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Abstract 
 

Whereas people are typically thought to be better off with more choices, large sets may 

lead to “choice paralysis”.  This thesis explores the processes underlying the choice from 

multiple alternatives in different settings. First, we propose that satisfaction is an inverted U-

shaped function of the number of alternatives. This proposition is derived theoretically by 

considering the benefits and costs of different numbers of alternatives, and validated in several 

behavioral experiments. Second, we investigate the computational processes used to make 

choices from multiple alternatives under extreme time pressure using an eye-tracking 

technique. We find that choices are well-described by a sequential search model, in which 

people randomly fixate on items, measure their values, and choose the best item seen. Third, 

we study the neural bases of choice from multiple alternatives using fMRI. The results 

demonstrate that brain activity is modulated by the number of choice items and by the 

subjective choice experience of people. 
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Introduction 

Let no one say that taking action is hard.  

Action is aided by courage, by the moment, by impulse,  

and the hardest thing in the world  is making a decision 

 

Franz Grillparzer (1791-1872),  

Austrian author 

 

In today’s world, people face a great numbers of choice alternatives involving both 

small and large stakes, e.g., from chocolates and cereals to health plans and pension schemes. 

The every-day decisions in a typical supermarket involve choosing a yogurt out of 150 types 

of yogurts or a bottle of wine out of 3600 sorts of wines. Yet, although both classic economics 

and psychology emphasize the benefits of more choice (see, e.g., Langer & Rodin, 1976; 

Zuckerman et al., 1978; Ryan & Deci, 2000), having many alternatives can lead to choice 

paralysis and less satisfaction with decisions  (Schwartz, 2000; 2004; Iyengar & Lepper, 2000; 

Iyengar, Wells, & Schwartz, 2006). So how much choice is enough? 

This thesis explores how people make choices from sets with multiple alternatives and 

investigates the mechanisms underlying the choice overload phenomenon. There are several 

gaps in the previous research that this thesis aims to fill. First, previous literature focused 

mostly on studying choices from limited (up to 5 options) and extensive (25-30 options) 

numbers of alternatives. Very few sources include choice sets with an intermediate number of 

options.  We emphasize that it is also important to predict human behavior and satisfaction 

when one faces intermediate sets. This thesis studies choices from small, intermediate and 

extensive sets of alternatives. We explore how satisfaction and actual behavior changes as a 

function of the number of items in the set.  

Second, previous research focused mostly on outcomes of choice behavior (e.g., the 

number of choices made, quality of decisions, etc.). Little attention was paid to understanding 
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the processes underlying choice from multiple alternatives. This occurs mainly because there 

are few tools which can be used for uncovering such processes.  In this thesis we aim to 

explore the processes driving choice behavior from multiple alternatives. To shed light on 

mechanisms underlying choice behavior, we use various experimental methods including eye-

tracking and functional magnetic resonance imaging (fMRI) techniques. The use of both 

behavioral and biological data provide a powerful tool for exploring and understanding the 

actual processes that individuals use to make choice decisions.  

In the first chapter we provide and test an explicit theoretical rationale for how 

satisfaction from choice varies as a function of set size.  We propose that satisfaction from 

choice is an inverted U-shaped function of the number of alternatives. We derive this 

proposition theoretically by considering the benefits and costs of different numbers of 

alternatives. We suggest that both benefits and costs increase with the number of alternatives, 

but while the former increase and “satiate” the latter increase and “escalate”. We assume that 

satisfaction is defined as net benefits (i.e., benefits less costs), and therefore, is an inverted U-

shaped function of a set size. We further provide experimental verification of our proposition. 

Moreover, hypothesizing differences in cognitive costs, we demonstrate how these affect the 

relative location of the function’s peak. We conduct eye-tracking and questionnaire studies to 

verify our conjecture about cognitive costs. We demonstrate effects of psychic costs by 

showing that satisfaction is diminished if people are made aware of the existence of other 

choice sets. Furthermore, effects due to gender further demonstrate the role of individual 

differences.  

In the second chapter we study the computational processes people use to make real 

choices among familiar snack foods under extreme time pressure and option overload. 

Surprisingly, given the speed of the process and the fact that subjects only fixate on a subset of 
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the items, we find that average choice efficiencies in all choice sets are large (about 80%). 

This suggests that subjects are able to make good decisions in every day conditions (e.g., at a 

supermarket aisle) even under severe time pressure. To explore why this is the case we use the 

eye-tracking data to characterize in detail the computational process used to make the 

decisions. We find that choices are well-described by a sequential search model in which 

subjects randomly fixate on items in order to measure their values as long as they have time 

and then choose the best item that they have seen. Although the process works well in many 

circumstances, we also find that it exhibits significant display-driven biases that can be 

potentially exploited by sellers to manipulate choice. 

The third chapter aims to investigate the neural bases of choice overload phenomena. 

In our fMRI experiment, subjects faced different-sized choice sets of landscape photographs 

from which they had to choose their most preferred one. One of these choices was then used to 

produce a consumer product with an imprint of the respective photograph (e.g., a mug, a T-

shirt, etc.). Our results demonstrate that brain activity was modulated by the number of choice 

items available to the participants and by subjective perceptions about choice experience. 

While activity in some brain areas (such as the MOG, IOG, LG, SMA and PMd) increased 

linearly with the number of alternatives, activity in other brain regions (such as the NA, 

Caudate, ACC, MFG, and POG) followed an inverted U-pattern, with the increase of the 

choice set size. Areas exhibiting fMRI-activity which was correlated with the subjective 

choice set value were mapped within the posterior parietal cortex, which is known to respond 

in monkeys and humans to value and choice behavior. We further demonstrate how two other 

variables - “freedom” of choice and availability of a strongly preferred item  - mediate neural 

representations of choice from multiple alternatives. 
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The findings are of significant theoretical and practical interest. Knowing how the 

structure of the consumer’s environment and the computational processes people use affect 

choice behavior and satisfaction can allow marketers to develop tools that can benefit both 

consumers and companies. 
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Chapter 1 

 

Satisfaction in Choice as a Function of the 

Number of Alternatives: When “Goods 

Satiate” but “Bads Escalate”
1
 

 

1.1 Introduction 

In today’s world, people face an embarrassment of riches in the form of the numbers of 

alternatives available for choice involving both small and large stakes, e.g., from chocolates 

and yogurts to health plans and pension schemes. And yet, although both economic theory and 

the psychological literature emphasize the benefits of more choice (see, e.g., Langer & Rodin, 

1976; Zuckerman et al., 1978; Ryan & Deci, 2000), having many alternatives can be 

dysfunctional (Schwartz, 2000; 2004; Iyengar, Wells, & Schwartz, 2006). Rather than 

choosing from many options, people sometimes incur costs by foregoing or delaying decisions 

(Iyengar, Huberman, & Jiang, 2004). At the same time, some studies report greater 

satisfaction when choice involves limited numbers of alternatives (say six as opposed to thirty, 

Iyengar & Lepper, 2000). 

                                                 
1 This work is done in collaboration with Robin M. Hogarth (ICREA & Universitat Pompeu Fabra). The research 
was supported by the Spanish Ministerio de Educación y Ciencia, grant number SEJ2006-14098 (to R. M. 
Hogarth). The authors are grateful for helpful comments from Barbara Fasolo, Ralph Hertwig, Barbara Kahn, 
Antonio Ladrón de Guevara, Abel Lucena, Rosemarie Nagel, Albert Satorra on earlier versions of this chapter. 
We express our special appreciation to José Antonio Aznar for his help in conducting the eye-tracking study. 
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Our goal in this paper is to illuminate how satisfaction from choice varies as a function 

of set size (i.e., the number of alternatives faced). We define satisfaction in two ways. One is 

satisfaction from the ultimate choice (i.e., “outcome satisfaction”); the other is satisfaction 

from the process of choosing itself (i.e., “process satisfaction”). Whereas most decision 

research correctly focuses on actual choices, satisfaction also merits attention. At the 

individual level, for example, Iyengar, Wells, and Schwartz (2006) have demonstrated that, 

even while doing better, so-called “maximizers” may feel worse because of “not always 

wanting what they get.” In addition, organizations are typically interested in having satisfied 

clients or customers in the belief that satisfaction leads to further beneficial interactions.  

We note, first, that at an empirical level, the set sizes examined in previous studies 

favoring choice are typically limited (up to 6 options) while the sets claimed to be 

demotivating are typically large (24-30 options) (Iyengar & Lepper, 2000; Kahn & Wansink, 

2004). Curiously, little attention has been paid to choices that also involve intermediate 

numbers of alternatives (e.g., between 10 and 20 options). Indeed, we know of only one study. 

Shah and Wolford (2007) found that people were more likely to buy pens when confronted 

with intermediate numbers of alternatives (10 as opposed to 2 or 20). Second, at a theoretical 

level we note that authors of these empirical studies have not provided an explicit underlying 

rationale for the phenomena.  

This paper provides and tests an explicit theoretical rationale for how satisfaction from 

choice varies as a function of set size.  In particular, we emphasize not only levels of 

satisfaction associated with small and large set sizes but also what occurs at intermediate 

levels. We further indicate how characteristics of both individuals and tasks (e.g., types of 

choice alternatives) affect the relation between satisfaction and set size. 
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In addition to intrinsic theoretical interest, there are significant practical implications. 

From the marketing point of view it is crucial to understand how the structure of the 

consumer’s environment (e.g., the number and characteristics of choice alternatives) affects 

satisfaction. Knowing this can allow marketers to develop tools that can benefit both 

consumers and companies. From the viewpoint of public policy, it is also important to 

understand how the relation between satisfaction and set size affects choice for major 

decisions such as pension schemes and health plans (see, e.g., Botti & Iyengar, 2006). 

More specifically, we build on the idea that perceived benefits and costs (defined below) 

impact satisfaction – positively and negatively, respectively. Moreover both benefits and costs 

increase with the number of alternatives.  However, we assume that the latter increase faster 

than the former (e.g., the benefits increase at a decreasing rate whereas the costs increase at an 

increasing rate). This assumption – that “goods satiate” while “bads escalate” (Coombs & 

Avrunin, 1977) – is not trivial and leads to predicting that satisfaction, which is defined as net 

benefits (i.e., benefits less costs), is an inverted U-shaped function of set size as illustrated in  

 

 Figure 1.1A Figure 1.1B 

Figure 1.1: Satisfaction as a function of the number of alternatives. 

Ub: benefits of 
choice   

Uc: costs of 
choice   

n, number of 
choice options  

0 

Benefits 

   + 

   - 
 Costs 

Inverted U-shaped function of n 
Uo=Ub(n)+Uc(n)  

n, number of 
choice options  

0 

Benefits 

   + 

   - 
 Costs 
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Two clear implications of this function are that, first, greater outcome and process 

satisfaction will be experienced from choices made from intermediate as opposed to large or 

small set sizes; and second, changes in perceived costs and benefits will shift the position of 

the peak of the satisfaction function. For example, holding benefits constant, lower costs will 

shift the peak to the right. We emphasize the explicit nature of our theoretical rationale and, in 

particular, the predicted shape of the satisfaction function. More critically, it can be falsified 

empirically.  

In our experimental work, we explicitly manipulate cognitive costs imposed on decision-

makers by varying the visual attributes of choice alternatives and demonstrate how this affects 

the shape of the satisfaction function. We further emphasize the importance of perceptions of 

costs and benefits. Thus, even if the same choice set is viewed by different groups of people, 

the satisfaction function could reflect characteristics such as gender, culture, or knowledge. 

However, whereas the peak and position of the satisfaction function may change, there will 

still be an inverted-U relation between satisfaction and the number of alternatives.  

This paper is organized as follows. The next section elaborates on the theoretical 

framework. This is followed by the presentation of five empirical studies. Study 1 explores the 

shape of the satisfaction function and examines the effect of costs due to visual characteristics 

of choices. The goal of Studies 2 (eye-tracking experiment) and 3 (questionnaire) is to 

illuminate the asymmetry in costs between visual attributes which contribute to the changes in 

the satisfaction function demonstrated in Study 1. Study 4 tests the influence of visual 

properties of alternatives on choice set attractiveness. Study 5 manipulates perceived psychic 

costs and demonstrates the effect of individual characteristics on the resulting function. We 

conclude by discussing implications. 
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1.2 Theoretical Framework 

The proliferation of choice alternatives can be thought of as implying benefits and costs 

at two levels. One is at the level of the collective or society, the other at that of the individual. 

For the former, the existence of many alternatives is clearly advantageous in that it enables 

satisfying a multiplicity of different individual preferences. In addition, many choices can lead 

to the benefits of competition, e.g., lower prices and greater quality (Loewenstein, 1999). 

Moreover, perceived quality – and more purchases – can sometimes be achieved by companies 

that offer greater variety within brands (Berger, Draganska, & Simonson, 2007). Finally, the 

mere fact of having choice alternatives can enhance psychological well-being and thus also 

social welfare (see, e.g., Langer & Rodin, 1976). 

At the individual level, however, the perceived benefits and costs of choice depend on 

both situational and psychological factors. One way of conceptualizing how these affect 

satisfaction is to specify how their associated benefits and costs vary as the number of 

alternatives in the choice set increases. This is illustrated in Table 1.1 where we, first, 

decompose situational and psychological costs, and, second, indicate how associated costs and 

benefits increase with set size.  

We decompose situational factors into two components: time and economic. For the 

individual, we assume that, ceteris paribus, the cost of time to make a decision increases 

linearly with the number of alternatives examined. As to the economic factor – or more 

broadly the economist’s notion of utility – we assume that benefits increase with the number 

of alternatives but at a decreasing rate, consistent with the notion of diminishing marginal 

utility (Horowitz, List, & McConnell, 2007). 
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Table 1.1: Benefits and costs of choice as a function of number of alternatives 

Factors Benefits Costs 

Time 

 

 

Increasing 

(linear) 
Situational 

Economic 

Increasing 

(decreasing rate) 
 

Cognitive 

 

 

Increasing 

(increasing rate) 
Psychological 

Psychic 

Increasing 

(decreasing rate) 

Increasing 

(increasing rate) 

 
 

At the psychological level, the cognitive costs of processing alternatives increase with 

the number of alternatives but at an increasing rate. This is in line with well-known limitations 

on human cognitive capacity (Newell & Simon, 1972).  

At the psychic level, we postulate both benefits and costs. By the former we mean the 

positive affect that is generated by having more choice. In general, there is an attraction to 

having more alternatives (see, e.g., Iyengar & Lepper, 2000). As a thought experiment, 

contrast the emotional feelings experienced when entering a grocery store offering only a few 

options as opposed to entering a well-stocked competitor). Moreover, having more alternatives 

is associated with greater perceived decision freedom (Steiner, 1970; Reibstein, Youngblood, 

& Fromkin, 1975; Walton & Berkowitz, 1979), and gives people a feeling of autonomy and 
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self-control thereby also facilitating intrinsic motivation (Zuckerman et al., 1978; Ryan & 

Deci, 2000). 

By psychic costs we mean psychological costs that are emotional as opposed to cognitive 

in nature. These could be caused by discomfort due to uncertainty concerning preferences, 

lack of expertise, concern or regret about making an incorrect decision, emotional costs of 

making trade-offs, and so on (see, e.g., Loewenstein, 1999). Close consideration of the 

alternatives may also induce “attachment” to the options in the choice set such that people feel 

the “loss” of the items they have not chosen (Carmon, Wertenbroch, & Zeelenberg, 2003). 

Also, the more options foregone, the greater the post-choice discomfort experienced. Having 

too many alternatives may turn “freedom” of choice into “tyranny” (Schwartz, 2000).  

Summing the situational and psychological benefits and costs of choice, our assumptions 

imply that both increase with set size. However, we assume that the benefits increase more 

slowly than the costs (“goods satiate” but “bads escalate,” Coombs & Avrunin, 1977). In our 

experimental work, we do not test the separate shapes of the cost and benefit functions 

explicitly but rather focus on the “net” effect of the two.   

Equating satisfaction with the net difference between benefits and costs, we predict that 

satisfaction is an inverted-U shaped function of the number of alternatives2.  We therefore 

state our first hypothesis: 

Hypothesis 1: Both outcome and process satisfaction are inverted U-shaped functions of 

the number of alternatives in the choice set. 

                                                 
2 Desmeules (2002) suggested that, when evaluating alternatives cognitively, the consumption experience might 
have an inverted U-shaped relation across set size. However, his proposition was neither formalized nor tested 
empirically 
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Effects of different visual presentations. An implication of the model in Table 1.1 is that 

changes in benefits and costs will change the satisfaction function. That is, it will maintain its 

inverted-U shape but maximum satisfaction will be shifted as appropriate.  

Several studies suggest that the manner in which choice sets are presented can affect 

decisions, especially, when these are large. For example, in a seminal paper Miller (1956) 

noted that the organization of information into “chunks” or sequences facilitates information 

processing. More recently, Kahn and Wansink (2004) showed how organization affects 

consumers’ perceptions of the variety of an assortment (i.e., perceived variety). For large 

choice sets, perceived variety is higher in organized sets; whereas for smaller sets, it is greater 

in disorganized sets. Huffman and Kahn (1998) demonstrated that, for high-variety sets, 

consumers were more satisfied (in terms of learning their own preferences), perceived less 

complexity, and were more willing to make choices when alternatives were presented in 

attribute- rather than alternative-based formats.  

We suggest that satisfaction is also affected by the visual presentation of choice sets in 

that this impacts the cognitive costs imposed on decision-makers. Noting the implications of 

limitations in human visual abilities, Filin (1998) argues that people experience a feeling of 

discomfort and dissatisfaction in two “poorly organized” visual environments: “aggressive” 

environments (i.e., those with a great concentration of similar elements) and “homogeneous” 

environments (i.e., those with monotonic visual scenes, like plain white walls). 

In our work, we consider the effect of two visual qualities – color and shape3. We 

suggest that if a choice set is large and the alternatives differ only in shape, the assortment has 

a “monotonic” look such that the individual faces a “homogeneous” visual environment that 

                                                 
3 Our purpose here is not to determine how visual characteristics of separate objects influence decisions but rather 
how the visual characteristics of the entire set affect satisfaction. 
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imposes costs of discomfort (i.e., cognitive costs increase). Provision of colors, however, may 

resolve the problem of monotonicity by making the items more distinct thereby reducing costs 

for the human visual system.  

Indeed, Spring, and Jennings (1993) claim that hue is recognized pre-attentively, while 

complex shape is a non-preattentive stimulus that requires more time to be processed. Thus, 

the detection of hue should not depend on the size of the set in which it is presented. On the 

other hand, since complex shape is a non-preattentive stimulus, the time and effort involved in 

processing shapes should be particularly high in larger sets4.  

We therefore propose that, when the set of alternatives is large, the cost of choice is 

higher for sets with alternatives differing in shape than for those differing in color. As a result, 

we expect people to be more satisfied when they are presented with large sets with options that 

differ in color as opposed to shape. In other words, the peak of the satisfaction function for 

colors will lie to the right of that for shapes. More formally, we state:  

Hypothesis 2: Visual presentation of sets affects satisfaction. People experience higher 

satisfaction when the alternatives in large choice sets are different in color but not in shape. 

However, for small choice sets, they are equally satisfied when alternatives are presented in 

either different colors or shapes. 

We emphasize that we limit our analysis and predictions in this paper to situations where 

people actually make choices as opposed to avoiding them. Moreover, we focus on situations 

where people do not have well-established preferences prior to choosing. In addition, we have 

simplified the discussion of the benefits and costs of different numbers of alternatives by 

ignoring possible interactions between different components. However, we believe that the 

                                                 
4 Corbetta, Miezin, Dobmeyer, Shulman, and Petersen (1991) have also shown that attention to shape and 
attention to color can activate different regions of the brain. 
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simple structure implied by Table 1.1 should be investigated prior to considering such factors. 

This is the purpose of the present paper. 

 

1.3 Study 1 

The aim of Study 1 was to explore how satisfaction from choice varies as a function of 

the number of alternatives and to examine how changes in cognitive costs affect satisfaction. 

In this laboratory experiment, participants were given a picture representing a set of gift boxes 

with a certain number of alternatives (5, 10, 15, or 30). They were asked to choose one gift 

box they would buy to pack a present for a friend and to report their levels of satisfaction. We 

manipulated cognitive costs imposed on individuals by varying two visual attributes of the gift 

boxes – color and shape. 

 

1.3.1 Method 

Choice sets. Choice sets consisted of 5, 10, 15, or 30 gift boxes. The gift boxes differed 

from each other on two visual attributes: color and/or shape. Three types of sets were created 

representing gift boxes of: (1) the same shape and different colors (SSDC sets); (2) the same 

color and different shapes (SCDS sets); (3) and different colors and different shapes (DCDS 

sets). The gift boxes did not contain anything and, except for visual attributes, were said to be 

identical. We refer to the SSDC and SCDS sets as “simple” since they vary on only one 

attribute and to the DCDS sets as “complex” since alternatives differ on two dimensions. No 

choice sets contained identical alternatives and all sets were organized (e.g., by shading of 

colors). 
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Participants and procedure. The 120 participants were students and professors at 

several universities in Barcelona, Spain (53% females, mean age of 23.7 years). All spoke 

English and received no financial remuneration. 

The participants were randomly divided into 12 experimental groups formed by crossing 

two between-participant factors – number of choice options with four levels (5, 10, 15 or 30), 

and three types of choice sets, SSDC, SCDS, and DCDS.  

The experimenter invited one participant at a time into the experimental laboratory and 

showed him/her a picture representing a set of gift boxes. (Participants were unaware of the 

existence of other choice sets.) Each participant had to examine the picture and state which 

box s/he would buy to pack a present for a friend. After choosing, participants answered a 

paper-based questionnaire, evaluating satisfaction from the choice and providing demographic 

characteristics. 

Dependent measures. Satisfaction can result from both the outcome of choice (i.e., the 

option chosen) and the process of choice itself (Steiner, 1980; Iyengar & Lepper, 2000). We 

therefore assessed both sources. We measured outcome satisfaction by participants’ answers 

to the question “How much do you like the gift box you decided to pick?” Response to the 

question “How much did you enjoy making the choice (the decision process)?” was used to 

measure process satisfaction. We also asked two further questions. First, “Did you find it 

difficult to make your decision of which gift box to purchase?” Responses were provided on a 

scale ranging from 1 (“not at all”) to 10 (“extremely”). Second, “Do you feel you had the right 

amount of options to choose from?”  Responses were provided on a nine-point scale where 1 
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= “No, I had too few choice options,” 5 = “Yes, I had just the right number of choice options,” 

and 9 = “No, I had too many choice options.”5 

 

1.3.2 Results  

Satisfaction from the choice function. The results of Study 1 strongly support our first 

hypothesis. Self-reported satisfaction – both outcome and process – is an inverted U-shaped 

function of the number of alternatives as shown in Figures 1.2A and 1.2B. The participants 

reported lower outcome and process satisfaction from limited (5) and extensive (30) options, 

and higher satisfaction from medium-sized sets (10 and 15 options). The 10-option set was 

found to be the most satisfying. Difficulty of choosing also increased with the set size (see 

Figure 1.2C). Participants further believed that the “right number of options” was 10 or 15 

(see Figure 1.2D). Recall that on this scale five was “ideal” with one being “too few” and nine 

“too many.” The 30-option set was considered to be overwhelming, while the 5-item set was 

perceived as offering too little choice. Outcome and process satisfaction showed significant 

positive correlation (r =0.41, p < 0.001). 

We tested the inverted-U relationship between satisfaction and number of alternatives in 

two different ways: using regression analysis with the second degree polynomial and using 

ANOVA and t-tests. Both tests confirmed that satisfaction follows an inverted U pattern when 

the number of alternatives in the set increases. 

 

 

                                                 
5 Most of the measures used in this experiment were similar to those used by Iyengar and Lepper (2000) in their 
study 3 which motivated the current research. 
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Figure 1.2:  Dependent variables as a function of the number of alternatives in the choice set, 
Study 1. A. Outcome satisfaction; B. Process satisfaction; C. Difficulty level; D. Perception 
of the “right number” of options in the choice set. 
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First, outcome and process satisfaction were each regressed on the number of 

alternatives (represented by both linear and quadratic terms) controlling for visual 

characteristics of the sets. Both models –outcome and process satisfaction models – were 

significant [F(4, 115) =6.33 p = 0.000; F(4, 115) = 4.49, p = 0.002, respectively]. This 

analysis supported the inverted U-shape relation between satisfaction and set size in that- in 

both the outcome and process satisfaction models - the linear (t = 3.21,  p = 0.002; t = 3.07,  p 

=0.003, respectively)  and quadratic (t = -3.51, p = 0.001;  t = -2.87,  p = 0.005, respectively)  

terms were significant with appropriate signs. Participants facing SSDC sets also expressed 

significantly higher outcome and process satisfaction than those facing DCDS sets (t = 3.37, p 

= 0.001; t = 2.65, p = 0.009, respectively). 

Second, ANOVA (see Table 1.2) indicates that the size of the choice set significantly 

affects satisfaction for all four dependent measures. Statistical tests of the nature of these 

differences (i.e., whether satisfaction functions have inverted U shapes) are presented in Table 

1.3. This shows, for example, that for “outcome satisfaction” (Figure 1.2A), the mean 

satisfaction for 10 options (8.5) is significantly greater than both those for 5 and 15 options 

(i.e., 7.0 and 7.7, respectively), and that satisfaction for 15 options significantly exceeds that 

for 30 (i.e., 7.7 vs. 7.1).  

Visual presentation. Study 1 also aimed to test whether two visual attributes – color and 

shape – affect satisfaction from different set sizes, a question motivated by our assertion that 

colors imply less cognitive costs than shapes. We therefore analyzed the responses of the 80 

participants who faced SCDS and SSDC sets. 
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Table 1.2: Significance of the set size effect on dependent variables 

Statistics 

Study 5 

 

Dependent variable Study 1 

Unaware group Aware group 

Outcome Satisfaction  F(3, 116) = 8.92 

p = .000 

F(3, 116)= 3.35 

p = .022 

F(3, 116)= 2.90 

p = .038 

Process 

Satisfaction  

F(3, 116)= 4.07 

p = .009 

F(3, 116) = 2.22 

p = .089 

F(3, 116) = 2.84 

p = .041 

Difficulty level F(3, 116) = 2.77 

p = .045 

F(3, 116) = 4.41 

p = .006 

F(3, 116) = 0.66 

p = .580 

Perception of the right 

number of options 

F(3, 116) = 10.21 

p = .000 

F(3, 116)= 2.78 

p = .044 

F(3, 116)= 3.98 

p = .010 

 

Table 1.3: Increases/ declines of means among choice sets with different numbers of 
alternatives 

*** p < .01 
**   p < .05 
*    p < .10 

Measure Sample 5 vs 10 5 vs 15 5 vs 30 10 vs 15 10 vs 30 15 vs 30 

Study 1 +1.53*** +0.73** +0.13 -0.80** -1.40*** -0.60* 

Study 5 
Unaware group 

+0.14 +1.20*** +0.60 +1.06** +0.46 -0.60 

Satisfaction 
from the gift 
box picked 

Study 5  
Aware Group 

+1.20** +1.40* +0.60 +0.20 -0.60 -0.80 

Experiment 1 +1.37*** +1.23*** +0.97** -0.14 -0.40 -0.26 

Study 5 
Unaware group 

+0.37 +1.40** +0.60 +1.03* +0.23 -0.80 

 

Satisfaction 
from the 
decision-
making process Study 5  

Aware Group 
+1.03* +1.63*** +1.73*** +0.60 +0.73 +0.13 

Experiment 1 +1.27** +1.27** +1.47** 0 +0.20 +0.20 

Study 5 
Unaware group 

+1.70** +0.27 +1.88*** -1.43** +0.17 +1.6** Difficulty level 

Study 5  
Aware Group 

+0.10 +0.80 +0.64 +0.70 +0.54 -0.16 



 20 

ANOVA supported our second hypothesis. Participants facing large sets (i.e., 30 

options) with alternatives varying in color reported significantly higher outcome satisfaction 

[F(1, 72) = 10.93, p = .002] than those encountering sets with items differing in shape (Figure 

1.3A). For the small and medium-sized sets, however, this difference was not significant [F(1, 

72) = 0.95, p = .334; F(1, 72) = 3.06, p = .084; F(1, 72) = 0.95 , p = .334 for 5-, 10- , and 15-

option sets respectively]. Moreover, the participants facing SSDC sets were significantly more 

satisfied with the process of choosing than those who encountered SCDS sets over the entire 

range of set sizes [F(1, 75) = 4.15, p = .045] – see Figure 1.3B. 

Visual format also affected participants’ beliefs about the right number of options in the 

set. When facing SSDC sets, the participants believed that 15- or even 30-option sets 

contained “about the right number of options” [F( 1, 72) = 1.65, p = .203; F( 1, 72) = 1.65, p 

= .203 respectively]. However, 30 options in the SCDS sets were viewed as “more than the 

right amount” [F(1, 72) = 26.40, p = .000] – see Figure 1.3C. 

Our results and analysis demonstrate that satisfaction is an inverted U-shaped function 

of the number of alternatives for the SCDS sets. For the SSDC sets, however, this inverted U-

shape relation is not evident as the function did not decrease significantly after the peak. To 

verify whether satisfaction would fall if the size of the SSDC set would become “too large,” 

we conducted an additional treatment (with procedure identical to the others) where 34 new 

participants faced an extensive SSDC set of 54 gift boxes. Results indicated that, from the 30 

to 54 option set, both outcome and process satisfaction did indeed decrease significantly 

(from 8.3 to 7.1 [ t = -2.31, p = .024], and from 7.1 to 5.2 [t = -2.52, p = .014], respectively – 

see Figures 1.3A and B).   
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Figure 1.3A 

 

 

 

 

 

 

Figure 1.3B 

Figure 1.3C 

 

 

 

 

 

 

 
Figure 1.3: Effect of different visual presentation, Study 1. A. Outcome satisfaction; B. 
Process satisfaction; C. Perception of the “right number” of options. 
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Gender and complexity. ANOVA revealed significant gender differences in outcome 

satisfaction (controlling for set size). Compared to men, women reported higher outcome 

satisfaction [F(1, 115) = 4.07, p = .046]. 

ANOVA also showed that participants facing simple sets (i.e., with items differing in 

one attribute only) were significantly more satisfied with the outcome than those encountering 

complex choice sets (i.e., with items differing in two attributes) controlling for set size [F(1, 

115) = 9.81, p = .002]. No significant gender or complexity effects were found for the other 

dependent variables. For detailed results on gender and complexity effects see Appendices 

1.A and 1.B. 

 

1.3.3 Discussion of Study 1  

Study 1 demonstrated that satisfaction with both outcome and process is an inverted U-

shaped function of the number of items in the set. In other words, the data support Hypothesis 

1. 

Study 1 also supported Hypothesis 2 in that the peak of the function for colors was 

shifted to the right. This, we had argued, was due to lower cognitive costs for colors as 

opposed to shapes. However, we did not verify independently that the cognitive costs 

associated with colors and shapes differed. Therefore, in Studies 2 and 3 (below), we 

specifically investigate these costs using questionnaire and eye-tracking methodologies.  

In Study 1 outcome and process satisfaction were positively correlated. However, 

whereas outcome satisfaction in the 30-option case decreased to a level comparable to the 5-

option case, process satisfaction was significantly greater for the 30- than for the 5-option 

sets. These results are in line with previous research. Iyengar and Lepper (2000) demonstrated 
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that when selecting and sampling a chocolate from either extensive (30 options) or limited (6 

options) choice sets, subjects enjoyed the decision-making process more but, at the same time, 

reported lower satisfaction with selection in the 30- than in the 6-option condition. Study 1 

demonstrated that process satisfaction does not increase indefinitely. Rather, it decreases 

when the choice set size is made significantly large. In our case, process satisfaction in the 54-

item SSDC set decreased to the level of that in the 5-option case.  

Study 1 suggests that the satisfaction function may depend on gender. For males the 

function lies below that of females. Two explanations come to mind. First, there is evidence 

that women are used to paying more attention to detailed information than men and this habit 

might lower the costs of choice in some tasks (Meyers-Levy & Maheswaran, 1991). Second, 

females may simply care more about items such as gift boxes than males. For a different kind 

of choice (e.g., beer or cell telephones), one might find the reverse effect. Whether gender 

effects can be generalized across different conditions remains unclear and is an interesting 

topic for further research. 

The findings of Study 1 also demonstrated that participants reported lower outcome and 

process satisfaction when encountering complex rather than simple sets over the entire range 

of set sizes. This finding is consistent with our model. As the complexity of the sets increases, 

both the psychological costs and benefits rise. If the shift in costs is greater than that in 

benefits, the resulting satisfaction function shifts downwards. However, because we only 

observed “net effects” of perceived benefits and costs, we were unable to test this implication 

explicitly. The separation of effects of costs and benefits is critical for understanding the 

underlying processes of choice and should be investigated in further research.  

The finding that the peak of the satisfaction function for colors was positioned to the 

right of that for shapes was consistent with our assertion that colors impose less cognitive 
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costs than shapes. However, this assumption was not explicitly tested in Study 1. Moreover, 

implicit in the design of Study 1 are the assumptions that participants’ preferences for colors 

and shapes are equally well-established and that individual boxes in the SSDC sets were as 

attractive as those in the SCDS sets. Better established preferences for colors as opposed to 

shapes, as well as the presence of more appealing colors than shapes in large sets, could 

provide two alternative explanations for the rightward shift of the satisfaction function peak 

for the SSDC sets. 

We therefore explicitly designed two studies to test the following hypothesis and rule out 

these two alternative explanations: 

Hypothesis 3: The cognitive costs for alternatives differing in shape are greater than 

those for alternatives differing in color.  

 

1.4 Study 2 

The primary goal of this study was to test whether cognitive costs for options differing 

in shape are higher than those for options differing in color and to illuminate participants’ 

evaluations of individual boxes. We conceptualized the cognitive costs of choosing as having 

two components: (1) “preference uncertainty” costs incurred when people decide how much 

they like what they have observed (i.e., when establishing preferences); and (2) “processing” 

costs that involve perceiving the objects that are evaluated. We also aimed to tease apart these 

two types of cognitive costs and to verify whether they differ depending on color and shape.  

In this study participants had to examine and evaluate – in terms of liking – 120 gift 

boxes, one at a time. Time, individual ratings of the boxes and eye-movements of participants 

were recorded while they examined the boxes and made their judgments (for more detailed 
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discussion of eye-tracking methodology, see Chandon, Hutchinson, Bradlow, & Young 

(2007).  

 

1.4.1 Method  

Procedure, participants and stimuli. Fifteen students at a university in Barcelona, Spain 

participated (27% males, mean age of 25.6 years). Each received 10 euro for participating. 

One at a time, each participant had to examine sequentially pictures of gift boxes on a 

computer screen and state how much s/he liked the boxes (for packing a present for a friend). 

Each participant was told to imagine that any present would fit into the boxes. The computer 

screen participants faced was divided into halves: on the left was the image of the box; on the 

right, a 10-point rating scale. An example of the computer screen is presented in Figure 1.4.  

The boxes were presented to participants one at a time and were identical to those in 

Study 1. Participants had a maximum of seven seconds6 to examine each box and to rate how 

much they liked it. However, they could use less time and proceed to the next trial.  

Each participant was presented with four blocks of 30 boxes (i.e., 30 trials) each, and 

thus had to make 120 judgments in total (i.e., 4 x 30). Within one block, boxes varied on only 

one attribute – color or shape. Each participant faced two blocks with boxes differing in color, 

and two blocks with boxes differing in shape. For example, in the first block (“Same Color 

Different Shapes” – SCDS – condition) the participant would have to evaluate 30 boxes one at 

a time that would be blue in color, but of different shapes. In the second block, the same 

shapes as in the first block would be presented to the participant in the color red (SCDS 

                                                 
6 Note that Reutskaja, Pulst-Korenberg, Nagel, Camerer, and Rangel (2008) show that participants are able to 
make high quality decisions from 16 alternatives even within three seconds. In the current experiment, 
participants had seven seconds to evaluate each alternative.  
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condition). In the third block, the participant would face 30 oval boxes of different colors 

(“Same Shape Different Colors”, SSDC condition), and so on. The order of the blocks as well 

as that of presenting the stimuli was randomized.  

 

 
 
 

Figure 1.4:  Sample of a screen participants faced in the eye-tracking experiment. 
 

Participants’ eye-movements were tracked while they examined and evaluated the 

images of the boxes. Prior to viewing the stimuli, each participant went through a calibration 

procedure that required looking at moving dots on the screen, and through a short training 

session during which they evaluated six boxes that were not used in the actual study. We used 

the VSG2/5 Workstation & Videoeyetracker which recorded the positioning of the eye gazes 

on the screen and pupil dilations of participants every 20 milliseconds.  

Dependent measures. We used both behavioral and eye-tracking measures. 
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Behavioral measures. We assessed the total cost of processing and determining 

preferences about each box by measuring the total time spent on each trial. The average total 

time spent on processing the boxes and establishing preferences in the SCDS condition was 

then compared to that in the SSDC condition.  

We also assessed how much participants liked each box by their responses to the 

question “How much do you like the gift box presented on the screen?” Responses were given 

on a 10-point scale ranging from 1 (“not at all”) to 10 (“extremely). We then compared the 

average liking ratings given to the boxes in the SCDS and SSDC conditions. 

Eye-tracking measures. The eye-tracker recorded the eye-movements of the participants 

every 20 ms while they were processing and evaluating the images. This allowed separating 

processing from preference uncertainty costs. Specifically, processing costs were measured by 

the time participants spent looking at the part of the screen where the image of the box was 

presented for the first time, while preference uncertainty costs were measured by the time 

spent on further gazes at the image of the box as well as at the part of the screen with the scale. 

 

1.4.2 Results  

Behavioral data. Each of fifteen participants had to make 120 choices in total. We 

dropped one trial (of one participant) from the analysis as the corresponding data were not 

recorded for technical reasons. As a result, we analyze data obtained from 1,799 (i.e., 120 x 

15-1) trials.  

The results strongly support Hypothesis 3. On average, participants spent 3.13 seconds 

per trial. The average total time spent per trial was 253 ms higher in the SCDS than in the 

SSDC blocks. To test the significance of this effect in the presence of high individual 
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variability, we regressed response time on dummy variables for both type of blocks and 

individual participants. This revealed a significant block effect (t = 3.54, p < .001) controlling 

for individual effects – see Table 1.4. In short, the total costs of determining preferences and 

processing alternatives differing in shape are greater than for those differing in color.  

 
Table 1.4: Regression analysis of the effect of attribute (color/shape) on response time  

 Dependent Variable 

 Response Time (ms) St. Error 

Color     -252.78 71.32*** 

Participant1                    -1,278.18 0.00*** 

Participant2      202.66 0.00*** 

Participant3     -912.66 0.00*** 

Participant4     -215.56 0.30*** 

Participant5                    -1,428.32 0.00*** 

Participant6     -617.56 0.00*** 

Participant7     -343.80 0.00*** 

Participant8     -795.25 0.00*** 

Participant9     -712.42 0.00*** 

Participant10    -810.35 0.00*** 

Participant11    -844.23 0.00*** 

Participant12      -18.80 0.00*** 

Participant13    -797.93 0.00*** 

Participant14    477.47 0.00*** 

Constant                         3,793.85                 35.66*** 

Observations     1799 

R-squared        0.44 

 
Notes: 
(1) *** p < .01; ** p < .05; * p < .10 
(2) Color is the dummy: Color=1 if box is in the SSDC block, and Color=0, if box is in the 

SCDS block 

(3) Participanti is the dummy indicating participant i (1≤ i ≤15).   
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Consistent with our assumption, the liking ratings assigned to items in the SCDS blocks did 

not differ significantly from those in the SSDC blocks (t = 1.89, p = .08, with liking ratings of 

items in the SSDC blocks being slightly lower than those in the SCDS blocks). We tested this 

effect by regressing the liking rating of the box on block type controlling for individual 

effects, see Table 1.5. 

 

1.4.3 Eye-tracking data  

We excluded the eye-tracking data of three (of the fifteen) participants because of 

unacceptable rates of erroneous trials (more than 20%). In addition, several trials were not 

properly recorded due to technical reasons and had to be deleted. As a result, our analysis is 

based on the data from 1,283 trials.  

Results show that time for processing items was 188 ms higher for the SCDS blocks than 

for the SSDC blocks. To test this effect, we regressed time first spent processing the image on 

block type controlling for individual effects. This was significant (t = 3.72; p < .010) – see 

model on left of Table 1.6. However, when subsequent time spent looking at the image and 

scale was regressed on block type, there was no significant effect (t = 1.10; p = .294) – see 

model on right of Table 1.6. 

Overall, the results suggest that the processing costs for colors are greater than those for 

shapes, but “preference uncertainty” costs are equal for the two attributes. To test further the 

finding regarding preference uncertainty costs, we conducted a questionnaire study. 
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Table 1.5: Regression analysis of the effect of attribute (color/shape) on liking rating of the 
image 

 

 Dependent Variable 

 Liking Rating of the Image St. Error 

Color    -0.62                  0.33* 
Participant1      0.71 0.00*** 
Participant2     -1.13 0.00*** 
Participant3     -0.57 0.00*** 
Participant4      1.04 0.00*** 
Participant5     -0.79 0.00*** 
Participant6      1.04 0.00*** 
Participant7     -2.88 0.00*** 
Participant8     -1.26 0.00*** 
Participant9      1.62 0.00*** 
Participant10    -1.08 0.00*** 
Participant11     1.08 0.00*** 
Participant12    -0.66 0.00*** 
Participant13    0.37 0.00*** 
Participant14    0.59 0.00*** 
Constant         5.80 0.17*** 
Observations     1797 

R-squared        0.22 

   

Notes: 
(1) *** p < .01; ** p < .05; * p < .10 
(2) Color is the dummy: Color=1 if box is in the SSDC block, and Color=0, if box is in the 

SCDS block 

(3) Participanti is the dummy indicating participant i (1≤ i ≤15).    
(4) Two trials in which participants failed to indicate their ratings were coded as missing. 
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Table 1.6: Regression analysis of the effect of attribute on time spent on processing the image 

and defining one’s preferences. 

 Dependent variable 

 Time first 
spent 

processing 
the image 

(ms) 

St. Error 

Subsequent 
time spent 
on looking 

at the image 
and scale 

St. Error 

Color    -188.38   51.23***  -59.77   54.25 

Participant1       -359.88 1.09*** -899.31 0.47*** 

Participant2       -311.34 0.08*** -745.09 0.08*** 

Participant3       -193.80 0.88***  -84.94 0.94*** 

Participant4       -476.75 0.88*** -382.33 0.94*** 

Participant5      -248.46 5.86***   11.23     6.20* 

Participant6       -265.79 8.32*** -794.99 8.81*** 

Participant7       -229.20 8.37*** -570.11 8.86*** 

Participant8       -243.99 2.45*** -714.69 2.60*** 

Participant9        -12.41 0.00***  -41.83 0.00*** 

Participant10      -264.13 0.43*** -718.32 0.46*** 

Participant11     217.83 0.22***     -2.36 0.23*** 

Constant             908.36   25.40***   2,602.91   26.90*** 

Observations       1283 1283 

R-squared           0.33 0.26 

 
Notes: 
(1) *** p < .01; ** p < .05; * p < .10 
(2) Color is the dummy: Color=1 if box is in the SSDC block, and Color=0, if box is in the 

SCDS block 

(3) Participanti is the dummy indicating participant i (1≤ i ≤15).     
(4) Analysis excludes data for which either processing or preference uncertainty costs were 

not recorded (3.2% of trials).  
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1.5 Study 3 

In Study 3, we sought to understand people’s perceived preferences for colors and 

shapes in general as well as in the context of gift boxes. For this we used a questionnaire.  

 

1.5.1 Method  

Procedure. The questionnaire assessed participants’ preferences for colors and shapes. 

Participants had to state what color/shape they liked most both overall (i.e., answer the 

question “What is your favorite color/shape?”) and in the context of gift boxes (i.e., answer the 

question “If you think of the ideal gift box: What color/shape would you prefer this box to be, 

which you would receive/give from/to a friend)?”)7. Participants could either state their 

preferred color or shape, or respond “I do not know.” 

Participants. Respondents were 106 students at a university in Barcelona, Spain (58% 

females, mean age of 19.4 years). Each received 3 euro for participating.  

Dependent measures. We calculated the number of “do not know” responses to questions 

regarding color and shape preferences both overall and in the context of the gift boxes. We 

assume that the greater the number of “do not know” responses, the less defined are 

preferences for colors or shapes.  

 

1.5.2 Results  

In general, participants had better established preferences for colors than for shapes.  

                                                 
7 In fact, participants were asked many questions. Here we simply report responses that are pertinent to this 
paper. 
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More participants failed to report a favorite shape as opposed to a favorite color (t = 4.97, p 

<0.001) (Responses were coded as “1” if participant responded “I don’t know”, and “0” 

otherwise). However, in the context of gift boxes, these differences disappeared. Participants 

had equally well determined preferences for colors and shapes independently of whether the 

box was to be given or received (t = 0.22, ns, t = 0.00, ns, respectively).  

 

1.5.3 Discussions of Studies 2 and 3 

We used behavioral and biological measures to explain the asymmetry between the two 

attributes of interest – color and shape. First, Study 2 demonstrated that cognitive costs – as 

measured by response times – were greater for shapes than for colors. This is consistent with 

our theoretical framework and can explain the shift of the peak of the function in Study 1. 

Second, Study 2 revealed that this difference in time is attributed to processing rather than 

preference uncertainty costs. In Study 2 participants processed items differing in color in less 

time than those differing in shape.  

Third, the eye-tracking data showed that the time spent on defining preferences 

regarding the boxes did not differ between the SCDS and SSDC conditions. This finding was 

replicated in the questionnaire, which demonstrated that people have equally well established 

preferences for colors and shapes in the context of gift boxes. These results support the notion 

that the shift of the peak of the satisfaction function in Study 1 cannot be explained by 

differences in preference uncertainty costs, that is, for defining preferences. Nor can the shift 

be explained by the fact that items in the SCDS sets were less appealing to the participants. 

Indeed, the eye-tracking study demonstrated that items presented in the SCDS and SSDC sets 
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were seen as equally attractive by participants (with, if anything, a slight – significant at 10% 

– liking bias for the SCDS images).  

Our eye-tracking study and questionnaire have important theoretical and practical 

implications. First, measuring the cognitive costs for the two different attributes served as an 

empirical verification of our theoretical framework. We demonstrated that colors are less 

taxing than shape thereby inducing the shift of the satisfaction function found in Study 1. 

Second, comparison between two widely used visual attributes – color and shape – has 

practical implications for people offering choices. The results suggest that presenting 

alternatives of large sets in different colors can create “comfortable” visual environments 

thereby attracting more people, and positively influencing outcome and process satisfaction. 

As a result, people may be able to obtain high benefits from larger set sizes without losing 

satisfaction.  

Study 1 demonstrated that visual presentation of assortment influences satisfaction. More 

specifically, participants reported significantly higher levels of satisfaction when the 

alternatives in the large choice sets were different in color but not in shape (Hypothesis 2). 

However, does this mean that the sets with alternatives different in color are also more 

attractive than those that vary in shape? This question becomes relevant when people choose 

between different sets of offerings rather than selecting an item from a given set. 

As a corollary to Hypothesis 2, therefore, we suggest that since visual “comfort” is 

more pleasing for the eyes (and less “costly” to process), one should also expect large SSDC 

sets to be more appealing than large SCDS sets. Also – and once again – since the costs of 

choice from small sets are not unduly taxing, we would not expect such effects with small sets. 

More formally, we state: 
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Hypothesis 4: Visual properties of the set affect its attractiveness. More people are 

attracted to large sets when alternatives differ in color as opposed to shape. No such effects 

exist for small sets. 

We conducted Study 4 to test this hypothesis 

 

1.6 Study 4 

1.6.1 Method  

Procedure. The design of Study 4 was similar to that of Study1. The main difference 

was that, first, participants had to decide which of the sets of gift boxes they liked the most: 

that in “shop A” which offered gift boxes varying in shape (SCDS set) or that in “shop B” 

which offered boxes differing in color (SSDC set). Participants were given pictures 

representing each of the two sets. The choice sets were identical to those of Study 1. Both sets 

offered to a particular individual were of the same size involving 5, 10, 15, or 30 alternatives. 

 Participants were 48 undergraduate students (mean age of 19.2 years, 54% females) at a 

Spanish University. Participants were not remunerated. Groups of 12 participants were 

assigned at random to each of four groups evaluating the different-sized options. 

First, participants had to choose which choice set – shop A or B – they preferred and 

answer a questionnaire assessing their satisfaction with each set and the difficulty of choosing 

between them. Second, the participants were left with the picture of the choice set they had 

selected and asked to choose a gift box and complete the same questionnaire as in Study 1. 

Measures. First, we simply counted the numbers of participants who chose each “shop” 

for the different set sizes. Second, we assessed participants’ satisfaction with each choice set 
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and the difficulty of choosing between them by asking “How much do you like the assortment 

in shop A?”, “How much do you like the assortment in shop  B?”, and “How difficult was it 

for you to decide to which shop to go?” Responses were provided on a 10-point scale ranging 

from one (“Not at all”) to 10 (“Extremely”). Third, satisfaction measures concerning choices 

of boxes were identical to those used in Experiment 1.  

 

1.6.2 Results  

When facing medium or large choice sets (i.e., sets containing 10, 15 or 30 alternatives) 

25 out of 36 participants preferred the options in shop B where boxes varied in color but not 

in shape thereby indicating that the former are more attractive [p(x ≤ 11) = .025, binomial 

test]. For small sets (5 options), there was no significant difference [p(x ≤ 5) = .387]. 

However, this lack of a significant difference could simply be due to the small sample of 

participants (12) facing 5-alternative sets. We therefore recruited 19 additional participants for 

a 5-option set treatment of this study.  Results showed that of the 31 participants who faced 5-

alternative sets, 15 preferred the SSDC sets. In other words, there was no significant 

difference in choices between the SCDS and SSDC sets [p(x ≤ 15) = 0.500, binomial test]. 

Finally, participants reported greater satisfaction levels from the SSDC than SCDS sets 

when the number of alternatives in the set exceeded 10 (t = 1.98, p = .056), but similar 

satisfaction levels for 5-option sets (t = 0.98, p = .381). 

 

1.6.3 Discussion of Study 4  

The results of Study 4 provide support for Hypothesis 4. Sets of alternatives differing in 

color were more attractive than those differing in shape when the sets were large, while both  
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were seen as equally appealing when set size was small. This is consistent with the arguments 

provided above. Namely, the costs of processing alternatives differing in color are lower for 

the human visual system than those associated with shape. 

Study 1 demonstrated that visual properties of the alternatives in the set affect perceived 

costs and benefits and therefore influence the peak of the satisfaction function. However, can 

individual characteristics also affect perceived costs and benefits of choice? We took the 

opportunity to investigate this issue in a slightly different experimental setting. 

In our initial setting, participants face a given set of choice alternatives and are unaware 

of the possible existence of other sets. However, would satisfaction be affected if participants 

were aware of the existence of choice sets different from theirs? Clearly, people do not only 

engage in evaluating trade-offs between the alternatives they face, but also compare their own 

possibilities with those of others. Indeed, as originally demonstrated by Festinger (1954), 

when objective measures are not available, people tend to judge their own possibilities by 

comparison with those of others.  Thus, if when presented with a set of alternatives, a person 

is made aware of the existence of other alternatives, he or she may well feel at a disadvantage 

and thereby incur psychic costs. 

The framework in Table 1.1 suggests how awareness about choice sets different from 

one’s own will affect the relation between satisfaction and set size. Specifically, the psychic 

costs incurred before even viewing the choice set would imply a downward shift of the cost 

curve by a fixed amount and thus also a downward shift of the resulting satisfaction function. 

More formally, we hypothesize:   

Hypothesis 5:  Individuals, who are aware of the existence of choice sets different from 

theirs and from which they cannot choose, are less satisfied with their choice than those who 

do not possess such knowledge. 
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To test this hypothesis we conducted Study 5.   

 

1.7 Study 5 

1.7.1 Method  

Study 5 involved two groups of participants. In one, the treatment was identical to the 

experiment in Study 1. We call this the “unaware” group. The treatment of the second group – 

the “aware” group – was identical but with two exceptions. First, unlike Study 1, where only 

one participant at a time was invited into the experimental laboratory, several participants 

followed the experimental procedure simultaneously in the same room. Second, participants of 

Study 5 were explicitly told that their colleagues had been given choice sets differing from 

their own in size and visual properties of the alternatives. The participants were unaware how 

many different choice sets there were, which choice set was larger or smaller and could only 

see the sets offered to their colleagues from a distance. After being given a picture 

representing a choice set, participants followed the same procedure as in Study 1.  

Participants. 240 students and professors (50% females, mean age of 22.7 years) from 

several universities in Belarus (66%) and Ukraine (34%) took part in the experiment. They 

received no financial remuneration. Study 5 was conducted in Russian. 

 

1.7.2 Results  

Consistent with the findings of Study 1, outcome satisfaction was found to follow an 

inverted U-shape for the unaware group – see Figure 1.5 and Tables 1.2 and 1.3.   
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Compared to the unaware group, the aware participants were less satisfied with their 

ultimate choice (“awareness” dummy F(1, 235) = 7.18, p = .008), and with the process of 

choosing (F(1, 235) = 4.96, p = .027), thereby providing support for Hypothesis 5. That is, the 

satisfaction function for aware participants was shifted downwards in comparison with the 

unaware group.  

We also explored the influence of “cultural background” on the four variables of interest 

by comparing the responses of “unaware” group of study 5 and those of participants in Study 

1. 

Though the satisfaction function of the Eastern European “unaware” group had an 

inverted U-shape, participants from Belarus and Ukraine reported the highest satisfaction with 

the gift box picked from 15- and 30-option sets whereas Western Europeans (group in Study 

1) were most satisfied with the box chosen from medium-sized sets. The peak of the function, 

therefore, was shifted toward a greater number of alternatives in the Eastern European sample 

[F(4, 232) = 4.10, p = .003, Chow test], sets with 15 options being seen as the most satisfying. 

Interestingly, the Eastern European participants also reported the lowest difficulty levels when 

choosing from such sets, and considered that the 15-option set included exactly the “right 

number of boxes.”  

Gender and complexity. We found significant gender and complexity effects for several 

dependent variables in the Eastern European unaware group (see Appendices 1.A and 1.B). 

Eastern European females reported significantly higher satisfaction levels than men both with 

the box picked and with the decision process. Across all set sizes, satisfaction with the box 

picked was lower for participants facing complex as opposed to simple sets. 
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                 Figure 1.5A. 

 

 

Figure 1.5B 

 

Figure 1.5C 

 
 
 
 
 
 
 

Figure 1.5D 

  

 
Figure 1.5: Effect of “awareness” on choice experience, Study 5. A. Outcome satisfaction; B. 
Process satisfaction; C. Difficulty level; D. Perception of the “right number” of options in the 
choice set. 
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Visual presentation. In line with the findings of Study 1 (and Hypothesis 2), ANOVA 

yielded differences in satisfaction of the Eastern European “unaware” participants due to the 

visual layout of alternatives. Eastern Europeans reported higher satisfaction both with the gift 

box picked [F(1, 72) = 4.02, p = .049], and with the decision process [F(1, 72) = 3.13, p = 

.081], when facing large sets (30 options) in the SSDC as opposed to SCDS format. Moreover, 

participants felt they had fewer options when facing SSDC sets rather than the same sized 

SCDS sets [F(1, 75) = 8.26, p = .01] – see Figure 1.6. 

 

1.7.3 Discussion of study 5 

The outcome satisfaction curve of the unaware participants replicated the results of 

Study 1 thereby providing additional support for Hypotheses 1 and 2.  Consistent with 

Hypothesis 5, the results of Study 5 also demonstrated that knowledge of the existence of 

choice sets different from one’s own decreases both process and outcome satisfaction. As 

argued above, the effect of telling participants explicitly that others can choose from different 

sets imposes additional “fixed” psychic costs even before the choice is made. Holding benefits 

constant, this initial increase in psychic costs results in a downward shift of the satisfaction 

function.  

Finally, we note the behavior of the aware group in Study 5 replicates Study 1 in a 

different cultural sample (in Eastern as opposed to Western Europe). However there was a 

difference. Participants from Eastern Europe were more satisfied with larger choice sets as 

opposed to their Western counterparts, that is, the peak of satisfaction function for former lies 

to the right of that for the latter (compare Figures 1.2 and 1.5). The reason for this finding is 

not apparent and requires further investigation. 
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Figure 1.6A 

 

 

 

 

 

 

   Figure 1.6B 

 

 

Figure 1.6C 

 

 

 

 

 

 

 

 

 
Figure 1.6: Effect of different visual presentation, Study 5.  A. Outcome satisfaction; B. 
Process Satisfaction; C. Perception of the “right number” of options in the set.  
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1.8 General Discussion 

This paper has explored the nature of satisfaction from choice as a function of 

characteristics of choice sets. Building upon the theoretical insights of Coombs and Avrunin 

(1977), we suggested that as the number of alternatives increases, so do the benefits and costs. 

However, whereas the former “satiate,” the latter “escalate.” The net effect is that satisfaction 

is an inverted U-shaped function of set size. Our studies provided support for this proposition. 

At a theoretical level, our goal was to make explicit the implications of perceptions of 

costs and benefits of the choice process. To test our theoretical framework we manipulated 

differences in cognitive costs by contrasting satisfaction from choice when sets varied in color 

as opposed to shape. We further assessed the asymmetry for colors and shapes using 

behavioral and biological measures and demonstrated that alternatives differing in shapes are 

more taxing. As a result, and as a direct verification of our theoretical framework in a 

between-participants design, larger sets with alternatives differing in color were viewed as 

being both more satisfying and attractive than those with alternatives varying in shape. That 

is, the location of the peak of the satisfaction function was influenced by visual presentation 

of the choice set. 

Costs as well as benefits of choice may also depend on individual characteristics. First, 

awareness of the existence of other choice sets influenced resulting satisfaction. We suggested 

that when other sets are salient people incur additional psychic costs which, in turn, result in a 

downward shift of the satisfaction function.  

Second, we found that gender and culture may also affect perceptions of costs and 

benefits. For the choices examined here, the satisfaction curve for women lay above that for 

men. In addition, the peak of the curve of Eastern European participants was shifted to the 
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right of that for Western Europeans. We had no explicit hypotheses concerning these findings 

but suggest that they provide a useful springboard for future research. In particular, we 

suspect that type of choice could moderate these kinds of individual results. Though the 

benefits and costs may depend on different factors, we stress again that the inverted U-shape 

relation between satisfaction and choice set size was replicated in different settings. 

We now outline implications and suggestions for further research.   

First, in our experimental tasks, participants were required to make a choice. In many 

situations, however, people may decide to avoid or defer choice (see, e.g., Dhar, 1997) and it 

is also important to predict this phenomenon. One way of thinking about this within the 

framework of Table 1.1 is to predict that choice is deferred or avoided when expected 

satisfaction is negative, that is, when perceived costs exceed benefits. For example, imagine 

the effect of imposing time limits on an important choice such that cognitive and psychic 

costs increase rapidly and the person decides to defer choice (i.e., satisfaction becomes 

negative). Similarly, when the perceived costs are higher than expected benefits of evaluating 

the entire set people may also shift to using simplifying strategies (see, e.g., Payne, Bettman, 

& Johnson, 1993). An advantage of our framework is that we can specify the expected effects 

of different variables in this process as well as predict differences due, for example, to 

severity of time limits or importance of the decision.  

Second, we did not vary economic considerations in our experimental work. However, 

our framework suggests how these might affect the satisfaction function. On the one hand, 

there would be a desire to see more alternatives as decisions become more important. At the 

same time, however, important choices could induce greater psychic costs as people become 

more concerned about knowing their preferences and the possible regret of making errors 

(thereby reducing the number of alternatives they would like to see). When economic stakes 



 45 

are high, we would particularly expect to see expertise have a large effect on the location of 

the peak of the satisfaction function. Thus, for example, in choosing a pension plan, we would 

predict that the ideal number of alternative portfolios for a specialist (e.g., a security analyst) 

would far exceed that of a financial novice. More generally, we believe much could be gained 

by linking our framework to the literature on expertise.  

Third, in our study participants were making choices for themselves. An intriguing 

change to the implied costs might occur if they were making choices on behalf of others, that 

is, as an agent. For example, if a financial specialist were selecting a portfolio for a friend as 

opposed to herself, would she be willing to examine more alternatives? To the extent that this 

would make the person feel more responsible, it follows that she probably would (see, e.g., 

Tetlock, 1991).  

Fourth, the optimal number of alternatives (for satisfaction) in our studies was found to 

be 10 or 15. These numbers are exactly the same as those reported by Miller (1956) for the 

“channel capacity” of visual positioning, that is, the number of visual positions the human eye 

can distinguish without making errors. It is unclear whether this is a coincidence. However, it 

suggests investigating whether satisfaction is an inverted U-shaped function of the number of 

alternatives when these are not characterized visually but by, say, tone, taste, or odor. 

Building upon our theoretical framework, we would still expect satisfaction to be an inverted 

U-shaped function of the numbers of these stimuli. Miller (1956) argued that the “span of 

absolute judgment” is greater for visual stimuli than for tones or taste stimuli. Therefore, as 

the costs of processing the latter are higher, we would also expect the location of the peaks of 

the satisfaction functions for these to lie to the left of those for visual stimuli. 
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Fifth, in this experimental work we simplified by focusing on simple objects that 

differed on only one or two attributes. Clearly, an important next step will be to extend the 

approach adopted here to more complex products in naturally-occurring field studies. 

In summary, we have presented a simple theoretical rationale that makes explicit the 

reasons underlying the inverted U-shaped function that describes the relation between 

satisfaction (both outcome and process) and the number of alternatives in a choice set.  At one 

level, good “common sense” suggests that people will be unsatisfied and confused by having 

“too many” choice alternatives.  Indeed, at an anecdotal level it is interesting to note that the 

German retail chain ALDI carries 35 times less products that its rivals – traditional 

supermarkets – but sells more of each product than its competitors (Kumar, 2006).  Whereas it 

would be foolish to generalize from this specific case, it is clearly an important matter to 

understand when there are “too many alternatives” and how different variables contribute to 

the satisfaction that people experience from choice.  Our goal has been to help elucidate this 

issue. 
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Appendix 1.A: Gender effects for four dependent variables  
 
 

Gender dummy Interaction: options * gender  
Measure 

Study 1 
 

Study 5 
Unaware Group 

Study 1 
 

Study 5 
Unaware Group 

Satisfaction from 
the gift box 

F(1, 115) = 4.07 
p = .046 

F(1, 115) = 7.16 
p = .009 

F(3, 112) = 0.49 
p = .693 

F(3, 112) = 1.55 
p = .206 

Satisfaction from 
the decision-
making process 

F(1, 115) = 2.37 
p = .013 

F(1, 115) = 7.87 
p = .006 

F(3, 112) = 2.27 
p = .084 

F(3, 112) = 0.14 
p = .935 

Difficulty level 

F(1, 115) = 0.08 
p = .775 

F(1, 115) = 0.49 
p = .487 

F(3, 112) = 0.02 
p = .997 

F(3, 112) = 0.37 
p = .774 

Perception of the 
right number of 
options 

F(1, 115) = 0.17 
p = .683 

F(1, 115) = 1.08 
p = .302 

F(3, 112) = 2.01 
p = .117 

F(3, 112) = 1.26 
p = .290 

 

 
 
 
 
 



 52 

Appendix 1.B: Complexity effects for four dependent 

variables 
 

 

Complexity dummy Interaction: options*complexity 
 

Measure 
Study 1 

 
Study 5 

Unaware Group 
Study 1 

 
Study 5 

Unaware Group 

Satisfaction from 
the gift box F(1, 115) = 9.81 

p = .002 
F(1, 115) = 5.72 
p = .018 

F(3, 112) = 1.14 
p = .337 

F(3, 112) = 2.72 
p = .048 

Satisfaction from 
the decision-
making process 

F(1, 115) = 3.34 
p = .070 

F(1, 115) = 0.07 
p = .791 

F(3, 112) = 0.18 
p = .908 

F(3, 112) = 0.26 
p = .853 

Difficulty level 
F(1, 115) = 1.23 
p = 0.270 

F(1, 115) = 0.02 
p = 0.878 

F(3, 112) = 0.09 
p = .966 

F(3, 112) = 1.29 
p = .282 

Perception of the 
right number of 
options 

F(1, 115) = 0.79 
p = .377 

F(1, 115) = 1.03 
p = .312 

F(3, 112) = 0.17 
p = .915 

F(3, 112) = 1.37 
p = .256 
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Chapter 2 

 

Economic Decision Making Under 

Conditions of Extreme Time Pressure and 

Option Overload: An Eye-Tracking Study8 

 

2.1 Introduction 

Consider the problem of a consumer in a modern supermarket. The typical store sells 

more than 40,000 items and in many product categories it offers hundreds of options.9 The 

typical consumer is also time-constrained and cannot afford to too much time making each 

selection. This situation gives rise to the two questions studied in this paper: Can consumers 

make good choices under extreme time pressure and option overload? Can the computational 

processes that they use to solve this problem be exploited by sellers in order to manipulate 

their choices? 

We study these two questions by setting up an experimental version of the consumer’s 

supermarket problem. Hungry subjects are presented with sets of 4, 9 or 16 familiar snack 

items (e.g., Snickers candy bars and Lay’s chips) and are asked to make a choice within 3 

seconds. Items are displayed using pictures of the actual packages of items. Besides choices 

and reaction times, we also record the entire process of visual search using eye-tracking.  

                                                 
8 This work was done in collaboration with Rosemarie Nagel (Univeristat Pompeu Fabra); Johannes Pulst-
Korenberg, Colin Camerer, and Antonio Rangel (California Institute ofTechnology) 
Financial support from HFSP (RN and CFC), the Moore Foundation (AR and CFC), the Spanish Ministry of 
Education (RN, SEJ2005-08391), and the Barcelona CREA program (RN) is gratefully acknowledged.  
9 http://www.supermarketguur.com/page.cfm/284 
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With respect to the first question, we find that average choice efficiencies in all choice 

sets are quite large (about 80%). This is especially surprising given that the eye-tracking data 

shows that subjects do not look at all of the items in the 9 and 16 items choice sets, and that 

fixations are largely random and independent of value. Our results suggest that subjects are 

able to make good decisions in every day conditions (e.g., a supermarket aisle) even under 

conditions of options overload and extreme time pressure. 

In order to understand how consumers manage this feat we open the black-box of 

decision making and study the computational processes used by subjects to make these types 

of choices. We propose a “bounded rationality” model of the computational process used to 

make these fast decisions and test the key assumptions of the model using the eye-tracking 

evidence.  

The basic idea of the model is simple: subjects randomly fixate on items in order to 

measure their values, as long as they have time, and then choose the best item within the set 

that was seen. Time pressure matters because people are only able to fixate on a subset of 

items (in the larger choice sets) so they are not always able to find the best item in the set. The 

key assumptions of the model are largely supported by the eye-tracking and behavioral data. 

Looking at the computational process of generating choices is unusual in neoclassical 

economics. Traditional economists build their models and interpret their data using the 

concept of revealed preference, which is silent about the actual computational processes used 

to make choices. This is true even in many behavioral economic models (e.g., prospect theory 

or quasi-hyperbolic-discounting) in which subjects are assumed to act as-if they were 

maximizing an objective function, but in which the computational process of generating the 

choices is not spelled out. Although this view has worked extremely well in many 

applications, this paper is built on the premise that there are domains, such as the problem of 
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consumer decision making under time-pressure, in which understanding the underlying 

computational process is central to understanding the economics of the problem.  

To see why, note that sellers spend billions of dollars trying to manipulate in-store 

choice. Knowledge of the algorithm that consumers use to make their fast choices is essential 

to be able to make predictions about the qualitative and quantitative effects of such practices 

as well as about their effects on consumer well-being. Detailed knowledge of the decision-

making process would also allow us to make predictions about what would happen in types of 

choice sets different for the ones used in the experiment (e.g., what would happen to choice 

efficiency if there were 50 items instead of 4, 9 or 16)? More generally, understanding the 

process is helpful - and perhaps even necessary - for making predictions about the types of 

decision making situations in which the standard neoclassical assumptions (e.g., consistency 

with the Weak Axiom of Revealed Preference and thus with as-if utility maximization) are 

likely to be either approximately satisfied or badly violated.  

Our experimental design allows us to directly test the possibility that decisions can be 

manipulated by changing the location in which items are displayed. We find that the 

computational process exhibits some biases that can potentially be exploited by sellers: 

subjects exhibit a bias to look first and more often to items that are placed in certain regions of 

the display, which they also end up choosing more often. 

This study builds on previous literature from economics, marketing and psychology. 

Choice from multiple alternatives generated great interest in previous research. While the 

main tenet of classic economics and psychology is that choice is always beneficial, recent 

studies demonstrated that large sets may be demotivating, lead to worse performance and 

lower satisfaction than smaller sets (Iyenar & Lepper, 2000). Previous research has also shown 

that medium-sized sets are more satisfying and motivating for people than large or small 
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offerings (Reutskaja & Hogarth, 2006; Shah & Wolford, 2007). However, previous studies 

usually allow decision-makers to use unlimited amount of time to make their choices. We 

emphasize, however,that many every-day situations involve decisions made under extreme 

time pressure and mechanisms underlying choice in such situation are not well-understood. 

This paper also builds on the ideas of Payne, Bettman & Johnson (1993) which, using a 

precursor technology to eye-tracking called MouseLab , showed that individuals who are 

under high cognitive strain (perhaps due to information overload), or under time pressure, shift 

to simpler computational models (see also Maule &. Edland, 1997; Bettman, Luce & Payne, 

1998). We build our computational ‘bounded rationality’ model on this insight. 

In economics, several groups have used eye-tracking to study the computational 

process used to make strategic decisions. Using MouseLab, Johnson, Camerer, Sankar & 

Rymon (2002) showed that the pattern of offers in bargaining experiments could be explained 

to a large extent by a failure to carry out full “backward induction” since in many trials 

subjects simply did not look ahead to future amounts. Camerer & Johnson (2004) established a 

related result for the case of “forward induction”.  Costa-Gomes, Crawford & Broseta (2001) 

used this same technique to measure steps of strategic thinking in normal-form games (see 

also Costa-Gomes, & Crawford, 2006). Using modern eye-tracking techniques, Wang, Spezio 

& Camerer (2008) studied strategic information transmission and found that a combination of 

lookup information and pupil dilation could help predict an unobservable private information 

state. 

Several studies in marketing have used eye-tracking to study how consumers choose 

products from different types of displays. Russo, & Rosen (1975) started this literature by 

studying how subjects moved their eyes while making hypothetical choices out of 6-item text-

based descriptions of cars, and arguing, much as we do in this paper, that the pattern of eye-
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fixations provides a window into the computational process used to make choices (see also 

Russo, & Leclerc,1994). Using more modern eye-tracking techniques, Van der Lans (2006) 

studied how subjects locate brands within a display, but the experiment included no choice. 

The closest study to the current paper is Chandon, Hutchinson & Young (2002) who look at 

the hypothetical choices of consumers facing familiar consumer products out of large choice 

sets without time pressure (their average reaction time is 25s). They find, like we do, that 

visual attention plays a critical role in choice. Several additional studies in marketing have 

also used eye-tracking to study which features of ads receive  most attention, but they involve 

no real decision-making (Loshe, 1997; Maughan, Gutnikov & Stevens, 2007; Pieters, 

Rosbergen & Wedel, 1999; Pieters & Wedel, 2004). Some of these studies have found, as we 

do, that display location impacts fixations. Note, however, that none of these papers has 

studied real choice under time pressure and option overload. We emphasize that both the 

model and the eye tracking evidence that we present are new to this literature. 

The paper is organized as follows. Section 2.2 describes the experimental design. 

Section 2.3 describes results about the performance of the choice process. Section 2.4 provides 

a model of the computational process generating the choice. Section 2.5 tests the key 

assumptions of the model using the eye-tracking data. Section 2.6 explores the qualitative and 

quantitative nature decision bias implicit in the model. Section 2.7 concludes. 

 

2.2 Experimental Design 

The aim of this laboratory experiment was to study economic decision-making under 

conditions of extreme time pressure and overload.  
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Forty-one Caltech undergraduates participated in the study. Individuals were excluded 

if they had a history of eating disorders, had dieted in the past year, were vegetarian, disliked 

junk food, or were pregnant.  The selection criteria were designed to recruit individuals who 

liked junk food and were not trying to control their diet. Subjects received 35 US dollars for 

participating and provided informed consent prior to their participation. Participants were 

asked to eat and then fast for three hours prior to the experiment. No deception was used. 

At the beginning of the instruction period participants were told that they will have to 

stay in the lab for an additional 30 minutes at the end of the experiment. During this time they 

were allowed to eat the food item that they chose in a randomly selected trial according to the 

rules described below, but no other foods or drinks were allowed. Subjects made choices out 

of a set of 70 popular snacks such as candy bars (e.g., Snickers Bar) and potato chips (e.g., 

Lay’s).  

Participants performed two tasks: (1) a liking-rating task, and (2) a choice task.  

During the liking-rating task subjects had to answer the question “How much would 

you like to eat this item at the end of the experiment?” on a scale of -5 (“not at all”) to 5 (“very 

much”), with 0 denoting indifference. The liking-rating trials started with a 1s central fixation 

cross, followed by a 3s presentation of a high-resolution picture of the item to be rated. 

Pictures were 400x300 pixels in size and showed both the package and the food. Then subjects 

entered their liking-rating at their own pace using the keyboard. The items were shown in 

random order. There was a 1s inter-trial interval with an empty screen. 

 During the choice tasks subjects were shown 75 choice sets consisting of either of 4, 

9, or 16 snack food items (25 of each of the three sizes). The items were presented 

simultaneously on a computer screen (see Figure 2.1 for examples). The sets were presented 

in such a way that the average distance among items was equalized across set sizes. The 



 59 

identity and location of items was fully randomized. The order of the choice sets was also 

randomized. As perceived variety may be affected by the number of identical items within a 

set (Kahn & Wansink, 2004), we constructed sets such that no identical items were ever 

present in the same choice set.  

 
 

   
 

        
 
Figure 2.1: Examples of screenshots for the set sizes 4, 9, and 16. 
 
 

Before the appearance of each set, the subject was shown a black screen with a central 

white fixation cross. The subject had to maintain continuous fixation on the cross for two 

seconds before the choice set was displayed. This was enforced with an eye-tracker and it was 

implemented to eliminate “anticipatory fixations”. 

 Each choice set was presented for a maximum of 3s. Participants, however, could 

make their choices in less than three seconds. Two seconds into the choice period subjects 

heard a beep indicating that participant had exactly one second left until the choice set would 

vanish. Subjects indicated their choice by pressing the keyboard while fixating on an item. 

Prior to making actual choices, subjects went through 12 practice rounds to familiarize 

themselves with the procedure.  

Set size 4 Set size 9 Set size 16 
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 At the end of the experiment a trial was selected at random and the subjects were 

given the chance to eat the food that they choose in that trial. Subjects were penalized with a 

loss of $3 if they failed to make a choice within three seconds in the selected trial. 

 The entire choice process was monitored with an eye-tracker (Tobii 1750, Sweden), 

which recorded the positioning of the eye gazes on the screen every 20 ms with an 

approximate resolution of 0.25 square inches. 

 After the experiment subjects answered a questionnaire regarding their consumption 

habits of the snack food items. The experiment, including the instruction period, lasted an 

average of 60 minutes, including the 30 minutes that a participant had to spend in an adjacent 

room while eating his food.  

 

2.3 Performance of the Choice Process 

We begin the analysis of the experimental data by investigating the performance of the 

choice process. We are interested in two questions: Are subjects able to make good choices 

under conditions of time pressure? Does the quality of their choices deteriorate with the size of 

the choice set? 

In order to measure the performance of the choice process one needs to have an 

independent measure of what is the best choice that can be made out of every budget set. Our 

liking ratings provide such a measure. Conceptually, the liking ratings are forecasts of the 

experienced utility that subjects expect to get from consuming each item. In the absence of 

noise, the optimal choice in any given trial is to pick the available item(s) with the highest 

possible liking-rating. Thus, one can think of the liking-ratings as a utility index over items. 
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Given this, we can define the efficiency of a choosing item i out of the set S as follows: 

 

Efficiency (i|S)= 
l(i) − l(imin )

l(imax ) − l(imin )
, 

 

where imax is an item in S with a maximal liking-rating, and imin is an item in S with a minimal 

liking rating, and l(.) denotes the liking-rating. Note that Efficiency=1 when a best item is 

chosen, and Efficiency=0 when a worse item is selected.  

Is this a satisfactory measure of performance? The main question studied here is 

whether time pressure and overload interferes with a subject’s ability to select the best 

alternative option. An alternative measure could have been obtained by giving subjects the 

same choice sets at the end of the experiment, observing which choices they would have made 

in the absence of any time pressure, and then comparing those choices with the ones made 

under time pressure. We acknowledge that, in comparison to this alternative measure, our 

concept of efficiency has two important shortcomings. First, it is sensitive to monotonic 

nonlinear transformations of the liking-rating measure. Second, it is probably measured with 

noise both across subjects, since they are likely to interpret the scale differently, and within 

subjects, as they map their “feelings” about the items to the scale.  

Given this caveats, why did we chose our alternative measure of performance?  First, 

in several previous experiments we have found that liking-ratings and “revealed preference” 

measures such as willingness-to-pay (elicited with an incentive compatible Becker-DeGroot-

Marshak procedure) are extremely highly correlated within subjects (Armel & Rangel, 2008; 

Armel, Beaumel & Rangel, 2008; Plassmann, O'Doherty & Rangel, 2007). In fact, the high-

efficiencies described below also suggest that the liking-ratings are good measures of the 
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value that options are assigned during the choice process. Second, our measure can be 

obtained more quickly from subjects, which has experimental advantages. Third, our measure 

provides a natural continuous measure of efficiency, whereas the alternative described above 

only provides a 0-1 measure. Finally, and most importantly, qualitatively our results are robust 

to monotonic transformations of the liking-rating function. 

In the analyses that follow we use the following measurable notions of visual attention: 

fixation, initial fixation, and refixation. A fixation occurs when a subject looks at an item for a 

continuous period of time (typically a few hundred milliseconds). Note that during a fixation 

subjects might look at different parts of the picture (these small eye movements within a 

fixation are known as microfixations). A fixation on an item is an initial fixation if that is the 

first time that the subject fixates on an item during a trial. If not, it is called a refixation.  

 

2.3.1 Result 1. Choice efficiency is comparable across choice sets 

Figure 2.2A shows that the average efficiency of choices is quite high and does not 

vary with the set size: it is 85% for N = 4 and 83% for N = 9 and 16, which are insignificantly 

different (lowest p = 0.24). Furthermore, if the liking-ratings are measured with noise, these 

efficiency measures are biased downwards.  

Given the extreme time pressure, and the fact that subjects are only able to see a subset 

of the items during the search process (see Result 3 below), the high performance in the larger 

sets is quite surprising and leads to a natural question: What properties of the choice processes 

and situations are responsible for generating these high efficiencies? The answer to this 

question turns out to be rather simple ex-post. As a result of simple combinatorics, in a 

randomly chosen budget set the difference between the best item and the next-best items 
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decreases with set size — in particular, large choice sets will have several options clustered 

near the high end of the distribution. This property is sufficient to offset the failure to see (and 

hence choose) the very best items in the larger choice sets. The compression of the values at 

the top is seen in Figure 2.2B, which shows the average difference between the value of the 

best item and the value of the next-best item for different set sizes. Note that the difference 

drops sharply with choice set size (all differences  p <0.003). It follows that even if people are 

not choosing the best item, in the 16-item sets their choice will be close to optimal if they 

choose the next-best item. 

This combinatorial property of the choice sets is crucial because subjects are less likely 

to see and choose the best items from larger choice sets. For example, in the subset of cases 

when there is a unique best item, subjects see it 90% of the time in 4-item sets but only see it 

40% of the time for 16-item sets (Figure 2.2C; all cross-set differences significant at p < 

0.001). The corresponding probabilities of choosing the unique best item are about 69% and 

33% (Figure 2.2D, p < 0.001). But if they happen to see the best item they choose it equally 

often, about 75% of the time, in all sets (Figure 2.2E, lowest p = 0.29). The percentage of time 

that the best seen item is selected is also about 75% and is similar across set sizes (Figure 

2.2F). Together, the panels of Figure 2.2 show that subjects are good at choosing the best item 

when they see it, and choosing the best item that they have seen, but that in large sets they are 

less likely to choose the best item only because they are less likely to see it. 

 

2.4 Model 

As shown in Figure 2.2, subjects’ ability to make good choices depends on their ability 

to see the best items in the display. For example, we have shown that, regardless of the set  
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Figure 2.2C 
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Figure 2.2D 
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Figure 2.2E 
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Figure 2.2F 
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Figure 2.2: A. Choice efficiency; B. Difference in the liking-rating between the best and second best 
alternative in the choice set; C. Fraction of trials (with a unique best item) in which the best item was 
fixated upon; D. Fraction of trials (with a unique best item) in which the best item was chosen; E. 
Fraction of trials (with a unique best item) in which the best item was chosen conditional on the best 

item being seen;  F. Fraction of trials in which the best item seen in the trial was chosen. In all of the 
figures error bars denote standard error measures. 
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size, efficiency is high when the best items are seen, but not when they are not. This raises a 

natural and important question: What is the computational process used by the subjects to 

make choices under time pressure and why do fixations play such an important role? 

In this section we propose a simple model of the computational process used by the 

subjects that we then test in detail using a combination of eye-tracking and choice data.  

 Subjects search through the choice set using a sequence of distinct fixations and 

sequential fixations within each trial. Let Ft denote the identity of the item seen in fixation t. 

We assume that during each fixation t the brain computes several variables: 1) A value Vt to 

the item that it is looking at; 2) a cached value Ct equal to the maximum value of all items 

seen previously (including the current one); and 3) a label for the identity of the best item seen 

so far which we denote by kt . Note that Ct = max (Ct-1,Vt) and so  kt=Ft if Ct-1<Vt and kt=kt-1 

otherwise.  We assume that C0 = V1.  

We assume that the identity of all initial fixations is random with respect to the item’s 

value (i.e., subjects attentional processes are not able to guide the fixation to the best items 

unless they have been previously seen in the trial). This does not rule out the possibility that 

they might be influenced by other variables such as the location in the display (see section 2.6) 

or by their location relative to previously seen items (in our data most eye movements are left-

to-right and up-to-down and that barely any are in a diagonal direction). 

At the end of every fixation the brain decides whether to stop the search process and 

choose the best item seen so far, with probability pt, or continue the search by looking at a new 

item, with probability 1-pt. We assume that pt  increases with the time elapsed within the trial 

(and thus with the fixation number) as well as with the cached value Ct.  

It is straightforward to see that the number of fixations plays a crucial role in this 

model: on average subjects make good choices when they see a lot of items, but not when they 
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see few items. This naturally raises the question of fixation duration. We assume that fixation 

duration is fixed and independent of values and set size. This assumption is based on the idea 

that there is a biological limitation to how fast the brain can fixate on an item and extract value 

and that subjects move near that threshold when making decisions under extreme time 

pressure. 

How does the model account for the key features in Figure 2.2? Given the fixed 

fixation duration, the percentage of items seen decreases across choice sets. Since subjects 

cannot choose an item that they do not see, this implies that the probability of choosing the 

best items out of the entire choice set decreases with the set size. However, since there is 

perfect maximization within the seen set, set size does not matter conditional on having gone 

through a search process that fixated on the best item. 

Note that this simple model makes several extreme simplifications that are only 

approximations to our data and that should be explored and relaxed further in future work.  

First, we assume the cached value at every step is computed by a perfect maximization 

algorithm. This is probably not true given extensive evidence on biologically based “soft-

maximization” and binary choice with errors (for recent reviews see Wilcox, 2008; Rangel, 

2008). 

Second, the value assigned to an item is assumed to be independent of the length of the 

fixation. This is a reasonable approximation because the items are familiar and fixation times 

did not vary significantly across items. Note, however, that previous work has shown that 

fixation times can affect valuation and choices (Armel, Beaumel & Rangel, 2008; Armel & 

Rangel, 2008; Karjbich, Armel & Rangel, 2008).  

Third, we have assumed that there is perfect memory of which item had the highest 

value, as well as of the items’ actual value and location. This implies that the only purpose of a 
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refixation (going back to a previously seen item) is to select or choose a previously best seen 

item, but not to see it again to recall a value. This “perfect recall” assumption is unlikely to 

hold in more complicated choice settings and would be an especially interesting complication 

to study. Interestingly, the extreme time pressure feature of our experiments might actually 

help recall in the sense that a rapid choice time makes short-term memory more effective. It is 

even conceivable that an extension of the model proposed, which includes memory decay, 

would predict that allowing longer choice times hurts choice quality (if the bad effects of 

memory decay outweigh the benefits from having more time to look or deliberate). 

 

2.5 Tests of the Model’s Key Elements 

The goal of this section is to use eye-tracking data to test the main assumptions of the 

model. The first three results test the assumed properties of the fixation process that drives the 

search for the best item. 

 

2.5.1 Result 2. Fixation durations decrease slightly with set size, but are 

mostly constant across the search process  

Figure 2.3A and Figure 2.3B show statistics on the duration of fixations. Fixations are 

around 320 ms for the smallest choice set (N = 4) and 260 ms for the largest choice set (N = 

16). These are consistent with typical fixation times in other studies (e.g., Salvucci, & 

Goldberg, 2000; Wang et al., 2008). The differences in fixation duration are small in 

magnitude, but are highly significant across choice set sizes (for all comparisons, p < 0.001).  

The differences in fixation durations are interesting for two reasons. First, it implies that the 

number of seen items increases with set size, which has implications for the performance of 
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the choice process. Second, it suggests that the amount of attention allocated to each item is 

adjusted endogenously (and most likely automatically and unconsciously) in response to 

changes in set size. This finding is consistent with a view of psychological processes in which 

scarce computing resources are allocated in a sensible way (Becker, 1965). Consistent with 

this view, Figure 2.3B also shows that the fixation durations also drop a bit around the 8th 

fixation for sets of 9 and 16 items. This is around the time that the beep sounds, as if people 

are responding to the external reminder that time is running short.  

 

2.5.2 Result 3. The number of items seen increases with set size, but the 

percentage of items seen decreases with set size 

The decision time constraint, together with the magnitude of the increase in set sizes 

and decreases in fixation times, imply that people see more items in larger sets, but overall see 

a smaller percentage of items in larger sets (Figures 2.4A and 2.4B; all cross-set differences 

are significant at p < 0.05 one-tailed). This implies that subjects should be less likely to find 

the best item in the largest choice sets, which is consistent with the results shown in Figure 

2.3. 

Interestingly, because of the combinatorics of large choice sets described in Section 

2.3, the efficiency of the cached (highest-value) item does not decrease with set size because 

of the smaller percentage of items seen in larger choice sets. This fact is shown in Figure 2.4C, 

which plots the efficiency of the cached value (i.e. the efficiency value of the highest item 

seen so far) across the order of fixations.10 As shown in the figure, the cached-efficiency starts  

                                                 
10 The efficiency of an item within a choice set is defined exactly as before. 
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Figure 2.3B 
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Figure 2.3: A. Average fixation duration; B. Average fixation duration as a function of 
fixation order.  
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Efficiency of the cached value as a function of fixation number within the trial. 
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 at 50%, consistent with an initial random fixation, and exceeds 90% in all choice sets by the 

fifth fixation. 

Another important assumption of the model is that fixations are “random” with respect 

to value. An alternative hypothesis would have been that subjects are able to process values in 

peripheral vision and that this allows them to direct their fixations to items with higher relative 

value.11 The following result shows that the alternative hypothesis is largely incorrect.  

 

2.5.3 Result 4. The sequential search is mostly independent of value  

Figure 2.5 shows the efficiency of items across the sequence of new fixations for 

different set sizes (excluding refixations to previously seen items). If people managed to 

always switch their attention to better and better items, there would be an increase in 

efficiency across fixations, but there is not. Interestingly, efficiencies are generally slightly 

greater than 50% (averaging 0.56, p < 0.001). This suggests that sequential search is mostly 

independent of value, although it might be the case that due to some processing in peripheral 

vision sufficiently undesirable items are slightly less likely to be fixated on.  

Another key feature of the model, which is tested in the next result, is that the search is 

more likely to stop when the cached value Ct is high (controlling for time and other factors).  

 

2.5.4 Result 5. The probability of stopping the search (and choosing) 

increases as Ct increases.  

 Figure 2.6 shows that the percentage of fixations which are the last new fixation  

                                                 
11 Note that, in the alternative hypothesis, peripheral attention and direct fixations might not be perfect substitutes 
if the peripheral value computations can be used to guide the fixations but not to assign values to items that can 
be used in the process of choice. 
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within a trial (i.e, there may be later refixations to chose an item that was seen previously) 

depends on the cached value Ct. The identity of the last new fixation is important because it 

marks the end of the search process prior to choice. The figure shows the likelihoods of ending 
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Figure 2.5: Fixation efficiency by fixation order within the trial (new fixations only, excluding 
refixations). 

 

the initial search process (before refixation) as a function of the cached value during for 

fixations that end during the first 1500 ms (“first half of the trial”), and fixations that end 

during the second 1500 ms (“second half of the trial”). To explain, consider the data for set 

size of 4 (the left panel if Figure 2.6). In the first half of the trial (solid line) the percentage of 

current fixations which are the last one is around 10% when Ct is negative (i.e., in 90% of the 

trials they go on to look at new items). However, when the cached value is 5 (the highest 

possible value), about 65% of the fixations are the last new one (i.e., they are twice as likely to 

stop searching as they are to keep looking).  
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Figure 2.6: Fraction of fixations which are the last new fixation within a trial as a function of 
the cached value Ct. Values are presented separately for the first 1500ms (first half of the trial) 
and the last 1500ms (second half of the trial). 
 

The stopping probabilities are lower for the larger choice sets, which is not surprising 

since subjects are able to see all four items in the N=4 case rapidly. For the first half of the 

trial (solid lines) the probability that a fixation is the last new one is low, but does increase 

with Ct. For the second half of the trial, the probability that a fixation is the last new one is 

much higher and highly dependent on the set size. In all cases, however, the probability of 

stopping the search increases as Ct increases. 

A limitation of the previous analysis is that the cached value is likely to be correlated 

with the number of fixations, the length of time into the trial, and other variables. To address 

this problem we performed a logit regression of the probability that the current fixation is the 

last new fixation on a number of control variables (see Table 2.1). We found that after 

controlling for other potentially confounding variables the stopping probability is strongly 
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increasing in the cached maximum value Ct. The analysis also shows that stopping probability 

is lower for the larger choice sets (as Figure 2.6 shows), is higher for the second half of the 

trial, is increasing in the number of fixations, and is also strongly influenced by the “beep” 

sound which signals one second to go in the trial.  

The effect of the “beep” is interesting because it illustrates how a small change in the 

design of the choice process can have a large influence in behavior of economic agents with 

biologically driven limitations on rationality. If subjects had a perfect clock in their heads the 

beep would have no effect, but it does.   

Another key assumption of the model is that subjects optimize within the set of items 

that they have seen. In particular, this implies that if the value of the last item that they see 

during the search (call it Vt ) is better than the value of those items that they saw earlier 

(measured by the cached value Ct-1), then subjects are more likely to choose the last seen item. 

The following result shows that this prediction is consistent with the data. 

 

2.5.5 Result 6. The probability that the last new seen item is chosen 

increases with Vt - Ct-1.  

Figure 2.7 depicts the probability of choosing the item seen in the last new fixation as a 

function of Vt  - Ct-1 (the leap in value from the best of those previously-seen to the new value). 

The figure shows that this probability is strongly increasing in Vt  - Ct-1, has a logistic shape, 

and is approximately 50% when Vt  = Ct- 1. This clearly shows that the subject is optimizing 

within each fixation between the previously best seen item and the current item. The figure 

also shows that these stopping probability graphs are almost identical across choice sets, 

which suggests that the comparison process is remarkably independent of the set size.
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Table 2.1: Fixed effects logit regression. The independent variable is the probability that a 
given fixation is the last new fixation.  

 

 Model 1 Model 2 

Fixation Order 0.405*** 
(0.000) 

0.389*** 
(0.000) 

Time > 1500 1.012*** 
(0.000) 

1.002*** 
(0.000) 

Beep On - 0.916** 
(0.011) 

Ct 0.497*** 
(0.000) 

0.498*** 
(0.000) 

Set size 9 -1.313*** 
(0.000) 

-1.305*** 
(0.000) 

Set size 16 -1.609*** 
(0.000) 

-1.603*** 
(0.000) 

Individual dummies included yes yes 
Constant -2.026*** 

(0.000) 
-2.003*** 

(0.000) 
   

N 11,458 11,458 

Log pseudo-likelihood -4910.8 -4902.8 

Pseudo R2        0.252 0.259 

 
***, **, *  denote significance at the 1%, 5%, and 10%  level, respectively. 
p-values are in parenthesis.  
Standard errors are adjusted for clustering on subjects. 
Analysis is based only on fixations prior to the first refixation.  
Dependent variable =1 if fixation is the last new fixation (before the refixation start) and is  =0 
otherwise. 
Time > 1500 =1 if the fixation ended after the trial time reached 1500 ms, =0 otherwise. 
Beep On =1 if the beep was heard before the current fixation commenced, =0 otherwise. 
Set size 9 =1 if the choice set size is 9; =0 otherwise. 
Set size 16 =1 if the choice set size is16; =0 otherwise. 
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Figure 2.7: Fraction of trials in which the last new fixation is chosen as a function of Vt - Ct-1. 
 

The logistic nature of the curves depicted in Figure 2.7 could result from one of two 

sources. First, they might be due to measurement error on the liking-ratings. Second, they 

could reflect true biological randomness in the choice process. Although there is mounting 

evidence from neuroeconomics that there is true biological randomness in the optimization 

process (for a review see Rangel, 2008), the methods used in this paper do not allow us to 

separate these two sources. 

As before, a limitation of the previous analysis is that the surprise variable Vt  - Ct-1 

might be correlated with the number of fixations and other factors. To address this, Table 2.2 

reports the results of a logit regression of the probability of choosing the last-seen item as a 

function of Vt -Ct-1  and other control variables. We found that after controlling for other 

potentially confounding variables the stopping probability is significantly increasing in Vt -Ct-1, 
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is independent of the set size, and is an order of magnitude larger in the second half or the trial 

(after 1500ms). 

Finally, we consider the assumption that subjects have perfect recall about the identity 

and value of the previously best-seen item. This assumption implies that after they decide to 

stop the search process, they can immediately refixate to the best item previously seen and 

choose it (keep in mind that choices are actually made by pressing the ENTER key during a 

final fixation). The next three results explore this assumption.  

 

2.5.6 Result 7. Usually there is at most one refixation before a choice is 

made  

According to the model, a choice is made in one of two ways: either the subject stops 

the search process by choosing the item seen in the last new fixation (for example, if it has the 

maximum possible value), or the subject stops the search process and refixates to the best 

previously seen item. In the first case there are no refixations. In the second case there is 

exactly one refixation. Figure 2.8 shows a histogram of the number of refixations that occur 

before a choice is made, conditional on a refixation taking place at all. Across all three set 

sizes there is a sharp spike at 1—i.e., on average, about 80% of the time there is a single 

refixation to the chosen item, and no further refixations.  

 Note that there is a right tail in the number of additional post-refixation fixations in the 

16-item sets, but the effect is small. This is consistent with imperfections in working memory 

that are further explored in Result 9. 
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Table 2.2: Fixed effects logit regression. The independent variable is the probability that the 

items seen in the last new fixation is chosen (in which case there are no refixations). 

 
 

 Model 1 Model 2 

Fixation Order     -0.221*** 
(0.000) 

    -0.251*** 
(0.000) 

Time > 1500      2.344*** 
(0.000) 

     2.313*** 
(0.000) 

Beep On 
 

0.248 
(0.236) 

Vt-Ct-1      0.377*** 
(0.000) 

     0.377*** 
(0.000) 

Set size 9 -0.111 
 (0.435) 

-0.120 
(0.395) 

Set size 16  0.134 
 (0.342) 

0.136 
(0.334) 

Individual dummies included yes yes 

Constant    0.285** 
(0.035) 

     0.365*** 
(0.008) 

   

N 2904 2904 

Log pseudo-likelihood -1402.6219 -1258.6836 

Pseudo R2        0.3341 0.3345 

 
***, **, *  denote significance at the 1%, 5%, and 10%  level, respectively. 
p-values are in parenthesis.  
Standard errors are adjusted for clustering on subjects. 
Analysis is based only on fixations prior to the first refixation.  
Dependent variable =1 if the last new fixation is chosen, =0 if there are refixations after it.  
Time > 1500 =1 if the fixation ended after the trial time reached 1500 ms, =0 otherwise. 
Beep On =1 if the beep was heard before the current fixation commenced, =0 otherwise. 
Set size 9 =1 if the choice set size is 9; =0 otherwise. 
Set size 16 =1 if the choice set size is16; =0 otherwise. 
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Figure 2.8: Distribution of the number of refixation of a trial (for trials with at least one 
refixation). 
 

 

2.5.7 Result 8. The efficiencies of refixated items are high  

Another assumption of the model is that when subjects refixate, they do so by looking 

back at the best possible items that have been seen so far. Figure 2.9 depicts the efficiencies of 

items that are refixated on. Note that these efficiencies are computed only over the previously 

seen set. Thus, if a subject refixates to the best seen item the efficiency is 100% (even if that 

item was not the best one in the choice set), while if he refixates to the worse seen item the 

efficiency is 0%.  As shown in Figure 2.9, the average refixation efficiency is 77% and is 
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quantitatively very similar across the choice set sizes. Again, this suggests that perfect recall is 

a good approximation, but leaves open the possibility for some imperfect working memory. 
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Figure 2.9: Refixation efficiency as a function of set size. 

 

Given that the previous two results suggest that imperfect working memory might be 

playing a small role, we decided to perform an additional and independent test of the perfect 

recall assumption.  

 

2.5.8 Result 9. There is imperfect recall about the identity of the best 

previously seen item.  

Figure 2.10 depicts the results of two tests of the perfect recall hypothesis. The top 

panel shows the fraction of trials in which the first refixation is made to the best previously  
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seen item as a function of the number of fixations that have passed since it was seen -- more 

than five fixations ago (“not recent”) or fewer than five fixations ago (“recent”). Refixations 

are made to the best item about 70% of the time when it was seen recently, but that rate drops 

to 30% when the item was not seen recently (p < 0.001). The bottom panel shows the 

maximum efficiency of all fixations in a trial as well as the maximum efficiency of all 

refixations. (Here, the efficiency of a fixation or a refixation is given by the fixation of the 

relevant item computed with respect to the entire choice set). If there was perfect recall, these 

numbers would match because people would always refixate to the best item that was 

previously seen. This is not the case. The efficiency of the refixations is about 10% lower than 

the efficiency of the non-refixations (p < 0.001), which again is consistent with imperfect 

recall. Together the last three results imply that recall is good, but not perfect. 

Taken together, the results in this section suggest that the model provides a reasonably 

good approximation of the underlying computational processes used by subjects to make 

decisions under time pressure. 

 

2.6 Decision Biases 

We have seen that the decision process leads to high efficiency choices on average, but 

that the extent to which it does so depends on the outcome of the fixation process (Figure 2.2). 

In particular, in large choice sets (N = 9,16), where only a subset of the items is actually seen, 

the quality of the choice (as measured by its efficiency) depends on the outcome of the random 

fixation process: it is large when high value items are seen and low otherwise. We have also 

seen that the fixation process is insensitive to the value of items. The model leaves open the 
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Figure 2.10B 
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Figure 2.10: A. Fraction of trials in which the first refixation is to the best item that has been 
seen as a function of the number of items since it was last seen; B. Maximum fixation and 
refixation efficiency within a trial. 
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 possibility, however, that the fixation process might be affected by other variables such as the 

location in the display. (Note that value and location are uncorrelated in our experiment since 

the items were randomly allocated to locations). This opens the possibility of systematic 

decision-making biases that, in principle, could be exploited by sellers to manipulate choices. 

As the following result shows, these biases exist and are quantitatively important. 

 

2.6.1 Result 10. There are location driven biases on the initial fixation 

that have substantial impact on final choices  

Figure 2.11 shows the initial fixations in a gray-scaled “heat map” format. The total 

number of initial fixations on each item is shown numerically in the locations of those items 

(numerical entries can take a maximum value of 25, the number of trials for each set size, and 

are averaged across subjects box-by-box). The lightest color is associated with the highest 

average of initial fixations, and the darkest color is associated with the lowest averages.  

About half the initial fixations in the 4-item set are in the upper left, and 95% of the 

initial fixations in the larger sets are to the central item (for 9 item sets) or to the central four 

items (for 16 item sets). A t-test of the number of initial fixations to the most seen location 

versus the average of the other locations is significant at p < 0.001 for all set sizes.  

The size of the first-fixation bias is quite large and is driven by the position of the 

central fixation cross on which subjects need to maintain fixation before the items appear. In 

the case of 9 items, the fixation cross lies exactly at the center of the middle item, which 

explains the extreme bias. In the case of 4 and 16 items, it lies on the middle of the screen. The 

subjects’ first fixation is typically to the item that lies just North-West of the fixation cross. 
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Figure 2.11A 

 

Figure 2.11B 

 
Figure 2.11C 

 

 

 
Figure 2.11: Total number of initial fixations at each display location (out of a maximum of 25 
and averaged across subjects box-by-box). Analysis includes initial fixations only. Trials with 
only one fixation are included. Lighter cells indicate greater number of fixations. A. 4-item 
sets; B. 9-item sets; C. 16-item sets. 
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Figure 2.12 shows the same type of statistics for the total number of fixations at each 

location. If the initial fixation effect completely wears off these numbers should be the same in 

all cells for each choice set size, but they are not. About a third of the fixations are in the 

upper-left for N=4, and in the center item for N = 9 (compared to random base rates of 25% 

and 11% respectively) and almost half of them are in the center four boxes for N = 16 (base 

rate 25%).12  

The combination of these initial fixation biases, and the sequential search model, 

imply that initial fixations should have an impact on final choices, and they do. Figure 2.13 

shows the choice frequencies. There is a small tendency to choose the upper items in N = 4, 

and much bigger biases in the other cases (60% above average for choosing the middle in N = 

9 and 25% above average for the central four boxes in the case of N = 16).13  

Another way to measure the extent of the influence of display biases on choices is to 

ask what would happen if a retailer, for example, put the worst items (as judged by individual 

consumer ratings) in the locations at which they are likely to be seen first, or put the best items 

in those locations. How much would final choices vary in efficiency? Our design provides a 

ready answer to this question because items were randomly allocated items to locations across 

trials. For each subject, we weight the likelihood that they will choose an item in a particular 

location by their total percentage of fixations in that location, and compute the expected 

                                                 
12 In the case of N=4, a t-test of the total number of fixations to the upper vs lower half of the display is 
significant at p<0.001. In the case of N=9, a t-test of the total number of fixations to the center location versus the 
mean of all other locations is significant at p<0.001. In the case of N=16, a t-test of the average total number of 
fixations in the middle locations versus the average of the external locations is is significant at p<0.001. 
13 In the case of N=4, a t-test of the total number of choices of items in the upper vs lower half of the display is 
significant at p<0.051. In the case of N=9, a t-test of the total number of choices of items displayed in the center 
location versus the mean of all other locations is significant at p<0.001. In the case of N=16, a t-test of the total 
number of choices made from items in the middle locations versus the mean of the external locations is 
significant at p<0.001. 
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Figure 2.12A 

 

Figure 2.12B 

 
Figure 2.12C 

 

 

Figure 2.12:  Total number of fixations at each display location (averaged across subjects box-
by-box). Note that the maximum can exceed 25 since individuals might refixate in a location. 
Analysis includes both fixations and refixations. The last gazes are not included into the 
calculation of the total number of gazes.  Lighter cells indicate greater number of fixations. A. 
4-item sets; B. 9-item sets; C. 16-item sets. 
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efficiency for the configurations of items they actually saw. We then create quartiles of “good 

displays” (in which the best items, as they judge them, are in the locations they tended to look 

at most often) and “bad displays” (in which the worst items are where they looked most often). 

The efficiencies in these quartiles are then averaged across subjects. Figure 2.14 shows the 

results. When the best items are in the visual “sweet spots” the efficiency is 95%-- they are 

almost sure to make the best choice. When the worst items are in the sweet spots efficiency is 

only 65%, which is significantly better than chance choosing (50%) but not by much (p < 0.01 

for all pairwise comparisons).  

The results in this section clearly show that the choice process used by subjects when 

making decisions under time pressure could be potentially manipulated by interested sellers. 

In the real world, this could be achieved by picking special locations in displays and 

supermarket aisles, or by changing the packaging (e.g., by manipulating shape, size and color) 

in a way that attracts first fixations through their impact in bottom-up and value-independent 

visual attention mechanisms (Itti & Koch, 2001). 

 

2.7 Discussion 

The results in this paper provide novel insights into the economic problem of a 

consumer who needs to make choices from small or large choice sets under time pressure. The 

paper poses and addresses two main questions regarding the quality of decisions in this 

domain. First, we have shown that consumers can make good choices even under extreme time 

pressure and with option overload (when they do not have time to look at every item). An 

understanding of the computational processes that consumers use to make the choices provides 
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Figure 2.13A 

 

Figure 2.13B 

 
Figure 2.13C 

 

 

Figure 2.13: Total number of times the item displayed at each location was chosen (averaged 
across subjects box-by-box). Lighter cells indicate greater number of fixations. A. 4-item sets; 
B. 9-item sets; C. 16-item sets. 
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Figure 2.14:  Choice efficiency as a function of weighted fixation efficiency (by quartile). 
 

an insight for why this is the case. In small choice sets (N = 4) subjects are able to see most of 

the items and choose the best one about 80% of the time. In contrast, in large choice sets (N = 

9,16) subjects are only able to see a small fraction of the items and thus are able to choose the 

best one only about half as frequently. It follows that the performance of the computational 

process used to make choices deteriorates as the number of options increases. However, 

combinatorics come to the rescue: in larger choice sets there are many alternatives close to the 

best one which are seen and chosen with high-frequency. This is the key reason why 

performance (as measured by average efficiency) does not deteriorate with set size. 

Second, we have seen that choices are heavily influenced by the outcome of the 

fixations, and that these fixations can be affected by variables such as display location, that are 
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not correlated with values. We have also shown that this feature of the choice process could 

potentially be exploited by sellers through a clever selection of packaging and in-store 

displays. We have also shown that these effects are quantitatively large. For example: in the 

case of N=9 an item in the center of the display was almost 60% more likely to be selected 

than similar items displayed in other locations. 

These two regularities are consistent with a simple model of sequential search with 

perfect recall in which search is value-independent (subjects cannot deliberately guide their 

visual attention to high-value items) but is also display-dependent (they look first at the center 

and upper-left). To economists, the sequential search model might seem so natural as to be 

obvious. However, many studies of visual attention suggest a surprisingly different model of 

parallel search. Parallel search is implied by hundreds of experimental studies showing a 

phenomenon called the “pop-out effect” (Treisman, 1985). In these studies subjects are 

instructed to search for a particular item in a set (e.g., “Is there a T in the set of letters?”). 

Empirically, when items are visually distinctive in terms of easily-processed features that are 

noticed “pre-attentively” (e., choosing an X from a set of X’s and O’s),  the time taken for a 

correct response is completely invariant to the number of items N.  The fact that response 

times are invariant to the set size N suggests that people are looking at all of the items 

simultaneously (searching in parallel). If searching for the best item in a choice set exhibits a 

similar pop out effect, time-constrained subjects will always choose the best items even in 

large choice sets, and display locations will not matter. Both of our central findings are the 

opposite of these predictions, which implies that search is clearly not parallel as shown in 

many earlier studies. Our point here is simply that the sequential search model is not the only 

conceivable model of visual search for choice, so establishing that model as a sensible one is 

not simply confirming the obvious. 
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A comparison with previous research illustrates some differences between choice with 

and without time pressure. Karjbich et al. (2008) have studied decision-making using eye-

tracking from sets of binary options using a similar set of stimuli. They find that subjects often 

make repeated fixations to the same item before making a choice, and their fixations are 

almost 80% longer than the ones in this paper. One potential explanation for the difference 

with our results is that longer fixations are useful to improve the estimates of value. This is 

consistent with the findings of Armel et al (2008) and Armel & Rangel (2008). Similarly, 

repeated fixations might be useful to improve the comparison of values. If this is correct, the 

brain might compute noisier estimates of value (due to the shorter fixations) and might make 

more errors when comparing items, when making decisions under time pressure. 

One natural question for future research is how well does the model and biases that we 

have identified extend to other decision-making situations. We hypothesize that similar 

computational processes might be used by consumers in situations without time pressure in 

which they are overwhelmed by a large amount of information. A typical example would be 

the selection of an investment portfolio out of the long list of options offered by the typical 

investment company. Consumers might only end up considering a fraction of these options, 

and “marketing” factors such as location in display, color, and font-size and style might affect 

which ones are actually considered. 

Another important question for future research is the extent to which consumers can 

defend themselves from the biases identified here. Our hypothesis is that this might be 

possible, but that it might require costly training before the choice situation, and costly 

deployment of attentional control at the time of decision-making. For example, consumers 

might have to train themselves to look at random locations in displays and to ignore certain 

features of packaging such as color. Furthermore, deploying such rules might be hard in 
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practice since they require overruling powerful bottom-up attentional mechanisms (Itti & 

Koch, 2001). 

Our findings are related to the “choice overload” literature in psychology which 

showed that large sets could be demotivating and dissatisfying for the consumers (Iyengar & 

Lepper, 2000; Iyengar, Huberman & Jiang, 2004; Reutskaja & Hogarth, 2006). Interestingly, 

these effects are normally studied in no-time-pressure conditions in which subjects can take as 

long as they want to make a choice. The typical explanation given to these results is that large 

choice sets and unfamiliarity leads to doubts about the quality of the choice to which people 

react by deferring or avoiding making a choice at all (also, see Dhar, 1997). In contrast to 

these findings, we forced individuals to make a decision in every trial, which rules out the 

postponement of choice.  

More generally, we hope that this paper illustrates the value for economists trying to 

understand the actual computational processes that individuals use to make different types of 

decisions. As described in the introduction, this approach has already generated important 

insights in behavioral game-theory but it has not been as widely applied in economics to 

individual decision-making process. The recent maturing of new technologies such as eye-

tracking and functional magnetic resonance imaging (fMRI) has made the development and 

testing of these types of models feasible and relatively low cost. 
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Chapter 3 

 

Neural Signatures of Choice-Overload and 

Choice Set-Value in the Human Brain
14

  

 

3.1 Introduction 

A main tenet of classic economic theory is that more choice is always desirable.  

However, contrary to this proposition, empirical evidence suggests that people often prefer to 

choose from small as opposed to large sets of alternatives.  There is a growing body of 

research suggesting that extensive choice may be costly and demotivating (Shafir, Simonson, 

& Tversky, 1993; Dhar 1997; Loewenstein, 2000; Schwartz, 2000; Iyengar & Lepper, 2000;  

Iyengar, Huberman, & Jiang, 2004; Iyengar, Wells, & Schwartz, 2006; Reutskaja & Hogarth, 

2006; Shah & Wolford, 2007). 

 However, in spite of great interest in the problem of choice overload, there are at least 

two gaps in the previous literature that we aim to fill. First, previous behavioral research 

focused mostly on outcomes of choice behavior (e.g., number of choices made, quality of 

decisions, etc.). Very few sources study processes underlying choice overload phenomena 

(e.g., Iyengar & Lepper, 2000; Reutskaja & Hogarth, 2006; Reutskaja et al., 2008). This 

occurs mainly because of the difficulty in measuring “behavioral processes”. Measures that 

                                                 
14 This work was done in collaboration with Rosemarie Nagel (Univeristat Pompeu Fabra); Colin Camerer, and 
Richard A. Andersen (California Institute of Technology), and Axel Lindner (Hertie Institute for Clinical Brain 
Research). Financial support from HFSP (to Rosemarie Nagel and Colin F. Camerer), and the Spanish Ministry 
of Education (to Rosemarie Nagel, SEJ2005-08391), and the Barcelona CREA program (Rosemarie Nagel) is 
gratefully acknowledged. 
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intend to explore the processes of choice usually rely on self-reports which can have 

considerable drawbacks (e.g., subjectivity, limited memory of subjects, etc.). On the other 

hand, biological measures that are collected via eye-tracking and brain-imaging techniques can 

help to uncover the processes underlying choice behavior and inform predictions of human 

decision making. To shed light on the mechanisms driving choice behavior, we used 

functional magnetic resonance imaging (fMRI) to measure participants´ brain activity when 

they were making choices from different-sized sets.  

Second, in spite of great attention paid to the choice overload problem in behavioral, 

economics and marketing research the neural bases of this phenomenon are still unknown. 

Several sources report how primate and human brain activity is modulated by different 

numbers of items. Tasks used in these studies involved both the simple presentation of 

different numbers of items and choice from different sized sets (e.g., Nieder, Freedman, & 

Miller, 2002; Mash et al., 2007; Churchland, Kiani, & Shadlen, 2008). However, it is worth 

noting that the number of items subjects are exposed to in these studies is rather limited, i.e., 

typically from 2 to 5 items. How brain activity is modulated by large numbers of alternatives 

(e.g., more than 20) has not yet been studied.   

The aim of this paper is to investigate the neural correlates of choice behavior when 

people are exposed to multiple alternatives. Specifically, we explore the neural processes 

underlying choice overload phenomena by studying the brain activity of 19 subjects who face 

choice from limited (6), medium (12) and large (24) sets of landscape photographs and receive 

one of the chosen pictures printed on a product of their choice. We explore both the physical 

reaction of people to the increase of the choice set size and the neural representations of 

“subjective” choice experience. The physical reaction is influenced by the actual number of 

choice items in the set and is independent of the perceptions of subjects. Subjective set value, 
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on the other hand, is affected by participants´ subjective choice experience rather than by 

actual number of items.   

We find that while activity in some brain areas [such as the middle occipital gyrus 

(MOG), lingual gyrus  (LG), inferior occipital gyrus (IOG), dorsal premotor cortex (PMd), and 

supplementary motor area (SMA)] increases linearly with the number of alternatives, activity 

in other brain regions [such as the nucleus accumbens (NA), caudate, anterior cingulate cortex 

(ACC), medial frontal gyrus (MFG), and posterior orbitofrontal cortex (POG)] follows an 

inverted-U-pattern with the increase of the choice set size. Most likely, the former activity 

resembles the costs one incurs when choosing from different sized sets, while the later activity 

represents  “motivation” for choosing. These data are consistent with the behavioral findings, 

which show that people buy more when confronted with medium-sized than small or large 

sets, i.e., medium-sized sets are more “motivating” (Shah & Wolford, 2007). Our study 

provides first evidence of the neural bases of choice overload in the brain. 

Moreover, we find that brain activity is modulated not only by the actual number of 

choice items present in the choice set, but also by the subjective choice experience of 

participants. Similar to findings from previous behavioral studies (Reutskaja & Hogarth, 

2006), participants generally considered that medium choice sets were of “optimal” size,  

while  they rated smaller sets as having too few items and the larger sets as having too many. 

Activity in the superior parietal lobule (SPL) was correlated with such subjective value of the 

choice set. This pattern of fMRI-activity provides the first insight into how the brain combines 

the quality of choices from a set with the difficulty of making these choices into a signal that 

can be interpreted as the value of a choice set. 

 Choice experience and behavior were further shown to be affected by the amount of 

control or freedom people have over their decision and by the availability of an “ideal” item in 
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the set (see Botti & Iyengar, 2006; Chernev, 2003). In our experiment, we manipulate these 

two important variables and explore the neural activity associated with this manipulation. Our 

results suggest that both “freedom” of choice and availability of a strongly preferred item 

modulate neural representations of choice from multiple alternatives.  

We emphasize that knowledge of the processes underlying choice overload behavior is 

a powerful tool that can provide hints to theorists and practitioners on how to optimize choice 

assortments for consumers. Understanding how consumers’ minds decide what is “enough” 

should help design marketing policies which are beneficial both for consumers and retailers 

(e.g. developing choice sets which include large variety without hurting consumers´ choice 

performance and shopping experience).  

The paper is organized as follows. First, we start by examining the existing literature in 

the fields of both behavioral research and neuroscience that is relevant for the choice overload 

phenomena. Afterwards, we present the experimental design. Then we report the main 

findings of our study and conclude by discussing the results and their implications. 

 

3.2  Theoretical Framework 

Whereas classical economics and psychology argue that choice is always beneficial, a 

number of recent studies suggest that it is not always the case, and large choice offerings may 

lead to choice paralysis. Iyengar and Lepper (2000) demonstrated that large assortments can 

be demotivating. In their field study, although customers were more attracted to an array with 

24 as opposed to six different jams, they purchased less from the larger than from smaller set. 

In addition, other studies by these researchers showed that people consume more and even 
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perform better on intellectual tasks (writing essays) when facing limited rather than extensive 

sets of options. Moreover, increasing the number of alternatives in the choice set or having 

items with similar attractiveness may make people defer choice or simply choose a default 

option (Shafir et al., 1993; Dhar, 1997).  

Furthermore, having many choice alternatives affects not only people´s behavior, but 

also their feelings and subjective perceptions of choice. The perceived difficulty of choice, for 

example, increases with the number of items in the choice set (Iyengar & Lepper, 2000; 

Reutskaja & Hogarth, 2006). People also experience post-choice discomfort, especially when 

the choice set is large. For example, people may feel “attached” to forgone alternatives and, 

therefore, experience “loss” of non-chosen items (Carmon, Wertenbroch, & Zeelenberg, 

2003). Self-reported satisfaction with both the outcome and process of choosing is also 

affected by the number of items in the set (Reutskaja & Hogarth, 2006).  

There is, therefore, a limit to how much choice is good or “enough”. However, what 

are the processes that underlie choice and determine the optimal choice set size? Reutskaja and 

Hogarth (2006) propose a theoretical model that describes processes which underlie choice 

behavior from different sized sets. They suggest that choice has both benefits and costs which 

increase with the number of items in the set. However, with the number of choice options the 

benefits increase at a decreasing rate, i.e., “benefits satiate”, while the costs increase at an 

increasing rate, i.e., “costs escalate”. Satisfaction both with the chosen alternative and the 

process of choosing as well as motivation for choosing should be the sum of these costs and 

benefits. When the choice set is small, the benefits of choice outweigh the costs, but when 

choice set becomes large, the reverse happens. Therefore, satisfaction as well as motivation for 

choosing should be an inverted-U shape function of the number of alternatives in the choice 

set. The empirical evidence suggests that it is indeed the case, and both satisfaction and 
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purchasing behavior have been shown to follow the inverted-U pattern with the number of 

alternatives (Reutskaja & Hogarth, 2006; Shah & Wolford, 2007). 

In another study Reutskaja et al. (2008) explored the processes of visual search when 

people chose a snack out of different-sized sets under extreme time pressure of three seconds. 

Using eye-tracking techniques it was found that subjects fixate on items randomly and 

sequentially, measure their values, and choose the item with the maximal value seen. Overall, 

this strategy allows subjects to make highly efficient decisions even within an extremely short 

time period. 

However, the mechanisms underlying choice behavior under the conditions of overload 

are far from being well-understood. And in spite of the great importance of choice overload 

problem for both consumers and producers, nothing is yet known about the neural correlates of 

choice behavior. Knowing how the brain processes choices from different numbers of 

alternatives is important as it can provide insights into the choice overload phenomenon and 

inform predictions of human decision-making. So, how are choices from multiple alternatives 

represented in the brain?  

A large number of brain-imaging studies have explored the neural bases of choice 

behavior with limited numbers of options. Typical tasks in these studies are choosing between 

two actions to make (e.g., decisions in perceptual-motion tasks) or selecting between two 

objects or gambles (e.g., with different magnitudes of possible gains and losses, probabilities, 

etc.). 

Only few studies have attempted to explore choice behavior from sets which include 

more than two choice options. A study by Churchland et al. (2008) addresses the question of 

how monkeys respond to 2- as opposed to 4-choice decision tasks (direction-discrimination 
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task). The results suggest that subjects accumulate the evidence for and against the choice. At 

the beginning of the decision process, the firing rate in the superior colliculus was lower in the 

four- than in the two-option case which caused a higher threshold for termination of the 

former decisions.  

Marsh et al. (2007) studied how human brain activity is modulated by the number of 

available options and expected reward. They found that the increase in the number of choice 

alternatives was positively associated with activation in the following brain regions: the 

cingulated gyrus (dACC/dmFC), precentral gyrus, medial frontal gyrus (MFG), 

caudate/thalamus, precuneus, and middle occipital gyrus (MOG). As the number of options 

increased the blood-oxygen-level dependent (BOLD) activation in these regions also 

increased. The authors argue that with the increase of the number of items in the set, the 

response conflict increased (as the competition among the options went up) and was 

accompanied by the linear increase in the fMRI signal in those regions. However, the number 

of response options that the authors studied was rather limited -- 2, 3 and 4 alternatives.  

To date, no brain-imaging study has examined choices from large sets of items (e.g., 

sets that contain more than 20 items). However, the fact is that many every-day decisions 

involve choices from extensive numbers of alternatives, e.g. think of selecting a yogurt from a 

shelf in a well-stocked supermarket or a meal from a large menu in a nice restaurant.  

The purpose of this paper is to understand the neural bases of decision-making when 

humans are confronted with sets of different sizes, involving small, medium and large 

numbers of choice options. We do not aim to study how brain activity is modulated by the 

selection of a particular object (and reward associated with this object), nor by how the goal 

was acquired, nor by how humans make decisions from limited sets. These tasks have been 

successfully studied in previous literature. Instead, we aim to explore how the value of the 
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entire set is represented in the human brain, and how this representation is affected by the 

number of choice items, choice “freedom” and the availability of a strongly preferred 

alternative in a set. 

Previous behavioral studies demonstrate that people often make more choices and 

experience greater satisfaction when choosing from intermediate numbers of items as opposed 

to small or large sets of alternatives. Therefore, we first expect to see the set size 

representation in the areas that were associated with reward and value in choice tasks in 

previous literature. These are the striatum, orbitofrontal, cingulate and parietal cortex (Platt & 

Glimcher1999; O’Doherty, 2004; Williams et al., 2004; Marsh et al., 2007; Plassmann et al., 

2008). Some of these areas relate to representation of the value of single items or actions. 

However, it is not clear yet whether these areas also represent the value of an entire set, i.e., 

not only the value of a single item but the integrated value of the set consisting of many 

separate options.  

Second, one brain area may be of special interest for our task, namely the anterior 

cingulate cortex (ACC). Previous literature suggests that apart from being associated with 

functions such as error monitoring or reward, the ACC might be an area that represents the 

“net” value of an action, which is based on accumulated evidence and cost-benefit analysis 

(Kennerley et al., 2006; Rushworth et al., 2007; Rushworth & Behrens, 2008). In their work 

Rushworth & Behrens (2008) argue that: 

“…it is possible that the ACC represents the integrated value of a course of action to 
reflect both the action’s intrinsic costs and benefits” (p.395), and  “…ACC activity 
preceding a decision encodes the integrated value of an action, whether in terms of 
immediate gains and costs or in terms of information to aid future decision making. On 
the observation of an outcome, ACC activity encodes the degree to which the resulting 
information should influence future decisions.” (p.396) 
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If choice satisfaction and behavior is a sum of costs and benefits (as proposed by 

Reutskaja & Hogarth, 2006), and the ACC is the area that is associated with the integrated 

value of a course of action, then we would especially expect the activity in the ACC to follow 

an inverted-U pattern as the number of choice option increases. Interestingly, Marsh et al. 

(2007) found that activity in the dorsal ACC (dACC) increased linearly with the number of 

choice items. However, their choice sets were not extensive and contained at most four 

alternatives. We suggest that when the choice set size becomes large enough, the cost of 

choice may overweigh its benefits, and the activity in the dACC should level off.  

In addition, the amount of choice considered “enough” may be affected by other 

variables, for example, by choice set presentation and “freedom” of choice. Previous research 

suggests that availability of a highly-preferred item in a large choice set can simplify choice 

(Chernev, 2003). In this paper we also examine how the presence of a strongly preferred item 

in the set influences participants’ choices and brain activity associated with their decisions. 

We expect activity in areas associated with reward and value processing to be greater when 

people face choice sets with a strongly preferred item compared to the case when such an 

alternative is absent. 

The literature further suggests that when choice becomes difficult, people can prefer to 

defer the choice or “choose not to choose” (Dhar, 1997). In our experiment we investigate the 

neural bases of human decision-making when participants face “free” (i.e., decide what to pick 

by themselves) as opposed to “forced” choices (i.e., when the item is selected for the 

participants). More specifically, we would expect to see different patterns of brain activity for 

free and forced choice conditions in areas which are associated with reward and value 

processing (see above). While medium sized sets should be more “rewarding” than small or 

large sets when participants face “free” choices, large sets might be more “rewarding” than 
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small sets when the item is chosen for the participant (i.e., due to increased difficulty in the 

larger as opposed to smaller sets one may prefer the choice to be made for him/her).  

 

3.3  Experiment 

Method. The aim of our study was to investigate the neural bases of human decision 

making when people are confronted with limited, intermediate and extensive choice offerings.  

In our functional magnetic resonance imaging (fMRI) experiment subjects faced different-

sized choice sets of landscape photographs from which they had to choose their most preferred 

one. One of these choices was then used to produce a consumer product with an imprint of the 

respective photograph. Participants’ brain activity and eye-movements were recorded while 

they examined the sets and made their choices. To control for choice involvement we, first, let 

participants freely select the product on which the landscape picture would be printed. 

Subjects could choose one of the following products: mug, mouse pad, T-shirt, desk organizer, 

bag, or apron. At the end of the experiment a customized product with a selected landscape 

picture on it was ordered for the participant through the online retailer.  

Participants performed three tasks during our experiment: (1) a liking rating of the 

landscape photographs (on a PC in a laboratory), (2) choice from different-sized sets of 

landscape photographs (in the fMRI scanner), and (3) responses to a paper-based 

questionnaire (in the lab outside the scanner) regarding choice experience.  

During the liking rating task participants were shown the landscape images one by one 

on a computer screen and had to state how much they wanted to have each of those pictures 

printed on the product of their choice by setting a bar on a 10-point scale (with “1” meaning “I 
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would not like at all to have the picture on my selected item” and “10” meaning “I would like 

to have the picture on my selected item very much.”).  

Images presented to participants were versions of high-resolution landscape 

photographs15. Landscape images were assigned to 6 categories:  mountains, lakes, dunes, 

waterfalls, forests and beaches. Each category included 52 pictures (the total sample of images 

consisted of 52*6=312 pictures). 

Images were presented in a random order, and subjects had to rate each image twice in 

two successive rounds. The second round started immediately after participants had completed 

rating all the pictures for the first time. Subjects could use as much time as they wanted to give 

their ratings. The final rating of each image was determined by taking the average of 

subjective ratings given to each image by participants in two successive rounds. To familiarize 

subjects about the types of images to be presented, and to help them assess a distribution of 

subjective ratings of these images, there was a short training session prior to the actual rating 

session. Training involved 12 pictures that were not used in the actual experiment. Also in the 

training procedure pictures had to be rated in two successive rounds. 

Subjects’ ratings of the individual images served as a base for creating the choice sets 

presented to the participants in task two.  

During the choice task of the experiment participants examined the sets of images and 

decided which of the landscape pictures they wanted to have printed on the product of their 

choice. This task was conducted in an MRI scanner16. Apart from measuring brain activity we 

also tracked eye-movements of each subject.  For detailed description of equipment and data 

acquisition, please, see Appendix 3.A. 

                                                 
15 All the images were obtained from the same webpage (www.terragalaria.com) with the permission of the 
author.  
16 For a complete review of fMRI methodology, see Huettel, Song, & McCarthy (2004).  
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Table 3.1 summarizes choice conditions subjects faced during this task. The choice sets 

differed on two dimensions: the number of alternatives and the availability of a clear favorite 

item in the set. With regard to the number of alternatives, choice sets presented to participants 

included 6, 12 or 24 visible images of the same category. With regard to the availability of a 

clear favorite item in a set, there were two types of sets: choice sets with a clear favorite item 

(CF sets; the difference in rating between the first and the second best item in these sets was 

large), and choice sets with no clear favorite alternative (NF sets; the difference between the 

first and the second best item in the sets was small and not pronounced). To create the CF and 

NF we used subjective ratings of images made by participants in the liking rating task of the 

experiment.  

In addition, in some trials subjects could select a photograph by themselves (“free” 

choice trials), while in other trials a landscape picture from a set was selected by the computer 

for the participant (“forced” choice trials). Thereby the computer would always select a 

“good” or preferred picture ranked as 1st or 2nd in the “forced” set. 

All forced choice sets (FO) were sets without a clear favorite picture, while free sets 

could be both, with (CF) or without (NF) clear favorite alternative.   

Choice sets were presented on an otherwise black screen with a central, white fixation 

cross. Items of the choice sets could be randomly placed at 15 possible positions to each side 

of the fixation cross. On both sides these positions were arranged in five rows and three 

columns. Depending on the condition, a certain number of visible landscape images was 

placed at these positions (with an equal amount placed to the right and to the left side of the 

fixation cross). Scrambled images were presented at the remaining locations in order to 

diminish global visual differences between sets (luminance, color, image density etc.). 
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Table 3.1: Experimental conditions and number of trials in each condition during the choice 
task in fMRI scanner. 

 

Free choice 

(the choice has to be made by the 
subjects) 

Forced choice (FO) 
(the choice is made for 

the subjects by a 
computer) 

Number of 

visible 

landscape 

pictures  
(other blurred) 

Sets with clear 

favorite item (CF) 
Sets with no clear 

favorite item (NF) 
Sets with no clear 

favorite item 

6 8 trials 8 trials 8 trials 

12 8 trials 8 trials 8 trials 

24 8 trials 8 trials 8 trials 

 

 

Examples of the computer screens presented to the participants during the fMRI 

experiment are shown in Figure 3.1.  

No choice set included identical alternatives. Moreover, within each experimental 

session/run an item was shown only once and, across sessions, choice sets would always 

comprise different items. 

Each trial in the choice task consisted of three stages: an exposure stage (10 sec) – 

during which participants were exposed to the set of the images for the first time17; a delay 

stage (13-14 sec) - during which subjects saw a black screen with the central fixation cross 

and had to maintain fixation on it; and a response stage (3 sec) – during which the screen with 

the same choice stimuli appeared for the second time and subjects had to indicate the selected 

item. The three-stage paradigm which subjects faced in the fMRI scanner (exposure, delay and 

response period) was borrowed from Rosenbaum (1980) and allows teasing apart brain  

                                                 
17 Choice set presentation was followed by a brief random-dot mask that was presented for 0.5 seconds. The mask 
aimed to prevent specific after-images of the choice stimuli. 
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 Figure 3.1A 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1B 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1C 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.1: Examples of screenshots for the set containing: A. 6 items; B. 12 items; C. 24 
items. 
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activity related to viewing/choosing and  physical selection of a chosen item  (i.e., movement 

itself and its preparation). Between each trial subjects saw a black screen with the fixation 

cross on it (13 sec) and had to maintain gaze on that fixation cross.  The black fixation screens 

between trials were considered the baseline in our analysis. The exact timeline of the choice 

task is presented in Figure 3.2.  

Subjects selected an item using the thumb of their right hand on an MRI-compatible 

button-box (see full description of equipment in Appendix 3.A). To familiarize themselves 

with the task, subjects went through a short training prior to starting the actual choice session. 

During training we presented only choice sets that were not used in the actual experiment. 

The landscape picture selected (by or for participants) in each trial affected the image 

that a participant received printed on the product that s/he had selected. In particular, at the 

end of the experiment, the computer selected one trial at random from all the trials that a 

participant faced during the experiment. The landscape that was chosen in that trial was then 

used to produce a featured product (i.e., printed on a product of the participant’s choice). This 

product was sent to the participant about a week after the experiment18.   

We used an event-related fMRI-design for the imaging part of the experiment. This 

choice task of the experiment consisted of four runs (sessions) with short breaks between runs 

(< 5 minutes). Each participant went through 72 trials (i.e., faced 72 different choice sets and 

had to make either a free or forced selection in each of them) with 18 trials in each run. The 

design was entirely balanced with 24 trials of each set type (i.e., 24 forced sets, 24 free CF 

sets, and 24 free NF sets). Participants faced eight trials of each set size for each choice set 

                                                 
18 If a participant did not make a choice in a trial, the computer deducted $3 from the experimental payoff if the 
trial with no choice was selected at the end. To create a featured product, a new trial would be then again selected 
at random and the picture chosen in that trial would be printed on the good selected. However, this never 
happened during the experiment.  
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Figure 3.2: Timeline of the choice task in the fMRI scanner. 
 

type (i.e., out of 24 CF sets, subjects faced eight 6-option sets, eight 12-option sets, and eight 

24-option sets), see Table 3.1. The landscape categories (lakes, mountains, etc.) were 

presented in a random order to the participants. All 72 trials were presented to each participant 

in an individually randomized order.  

During the questionnaire task of the experiment participants filled in a paper-based 

questionnaire outside the scanner. We assessed subjective value of the set by asking 

participants whether they felt that each choice set size contained the “right” amount of 

alternatives (answers were given on a 9-point scale with 1 “No, I had too few choice options”, 

5 “Yes, I had just the right amount of choice options”, and 9 “No, I had too many choice 

options”)19. Subjects also reported how difficult it was for them to choose from each choice set 

size (from 1 “Not difficult at all” to 10 “Extremely difficult”). 

The experiment lasted about 90 minutes in total.  

Subjects. 20 healthy individuals (65% males, mean age 26.1) participated in this study. 

In addition to the customized product, each participant received a cash remuneration (40 US $ 
                                                 
19 Participants were asked many questions, but we report only those that are relevant to this paper.  
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if they chose a desk organizer, bag, or apron; and 50US $ if they chose a mug, mouse pad, or 

T-shirt). All subjects were right-handed and had normal (or corrected to normal) vision. 

Participants signed the informed consent form prior to participating in the experiment. The 

study was performed in accordance with the declaration of Helsinki and the Caltech 

Institutional Review Board guidelines20. 

 

3.4  Results 

 In this paper we focus our analysis on the exposure period of the choice task. Presenting 

data obtained during the delay and response phases is beyond the scope of this paper. 

 

3.4.1  Behavioral and eye-tracking results 

Before turning to brain activity, we first describe the eye-tracking and behavioral 

results. Overall, subjects indicated that they liked the selection of images that they were 

choosing from (on the 10-point scale: M = 7.16, SD=1.57) and found the process of choosing 

enjoyable (on the 10-point scale: M = 7.32, SD=1.33). Several subjects also indicated verbally 

or in their written comments that the experiment was “engaging”, “cool”, and “interesting”. 

These data confirm that subjects were not indifferent to the images they were exposed to, and 

that the choice task was engaging (with the exception of one subject)21. For the descriptive 

statistics of the liking ratings of individual images, refer to Appendix 3.B. 

                                                 
20 One subject went through the rating procedure, but could not enter the MRI scanner due to unexpected 
claustrophobia. That subject therefore could not participate in the rest of the experiment and is not counted here. 
She received the show-up fee for the first part of the experiment ($20) and was not included in the analysis. 
 
21 One subject reported verbally that he was indifferent about landscape images, was not interested in choosing 
any of them, and even rejected to receive the customized item at the end of the experiment. His ratings of the 
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The data demonstrate that the number of saccadic eye-movements as well as subjective 

choice experience was influenced by the number of alternatives in the set. The number of 

saccades per second increased with the number of items in the set in the exposure period, see 

Figure 3.3. Subjects made significantly more eye-movements in the 12- as opposed to 6-item 

set condition (t = 10.11, p < 0.001). The number of saccades per second increased further in 

the 24 as opposed to 12-item sets (t = 6.68, p < 0.001).  Moreover, subjects made significantly 

more saccades per second in free than in forced choice trials regardless of the set size (t = 

4.38, p <0.001). Previous research has demonstrated that the number of eye-movements 

correlates with shifts of attention (for further discussion, see Wedel & Pieters, 2007). 

Therefore, one may conclude that “attention load” increases with the set size, and is higher in 

the free than in the forced choice trials. These data confirm that subjects were more involved 

in the task and also had to “work harder” to make the selection in the free than in forced 

choice trials.  

Subjects’ perception regarding the value of the set was also affected by the number of 

alternatives which the set contained. Recall, that a subjective set value was measured by 

responses given on a 9-point scale (where “1” meant subjects felt they had too few, “5” - just 

the “right” amount, and “9” - too many options to choose from). For easier visualization of the 

results, we transformed the original scale into the new one by doing the following calculation: 

[5-(“Subject´s Perception of Set Value” -5)]. On the new scale “5” would represent the 

“optimal” set size, or the highest value of the set, while every number below 5 would show 

                                                                                                                                                         
landscape indicated the same: there was no variability in the liking ratings of different images that he reported. 
Over 84% of images were given a rating of “0” (meaning, the subject did not like the images at all), and the rest 
16% of ratings were distributed between 0 and 1.8 on the 10-point scale (M = 0.1, SD = 0.28). The data clearly 
indicated that the task was not engaging for that particular subject. Therefore, the data from that subject was not 
included in further analysis (behavioral or fMRI), and analysis was performed on the data obtained from the 
remaining19 participants.  
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Figure 3.3: Number of saccades per second during the exposure phase of the choice task. 
 

 

that the set value is lower than “optimum”. The data demonstrate that sets with 12 alternatives 

were considered optimal, as, according to the reports, they had about the “right number of 

items” (M=4.68, difference from “5”: t = 1.10, p = 0.285). Smaller and larger sets were of less 

value for the subjects: sets containing 6 items were seen as having “too few alternatives” (M= 

4.05, difference from “5”: t =  3.83, p < 0.001), while large sets with 24-items were seen as 

including “too many items” (M = 2.79, difference from “5”: t = 6.71, p<0.001 ). In other 

words, Figure 3.4A demonstrates that the subjective value of the choice set is an inverted U-

shaped function of the number of choice alternatives, peaking for sets which contained 12 

alternatives.  

Choosing from the larger sets was also more difficult. Subjects found it more difficult 

to choose from 24 than from 6 or 12 alternatives (t = 4.15, p < 0.001, t = 5.08, p < 0.001, 

respectively). Therefore, difficulty is an increasing function of the number of items in the set, 

see Figure 3.4B. 
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Figure 3.4A 
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Figure 3.4B 
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Figure 3.4: Subjective ratings of participants regarding their choice experience. A. Choice set 
value by set size; B. Difficulty of choosing by set size. 
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3.4.2.  Brain-imaging results 

We performed functional image analyses both at the individual- and group- level.  

On the individual level we used two different models to account for different aspects of 

fMRI-response characteristics.  

 In model 1, on the individual subject level (1st level) 9 experimental conditions were 

modeled separately [3 tasks (CF, NF, and FO choice) x 3 task stages (exposure and mask, 

delay, and response periods)] in the general linear model (GLM). The model also included 

three further parameters which served as additional parametric modulators for each of the 3x3 

regressors of the GLM: number of items in the choice set (linear and squared term), and liking 

rating of the chosen item (linear term). We used a polynomial of the second order to model the 

response function because, based on the behavioral ratings from previous research and our 

own results, we expected to find an inverted-U response of the brain activity to the number of 

items the subjects faced.   

For the group-level (2nd level) analysis we explicitly masked the brain with the task 

related areas. On the group-level, contrast images for the various conditions were analyzed 

using t-tests and multiple regression analysis. In this analysis we always present the results for 

three statistical thresholds: p < 0.01, p < 0.005 and p < 0.001 (uncorrected) to emphasize the 

spatial specificity of our results.  

The 2nd level analyses of the results of model 1 allowed us to map brain regions which 

showed: first, an inverted U-pattern in response to the number of items in the set (i.e., the 

squared signal component was significantly larger than the linear signal component); second, 

an increasing trend in response to the number of items in the set (i.e., the presence of a linear 

signal component that significantly differs from baseline); third, significant differences in 
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activity in free (NF) as opposed to forced trials (FO); fourth, significant differences in activity 

when subjects faced CF as opposed to NF sets; and finally, significant correlation with the 

liking-rating of the item chosen in each individual trial.  

 In model 2, on the individual subject level the GLM included regressors for each of our 

3x3 experimental conditions [3 tasks (CF, NF, and FO choices) x 3 choice sets (6-,12-, and 24-

item sets)] and for each stage of the task (exposure and mask, delay, and response period).  

 The 2nd level analyses of model 2 allowed mapping brain regions that were significantly 

correlated with: first, the number of saccades; second, subjective ratings given by the subjects 

about the value of the set; and third, subjective ratings of difficulty of choosing from each set.  

Thus, while the analysis of the model 1 captured aspects directly related to the task itself 

– the number of alternatives in the set, the value of the selected item in each trial etc. – the 

model 2 would rather focus on aspects that were not only task-related but also differed 

between individual subjects, namely the number of saccades per condition and the subjective 

ratings about set value or difficulty of choosing. Note, that capturing all of these aspects in a 

single model either would have reduced the statistical power (due to pooling) or, alternatively, 

would have led to an overfitting of the data. In order to still allow a direct comparison of the 

results obtained with the two models, we did an additional descriptive ROI-based statistics 

described below. 

In addition, we extracted normalized beta weights for the exposure-period regressors of 

the second model for a 3mm-radius sphere that was centered on functionally defined regions 

of interest (ROIs): those regions that exhibited significant fMRI-signal components correlated 

with either the linear term, the squared term (both model 1) or the amount rating (model 2).  

After extracting the normalized beta weights, we performed multiple correlations of 

these beta values with: first, subjective ratings of the choice set value; second, subjective 
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ratings of difficulty; third, number of saccades; fourth, linear term for the number of items in 

the set; and finally, the squared term for the number of items. In addition, the statistical 

comparison for CF > NF and NF > FO conditions within ROIs was based on those extracted 

beta values. More precisely, we performed paired t-tests across individual subject’s beta 

values for the respective conditions (one-tailed).  

  We first determined the task-related areas, i.e. areas that were involved in all free 

choice tasks relative to the baseline condition during the exposure period (contrast: Free 

Choice (both CF and NF) > Baseline). Task related areas are shown in Figures 3.5, 3.6 and 

3.7. Overall, the whole brain analysis of the fMRI data revealed that parietal, occipital, 

anterior cingulate, premotor, prefrontal and orbitofrontal components as well as basal ganglia, 

were activated. Activation of each particular area was modulated by the specific tasks in each 

condition and is described in detail below. 

 

3.4.2.1  Physical reaction to the number of choice options. 

  BOLD activation in the occipital cortex [lingual gyrus (LG; BA 18) also encroaching 

fusiform gyrus ; inferior occipital gyrus (IOG; BA 19); and middle occipital gyrus, (MOG; BA 

19)], parietal cortex (SPL; BA7),  and premotor cortex [bilateral activity both in dorsal 

premotor cortex (PMd, bilateral; BA 6), and supplementary motor area (SMA, bilateral)] 

increased linearly in response to the increase of the number of items  in the set (i.e., activity 

was modulated by the linear parameter of the number of items in the set; Linear > Baseline 

contrast, model 1), see Figure 3.5A-E22. Most of the areas activated in that contrast have been 

shown to be modulated by motor planning and execution and processing of visual scenes in 

primates and humans (see e.g., Andersen & Buneo, 2002; Grill-Spector  & Malach, 2004;  

                                                 
22 Appendix 3C shows exact coordinates of the brain regions and statistics associated with their activity.  
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Orban, Van Essen, & Vanduffel, 2004; Medendorp et al., 2008). Therefore, the increased 

activation in these areas might reflect costs of facing the large choice sets.  

 

 
 

Figure 3.5: Brain activation in Linear > Baseline (A-E) and  Quadratic > Linear (F-J) 
contrasts, model 1. 

 

While activity in some brain regions increased linearly with the number of choice 

alternatives, BOLD activation in the other regions has an inverted “quadratic” response to the 

increase of the choice set size. Activation in the anterior cingulated cortex (ACC; BA 32), 

dorsal striatum (bilateral activity in the caudate with some encroachments into the putamen), 
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ventral striatum (NA), medial frontal gyrus (MFG; BA 44-46), posterior orbitofrontal cortex 

POG (BA 47), ventral premotor (PMv; BA6),  parieto-occipital transition area (POTZ), and 

superior parietal lobule (SPL; BA 7) was significantly correlated with the squared term for the 

number of items in the choice set (i.e., it was significant in the “Quadratic term” > ”Linear 

term” contrast, model 1). Curiously, the activity in these areas did not increase monotonically 

with the number of options; rather it followed an inverted-U trend as the choice set size 

increased. 

As the number of items in the choice set increased from 6 to 12 alternatives, activity in 

these brain areas also increased (reaching its peak when subjects faced medium-sized sets of 

12 items). However, as the number of items increased further - from 12 to 24 items - 

activation in these brain regions leveled off, see Figure 3.5F-J.  

Many of the brain areas activated in this contrast have been previously associated with 

value, reward or cognitive effort/control. The caudate, NA, and POG have been found in 

previous studies to respond to rewards in monkeys and humans (O’Doherty et al., 2001; 

McClure, Berns, & Montague, 2003; O’Doherty, 2004; Knutson et al., 2008; Rushworth et al., 

2008). Therefore, it is highly likely that activity in these regions reflects “reward” one obtains 

from facing one or another choice set size. The activity in these areas is increasing at the 

beginning, suggesting that facing medium-sized sets might be more “rewarding” than being 

confronted with smaller sets containing only 6 items. However, there is a limit to how much 

choice is “rewarding”. The activity in the areas associated with reward starts to decrease when 

the set gets larger and subjects experience “choice overload.” 

The MFG was previously shown to play a crucial role in sustaining attention and 

working memory, cognitive control, and especially implementation of control (Cohen et al., 

1997; Fletcher, Shallice, & Dolan, 1998; Bechara et al., 1998; MacDonald III et al., 2000). 
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Therefore, it is highly likely that MFG activity in our case demonstrates how much attention 

and working memory is involved in choosing from different sized sets, i.e., it reflects how 

“motivating” each choice set size is. When the choice sets are small the cognitive strain 

imposed on decision-makers is low and associated MFG activity is also low. With the increase 

of the choice set, load on attention and working memory should increase. Interestingly, this 

happens only to some extent. When the choice set becomes extremely large, people may 

simply “give up” investing attention and capacities of working memory deteriorate. 

The data also confirm our expectations regarding ACC activity, which has been 

claimed to represent the “integrated” action value, i.e., value which is based on the cost-

benefit analysis (Kennerley et al., 2006; Rushworth et al., 2007; Rushworth & Behrens, 2008). 

The authors suggest that the ACC is essential when one makes decisions about how much 

effort to invest to receive a reward. Our results are consistent with this proposition. As 

expected, and as shown by previous research (Reutskaja & Hogarth, 2006; Shah & Wolford, 

2007) medium-sized sets are the most motivating and satisfying (i.e., they should be 

associated with the highest reward). Inverted-U activity in the ACC peaking at medium-sized 

sets might reflect that subjects are willing to invest the greatest amount of effort when facing 

intermediate sets, while lower effort when facing larger and smaller sets. 

It is important to note that the activity correlated both with the linear and quadratic 

terms is stimulus-driven, i.e., is correlated with the actual number of the items in the choice set 

(either with the linear or quadratic term representing the number of items). However, 

behavioral data suggest that subjects’ perception about the choice set value and difficulty of 

choosing from these sets also differed depending on the choice set size. Does the subjective 

experience of the decision process also modulate brain activity? If so, how is this subjective 

experience represented in the brain? Do these subjective perceptions about the set value and 
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difficulty of choosing modulate activity in the same regions where we found the stimulus-

driven physical reaction to the number of items? To answer these questions we conducted 

further analysis, using model 2.  

 

3.4.2.2  Neural correlates of perceived difficulty and subjective set value 

Subjective perceptions of difficulty from choosing modulated brain activity (model 2). 

Recall that the self-reported difficulty increased with the number of items in the set. Activity 

in the cingulate cortex (medial part of the CC and ventral ACC), SMA, LG, MOG, PMd 

(bilateral), PMv, MFG, caudate, and thalamus was significantly correlated with the perceived 

difficulty, i.e., increased with the number of alternatives in the set (see Figures 3.6E & 3.7A). 

Brain regions activated in that experimental contrast were similar, but not always identical to 

the regions where activity was correlated with the linear term in model 1 (see Figures 3.6A, 

3.6E, and 3.8). Some subregions of the SMA; PM cortex, and LG were activated in both 

contrasts (i.e., their activity increased with the linear term in model 1, and showed significant 

correlation with difficulty ratings). On the other hand, activity in other subregions of the SMA 

and PM cortex as well as areas such as the thalamus, cingulate cortex and MFG was 

modulated by subjective perception of difficulty, but not by actual number of choice 

alternatives.  

The phenomenon of choice overload was also reflected in subjects’ feelings about the 

set value. Recall that we asked participants directly to determine a subjective value of the set, 

or report how they felt about the number of alternatives in different sets. Intermediate sets had 

greater value for participants than large and small sets. Areas exhibiting fMRI-activity which 

was correlated with the subjective value of the choice set were mapped within the medial 

aspects of right superior parietal lobule -- SPL -- (model 2, see Figures 3.7A and 3.9), which  
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Figure 3.6: Neural correlates of choice in various contrasts (or correlations with indicated 
variables). Contrasts A-D are based on results from model 1; contrasts E-F are based on 
results from Model 2. 
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Figure 3.7: SPL activity in different experimental conditions. 
 

was shown to respond in monkeys and humans to value and choice behavior (Platt  & 

Glimcher, 1999; Cui & Andersen, 2007; Pesaran, Nelson, & Andersen, 2008). Interestingly, 

SPL activity did not increase monotonically and rather resembled an inverted-U pattern. The 

highest activity was associated with the highest subjective value of the set and was found 

when participants faced sets with 12 options. Lower activity and lower subjective value were 

associated with smaller and larger sets.  

It is worth noting that areas, in which activity was correlated with the quadratic term in 

model 1, did not show significant correlation with “subjective” set value23 in model 2. 

                                                 
23 The opposite, however, was not true. The SPL, activity in which was correlated with the subjective set value, 
also showed significant inverted-U activity in the Linear term >Baseline contrast (model 1), though at a very low 
threshold (p< 0.05, uncorrected).  
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Therefore, our data suggest that the “subjective” set value might be represented in a separate 

brain region, namely SPL. 

Our data also demonstrate that the number of saccades increased with the number of 

items in the choice set. Areas exhibiting fMRI-activity which was correlated with the number 

of saccadic eye-movements  included the SMA, PMd, MOG, IOG, LG, PO, medial parts of 

CC, and lateral parts of SPL (analysis based on model 2), see Figure 3.6F. Eye-movements 

have been shown to reflect covert attention (for further discussion see Wedel & Pieters, 2008). 

 

Figure 3.8: Comparison of brain activity in the following contrasts: Linear term > Baseline ( # 
linear, model 1); Squared term > Linear term (# squared, model 1); significant correlation with 
difficulty (difficulty, model 2); significant correlation with subjective ratings of the set value 
(set value, model 2); subjective correlation with the number of saccades (# saccades, model 2). 

 

Moreover, brain regions where activity was correlated with the number of saccades 

were almost identical to those where activity was correlated with the linear term in model 1 

(i.e., see Figures 3.6A, 3.6F, and 3.8). Some subregions of the SMA; PM cortex, LG; and CC  

were also mapped at locations similar to those of regions, in which activity was correlated 



 127 

with difficulty ratings (see Figures 3.6E and 3.6F; 3.7A and 3.7C; 3.8). Therefore, activity in 

the areas listed above, which is increasing with the number of items, might represent cost of 

facing different-sized sets and reflect attention load that increases with the number of options 

in the set. 

Activation in the ACC, dPM and STS was correlated with the liking rating of the 

chosen item (analysis based on model 1), i.e., activation in these areas increased with the  

 

 

Figure 3.9: Choice set value representation within the SPL. 
 

rating of the chosen item, see Figure 3.6D. Interestingly, this activation was detected during 

the exposure period, relatively long time before the subjects revealed their actual selection 

(i.e., around 15 seconds prior to the selection). 
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The results show that both the actual number of items in the set as well as perceptions 

of choice experience modulate brain activation. Until now we conducted analyses independent 

of whether the subjects faced forced or free choice trials or whether the choice set contained 

their strongly preferred item. The marketing and behavioral literature, however, suggests that 

these two variables may affect perception of variety. Our behavioral results also showed that 

the participants did not treat sets in free vs. forced as well as in CF vs. NF trials as identical, 

and it is also important to understand the neural correlates of these differences. In the 

following section we discuss how availability of a clear item in the set and choice freedom 

affect neural representations of choice from multiple alternatives.  

 

3.4.2.3  Neural correlates of the availability of a clear favorite alternative in the set 

and of choice “freedom”. 

Brain activity was modulated by the presence of the favorite item in the set (overall). 

Many of the areas that showed an inverted-U activity in the free choice tasks also showed 

significant activation in the CF > NF contrast, compare Figures 3.6A and 3.6C [as a test, note 

the areas that showed significant activation in the CF > NF contrast are almost all in good 

statistical correspondence with the areas that showed an inverted-U activity].  

The most pronounced activity that shows the difference in the CF > NF contrast was 

found in the caudate (bilateral), an area that has been associated with reward in previous 

research (Knutson et al., 2001; O’Doherty et al., 2001). However, this activity is not restricted 

to the caudate only, rather it invades other neighboring components of the basal ganglia (e.g., 

the pallidum).  

We also compared fMRI-signal change in task-related ROIs which were significantly 

correlated with the quadratic term in model 1. The analysis revealed significantly higher 
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activation in the CF as opposed to the NF sets for each area that has been found to correlate 

with the quadratic term (see Figure 3.5F-J). In many cases BOLD activity associated with 

choosing from the large CF sets was often as high as that associated with choosing from the 

medium-sized NF sets.  

This finding goes in line with previous research in marketing, which showed that an 

“ideal point availability” simplifies choice from large sets (e.g., see Chernev, 2003). Our 

results offer putative neural bases for this proposition. When the set contains an optimal item, 

it is also associated with greater activity in areas, which have been shown to reflect reward or 

value processing compared to the case when an optimal item is absent.  

This finding implies that large sets are not always “bad” or “overwhelming”. Large sets 

could be as rewarding as medium-sized set, if an “ideal” option is present in the set. The data 

suggest that the benefits of having an “ideal” item within the set might compensate the costs of 

overwhelming set size.   

Brain activity was also modulated by choice “freedom”. Activity in the posterior 

parietal cortex (PPC region) [bilateral activation in the medial aspects of superior parietal 

lobule (SPL)], PMd, SMA and MFG was significantly higher in the free choice as opposed to 

the forced choice trials, see Figures 3.6B and 3.7B. (NF > FO contrast, model 1).  

It is worth noting, that some areas, in which activity followed an increasing linear 

pattern and was correlated with difficulty, also showed greater activation in the free as 

opposed to the forced choice trials, see Figure 3.6A, B, E. We also compared percent signal 

change for task-related ROIs, which were significantly correlated with the linear term in 

model 1, in the free and forced trials. Brain activity for each of these ROIs was significantly 

higher in the NF condition than that in the FO condition with the exception of a non-
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significant difference in activity in LG (see Figure 3.5A-E). Overall, our findings suggest that 

“free” choices are also more difficult and demanding for the human brain.  

Interestingly, the activity in regions, which followed an inverted U-trend in free choice 

trials, had a linearly increasing trend in the forced choice condition (see Figure 3.5F-J). If 

activity in regions such as the NA, caudate, and POG is modulated by “reward” (which is 

highly likely in our case), then the activity in these regions should increase with the number of 

choice items in the forced trials. In the small sets, the benefits of having a freedom of choice 

are greater than the costs of choosing, therefore, small “free” choices are more rewarding than 

small forced choices. However, when the choice set is large, difficulty of choosing might 

outweigh the benefits of freedom of choice. When the set size increases from medium to large 

size, ”reward” associated with free choices decreases, while “reward” associated with forced 

choices “increases”. 

ACC activity, which is increasing with the number of items in the forced sets, might 

also reflect the highest net value from larger than from smaller forced sets. Indeed, when the 

choice is done by someone else the probability of obtaining a better option from a large set 

might be greater than from a smaller set (simply, because there are more options which are 

closer to the one´s preferences), and the underlying cost-benefit analysis in the ACC might 

reflect these calculation. 

 

3.5  Discussion  

In this paper we explored the neural bases of human decision making when people are 

confronted with choices from different-sized sets. Our data demonstrates that brain activity 

was modulated by the number of choice alternatives available to the participants, by subjective 
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perceptions about choice experience, by availability of a strongly preferred item as well as by 

the “freedom of choice”.  

BOLD activation in the LG, IOG, MOG, SPL, PMd, and SMA, showed a linear 

increase when the number of options in the choice set increased. The increasing activity by the 

set size in those areas is to be expected, as these areas were shown to be involved in 

preparation and execution of movements and saccades in previous research.  As the number of 

items in the set increases,   task demand imposed on a human being should also rise: e.g., one 

needs to make more saccadic eye-movements and put greater effort in movement planning, 

which might be reflected in visual and motor processes. Therefore, we argued that linearly 

increasing activity in these areas might reflect the “cost” of having more choice. Activity in 

most of these areas was not only correlated with the actual number of choice items, but also 

with subjective difficulty ratings that participants assigned to different-sized sets. Our data 

also show a clear evidence of choice overload phenomenon in the brain.  Activity in the ACC, 

caudate, NA, MFG, and POG followed an inverted U-pattern with the increase in the number 

of choice alternatives. The activity in these regions increased when the set size increased from 

6 to 12 items, and then leveled off when the set sized increased further from 12 to 24 

alternatives.  

Interestingly, many of the brain areas demonstrating an inverted-U activity in response 

to the number of items in our task, have been associated with the processing of reward or 

cognitive effort in previous research. Therefore, we attributed activity in these regions to the 

“net reward”, one obtains from facing one or another choice set size. The subjective set value, 

on the other hand, was mapped within the SPL, and followed and inverted-U pattern.  

We also found, that two other variables – “freedom” of choice and availability of 

strongly preferred set might affect neural representations of choice from multiple alternatives.  
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Interestingly, many of the areas where activity showed an increasing linear trend and 

was correlated with subjective difficulty, also showed a significant activation difference in the 

free as opposed to forced choice conditions. The data suggest that more “resources” are 

necessary for performing free as opposed to forced choices. This is consistent with many 

behavioral findings, which claim that though people prefer to have freedom of choice, they 

often find it extremely difficult to decide what to choose, something that Schwartz (2000) 

named a “tyranny of freedom”. 

In addition, regions associated with reward and value, and show an inverted-U pattern 

activity, also showed greater activation when the set contained a strongly preferred item. If a 

clear favorite alternative is present, choice becomes more “rewarding” and reflects greater 

value than in the case when such an alternative is absent. Therefore, in many cases, choosing 

from the large CF sets becomes as “valuable” and “rewarding” as choosing from the medium-

sized NF sets.  

Though more research is needed to investigate this issue in-depth, we speculate that 

our results might suggest that marketing actions may affect neural correlates of the net value 

of the set. Previous research has demonstrated the impact of marketing actions on neural 

activity. Plassmann et al. (2008) has found that marketing actions, such as change in price, can 

modulate the neural representation of experienced pleasantness. Our results suggest that the 

availability of a “clear favorite” alternative can modulate reward-related areas. People are, 

therefore,  able to deal with more items without losing “reward” from the process of choosing 

if a strongly preferred item is present in the set.  

Interestingly, some of the brain areas, activity in which was associated with the 

increase in the number of choice options in the study by Marsh et al. (2007), also appeared to 

have differential activity modulated by the number of choice alternatives in our experiment 
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(e.g., dACC, caudate, MFG). Moreover, Marsh et al. (2007) also found that the caudate, 

dACC and FMG responded similarly to the change in the number of decision items, i.e. the 

activity in these regions increased with the number of response options.  These authors suggest 

that these brain regions might function “in coordinated fashion” (p. 986, Marsh et al., 2007). 

Our data are compatible with this suggestion. These three brain areas also responded similarly 

to the choice task in our experiment. However, in comparison to the study of Marsh (2007), 

activity in these regions was not monotonically increasing with the number of choice items, 

rather it followed an inverted-U trend. We stress that our results are not contradictory to those 

of Marsh et al. (2007) and rather support them when the choice sets are small [recall that in 

Marsh et al. (2007) study the number of items increased from two to four only]. As we 

expected, our data suggest that the areas where activity showed significant correlation with the 

quadratic term of the number of items, might also reflect how “rewarding” the entire choice 

set is. In addition to simply being associated with a reward from a single item or stimulus (a 

result reported in previous research), our results might suggest that the activity in these areas is 

also mediated by the objective “net value” from facing the entire set (i.e., not a value of a 

single item, but an integrated value of several items at a time). This is the first study, to the 

best of our knowledge, which explicitly demonstrates this function of these areas.   

Two brain regions, namely the ACC and SPL, deserve special attention.  The data 

confirmed our expectation that the ACC followed an inverted-U pattern with the increase of 

the number of items in the set. We based our proposition on the claims that the ACC  plays a 

crucial role in “naturalistic situations” when the environment is changing, and is important for 

action selection, i.e., when one makes decisions about how much effort to invest to receive a 

reward (Walton et al., 2007; Kennerley et al., 2006; Rushworth et al., 2007). Therefore, the 
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ACC might be making cost-benefit analysis prior to a decision. Our results were consistent 

with this proposition.    

Activity in the dACC may represent the “net” reward or value of the set, which is 

based on the underlying costs and benefits of each particular set. This is consistent with the 

cost-benefit model of choice proposed by Reutskaja and Hogarth (2006). We further speculate 

that the neural correlates of decision processes in the brain also consider when the effort does 

not pay off.  Therefore, when confronted with large sets “the brain” simply does not waste 

precious resources and does not put a lot of effort in choosing.    

On the other hand, it is important to note that different parts of the ACC were 

associated with different tasks in our experiment. While activation in the dorsal part of the 

ACC showed an inverted U-trend, activation of the more ventral part of the ACC was 

correlated with the subjective difficulty ratings in our task.  

SPL activation was associated with the subjective perception of choice set value in our 

experiment.  Apart from that, we found that SPL activation was modulated by the number of 

items in the set, number of saccades, and choice “freedom”. First, SPL activation was higher 

in free as opposed to forced choice trials.  There may be two possible explanations for the 

distinction in SPL activity in NF and FO sets:  different number of saccades and degree of 

choice “freedom”. The SPL was previously shown to be involved in saccadic eye-movement 

planning and execution (Andersen & Buneo, 2002; Medendorp et al., 2008). As people make 

more eye-movements in free than in forced choice condition, higher SPL activity is expected 

in the former than in the later condition. However, it is highly unlikely that saccadic eye-

movements explain the difference in SPL activity in this contrast. The data show, that SPL 

activity in these regions is not correlated with the number of saccades, i.e. activation of the 

SPL in the NF > FO contrast was mapped mostly within its medial aspects, while more lateral 
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parts of SPL were correlated with the number of saccades (Figures 3.7A; 3.7C; and 3.8). 

Therefore, we can rule out this explanation. On the other hand the degree of choice “freedom” 

may explain this difference.  

Therefore, based on evidence from previous research and results from this experiment, 

we emphasize the role the SPL plays in the choice processes, and suggest that activity within 

the medial SPL is “choice-related” and plays a major role in mediating voluntary behavioral 

choices. It is highly likely that the activity in the SPL also reflects “how much choice is 

enough.” 

Our data suggest that the sub-regions of the parietal cortex might have different 

specializations: while the medial part of the SPL might play a significant role in mediating 

“choice” processes the more lateral SPL might be more related to eye movements planning. 

Finally, our data can help understand whether “hot” or “cold” systems are involved in 

decision-making in choice overload situations. Behavioral research suggests that choice 

behavior and experience is a result of costs and benefits underlying choice (Loewenstein, 

1999; Reutskaja & Hogarth, 2006). Costs associated with choice overload can be both 

“psychic” and “cognitive”.  While “psychic” costs are more emotional in nature (e.g., stress 

and discomfort), “cognitive” costs (e.g., difficulty to make rational trade-offs) belong more to 

the “cold” system of the human being. Interestingly, most of the task-related areas in our 

experiment were in good special correspondence with regions that have been associated with 

“cognitive” rather than “emotional” processes in previous research. Moreover, there was no 

significant activity found in the amygdala or insula, i.e. areas that were highly associated with 

emotional experiences during decision-making tasks in previous research (e.g, Paulus et al., 

2003; De Martino et al., 2006 ). Activity in such “analytic” areas as the MFG, dACC or SPL, 

however, was modulated by the number of items in the set and by subjective experiences of 
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the participants. It is worth mentioning, that some areas that showed significant activation in 

our tasks are thought to be correlated with “positive” rather than “negative” emotional states 

(such as “reward” in the NA, Caudate, or POG)24. Therefore, our results suggest that while 

positive sides of choice might be experienced with both the “heart” and “mind”,  the costs of 

choice might be more cognitive (i.e., based on calculations and physical requirements) than 

emotional in nature. 

In this paper we presented the first experiment which aimed to explore the neural 

correlates of the choice overload phenomena. The results of our experiment showed that brain 

activity was modulated by the number of choices available to the participants, by subjective 

perceptions about the choices and choice experience, by availability of a clear favorite item as 

well as by the “freedom of choice”. Though there is still a long journey to the final destination 

of understanding of “how much choice is enough”, we believe that the data presented shed 

light on the mechanisms underlying choice from sets with multiple alternatives, and inform 

predictions of human decision making  in choice overload  situations. 

                                                 
24 We also found the ventral ACC to be modulated by difficulty ratings. As this area is known as “emotional” 
ACC (Bush et al., 2000; Rogers, et al 2004 ), it is likely that some costs may be emotional in nature. However, no 
other areas known for processing negative emotions were associated with costs of choosing..  
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Appendix 3.A: Equipment and acquisition of biological 

Data  
 

Eye- and finger-tracking analysis. Eye-movements of participants were recorded by the 

ViewPoint Eye Tracker (Arrington Research Inc., Scottsdale, USA) and registered by fMRI-

compatible eye-camera (Resonance Technology Inc., USA) while participants were 

performing the task in the fMRI scanner. Eye-movements were recorded at 60HZ frequency. 

Saccades were detected using an absolute velocity threshold (>20deg/sec).  

Finger responses were recorded using an MRI-compatible diamond-shaped four button 

response-box (Current Designs, Philadelphia) which was placed at a comfortable position 

near the subject’s belly. Subjects could move the cursor (i.e. the green frame) up, down, left 

or right by pressing the corresponding buttons. Subjects could not make diagonal movements. 

Reaction time was defined by the amount of time that elapsed until subjects started to move 

the cursor towards the item of their choice since the appearance of the response screen.Eye-

movements and finger responses were analyzed using Matlab7.1.  

Image acquisition and fMRI analysis. A 3-tesla Siemens TRIO scanner and an 8-channel 

head coil (Siemens, Erlangen, Germany) were used to acquire MRI-images. T1-weighted MP-

rage anatomical scan (176 slices, slice thickness=1mm, gap=0mm, in-plane voxel 

size=1x1mm, TR=1500ms, TE=3.05ms, FOV=256x256, resolution = 256x256) as well as 

T2*-weighted gradient-echo planar imaging scans (EPIs: slice thickness=3.5mm, gap=0mm, 

in-plane voxel size=3x3mm, TR=2000ms, TE=30ms, flip angle=90°, FOV=192x192, 

resolution=64x64, 32 axial slices) were obtained for each subject, providing an almost entire 

coverage of the cerebral cortex as well as most sub-cortical structures (for several subjects 

only the posterior parts of cerebellum were not covered, and there were also dropouts in the 
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frontal part of the brain for several participants). In total, 1512 EPIs per subject were collected 

during three consecutive runs lasting about 13 min each.  

We used SPM 5 (Wellcome Department of Cognitive Neurology, London) to perform 

functional image analysis. First, images of each subject were realigned to the first scan. We 

co-registered T1 anatomical images the mean image of the functional scans and then aligned 

to the SPM T1-template in MNI space (Montreal Neurological Institute, mean brain). For 

spatial normalization we applied the resulting non-linear 3D-transformation to all images. 

Finally we performed spatial smoothing of the  functional images with a Gaussian filter 

(7x7x7 mm³ full-width at half-maximum) and high pass filtering (cut-off period 128 ms). We 

did not perform slice-time correction since scans were acquired in an interleaved fashion.  
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Appendix 3.B: Descriptive statistics of liking ratings  

Ratings of the landscape images  

The liking ratings of the landscape images given by19 subjects followed normal 

distribution (M=4.45, SD=2.18). Subjects took on average 2835 ms to rate each image in the 

first round of ratings. That was on average 594 ms longer than the mean time spent per image 

in the second round (t=8.21, p=0.000). The data also shows that time spent per image 

increased significantly with the liking rating of the image, i.e. with every point increase in the 

liking rating subjects spent 94ms longer on evaluating the image (t=2.71, p=0.014; analysis is 

performed by regressing time spent on evaluating the image on liking rating assigned to the 

image, controlling for individual differences by including dummies for each subjects).   

  The liking ratings showed significant correlation between rounds 1 and 2, suggesting 

that subjects had similar preferences for the same picture and rated the same image similarly 

in both rounds. Moreover, liking ratings did not differ significantly in the first and second 

round (t= 1.65, p= 0.116; analysis is performed by regressing liking rating on round dummy, 

controlling for individual differences by including dummies for each subject).The liking 

ratings also decreased as the trial time progressed. However, the absolute amount of the 

decrease in rating with the progress of the rating task is almost negligible (decrease of 0.001; 

t=2.00, p= 0.061; analysis is performed by regressing liking rating on order of rating, 

controlling for individual differences by including dummies for each subject).   
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Appendix 3.C: ROI analysis 

ROI analysis, coordinates of the brain regions, and correlations of the extracted beta 
values with: subjective set value, difficulty, number of saccades, the linear and quadratic term 
for the number of items. 

 

 




