charge x never
attract those consumers who search more than once so charging v will give
them strictly larger profit, a contradiction.

Lemmas 2.12 and 2.14 imply that types will be charging prices in con-
secutive intervals. Because those intervals will necessarily touch each other
at one point (and no more than that). Lemma 2.13 requires that the se-
quence of firm types follows their marginal cost levels from the highest
type charging in the highest interval.

We will describe a symmetric equilibrium of this model (symmetric in a
sense that all firms of the same type employ identical pricing strategies).9

All of the previous arguments along with Lemma 2.15 imply that type K
firms randomize over the interval [pK , v] where pK is defined by:

(pK − cK)(θ + 2(1− θ)nK) = (v − cK)θ. (2.11)
9Here we will pin down pricing strategy of each type in aggregate. Because number of

firms of each type is infinite individual firms of that type can employ arbitrary strategies
as long as in aggregate their price distribution is correct. In Appendix we describe how
to construct an asymmetric solution where each subgroups of a type randomizes over a
separate interval.
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From the last expression we obtain:

pK =
vθ + 2cKnK(1− θ)
θ + 2nK(1− θ) . (2.12)

The equilibrium distribution function FK(p) for type K firms will be
defined by:

(v − cK)θ = (p− cK)(θ + 2(1− θ)nK(1− FK(p))), (2.13)

where p ∈ [pK , v].

Type K− j (j = 1, 2, .., (K− 1)) firms will charge prices in the interval
[pK−j , pK−j+1] where pK−j is defined by:

(pK−j − cK−j)
[
θ + 2(1− θ)

j+1∑
i=1

nK−i+1

]
=

= (pK−j+1 − cK−j)
[
θ + 2(1− θ)

j∑
i=1

nK−i+1

] (2.14)

Since we know pK we can apply this equation recursively to obtain all
pK−j .

The equilibrium price distribution function for typeK−j firms FK−j(p)
will be defined by:

(p− cK−j)
[
θ + 2(1− θ)

[
j∑
i=1

nK−i+1 + nK−j(1− FK−j(p))
]]

=

=
(
pK−j+1 − cK−j

) [
θ + 2(1− θ)

j∑
i=1

nK−i+1

] (2.15)

where p ∈ [pK−j , pK−j+1]. One can see that no type k firm has in-
centive to charge prices outside [pk, pk+1]. Since pk is charged by type
k − 1 firms Lemma 2.13 implies that type k firm cannot charge prices
below pk. Using similar reasoning we conclude that they cannot charge
prices above pk+1 either which along with the previous statement proves
that they will only charge prices in the interval [pk, pk+1]. The equilibrium
density functions are illustrated in Figure 2.1 c).
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When θ approaches 1 all pk will converge to v thus making S(F (θ))
(which is a function of F which in turn is a function of θ) converge to 0.
Intuitively, when number of consumers who search twice goes to zero firms
start charging prices very close to v to earn the most from consumers who
search only once. As a result value of search goes to zero because all firms
charge price very close to each other.

Lemma 2.16. For all k limθ→1 p
k = v which implies that limθ→1 S(θ) = 0.

Proof. From Equation 2.12 we can see that limθ→1 p
K = v. From Equation

2.14 we obtain that limθ→1 p
K−j = pK−j+1. As a result we conclude that

limθ→1 p
k = v for all k. In particular, limθ→1 p

1 = v. We know that F (p)
is defined on an interval [p1, v] so from Equation 2.9 we conclude that
limθ→1 S(θ) = 0.

For 1 ≥ θ ≥ 0 ⇒ S(θ) > 0 and S is a continuous function of θ so
it will reach its maximum for at least one θ ∈ [0, 1]. Let S̃ > 0 denote
the corresponding maximum. If cost of obtaining price quotation t < S̃

there will be at least one θ̃(t) such that consumers are indifferent between
searching once or twice (S(θ̃) = t). Reduction in expected price from
obtaining one more price quote is decreasing in the number of prices quotes
obtained (see Section 2.1.6 in Baye, Morgan and Scholten (2006)), as a
result no consumer will choose to search three or more times. θ that solves
S(θ) = t and the corresponding price distributions of all types F k(p, θ) will
constitute equilibrium of this model. This completes the proof of Theorem
2 part (ii).

The aggregate price distribution will be equal to the sum of the price
distributions employed by all the types weighted by the proportions of
types, that is F (p) =

∑K
k=1 nkF

k(p) where p ∈ [p1, v]. When firms be-
come more and more similar (∀ck → c) the aggregate price distribution
converges to the one where K = 1 and c1 = c (Burdett and Judd (1983)).
This model proves to be more resistant to firm heterogeneity: to the ex-
tent that we consider the price distribution observed in the market, as
firms become less dissimilar equilibrium converges to the homogeneous
firm equilibrium. The symmetric firm equilibrium of Burdett and Judd
(1983) can not be reached as the limit of the heterogeneous firm model.
Just as before, the argument made in Proposition 2.2 makes symmetric
solution unapproachable. Instead, an asymmetric equilibrium of Burdett

57



and Judd model is reached in the limit when costs converge (We describe
this asymmetric equilibrium in Appendix).

Given the information structure of the consumers (which is endogenous
in this case) production decisions are efficient in the sense that if consumers
search two firms with different marginal costs they always buy from the
more efficient one.

2.6 Conclusion

In this paper we have analyzed a homogeneous good price dispersion where
firms have different marginal costs. We have identified conditions under
which the cost heterogeneity leads to asymmetric equilibria that stay such
even when in the limit costs converge. We have shown that these con-
ditions are satisfied in two important frameworks of the price dispersion
literature. In the generalized costly nonsequential search (based on Bur-
dett and Judd (1983)) and clearinghouse (based on Varian (1980)) models
we have shown that equilibrium pricing strategies of heterogeneous firms
will have at most one common price in their support. These finding are in
line with empirical observation that in markets where prices are dispersed
firms have tendency to stay in the same quartile of market price distri-
bution from period to period. This phenomenon cannot be explained by
symmetric firm models prominent in the literature (including the ones we
have generalized) since they command symmetric equilibrium as the only
natural solution. Our nonsequential search model has generated an indi-
vidual price dispersion, albeit at systematically different levels, that has
been documented in many markets and was not explained by heteroge-
neous firm models to date. We have also justified empirical and anecdotal
observations that some retailers persistently charge monopoly prices while
others compete among each other by charging prices below the monopoly
price .

We are confident that our results can be extended to a more general
framework where both of our models are nested into one and sequential
search is allowed additionally.10 Our conjecture is that depending on the
search cost parameter the equilibrium would, in its spirit, vary from the
one we obtained in the clearinghouse model to the one derived in the non-

10Janssen and Moraga-González (2004) nest the two in a symmetric setting.
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sequential search model. This would lead to the same stably asymmetric
solution that has been presented here in the two different setups.
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Figure 2.1: Equilibrium cumulative densities: a) for the Clearinghouse
model when N1 ≥ 2, b) for the Clearinghouse model when N1 = 1, and c)
for the Nonsequential Search model.
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3 IS A COMPETITOR OF MY COMPETITOR
ALSO MY COMPETITOR?

3.1 Introduction

Capacity investment has been long associated with anticompetitive be-
havior. Its use as an entry barrier in the context of quantity competition
is well studied in the literature (Gilbert and Vives (1986), Anderson and
Engers (1994), Allen, Deneckere, Faith and Kovenock (2000)). Eaton and
Ware (1987) and McLean and Riordan (1989) have shown that in a model
with sequential capacity building irreversibility of capacity investment al-
lows early movers to deter some later comers to the market from entering.
Eaton and Ware (1987), unlike McLean and Riordan (1989), separate ca-
pacity (sunk) investment stage from a simultaneous quantity competition
that follows it and nevertheless show that capacity investment plays entry-
deterring role.

In order for capacity levels to play any strategic role when on the subse-
quent production stage quantities are chosen simultaneously it is necessary
that capacity acquisition is not simultaneous. If it were then capacity could
not play any entry-deterring role and the resulting model would be equiv-
alent to a standard Cournot competition with marginal costs equal to the
sum of the cost of acquiring a unit of capacity on the investment stage and
the marginal cost of production on the quantity competition stage. In this
paper we show that this observation holds true only if all the firms com-
pete in the same market. It is not unusual that after having built their
capacity firms ship goods to many markets and do not always face the
same competitors in all of them. If this is true then, even if capacities are
built simultaneously, each firm will have a tendency to overbuild capacity
on the investemnt stage in order to force its competitors to redistribute
their production in the second stage towards the markets where the firm
itself is not present.

We model this idea by assuming that firms are located on a circle with
markets located in between firms. In the first stage firms simultaneously
choose how many units of capacity to build at a constant marginal cost.
In the second stage, after having observed all others’ capacities, each firm
decides how many units of the final good to produce (at a constant marginal
cost of production) within its capacity and how to allocate this quantity
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between the two markets that the firm directly borders. Price in each
market is then determined by the sum of the two quantities supplied to
the market by the two neighboring firms.

We show that in this setting, even though there will be no unused
capacity in the second stage, the level of capacity built is larger than
would have been if the pairs of firms competed only in one market. To
see this imagine that all firms are symmetric and in the first stage they
build such a level of capacity that in the second stage each market receives
Cournot quantity corresponding to two firms and marginal costs equal to
the cost of capacity plus the cost of production. If this is true then marginal
revenue from one more unit supplied to each market in the second stage
should be equal to the total marginal cost and larger than the marginal
cost of the second stage. The latter implies that capacity constraint will
be binding in the second stage and thus every unit of additional capacity
would have been produced and supplied. In such a case, under standard
assumptions on inverse demand function, from the standpoint of the first
stage marginal revenues from one unit of additional capacity will be larger
than joint marginal costs. If a firm builds two additional units of capacity
in the first stage, the firm commits to supply one more unit to each market
it serves and thus will induce its competitors to supply less to the affected
markets. In effect, firms have Stackelberg leader’s incentive to overproduce
capacity even though they do not have the first-mover advantage. As a
result, marginal revenue generated by one more unit of capacity will be
larger than marginal revenue from one more unit shipped to a market in
the second stage and will induce overcapacity relative to standard Cournot
model. This result holds for any symmetric market structures including
all regular networks provided that all firms have identical marginal costs.

Additionally, we consider asymmetry in capacity acquisition costs to
find that indirect competition has interesting implication for profitability
of firms on the circle. It is shown here that direct competitors of firms
own competitors can be perceived as its allies in the following sense: if
their marginal costs decrease then equilibrium capacity and profits of the
firm itself increase. This result is driven by the strategic substitutability
of quantities along with the capacity constraints. When capacity costs of
an indirect competitor go down, she increases her capacity in equilibrium.
This has two effects on the firm’s direct competitor: in the first stage she
is forced to build smaller capacity but in the second stage she will supply
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larger fraction of that capacity to the market contested with the firm itself.
Under linear demand specification the first effect is shown to be stronger
than the second which leads to smaller quantity supplied to the firm’s
own market and thus leads to higher capacity and profits for the firm. It
remains to be seen whether this effect is sensitive to the linear demand
specification but it is clear that generalization of this result to a wide class
of demand functions is to be expected.

The rest of the paper is organized in the following way: we present
the model in Section 3.2. We characterize identical firm equilibrium under
general demand specification in Section 3.3. We solve an asymmetric firm
version under linear demand in Section 3.4 and we conclude in Section 3.5.

3.2 The Model

Imagine n ≥ 3 firms located on the circle. There are n markets located
in between the firms. Each firm serves only the two markets which it
borders. Competition takes place in two stages. In the first stage all firms

Market 2

Market 1Market n

Firm n

Firm 1

Firm 2

Market n− 1

Figure 3.1: Indexing and location of firms and markets on the circle

simultaneously acquire a production capacity ki at a (potentially seller-
specific) constant per-unit cost di, which is a common knowledge. The
capacity investment in the first stage is assumed to be irreversible and
observed by all the firms prior to the second stage. In the second stage all
firms simultaneously choose quantities that they ship to the two markets
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they serve within the capacities determined in the first stage. Marginal
cost of production in the second stage is constant and is equal to ci for firm
i. For now we require that ci + di < p−1(0) but later we will impose more
conditions on the sum of marginal costs if these are different across firms.
Demand is identical in all the markets and the inverse demand function is
denoted by p(q) where q is the total quantity supplied to that market. It
is assumed that function p(q) is twice continuously differentiable and for
all q where the function is positive we have p′(q) < 0. Finally, we assume
that

Assumption 3.1. p′(q) + xp′′(q) < 0 for ∀x ∈ [0, q].

The last assumption insures that reaction functions are upward-sloping
which is a sufficient condition for the existence of Cournot equilibrium.
We assume that firms maximize their profits without discounting amounts
between stages. We solve for subgame perfect Nash equilibrium of the
model.

Quantity that firm i supplies to the market on its right (left), when
facing the circle, will be denote by qli (qri ).

1 We will use i rather loosely
implying that 1 < i < n, implicitly assuming that if i = 1 then i−1 stands
for n and if i = n then i+ 1 stands for 1.

3.3 Identical Firms

It is assumed in this section that all firms are identical (ci = c and di = d

for all i). We characterize only the symmetric equilibrium of the model.
It appears to be the only equilibrium when the firms are identical but we
do not provide a formal proof.

We solve the model by backward induction. Imagine that in the first
stage all firms built certain level of capacity. Let us denote the vector of
these capacities by K = (k1, k2, ..., kn). Once capacities are built firms
decide how many units to produce within their capacity. Each firm can
allocate her capacity between the two markets in any way so in equilibrium
of the second stage marginal revenues in both markets have to be equal
provided that capacities are not too different.

Lemma 3.1. If firms are identical marginal revenues in the second stage
1For example, price in the market 1 will be equal to p(ql

1 + qr
2).
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for firm i in both markets will be equal p(qli + qri+1) + p′(qli + qri+1)qli =
p(qri + qli−1) + p′(qri + qli−1)qri .

Proof. Proof follows from a simple observation that if marginal revenues
were not equal firm could move one unit of quantity from the market
with lower marginal revenue to the one with higher marginal revenue and
increase profits.

As mentioned, previous lemma would not hold if quantities supplied
by competitors (qli−1, q

r
i+1) were so different from each other that a firm

would not be able to equate marginal revenues in both markets even after
having supplied all of its capacity to the one with higher marginal revenue.
In this section firms are identical and we are characterizing a symmetric
equilibrium so this consideration is of no great importance. We allow vector
K to have different components only insofar as to evaluate profitability of
small deviations in the first stage and find equilibrium capacity that will
be equal for all firms.

Since the cost of production is c, in the second stage firms will produce
up to the point when either the capacity constraint is binding or marginal
revenue in both markets is equal to c. Depending on whether common
marginal revenue in both markets is larger than c or equal to it the optimal
reaction function qli(q

l
i−1, q

r
i+1) will be a solution to either

p(qli + qri+1) + p′(qli + qri+1)qli =

= p((ki − qli) + qli−1) + p′((ki − qli) + qli−1)qri (3.1)

or

p(qli + qri+1) + p′(qli + qri+1)qli = c, (3.2)

respectively. Equilibrium of the second stage will be such pair of quantities
produced for the two markets that each firm optimally reacts to all others
according to the reaction function specified. From now on let us assume
that for any i functions qli(K) and qri (K) are differentiable in K.

Now we turn to the first stage. First observation to be made is that
capacities are built simultaneously so in equilibrium there will be no over-
capacity.

Lemma 3.2. There will be no overcapacity in equilibrium. That is, for any
firm i the sum of equilibrium quantities supplied in the second stage is equal
to the equilibrium capacity built in the first stage qri (K

∗) + qli(K
∗) = k∗i .
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Proof. This lemma follows from the fact that capacities are built simulta-
neously and affect outcomes of the second stage only to the extent that
they bind quantities supplied at that stage. If for some firm capacity is
not binding in the second stage then it can do better by decreasing its ca-
pacity to be exactly equal to the overall quantity it supplies in the second
stage. By doing so it does not alter the equilibrium of the second stage
and strictly increases her overall profits.

Marginal revenues with respect to quantities produced in the second
stage cannot be lower than c. Lemma 3.2 implies that if all firms build an
equal capacity in the first stage (as they do in the symmetric equilibrium)
then this capacity has to be no larger than kc defined by:

p (kc) +
kc

2
p′ (kc) = c. (3.3)

This is a total Cournot equilibrium quantity of a model with two firms
and marginal costs equal to c.2 If all the firms build kc then marginal
revenue in all the markets will be equal to c and thus adding one more
unit of capacity in the first stage will not result in an increase of quantities
produced in the second stage.

Lemma 3.3. Maximum possible capacity in a symmetric equilibrium is kc

which is total Cournot equilibrium quantity of a model with two firms and
marginal costs equal to c.

If all the firms build equal capacity it will be an equilibrium only if
marginal revenue from additional capacity is equal to c+d at that capacity
level. To see this observe the maximization problem of a firm i is:

max
ki

p
(
qli−1(K) + qri (K)

)
qri (K) + p

(
qri+1(K) + qli(K)

)
qli(K)−

−(c+ d)ki (3.4)

By symmetry we know that in equilibrium qri (K) = qli(K) = ki

2 and
qli−1(K) = qri+1(K). Using this the first order condition gives:

p(k∗) + k∗p′(k∗)

[
1
2

+
∂qli−1(K)

∂ki

∣∣∣∣∣
K=K∗

]
= c+ d. (3.5)

From this Equation it is clear that the utility of solving equilibrium of the
second stage for an arbitrary vector K is to account for a possible deviation

2From this point on kx will denote total Cournot quantity for marginal costs equal to
x.
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of one of the firms. This is precisely why we assume that capacities are
close enough to allow that marginal revenues in equilibrium of the second
stage will always be equal in both markets any firm serves.

By Lemma 3.3 the solution in Equation 3.5 applies only when k∗ ≤ kc.
If it is not, then all the firms will build capacity equal to kc. Since k∗ is
increasing in c+d the upper bound on k∗ will put a lower bound on d. For
any d below a certain dmin the equilibrium capacity will be equal to kc.

Proposition 3.1. Equilibrium capacity k∗ is defined by Equation 3.5 for
all d > dmin and is equal to kc for all d ≤ dmin where dmin is the solution
of k∗(c+ dmin) = kc.

Note that Equation 3.5 is similar to the definition of kc+d, a total
Cournot quantity in a competition of two identical firms with marginal
costs equal to c+d. The only difference between kc+d and k∗ is in the sec-
ond term in the square brackets of Equation 3.5. For a standard Cournot
competition this term is zero because the quantities are produced simulta-
neously. In our model, on the other hand, firms can commit to quantities
produced because marginal revenues are larger than marginal costs in the
second stage so any capacity built in the first stage will necessarily be used.
Subsequently, both firms gain Stackelberg leader incentive to overproduce
without having an actual leader advantage. As a result:

Proposition 3.2. In a symmetric equilibrium all firms build a capacity
between Cournot capacity for marginal costs equal to c + d and c, that is
kc+d < k∗ ≤ kc.

Proof. Proof of the first inequality follows from the assumption on the
inverse demand function and the observation that in Equation 3.5 term
∂ql

i−1(K)

∂ki
is negative. The latter is true due to Assumption 3.1 which implies

that optimal reaction to an increased supply by a competitor is to supply
less quantity. If all firms start with a capacity equal to k and one of the
firms increases capacity then it will supply more to both of its markets
and thus in the equilibrium of the second stage both its direct competitors
will supply less to the two markets. Having established that ∂ql

i−1(K)

∂ki
< 0

inequality k∗ > kc follows from p′(q) < 0 and Assumption 3.1. Inequality
kc ≥ k∗ is given in Lemma 3.3.

This proposition has important implication for the intensity of compe-
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tition. It shows that if costs per unit are payed on two stages then compe-
tition is harsher than if they were payed simultaneously. To see that the
presence of indirect competition is necessary for this result consider two
firms who as in our model build capacity in the first stage, observe each
other’s capacity and then decide how much to produce and supply to a
single market in the second stage. In such a model marginal revenue of
the second stage will be equal to c+ d. Since firms have only one market
to supply their capacity to they will never build unused capacity and in
the second stage will produce quantity equal to the capacity. As a result,
in this model they will build capacities equal to kc+d.

The driving force behind Proposition 3.2 is squarely Assumption 3.1.
As such, it can trivially be generalized to any symmetric market structure.
Borrowing terminology from the Graph Theory, circle is a particular ex-
ample of a regular graph with the degree equal to two.3 Increasing the
degree of the graph does not alter the fact that in equilibrium all firms will
build equal capacity. Assumption 3.1 ensures that increased capacity of
any firm leads to smaller quantities supplied to its markets by competitors
in the second stage so:

Corollary 3.1. In any regular graph with identical markets situated be-
tween firms in a symmetric equilibrium all firms build a capacity between
Cournot capacity for marginal costs equal to c + d and c, that is kc+d <
k∗ ≤ kc.

Generally speaking, graphs have a limited ability to describe market
structures. So far we have assumed that firms act as nodes while any
connection between firms is a market that these two firms contest. This
specification does not allow for more than two firms to be present in a single
market. Even though we are not able to find a definition that encompasses
all the features of the spatial market structures is seems clear that our main
result will go through for any “ symmetric” structure. By symmetric we
mean that firms have identical production technologies and the structure
is such that changing labels on firms does not change the market at hand.

Next we proceed to an illustration of the mechanics of the model by
solving for the equilibrium capacities for a linear demand function.

3Regular graph of a degree m is a graph where all nodes (in our case firms) are con-
nected to m other nodes (in our model contest m markets with m other firms).
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a Identical Firms and Linear Demand

For a linear inverse demand function p(q) = 1− q the equality of marginal
revenues in both markets yields

qli =
1
2
ki +

1
4
[
qli−1 − qri+1

]
and qri =

1
2
ki +

1
4
[
qri+1 − qli−1

]
. (3.6)

Taking all such conditions for i = 1...n we get the following system of 2n
equations in 2n unknowns:

ql1 = 1
2k1 + 1

4

[
qln − qr2

]
qr1 = 1

2k1 + 1
4

[
qrn − ql2

]
...

qln = 1
2kn + 1

4

[
qln−1 − qr1

]
qln = 1

2kn + 1
4

[
qr1 − qln−1

]
.

We will solve this system of equations using recursive method. To do
so in Equation 3.6 we substitute ki+1 − qli+1 for qri+1. We are left with:

qli =
1
2
ki +

1
4
[
qli−1 − (ki+1 − qli+1)

]
. (3.7)

The last expression can be rewritten as:

1√
3− 2

[
1− L

2 +
√

3

] [
1− 2−

√
3

L

]
qli(K) = ki−1 − 2ki. (3.8)

where L is a lag operator defined in a usual way (Lqi = qi−1 and 1
Lqi =

qi+1). We will use the fact that for any variable xi we have xi = xi+mn

where m is any integer. After tedious algebra one arrives at:

qli(K) =
ki
2

+

1−
√

3
2
−

√
3(

2 +
√

3
)n
− 1

 (ki−1 − ki+1)+

+
n∑

t=i+2

(
2 +
√

3
)t−i

−
(

2 +
√

3
)n−t+i

2
((

2 +
√

3
)n
− 1
) kt+ (3.9)

+
i−2∑
t=1

(
2 +
√

3
)n+t−i

−
(

2 +
√

3
)i−t

2
((

2 +
√

3
)n
− 1
) kt.

Here we use Equation 3.5 to determine equilibrium capacity. The idea
behind this equation is the following: if k∗ is to be an equilibrium capacity
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then when one of the firms deviates from k∗ to k′ her profits should not
increase. Since all other firms have equal capacity the deviating firm in
the second stage will supply half of its capacity to each of the markets.
Knowing this and the optimal reaction by other firms to k′ from Equation
3.9 we can find optimal k′ given k∗ through equating marginal revenue
from one more additional unit of capacity to c+ d. Imposing back that in
equilibrium k′ = k∗ results in the solution:

k∗ =

(√
3− 1

)(
1−

(
2−
√

3
)n)

1 +
(

2−
√

3
)1+n (1− (c+ d)). (3.10)

Note first that, as by Proposition 3.2, for any n > 2 this capacity is
larger than Cournot capacity:

k∗ =

(√
3− 1

)(
1−

(
2−
√

3
)n)

1 +
(

2−
√

3
)1+n (1− (c+ d)) >

2
3

(1− (c+ d)) = kc+d.

It is noteworthy that even though there are always two firms per market
equilibrium capacity is increasing in n. This is because the larger is the
number of firms on the circle the larger is the number of markets where
firms can push out their competitors in the second stage. This leads to even
larger buildup of capacity in the first stage. When n = 2 the equilibrium
capacity is precisely the Cournot one. When there are only two firms
on the circle both firms have no choice but to supply their capacity into
the two common markets they compete in and thus they build capacity
sufficient to supply Cournot quantities to both markets.

From Proposition 3.1 the above solution only applies for d > dmin. The
latter is defined by equation k∗(c + dmin) = kc so in the linear example
the equilibrium capacity given in Equation 3.11 applies only for:

d >
2−
√

3−
(

2−
√

3
)n−1

3
(

1−
(

2−
√

3
)n) (1− c) = dmin. (3.11)

Note that when d = dmin, as expected, k∗ = 2
3 (1 − c) = kc. For any

d ≤ dmin the equilibrium capacity will be equal to k∗ = kc.

In the next section we will solve the model when firms have different
costs of building capacity in order to study the relationship between these
costs and profitability of all other firms.
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Figure 3.2: Relationship between the equilibrium capacity k∗ and the num-
ber of firms n.

3.4 Asymmetric Firms and Linear Demand

One immediate problem is that is firms are too asymmetric then we cannot
guarantee that production allocation of the second stage equates marginal
revenues in both markets. Secondary problem arises because, unlike sym-
metric firm model, marginal revenues in the second stage can reach the
lower threshold of ci for some firms while not for some others. This is not
a difficulty in a symmetric model because this threshold is reached by all
the firms simultaneously.

For the above mentioned two reasons we will assume that marginal
costs are not diverse enough and that di are large enough so that marginal
revenues in the second stage are strictly larger than ci for all firms in
equilibrium. We will start solving the model assuming all this and later
we put restriction on the primitives of the model to make sure that these
condition are satisfied in equilibrium.

Recall that in the second stage quantity supplied by firm j to the market
on her left qlj is given by Equation 3.9 and is a function of the vector of
first period capacities K. What remains to be done is to find optimal
capacity for each of the firms in the first stage, taking into account how
these capacities affect quantities and prices of the second stage. Using
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Equation 3.9 we solve the maximization problem in Equation 3.4. After
tedious algebra one finds optimal capacity for firm 1 given capacities of all
others:

k1 =

(
2 +
√

3
)n
− 1(

1 +
√

3
)(

1 +
(

2 +
√

3
)n−1

) (1− c1)−

−
n∑
t=2

(
2 +
√

3
)t−1

+
(

2 +
√

3
)n−t+1

2
(

1 + 1√
3

)(
1 +

(
2 +
√

3
)n−1

)kt (3.12)

Analogous conditions apply to all other firms. Vector of equilibrium
capacities K∗ is the solution of the system of equation that consists of n
such conditions.

For illustration purposes here we present the case of six firms with
asymmetric capacity building costs and zero marginal costs of production.
From the system of equations analogous to Equation 3.12 we derive:

k1 = 30
41 − 68760

41041c1 + 20415
41041 (c2 + c6)− 1110

41041 (c3 + c5) + 120
41041c4 (3.13)

After some algebra one finds that price in market 1 will be equal to:

p1 = 11
41 + 1439

3731c1 + 1439
3731c2 − 78

3731c3 − 78
3731c6 + 4

3731c4 + 4
3731c5 (3.14)

As one can see, the marginal costs of firms directly involved in competi-
tion in market 1 (firms 1 and 2) have positive coefficient in the expression
for p1, while the coefficient for marginal costs of their direct neighbors
(firms 3 and 6) is negative though significantly smaller in absolute value.
The sign changes for next two firms on the circle (firms 4 and 5) as the
relevant coefficients are positive though extremely small. It seems puz-
zling that increase in marginal costs for 3 and 6 would actually decrease
price charged in market 1. The explanation lies in the nature of Cournot
competition and in the presence of capacity constraints. The expressions
for capacity built by firm 3 (similar logic applies for firm 6) and quantities
supplied to markets 2 and 3 are:

ql3 = 15
41 − 34380

41041c3 + 1864
41041c4 + 18551

41041c2 − 1006
41041c1 + 60

41041c6 − 104
41041c5

qr3 = 15
41 − 34380

41041c3 + 1864
41041c2 + 18551

41041c4 − 1006
41041c5 + 60

41041c6 − 104
41041c1

An increase in the cost of capacity for firm 3 decreases overall capacity
it builds and also both quantities she supplies. This leads to increased
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capacities built by her competitors (firms 2 and 4) which in turn decreases
capacities built by their competitors (firms 1 and 5). These effects are
sharply dieing out so the increase in capacity (and quantities supplied to
each market) for firm 2 is larger than the reduction of capacity for firm 1
so joint effect is higher overall quantity supplied to market 1 which leads
to reduction of p1.

It is interesting to see how marginal costs affect profits. In the context
of our model it is unclear whether firms are competitors or not if they are
not present in the same market.

Definition 3.1. A firm is a competitor to another firm if a reduction in
her capacity acquisition costs leads to a reduction in equilibrium profits of
the other firm.

Using this definition we find that competitors of firms direct competi-
tors are not in fact her own competitors if costs are similar across firms
and they are bounded away from one. For example:

∂π1

c1
(C) < 0

∂π1

c2
(C) =

∂π1

c6
(C) > 0

∂π1

c3
(C) =

∂π1

c5
(C) < 0,

where π1 is equilibrium profit of firm 1 as a function of the marginal costs
of all the firms and C is a vector of equal marginal costs.

Now we turn to the numerical solution of the model with asymmetric
capacity costs. As we have already emphasized above the effect of capacity
costs of firms situated more than 3 markets away from a given market on
the price is insignificant. Moreover, after number of firms reaches 10 all
relevant (within three markets reach) coefficients remain unchanged up to
5th digit. The following two equations give numeric results for our model
with 500 firms:

ki = 0.73205− 1.6775ci + 0.4985(ci+1 + ci−1)− (3.15)

−0.027185(ci+2 + ci−2) + 0.0014825(ci+3 + ci−3) + ...

pi = 0.26795 + 0.38599(ci + ci+1)− (3.16)

−0.021049(ci−1 + ci+2) + 0.0011478(ci−2 + ci+3) + ...
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From Equation 3.15 one can see that the direct competitors of firm’s
own competitors are acting as allies. Effect of their marginal costs on
capacity built by the firm are similar (though smaller) to effect of firm’s
own marginal cost.

3.5 Conclusion

We presented a model of spatial Cournot competition with prior capacity
building. We show that, even though there will be no unused capacity in
the second stage, due to ability to push competitors into markets where
one is not present capacity levels are larger than in a standard Cournot
competition. As a result this paper is the first to have documented a pro-
competitive effect of capacity building. This result can be generalized be-
yond circular location model to all symmetric market structures including
regular graphs of any degree. Capacity constants and the spacial structure
were shown to have paradoxical implications for indirect competition: in
our setting indirect competitors of a firm can be perceived as its allies
because their efficiency gains translate into the firm’s capacity and profit
expansion.
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APPENDIX

Proof of Lemma 1.3

Assume a retailer is charging price pair (pi, pj). Because of Lemma 1.1
expected profits from charging pi for i are equal to

πi(pi) = [θ + 2(1− θ)(1− Fi(pi))]pi.

First, we argue that either the profits from selling i are constant or strictly
increasing for all pi ∈ [p

i
, pi]. The expected profits cannot be decreasing

with pi because if they were then all the retailers would lower prices, a
strategy that increases profit earned on i and does not affect the profits
earned from j by inducing consumers not to buy both goods.

We have established that πi(pi) is either constant or strictly increasing
at any pi ∈ [p

i
, pi] so if ∂πi(pi)/∂pi 6= 0 for some pi then ∂πi(pi)/∂pi > 0.

Take any equilibrium price pair (p̃i, p̃j) such that ∂πi(p̃i)/∂pi > 0. Any
retailer would find it optimal to increase p̃i so either p̃i ≤ vab − p̃j or
p̃i ≤ vab − vj should bind.

We will consider each case in turn. Assume p̃i ≤ vab − vj binds. This
means that vj > p̃j . then for any pj ∈ [p̃j , vj ] it is optimal to charge p̃i
and thus there is a point mass at p̃i, a contradiction.

Now assume that p̃i ≤ vab− p̃j binds so p̃i+ p̃j = vab. It should also be
the case that ∂πj(p̃j)/∂pj > 0 for if the profits from selling j were constant
at p̃j there would be a point mass at p̃i. The conditions p̃i + p̃j = vab,
∂πi(p̃i)/∂pi > 0 and ∂πj(p̃j)/∂pj > 0 imply that Fi(p̃i) = 1−Fj(vab− p̃i).
This is because any pi ≤ p̃i should be charged along with some pj ≥ p̃j =
vab − p̃i.

Let us write the total profits in equilibrium at the price pair (p̃i, vab−p̃i):

π = θvab + 2(1− θ)(p̃i(1− Fi(p̃i)) + (vab − p̃i)Fi(p̃i)).

From this we find that in the neighborhood of p̃i:

Fi(pi) =
π − 2pi − θ(vab − 2pi)

2(1− θ)(vab − 2pi)
.

First of all note that the cumulative distribution only exists if p̃i 6= 1
2vab.
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The derivative of Fi at p̃i has to be strictly positive so:

π − vab
(1− θ)(vab − 2pi)2

> 0.

This implies that π > vab. Because the firms are identical their equi-
librium profits are equal so the last inequality implies that joint profits of
the two firms are larger than 2vab. This is impossible because the most
the two firms can earn (when they charge all prices equal to 1

2vab) is 2vab.

Asymmetric Equilibria of the Symmetric Nonsequential Search
Model

Here we describe a subset of the asymmetric equilibria of nonsequential
search model when all firms are identical (Burdett and Judd (1983)) that
are of a particular interest to us. Model when K = 1 has a unique sym-
metric equilibrium where market price distribution as well as strategy of
every firm is given by

F (p) = 1− (v − p)θ
2(1− θ)(p− c)

, p ∈ [p, v] where p = vθ+2c(1−θ)
θ+2(1−θ) . Because the number of firms is infinite

each individual firm can use an arbitrary pricing strategy so long as the
market price distribution is F (p) (Burdett and Judd prove that market
distribution has to be precisely F (p)). We will only characterize an asym-
metric equilibrium where firms are gathered in K groups (or types). We
will require that each group randomizes in a separate interval, all the firms
in the group use identical pricing strategies and sequence of intervals goes
from group K to group 1 descending from v to p.

Assume there are K different strategies employed by firms. Let nk
denote proportion of firms that employ strategy k. As mentioned above
group K will randomize in an interval adjacent to v. The lowest price this
group will charge is denoted by pK and has to be equal to:

pK =
vθ + 2cnK(1− θ)
θ + 2nK(1− θ) .

Pricing strategy of the group K will be FK(p) defined by:

(v − c)θ = (p− c)(θ + 2(1− θ)nK(1− FK(p)))
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Using the same recursive algorithm as in Section 4 we find that type K− j
firms will randomize in an interval [pK−j , pK−j+1] where pK−j is defined
by:

(pK−j − c)
[
θ + 2(1− θ)

j+1∑
i=1

nK−i+1

]
=

= (pK−j+1 − c)
[
θ + 2(1− θ)

j∑
i=1

nK−i+1

]

and the pricing strategy they use is FK−j(p), derived from:

(p− c)
[
θ + 2(1− θ)

[
j∑
i=1

nK−i+1 + nK−j(1− FK−j(p))
]]

=

= (pK−j+1 − c)
[
θ + 2(1− θ)

j∑
i=1

nK−i+1

]
.

It is important to remember that market price distribution will always be
equal to F (p) regardless of individual firm pricing strategies so we verify
that F (p) =

∑K
k=1 nkF

k(p) and p1 = p so p ∈ [p, v]. As we have argued
in Section 4 when the number of types is K the symmetric equilibrium of
the heterogeneous firm model will converge to the asymmetric equilibrium
described here.
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