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Essays on the formation of Social Networks from a game the-

oretical approach

Foreword

”I think that the causes explaining social life are to be sought mainly
in the manner according to which the associated individuals are grouped.”

Emile Durkheim (1879)

Frigyes Karinthy published in 1929 a short story titled ”Chains” that informally

analyzed a problem that would captivate future generations of mathematicians, soci-

ologists, physicists and economists within the field of network theory. The Hungarian

author believed that, due to technological advances in communications and travel,

the modern world was shrinking because social networks could grow larger and span

greater distances. Nowadays, it is widely accepted that we are all connected and in-

fluenced by others and that social networks play a key role in many different settings.

The pioneer in the formal study of networks was another distinguished Hungarian:

the extraordinarily prolific mathematician Paul Erdös. His work provided the starting

point for practically all social-science studies in this area. In the 1950’s, Erdös and

his colleague Alfred Rényi defined a graph as a series of points connected by lines.

This abstract entity can represent many different things. As Philip Ball announces in

”Critical Mass”, if points are cities and lines are roads, it is easy to comprehend the

rules of the graph: it is like a map. The distances and directions of roads reflect those

in geographical reality. But if points are people and lines represent social relationships

among them, a two-dimensional graph cannot satisfy the same interpretation rules.

iii



iv Foreword

However, to understand the important features of social networks, what matters is not

how we choose to draw the graph but the system of connections among individuals,

which is referred by the mathematicians as the topology.

One of the first studies about actual social topologies was published in the 1970’s

by the social scientist Mark Granovetter. In the ”Strength of Weak Ties”, the author

highlighted the main features of friendship networks, and showed that individuals

form a highly connected cluster with close friends, and this cluster is linked to other

groups of people through few weaker links (”acquittance” links) which are essential in

maintaining the connectivity of the network. Granovetter emphasized the potential

economic significance of social networks in ”Economic Action and Social Structure:

The problem of Embeddedness” in 1985. He argued that seemingly irrational behavior

can be rationalized by considering the existence of social relations among agents. By

taking social networks into account, he suggested that many economic puzzles could

be solved. His arguments raised the interest of economists in social networks in the

1990’s and, since then, Network Economics has undergone an extraordinary growth.

The main objectives of this field can be summarized in the following three points:

• To study the effects of social networks on the agents’ decisions and on individual

and aggregate outcomes.

Social links are usually interpreted as the paths through which positive or nega-

tive externalities flow from active agents to their neighbors. Understanding how

agents’ strategic behavior depends on these structures of connections and how

social welfare is influenced by a specific topology constitutes the main purpose

of many models. These models present games, to study local network effects, in
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which the structure of connections is fixed. The strategy of a player is exerting

a level of effort or investment, and a player’s payoff increases with effort, but

it also depends on the level of effort exerted by neighbors. Calvó-Armengol

and Zenou (2004) is an example of this kind of models. The authors analyze

the role of social networks among criminals in promoting delinquent behavior.

Ballester, Calvó-Armengol and Zenou (2006) help us identify the agent that ex-

erts a higher influence in their neighbors and, in consequence, on the aggregate

outcome in any type of network. Galleoti et al (2006) presents an extensive

review of this type of games.

Another common interpretation of social networks considers the structure of

connections as the means by which information flows among agents. Analyzing

the best network topologies to maximize the aggregate welfare is also a purpose

of many models of this type. For example, it is widely known that networks of

friends and relatives are highly helpful in finding employment. Calvó-Armengol

and Jackson (2004) analyzes how labor market outcomes are affected by social

networks.

• To provide based incentives explanations of actual social network topologies.

The second main objective of Network Economics is to show how actual so-

cial networks can arise from the interaction of self-interested individuals that

attempt to maximize their own payoffs. A necessary preliminary step to ad-

dress this objective is to have a detailed description of the form of real social

networks. With the advent of the information and communication revolution,

electronic databases containing thousands of records are now available and from
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there, data on the relations among thousands of individuals can be obtained.

The availability of network information has promoted a boom in the analy-

sis of network structures, especially in physics. Newman (2003) presents an

overview of these studies about social networks (for example, film actor net-

works or coauthorship networks among others) and other type of networks as

the internet, e-mail networks or the electricity power grid. Granovetter (1973),

Newman (2001a), (2001b) and (2004) or Goyal, van der Leij and Moraga (2006)

are examples of this kind of studies.

Formal modeling of network formation can be divided into two categories. On

one hand, there exists the physics-based modeling, in which agents are non-

strategic. Individuals in these models do not make decisions. These models

describe stochastic processes of network formation and have their origins in the

random graph literature. Examples can be found in sociology and recently in

computer science and statistical physics literatures2. The other way of modeling

social networks is that followed by Network Economics. These models consider

that agents behave strategically. Network Economics use game theoretical tools

and analyze how real social networks can naturally arise from the interaction

of self-interested individuals. Jackson and Wolinsky (1996) or Bala and Goyal

(2000) are two classical references of these models.

• To analyze the (in)compatibility of societal welfare with individual incentives to

form and sever links.

The formation of Social Networks depends on the decisions of many participants

2See Newman (2003) for a survey.
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guided by their own interests. The study of the conflict between following self-

interest and maximizing the aggregate welfare has been a recurrent issue in

Network Economics. A better understanding of this problem could be useful

to learn how to get a better alignment of individual and social incentives. See

Jackson (2003) for a review about this topic.

This thesis includes three papers that reveal new insights on the conflict between

individual incentives and social welfare. However, they mainly contribute to the

second objective: offering a based incentive explanation of three different phenomena

related to social networks.

Chapter 1

The first chapter introduces imperfect information into the network formation

analysis. Most of the papers in Network Economics assume that agents involved in

a network formation game are perfectly informed about all the relevant features of

the game. In spite of that, empirical work by sociologists3 suggest that individuals

have limited ”horizons of observability” in that they are more likely to correctly

perceive others’ links or personal characteristics if they are closer in the network.

The objective of the first chapter is twofold: on the one hand, we present game

theoretic tools for analyzing this type of games and develop a comparative analysis

among them. On the other hand, we develop an application that highlights the

importance of imperfect information in the explanation of any kind of segregation in

social structures. That constitutes a new network approach to the so called statistical

3Launman (1969), Friedkin (1983)
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discrimination theory which claims that discrimination can arise because of imperfect

and asymmetric information, and without the need of asymmetric preferences.

Chapter 2

Chapter 2 addresses the economic puzzle of structural holes in social networks. This

is a notion developed by sociology (see Burt (1992)). Structural holes refers to dis-

connections among agents; we say that two groups are separated by a structural hole

when there is a lack of social connections between them. Empirical studies highlight

that people whose links bridge holes in a social structure enjoy a disproportionately

large payoff. How can such results be stable when agents are free to create or sever

links? This chapter attempts to complete the answer to this question developed in

Goyal and Vega (2006).

Chapter 3

In the last chapter of the thesis we develop a network formation model that focuses

on scientific collaboration networks. Several empirical studies4 have recently identi-

fied the main features of coauthorship networks in Economics, Biology, Physics and

Mathematics. Although there is a large body of empirical research, there is a lack

of foundational theoretical models that explain how self-interested researchers orga-

nize themselves as we observe in reality. The model shows that heterogeneity among

researchers and the possibility of congestion can explain the main features of real

scientific collaboration topologies.

4Newman (2001a), (2001b) and (2004) and Goyal, van der Leij and Moraga (2006).
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Chapter 1

Networks and Imperfect

Information

Abstract

This paper introduces imperfect information into the game theoretical
approach to network formation. The purpose is twofold: First, we dis-
cuss several equilibrium concepts that allow for limited information in a
network formation game. We compare them and argue that Conjectural
Pairwise Stability stands out from other concepts as the most appropri-
ate for the analysis of social networks formation. Second, we apply the
selected notion of equilibrium to a novell setting. We consider a model
of social network formation in which agents are defined by two features:
race and human quality. Race affects the players’ informational struc-
ture whereas human quality involves payoff effects. This simple model
allows us to illustrate how self-interested individuals can organize them-
selves forming segregated societies -although these social structures are
inefficient under our payoff assumptions- in a setting where the unique
asymmetry among race groups comes from the informational content of
the messages received from the actual state of the world. This set up con-
stitutes a game theoretical formalization of the statistical discrimination
argument.

1



2 Chapter 1: Networks and Imperfect Information

1.1 Introduction

Social and economic networks play an important role in many situations. Con-

tributions to microeconomic theory have used network structures to formalize such

diverse issues as the internal organization of firms, employment search and the struc-

ture of airline routes1. Most of the models of network formation in these scenarios

share a common characteristic: perfect information. However, many real-world situa-

tions suggest that agents who interact in a network may ignore relevant characteristics

that affect the final outcome of their interaction. For example, consider a buyer-seller

network2 in which agents ignore important information to estimate the value of their

commercial relationships, for example, the quality of the products exchanged. One

can also think of a network of contacts in a job search3. In this case, agents may

not be able to observe to whom the links of their neighbors lead to, and therefore be

unable to estimate the value of a personal contact as a means to finding a job. In gen-

eral, social networks are a clear example of the relevance of imperfect information in

these frameworks; all of us are involved in a set of interpersonal connections in which

not only we are unaware of relevant features of our neighbors but also about the links

of a large part of them. These examples suggest a need to extend the theoretical

framework of network formation to allow for limited information.

Network Economics has formalized network formation through games in which the

agents interact guided by their own interests. One of the key tools in this formaliza-

1Garicano (2000), Brueckner, Dyer and Spiller (1992) and Calvó-Armengol (2004) are examples
of these issues.

2See Kranton and Minehart (2001) for a perfect information version of a buyer-seller network.

3See Calvó-Armengol (2004)
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tion is the equilibrium concept that allows us to define the principles that determine

the stable game resolutions, namely, those networks that do not offer profitable pos-

sibilities of deviation to their members. One of the aims of this paper, developed in

Section 1.3, is to offer a detailed analysis of different stability notions. Specifically,

we analyze and compare different equilibrium concepts applicable to social networks.

This implies that, in addition to imperfect information, the concepts that will be

discussed must capture the requirement of mutual consent in the creation of new ties.

The concepts that we present can be classified into two categories according to the

nature of agents’ conjectures about the unknown features of the network. The con-

cepts in the first group consider that agents follow an objective probability function

to calculate the conditional probabilities of the different possible scenarios in order to

evaluate the expected marginal payoff of potential deviations. The second group as-

sumes that these conjectures are subjective, and in principle, agents can believe that

the actual state of the world is any possible situation that does not contradict the

information available about the network. The Conjectural Pairwise Stability (CPS)

introduced by McBride (2005) is the leading example of this kind of equilibrium con-

cepts. The comparison among the different stability concepts is twofold: on the one

hand we build bridges between the different concepts within the first group. Then,

we examine the pros and cons of CPS with respect to the concepts of the first group.

As a result, we argue that CPS is the most appropriate equilibrium concept for the

framework considered in this paper. For this reason, a theoretical application of CPS

is developed in Section 1.4.

Section 1.4 presents the other main object of the paper. We attempt to show how
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imperfect information can be a key factor in explaining racial, sexual or any other

type of discrimination in a social structure. In fact, this is the object of the statistical

discrimination theory initiated by Phelps (1972)4. This line of research supports that

(racial, sexual, etc.) discrimination in the labor market equilibrium is a consequence

of imperfect information. In particular, the factor that drives discrimination is not

the existence of racial or sexual biases in the employer’s preferences but the infor-

mational asymmetries between the different groups of players involved in the labor

market. Using the CPS concept introduced in Section 1.3, we develop a network for-

mation model with imperfect information. This model can be considered a new game

theoretical approach to statistical discrimination theory, given that both approaches

consider the same source of discrimination. Results in Section 1.4 suggest that (racial,

sexual, etc.) discrimination among agents can exist in the equilibrium networks as a

consequence of imperfect information in a set up with no racial or sexual biases in

the agents’ preferences.

1.2 General setting

This section introduces basic notation and definitions to which we will refer

throughout the paper.

Network relations among players are formally represented by graphs that involve

nodes and links. Nodes represent agents and links capture the relations among them.

The interpretation of a link is Jackson’s and Wolinsky’s (1996). The authors state

that a link between two individuals is undirected, since both agents benefit from

4and also developed by Coate (1993) , Sattinger (1998) and Berck (2001).
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its existence and participate on its cost. A link can be severed unilaterally but can

only be created by mutual consent of two agents. Among other applications, this

theoretical treatment allows for the interpretation of a link as a personal relationship

between agents. This interpretation is developed in Section 1.4.

As suggested in the introduction, the incompleteness in the informational structure

of our model can have two different sources: a player may be unaware of the existence

of links that are sufficiently far away in the network; and she may also ignore the type

of other agents. We assume that there is a set of individual types T that includes

two or more elements. Let t be a typical element of this set.

1.2.1 Graphs

Let N = {1, ..., n} be the finite set of players in the population. The set of all

possible networks or graphs in N is G and g is a typical element of G. The subset of N

containing i and j is denoted by ij and is referred to as the link ij. If ij ∈ g, the nodes

i and j are directly connected. If ij /∈ g, the nodes i and j are non directly connected.

A path (sometimes called chain) in g connecting i1 and il is a set of distinct nodes

{i1, i2, ..., il} ⊂ N such that {i1i2, i2i3, ..., il−1il} ⊂ g. A nonempty network g′ ⊂ g is

a component of g, if for all i ∈ N(g′) and j ∈ N(g′), i 6= j, there exists a path in g′

connecting i and j, and for any i ∈ N(g′) and j ∈ N(g), ij ∈ g implies ij ∈ g′. Let

g + ij denote the network obtained by adding link ij to the existing network g and

let g − ij denote the network obtained by deleting link ij from the existing network.

A link ij is critical to the graph g if g − ij has more components than g.
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1.2.2 Value function and allocation rule

Let w be a particular state of the world defined as a pair (g, t). Let W be the set

of all the possible states of the world. Next, we focus on the total outcome of a graph

and on how this is distributed among players. The value of a graph is represented by

the function v : W → R. The set of all such functions is V . Notice that this function

assigns a real number to any state of the world. An allocation rule describes how the

value associated to each network is distributed among players. It can be written as

Y : V ×W→ Rn. For simplicity, we define γ ≡ (v, Y ).

Given a pair (v, t), a graph g ∈ G is said to be more efficient than g′ ∈ G if and

only if v(g, t) > v(g′, t).

1.3 Equilibrium concepts

As commented in the introduction the equilibrium concepts are classified into two

main categories according to the agents’ conjectures about the unknown features of

the network. Concepts in the first group consider that there is an objective function,

known to all agents, that assigns a probability to any possible state of the world

given the information available. Within this group, we distinguish between concepts

applicable to static games and concepts appropriate for dynamic games of network

formation. We describe and compare these concepts, and draw results that relate

different equilibrium notions. Concepts in the second group, assume that each player

assigns a personal probability to any feasible state of the world given the information

available. Here we introduce the concept of Conjectural Pairwise Stability (CPS).



Chapter 1: Networks and Imperfect Information 7

Finally, we develop a comparative analysis between both groups of concepts and

conclude that CPS is the most adequate concept for our purposes in Section 1.4.

Before moving to the next section, let us introduce some necessary notation. Let

mi denote the information that agent i receives from the actual state of the world.

Formally, mi : W → Mi is the i’s message function that assigns to each state of the

world a message mi in message space Mi. In a full information setting, each state of

the world w generates a different message to any individual and, as a consequence,

any agent is able to detect the actual state of the world after receiving the message.

In our setting, agents can receive the same message for different states of the world.

1.3.1 Objective conjectures

Let P : W → [0, 1] be a function that assigns a probability to any state of the

world and that is common knowledge (i.e. known to all agents). Then, P (w/mi)

denotes the conditional probability that agent i assigns to the state of the world w

given the i’s information about the actual state of the world.

Static case

The strategy of a player consists of making an announcement of intended links5. In

a static game, players simultaneously decide their strategy and the network formation

game is played once. In the traditional approach for analyzing the equilibrium of

games with imperfect information, players ignore the exact payoff they obtain in the

actual state of the world. In order to evaluate whether a network can be sustained in

5See more details below.
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equilibrium, the traditional approach assumes that players decide in a moment in time

when the actual payoff they should receive is not yet revealed (and the imperfection

in the informational structure does not allow deriving it). In the following subsection

we introduce several equilibrium concepts that follow this approach.

First we present an adaptation of the Pairwise Stability Concept developed by

Jackson and Wolinsky (1996). The following definition embodies three ideas: (i)

players can create or sever links; (ii) the formation of a link requires the consent of

both parties involved (iii) but severance can be done unilaterally.

Definition 1 A graph g is Bayes Pairwise Stable (BPS) with respect to γ, P and t

if:

(i) for all ij ∈ g,∑
w∈W

P (w/mi) Yi(v, w) ≥
∑
w∈W

P (w/mi) Yi(v, g − ij, t)∑
w∈W

P (w/mj) Yj(v, w) ≥
∑
w∈W

P (w/mj) Yj(v, g − ij, t)

(ii) for all ij /∈ g,

if
∑
w∈W

P (w/mi) Yi(v, w) <
∑
w∈W

P (w/mi) Yi(v, g + ij, t)

then
∑
w∈W

P (w/mj) Yj(v, w) >
∑
w∈W

P (w/mj) Yj(v, g + ij, t)

The set of BPS networks with respect to γ, P and t is denoted by BPS(γ, P, t).

In words, a network is BPS if (i) the expected marginal payoff for severing a link is

negative for any agent and (ii) no pair of agents mutually benefit (in expected terms)

from the creation of a link between them.

Unlike the Pairwise Stability concept, the BPS notion assumes that any player

i only knows part of the actual state of the world, in particular, the information
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contained in mi. For this reason, when a player i analyzes whether to sever or create

a link she has to take into account all possible states of the world and weigh them by

their conditional probability in order to evaluate the expected payoff consequences of

her actions.

Bayes Pairwise Stability is a relatively weak notion; it can be considered as a

necessary condition for network stability. As such, it admits a relatively larger set

of stable allocations than other, more restrictive, definitions. The strong restrictions

on potential deviations generate this weakness of the concept. A Bayes Pairwise

Stable network is only robust to single-link individual eliminations and to single-link

bilateral creations. Nothing is said about the possibility of severing more than one

link, or about simultaneous creation and elimination of links.

Next, we present an adaptation of a normal form game that has been widely

used for cases with perfect information6 and that was first proposed by Myerson

(1991). The link formation game under imperfect information can be seen as a typical

Bayesian Game in which nature plays first, assigning a particular type profile (t) to

the set of players following the function P (·). Then, any agent i receives a message

mi that contains information about the actual state of the world (this information

partially describes the network structure g and the type profile t7). Finally, agents

decide which strategy (si) to play knowing the function P (·), the payoff function fγ

and the information set mi.

6See Goyal and Joshi (2003) , Dutta, van den Nouweland, and Tijs (1998), Harrison and Munoz
(2002), and an earlier use of the game in Qin (1996).

7The information contained in a message mi depends on the specific assumptions of each partic-
ular model. In the application developed in the next section, we will show a particular informational
structure.
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A strategy is a mapping function si : mi → Ai, where mi is the player i’s informa-

tion set and Ai is player i’s action set with |Ai| = 2N\{i}. Let Si be player i’s strategy

set. A typical strategy of player i, si, consists on the set of players with whom i wants

to form a link. The payoff function is the mapping fγ :
∏
i∈N

Si × T → RN given by:

fγ
i (s, t) = Yi(v, g(s), t)

for all s ∈
∏
i∈N

Si, where γ ≡ (v, Y ) and

g(s) = {(ij) : j ∈ si, i ∈ sj}.

The above definition states that a link between i and j is formed if and only if

there is mutual consent. Thus, each strategy vector s generates a unique graph g(s).

Once all these elements are defined, the Bayesian Linking Game (BLG) can be

stated as the tuple {N, {mi}N
i=1, {Ai}N

i=1, f
γ, P (·)}. The first equilibrium concept that

we present for this game is the Bayes-Nash Equilibrium (BNE). A BNE for BLG

is a s∗ = (s∗i )
N
i=1 such that,

∑
w∈W

P (w/mi) Yi(v, g(s∗), t) ≥
∑
w∈W

P (w/mi) Yi(v, g(si, s
∗
−i), t)

for all i = 1, 2, ..., N and for all si ∈ Si. In words, a strategy vector is BNE if no

player has incentives to individually deviate by severing one or more of her links.

A clear coordination problem takes place in this game, as a consequence of the

multidimensional strategy space (players can announce any combination of links they

wish) combined with the requirement of mutual consent in the formation of links.

For this reason, BNE is too weak a concept to single out equilibrium networks.

For instance, the empty network is always a BNE. To avoid this problem we can
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follow analogous steps to Goyal and Joshi (2003) and, building upon Bayes Pairwise

Stability, we can further require that any mutually beneficial (in expected terms) link

be formed in equilibrium. Thus, the following concept arises:

Definition 2 A network g ∈ G is a pairwise Bayes-Nash equilibrium (PBNE) with

respect to γ, P and t if and only if there exists a Bayes-Nash equilibrium strategy

profile s∗ that supports g, that is g = g(s∗) and for all ij /∈ g, if

∑
w∈W

P (w/mi)Yi(v, w) <
∑
w∈W

P (w/mi)Yi(v, g + ij, t)

then ∑
w∈W

P (w/Ij) Yj(v, w) >
∑
w∈W

P (w/Ij) Yj(v, g + ij, t)

The set of PBNE networks with respect to γ, P and t is denoted by PBNE(γ, P, t).

PBNE considers more general possibilities of deviation than the Bayes Pairwise

Stability concept previously defined. PBNE networks are robust to bilateral com-

monly agreed one-link creation and to unilateral multi-link severance. So, PBNE is

stricter than BPS. Next, we show how closely related these two concepts are.

Calvó-Armengol and Ilkiliç (2004) shows that, for the case of perfect information,

the Pairwise Stability notion and the Pairwise-Nash Equilibrium are two sides of the

same token whenever the payoff function holds the α−convexity condition. Similarly

we can define a new condition that does the same job with respect to BPS and PBNE.

Definition 3 Let α ≥ 0. The network payoff function fγ
i is α-Bayes convex in own
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current links on A ⊆ G if and only if:

∑
w∈W

P (w/mi)[Yi(v, w)− Yi(v, g − ij1 − ...− ijl, t)] ≥

α
l∑

p=1

∑
w∈W

P (w/mi)[Yi(v, w)− Yi(v, g − ijp, t)] (1)

for all i ∈ N , g ∈ A and for any group of links ij1, ..., ijl such that ijp ∈ g for

p ∈ {1, 2, ..., l}.

The condition for α-Bayes convexity states that the joint expected returns from a

group of links already in the network is higher than the sum of the expected marginal

returns of each single link, scaled by α. This is the necessary and sufficient condition

on the payoff function fγ for the set of Bayes Pairwise Stable networks and the set

of Pairwise Bayes-Nash equilibrium networks to coincide as stated below.

Proposition 1 BPS(γ, P, t) = PBNE(γ, P, t) if and only if fγ is α-Bayes convex

on BPS(γ, P, t), for some α ≥ 0.

The proof in the Appendix derives from the fact that when α-Bayes convexity con-

dition holds, robustness to unilateral or to multilateral link severance are equivalent,

eliminating the unique difference between these two concepts of stability.

Pseudo-dynamic case

Game Theory has also analyzed the network formation process as a dynamic game

in which players interact repeatedly. In these games, where a new network substitutes

the previous one after the agents’ decisions, it seems unreasonable to assume that

players will choose their links ignoring payoffs. This motivates the consideration of a
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new category of equilibrium concepts in which the actual payoff is part of a player’s

information set. Notice that now mi includes more information than in the previous

case.

Definition 4 A graph g is dynamically Bayes Pairwise Stable (dBPS) with respect

to v, t, P and Y if:

(i) for all ij ∈ g,

Yi(v, w) ≥
∑

w′∈W

P (w′/mi) Yi(v, g′ − ij, t′)

Yj(v, w) ≥
∑

w′∈W

P (w′/mj) Yj(v, g′ − ij, t′)

(ii) for all ij /∈ g,

if Yi(v, w) <
∑

w′∈W

P (w′/mi) Yi(v, g′ + ij, t′)

then Yj(v, w) >
∑

w′∈W

P (w′/mj) Yj(v, g′ + ij, t′)

The interpretation of this notion is analogous to the interpretation of the BPS

concept discussed above.

If we consider a dynamic process and we assume that players make decisions based

on the criteria (i) and (ii) of this definition, such a process can be qualified as naive

best response dynamics, because the player’s behavior is myopic in the following sense:

a player might delete a link making herself better off, but this deletion may lead a

second player to delete a second link which leaves the first player worse off relative to

the starting position. If the first player foresees this, she might choose not to sever the

link in the first place. This reasoning complicates the analysis considerably. However,

overlooking this reasoning may well be justified and argued as reasonable in scenarios

of large populations.
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Assumptions about players’ memory are relevant in a hypothetical dynamic model.

Under a non-memory assumption, the type of a player can be forgotten from one

period to the next. Even though in small populations this assumption may be too

strong, it seems reasonable in large populations. Another dimension that is crucial

in the justification of the non-memory assumption is the time between iterations in

the network formation procedure. The justification of the absence of memory gains

power as the time between iterations increases.

1.3.2 Subjective Conjectures

Instead of an objective probability function, we now assume that agents follow

their own beliefs to assign a probability to each of the states of the world. As described

above, these probabilities must not contradict the information available to each player.

In this category we can include the Conjectural Pairwise Stability concept that was

introduced by McBride (2005), after adapting the existing Conjectural Equilibrium8

concept to the specific setting of network formation.

Let πi : W → [0, 1] be the subjective probability distribution over the possible

states of the world and πi denote i’s beliefs. In order to respect the original for-

mulation of the concept we assume, as in the pseudo-dynamic case, that the payoff

information is included into the message. Moreover, the original configuration also

specifies that each player must be aware of her own links. The Conjectural Pairwise

Stability concept can be defined as follows:

8See Battigalli, Gilli, and Molinari (1992) for an extended discussion of the Conjectural Equilib-
rium concept.
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Definition 5 A graph g ∈ G is Conjectural Pairwise Stable with respect to value

function v ∈ V , utility functions {Yi}i∈N , message functions {mi}i∈N , and beliefs

{πi}i∈I if

i for all ij ∈ g, Yi(v, w) ≥
∑

w′∈W πi(w
′) Yi(v, g′−ij, t′) and Yj(v, w) ≥

∑
w′∈W πj(w

′)

Yj(v, g′ − ij, t′),

ii for all ij /∈ g, if Yi(v, w) <
∑

w′∈W πi(w
′) Yi(v, g′ + ij, t′) then Yj(v, w) >∑

w′∈W πj(w
′) Yj(v, g′ + ij, t′) and

iii for each i, mi(w
′) = mi(w) for any w′ ∈ W s.t. πi(w

′) > 0.

In words, a network is CPS if: (i) no player believes that she will be better off by

deleting an existing link, (ii) in any pair of non-directly linked players, at least one

player believes that she will be worse off by creating a new link between them and

(iii) no player’s beliefs are contradicted by her signal.

In what follows we present a comparative analysis between the concepts previously

discussed and CPS. First, we must notice that none of the concepts introduced above

require that probabilities attributed to each state of the world are justified. Instead,

they only require that these probabilities are not contradicted by their messages. Ru-

binstein and Wolinsky (1994) and Gilli (1999) acknowledged this drawback for the

Conjectural Equilibrium concept. They consider the imposition of common knowl-

edge of rationality as a way to refine players’ beliefs so that each player must reflect

optimal play on the part of the other players. This imposition is referred to as the

“rationalizability refinement”. Imposing common knowledge of rationality involves

making signal functions (not actual actions or types) common knowledge. Individual

i must justify her beliefs about j’s beliefs and actions given her beliefs about j’s
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signal; and j must in turn rationalize her beliefs about k’s actions and beliefs given

her beliefs about k’s signal; and so on. Imposing this kind of requirements in a set

up with an objective probability function (as in the first group of concepts) is more

difficult to justify.

Second, in the first group of concepts we know that the probability function P (·)

is common knowledge. This feature is subject to criticism because it is difficult to

imagine that, in an framework of imperfect information, all agents know the proba-

bility function that nature follows to assign the type profile. In this sense, the use of

subjective conjectures may seem more appropriate.

The above discussion suggests that CPS is the most appropriate concept for the

set up proposed in this paper. The following section applies CPS to a model of

segregation in social structures.

1.4 Model of segregation in social structures

1.4.1 Introduction

There are many situations that can be formalized as a model of networks with

imperfect information. One can think on a buyer-seller network9 where the quality

of products is uncertain to buyers. Another situation is the job contact network10 in

which players cannot observe direct contacts of their neighbors in order to evaluate the

true value of a given link. In this job market environment, there is an extensive line of

9See Kranton and Minehart (2001)

10See Calvó-Armengol (2004)
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research, initiated by Phelps (1972), that studies the effects of imperfect information

on the job market equilibrium and, specifically, on the discrimination properties of

this equilibrium. The models proposed by this line of research11 are known as the

statistical discrimination models, and identify two sources of discrimination in the

labor market. The first source of discrimination depends on employers’ beliefs about

workers’ productivity as a function of group identity (men versus women or whites

versus blacks). The second source of discrimination depends on the ability that

employers have to learn the productivity of a worker. Employers might be more

familiar with one group and therefore be better able to learn the actual productivity

level of a worker in that group. Previous research shows that such differences can lead

not only to statistical discrimination but also to ex post quality differences between

ex ante identical groups12. We apply the second source of discrimination (generated

by asymmetric employers’ learning ability, not by asymmetric employer’s beliefs) to

the argument presented in this paper.

The discrepancy in the ability of identifying the true worker productivities can

be reasonably explained by Categorization Theory13. This theory asserts that the

human mind processes information using a limited number of categories in which

agents classify their experiences and, according to a representative agent from each

category, make predictions about future events. To reduce prediction error, agents

reserve a category for most common events, and classify the less frequent events into

a heterogeneous category. The following example illustrates this idea. Let us think

11See Coate and Loury (1993), Sattinger (1998) and Berck (2001), among others.

12See Coate and Loury (1993).

13See Fryer and Jackson (2003) and Mullainathan (2002).
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of a labor market in which workers are characterized by two parameters: race (black

or white) and productivity (high or low). The combination of race and productivity

yields four types of people: white-high, white-low, black-high and black-low. Let us

assume that employers are only capable of processing three types, not four. Since the

employer wants to reduce the error in her predictions about productivity of workers,

she will reserve two of the three categories to the most common race in her society.

That is, if an employer mainly interacts with whites her three categories will be white-

high, white-low and black (pooling black-high and black-low into a wider black). Such

categorization yields the second source of discrimination commented above. White

workers’ productivity will be perfectly perceived but not blacks’. Whenever possible,

employers will hire white and highly productive workers.

The network model with imperfect information specified in this section can be seen

as a statistical discrimination model where agents are not employers and workers but

friends, and where links are not employment contracts but friendship among agents.

The remainder of this section is organized as follows: Subsection 1.4.2 specifies the

basic assumptions of this application. Subsection 1.4.3 presents the results of the

model and Subsection 1.4.4 concludes this part with the most important remarks.

1.4.2 Basic Setting

Next we define a simple network model to study racial14 segregation in equilibrium

due to imperfect information. A social network is said to be racially segregated if

there exist different components that split the population in groups that can be clearly

14This set up can also be applied to the study of other types of social segregation.
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characterized by the race of its members. We develop a stability checking analysis

using the above-defined Conjectural Pairwise Stability concept. In particular, we

focus on checking whether racially segregated social structures can be sustained in

a CPS for different frameworks. We also analyze the consequences of imposing the

rationalizability refinement in each of these frameworks.

In this model individuals are characterized by two defining features: first, agents

have a group identity (i.e. race) that has no payoff effects15; second, agents have

a specific individual characteristic (i.e. human quality) that affects the payoff. For

simplicity, we assume that race can only be black or white and human quality can

only be high or low.

Imperfect information is generated in two dimensions. On the one hand, agents

imperfectly monitor other individuals’ actions. They ignore part of the structure of

connections among the rest of agents. On the other hand, the human quality of other

individuals can also be unknown. Following Categorization Theory, we assume that

an agents’ ability to capture others’ true human quality depends on the race structure

of their component (see definition in Section 1.2), i.e. the group of agents they are

mainly interacting with. In particular, if a simple majority of individuals in a given

component are black, its members will detect the true type of blacks easier than that

of whites16. We assume that, for any individual, one race is more familiar than the

other. Adapting the notation introduced in McBride (2004), x/yr/ynr denotes that a

15no racial asymmetry is introduced at this point.

16At this point, it is natural to question the case of a component integrated by an equal number
of whites and blacks. We assume that the familiar race for the members of such a component is any
of the two groups. We exclude the case in which an agent finds both races equally familiar. These
assumptions do not affect the results of this paper.
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player can observe the ties that are within the geodesic distance x (we assume that

x ≥ 1), the human quality of the players of the more familiar race within the geodesic

distance yr (yr ≥ 0) and the human quality of the players of the other race within

the geodesic distance ynr ≥ 0. Following the previous reasoning, yr ≥ ynr.

We do not focus on the specific network topologies that can arise inside a given

component. Instead, we study the possibility of observing different components and

race segregation among them in equilibrium. For this reason, we do not need to

specify a complete payoff function; instead we define several simple restrictions on

the value received by agents. The agents’ payoff holds the following three conditions.

Given any network g ∈ G,

A1 let ij be a non critical link, Yk(v, g, t) > Yk(v, g + ij, t) for any player k in the

component of players i and j.

A2 let ij be a critical link,

(i) if i is a high-type agent, Yi(v, g, t) < Yi(v, g+ij, t) only if in the component in

which player j was before the creation of link ij, the number of high-type agents

is higher or equal than β times the number of low-type agents. Analogously,

Yi(v, g, t) < Yi(v, g − ij, t) only if in the component in which player j is located

after severing link ij, the number of high-type agents is lower than β times the

number of low-type agents. Where β ∈ (0,∞).

(ii) if i is a low-type agent, the conditions are equivalent to the previous case

but with respect to γ instead of β. We assume that 0 ≤ γ < β.

A3 there are no utility interactions among different components.

Avoiding the specification of a complete payoff function allows us to achieve high
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generality and analytic simplicity. Moreover, it allows us to avoid making implicit

assumptions about the common knowledge of a function that may be difficult to

justify in an imperfect information framework. Next, we explain the intuition behind

these three assumptions:

A1 is the consequence of two implicit considerations: a link is costly and the

payoff obtained by a player does not depend on the exact distribution of agents in a

component (non-decay assumption). This simplifies the analysis of the stable intra-

component structures and allows us to focus on the analysis of segregation.

A2 captures the externalities derived from cooperation. In essence, part (i) reflects

the idea that the marginal value received by a high-type agent after creating a critical

link will be strictly positive only if the added component contains a sufficiently high

proportion of high-type agents relative to low-type agents (an analogous argument

applies for deleting a critical link). β is the critical point that defines the sign of this

marginal payoff. The higher it is β the higher the negative influence an additional

low-type person exerts on the rest of agents in a component. In particular, when

β = 1, a simple majority of high-type people in a certain component, will attract

high-type players of other components. But if β > 1, a simple majority of high-

type agents in a component is not enough for attracting high-type players of other

components.

On the other hand, (ii) states that the key parameter for low-type people is γ.

Since γ < β, low-type people are less demanding when deciding whether to create

or sever a critical link. In the extreme case γ = 0, low-type people always increase

their payoff after adding a critical link to another component. Notice the strong
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implication of this assumption: it implies that racial discrimination among low-type

agents will never exist in a CPS network because agents will always have incentives

to create links among them. Making such an extreme assumption can be useful to

focus our attention on segregation among high-type people.

A3 implies that an agent’s payoff is fully determined by the state of her own

component.

1.4.3 Results

In this section we study the possibilities of having racial segregation in the Con-

jectural Pairwise Stable networks of different frameworks. In each framework, we

simply vary the payoff parameters (the informational content of the messages remain

constant) to offer a complete view of how these changes affects racial segregation.

Given the payoff assumptions, in order to have a CPS network any player i must

be able to belief that:

a All her links are critical.

b All her links connect her to a set of players in which the number of high-type

people is higher than the number of low-type people times β if i is high type or

γ otherwise.

c Any other agent is in the same component or in a different one that contains a

number of high-type people lower than the number of low-type people times β

if i is high type or γ otherwise.

Therefore, in order to have a CPS network, the message that any player receives

from the current network must not contradict any of the above belief conditions.
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Moreover, for a network to be sustained as a rationalizable CPS we further require

that each player’s beliefs reflect optimal play on the part of the other players.

Before the analysis, we make the following remark:

Remark 1 For a given t and {Yi}i∈N , if the messages {m′
i}i∈N contain more infor-

mation than {mi}i∈N then a CPS network under {m′
i}i∈N is also a CPS network

under {mi}i∈N , but the converse is not necessarily true.

The logic of this remark can be summarized as follows: the higher it is the infor-

mational content of the messages, the lower it is the number of unrealistic beliefs that

an agent can conjecture about the actual state of the world. Thus, if the network

meets the stricter requirements for CPS under {m′
i}i∈N , it will certainly meet the

requirements for CPS under {mi}i∈N . For this reason, showing that racial segrega-

tion can exist in CPS networks when messages contain a relatively high amount of

information (as we do next) will allow us to conclude that the results also apply for

other environments with less informative messages.

Case 1: x = ∞, yr = ∞, ynr < ∞, β > 0, γ = 0.

Here we assume that each agent has perfect information about the network struc-

ture (x = ∞) and the human quality of the members of the race they are more

familiar with (yr = ∞) but, with respect to the members of the race they are less

familiar with, agents can only observe the human quality of the members of the same

component (ynr < ∞). Notice that in this setting, messages contain extensive in-

formation and this information is asymmetric, according to Categorization Theory.

On the other hand, γ = 0 means that low-type agents always increase their payoff



24 Chapter 1: Networks and Imperfect Information

after creating a new critical link. As commented before, this implies that racial dis-

crimination among low-type agents will never exist in a CPS network because they

will always have incentives to create links among them. This allows us to focus our

attention on the study of segregation among high-type people.

The list of necessary conditions for a network to be CPS is stated in the following

result. These conditions have to hold in order to avoid that messages contradict

beliefs (a), (b) and (c).

Proposition 2 Suppose information and utility parameters to be those specified in

case 1. A network g ∈ G can be sustained in a CPS if:

i All the links are critical,

ii no high-type agent is connected to a group of players in which the number of

high-type agents is lower than β times the number of low-type agents

iii there are not low-type agents in more than one component and,

iv the racial structure of the components allows that no high-type agent (or no pair

of high-type agents of different components) will be able to conclude that the

number of high-type people in another component is higher or equal than β times

the number of low-type agents.

Proof. These four points describe the necessary conditions to avoid a contradiction

of beliefs (a), (b) and (c) described above.

Since agents can observe all the ties and types of members of their own component

(i.e. perfect information) there is no place for unrealistic beliefs about the state of
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the world in their own component. In consequence, conditions (i) and (ii) directly

follow from the utility assumptions.

Since γ = 0, low-type agents are willing to create links with other components. If

(iii) holds, no new links between low-type agents will be created.

Condition (iv) avoids the remaining possibility of deviation consisting of creating

a link between a high type and a low type (or between two high types) of different

components. Given the utility assumptions presented above, whenever (iv) holds, the

suitable beliefs to restrain from forming a new critical link can be sustained.

Once we have characterized the CPS networks, we show that, even in the case

with almost perfect information, racial discrimination can exist in equilibrium and in

consequence, given Remark 1, segregation can also exist in settings with less informa-

tive messages. Figures A.1-A.4 represent examples of networks that can be sustained

in a CPS for β = 1. In these graphs and in all the following ones, circles represent

high-type agents and squares are low-type agents; the color of these geometrical forms

represents the agents’ race.

For the purposes of this paper, the CPS network in figure A.2 is specially inter-

esting and illustrative. To be sustained as a CPS, high-type agents of component

h1 (or h2) should believe that in components h2 and h3 (or h1 and h3) the number

of high-type agents is lower than the number of low-type agents times β (which is

assumed to be 1). Since this belief is not contradicted by the message that members

of h1(or h2) would receive, this network can be sustained as a CPS. In such a network,

high-type agents are clearly segregated. However, low-type agents are not segregated

because γ = 0, as argued before (this assumption will be changed in case 2).
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Note that the network in figure A.2 is inefficient because the members of com-

ponents h1 and h2 could increase their payoff without damaging anybody else by

creating a critical link between both components. Therefore, imperfect information

can be seen as an additional source of inefficiency in the models of network forma-

tion17.

At this point, it is natural to formulate the following question: Can racial segrega-

tion exist in equilibrium if common knowledge of rationality is imposed? In order to

answer this question, we will focus on figure A.2. As commented before, this network

can be CPS under suitable beliefs. But, these beliefs are not rationalizable; under

the assumption of common knowledge of rationality and given that players in h1 (or

h2) observe all the ties, they cannot rationally think that in h2 and h3 (or h1 and

h3) the number of high-type agents is lower than β times the number of low-type

agents. If that was the case, some pair of low-type agents of different components

(since β > 0 we know that such a pair of players exists) would have incentives to

form a link between them (because γ = 0). Therefore, it should be the case that, one

of these two components has not low-type agents at all. Since some low-type agent

in h3 can be observed by the individuals in h1 (or h2), they can rationally conclude

that in h2 (or h1) all the members are high type individuals. In consequence, a link

between h1 and h2 would be formed. Then, figure A.2 is not a rationalizable CPS

network.

In general, by applying the rationalizability refinement to case 1, no networks can

exist with more than one component without low-type agents. Adding condition (iii)

17See Jackson (2004) for a detailed survey on the studies about the stability-efficiency conflict in
the models of network formation.
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in Proposition 1 to the last statement reduces the maximum number of components

in a rationalizable CPS network to two. Networks in figures A.3 and A.4 fulfill the

necessary conditions for being rationalizable CPS under suitable beliefs. As we can

see in figure A.4, it is still possible to sustain racial segregation after applying the

rationalizability refinement18. In this structure of connections black-high-type agents

in the component h2 remain separated from the rest of high-type agents, although it

would be more efficient to have a unique component including all the agents.

As commented before, since γ = 0, there is no possibility of racial segregation

to exist among low-type agents in a CPS network. Next we consider the case where

γ > 0. As expected, racial segregation among low-type agents in a CPS will exist, but

γ = 0 generates other interesting effects on the set of rationalizable CPS networks.

Case 2: x = ∞, yr = ∞, ynr < ∞, β > 0, γ > 0.

The only difference between case 1 and 2 is that in case 2 γ is positive. This

implies that low-type agents can be not willing to create critical links. In this case,

this willingness depends on the type profile of other components. For this reason,

imperfect information is now an argument that can also cause racial segregation

among low-type agents in a CPS network.

The list of necessary conditions for a network to be CPS is stated in the following

result. These conditions have to hold in order to avoid that messages contradict

18Network in figure A.4 can be sustained as a rationalizable CPS network because the members of
h1 can believe that in h2 the number of high-type agents is lower than the number of low-type agents
times β. Moreover the members of h1 can belief that this reflects optimal play of the members of
h2. In particular, since agents in component h1 can only observe the human quality of white agents
in h2, they can believe that all members of h2 are low-type agents. This belief is not contradicted
by the messages they receive from the network.
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beliefs (a), (b) and (c).

Proposition 3 Suppose information and utility parameters to be those specified in

case 2. A network g ∈ G can be sustained in a CPS if:

i All the links are critical,

ii no high-type agent is connected to a group of players in which the number of

high-type agents is lower than β times the number of low-type agents

iii no low-type agent is connected to a group of players in which the number of

high-type agents is lower than γ times the number of low-type agents and,

iv the racial structure allows that no pair of agents of different components will be

able to conclude that the number of high-type people in the other component is

higher or equal than the number of low-type agents times β if they are of high

type or γ otherwise.

Proof. Analogous to Proposition 2.

Figures A.6-A.9 show networks that can be sustained as CPS under suitable beliefs

considering that β = 1 and γ = ε. The network in figure A.5 cannot be CPS because

members of h2 or h4 will have incentives to cut all the links off (since γ > 0). As

we can see in figure A.7, now it is also possible to observe racial segregation among

low-type agents. This network represents a completely segregated society that can be

sustained as a CPS if (1) the high-type members in h1 (or h2) belief that in component

h2 (or h1) the number of high-type agents is lower than the number of low-type agents

times β and (2) the low-type members in h1 (or h2) belief that in component h2 (or
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h1) the number of high-type agents is lower than the number of low-type agents times

γ; these beliefs are sustainable because they are not contradicted by any message.

Can racial segregation still exist after applying the rationalizability refinement?

It seems that the introduction of γ > 0 increases the chances of having segregated

equilibrium networks. But we observe another important effect. For γ > 0, part

of the population is more demanding in the configuration of the network structures.

Consequently, after applying the rationalizability refinement, the number of alter-

natives that a player can rationally believe about the others’ behavior is drastically

reduced with respect to case 1. Now, a player cannot rationally believe that in any

other component with more than one member, the number of high-type agents is

lower than β times the number of low type people. Figure A.7 illustrates this effect:

For this network to be CPS, high-type individuals in component h1 have to believe

that in h2 the number of high-type people is lower than the number of low-type agents

times β. We claim that players in h1 cannot rationally believe this. If that was the

situation in h2, there would not exist any high-type agent in h2 because such a player

would have incentives to cut all her links off. But players in h1 cannot rationally

believe that all agents in h2 are low type individuals, either. If this was the case, they

would also have incentives to cut their links off because γ > 0. Therefore, there is no

room for unrealistic beliefs and such a network cannot be rationalizable.

In general, we can conclude from case 2 that it is not possible to observe a network

with more than one component containing more than one agent as a rationalizable

CPS structure. That is the reason why networks in figures A.6, A.7 and A.9 are not

rationalizable CPS. This restriction eliminates the possibility of racial segregation in
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any rationalizable CPS network19.

McBride (2005) showed that the refinement power of the rationalizability require-

ment increases with the amount of information. In case 2 we observed an additional

cause that increases the power of the rationalizability refinement. Such power in-

creased, not because of a higher amount of information, but because part of the

population became more demanding striving for a positive payoff.

In that case we observed that racial discrimination is not sustainable in a CPS. But

there can be infinitely many features that affect the possibilities for racial segregation.

Next section introduces a small and realistic modification of the initial assumptions

about the utility function. Such modification increases the possibilities of ending up

in a segregated society.

Case 3: x = ∞, yr = ∞, ynr < ∞, β > 0 and size effect on γ.

The only modification with respect to the assumptions of case 2 is that γ now

depends on the size of the components. Specifically, we assume that γ > 0 when the

number of low-type agents affected (directly and indirectly) by a deviation is low; but

γ = 0 if this number exceeds a given lower bound k. This modification introduces a

size effect on the utility of low-type people that forces them to join each other when

the size of their group is sufficiently large. This can be induced by a feeling of group

membership among low-type people that only arises when this group is quantitatively

important. A priori, such configuration should increase the social cohesion, at least

19The only possibility of racial segregation is the marginal case in which there is an isolated high-
type player of the minority race of the component with high-type players. This is shown in figure
A.8. Evidently, this is inefficient because the total payoff will increase if this isolated high-type agent
connects with the main component of the network.
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among low-type people. However, results suggest that other effects come into play.

Case 3 involves one minor change with respect to Proposition 2: γ can now be

zero. Figures A.2, A.6 and A.7 show examples of CPS networks for case 3, considering

that k ≤ 6 and β = 1. There are no significant deviations from case 2. It is straight-

forward that, also figures A.6 and A.7 can be sustained in CPS under suitable beliefs.

The main difference with respect to case 2 is illustrated in figure A.2: this graph

cannot be CPS in case 2 because members of the h3 component have incentives to

cut all their links off. But in case 3, due to a feeling of group membership among

low-type agents, this network can be sustained in a CPS.

Applying the rationalizability refinement induces an important modification on

the possibilities of racial segregation in equilibrium. To analyze such scenario, let us

study the social structure in figure A.7. That graph represents a totally segregated

society. Figure A.7 is now rationalizable because players of any component can have

the rational (but unrealistic) belief that in the other component all the members

are low-type agents. Since the number of members is higher than k (remember that

k ≤ 6) in both components and no agent’s type can be observed by the members

of the other component, such a belief represents a possible state of the world (not

contradicted by the message received by any player) in which all the agents are

behaving optimally. Then, figure A.7 is a rationalizable CPS network. Notably, this

network is not efficient because the payoff of all the members can increase if the

whole population is in a unique component. Contrarily, networks in figures A.2 and

A.6 are not rationalizable CPS (members of h1 (or h2) cannot rationally believe that

the number of high-type agents is lower than β times the number of low-type people
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in h2 (or h1)).

Surprisingly, we find that the attraction among low-type agents induced by the size

effect on γ increases the possibilities of racial segregation in such networks.

1.4.4 Concluding remarks

In this section we presented a simple model to illustrate that imperfect and asym-

metric information are a source of segregation and inefficiency in the configuration of

social networks.

Remark 2 Even in cases with highly informative messages, racial segregation can

exist in a CPS network from the interaction among self-interested individuals with no

racial asymmetries in their preferences.

In the three cases studied, although messages contain extensive information, equi-

librium networks can still be racially segregated. Given Remark 1, this implies that

segregation would also exist in equilibria of settings with less informative messages

and, in consequence, that this feature is a natural outcome of our model. On the

other hand, this model provides a based-incentives explanation to how discrimination

can exist in a framework with no racial asymmetries in agents’ preferences. This is

supported by Statistical Discrimination Theory.

Remark 3 The imposition of common knowledge of rationality generally reduces, but

not always eliminate, the possibilities of racial segregation in a CPS social network.

The refinement power of this rationalizability requirement varies across cases. In

case 1, racial segregation can exist in rationalizable CPS networks but in case 2
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this refinement eliminates (almost) any possibility of segregation. The reason of this

variation is not the amount of information in the different settings -which remains

constant- but the change in the minimum requirements for obtaining a positive payoff.

This change influences the amount of beliefs reflecting optimal play by the rest of

individuals in the network; and thus influences the amount of networks that can be

sustained in equilibrium.

Remark 4 Imperfect and asymmetric information is a source of inefficiency.

A central question in the literature of network formation concerns the conditions

under which networks formed by players turn out to be efficient from a societal

perspective. It is not surprising that imperfect information generates inefficiency.

This study extends this phenomenon to a framework of network formation. Previous

literature on network formation focuses on the inherent tension between stability and

efficiency20 in network formation games, but does not consider the role of imperfect

information in this framework. As we have observed in the three cases analyzed,

the informational structure of the network allows for the possibility of sustaining

inefficient networks in equilibrium that would never be sustained under a set up with

a higher amount of information.

1.5 General conclusion

This paper constitutes one of the first attempts to introduce imperfect information

into the network formation analysis from a game theoretical approach. The work can

20See Jackson (2004) for a complete analysis of this issue.
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be split into two clearly differentiated parts. In the first part, we present several equi-

librium concepts that allow for the presence of imperfect information. Those concepts

are classified into two main categories according on the nature of the agents’ conjec-

tures about the unknown features of the network. We develop a comparative analysis

among the different equilibrium notions and conclude that the Conjectural Pairwise

Stability concept introduced by McBride (2005) is the most adequate in this social

network framework. As such, we apply it to a model of racial segregation developed in

the second part of the paper. The aim of this simple model is to show how imperfect

and asymmetric information can cause segregation (racial, sexual, religious, etc.) in

the equilibrium social structures when there exist no other a priori differences among

groups. In fact, this is the object of Statistical Discrimination Theory initiated by

Phelps (1972). Our model can be seen as the first network approach to this theory.

We use the basic assumptions postulated by Statistical Discrimination Theory and

reproduce the segregated equilibrium networks that it predicts. Precisely, we show

how self-interested individuals can organize themselves forming inefficient segregated

societies in a setting where the unique asymmetry among groups affects the informa-

tional content of the messages received from the actual state of the world. Moreover,

we take advantage of the simplicity of the model to analyze how different factors can

affect the possibilities of observing segregation in equilibrium.



Chapter 2

Can you really get rich because of

a structural hole?

Abstract

It has been empirically shown that structural holes in social networks
enable potential large benefits to those individuals who bridge them. In a
pioneering paper, Goyal and Vega (2006) attempt to find a based incen-
tives explanation of this phenomenon. But their equilibrium network is not
empirically robust: in reality, social networks tend to form a topology char-
acterized by highly connected islands with a few links among them. Our
paper shows the conditions under which structural holes, and players who
benefit from them, exist in these realistic network topologies. We argue that
the equilibrium notion used in Goyal and Vega (2006) is not appropriate in
our setting. Then, we propose the widely used Pairwise-Nash Equilibrium
notion to characterize the equilibrium networks and show that agents that
bridge structural holes subsist in equilibrium only when neighborhoods are
small.

35
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2.1 Introduction

Networks provide answers to many economic questions. They are often means of

communication and for the allocation of goods and services not traded in markets. For

example, a network of personal contacts plays a critical role in obtaining information

about job opportunities1; networks underlie the trade and exchange of goods in non-

centralized markets2 and also define the configuration of international alliances and

trading agreements3, among others.

In environments where networks provide a platform for the flow of information,

two relevant aspects need to be considered: timing and control. With respect to

timing, networks can accelerate the acquisition of information generating a first-mover

advantage. People can seize such opportunities or pass information along to another

member of the network who can benefit from it. Research environments are examples

of this phenomenon. Control is another important feature. A person that is the unique

contact between two different people or groups of people benefits from the control over

the flow of information, adapting it to specific strategic interests. Timing and control

suggest that the payoffs an agent obtains in a network are highly dependent on the

position in the network and, in particular, on the agent’s capacity to bridge gaps

among agents. This argument is central in Granovetter (1974) and in the notion

of structural holes introduced by Burt (1992). A structural hole is a disconnection

among agents on a network structure. Several authors4 provide empirical evidence

1See Granovetter (1974), Calvó-Armengol (2004)

2See Kranton and Minehart (2001), Charness, Corominas-Bosch and Frechette (2007)

3See Goyal and Joshi (1999)

4See Burt (1992), Mehra, Kilduff, and Bass (2003), Podolny and Baron (1997), Ahuja (2000)
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that people who bridge structural holes in social networks have significantly higher

payoffs. In particular, Burt (2004) shows, in a firm environment, that compensation,

positive performance evaluations, promotions and good ideas are disproportionately

in the hands of people whose networks span structural holes.

Economic theory has recently started to formalize the problem. How can struc-

tural holes and their associated large payoffs differentials be sustainable when ex-ante

identical agents strategically decide their connections? This was studied by Goyal

and Vega (2006). The authors find a specific setting in which the strategic forma-

tion of links leads to a star network (i.e. a network whose shape resembles a star).

This shape benefits the central player with an extraordinary potential for obtaining

uncommonly high payoffs. Goyal and Vega (2006) formalized the empirical findings

about structural holes.

Real social networks present more complex topologies. Empirical research shows

that these networks usually consist on densely connected groups (also called clusters)

with a few links across them. Some examples of these clusters are communities in a

geographic region, departments in a firm, groups within a profession and members of

a sports team. Figure 2.1 corresponds to a division of labor familiar from Durkheim

(1893) and it clearly illustrates these clusters.

The network in Figure 2.1 represents a view of the world which has been often

put forward to explain the ’strength of weak ties’ theory5. According to this theory,

the world consists of families or communities with very strong ties between family

members. These families are connected by trade relations or occupational colleague-

5See, for example, figure 2 in Granovetter (1973) or figure 1 in Friedkin (1980).
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Figure 2.1: A real network with highly connected clusters

ships. However, these interfamily ties are typically weaker than intrafamily ties. In

our analysis we omit the discussion about the strength of the ties, but we respect the

network topology presented by these empirical studies. We do so to analyze the pos-

sibilities of having players who benefit from their position in the network by obtaining

a larger payoff than the rest of players in the network.

Although these empirical observations suggest some kind of relationship between

the distance (physical, ethnical, professional, etc.) among agents and the variables

that affect link formation, this has not been deeply analyzed in the literature of net-

work formation6. This paper introduces a basic underlying structure –in which agents

are exogenously located– that respects the neighborhood-type empirical evidence by

assuming that the cost of a link between two members within a neighborhood is lower

than the cost of a link between members of different neighorhoods. We argue that

6Johnson and Gilles (2000) is an exception. This paper introduces a spatial cost topology in a
network formation game.



Chapter 2: Can you really get rich because of a structural hole? 39

the Bilateral Equilibrium concept used in Goyal and Vega (2006) is not appropriate

for this setting because no network, except the one in which there is no link be-

tween different neighborhoods, can be sustained in equilibrium. This non-existence

problem is an important drawback that motivates the consideration of a different

concept: the widely used Pairwise-Nash Equilibrium (PNE)7. Our results show the

necessary conditions for observing structural holes and agents who benefit from them

in a PNE network. One of these conditions is that the size of the neighborhood

should be sufficiently small. This condition generalizes the argument by Goyal and

Vega (2006) that players bridging structural holes can exist in a setting with uniper-

sonal neighborhoods. We show that players who bridge structural holes not only exist

in equilibrium, but they can also obtain large payoffs differentials as illustrated by

several examples at the end of the results’ section.

The rest of the paper is organized as follows: in the next section we present the

basic setting of the model and notation. In Section 2.3 we discuss the results in the

following manner. First, we describe several preliminary results as stepping-stones to

later arguments. Then, we analyze the negative consequences of applying the Bilateral

Equilibrium concept to our setting and argue that such a concept is not sufficiently

robust. In the last subsection of results, we develop the analysis applying the Pairwise-

Nash Equilibrium concept and characterize the equilibrium network topologies under

this notion. Finally, we show two examples that illustrate how agents that bridge

structural holes and earn a large payoff can subsist in equilibrium. Section 2.4 is a

conclusion.

7See Goyal and Joshi (2006), Calvó-Armengol (2004) and Bloch and Jackson (2005) for definitions
and applications of pairwise-Nash networks.
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2.2 The Model

2.2.1 General Set Up

The set up of the model is based on Goyal and Vega (2006).

Let N = {1, 2, ..., n} be the finite set of ex-ante identical agents that make up

the population in our model. These agents play a network-formation game with

the following characteristics: the strategy of every player consists of making an an-

nouncement of intended links. si = {{sij}j∈N\{i}} is the strategy of player i, where

sij ∈ {0, 1} and sij = 1 means that player i intends to form a link with player j,

while sij = 0 means that player i does not intend to form such a link. Links represent

pairwise relations among agents. A link between two individuals is undirected (both

agents benefit from its existence and participate on its cost), can be severed by one

of them unilaterally but can only be created by mutual consent of the two implied

individuals. Formally, a link between two players i and j is formed if and only if

sijsji = 1. Let gij = 1 denote the existence of the link between i and j while gij = 0

denotes the absence of such a link. Therefore, a strategy profile s = {s1, s2, ..., sn}

induces a unique network g(s). A path in g connecting i1 and in is a set of distinct

nodes {i1, i2, ..., in} ⊂ N such that gi1i2 = gi2i3 = ... = gin−1in = 1. All players with

whom i has a path constitute the component of i in g, which is denoted by Ci(g). If

all the players are in a single Ci(g), the network is said to be connected.

The utility function considers that any pair of players (i and j) connected by

a path generate a unit of surplus. The distribution of this unit depends on the

intermediaries between i and j. We assume that any two paths between any two
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players fully compete away the entire surplus (à la Bertrand competition). Therefore,

an intermediary between i and j (say k) can retain part of the surplus generated by

i and j if and only if this intermediary is part of all possible paths in g connecting

i and j. If this condition holds, we will say that player k is an essential player for

i and j. For example, in a star network8 the central player is essential for any pair

of players in the network because agents cannot avoid the central player in any path

that links to another agent. Another extreme example is the cycle network9, where

there are no essential agents because every player has two different paths to arrive to

any other individual in the cycle.

The two agents connected by a link must pay a cost c(d) for it. This cost depends

on the topological distance –introduced in the next subsection. Let E(j, k; g) be the

set of essential agents in g between j and k and let e(j, k; g) = |E(j, k; g)|. Then, for

every strategy profile s = (s1, s2, ..., sn), net payoffs to player i are given by:

Πi(s) =
∑

j∈Ci(g)

1

e(i, j; g) + 2
+

∑
j,k∈N

I{i∈E(j,k)}

e(j, k; g) + 2
− ηi(g)c(d)

where I{i∈E(j,k)} is an indicator function specifying whether i is essential for j and k,

and ηi(g) ≡ |j ∈ N : j 6= i, gij = 1| denotes the number of players with whom i has a

link in g. The first term represents i’s access payoffs while the second term represents

her intermediation payoffs.

In the network formation game introduced above players simultaneously announce

all the links they wish to form. The resulting network is formed by the mutually

announced links. This game is simple and intuitive. But, given that the creation of

8In a star network a unique agent is linked to all agents and no other agent has any additional
link.

9In a cycle network all agents are linked to two other agents.



42 Chapter 2: Can you really get rich because of a structural hole?

links requires the mutual consent of the two agents involved, a coordination problem

takes place. As such, the game displays a multiplicity of Nash equilibria, and many

different network geometries can arise endogenously. For this reason, the equilibrium

concepts used in this paper are stricter than the Nash equilibrium. We use two

refinements of the Nash equilibrium that allow for coordinated two-person deviations.

One of these refinements, the Bilateral Equilibrium, is applied in Goyal and Vega

(2006)10. The concept is defined as follows:

Definition 6 A strategy profile sb is a Bilateral Equilibrium (BE) if the following

conditions hold:

◦ for any i ∈ N and every si ∈ Si , Πi(s
b) ≥ Πi(si, s

b
−i)

◦ for any pair of players i, j ∈ N and every strategy pair (si, sj),

Πi(si, sj, s
b
−i−j) > Πi(s

b
i , s

b
j, s

b
−i−j) ⇒ Πj(si, sj, s

b
−i−j) < Πj(s

b
i , s

b
j, s

b
−i−j).

The networks sustained by a BE strategy profile g(sb) are robust to deviations

consisting of bilateral commonly agreed one-link creation, to unilateral multilink sev-

erance and to deviations consisting of a simultaneous combination of the two previous

deviations by any given pair of individuals. Therefore, the coordination possibilities

of potential deviators are huge. For this reason, Goyal and Vega (2006) simplify the

set of equilibrium networks to a great extent.

In the first part of the results section, we argue that this equilibrium concept is

not adequate for the setting we propose in this model. One of the reasons to support

this argument is that BE is too strict for this setting and (almost) no network can be

10Actually, they use a refinement of the Bilateral Equilibrium concept called strict.
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sustained in a BE. Consequently, we focus on a weaker and widely used refinement

of the Nash Equilibrium concept called Pairwise Nash Equilibrium. It is defined as

follows:

Definition 7 A strategy profile sPN is a Pairwise-Nash Equilibrium (PNE) if the

following conditions hold:

◦ for any i ∈ N and every si ∈ Si , Πi(s
PN) ≥ Πi(si, s

PN
−i )

◦ for any pair of players i, j ∈ N and every strategy pair (si, sj) in which si =

{{sik}k∈N\{i} : sik = sPN
ik ∀ k 6= j} and sj = {{sjk}k∈N\{j} : sjk = sPN

jk ∀ k 6= i},

Πi(si, sj, s
PN
−i−j) > Πi(s

PN
i , sPN

j , sPN
−i−j) ⇒ Πj(si, sj, s

PN
−i−j) < Πj(s

PN
i , sPN

j , sPN
−i−j).

Networks generated by a PNE strategy profile g(sPN) are robust to deviations of

unilateral multilink severance (that is the usual Nash Equilibrium requirement) and

to deviations of bilateral commonly agreed one-link creation. That is, a PNE network

is a Nash Equilibrium network where no mutually beneficial link can be formed in

equilibrium. Notice that PNE is weaker than BE since no simultaneous combinations

are allowed.

2.2.2 Topological assumptions

As commented in the introduction, we are interested in reproducing the kind of

network topologies that present densely connected clusters of agents. To this end,

we assume that agents are exogenously located in an underlying structure, and that

the cost of creating a link between two players depends on the distance between their

locations in this underlying structure. From now on, such a distance will be referred
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to as topological distance. Notice that topological distances are exogenous because

they are independent from the network formation game11.

It is natural to assume that the cost of a link depends directly on topological

distance. For example, if the topological distance has a geographic interpretation,

the cost of a link between two nodes located in the same city will be lower than

the cost of linking two people from different cities. Linking two cities that are far

away involves transportation costs (time, gasoline, etc). But this concept of distance

can have other interpretations. For example, it can represent the differences between

professions, educational levels, religions, races, etc. One could argue that a link

between two economists is cheaper than a link between an economist and a chemist.

Linking two people with different professions involves communication costs (time,

expression effort, etc).

In this paper we use a simple underlying structure on which agents are exogenously

located. We assume that agents are distributed in neighborhoods or groups. The cost

of a link depends on the neighborhood of the two implicated individuals: c(d) = cl if

the two agents belong to the same neighborhood and c(d) = ch otherwise (ch > cl). As

we already mentioned, we attempt to reproduce densely connected groups of players

in equilibrium. This will happen when cl is sufficiently small. For simplicity, we

assume that cl = 0. Let M be the total number of neighborhoods (M ≥ 3). Let Mi

be a typical neighborhood and m be the number of agents per neighborhood. We

consider that m > 1.12

11Geodesic distance is the distance usually considered in the network formation games. The
geodesic distance between two agents is defined as the number of nodes of the shortest path between
them. This type of distance is endogenous because it depends on the network.

12The case m = 1 is already analyzed in Goyal and Vega (2006).
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Before the analysis of the model, we review some graph-theoretic notions that will

be used repeatedly throughout the paper. If a component Ci(g) contains an essential

player i then Ci(g) can be split in, at least, three parts: two i-groups and i. Each

player in Ci(g) is included in one of these parts. Two players j, k ∈ Ci(g) are members

of different i-groups if i is essential for connecting them. Let Gl(i) denote a typical

i-group.

If gij = 1 for all pairs i, j ∈ Mi, the network among the members of Mi is said

to be complete. A link between two players of different neighborhoods is said to be

external. A neighborhood Mi is essential for connecting neighborhoods Mj and Mk

if some member (not necessarily the same) of Mi lies on every path that links any

member of Mj to any member of Mk. Analogously, if a component Ci(g) contains

some essential neighborhood Mi then Ci(g) can be split in, at least, three parts: two

Mi-groups and Mi. Each player in Ci(g) is included in one of these parts. Two

neighborhoods Mj, Mk ∈ Ci(g) are members of different Mi-groups if Mi is essential

for connecting them. Let Gl(Mi) denote a typical Mi-group. If a neighborhood is not

essential it can be extreme or non-extreme. Mi is extreme if all the external links of

its players connect them to members of the same neighborhood. If the members of Mi

have, at least, two external links to two different neighborhoods, Mi is non-extreme.

Finally, let us define two particular network topologies. A network with no exter-

nal links is said to be pseudo-empty. A group of p neighborhoods constitute a cycle if

they can be ordered in a list M1, M2, ...,Mp such that Mp and M1 are connected and

Mi is linked to Mi+1 for i = {1, 2, ..., p− 1} and there is no any other external link.



46 Chapter 2: Can you really get rich because of a structural hole?

2.3 Results

As in Goyal and Vega (2006), agents in this model may exploit positional advan-

tages if these provide them with the ability to block profitable bilateral interactions

between pairs of players non-directly linked. Goyal and Vega (2006) shows that strate-

gic decisions lead to the formation of a star as a prominent equilibrium architecture

under the BE concept. In this structure, a single player is essential to connect every

other pair of players, and this allows her to obtain, in equilibrium, a higher payoff

than the rest of agents. The authors show how self-interested individuals can organize

themselves forming topologies that enable potential large benefits to the individuals

who bridge the ”holes” among players. But, is the BE concept appropriate? In

Section 2.3.2, we show that this concept is too strict to sustain a network in equi-

librium (different from the pseudo-empty) in the realistic setting of this paper. This

important drawback motivates the use of a different concept. PNE is a widely used

alternative. In Section 2.3.3 we (i) develop the analysis of the network topologies that

can be sustained in a PNE, (ii) show that individuals who bridge ”structural holes”

can exist in that topologies and (iii) list the conditions that must be hold for this to

happen. Before these sections 2.3.2 and 2.3.3, we introduce some preliminary results.

2.3.1 Preliminary results

In this subsection we introduce two general results from the intra-group and inter-

group equilibrium topologies under the two stability notions previously mentioned.

We focus on network formation within and between neighborhoods.

Given that cl = 0, we show the existence of BE and PNE intra-group structures
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and highlight their defining features.

Proposition 4 For cl = 0 , an intra-neighborhood structure is a BE network if it

holds the following two characteristics:

• there is no essential players between two agents of the same neighborhood and

• no pair of players can become essential after a simultaneous one-link creation and

multi-link severance.

An intra-neighborhood network is a PNE if the first condition holds.

Proof. First, notice that when there is no essential player: (i) no deviator can

become essential after deleting one (or more) link(s) or after forming a new link and

(ii) the access payoff is maximum. Since cl = 0, then the first condition is sufficient

for sustaining a PNE intra-neighborhood network. A BE network should be robust to

deviations consisting of simultaneous one-link creation and multi-link severance. The

second condition prevents that after such deviations some active player can become

essential. Since cl = 0, the access payoff is maximum without essential players and

no new essential player can arise after any deviation, an intra-neighborhood network

that holds these two conditions is a BE.

Notice that these two conditions can be easily held when there is a sufficiently high

number of links among the players of the same group. In particular, a complete intra-

neighborhood network always hold them, for any neighborhood size m. Therefore:

Remark 5 For cl = 0, there always exists some intra-neighborhood BE and PNE

network13.

13Contrarily to that, when cl = 0 no intra-neighborhood network can be sustained as a Strict BE
for m > 3.
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Once we have proved the existence of BE and PNE intra-neighborhoods networks

we focus on the analysis of the equilibrium inter-neighborhood structures. The fol-

lowing result is the first step on this direction.

Proposition 5 For all m, a BE or PNE network is either connected or pseudo-

empty.

Proof. See Appendix.

In a BE or PNE network, a player can access either the whole population or

only members of her own neighborhood. In the proof, we focus on showing that

there cannot be a non-connected network with a multi-neighborhood component in

a PNE or BE. Specifically, the proof shows that in this kind of networks, it is always

profitable to create a new link that connects different components.

2.3.2 Bilateral Equilibrium networks

BE is a strict equilibrium concept because the equilibrium networks should be

robust to bilateral deviations that allow for a very high degree of coordination among

deviators. In this section we show that, BE’s strictness is not appropriate for a setting

with densely connected neighborhoods. This argument is developed in Theorem 1.

Before presenting the result, we show a case that illustrates the irregularities derived

from the use of this equilibrium concept.

Imagine two neighborhoods Mi and Mj that are directly linked and that there is

no other path connecting them. The maximum number of links between these two

neighborhoods in a BE network is two. Notice that for more than two links, there
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exists a player in one of the two neighborhoods who can delete one link (and, conse-

quently, save ch) without decreasing her access and intermediation payoffs. Moreover,

the proof of Theorem 1 (below) shows that, for a large population, there cannot ex-

ist essential players in a BE. When this occurs, some pair of players have a strict

incentive to create a link that circumvents the essential agent. Consequently, the

unique remaining possibility is to have four players, i, k ∈ Mi and l, j ∈ Mj, such

that gil = gkj = 1. In such case, there are no essential players in the path connecting

the two groups. But even this structure of connections cannot be sustained in a BE

because players i and j have a strict incentive (see proof of Theorem 1) to delete the

links gil and gkj and create the link gij. Notice that after this deviation takes place,

players i and j become essential in the path connecting the two groups; then, we

return to the previous case, and conclude that the new network is not a BE either.

This phenomenon induces a cycle of deviations that raises several inconsistencies in

the players’ rational behavior: agents i and j would not delete their links (gil and gkj)

and form gij if they knew that immediately after this deviation they would return to

the previous status.

The argument against the use of the BE concept in this setting, is a non-existence

problem:

Theorem 1 Suppose n is large and m > 1. No network can be sustained in a BE,

except for a pseudo-empty network when ch > 1
12

(3m2 + 2m + 1).

Proof. See Appendix.

The proof presented in the Appendix proceeds by showing that all networks other

than the pseudo-empty network are not sustainable in a Bilateral Equilibrium. The
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arguments rely on three kinds of incentives: accessing others, gaining intermediation

rents and avoiding intermediation payments. Next, we outline the intuition underly-

ing the proof.

• Essential players cannot exist in a BE network.

The starting point of the argument is that when there exists an essential player

i ∈ Mi the population can be split into, at least, two i-groups. The essential

player should have, at least, two links to each of these i-groups; otherwise, another

essential player j ∈ Mj arises and then we can always find a pair of agents i ∈ Mi

and k ∈ Mj (or j ∈ Mj and l ∈ Mi) whose marginal payoffs for creating a link

between them are proportional to population size. Therefore, marginal payoffs

would be positive for a sufficiently large population and the network would not

be stable. Given that i has, at least, two links to some i-group, we distinguish

two different cases: if Mi is an essential neighborhood we can find two players in

different Mi-groups and linked to a player in Mi who can delete these links and

form a link between them. In such a way, the two players circumvent the essential

player i with no additional cost because they have the same number of links as

before. If Mi is non-essential, let gij = gik = 1 be the two links of i with some i-

group. Consider the deviation in which j eliminates her link to i and forms a link

to l ∈ Mi. Agent j circumvents an essential player with no additional cost and

the marginal payoff of l is proportional to population size because l circumvent i

to access any agent not in Mi. Therefore, marginal payoffs would be positive for

a sufficiently large population and the network would not be stable.

This result already implies that agents with disproportionately higher payoffs
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cannot exist in equilibrium. In this setting, a ”hole” in the connection between

agents will be immediately covered by several links that will vanish any possibility

of enrichment.

• In a BE, an essential neighborhood Mi cannot be connected to a Mi-group through

a single neighborhood.

This follows from two observations. First, as commented in the previous point,

there cannot be essential agents in a BE network. Second, if an essential neigh-

borhood Mi is connected to some Mi-group through only one neighborhood (Mj),

there cannot be more than two links between them; otherwise there is some agent

who can delete one link (and save ch) without generating a new essential agent.

Then, the unique remaining possibility is to have two pairs of players i, k ∈ Mi

and l, j ∈ Mj such that gil = gkj = 1. But as we mentioned above, i and j can

become essential by deleting their links (gil and gkj) and forming a link between

them. It is true that by doing so, the two players must make intermediation

payments to others where none of these existed before. But we show that the

intermediation rents dominate intermediation payments and as a result i and j

obtain a positive marginal payoff.

An important corollary derives from the last point: all neighborhoods should be

included in some cycle and any essential neighborhood should be a member of

more than one cycle of neighborhoods. The two remaining cases rule out the

residual possibilities.

• A network that contains more than one cycle of neighborhoods cannot be a BE.

The previous point also implies that, when there are two or more cycles of neigh-
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borhoods, any cycle must have at least one common neighborhood with another

cycle. Let χ1 and χ2 be these two cycles. In the proof we show that it is always

possible to find a deviation that transforms one of these two cycles (χ1) into a line

of neighborhoods. After such deviation the two active players become essential

in the connection between the line and the cycle χ2. Although the two active

players now pay others for intermediation, new intermediation rents exceed in-

termediation payments; so the network with two cycles cannot be sustained in a

BE.

• A single cycle that contains all neighborhoods cannot be sustained in a BE.

In a cycle network, two players with external links that lie on opposite sides of

the cycle have incentives to connect between them. By deleting their external

links, they become central in the final line of neighborhoods. In this way, they

earn large intermediation payoffs that exceed the loss from their access payoffs.

This non-existence problem is an important drawback of the BE applied to our

setting. Therefore, we now focus on PNE.

2.3.3 Pairwise-Nash Equilibrium networks

As commented in Section 2.2, PNE is weaker than BE. Consequently, the set of

PNE networks is larger. For instance, a cycle of neighborhoods with no essential

agents can be sustained in a PNE. But in this paper we are interested on showing

whether players who get a significantly larger payoff due to her strategic position on

the network can exist in equilibrium for large populations. That is, we want to see

whether essential players exists in equilibrium. In this section we show that this is



Chapter 2: Can you really get rich because of a structural hole? 53

possible and discuss the conditions that must hold in PNE.

The first result of this section limits the set of PNE networks by imposing a

condition: the neighborhood size m has to be sufficiently small for an essential player

to exist in a PNE network.

Proposition 6 Suppose n and m are large. A PNE network cannot contain essential

players.

Proof. This proof is analogous to the proof of Proposition 14 contained in the proof

of Theorem 1. By replacing BE with PNE, that proof is also valid for this proposition.

Then, essential players can only exist when the neighborhoods they connect are

small. This result is in accordance with the findings by Goyal and Vega (2006) in

the following sense. The authors’ setting can be considered as a particular case of

our model where the size of the neighborhood is extremely small, i.e. m = 1. In

this case, the authors show that essential players naturally exist in equilibrium. Our

Proposition 6 shows that a small neighborhood size is necessary for observing players

with payoffs significantly larger than others.

The above proposition does not imply that rents of essential players cannot be

large. Notice that essential players can obtain high intermediation payoffs when M is

large. In fact, given that we are analyzing large populations, the case of a large M is

the only case left to analyze. Next, we study the existence of essential players when

M is large.

Proposition 7 Suppose n and M are large. A PNE network cannot contain more
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than one essential player i. Moreover, a PNE topology with an essential player i

cannot have two i-groups with a size proportional to M .

Proof. By contradiction, let us assume that there are two essential players i and

j in a PNE network. Notice that there must exist at least one i-group that does

not contain j and one j-group that does not contain i. Take these two groups of

agents and consider two players k and l that are contained in each of these two

groups respectively. If the size of these groups is not proportional to M , k and l will

have a strict incentive to form a link between them because, by doing so, they are

able to circumvent an essential player (i and j, respectively) and reach the rest of the

population which size is proportional to M . Since M is large, for any ch, the deviation

is profitable. If the size of these groups is proportional to M , the same deviation will

also be profitable. Finally, if the size of only one of these two groups is proportional

to M (say the i-group that does not contain j) j and k have a strict incentive to form

a link between them. By doing so, j increases her intermediation payoffs obtained

from the intermediation between the two groups and k circumvents an essential player

to reach the rest of the population. Both marginal payoffs are proportional to M ;

then the deviation is profitable for a large number of neighborhoods and the network

cannot be PNE, contradicting the initial statement.

On the other hand, let us assume that there is an essential player i and two i-

groups with a size proportional to M . Two members contained in each of these two

i-groups have incentives to form a link between them. By doing so, they circumvent

the essential player i in order to reach the other group. Since the size of that group

depends on M , the marginal payoff will be positive because M is assumed to be large.
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Then, a network with two or more essential players cannot be sustained in a

PNE. Next, we show that a network with an essential agent holding these conditions

can actually be sustained in equilibrium. We rely on two examples to illustrate this

phenomenon.

Example 1 Imagine a network with a unique essential player i who has two links to

each i-group. There is only one neighborhood in each i-group and there is no additional

links. We claim that such a network is a PNE if the population is sufficiently large

and the linking cost is not sufficiently low to justify an additional direct connection.

Specifically, suppose that m/6 < ch < 1
12

[m(m(M − 2) + 2(m − 1)) + 3mM−1
M−1

]. Then

the payoffs of the central player are positive and equal to

m2(M − 1)(M − 2)

6
+

mM − 1

2
+

(m− 1)m(M − 1)

3
− 2(M − 1)ch

If that player cuts some link off her marginal payoff would be equal to

ch − m− 1

6
− (mM −m + 2)(m− 1)

12

which is negative for a sufficiently high M . Likewise, we conclude that the marginal

payoff for cutting two links to a neighborhood is also negative. On the other hand,

if a player in a peripheral neighborhood deletes one external link, then she obtains a

marginal payoff equal to

ch − 1

6
− mM −m− 1

12

which is negative for a sufficiently large M . The creation of an additional link between

two members of peripheral neighborhoods generates the following marginal payoff

m

6
− ch
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which is negative given the conditions stated in this example. Since this is the most

profitable outcome that can result from the creation of a new link, we conclude that

this network is PNE under those conditions.

Apart from showing that there exist networks with essential agents that can be

sustained in a PNE, this example shows that these agents can obtain a large payoff

(significantly larger than payoffs obtained by the rest of agents). Yet, we can observe

other equilibrium network topologies with essential agents.

Example 2 Imagine a cycle of neighborhoods with only one group Mi that has a

single player i with external links. Therefore, i would be essential connecting Mi and

the rest of the population. This network is a PNE if the population is sufficiently large

and ch > (m− 1)/6. Again, the marginal payoff for deleting a link depends negatively

on M . Therefore, the marginal payoff is negative for a large M . On the other hand,

the most profitable possibility for creating a new link (to add a link circumventing the

essential player i) generates a marginal payoff to one of the deviators equal to:

m− 1

6
− ch

which is negative under the initial conditions stated above. Then, the network is PNE.

2.4 Conclusion

From sociological research we know that structural holes in social networks (that

is, the lack of connections among agents) generate potential large benefits to those

individuals who succeed in bridging them. This assertion has been shown empirically.
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From an economic point of view, finding a based incentives explanation of the phe-

nomenon is not a trivial issue: the existence of these agents would have to push other

players to build their own bridges covering the hole, as new firms are attracted to a

highly profitable market. Goyal and Vega (2006) formulated the first game theoretical

approach to explain this puzzle. The authors presented a model of network formation

where agents exploit positional advantages if these block profitable bilateral interac-

tions between players who are not direct neighbors. In that model the star network

arises as a prominent structure under Bilateral Equilibrium (BE). In such a network

a single agent is essential to connect any pair of individuals and allows her to obtain a

larger payoff than the rest of agents. This argument formalizes the above-mentioned

empirical observation.

Social structures do not present the topologies obtained in the Goyal’s and Vega’s

(2006) model. Social networks are usually formed by densely connected groups of

agents interlinked among them. In this paper we show the conditions under which

structural holes and players who benefit from them can exist. Our model shares the

basic features with Goyal’s and Vega’s (2006) but assumes that agents are distributed

in highly connected multipersonal neighborhoods, reproducing the empirical regular-

ities of social networks. The first contribution of this paper is showing that the BE

notion used by Goyal and Vega (2006) is not appropriate for our setting. This equi-

librium concept allows for too many deviation possibilities and, as a consequence, no

network (apart from the pseudo-empty) can be sustained in equilibrium. This non-

existence problem is an important drawback of the BE that motivates the application

of the Pairwise-Nash Equilibrium (PNE) instead. This is a weaker concept than BE
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and has been widely used in the literature of network formation.

The second set of results reveals the conditions for observing agents bridging

structural holes (i.e. agents with higher rents) in PNE networks. First, we find that

neighborhood size cannot be too large for these agents to exist in a PNE. This is in line

with Goyal and Vega (2006). In their model, agents bridging structural holes exist in

a setting that can be seen as a particular case of our model, in which neighborhoods

are unipersonal. The restriction on neighborhood size does not prevent that agents

bridging structural holes can enjoy a large payoff. We provide two examples that

show that networks with structural holes can exist for large populations in a PNE.

Further research should shed light on additional explanations for the existence of

agents with uncommonly higher rents in stable networks. For example, the existence

of players with high communication abilities with different neighborhoods (that can

be formalized through lower costs of link formation) could explain why there are

agents that act as monopolists in the communication paths between several groups of

agents, homologous to essential players presented before. This work takes a first step

in the theoretical foundation of the argument that player’s intrinsical features define

their location and therefore, their payoffs from the network.



Chapter 3

Scientific Collaboration Networks:

The role of Heterogeneity and

Congestion

Abstract

We propose a dynamic model to analyze the formation of scientific col-
laboration networks. In this model, individuals continuously make decisions
concerning the continuation of existing collaboration links and the formation
of new links to other researchers through a link formation game. Ideas arrive
exogenously to every node at a constant rate and agents are able to require
the collaboration of one of the previously selected coauthors to increase the
chances to publish articles based on those ideas. Agents are heterogeneous -
they have different levels of productivity-, and they have a limited processing
capability; so congestion can arise when a researcher receives a sufficiently
high amount of collaboration requests. Consequently, the decision of whether
to form a link must consider the trade off between the rewards (or costs) from
collaborating with more (or less) productive agents and the costs (or rewards)
from collaborating with more (or less) congested co-authors.

Focusing on the role of heterogeneity among agents’ productivity and
congestion problems derived from their limited processing capability we show
how self-interested researchers can organize themselves forming the kind of
scientific collaboration network topologies observed in reality.
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3.1 Introduction

Social networks underlie many economic and social activities to the point that cer-

tain outcomes cannot be understood without taking into account the specific network

structure. Examples and references are numerous1. One of the environments in which

the key role of a social network is more evident is academics. In scientific production,

the association with a group of competent colleagues to exchange information is a

strong advantage in order to discover errors, raise research questions, and discern the

appropriate ways to solve a problem. This unquestionable significance of networks in

understanding scientific activity is one of the reasons that explain the extensive em-

pirical work on this field. Today, in the advent of the information and communication

revolution, data on scientific articles and researchers is stored in electronic databases

containing thousands of records. With the use of these databases, empirical studies

are able to reproduce coauthorship networks (in these networks a link between two

researchers exists whenever there exists an article coauthored by them). From there,

they are able to represent and analyze the main statistics of the collaboration among

authors.

Empirical research about coauthorship networks is large2. Newman (2004), New-

man (2001a) and Newman (2001b) analyze the defining statistics of coauthorship

networks in Biology, Physics and Mathematics. Laband and Tollison (2000) focus

on the importance of informal collaboration relationships in the comparison between

networks in Economics and Biology. Hudson (1996) studies the reasons of the in-

1Calvó-Armengol and Jackson (2004) on learning about job openings through contacts or Kranton
and Minehart (2001) on buyer-seller networks are only two examples

2Albert and Barabási (2002) offers a survey of empirical studies about any type of networks.
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crease in the number of coauthors per paper in Economics. But the empirical work

that most clearly shows these patterns of collaboration is Goyal, Van der Leij and

Moraga (2006) (GVM hereafter). This work describes a detailed image of the features

of actual coauthorship networks3.

In spite of the great variety of empirical studies, there is a lack of foundational

theoretical models that analyze how individual decisions contribute to the formation

of scientific collaboration networks. To the best of our knowledge, chapter 4 in Van der

Leij (2006) is the only attempt to compensate this deficiency. This paper, proposes

a model that differs from Van der Leij (2006) but shares the same objective.

3.1.1 Characteristics of co-authorship networks

Before introducing the model, let us describe some of the key features of scien-

tific collaboration networks. A surprising characteristic is the small average distance

(measured by the shortest path length) between pairs of nodes. This stylized fact of

social networks is captured in the famous ”six degrees of separation” of John Gaure’s

play4. Scientific collaboration networks are not an exception to this phenomenon

as GVM shows. The average distance in the Economics coauthorship network they

analyzed was 9.47 with a total population of 33,027 nodes (i.e. researchers). This

regularity extends to other fields. Newman (2004) shows that the average distances

3Although this empirical work refers to the field of Economics, we will argue that the main
characteristics of co-authorship networks apply to other fields.

4Stanley Milgram (1967) pioneered the study of path length through a clever experiment where
people had to send a letter to another person who was not directly known to them. The diameters of
a variety of networks were measured. These include purely social networks, co-authorship networks,
parts of the internet and parts of the world wide web. See Albert and Barabási (2002) for an
illuminating account.
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are 4.6 in Biology, 5.9 in Physics and 7.6 in Mathematics.

Another interesting feature of coauthorship networks refers to the degree-distribution

of nodes which tends to exhibit ”fat tails”, i.e. there is a small part of the population

accumulating a large proportion of links. In particular, GVM found that the 20%

of most-linked authors in Economics account for about 60% of all the links. New-

man (2004) shows that this phenomenon also extends to coauthorship networks in

the fields of Biology, Physics and Mathematics. In each case, the distribution is fat

tailed, with a small fraction of scientists having a very large number of collaborators.

GVM shows that the best-connected researchers collaborate extensively and most

of their coauthors do not collaborate with each other. Moreover, the authors observe

that these individuals are essential in maintaining the connectivity of the network.

On the other hand, Newman (2004) found that most of the connections (64%) of

an individual’s shortest path to other researchers pass through the best-connected of

their collaborators, and most of the remainders pass through the next-best connected.

These results lead GVM to conclude that: ”the world of Economics is spanned by

inter-linked stars” (an inter-linked star is a network in which some nodes connected

among them accumulate a lot of links with other nodes who are not connected among

themselves). Despite that there is no such conclusion referred to co-authorship net-

works in other fields, the similarity in the general results showed in Newman (2004)

suggests a similar pattern in Biology, Physics and Mathematics. Moreover, GVM

analyzes the evolution over the last thirty years and concludes that such a structure

is stable over time.
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3.1.2 Preview of the model and results

We show that the effects of two simple driving forces can explain the formation

of scientific collaboration networks with an interlinked star topology. These two

forces are caused by the heterogeneity among researchers and their limited processing

capability. Specifically, we propose a dynamic model in which individuals periodically

make decisions concerning the continuation of existing collaboration links and the

formation of new links to other researchers through a link formation game. Once

the network has been constituted, ideas arrive from outside of the network to every

node at a constant rate and agents are able to require the collaboration of one of

the previously selected coauthors to increase the chances to publish articles based on

those ideas. As commented above, agents are heterogeneous –they have different levels

of productivity–, and they have a limited processing capability; so congestion can

arise when a researcher receives a sufficiently high amount of collaboration requests.

Consequently, the decision of whether to form a link must consider the trade off

between the rewards (or costs) from collaborating with more (or less) productive

agents and the costs (or rewards) derived from more (or less) congested coauthors.

After defining the rules of the network formation game, the timing and procedure

of the publication process, the payoff function and the equilibrium concept in section

3.2, we assume that the process reaches a Steady State and we characterize it. Then,

we study which kind of network topologies can be sustained in Steady State. This

analysis is divided into two parts: first, in section 3.3.1 we show several results that

sharply narrow the set of potential equilibrium networks. In particular, these results

show that the concentration of links towards the researchers with a higher produc-
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tivity is a natural feature of equilibrium topologies in our model. Notice that this

distribution of links generates a clearly unequal situation in which some agents do not

receive ideas from others and where others receive numerous collaboration requests.

Roughly speaking, we show that, in equilibrium, highly productive agents receive the

minimum number of links necessary to exhaust their processing capability. Although

the commented networks are highly unequal, we find the necessary conditions to re-

produce this kind of equilibrium networks even for a highly homogeneous population

of researchers.

In section 3.3.2 we go one step further in the simplification of the set of potential

Steady State networks, and identify the conditions under which a single topology with

the basic characteristics of actual scientific collaboration networks can be sustained as

the unique equilibrium network of our model. Thus, our model naturally reproduces

the scientific collaboration patterns observed in reality.

3.1.3 Literature Review

Theoretical models of social network formation can be classified into two groups.

On one hand, there are the physics-based modeling of society. This approach treats

agents as if they were just matter. That is, agents are non-strategic. This set has

its origins in the random graph literature and has examples in sociology and recently

in computer science and statistical physics. References of this kind of models are

abundant5 but we will focus on two of them. Jackson and Rogers (2006) proposes a

nice, simple and general model of network formation. The authors combine random

5See Newman (2003) for a survey. Some examples are Watts (1999), Cooper and Frieze (2003)
or Price (1976).
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meeting and network-based meeting in a natural manner and analyze the relevance of

these two forces in determining the formation of different kinds of networks (scientific

collaboration structures are one of them). The second model we focus on is Arenas

et al (2003). The authors present a stylized model of a problem-solving organization

–whose internal communication structure is given by a network– that can suffer con-

gestion. The authors develop a design problem to determine which kind of network

architectures optimizes performance for any given problem arrival rate. Contrarily to

our model, the network is fixed and players are non strategic.

The second classification of models involves strategic formation of networks and

use game theoretic tools. That is, there is no exogenous prescription of how the

network is formed but there is a definition of the rules of the game that agents have

to play to form the network (see Jackson (2004) for a survey of this type of models).

The model presented here belongs to this group of models. As introduced above,

the work that more closely relates to our model is chapter 4 in Van der Leij (2006).

This author also attempts to develop a theoretical model to explain the empirical

regularities of research collaboration networks. In both models, heterogeneity across

researchers plays a key role in explaining the results. Contrarily to our paper, Van

der Leij constructs a static model in which the cost of link formation and the specific

academic rewards scheme affect the equilibrium network topologies. Our model is

dynamic and involves the possibility of congestion as the key factor (joint with agents’

heterogeneity) for obtaining the results. Moreover, we do not require a minimum

degree of heterogeneity among researchers (as Van der Leij (2006)) to reproduce the

equilibrium networks observed in reality.
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3.2 General setting

Let N be the set of nodes, interpreted as researchers, with n = |N | and let i

and j be typical members of this set. We assume that n is finite and arbitrarily

large. Networks are modeled as directed graphs. A directed graph on N is an N ×N

matrix g where entry gij indicates whether a directed link exists from node i to

node j; gij = 1 indicates the existence of such a directed link and gij = 0 indicates

the absence of this directed link. Notice that we do not impose any specific value

for gii; in particular, it is possible to have gii = 1 (see interpretation below). For

any node i ∈ N , let Ni(g) = {j ∈ N : gji = 1} be the set of players that have

a link to i and ηi(g) = |Ni(g)| denote the in-degree of i. On the other hand, let

Mi(g) = {j ∈ N : gij = 1} be the set of destinations of the links of i and µi(g) =

|Mi(g)| denote the out-degree of i. Notice that ηi(g) and µi(g) have to be natural

numbers. We impose that µi(g) ≥ 1.6

Time is modeled continuously. However, for descriptive convenience, we split time

in periods. The object of the agents in this model is to publish papers. This is their

only source of payoffs. Specifically, a publication provides one unit of payoff, which is

equally split among all its coauthors. A publication starts with an idea. Researchers

receive ideas from outside the network at an independent positive rate ρ. These

ideas are open, in the sense that they need to be processed to become a publication.

Immediately after receiving these open ideas, agents send them to some previously

selected destination. Agents can also choose to retain ideas. Here it is where the

6when @j 6= i such that gij = 1, then gii must be necessarily 1. When ∃j 6= i such that gij = 1,
gii can also be 1.
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network plays its role, because a researcher i can only send her open ideas to some

agent j ∈ Mi(g) (i ∈ Mi(g), i.e. gii = 1, means that agent i retains (part of) her own

open ideas). We assume that all agents in Mi(g) have the same probability of being

selected as destination of a particular open idea obtained by i. The node chosen as

destination is the researcher in charge of starting the publication process of this idea.

At any time, several open ideas may ”wait” to be processed by certain node (as

in a queue) because we assume that researchers have a limited processing capability.

Specifically, there is an upper-bound in the number of ideas a node can process per

period which we normalize to one7. Therefore, if a researcher receives a sufficiently

high amount of collaboration requests (i.e. links), queues will be formed. Given this

possibility, agents are provided with a decision rule to select the open idea they will

process from their stock. We will take the simplest rule, that is, all open ideas in a

queue have the same probability of being selected. Researchers also have a limited

storage capability. In particular, each agent forgets an open idea with probability q.

For this reason, not all open ideas received by a node will be finally processed.

Once an open idea is chosen to be processed, two outcomes are possible: it is

published or rejected forever. In this setting, a publication can have at most two

coauthors: the researcher who initially gets the open idea from out of the network

and the destination of this open idea (notice that these two nodes can coincide).

When an open idea is processed, the probability of being published by the coauthors

(author) depends on their (her) talent. Let h be the vector of talent endowments and

hi be the i-th element of this vector interpreted as the agent i’s amount of talent. We

7Notice that this assumption is not restrictive at all since the length of the period is not specified.
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assume that hi is exogenous, randomly generated following the probabilities described

by a continuous distribution function8 and that hi > 0 for all i ∈ N . Vector h is fixed

throughout the game. The relationship between talents and publication probabilities

is determined by f(·). This is a strictly increasing probability function, holding

f(0) = 0. This implies that the higher it is the amount of talent of a researcher/node

the higher it is the probability of publishing the ideas being processed. So, f(hi +hj)

is the probability of publishing a particular idea processed by i (or j) and previously

sent by j (or i). Notice that hi can also be interpreted as the agent i’s productivity.

Therefore, agents are characterized by two defining features: the endogenous size

of their queue of open ideas waiting to be processed and the exogenous amount of

talent.

3.2.1 Network formation game and timing

As commented before, time is modeled continuously but described in periods. At

the beginning of a period, collaboration links are configured through the following

network-formation game: all players i ∈ N simultaneously announce the direct and

directed links they wish to have either as origin or as destination. Formally, Si =

{0, 1}2n−1 is i’s set of pure strategies. Let

si = (si
i1, s

i
i2, ..., s

i
ii, ..., s

i
in, s

i
1i, ..., s

i
i−1,i, s

i
i+1,i, ..., s

i
ni) ∈ Si.

Then, si
ij = 1 if and only if player i wants to set up a directed link from i to j

(and thus si
ij = 0, otherwise). As commented before si

ii = 1 is possible. A link,

8Notice that this implies that the probability of two agents having exactly the same amount of
talent is zero.
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which is assumed to be costless, from player i to player j is formed if and only if

si
ijs

j
ij = 1. That is, we assume that mutual consent is needed to create a link. Let

S = S1 × ... × Sn. A pure strategy profile s = (s1, ..., sn) ∈ S induces a directed

network g(s).

Once the new network is formed, any agent (say i) receives open ideas at a rate

ρ and sends them to one selected destination. Simultaneously, node i selects and

processes open ideas from her stock (if any) at a rate of one idea per period. At

the end of each period, all stocked open ideas are forgotten with probability q. Just

before the end of a period, the stock of open ideas of all nodes is updated.

3.2.2 Steady State analysis and payoff function

Suppose that the process reaches a Steady State. There are two defining properties

of the Steady State: each researcher’s stock of open ideas is constant and the network

is stable.

Let oi be the Steady State stock of open ideas waiting to be processed by node i.

Under stationarity, the number of open ideas in stock behaves as a Markov process and

the arrival and departure of ideas from and to each node i follow Poisson processes.

Given that in Steady State all open ideas that arrive to a node eventually depart from

it in finite time, we must observe that the arrival rate of open ideas must be equal to

its departure rate. That is:

ρ
∑

l∈Ni(g)

1

µl

=

 1 + qoi , if oi ≥ 1

oi(1 + q) , otherwise

∀ i ∈ N

The arrival rate of ideas to agent i is equal to the sum, over all nodes sending to i in
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g, of the expected number of ideas they receive from out of the network per instant

of time (ρ) times the probability of sending ideas to i. The departure rate is the sum

of the processing rate and the rate of open ideas that node i forgets. Notice that

when the stock of open ideas is lower than one the processing capability of a node

will be restricted. In such a case, only oi open ideas can be processed per period (on

average). A node i is said to be congested if the Steady Staten stock of open ideas oi

is higher than one.

From the last expression, we write the Steady State stock of open ideas of a node

as:

oi =


ρ(

P
l∈Ni(g)

1
µl

)−1

q
, if

∑
l∈Ni(g)

1
µl
≥ q+1

ρ

ρ(
P

l∈Ni(g)
1
µl

)

1+q
, otherwise

∀ i ∈ N (1)

The stock of open ideas of a node is completely determined by the network structure

(g) and also by q and ρ.

The other defining feature of the Steady State is network stability. Before defin-

ing the stability concept we introduce the payoff function. As commented above,

researchers only obtain profits from the publication of ideas. For a given network

structure g, the following expression defines the expected payoff agent i obtains per

period when the stock of open ideas is constant for all agents9:

Πi(g) = Θ(i)[
∑

l∈Ni(g)\i

1

µl

cf(hl+hi)+gii
1

µi

f(hi)]+
1

µi

∑
l∈Mi(g)\i

Θ(l)cf(hl+hi) with c =
1

2

(2)

9By using the per-period expected payoff to analyze the incentives to deviate from a particular
network, we do not consider transition effects from one network to another. This simplification
has minor implications, especially for cases in which transition does not last in time and/or the
discounting rate is near to one.
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where Θ(i) =


1P

k∈Ni(g)
1

µk

, if
∑

k∈Ni(g)
1

µk
≥ q+1

ρ

ρ
1+q

, if 0 <
∑

k∈Ni(g)
1

µk
< q+1

ρ

0 , if
∑

k∈Ni(g)
1

µk
= 0

.

Agent i’s publications can derive from her own stock of open ideas or from the

open ideas that i previously sent to other researchers. These two different origins are

represented by the two main parts of (2), respectively. For gji = 1, Θ(i) 1
µj

can be

interpreted as the Steady State probability that an open idea coming from node j

is chosen to be processed by i. Given that all ideas in a given stock have the same

probability of being selected, this probability is obtained by multiplying the share of

ideas coming from j with respect to all ideas received by researcher i (
1

µjP
k∈Ni(g)

1
µk

) by

the expected number of ideas that node i processes per period (1 if
∑

k∈Ni(g)
1

µk
≥ q+1

ρ

and oi otherwise10). On the other hand, cf(hj + hi) (or f(hi)) can be interpreted as

the expected payoff obtained by each of the coauthors of a processed idea.

Notice that there are three main factors affecting agent i’s expected utility: c

influences the decision between retaining open ideas or sending them to other authors,

the queue size (included in Θ(l) or Θ(i)) affects the probability of processing an open

idea, and the coauthor’s amount of talent (hl) affects the probability of publishing

processed ideas.

The network stability concept used in this model is Pairwise-Nash Equilibrium

(PNE hereafter). In a PNE network, no player must have incentives to deviate uni-

laterally (i.e. the usual Nash Equilibrium condition) but we further require that any

mutually beneficial link be formed in equilibrium. PNE networks are robust to bi-

10Notice that for a given g, q and ρ the expected stock of open ideas is determined by (1).
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lateral commonly agreed one-link creation and to unilateral deviations. Formally, a

pure strategy s∗ = (s∗1, ..., s
∗
n) is a Nash Equilibrium of the game of network forma-

tion (previously described) if and only if Πi(g(s∗)) ≥ Πi(g(si, s
∗
−i)), for all si ∈ Si and

i ∈ N . Let g + ij be the network obtained by adding the link gij to g.

Definition 8 A network g is a PNE network with respect to the network payoff func-

tion Π if and only if there exists a Nash equilibrium strategy profile s∗ that sup-

ports g, that is, g = g(s∗), and, for all pair of players i and j such that gij = 0 if

∆Πi(g + ij) > 0 then ∆Πj(g + ij) < 0.

Given that si
ii is part of si ∀i ∈ N , a deviation consisting on a multi-link severance

by i and a simultaneous creation of gii is an unilateral deviation because there is no

need of mutual consent to form gii.

Notice that this is a relatively weak equilibrium concept11. Yet, we are able to

isolate a single equilibrium network topology for a specific parameter space.

3.3 Results

The empirical study by Goyal, Van der Leij and Moraga (2006) describes a detailed

image of the features of real coauthorship networks in Economics. The results of

that paper ”show that the world of Economics is spanned by inter-linked stars, that

this feature is stable over time and that this is the main reason for small average

distances”. A similar conclusion applied to Biology, Physics and Mathematics can

11The concept of Bilateral Equilibrium (also called pairwise stable Equilibrium) introduced in
Goyal and Joshi (2003) and used in Van der Leij (2006) is much stricter than PNE since it allows
pairs of players to form and delete links simultaneously.
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be extracted from Newman (2004). Our aim is to show how the model introduced

in the previous section reproduces equilibrium structures with the features of actual

scientific collaboration networks. In reality, these networks have a highly unequal

distribution of links with a small fraction of researchers concentrating many links.

In our model, this feature implies that some nodes receive many open ideas from

others and, consequently, they are able to publish more papers than other researchers.

Therefore, the payoffs of those nodes that receive a large proportion of open ideas are

significantly larger than the payoffs of nodes that receive a small proportion of ideas.

Reproducing such an unequal payoff distribution in the equilibrium of a setting in

which players can discretionally create or sever links is relevant when the population

is fairly homogeneous, i.e. when talent is fairly constant across agents. Our results

show that for sufficiently low values of ρ (with respect to the processing rate which

is one), these networks naturally arise from the interaction among similar agents.

Evidently, the more heterogeneous population is, the easier it is to reproduce these

unequal distributions of links in equilibrium and, as a consequence, the requirements

on ρ are less stringent.

The results’ section is divided into two parts. First, we present some preliminary

results that determine the basic characteristics of equilibrium networks. We derive

a Corollary that highlights how networks with a highly unequal distribution of links

can be sustained in a PNE. This result shows that, in spite of having very low a priori

differences among agents’ talents, this kind of topologies can be PNE networks if ρ

is sufficiently low. In these equilibrium networks high talent researchers receive an

amount of links sufficient to exhaust their processing capability but sufficiently small
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to not suffer congestion. The second subsection shows that a particular interlinked

star network, that holds the previously stated conditions, can naturally arise –from

the interaction of self-interested researchers– as the unique PNE structure for any

distribution of talent. Heterogeneity and congestion are the key factors that explain

these results.

Before presenting the results, we comment the requirements about ρ. This pa-

per shows that equilibrium networks have the form of an interlinked star when ρ is

sufficiently small with respect to their processing capability, i.e. when agents receive

a low number of ideas per period from outside the network in relation to their pro-

cessing capability. Notice that the higher it is the heterogeneity among agents the

less stringent it is the restriction on ρ for results to hold. We emphasize that this is

not an unrealistic requirement. In real coauthorship networks, the most connected

researchers have around 50 links in Economics (as shown by GVM) and even more in

other fields as Biology (Newman, 2004). In our model, this means that each particular

collaboration link contributes a small quantity of open ideas to their destination with

respect to the processing rate. For this reason, researchers have to maintain the link

with many collaborators in order to receive a sufficient amount of ideas to exhaust

most of their processing capability.

3.3.1 Preliminary results

In the following three propositions we show that, when ρ is sufficiently low, PNE

networks must hold several characteristics for any possible distribution of talents (h).

In particular, these results establish an upper-bound in the number of out-degree
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and in-degree links of any node and a lower bound in the number of in-degree links

of nodes with a relatively high level of talent. Therefore, they narrow the set of

potential PNE networks. In each of the results we highlight that the higher it is the

heterogeneity among agents the less stringent can be the requirements on ρ.

The first result refers to the number of out-degree links of a particular agent. In

principle, the researchers of this model can send their open ideas to many collabo-

rators, i.e. there is no upper-bound on µi ∀i. The following result approaches this

issue.

Let G∗
h,ρ be the set of PNE networks for a given pair (h, ρ).

Proposition 8 For any functional form of f(·), for any pair (h, ρ0) and any g ∈

G∗
h,ρ0

in which µi > 1 for some i ∈ N , there always exists a ρ̄1 < ρ0 such that

g /∈ G∗
h,ρ ∀ρ < ρ̄1.

The proof (see in Appendix) proceeds as follows. We consider all possible cases

that a researcher i with µi ≥ 2 can face. Then, we analyze her incentives to sever the

link gij where hj < hk for some k ∈ Mi. We show that, for any vector h whose values

are extracted from a continuous distribution function, the marginal payoff derived

from such a deviation tends to be positive as ρ → 0. Using the concept of limit, we

show how this is a reformulation of the statement of the proposition.

The intuition of the proof is simple. Heterogeneity implies that any agent i can

rank the destinations of her open ideas with respect to their level of talent. In other

words, i can rank all the agents in Mi with respect to the expected payoff obtained

from the processed ideas transmitted to them. If i does not send all open ideas to

the destination that maximizes this expected payoff, is because of another important
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factor: agents have limited processing capability. When an agent severs a link, she

automatically increases the flow of open ideas sent to the rest of destinations and,

consequently, increases the destinations’ queue of ideas when congestion arises. This

has a negative impact on the expected utility of the agent who initially deviates. In

the proof we show that as ρ → 0 the negative impact tends to vanish. Consequently,

for a sufficiently low value of ρ, any agent i with µi ≥ 2 has incentives to deviate and

send all open ideas to the most talented destination (who has a talent h̄). The higher

it is h̄ with respect to the talent of the rest of destinations, the higher would be i’s

incentives to deviate and, therefore, the higher ρ̄1 can be.

This result illustrates that whatever h, we can always find a sufficiently low value

of ρ (say ρ̄1) such that a network in which some agent has two or more out-degree links

cannot be sustained in equilibrium for any ρ < ρ̄1. Moreover, increasing the hetero-

geneity among agents’ talent can make the restriction on ρ less stringent. Therefore,

an upper-bound on the equilibrium out-degree of nodes arises naturally. As intro-

duced above, this result implies a dramatic simplification of the set of possible PNE

networks.

Focusing on the in-degree of nodes we can go one step further in the simplification.

The following result establishes an upper-bound for the amount of ideas (and indi-

rectly the amount of links) a node can receive in a PNE network when ρ is sufficiently

small.

Proposition 9 For any functional form of f(·), for any pair (h, ρ0) and any g ∈

G∗
h,ρ0

in which
∑

l∈Ni

1
µl
≥ 1 + q+1

ρ0
for some i ∈ N , there always exists a ρ̄2 < ρ0 such

that g /∈ G∗
h,ρ ∀ρ < ρ̄2.
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The intuition of the proof (see in Appendix) is the following: when
∑

l∈Ni

1
µl
≥

1 + q+1
ρ0

for some i ∈ N , the stock of open ideas of i will be higher than one, even

after severing one in-degree link. Given that the maximum processing rate is normal-

ized to one, researcher i can delete one in-degree link without damaging the average

processing flow (which will continue to be one). Consequently, agent i can increase

her average productivity if she severs an in-degree link coming from a researcher who

holds two conditions: (i) her talent is below the average talent of the rest of agents

in Ni and (ii) she does not receive a link from i. From Proposition 8 we know that

for any ρ < ρ̄1, agent i will send all her open ideas to a unique destination. Then, in

order to hold the two conditions above, we only need to have two agents below the

average talent of the rest of agents in Ni. Evidently, this is easier when there is a high

level of heterogeneity among the agents in Ni and i has a large number of in-degree

links. In the proof of this proposition we show that for any arbitrarily homogeneous

distribution of talents there always exists a ρ̄2 that assures the existence of such a

pair of collaborators for any ρ < ρ̄2 and therefore assures that no researcher i can

hold
∑

l∈Ni

1
µl
≥ 1 + q+1

ρ0
.

The form of the production function has a direct effect on the incentives of col-

laboration. For a concave f(·), working with another researcher (rather than alone)

increases the probability of publication less than proportionally with respect to the

increase in the amount of talent. On the other hand, a convex f(·) implies that adding

additional talent in the production process increases the publication probability more

than proportionally. For this reason, we can say that a concave f(·) discourages

agents to look for collaborators. Previous results are valid for any functional form of
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f(·). Now, we focus on the case in which f(·) is linear or convex. In that way we

specifically analyze the features of equilibrium networks in the case in which collab-

orating with other researchers does not imply a loss of productivity with respect to

working alone. The results for this case narrow the set of potential PNE networks

even more.

Proposition 10 For a linear or convex f(·), a PNE network cannot have a player i

with
∑

l∈Ni

1
µl

< q+1
ρ
− 1 when some agent j such that hj < hi holds: gjk = 0 ∀k such

that hk ≥ hi.

See proof in Appendix. When f(·) is linear or convex and without considering

the effects of a potential congestion, researchers always prefer to have collaborators

with higher talent. If
∑

l∈Ni

1
µl

< q+1
ρ
− 1 for some i ∈ N , agent i will not suffer

congestion even after receiving a new link. For this reason, if all the researchers that

receive ideas from another researcher j have a talent lower than hi, then agent j has

incentives to create a new link to agent i. Moreover, since i will not congest after

receiving this new link, she will increase her processing rate and, therefore, her payoff

will also increase. Thus, such pair of agents cannot exist in a PNE network. Again,

heterogeneity and congestion are essential for shaping this result.

Considering this result, and Propositions 8 and 9 we can state the following:

Corollary 1 For a linear or convex f(·) and for any vector h, highly talented re-

searchers receive all links of the network in any g ∈ G∗
h,ρ for any ρ < ρ̄2. Specifically,

q+1
ρ
− 1 ≤

∑
l∈Ni(g)

1
µl

< 1 + q+1
ρ

for a highly talented researcher i and any ρ < ρ̄2.

The first claim of the corollary directly derives from Propositions 8 and 10. The

bounds of
∑

l∈Ni(g)
1
µl

are obtained in Propositions 9 and 10. This result illustrates
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the attraction force of highly talented researchers in this model. They will always

have a minimum number of collaborators. On the other hand, this attraction force is

restricted by the possibility of congestion derived from the agents’ limited processing

capability. For this reason, there is an upper-bound in the number of collaborators

a node can have in equilibrium. We must also remember that the higher it is the

heterogeneity among the levels of talent the higher ρ̄2 can be.

Notice that if
∑

l∈Ni

1
µl

= q+1
ρ

for some i ∈ N , the stock of open ideas of agent

i is one, which is exactly her processing rate. Then, this can be seen as the point

in which agents receive the minimum number of ideas in order to process at their

maximum rate. At that point agents maximize their processing rate without suffering

congestion. The bounds established in Corollary 1 imply that in a PNE network highly

talented researchers will have a number of in-degree links that allow them to be close

to exhausting their processing capability without suffering congestion.

Notice also that (for a linear or convex f(·)) there is no heterogeneity requirement

on the distribution of talents to obtain Proposition 10. So, the attraction force of the

best researchers exists regardless of the difference between their level of talent and

that of the other researchers. That is, the result holds for any vector h extracted

from a continuous distribution function.

Since q+1
ρ
− 1 ≤

∑
l∈Ni(g)

1
µl

< q+1
ρ

+ 1, note that the lower it is ρ the higher it is∑
l∈Ni(g)

1
µl

. Consequently:

Corollary 2 For a linear or convex f(·), arbitrarily small differences among agents’

talent can generate highly unequal distributions of links in the PNE network candi-

dates. The lower it is ρ, the higher it is the in-degree inequality.
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Moreover, because of the convexity of the relationship between ρ and
∑

l∈Ni(g)
1
µl

,

very small changes in ρ translate into large increases in the in-degree inequality among

researchers. This contrasts with the results of Van der Leij (06) in which a minimum

degree of heterogeneity among agents is required in order to reproduce the empirical

results about in-degree inequality.

So, we have reproduced an empirical fact. In our Steady State network, some few

agents can concentrate many links (especially for low values of ρ). But, does this

mean that the network we obtain in equilibrium is an interlinked star as suggested

by the empirical results of Goyal, Van der Leij and Moraga (2006)? By the previous

results, it is not necessarily the case. For example, we can have a network formed

by stars, in which the central agents (who receive a number of links respecting the

bounds established in Corollary 1) are not connected between them. The following

results focus on showing that for any arbitrarily homogeneous distribution of talents

there exist a sufficiently low ρ under which this cannot happen. Yet, in the following

subsection we go one step further and characterize a particular interlinked star net-

work as the unique PNE for low values of ρ. Again, the more heterogeneous it is the

distribution of talents the less stringent it is the condition on ρ.

3.3.2 Main results

First, we will characterize our PNE network candidate by developing some prelim-

inary steps. Let Gs denote the set of interlinked star networks holding the following

three properties:

• µi = 1 ∀i ∈ N .
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• gii = 1 if and only if hi > hl ∀l ∈ N and l 6= i.

• For any given pair (hi, hj) such that hi > hj and gik = gjl = 1 for any k, l ∈ N ,

it must be true that hk ≥ hl.

The first condition states that all the nodes of the network have only one out-

degree link. The second property implies that, except for the highest talented player,

this links to some other agent. Finally, the third condition narrows the set of possible

destinations of this out-degree link. In fact, the last two conditions imply that the

highest talented agent receives her in-degree links from the nodes located just below

her in the ranking of talents; the second player in this ranking receives her in-degree

links from the nodes located just below the first group of players in this ranking; and

so on. Depending on the distribution of links we can have different networks in Gs.

The following result specifies that, when ρ < ρ̄2, there is a single distribution of links

(i.e. a single network) in Gs holding two stability conditions.

Lemma 1 For any given pair (h, ρ) such that ρ < ρ̄2, there is a unique network in

Gs in which no agent i with ηi > 0 has incentives either to delete any in-degree link

or to create a new in-degree link coming from some j such that hj < hi. We call this

network gs.

See the proof in the Appendix. Notice that since gs ∈ Gs, (i) this graph is an

interlinked star network, that is, there is a group of authors linked among them that

concentrate certain number of links and (ii) the coauthors of a given researcher do not

collaborate with each other. This is, in essence, the basic topology of actual scientific
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collaboration networks according to the empirical studies commented above. The

following two results show that gs is a natural equilibrium outcome of our model.

Proposition 11 For a linear or convex f(·), for any pair (h, ρ0) and any g ∈ G∗
h,ρ0

different from gs, there always exists a ρ̂1 < ρ0 such that g /∈ G∗
h,ρ ∀ρ < ρ̂1.

See the proof in the Appendix. This result shows that whatever it is h, we can

always find a sufficiently low value for ρ under which a network different from gs

cannot be sustained as a PNE. Therefore, the set of potential PNE networks for a

sufficiently small ρ reduces to one single topology. In the proof we show that for any

network g 6= gs we can always find a player (or a pair of players) whose marginal

payoff for deviating tends to be positive as ρ → 0. Notice that, using the definition

of limit, this implies that such a network g cannot be PNE for any arbitrarily small

ρ. Intuitively, the mechanisms underlying this result are the following. We first show

that in a network different from gs and with ρ < ρ̄1, there must exist an agent i who

sends all her ideas to a node (say k) such that hk < hj, where j is the node that

should receive ideas from i in gs. If i does not deviate from this network by creating

a new link gij is because of the possibility that j has a longer queue than k due to

congestion. As ρ approaches zero the differences between agents’ queue sizes (for

example, j and k) become relatively smaller. We reach a point in which player i’s

incentives to deviate are basically driven by the differences between the talents of j

and k. Since hk < hj, player i would have incentives to add gij. Evidently, the higher

it is hj relative to hk the more incentives player i has to deviate. Therefore, the less

stringent the condition on ρ would be. Then, a higher heterogeneity of talents can

increase agent i’s incentives to deviate.
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However, for the deviation to take place, node j should have incentives to form

the new link gij. In the worse case, agent j would only accept such a link if the

average productivity from the ideas of her queue increases after the deviation. For

a sufficiently low ρ, we can state that as ρ → 0, this average productivity decreases.

Then, there is a point in which this average is sufficiently low that the formation

of gij pushes this average productivity up. Again, it is easy to show that a higher

heterogeneity among the levels of talent would increase agent j’s incentives to deviate.

After Proposition 11, the set of PNE candidates reduces to one single network for

a sufficiently low ρ. The following result confirms that gs is in fact a PNE for any

arbitrarily homogeneous distribution of talents whenever ρ is sufficiently small.

Proposition 12 For a linear or convex f(·) and for any pair (h, ρ0), if gs /∈ G∗
h,ρ0

there always exists a ρ̂2 < ρ0 such that gs ∈ G∗
h,ρ, ∀ρ < ρ̂2.

See the proof in the Appendix. In the proof we review all the possible deviations

from gs. We find that, in the worse cases, the marginal payoff of potential deviators

tends to be negative as ρ → 0. Therefore for any vector h, we can always find a

sufficiently low ρ such that no player has incentives to deviate from gs. From an

intuitive point of view, the proof can be explained as follows. There are two kinds of

deviations from gs. On the one hand, agent i can create an additional link to an agent

with a lower talent than that of the previous destination or she can substitute her

current out-degree link by gii. In both cases, this agent trades-off the potential benefits

from avoiding or reducing the effects of congestion against the costs of reducing the

productivity of the processed ideas due to the lower talent of the new destination. In

the proof we show that the positive part of this trade-off tends to vanish as ρ → 0,
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and in consequence, the marginal payoff for deviating tends to be negative. Again,

increasing heterogeneity among agents would increase the differences in talent and

thus, increase the negative part of the commented trade-off. As a consequence, ρ̂2

can be higher as we increase the differences among agents’ talent. The other type of

deviation consists of creating an additional link to an agent with a talent higher than

that of the previous destination. In that case, we use Lemma 1 to conclude that the

marginal payoff of the new destination to accept the link is negative.

The following corollary immediately emerges from the last two propositions. Let

ρ̂ ≡ min(ρ̂1, ρ̂2).

Corollary 3 For a linear or convex f(·) and for any vector h, there exists a ρ̂ such

that gs is the unique PNE network for any ρ < ρ̂.

Existence of gs as a PNE comes from Proposition 12 and uniqueness comes from

Proposition 11.

Notice again, that we do not need to impose any degree of heterogeneity among

agents. Specifically any talent vector h extracted from a continuous distribution func-

tion can generate the previous result. Nevertheless, the higher it is the heterogeneity

among agents the less stringent it can be the condition on the parameter ρ in order

to get gs as the unique PNE network. For these reasons we conclude that the kind

of networks GVM observes in reality are a natural outcome from the interaction of

self-interested researchers of this model.

Before ending this section of results, it is interesting to provide hints about the

behavior of the model for a concave f(·). As commented above, concavity of f(·)

discourages agents at the moment of looking for collaborations. Consequently, we
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cannot assure the stability of the interlinked star for all distributions of talent even

for an arbitrarily small ρ. In particular, we would need a sufficiently high inequality

across levels of talent to support such a network of collaborations. This inequality is

also needed to support other structures with high in-degree inequality (non-interlinked

stars) as stable networks.

Remark 6 For f(·) concave, networks with high in-degree inequality (as an inter-

linked star) may not be PNE even for arbitrarily small ρ. To assure stability of this

kind of networks we need a minimum degree of heterogeneity among researchers’ tal-

ents.

Other networks such as the empty network or the cycles can exist in equilibrium

even with low values of ρ, especially when inequality across levels of talent is not

so high. Summarizing, for a concave f(·) the key factor affecting the shape of the

stable network is the inequality across levels of talent. Only highly unequal talent

distributions will allow obtaining stable networks with a high in-degree inequality

such as the interlinked star.

3.4 Discussion

3.4.1 Empirical patterns

Based on empirical patterns, Goyal, Van der Leij and Moraga (2006) reach the

conclusion that the field of economic research is spanned by interlinked stars. In this

paper we showed that a simple network formation model characterized by the limited

processing capability of heterogeneous agents can reproduce the characteristics of the
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in-degree distribution of the so called interlinked star network in equilibrium. In

this section, we discuss how our model may be extended to explain other empirical

patterns.

One of the first empirical findings by GVM relates to the average number of

collaborators. The giant component of the analyzed coauthorship network reveals an

average of 2.48 in the 1970’s and 3.06 in the 1990’s12. None of the results of our model

excludes the possibility of having these average numbers of collaborators. In fact, we

can have equilibrium networks with 2, 3 or more collaborators per researcher. But,

as Proposition 8 shows for low values of ρ, it would be especially difficult to have a

researcher i ∈ N with more than one out-degree link in a PNE network. Therefore, for

low values of ρ our model can hardly reproduce this average number of collaborators.

A natural extension of the model will allow us to reproduce this empirical fact.

Imagine a model in which there exist different types of talent and researchers are

specialists, so they have a specific type. Moreover, ideas can require some specific

type of talent to be published that does not necessarily coincide with the type of talent

of the first receiver. For this reason, we can also classify the ideas on different types.

To be specific let hx
i denote the agent i’s amount of talent of type x. Let fx(h

x
i +hx

j ) be

the expected probability of publishing a processed idea of type x by researchers i and j.

The rest of the model would not change with respect to the model described in section

3.2. In this new model, agents would have incentives to select specialist collaborators

for each of the different types of ideas they can receive. Thus, equilibrium networks

would be able to reproduce higher average numbers of collaborators. Moreover the

12Newman (2004) founds that the average number of collaborators in Biology, Physics and Math-
ematics was 18.1, 9.7 and 3.9 respectively.
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average number of collaborators in equilibrium would positively depend on the degree

of researchers’ specialization. Therefore the model would be a formalization of the

argument defending that one of the key factors explaining the increase in the flow

of scientific collaboration is the increase in the specialization of researchers. This

increase in the number of collaborators is a trend that GVM detected for the last 30

years in the field of economic research.

With respect to the degree distribution, GVM finds that such a distribution ex-

hibits fat-tails, with a small fraction of scientists having a large number of collabora-

tors. The same can be concluded for the fields of Biology, Physics and Mathematics,

as Newman (2004) shows. Our model shows that the links concentrate in highly tal-

ented researchers. Decreasing the value of ρ increases the number of links directed

towards each of these researchers and, in consequence, increases the inequality in the

in-degree distribution. In equilibrium our model predicts that highly talented re-

searchers have roughly the same number of links (see Corollary 1). Evidently, this is

not the case in actual networks. This result arises because we assume that all players

in our game have exactly the same processing capability, which we have normalized

to 1. By allowing different processing rates, the model is able to reproduce equilibria

with different in-degree levels for different players.

The last empirical pattern we discuss refers to clustering. GVM shows that ”the

most connected individuals collaborated extensively and most of their coauthors did

not collaborate with each other”. Our model cannot provide an intuitive explanation

to GVM’s results. By focusing on the role of heterogeneity among players and their

limited processing capability (as our model does), we can only provide an intuitive
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argument for explaining the number of links per node which is not a sufficient condi-

tion for explaining their level of clustering. In order to explain clustering, we would

have to consider geographic or conceptual proximity among researchers. A simple

extension of the model can capture this consideration: let us assume that researchers

are distributed in broadly-defined groups. Two researchers can be members of the

same group if they are in the same academic department, if they work on similar

topics or if they share a common personal characteristic. If two researchers i and

j are in the same group then dij = 1; otherwise dij = 0. We can reasonably argue

that the collaboration between two members of the same group will be more pro-

ductive than the collaboration between two more distant researchers. Formally, we

can write the expected probability of publishing a processed idea by nodes i and j as

f(hi +hj +kdij) for some k > 0. This simple extension allows the model to reproduce

equilibrium networks with high clustering among members of the same group and low

clustering among highly talented researchers of different groups. In Chapter 2, we

presented a network formation model that takes into account these considerations13.

3.4.2 Stability and efficiency

A network is efficient when it maximizes the aggregate payoff. The set of efficient

networks usually does not coincide with the set of stable networks. In fact, one of

the most usual analyses in the network formation models is the comparison between

stable and efficient networks. Jackson (2004) collects a variety of examples. Jackson

and Wolinsky (1996) develops a simple coauthorship network formation model as an

13In Chapter 2, agents are exogenously distributed in groups. However, we adopted a different
payoff function than the one used here.
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example to show how negative externalities can play an important role in the network

formation process in the academic world, and in particular, in the conflict between

stability and efficiency. In the efficient network that the model yields, researchers

are distributed in pairs, i.e. two agents connected with each other and isolated from

the rest. However, the stable network is over connected with respect to the efficient

network. In that model, the advantageous strategy from an individualistic point

of view does not coincide with the good strategy from an aggregate point of view.

This phenomenon, is especially relevant in coauthorship networks because it implies

that researchers’ individual incentives damage aggregate scientific production. In

this sense, Jackson and Wolinsky (1996) offers a pessimistic view of actual scientific

collaboration networks. In the following lines we show that in our model, individual

and aggregate incentives are more aligned than in Jackson’s and Wolinsky’s (1996)

model. Yet, they do not fully coincide.

The results of Section 3.3 suggests that gs is a stable network for a sufficiently small

ρ when f(·) is linear or convex. In this section we derive the efficient network(s) for

this specific case. This allows us to compare stable and efficient networks. A priori,

we can say that gs has favorable characteristics to maximize the aggregate payoff.

In particular, for a linear or convex f(·), it seems appropriate that highly talented

researchers collaborate with each other. But, is gs the best structure of collaborations

in order to maximize the aggregate payoff for any given pair (h, ρ)? The following

result gives an important insight to answer this question.

Proposition 13 For g = gs and for any vector h, there exists a ρ∗ such that for any

ρ < ρ∗, if we substitute a link gij by a new link gik then the marginal aggregate payoff
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decreases when hk < hj and increases when hk > hj.

See the proof in the Appendix. Independently of h, the accumulation of links to

highly talented agents has positive implications for the aggregate payoff when ρ is

sufficiently small. Evidently, the higher it is the difference in talent between highly

talented researchers and the rest of researchers, the higher the aggregate incentives

to accumulate links to them, and the less stringent is the requirement on ρ to hold

the last proposition.

Once again, the trade off between the benefits of working with highly talented

researchers and the costs of working with more congested coauthors come on stage.

By changing gij by a new link gik such that hk < hj, the ideas of agent i can avoid

congestion problems but they will have a lower probability of publication once pro-

cessed. On the other hand, by changing gij by a new link gik such that hk > hj, k

can suffer congestion problems but i increases the probability of publication of her

processed ideas. But when ρ → 0, congestion tends to disappear. Consequently, the

aggregate marginal payoff increases if highly talented players receive more ideas and

decreases when highly talented players receive less ideas.

The result shows that the PNE interlinked star network we obtained in the previ-

ous section is not efficient for any pair (h, ρ). It also shows that the way of increasing

efficiency when the entrance rate of open ideas is sufficiently low and the differences

among the levels of talent are sufficiently large, is accumulating more links to highly

talented researchers than what would be individually desirable.
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3.5 Conclusion

In spite of the large body of empirical research about scientific collaboration net-

works, there is a lack of foundational theoretical models that analyze how individual

decisions contribute to scientific collaboration network formation. This paper pro-

poses a dynamic model to analyze the formation of this kind of networks.

We focus on heterogeneity among agents’ productivity and congestion derived

from agent’s limited processing capability. We show that self-interested researchers

in this setting organize themselves in inter-linked stars, as it is suggested by empirical

evidence.
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[16] A. Calvó-Armengol and Y. Zenou. Social networks and crime decisions: The role

of social structure in facilitating delinquent behavior. International Economic

Journal, 45(3):939–958, 2004.

[17] G. Charness, M. Corominas-Bosch, and G.R. Frechette. Bargaining and network

structure: An experiment. Journal of Economic Theory, 136(1):28–65, 2007.



94 Bibliography

[18] S. Coate and G.C. Loury. Will affirmative-action policies eliminate negative

stereotypes? American Economic Review, 83(5):1220–40, 1993.

[19] Colin Cooper and Alan Frieze. A general model of web graphs. Random Struc-

tures and Algorithms, 22(3):311 – 335, 2003.

[20] E. Durkheim. Revue philosophique, December 1879.

[21] A. Dutta, A. Van Den Nouweland, and S. Tijs. Link formation in cooperative

situations. International Journal of Game Theory, 27:245–256, 1998.

[22] N. Friedkin. A test of the structural features of granovetter’s ’strength of weak

ties’ theory. Social Network, 2:411–422, 1980.

[23] R. G. Fryer and M. O. Jackson. Categorical cognition: A psychological model

of categories and identification in decision making. mimeo: Harvard University

and Stanford University, 2003.

[24] A. Galleotti, S. Goyal, M.O. Jackson, F. Vega-Redondo, and L. Yariv. Network

games. mimeo, University of Essex and California Institute of Technology, 2006.

[25] L. Garicano. Hierarchies and the organization of knowledge in production. Jour-

nal of Political Economy, 108(5):874–904, 2000.

[26] M. Gilli. On non-nash equilibria. Games and Economic Behavior, 27:184–203,

1999.

[27] S. Goyal, M. Van der Leij, and J. L. Moraga-González. Economics: An emerging
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A.2 Proofs

Proof of Proposition 1. Notice that PBNE(γ, P, t) ⊆ BPS(γ, P, t). Hence,

if BPS(γ, P, t) = ∅, the result follows. Suppose that BPS(γ, P, t) 6= ∅ and let

g∗ ∈ BPS(γ, P, t). Define

φ(g∗, γ, P, t) ∈ min{
∑
w∈W

P (w/Ii)[Yi(v, g∗, t)− Yi(v, g∗ − ij, t)] : ij ∈ g∗, i ∈ N}

Bayes Pairwise Stability implies that φ(g∗, γ, P, t) ≥ 0. Suppose that fγ is α-Bayes

convex in own current links on BPS(γ, P, t) for some α ≥ 0. Then, inequality (1)

implies that
∑

t−Ii
∈T−Ii

P (w/Ii)[Yi(v, g, t)−Yi(v, g−ij1−...−ijl, t)] ≥ αlφ(g∗, γ, P, t) ≥

0, for all ij1, ..., ijl ∈ g∗ and i ∈ N . Moreover, by definition of Bayes Pairwise Stability

if ∑
w∈W

P (w/Ii) Yi(v, g, t) <
∑
w∈W

P (w/Ii) Yi(v, g + ij, t)

then ∑
w∈W

P (w/Ii) Yj(v, g, t) >
∑
w∈W

P (w/Ii) Yj(v, g + ij, t)

for all ij /∈ g∗ and i ∈ N . Therefore, g∗ ∈ PBNE(γ, P, t).

On the other hand, suppose that there exists g∗ ∈ BPS(γ, P, t), such that for

all α ≥ 0, inequality (1) does not hold for g∗. Then, for some i ∈ N , there exists

ij1, ..., ijl ∈ g∗ such that
∑

w∈W P (w/Ii)[Yi(v, g, t) − Yi(v, g − ij1 − ... − ijl, t)] < 0,

implying that g∗ /∈ PBNE(γ, P, t).
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B.1 Proofs

Proof of Proposition 5. This is proved by contradiction. Specifically, we will

show that there cannot be a PNE network with two or more components in which

one of them has two or more neighborhoods. Since PNE is weaker than BE, such a

network cannot be sustained in a BE either.

First, we introduce two preliminary lemmas. Their proof is omitted here because

they are immediate applications of two analogous lemmas set forth by Goyal and

Vega (2006). Lemma 2 refers to the marginal payoff of critical links. These are links

that define the unique path between the two players involved and whose deletion

increase the number of components. By Proposition 4, critical links can only connect

players from different neighborhoods in a PNE network; therefore critical links are

not just the unique path between two players, they are also the unique path between

neighborhoods.

105
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Lemma 2 Consider any network g. If gij = 1 and the link is critical, then the

marginal payoff of the link gij for both players (i and j) is exactly the same.

Lemma 3 In a network g, any component has at least two non-essential neighbor-

hoods.

By contradiction, let assume that g is a PNE network with at least one inter-

neighborhood link and suppose that there is more than one component. Let Ĉ be the

largest component in g, which must therefore contain at least two neighborhoods. We

claim that there is a neighborhood Mj /∈ Ĉ and a player j ∈ Mj that can establish

a mutually profitable link to some player in Ĉ, contradicting the initial assumption

of stability. For simplicity, we will assume the less favorable case where Mj has no

external connections, i.e. Mj is an isolated neighborhood.

By lemma 3, Ĉ has some non-essential neighborhood. Then there are two possi-

bilities:

• First, one of these non-essential neighborhoods Mi is extreme (i.e. Mi has links

to only one another neighborhood, say Mk). In essence, three basic cases can be

distinguished at this point:

(i) there is a single critical link between Mi and Mk, say between agents i ∈ Mi

and k ∈ Mk.

(ii) there is a non critical link between Mi and Mk but there is only one player

k ∈ Mk who has links to members of Mi (say gkl = gki = 1, where l, i ∈ Mi).

(iii) there is a non critical link between Mi and Mk with at least two agents in Mk

linked to members of Mi.
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Consider case (i). Since keeping the link between i and k is profitable for both,

some player in Mj, say j, would find optimal to create a link to k if given the

opportunity, and so would player k. This contradicts the initial statement of g as

a PNE network.

Consider case (ii). Let N r
i (g) = {j ∈ Ci : e(i, j) = r} be the players whom i

accesses via r essential players and let ηr
i (g) = |N r

i (g)|.

Since g is a PNE network, it follows that k’s marginal payoff of cutting one of her

links to Mi off must be negative. That is:

∆ΠK = ch + (m− 1)(
1

3
− 1

2
) + (m− 1)(η0

k(g)−m)(
1

4
− 1

3
) +

(m− 1)η1
k(g)(

1

5
− 1

4
) + ... + (m− 1)ηR

k (g)(
1

R + 4
− 1

R + 3
)

< 0

where R is a finite positive number. This implies that:

ch <
1

6
(m−1)− (m−1)(η0

k(g)−m)(
1

4
− 1

3
)− (m−1)

R∑
i=1

ηi
k(g)(

1

i + 4
− 1

i + 3
) (i)

On the other hand, player j has the following marginal payoff from forming a link

to k:

∆Πj =
1

2
+ η0

k(g)
1

3
+ η1

k(g)
1

4
+ ... + ηR

k (g)
1

R + 3
+

(m− 1)
1

3
+ (m− 1)η0

k(g)
1

4
+ (m− 1)η1

k(g)
1

5
+ ... + (m− 1)ηR

k (g)
1

R + 4
− ch
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Using inequality (i) we write:

∆Πj >
1

2
+ (η0

k(g) + m− 1)
1

3
+

R∑
i=1

ηi
k(g)

1

i + 3
+ (m− 1)

R∑
i=0

ηi
k(g)

1

i + 4
−

1

6
(m− 1) + (m− 1)(η0

k(g)−m)(
1

4
− 1

3
) + (m− 1)

R∑
i=1

ηi
k(g)(

1

i + 4
− 1

i + 3
)

> (m− 1)(η0
k(g)−m)(

1

2
− 1

3
) + (m− 1)

R∑
i=1

ηi
k(g)(

2

i + 4
− 1

i + 3
)

Since η0
k(g) ≥ m and ( 2

i+4
− 1

i+3
) > 0 ∀ i ≥ 0, we conclude that ∆Πj > 0. By

Lemma 2, agent k’s marginal payoff from forming an additional link to j is also

positive. Thus, the deviation is profitable for both players and this contradicts

the statement of stability of g.

Consider case (iii). Imagine the less favorable case where an agent k ∈ Mk has

a link to i ∈ Mi and there is another link between these two neighborhoods

involving two other players. Agent k’s marginal payoff from severing the link

between i and k is:

∆Πk = ch + (m− 1)(
1

4
− 1

2
) + (

1

3
− 1

2
) =

ch − (m− 1)
1

4
− 1

6

Since g is a PNE network, ch < m
4
− 1

12
. Considering this condition, player j’s

marginal payoff for forming a link to a member of Mk holds:

∆Πj >
1

2
+ (2m− 1)

1

3
+ (m− 1)(2m− 1)

1

4
− ch

>
1

2
+ 2(m− 1)

1

3
+ (m− 1)2 1

4
− ch

>
1

2
+ 2(m− 1)

1

3
+ (m− 1)2 1

4
− m

4
+

1

12

=
1

12
(3m2 −m + 2)
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From this point on, it is easy to check that ∆Πj > 0, ∀m > 0. By Lemma 2,

player k also gets a positive payoff from this deviation. Thus, we reach again a

contradiction with the statement of stability of g.1

• Second, there are no extreme neighborhoods. Let Mi be a non-essential neigh-

borhood. Two subcases have to be considered:

(i) In Mi there is a single player (say i) with external links. By assumption, player

i’s number of external links is at least two. Player i’s payoff can be written as:

Πi =
η0

i (g)

2
+ ... +

ηr
i (g)

r + 2
+

(m− 1)
(η0

i (g)− (m− 1))

3
+ (m− 1)

η1
i (g)

4
+ ... + (m− 1)

ηr
i (g)

r + 3
− ηi(g)ch

Since g is a PNE network, it follows that:

1

ηi(g)
[
η0

i (g)

2
+ ... +

ηr
i (g)

r + 2
+ (m− 1)

(η0
i (g)− (m− 1))

3
+

(m− 1)
η1

i (g)

4
+ ... + (m− 1)

ηr
i (g)

r + 3
] ≥ ch (ii)

Agent j’s marginal payoff for forming a link between i and j is:

∆Πj =
1

2
+

η0
i (g)

3
+ ... +

ηr
i (g)

r + 3
+

m− 1

3
+

(m− 1)
η0

i (g)

4
+ ... + (m− 1)

ηr
i (g)

r + 4
− ch

>
η0

i (g)

4
+ ... +

ηr
i (g)

2r + 4
+

(m− 1)
η0

i (g)

6
+ ... + (m− 1)

ηr
i (g)

2r + 6
− ch

≥ 1

ηi(g)
[
η0

i (g)

2
+ ... +

ηr
i (g)

r + 2
+ (m− 1)

η0
i (g)

3
+ ... + (m− 1)

ηr
i (g)

r + 3
]− ch ≥ 0

1Notice that if m = 1 only case (i) is possible.
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The first inequality is immediate, while we use ηi(g) ≥ 2 for deriving the

second inequality. The third inequality follows from condition (ii). Again, by

applying Lemma 2, both i and j have incentives to form a link between them

contradicting the assumed stability of the initial network.

(ii) In Mi there is more than one player with external links. Let i ∈ Mi be a player

with at least one external link. Such a player must exist since Mi is part of a

component with at least two neighborhoods. Player i’s payoff holds:

Πi ≥
1

2
η0

i (g) +
1

3
η1

i (g) + ... +
1

r + 2
ηr

i (g)− ch ≥ 0 (iii)

Consider the deviation consisting on forming a link between i and j. Agent j’s

marginal payoff holds:

∆Πj =
1

2
+

1

3
η0

i (g) +
1

4
η1

i (g) + ... +
1

r + 3
ηr

i (g) +

(m− 1)[
1

3
+

1

4
η0

i (g) +
1

5
η1

i (g) + ... +
1

r + 4
ηr

i (g)]− ch

=
1

2
+ η0

i (g)(
1

3
+

m− 1

4
) + ... + ηr

i (g)(
1

r + 3
+

m− 1

r + 4
)− ch

≥ 1

2
+ η0

i (g)(
1

3
+

1

4
) + ... + ηr

i (g)(
1

r + 3
+

1

r + 4
)− ch

≥ 1

2
+ η0

i (g)(
1

3
+

1

4
− 1

2
) + ... + ηr

i (g)(
1

r + 3
+

1

r + 4
− 1

r + 2
)

where the last inequality follows from condition (iii). Since 1
p

+ 1
p+1

− 1
p−1

> 0,

∀p ≥ 3, we can conclude that ∆Πj ≥ 0. By Lemma 2, player i will also

have incentives to deviate. Thus g is not a PNE network. This contradiction

completes the proof.
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Proof of Theorem 1. This proof can be divided into four parts. Each of them

is embodied by a corresponding proposition that rules out a set of potential BE

networks. But first, let us show that a pseudo-empty network can be sustained in a

BE for ch > 1
12

(3m2 + 2m + 1). The unique possible deviation consists of creating a

link between two agents (say i and j) of two different neighborhoods. The marginal

payoff for these two agents is:

∆Πj = ∆Πi =
1

2
+

2(m− 1)

3
+

(m− 1)2

4
− ch

By simple algebra, it follows that ∆Πj = ∆Πi < 0 if and only if the inequality stated

above holds.

Below we focus on showing that, for a large n, no other topology can be sustained

as a BE network for any ch. Next proposition excludes the possibility of having

essential players in a BE.

Proposition 14 Suppose n is large and m > 1. A BE network cannot have essential

players.

Proof. From now on, it is assumed that m > 1. Notice that having a large population

(n) will imply that m or M (or both) are very large. In what follows, we show that

when one of these conditions holds, no player can be essential in a BE network.

Lemma 4 For a large m, there cannot exist essential players in a BE network.

Proof. By contradiction let us assume that g is a BE network with an essential

player i ∈ Mi and with an arbitrarily large m. Notice that there are, at least, two

i-groups. The smallest group, at least, m − 1 players (the rest of members of Mi).
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Since m is large, there is always the possibility to create a new link between two

players of two different i-groups circumventing the essential player i. After that link

is created, the deviators increase their access payoff with respect to the members of

the other i-group. Since the minimum size of these groups depends positively on m,

we conclude that, for any ch, there is always a sufficiently large neighborhood size

(m) that makes that deviation profitable. This contradicts the initial statement of

stability and concludes the proof.

Now it is only left to show that the above result is reproduced when M is large.

This is done in the next steps. First we present the following preliminary result:

Lemma 5 For a large M , every essential player i has at least two links to each

i-group in a BE network.

Proof. By contradiction, imagine that g is a BE network with an essential player i

linked to some i-group (say Gj(i)) through a single link gij = 1. The total population

can be split into two groups: Gj(i) and the rest of the society. For a fixed m, notice

that a large total population implies that at least one of these two groups is also

large. Let us assume that Gj(i) is such a group. Consider that agents j and k (where

k ∈ Mi and k 6= i) deviate by creating a link between them. We claim that such a

deviation is profitable for the involved players when M is large. After this deviation

j will increase her intermediation payoff because she will avoid the essential player

i in the intermediation between Gj(i) and the rest of the society. Player k will also

circumvent an essential player in order to access to the group Gj(i). Then, for a

given ch, there is a sufficiently large Gj(i) under which both deviators will obtain a

positive marginal payoff. If Gj(i) has a limited size, we can proceed symmetrically
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with respect to the other group (the rest of the society not included in Gj(i)) and

find an analogous profitable deviation contradicting the initial statement of stability

and concluding this proof.

The next two lemmas rule out the remaining possibility of observing essential

players in BE networks for a large population and conclude the proof of the proposi-

tion.

Lemma 6 For a large M , there cannot exist essential players in essential neighbor-

hoods in a BE network.

Proof. Let g be a BE network. Assume that g contains an essential neighborhood

Mk with an essential player. Then, there is a pair of neighborhoods (Mi and Mj)

located in different Mk-groups and linked to Mk. Moreover, there is player k ∈ Mk

who is essential for the connection between the members of Mi and Mj. Following

the previous result, for a large M there are at least two links between each of these

two Mk-groups (including Mi and Mj respectively) and Mk. Take two players from

Mi and Mj linked to the essential neighborhood Mk. Then consider the deviation

consisting of deleting their links to Mk and forming a link between them. Without

increasing their costs they will circumvent the essential player k to access the other

Mk-group. Therefore, they will strictly increase their access payoff. So, they have

incentives to deviate, contradicting the initial statement of stability of g.

To conclude this proof, it is only left to show that there cannot exist essential

players in non-essential neighborhoods. This proof is developed below:

Lemma 7 For a large M , there cannot be essential players in non-essential neigh-

borhoods in a BE network.
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Proof. By contradiction, let g be a BE network with an essential player (say i) in a

non-essential neighborhood (Mi). There are two types of non-essential neighborhoods:

(i) extreme and (ii) non-extreme. Below we develop them in turn:

(i) Mi is an extreme neighborhood. We have seen that i must have, at least, two

external links. Let gij = gik = 1, where j, k ∈ Mj, be these two external links.

Consider the deviation in which j severs the link gij and forms a new link with

some player l such that l ∈ Mi and l 6= i. The marginal payoff for player j will

be positive, given that without increasing cost, one essential player (i) can be

avoided in order to reach the members of Mi. On the other hand, after forming

the link, player l would eliminate an essential player (i) in order to reach the

rest of neighborhoods assuming the cost of an additional link (ch). Again, for a

sufficiently large population of neighborhoods, player l would also have incentives

to deviate. Consequently, an extreme neighborhood cannot include an essential

player in a BE network.

(ii) Mi is a non-extreme and non-essential neighborhood. Notice that i ∈ Mi can

be essential if and only if she is the unique agent in Mi with external links. Let

gij = 1 where j /∈ Mi. Consider a deviation consisting of severing the link between

i and j, and forming a link between j and k where k ∈ Mi and k 6= i. After that

deviation takes place, j will have two different paths to communicate with any

member of Mi. Then, the marginal payoff of player j will be positive since she

avoids an essential player without increasing the cost. Player k will eliminate an

essential player to access the rest of neighborhoods with an additional cost of ch.

Thus, for a large M , k will also deviate. Consequently, this kind of neighborhoods
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cannot contain an essential player either.

In each of the two points we reach a contradiction with the initial statement of

stability of g, concluding the proof of the lemma and the proof of the proposition.

Let us move to the second part of the proof of the theorem. The following propo-

sition excludes another large set of potential BE networks.

Proposition 15 Suppose n is large. In a BE network, an essential neighborhood Mi

cannot be connected to a Mi-group through a single neighborhood.

Proof. By contradiction, let g be a BE network with an essential neighborhood

Mi connected to some Mi-group (say Gj(Mi)) through a single neighborhood (say

Mj). By the previous proposition we know that there are no essential players in

g. Therefore, there must exist (at least) two agents in Mi linked to two different

members of Mj. First, note that if there are more than two links, for example three

links between Mi and Mj, there always exists some player in Mi (or Mj) who can

sever a link without generating a new essential player. Thus, this deviator would

obtain a positive net marginal payoff of ch. Consequently, this network with three

links between Mi and Mj is not a BE.

On the other hand, let g be a network where only two players i, k ∈ Mi are

connected with two different agents l, j ∈ Mj. Let us assume that gil = gkj = 1.

Consider the following deviation: i and j sever their external links (gil and gkj) and

simultaneously form a link between them. After deviating, agents i and j become

essential in the connection between Gj(Mi) and the rest of the society. Agent i’s
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access payoff will decrease 1/6 with respect to any member of Gj(Mi) (except j). But,

after deviating, player i will get an intermediation payoff of 1/4 from the relationship

between that member of Gj(Mi) and any other member not included in Gj(Mi).

Since i, has the same number of links as before, it follows that her marginal payoff

is positive. The argument for player j is symmetric. Thus, g is not a BE. This

contradicts the initial statement of stability and concludes the proof.

Given this proposition, notice that all neighborhoods should be included in some

cycle and any essential neighborhood should be a member of more than one cycle of

neighborhoods. Thus, we still have to distinguish two remaining possible cases: a

network with two or more cycles of neighborhoods and a single cycle including all

neighborhoods. Next we present the last two propositions that take these up in turn.

Proposition 16 A network that contains more than one cycle of neighborhoods can-

not be a BE.

Proof. By Proposition 14, there cannot be essential agents in a BE. Therefore,

we focus on the cases without essential agents. Suppose that g is a BE network

without essential players and with two or more cycles of neighborhoods. Let χ1 =

(M1, M2, ...,Mp) be an ordered set of neighborhoods in one cycle. Since g is a BE any

cycle of p neighborhoods should have exactly p external links. Since g is connected,

by the previous lemma, it follows that another cycle χ2 must have some common

neighborhood with χ1. Let χ2 = (M̂1, M̂2, ..., M̂q). We split this proof into two parts:

i First, let us consider that there is a single common neighborhood Mi between

χ1 and χ2. Since there are no essential agents, Mi must have, at least, a pair
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of agents linked to each of the two cycles. More than two agents cannot exist

in a BE as showed in the proof of the previous proposition. Consequently, there

can be two, three or four agents in Mi with external links. Given the similarity

between cases, we only consider the first possibility (i.e. only two members of Mi

have external links).

Let i and j be the members of Mi with external links. In particular, gik = gjl = 1

where k and l are members of neighborhoods in χ1 (not included in χ2) and

gih = gjt = 1 where h and t are members of neighborhoods in χ2 (not included in

χ1). By the previous proposition, in a BE network, k and l should be members of

different neighborhoods and so should h and t. Consider the following deviation:

i and l sever their links to k and j respectively and simultaneously form a link

between them. Notice that after this deviation takes place, we observe a line of

p− 1 neighborhoods (say L1) connected to cycle χ2 through two essential agents,

i and l. Notice also that we can define a symmetric deviation that transforms the

network into a line of q−1 neighborhoods (say L2) connected to cycle χ1 through

two essential agents, i and t.

A sufficient condition for having a positive agent i’s marginal payoff is that the new

intermediation payoff that i obtains from the relationship between the members

of χ2 and the most distant neighborhood in L1, exceeds the loss in the i’s access

payoff with respect to this neighborhood. This condition can be written as follows:

(A2 − 1)
1

2p− 1
+ (A2 − 1)(m− 1)

1

2p
> (

1

2
− 1

2p− 2
) + (m− 1)(

1

2
− 1

2p− 1
)

where A2 = mq, i.e. the number of agents in χ2. By simple algebra, we find that
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a sufficient condition for this inequality to hold is:

mq ≥ p

On the other hand, the symmetric deviation introduced above generates a positive

marginal payoff to agent i if:

mp ≥ q

It is straight-forward that one of the two conditions stated above must hold. By

contradiction let us assume that none of them holds, i.e. mq < p and mp < q.

Then it follows that:

m(q + p) < p + q

which is a contradiction given that m > 1. Then, one of the two symmetric

deviations must be profitable for player i. Next we consider mq ≥ p.

Below we analyze the marginal payoff of the other active agent l. In particular,

we present two conditions which are sufficient for having a positive l’s marginal

payoff and show that they always hold:

– First, the new l’s intermediation payoff between the members of her neighbor-

hood and χ2 should exceed the loss in her access payoff with respect to χ2.

This is written as follows:

m− 1

3
+

(m− 1)(A2 − 1)

4
>

A2 − 1

6

It is easy to see that this inequality holds for m > 1.
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– On the other hand, the new l’s intermediation payoff between the members of

the most distant neighborhood in L1 (say M1) and the members of χ2 should

exceed the loss in her access payoff with respect to M1. This can be written as

follows:

A2 − 1

2p− 1
+ (A2 − 1)(m− 1)

1

2p
+

1

2p− 2
+ (m− 1)

1

2p− 1
>

(
1

2
− 1

2p− 3
) + (m− 1)(

1

2
− 1

2p− 2
)

A few algebraic operations lead to the conclusion that this inequality holds for

mq ≥ p.

Therefore, both i and l have incentives to deviate. This contradicts the initial

statement of stability. Then, we cannot observe two cycles with only one common

neighborhood in a BE.

ii If g has two or more common neighborhoods, except for three cases, it is always

possible to describe two symmetric deviations analogously to the previous case.

The corresponding sufficient conditions for having a positive net marginal payoff

for the involved players are: mq ≥ p− (t−1) and mp ≥ q− (t−1) where m, p and

q are defined as above and t is the number of common neighborhoods. As before,

one of these two conditions must hold. Therefore, those networks cannot exist in

a BE. The three cases in which these symmetric deviations cannot be defined are:

– Two cycles have two common neighborhoods Mi and Mj. Let i ∈ Mi and

j ∈ Mj be such that gij = 1. Both agents have another external link to one of

the cycles (the same one in both cases).
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In such a case, both agents have a strict incentive to delete the link gij. This

allows them to save ch with no loss, because no new essential player arises after

the deviation.

– Two cycles of neighborhoods (χ1 and χ2, defined as above) have t common

neighborhoods (Mi, M̄1, M̄2, ..., M̄t−2, Mj), where t ≥ 2. Let i ∈ Mi and j ∈ Mj

be the agents who have a link to a member of M̄1 and M̄t−2, respectively. Only

one of these two agents (say i) has an external link to a member of one cycle

(say χ1). Moreover, in Mj only another agent (say k) has external links to

members of χ1 (not in χ2) and χ2 (not in χ1). Notice that in such a case we

cannot define two symmetric deviations as we did in part (i) because agent i

becomes essential after any deviation that do not alter the cycle χ1. Such an

essential player does not arise in the deviations that transform part of χ1 into

a line of neighborhoods. However, we claim that at least one of the deviations

considered in part (i) is profitable for the players involved. In order to show

this claim, let us consider the case of only two common neighborhoods (Mi and

Mj) in which i ∈ Mi and j ∈ Mj are such that gij = 1.

The analysis of the deviation that transforms the network into a line of p − 2

neighborhoods connected to the cycle χ2 is analogous to the analysis developed

for case (i). Then, we can conclude that this deviation generates a positive

marginal payoff for the players involved if:

mq ≥ p− 1 (a)

So, let us analyze the deviation that transforms the network into a line q − 2
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neighborhoods L2 connected to the cycle χ1 through two essential players (see

case (i) for a description of the deviation). In particular, let us consider that k ∈

Mj and l are the deviators who become essential in the connection between χ1

and L2. In addition, after the deviation player i will become essential between

the members of her neighborhood (say Mi) and the rest of the society.

Proceeding analogously to case (i), we argue that a sufficient condition for

having a positive agent k’s marginal payoff is that the new k’s intermediation

payoff that comes from the relationship between the members of χ1 and the

most distant neighborhood in L2 (say M̂1) exceeds the loss in the k’s access

payoff with respect to M̂1 and with respect to Mi. This condition is written as

follows:

(A1 −m)
1

2q − 3
+ (A1 −m + 1)(m− 1)

1

2q − 2
+ (m− 1)2 1

2q − 1
>

(
1

2
− 1

2q − 4
) + (m− 1)(

1

2
− 1

2q − 3
) + (m− 1)(

1

2
− 1

3
)

where A1 = mp, i.e. the number of agents in χ1. By simple algebra, we find

that a sufficient condition for this inequality to hold is:

mp ≥ 4

3
q − 2

3
(b)

Assume condition (b) holds. Then, for the deviation to occur, the other deviator

(l) should also obtain a positive marginal payoff. As above, we present two

conditions which are sufficient for obtaining a positive l’s marginal payoff and

show that they always hold:

First, the new l’s intermediation payoff between the members of her neighbor-

hood and χ1 should exceed the loss in her access payoff with respect to χ1.
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This is written as follows:

(m− 1)2

5
+

(m− 1)(A1 −m)

4
>

A1 −m

6
+

m− 1

4

This inequality holds for m > 1.

On the other hand, the new l’s intermediation payoff from the relationship

between the members of the most distant neighborhood in L2 (say M̂1) and the

members of χ1 should exceed the loss in her access payoff with respect to M̂1.

This is written as follows:

A1 − 1

2q − 3
+ (A1 −m + 1)(m− 1)

1

2q − 2
+

1

2q − 4
+

(m− 1)2

2q − 1
>

(
1

2
− 1

2q − 5
) + (m− 1)(

1

2
− 1

2q − 4
)

After some algebra we conclude that this inequality holds for mp ≥ 4
3
q − 2

3
.

Consequently, agent l’s marginal payoff is also positive when condition (b)

holds.

Proceeding as before, we show that (since m ≥ 2) one of these two conditions,

(a) or (b), must hold. Therefore, one of the two deviations must be profitable

for the involved players and g cannot be sustained as a BE, reaching the desired

contradiction.

– Two cycles of neighborhoods (χ1 and χ2, defined as above) have t common

neighborhoods (Mi, M̄1, M̄2, ..., M̄t−2, Mj), where t ≥ 3. Let i ∈ Mi and j ∈ Mj

be the agents who have a link to a member of M̄1 and M̄t−2, respectively. Let

gik = gjl = 1 where k ∈ M̄1 and l ∈ M̄t−2. Both i and j have another external

link to members of two different neighborhoods of the same cycle (say χ1). Let

gir = gjs = 1 be these two links.
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We claim that such a network cannot be a BE. Let us consider the following

deviation: k and j sever their links to i and l respectively and simultaneously

form a link between them. Notice that after the deviation takes place, the

subset of common neighborhoods (M̄1, M̄2, ..., M̄t−2) becomes a line of t − 2

neighborhoods connected to the rest of neighborhoods, who form a cycle with

no essential players (χ3). Moreover, k and j become essential in the connection

between these two parts of the network. As we have already seen, the deviators

obtain a positive marginal payoff if:

A3 ≥ t− 1

where A3 = m(p + q − 2t + 2), i.e. the number of agents in χ3.

Notice that we can define another deviation in which r and j sever their external

links to i and s respectively and form a new link between them. After the

deviation takes place, we observe a cycle (χ2) of neighborhoods and a line of

p − t neighborhoods connected through two essential players, t and j. They

obtain a positive marginal payoff if:

A2 ≥ p− t + 1

where A2 = mq, i.e. the number of agents in χ2.

One of these two conditions stated above must hold. By contradiction, let us

assume that none of them holds. Then the following inequality must be true:

m(p + 2(q − t + 1)) ≤ p

Since m > 1 and, by definition, q > t this is a contradiction. Therefore, one
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of the deviations should be profitable for the players involved and the network

cannot be a BE.

Proposition 17 A single cycle containing all neighborhoods cannot be sustained in

a BE.

Proof. By Proposition 14, there cannot exist essential players in a BE. Therefore,

we focus on the case without essential players. In this case, each neighborhood has

two agents linked to two different neighborhoods. Let χ = (M̂1, M̂2, ..., M̂M) be the

ordered set of neighborhoods in the cycle such that a member of M̂i is linked to a

member of M̂i+1 for all i ∈ {1, ...,M −1} and a member of M̂M is linked to a member

of M̂1. Consider two players i ∈ M̂i and j ∈ M̂j such that: (i) gi,k = gj,l = 1,

where k ∈ M̂i+1 and l ∈ M̂j+1, and (ii) M̂i and M̂j are farthest apart in terms of

the minimum number of neighborhoods between them in the cycle. Now, consider

the deviation in which i and j delete their external links to k and l respectively and

form a link to each other. Notice that, by doing so, they create a line. Assume for

simplicity that M is even, so that there are (M−2)/2 to one side of M̂i and (M−2)/2

to the other side of M̂j in the line created. Let L = (M1, M2, ...,MM) be the ordered

set of neighborhoods in this line. Notice that the neighborhoods MM/2 and MM/2+1

of the set L correspond to the neighborhoods M̂i and M̂j of the set χ. We now show

that players i and j will strictly increase their payoff with this coordinated deviation.

We proceed in two steps: the first step is to show that the individual payoffs

are strictly increasing as we move toward the center of the line. The payoffs of an
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individual player consist of two components, the returns from accessing others and

the returns for being essential on paths between pairs of other players. Number the

players with external links in the line introduced above as 1, 2, ..., 2M−2. Notice that

the two players with external links in the center of this line are in positions M − 1

and M .

The access returns to player l (assume for simplicity that l is even) are given by:

m− 1

l + 1
+

1

l
+

m− 1

l − 1
+

1

l − 2
+ ...+

1

2
+

m− 1

2
+

1

3
+

m− 1

4
+ ...+

1

2M − l − 1
+

m− 1

2M − l

while access returns to player l + 2 are given by:

m− 1

l + 3
+

1

l + 2
+

m− 1

l + 1
+

1

l
+...+

1

2
+

m− 1

2
+

1

3
+

m− 1

4
+...+

1

2M − l − 3
+

m− 1

2M − l − 2

It follows that access returns for player l + 2 are larger than access returns for

player l if l < M − 3/2. For l odd we can proceed analogously.

We now turn to the returns for being essential. The essentialness payoff to player

l (assume for simplicity that l is even) are given by:

i∈Ml/2∑
i∈M1

j∈MM∑
j∈Ml/2+2

1

e(i, j) + 2
+

i∈Ml/2∑
i∈M1

∑
k∈Ml/2+1

k 6=l

1

e(i, k) + 2

Similarly, the essentialness payoff to player l + 1 is:

i∈Ml/2∑
i∈M1

j∈MM∑
j∈Ml/2+2

1

e(i, j) + 2
+

j∈MM∑
j∈Ml/2+2

∑
k∈Ml/2+1

k 6=l

1

e(j, k) + 2

The first part of the essentialness payoffs to the two players are equal, while the

second part of the payoffs are greater for player l + 1 if l < M/2. For l odd we can

proceed analogously.
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To show that i and j indeed obtain a positive net marginal payoff, note that the

aggregate gross payoffs obtained in both cases are the same. The above argument

implies that i and j enjoy a higher share of total gross value in the line as compared

to the other players. This implies that agents i and j earn a higher gross payoff in

the line. Since their linking cost is the same in both cases, it follows that they obtain

higher net payoffs as well, which completes the proof.
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C.1 Proofs

Proof of Proposition 8. Let g be a PNE for a given pair (h, ρ0). Let i ∈ N be a

member of this network who has µi ≥ 2. We claim that there exists a ρ̄1 < ρ0 such

that g will not be PNE for any pair (h, ρ) such that ρ < ρ̄1.

Let us focus on the case in which µi = 2 (the cases in which µi > 2 can be proved

analogously). Let players k and j be the destinations of these two links, that is,

gij = gik = 1. Here we consider the case in which i 6= j and i 6= k. The case in which

i = j or i = k is analogous, thus omitted. Next we analyze i’s incentives to deviate.

At this point we have to distinguish between the following two cases:

i
∑

l∈Nr(g)
1
µl
≥ q+1

ρ
for r = k, j.

The i’s marginal payoff for cutting the link gij off is positive if and only if:

f(hi + hk)∑
l∈Nk

1
µl

+ 1
2

>
1

2
[
f(hi + hk)∑

l∈Nk

1
µl

+
f(hi + hj)∑

l∈Nj

1
µl

] (i)

127
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On the other hand, i’s marginal payoff for cutting the link gik off is positive if

and only if:

f(hi + hj)∑
l∈Nj

1
µl

+ 1
2

>
1

2
[
f(hi + hk)∑

l∈Nk

1
µl

+
f(hi + hj)∑

l∈Nj

1
µl

] (ii)

Given that 0 < 1P
l∈Nr(g)

1
µl

≤ ρ
q+1

for r = k, j we can say that:

limρ→0(
1∑

l∈Nr

1
µl

+ 1
2

− 1∑
l∈Nr(g)

1
µl

) = 0

Following the definition of limit we can say that for any ε > 0, there exists a ρ′

such that | 1P
l∈Nr

1
µl

+ 1
2

− 1P
l∈Nr(g)

1
µl

| < ε for r = k, j, for any ρ < ρ′. Given that

hj 6= hk, notice that if the LHS of conditions (i) and (ii) were equal to f(hi+hr)P
l∈Nr

1
µl

for

r = k, j respectively, (i) and (ii) would be complementary. So, we conclude that

for any specific vector h, and in particular for any specific triple (hi, hj, hk), there

exists a ρ′ such that some of the two conditions (i) and (ii) has to hold for any

ρ < ρ′. That is, for a sufficiently small ρ agent i will have incentives to deviate

and cut one of her out-degree links off.

ii
∑

l∈Nj(g)
1
µl
≥ q+1

ρ
and q+1

ρ
− 1

2
≤

∑
l∈Nk(g)

1
µl

< q+1
ρ

(or vice versa).

The i’s marginal payoff for cutting the link gij off is positive if and only if:

f(hi + hk)∑
l∈Nk

1
µl

+ 1
2

>
1

2
[

ρ

1 + q
f(hi + hk) +

f(hi + hj)∑
l∈Nj

1
µl

] (iii)

The i’s marginal payoff for cutting the link gik off is positive if and only if:

f(hi + hj)∑
l∈Nj

1
µl

+ 1
2

>
1

2
[

ρ

1 + q
f(hi + hk) +

f(hi + hj)∑
l∈Nj

1
µl

] (iv)

Given that 0 < 1P
l∈Nr(g)

1
µl

+ 1
2

≤ ρ
q+1

for r = k, j we can say that limρ→0(
1P

l∈Nk

1
µl

+ 1
2

−

ρ
1+q

) = 0 and limρ→0(
1P

l∈Nj

1
µl

+ 1
2

− 1P
l∈Nj

1
µl

) = 0. Following the definition of limit
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we can say that for any ε > 0, there exists a ρ′′ such that | 1P
l∈Nk

1
µl

+ 1
2

− ρ
1+q

| < ε

and | 1P
l∈Nj

1
µl

+ 1
2

− 1P
l∈Nj

1
µl

| < ε for any ρ < ρ′′. Given that hj 6= hk, notice

that if the LHS of conditions (iii) and (iv) were equal to ρf(hi+hk)
1+q

and
f(hi+hj)P

l∈Nj

1
µl

respectively, (iii) and (iv) would be complementary. So, we conclude that for any

specific vector h, and in particular for any specific triple (hi, hj, hk), there exists a

ρ′′ such that some of the two conditions (iii) and (iv) has to hold for any ρ < ρ′′.

That is, for a sufficiently small ρ agent i will have incentives to deviate and cut

one of her out-degree links off.

iii q+1
ρ
− 1

2
≤

∑
l∈Nr(g)

1
µl

< q+1
ρ

for r = k, j.

iv
∑

l∈Nj(g)
1
µl
≥ q+1

ρ
and

∑
l∈Nk(g)

1
µl

< q+1
ρ
− 1

2
.

v q+1
ρ
− 1

2
≤

∑
l∈Nj(g)

1
µl

< q+1
ρ

and
∑

l∈Nk(g)
1
µl

< q+1
ρ
− 1

2
.

The proof for these three cases proceeds analogously to the previous one.

vi
∑

l∈Nr(g)
1
µl

< q+1
ρ
− 1

2
for r = k, j.

In this case it is easy to observe that agent i will have incentives to sever the link

with the agent with the lowest level of talent for any given ρ.

Therefore, in any possible case in which ∃i ∈ N such that µi ≥ 2, we can find a

sufficiently low value for ρ under which there is a profitable deviation. Defining ρ̄1 as

the minimum of all these values of ρ, the proof of the proposition is done.

Proof of Proposition 9. Suppose we have an agent i such that
∑

l∈Ni

1
µl
≥ 1+ q+1

ρ0

in a network g ∈ G∗
h,ρ0

for a given pair (h, ρ0). First, we claim that there is a ρ (say
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ρ̄2) such that for any ρ < ρ̄2, ∃k ∈ Ni such that k 6= i, k /∈ Mi and:

cf(hi + hk) <
1∑

l∈Ni

1
µl
− 1

µk

(
∑

l∈Ni\{i,k}

1

µl

cf(hl + hi) + gii
1

µi

f(hi)) (v)

In words, for a sufficiently low ρ, some player k with a link towards i (k 6= i) has

a joint productivity with i below the average productivity of i without considering

researcher k. Notice that from Proposition 8, there exists a ρ (that we call ρ̄1) such

that µi = 1 in any g ∈ G∗
h,ρ for any ρ < ρ̄1. Therefore, if at least two agents j, k ∈ Ni

have a joint productivity with i below the average of the rest of players in Ni, we

know that one of them will not be in Mi for any ρ < ρ̄1, thus one of the players holds

the conditions stated above. However, we can formulate a counter example. Imagine

there is a single agent (say j) whose joint productivity with i is below the average of

the rest of players in Ni. Moreover, let j ∈ Mi. In such a case, there exists no player

k holding the conditions stated above. Next, we show that for a sufficiently low ρ

this case cannot exist when
∑

l∈Ni

1
µl
≥ 1 + q+1

ρ
.

Consider an ε > 0 arbitrarily small. Imagine that cf(hj + hi) = ε for j 6= i and

f(hj) = ε for j = i. Let k ∈ Ni, k 6= j and: ε < cf(hk + hi) < cf(hl + hi) ∀l ∈ Ni\{i, k, j} and cf(hk + hi) < f(hi) for k 6= i

ε < f(hk) < cf(hl + hi) ∀l ∈ Ni\{k, j} for k = i

Let us assume that cf(hk + hi) = b for k 6= i (or f(k) = b for k = i). We

know that there is an ε > 0 arbitrarily small under which cf(hl + hi) > b + ε

∀l ∈ Ni\{i, j, k}.Then, the average productivity of the players of Ni without includ-

ing agent k is higher than:

1∑
l∈Ni

1
µl
− 1

µk

(ε + (
∑
l∈Ni

1

µl

− 1

µj

− 1

µk

)(b + ε))
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After simple algebra we conclude that this expression is higher than b when the

following condition holds:

b + ε > (b +
b∑

l∈Ni

1
µl
− 1

µk

)

∑
l∈Ni

1
µl
− 1

µk∑
l∈Ni

1
µl
− 1

µk
− 1

µj
+ 1

Given that µj ≥ 1,
P

l∈Ni

1
µl
− 1

µkP
l∈Ni

1
µl
− 1

µk
− 1

µj
+1
≤ 1. Since

∑
l∈Ni

1
µl
≥ 1+ q+1

ρ
, we conclude that

limρ→o
bP

l∈Ni

1
µl
− 1

µk

= 0. This implies that for any ε > 0, we can always find a value

of ρ (say ρ′) such that | bP
l∈Ni

1
µl
− 1

µk

| < ε for any ρ < ρ′. Therefore, for any ρ < ρ′ we

have at least two agents (j and k) who hold condition (v). As commented above, one

of them must fulfill the conditions stated in the beginning of the proof when ρ < ρ̄1.

Let ρ̄2 ≡ min(ρ̄1, ρ
′). That concludes the proof of the initial claim.

Our next step is to show that a network that holds these conditions cannot be

sustained as a PNE for ρ < ρ̄2.

Agent i’s marginal payoff for cutting the link gki off is:

∆Πi =
1∑

l∈Ni

1
µl
− 1

µk

[
∑

l∈Ni\{i,k}

1

µl

cf(hl + hi) + gii
1

µi

f(hi)]

− 1∑
l∈Ni

1
µl

[
∑

l∈Ni\{i}

1

µl

cf(hl + hi) + gii
1

µi

f(hi)]

After simple algebra we can say that ∆Πi > 0 if and only if condition (v) holds. This

happens by definition of k. Thus, agent i has incentives to deviate.

Proof of Proposition 10. Before proving this proposition we formulate an addi-

tional lemma.

Lemma 8 If c ≥ 1
2
, f(0) = 0 and f(·) is linear or convex, then cf(hk + hl) > f(hl)

for hk > hl.
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Proof. For a linear or convex f(·) with f(0) = 0 and c = 1
2
, the inequality cf(hk +

hl) > f(hl) reduces to hk > hl after simple algebra. For f(·) convex and c > 1
2
, the

difference between cf(hk +hl) and f(hl) will be higher; therefore, the inequality of the

statement also holds.

By contradiction let us assume that we have a PNE network in which agent i

holds
∑

l∈Ni

1
µl

< q+1
ρ
− 1 and there exists an agent j with hj < hi who holds: gjk = 0

∀k such that hk ≥ hi. Imagine the deviation in which player j proposes to player i

the formation of a new link. In such case, the marginal utility for player j is:

∆Πj =
1

µj + 1
[

∑
l∈Mj\{j}

Θ̂(l)cf(hl + hj) + gjjΘ̂(j)f(hj) +
ρ

1 + q
cf(hj + hi)]

− 1

µj

[
∑

l∈Mj\{j}

Θ(l)cf(hl + hj) + gjjΘ(j)f(hj)]

where Θ̂(l) corresponds to the variable Θ(l) after the deviation. After simple algebra

we can write that ∆Πj > 0 if and only if:

ρ

1 + q
cf(hj + hi) +

∑
l∈Mj\{j}

(Θ̂(l)−Θ(l))cf(hl + hj) + gjj(Θ̂(j)−Θ(j))f(hj) >

1

µj

[
∑

l∈Mj\{j}

Θ(l)cf(hl + hj) + gjjΘ(j)f(hj)]

On the one hand, by definition we know that Θ(l) is lower or equal than ρ
1+q

for

any l ∈ N , and by assumption we also know that hl < hi ∀l ∈ Mj. On the other hand,

by Lemma 8 we can say that for a linear or convex f(·) and c ≥ 1
2
, cf(hj + hi) >

f(hj). These conditions imply that ρ
1+q

cf(hj + hi) > 1
µj

[
∑

l∈Mj\{j}
Θ(l)cf(hl + hj) +

gjjΘ(j)f(hj)]. Given that for any l ∈ Mj, Θ̂(l) > Θ(l), we conclude that ∆Πj > 0.
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To complete the proof, we need to show that agent i will have incentives to form

the link. Her marginal utility from accepting it is:

∆Πi =
ρ

1 + q
[

∑
l∈Ni\{i}

1

µl

cf(hi + hl) + gii
1

µi

f(hi) +
1

µj + 1
cf(hi + hj)]

+
c

µi

∑
l∈Mi\{i}

l∈Mj

Θ̂(l)cf(hl + hi)

− [
ρ

1 + q
[

∑
l∈Ni\{i}

1

µl

cf(hi + hl) + gii
1

µi

f(hi)] +
c

µi

∑
l∈Mi\{i}

l∈Mj

Θ(l)cf(hl + hi)]

where Θ̂(l) is defined as above. After simple algebra:

∆Πi =
ρ

1 + q
cf(hi + hj) +

c

µi

∑
l∈Mi\{i}

l∈Mj

(Θ̂(l)−Θ(l))cf(hl + hi)

Since Θ̂(l) > Θ(l) for any l ∈ Mj, we conclude that ∆Πi > 0, contradicting the

initial statement of stability.

Proof of Lemma 1. In this proof we show that for any given pair (h, ρ) such

that ρ < ρ̄2, if g ∈ Gs there is only one possible distribution of links under which no

player has incentives either to delete an in-degree or to create a new in-degree link

coming from a player with a lower talent. This implies that only one network in Gs

can hold this condition. To demonstrate this, we prove that any node i must have a

given amount of in-degree links to not have incentives to change ηi,

Imagine a player i and a given in-degree ηi > 0. Given that ρ < ρ̄2 ≤ ρ̄1, players

can have at most a single out-degree link in any PNE network (Proposition 8). Then,∑
l∈Ni

1
µl

= ηi ∀i ∈ N . Moreover, since ρ < ρ̄2, we can say that q+1
ρ
−1 ≤ ηi < q+1

ρ
+1

(Corollary 1). Given that ηi can only take natural numbers, there are at most two

possible values for ηi in any PNE (say η̄ and η̄ − 1). We claim that for only one of
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these two values agent i will not have incentives to change her in-degree for a given

pair (h, ρ). First, the following must hold:

q + 1

ρ
− 1 ≤ η̄ − 1 <

q + 1

ρ
≤ η̄ <

q + 1

ρ
+ 1

Given these inequalities, we conclude that in any g ∈ Gs no player i with ηi = η̄ will

have incentives to accept an additional in-degree link. Moreover, no player i with

ηi = η̄ − 1 will have incentives to delete one existing in-degree link. Therefore, there

are only two possibilities of deviation. An agent i can have incentives to cut one

in-degree link off when ηi = η̄ or she can have incentives to accept some additional

in-degree link when ηi = η̄− 1. Analyzing the marginal payoff of both deviations, we

observe that if one is positive the other must be negative.

Let ηi = η̄ and gji = 1 in a given network g1.The agent i’s marginal payoff for

deleting the in-degree link gji is:

∆Πi =
ρ

1 + q
[

∑
l∈Ni(g1)\{i,j}

cf(hi + hl) + giif(hi)]−
1

η̄
[

∑
l∈Ni(g1)\{i}

cf(hi + hl) + giif(hi)]

After simple algebra, ∆Πi > 0 if and only if:

(
η̄ρ

1 + q
− 1)[

∑
l∈Ni(g1)\{i,j}

cf(hi + hl) + giif(hi)] > cf(hi + hj)

On the other hand, let ηi = η̄−1 and gji = 0 in a given network g2 for some agent

j such that hj < hi. The agent i’s marginal payoff for creating the link gji is:

∆Πi =
1

η̄
[

∑
l∈Ni(g2)\{i}

cf(hi+hl)+cf(hi+hj)+giif(hi)]−
ρ

1 + q
[

∑
l∈Ni(g2)\{i}

cf(hi+hl)+giif(hi)]

After simple algebra, ∆Πi > 0 if and only if:

(
η̄ρ

1 + q
− 1)[

∑
l∈Ni(g2)\{i}

cf(hi + hl) + giif(hi)] < cf(hi + hj)
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Notice that
∑

l∈Ni(g2)\{i} cf(hi + hl) =
∑

l∈Ni(g1)\{i,j} cf(hi + hl). Therefore, one (and

only one) of the two previous inequalities will hold for any vector h and any possible

pair of players i and j such that hj < hi. Then, in Gs, any agent i can receive a single

number of in-degree links in order to have no incentives neither to cut some in-degree

link off nor to add some new in-degree link from an agent with a lower talent. This

implies that only a single network in Gs holds these conditions.

Proof of Proposition 11. Let g be a PNE network for some pair (h, ρ0), i.e.

g ∈ G∗
h,ρ0

. Let gs
ij denote the link gij in the network gs (gs

ij = 1 if and only if node

i have a link towards j in gs). Imagine that g is different from gs. This implies that

there exists an agent (say i) such that gil 6= gs
il for some l ∈ N . There are various

scenarios in which this holds. In the following lines, we show that there always exists

a sufficiently low value of ρ (say ρ̂1) under which none of these scenarios can be

sustained in a PNE for any ρ < ρ̂1. Let j ∈ N be such that gs
ij = 1.

(a) The first scenario is that agent i has more than one out-degree link. Following

Proposition 8, we know that there exists a ρ (we called ρ̄1) such that such a

network cannot be sustained as a PNE for any ρ < ρ̄1.

(b) Second, agent i can have a link to k, i.e. gik = 1, and hk < hj. Now let us show

that this second case cannot hold in a PNE network. Two subcases need to be

considered:

– k = i. Consider that player i creates a new link gij. Let us consider the extreme

(and less favorable) case in which oi ≤ 1 and
∑

l∈Nj

1
µl
≥ q+1

ρ
. The agent i’s
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marginal payoff from this deviation is:

∆Πi =
c∑

l∈Nj

1
µl

+ 1
µi+1

1

µi + 1
f(hj + hi)

+
ρ

1 + q
[

∑
l∈Ni\{i}

1

µl

cf(hl + hi) +
1

µi + 1
f(hi)]

− ρ

1 + q
[

∑
l∈Ni\{i}

1

µl

cf(hl + hi) +
1

µi

f(hi)]

We conclude that ∆Πi > 0 if and only if:

cf(hj + hi) >
ρ(

∑
l∈Nj

1
µl

+ 1
µi

)

1 + q

1

µi

f(hi) (vi)

Given Proposition 9, ∃ρ̄2 such that
∑

l∈Nj

1
µl

< 1+ q+1
ρ

for any ρ < ρ̄2 in a PNE.

Given that
∑

l∈Nj

1
µl
≥ q+1

ρ
, we can write that for any ρ < ρ̄2,

ρ(
P

l∈Nj

1
µl

+ 1
µi

)

1+q
∈

[1 + ρ
1+q

1
µi

, 1 + ρ
1+q

(1 + 1
µi

)). So, limρ→0

ρ(
P

l∈Nj

1
µl

+ 1
µi

)

1+q
= 1. On the other hand,

from Lemma 8 we know that cf(hj + hi) > f(hi) for f(·) linear or convex

and c ≥ 1
2
. Following the definition of limit, we conclude that for a linear

or convex f(·) and for any ε > 0, there always exists a ρ′ ≤ ρ̄2 such that

|
ρ(

P
l∈Nj

1
µl

+ 1
µi

)

1+q
− 1| < ε, ∀ρ < ρ′. Therefore, given that µi ≥ 1, we can state

that, for any vector h, and in particular for any pair (hj, hi) we can find a

sufficiently low value of ρ (say ρ′) such that
ρ(

P
l∈Ni

1
µl

+ 1
µi+1

)

1+q
is sufficiently close

to 1 to hold condition (vi) for any ρ < ρ′ (when f(·) is linear or convex).

– k 6= i. Let us assume the extreme (and less favorable) case in which ok < 1 and∑
l∈Nj

1
µl
≥ q+1

ρ
. The marginal payoff derived from adding the link gij to the

network is positive when:

f(hj + hi) >
(
∑

l∈Nj

1
µl

+ 1
µi

)ρ

1 + q

1

µi

f(hi + hk) (vii)
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From the previous point we know that for ρ < ρ̄2, limρ→0

ρ(
P

l∈Nj

1
µl

+ 1
µi

)

1+q
= 1.

Given that in case (b) hj > hk and that µi ≥ 1, following the definition of

limit we conclude that there always exists a ρ′′ < ρ̄2 such that
ρ(

P
l∈Ni

1
µl

+ 1
µi+1

)

1+q

is sufficiently close to 1 to hold condition (vii) for any ρ < ρ′′.

(c) There is a third case in which i has a unique link to k and hk > hj. For any

ρ < ρ̄1, no other node has more than one link. Since g is a PNE, this implies that

if gik = 1, either gki = 1 and then k is in case (b) or ∃l ∈ N such that gs
lk = 1 and

glk = 0; otherwise, agent k would have incentives to cut some in-degree link off

(from the definition of gs). If ∃l ∈ N such that gs
lk = 1 and glk = 0, notice that

glr = 1 for some r ∈ N . If hr < hk agent l is in case (b). If hr > hk we are able

to repeat the same argument as before. Since n is finite, we eventually reach an

iteration in which some player would be in case (b). Consequently, if a player is

in case (c), for a sufficiently low ρ there must exist a different player in case (b).

But for the link gij to be formed, node j must agree. If oj ≤ 1 after the deviation,

player j’s marginal payoff will be positive. On the other hand, let us consider the case

in which
∑

l∈Nj

1
µl
≥ q+1

ρ
(the case in which q+1

ρ
− 1 ≤

∑
l∈Nj

1
µl

< q+1
ρ

is analogous).

Player j’s marginal payoff for forming gi,j is:

∆Πj =
1∑

l∈Nj

1
µl

+ 1
µi+1

[
∑

l∈Nj\{j}

c
1

µl

f(hl + hj) + gjj
1

µj

f(hj) +
1

µi + 1
cf(hi + hj)]−

1∑
l∈Nj

1
µl

[
∑

l∈Nj\{j}

c
1

µl

f(hl + hj) + gjj
1

µj

f(hj)]

After simple algebra we conclude that ∆Πj > 0 if and only if:

cf(hi + hj) >

1
µi+1∑
l∈Nj

1
µl

[
∑

l∈Nj\{j}

c
1

µl

f(hl + hj) + gjj
1

µj

f(hj)] (viii)
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where the RHS can be interpreted as 1
µi+1

times the average productivity of the ideas

stored in the queue of j. Given that agent j receives some link in gs, we conclude

that j will have a relatively high level of talent. Consequently, we can say that there

should be a ρo such that for any ρ < ρo the average productivity of the ideas of the

queue of i depends positively on ρ (and, in consequence, it depends negatively on∑
l∈Nj

1
µl

). Therefore, since µi + 1 ≥ 1, it should exist a ρ′′′ such that for any ρ < ρ′′′

condition (viii) holds.

Given that ρ′ ≤ ρ̄2 and ρ′′ ≤ ρ̄2 ≤ ρ̄1, if we define ρ̂1 as min(ρ′, ρ′′, ρ′′′) the initial

claim is proved.

Proof of Proposition 12. For gs to be a PNE network, it should be robust to

each of the three deviations of the following list. We show that, for a sufficiently low

ρ, gs is robust to each of them. Let gs
ij = 1

a Agent i changes the destination of her open ideas from j to herself (by definition of

gs, hi < hj). We claim that agent i’s marginal payoff obtained from this deviation

is negative for a sufficiently low value of ρ, and therefore, network gs is robust to

such a deviation for a sufficiently low ρ. To show it, let us consider the extreme

(and less favorable) case in which researcher j holds
∑

l∈Nj

1
µl
≥ 1+q

ρ
and agent i

holds
∑

l∈Ni

1
µl

+ 1 < 1+q
ρ

. In that case, i’s marginal payoff will be negative when

the following condition holds:

f(hi) <
1 + q

ρ
∑

l∈Nj

1
µl

cf(hi + hj) (ix)

Given that j receives some link in gs (then, she has a relatively high level of

talent), we can use Corollary 1 to state that q+1
ρ
− 1 ≤

∑
l∈Nj(gs)

1
µl

< 1 + q+1
ρ
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for a ρ < ρ̄2. After simple algebra, we observe that it is equivalent to say that

1+q
1+q+ρ

< 1+q

ρ
P

l∈Nj

1
µl

≤ 1+q
1+q−ρ

. So, we conclude that for ρ < ρ̄2, limρ→0
1+q

ρ
P

l∈Nj

1
µl

= 1.

On the other hand, from Lemma 8 we know that cf(hj +hi) > f(hi) for f(·) linear

or convex, hi < hj and c ≥ 1
2
. Following the definition of limit, we can say that

for any ε > 0, there always exists a ρ′ < ρ̄2 such that | 1+q

ρ
P

l∈Nj

1
µl

− 1| < ε, ∀ρ < ρ′.

Then, for any h vector, and in particular for any pair (hi, hj) we can always find a

sufficiently low value of ρ (say ρ′) such that condition (ix) is hold for any ρ < ρ′,

when f(·) is linear or convex. In this case, agent i will not have incentives to

deviate.

b Agent i deletes one (or more) in-degree link. Given Lemma 1, the agent i’s

marginal payoff for deviating will be negative. Thus, gs is robust to such deviation.

c Agent i proposes an additional link to some agent k with hk > hj. Given Lemma

1, agent k will have a negative marginal payoff for accepting the link gik. Thus

gs is also robust to such deviation by definition.

d Node i proposes the formation of the additional link gik to some player k with

hk < hj
1. We claim that the agent i’s marginal payoff obtained from this deviation

is negative for a sufficiently low value of ρ, and therefore, network gs is also robust

to such a deviation for a sufficiently low ρ. Let us consider the extreme (and less

favorable) case in which
∑

l∈Nk

1
µl

+ 1
2

< 1+q
ρ

and
∑

l∈Nj

1
µl
− 1

2
≥ 1+q

ρ
. Researcher

1Notice that k is not necessarily different from i. The case in which k = i is considered in part
(e).
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i’s marginal utility obtained from that deviation would be:

∆Πi =
c

µi + 1
[

1∑
l∈Nj

1
µl
− 1

2

f(hi + hj) +
ρ

1 + q
f(hi + hk)]

− 1

µi

∑
l∈Nj

1
µl

cf(hi + hj)

where µi = 1. After simple algebra, we observe that ∆Πi > 0 if and only if:

f(hi + hk) > f(hi + hj)
1 + q

ρ

∑
l∈Nj

1
µl
− 1

(
∑

l∈Nj

1
µl
− 1

2
)(

∑
l∈Nj

1
µl

)
(x)

We know that hk < hj. On the other hand, given that j has a relatively high level

of talent, we can use Corollary 1 to state that q+1
ρ
−1 ≤

∑
l∈Nj(gs)

1
µl

< 1+ q+1
ρ

for

ρ < ρ̄2. Then we conclude that, for ρ < ρ̄2, limρ→o
1+q
ρ

P
l∈Nj

1
µl
−1

(
P

l∈Nj

1
µl
− 1

2
)(

P
l∈Nj

1
µl

)
= 1.

Since hk < hj and following the definition of limit, we conclude that for any vector

h there always exists a sufficiently low value of ρ (say ρ′′ < ρ̄2) such that condition

(x) holds for any ρ < ρ′′ and, as a consequence, gs is robust to this deviation.

e Node i deviates by forming an additional link towards herself. We claim that

the marginal payoff obtained from this deviation is negative for a sufficiently low

value of ρ, and therefore, network gs is also robust to such a deviation when ρ is

sufficiently low. Let us consider the extreme (and less favorable) case in which∑
l∈Ni

1
µl

+ 1
2

< 1+q
ρ

and
∑

l∈Nj

1
µl
− 1

2
≥ 1+q

ρ
. The marginal payoff obtained by i

would be:

∆Πi =
1

µi + 1
[

c∑
l∈Nj

1
µl
− 1

2

f(hi + hj) +
ρ

1 + q
f(hi)]

− c

µi

1∑
l∈Nj

1
µl

f(hi + hj)
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After simple algebra, we see that ∆Πi > 0 if and only if:

f(hi) > cf(hi + hj)
1 + q

ρ

∑
l∈Nj

1
µl
− 1

(
∑

l∈Nj

1
µl
− 1

2
)(

∑
l∈Nj

1
µl

)
(xi)

From the definition of gs we know that hi < hj. Repeating the same arguments as

before we conclude that limρ→o
1+q
ρ

P
l∈Nj

1
µl
−1

(
P

l∈Nj

1
µl
− 1

2
)(

P
l∈Nj

1
µl

)
= 1. On the other hand,

from Lemma 8 we know that cf(hj +hi) > f(hi) for f(·) linear or convex, hi < hj

and c ≥ 1
2
. Following the definition of limit, we can say that for any ε > 0,

there always exists a ρ′′′ (ρ′′′ < ρ̄2) such that |1+q
ρ

P
l∈Nj

1
µl
−1

(
P

l∈Nj

1
µl
− 1

2
)(

P
l∈Nj

1
µl

)
− 1| < ε,

∀ρ < ρ′′′. Then, for any h vector, and in particular for any pair (hi, hj) we can

always find a sufficiently low value of ρ (say ρ′′′) such that condition (xi) is hold

for any ρ < ρ′′′, when f(·) is linear or convex. In this case agent i will not have

incentives to deviate; so gs is robust to this deviation.

Defining ρ̂2 as min(ρ′, ρ′′, ρ′′′) the claim of the proposition is proved.

Proof of Proposition 13. Let us divide the proof in two steps. First, we want to

show that in gs if we substitute the link gij by another one, say gik, such that hj > hk,

the aggregate payoff will decrease when ρ is sufficiently small. Given gs, µr = 1 and∑
l∈Nr

1
µi

= ηr, ∀r ∈ N . Following the definition of gs, if ηr > 0 then ηr can take one

of these two possible values, ηr = η̄ or ηr = η̄ − 1. In the proof of lemma 1 we show

that:

q + 1

ρ
− 1 ≤ η̄ − 1 <

q + 1

ρ
≤ η̄ <

q + 1

ρ
+ 1

Let us assume the less favorable case (the one in which this marginal aggregate

payoff is maximum) in which agent j has q+1
ρ
≤

∑
l∈Nj

1
µl

< q+1
ρ

+ 1 and ok < 1 even
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after receiving the additional link. In such a case:

4
∑
i∈N

Πi =
ρ

1 + q
[

∑
l∈Nj\{i,j}

cf(hl + hj) + gjjf(hj)] +
2ρ

1 + q
cf(hi + hk)−

[
1∑

l∈Nj

1
µl

[
∑

l∈Nj\{j}

cf(hl + hj) + gjjf(hj)] +
1∑

l∈Nj

1
µl

cf(hi + hj)]

After simple algebra 4
∑

i∈N Πi > 0 if and only if:

(
ρ

∑
l∈Nj

1
µl

1 + q
−1)[

∑
l∈Nj\{i,j}

cf(hl+hj)+gjjf(hj)] > 2[cf(hi+hj)−
ρ

∑
l∈Nj

1
µl

1 + q
cf(hi+hk)]

Since q+1
ρ

≤
∑

l∈Nj

1
µl

< q+1
ρ

+ 1,
ρ

P
l∈Nj

1
µl

1+q
∈ [1, 1 + ρ

1+q
). Then we can say that

limρ→0

ρ
P

l∈Nj

1
µl

1+q
= 1. Given that hj > hk, we can say that ∃ρ′ such that the RHS will

be higher than certain ε (> 0) for any ρ < ρ′. On the other hand, limρ→0(
ρ

P
l∈Nj

1
µl

1+q
−

1) = 0. Consequently, for the previous ε > 0, ∃ρ′′ such that the LHS will be lower

than ε for any ρ < ρ′′. Then, we can always find a value of ρ (say ρ′′′) such that the

last inequality will not hold for any h and for any ρ < ρ′′′.

Second, we want to show that in gs if we substitute the link gij by another one,

say gik, such that hj < hk, the aggregate payoff will increase when ρ is sufficiently

small. Let us assume the less favorable case (the one in which this marginal aggregate

payoff is minimum) in which agent j has q+1
ρ
− 1 ≤

∑
l∈Nj

1
µl

< q+1
ρ

and ok ≥ 1. In

such a case:

4
∑
i∈N

Πi =
1∑

l∈Nk

1
µl

+ 1
(
∑
l∈Nk

cf(hl+hk)+gkkf(hk)+cf(hi+hk))+
1∑

l∈Nk

1
µl

+ 1
cf(hi+hk)

+
ρ

1 + q

∑
l∈Nj\i

cf(hl + hj)−
1∑

l∈Nk

1
µl

(
∑
l∈Nk

cf(hl + hk) + gkkf(hk))

− ρ

1 + q
cf(hi + hj)−

ρ

1 + q

∑
l∈Nj

cf(hl + hj)
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After simple algebra 4
∑

i∈N Πi > 0 if and only if:

1∑
l∈Nk

1
µl

(
∑
l∈Nk

cf(hl + hk) + gkkf(hk)) < 2(cf(hi + hk)−
ρ(

∑
l∈Nk

1
µl

+ 1)

1 + q
cf(hi + hj))

Since ok ≥ 1, we can say that q+1
ρ

≤
∑

l∈Nk

1
µl

< q+1
ρ

+ 1. Then
ρ(

P
l∈Nk

1
µl

+1)

1+q
∈

[1 + ρ
1+q

, 1 + 2ρ
1+q

). Consequently, limρ→0

ρ(
P

l∈Nk

1
µl

+1)

1+q
= 1. Since hj < hk, we can say

that ∃ρiv such that the RHS will be higher than a certain ε > 0 for any ρ < ρiv. On

the other hand, limρ→0
1P

l∈Nk

1
µl

= 0. Then, for the previous ε > 0, ∃ρv such that the

LHS will be lower than ε for any ρ < ρv. Then, we can always find a value of ρ (say

ρvi) such that the last inequality will hold for any h and any ρ < ρvi.

Defining ρ∗ as min(ρ′′′, ρvi) the statement of Proposition 13 is proved.


