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Abstract

The multiarmed bandit problem (MAB), is one of the simplest non-trivial problems

in which one must face the conflict between taking actions which yield immediate

reward and taking actions whose benefit will come only later. It was considered

intractable until the early 70’s, when Gittins and Jones proved that the problem

solution can be easily characterized in terms of a set of dynamic allocation indices,

attached to project states. The following index policy was then proved to be optimal:

work at each time on those projects whose current states have larger indices.

Later, Peter Whittle introduced an important but intractable class of restless

bandit problems generalising the multi-armed bandit problem by allowing evolution

for passive projects. Despite a developing body of evidence which underscores the

strong performance of Whittle’s index policy, a continuing challenge to implementa-

tion is the need to establish that all competing projects pass an indexability test.

In this work, we first deploy Gittins index theory to establish the indexability of

inter alia general families of restless bandits which arise in problems of stochastic

scheduling problems with switching penalties and machine maintenance. We also

give formulae for the resulting Whittle indices. Numerical investigations testify to

the outstandingly strong performance of the index heuristics concerned.

The second class of problems of interest concerns two families of Markov decision

problems which fall within the family of bi-directional restless bandits. The spinning

plates problem concerns the optimal management of a portfolio of reward generating

assets whose yields grow with investment but otherwise tend to decline. In the model

of asset exploitation called the squad system, the yield from an asset tends to decline

when it is utilised but will recover when the asset is at rest. In all cases, simply

stated conditions are given which guarantee indexability of the problem together with

necessary and sufficient conditions for its strict indexability. The index heuristics for

asset activation which emerge from the analysis are assessed numerically and found

to perform very strongly.
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Chapter 1

Introduction

Scheduling and dynamic allocation problems are forms of decision making

which play an important role in manufacturing as well as in service industries.

In our globalized world effective sequencing and scheduling have become a ne-

cessity for success in the market place. Companies have, for example, to meet

shipping dates committed to the customers, as failure to do so may result in a

significant loss of profit. They also have to schedule activities in such a way

as to use the resources available in an efficient manner.

More specifically, dynamic allocation problems are concerned about the

sharing of limited resources between various activities which are being pursued.

Problems in several disciplines fall into a particular class of sequential decision

models, in which, at each decision time, an operator or manager observes the

state of a number of projects and, based on current system’s information, he

selects a project or projects to be operated or processed during the following

period. The decision problem is to determine the strategy for sequentially

activating projects in order to maximize an objective, which is in general a

function of the rewards collected, e.g. to maximize the expected total reward

over the planning horizon.

1
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As discussed, scheduling concerns the allocation of limited resources to tasks

over time. The resources and tasks may take many different forms. Resources

may be machines in a workshop, cranes in a port, crew at a construction

site, processing units in a computing environment, monetary resources to be

allocated to assets, and so on and so forth. The tasks may be operations in

a production process, uploading and downloading activities in a port, stages

in a construction project, executions of computer programs, and so on. Each

task may have a different priority level, starting time and due date, as well

as there can be certain pre-established ordering for processing the different

jobs. The objectives may also take many forms. One possible objective

is the minimisation of the completion time of the last task, another is the

minimisation of the number of tasks completed after the committed due dates,

and one more is the minimization (maximisation) of certain measure of cost

(benefit) incurred (earned) during the operation of the system.

As mentioned, scheduling is a decision making process that exists in most

manufacturing and production systems as well as in most information process-

ing environments. A typical example of the role of a scheduling process in a

real life situation is the scheduling of tasks in a Central Processing Unit (CPU),

described by Michael Pinedo [84] as

One of the functions of multitasking computing operation sys-

tem is to schedule the time that the CPU devotes to the different

programs that need to be executed. The exact processing times

usually are not known in advance. However, the distribution of

these random processing times may be known in advance, includ-

ing their expected values and their variances. In addition, each

task usually has a certain priority factor (the operating system

typically allows operators and users to specify the priority factor,
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or weight, of each task). In this case, the objective is to minimise

the expected sum of the weighted completion times for all tasks.

As in the example above, production environments in real life are subject

to many sources of uncertainty. Among the sources with major impact are

machine breakdowns and unexpected releases of high priority jobs, that is,

jobs with large weights. Processing times, which typically are not known in

advance, are as well a source of uncertainty. Another source of uncertainty is

the time necessary for a nearly depleted resource to recover its productivity.

There are several ways in which randomness can be modelled. To take an

example, on may model the possibility of machine breakdowns as an integral

part of the processing times. This is done by modifying the distribution of the

processing times to take the possibility of breakdowns into account. Another

way is to model a (discrete time) deteriorating process having, at each state

in an at least countable state space, a positive breakdown probability, i.e. a

probability of going back to certain initial state. This formulation is also

important when the objective is to schedule a set of maintenance tasks for

minimising the possibility of a catastrophic breakdown.

The performance of such systems, as measured by a criterion such as the

average time jobs stay in the system or certain measure of expected reward (or

cost), may be significantly affected by the policy employed to prioritise over

time jobs awaiting for service (scheduling policy). The impact of scheduling

policies explains the importance and difficulty of the fundamental problem

of stochastic scheduling: to design relatively simple scheduling policies that

(nearly) achieve given performance objectives.

The theory of stochastic scheduling addresses this problem in a variety of

stochastic service system models. Random features such as job processing

times are thus modelled by specifying their probability distributions, which
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are assumed to be known by the system manager. Model assumptions vary

across several dimensions, including the class of scheduling policies considered

admissible, job arrival and processing time distributions, type and arrangement

of service resources and performance objective to be optimized.

According to José Niño-Mora [77], stochastic scheduling models can be clas-

sified into three broad categories, which have evolved with a substantial degree

of autonomy: models for scheduling a batch of stochastic jobs where a fixed

batch of jobs with random processing times, whose distributions are known,

have to be completed by a set of machines to optimize a given performance

objective; models for scheduling queueing systems, related to the problem of

designing optimal service disciplines in queueing systems, where the set of jobs

to be completed, instead of being given at the start, arrives over time at ran-

dom epochs; and multi-armed bandit models, concerned with the problem of

optimally allocating effort over time to a collection of projects, which change

state in a random fashion depending on whether they are engaged or not.

Three broad families of results have been researched for the afore men-

tioned areas: One group of results has been addressed to identify optimal

policies with a simple structure in more general models, often at the expense

of introducing additional technical assumptions. Some other research efforts

have addressed harder models, for which the goal of fully characterizing an

optimal policy appears out of reach. For these problems researchers aim to

design easily implementable heuristic policies with a relatively close to optimal

performance. Their degree of sub-optimality may be investigated empirically

(by means of simulation, for example) or analytically. Finally, a third group of

results elucidates the structure of easily computable policies that solve (near)

optimally relatively simple models. An important class of such policies is

that of priority-index rules : an index is computed for each job type (possibly
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depending on its current state, but not on that of other jobs), and at each

decision epoch jobs or projects with higher index are allocated the resource or

assigned higher service priority.

It is well known that the famous multi-armed bandit problem has been opti-

mally solved by a celebrated result by John Gittins (see Section 1.1) by means

of dynamic allocation indices of the kind mentioned in the last paragraph.

Unfortunately this result is no longer available for more realistic extensions of

the multi-armed bandit problem. This dissertation is, therefore, devoted to

the development of well grounded heuristic policies for finding efficient solu-

tions to some relaxations of the original assumptions of the multi-armed bandit

problem to be discussed in the following sections.

1.1 The Multi-armed Bandit Problem

The multi-armed bandit problem (MAB), as it has become known, is one of

the simplest non-trivial problems in which one must face the conflict between

taking actions which yield immediate reward and taking actions whose benefit

will come only later. It has found applications in several disciplines, such

as machine scheduling in manufacturing, job search and matching in labour

market analysis in economics, target tracking, resource allocation problems in

communication networks, industrial research under budget constraint, and so

on.

Multi-armed bandit models are concerned with the problem of optimally

allocating effort over time to a collection of projects that change state randomly

depending on weather they are engaged or not. The classical MAB model can

be briefly described as the problem of allocating effort to exactly one out of a

collection of projects or arms, at each decision epoch over a planning horizon.
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Each project can be in one of a finite number of states. Every time a project

is engaged a reward is earned and the project’s state evolves following an arm

specific transition rule. States of projects not engaged remain unchanged and

no reward is earned under passivity. The problem, hence, consists in finding a

scheduling policy for dynamically activating projects such that maximises some

reward measure over the planning horizon. The following example illustrates

one particular case of the global formulation of the MAB.

Example 1.1. Consider the problem of scheduling a set of stochastic jobs where

a job’s natural state is the amount of processing finished. After processing a

particular job it will either be completed or not completed and advance, with

certain positive probability, to a higher completion stage (higher state). If

a job is not processed, it remains frozen in the current state (there is not

loose, forgetting, or deterioration of the finished work). For simplicity assume

that reward is only earned upon completion. Assume also that pre-emption is

allowed (i.e. the processing of a job can be interrupted at any time).

In this case, the decision problem is finding a scheduling policy to dynami-

cally allocate the server effort over time to the different jobs in order to max-

imise the total expected discounted reward earned over the planning horizon.

This problem is discussed in detail in Pinedo [84, sec. 9.2]. Other examples

of the use of the MAB framework in single machine stochastic scheduling prob-

lems can be found in Glazebrook [46], Chen and Katehakis [26], and Katehakis

and Veinott [61]

The computational complexity of dynamic decision problems involving un-

certainty and information is well known and the MAB was considered in-

tractable for a long time, since its first formulation by Thompson [98] in the

1930’s. In the early 1970’s, however, Gittins and Jones [37, 38] and Gittins

[35] presented a surprising solution, which now stands as a landmark result in
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the field: the problem solution can be easily characterized in terms of a set of

dynamic allocation indices, attached to project states; in particular, for each

state and project, there exists an calibrating index, such that the following

index policy is optimal: work at each time on those projects whose current

states have larger indices. The optimality of Gittins rule has been subject

of deep analysis, and proofs based on different technical approaches have been

provided including interchange arguments [35, 38, 105, 111], dynamic program-

ming [113], induction arguments [108] and conservation laws/linear program-

ming [23].

Unfortunately, for more complex extensions, the Gittins index rule is no

longer optimal. For example, the incorporation of costs/delays when switching

between projects is studied in [6], where a partial characterization of an optimal

index is provided. We will briefly discuss this problem in the next section.

1.1.1 The Multi-armed Bandit Problem with Switching

Costs

A general assumption maintained in almost all the work in the area of optimal

resource allocation is that the operator can switch instantaneously from one

project to another without facing any cost. In reality, when the manager

switches between different projects a set-up may be needed, and a cost and/or

delay is incurred. Consider the following version of Example 1.1 above.

Example 1.2. Consider again the problem of scheduling a set of stochastic

jobs as described in page 6. In a more realistic setting, it might be considered

reasonable to assume that when moving from one job to the other the operator

may incur in costs or delays. These penalties could be in terms of the cost/time

of replacing certain parts or components of the machine for a different one

suitable for the new task, cleaning the machine before starting with the new
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job, displacement of the server to the location of the new job, and so on and so

forth.

In this case, every time the processing of certain job is stopped (without com-

pletion) a tear-down cost might be incurred and a set-up needed before starting

with processing the new job.

Examples of scheduling of stochastic jobs problems where set-up or switching

costs are incurred can be found in Glazebrook [45], Kolonko and Benzing [66],

Van Oyen, Pandelis and Teneketzis [103], Van Oyen and Teneketzis [104],

Duenyas and Van Oyen [28], Karaesmen and Gupta [58], Reiman and Wein

[86], among others.

Although it might seem realistic to include a penalty each time a new

project is engaged, its inclusion drastically changes the nature of the problem.

In fact, it has been shown by Banks and Sundaram [8] that, in general, it is not

possible to construct indices –defined in terms of individual projects– which

have the property that the resulting index strategy is optimal on the domain

of all multi-armed bandits (MAB) with switching costs. Indeed, this result

remains true even if attention is restricted to the case in which the cost of

switching is a given (nonzero) constant.

So far, the problem remains unsolved and there is still the need of well

grounded heuristic providing an efficient solution to this sort of models. This

problem is the matter of Chapter 3, where an (efficient) index characterisation

of its solution is provided based on a minor modification of the state space.

1.2 The Restless Bandit Problem

One of the most interesting extensions to the MAB is the restless bandit prob-

lem (RB). This model relaxes the assumption above that any non-active pro-
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cess remains fixed by allowing idle projects to change states between decision

times. In contrast to the MAB, which is solved optimally by the Gittins In-

dex rule, the RB problem has been proved to be computationally intractable

[83]. The RB was first investigated by Peter Whittle [116], who introduced a

relaxed version of the problem, which can be solved optimally in polynomial

time. Based on this solution, he proposed a priority-index heuristic policy,

which reduces to the optimal Gittins index policy in the special case of the

multi-armed bandit problem. The following examples provides a Rastless

Bandit framework for Example 1.1

Example 1.3. Consider a following modification of the problem of scheduling

a set of stochastic jobs. Now, the case is considered where a passive job is

no longer frozen but, instead its state can vary with time. One can think

on different reasons for which the state of unfinished jobs can vary during

passivity: there can be losses or deterioration in the amount of job finished, the

job can involve some kind of learning process that needs certain recall before

been engaged again (computer programming is a good example of this case), and

so on and so forth. Research projects are also examples of jobs that require

certain recall and updating.

In these cases, even though the general structure of the multi-armed bandit

problem remains the same, the relaxation of the idleness assumption changes

dramatically the nature of the problem and, consequently, the tools necessary

for its solution.

Examples of applications of the restless bandit framework to job and pro-

duction schedule can be found in Veatch and Vein [106] and Glazebrook and

Mitchell [50], among others.

Notwithstanding an accumulating body of empirical evidence testifies the

very strong performance of index policies quite generally, one drawback of
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Whittle’s index heuristic is that it only applies to a restricted class of restless

bandits: those satisfying certain indexability property, which may be hard

to check. Moreover, even when the indices exist, they are not in general

guaranteed to be optimal.

This result is in sharp contrast with the well-known optimality of Gittins in-

dex rule in the case of the multi-armed bandit problem. It, therefore, confirms

the need for well grounded heuristics for finding near optimal (or asymptoti-

cally optimal) solutions to the restless bandit problem, as well as emphasises the

relevance of Whittle’s contribution. Chapters 4 and 5 are devoted to establish-

ing indexability conditions for two broad families of restless bandit problems:

the Machine Maintenance and the Bi-directional Restless Bandit problems.

1.3 Thesis Structure

In this section we give an outline structure of the remaining chapters of the

thesis. Our work concerns identifying different families of restless bandit prob-

lems for which indexability is guaranteed and, if possible, to provide closed

form expressions for the corresponding indices or, alternatively, to contribute

with algorithms for index computation. In Chapter 2 we summarise the main

elements from the theory of Markov Decision Processes and Dynamic Program-

ming that constitute the building blocks of the results in this Thesis, as well

as offering a more or less detailed discussion of the fundamentals of classical

Multi-armed Bandit and Restless Bandit theories. In Chapter 3 we discuss

the multi-armed bandit problem with switching costs. Chapter 4 concentrates

in establishing indexability for the family of so-called machine maintenance

problems. Finally, in Chapter 5 we analyse two classes of problems that fall

within the family of bi-directional restless bandits.
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As we have already mentioned, Markov Decision Processes and the theories

of Multi-armed and Restless Bandit problems constitute the main building

blocks for the discussion in this dissertation and the aim of Chapter 2 is to

introduce the main concepts and tools to be used in subsequent chapters.

In Section 2.1, we discuss the main characteristics and properties of a

Markov Decision Process, the associated Markov Decision Problem and the

techniques available for solving this sort of problems. We also outline the

main theoretical results regarding the existence and uniqueness of the optimal

solutions to Markov Decision Problems under different optimality criteria and

present the algorithms to be used in the numerical experiments throughout this

work. The Multi-armed Bandit Problem is addressed in Section 2.2, where we

present the basic structure of a multi-armed bandit and its formulation as a

Markov Decision Process, the main theoretical results available for this family

of Markov Decision Problems’s, and references to the most important contribu-

tions in the field. Finally, in Section 2.3 we introduce one of the most promising

extensions of the classical Multi-armed Bandit Problem: the Restless Bandit

Problem, which constitutes the object of this dissertation. Together with a

Markov Decision Process formulation of the problem, we present Whittles ap-

proach to its solution, and references to the most appealing contributions in

the field.

The problem of scheduling a set of stochastic projects when switching costs

are incurred is addressed in Chapter 3. Despite this problem has been con-

sidered intractable, we show that the switching costs problem can be easily

translated into a pure set-up formulation and, consequently, use can be made

of standard results available for the multi-armed bandit problem. Moreover,

with a simple modification of the state space, we translate this MAB with

set-up costs into a simple restless bandit problem. We then prove that this
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problem is indeed indexable and obtain general expressions for its Gittins in-

dices which can be easily obtained by means of an adaptive greedy algorithm.

A further extension of these results focus on the existence of a positive proba-

bility for an idle project to abandon the system, we call this the losses problem

and prove that it is indexable as well. The index policy is finally shown to

perform well when compared with the optimal policy for a set of examples

including the losses case and a job scheduling problem.

The chapter is organized as follows. In Section 3.1 related literature is

surveyed. In Section 3.2, the problem of translating the multi-armed bandit

problem with switching costs into a pure set-up cost formulation is addressed,

and a proof for indexability of the extended-space pure set-up cost formulation

is provided. An algorithm for index calculation is presented also in this section.

In Section 3.3, two interesting results and one application are discussed. The

results regard, respectively, the indexability of the MAB w/SC when there

exists a positive probability of losing idle (passive) projects, and the optimality

of the index policy when the switching costs are high enough. An application

to the scheduling of stochastic jobs is also presented here. Results of an

intensive numerical assessment of the performance of the index policy in the

MAB w/ SC are offered in Section 3.4. Section 3.5 concludes.

In Chapter 4 we deploy Gittins index theory to establish the indexability of

a general family of restless bandits which arise in problems of machine mainte-

nance. We also give formulae for the resulting Whittle indices. The standard

Markov Decision problem formulation for the Machine Maintenance Problem

can be described as follows: each machine is modelled as a Markov Decision

Chain (MDC) that evolves over an at least countable state space with two

actions available at each state (to provide maintenance or to let the machine

evolve for one more period). Whenever the active action is taken, an arm/state
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dependent active cost is payed and the machine returns to some pristine state.

Otherwise, an operation cost is incurred, and the project evolves to a higher

state. In such models an increase in state correspond to deterioration of the

machine, resulting in higher cost rates. We further consider the case when pas-

sive machines face the probability of a catastrophic breakdown, which implies

the replacement of the machine at a considerably high cost.

In Section 4.1 we establish the indexability of a class of restless bandits

designed to model machine maintenance problems in which maintenance inter-

ventions have to be scheduled to mitigate escalating costs as machines deteri-

orate. In Section 4.2 we explore index structure in the context of two model

types, both of which rest on assumptions that are plausible on practice. In

Section 4.3 we further develop the findings of Section by offering two families

of examples for which explicit formulae for the Whittle index can be derived.

Identification of the Whittle indices of concern is followed in Section 4.4 by a

numerical investigation which accounts for the strong performance of Whittle’s

heuristic. Section 4.5 concludes.

In Chapter 5 we deploy Whittle index theory to establish the indexability

of two (inter alia) general families of restless bandits the bi-directional restless

bandit problems The starting point for our research was the so-called Ehrenfest

problem. Whittle [116, 117] describes the Ehrenfest problem as one in which

the project may be an individual who has certain number of oxygen bearing

blood corpuscles. While working his effectiveness is proportional to the number

of corpuscles, but these become depleted. While resting he produces nothing,

but his corpuscles gain oxygen. The model thus represents in essential form

the two phases of tiring and recovery, with a natural limit on state in both

directions.

Our aim has been to generalise this problem to two broader families of bi-
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directional bandit problems and to establish their indexability. One of them,

the Squad System Model, corresponds to the afore mentioned Ehrenfest prob-

lem and is a model for the optimal exploitation of assets. In this case, activity

returns a reward and decreases the effectiveness of the project, whereas the

passive action gives no reward, but increases the profitability of the project.

The other one, the Spinning Plates model, reverts this logic and is a model

of investment. Here the active action increases the profitability of the asset

whereas the passive action implies its deterioration. In this chapter we es-

tablish the conditions for this problems to be indexable and provide with an

algorithm for the index calculation and, when available, closed form expressions

for index calculation. Numerical experiments show the strong performance of

the index heuristic concerned.

In Sections 5.1 and 5.2 we give simple and direct accounts of the index

structure of, respectively, the spinning plates problem and the squad system.

In both cases we give simply stated conditions that guarantee the model’s

indexability. Further, algorithms are given which yield the indices. Strict

indexability means that not only is the problem concerned indexable, but also

all the index functions are 1− 1 (namely, that distinct states of an asset have

distinct index values). Our analysis yields necessary and sufficient conditions

for strict indexability in both models, together with formulae for the indices in

closed form. Numerical results testify the very strong performance of the index

heuristic for both models. Section 5.3 contains a somewhat brief discussion of

the index structure of versions of the spinning plates problem and the squad

system with discounted reward criterion. Section 5.4 concludes.



Chapter 2

Markov Decision Processes and

Bandit Problems

Introduction

Consider the situation where a decision maker is faced with the problem of in-

fluencing the behaviour of a stochastic system as it evolves over time by taking

different actions (decisions) at certain moments in time or decision epochs. His

goal is to choose a sequence of actions which causes the system to preform op-

timally whith respect to some predetermined performance criterion. The state

of the system before the following decision epoch depends on current decisions.

Consequently, decisions must not be made myopically, but most anticipate the

opportunities and costs (or rewards) associated with future system states.

This problem, typical example of a sequential decision model, is better known

as a Markov Decision Process (also referred as stochastic control problem or

stochastic dynamic program).

Markov Decision Processes (MDP), which are models for sequential deci-

sion making when outcomes are uncertain, constitute the main building blocks

15
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of the discussion in this dissertation and the aim of this chapter is to introduce

the main concepts and tools to be used al through this work. In Section 2.1,

we discuss the main characteristics and properties of Markov Decision Pro-

cesses, the associated Markov Decision Problems and the techniques available

for solving this sort of problems. We also outline the main theoretical results

regarding the existence and uniqueness of the optimal solutions to Markov De-

cision Problems under different optimality criteria and present the algorithms

to be used in the numerical sections of this work.

A particularly interesting family of sequential decision problems is the

Multi-armed Bandit Problem (MAB)–for which Peter Gittins contributed a

simple solution based on dynamic allocation indices. This problem is ad-

dressed in Section 2.2, where we present the basic structure of a multi-armed

bandit and its formulation as a Markov Decision Process, the main theoretical

results available for this family of Markov Decision Problems’s (optimality of

the index solution), and references to the most important works in the field.

We also offer a short discussion of the main extensions and applications of the

Multi-armed bandit framework.

Finally, in Section 2.3 we introduce one of the most promising extensions

of the classical Multi-armed Bandit Problem: the Restless Bandit Problem

(RB) –pioneered by Peter Whittle, which constitutes the object of this disser-

tation. Together with a Markov Decision Process formulation of the problem,

we present Whittles approach to its solution, and references to the most ap-

pealing contributions in the field.
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2.1 Markov Decision Processes

This section introduces the basic components of a Markov Decision Problem

and discusses some of the main results of Dynamic Programming Theory that

will be used in subsequent sections. The aim of this section is just to provide

with a basic theoretical framework for our research and does not pretend to

be an extensive and detailed discussion of the theory of Markov Decision Pro-

cesses. Most of the main results are just enunciated and the reader is referred

to the literature for further details. The discussion is based fundamentally

on the works by Bellman [10], Bertsekas [21, 22], Puterman [85], Ross [90],

Sennott [95], and Tijms [99].

2.1.1 Elements of a Markov Decision Problem

A discrete-time Markov Decision Process (MDP) is defined by six elements:

decision epochs, state space, action set, transition probabilities, rewards and a

policy or action rule. Here we take the general convention of referring to any

problem with the six elements mentioned above as a Markov Decision Process

and reserve the the expression problem to the process itself together with an

optimality criterion. In the following lines we will give detailed description of

the elements of an MDP. Throughout this dissertation we will be constantly

referring to this description.

1. Decision Epochs

We refer as decision epochs to the set of times or stages at which deci-

sions can be made. This set can be classified as a discrete set or as a

continuum. Because of the nature of the problems analysed in this work,

we shall assume that the set of decision times is discrete, i.e., decisions

are taken at times t = 0, . . . , T . Our models are formulated so that a
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decision epoch corresponds to the beginning of a period.

The planning horizon can be either finite (T < ∞) of infinite (T = ∞).

Again, the nature of the problems addressed in this work implies that

we will concentrate on decisions taken over the infinite horizon. Hence,

we adopt the convention of representing the discrete-time infinite-horizon

decision epochs by t ∈ N, where N is the set of natural numbers and t is

a decision stage or epoch.

2. State Space

At each decision epoch we say that the system is in or occupies a state.

The set S represents the collection of all possible states of the underlying

system. This set can be finite, countably infinite of infinite, however

throughout this work we will assume that S is at least countable, with

cardinality |S| < ∞ in the finite case.

3. Action Set

Actions are, by convention, taken at every decision epoch and are, clearly,

dependent on the current state of the system (and maybe on the system’s

action-state history). The set Ax of actions available in state x ∈ S is

assumed to be finite. We let A = ∪x∈SAx and further restrict our models

requiring that Ax = A, x ∈ S.

Actions may be chosen either randomly or deterministically. Let P (A)

be the collection of probability distributions on subsets of A. Choosing

actions randomly means selecting a probability distribution % (·) ∈ P ,

where action a ∈ A is selected with probability % (a). Degenerate prob-

ability distributions correspond to a deterministic action choice.

Shall a model consider actions are taken only when necessary and not at

every decision epoch, then we will introduce an additional element in A

representing the action not intervene, with no further changes to be done
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to the model.

4. Transition Probabilities

When at certain decision epoch t, action a (t) = a ∈ A is taken in

state X (t) = x ∈ S, the system evolves to state X (t + 1) = x′ ∈ S

with probability P a
t (x, x′) = p {X (t + 1) = x|X (t) = x, a (t) = a}. We

further assume that transition probabilities are time independent, i.e.

P a
t (x, x′) = P a (x, x′), for all t ∈ N; and

∑
x′∈S

P a (x, x′) = 1, for all x ∈ S, a ∈ A. (2.1)

Finally, let Pa = (P a (x, x′))x,x′∈S be the transition probability matrix

corresponding to action a ∈ A.

5. Rewards

A reward Ra
t (x, x′) is a real value function R : S → R representing the

value at time t of the reward received when, at period t, the system

performs a transition from state X (t) = x ∈ S to state X (t + 1) =

x′ ∈ S under action a (t) = a ∈ A. We again assume that the reward

is independent of the time at which decision is taken, i.e. Ra
t (x, x′) =

Ra (x, x′) for all t ∈ N. Furthermore, we assume that the rewards are

bounded, i.e. ∃ B < ∞ such that |Ra (x, x′)| < B for all x, x′ ∈ S and

a ∈ A.

When the reward depends on the state of the system at the next decision

epoch, we adopt the telescoped version or expected value at decision epoch

t by computing:

Ra (x) =
∑
x′∈S

P a (x, x′) Ra (x, x′) , for all x ∈ S.
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As before, we use Ra = (Ra (x))x∈S for the reward vector associated to

action a ∈ A.

6. Policy

A policy π is a rule that indicates at every decision epoch t the action

a (t) = a ∈ A to be taken given the fact that the system is in state

X (t) = x ∈ S, with the aim of maximising (minimising) certain measure

of reward (respectively, cost). In Section 2.1.2 we present a more detailed

description of the different procedures for action selection depending on

how they incorporate past information and how they select actions.

We refer to the collection of objects (T,S,A,Pa,Ra) as a Markov Decision

Process. If the planning horizon spans to the infinite we omit the time-horizon

term T . The qualifier Markov is used because the transition probabilities and

reward functions depend on the past only through the current state of the

system and the action selected by the decision maker in that state.

2.1.2 Decision Rules and Policies

Given a Markov Decision Process as described in Section 2.1.1 (§1 to §6 above),

a decision rule dt prescribes which action is to be taken at a specified decision

epoch t. We shall be mainly concerned with Markovian decision rules, in

which, for each state x ∈ S, dt (x) is a random variable with a given distribution

taking values in A independently of the history of the process, in contrast with

history dependent decision rules, which are dependent on the past history of

the system (represented by the sequence of previous states and actions).

Regarding the way actions are selected, our primary focus will be on deter-

ministic decision rules. Such decision rules are functions dt : S → A, which

specify (with certainty) the action choice when the system occupies state x at
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epoch t.

In contrast with the deterministic rules, a randomized decision rule dt spec-

ifies a probability distribution % (·) on the set of actions. Randomized Marko-

vian decision rules map the set of states into the set of probability distributions

on the action space, that is dt : S → P (A). In this case, %dt(X(t)) (·) ∈ P (A).

A deterministic decision rule can be regarded as a special (degenerated) case

of randomized decision rules in which %dt(X(t)) (a) = 1.

A policy π for a Markov Decision Problem prescribes which decision rule

to use at each time by giving a sequence of decision rules:

π = {d1, d2, . . . , dT−1} , T ≤ ∞,

depending on the state of the system at each decision epoch t and, maybe, on

the previous history of the system’s evolution.

If all decision rules dt (·) are deterministic (respectively randomized), the

policy is said to be deterministic (resp. randomized). A policy is stationary

if the decision rule employed is invariant over time, so that

π = {d, d, . . .} = (d)T , T ≤ ∞. (2.2)

for some stationary decision rule d. Throughout this dissertation we adopt

the following notational convention: as in the stationary case decision rules

are time invariant, we will use indistinctly π (x) and d (x) for referring to the

action prescribed by policy (decision rule) π (respectively d) at state x.

If d is Markovian randomized, policy π is said to be stationary, Markovian

randomized ; otherwise if d is Markovian deterministic π will be stationary,

Markovian deterministic.

As the focus of this dissertation is on infinite-horizon Markov Decision Pro-
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cesses (for which stationary policies are fundamental), we adopt the notational

convention of representing by M the class of stationary, Markovian determin-

istic policies and by H the class of non-stationary, Markovian deterministic

policies.

2.1.3 Optimality Criteria

Given an MDP as above, one may consider several related problems associated

with corresponding optimality criteria. In what follows we shall let Eπ denote

the expectation operator under policy π (the discussion in the following lines

will be concentrated on policies in the class M), whereas X (t) and a (t) will

denote the state and action at time t, respectively. The initial state X (0) is

assumed to be known at least up to a probability distribution, being x ∈ S

with probability P (x). We denote the corresponding probability vector by

P0 = (P (x))x∈S .

To determine the policies that are, in some sense optimal, we first need to

decide on an optimality criterion. The main optimality criteria are classified

according to the planning horizon (finite or infinite) and the way the rewards

are accumulated over time (average, discounted or total).

I. Infinite-horizon Discounted Criterion. Given a discount factor 0 <

β < 1, find an optimal policy π∗ ∈M that maximizes the total expected

discounted reward earned over an infinite horizon; i.e.

V (β) = max
π∈M

{
Eπ

[
∞∑

t=0

βtRa(t)
(
X (t)

)]}
. (2.3)

Note that (2.3) is well defined because rewards are bounded (see §5 in

page 19) and β < 1, which implies |V (β)| < B
1−β

.
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A policy π∗ is said to be β-optimal if Vπ∗ (β) = V (β), with Vπ∗ (β) =

Eπ∗
[∑∞

t=0 βtRa(t)
(
X (t)

)]
.

II. Finite-horizon Discounted Criterion. Given discount factor β as

above, find a policy π∗ ∈ H that maximizes the total expected discounted

reward earned over a finite horizon, T ; i.e.

VT (β) = max
π∈H

{
Eπ

[
T−1∑
t=0

βtRa(t)
(
X (t)

)]
+ Eπ

[
βT g

(
X (T )

)]}
, (2.4)

where g (X (T )) denotes the discounted terminal reward when the sys-

tem’s state at time T is X.

III. Infinite-horizon Time-average Criterion. Find a policy π∗ ∈ M

that maximises the long run time-average rate of reward earned per time

unit; i.e.

V = max
π∈M

{
lim

T→∞

1

T
Eπ

[
T∑

t=0

Ra(t)
(
X (t)

)]}
. (2.5)

If the limit does not exist, Vπ = limT→∞
1
T

Eπ

[∑T
t=0 Ra(t)

(
X (t)

)]
can

be defined by the lim inf, (see Ross [90], page 89). We say that π∗ is

average-reward optimal if Vπ∗ = V .

A question arises here regarding the existence of an optimal policy for

the average-reward criterion. Unfortunately, the answer is no, optimal

policies need not to exist and, there can be found instances for which,

even if an optimal (non-stationary) solution exists, no stationary policy

can be found within ε of optimality. The conditions that result in the

existence of an optimal stationary policy will be discussed later, in §III’

in Section 2.1.4.
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The following important relation between the infinite-horizon discounted

and time average criteria can be established via, e.g. Tauberian Theorems

(see, for example, Putterman [85] pp. 414-421, or Sennott [95] pp. 97-101

and Appendix A.4). Under appropriate regularity conditions,

V = lim
β→1

(1− β) V (β) .

IV. Finite-horizon Total Reward Criterion. Find a policy π∗ ∈ H that

maximises the total expected reward earned over a finite horizon, T ; i.e.

VT = max
π∈H

{
Eπ

[
T−1∑
t=0

Ra(t)
(
X (t)

)]
+ Eπ

[
g
(
X (t)

)]}
, (2.6)

where g (X) denotes the terminal reward when the process is in state X

at terminal time T . The following result is trivial,

VT = lim
β→1

VT (β) .

In Section 2.1.4 we discuss the standard solution of MPDs by Dynamic

Programming and present the algorithms used to find the numerical solutions

to the examples discussed throughout this work. However, as the models

discussed here are modelled according to criteria §I and §III, we will just con-

centrate our discussion on methods addressed to these particular criteria.

2.1.4 Solution by Dynamic Programming

The classical approach to the solution of Markov Decision Problems is based

on formulating and solving a standard set of dynamic programming (DP) equa-

tions, also known and Hamilton-Jacobi-Bellman equations. These are func-
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tional equations satisfied by the optimal value functions as described below.

We next present the DP formulation corresponding to each of the optimality

criteria described in Section 2.1.3, with special attention to criteria §I and §III.

In what follows we use the short hand notation |x for the conditioning on the

initial state: |X (0) = x.

I’. Infinite-horizon Discounted Criterion. Consider the optimal value

function

V (x, β) = max
π∈M

{
Eπ

[
∞∑

t=0

βtRa(t)
(
X (t)

)∣∣x]} , x ∈ S. (2.7)

where V (x, β) corresponds to the optimal value equation (2.3) provided

the initial state is x. An application of the principle of optimality1

(a fundamental result of dynamic programming, first stated verbally by

Bellman [10], page 83), yields the result that the V (x, β)’s satisfy the

following set of equations:

V (x, β) = max
a∈A

{
Ra (x) + β

∑
x′∈S

P a (x, x′) V (x′, β)

}
, x ∈ S. (2.8)

The set of equations (2.8) in the variables V (x, β) represent the DP

formulation of the discounted infinite-horizon Markov Decision Problem

(2.3). They can be shown to have a unique solution, which characterizes

optimal policies: optimal actions in state x correspond to maximising a’s

1The key idea is that optimization over time can often be regarded as optimization in
stages. The basic trade-off is between the alternative of earning the maximum possible
reward at the current stage against the implication this would have in terms of rewards at
future stages. The best action is, hence, the one that maximises the sum of rewards earned
at the current epoch and the largest reward that can be earned from all subsequent decision
epochs, accordingly with this decision. Formally, the principle of optimality establishes
that, “from any point on an optimal trajectory, the remaining trajectory is optimal for the
corresponding problem initiated at that point”. See, for example, Puterman [85], pp. 86-88
for a formal statement of this principle.
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in (2.8). From this result it follows that there exists an optimal policy

that is stationary and deterministic.

The following two theorems (from Ross [90], pp. 32-33) summarize the

discussion above, proofs are ommited.

Theorem 2.1. (Ross, Theorem 2.2, p.32)

Let s be the stationary policy that, when the process is in state x, selects

that action (or an action) maximising the r.h.s. of (2.8), that is s (x) is

such that

Rs(x) (x) + β
∑
x′

P s(x) (x, x′) V (x′, β)

= max
a

{
Ra (x) + β

∑
x′∈S

P a (x, x′) V (x′, β)

}
x ∈ S.

Then

Vs (x, β) = V (x, β) for all x ∈ S,

and hence s is β-optimal.

Finally,

Proposition 2.1. (Ross, Proposition 2.3, p. 33)

V is the unique bounded solution of the optimality equation (2.8).

Once established the existence and uniqueness of the optimal policy solv-

ing V , we now present an algorithm for finding the solution to the infinite-

horizon discounted reward MDP, the well known Value Iteration Algo-

rithm.
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Value Iteration (VI) is the most widely used and best understood algo-

rithm for solving discounted Markov decision problems. It is also known

under names as successive approximations method, over relaxation, back-

ward induction, and so on.

The appeal of this algorithm may perhaps be attributed to its conceptual

simplicity, its ease in coding and implementation, and its similarity to

approaches used in other areas of applied mathematics. In addition to

providing a simple numerical tool for solving these models, it can be used

to obtain results regarding the structure of optimal policies.

The value iteration algorithm below finds an stationary ε-optimal pol-

icy, πε = (dε)
∞ as defined in (2.2), and an approximation to its value

V ε = Vπε (β), as discussed around (2.3). This stationary policy is ε-

optimal within a finite number of iterations. Of course, (dε)
∞ might be

optimal, but the algorithm as stated below provides no means of deter-

mining this. By combining this algorithm with methods for identifying

suboptimal actions, we can often ensure that the algorithm terminates

with an optimal policy. In practice, choosing ε small enough ensures

that the algorithm stops with a policy that is very close to optimal.

Convergence of the algorithm in Fig. 2.1 is not restricted to models with

discrete state space and finite action sets. Unfortunately, numerical

evaluation of the maximization in (2.9) is only practical when S is finite.

For more general state spaces, the maximization can only be carried out

by using special structure of the rewards, transition probabilities, and

value functions to determine the structure of maximizing decision rules.

General alternatives include discretization and/or truncation.

Please address to the references in this section, in particular to Puter-

man [85] (Section 6.3), for results regarding convergence of the above
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INPUT: S, R, P,A, β

INITIALIZATION:

Set V 0 = (ci)i∈S , with 0 ≤ ci ≤ ∞;
ε > 0;
k = 0.

PROCEDURE:

While
∥∥V k+1 − V k

∥∥ > (1−β)
2β ε do

Set k = k + 1

V k (x) = max
a∈A

{
Ra (x) + β

∑
x′∈S

P a (x, x′) V k−1 (x′)

}
, x ∈ S. (2.9)

End While

Choose

dε (x) ∈ argmax
a∈A

{
Ra (x) + β

∑
x′∈S

P a (x, x′) V k (x′)

}
,

V ε (x) = Vdε (x) .

OUTPUT: dε, Vε.

Figure 2.1: Value Iteration Algorithm for the DP Infinite-horizon Discounted Re-
ward Criterion

algorithm, an extended discussion on properties of convergence rates,

and procedures for increasing the efficiency of the VI algorithm.

II’. Finite-horizon Discounted Criterion. Define the optimal value

function

Vk (x, β) = max
π∈H

{
Eπ

[
k−1∑
t=0

βtRa(t)
(
X (t)

)
+ βkg

(
X (k)

)∣∣x]} , 1 ≤ k ≤ T

V0 (x, β) = g (x) ,

for all x ∈ S. Note that Vk (x, β) represents the optimal value provided

the initial state is x and the problem has horizon k. By the principle of
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optimality, the Vk (x, β)’s satisfy the following DP equations:

Vk (x, β) = max
a∈Ax

{
Ra (x) + β

∑
x′∈S

P a (x, x′) Vk−1 (x′, β)

}
, 1 ≤ k ≤ T

V0 (x, β) = g (x) ,

for all x ∈ S. As before, these equations have a unique solution, for

which optimal deterministic policies (though not stationary) can be easily

recovered. As this criterion is not used in this dissertation, no more

attention will be devoted to the particular aspects of its solution by DP.

III’. Infinite-horizon Time-average Criterion. For this criterion the

derivation and interpretation of the DP equations are not as straightfor-

ward as for the other criteria. As defined in (2.7), denote by V (x, β)

the optimal value function for the infinite-horizon discounted-reward cri-

terion MDP above, then write

v = lim
β→1

(1− β) V (x, β) ,

v (x) = lim
β→1

V (x, β)− v

1− β
, x ∈ S,

where v represents the time average reward rate, which, under regularity

conditions, does not depend on the initial state. The (bounded) function

v (x) is called the relative reward differential corresponding to starting

in state x. It can be shown that v and the v (x)’s satisfy the following

DP equations

v + v (x) = max
a∈Ax

{
Ra (x) +

∑
x′∈S

P a (x, x′) v (x′)

}
, x ∈ S,

from whose solution the optimal Markovian policies can be recovered.
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In particular, Ross [90] provides a proof for the following two theorems.

The first one establishes the existence of an optimal stationary policy:

Theorem 2.2. (Ross, Theorem 2.1, p.93)

If there exists a bounded function v (x) , x ∈ S, and a constant v such

that

v + v (x) = max
a∈A

{
Ra (x) +

∑
x′∈S

P a (x, x′) v (x′)

}
, x ∈ S (2.10)

then there exists a stationary policy π∗ such that

v = Vπ∗ (x) = max
π

Vπ (x) , x ∈ S

where Vπ (x) corresponds to the infinite-horizon average reward rate in

the expression between brackets in (2.5) when the initial state is x; and

π∗ is any policy that, for each x ∈ S prescribes an action that maximises

the r.h.s. of (2.10).

The second theorem establishes the requirements for the conditions in

Theorem 2.2 to be satisfied:

Theorem 2.3. (Ross, Theorem 2.2, p.95)

If there exists an N < ∞ such that

|V (x, β)− V (0, β)| < N ; 0 < β < 1, x ∈ S

then

(i) there exists a bounded function v (x) and a constant v satisfying

(2.10);

(ii) for some sequence βn → 1, v (x) = limn→∞ [V (x, βn)− V (0, βn)];
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(iii) limβ→1 (1− β) V (0, β) = v.

Ross’ discussion concludes with the following Corollary:

Corollary 2.1. (Ross, Corollary 2.5, p.98)

If the state space is finite and every stationary policy gives rise to an

irreducible Markov chain, then V (x, β)− V (0, β) is uniformly bounded,

and hence the conditions in Theorem 2.3 are satisfied.

As the numerical experiments in this work will be just concerned with

MDP’s satisfying the conditions above, we can leave at this point our

discussion and proceed with the computational approach that will be

used for finding the corresponding optimal policies under the infinite-

horizon time-average criterion.

The value iteration algorithm depicted in Figure 2.2 finds a stationary

ε-optimal policy (dε)
∞ and an approximation to its gain, when certain

extra conditions are met.

Two important points arise from the algorithm in Figure 2.2: 1) the

value iteration need not converge in models with periodic transition ma-

trices2; and 2) the sequence {V t} may diverge, but sp (V t+1 − V t) may

still converge.

In Theorem 6.6.6 Puterman [85], shows that

sp
(
V t+2 − V t+1

)
≤ γsp

(
V t+1 − V t

)
,

2A state or class in a Markovian Process is said to be periodic if Pn (x|x) > 0 with n > 1
for any x ∈ S, where Pn (·|·) is the n-step transition probability. If n = 1, the state (class)
is aperiodic. A Markov chain with irreducible transition matrix is called aperiodic if all its
states are aperiodic. See Puterman [85], Appendix A.
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INPUT: S, R, P,A
INITIALIZATION:

Set V 0 = (ci)i∈S , with 0 ≤ ci ≤ ∞;
SP = L, where L is any big number;
ε > 0;
k = 0;

PROCEDURE:

While SP ≥ ε do

Obtain

V k+1 (x) = max
a∈Ax

{
Ra (x) +

∑
x′∈S

P a (x, x′)V k (x′)

}
, x ∈ S;

sp
(
V k+1 − V k

)
= max

x∈S

{
V k+1 (x)− V k (x)

}
−min

x∈S

{
V k+1 (k)− V k (x)

}
;

set SP = sp
(
V k+1 − V k

)
;

k = k + 1.

End While

Choose

dε (x) ∈ argmax
a∈A

{
Ra (x) +

∑
x′∈S

P a (x, x′) V (x′)

}

OUTPUT: dε.

Figure 2.2: Value Iteration Algorithm for the DP Infinite-horizon Time-Average
Criterion

where

γ = max
x,x′∈S, a,a′∈A

[
1−

∑
y∈S

min
{

P a (x, y) , P a′ (x′, y)
}]

(2.11)

Consequently, if γ < 1, equation (2.11) ensures that in a finite number

of iterations, criterion sp (V t+1 − V t) < ε will be satisfied. However, γ

may equal 1 in a unichain3 aperiodic model, but value iteration may still

3A markov Chain with finite state space is called unichain if it consists of one closed
irreducible set and a (possibly empty) set of transient states. A subset C of S is closed if
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converge. It motivates a more general condition which ensures conver-

gence.

The following result follows from Theorems 8.5.2 and 8.5.3 and the dis-

cussion in Section 8.5.2. in Puterman [85].

Theorem 2.4. Suppose either

(a) 0 ≤ γ < 1, with γ given by (2.11).

(b) ∃x′ ∈ S and K ∈ N such that, for any deterministic Markovian

policy π, PK
π (x′ |x) > 0 for all x ∈ S, or

(c) all policies are unichain and P a (x |x) > 0 for all x ∈ S and a ∈ Ax.

Then value iteration achieves stopping criterion sp
(
V k+1 − V k

)
< ε for

any ε > 0.

Puterman also provides a proof for the following important result:

Theorem 2.5. Suppose that all stationary policies are unichain and that

every optimal policy has an aperiodic transition matrix. Then, for all

V 0 ∈ V and any ε < 0, the sequence
{
V k
}

generated by the value iteration

algorithm satisfies sp
(
V k+1 − V k

)
< ε for some finite T .

Finally, it can be proven that under any conditions which ensure that

sp
(
V k+1 − V k

)
< ε for some finite k, value iteration algorithm in Figure

2.2 identifies an ε-optimal policy, an approximation to which value is

given by

g′ =
1

2

[
max
x∈S

(
V k+1 (x)− V k (x)

)
+ min

s∈S

(
V k+1 (x)− V k (x)

)]
,

no state outside C is accessible from any state in C. The closed set C is irreducible if no
proper subset of C is closed. Finally, state x is transient if and only if the expected number
of visits to state x is finite in an infinite horizon. For further discussion on Markov Chains
see Puterman [85], Appendix A and references therein.
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with |g′ − g∗| < ε/2.

This will be the approach followed in the numerical experiments through-

out this dissertation.

Further discussion about the particularities of this approach is beyond the

scope of this cpater. A more detailed analysis together with alternative

computational approaches can be found in Puterman [85], Chapters 8

and 9, and Ross [90], Chapter V, as well as in the other references in this

chapter, in particular Bertsekas [21, 22] and Tijms [99].

IV’. Finite-horizon Total Reward Criterion. Define the optimal value

function

Vk (x) = max
π∈H

{
Eπ

[
k∑

t=0

Ra(t)
(
X (t)

)
+ g
(
X (k)

)∣∣x]} , 1 ≤ k ≤ T,

V0 (x) = g (x) ,

for x ∈ S. The corresponding DP optimality equations are

Vk (x) = max
a∈Ax

{
Ra (x) +

∑
x′∈S

P a (x, x′) Vk−1 (x′)

}
, 1 ≤ k ≤ T,

V0 (x) = g (x) ,

for x ∈ S. These equations also have a unique solution, from which op-

timal non-stationary deterministic policies can be easily recovered. This

criterion is out of the scope of this dissertation and no more attention

will be given.

The theory of Markov Decision Problems has found application in a wide

range of disciplines from natural and physical sciences and engineering to man-

agement, economics and social sciences.
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Examples can be found in: 1) deterministic problems like shortest route prob-

lems, critical path analysis, sequential allocation and inventory control with

known demands; 2) optimal stopping problems like asset selling, the well known

secretary problem, call options in financial markets and so on; 3) controlled

discrete-time dynamic systems, in particular inventory control models and eco-

nomic growth models; 4) discrete time queueing models (admission and/or

service rate control); and so on and so forth.

A particularly interesting family of MDP’s is the one of sequential deci-

sion models in which at each decision epoch the decision maker observes the

state of a collection of Markov Decision Processes and, based on information

available for each process (state, transition probabilities and rewards/costs)

selects a process to use during the next period. This family of models is often

referred as Bandit Models, after the decision problem facing a gambler when

deciding whether or not to play a particular slot machine or one armed bandit

with unknown outcome. When the gambler must choose between M different

machines we refer to the model as a Multi-armed Bandit (MAB) problem .

The multi-armed bandit and it’s extensions are the main subject of this

dissertation. In the next two sections we deploy the theoretical foundations

of the classical multi-armed bandit and one of its most promising extensions:

the Restless Bandit problem.

2.2 The Multi-armed Bandit Problem

The multi-armed bandit problem, originally described by Robbins (1952)4, is

a statistical decision model of an agent trying to optimize his decisions while

improving his information at the same time. The choice consisting, fundamen-

4Actually, it was Thompson [98] who posed the forst bandit problem, but the problem
was not seriously addressed again until Robbins.
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tally, in deciding which one in a collection of different competing projects (or

arms) to play (or operate) in a sequence of decision epochs so as to maximize

his reward. This classical problem has received much attention because of the

simple model it provides of the trade-off between exploration (trying out each

arm to find the best one) and exploitation (playing the arm believed to give

the highest reward or pay-off). Each choice of an arm results in an immediate

random reward, but the process determining these rewards evolves during the

play of the bandit. The distinguishing feature of bandit problems is that the

distribution of returns from one arm only changes when that arm is chosen.

Hence the rewards from an arm do not depend on the rewards obtained from

other arms. This feature also implies that the distributions of returns do not

depend explicitly on calendar time.

Practical examples of the bandit problem include clinical trials where differ-

ent treatments need to be experimented with while minimizing patient losses,

or adaptive routing efforts for minimizing delays in a network. In an economics

environment, experimental consumption is an example of intertemporal allo-

cation problems where the trade-off between current earnings and value of

information plays a key role. Alternatively, the use of arms may change their

physical properties as in learning by doing where experience with the arm in-

creases its future earnings. The following lines present a slightly more technical

description of the MAB problem based on Niño-Mora [77].

Models in the MAB family are concerned with the problem of optimally

allocating effort over time to a collection of projects that change state ran-

domly depending on whether they are engaged or not. The multi-armed

bandit model, in its discrete time version, can be described as follows: there

is a collection of projects exactly one of which must be engaged at each dis-

crete decision epoch, each project can be in one of a finite number of states.
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Every time a project is engaged (activated) an active reward is earned and

the project’s state evolves following a Markovian transition rule. States of

projects not engaged remain unchanged and no reward is earned under pas-

sivity. The problem consists in finding a non-anticipative scheduling policy

for dynamically activating projects that maximises some measure of the total

expected discounted reward earned over an infinite horizon. Some early work

on the topic, after it was first formulated by Thompson [98], includes Robbins

[87], Bellman [9], Gittins and Jones [37], Glazebrook [41], and Weitzman [112].

A summary of the history of the subject can be found in Yakowitz [118]. Also

the monograph by Berry and Fristedt [20] gives a good account of applications

of Bandit Problems.

After being considered intractable for a long time, the problem was solved

in a landmark result by Gittins [35] and Gittins and Jones [38]. The optimal

policy is given by Gittins priority-index rule: an index is computed for each arm

(project) and state and the rule prescribes to activate at each decision epoch

the arm with largest current index. The optimality of Gittins rule has been

subject of deep analysis, and proofs based on different technical approaches

have been provided including interchange arguments [35, 38, 105, 111], dynamic

programming [113], induction arguments [108] and conservation laws/linear

programming [23].

For more complex extensions, the Gittins index rule is no longer opti-

mal. For example, the incorporation of costs/delays when switching between

projects is studied in [6], where a partial characterization of an optimal index

is provided. This problem is the matter of Chapter 3 of this dissertation,

further references are provided therein. One more example is the extension to

the basic framework where not-engaged (passive) projects continue to evolve –

possibly with different transition rules– and a fixed number of projects must be
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engaged at each decision epoch. This extension, better known as the Restless

Bandit Problem was first introduced by Peter Whittle [116]. This problem is

discussed in Section 2.3 and is the main matter of Chapters 4 and 5.

We now focus in the MDP formulation of the Multi-armed Bandit Problem

and its solution by means of Dynamic Allocation (Gittins) Indices.

2.2.1 The MAB Model Formulation

In this section we present the MDP formulation and review some basic concepts

and results for the Multi-armed Bandit Problem (MAB).

Consider the problem of sequentially allocate effort to one out of a given

collection of projects M > Q. Each project has state space Si and is modelled

as Markov decision process with two actions available at each decision epoch,

t, and state Xi (t) ∈ Si, 1 ≤ i ≤ M : active (ai (t) = 1) or passive (ai (t) = 0)

corresponding to activating the project or not, respectively. If project i (in

state xi ∈ Si is engaged at time t, an immediate reward Ri (xi) is earned and

the project state changes to some state x′i ∈ Si according to some Markovian

transition rule. Projects not engaged do not yield reward and remain frozen,

i.e. their states do not change. Rewards are discounted in time by with factor

β ∈ (0, 1). The problem faced by the decision maker is to design a non-

anticipative scheduling policy π (which prescribes which project to engage at

each time) that maximises the total expected discounted reward earned over

an infinite horizon.

Let a (t) be the unitary M-vector describing the action taken at decision

epoch t, and X (t) = {X1 (t) , . . . , XM (t)} ∈ S be the state at epoch t, where

S =×M

i=1Si is the system’s state space. Then, the discounted multi-armed
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bandit problem above can be formulated as:

V = max
π

Eπ

[
∞∑

t=0

βtR
a(t)
X(t)

]
(2.12)

This problem is a classical one in the history of sequential decision problems

and has been widely applied as a model for a variety of project scheduling and

dynamic resource allocation problems.

The standard MDP formulation of the multi-armed bandit problem defined

by (S,A,P,R, M) is given by the following5:

1(MAB). Decision Epochs

Decisions are taken at epochs t ∈ N.

2(MAB). State Space

The (countable) set of all possible system states is the Cartesian

product ×M

i=1Si, with Si the state space for bandit i, 1 ≤ i ≤

M . The state of the process at time t is the M -tuple X (t) =

{X1 (t) , . . . , XM (t)}, with Xi (t) the state of arm i at time t.

Notice that the cardinality of S is |S| =
∏M

i=1 |Si|.

3(MAB). Action Set

At each decision epoch, the collection of M admissible actions at

X ∈ S is given by the set

A =

{
a = (a1, . . . , aM) :

M∑
i=1

ai = 1, ai ∈ {0, 1}

}
(2.13)

5We include the additional element M to the collection (T,S,A,Pa,Ra) (see page 20),
representing the number of arms in the bandit problem. In some cases, when using dis-
counted optimality criterion, it might also be given explicit mention to the discount factor
β.
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Under action ai = 1, bandit i is active while under ai = 0 it remains

passive. Equation (2.13) indicates that an adimissible action for the

process activates exactly one bandit, leaving the remaining M − 1

passive.

4(MAB). Transition Probabilities

When action ai (t) = 1 (active) is taken at t ∈ N, bandit i evolves

according to Markovian law Pi, i.e.

P {Xi (t + 1) = x′|Xi (t) = x, ai (t) = 1} = Pi (x, x′) , x, x′ ∈ Si

for all 1 ≤ i ≤ M . The system’s transition from state X under action

a ∈ A will be given by

Pa
X,X′ =

M∏
i=1

Pi (x, x′) , X,X′ ∈ S. (2.14)

Let P stand for the collection of transition matrices Pa, a ∈ A.

5(MAB). Active Rewards

For all i, Ri : S2
i → R+ is a bounded stationary reward function. If

an active transition from state Xi (t) = x to Xi (t + 1) = x′ occurs on

arm i at time t, a discounted reward βtRi (x, x′) is earned. Rewards

are additive across bandits and over time. Passive arms yield no

reward. We shall frequently use the telescoped notation

Ri (x) =
∑
x′∈Si

Ri (x, x′) Pi (x, x′) , x ∈ Si, 1 ≤ i ≤ M

to denote the expected reward earned from a single transition under

action ai = 1. Further, β ∈ (0, 1) is a discount rate. We finally
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introduce

Ra
X = Ri (x) 1 (ai = 1) , a ∈ A and X ∈ S.

Notice that 1 (ai = 1) is an indicator function taking value 1 whenever

active action is taken in arm i.

Let R stand for the collection of reward matrices Ra, a ∈ A.

6(MAB). Policy

A policy π is a rule that sequentially activates one out of M arms at

each decision epoch. The goal of analysis is the determination of a

policy to maximise the total expected discounted reward over an infi-

nite horizon. The theory of Dynamic Programming (see Section 2.1

and references therein) asserts the existence of an optimal, stationary

policy which satisfies the optimality equations of DP.

Figure 2.3 below depicts the typical evolution of an isolated arm in a multi-

armed bandit problem as described above.

Let us denote by V (X) the optimal problem value (i.e. the maximal ex-

pected discounted reward) when the initial project state is X ∈ S. The

optimality equations may be expressed as

V (X) = max
a∈A

{
Ra

X + β
∑
X′∈S

P a
X,X′V (X′)

}
, X ∈ S. (2.15)

This DP formulation is a classical example of the course of dimensionality,

which hinders the application of standard dynamic programming techniques:

the size of the DP formulation typically grows exponentially on the size of the

model’s description.

The above multi-armed bandit problem was considered intractable for a long
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When active action is taken in state x, an active reward R (x) is earned and the arm evolves
to some other state in S following some specific transition rule P (x, ·). When passive action
is taken, the arm remains frozen in the current state and no reward is earned. No specific
order of states is assumed.

Figure 2.3: Representation of a Project in the Multi-armed Bandit Problem

time. In the early 1970’s, however, Gittins and Jones [37] presented a surpris-

ing solution, which now stands as a landmark result in the field: the problem

solution can be easily characterised in terms of a set of dynamic allocation

indices, attached to project states; in particular, for each state Xi = x ∈ Si of

each arm 1 ≤ i ≤ M there exists an index γi (x) depending solely on individual

arm’s parameters:

γi (x) = sup
τ>0

{
E
[∑τ−1

t=0 βtR (Xi (t)) |Xi (0) = x
]

E
∑τ−1

t=0 βt

}
(2.16)

where τ is a stopping time for the process {Xi (t)} satisfying:

τ (x) = min {t : γ (X (t)) < γ (x)} . (2.17)

An important property of the Gittins index is that the supremum in (2.16) is

achieved by τ (x) in (2.17). A first-principles proof of the following Theorem
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(proposed by Gittins, [35]) can be found in Frostig and Weiss [33].

Theorem 2.6. (Gittins) The supremum of (2.16) is achieved by (2.17). It

is also achieved by any stopping time σ which satisfies:

σ ≤ τ (x) and γ (X (σ)) ≤ v (x) . (2.18)

Then the following larger index policy is optimal: work at each time on the

project whose current state has larger index.

Theorem 2.7. (Gittins) There exist functions, γi (Xi (t)) , 1 ≤ i ≤ M such

that for any state X (t) the policy π∗, which will activate the bandit process

(arm) m (t) = i which satisfies γi (Xi (t)) = max1≤i≤M (Xi (t)), is optimal.

The function γi (·) , 1 ≤ i ≤ M is calculated from the dynamics of process i

alone.

Gittins further gave an elegant interpretation of his indices: the index γi
x

is the optimal reward rate that can be obtained from project i when it initial

state is Xi (0) = x.

This is a deep result that has been shown to have many different aspects and

implications, and can be proven in several different ways. Among the alterna-

tives to the original solution, which relied on interchange arguments, we can

mention Whittle [113] who provided a proof based on dynamic programming

that was subsequently simplified by Tsitsilkis [100]. Varaiya et.al. [105], and

Weiss [111] derived different proofs based on interchange arguments. Weber

[108] presented an intuitive proof. More recently, Tsitsiklis [101] has provided

a proof based on a simple inductive argument, and Ishikida and Varaiya [55]

have derived the result without making an explicit use of the interchange ar-

gument. Finally, Bertsimas and Niño-Mora provided a new proof based on
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a polyhedral approach to indexability [23]. A detailed discussion of some of

these proofs can be found in the excellent survey by Frostig and Weiss [33].

Of particular interest is, however, the Whittle’s [113] alternative dynamic

programming analysis of the Gittins indices. Consider a modification of the

multi-armed bandit project i, in which passivity is subsidized by a constant

amount γ, so that R0
i (x) = γ. Consider now the single-project sub-problem

that involves operating optimally this modified project. Write the correspond-

ing optimal value function as Vi (x, γ). This satisfies the DP equation:

Vi (x, γ) = max

{
Ri (x) + β

∑
x′∈Si

Pi (x, x′) Vi (x
′, γ) ; γ + βVi (x, γ)

}
, x ∈ Si.

Now it is intuitive that, as the subsidy for passivity, γ, gets larger, it should be

less preferable to take the active action in the modified problem above. Whittle

established that this indeed is the case: as γ ranges from −∞ to ∞ the set of

states where it is optimal –in the modified problem- to take the passive action

increases from the empty set to the full project state space. The Gittins index

then emerge as the corresponding breakpoint for γ: the unique value of γ that

makes optimal both, the active and the passive action in state x.6

In the next section we briefly describe a more recent approach first intro-

duced by Tsoucas [102] and developed by Bertsimas et.al. [23].

6Actually, Whittle’s original elaboration was in form of a retirement option problem in
which the operator can play the arm for as long as he wants, then retire for ever and receive
a terminal reward M . The optimality equations for this problem are

Vi (x, M) = max

{
R (x) + β

∑
x′∈S

p (x, x′) Vi (x′,M) ,M

}
.

The discussion in these lines follows a slightly different approach that suits better the dis-
cussion in the following sections. It can also be seen that if we take M = γ

1−β , then the
retirement problem has the same solution as the one given by Vi (x, γ).
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The Achievable Region Approach

Consider the M bandit system with initial state X (0) = x, and and arbitrary

policy π. Then define σπ
x as the total expected discounted number of times at

which the activated arm is in state x.

Let S be the state space and D ⊆ S. Consider that certain arm is initially

in state x (we omit the arm indicator), it is played once, and then it is played

until it reaches a state in S. Then the following quantity (AD
x ) represents

expected discounted time of the first entrance (passage) in S.

AD
x = E

T D
x −1∑
t=1

βt|X (0) = x

 . (2.19)

with

TD
x = min {t : t > 0, X (t) ∈ D X (0) = x} (2.20)

being the time of the first entrance in D when starting from state x.

Let now

b (D) =
E
[
βT D

X(0)

]
1− β

with TD
X(0) =

∑
1≤i≤M :xi /∈D TD

xi
. Then the following Theorem can be shown to

be true:

Theorem 2.8. (Generalized Conservation Law) For initial state X (0),

for every policy π and every D ⊆ S

∑
x∈D

AD
x σπ

x
≥ b (D) .
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Equality holds if and only if π : Dc → D, i.e. if policy π gives priority to states

outside D over states in S.

According to the Generalized Conservation Law, the following linear pro-

gram is a relaxation of the multi-armed bandit problem7:

max
∑
x∈S

R (x) σx (2.21)

s.t.
∑
x∈D

AD
x σx ≥ b (D) , D ⊂ S,

∑
x∈S

AS
xσx = b (S) =

1

1− β
,

σx ≥ 0, x ∈ S

Assume S is a finite state space and consider φ (1) , . . . , φ (|S|) to be a permu-

tation of states 1, . . . , |S|. Denote by φ the priority policy that uses this permu-

tation order and Di = [φ (i) , . . . , φ (|S|)] , i = 1, . . . , |S|. Then φ : Dc
i → Di.

It is shown in [23] that the complementary slack dual solution to the linear

program (2.21) corresponding to xφ is of the form yD = 0, D 6= D1, . . . , D|S|

with the remaining dual variables, which can be obtained recursively, given by

yDi =
R (i)−

∑i−1
j=1 A

Dj

i yDj

ADi
i

.

The details of the arguments are away from the scope of this dissertation, but it

can be seen that for xφ to be optimal, it is necessary that yD2 ≤ 0, . . . , yD|S| ≤ 0.

An algorithm based on Klimov’s work [65] and known as Klimov’s Algorithm

is then used to construct the optimal permutation φ.

Because xφ is optimal, the priority policy based on this permutation is

7It is a relaxation in the sense that any performance measure given by policy π has to
satisfy the constraints of the linear program.
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optimal. This policy indeed coincides with the Gittins policy and, actually,

the index γ (φ (x)) =
∑i

j=1 ySj .

Arguments around the discussion above lead to the following conclussion:

the achievable performance region coincides with the feasible region of the

linear program (2.21), and its extreme points coincide with the performance

vectors of the priority policies.

Bertsimas et.al. [23] shown that if performance measures in stochastic

dynamic scheduling problems satisfy generalized conservation laws, then the

feasible region of achievable performance is an extended polymatroid. More-

over, optimization of a linear objective over an extended polymatroid is solved

by an adaptive greedy algorithm, which leads to an optimal solution having

an indexability property. As the achievable region of the multi-armed bandit

problem turns out to be an extended polymatroid, then any objective function

linear in x is achieved by a greedy solution. The authors also provide with an

Adaptive Greedy algorithm for computing the Gittins indices. This algorithm

is the basis of the Algorithm proposed in Section 3.2 (see Figure 3.2) for ob-

taining the indices in a multi-armed bandit problem when switching between

arms is costly.

2.2.2 Extensions of the Multi-armed Bandit Model

Notwithstanding it is easy to write down the formula for the Gittins index and

to provide a nice economic interpretation, it is normally impossible to obtain

analytical expressions for the indices and, consequently, an analytical solution

to the problem. One of the few settings where such solutions are possible

is the continuous time bandit model where the drift of a Brownian motion

process is initially unknown and learned through observations of the process.

Karatzas [59] provides an analysis of this case when the volatility parameter
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of the process is known.

From an analytical point of view, the key property of bandit problems is

that they allow for an optimal policy that is defined in terms of indices that

are calculated for individual arms. One instance where such a generalisation is

possible is the branching bandits problem where new arms are born to replace

the arm that was chosen in the previous period. Glazebrook [40] obtained an

index result for a model in which a collection of individual bandits are subject

to a precedence relation in the form of an out-forest, while Whittle [114] consid-

ered open processes in which new bandits arrive over time. Other examples of

branching bandits are Klimov [65] and Tcha and Pliska [97]. Index results for

both discounted and undiscounted branching bandits were obtained by Bert-

simas and Niño-Mora [23] via mathematical programming methods. More re-

cently, Crosbie and Glazebrook [27] studied a new class of controlled stochastic

systems called generalised branching bandits which include discounted branch-

ing bandits and generalised bandit problems as special cases.

An index characterization of the optimal allocation policy can still be ob-

tained without the Markovian assumption. Varaiya et.al. [105] give a general

characterization in discrete time, and Karoui and Karatzas [60] provide a sim-

ilar result in continuous time setting. In either case, the essential idea is that

the evolution of each arm only depends on the (possible entire) history and

running time of the arm under consideration, but not on the realization nor

the running time of other arms. Banks and Sundaram [7] show that the index

characterization remains valid under some weak additional condition even if

the number of indices is countable, but not necessarily finite.

On the other hand, it is well known that an index characterization is, in

general, not possible when the decision maker must or can select more than

one single arm at each decision epoch (see, for example Ishikida [54]). More-
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over, the optimal solution for this class of problems is not generally known.

Anantharam et.al. [3, 4] and Agrawal et.al. [2] determined optimal allocation

schemes for multi-armed bandits with multiple plays and the learning loss or

regret criterion. Pandelis and Teneketzis [81] identifies a sufficient (but not

necessary) condition on the reward processes that guarantees the optimality of

the index strategy (at each decision epoch to operate the arms with the largest

Gittins indices).

Bergemann et.al. [17] considered a stationary setting in which there is an

infinite supply of ex-ante identical arms available. Within that stationary

setting, they show that an optimal policy follows the index characterization

even when many arms can be selected at the same time or when a switching

cost has to be paid to move from one arm to another. Banks and Sundaram [8]

further show that, in a more general setting, an index characterization is not

possible when an extra cost must be paid to switch between arms in consecutive

periods. This topic is the matter of Chapter 3, and we hence leave further

discussion for later. However, the interested reader is referred to Jun [57] for

a well annotated survey on the multi-armed bandit problem with switching

costs.

Nash [71] extended the multi-armed bandit by introducing a structure in

which the rewards of a particular arm are influenced by the states of other

bandits. This analysis has been helpful in the analysis of a range of prob-

lems in research planning and stochastic scheduling (see, for example, Fay and

Glazebrook [29, 30] and Glazebrook and Greatrix [47]). Development of Nash

work has been restricted to the special case in which all the indices are positive,

Fay and Walrand [31]; however, Glazebrook and Greatrix [48] have shown how

to modify the structure of a generalised bandit problem so that it is reduced

to the special case above while leaving the optimal policy unchanged.
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Arguably the most promising extension of the classical multi-armed bandit

problem us the so-called restless bandit problem pioneered by Peter Whittle

[116]. In the restless bandit problem a fixed number of projects must be

engaged at each time and passive projects can change state. A more de-

tailed overview of this problem is given in Section 2.3 and three broad families

of restless bandit problems are the matter of Chapters 4 and 5. Moreover,

assumptions of the restless bandit problem constitute the building blocks for

our solution to the multi-armed bandit problem when costs are incurred when

switching from one arm to the other in Chapter 3.

2.2.3 Applications of the Multi-Armed Bandit Problem

There is a vast literature with applications of the multi-armed bandit and

its variants to the modelling of decision problems in a variety of fields like

job scheduling, resource allocation, sequential random sampling, clinical trials,

investment in new products, random search, etc.

Some early examples of applications of the MAB framework can be found in

Glazebrook [42, 43, 45, 44]; Nash and Gittins [72]; Rodman [89]; Wahrenberger

et.al. [107]; and Whittle [115] and references therein. Bery and Fristedt [20]

provide a good set of examples of applications to sequential design of exper-

iments and Gittins [36] gives a detailed account of applications to stochastic

scheduling problems.

Interesting economic applications can be found in fields as labour economics,

see for example Johnson [56], Miller [69], McCall et.al. [68], and Kennan et.al.

[64]; optimal search, Weitzman [112] and Roberts and Weitzman [88], Smith

[96], Benkherouf and Bather [12], Benkherouf [11], and Benkheruof et.al. [13]

are good examples in this field; and game theory, see for example Schlag [94]

and Brenner and Vriend [25]. In his complete survey Jun [57] provides an
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annotated discussion of these and other economic applications of the multi-

armed bandit problem.

Other examples of applications of the multi-armed bandit framework in

economics of learning and experimentation are market learning (see Rothschild

[91], Keller et.al. [63], Rustichini and Wolinski [93]); experimentation and

pricing (see, for example, Bergemann et.al. [16, 19], Felli et.al. [32], and Bolton

et.al. [24]); experimentation in finance (see Bergemann et.al. [14, 15], and

Hong et.al. [53]). A detailed discussion of these and some other applications

can be found in the survey on bandit problems by Bergemann et.al. [18].

2.3 The Restless Bandit Problem

One of the most important assumptions in the multi-armed bandit model is

the fact that idle projects are assumed to remain frozen in their current state

during to passive sojourn. This assumption, as a matter of fact, does not hold

in many cases and, consequently, limits the applicability of the multi-armed

bandit framework to a wide variety of problems.

In his pioneering work, Whittle [116] provides some examples of cases for

which projects continue to change state even when they are passive (not op-

erated). A classical example is the one given by Whittle (see [116], page

288).

... suppose m aircraft are trying to track the positions of n en-

emy submarines, where m < n, so that aircraft must change task

from time to time if all submarines are to be monitored... The prob-

lem is to allocate this surveillance... While a submarine is under

observation, information on its position... is being gained. While

it is not, information is usually being lost, because the submarine
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will certainly be taking unpredictable evasive action.

Whittle gives one more example that, actually, constitutes the basis of the

research in Chapter 5 – Section 5.2 in particular– (see [116], pp. 288.289).

... suppose that one has a pool of n employees of whom exactly

m are to be set to work at a given time... One can imagine tht

employees who are working produce, but at a decreasing rate as

they tire. Employees who are resting do not produce, but recover.

The ’project’... is thus changing state whether or not he is at work

Another example is the scheduling of medical screening and treatment. When

screened, information about patient’s condition is acquired and the treatment

can be adjusted. When it is not, information is lost because the health of

the patient can improve or worsen. Again, the number of screening units is

limited and decision must be taken about the patients to be scheduled every

decision epoch.

More examples can be found in a variety of applications as investment

in assets, research and development, training, learning, equipment updating

and replacement, product improvement and advertising, deployment and/or

exploitation of assets, fallow and cultivation models, appointment or mainte-

nance scheduling, and so on and so forth.

In what follows we consider an extension of the multi-armed bandit problem

in which Q out of M projects must be selected to operate at each decision

epoch. It is assumed that both active and passive projects evolve between

decision epochs, according to corresponding active and passive transition rules.

We shall reffer to this as the Restless Bandit Problem.

The aim of this section is, hence, to describe discounted restless bandit

problems and a notion of indexability due to Whittle [116]. For restless bandit
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problems passing certain indexability test, Whittle’s index heuristic will then

be described.

A discounted (reward-based) restless bandit problem is an infinite-horizon

discounted criterion problem on Markov Decision Process (S,A,P,R, M, Q)

with the following elements (corresponding to §1 to §6 in Section 2.1.1)8:

1(RB). Decision Epochs

Decisions are taken at epochs t ∈ N.

2(RB). State Space

The set of all possible system states is the Cartesian product S =×M

i Si

with Si the state space for bandit i, 1 ≤ i ≤ M . The state of the process

at time t is X (t) = {X1 (t) , . . . , XM (t)} with Xi (t) ∈ Si, the state of

bandit i at t.

3(RB). Action Set

We assume M > Q. At each decision epoch the collection of
(

M
Q

)
admissible actions at state X ∈ S is given by the set:

A =

{
a = (a1, . . . , aM)

∣∣∣∣∣
M∑
i=1

ai = Q, ai ∈ {0, 1}

}
(2.22)

Under action ai = 1, bandit i is active while under ai = 0 it is passive.

Equation (2.22) indicates that an admissible action for the process ac-

tivates exactly Q bandits, while leaving the remaining M −Q passive.

4(RB). Transition Probabilities

Suppose action a (t) is taken at t ∈ N, where a is a vector satisfying

8We add one more element Q to the collection (S,A,P,R,M) (see page 39) representing
the number of arms to activate every decision epoch. As before, in some cases we will
include explicit mention of the discount factor, β.
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the r.h.s. of the expression between brackets in (2.22). For ai (t) = 1,

bandit i evolves according to Markov law P 1
i ,i.e.

P {Xi (t + 1) = x′ |Xi (t) = x, 1} = P 1
i (x, x′) , x, x′ ∈ Si

For ai (t) = 0, bandit i evolves according to Markov law P 0
i ,i.e.

P {Xi (t + 1) = x′ |Xi (t) = x, 0} = P 0
i (x, x′) , x, x′ ∈ Si

The M bandits evolve independently. We can finally introduce the

following notation

Pa
X,X′ =

M∏
i=1

P ai
i (x, x′) , for all X,X′ ∈ S, a ∈ A

for the probability of evolving fron state X to state X′ under action a.

Let P represent the collection of transition matrices Pa, a ∈ A.

5(RB). Active and Passive Rewards

For all i, Rai
i : S2

i → R+ is a bounded reward function. If a transition

from x to x′ occurs in bandit i under action ai at time t a discounted

reward βtRai
i (x, x′) is earned. Rewards are additive across bandits and

over time. We shall frequently use the telescoped notation:

Rai
i (x) ≡

∑
x′∈Si

Rai
i (x, x′) P ai

i (x, x′) , x, x′ ∈ Si, 1 ≤ i ≤ M

to denote the expected reward earned from a single transition under

action ai. Further, β ∈ (0, 1) is a discount rate. As in the previous
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case, we can introduce the following notation:

Ra
X =

M∑
i=1

Rai
i (xi) , for all X ∈ S, a ∈ A

for the aggregated reward earned when taking action a in state X.

Let R represent the collection of all reward vectors Ra, a ∈ A.

6(RB). Policy

A policy π is a rule for taking actions at each decision epoch. Such

rule can in principle be a function of the entire history of the process

(actions taken, states occupied) to date. The goal of analysis is the

determination of a policy to maximise total expected discounted reward

over an infinite horizon. The theory of Dynamic Programming (DP)

(see, for example, Puterman [85] and the discussion in Section 2.1) as-

serts the existence of an optimal (reward maximising) policy which is

stationary, deterministic and Markovian and which satisfies the opti-

mality equations of DP in (2.8).

Figure 2.4 below depicts the typical evolution of an isolated arm in a restless

bandit problem as described above.

We write V (X, β) for the value function of the process evaluated at X ∈ S,

namely the maximal expected discounted reward earned over an infinite horizon

from initial state X. The optimality equations (2.8) may be expressed as

V (X, β) = max
a∈A

(
Ra

X + β
∑
X′∈S

Pa
X,X′V (X′)

)
, X ∈ S (2.23)

Equation (2.23) notwithstanding, a pure DP approach is unlikely to yield in-

sight and will be computationally intractable for problems of reasonable size.

Hence the primary question is for good heuristic policies.
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When active action is taken in state x, an active reward R1 (x) is earned and the arm
evolves to some other state in S following some specific active transition rule P 1 (x, ·).
When passive action is taken, the arm evolves accordingly with the passive transition law
P 0 (x, ·) and earns passive reward R0 (x). No specific order of states is assumed.

Figure 2.4: Representation of a Project in the Restless Bandit Problem

The sub-class of models for which Q = 1 and P 0
i (x, x′) = 0, x 6= x′

(P 0
i (x, x) = 1), 1 ≤ i ≤ M (i.e. only one arm activated at each decision epoch

and no state evolution under the passive action) are known as multi-armed

bandit problems (MABs) and are the subject of Section 2.2. Gittins ([35] and

[36]) famously demonstrated the optimality of index policies for MABs, namely

that there exist calibrating index functions Gi : Si → R (one for each bandit),

such that at t the bandit for optimal activation is the one whose associated

index Gi (xi (t)) is maximal. In the event of ties, all corresponding choices are

optimal.

Building on this classical result, Whittle [116] proposed a class of index

heuristics for those restless bandit problems which pass an indexability test.

These heuristics emerge naturally from a Lagrangian relaxation of the original

optimization problem, see Section 2.3.1. The indices which result from Whit-
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tle’s analysis generalise those from Gittins. We now outline the key notions

in Whittle’s approach and develop the framework over which the discussion in

the next chapters will be built.

Indexability and indices are properties of individual bandits. Hence in the

MDP §1(RB) to §6(RB) above, we isolate an individual bandit and will drop the

bandit identifier i. In Whittle’s analysis, this bandit generates a collection of

MDPs parametrised by a passive subsidy W, where W ∈ R. We shall refer to

this as the W -subsidy problem for bandit (S,A, P, R, β). This is a discounted

reward MDP as follows:

1’(RB). Decision Epochs

Decisions are taken at times t ∈ N.

2’(RB). State Space

The countable state space is S. We use X (t) for the state of the

process (arm) at time t.

3’(RB). Action Set

At each decision epoch t, either action a = 1 (active) or a = 0 (passive)

is applied to the process (arm).

4’(RB). Transition Probabilities

If a = 1 is chosen at t then evolution is according to P 1 with

P {x (t + 1) = x′ |x (t) = x, a (t) = 1} = P 1 (x, x′) , x, x′ ∈ S,

if otherwise a = 0 is chosen at t then evolution is according to P 0 with

P {x (t + 1) = x′ |x (t) = x, a (t) = 0} = P 0 (x, x′) , x, x′ ∈ S.
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Let P stand for the collection of passive and active transition matrices

{P 0, P 1}.

5’(RB). Active and Passive Rewards

If a transition from x to x′ occurs under action a = 1 at time t a

discounted reward βtR1 (x, x′) is earned. Should a transition from

x to x′ occur under action a = 0 at time t a discounted reward

βt {R0 (x, x′) + W} is earned, where W is the passive subsidy.

Let R stand for the collection of passive and active reward vectors

{R0, R1}.

6’(RB). Policy

The goal of optimization is the choice of a policy to maximise the total

expected discounted reward (including passive subsidies) earned over

an infinite horizon. We assert the existence of optimal policies for the

W -subsidy problem which are stationary and whose value functions

satisfy the optimality equations of DP. We shall restrict to stationary

policies throughout.

We use V (x, W ) for the value function for the W -subsidy problem evaluated

at x ∈ S. The DP optimality equations may be expressed as:

V (x, W ) = max

{
R1 (x) + β

∑
x′∈S

P 1 (x, x′) V (x′, W ) ;

R0 + W + β
∑
x′∈S

P 0 (x, x′) V (x′, W )

}
(2.24)

for all x ∈ S.

The active action is optimal in x when the first term in max {; } on the r.h.s.

of (2.24) achieves the maximum and the passive action is optimal when the
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second term does so. We use Π (W ) for the subset of S for which the passive

action is optimal under subsidy W , namely

Π (W ) =

{
x ∈ S : R0 (x) + W + β

∑
x′∈S

P 0 (x, x′) V (x′, W )

≥ R1 (x) + β
∑
x∈S

P 1 (x, x′) V (x′, W )

}
. (2.25)

Definition 2.1, based on Whittle’s definition of indexability (see Definition 2.3),

describes the indexability test for bandit (S,A, P, R, β) and the restless bandit

problem of which it is a part.

Definition 2.1. Bandit (S,A, P, R, β) is indexable if Π (W ) is increasing in

W , namely

W1 ≥ W2 ⇒ Π (W1) ⊇ Π (W2) .

A restless bandit is indexable when each of its constituent bandits is indexable.

Hence, a restless bandit is indexable if, as the level of passive subsidy in-

creases, then so does the collection of states for which the passive action is

optimal. However plausible and natural this requirement may appear, it is

typically very challenging to establish and sometimes fails to hold.

Definition 2.2. If bandit (S, P 1, P 0, R1, R0, β) is indexable then its Whittle

index W : S → R is given by

W (x) = inf {W : x ∈ Π (W )} , x ∈ S.

Note that the assumed boundedness of rewards guarantees that the Whittle

index must also be bounded. The value W (x) represents a fair subsidy in state

x in the sense that it renders both actions (active, passive) optimal in the W -
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subsidy problem. The details of Whittle’s approach will be briefly discussed

in the subsequent sections.

Whittle Index Heuristic

If we restore the bandit identifiers and consider an indexable restless

bandit problem with Wi : Si → R the Whittle index for bandit i, 1 ≤

i ≤ M , then the Whittle index heuristic operates as follows: at each time

t ∈ N apply the active action to the Q bandits with largest Wi

(
xi (t)

)
and the passive action to the remaining M −Q bandits.

Comments

A. We could equivalently define a W -charge problem (plainly W+-problem) in

which §5’(RB) in page 58 is replaced by the following:

5’(RB). If a transition from x to x′ occurs under action a = 1 at time t

a discounted reward βt {R1 (x, x′)−W} is earned, where W is a

charge for activity. Should a transition from x to x′ occur under

action a = 0 at time t a discounted reward βtR0 (x, x′) is earned.

Plainly, the W -subsidy and W -charge problems are equivalent in

the sense of having identical optimal policies. The value functions

differ by W (1− β)−1 in all states.

B. We can, of course, have cost-based restless bandit problems of the form

(S,A,P,C, M, Q). These are as in §1(RB)-§6(RB) in page 53, bar the

fact that the bounded rewards R0
i , R

1
i in §5(RB) are replaced by bounded

costs C0
i , C

1
i . The goal of analysis is now the determination of policies to

minimise the total expected cost incurred over an infinite horizon. The

development of a W -subsidy problem is as in §1’(RB)-§6’(RB) in page 57,

except now a passive subsidy W always reduces the instantaneous cost
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incurred under the passive action by that amount. The corresponding

optimality equation replaces (2.24) by

V (x, W ) = min

{
C1 (x) + β

∑
x′∈S

P 1 (x, x′) V (x′, W ) ;

C0 (x)−W + β
∑
x′∈S

P 0 (x, x′) V (x′, W )

}
(2.26)

Definitions 2.1 and 2.2 remain unchanged.

As in §A above, we can equivalently define a W -charge problem in the

obvious way. Through this chapter we shall use the convention that cost-

based restless bandit problems will be analised via corresponding W -charge

problems -thus yielding a wholly cost-based decision structure. Similarly,

reward-based restless bandit problems (or those which are primarily so)

will be analysed via corresponding W -subsidy problems.

2.3.1 Whittle’s Lagrangian Relaxation

In the original Whittle’s [116] formulation, each of the restless bandits consid-

ered is a class of Markov Decision Processes with the average reward criterion.

As this formulation can be straightforwardly extended to the discounted reward

case, we outline here the main results of Whittle’s analysis for the average re-

ward case.

In a typical restless bandit problem, M projects (bandits or arms) are avail-

able for activation (exploitation, investment, and so on). Resource constraint,

m (t) = Q, means that only Q bandits 1 ≤ Q ≤ M may be active at any

time. Each of the projects evolves stochastically through time as described

in §1’(RB) to §6’(RB) in page 57. The decision problem concerns how projects

should be optimally chosen for activation at each decision epoch of the system



62 CHAPTER 2. BANDIT PROBLEMS

to maximise the average reward earned over an infinite horizon.

We write U for the class of stationary, deterministic and Markovian policies

for an identified member the restless bandits family and u ∈ U for an individual

policy. We use ru
i for the average reward rate earned by asset i under policy

u. The optimization problem of interest is expressed as

ropt = max
u∈U

{
M∑
i=1

ru
i

}
(2.27)

We now relax the optimization problem in (2.27) by considering schemes which

activate any number of assets at each decision epoch (i.e. any number between

0 and M , not necessarily Q) and use U ′ for the policies which do this in a

stationary, deterministic and Markovian way. Our interest will reside in those

members of U ′ which activate Q assets (equivalently, fail to activate M − Q

assets) on average over an infinite horizon. To formulate the corresponding

optimization problem, write T u
i for the proportion of time for which asset i is

passive under u ∈ U ′. Hence we relax (2.27) to

ropt = max
u∈U ′

{
M∑
i=1

ru
i

}
(2.28)

subject to

M∑
i=1

T u
i = M −Q (2.29)

Plainly, the relaxation yields increased optimal rewards (compared to the orig-

inal problem) and hence ropt ≥ ropt.
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We now incorporate constraint (2.29) in a Lagrangian fashion. We write

r (W ) = max
u∈U ′

[
M∑
i=1

{ru
i + WT u

i } −W (M −Q)

]
(2.30)

=
M∑
i=1

[
max
ui∈U ′

i

{ru
i + WT u

i }
]
−W (M −Q) (2.31)

where W is a Lagrange multiplier which has an economic interpretation as a

subsidy for passivity. The additive nature of the objective in (2.30) together

with the character of policy set U ′ means that the optimal activation scheme

for the entire set of assets is achieved by concatenating optimal activation

schemes for the individual assets. The additive decomposition in expression

(2.31) is the consequence. In (2.31), U ′i is the set of stationary, deterministic

and Markovian policies which choose between actions a = 1 and a = 0 for asset

i (alone), 1 ≤ i ≤ M . The optimization problem

ri (W ) = max
ui∈U ′

i

{ru
i + WT u

i } (2.32)

is called the W -subsidy problem for asset i and aims to choose a policy for

activating i to maximise its overall return from rewards earned and passive

subsidies received. Since expressions (2.28) and (2.30) are equal when con-

straint (2.29) is satisfied, it is plain that r (W ) ≥ ropt ≥ ropt for all W .

An issue which arises in consideration of the W -subsidy problem in (2.32)

is the possible non-uniqueness of the policy(ies) achieving the maximum. By

defining Π (W ) as the passive set of policy ui (W ) satisfying (2.32) (i.e. the

largest set of states in which the corresponding policy chooses the passive

action), we can resolve any non-uniquenes by choosing the policy with the

largest passive set.

Use u (W ) for the stationary policy for the entire system which applies



64 CHAPTER 2. BANDIT PROBLEMS

ui (W ) to each asset i, 1 ≤ i ≤ M . Policy u (W ) solves the optimisation

problem (2.30). The following definition of indexability (adapted from [116],

Definition 1) expresses a natural requirement on (optimal) policy structure.

Definition 2.3. (Whittle) Let Πi (W ) be the set of values of xi ∈ Si for

which project i would be rested under a W -subsidy policy. Then the project is

indexable if Πi (W ) increases monotonically from ∅ to Si as W increases from

−∞ to ∞.

The above decision problem (2.28) is indexable when all constituent projects

are.

Should an asset be indexable, then a natural calibration, in the form of a

fair subsidy for passivity may be defined. Whittle ([116], page 290) defines

the index Wi (xi) of project i in state xi ∈ Si as the

value of subsidy which should make the two phases [activity and

passivity] equally attractive for project i in state x.

Definition 2.2 is a natural extension of this comment.

It now follows that u (W ) will choose to activate in system state X ∈ S those

assets for which Wi (Xi) > W and apply the passive action to the reminder.

Whittle presents this result in the following terms (see [116], Proposition 3):

Proposition 2.2. (Whittle) If all projects are indexable, then the projects i

which are active under a W -subsidy policy are those for which Wi (xi) > W .

If, further, there exists W ∗ such that u (W ∗) satisfies (2.29) then it must

follow that

r (W ∗) = ropt ≥ ropt

and u (W ∗) solves the relaxation in (2.28) and (2.29).
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A natural index heuristic for the original optimization problem (2.27) e-

merges from the above discussion. The heuristic chooses in state X ∈ S to

activate Q assets with maximal index values Wi (Xi) , 1 ≤ i ≤ M , with ties

resolved in some arbitrary manner. Notice that this policy imposes the rigid

constraint m (t) = Q. By denoting the return of such a policy by rind, Whittle

proves the following proposition ([116], Proposition 5):

Proposition 2.3.

rind (Q) ≤ ropt (Q) ≤ ropt (Q) .

In page 55 we mentioned that for the case where Q = 1 and Pi (xi, x
′
i),

xi 6= x′i, 1 ≤ i ≤ M , the restless bandit problem reduces to the classic multi-

armed bandit problem. This result is established in Whittle’s Proposition 2

[116].

Proposition 2.4. (Whittle) The index Wi (xi) reduces to the Gittins index

in the case P 0
i (xi, x

′
i) = 1 (xi = x′i) , 1 ≤ i ≤ M , where 1 (·) is an indicator

function, and R0
i (xi) = 0,∀xi ∈ Si, 1 ≤ i ≤ M .

Finally, the issue of indexability arises naturally from the characteristics of

the restless bandit problem and can not be taken for sure. The following result

corresponds to Proposition 4 in Whittle [116]:

Proposition 2.5. (Whittle) Projects are always indexable if P 0
i (xi, x

′
i) =

1 (xi = x′i) , 1 ≤ i ≤ M (i.e. if resting projects are static). They are not

necessarily indexable otherwise.

Comment

All the results so far can be also obtained for the discounted case if we substitute
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(2.27) by

ropt
β = max

u∈U
Eu

[
∞∑

t=0

M∑
i=1

βtru
i (t)

]
(2.33)

conditional on a distribution Pi over initial state Xi (0), so that the expectation

in (2.33) is taken over both initial state and subsequent evolution of the system.

And condition (2.29) is replaced by

M∑
i=1

M −Q

1− β
T u

i (β) , (2.34)

where

T u
i (β) = Eu

[
∞∑

t=0

βt1 (ai (t) = 0)

]
,

and 1 (ai (t) = 0) is an indicator function which takes value 1 when passive

action is taken in arm i at decision time t.

Asymptotic Optimality of Whittle’s Index Policy

Starting from the interpretation of index W (·) as the Lagrangian multiplier

associated with a prescribed average utilization rate, and given the fact that

this point of view yields an immediate upper bound on performance, the bound

ropt (Q); Whittle [116] conjectures that, if all projects are indexable, the index

policy is asymptotically optimal in terms of the average yield per project, when

the ratio Q/M remains fixed.

Weber and Weiss [109, 110] investigated the asymptotic optimality of Whit-

tle’s heuristic. Working with continuous-time restless bandits with infinite

horizon time-average criterion, they show that as Q and M tend to ∞ with

the ratio α = Q/M fixed, the per-project reward of the optimal policy is
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asymptotically the same as that achieved by a policy operateing under the

Whittle’s relaxed constraint (keep active Q projects in average). Moreover,

they presented a sufficient condition for asymptotic optimality, i.e. Whittle’s

conjecture will be true if the differential equation describing the fluid approxi-

mation to the index policy has a globally stable equilibrium point. They also

found instances that violate this condition, and in which Whittle’s heuristic is

not asymptotically optimal. However, empirical evidence suggests that such

counterexamples are rare in applied work and that the expected size of the

suboptimality tends to be negligible.

Complexity of the Restless Bandit problem

Another line of work has sudied the computational complexity of the restless

bandit problem. Papadimitriou and Tsitsiklis [83] established that the restless

bandit problem is PSPACE-hard (PSPACE-complete), even in the special case

of deterministic transition rules and M = 1.

Given that the multi-armed bandit problem is the main tool for

solving the few cases of networks of queues that we can solve, it is

interesting to study the complexity of its most promising extension,

the restless bandit problem... We show that this problem is also

PSPACE-complete, even in the deterministic case.

The fact that a problem is PSPACE-complete is an even stronger indication

that it is intractable9 than if it where NP-complete10. It is also considered as

evidence that the problem is not in NP or even in the polynomial hierarchy11.

9A problem i intractable if it is so hard that no polynomial time algorithm can possibly
solve it.

10NP refers to the class of decision problems that can be solved in polynomial time by a
non-deterministic computer (in computer science a decision problem is one which solution is
either yes or not). The class of NP-complete problems consist of the “hardest” problems in
NP to which any other “hard” problem can be reduced (or proved equivalent in difficulty).

11For further discussion on complexity the reader is referred to Garey and Johnson [34],
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This result is in sharp contrast with the well-known optimality of Gittins

index rule in the special case of the multi-armed bandit problem. It, therefore,

confirms the need for well grounded heuristics for finding near optimal (or

asymptotically optimal) solutions to the restless bandit problem, as well as

emphasises the relevance of Whittle’s contribution.

2.3.2 An Alternative Approach: PCL-Indexability

Niño-Mora [75] maps out an alternative route to the demonstration of index-

ability for restless bandit problems and to index calculations which is based

on the notion of parcial conservation laws, PCL-indexability. This is in turn

a development of ideas based on generalised conservation laws (GCL) which

played a fundamental role in the account of Gittins indexation given by Bert-

simas et.al. [23]. PCL’s are shown to imply the optimality of index policies

with a postulated structure in stochastic scheduling problems, under admissible

linear objectives, and are deployed to obtain sufficient conditions for indexabil-

ity.

In brief, let us suppose that we which to schedule a stochastic system which

is servicing a countable collection of job classes indexed by the natural numbers,

N. Denote U the collection of admissible scheduling policies. The stochastic

optimisation problem of interest is the minimisation of some linear objective

∑
i∈N

cix
u
i (2.35)

where ci > 0 is a cost rate for job class i and xu
i a performance measure for class

i under scheduling policy u ∈ U . When the system satisfies a collection of so-

called partial work conservation laws (PCL) then the stochastic optimisation

Papadimitriou [82], and Lewis and Papadimitriou [67].
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problem above is solved by an index policy for some choices of the cost rate

vector c. Whether a particular choice is in this admissible class or not may

be determined by running an adaptive greedy algorithm. A system which

satisfies PCL and whose cost-rate vector c is in the admissible class is called

PCL-indexable.

Niño-Mora [73] utilises the above ideas to develop sufficient conditions for

the (Whittle) indexability of countable states restless bandits in terms of model

parameters. Her further demonstrates that the restless bandit model asso-

ciated with a multiclass M/M/1 queueing system does indeed satisfy these

sufficient conditions and hence meets the requirements for PCL-indexability.

Niño-Mora [76] extends the previous work on PCL-indexability by develop-

ing a polyhedral approach to the design, analysis and computation of dynamic

allocation indices for the scheduling of restless bandits based on partial con-

servation laws. In this work, the author develops a polyhedral foundation of

the PCL framework, based on structural and algorithmic properties of a new

polytope associated with a so-called accesible set system; presents new dynamic

allocation indices for restless bandits motivated by an admission control model

and deploys PCL’s for obtaining both sufficient conditions for the existence

of the new indices (PCL-indexability) and a new adaptive greedy algorithm.

Niño-Mora provides a new interpretation of PCL-indexability as a form of the

economics law of diminishing marginal returns and characterise the index as an

optimal marginal cost rate. The author finally works out examples in queueing

systems and job scheduling.

Finally, Niño-Mora, [74] addresses issues of interpretation and application

of the PCL-indexability conditions. In particular, he performs an analysis of a

discounted version of the so-called Ehrenfest model for optimal work allocation

under tiring and recovery introduced by Whittle [116], and establish that it
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is PCL-indexable under natural assumptions on model parameters. To our

knowledge, this is the only time –apart from Whittle’s work- that this problem

has been addressed in restless bandit literature and constitutes a particular

case of the Squad System model analysed in Chapter 5.2 of this dissertation.

Although the analysis is complex, PCL-indexability is an important ana-

lytical tool which is sometimes available when the simple direct arguments of

dynamic programming theory, as used in this work, are not.

2.3.3 Applications of the Restless Bandit Problem

The restless bandit problem provides a powerful modelling framework that has

found applications in fields as diverse as job and production scheduling (Veatch

and Vein [106], and Glazebrook and Mitchell [50]), control of queueing systems

(Glazebrook et.al. [52, 49], Ansell et.al. [5], Niño-Mora [73, 79, 78]), machine

maintenance (Glezebrook et.al. [51]), outsourcing of warranty repairs (Glaze-

brook et.al. [80]), routing (Glazebrook and Kirkbride [39]). Apart from their

intrinsic interest, these applications of Whittle’s ideas have provided empirical

evidence of outstanding performance of the index heuristics concerned.



Chapter 3

A Restless Bandit Approach to

Stochastic Scheduling Problems

with Switching Costs1

Introduction

A general assumption maintained in almost all the work in the area of optimal

resource allocation is that the operator can switch instantaneously from one

project to another without facing any cost. In reality, when the manager

switches between different projects a set-up may be needed, and a cost and/or

delay is incurred. Although it is realistic to include a penalty each time a new

project is engaged, its inclusion drastically changes the nature of the problem.

In fact, it has been shown (see [8]) that, in general, it is not possible to construct

indices –defined in terms of individual projects– which have the property that

the resulting index strategy is optimal on the domain of all multi-armed bandits

1 The main results in this Chapter will appear published in Section 4 of Glazebrook,
K., Ruiz-Hernández, D. and Kirkbride, C. Some indexable families of restless bandit
problems. Advances in Applied Probability 38-3 (2006).

71
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(MAB) with switching costs. Indeed, this result remains true even if attention

is restricted to the case in which the cost of switching is a given (nonzero)

constant 2. So far, the problem remains unsolved and there is still the need of

well grounded heuristics providing an efficient solution to this sort of models.

This section is based on the observation that by means of a straightfor-

ward manipulation of the reward structure, the switching cost problem can be

reduced to the pure set-up cost problem and, consequently, indices defined in

terms of isolated projects can be obtained. Moreover, with a simple redefini-

tion of the state space (first proposed by Asawa and Teneketzis [6]) an index

policy can be formulated for the pure set-up cost problem which is equivalent to

the Whittle index-policy for the non-penalty case. This redefinition consists in

including, for each state and project, information related to the action (active

or passive) taken in the previous decision epoch. It can be shown that under

this formulation, a MAB with switching costs behaves as a restless bandit (RB)

without them and all results available in literature for the latter apply for the

switching-cost case3. Performance of such index policy is empirically shown

to be very close to optimality.

The underlying idea is to include for each bandit i and state xi (for 1 ≤

i ≤ M), information about the action taken in the previous decision epoch.

Hence, for arm i we define a two dimensional extended state space Li ={(
ai
−1, xi

)
|a−1 ∈ {0, 1} , xi ∈ Si

}
, where a−1 represents the action (active or

passive) taken at the previous decision epoch, x is the current state of the

project, and S is the one dimensional state space for an isolated arm.

Arm i’s behavior can be described in the following way: every time the

active action is taken in state
(
ai
−1, xi

)
∈ Li the project evolves, according to

2See below in Section 3.1 a detailed review in related literature.
3Actually, Asawa and Teneketzis [6] introduced this extension, but their analysis is limited

to the classical multi-armed bandit framework.
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some Markovian transition rule, to state (1, x′i) ∈ Li. On the other hand, if

passive action is taken in state (0, xi) ∈ Li, the system remains frozen in that

state. So far, our system behaves like the classic MAB problem. However, if

passive action is taken at state (1, xi) ∈ Li the system performs an instanta-

neous transition to state (0, xi) ∈ Li, which confers the restless nature to our

problem. We assume that all arms start from passivity, i.e. initial states take

the form (0, xi) ∈ Lm for all 1 ≤ i ≤ M .

Regarding the reward structure, we assume that when the active action is

taken on arm i at some state xi ∈ Si an state/arm dependent active reward,

Ri (xi), is earned. Passive action gives no reward. Moreover, if active action is

taken whenever the arm is passive, an strictly positive “switching cost”, Ci (xi),

is incurred. With this elements, we can write down a general expression for

the active reward earned by bandit i at any state xi as4:

R (a−1, x) = R (x)− C (x)× (1− a−1)

Consequently, R (1, x) = R (x) and R (0, x) = R (x)−C (x) literally absorbs the

whole burden of the switching cost (SC) as a component of its active reward.

With this reward structure the MAB w/SC is reduced to a simple RB without

switching penalties and with two different families of states. Once indexability

of this problem had been established, and priority indices obtained, the index

policy will simply prescribe to engage, at each decision epoch, the arm(s) with

larger index value.

The chapter is organized as follows. In Section 3.1 related literature is

surveyed. In Section 3.2, the problem of translating the multi-armed bandit

problem with switching costs, to which we will refer as the MAB w/SC, into

4For the sake of simplicity we omit here the arm subindices.
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a pure set-up cost formulation is addressed and a proof for indexability of the

extended-space pure set-up cost formulation is provided. Based on [23], an

adaptive greedy algorithm for index calculation is presented also in this section.

In Section 3.3, two interesting results and one application are discussed. The

results regard, respectively, the indexability of the MAB w/SC when there

exists a positive probability of losing idle (passive) projects, and the optimality

of the index policy when the switching costs are high enough. An application

to the scheduling of stochastic jobs is also introduced here. Results of an

intensive numerical assessment of the performance of the index policy in the

MAB w/ SC are offered in Section 3.4. Section 3.5 concludes.

3.1 Related Literature

In one of the earliest works in this topic, K. Glazebrook [45] showed that, for

a collection of jobs to be processed by a single machine in a manner which

is consistent with a precedence relationship, with the machine being free to

switch from one job to the other by incurring a cost, there exists -under given

conditions- an optimal strategy for allocating the machine to the jobs which is

given by a fixed permutation of the jobs indicating in which order they should

be processed. This optimal strategy belongs to the class of non-preemptive

policies. The author also propose an algorithm that yields optimal strategies

for certain specialised switching-cost structures.

In 1990, Agrawal, Hedge and Teneketzis [2] concentrated on multi-armed

bandit problems with switching costs and multiple plays. Earlier, 1988,

Agrawal et.al. [1] had provided a solution to the multi-armed bandit prob-

lem with switching costs but with single plays by exploiting a block allocation

scheme. In the 1990’s paper, they presented a lower bound on asymptotic
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performance of uniformly good allocation rules and constructed an allocation

scheme that achieves that bound. Despite the presence of a switching cost,

the proposed allocation scheme was shown to achieve the same asymptotic per-

formance as the optimal rules for the bandit problem without switching cost.

This was made by grouping the arms in such a way that makes the rate of

switching negligible compared to the rate of operation.

In 1992, Van Oyen, Pandelis and Teneketzis [103] investigated the impact of

switching penalties on the nature of optimal scheduling policies for systems of

parallel queues without arrivals, which is an special case of MAB with switching

costs. For switching penalties depending on the particular nodes involved in

a switch, they showed that, although an index rule is not optimal in general,

there is an exhaustive service policy that is optimal. In particular, they

concentrated their work on obtaining optimal scheduling policies for a model of

N parallel queues with switching penalties, linear holding costs, general service

distributions and no arrivals. The class of admissible strategies was taken to

be the class of non-idling, non-preemptive, and non-anticipative scheduling

policies. For the switching cost problem, they considered that switching cost

Kij is incurred at each instant the server completes a job of node i and then

serves a job of nod j. For the switching delay problem, a random length of

time, Dij is is required for switching from queue i to j; thus, the holding cost

incurred during the switching delay is the implicit penalty.

By defining a policy to be exhaustive if according to it the server never leaves

a node before completing the service of all customers in there, authors proved

that only exhaustive policies can be optimal. That means that an optimal

policy prescribes exactly (N − 1) switches, which provides a reduction in the

class of policies which are candidate solutions to the optimization problem: the

set of exhaustive pure Markov policies. Additionally, they proved that index
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policies are optimal under the additional assumption that the switching cost

(delay) is a know constant K (D, respectively). In particular, the following

index rule is proved to be optimal: serve the queues exhaustively in decreasing

order of the dynamic allocation indices νi for the switching cost case, and νi

for the switching delay case; indices are, respectively, given by

νi =
Ci (xi)−K

E
[∫ τi

0
e−αtdt

]
νi =

Ci (xi)

E
[∫ τi+D

0
e−αtdt

]
where, τi is the total processing time of xi jobs in node i.

In 1994, Banks and Sundaram [8] examined the extent to which the Gittins-

Jones [38] theorem remains valid when the cost of switching between arms is

possibly non-zero, i.e. to determine whether suitable defined index strategies

continue to remain optimal in the switching-costs case. It is well known that

when the switching cost depends on characteristics of both, abandoned and

incoming arm, there cannot exist an optimal index strategy with the index

of an arm depending solely on one arm’s characteristics, as the Gittins-Jones

theorem prescribes. Moreover, by considering a model in which the cost of

switching away from an arm (resp. to an arm) is independent of the arm to

which (resp. from which) the switch is made, they showed (using a reductio

ad absurdum approach) that -even in this simpler case- it is not possible to

define indices which have the property that the resulting strategy is optimal in

the domain of all bandit problems with switching-costs. Indeed, their result

remains true even if attention is restricted to that subset of the domain in

which the switching-cost is a non-zero constant.

In that same year, Benkherouf, Glazebrook and Owen [13] addressed the

special case where a set-up cost is paid only the first time the active action
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is taken in a particular arm. They proved that the Gittins index is indeed

optimal. This is so because,as Banks and Sundaram [8] pointed out, if there is

any possibility of switching back to an arm after abandoning it, then the index

when it is active arm must be increasing in the cost of switching to back to it.

Since the concern about switching disappears once an arm is played, the index

on the current arm does not need to increase in the cost of switching back to

it after some a passive sojourn. Therefore, the inclusion of one time set-up

costs does not contradict the fact that the index on the current arm should be

decreasing in switching costs.

Also in 1994, Van Oyen and Teneketzis [104] presented a research on struc-

tural properties of optimal policies for the problem of scheduling a single server

in a forest network of N queues (without arrivals) subject to switching penalties.

In their formulation authors allow jobs served at one queue to be transferred

to another (internal arrivals) which prevents the application of the simple in-

dex structure found for the case of parallel queues in their previous work (see

above). Notwithstanding, they are able to outline a class of problems for which

relatively simple (exhaustive) policies are optimal.

Later, 1996, Asawa and Teneketzis [6], presented an algorithm for the com-

putation of a switching index and established sufficient conditions for optimal-

ity of allocation strategies, based on limited look-ahead techniques. In their

work it was shown that, under an optimal policy, decisions about the proces-

sor allocation in presence of switching costs need to be made only at stopping

times that achieve an appropriate index, the Gittins Index or the switching-

index which is defined both, for switching penalties and switching delays. For

special class of multi-armed bandits (scheduling of parallel queues with switch-

ing penalties and no arrivals), it is shown that the afore mentioned property of

optimal policies is sufficient to determine an optimal allocation strategy. The
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Gittins index is given by

νgi (t) = max
τ>t

Ei

{∑τ−1
l=t βlX i (l)

}
Ei

{∑τ−1
l=t βl

}
and the switching cost index has the following form:

νci (t) = max
τ>t

Ei

{∑τ−1
l=t βlX i (l)− Cβt

}
Ei

{∑τ−1
l=t βl

}
The switching cost C is a non-zero constant independent of machine dynamics.

To calculate the indices, the authors propose a new Markov chain with state

space Θ̂ = {1, . . . ,M, 1′, . . . ,M ′} and transition probabilities given by

P̂ij = Pij, i, j ∈ {1, . . . ,M}

P̂ij′ = 0, i ∈ {1, . . . ,M} , j′ ∈ {1′, . . . ,M ′}

P̂i′j = Pij, i′ ∈ {1′, . . . ,M ′} , j ∈ {1, . . . ,M}

P̂i′j′ = 0, i′, j′ ∈ {1′, . . . ,M ′} ,

and rewards

R̂ (j) = R (j) , j ∈ {1, . . . ,M} ,

R̂ (j′) = R (j)− C, j′ ∈ {1′, . . . ,M ′} .

Hence, if the machine is passive its state is represented by an element of the

subset {1′, . . . ,M ′} ⊂ Θ̂; and by {1, . . . ,M} ⊂ Θ̂ if it is active. It follows from

their argument that the Gittins indices ν̂gi (t) for the problem above are given

by

ν̂gi (t) = νgi (t) , i ∈ {1, . . . ,M} ,

ν̂gi′ (t) = νci (t) , i′ ∈ {1′, . . . ,M ′} .
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For the actual index calculation the authors use the algorithms in Varaiya et.al.

[105].

Asawa and Teneketzis also addressed the case of switching delays. The MAB

with switching delays is considered to be the same as the problem with switch-

ing costs, except that a switching (setup) delay D is incurred when the server

moves from one project to another and rewards are non-negative. They assume

the delay to be a non-negative integer random variable with given distribution

such that 0 < E [D] ≤ ∞ and is independent of machine dynamics. As in the

case of switching costs, the Gittins index rule is not optimal for the problem

with switching delays. However, an optimal scheduling policy for the multi-

armed bandit problem with switching delay has been found to satisfy certain

property. By defining the switching delay index

νdi (t) = max
τ>t

E
[
βD
∑τ−1

l=t βlX i (l) |F i (t)]

E
[∑τ+D−1

l=t βl |F i (t)
]

the authors conclude that optimal decisions about the processor allocation are

made only at those stopping times that achieve the appropriate index.

Asawa and Teneketzis’ idea of an extended state space is the basis of the

development in this Chapter. To our knowledge, it was José Niño-Mora who

first suggested that multi-armed bandits with switching costs can be viewed as

restless bandits. This idea was first used by Diego Ruiz-Hernández in 2001,

[92].

In 1998, Reiman and Wein [86], analysed two scheduling problems for a

queueing system with a single server and two customer classes. In the first

problem a setup cost is incurred when the server switches from one class to

the other, and the objective is to minimize the lung run expected average cost

of holding customers and incurring set-up costs. The set-up cost is replaced
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by a setup time in the second problem, where the objective is to minimize the

average holding cost. The scheduling problem in the setup case was formulated

as to minimize:

limsup
T→∞

1

T
E

[∫ T

0

2∑
i=1

ciQi (t) dt +
K

2
J (T )

]

where Qi (t) is the number of class i customers in queue or in service at time t,

J (t) the number of times the server sets up in the time interval [0, t]; K
2

is the

setup cost for one switch, and c1 is the cost incurred per unit time for holding

a class i customer in the system. They approximated both dynamic scheduling

problems by diffusion control problems. The diffusion control problem for the

set-up cost problem was solved exactly, and asymptotics were used to analyse

the corresponding set-up time problem. Computational results show that the

proposed scheduling policies are within a small percent of sub-optimality over

a broad range of problem parameters.

General references in the field of stochastic scheduling with set-up and

switching costs include the works by Duenyas and Van Oyen [28], Karaesmen

and Gupta [58], Kolonko and Benzing [66]. Other lines of research have

searched for a characterization of the optimal solution by means of simplifying

some of the assumtions, for example Bergemann and Välimäki [17] work with

stationary arms, Benkherouf et.al. [13] consider only first-time switching costs,

and Kavadias and Loch [62] concentrate on time invariant rewards.

For additional references and a well annotated survey on the multi-armed

bandit problem with switching costs we refer the reader to Jun [57].
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3.2 Restless Bandit Formulation of the MAB

with Switching Costs

In this section, the stochastic scheduling problem with switching costs is ad-

dressed. It is shown that with a straightforward manipulation of the reward

structure, a model including both set-up and tear-down costs can be reduced

to a pure set-up cost problem without any loss of generality. Later, with a

simple modification/extension of the state space the pure set-up formulation of

our MAB w/SC is transformed into a restless bandit without switching penal-

ties. Standard Whittle index theory, as deployed in Section 2.3 is applied

for addressing the issue of indexability of the transformed problem. Once

indexability of the transformed restless bandit problem has been established,

an adaptive greedy algorithm for index calculation is proposed.

3.2.1 The Multi-armed Bandit Problem with Set-up and

Tear-down Costs

Consider the problem of scheduling the operation of Q out of M competing

projects. Given the resource constraint faced, the decision maker must decide

whether to assign them to certain subset of projects or to some other. Under

natural independence assumptions, his decision for each project can be mod-

elled as an active-passive action choice. In that case, the decision problem can

be formulated as a sequential decision model in which, at any epoch, the de-

cision maker observes the state of a number M of two-action Markov Decision

Processes, each corresponding to a different project. Based on the available

information, the planner selects 1 ≤ Q < M projects to be activated in the

current period and to let idle the remaining ones.

Consider just one project (bandit or arm) arm in isolation. When active
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action is taken on project’s state X (t) = x at time t ∈ N, it returns a state

dependent active reward R (x) and evolves to the next state following a general

Markovian transition rule. If passive action is taken, no reward is earned and

the project remains idle in the incoming state.

Moreover, switching activity between two different arms (say from arm i

to arm j, where 1 ≤ i, j ≤ M) implies two different state-dependent costs:

a tear-down cost depending on the state of the abandoned arm, Qi (xi), and

a set-up cost, Sj (xj), depending on the incoming arm’s state. Hence, the

discounted switching cost at time t will be:

βt [Qi (xi) + Sj (xj)]

As Banks and Sundaram [8] pointed out, when the switching cost depends

on characteristics of both abandoned and incoming arms, there cannot exist

an index strategy with the index of an arm depending solely on that arm’s

characteristics, as the Gittins-Jones theorem prescribes. However, by means

of a straightforward manipulation of the reward structure, the switching cost

problem can be translated into a pure set-up cost formulation. This will be

shown with a simple example.

Consider a two-armed bandit problem and assume that arms are passive at

time t = 0, with Xi (0) = xi, Xj (0) = xj. At time t = 0 arm i is activated and

a state dependent set-up cost is incurred. Additionally, an (state dependent)

active reward is earned during the duration of arm’s i active period, τi,

−Si (xi) + Ri (xi, τi)

At time τi, arm i is switched-off in state Xi (τi) = x′i and arm j activated.

Therefore, state dependent retirement (tear-down) and set-up costs are paid,
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and the reward earned across active period of arm j is:

−E [βτi ] (Qi (x
′
i) + Sj (xj)) + E [βτi ] Rj (xj, τj)

After being active for τj periods, arm j is abandoned at state X (τj) = x′j,

state dependent tear-down cost is paid and arm i is engaged again with its

corresponding set-up cost incurred, and so on and so forth.

−E [βτi ] E [βτj ]
(
Qj

(
x′j
)

+ Si (x
′
i)
)

+ . . .

By putting everything together and reordering terms we get:

− Si (xi)−Qi (xi) + Ri (xi, τi) + {Qi (xi)− E [βτiQi (x
′
i)]}

+ E [βτi ]
(
−Sj (xj)−Qj (xj) + Rj (xj, τj)

+
{
Qj (xj)− E

[
βτjQj

(
x′j
)]})

· · · (3.1)

Here, Qi (xi) − E [βτiQi (x
′
i)] can be understood as a residual reward earned

over [0, τi), when starting from state xi.

It now follows from (3.1) that if in the underlying multi-project scheduling

problem, all constituent projects are deemed passive at time t = 0 then the

following modifications to our bandit are sufficient to accomodate tear-down

costs:

1. The set-up cost in xi becomes to Ci (xi) = Si (xi) + Qi (xi), and

2. Rewards R (x) is enhanced to to R̃i (xi, x
′
i) = Ri (xi) + Qi (xi)− βQ (x′i).

Which implies that (3.1) can be rewritten as:

−Ci (xi) + R̃i (xi, x
′
i) + E [βτi ]

[
−Cj (xj) + R̃j

(
xj, x

′
j

)]
. . .
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which is a pure setup-cost formulation. This result can be extended to any

multi-armed bandit problem with multiple plays and switching (set-up and

tear-down) costs. Hence, we can restrict our analysis to the pure set-up

cost formulation without any loss of generality. We shall refer to this as the

switching-costs problem.

3.2.2 Restless Bandit Formulation

The standard Markov Decision Problem (MDP) formulation for the MAB with

switching costs can be described as follows:

Each project i, 1 ≤ i ≤ M is modelled as a Markov Decision Chain (MDC)

that evolves over the (countable) state space Si with two possible actions

ai ∈ {0, 1} available at each state xi ∈ Si, and decision time t ∈ N, where

ai = 0 means passivity and ai = 1 activity. The aggregated state space is

denoted by S = ×M

i=1Si, with the system state at time t given by X (t) =

(X1 (t) , . . . , XM (t)) ∈ S.

If active action (ai = 1) is taken in arm i at state xi ∈ Si an arm/state

dependent active reward Ri (xi) is earned and the arm evolves to state x′i ∈ Si

according to certain markovian transition rule. Otherwise, if passive action is

taken (ai = 0), no reward is earned and the project remains frozen in state xi.

Before discussing the particular switching cost parameters, we need to con-

sider two facts: 1) Banks et.al. [8] have already shown that it is not possible

to define indices which have the property that the resulting strategy is optimal

in the domain of all bandit problems with switching costs; and 2) it is well

known that, under indexability, Whittle’s index policy provides very efficient

(asymptotically optimal) solutions to the restless bandit problem. Hence, our

idea is to transform the Multi-armed Bandit Problem with Switching Costs

into a Restless Bandit problem without them and then to apply the Whittle’s
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approach described before in Section 2.3. For doing so it is just necessary to

slightly modify the state space in the way described in the next paragraph.

For each arm and state we introduce a pair of extended states li =
(
ai
−1, xi

)
,

where xi ∈ Si represents the actual state of project i, and the value ai
−1 indi-

cates whether it is an active state (project i is currently operated, in which case

the state take the form (1, xi)), or it is a passive state (project i lays in rest,

with the state taking the form (0, xi)). Hence, the extended state space of

a single arm or project becomes Li =
{(

ai
−1, xi

) ∣∣ai
−1 ∈ {0, 1} xi ∈ Si

}
. The

system’s extended state at some decision time t is hence given by L (t) =

(l1 (t) , . . . , lM (t)) ∈ L, with L =×M

i=1Li.

We have now a two dimensional state space for each project, with two

separated families of states: active and passive; each of them having a different

reward structure but sharing the same transition rules as will be seen later.

Figure 3.1 below sketches the evolution of an arm starting at state (1, x)

depending on whether the action taken in the next decision epoch is active

a = 1 or passive a = 0. There can be clearly seen the restless nature of the

transformed problem: every time the passive action is taken in an active state

(1, x) it evolves to the corresponding passive state (0, x) and remains there

until the active action is taken again in that particular project.

The standard discrete time MDP formulation for this restless bandit prob-

lem, represented by (L,A,P,R, M, Q, β) is summarised by the following ele-

ments (equivalent to §1(RB) to §6(RB) described in Section 2.3):

1. Decision Epochs

Decisions are taken at epochs t ∈ N.

2. State Space

The (countable) set of all possible system states at decision epoch t is

the Cartesian product×M

i=1Li. However, as Q < M we can define the
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(1,x)

x’= E [x(t+1) | x(t)=x, a=1] 

(0 ,x)

a=1

a=1

a=0

a=0

P0(x,x)=1

P0(x,x)=1

(0 ,x’ )

a=0

a=0

P0(x’,x’)=1

P0(x’,x’)=1

a=1

a=1

(1,x’ )

Whenever active action is taken in state (a−1, x), the arm evolves in probability to state
x′ ∈ S, independently of the action taken during the previous decision epoch a−1. However,
under passive action, the (active) arm first performs a transition to the passive state (0, x)
and will remain there unless active action is taken again. This sole transition from (1, x)
to (1, x) is the only source of restlesness in the modified model.

Figure 3.1: Representation of a Project in the Restless Bandit Formulation of the
Multi-armed Bandit with Switching Costs

set of relevant states to be

L =

{
L

∣∣∣∣∣
M∑
i=1

ai
−1 ≤ Q

}
∪ L0

where L0 =
(
(0, x1) , (0, x2) , . . . , (0, xM)

)
is the initial state.

3. Action Set

We have already fixed Q > M , hence the collection
(

M
Q

)
of admissible



3.2. RESTLESS BANDIT FORMULATION 87

actions at state L ∈ L is given by the set:

A =

{
(a1, . . . , aM)

∣∣∣∣∣
M∑
i=1

ai ≤ Q, ai ∈ {0, 1}

}

4. Transition Probabilities

The general form is

Pa
L,L′ =

M∏
i=1

P ai

li,l′i
=

M∏
i=1

P ai

(ai
−1,xi),(ai,x′i)

, ∀ L,L′ ∈ L, a ∈ A

where

P ai

(ai
−1,xi),(ai,x′i)

=


Pi (xi, x

′
i) , ai = 1

1, ai = 0, xi = x′i

0, otherwise

and Pi (xi, x
′
i) = P {Xi (t + 1) = x′i|Xi (t) = xi, ai (t) = 1}, with xi, x

′
i ∈

Si.

Let P represent the collection of transition matrices Pa, a ∈ A.

5. Active Rewards

As there are just active rewards, we have a simple structure for all L ∈ L,

Ra
L =

M∑
i=1

1 (ai = 1) Ri (li) , a ∈ A

with

Ri (li) = Ri

(
ai
−1, xi

)
= Ri (xi)−

(
1− ai

−1

)
Ci (xi) (3.2)

and 1 (ai = 1) is an indicator function taking value 1 whenever active

action is taken in arm i.
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Please notice that if only set-up costs are incurred, the active reward

will depend only on the current state and consequently R̃ (xi, x
′
i) in §2

on page 83 will become simply Ri (xi). Otherwise, if both set-up and

tear-down costs are present, then we shall use the telescoped version

Ri (xi) =
∑

x′i∈Si
Pi (xi, x

′
i) R̃i (xi, xi), for all xi ∈ Si and 1 ≤ i ≤ M .

Let R represent the collection of reward vectors Ra, a ∈ A.

6. Policy The goal of optimization is the choice of a policy π to maximise

the total expected discounted reward earned over an infinite horizon.

The theory of stochastic dynamic programming asserts the existence of

an optimal (reward maximising) policy which is stationary and which

satisfies the optimality equations of DP.

Let us denote V (L) the optimal problem value when the initial extended state

is given by L. The corresponding DP equations are given by

V (L) = max
a∈AL

(
Ra

L + β
∑
L′∈L

Pa
L,L′V (L′)

)
, L ∈ L (3.3)

The solution is based on identifying an optimal scheduling policy π pre-

scribing, at each state, which Q projects to activate and which others M −Q

to lay rest. However, as we have seen, this problem is an example of the curse

of dimensionality, which hinders the application of dynamic programming and

consequently we need to look for an alternative heuristic for finding an effi-

cient solution to this problem: an index policy. In particular, we are going to

concentrate in the family of Whittle’s index heuristics discussed in Section 2.3.

As mentioned before, indexability and indices are properties of individual

bandits; hence in the MDP §1 to §6 in page 85 we isolate an individual bandit

(L, P, R, β) and will now drop the bandit identifier i. This bandit generates
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a collection of MDP’s parametrised by a subsidy for passivity W ∈ R. As

before, we refer to this as the W -subsidy problem for (L, P, R, β). This is a

discounted reward MDP as follows:

1’. Decisions are taken at time t ∈ N.

2’. The countable state space is L. We use the l (t) for the extended state

of the process at time t, where l (t) = (a−1, x (t)), a−1 = a (t− 1) is the

action taken during the previous decision epoch, and x (t) ∈ S is the

actual state of the bandit at t.

3’. At each decision epoch t, either action a = 1 (active) or action a = 0

(passive) is applied to the process.

4’. If a = 0, then

P 0 (x, x′) =

1, x′ = x

0, other case

, x ∈ S

If a = 1, then P 1 (x, x′) , x, x′ ∈ S is a Markovian transition rule.

Hence, we can write

P(a−1,x),(1,x′) = P {l (t + 1) = (1, x′) |l (t) = (a−1, x) , a−1 ∈ {0, 1} , a = 1}

= P 1 (x, x′)

P(a−1,x),(0,x′) = P {l (t + 1) = (0, x) |l (t) = (a−1, x) , a−1 ∈ {0, 1} , a = 0}

= P 0 (x, x′) ,

for all x, x′ ∈ S.

5’. If a transition from (1, x) to (1, x′) occurs under action a = 1 at time

t, a discounted reward βtR (x) is earned. If, otherwise the active tran-
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sition to state (1, x′) occurs from state (0, x) the immediate reward be-

comes βt (R (x)− C (x)). In general, for l ∈ L, we can write R (l) =

R (a−1, x) = R (x)− C (x) (1− a−1), x ∈ S, a−1 ∈ {0, 1}.

Transitions under the passive action (from states (0, x) or (1, x) to state

(0, x)) are awarded with discounted subsidy for passivity βtW .

6’. The goal of optimisation is the choice of a policy to maximise the to-

tal expected reward (including passive subsidies) earned over an infinite

horizon. We again assert the existence of optimal policies for the W -

subsidy problem which are stationary and whose value functions satisfy

the optimality equations of dynamic programming. We shall restrict to

stationary policies throughout.

We use V (l,W ) for the value function for the W -subsidy problem evaluated

at l ∈ L. The DP optimality equations may be expressed as:

V (l,W ) = max

{
R (l) + β

∑
l′∈L1

Pl,l′V (l′, W ) ; W + β
∑
l′∈L0

Pl,l′V (l′, W )

}
(3.4)

with L0 = {(0, x) |x ∈ S} and L1 = {(1, x) |x ∈ S} (clearly L = L0 ∪ L1).

The first term in {; } in the r.h.s. of (3.4) represents the expected discounted

reward of taking the active action (a = 1) in state l ∈ L and the second one

corresponds to the passive action (a = 0).

For the solution to this problem we are going to concentrate in the family

of Whittle’s index heuristics discussed in Section 2.3. As the next step is

to establish indexability for Restless Bandit formulation of the Multiarmed

Bandit with Switching Costs, we ask the reader to recall Definitions 2.1 and

2.2 and the discussion around them in page 59.
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3.2.3 Indexability Analysis

We start our analysis with an explicit version of the DP optimality equations

in (3.4),

V
(
(1, x) , W

)
= max

{
R (x) + βE

[
V
(
(1, y) , W

)]
;

W + βV
(
(0, x) , W

)}
(3.5)

V
(
(0, x) , W

)
= max

{
R (x)− C (x) + βE

[
V
(
(1, y) , W

)]
;

W + βV
(
(0, x) , W

)}
On the r.h.s of equations above, the first term within {; } corresponds to the

choice of the active action (a = 1) in the actual state x ∈ S, and the second

term to the choice of the passive action (a = 0). It is trivial to see that the

second equation can be simplified to

V
(
(0, x) , W

)
= max

{
R (x)− C (x) + βE

[
V
(
(1, y) , W

)]
;

W

1− β

}
(3.6)

In order to develop optimal policies for the W -subsidy problem we develop

the Gittins index for activity in the following way: suppose that X (0) = x ∈ S

and that the active action a = 1 is taken at times 0, 1, 2, . . . , τ − 1 where τ is

a stationary positive stopping time on the process {X (t) , t ≥ 0}. We write

Rτ (x) ≡ E

[
τ−1∑
t=0

βtR
(
X (t)

)
|X (0) = x

]

for the expected discounted reward earned during this process.

Definition 3.1. The Gittins index for activity G : L → R is given by

G (1, x) = sup
τ>0

[
Rτ (x)

1− E [βτ |x ]

]
, x ∈ S, (3.7)
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and

G (0, x) = sup
τ>0

[
−C (x) + Rτ (x)

1− E [βτ |x ]

]
, x ∈ S, (3.8)

where the suprema in (3.7) and (3.8) are taken over all stationary positive-

valued stopping times on the process {X (t) , t ≥ 0} evolving under the active

action. Those suprema are guaranteed to be achieved. It must also be clear

from the expressions above that G (1, x) > G (0, x), for x ∈ S and C (x) > 0.

Comment

We can characterise the bandit for which G (a−1, x) in (3.7) and (3.8) are the

Gittins indices. That bandit is one in which l (0) = (0, x), with the bandit

state process {l (t) , t ≥ 0} evolving under the active action, as in §4’ in page

89. Further, a transition from state (a−1, x) to state (a−1, x
′) earns a reward

of R (x)−C (x) (1− a−1). With these choices, the expected reward earned by

the bandit during [0, τ) is given by

Rτ (x)− C (x) (1− a−1)

We now appeal to Gittins index theory to characterise the set of stopping times

achieving the suprema in (3.7) and (3.8): fix W ∈ R and use Γ and Σ for the

subsets of S given by

Γ (W ) = {x ∈ S : G (a−1, x) < W} ,

and

Σ (W ) = {x ∈ S : G (a−1, x) = W} .
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Now suppose that X (0) = x and Σ ⊆ Σ (W ). Use τΣ for the stationary

positive-valued stopping time, defined on the process {X (t) , t ≥ 0} evolving

under the active action, given by

τΣ = min {t : t > 0, X (t) ∈ Γ (W ) ∪ Σ} .

We now write T (x, W ) for the collection given by

T (x, W ) =
⋃

Σ⊆Σ(W )

{
τΣ
}

. (3.9)

The following result combines straightforward calculations with standard fea-

tures of Gittins index theory. We omit the proof.

Lemma 3.1.

(a) Any stopping time in T (x, G (1, x)) achieves the supremum in (3.7).

(b) Any stopping time in T (x, G (0, x)) achieves the supremum in (3.8).

Before proceeding to the main result of this section, we pause to recollect

the work of Whittle [113] who utilised a set of decision problems involving a

notion of retirement to characterize the Gittins index. Suppose that l (0) =

(a−1, x) ∈ L. Consider a decision problem in which at each time t ∈ N a

choice has to be made between the active action a = 1 and retirement. Once

retirement is chosen, it must continue to be chosen thereafter. The effect

of choices of the active action (in terms of stochastic evolution and rewards

earned) is precisely the one defined in §1’ to §6’ in page 90. A reward W is

earned on each occasion that retirement is chosen. If we write for the first

time at which retirement is taken and by using

mτ (x) ≡ E [βτ |x ] ,
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we may express the value function for the retirement problem as

Ṽ
(
(1, x) , W

)
= sup

τ>0

{
Rτ (x) + mτ (x)

W

1− β

}
, x ∈ S, (3.10)

Ṽ
(
(0, x) , W

)
= sup

τ>0

{
Rτ (x)− C (x) + mτ (x)

W

1− β
,

}
x ∈ S. (3.11)

With all this elements we can now write down the following results, which

may be established straightforwardly from Whittle’s analysis:

Lemma 3.2. (Optimal Retirement) For every passivity subsidy W ∈ R+

and if x ∈ S we have the following cases:

1. If l (0) = (1, x) and G (1, x) > W
1−β

it is optimal to retire at any stopping

time in T (x, W ).

2. If l (0) = (1, x) and G (1, x) ≤ W
1−β

it is optimal to retire at l (0) along

with retirement at any other stopping time in T (x, W ) if the equality

holds.

3. If l (0) = (0, x) and G (0, x) > W
1−β

then it is optimal to retire at any

stopping time in T (x, W ).

4. If l (0) = (0, x) and G (0, x) ≤ W
1−β

then it is optimal to take the retirement

action at l (0). In the case of G (0, x) = W
1−β

retiring at any other

stopping time in T (x, W ) is optimal.

5. Statements (1) to (4) describe all optimal stationary policies for retire-

ment.

We are now in position to establish the structure of optimal stationary

policies for the W-problem. Indexability will follow straightforwardly from

Theorem 3.1.
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Theorem 3.1. (Optimal policies for the W -subsidy problem)

The following statements hold for all x ∈ S and W ∈ R and describe all optimal

stationary policies for the W -subsidy problem:

(a) If G (0, x) > W
1−β

then the active action is optimal in states (0, x) and (1, x).

(b) If G (1, x) > W
1−β

> G (0, x) then active action is optimal in state (1, x)

and passive action is optimal in state (0, x).

(c) If G (1, x) < W
1−β

then the passive action is optimal in states (0, x) and

(1, x).

(d) If G (1, x) = W
1−β

then both actions are optimal in (1, x) together with pas-

sive action in (0, x).

(e) If G (0, x) = W
1−β

then active action is optimal in (1, x) and both passive

and active actions are optimal in (0, x).

Proof Fix W ∈ R and suppose that state x ∈ S is such that the passive action

a = 0 is optimal for the W -subsidy problem when the bandit is in state (1, x).

It now follows from (3.5) and (3.6) that

W + βV
(
(0, x) , W

)
≥ R (x) + βE

[
V
(
(1, y) , W

)]
> R (x)− C (x) + βE

[
V
(
(1, y) , W

)]
,

from which it follows that passive action a = 0 must also be (strictly) optimal

for the W -subsidy problem when the bandit is in state (0, x).

Suppose now that l (0) = l′ ∈ L and let π be some stationary optimal policy

for the W -subsidy problem. Write τ (π, l′) for the first time at which π chooses
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the passive action a = 0, namely

τ (π, l′) = min {t; t ≥ 0, π {l (t)} = 0} .

It follows simply from the above that π must choose passive action a = 0 at

all decision epochs following τ (π, l′). Making the identification of the passive

action with retirement, it is now clear that optimal policies for the W -subsidy

problem exactly coincide with optimal retirement policies when W is the re-

tirement reward, with the passive action optimal for the former if and only if

retirement is optimal for the later. With this identification, the result follows

immediately from Lemma 3.2.

To illustrate this correspondence, suppose for example that G (1, x) > W
1β

>

G (0, x). It follows from Lemma 1 that non-retirement in (1, x) is optimal

in this range for the retirement problem and hence that the active action is

optimal in (1, x) for the W -subsidy problem. However, from Lemma 3.2(4)

we see that retirement is optimal in (0, x) and hence that the passive action is

optimal for the W -subsidy problem. This establishes Theorem 3.1(b). Other

cases are dealt similarly. This concludes the proof. q.e.d.

Theorem 3.2. (Indexability and Indices) Bandit (L, P, R, C, β) is index-

able. The Whittle index W : L → R is given by

W (1, x) = (1− β) G (1, x) ; W (0, x) = (1− β) G (0, x) , x ∈ S.

Proof Write Π (W ) for the set of states in which it is optimal to take the

passive action for the W-problem. By Theorem 3.1 we have

Π (W ) =

{
(1, x) :

W

1− β
≥ G (1, x)

}
∪
{

(0, x) :
W

1− β
≥ G (0, x)

}
. (3.12)
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Plainly, Π (W ) is increasing in W. Further, it follows from (3.12) that the

Whittle index for state (1, x) is given by

W (1, x) = inf {W |(1, x) ∈ Π (W )} = (1− β) G (1, x)

and similarly for W (0, x). This completes the proof. q.e.d.

Once indexability has been established, we present an algorithm for calcu-

lating the priority indices discussed above.

3.2.4 Index Computation

Bertsimas and Niño-Mora [23] and Niño-Mora [75], have developed a method-

ology for generating a set of indices for the restless bandit problem that, under

certain assumptions5, coincide with those obtained from the calibration pro-

posed by Whittle [116].

In this section we will follow the technique in Glazebrook et.al. [52] for devel-

oping an adaptive greedy algorithm that uses as inputs the active reward rates

and a matrix of constants A to be described below, and whose outputs are the

project’s indices. As our problem has already been proved to be indexable,

we can be sure that the indices obtained by these means are indeed coincident

with those of Whittle.

Start by defining the subset F ⊆ L and the F -active policy uF which

chooses the active action whenever the state lies in F and passive action oth-

erwise (arm’s state is in F c = L\F ). Where L is the extended state space as

5They impose the following sufficient condition for a system to be indexable: for x ∈ S
and Si ⊆ S, ASi

x > 0. Where S represents the state space and ASi
x is a collection of

parameters. Indeed, their indices become the conventional Gittins indices for the multiarmed
bandit case.
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described before:

L = {(a−1, x) : x ∈ S, a−1 ∈ {0, 1}} (3.13)

The structure of the switching costs problem imposes the following natural

constraint in subset F : as it always holds that W (1, x) ≥ W (0, x), then

(0, k) ∈ F ⇒ (1, k) ∈ F and (1, k) ∈ F c ⇒ (0, k) ∈ F c. This result will be

useful later.

Consider now an arm in isolation and suppose it is in natural state x at time

t = 0 and evolving according policy uF . If we denote by {X (t) , t ≥ 0} the

sequence of states visited by our arm under policy uF , then this process is a

Markov chain with X (0) = (a−1, x),

P {l (t + 1) = (1, x′) |l (t) = (a−1, x)} = P 1 (x, x′) , (a−1, x) ∈ F

P {l (t + 1) = (0, x′) |l (t) = (a−1, x)} = P 0 (x, x′) , (a−1, x) ∈ F c

with

P 0 (x, x′) =

 1, x′ = x

0, other case
, (3.14)

as discussed in Section 3.2.2.

We can now define the total time the system takes active action in F under

uF as:

T F
(a−1,x) = EuF

{
∞∑

t=0

βtIF (t) |l (0) = (a−1, x)

}
, (a−1, x) ∈ L

with

IF (t) =

 1, l (t) ∈ F

0, other case
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The quantities T F satisfy:

T F
(a−1,x) =

 1 + β
∑

(1,x′)∈L P 1 (x, x′) T F
(1,x′), (a−1, x) ∈ F

0, (a−1, x) ∈ F c
(3.15)

We now define matrix A by means of the quantities
{

T F
(a−1,x)

}
(a−1,x)∈L,F⊆L

as

follows:

AF
(a−1,x) = 1 + β

∑
(1,x′)∈L

P 1 (x, x′) T F c

(1,x′) − β
∑

(0,x′)∈L

P 0 (x, x′) T F c

(0,x′),

By using the particular structure of passive transitions in our problem and

the constraint imposed before on F , we obtain the following expression for the

elements in matrix A:

AF
(a−1,x) =

 1 + β
∑

(1,x′)∈L P 1 (x, x′) T F c

(1,x′), (a−1, x) ∈ F

(1− β)
[
1 + β

∑
(1,x′)∈L P 1 (x, , x′) T F c

(1,x′)

]
, (a−1, x) ∈ F c

for all (a−1, x) ∈ L, F ⊆ L.6

Finally we just need to introduce a few additional elements: let rewards

earned at state (a−1, x) ∈ L take the form

R (a−1, x) = R (x)− C (x) (1− a−1)

so that we can define the reward vector R =
(
R(a−1,x)

)
(a−1,x)∈L

. Let also

π = (π1, . . . , πn) be a permutation of L, y =
(
yF
)

F⊆L and γ = (γ1, . . . , γ2n).

Hence, priority indices, γi are obtained by running the following adaptive

greedy algorithm AG on input (R,A).

6It can be readily seen that values in matrix A, satisfy the sufficient condition in footnote
5.
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INPUT: R,A

INITIALIZATION:

Set F1 = L;

π1 = argmax

{
R(a−1,x)

A
F1
(a−1,x)

: (a−1, x) ∈ F1

}
;

yF1 = R(π1)

A
F1
π1

;

γπ1 = yF1 .

PROCEDURE:

For k = 2 to 2n do

Set Fk = Fk−1\ {πk−1}

πk = argmax

{
R(a−1,x)−

∑k−1
j=1 A

Fj

(a−1,x)
yFj

A
Fk

(a−1,x)

: (a−1, x) ∈ Fk

}
;

yFk =
Rπk

−
∑k−1

j=1 A
Fj
πk

yFj

A
Fk
πk

;

γπk
= γπk−1 + yFk

End For

OUTPUT: π, y, γ

Figure 3.2: Adaptive Greedy Algorithm for the Multi-armed Bandit with Switching
Costs

3.3 A Result, an Extension, and an Applica-

tion of the MAB with Switching Costs

We now introduce a succession of model elaborations to the multi-armed ban-

dit with switching costs problem. All of these preserve indexability and the

essential index structure.

3.3.1 Result: The Index Policy is Optimal when Costs

are High

A simple and intuitive result for the MAB w/SC problem we are analysing

is the fact that, whenever the switching cost is big enough, the index policy

turns out to be optimal. This is so because high switching costs prevent the
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system to activate different arms and, instead, it just operates one single arm.

It can be proved that the prescribed active arm turns out to be the same under

both, the optimal and the index policy and, consequently, the index policy is

optimal.

Firstly, it is easy to verify that for large enough switching costs, the index

policy prescribes taking active action in just one arm.

We have already defined the Whittle indices for the restless bandit version of

the multi-armed bandit with switching costs problem as

W (a−1, x) = (1− β) G (a−1, x)

for a−1 ∈ {0, 1} and x ∈ S. Where

G (1, x) = sup
τ>0

[
Rτ (x)

1− E [βτ |x ]

]
, x ∈ S (3.16)

and

G (0, x) = sup
τ>0

[
−C (x) + Rτ (x)

1− E [βτ |x ]

]
, x ∈ S. (3.17)

It is clear that W (1, x) > W ((0, x) , C (x)) for any C (x) > 0. Moreover, as

R (x) > 0 and 0 < β < 1 also W (1, x) > 0, and we can find some c∗ (x) such

that

W (0, x, c∗ (x)) = min
x′
{W (1, x′)} , all x ∈ S (3.18)

Take now the supremum over all such c∗ (x), i.e.

C∗ = sup
x
{c∗ (x)} ,

it follows that

W (1, x) ≥ W (0, x′, C∗) ∀ x, x′ ∈ S.
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As long as the active reward R (x) is bounded, it is guaranteed that C∗ will

always be bounded.

Turn now to the multi-armed problem. The index policy prescribes taking the

active action in the arm with the highest index. Hence, if we define

Cj = max
xj∈Sj

{
c∗j (xj)

}
1 ≤ j ≤ M,

and let

C = sup
1≤j≤M

{
Cj
}

then it will be true that for any C > C,

Wj (1, xj) > Wi ((0, xi) , C) ∀ 1 ≤ i, j ≤ M and xi ∈ Si, xj ∈ Sj

The implication of this result is that, once we have chosen arm k to be active,

we will never abandon it.

Finally, for any initial state L =
(
(0, x1) , . . . , (0, xM)

)
∈ L, the Whittle index

policy simply prescribes taking active action in arm k such that

k = argmax
i

{Wi ((0, xi) , C)} .

Consider now a simplified version of the MAB w/SC problem in which a

set-up cost, Sk (xk), must be incurred when project k is chosen for the first

time, but never again. We call this the opening problem, as it resembles the

cost that is incurred in setting-up a machine for its first use but never again.

For the sake of comparability, we use the same state structure as in the RB

problem, i.e., passive states have the form (0, x) and active states (1, x). The

passive state (0, x) represents the machine in its pristine state, i.e. the “box is

closed”. In this case active transitions are: (0, x) → (1, x′) and (1, x) → (1, x′),
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and passive arms remain frozen in the incoming state, i.e. (0, x) → (0, x) and

(1, x) → (1, x) i.e. a pristine machine remains pristine until its first use and a

used machine will never be “boxed” again. It is clear that this is just a MAB

and, consequently, the Gittins Index Policy turns out to be optimal.

In this case, Gittins indices are known to be given by:

G (1, x) = sup
τ>0

[
Rτ (x)

1− E [βτ |x ]

]
(3.19)

and

G ((0, x) , S (x)) = sup
τ>0

[
−S (x) + Rτ (x)

1− E [βτ |x ]

]
(3.20)

respectively.

It is straightforward that G (1, x) > G ((0, x) , S (x)) for any S (x) > 0. More-

over, as R (x) > 0 it follows that G (1, x) > 0, and we can find some s∗ (x) such

that

G ((0, x) , s∗ (x)) = min
x′
{G (1, x′)} (3.21)

Take now

S∗ = sup
x
{s∗ (x)} ,

it holds that

G (1, x) > G ((0, x′) , S∗) ∀ x, x′ ∈ S.

As before, we turn to the multi-armed problem and recover the arm indicators.

Gittins’ index policy prescribes taking the active action in the arm with the

highest index. Hence, if we define

Sj = max
xj

{
s∗j (xj)

}
1 ≤ j ≤ M,
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and let

S = sup
1≤j≤M

{
Sj
}

then it will be true that for any S > S,

Gj (1, xj) > Gj

((
0, x′j

)
, S
)
∀ xj, x

′
j ∈ S and 1 ≤ j ≤ M.

In such case, once we have activated arm k, we will remain there indefinitely.

Finally, for any initial state L = ((0, x1) , . . . , (0, xM)) ∈ L, it will be optimal

to engage arm k such that

k = argmax
i

{Gi ((0, xi) , S)} .

We are now ready to formulating the main result of this section.

Lemma 3.3. (Optimality of Index Policy for C (x) ≥ C)

There exists a value C such that for Ci (xi) ≥ C for all xi ∈ Si and 1 ≤ i ≤ M ,

it holds that the Whittle index policy for the restless bandit version of the multi-

armed bandit problem with switching costs, is optimal; i.e. V Ind (L) = V Opt (L)

for any L ∈ L. Where L0 = {L0
i , 1 ≤ i ≤ M} and L0

i = {(0, xi) ; i ∈ Si}.

Proof Consider both problems together. Assume they have common features

as discount factor, transition matrices, reward structure, and so on. Their

corresponding Gittins indices are given by expressions (3.16) and (3.17), and

(3.19) and (3.20), respectively.

By simple observation of both pairs of equations, it is clear that for C (x) =

S (x), active and passive Gittins indices turn out to be the same for both prob-

lems. Moreover, as W (a−1, x) = (1− β) G (a−1, x), the ordering of states
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under both Whittle and Gittins indices turns out to be the same, i.e.

argmax
j

{
Gj

(
(0, xj) , C

)}
= argmax

j

{
(1− β) Gj

(
(0, xj) , C

)}
(3.22)

We have already seen that for values of C (x) ≥ C, ∀x ∈ S (respectively

S (x) ≥ S, ∀x ∈ S), once the active action is taken in a particular arm, it will

never be abandoned. Moreover, from (3.22) and given the fact that C (x) =

S (x) ⇒ C = S, it must be clear that the first active arm k (when starting from

a passive state L ∈ L0) will be the same under both formulations. But that

choice is optimal under the opening problem. Consequently

V Opt (L) = V Open (L) = V Ind (L) , L = L0. (3.23)

Hence, when starting from passive states L ∈ L and for values of the switching

costs above a certain threshold, the Whittle index policy is optimal. q.e.d.

The informal discussion along the previous lines is closely related with the

more formal discussion of similar problems in Van Oyen et.al. [103] and Benkh-

erouf et.al. [13].

3.3.2 Extension: The Multi-armed Bandit w/ Switching

Costs and Losses

Consider the following extension to the pure set-up cost formulation of the

multiarmed bandit with switching costs: whenever the arm is inactive (i.e. it

is at some state (0, x)), there exists a positive probability θ (x) for the arm

to abandon the system. This means that the arm enters some terminal or

absorbing state ∆ and remains there indefinitely. In such ∆ state, only passive
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action is admitted. The evolution of the modified problem is sketched below7,

where ε is a small constant.

1,x

∆

E xt e n d e d  S t a t e  S p a c e  T r a n s i t i o n s

0 ,x

1-ε

1-ε

ε

ε

a = 1

a = 1

1,x’

0 ,x’

1-ε

ε

1-ε ε

a = 1

a = 1

x’=E[x(t+1)|x(t)=x,a=1]

P0((a
-1

,x),(0 ,x))=1-ε
P0((a

-1
,x),(0 ,∆))=ε

a = 0

a = 0

a = 0

a = 0

a = 0

In this slightly modified version of Figure 3.1 we present the effect of including the abandon
probability in our basic model. In this setting, every time the passive action is taken in a
state (a−1, x) there exists a positive probability ε of the arm to abandon the system, i.e. a
transition to absorbing state ∆.

Figure 3.3: Representation of a Project in the Restless Bandit Formulation of the
Muti-armed Bandit with Switching Costs and Looses

The elements of bandit (L, P, R, β) as described in §1’ to §6’ in page 89

remain the same, except from:

4’. Transition Probabilities

7For the sake of simplicity in this figure it has been assumed that parameter θ (x) = ε.
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The passive transition rule is now given by

P 0 (x, x′) =



θ (x) , x′ = ∆

1− θ (x) , x′ = x

1 x = x′ = ∆

0, any other case

With this modification, optimality equations (3.5) becomes

V
(
(1, x) , W

)
= max

{
R (x) + βE

[
V
(
(1, y) , W

)]
;

W + βθ (x) V
(
∆, W

)
+ β (1− θ (x)) V

(
(0, x) , W

)}
= max

{
R (x) + βE [V ((1, y) , W )] ;

[W (1− β + βθ (x))] (1− β)−1 + β (1− θ (x)) V
(
(0, x) , W

)}
(3.24)

with (3.24) using the identity V (∆, W ) = W
1−β

. Optimality equation (3.6)

remains unchanged. The Gittins indices for activity remain as given in (3.7)

and (3.8). This implies that Lemma 3.2 holds here as well, consequently

Theorems 3.1 and 3.2 continue to hold.

3.3.3 Application: Scheduling of Stochastic Jobs

Consider one particular case of the global formulation of the MAB with switch-

ing costs: the problem of scheduling a set stochastic jobs where a job’s natural

state is the amount of past processing. In state x the job will either be not

completed when processed and advance to state x+1 (with probability 1−p (x))

or be completed (and enter completion state ∆) with probability p (x). We

assume there exists a final state for which completion is certain.
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The natural state space of a job is thus extended by the inclusion of the

completion (absorbing) state ∆, for which only passive action is available. The

dynamic behavior of one job can be sketched as follows:

1 2 3 4 n ∆. . .

. . . . . .

P(1) P(2 )
P(3 )

P(4 )

P(n )= 11-P(1) 1-P(2 ) 1-P(3 )
1-P(n -1)

S t o c h a s t i c  J o b ’ s  A c t i v e  T r a ns i t i o ns

In the standard scheduling of stochastic jobs problem, whenever the project is activated at
any state x, it can be either completed (with positive probabiity) or move forward to a more
advanced stage. Completion is modelled by including an absorbing state ∆.

Figure 3.4: Representation of a Project in the Multi-armed Bandit Formulation of
the Scheduling of Stochastic Jobs Problem with Switching Costs

In this case, the reward will depend on the state of the system at the

following decision epoch, hence, we let rt (x, a, x′) to denote the value at time

t of the rewards received when the state of the system at decision epoch t is x,

action a ∈ {1, 0} is selected and the system occupies state x′ at decision epoch

t + 1.

The expected reward at any time t and state x ∈ S may be evaluated by

computing

r (x, a) =
∑
x′∈S

r (x, a, x′) P a (x, x′)

In the case of a problem with just active rewards, and explicitly considering
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the completion probability, we get the following expression:

r (x, a) =

 r (x, 1, x + 1) (1− P (x)) + r (x, 1, ∆) P (x) , a = 1

0, a = 0

In a formulation where a fixed (job depending) reward R is earned only upon

completion, the expression above simplifies to:

r (x, a) = r (x, 1, ∆) P (x) = P (x) R

For the switching costs case, the state space is increased by including informa-

tion about the action taken before, and the dynamic of the system becomes as

sketched below.

The elements of bandit (L, P, R, β) as described in §1’ to §6’ in page 89

remain the same, except from:

4’. Transition Probabilities

Let S = {0, . . . , s, ∆} be the natural (finite) state space for an isolated

job. The active transition rule is now given by

P 1 (x, x′) =



1− p (x) , x′ = x + 1, x < s

p (x) , x′ = ∆, ; x < s

1, x′ = ∆, x = s

0, any other case

(3.25)

Passive transition probabilities remain the same as described in §4’, page

89.

5’. Active Rewards

As we have only completion rewards, the reward structure is straightfor-
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1,1 1,2 1,n ∆
. . .

P
�

( 2 )

P
�

( n ) = 1

1-P
�

( 1)

1-P
�

( n -1)

E x t e n d e d  S t a t e  S p a c e  T r a n s i t i o n s

0 ,1

P
�

( 1) = 1

P
�

( 1)

1-P
�

( 1)

P
�

( 1)

P
�

( 1) = 1

When switching costs are considered, the state space is modified in the same way as we
did for the simple multi-armed bandit with switching costs, i.e. a pair of extended states
(1, x) , (0, x) are created for every natural state x. In the scheduling of stochastic jobs
problem, active action causes a transition from state (a−1, x) either to state (1, x + 1) or to
completion state ∆. Passivity has the same effect as in the discussion around Figure 3.1

Figure 3.5: Representation of a Project in the Restless Bandit Formulation of the
Scheduling of Stochastic Jobs Problem with Switching Costs

ward:

R (a−1, x) =

Rp (x) , a−1 = 1

Rp (x)− C (x) , a−1 = 0

, x ∈ S. (3.26)

In this case, the general formulation of the problem remains the same and,

consequently, all results in Section 3.2.3 hold here as well. Indexability of the

stochastic jobs scheduling problem with switching costs, as formulated here, is

therefore guaranteed.
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3.4 Numerical Study

The numerical study has been conceived as a set of experiments, each of them

performed over a fixed collection of examples, with the aim of comparing the

performance of the index policy relative to the optimal one. As both the state

space and the number of arms is necessarily small, we constraint our numerical

study to the simples case of N = 1, i.e. the number of arms to activate at each

decision epoch equals one.

For the general stochastic scheduling problem with switching costs formu-

lation, three different sets of exercises were considered: 1) a four armed bandit

with s = 3 natural states in each arm; 2) a four armed bandit with three

natural states plus one absorbing state (for the case of the MAB w/SC and

losses), i.e. s = 4; and 3) a four armed bandit with s = 4 natural states in

each arm. Cases (1) and (2) were analysed assuming both, arm dependent

and state dependent switching costs.

Regarding the scheduling of stochastic jobs application, two different problems

are discussed: one considering increasing completion probabilities and another

one with a general completion probability structure. As for computational

reasons the state space must be kept necessarily small, one more transition is

allowed: the active arm is allowed to remain in the same state (just for increas-

ing the expected number of transitions before completion). Probabilities for

staying in the same state are assumed to be small (below 10%). The number

of arms has been fixed to be equal to three. This implies a total of seven

different “problems” to be discussed.

Each example implies finding by Value Iteration (VI)8 the optimal policy

over the relevant state space (see below) and calculating, also by VI, the value

8For a discussion on the algorithm used for the numerical experiments in this chapter,
please refer to Section 2.1.4.
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of the index policy. The DP equations of the restless bandit version of the

MAB problem with switching costs are given by:

V Opt (L) = max
a∈AL

{
Ra

L + β

(∑
L′∈L

Pa
L,L′V (L′)

)}
, for all L ∈ L.

The size of the experiments is measured as follows: there are (2× s)M extended

states; however, as we are focusing on the problem of activating just one arm

at each decision epoch, the underlying state space cardinality reduces to |L1| =
1
2
(2× s)M , where

L1 =

{((
a1
−1, x1

)
, . . . ,

(
aM
−1, xM

)) ∣∣∣∣∣
M∑
i=1

ai
−1 ≤ 1

}
,

likewise, there is a subset of initial or passive states (L0 ⊂ L), consisting in all

those states where all arms are idle, i.e.

L0 =

{((
a1
−1, x1

)
, . . . ,

(
aM
−1, xM

)) ∣∣∣∣∣
M∑
i=1

ai
−1 = 0

}

with cardinality |L0| = (s)M . The analysis has been just focused in the subset

of initial values, but as some other states are also visited, the VI has been

performed over the L1 state space. The number of iterations has been defined

following the standard convergence criterion:

∥∥V k+1 − V k
∥∥ ≤ (1− β)

2β
ε,

with discount factor β = 0, 9, and parameter ε = 0.001. In average, conver-

gence has been achieved after 160 iterations.
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3.4.1 Description of the Numerical Study

Problem. A problem is a complete collection of 25 experiments with 150

examples each, i.e. 3750 repetitions.

Example. Each example consists in an active reward (M × s)-matrix, and

two, active and passive transition, n-matrices. Reward matrices are ran-

dom arrays of uniformly distributed data with parameters a = 200 and

b = 250, whereas the active transition matrix is simply a random marko-

vian probability matrix, and the passive one is the identity. There is a

collection of 150 different examples.

For the losses case, one extra zero-row was added to the reward matrix

(corresponding to the absorbing abandon state in which only the pas-

sive action is available). The active transition matrix was increased by

adding one row and one column with all elements equal zero but posi-

tion (s + 1, s + 1), which equals one. The passive transition matrix is a

(s + 1)-matrix with pi,i = 1 − δ (i) and pi,s+1 = δ (i) and zero anywhere

else. Where the abandon probability δ (i) is a uniformly distributed ran-

dom variable with parameters a = 0 and b = 0.025.

Finally, for the job scheduling examples, completion reward has been ob-

tained as the product of an uniformly distributed random variable with

parameters a = 200 and b = 250, times the completion probability at

each state. Completion probabilities p (x), are uniformly distributed

(0, 1) random variables. Transitions to state x + 1 are given by the

expression (1− p (x)) × (1− π (x)), and transitions to state x itself are

given by (1− p (x))×π (x), were π (x) ∼ U [0, 0.1]. Transition from state

s to completion state ∆ is fixed equal to one.

Experiment. An experiment consists in obtaining the optimal and index so-
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lutions to the DP formulation of the restless bandit problem, all over the

150 examples. Each experiment is defined by the ratio of switching costs

to active reward (SC/R). Twenty five experiments of each class (plain

and with losses) were run with switching costs ranging from 1% up to

25% of the active reward.

For the losses case, the switching cost of the absorbing state was as-

sumed to be equal to the corresponding percentage of the maximum

reward available (250); for example, for a ratio SC/R = 1% (which actu-

ally corresponds to experiment number one), the switching cost for state

s + 1 equals 2.5. By means of this, the VI procedure is prevented from

taking active action in the absorbing abandon state.

Performance Measure. The performance measure is the percentage relative

error, or percentage suboptimality, of the index policy’s value with re-

spect to the optimal policy (1 − V Ind

V Opt ). Two different sets of variables

had been stored: 1) maximum, minimum and average relative error all

over the 1
2
(2× s)4 relevant states; and 2) maximum, minimum, median,

average and standard deviation over s4 initial states. Two additional

variables store the number of mistakenly activated arms (MAA) in each

example: one for the whole state space, L1, and one more for the initial

(passive) states’ subspace.

Output Three different output files were generated, ranking from individual

example/experiment run, to the problem’s aggregated summary.

An individual output file is available for each example in an experiment.

This file stores the main parameters of the exercise (β, convergence crite-

rion for VI ε, and SC/R ratio), as well as the active reward and switching

costs matrices, active and passive transition probability matrices, and the
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Gittins’ indices resulting from that particular combination of active re-

ward and switching costs. The output file also includes the summary

of performance statistics (see above) over the whole state space in that

particular example, as well as the detail of optimal and index policies

performance for each state (variables are defined for both percentage

suboptimality and a 0/1 variable taking value 1 whenever the prescribed

policy for each state differs among index and optimal solution).

In the intermediate level, one output file is generated for each experiment.

It includes information about the SC/R ratio of the experiment and the

performance summary for each of the 150 examples, each extracted from

the output file above. Finally, averages over the 150 examples are taken

for each of the ten underlying variables and a summary is included.

Finally, a summary table is created for each Problem including the sum-

mary statistics of 25 experiments. The first three columns include the

summary statistics for state subset L1, each variable is the average over

150 examples in each particular experiment. Next three columns include

the same variables but constrained to the smaller subset L0. Finally, last

two columns represent the average number of errors made by index policy

all over the 150 examples in each particular experiment in sets L1 and

L0, respectively.

3.4.2 Comments

The reader should observe the outstandingly good performance of the Whittle

index policy throughout Tables 3.1 to 3.6. Note that the percentage sub-

optimalities grow as one moves down the tables, achieving a maximum when

the switching costs are around 6/7% of the corresponding active rewards in

almost every case. From there, the precentage suboptimalities go to zero as
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the switching costs increase further. To understand this behaviour note that

when switching costs are zero, the Whittle index policy becomes a Gittins in-

dex policy which in Problems I, III, V and VI is optimal (considering only the

subset of initial states). As switching costs become large, optimal policies have

the feature that each bandit is activated from passivity at most once over the

decision horizon. The switching cost then essentially becomes a set up cost

for the bandit, to be incurred only once. When this happens, we can expliot

Gittins index theory to show that the Whittle index policy must be optimal

(for further details please see Section 3.3.1). Problems II and IV, with losses

also follow this pattern.

Notice that in all our examples, the average performance of the index policy

is above 99.95% optimality, and the worst performance is above 99.5% opti-

mality. Moreover, the number of errors incurred by the index policy (number

of wrongly activated arms) is always less than 15% of the total numer of states.

Notwithstanding index policy preforms pretty bad in the job scheduling exam-

ples when the complete state space is considered, performance in the subset of

initial states remains below the 0.05% suboptimality.
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Table 3.1: Performance of the Index Policy in the Multi-armed Bandit with Switch-
ing Costs

PROBLEM I
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.0827 0.0058 0.0148 0.0293 0.0040 0.0086 35.3867 5.4533
2 0.1577 0.0144 0.0315 0.0637 0.0106 0.0201 40.4333 6.2600
3 0.2015 0.0201 0.0420 0.0868 0.0150 0.0279 40.8533 6.3667
4 0.2335 0.0225 0.0481 0.0942 0.0163 0.0302 35.1000 4.9333
5 0.2475 0.0231 0.0517 0.0951 0.0159 0.0306 30.8933 4.2867
6 0.2457 0.0243 0.0534 0.0979 0.0162 0.0316 26.0667 3.5067
7 0.2301 0.0239 0.0525 0.0994 0.0164 0.0327 21.5733 2.9333
8 0.2157 0.0213 0.0481 0.0928 0.0145 0.0301 17.1522 2.1600
9 0.1608 0.0155 0.0363 0.0663 0.0099 0.0210 11.8400 1.2933
10 0.1337 0.0115 0.0289 0.0416 0.0058 0.0129 9.7667 1.0667
11 0.1059 0.0088 0.0228 0.0305 0.0039 0.0090 8.2067 0.9400
12 0.1089 0.0089 0.0239 0.0295 0.0036 0.0081 6.8200 0.7600
13 0.1083 0.0084 0.0230 0.0209 0.0032 0.0068 5.0267 0.4333
14 0.0755 0.0058 0.0159 0.0176 0.0023 0.0055 3.5467 0.2600
15 0.0643 0.0039 0.0124 0.0100 0.0009 0.0028 2.5733 0.1400
16 0.0371 0.0025 0.0074 0.0071 0.0009 0.0022 1.9000 0.1600
17 0.0426 0.0026 0.0083 0.0087 0.0011 0.0026 1.4267 0.0400
18 0.0253 0.0015 0.0049 0.0027 0.0003 0.0008 0.9467 0.0000
19 0.0256 0.0013 0.0048 0.0000 0.0000 0.0000 0.7400 0.0000
20 0.0094 0.0004 0.0018 0.0000 0.0000 0.0000 0.2467 0.0000
21 0.0006 0.0000 0.0001 0.0000 0.0000 0.0000 0.1667 0.0000
22 0.0005 0.0000 0.0001 0.0000 0.0000 0.0000 0.1200 0.0000
23 0.0009 0.0000 0.0001 0.0000 0.0000 0.0000 0.1867 0.0000
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Formulation with 4 arms, 3 natural states per arm and state-dependent switching costs.
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Table 3.2: Performance of the Index Policy in the Multi-armed Bandit with Switch-
ing Costs and Losses

PROBLEM II
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.2016 0.0108 0.0276 0.1223 0.0097 0.0229 93.2867 15.9133
2 0.2811 0.0151 0.0392 0.1534 0.0125 0.0301 96.7533 15.8200
3 0.3340 0.0177 0.0479 0.1838 0.0142 0.0368 94.3467 14.9133
4 0.3792 0.0192 0.0538 0.1969 0.0147 0.0394 92.0800 14.8800
5 0.4102 0.0203 0.0589 0.2136 0.0151 0.0417 85.6933 14.2733
6 0.4187 0.0209 0.0611 0.2152 0.0150 0.0414 75.0533 12.2133
7 0.4294 0.0200 0.0616 0.2205 0.0144 0.0424 62.3267 9.6333
8 0.4149 0.0178 0.0569 0.1932 0.0123 0.0375 56.0867 8.6533
9 0.3876 0.0139 0.0488 0.1611 0.0089 0.0293 46.1467 6.5600
10 0.3565 0.0106 0.0414 0.1096 0.0056 0.0195 39.2867 5.3800
11 0.3163 0.0082 0.0341 0.0843 0.0037 0.0136 32.2133 3.6400
12 0.3094 0.0079 0.0343 0.0678 0.0029 0.0110 31.6867 3.6867
13 0.2839 0.0075 0.0321 0.0519 0.0027 0.0092 28.0533 2.6200
14 0.2549 0.0057 0.0267 0.0383 0.0019 0.0065 23.3733 1.5533
15 0.2283 0.0043 0.0223 0.0320 0.0011 0.0047 21.4533 1.3400
16 0.1955 0.0032 0.0176 0.0227 0.0011 0.0038 19.0467 1.3067
17 0.1848 0.0031 0.0166 0.0176 0.0009 0.0033 17.2267 0.8333
18 0.1419 0.0021 0.0123 0.0115 0.0004 0.0018 14.7600 0.4667
19 0.1497 0.0018 0.0116 0.0019 0.0001 0.0003 14.3533 0.2933
20 0.1131 0.0013 0.0092 0.0012 0.0000 0.0001 11.2667 0.1400
21 0.1043 0.0012 0.0086 0.0007 0.0000 0.0002 11.9867 0.2400
22 0.0985 0.0012 0.0081 0.0009 0.0000 0.0001 12.6533 0.1667
23 0.0873 0.0012 0.0077 0.0006 0.0000 0.0001 13.1867 0.2467
24 0.0849 0.0012 0.0076 0.0003 0.0000 0.0001 12.2133 0.1133
25 0.0834 0.0013 0.0078 0.0000 0.0000 0.0000 12.4333 0.0000

Formulation with 4 arms, 3 natural states per arm and state-dependent switching costs.
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Table 3.3: Performance of the Index Policy in the Multi-armed Bandit with Switch-
ing Costs

PROBLEM III
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.0772 0.0058 0.0142 0.0289 0.0043 0.0087 34.0000 5.5667
2 0.1617 0.0131 0.0299 0.0634 0.0098 0.0198 40.0867 6.4867
3 0.1926 0.0186 0.0403 0.0842 0.0138 0.0268 38.6333 5.8000
4 0.2121 0.0232 0.0503 0.1028 0.0171 0.0335 35.5333 5.2600
5 0.2572 0.0263 0.0573 0.1106 0.0180 0.0359 30.8133 3.8133
6 0.2419 0.0259 0.0545 0.1039 0.0183 0.0350 26.2933 3.2867
7 0.2195 0.0230 0.0508 0.0914 0.0162 0.0318 20.4200 2.1667
8 0.2108 0.0193 0.0474 0.0679 0.0119 0.0237 15.8133 1.4400
9 0.1997 0.0177 0.0442 0.0540 0.0098 0.0193 13.3067 1.1200
10 0.1759 0.0146 0.0382 0.0453 0.0077 0.0156 10.3867 0.8000
11 0.1299 0.0101 0.0280 0.0312 0.0047 0.0103 7.9267 0.6400
12 0.1268 0.0099 0.0279 0.0278 0.0039 0.0091 7.2333 0.5200
13 0.1074 0.0086 0.0239 0.0208 0.0031 0.0069 6.0600 0.4000
14 0.1203 0.0092 0.0263 0.0225 0.0029 0.0071 5.2000 0.2600
15 0.0833 0.0059 0.0175 0.0185 0.0024 0.0058 4.0400 0.2000
16 0.0733 0.0053 0.0152 0.0148 0.0019 0.0047 3.4933 0.2000
17 0.0551 0.0048 0.0119 0.0170 0.0027 0.0057 2.2533 0.1400
18 0.0468 0.0027 0.0089 0.0064 0.0005 0.0016 1.3067 0.0000
19 0.0408 0.0026 0.0080 0.0043 0.0009 0.0017 0.9667 0.0600
20 0.0312 0.0017 0.0059 0.0000 0.0000 0.0000 0.5667 0.0000
21 0.0276 0.0015 0.0054 0.0000 0.0000 0.0000 0.4133 0.0000
22 0.0307 0.0017 0.0062 0.0000 0.0000 0.0000 0.3733 0.0000
23 0.0216 0.0009 0.0040 0.0000 0.0000 0.0000 0.3000 0.0000
24 0.0176 0.0006 0.0029 0.0000 0.0000 0.0000 0.1267 0.0000
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Formulation with 4 arms, 3 natural states per arm and arm-dependent switching costs.
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Table 3.4: Performance of the Index Policy in the Multi-armed Bandit with Switch-
ing Costs and Losses

PROBLEM IV
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.2009 0.0115 0.0275 0.1155 0.0102 0.0227 89.7000 15.5333
2 0.2796 0.0158 0.0398 0.1540 0.0134 0.0313 100.6533 17.5867
3 0.3412 0.0193 0.0495 0.1901 0.0160 0.0385 97.8800 16.0067
4 0.3927 0.0216 0.0572 0.2141 0.0169 0.0434 90.7733 14.6933
5 0.4265 0.0222 0.0626 0.2282 0.0165 0.0455 81.2267 11.8400
6 0.4463 0.0215 0.0635 0.2247 0.0160 0.0450 75.4733 11.6667
7 0.4510 0.0192 0.0607 0.2141 0.0140 0.0416 63.0133 9.1067
8 0.4403 0.0165 0.0569 0.1875 0.0109 0.0344 52.3267 8.4133
9 0.4636 0.0157 0.0573 0.1763 0.0089 0.0305 44.7333 4.9533
10 0.4534 0.0131 0.0531 0.1568 0.0069 0.0255 38.6800 4.3733
11 0.4035 0.0098 0.0436 0.1152 0.0047 0.0177 32.5667 3.6400
12 0.3799 0.0091 0.0417 0.1031 0.0036 0.0150 31.0800 3.3000
13 0.3383 0.0079 0.0365 0.0874 0.0028 0.0118 26.4733 2.2600
14 0.3337 0.0081 0.0365 0.0719 0.0027 0.0107 24.2933 1.7533
15 0.2732 0.0059 0.0289 0.0543 0.0022 0.0086 22.0033 1.5733
16 0.2427 0.0055 0.0259 0.0474 0.0021 0.0078 19.3400 1.4600
17 0.2245 0.0048 0.0224 0.0359 0.0022 0.0068 18.1933 1.4267
18 0.2077 0.0034 0.0190 0.0218 0.0008 0.0035 16.8533 1.1933
19 0.1891 0.0029 0.0167 0.0122 0.0008 0.0025 14.0667 0.5867
20 0.1657 0.0024 0.0149 0.0065 0.0003 0.0011 12.8000 0.5200
21 0.1491 0.0023 0.0136 0.0070 0.0003 0.0012 13.0600 0.4467
22 0.1471 0.0022 0.0135 0.0073 0.0002 0.0009 12.7200 0.3533
23 0.1380 0.0018 0.0116 0.0069 0.0003 0.0009 12.4667 0.4933
24 0.1117 0.0016 0.0099 0.0080 0.0004 0.0012 12.1933 0.3267
25 0.0949 0.0012 0.0078 0.0077 0.0002 0.0010 12.1333 0.2267

Formulation with 4 arms, 3 natural states per arm and arm-dependent switching costs.
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Table 3.5: Performance of the Index Policy in the Multi-armed Bandit with Switch-
ing Costs

PROBLEM V
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.1139 0.0086 0.0190 0.0462 0.0062 0.0119 114.3667 21.1533
2 0.2171 0.0204 0.0399 0.0988 0.0153 0.0279 175.4467 27.0467
3 0.2901 0.0286 0.0548 0.1397 0.0223 0.0403 165.0200 26.1600
4 0.3380 0.0315 0.0625 0.1585 0.0246 0.0458 149.9933 23.7067
5 0.3512 0.0328 0.0669 0.1691 0.0255 0.0497 134.3733 21.7667
6 0.3601 0.0339 0.0710 0.1807 0.0258 0.0529 118.9067 18.9667
7 0.3369 0.0325 0.0701 0.1785 0.0240 0.0513 97.4867 15.4333
8 0.3202 0.0297 0.0662 0.1534 0.0199 0.0438 79.7200 11.5467
9 0.3175 0.0276 0.0634 0.1434 0.0183 0.0408 61.0800 8.5800
10 0.2628 0.0201 0.0516 0.1043 0.0114 0.0278 41.2800 4.8400
11 0.1985 0.0149 0.0387 0.0837 0.0089 0.0219 30.4333 3.6867
12 0.1624 0.0121 0.0313 0.0641 0.0064 0.0163 23.9200 2.6400
13 0.1458 0.0092 0.0274 0.0464 0.0042 0.0120 17.3133 1.7677
14 0.1171 0.0068 0.0202 0.0276 0.0027 0.0067 11.4333 1.1067
15 0.0816 0.0046 0.0141 0.0188 0.0014 0.0042 6.8800 0.2133
16 0.0518 0.0018 0.0074 0.0012 0.0001 0.0002 4.5333 0.1067
17 0.0405 0.0017 0.0064 0.0047 0.0003 0.0011 3.5733 0.2133
18 0.0348 0.0016 0.0059 0.0038 0.0002 0.0009 2.2467 0.0000
19 0.0186 0.0007 0.0029 0.0000 0.0000 0.0000 1.3333 0.0000
20 0.0223 0.0009 0.0036 0.0000 0.0000 0.0000 1.7733 0.0000
21 0.0238 0.0008 0.0037 0.0000 0.0000 0.0000 1.3067 0.0000
22 0.0212 0.0008 0.0037 0.0000 0.0000 0.0000 0.6400 0.0000
23 0.0108 0.0004 0.0018 0.0000 0.0000 0.0000 0.4800 0.0000
24 0.0135 0.0005 0.0023 0.0000 0.0000 0.0000 0.5867 0.0000
25 0.0039 0.0001 0.0004 0.0000 0.0000 0.0000 0.4800 0.0000

Formulation with 4 arms, 4 natural states per arm and state-dependent rewards.
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Table 3.6: Performance of the Index Policy in the Scheduling of Stochastic Jobs
Problem

PROBLEM VI
SC/R Complete State Space Initial States Bad Arms
(%) Max Avg StDev Max Avg StDev CSS IS

1 0.4428 0.0080 0.0434 0.0010 0.0000 0.0001 57.6867 0.08667
2 0.9525 0.0303 0.1215 0.0016 0.0000 0.0002 101.6867 0.09333
3 1.4642 0.0629 0.2159 0.0021 0.0000 0.0002 135.9600 0.09333
4 1.9872 0.1044 0.3226 0.0025 0.0000 0.0003 163.8200 0.04667
5 2.5288 0.1525 0.4366 0.0022 0.0000 0.0002 187.6533 0.04667
6 3.0817 0.2079 0.5598 0.0007 0.0000 0.0001 208.2533 0.04667
7 3.6472 0.2676 0.6865 0.0004 0.0000 0.0001 225.4200 0.04667
8 4.2106 0.3323 0.8196 0.0002 0.0000 0.0000 239.8533 0.00000
9 4.7665 0.4026 0.9597 0.0000 0.0000 0.0000 253.9800 0.00000
10 5.3549 0.4763 1.1036 0.0000 0.0000 0.0000 266.1333 0.00000
11 5.9710 0.5564 1.2544 0.0000 0.0000 0.0000 276.7867 0.00000
12 6.5812 0.6424 1.4149 0.0000 0.0000 0.0000 287.1333 0.00000
13 7.2006 0.7255 1.5716 0.0000 0.0000 0.0000 292.9600 0.00000
14 7.8236 0.8131 1.7344 0.0000 0.0000 0.0000 299.4067 0.00000
15 8.4788 0.9031 1.9021 0.0000 0.0000 0.0000 304.8800 0.00000
16 9.1045 0.9977 2.0757 0.0000 0.0000 0.0000 309.6800 0.00000
17 9.7918 1.0936 2.2520 0.0000 0.0000 0.0000 313.9000 0.00000
18 10.4669 1.1897 2.4312 0.0000 0.0000 0.0000 316.0200 0.00000
19 11.1353 1.2831 2.6093 0.0000 0.0000 0.0000 317.1733 0.00000
20 11.7651 1.3784 2.7929 0.0000 0.0000 0.0000 317.4600 0.00000
21 12.5024 1.4764 2.9817 0.0000 0.0000 0.0000 317.7133 0.00000
22 13.2043 1.5827 3.1819 0.0000 0.0000 0.0000 318.2000 0.00000
23 13.9373 1.6784 3.3749 0.0000 0.0000 0.0000 316.8667 0.00000
24 14.6423 1.7772 3.5729 0.0000 0.0000 0.0000 315.2933 0.00000
25 15.4023 1.8674 3.7664 0.0000 0.0000 0.0000 312.0800 0.00000

Formulation with 3 arms, 6 natural states per arm and state-dependent swithcing costs.
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Figure 3.6: Performance Plot, Problem I
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Figure 3.7: Performance Plot, Problem II



124 CHAPTER 3. THE MAB WITH SWITCHING COSTS

0 5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

P
er

fo
rm

an
ce

 M
ea

su
re

 (1
−V

op
t/V

in
d)

 (%
)

Ratio of Switching Cost to Active Reward (%)

Performance of the Index Policy in the MAB w/Arm Dependent SC (M=4, n=3)

Full State Space
Passive States

Figure 3.8: Performance Plot, Problem III
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Figure 3.9: Performance Plot, Problem IV
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Figure 3.10: Performance Plot, Problem V
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Figure 3.11: Performance Plot, Problem VI
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3.5 Conclusions

The multi-armed bandit with switching costs described in Section 3.2 exhibits

many desirable features that are of real concern in many contemporary ap-

plications. In particular it relaxes the general assumption maintained in the

classical multi-armed bandit literature that the operator can switch instanta-

neously from one project to the other without facing any cost. Natural as

this relaxation can be, the inclusion of a switching penalty changes the nature

of the problem and, in fact, it has been shown that an index strategy is not

necessarily optimal in the domain of all bandit problems with switching costs.

Following the ideas by Asawa and Teneketzis [6] and the intuition by José

Niño-Mora that a multi-armed bandit with switching costs can be interpreted

as a restless bandit, in Section 3.2.2 we discussed a translation of the multi-

armed bandit problem with switching costs into a restless bandit by means of a

natural extension of the state space. This extension consists in including, for

each bandit and state, information about the action taken during the previous

decision epoch. The outcome is hence a new two dimensional state space with

two extended states corresponding to each natural state of the arm. Applying

the standard methods discussed in Chapter 2 we established the indexability

of the new problem and provided al algorithm for index computation.

In Section 3.3 we described a range of model developments which preserve

indexability. These include: (a) a discussion around the optimality of the

index policy when the switching penalties are big; (b) an extension of the

model which considers a positive probability for a passive arm to abandon

the system, and (c) the particular case of the problem of scheduling a set of

stochastic jobs.

Finally, in the numerical study we provide evidence of the good perfor-

mance of the index heuristic in the switching costs case, which confirms the



3.5. CONCLUSIONS 127

adequacy of the restless bandit approach to the multi-armed bandit problem

with switching costs.

A very appealing extension to the results obtained here consists in estab-

lishing a general form of switching-cost-indexability for all restless bandits for

which indexability can be guaranteed. The main idea here is that, as long

as the state space modification introduced in this chapter does not affect the

general transition structure of the original problem, once indexability has been

established for any particular family of restless bandit problems, it it should im-

mediately follow that the version of the problem that includes switching costs is,

indeed, indexable. We will refer to this kind of indexability as SC−indexability

and establishing this result as well as providing a numerical assessment of the

performance of the corresponding index heuristic are subject of further research

for the author.





Chapter 4

The Machine Maintenance

Problem: A Family of Indexable

Restless Bandits1

Introduction

As we have seen in Section 2.2, the classical index result of Gittins [35] and

Gittins and Jones [37, 38] concerns the optimal allocation over time of a single

key resource among a collection of projects (or bandits) which are in competi-

tion for it. Application of the resource to a project at any state earn a reward

and causes a transition in project’s state; however, if a project is not receiv-

ing effort, it earns nothing and its state remains the same. The optimization

goal is the identification of a policy for sequentially selecting projects on the

basis of current state information to maximise the expected total discounted

reward over an infinite horizon. Gittins proposed a collection of calibrating

1 The main results in this Chapter will appear published in Section 3 of Glazebrook,
K., Ruiz-Hernández, D. and Kirkbride, C. Some indexable families of restless bandit
problems. Advances in Applied Probability 38-3 (2006).
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indices (now known as Gittins Indices), one for each project, in the form of

a real-valued function on the project’s state space and showed that the index

policy which always directs the key resource to (one of) the project(s) with the

highest current index is indeed optimal.

However, the requirement in Gittins’ models that passive projects should

remain frozen inhibits its applicability in a wide range of practical situations.

Motivated by this, Whittle [116] introduced a class of restless bandit prob-

lems which allow for state evolution among passive projects (see Section 2.3).

Whittle’s original analysis elucidated (under stated conditions) an index-based

solution to a Langrangian relaxation of the restless bandit problem of interest

in which the Lagrange multiplier has an economic interpretation as an index

for passivity or a charge for service. The indices identified this way generalise

those of Gittins, and Whittle proposed their use in the construction of heuris-

tics for restless bandit problems. The importance of Whittle’s contribution

was emphasized by Weber and Weiss ([109] and [110]) who established a form

of asymptotic optimality for the index heuristic and more recently in a range

of empirical studies which have demonstrated its outstanding strong perfor-

mance in various application domains. See, for example, Ansell, Glazebrook,

Niño-Mora and O’Keeffe [5] and Glazebrook, Mitchell and Ansell [51]. Fur-

ther Glazebrook, Niño-Mora and Ansell [52] have discussed the development

of bounds on the degree of reward suboptimality of Whittle’s index policy.

A major challenge to the deployment of Whittle’s powerful ideas is that his

index function is only defined for those projects which pass a test of indexa-

bility. Although this requirement seems plausible and natural, it can be very

difficult to establish and, indeed, need not to hold. Even when indexability

is established, there are few cases where the Whittle index (as we shall call

it) is available in closed form. For an instance of the latter see the queueing
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control problem discussed by Ansell et al. [5]. The primary contribution of

this chapter lies in the demonstration that a general class of restless bandit

problems which arises in some major applications, to which we will refer as

the machine maintenance problem, is indeed indexable. Having established

indexability, we proceed to identify the corresponding Whittle indices. Our

tools of analysis are (generally) those of stochastic dynamic programming (see

Puterman [85], Ross [90] and discussion in Section 2.1 of this dissertation) and

–more particularly- those of Gittins index theory (see [35, 36, 37]). In every

case the Whittle index identified is given as a function of a corresponding Git-

tins index and/or in closed form. Given the ease with which Gittins indices

may be computed, this is more than enough for implementation.

Working on the materials presented in section 2.3, where we introduced

Whittle’s notion of indexability along with a definition of his indices, in this

chapter we present a class of restless bandit problems with a discounted reward

criterion. In Section 4.1 we establish the indexability of a class of restless ban-

dits designed to model machine maintenance problems in which maintenance

interventions (active action) have to be scheduled to mitigate escalating costs

as machines deteriorate (when passive action is taken). Whittle [117] and

Glazebrook et.al. [51] have previously given index-based analyses of particular

models, but we now show that indexability in guaranteed in general. In Sec-

tion 4.2 we explore index structure in the context of two model types, both of

which rest on assumptions that are plausible on practice. In Section 4.3 we

further develop the findings of Section by offering two families of examples for

which explicit formulae for the Whittle index can be derived. Identification of

the Whittle indices of concern is followed in Section 4.4 by a numerical investi-

gation which demonstrates the very strong performance of Whittle’s heuristic.

Section 4.5 concludes.
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4.1 The Machine Maintenance Problem

In the light of the development in Section 2.3, it will be enough to conduct

our discussions of indexability/indices by reference to individual bandits as in

§1’(RB) to §6’(RB) (see pages 57 to 58). Our goal is to develop an indexability

analysis of a general class of structured bandits designed to model machine

maintenance problems. As flagged in comment §B in page 60, it will be

convenient to discuss indexability in terms of the W+-problem associated with

the bandit.

4.1.1 Model Formulation

Consider the problem of giving maintenance to a set of M machines by a

limited number of repairmen, Q. The problem is, hence, to choose at each

decision epoch the subset of Q < M machines to be repaired (in a further

extension to our model we shall admit the possibility of a repairmen to be

idle at some decision epoch and the decision would be to choose the subset of

Q ≤ Q < M machines to be served). The problem of scheduling maintenance

is formulated as a restless bandit problem which arms evolve under passive

action (operation/deterioration) and go back to some improved state under

active action (intervention).

The standard Markov Decision Process (MDP) formulation for the Machine

Maintenance Problem can be described as follows: Each machine 1 ≤ i ≤

M is modelled as a Markov Decision Process (MDC) that evolves over the

(countable) state space Si. There are two actions a (t) ∈ {0, 1} available at

each state xi ∈ Si and decision time t, where a (t) = 0 means passivity (the

machine is in operation and, consequently, deteriorating) and a (t) = 1, activity

(intervention). If active action is taken in arm i at state xi ∈ Si an arm/state
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dependent active cost is incurred and the machine performs a transition to

some state x′i ∈ Si according to certain active (intervention) transition rule. If

instead passive action is taken, an operation cost is incurred, and the machine

evolves to some state x′i ∈ Si following the machine’s passive (deterioration)

transition rule.

The standard discrete time MDP formulation for this restless bandit prob-

lem, represented by (S,A,P,C, M, Q, ), is given by the following elements

(corresponding to §1(RB) up to §6(RB) in Section 2.3).

i. Decision Epochs

Decisions are taken at epochs t ∈ N.

ii. State Space

The set of all possible system states at decision epoch t is the Cartesian

Product S = ×M

i=1Si, with Si the (countable) state space of machine

i. The state of the process at time t is X (t) = {X1 (t) , . . . , XM (t)},

Xi (t) ∈ Si. Designated state 0 ∈ Si represents the (pristine) state of the

machine following a maintenance intervention.

iii. Action Set

We assume M > Q. At each decision epoch the collection of
(

M
Q

)
admis-

sible actions at state X ∈ S is given by the set:

A =

{
a = (a1, . . . , aM)

∣∣∣∣∣
M∑
i=1

ai = Q, ai ∈ {0, 1}

}
(4.1)

Action ai = 1 (activity) implies that the machine i is intervened while

under ai = 0 (passivity) it is left to freely evolve (or deteriorate). Equation

(4.1) indicates that an admissible action implies giving maintenance to

exactly Q machines, while leaving the remaining M −Q to deteriorate.
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If we instead allow a subset Q ⊆ Q of machines to be intervened at some

decision epoch, then the r.h.s. term between brakets in (4.1) becomes∑M
i=1 ai = Q ≤ Q.

iv. Transition Probabilities

Suppose action a (t) ∈ A is taken at t ∈ N. Under intervention (ai = 1),

machine i is instantaneously returned to designated pristine state 0 after

which it performs a single transition under Markov law Pi, i.e.

P {xi (t + 1) = x′i |xi (t) = xi, ai (t) = 1} = Pi (0, x′i) , xi, x
′
i ∈ Si (4.2)

Under passivity (ai (t) = 0), the machine deteriorates according to Markov

law Pi, i.e.

P {xi (t + 1) = x′i |xi (t) = xi, ai (t) = 0} = Pi (xi, x
′
i) , xi, x

′
i ∈ Si (4.3)

As long as the M machines evolve independently, we can introduce the

following notation:

Pa
X,X′ =

∏
i:ai=0

Pi (xi, x
′
i)
∏

i:ai=1

Pi (0, x′i) , s.t. xi ∈ X, x′i ∈ X′; (4.4)

for all X,X′ ∈ S. Let P represent the set of all transition probability

matrices Pa, a ∈ A.

v. Cost Structure

Let Ci : Si → R+ and ki : S2
i → R+ be bounded cost functions for all

1 ≤ i ≤ M . If, for some machine i, a transition from state xi to x′i occurs

under action ai = 0 at time t, discounted operation cost βtki (xi, x
′
i) is

incurred. Should a transition from x to 0 occur under action ai = 1 at
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time t, a discounted maintenance cost βtCi (xi) is paid plus the instanta-

neous transition cost ki (0, x′i) as described in the discussion around (4.2).

Rewards are additive across machines and over time. We shall use the

telescoped notation:

ki (xi) =
∑
x′i∈Si

ki (xi, x
′
i) Pi (xi, x

′
i) , xi ∈ Si

to denote the expected operational cost incurred by a single transition

under the passive action.

Hence, the overall cost of policy a ∈ A when taken in state X ∈ S will be

given by

Ca
X =

i=1∑
M

[
ki (xi) 1 {ai = 0}+

(
Ci (xi) + ki (0)

)
1 {ai = 1}

]
. (4.5)

Again, we use C for representing the collection of cost vectors Ra, a ∈ A.

vi. Policy

The goal of optimization is the choice of a policy π to minimise the total ex-

pected maintenance/operation cost incurred over an infinite horizon. The

theory of dynamic programming (see Section 2.1 and references therein)

asserts the existence of an optimal (cost minimising) policy which is sta-

tionary and satisfies the optimality equations.

As for (2.23), we write V (X) for the value function of the process evalu-

ated at X ∈ S, namely the minimal expected maintenance cost incurred

over an infinite horizon starting from state X. The optimality equations

for the machine maintenance problem may be expressed as:

V (X) = min
a∈A

{
Ca
X + β

∑
X′∈S

Pa
X,X′V (X′)

}
, X ∈ S (4.6)
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We can now further develop our formulation to make it consistent with the

Whittle’s approach as described in page 56. Following the discussion in §A

(see page 60), we can equivalently define a W -charge version for the machine

maintenance problem, where W is a charge for activity; yielding a wholly

cost-base structure for our problem.

As indexability and indices are properties of individual bandits, as we did

in Section 2.3, we isolate an individual bandit and will now drop the identifier

i. The W+-problem for bandit (S,A, P, C, k, β) is a cost discounted MDP with

elements §i to §vi as described in page 133, but with the following modifications

to §v and §vi:

v’. Cost Structure

If a transition from state x occurs under action a = 0 at time t a dis-

counted operation cost βtk (x) is incurred2. Should a transition from x

to 0 occur under action a = 1 at time t, a discounted maintenance cost

βt {C (x) + k (0) + W} is incurred, where W is the charge for activity as

defined above.

vi’. Policy

The goal of optimization is the choice of a policy to minimise the total

expected maintenance/operation cost (including activity charges) incurred

over an infinite horizon. We again assert the existence of optimal policies

for the W+-problem which are stationary and whose value functions satisfy

the DP optimality equations.

Figure 4.1 depicts the structure of a typical machine maintenance project

(arm).

2Here we are using the telescoped version as defined in §v.
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We shall use now V (x, W ) for the value function for the W+-problem eval-

uated at x ∈ S. From §i – §iv and §v’ above, the optimality equations for one

isolated machine may be expressed as:

V (x, W ) = min

{
W + C (x) + k (0) + β

∑
x′∈S

P (0, x′) V (x′, W ) ;

k (x) + β
∑
x′∈S

P (x, x′) V (x′, W )

}
, x ∈ S (4.7)

The first term in {; } in the r.h.s. of (4.7) represents the cost of taking the

active action (a = 1) in state x and the second one corresponds to the passive

action (a = 0).

In the typical machine maintenance project, if active action (intervention) is taken in state
x, the machine is instantaneously returned to pristine state 0 and then performs a single
transition to some state x′. Under passivity (operation) the machine deteriorates according
to certain Markovian rule (including, for some cases, a positive probability of catastrophic
breakdown).

Figure 4.1: Representation of a Project of the Machine Maintenance Problem

The solution is based on identifying an optimal Markovian scheduling policy
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π prescribing, at each state, to which Q give maintenance and which others

M − Q to let operate/deteriorate. As we already know this problem suffers

from the curse of dimensionality, which hinders the application of standard

dynamic programming techniques and, consequently, we need to look for an

alternative heuristic for finding an efficient solution to this problem: an index

policy. In particular, we will concentrate in the family of Whittle’s index

heuristics discussed in Section 2.3. The next step is, hence, to establish the

indexability of the machine maintenance problem.

4.1.2 Indexability Analysis

We start by considering a set up in which X (0) = 0 and passive action is taken

at t = 0 with an optimal (cost minimising) policy pursued thereafter. Since

we restrict to stationary policies it follows that:

τ ∗ ≡ min {t : t ≥ 1 and it is optimal to choose active action (intervention)}

is an stationary stopping time.

The evolution of a project in the W+-problem can be summarized as follows:

a. Starting from state 0 at time t = 0, we optimally take the passive action

for τ periods incurring the expected discounted cost K (0, τ), with K given

by:

K (x, τ) = E

[
τ−1∑
t=0

βtk
(
X (t)

)
|x

]
where the conditional |x is a notational shorthand for |X (0) = x .

b. At decision epoch τ we take the active option (to give maintenance) with
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expected discounted cost equal to:

E
[
βτ
(
C (X (τ)) + W

)
|x
]

c. Active action takes the system back to state 0 from which the optimal policy

above is repeated indefinitely.

Hence the expected discounted cost, B (0, W ), for the W+-problem incurred

over the infinite horizon satisfies the equation:

W + B (0, W ) = W + inf
τ

{
K (0, τ) + E

[
βτ
(
C (X (τ)) + W + B (0, W )

)
|0
]}

(4.8a)

= W + K (0, τ ∗) + E
[
βτ∗
(
C (X (τ ∗)) + W + B (0, W )

)
|0
]

(4.8b)

Note that the terms on the r.h.s. of (4.8) record both the expected costs in-

curred during the initial period of machine evolution under the passive action

up to τ (τ ∗, respectively) and the costs to go from the intervention at τ (τ ∗,

respectively), onwards. Note also that the infimum in (4.8a) is over all sta-

tionary positive integer-valued stopping times on the machine state process

evolving from 0 under the passive action. Note that stopping time τ is said to

be stationary if it is the time of the first entry of the process into some specified

subset of S. We can now write

B (0, W ) = W + B (0, W )

and the next result follows straightforwardly:
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Theorem 4.1. The quantity B (0, W ) is given by

B (0, W ) = inf
τ

{
W + K (0, τ) + E

[
βτC (X (τ)) |0

]
1− E [βτ |0 ]

}
(4.9a)

=

{
W + K (0, τ ∗) + E

[
βτ∗C (X (τ ∗)) |0

]
1− E [βτ∗ |0 ]

}
(4.9b)

where the infimum in (4.9) is taken over all stationary positive-valued stopping

times on the machine process evolving from 0 under the passive action. More-

over, B (0, W ) is strictly increasing in W .

Proof Equations (4.9) are immediate consequences of the discussion around

(4.8). Take now some W1 > W2 and assume τ (W1) achieves the infimum for

B (0, W1). Standard index theory guarantees the existence of such infimum.

We then have that

B (0, W1) >
W2 + K (0, τ (W1)) + E

[
βτ(W1)C

(
X (τ (W1))

)
|0
]

1− E [βτ(W1) |0 ]
≥ B (0, W2)

(4.10)

and conclude that B (0, W ) is strictly increasing in W . Continuity of B (0, ·)

is straightforward. q.e.d.

Before proceeding with the main indexability result of this section, we de-

velop a form of Gittins index appropriate for our analysis. In order to develop

G (x), the so-called Gittins index for passivity in state x ∈ S, consider a set

up in which we start at some state X (0) = x, let the machine to evolve (take

passive action) for τ periods with operation cost K (x, τ), and then intervene

and turn back to state 0 with cost E [βτC (X (τ) |x)]− C (x).

Hence, quantity K (x, τ) + E [βτC (X (τ) |x)] − C (x) represents the ex-

pected cost incurred by taking passive action for τ additional periods when

starting from state x; where τ is a stopping time on the machine state process
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{X (t) , t ≥ 0} such that τ ≥ 1 almost surely.

Definition 4.1. The Gittins index for passivity G : S → R in state x ∈ S is

given by:

G (x) = inf
τ

{
K (x, τ) + E [βτC (X (τ) |x)]− C (x)

1− E [βτ |x ]

}
(4.11)

where the infimum in (4.11) is taken over all stationary positive-valued stopping

times on the machine state process evolving from x under the passive action.

Gittins index theory enables us to characterise the set of stationary stopping

times achieving the infimum in (4.11). They are developed as follows: fix

W ∈ R and use Γ (W ) for the subset of S given by

Γ (W ) = {y ∈ S; G (y) > W}

and Σ (W ) for the subset of S given by

Σ (W ) = {y ∈ S; G (y) = W} .

Note that either or both of Γ (W ) and Σ (W ) may be empty. Now suppose

that X (0) = x and Σ ⊂ Σ (W ). Use τΣ for the stationary positive-valued

stopping tiem defined on the process {X (t) , t ≥ 0} evolving under the passive

action, given by:

τΣ = min {t; t > 0 and X (t) ∈ Γ (W ) ∪ Σ} .
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We write T (x, W ) for the collection given by:

T (x, W ) =
⋃

Σ⊂Σ(W )

{
τΣ
}

(4.12)

On the basis of Gittins index theory we can assert that all stopping times

in T (x, G (x)) achieve the infimum in (4.11). These are the only stationary

stopping times which do so.

Let us take one more step ahead in our discussion before establishing in-

dexability of the machine maintenance problem. Consider X (0) = x ∈ S.

Passive action is optimal for the W+-problem at time t = 0 in state x if and

only if there exists some stationary positive-valued stopping time τ on the

machine state process evolving under the passive action such that any policy

which

• chooses passive action at times t = 0, 1, 2, . . . , τ − 1;

• chooses active action at time τ ; and

• chooses optimally at all times t ≥ τ + 1

has total expected costs no greater than the best policy among those which

choose action a = 1 at time t = 0.

In other words, the question faced here is whether to intervene at t = 0,

go to pristine state 0, and from that point on to follow the optimal (cost

minimising) policy with minimum achievable cost given by

C (x) + W + B (0, W ) = C (x) + B (0, W ) ; (4.13)

or to let the machine evolve for some extra time τ at which point we intervene

and turn back to state 0 and then operate following the optimal policy. The
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expected cost of leaving the system to evolve for additional τ periods is given

by

K (x, τ) + E [βτC (X (τ)) |x ] + E [βτ |x ]B (0, W ) .

It is the clear that passive action is optimal in x for the W+-problem if and

only if there exists a stationary positive-valued stopping time τ on the state

process evolving from x under the passive action such that

K (x, τ) + E [βτC (x (τ)) |x ] + E [βτB (0, W )] ≤ C (x) + B (0, W )

i.e. ∃ τ > 0 s.t.

K (x, τ) + E [βτC (x (τ)) |x ]− C (x) ≤ B (0, W )− E [βτB (0, W )]

i.e. ∃ τ > 0 s.t.

K (x, τ) + E [βτC (x (τ)) |x ]− C (x)

1− E [βτ |x ]
≤ B (0, W ) . (4.14)

Notice that if we take the infimum over all positive stopping times τ in (4.14),

then the term in the l.h.s. of the expression above turns out to be the Gittins

index for state x as introduced in Definition 4.1.

Plainly, from Definition 4.1 and the fact that the infimum in (4.11) is always

achieved, the requirement in (4.14) is met precisely when

G (x) ≤ B (0, W ) (4.15)

We can then define

Π (W ) = {x ∈ S : G (x) ≤ B (0, W )} (4.16)
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as the set of states x in which passive action is optimal, in the W+-problem,

under activity charge W . Following Whittle’s discussion in [116], the restless

bandit (S,A, P, k, C, β) (and the corresponding machine maintenance problem)

will be indexable if Π (W ) is increasing with activity charge W , i.e.

W1 > W2 ⇒ Π (W2) ⊆ Π (W1) . (4.17)

Theorem 4.2. Indexability and Indices.

1. Bandit (S, P, k, C, β) is indexable.

2. The Whittle index for state x is denoted by W (x) and is the unique W-

solution to the equation:

G (x) = B (0, W )

3. The orderings of members of S determined by the Whittle index and the

Gittins index for passivity coincide.

Proof By Theorem 4.1, B (0, W ) is strictly increasing in W . From (4.16) it

then follows that Π (W ) is increasing and indexability follows from Definition

2.1. It also holds from the continuity of B (0, :) that the Whittle index for state

x, namely

W (x) = inf {W : x ∈ Π (W )}

satisfies the equation

B (0, W (x)) = G (x) (4.18)

By the strictly increasing nature of B (0, W ), the equation (4.18) specifies W (x)
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uniquely. This establish parts (a) and (b) of the Theorem. Part (c) fol-

lows simply from the resultant fact that W (x) is strictly increasing in G (x).

q.e.d.

Comment

Please note that it is an immediate consequence of Theorems 4.1 and 4.2

and of (4.11) that W (0) = −D (0). Hence the pristine state has a negative

Whittle index. Subsequent analysis will focus on develping indices for non-

pristine states.

We now recall the notation and ideas established around (4.12).

Lemma 4.1.

(a) Any stopping time in T (x, G (x)) achieves the infimum in equation (4.11).

(b) Any stopping time in T (0,B (0, W )) achieves the infimum in (4.9).

In both cases, these are the only stopping times which achieve the infima con-

cerned.

Proof The reasoning for part (a) is summarised in the comments around

(4.12) and is a feature of the Gittins index structure.

For part (b), consider quantity B (0, W ) and proceed the same way as we

did with the Gittins index. We have already proved that

B (0, W ) = inf

{
W + K (0, τ) + E [βτC (x (τ)) |0 ]

1− E [βτ |0 ]

}
(4.19)

Assume that X (0) = 0 and that the machine state evolves under the passive

action. Extend the bandit’s space to S ∪ 0∗ where 0∗ is used specifically to

designate state 0 at time 0, with 0 reserved for the pristine state at other
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epochs. Further, we impose the following costs: a transition from 0∗ to state x

incurs a cost of W +K (0, x)+βC (x). A transition from state y 6= 0∗ to state

z incurs a cost of K (y, z)− C (y) + βC (z). With these choices, the expected

cost incurred by the machine during [0, τ) is given by

W + C (0, τ) + E [βτC (x (τ)) |0 ]

where τ is a positive-valued stopping time. Further, the expected cost incurred

by the machine during [0, τ) from some initial state x 6= 0∗ is given by

K (x, τ)− C (x) + E [βτC (x (τ)) |x ] .

Regarding this constructed object as a Gittins-type bandit, B (0, W ) is by def-

inition the Gittins index for initial state 0∗. See (4.19). Further, G (x) in

(4.11) is the Gittins index for any state x 6= 0.

Part (b) is now seen to be an application of the comment around (4.12) to

this bandit3.

3If we apply the comments around (4.12) to this bandit, we can characterise the set of
stationary stopping times achieving the infimum in (4.19). Again, fix W ∈ R and write

Γ (W ) = {y ∈ S;B (0,W ) > W}

and

Σ (W ) = {y ∈ S;B (0,W ) = W} .

Note that either or both of Γ (W ) and Σ (W ) may be empty. Now suppose that X (0) = 0
and Σ ⊂ Σ (W ). Use τΣ for the stationary positive-valued stopping time defined on the
process {X (t) , t ≥ 0} evolving under the passive action, given by:

τΣ = min {t; t > 0 and X (t) ∈ Γ (W ) ∪ Σ} .

We write T (W ) for the collection given by:

T (0,B (0,W )) =
⋃

Σ⊂Σ(W )

{
τΣ
}

(4.20)



4.2. TWO PARTICULAR CASES 147

q.e.d.

4.2 Two Cases of the Machine Maintenance

Problem

In this section we explore index structure in the context of two model types,

both of which rest on assumptions which are plausible in practice. Them both

preserve indexability and the essential index structure.

4.2.1 Monotone Models

We introduce the following assumption to our basic model:

Assumption 4.1. The state space S is the natural numbers N with 0 the

designated pristine state.

Assumption 4.2. Evolution under the passive action is right-skip free, i.e.

P (x, x′) = 0, x′ > x + 1, for all x, x′ ∈ N

Assumption 4.3. The Gittins index for passivity G : N → R is (strictly)

increasing.

Hence under such models an increase in state corresponds to deterioration

of machine, resulting in higher cost rates (as measured by Gittins index).

Now suppose that X (0) = x and that the machine state evolves under the

passive action. We use τ (x, x′) for the time of the first entry after 0 into

. On the basis of Gittins index theory we can assert that all stopping times in T (x,B (0,W ))
achieve the infimum in (4.19). These are the only stationary stopping times which do so.
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state x′. Note that the right-skip free assumption implies that τ (x, x′) <

τ (x, x′ + 1) almost surely for all x < x′.

We start our analysis by writing the stopping time achieving the infimum

in (4.11) as

τ ∗ = min [t; t ≥ 1, G (x (t)) ≥ G (x)]

by assumption of our model we have G (x + 1) > G (x), which implies that we

are to take the passive action up to the moment when we arrive to either x or

x + 1. Hence,

τ ∗ = min {τ (x, x) , τ (x, x + 1)} = τ (x; x, x + 1)

represents the required time until the first visit to x or x + 1 when starting at

x.

By using the results and the discussion around Lemma a it is easy to verify

that τ ∗ ∈ T (x, G (x)) and x, x + 1 ∈ Γ (G (x)), i.e. G (x) is achieved by τ ∗.

With this elements we can rewrite (4.11) as:

G (x) =
K (x, τ ∗) + E

[
βτ∗C (x (τ ∗)) |x

]
− C (x)

1− E [βτ∗ |x ]
. (4.21)

Turn now to the B (0, W ) quantity. The stopping time achieving the infi-

mum in (4.19) can be written as

τ̃ = min [t; t ≥ 1, G (x (t)) ≥ B (0, W )] . (4.22)

If W satisfies B (0, W ) = G (x) then, given the monotonicity of G (x), X (t) = x

satisfies (4.22), which means that the passive action is to be taken up to the
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moment when we arrive to x; i.e.

τ̃ = τ (0, x)

represents the time required for the first visit to x when starting at state 0.

Moreover, the right-skip free nature of passive evolution means that τ (0, x) ∈

T (0, G (x)).

Then, we can write (4.9) as:

B (0, W ) =
W + K (0, τ̃) + E

[
β τ̃
]
C (x)

1− E [β τ̃ ]
(4.23)

because τ̃ = τ (0, x) ⇒ x (τ̃) = x.

Theorem 4.3. Whittle indices for monotone models.

For monotone models, the Whittle index is given by

W (x) = G (x)
{
1− E

[
β τ̃
]}
−K (0, τ̃)− E

[
β τ̃
]
C (x) , x ∈ N+ (4.24)

with G (x) given by (4.21), and is increasing in x.

Proof By Theorem 4.2, W (x) is the unique W -solution to G (x) = B (0, W ).

Solving

B (0, W ) =
W + K (0, τ̃) + β τ̃C (x)

1− E [β τ̃ |x ]
= G (x) (4.25)

for W we get (4.24).

That W (x) is increasing in x follows from the facts that W (x) is strictly

increasing in G (x), and that G (x) is increasing in x. This concludes the

proof. q.e.d.
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4.2.2 Breakdown/Deterioration Models

We introduce the following additional assumptions to our basic model:

Assumption 4.4. The state space S is the natural numbers N with 0 the

designated pristine state.

Assumption 4.5. Evolution under the passive action is such that:

P (x, 0) + P (x, x) + P (x, x + 1) = 1, x ∈ N

Hence, under the passive action, a machine currently in state x may ei-

ther remain there (with probability P (x, x)), have a catastrophic breakdown

followed by immediate maintenance/replacement (with probability P (x, 0)) or

deteriorate by a single unit (with probability P (x, x + 1)). It will simplify the

discussion if we further suppose that P (x, 0)+P (x, x + 1) is strictly positive for

all x ∈ N. For pristine state 0 we use (0) for the probability of a catastrophic

breakdown to distinguish it from P (0, 0), the probability of a non-departure

from the pristine state. We suppose that P (0) + P (0, 0) + P (0, 1) = 1.

Consider the bandit evolving from state x at time 0 under the passive action.

We start our analysis by writing the positive-valued stopping time achieving

the infimum in (4.11) as:

τ ∗ = min {t; t ≥ 1, G (x (t)) ≥ G (x)} (4.26)

In the current framework, the right-skip free rule of Assumption 4.2 has been

relaxed for allowing the probability of a catastrophic breakdown; this implies

that we can define x ≤ x and x > x as follows:

x = min {x′; G (x′) ≥ G (x)}
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and

x = min {x′; x′ ≥ x + 1, G (x′) ≥ G (x)}

where we take x = ∞ if G (x′) < G (x), x′ ≥ x + 1. Note that for monotone

models we have x = x and x = x+1. Consider that bandit evolving from state

x at time 0 under the passive action. We now introduce the positive valued

stopping time

τ ∗ = min {τ (x, x) , τ (x, x)} (4.27)

As before, we let x∗ = x(τ ∗) and τ ∗ represents the required time until the first

visit to x∗ when starting at x. By using the results and the discussion around

Lemma a it is easy to see that τ ∗ ∈ T (x, G (x)) and, consequently, achieves

the infimum at (4.11).

Turn now to the quantity B (0, W ). The stopping time achieving the

infimum at (4.19) can be written as

τ̃ = min {t; t ≥ 1, G (x (t)) ≥ B (0, W )} (4.28)

in particular, after recalling that W (x) is the unique solution to G (x) =

B (0, W ), it can be seen that if x = min {x′; G (x′) ≥ G (x)} then τ (0, x) ∈

T (0,B (0, W )) and so achieves the infimum in (4.19) and we can let τ̃ = τ (0, x)

to represent the time required until the first visit to x when initial state is 0.

So we can rewrite equations (4.11) and (4.19) as:

G (x) =
K (x, τ ∗) + E

[
βτ∗C (x∗)

]
− C (x)

1− E [βτ∗ ]
(4.29)

and

B (0, W ) =
W + K (0, τ̃) + E

[
β τ̃C (x)

]
1− E [β τ̃ ]

(4.30)
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Theorem 4.4. Whittle indices for breakdown/deterioration models.

For breakdown/deterioration models, the Whittle index is given by

W (x) = G (x)
{
1− E

[
β τ̃
]}
−K (0, τ̃)− E

[
β τ̃C (x)

]
, x ∈ N+

and, after substitution,

W (x) =
(
K (x, τ ∗) + E

[
βτ∗C (x∗)

]
− C (x)

)1− E
[
β τ̃
]

1− E [βτ∗ ]

−K (0, τ̃)− E
[
β τ̃
]
C (x) (4.31)

for all x ∈ N+.

For the special case C (x) = C, x ∈ N,

W (x) = K (x, τ ∗)
1− E

[
β τ̃
]

1− E [βτ∗ ]
−K (0, τ̃)− C, x ∈ N+. (4.32)

Proof It follows from Theorem 4.2 that W (x) is the W -solution of

B (0, W ) = G (x) ,

solving this expression for W by using (4.29) and (4.30) yields (4.31). q.e.d.

4.3 Examples

In this section we further develop the findings of Section 4.1 by offering some

families of examples for which explicit formulae for the Whittle index can be

derived. We later offer some numerical results regarding examples in this

section.

We consider examples of the breakdown/deterioration model for which tran-
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sitions to 0 under the passive action correspond to catastrophic unexpected

breakdowns of the machine (followed by its immediate replacement/renewal).

Such transitions may incur great costs. Hence costs incurred by the bandit

undergoing transitions from x to 0, x, and x+1 under the passive action will be

taken to be of the form B + k (x), k (x) and k (x) respectively, where B is the

cost of a catastrophic breakdown. It will simplify matters if we suppose that

P (0) = 0, namely that there are no catastrophic breakdowns in the pristine

state. We shall explore instances of this model which are also monotone -i.e.,

which satisfy Assumption 4.3 above.

Family I. Here we have no catastrophic breakdowns, and between interven-

tions the machine is subject only to gradual deterioration and (typically)

increasing maintenance costs.

We strengthen Assumption 4.2 in the monotone model formulation, by

assuming that:

P (x, x) + P (x, x + 1) = 1 (4.33)

Before further proceeding with our analysis, it is convenient to introduce

the following expressions (please see Apendix A.1 for details).

E
[
βτ∗ |x

]
= β, x ∈ N. (4.34a)

E
[
β τ̃ |x

]
=

x−1∏
y=0

δ (y) , x ∈ N. (4.34b)

K (x, τ ∗) = k (x) , x ∈ N. (4.34c)

K (0, τ̃) =
x−1∑
y=0

κ (y)

y−1∏
z=0

δ (z) (4.34d)
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with

δ (y) =
βP (y, y + 1)

1− βP (y, y)
, y ∈ N (4.35)

κ (x) =
k (x)

1− βP (x, x)
, x ∈ N (4.36)

ε (x) = {1− βP (x, x)}−1 , x ∈ N. (4.37)

We now define expression:

H (x) ≡
K (x, τ ∗) + E

[
βτ∗C (x (τ ∗)) |x

]
− C (x)

1− E [βτ∗ |x ]
. (4.38)

Upon substitution of expressions in (4.34) into (4.38), and after some

algebraic manipulations we get

H (x) =
k (x) + β (P (x, x) C (x) + P (x, x + 1) C (x + 1))− C (x)

1− β
, x ∈ N.

(4.39)

The following result utilises a self consistency result for Gittins indices

due to Nash [70].

Lemma 4.2. If H : N → R is increasing, then H (x) = G (x), x ∈ N.

Corollary 4.1. For the monotone case with no breakdowns, if H (x) in

(4.39) is increasing, then H (x) = G (x) , x ∈ N, and the Whittle index

is given by

W (x) =
x−1∑
y=0

(βP (x, x + 1) (C (x + 1)− C (x)) + k (x)− k (y)) ε · · ·

× (y)

y−1∏
z=0

δ (z)− C (x)

(4.40)



4.3. EXAMPLES 155

Proof The first statement in the corollary is an immediate consequence

of Lemma 4.2. For the index W (x), by using expressions in (4.34) we

have that in the monotone case:

W (x) = G (x)

{
1−

x−1∏
y=0

δ (y)

}
−

x−1∑
y=0

k (y) ε (y)

y−1∏
z=0

δ (z)− C (x)
x−1∏
y=0

δ (x)

After isolating C (x) in H (x) and after further manipulations, we get:

W (x) =
k (x) + βP (x, x + 1) (C (x + 1)− C (x))

1− β
· · ·

×

{
1−

x−1∏
y=0

δ (y)

}
−

x−1∑
y=0

k (y) ε (y)

y−1∏
z=0

δ (z)− C (x)

which together with (A.4) gives (4.40). q.e.d.

Comment

Note that if C (x) = C, x ∈ N, then H (x) above will be increasing if

maintenance costs k (x) are increasing in state x. It will then follow from

Theorem 1(b) that W (x) is also increasing in x. In particular (4.40)

reduces to

W (x) =
x−1∑
y=0

(k (x)− k (y)) ε (y)

y−1∏
z=0

δ (z)− C, x ∈ N.

Equivalently, if C (x) = a+bx, then H (x) will be increasing if for φ (x) =

k (x) + bβP (x, x + 1) it holds that φ (x + 1)− φ (x) ≥ (1− β) b. In this

case, W (x) will be given by:

W (x) =
x−1∑
y=0

[
βP (x, x + 1) b + k (x)− k (y)

]
ε (y)

y−1∏
z=0

δ (z)− (a + bx) , x ∈ N.
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Family II. Here we fix C (x) = C and k (x) = 0 for x ∈ N. In contrast to

Family I, the focus here is predominantly on the minimisation of costs

due to catastrophic breakdowns.

We start by recalling the Gittins index in (4.29)

G (x) =
K (x, τ ∗) + E

[
βτ∗C (x∗) |x

]
− C (x)

1− E [βτ∗ |x ]
.

We have already established that τ ∗ = min {τ (x, x) , τ (x, x)} and, given

that we are working under Assumption 4.3, it is also true that x = x and

x = x+1, consequently τ ∗ = min {τ (x, x) , τ (x, x + 1)} = τ (x; x, x + 1).

Substituting this last into the expression for the Gittins index above we

can define:

H (x) ≡
K (x, τ ∗) + E

[
βτ∗C (x (τ ∗))

]
− C (x)

1− E [βτ∗ ]
(4.41)

Which, if increasing in x, turns out to be the Gittins index as established

by Lemma 4.2. Calculations can be presented more economically in

notational terms if, additionally to the expressions in (4.34), we write:

γ (x) =
βP (x, 0)

1− βP (x, x)
, x ∈ N+. (4.42)

All upcoming formulae are for x ∈ N+. The details are presented in

Appendix A.2 to this chapter.

E
[
βτ(0,x)

]
=

∏x−1
y=0 δ (y)

1−
∑x−1

y=1 γ (y)
∏y−1

z=0 δ (z)
(4.43a)

E
[
βτ∗C (x∗)

]
= βP (x, x) C (x) + βP (x, x + 1) C (x + 1) · · ·

+βP (x, 0) C (x)
x−1∏
y=0

δ (y)

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1 (4.43b)
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Simple conditioning arguments yield the conclusion that the expected

cost K (0, τ̃x) satisfies the equation:

K (0, τ̃x) =

∑x−1
y=0

(
γ (y) + B

β
γ (y) I {y 6= 0}

)∏y−1
z=0 δ (z)

1−
∑x−1

y=1 γ (y)
∏y−1

z=0 δ (z)
. (4.44)

also after some straightforward algebraic manipulations we get

1−
x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z) = (1− β)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y) . (4.45)

Now upon substitution of expressions (4.43) to (4.45) into (4.41) we con-

clude that

H (x) =
BP (x, 0)

(1− β)
[
(1− β + βP (x, 0))

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) +

∏x−1
y=0 δ (y)

] − C,

(4.46)

for x ∈ N+, clearly H (0) = −C.

Corollary 4.2. If k (x) = 0, C (x) = C, x ∈ N and P (x, 0) is increas-

ing in x, then H : N → R given in (4.46) is increasing and H (x) =

G (x) , x ∈ N. The Whittle index is then given by

W (x) = B

[
P (x, 0) ε (0) +

x−1∑
y=1

ε (y)
(
P (x, 0)− P (y, 0)

) y−1∏
z=0

δ (z)

]
· · ·

×

[
(1− β + βP (x, 0))

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]−1

− C, x ∈ N+

(4.47)

Proof We first note from (4.46) that H (0) ≤ H (x) , x ∈ N+. Further,
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from (4.46) we have that if k (x) = 0, C (x) = C, x ∈ N+, then

B

1− β
[H (x + 1) + D]−1 =

1− β + βP (x + 1, 0)

P (x + 1, 0)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (y)

+
(1− β) [1− βP (x, x)− βP (x, x + 1)]

P (x + 1, 0)
ε (x)

x−1∏
y=0

δ (y)

+
(1− β)

P (x + 1, 0)

x−1∏
y=0

δ (y)

=
1− β + βP (x + 1, 0)

P (x + 1, 0)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (y)

+
(1− β)

P (x + 1, 0)

x−1∏
y=0

δ (y)

≤1− β + βP (x, 0)

P (x, 0)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (y) · · ·

+
(1− β)

P (x, 0)

x−1∏
y=0

δ (y)

=
B

1− β
[H (x) + D]−1

whenever P (x, 0) ≤ P (x + 1, 0). It follows from the expression above

that if P (x, 0) is increasing then so is H (x). We then have that sub-

stitution from expressions (4.46), (4.44) and (4.43) into (4.31) -together

with straightforward algebra- yields the expression for the Whittle index

given in the statement of the result.

The inference that H (x) = G (x) uses Lemma 4.2.

The algebraic details of this derivation are given in the appendix to this

paper. q.e.d.
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4.4 Numerical Study

We here describe some numerical results which asses the quality of performance

of an index policy based on the set up considered in Family I (see Corollary 4.1

and the Comment below.). To be precise, we explore a scenario on which a

single repairman is maintaining four machines. This is modelled as a restless

bandit problem with Q = 1, M = 5 -i.e. a single server choosing among five

bandits. Four of the five bandits model machines state evolution, as described

in Section 4.3. The fifth is an idling option modelled as a single state bandit

with no costs incurred under either action (active or passive). The Whittle

index for the idle option is trivially zero. Hence, the Whittle index heuristic

chooses idleness when the four bandits modelling system evolution all have

negative index values. Otherwise, the repairman works on whichever machine

has the largest (positive) index.

Case I in Table 4.1 presents results summarising the performance of the

Whittle index heuristic for two cases: in the upper part a fixed intervention

cost C increases from 50 to 200; in the lower part, the constant term of a linear

intervention cost with slope 25x (where x is the state of the machine) increases

from 25 to 200. Each row of the table summarises the results of 200 problems

studied for the corresponding C. These 200 problems are generated at random

as follows: each of the four machines has ten states labelled 0, 1, . . . , 9. The

operation cost rate for machine i in state x takes the form Ki (x) = Ai + Bix,

1 ≤ i ≤ 4, 0 ≤ x ≤ 9, where the constants Ai and Bi are obtained by sam-

pling independently from a U ∼ (25, 50) distribution. All of the probabilities

Pi (x, x), 1 ≤ i ≤ 4, 0 ≤ x ≤ 9, are obtained by sampling independently from

a U ∼ (0.1, 0.8) distribution. We then set Pi (x, x + 1) = 1 − Pi (x, x) and

1 ≤ i ≤ 4, 0 ≤ x ≤ 9, and Pi (9, 9) = 1, 1 ≤ i ≤ 4. Discount rate β is set to

be 0.95 throughout.
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For each problem generated the optimal expected cost V OPT was com-

puted for the initial state in which al machines were assumed to be in pristine

state 0 along with the corresponding expected cost V IND for the Whittle in-

dex heuristic. All computations of expected cost were performed using DP

value iteration (see Algorithm in figure 2.1). The percentage cost subopti-

mality
(

V IND

V OPT − 1
)
× 100 was then calculated. For each D-value, the 200

percentage suboptimalities were then summarised by the order statistics: min-

imum (Min), lower quartile (LQ), median, upper quartile (UQ), and maximum

(Max). These statistics appear in Table 4.1. Note the excellent level of per-

formance of the index heuristic. In none of the 2, 800 problems studied was

the index policy more than 5 percent suboptimal. Actually, there were just

two cases for which the upper quartile suboptimality was larger than 1%

Case II in Table 4.1 presents results summarising the performance of the

Whittle index heuristic for two cases: in the upper part a fixed intervention

cost C increases from 50 to 200; in the lower part, the constant term of a

linear intervention cost with slope 25x (where x is the state of the machine)

increases from 25 to 200. Like in the previous case, each row of the table

summarises the results of 200 problems studied for the corresponding values of

C. These 200 problems are generated at random as follows. The operation

cost rate for machine i in state x takes the form Ki (x) = Ai + Bix + Dix
2,

1 ≤ i ≤ 4, 0 ≤ x ≤ 9, where the constants Ai and Bi are obtained by sampling

independently from a U ∼ (25, 50) distribution and Di is extracted from a

U ∼ (4, 6) distribution. All of the probabilities were generated as in the

previous case. Discount rate β is set to be 0.95 throughout.

As well as in the previous case, the index heuristic performs very well. In

none of the 2, 800 problems studied was the index policy more than 5 percent

suboptimal and the upper quartile was lager than 1% just for two cases.
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Table 4.1: Machine Maintenance Problem. Performance of the Index Policy in the
Monotone Case, Linear Operation Cost.

Case I, K = A + Bx

C Min LQ Median UQ Max
50 0.0000 0.0033 0.0334 0.1269 0.5293
75 0.0000 0.0012 0.0067 0.0442 0.3565
100 0.0000 0.0009 0.0048 0.0445 0.3713
125 0.0000 0.0007 0.0093 0.0636 3.5544
150 0.0000 0.0010 0.0170 0.1125 3.9744
175 0.0000 0.0019 0.0230 0.8501 4.9521
200 0.0000 0.0026 0.2577 1.1635 4.2520

50 + 25x 0.0000 0.0027 0.0371 0.1077 0.4271
75 + 25x 0.0000 0.0009 0.0138 0.0631 0.3704
100 + 25x 0.0000 0.0011 0.0209 0.0629 2.9586
125 + 25x 0.0000 0.0019 0.0119 0.0581 2.0661
150 + 25x 0.0000 0.0015 0.0123 0.0751 3.3735
175 + 25x 0.0000 0.0070 0.0483 0.7482 2.5984
200 + 25x 0.0000 0.0040 0.5707 1.2066 2.8804

Case II, K = A + Bx + Cx2

C Min LQ Median UQ Max
50 0.0000 0.0012 0.0274 0.0917 0.4100
75 0.0000 0.0011 0.0185 0.0786 0.3859
100 0.0000 0.0004 0.0042 0.0336 4.3945
125 0.0000 0.0016 0.0064 0.0398 3.4470
150 0.0000 0.0005 0.0081 0.1012 4.4431
175 0.0000 0.0035 0.0513 0.8849 2.9042
200 0.0000 0.0061 0.4821 1.3297 3.0743

50 + 25x 0.0000 0.0008 0.0189 0.0727 0.5020
75 + 25x 0.0000 0.0004 0.0079 0.0519 0.3951
100 + 25x 0.0000 0.0007 0.0072 0.0532 3.3025
125 + 25x 0.0000 0.0006 0.0094 0.0415 1.9974
150 + 25x 0.0000 0.0003 0.0076 0.0816 2.6146
175 + 25x 0.0000 0.0023 0.0226 0.9932 4.8762
200 + 25x 0.0000 0.0059 0.1816 1.0303 2.1583
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4.5 Conclusions

In this chapter we established the indexability of a class of restless bandits

designed to model machine maintenance problems in which maintenance inter-

ventions have to be scheduled to mitigate escalating costs as machines deteri-

orate with use (operation).

Two particular cases analysed in Section 4.2, both of which rest on assump-

tions which are plausible in practice. In the first one, a machine deteriorates

smoothly with use, with the consequent decrease in profitability and (correc-

tive) maintenance (intervention) –which can be perfect or imperfect– takes it

back to an earlier (maybe pristine) state of wear. In the second family of

problems, we extended the previous model by including the chance of a catas-

trophic breakdown (followed by immediate replacement of the machine) with a

considerably high cost. Explicit formulae for the Whittle indices were provided

in Section 4.3 for two particular examples.

The machine maintenance problem, as formulated, stands as an important

family of stochastic scheduling problems for which indexability has been estab-

lished in particular formulations, but now, under our approach, indexability is

guaranteed in general.

Moreover, identification of the Whittle indices concerned was followed in

Section 4.4 by a numerical investigation which demonstrates the very strong

performance of Whittle’s index heuristic bor both, the monotone and the break-

down problems.

There is no need to emphasizing the importance of the machine maintenance

formulation and its applicability to a wide range of real life problems.

Within the most important extensions there is the case of imperfect machine

maintenance, were the effectiveness of the intervention is dependent on the

current state of the machine. This implies just a minor modification of the
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main framework presented in this Chapter (were intervention was assumed to

imply an immediate transition to the pristine state) and its indexability is

(intuitively) almost guaranteed.

Another interesting extension is the one in which there exist more than one

(independent) deteriorating processes competing in every particular machine.

This can be understood as the wear of different parts or components of the

machine. It is clear that the failure of any of them can imply the breakdown

of the system and, consequently, the intervention (maintenance) regime will be

affected. To the intuition of the author this problem can be modelled as a

restless bandit problem and conditions for it’s indexability can be established.

These two particular extensions to the machine maintenance problem are

object of further research for the author.





Chapter 5

Indexability Analysis of

Bi-directional Restless Bandits1

Introduction

In entertainment shows of a certain vintage, a popular act featured a performer

keeping a large number of plates spinning on the top of flexible poles. The

audience would express dismay when one of the plates started to wobble badly,

prompting urgent attention to prevent it from falling from its stick. The per-

former’s problem (of keeping plates spinning happily) is a vivid metaphor of

that facing a manager responsible for a collection of reward generating assets,

each of whose performance (reward) is enhanced in time by an active interven-

tion (investment), but which otherwise tends to deteriorate. The crucial issue

arises as to how such interventions should be organised to maximise the overall

reward yield from an entire asset portfolio. In Section 5.1, a family of prob-

lems related with the performer’s/manager’s problem (Family I) is formulated

1 The main results in this Chapter have been published in Glazebrook, K., Kirk-
bride, C., and Ruiz-Hernández, D. Spinning plates and squad systems: policies for
bi-directional restless bandits. Advances in Applied Probability 38-1, 95-115 (2006).
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as a Markov Decision Problem (MDP) with the average reward criterion2. In

honour of the frivolous application cited above, we call this the Spinning Plates

Problem.

In contrast to the above there exist situations in which a manager has a large

number of reward generating assets at his disposal, a fixed number of which

need to be deployed/exploited at all times. Deployment of an asset activated

its reward stream, but erodes over time its performance (reward). Resting (not

deploying) an asset allows it to recover. The key issue here concerns how assets

should be deployed to maximise the rewards earned from them over time. In

Section 5.2 a family of problems related with the manager’s problem (Family

II) is formulated as an MDP with the average reward criterion. In honour

of the similar problem faced by coaches in professional sports, we call this

problem the Squad System. To our knowledge, the spinning plates problem,

as formulated in Section 5.1 is new and there is no previous literature. Whittle

[116] gave a brief discussion of a particular case of the squad system which had

a linear structure for both rewards and stochastic dynamics. He called this

the Ehrenfest Project. Niño-Mora [74] discussed a discounted reward version

of the squad system using polyhedral methods, but was not able to deploy this

analysis to give an account of the system with the average reward criterion.

The MDP’s concerned are formulated and presented at the beginning of

Sections 5.1 and 5.2 and fall within the class of so-called restless bandit problems

introduced by Whittle [116]. These form a class of decision processes which

generalise the multi-armed bandits of Gittins3 ([35],[36]) by allowing passive

evolution. Whittle [116] proposed a class of index heuristics which extend the

Gittins index policies. However, Whittle’s proposed indices may not exist (the

2For a discussion on optimality criteria for Markov decision problems please see Section
2.1.3 and, in general, Section 2.1 for a discussion on Markov decision processes

3See a detailed discussion on Gittins approach in Section 2.2.
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issue of indexability) and the resulting policy will not in general be optimal,

even for indexable problems. Essentials of Whittle’s approach are sketched in

Section 2.3.

In Sections 5.1 and 5.2 we give simple and direct accounts of the index

structure of, respectively, the spinning plates problem and the squad system.

In both cases we give simply stated conditions that guarantee the model’s

indexability. Further, algorithms are given which yield the indices. Strict

indexability means that not only is the problem concerned indexable, but also

all the index functions are 1− 1 (namely, that distinct states of an asset have

distinct index values). Our analysis yields necessary and sufficient conditions

for strict indexability in both models, together with formulae for the indices in

closed form. We believe this to be the first time that simply stated conditions

which are equivalent to strict indexability have been achieved for any restless

bandit model for which strict indexability is not guaranteed. Numerical re-

sults testify the very strong performance of the index heuristic for both models.

Section 5.3 contains a somewhat brief discussion of the index structure of ver-

sions of the spinning plates problem and the squad system with discounted

reward criterion.

In addition to the intrinsic interest of the theoretical results in Sections 5.1

and 5.2, we believe that the approach we adopt will be applicable to a wide

range of restless bandit problems with the average reward criterion. Investiga-

tion of an asset’s index structure involves the study of the so-called W -subsidy

problem4. The latter being a decision problem defined for the asset of interest

in which a subsidy W is paid for every unit of time for which the asset is pas-

sive. Indexability of the asset is related simply to the fact that the value of

the W -subsidy problem is increasing, piecewise linear and convex in W . See

4See discussion on Whittle’s approach in pages 56 to 58.
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also Niño-Mora [76]. For strictly indexable cases the number of segments in

the piecewise linear function is one greater than the number of asset states.

Comments

A. Each of the families of restless bandits considered here is a class of Markov

Decision Processes (MDP’s) with the average reward criterion. In each

case M projects (assets) are available for investment/exploitation. resource

constraint means that only Q assets (1 ≤ Q ≤ M) my be active at any time.

The decision problem concerns how assets should be optimally chosen for

activation at each decision epoch of the system to maximise the reward

earned over an infinite horizon.

B. Each of the assets or projects evolves stochastically through time t ∈ R+.

We write Xi (t) for the state of asset i at time t ∈ R+, 1 ≤ i ≤ M and

X (t) = {X1 (t) , . . . , XM (t)} for the corresponding system state. The state

of asset i is an integer in the range
[
Ki, Ki

]
≡
{
Ki, Ki + 1, . . . , Ki

}
, and

for most of the development (and until stated otherwise) we shall suppose

that −∞ < Ki < Ki < ∞ for 1 ≤ i ≤ M .

C. An issue which arises in consideration of the W -subsidy problem in (2.32)

is the possible non-uniqueness of the policy(ies) achieving the maximum.

We resolve any non-uniqueness in two steps. First, we demonstrate (see

Lemmas 5.1 and 5.2) that for both families I and II there exist optimal poli-

cies for the W -subsidy problems of interest which have monotone structure.

Hence we restrict to policies from the appropriate monotone class in each

case. Second, should more than one monotone policy achieve the maxi-

mum in (2.32) we choose the policy with the largest passive set (i.e. the

largest set of states in which the corresponding policy chooses the passive

action).
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D. Use πi (W ) for the resulting policy, Πi (W ) for its passive set and π (W )

for the policy for the entire system which applies πi (W ) to each asset

i, 1 ≤ i ≤ M . Policy π (W ) solves the optimization problem (2.30). The

following definition adapts Definition 2.1 in Section 2.3 and expresses a

natural requirement on (optimal) policy structure.

Definition 5.1. Asset i is indexable if ∃W i, W i such that −∞ < W i <

W i < ∞ and Πi (W ) = ∅, W ≤ W i; Πi (W ) =
[
W i, W i

]
, W > W i; with

Πi :
[
W i, W i

]
→ 2[W i,W i] increasing.

The above decision problems are indexable when all constituent projects are.

Should an asset be indexable then a natural calibration, in the form of a

fair subsidy for passivity, may be defined. This is again an adaptation of

Definition 2.2 to our current framework.

Definition 5.2. If asset i is indexable, then its index Wi :
[
Ki, Ki

]
→ R

is defined by

Wi (x) = inf {W ; x ∈ Πi (W )} , x ∈
[
Ki, Ki

]
.

In sections 5.1 and 5.2, we shall study Families I and II in turn. In each case

we shall give sufficient conditions for the indexability of the decision problems

together with algorithms which yield the resulting indices. We further give

necessary and sufficient conditions for the strict indexability of each asset.

Under strict indexability the indices are available in closed form. Section

5.3 contains a discussion of the index structure of the spinning plates problem

with the discounted reward criterion. Section sec:BiDirCon concludes this

chapter.
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5.1 Family I: The Spinning Plates Problem (a

model for optimal investment in assets)

The family of restless bandits considered here is a class of Markov Decision Pro-

cesses (MDP’s) with the average reward criterion. Here, M projects (assets)

are available for investment. Resource constraint means that only Q assets

(1 ≤ Q ≤ M) may be active at any time. The decision problem concerns how

assets must be optimally chosen for activation at each decision epoch of the

system to maximise the reward earned over an infinite horizon.

A typical member of the Spinning Plates family can be described as:

1. Each of the assets evolves stochastically through time t ∈ R+. We

write Xi (t) for the state of asset i at time t ∈ R+, 1 ≤ i ≤ M and

X (t) = {X1 (t) , . . . , XM (t)} for the corresponding system state.

The state of asset i is an integer in the range
[
Ki, Ki

]
, and for most

of the development (and until stated otherwise) we shall suppose that

−∞ < Ki < Ki < ∞ for 1 ≤ i ≤ M .

2. Time 0 together with the times of every state transition of the process

constitute the set of decision epochs of the system. In each system

state, there are
(

M
Q

)
possible actions, one corresponding to each subset of

{1, 2, . . . ,M} of size Q. If Q is one of such subsets, then A (Q) denotes

the action which chooses an active regime (the active action denoted

ai = 1) for the assets whose identifiers are in Q and which chooses an

inactive regime (the passive action, ai = 0) for the remaining assets.

Under action A (Q) applied in state x, the time to the next system tran-
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sition is exponentially distributed with rate

∆ (Q,x) ≡
∑
i∈Q

µi (xi) +
∑
i/∈Q

λi (xi)

If ∆ (Q,x) > 0 then the state immediately following this transition will

be x + ei for i ∈ Q with probability µi (xi) /∆ (Q, s), and will be x− ei

for i /∈ Q with probability λi (xi) /∆ (Q,x).

Equivalently, the M assets evolve independently under the action applied

(active or passive). If project i should be active (ai = 1) then it evolves

from xi to xi + 1 at rate λi (xi), while under the passive action (ai = 0)

it evolves from state xi to state xi − 1 at rate µi (xi), xi ∈
[
Ki, Ki

]
,

1 ≤ i ≤ M .

Transition rates µi, λi satisfy µi

(
Ki

)
= λi (Ki) = 0, but are otherwise

strictly positive, 1 ≤ i ≤ M . Should we have ∆ (Q,x) = 0, then the

state x is absorbing under action A (Q).

3. The system earns rewards at rate
∑

i Ri (xi) while in state x. Each

reward rate function Ri :
[
Ki, Ki

]
→ R+ is (weakly) increasing. The

goal of analysis is the determination of a policy (rule for taking actions)

which maximises the average system reward rate earned over an infinite

horizon or which comes close to doing so.

Figure 5.1 below depicts the general structure of a typical spinning plates

asset.

Comments

1. In this family the active action applied to an asset enhances its reward

earning capacity. Hence, plant and machinery are maintained and up-

dated, employees are trained, products are improved and/or advertised
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If active action is applied to a spinning plates project in state y, it evolves to state y + 1,
representing an increase in its productivity. If, otherwise, passive action is taken, then it
evolves to state y − 1 i.e. the profitability of the asset declines.

Figure 5.1: Representation of an Asset in the Spinning Plates Problem

–in short, activity represents positive investment decisions taken with re-

gard to an asset. In absence of such investment decisions (the passive

action) the reward earning capacity of an asset tends to decline.

2. Note from §3 above that in Family I, assets earn rewards (at a higher or

lower rate) all the time and not only when in receipt of investment. This

reward structure in is natural to the envisaged applications. Note that

a modification in which assets only earn rewards under the active action

has a trivial solution: always apply the active action to those Q assets

with largest associated values of Ri

(
Ki

)
, 1 ≤ i ≤ M .

3. The theory of stochastic dynamic programming (DP) guarantees the exis-

tence of an optimal policy which is stationary, deterministic and Marko-

vian (see Section 2.1 and references therein). The above family falls

within the class of intractable restless bandit problems, introduced by

Whittle, which advocated the deployment of index heuristics, such poli-

cies emerging from the formulation and solution of Lagrangian relax-

ations of the original optimization problem. The essentials of Whittle’s
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approach have been sketched in Section 2.3.

5.1.1 Indexability Analysis

We can drop the asset suffix and consider the W -subsidy problem in (2.32)

for a single asset drawn from a decision problem in Family I whose associated

parameters are K, K, µ (·) , λ (·) and R (·). From §2 and §3 above recall

that, under the application of active action a = 1 in state x, the asset evolves

to state x + 1 at rate µ (x) and earns rewards at rate R (x) while doing so.

Under application of the passive action a = 0 in state x, the asset evolves to

state x− 1 at rate λ (x) and (in the W -subsidy problem) earns rewards at rate

R (x)+W while doing so. The intermediate goal of analysis is the identification

of policies to maximise the average reward earned by the asset over an infinite

horizon.

Without any loss of generality, we restrict to the class of stationary, deter-

ministic and Markovian policies M for which

π :
[
K, K

]
→ {0, 1}

and highlight the class M of monotone policies for which

πy (x) = 1 ⇔ x ≤ y, y ∈
[
K − 1, K

]
, (5.1)

hence, policy πK chooses the active policy (a = 1) in all states, while policy

πK−1 chooses passive action (a = 0) in all states.

Consider any initial state X (0) = x and assume y < x ≤ K. Under

monotone policy πy, the passive action is taken and the asset reaches state y

in finite time almost surely and thereafter has alternating sojourns in states y

and y + 1. If, otherwise, K ≤ x ≤ y, then active action is taken and the asset
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will reach state y in finite time almost surely, alternating, thereafter, between

states y and y + 1. Hence, the time average reward rate of policy πy ∈ M for

the W -subsidy problem is given by

R (y) λ (y + 1) + (R (y + 1) + W ) µ (x)

λ (y + 1) + µ (y)
(5.2)

for any initial state X (0).

Figure 5.2 depicts the evolution of an isolated spinning plates asset under

monotone policy πy.

We now introduce the function φ :
[
K − 1, K

]
→ {0, 1} defined by

φ (x) =
µ (x)

λ (x + 1) + µ (x)
, K − 1 ≤ x ≤ K (5.3)

with φ
(
K
)

= 0, and φ (K − 1) = 1.

Policy πy ∈ M prescribes taking active action in states {K, . . . , y} and passive in states{
y + 1, . . . ,K

}
. It can be seen that under such policy, for any initial state X (0), the

project will be trapped between states y and y + 1.

Figure 5.2: Evolution of a Spinning Plates Asset under a Monotone Policy

Lemma 5.1. For all W ∈ R, there exists an optimal policy π∗ for the W -

subsidy problem, such that π∗ ∈ M.



5.1. THE SPINNING PLATES PROBLEM 175

Proof Consider asset evolution under a general stationary, deterministic, Mar-

kovian policy p̃i ∈ M. There exists a policy πy ∈ M which yields an average

reward rate identical to the one given by π̃ ∈ M and is independent of the

initial state X (0).

Take for example state X (0) = x and assume π̃ (x) = 0 (i.e. the general

policy prescribes passive action). The project will evolve to state x−1 according

to λ (x) and will keep taking the passive action until the first arrival to some

state y < x for which π̃ (y) = 1 (active action). From that moment on the

project alternate between states y and y + 1, with average reward given by

Vπ̃ (X (0) = x) = R (y) (1− φ (y)) + (R (y + 1) + W ) φ (y) .

It can easily be seen that the expression above corresponds to the average reward

rate for the W -subsidy problem under monotone policy πy, as obtained upon

substitution of (5.3) in (5.2).

Take now the monotone policy maximising the average reward rate for a

given W ,

ŷ = argmax
K−1≤y≤K

{
Vπy

}
(5.4)

in case of more than one value of y satisfying the maximum in the r.h.s. of

(5.4), fix ŷ to be the smallest y achieving such maximum. Fix π∗ = πŷ, then

it is clear that

Vπ∗ ≥ Vπ̃ (X (0))

for any X (0) and all π̃ ∈ M. Consequently, π∗ ∈ M, as defined above, is an

optimal policy for the W -subsidy problem. q.e.d.



176 CHAPTER 5. BI-DIRECTIONAL RESTLESS BANDITS

Let’s introduce the set XW :

XW =

{
x : argmax

K−1≤x≤K

{R (x) (1− φ (x)) + (R (x + 1 + W ) φ (x))}

}

and define X (W ) to the smallest over all x ∈ XW minus one, i.e.,

X (W ) = inf
{
x− 1 : x ∈ XW

}
(5.5)

hence, from Lemma 5.1, X (W ) is the policy with maximal passive set solving

the W -subsidy problem.

From Definition 5.1, in order to establish the asset indexability, it will be

enough to show that there exist finite W < W such that:

X (W ) =K − 1, for all W ≥ W

X (W ) =K, for all W < W

and

X (·) :
[
W, W

]
→
[
K − 1, K

]
is a decreasing function of W .5

For an indexable asset, the index in state x will be given by

W (x) = inf {W ; X (W ) ≤ x− 1} , K ≤ x ≤ K (5.6)

Observe that, from (5.2) and (5.3), the average reward rate achieved by

5For the particular case of the spinning plates problem, notice that W = 0.



5.1. THE SPINNING PLATES PROBLEM 177

policy πx for the W -subsidy problem is written

R (x) (1− φ (x)) + (W + R (x + 1)) φ (x) (5.7)

Theorem 5.1. If φ is decreasing, the asset is indexable.

Proof Define, for W ≥ 0

V (W ) = max
K−1≤x≤K

{R (x) (1− φ (x)) + (W + R (x + 1)) φ (x)} . (5.8)

From the discussion around (5.5), X (W ) is the smallest maximizer of the

r.h.s. of (5.8). It is straightforward to show that, since 0 ≤ φ (x) ≤ 1, and

K ≤ x ≤ K − 1, then

X (W ) = K, W < 0, (5.9)

and

X (W ) = K − 1, W ≥ W (5.10)

for some W large enough6.

Further, if the subset {x1, x1 + 1, . . . , x2} ⊆
[
K − 1, K

]
is such that φ (x1) =

φ (x1 + 1) = · · · = φ (x2) and is maximal in this regard, then it is straightfor-

ward to show that the range of X (W ) contains at most a single value from this

subset.

Finally, note that V : R+ → R+ is an increasing function of W . Moreover,

it is piecewise linear and convex, with each segment’s r.h.s. gradient given by

φ (X (W )). Take now any pair (W1, W2) ∈
[
W, W

]
such that W1 > W2, it

6In particular, W will be the value of W such that VπK−1 > maxK≤x≤K {Vπx
}.
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immediately follows from V ’s convexity, the hypothesis of the theorem and the

foregoing discussion that

X (W2) > X (W1) . (5.11)

The result now follows from (5.8) to (5.11) and the discussion around (5.5).

q.e.d.

We now seek to understand the asset’s index structure under the hypothesis

of Theorem 5.1. Suppose that there are L ≥ 1 points at which the gradient of

V is discontinuous. List the corresponding W -values as

0 < W 1 < · · · < WL,

where plainly WL ≤ W from (5.10). Write W 0 = 0. Use now xl, 0 ≤ l ≤ L−1,

for the integers for which X (W ) = xl − 1, W ∈
[
W l, W l+1

)
and which satisfy

φ (xl) =
[
V
(
W l+1

)
− V

(
W l
)] [

W l+1 −W l
]−1

, 0 ≤ l ≤ L− 1

Also write xL = K − 1. The convexity of V and the decreasing nature of φ

imply that

K = x0 ≥ x1 > · · · > xL = K − 1.

We now complete the description of X (·) as

X (W ) =


K, W < 0,

xl − 1, W ∈
[
W l, W l+1

)
, i ≤ l ≤ L− 1

K − 1, W ≥ WL

(5.12)
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The following result is an immediate consequence of (5.6) and (5.12).

Theorem 5.2. If φ is decreasing, then the index W :
[
K, K

]
→ R+ is given

by

W (x) =

0, x1 < x ≤ K,

W l, xl < x ≤ xl−1, 1 ≤ l ≤ L.

hence, the procedure for finding the indices for the spinning plates problem

consists in two iterative steps involving identifying the points where the gradi-

ent of the piecewise linear function changes. This procedure and the working

of the corresponding algorithm in Figure 5.4 is illustrated with an example in

Figure5.3.

By suitable applications of (5.6), (5.8), and (5.12) and the discussion

around Theorem 5.2 we have:

1. Find the smallest value of W such that passive action is taken in some

state.

For each state x we need to identify the value of W such that we are

indifferent between applying policy πx and being active in all states (i.e.

applying policy πK). In particular, as φ
(
K
)

= 0 it holds that average

reward rate for policy πK is simply R
(
K
)
, hence we need to solve

R
(
K
)

= R (x) (1− φ (x)) + (R (x + 1) + W ) φ (x) .

Call W̃ (x) the value of W solving the expression above for every K−1 ≤

x < K. Fix

x =

{
x ∈ argmin

K−1≤x≤K

{
W̃ (x)

}}
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and let x0 = inf {x; x ∈ x}. Fix W0 = W̃ (x1) and, from (5.12), we see

that X (W0) = x0 − 1.

2. Construct a collection of intercepts for every linear segment in V.

Starting from i = 1, for every subsequent xi let W̃i+1 (x) be the solution

to

R (xi) (1− φ (xi)) + (R (xi + 1) + W ) φ (xi)

= R (x) (1− φ (x)) + (R (x + 1) + W ) φ (x) ,

i.e.

W̃i+1 (x) = [R (xi) (1− φ (xi)) + R (xi + 1) φ (xi)

− R (x) (1− φ (x))−R (x + 1) φ (x)] [φ (x)− φ (xi)]
−1 (5.13)

for all K − 1 ≤ x ≤ xi − 1. Set

xi+1 =

{
x ∈ argmin

K−1≤x≤xi−1

{
W̃i+1 (x)

}}
(5.14)

and xi+1 = inf {x ∈ xi+1}. Fix W i+1 = W̃i+1 (xi+1) and X (Wi+1) =

xi+1 − 1.

Increase i and repeat until X (Wj) = K − 1 and finally set L = j.

By a modest extension of the above calculations, it follows that the min-

imisers of the r.h.s. of (5.14) are precisely the maximisers of V (W i+1). By

definition, X (W i+1) is the smallest of these minus one. The indices for all

other states x are obtained according Theorem 5.2.

The procedure in the previous lines is summarized in the Algorithm in

Figure 5.4.
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The general procedure for obtaining the indices in a typical spinning plates project is de-
picted in the following example. Consider the interval [W2,W3). It must be clear from the
graph that XW2 = {7, 8, 9} and XW = {7}, for W ∈ (W2,W3). According to expression
(5.5), X (W ) = 6, W ∈ [W2,W3). Following the same reasoning we can construct the
collection {xi = X (W ) : Wi ≤ W < Wi+1}, e.g. for the particular case discussed above we
have x2 = 6. Finally, in order to finding the W (x)’s recall the definition in expression (5.6)
and notice that, for example, W (7) = inf {W2, . . . ,W5} = W2. The same reasoning
applies to every W (x) , x ∈ [1, 10]. In our particular example, it can be ver-
ified that W (1) = W5, W (2) = W5, W (3) = W4, W (4) = W3, W (5) = W3,
W (6) = W3, W (7) = W2, W (8) = W1, W (9) = W1, W (10) = W0 = 0.

Figure 5.3: Example of the Procedure for Finding the Whittle Indices in the Spin-
ning Plates Problem

Comments

1. Please notice from Theorem 5.2 that the index is decreasing in the state.

Hence in the spinning plates problem are the assets which are giving low

returns (wobbly plates) which are assigned high priority for activation.

2. Note also that the sufficient condition in Theorems 5.1 and 5.2 that φ is

decreasing, is equivalent to the requirement that the ratio between the
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INPUT: K,K,R (x) , φ (x)

INITIALIZATION:

Set x0 =

{
x : x ∈ argmin

K−1≤x≤K−1

{
W̃0 (x) =

R(K)−R(x)(1−φ(x))−R(x+1)(1−φ(x+1))

φ(x)

}}
;

x0 = inf {x ∈ x0};
W0 = W̃0 (x0);
X (W0) = x0 − 1;
Π1 =

{
x0, . . . ,K

}
;

i = 0;

PROCEDURE:

While Πi 6=
{
K, . . . ,K

}
do

Set W̃i+1 (x) = R(xi)(1−φ(xi))+R(xi+1)φ(xi)−R(x)(1−φ(x))−R(x+1)φ(x)
φ(x)−φ(xi)

,
K − 1 ≤ x ≤ xi − 1;

xi+1 =

{
x : x ∈ argmin

K−1≤x≤xi−1

{
W̃i+1 (x)

}}
;

xi+1 = inf {x ∈ xi+1};
Wi+1 = W̃i+1 (xi+1);
X (Wi+1) = xi+1 − 1;
Πi+1 = Πi ∪ {xi+1, . . . , xi − 1};
i = i + 1.

End While

Set L = i

OUTPUT: W, X, L.

Figure 5.4: Adaptive Greedy Algorithm for the Spinning Plates Problem

active and passive rates for moving between x and x + 1, namely

µ (x) /λ (x + 1)

is decreasing in x.

Important special cases occur in which all of the states in an indexable

asset have distinct indices. When this happens we say that the asset is strictly
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indexable. The result in the next section gives a necessary and sufficient

condition for strict indexability.

5.1.2 Strict Indexability

Given the structure of the spinning plates problem, under general indexabil-

ity, one single value of the Whittle index, W (x), can be attached to two or

more adjacent states. In this section we introduce the notion of strict index-

ability which requires that one and only one Whittle index will correspond to

each individual state. We also explore the corresponding strict indexability

conditions.

We already have a sufficient condition for indexability, i.e.

φ (x) =
µ (x)

µ (x) + λ (x + 1)
, K − 1 ≤ x ≤ K (5.15)

must be decreasing in x. Hence we need to identify some additional (neccesary)

condition(s) for strict indexability to be achieved.

We have already introduced the expressions:

X (W ) = inf
{
x− 1 : x ∈ xW

}
and

W (x) = inf {W ; X (W ) ≤ x− 1}

which imply that the relevant values of W are the ones corresponding to inter-

sections of linear segments in (5.8). Under strict indexability, each segment

in V should correspond to one and only one state x. For any pair of adjacent

states x and x − 1, the value of W at the intersection will be given by the
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W -solution to

R (x) (1− φ (x)) + (R (x + 1) + W ) φ (x) =

R (x− 1) (1− φ (x− 1)) + (R (x) + W ) φ (x− 1) (5.16)

Alternatively, there exists some W̃ such that the reward rates, at state x, under

the active and passive actions are identical, i.e. the operator is indifferent

between activity and passivity. This value will be the index corresponding to

state x, i.e.

W̃ (x) =
R (x) (1− φ (x)) + R (x + 1) φ (x)−R (x− 1) (1− φ (x− 1))−R (x) φ (x− 1)

φ (x− 1)− φ (x)
(5.17)

which is precisely the intersection between adjacent segments of V correspond-

ing to x and x− 1. If the expression above is strictly increasing or decreasing

in x, then to every pair x, x− 1 will correspond a different value of W̃ (x).

The next theorem follows from the discussion above:

Theorem 5.3. Strict Indexability

1. The following are equivalent:

(a) The asset is strictly indexable

(b) Both φ (x) and W̃ (x) as given by (5.17) are strictly decreasing over

K − 1 ≤ x ≤ K.

2. The conditions in 1b imply

W (x) = W̃ (x) , K − 1 ≤ x ≤ K.

and the index is strictly decreasing in the state.
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Proof We start or proof by showing that (1b) implies (1a).

Notice that condition (1b) guarantees that the piecewise value function V will

have one segment for each state x ∈
[
K − 1, K

]
and the minimum in the r.h.s.

of (5.14) will be achieved uniquely by x = x−1. We will then have W = W̃ (x),

and the inference of strict indexability will follow simply from Theorem 5.2.

To prove that (1a) implies (1b) notice that if the asset is strictly indexable

there must exist W (x), K ≤ x ≤ K, strictly decreasing in x, such that

X (W ) :


K, W < W

(
K
)

x, W ∈
(
W (x− 1) , W (x)

]
K − 1, W ≥ W (K − 1)

(5.18)

Plainly, when W = W (x), K ≤ x ≤ K, both x and x−1 achieve the maximum

in V (W ). It follows that

R (x) (1− φ (x)) +
(
R (x + 1) + W (x)

)
φ (x) >

R (x− 1) (1− φ (x− 1)) +
(
R (x) + W (x)

)
φ (x− 1) . (5.19)

Moreover, if W ∈
(
W (x− 1) , W (x)

]
, X (W ) = x and so πx must strictly

outperform πx−1 in this range. Hence, for W ∈
(
W (x− 1) , W (x)

]
,

R (x) (1− φ (x)) + (R (x + 1) + W ) φ (x) >

R (x− 1) (1− φ (x− 1)) + (R (x) + W ) φ (x− 1) . (5.20)

It must then follow from (5.19) and (5.20) that φ (x− 1) > φ (x), K − 1 ≤

x ≤ K, and hence that φ (x) is strictly decreasing over K ≤ x ≤ K. Further,
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solving (5.20) for W (x) we obtain:

W (x) = W̃ (x) , K ≤ x ≤ K.

We conclude that W̃ (x) is strictly decreasing in x over K ≤ x ≤ K. This

concludes the proof of part 1. Part 2 follows trivially from the above analysis.

q.e.d.

Comment

Notice that the index for state x in (5.17) involves quantities evaluated at

x − 1, x, and x + 1. It may be understood as a quantity which weighs the

benefits of the positive reward enhancement achieved by the active action taken

in x (the positive term) against the effects of reward deterioration experienced

when the asset is passive (the negative term).

5.1.3 Examples

Example 5.1. Assume a linear reward rate:

R (x) = r (x−K) (5.21)

for r > 0.

Then, the function W̃ in (5.17),

W̃ (x) =
[
R (x) (1− φ (x)) + R (x + 1) φ (x)

−R (x− 1) (1− φ (x− 1))−R (x) φ (x− 1)
]
×
[
φ (x− 1)− φ (x)

]1
,
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with K ≤ x ≤ K, becomes

W̃ (x) = r

[
1

φ (x− 1)− φ (x)
− 1

]
, K ≤ x ≤ K (5.22)

Under strict indexability,

1. φ (x) must be strictly decreasing, and

2. W̃ (x) must be strictly decreasing.

Hence W̃ (x + 1) < W̃ (x) requires

φ (x− 1)− φ (x)

φ (x)− φ (x + 1)
< 1 (5.23)

i.e. φ (x− 1)−φ (x) must be strictly increasing in x or, equivalently, φ (x) must

be concave (strictly decreasing). From Theorem 5.3, (5.22) gives the index in

this case.

The particular case where µ (x) = µ
(
K − x

)
and λ (x) = λ (x−K), for

K ≤ x ≤ K, meets this requirements for any pair
(
µ, λ

)
provided that µ

λ
> 1.

This will be the case discussed in the numerical analysis.

Example 5.2. It is possible to develop an indexable asset with semi-infinite

state space of the form
(
−∞, K

]
. This is a natural extension of the above

material. Consider such an example for which K = 0 and assume assume a

non-linear, non-decreasing reward rate, for example

R (x) = reτx, x ≤ 0, (5.24)

where r > 0 and η > 0. Further, suppose that

φ (x) = 1− eθx, x ≤ 0, (5.25)
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where θ > 0 guarantees that φ is strictly decreasing. The function W̃ in (5.17)

now becomes

W̃ (x) = r (eτ − 1)
(
1− e−θ

)−1 [
e(τ−θ)x − eτx

(
1− e−τ−θ

)]
, x ≤ 0 (5.26)

and will be strictly decreaing when 0 < τ < θ. From a suitable extension of

Theorem 5.3, (5.26) gives the index in this case7.

Example 5.3. One more example of indexable assets with semi-infinite state

space is described below. Consider again an example for which K = 0,but the

reward rates are given by

R (x) = r(2− x)−α, with α > 0 and r > 0 (5.27)

Further suppose that

φ (x) = 1− (1− x)−β , (5.28)

with β > 0 and φ (0) = 0, so that φ (x) is strictly decreasing, the expression in

(5.17) becomes

7Notice that

dW (x)
dx

= r (eτ − 1)
(
1− e−θ

)−1
[
(τ − θ) e(τ−θ)x − τeτx

(
1− e−θ−τ

)]
< 0

⇒ (τ − θ) e(τ−θ)x < τeτx
(
1− e−θ−τ

)
⇒ (τ − θ) e−θx < τ

(
1− e−θ−τ

)
⇔ 0 < τ < θ.
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W̃ (x) = r

[(1− x)−α − (2− x)−α] (1− (1− x)−β
)

+
[
(2− x)−α + (3− x)−α] (2− x)−β

(1− x)−β − (2− x)−β


(5.29)

for x ≤ 0, and will be strictly decreasing for any pair (α, β) such that 0 < α <

2
3
β. From a suitable extension of Theorem 5.3, (5.29) gives the index in this

case.

5.1.4 Numerical Results

Tables 5.1 and 5.2 illustrate some results of an extensive numerical investigation

into the quality of performance of the index heuristics developed in this section.

Each problem studied has M = 4, Q = 1; namely a choice has to be made

at each decision epoch of one from four possible assets for activation. Four

policies were applied to each problem generated. These are as follows:

OPT An optimal policy and its corresponding average reward rate, ropt, were

computed by DP value iteration. See, for example, Puterman [85] and/or

Tijms [99] and the discussion in Sections 2.1 and, in particular, 2.1.4.

IND The index policy developed in the current section. At every decision

epoch it activates the asset with currenty maximal index.

MYO A myopic heuristic which attaches the index rµ (x) to an asset in state

x and activates the asset of largest index. This index may be understood

as the rate at which the asset’s reward earning capacity may be enhanced

by activation;

SMA The policy which always activates the asset of smallest state, with ties

broken at random.
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For each problem generated, the average reward rates rind, rmyo, and rsma, were

computed by DP value iteration, yielding the percentage suboptimalities :

Ξ (P) =
ropt − rP

ropt
× 100, P = ind, myo, sma.

Two families of problems, corresponding to Examples 5.1 and 5.2 are discussed.

Example 5.1. Each constituent asset is structured as in Example 5.1 above,

with

R (x) = r (x−K) (5.30)

µ (x) = µ
(
K − x

)
, for K ≤ x ≤ K

λ (x) = λ (x−K)

with µ, λ > 0. Moreover, by fixing K = 0, K = 8, we get

φ (x) =
µ (8− x)

µ (8− x) + λ (x + 1)
(5.31)

For any pair
(
µ, λ

)
such that µ > λ, the function φ is indeed decreasing.

Under this model each of the assets is characterised by the parameters(
r, µ, λ

)
. In all cases the µ’s and λ’s are chosen by sampling from a continuous

uniform distribution, as indicated in Table 5.1. The cases in Group I have r’s

chosen from a U (10, 25) distribution, those in Group II the r’s are drawn from

U (25, 50), and the ones in Family II, have r’s drawn from U (10, 50). Table

5.1 presents results for 1600 (= 3 × 2 × 200 + 2 × 200) randomly generated

problems. Table 5.1 summarises the collections of percentage suboptimalities

(each collection of size 200) arising from the application of each of IND, MYO

and SMA to each of the eight problem configurations. Each collection is sum-

marised by the order statistics MIN (minimum), LQ (lower quartile), MED
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(median), UQ (upper quartile), and MAX (maximum). For example, from

the top left-hand corner of Table 5.1, we see that when MYO is applied to the

400 problems with µ, λ ∼ U (0.25, 0.75) and r ∼ U (10, 25), we obtain a median

percentage suboptimality of 3.88 and a worst case which is 18.64% suboptimal.

The dominant feature of Table 5.1 is the outstanding performance of the

index policy. In its worst performance in the 1600 randomly generated prob-

lems analysed, it was just 0.2438% suboptimal. For each of the other heuristics

(MYO,SMA) problem instances arose in which they performed poorly.

Table 5.1: Bi-directional Restless Bandits. Spinning Plates Problem. Performance
of the Index Policy in the Linear Case, Example 5.1.

Group I, r ∼ U (10, 25)
λ, µ ∼ U (0.25, 0.75) λ, µ ∼ U (0.10, 0.50) λ, µ ∼ U (0.50, 0.90)

Index Myopic Small Index Myopic Small Index Myopic Small
Min 0.0000 0.14 0.22 0.0000 0.24 0.69 0.0000 0.19 0.24
LQ 0.0003 2.20 5.82 0.0037 2.37 7.02 0.0000 3.16 7.89
Med 0.0071 3.88 10.21 0.0158 4.72 11.09 0.0001 4.87 12.95
UQ 0.0239 6.41 14.67 0.0388 7.47 14.26 0.0071 7.10 17.69
Max 0.1365 18.64 32.88 0.1873 26.90 29.96 0.0910 19.18 32.89

Group II, r ∼ U (25, 50)
Index Myopic Small Index Myopic Small Index Myopic Small

Min 0.0000 0.25 0.06 0.0000 0.37 0.12 0.0000 0.18 0.19
LQ 0.0012 1.86 4.26 0.0043 2.19 3.49 0.0000 2.62 5.82
Med 0.0106 3.56 7.63 0.0201 4.01 7.46 0.0014 4.14 9.58
UQ 0.0262 5.83 11.88 0.0462 6.84 11.26 0.0116 6.48 13.26
Max 0.1922 17.55 27.65 0.1796 21.76 28.33 0.2163 17.20 27.01

Group III, r ∼ U (10, 50)
λ, µ ∼ U (0.25, 0.75) λ, µ ∼ U (0.10, 0.90)

Index Myopic Small Index Myopic Small
Min 0.0000 0.24 0.29 0.0000 0.50 0.27
LQ 0.0000 2.58 10.85 0.0026 2.64 8.07
Med 0.0027 4.27 17.37 0.0204 4.62 14.12
UQ 0.0165 7.03 23.98 0.0525 8.32 19.99
Max 0.1424 21.91 43.69 0.2438 28.18 43.97
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Example 5.2. Each constituent asset is structured as in Example 5.2 above,

with K = −8, K = 0 and

R (x) = reτx (5.32)

φ (x) = 1− eθx

for K ≤ x ≤ 0, with τ , θ > 0. Moreover, by solving

φ (x) = 1− eθx =
µ (x)

µ (x) + λ (x + 1)

for µ, we obtain

µ (x) = λ (x + 1)
(
e−θx − 1

)
, K ≤ x ≤ 0. (5.33)

Finally, we fix

λ (x) = eθ(x−1), for K ≤ x ≤ 0. (5.34)

For any pair (τ, θ) such that 0 < τ < θ, the functions φ (x) and W (x) are

indeed decreasing.

Under this model each of the assets is characterised by the parameters

(r, τ, θ). In all cases the τ ’s and θ’s are chosen by sampling from a con-

tinuous uniform distribution, as indicated in Table 5.2. The cases collected

in Group I have r’s chosen from a U (10, 25) distribution, while for those in

Group II the r’s are drawn from U (25, 50). Table 5.2 presents results for 1600

(= 4× 2× 200) randomly generated problems. Table 5.2 summarises the col-

lections of percentage suboptimalities (each collection of size 200) arising from

the application of each of IND, MYO and SMA to each of the eight problem

configurations. As before, each collection is summarised by the order statistics
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MIN (minimum), LQ (lower quartile), MED (median), UQ (upper quartile),

and MAX (maximum).

Notwithstanding a small decrease in the quality of the index policy in the

non-linear case, the dominant feature of Table 5.2 is the outstanding relative

performance of the index policy with respect to the other two policies (MYO and

SMA). Its worst performance, among the 1600 randomly generated problems

analysed, was just 7.5% suboptimal which compares quite positively with the

10.5% of the MYO policy and the 33.5% of the SMA policy. It must also be

noticed that there were instances for which the index policy performed optimally.

Table 5.2: Bi-directional Restless Bandits. Spinning Plates Problem. Performance
of the Index Policy in the Nonlinear Case, Example 5.2.

Group I, r ∼ U (10, 25)
τ, θ ∼ U (0.25, 0.5) τ, θ ∼ U (0.5, 0.75)

Index Myopic Small Index Myopic Small
Min 0.0000 0.0395 0.2213 0.0020 0.0041 0.0714
LQ 0.3896 0.8087 3.4863 0.0586 0.1235 1.9658
Med 1.4092 2.2569 7.3704 0.1104 0.3374 4.5569
UQ 2.4564 3.8886 11.4198 0.1855 0.6205 7.4431
Max 6.8372 8.8839 33.5164 0.6534 2.6734 19.5632

Group II, r ∼ U (25, 50)
Index Myopic Small Index Myopic Small

Min 0.0048 0.0211 0.1613 0.0013 0.0135 0.0571
LQ 0.3515 0.5602 2.4603 0.0452 0.1140 1.2960
Med 1.5116 2.1976 5.3602 0.0713 0.2784 3.1098
UQ 2.6986 4.0218 9.0963 0.1165 0.5686 5.1787
Max 7.4862 10.3958 29.0996 0.6078 2.2983 14.2397
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5.2 Family II: The Squad System Problem (a

model for optimal exploitation of assets)

As with the Spinning Plates Problem, the family of restless bandits considered

here is a class of Markov Decision Processes (MDP’s) with the average reward

criterion. Here, M projects (assets) are available for exploitation. Resource

constraint means that only Q assets (1 ≤ Q ≤ M) may be active at any

time. The decision problem concerns how assets must be optimally chosen for

activation at each decision epoch of the system to maximise the reward earned

over an infinite horizon.

A typical member of the Squad System family can be described as:

1. Each of the assets evolves stochastically through time t ∈ R+. We

write Xi (t) for the state of asset i at time t ∈ R+, 1 ≤ i ≤ M and

X (t) = {X1 (t) . . . , XM (t)} for the corresponding system state.

The state of asset i is an integer in the range
[
Ki, Ki

]
, and for most

of the development (and until stated otherwise) we shall suppose that

−∞ < Ki < Ki < ∞ for 1 ≤ i ≤ M .

2. As in the Spinning Plates family, in each system state, there are
(

M
Q

)
possible actions, one corresponding to each subset of {1, 2, . . . ,M} of

size Q. If Q is one of each subsets, then A (Q) denotes the action which

chooses and active regime (the active action denoted ai = 1 for the assets

i whose identifiers are in Q and which chooses an inactive regime (the

passive action ai = 0) for the remaining assets.

Under action A (Q) applied in state x the time to the next system tran-
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sition is exponential with rate

∆ (Q,x) =
∑
i∈Q

µi (xi) +
∑
i/∈Q

λi (xi) .

If ∆ (Q,x) > 0 then the state immediately following this transition will

be x − ei for i ∈ Q with probability µi (xi) /∆ (Q,x) and will be x + ei

for i /∈ Q with probability λi (xi) /∆ (Q,x). Equivalently, the M assets

evolve independently under the action applied (active or passive). If

project i should be active (ai = 1) then it evolves from xi to xi − 1 at

rate µi (xi), while under the passive action (ai = 0) it evolves from xi to

xi + 1 at rate λi (xi), xi ∈
[
Ki, Ki

]
, 1 ≤ i ≤ M .

The transition rates satisfy µi (Ki) = λi

(
Ki

)
= 0 but are otherwise

strictly positive, 1 ≤ i ≤ M . Should we have ∆ (Q,x) = 0 then the

state x is absorbing under action A (Q).

3. If the system is in state x and action A (Q) is taken, then the system

earns rewards at rate
∑

i∈QRi (xi) while in state x. Each reward rate

function Ri :
[
Ki, Ki

]
→ R+ is (weakly) increasing. The goal of analysis

is the determination of a policy (rule for taking actions) which maximises

the average system reward rate earned over an infinite horizon or which

comes close to doing so.

Figure 5.5 below depicts the general structure of a typical squad system

asset.

Comments

1. In the squad system family, the active action represents the utilisation or

exploitation of an asset. As the asset is used it becomes tired or depleted

and loses some of its reward-earning capacity. Under the passive action

the asset recovers its potential to earn high returns again.
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If active action is applied to a squad system project in state y, it evolves to state y − 1,
representing the depletion (tyredness) of the project. While active, the project generates
profits. When otherwise passive action is taken, it represents the recovery phase and the
asset’s productivity increases (it evolves to state y + 1). The passive phase generates no
reward.

Figure 5.5: Representation of an Asset in the Squad System Problem

2. Note from §3 in page 195 that assets only earn rewards when they are

utilised (i.e. under the active action). This structure is natural to the

envisaged application of the squad system family. A version in which

the assets earn rewards whether activated or not is of little interest. No

policy can do better in reward rate terms than an application of the

passive action to all states always.

3. As in the spinning plates case, the theory of stochastic dynamic program-

ming (DP) guarantees the existence of an optimal policy which is sta-

tionary, deterministic and Markovian (for discussion on DP and Markov

Decision Processes see Section 2.1 and references therein, in particular

Puterman, [85] and Ross [90]). The squad system family falls within

the class of intractable restless bandit problems, introduced by Whittle

[116] which advocated the deployment of index heuristics, such policies

emerging from the formulation and solution of Lagrangian relaxations of

the original optimization problem. The essentials of Whittle’s approach
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have been sketched in Section 2.3.

5.2.1 Indexability Analysis

As in the spinning plates family, the asset suffix is dropped and the W -subsidy

problem considered for a single asset with associated K, K, µ (·) , λ (·) and

R (·). From §2 and §3 in page 194, recall that, under the application of active

action (a = 1) in state x, the asset evolves to state x − 1 at rate µ (x) and

earns rewards at rate R (x) while doing so. Under application of the passive

action (a = 0) in state x, the asset evolves to state x + 1 at rate λ (X) and

(in the W -subsidy problem) earns rewards at rate W while doing so. The

intermediate goal of analysis is the identification of policies to maximise the

average reward rate earned over an infinite horizon.

As in the previous case, we restrict to the class of stationary, deterministic

and Markovian policies M for which

π :
[
K, K

]
→ {0, 1} (5.35)

and introduce the class M of monotone policies for which

πy (x) = 1 ⇔ x ≥ y + 1 for some y ∈ [K − 1, K]

and write πy for the policy above. Hence, policy πK−1 chooses action a = 1

(active) in all states and policy πK chooses passivity (a = 0) in all states.

Consider, for example, an initial state X (0) = x and assume y+1 ≤ x ≤ K.

Under monotone policy πy, the active action is taken and the asset reaches state

y in finite time almost surely (where passive action will be taken) and thereafter

has alternating sojourns between states y and y + 1. hence, the time average
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Policy πy ∈ M prescribes taking passive action in states {K, . . . , y} and active in states{
y + 1, . . . ,K

}
. It can be seen that under such policy the project will be trapped between

states y and y + 1, independently of the initial state.

Figure 5.6: Evolution of a Squad System Asset under a Monotone Policy

reward rate of policy πy ∈ M for the W -subsidy problem is given by

R (y + 1) λ (y) + Wµ (y + 1)

λ (y) + µ (y + 1)
(5.36)

for any initial state X (0).

Figure 5.6 depicts the evolution of an isolated squad system asset under

monotone policy πy.

We now introduce the function φ :
[
K, K

]
→ {0, 1}

φ (x) =
µ (x + 1)

µ (x + 1) + λ (x)
, K − 1 ≤ x ≤ K. (5.37)

Note that as µ (K) = 0 and λ
(
K
)

= 0, then φ (K − 1) = 0 and φ
(
K
)

= 1.

Lemma 5.2. For all W ∈ R there exists and optimal policy π∗ for the W-

subsidy problem, such that π∗ ∈ M.

Proof Consider a squad system project’s evolution under any general sta-

tionary deterministic policy π̃ ∈ M. Then, for any initial state X (0), there
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exists a monotone policy πy ∈ M whose infinite horizon average reward rate is

the same as under π̃ and is independent of state X (0).

Consider, for example, X (0) = x and assume π̃ (x) = 1 (respectively,

π̃ (x) = 0). Then, the project will evolve according to µ (x) (respectively λ (x)),

and will keep taking the active (respectively passive) action until arriving to

some state y < x (respectively y + 1 > x) for which π̃ (y) = 0 (respectively

π̃ (y + 1) = 1). From that moment on, the project will be trapped between

states y and y + 1 with infinite horizon average reward rate given by

Vπ̃ (X (0) = x) = R (y + 1) (1− φ (y)) + Wφ (x) .

It can easily be seen that the expression above is equivalent to the infinite hori-

zon average reward yielded by monotone policy πy (i.e. Vπy) as obtained upon

substitution of (5.37) on (5.36).

Take now the monotone policy for which the maximal average reward rate,

over all monotone policies πx, x = −1, . . . , K, is achieved,

ŷ = argmax
K−1≤y≤K

{
Vπy

}
(5.38)

in case of match, we adopt the following convention: if the maximum in the

r.h.s of (5.38) is achived by more than one policy πx, then fix ŷ to be the largest

y achieving such maximum. Fix π∗ = πŷ, then it is true that

Vπ∗ ≥ Vπ̃ (X (0)) , for all X (0) ,

and for all π̃ ∈ M. Consequently, π∗ ∈ M, as defined above, is an optimal

policy for the W−subsidy problem. q.e.d.
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Consider now the set

xW =

{
x : x ∈ argmax

K−1≤x≤K
{R (x + 1) (1− φ (x)) + Wφ (x)}

}

and define X (W ) to be the maximum over all x ∈ xW ; i.e.

X (W ) = sup
{
x ∈ xW

}
, (5.39)

hence, from Lemma 5.2, X (W ) is the policy with maximal passive set solving

the W -subsidy problem.

From Definition 5.1, in order to establish the asset’s indexability, it will be

enough to show that there exist finite W < W such that

X (W ) = K − 1, for all W < W

X (W ) = K, for all W ≥ W

and

X (·) :
[
W, W

]
→
[
K − 1, K

]
is and increasing function of W .

For an indexable asset, the index in state x will be given by

W (x) = inf {W ; X (W ) ≥ x} . (5.40)

Theorem 5.4. If φ is increasing, the asset is indexable.

Proof Define

V (W ) = max
K−1≤x≤K

{R (x + 1) (1− φ (x)) + Wφ (x)} (5.41)
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From the discussion around (5.39), X (W ) is the largest maximiser of the r.h.s.

of (5.41). It is straightforward to show that, since 0 ≤ φ (x) ≤ 1, and K−1 ≤

x ≤ K, then

X (W ) = K, for W ≥ W (5.42)

where W is the smallest value of W such that passive action is taken in all

states x; and

X (W ) = K, for W < W (5.43)

for some W small enough.

Further, if the subset {x1, x1 + 1, . . . , x2} ⊆
[
K − 1, K

]
is such that φ (x1) =

φ (x1 + 1) = · · · = φ (x2) and is maximal in this regard, then it is straightfor-

ward to show that the range of X (W ) contains at most a single value from this

subset.

Hence, we need just to identify the conditions for X (W ) to be an increasing

function of W . First note in (5.41) that V : R+ → R+ is an increasing

function of W . Moreover, it is piecewise linear and convex, with each of its

linear segment’s right hand side gradient given by φ (X (W )).

Take now any pair (W1, W2) ∈
[
W, W

]
such that W1 > W2, it immediately

follows from V ’s convexity, the hypothesis of the theorem and the foregoing

discussion that

X (W1) > X (W2) . (5.44)

The result now follows from (5.41) to (5.44) and the discussion around (5.39).

q.e.d.
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In order to describe the asset’s index structure under he hypothesis of The-

orem 5.4 we develop a collection consisting of a positive integer L, as set of

L + 1 integers {xl, 0 ≤ l ≤ L} such that

K − 1 = x0 < x1 < · · · < xL = K

and accompanying set of L reals
{
W l, 1 ≤ l ≤ L

}
such that

−∞ < W 1 < · · · < WL < ∞

A discussion along the lines of the previous section yields that if φ is in-

creasing, then

X (W ) =


K − 1, W < W 1

xl, W ∈
[
W l, W l+1

)
, 1 ≤ l ≤ L− 1,

K, W ≥ WL

(5.45)

The index structure of the asset now follows from (5.40) and (5.45) and is

described in Theorem 5.5

Theorem 5.5. If φ is increasing then index W :
[
K, K

]
→ R is given by

W (x) = W l, xl−1 ≤ x ≤ xl − 1, 1 ≤ l ≤ L. (5.46)

The procedure of finding the Whittle indices for a squads system asset con-

sists in two basic steps which involve, basically, identifying the points where

the slope (or r.h.s. gradient) of the piecewise linear function V (W ) is discon-

tinuous. This procedure and the working of the corresponding Algorithm in

Figure 5.8 is illustrated with an example in Figure 5.7.

1. Find the smallest value of W such that passive action is taken in some
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The general procedure for obtaining the Whittle indices in a typical squad system project
is illustrated in the following example. Consider the interval [W2,W3). it must be clear
from the graph that XW2 = {1, 2, 3} and XW = {2, 3} ,W ∈ (W2,W3). According to
expression (5.39), X (W ) = 3, W ∈ [W2,W3). Following the same reasoning we can
construct the collection {xi = X (W ) : Wi ≤ W < Wi+1}, e.g. for the case discussed above
we have x2 = 3. Finally, in order to finding the W (x)’s recall the expression (5.40) and
notice that, for example, W (3) = inf {W2, . . . ,W5} = W2. The same reasoning applies to
every W (x) , x ∈ [1, 10]. In our particular example, it can be verified that W (K) = W (1) =
W1, W (2) = W1, W (3) = W2, W (4) = W3, W (5) = W3, W (6) = W3, W (7) = W4,
W (8) = W4, W (9) = W4, and W (10) = W5.

Figure 5.7: Example of the Procedure for Finding the Whittle Indices in the Squad
System Problem

state.

For each state we need to identify the value of W such that we are

indifferent between applying policy πx and being active in all states.

In particular, as φ (K − 1) = 0 it holds that the average reward rate for

policy πK−1 is simply R (K − 1); hence

R (0) = R (x) (1− φ (x)) + Wφ (x)
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for every K ≤ x ≤ K. Or equivalently

W̃ (x) =
R (0)−R (x + 1) (1− φ (x))

φ (x)
, K ≤ x ≤ K.

Fix

x1 =

{
x : x ∈ argmin

K−1≤x≤...,K

{
W̃ (x)

}}

and let x1 = sup {x ∈ x1}. Fix W 1 = W̃ (x1) and Π1 = K, . . . , x1 and

X (W 1) = x1.

2. Construct a collection of intercepts for every linear segment in V.

For every subsequent xi let W̃ (x) be the solution to

R (xi + 1) (1− φ (xi + 1)) + Wφ (xi + 1)

= R (x + 1) (1− φ (x + 1)) + Wφ (x + 1)

for all xi + 1 ≤ x ≤ K. Then set

xi+1 =

{
x : x ∈ argmin

xi+1≤x≤K

{
W̃ (x)

}}
(5.47)

and xi+1 = sup {x ∈ xi+1}. Fix Wi+1 = W̃ (xi+1) and Πi+1 = πi ∪

{xi + 1, . . . , xi+1}.

By a modest extension of the above calculations, it follows that the min-

imisers of the r.h.s. of (5.47) are precisely the maximisers of V (W i+1). By

definition, X (W i+1) is the largest of them. The indices for all other states x

are obtained according to Theorem 5.5.

All the procedure above can be summarized in the Algorithm in Figure 5.8.
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INPUT: K,K,R (x) , φ (x)

INITIALIZATION:

Set x0 = K − 1;

x1 =

{
x : x ∈ argmin

K≤x≤K

{
W̃ (x) = R(0)−R(x+1)(1−φ(x+1))

φ(x+1)

}}
;

x1 = sup {x ∈ x1};
W1 = W̃ (x1);
X
(
W 1
)

= x1;
Π1 = {K, . . . , x1};
i = 1;

PROCEDURE:

While Πi 6=
{
K, . . . ,K

}
do

Set xi+1 =

{
x : x ∈ argmin

xi+1≤x≤K

{
W̃ (x) = R(xi+1)(1−φ(xi+1))−R(x+1)(1−φ(x+1))

φ(x+1)−φ(xi+1)

}}
;

xi+1 = sup {x ∈ xi+1};
Wi+1 = W̃ (xi+1);
X
(
W i+1

)
= xi+1;

Πi+1 = Πi ∪ {xi + 1, . . . , xi+1};
i = i + 1.

End While

Set L = i

OUTPUT: W, X, L.

Figure 5.8: Adaptive Greedy Algorithm for the Squad System Problem

Comment

Please note from Theorem 5.5 that the index is increasing in state. Hence

in the squad system it is assets which are achieving high rewards which are

high priority for activation. Note also that, unlike the spinning plates problem,

indices can now be negative. This raises the question of whether idling may

be preferable to asset deployment.

As before, important special cases occur in which all states have distinct

indices. The following section gives a necessary and sufficient condition for
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strict indexability for the squad system.

5.2.2 Strict Indexability

Given the structure of the squad system’s problem, under general indexability

(or simply indexability), one single value of the Whittle index, W (x), can be

attached to two or more adjacent states. In this section we introduce the

notion of strict indexability for the squad system (analogous to the spinning

plates case) which requires that one and only one Whittle Index, will corre-

spond to each individual state, and explore the corresponding strict indexability

conditions.

We already have a sufficient condition for indexability; i.e.

φ (x) =
µ (x + 1)

λ (x) + µ (x + 1)
, K − 1 ≤ x ≤ K

must be increasing in x. Hence now we need to identify an additional (neces-

sary) condition for strict indexability. Start considering any state x.

Following the reasoning in Section 5.1.2, we recover the following expres-

sions:

X (W ) = sup
{
x : x ∈ xW

}
and

W (x) = inf {W ; X (W ) ≥ x}

which imply that the relevant values of W are the ones corresponding to inter-

sections of linear segments in (5.41). Under strict indexability, each segment
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in V should correspond to one and only one state x. For any pair of adjacent

states x and x − 1, the value of W at the intersection will be given by the

W -solution to

R (x + 1) (1− φ (x)) + Wφ (x) = R (x) (1− φ (x− 1)) + Wφ (x− 1)

Alternatively, there exists some Ŵ such that the reward rates, at state x, under

the active and passive actions are identical, i.e. the operator is indifferent

between activity and passivity. By standard index theory, this value will be

the index corresponding to state x, i.e.

Ŵ (x) =
R (x + 1) (1− φ (x))−R (x) (1− φ (x− 1))

φ (x− 1)− φ (x)
(5.48)

which is precisely the intersection between adjacent segments of V correspond-

ing to x and x− 1. If the expression above is strictly increasing or decreasing

in x, then to every pair x, x− 1 will correspond a different value of Ŵ (x).

The next theorem follows from the discussion above:

Theorem 5.6. Strict Indexability

1. The following are equivalent:

(a) The asset is strictly indexable

(b) Both φ (x) and Ŵ (x) as given by (5.48) are strictly increasing over

K − 1 ≤ x ≤ K.

2. The conditions in 1b imply

W (x) = Ŵ (x) , K − 1 ≤ x ≤ K.

and the index is strictly increasing in the state.
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Proof We start our proof by showing that (1b) implies (1a).

Note that condition (1b) guarantees that the piecewise value function V will

have one segment for each state x ∈
[
K − 1, K

]
and the minimum in the r.h.s.

of (5.47) will be achieved uniquely by x = x−1. We will then have W = Ŵ (x),

and the inference of strict indexability will follow simply from Theorem 5.5.

To prove that (1a) implies (1b) notice that if the asset is strictly indexable

there must exist some W (x), K ≤ x ≤ K, strictly increasing in x, such that

X (W ) :


K − 1, W < W (K − 1)

x, W ∈
[
W (x− 1) , W (x)

)
K, W ≥ W

(
K
) (5.49)

Plainly, when W = W (x), K ≤ x ≤ K, both x and x−1 achieve the maximum

in V (W ). It follows that

R (x + 1) (1− φ (x)) + W (x) φ (x) = R (x) (1− φ (x− 1)) + W (x) φ (x− 1) .

(5.50)

Moreover, if W ∈
[
W (x− 1) , W (x)

)
, X (W ) = x and so πx must strictly

outperform πx−1 in this range. Hence, for W ∈
[
W (x− 1) , W (x)

)
,

R (x + 1) (1− φ (x)) + Wφ (x) > R (x) (1− φ (x− 1)) + Wφ (x− 1) . (5.51)

It must then follow from (5.50) and (5.51) that φ (x) > φ (x− 1), K ≤ x ≤ K,

and hence that φ (x) is strictly decreasing over K − 1 ≤ x ≤ K. Further,

solving (5.51) for W (x) we obtain:

W (x) =
R (x + 1) (1− φ (x))−R (x) (1− φ (x− 1))

φ (x− 1)− φ (x)
,
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= Ŵ (x) , K ≤ x ≤ K.

We conclude that Ŵ (x) is strictly increasing in x over K ≤ x ≤ K. This

concludes the proof of part 1. Part 2 follows trivially from the above analysis.

q.e.d.

5.2.3 Examples

Example 5.3. Suppose that the reward is linear in the state and hence that

R (x) = r (x−K) , K ≤ x ≤ K

for some r > 0 and, moreover, that the transition rates are also linear, namely:

µ (x) = µ (x−K) , K ≤ x ≤ K (5.52)

and

λ (x) = λ
(
K − x

)
K ≤ x ≤ K (5.53)

where µ and λ are all positive constants. It follows trivially from (5.52) and

(5.53) that φ (·) is strictly increasing:

φ (x) =
µ (x + 1)

µ (x + 1) + λ (x)
<

µ (x + 2)

µ (x + 2) + λ (x + 1)
= φ (x + 1)

i.e.

(x + 1−K)
(
K − x + 1

)
< (x + 2−K)

(
K − x

)
.
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By direct computation we have from (5.48):

Ŵ (x) = r

{
(x−K) (x + 1−K)− λ

µ

(
K − x

) (
K − x + 1

)
K + 1−K

}
. (5.54)

which is strictly increasing. From Theorem 5.6, (5.54) give the index in this

case.

This is the example referred to by Whittle [116] as the Ehrenfest project.

Whittle used a heuristic argument to develop the index

ν (x) =
c

µK

(
µx2 − λ (K − x)2)

or equivalently, using our notation and fixing K = 0, and K = K,

ν (x) = r

{
x2 − λ

µ
(K − x)2

K

}
(5.55)

which clearly approximates Ŵ (x) in (5.54).

Example 5.4. As well as in the spining plates proble, it is possible to develop

indexable assets with semi-infinite state spaces of the form [K,∞). Consider

now such an example for which K = 0 and assume that reward rates are given

by

R (x) = r
(
1− (x + 1)−α) , x ≥ 0 (5.56)

and also

φ (x) = 1− (x + 1)−β , x ≥ 0 (5.57)
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with r, α and β, positive constants. By direct substitution into (5.48) we get

Ŵ (x) =r

{
(x + 1)−β − (x + 2)−β − (x + 1)−(α+β) + (x + 2)−(α+β)

(x + 1)−β − (x + 2)−β

}

=r

{
1− (x + 1)−(α+β) − (x + 2)−(α+β)

(x + 1)−β − (x + 2)−β

}
, x ≥ 0 (5.58)

which is strictly increasing. Hence, for a suitable extension of Theorem (5.6),

(5.58) gives the index in this case.

5.2.4 Numerical Results

In Tables 5.3 and 5.4 we offer some results of an extensive numerical investi-

gation into the quality of performance of the index heuristics developed in this

section. Each problem studied has M = 4, Q = 1; namely a choice has to be

made at each decision epoch of one out of four possible assets for activation.

Four policies were applied to each problem generated. These are as follows:

• OPT Corresponding to the ε-optimal solution to the infinite-horizon time

average problem, computed by value iteration. At each decision epoch

the optimal ε-policy activates the arm with largest average reward rate.

As in the spinning plates case, references are Puterman [85] and Tijms

[99] and the discussion in Sections 2.1 and, in particular, 2.1.4.

• IND The index policy as described in this section. At each decision

epoch, the index policy activates the arm with currently mazimal index.

• MYO The myopic policy prescribes taking the active action in the arm

with largest immediate reward.

• LAR This policy activates the project with largest state.
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For each problem generated, the average reward rates rind, rmyo, and rlar,

were computed by DP value iteration as described in Section 2.1.4, yielding

the percentage suboptimalities :

Ξ (P) =
ropt − rP

ropt
× 100, P = ind, myo, lar. (5.59)

Two families of problems, corresponding to Examples 5.3 and 5.4 are discussed.

Example 5.3. Table 5.3 shows some results derived from an extensive numer-

ically-based assessment of the quality of performance of the index heuristic for

the linear version of the Squad System model, see Example 5.3 in section 5.2.3

for details.

For the cases reported in the upper part (Cases 1 to 4) of the table we offer

the summary of 400 experiments (100 each) in a model with M = 4 and Q = 1.

In the lower part of the table (Cases 1bis to 4bis) we consider the same family

of problems but embellished by the inclusion of an idling option, to be thought as

a zero reward asset, whose state space is a singleton. Such an asset is trivially

indexable with index always zero. In this case, whenever the indices for all

arms are simultaneously zero, the index policy will choose the idle option.

Each constituent asset is structured as in 5.3 in section 5.2.3, with K = 0

and K = 8. Four cases where analysed for different combinations of param-

eters r, µ, and λ. For all of them, the r’s were chosen by sampling from

a uniform distribution U (10, 25). Parameters µ and λ were also chosen by

sampling from uniform distributions, as indicated in Table 5.3.

Table 5.3 presents results for 800 (= 4 × 2 × 100) randomly generated

problems. The Table summarises the collections of percentage suboptimalities

arising from the application of each of IND, MYO and LAR policies to each of

the eight problem configurations. Each collection is summarised by the order
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statistics MIN (minimum), LQ (lower quartile), MED (median), UQ (upper

quartile), and MAX (maximum).

Notice that the idling option will be taken by IND only when all four of

the conventional assets have negative indices. Also, MYO and LAR will never

choose the idling option.

As well as in the spinning plates problem, the index policy continues to

performs strongly, with a worst case of 1.3246% suboptimality among the 800

problems generated. There is evidence of enhanced performance following the

inclusion of the idling option, where the worst case performance reduces to

1.2468% suboptimality. For each of the other heuristics (MYO and LAR)

problem instance arose in which they performed poorly.

Example 5.4. For the nonlinear case described in Example 5.4 in section

5.2.3, each constituent asset is structured with K = 0 and K = 8, and the

function

λ (x) = µ (x + 1)
[
(x + 1)−β − 1

]−1

,

arising from the λ solution of the expression

φ (x) =
µ (x + 1)

µ (x + 1) + λ (x)
= 1− (x + 1)−β ,

with

µ (x) = I (x ≥ 1)

where I (·) is the indicator function. Four cases where analysed for different

combinations of parameters r and β. For all of them, the r’s where choosen by

sampling from a uniform distribution U (2, 4).
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Table 5.4 shows some results derived from an extensive numerically based

assessment of the quality of performance of the index heuristic for the non-

linear version of the Squad System model (Example 5.4).

As in the linear case, in the upper part of the table (Cases 1 to 4) we offer

the summary of 400 experiments in a model with M = 4 and Q = 1. In

the lower part of the table (Cases 1bis to 4bis) we consider the same family of

problems but by including the idling option, i.e. we add a zero reward asset,

which index is trivially zero. In this case, whenever the indices for all arms

are simultaneously less or equal to zero, the index policy will choose the idle

option. Again, policies MYO and LAR will never chose the idling option.

The performance of the same four different policies described in Example

5.3 is compared (OPT, IND, MYO and LAR).

As in the previous example, the index policy continues to perform strongly,

with a worst case of 1.9165% suboptimality among the 800 problems generated.

There is also evidence of enhanced performance following the inclusion of the

idling option. For each of the orther heuristics (Myopic and Large) problem

instance arose in which they perform poorly.
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Table 5.3: Bi-directional Restless Bandits. Squad System Problem. Performance
of the Index Policy in the Linear Case, Example 5.3.

Case 1 Case 2 Case 3
µ ∼ U (4, 6), λ ∼ U (4, 6) µ ∼ U (2, 6), λ ∼ U (4, 8) µ ∼ U (4, 8), λ ∼ U (2, 6)
Index Myopic Large Index Myopic Large Index Myopic Large

Min 0.0033 0.011 0.004 0.0019 0.003 0.009 0.0009 0.072 0.026
LQ 0.0786 1.947 0.916 0.1350 1.856 1.371 0.0862 1.635 0.645
Med 0.1582 3.231 1.978 0.3051 3.180 2.924 0.1425 2.917 1.304
UQ 0.2513 5.509 3.349 0.5278 5.174 5.343 0.2098 4.128 2.126
Max 0.5928 10.751 6.279 1.3246 11.296 9.290 0.5214 9.044 4.097

Case 1 bis Case 2 bis Case 3 bis
Index Myopic Large Index Myopic Large Index Myopic Large

Min 0.0000 0.046 0.064 0.0007 0.138 0.040 0.0006 0.242 0.223
LQ 0.0573 1.951 0.979 0.1692 1.884 1.464 0.0503 1.610 0.719
Med 0.1153 3.328 2.006 0.2863 3.091 2.801 0.0986 2.535 1.330
UQ 0.2268 4.563 3.176 0.4871 5.263 5.051 0.1731 3.373 2.067
Max 0.5582 10.194 5.638 1.2468 12.759 10.752 0.3851 7.864 4.751

Case 4
µ ∼ U (2, 8), λ ∼ U (2, 8)
Index Myopic Large

Min 0.0305 0.057 0.012
LQ 0.1247 1.806 0.921
Med 0.2353 3.287 1.852
UQ 0.4167 5.125 3.493
Max 0.7818 10.349 6.699

Case 4 bis
Index Myopic Large

Min 0.0123 0.108 0.029
LQ 0.1021 1.832 0.969
Med 0.2247 3.320 1.878
UQ 0.4030 5.150 3.518
Max 0.7697 10.368 6.717
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Table 5.4: Bi-directional Restless Bandits. Squad System Problem. Performance
of the Index Policy in the Non-linear Case, Example 5.4.

Case 1 Case 2 Case 3
β ∼ U (0.5, 1) β ∼ U (1, 2) β ∼ U (2, 3)

Index Myopic Large Index Myopic Large Index Myopic Large
Min 0.0343 0.180 0.015 0.0610 0.128 0.522 0.1355 0.141 0.639
LQ 0.1487 1.924 0.727 0.2074 0.440 1.618 0.4160 0.720 2.353
Med 0.3336 2.640 1.469 0.3321 0.735 2.670 0.5377 3.099 4.491
UQ 0.5494 3.661 2.397 0.5200 1.349 3.735 0.6337 7.040 7.708
Max 1.9165 7.671 6.223 1.2287 3.496 8.592 0.8905 14.181 14.739

Case 1 bis Case 2 bis Case 3 bis
Index Myopic Large Index Myopic Large Index Myopic Large

Min 0.0423 0.180 0.112 0.0239 0.408 0.754 0.0679 4.338 5.814
LQ 0.1504 2.028 0.728 0.1746 0.855 2.110 0.3269 8.091 9.498
Med 0.3159 2.679 1.417 0.2719 1.381 3.301 0.4182 10.099 10.928
UQ 0.5143 3.806 2.258 0.3888 1.976 4.897 0.5156 12.752 13.514
Max 1.8982 7.671 6.231 0.8430 4.522 8.865 0.8521 18.632 19.230

Case 4
β ∼ U (0.5, 3)

Index Myopic Large
Min 0.0710 0.269 0.690
LQ 0.2350 1.090 2.165
Med 0.4204 2.297 3.731
UQ 0.6469 3.971 6.513
Max 1.3260 14.393 17.029

Case 4 bis
Index Myopic Large

Min 0.0353 0.512 0.474
LQ 0.1966 2.324 3.062
Med 0.3329 3.846 4.639
UQ 0.5120 5.380 6.837
Max 0.9997 17.164 17.710
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5.3 Discounted Reward Version

This section contains a somehow briefer discussion of the index structure of

a version of the spinning plates (section 5.3.1) and the squad system (section

5.3.2) with the discounted reward criterion.

5.3.1 Spinning Plates Problem

We have already defined M as the class of monotone (stationary, Markovian

deterministic) policies such that

πy (x) = 1 ⇔ x ≤ y, y ∈
[
K − 1, K

]
,

hence, policy πy, K ≤ y < K prescribes taking the active action in the subset

[K, y] and the passive one in
[
y + 1, K

]
. Policy πK−1 chooses the passive

action (a = 0) in all states, and policy πK prescribes taking the active action

in all states.

Consider policy πy ∈ M and assume that X (0) = x̂ < y. Then, under

πy, in the discounted reward version of the problem, the system will take the

active action in every state x̂ ≤ x ≤ y evolving to state x + 1 with rate µ (x)

and earning an instant discounted reward e−βtR (x) , t ∈ R+, and β > 0

during the duration of its sojourn in x. After the first arrival to state y + 1,

passive action will be taken and the system will evolve to state y with rate

λ (y + 1) and instant discounted reward given by e−βt (R (y + 1)). Thereafter,

the system will face alternating sojourns in states y and y + 1.

If otherwise, X (0) = x̂ > y. Then, under πy, the system will take the

passive action in every state y ≤ x ≤ x̂ evolving to state x − 1 with rate

λ (x), earning an instant discounted reward e−βtR (x) during the duration of

its sojourn in x, until arriving to state y. Thereafter, the system will face
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alternating sojourns in states y and y + 1.

Lemma 5.3. Optimality of Monotone Policies

For all W ∈ R and every X (0), there exists an optimal policy for the

W -subsidy problem in M.

Proof Consider X (0) = x̂ and take (optimal) policy π ∈M, with M being

the family of stationary, deterministic, Markovian policies. Assume π (x̂) = 1

and define

x̃ = min {x|x > x̂, π (x + 1) = 0} .

Call Vβ (x̂, W ) the infinite horizon discounted reward earned under (opti-

mal) policy π when X (0) = x̂. It is straightforward to see that this is also the

discounted reward earned by monotone policy πx̃ when starting from X (0) = x̂,

i.e. V x̃
β (x̂, W ).

Consider again X (0) = x̂ and assume instead that π (x̂) = 0, then we can

define

x̃ = max {x|x < x̂, π (x) = 1} .

Clearly Vβ (x̂, W ) = V x̃
β (x̂, W ). q.e.d.

We now present some results that will be useful for showing that, under

certain conditions, the optimal monotone policy is independent of the initial

state and, consequently, an optimal monotone policy is indeed an optimal

policy for the discounted reward version of the spinning plates problem.

We start by identifying the values Vβ (X (0) , W ) and V y
β (X (0) , W ).

Consider the stationary, deterministic, Markovian policy (π ∈ M). We

have already defined Vβ (x̂, W ) to be the total expected discounted reward

earned over an infinite horizon when an optimal policy is applied and the

initial state is X (0) = x̂. The dynamic programming equations for this policy
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are then given by:

Vβ (K, W ) = max

{
R (K) + µ (K) Vβ (K + 1, W )

β + µ (K)
;
W + R (K)

β

}
;

Vβ (x̂, W ) = max

{
R (x̂) + µ (x̂) Vβ (x̂ + 1, W )

β + µ (x̂)
;

W + R (x̂) + λ (x̂) Vβ (x̂− 1, W )

β + λ (x̂)

}
(5.60)

for x ∈
[
K + 1, K − 1

]
; and

Vβ

(
K, W

)
= max

{
R
(
K
)

β
;
W + R

(
K
)

+ λ
(
K
)
Vβ

(
K − 1, W

)
β + λ

(
K
) }

.

Throughout (5.60) the first quantity on the r.h.s. is the total expected

reward earned when choosing the active action (a = 1) in the current state

and thereafter proceeding optimally. The second quantity is the total expected

reward earned when choosing passive action (a = 0) in the current state and

then proceeding optimally.

Consider now, monotone policy πy ∈ M. We defined V y
β (x̂, W ) as the

value function of the monotone policy πy when applied at X (0) = x̂ ∈
[
K, K

]
.

We first focus on the case X (0) = y. Here, under policy πy the project is

active in state y and shows alternate sojourns between y and y + 1. It can

easily be confirmed that the expected value of πy, under passive subsidy W

and discount factor β is be given by:

V y
β (y, W ) =

R (y) (β + λ (y + 1)) + µ (y) (R (y + 1) + W )

β (β + µ (y) + λ (y + 1))
(5.61)
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Likewise, if we slightly modify the policy above and allow the system for taking

the passive action in y, then the expected value will correspond to the one of

policy πy−1, under the same initial state y and will be given by:

V y−1
β (y, W ) =

R (y − 1) λ (y) + (W + R (y)) (β + µ (y − 1))

β (β + µ (y − 1) + λ (y))
. (5.62)

We will use this quantity later.

Now, for any initial state X (0) = x̂ we have three cases:

1. K ≤ x̂ < y

Here, the expected value of policy πy is given by

R (x̂)

β + µ (x̂)
+

µ (x̂)

β + µ (x̂)

R (x̂ + 1)

β + µ (x̂ + 1)
+

µ (x̂)

β + µ (x̂)

µ (x̂ + 1)

β + µ (x̂ + 1)

R (x̂ + 2)

β + µ (x̂ + 2)
+· · ·

+
µ (x̂)

β + µ (x̂)
· · · µ (y − 1)

β + µ (y − 1)

[
R (y) (β + λ (y + 1)) + (W + R (y + 1)) µ (y)

β (β + µ (y) + λ (y + 1))

]

or equivalently

V y
β (x̂, W ) =

y−1∑
i=x̂

R (i)

β + µ (i)

i−1∏
j=x̂

µ (j)

β + µ (j)
+ V y

β (y, W )

y−1∏
i=x̂

µ (i)

β + µ (i)
; K ≤ x̂ ≤ y

(5.63)

2. y < x̂ ≤ K

The expected value of policy πy is given by

W + R (x̂)

β + λ (x̂)
+

λ (x̂)

β + λ (x̂)

W + R (x̂− 1)

β + λ (x̂− 1)
+

λ (x̂)

β + λ (x̂)

λ (x̂− 1)

β + λ (x̂− 1)

W + R (x̂− 2)

β + λ (x̂− 2)
+· · ·
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+
λ (x̂)

β + λ (x̂)
· · · λ (y + 1)

β + λ (y + 1)

[
R (y) (β + λ (y + 1)) + (W + R (y + 1)) µ (y)

β (β + µ (y) + λ (y + 1))

]

or equivalently

V y
β (x̂, W ) =

x̂∑
i=y+1

W + R (i)

β + λ (i)

x̂∏
j=i+1

λ (j)

β + λ (j)
+ V y

β (y, W )
x̂∏

i=y+1

λ (i)

β + λ (i)
;

(5.64)

for y < x̂ ≤ K.

3. y = K − 1 and K ≤ x̂ ≤ K

Following the same reasoning as in the two previous cases, it can be seen

that

V K−1
β (x̂, W ) =

x̂∑
i=K

W + R (i)

β + λ (i)

x̂∏
j=i+1

λ (j)

β + λ (j)
· · ·

+
W + R (K)

β

x̂∏
i=K

λ (i)

β + λ (i)
; K ≤ x̂ ≤ K (5.65)

Define now, W (y, β) as the value of W such that we are indifferent between

taking the active and passive actions in state y. From (5.61) and (5.62) we

have that W (y, β) is the W solution to V y
β (y, W ) = V y−1

β (y, W ), i.e.

R (y) (β + λ (y + 1)) + µ (y) (R (y + 1) + W )

β (β + µ (y) + λ (y + 1))

=
R (y − 1) λ (y) + (W + R (y)) (β + µ (y − 1))

β (β + µ (y − 1) + λ (y))
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i.e.

W (y, β) =
[
R (y + 1) µ (y) (β + µ (y − 1) + λ (y))

+ R (y)
(
λ (y) (β + λ (y + 1))− µ (y) (β + µ (y − 1))

)
−R (y − 1) λ (y) (β + µ (y) + λ (y + 1))

]
×
[
(β + µ (y − 1)) (β + λ (y + 1))− µ (y) λ (y)

]−1

(5.66)

As it will be seen, under indexability W (x, β) will turn out to be the Whittle

index for state x. As we will be interested in a specific ordering for the indices,

we need here to impose the following condition on the denominator of (5.66):

(β + µ (y − 1)) (β + λ (y + 1))− µ (y) λ (y) > 0, for all K ≤ yK.

We now present some results that will be useful for the indexability discus-

sion below.

Claim 5.1. For W = W (x, β), the expected discounted reward from any initial

state X (0) = x̂ is the same under both πx and πx−1.

Proof It is easy to verify that for x > x̂

V x−1
β (x̂, W ) =

x−2∑
i=x̂

R (i)

β + µ (i)

i−1∏
j=x̂

µ (j)

β + µ (j)
+ V x−1

β (x− 1, W )
x−2∏
i=x̂

µ (i)

β + µ (i)

=
x−1∑
i=x̂

R (i)

β + µ (i)

i−1∏
j=x̂

µ (j)

β + µ (j)
+ V x−1

β (x, W )
x−1∏
i=x̂

µ (i)

β + µ (i)
; (5.67)

similarly, for x < x̂

V x−1
β (x̂, W ) =

x̂∑
i=x

W + R (i)

β + λ (i)

x̂∏
j=i+1

λ (j)

β + λ (j)
+ V x−1

β (x− 1, W )
x̂∏

i=x

λ (i)

β + λ (i)
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=
x̂∑

i=x+1

W + R (i)

β + λ (i)

x̂∏
j=i+1

λ (j)

β + λ (j)
+ V x−1

β (x, W )
x̂∏

i=x

λ (i)

β + λ (i)

(5.68)

as W = W (x, β) it holds that V x
β (x, W ) = V x−1

β (x, W ) and consequently, from

(5.63) and (5.64), the expressions above imply that

V x
β (x̂, W ) = V x−1

β (x̂, W ) , K ≤ x ≤ K

. q.e.d.

Claim 5.2. For W > W (x, β) it holds V x
β (x̂, W ) < V x−1

β (x̂, W ) for any

K ≤ x̂ ≤ K and K ≤ x ≤ K.

Proof For any W > W (x, β) by straightforward algebraic manipulations it

is easy to verify that V x
β (x, W ) < V x−1

β (x, W ) and consequently, from (5.67)

and (5.68), the result above follows immediately. q.e.d.

Claim 5.3. For W < W (x, β) it holds V x
β (x̂, W ) > V x−1

β (x̂, W ) for any

K ≤ x̂ ≤ K and K ≤ x ≤ K.

Proof For any W < W (x, β) it holds that V x
β (x, W ) > V x−1

β (x, W ) and

consequently, from (5.67) and (5.68), the claim follows immediately. q.e.d.

Proposition 5.1. If W (x, β) is (strictly) decreasing in x, then the optimal

monotone policy πx is independent of the initial state X (0) = x̂.

Proof In Lemma 5.3 we shown that the expected total reward earned by

the asset over an infinite horizon under any policy in M from initial state

X (0) = x̂ will be exactly matched by some member of M. It follows that the

value function for the W -subsidy problem evaluated at x̂ is the expected reward

achieved by the best monotone policy from this class.
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Let

Vβ (x̂, W ) = max
K−1≤x≤K

V x
β (x̂, W ) (5.69)

with x∗ being the value of x achieving the max in (5.69). Hence, using Claims

5.1 to 5.3 and using the fact that W (x, β) has been assumed to be increasing,

we can infer that:

1. If W > W (K, β) ⇒ x∗ = K − 1, and Vβ (x̂, W ) = V K−1
β (x̂, W ).

2. If W (x, β) < W ≤ W (x− 1, β) ⇒ x∗ = x − 1, and Vβ (x̂, W ) =

V x−1
β (x̂, W ) for all K ≤ x ≤ K.

3. If W < W
(
K, β

)
⇒ x∗ = K, and Vβ (x̂, W ) = V K

β (x̂, W ).

However, the initial state x̂ in the above was choosen arbitrarily. We then

infer from §1 to §3 above that policy πK−1 is optimal (i.e. for all initial states)

for the W -subsidy problem for W > W (K, β); policy πx−1 is optimal for

W (x, β) < W ≤ W (x− 1, β) for K ≤ x ≤ K; and policy πK is optimal

for W < W
(
K, β

)
. This concludes the proof. q.e.d.

We can now establish the main result of this section.

Theorem 5.7. If W (x, β) is strictly decreasing over the state space
[
K, K

]
and

(β + µ (y − 1)) (β + λ (y + 1))− µ (y) λ (y) > 0, for all K ≤ y ≤ K,

then the asset is strictly indexable with the index for state K ≤ x ≤ K given

by W (x, β) in (5.66).

Proof

In Proposition 5.1 we have already established that, if W (x, β) is decreasing

in x, then the optimal monotone policy is independent of the initial state.
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Hence, from §1, §2 and §3 in Proposition 5.1, we can deduce that the max-

imal optimal passive set Π (W ) will be given by

Π (W ) =


∅, W < W

(
K, β

)
,{

x, . . . , K
}

, W (x, β) ≤ W < W (x− 1, β) ,{
K, . . . ,K

}
, W ≥ W (K − 1, β)

(5.70)

Using Definitions 2.1 and 2.2, strict indexability follows immediately from

(5.70) with W (x, β) the index for state x ∈
[
K, K

]
. This concludes the

proof. q.e.d.

Comments

1. If we set β = 0 in (5.66), we recover the conditions expressed in Theorem

5.3 (1b). it follows that any asset which meets the (necessary and suffi-

cient) conditions of Theorem 5.3 will also meet the conditions of Theorem

5.7 for β small enough.

2. It is not difficult to show that, if an a priory restriction to monotone poli-

cies for the W -subsidy problem is made, then the conditions expressed

over (5.66) (increasing and positive denominator) are necessary and suf-

ficient for strict indexability.

5.3.2 Squad System Problem

We conclude by remarking that an account of a discounted reward version of

the squad system, similar to that given in Section 5.3.1 for the Spinning Plates

problem, yields equivalent results.

For the Squad System problem we have introduced the class M of monotone
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policies such that

πy (x) = 1 ⇔ x ≥ y, y ∈
[
K, K + 1

]
,

hence, policy πK chooses the active action (a = 1) in all states, and policy πK+1

prescribes taking the passive action in all states.

Assume now that X (0) = x. Then, under policy πx, the system will take

the active action in state x evolving to state x− 1 with rate µ (x) and earning

an instant discounted reward e−βtR (x) during the duration of its sojourn in x.

Once in state x− 1, passive action will be taken and the system will evolve to

state x with rate λ (x + 1) with passive rewards equal to zero.

Lemma 5.3 also applies here and the optimality of monotone policies for

the Squad System Problem is granted.

As before, we have that for initial state X (0) = x, the expected value of

policy πx in the W -subsidy problem, with passive subsidy W and discount

factor β will be given by:

V x
β (x, W ) =

R (x) (β + λ (x− 1)) + µ (x) W

β (β + µ (x) + λ (x− 1))
, (5.71)

likewise, the expected value of policy πx+1, under the same initial state and

conditions as above, will be given by:

V x+1
β (x, W ) =

R (x + 1) λ (x) + W (β + µ (x + 1))

β (β + µ (x + 1) + λ (x))
(5.72)

Define now, W̃ (x, β), as the value of W such that we are indifferent between
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taking the active and passive actions in x i.e. W is the solution to

R (x) (β + λ (x− 1)) + µ (x) W

β (β + µ (x) + λ (x− 1))
=

R (x + 1) λ (x) + W (β + µ (x + 1))

β (β + µ (x + 1) + λ (x))
,

(5.73)

i.e.

W̃ (x, β) =
[
R (x) (β + λ (x− 1)) (β + µ (x + 1) + λ (x))

−R (x + 1) λ (x) (β + µ (x) + λ (x− 1))
]

×
[
(β + λ (x− 1)) (β + µ (x + 1))− µ (x) λ (x)

]−1

(5.74)

For the adequate definition of quantities Vβ (X (0) , W ) in equation (5.60),

and V y
β (X (0) , W ) in (5.63) to (5.65), and suitable modifications of Claims

5.1 to 5.3, the following result can be proved following the same arguments as

those around Proposition 5.1 (we omit the proof):

Proposition 5.2. If W (x, β) is (strictly) increasing in x, then the optimal

monotone policy πx is independent of the initial state X (0) = x̂.

Finally, we establish the main result of this section.

Theorem 5.8. If W̃ (x, β) is strictly increasing over the state space
[
K, K

]
and

(β + λ (x− 1)) (β + µ (x + 1))− µ (x) λ (x) > 0, for all K ≤ y ≤ K (5.75)

then the asset is strictly indexable with the index for state K ≤ x ≤ K given

by W̃ in (5.74).

Proof Following an argument similar to the one around Theorem 5.7, we

have that for every W (x− 1, β) ≤ W < W (x, β) the monotone policy πx ∈ M
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is optimal in all states y ≤ x− 1, and the passive set will be given by Π (W ) =

{K, . . . , x− 1}. Moreover, for W ≤ W (K, β), the optimal monotone policy

is πK and active action will be taken all over the state space, i.e. Π (W ) = ∅;

likewise, for W > W
(
K, β

)
the optimal monotone policy will be πK+1 with

Π (W ) =
{
K, . . . ,K

}
.

Strict indexability now follows from Definitions 2.1 and 2.2, and the dis-

cussion above, with the index for state x given by W̃ (x, β). q.e.d.

Similar comments to those following Theorem 5.7 apply.

5.4 Conclusions

This chapter concerns two families of Markov decision problems which fall

within the family of bi-directional restless bandits, an intractable class of deci-

sion processes introduced by Whittle. The spinning plates problem, Section

5.1, concerns the optimal management of a portfolio of reward generating as-

sets whose yields grow with investment butt otherwise tend to decline. In the

model of asset exploitation called the squad system, Section 5.2, the yield from

an asset tends to decline when it is utilised but will recover when the asset

is at rest. In all cases, simply stated conditions are given which guarantee

indexability of the problem together with necessary conditions for its strict

indexability.

The analysis of each problem is completed with the discussion of particular

examples of strictly indexable problems for which closed form indices can be

obtained. The index heuristics for asset activation which emerge from the

analysis of these examples are assessed numerically and found to perform very

strongly.

Finally, Section 5.3 contains a somewhat briefer discussion of the index
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structure of a version of the spinning plates and squad system with the dis-

counted reward criterion.

In addition to the intrinsic interest of the theoretical results in this chapter,

we believe that the approach adopted here will be applicable to a wide range

of restless bandit problems with the average reward criterion.





Appendix A

Derivation of Expressions in the

Machine Maintenance Problem

A.1 Expressions in Family I

In this section we deploy the algebraic elements necessary for the derivation of

expressions (4.39) and (4.40) for Family I in Section 4.3.

The first step will be to find explicit expressions for expectations E
[
βτ∗
]

and E
[
β τ̃
]
, and quantities K (x, τ ∗) and K (0, τ̃).

1. E
[
βτ∗ |x

]
From the definition of τ ∗ in Section 4.2.1 it follows straightforward that,

E
[
βτ∗ |x

]
= β. (A.1)

2. E
[
β τ̃ |x

]
In the monotone model τ (y, y + 1) ( representing the expected required

time for the first effective transition from y to y + 1 under the passive

231
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action) is a geometric random variable. Hence we can write:

E
[
βτ(y,y+1)

]
= βP (y, y + 1) + β2P (y, y) P (y, y + 1) + · · ·

= βP (y, y + 1)
∞∑

t=0

βtP (y, y)t ,

for the sake of simplicity we introduce the following notation:

δ (y) = E
[
βτ (y,y+1)

]
=

βP (y, y + 1)

1− βP (y, y)
, for all y ∈ N. (A.2)

As τ̃ = τ (0, x) and because of statistical independence of the transition

times it holds that: τ (0, x) =
∑x−1

y=0 τ (y, y + 1). Hence we can write

E
[
β τ̃ |x

]
=
∏x−1

y=0 E
[
βτ(y,y+1)

]
. If we now use expression (A.2) above we

get:

E
[
β τ̃ |x

]
=

x−1∏
y=0

δ (y) , for all x ∈ N. (A.3)

Also, straightforward algebra yields:

1− E
[
β τ̃ |x

]
= 1−

x−1∏
y=0

δ (y) = (1− β)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) (A.4)

where ε (x) = {1− βP (x, x)}−1.

3. K (x, τ)

We have already defined K as

K (x, τ) = E

[
τ−1∑
t=0

βtk (x (t)) |x

]

As in the monotone model τ ∗ = τ (x; x, x + 1) = 1, it follows straightfor-
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wardly

K (x, τ ∗) = k (x) . (A.5)

4. K (0, τ̃)

Starting again with

K (x, τ) = E

[
τ−1∑
t=0

βtk (x (t)) |x

]
,

for τ (x, x + 1), we can write:

K (x, τ (x, x + 1)) =k (x) P (x, x + 1) + (k (x) + βk (x)) P (x, x) P (x, x + 1)

+
(
k (x) + βk (x) + β2k (x)

)
P (x, x)2 P (x, x + 1) + · · ·

=k (x) P (x, x + 1)
∞∑

t=0

P (x, x)t
t∑

i=0

βi

=k (x) P (x, x + 1)
∞∑

t=0

P (x, x)t βt+1 − 1

β − 1

we again introduce some notation and, after further simplification using

expression (4.33) we get:

κ (x) = K (x, τ (x, x + 1)) =
k (x)

1− βP (x, x)
, for all x ∈ N. (A.6)

For every y ∈ N+ and τ (y, y + 1) it holds:

K (y, y + 1) =
k (y)

1− βP (y, y)

as τ̃ = τ (0, x), then K (0, τ̃) is the expected discounted cost accumulated
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during the transition from 0 up to x, i.e.

K (0, τ̃) =
k (0)

1− βP (0, 0)
+

βP (0, 1)

1− βP (0, 0)

k (1)

1− βP (1, 1)
· · ·

+
βP (0, 1)

1− βP (0, 0)

βP (1, 2)

1− βP (1, 1)

k (2)

1− βP (1, 1)
+ · · ·

which, by using the notation introduced above, can be written as:

K (0, τ̃) =
x−1∑
y=0

κ (y)

y−1∏
z=0

δ (z) (A.7)

A.2 Expressions in Family II

Here we present the details of the derivation of H (x) in (4.46).

1. E
[
βτ(x;x,x+1)

]
represents the expected discounted time required for ar-

riving either to x or to x + 1 when the passive action is taken in x and

breakdowns are considered, i.e.,

E
[
βτ(x;x,x+1)

]
= βP (x, x) + βP (x, x + 1) + βP (x, 0) E

[
βτ(0,x)

]
(A.8)

with the last term given by:

E
[
βτ(0,x)

]
=

∏x−1
y=0 δ (y)

1−
∑x−1

y=1 γ (y)
∏y−1

z=0 δ (z)
(A.9)

2. E [C (x (τ (x; x, x + 1)))] is given by

C (x) P (x, x) + C (x + 1) P (x, x + 1) + C (x) P (x, 0)
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which, together with (A.8) and (A.9), gives

E
[
βτ∗C (x∗)

]
= βP (x, x) C (x) + βP (x, x + 1) C (x + 1) · · ·

+ βP (x, 0) C (x)
x−1∏
y=0

δ (y)

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

(A.10)

with x∗ = x (τ (x; x, x + 1)).

3. Finally, K (x, τ ∗), with τ ∗ = τ (x; x, x + 1), can be obtained as follows:

K (x, τ ∗) = k (x) + P (x, 0) β

[
B

β
+ K (0, τ (0, x))

]
. (A.11)

Now, simple conditioning arguments yield the conclusion that the ex-

pected cost K (0, τ̃x), with τ̃x = τ (0, x), satisfies the equation:

K (0, τ̃x) =
x−1∑
y=0

k (y) ε (y)

y−1∏
z=0

δ (z)+

{
B

β
+ C (0, τ̃x)

}[x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]
.

Hence,

K (0, τ̃x) =

∑x−1
y=0

(
γ (y) + B

β
γ (y) I {y 6= 0}

)∏y−1
z=0 δ (z)

1−
∑x−1

y=1 γ (y)
∏y−1

z=0 δ (z)
(A.12)

For obtaining an expression for the index, we start with the denominator in

H (x):

E
[
βτ∗
]

=β (1− P (x, 0)) +
βP (x, 0)

∏x−1
y=0 δ (y)

(1− β)
∑x−1

y=0 ε (y)
∏y−1

z=0 δ (z) +
∏x−1

y=0 δ (y)
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=

[
β (1− P (x, 0)) (1− β)

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) + β

∏x−1
y=0 δ (y)

]
[
(1− β)

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) +

∏x−1
y=0 δ (y)

]
and finally

1− E
[
βτ∗
]

=

[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y) · · ·

− β (1− P (x, 0)) (1− β)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z)− β

x−1∏
y=0

δ (y)

]
· · ·

×

[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]−1

=
(1− β)

(
(1− β + βP (x, 0))

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) +

∏x−1
y=0 δ (y)

)
(1− β)

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) +

∏x−1
y=0 δ (y)

(A.13)

The next step is to substitute conditions k (x) = 0 and C (x) = C in the lower

part of (4.43):

E
[
βτ∗C

]
=

{(
βP (x, x) C + βP (x, x + 1) C

)[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]
· · ·

+βP (x, 0) C
x−1∏
y=0

δ (y)

}[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

which can be written as:

E
[
βτ∗C

]
=

{(
βP (x, x) C + βP (x, x + 1) C

)[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]
· · ·
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+βP (x, 0) C
x−1∏
y=0

δ (y)

}[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

=

{
βC (1− β) (1− P (x, 0))

[
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z)

]
+ βC

x−1∏
y=0

δ (y)

}
· · ·

×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

We now include the term −C, which implies

E
[
βτ∗C

]
−C =

{
βC (1− β) (1− P (x, 0))

[
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z)

]
+ βC

x−1∏
y=0

δ (y) · · ·

−C

[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]}
×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

=

{
C (1− β)

[
(β − 1− βP (x, 0))

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]}
· · ·

×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

hence

E
[
βτ∗C

]
−C = −C

{
(1− β)

[
(1− β + βP (x, 0))

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]}
· · ·

×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

(A.14)



238 APPENDIX A. MACHINE MAINTENANCE FORMULAE

Given the assumption k (x) = 0 and by using (4.44) we get

K (0, τ̃x) =

{
x−1∑
y=1

Bβ−1γ (y)

y−1∏
z=0

δ (z)

}
×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

which substituted into (A.11) gives:

K (x, τ ∗x) = P (x, 0) B ×

[
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

]−1

(A.15)

Finally, by using (A.13), (A.14) and (A.15) together with (4.41) we obtain:

H (x) =
BP (x, 0)

(1− β)
[
(1− β + βP (x, 0))

∑x−1
y=0 ε (y)

∏y−1
z=0 δ (z) +

∏x−1
y=0 δ (y)

] − C,

clearly H (0) = −C.

A.3 Derivation of the Whittle Index for Fam-

ily II

Here we present a detailed derivation of the Whittle index for Corollary 4.2,

where C (x) = C, k (x) = 0, x ∈ N.

After substitution of C (x) = C in equation (4.31) we get:

W (x) = G (x)
[
1− β τ̃x

]
−K (0, τ̃x)− E

[
β τ̃x
]
C.

By using (4.43) and (4.44) together with (4.46) we obtain a closed form ex-

pression for W (x) by means of the following (abbreviated) steps:
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Step 1

As −C
(
1− E

[
β τ̃x
])
− CE

[
β τ̃x
]

= −C, we can ignore this term in what

follows (we will recover it at the last step) and write:

G (x)
(
1− E

[
β τ̃x
])

= BP (x, 0)

[{
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

}
−

x−1∏
y=0

δ (y)

]
×[(1− β) AE]−1

with

A =

[
(1− β + βP (x, 0))

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]

E = 1−
x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

Step 2

K (0, τ̃x) = (1− β) B
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× E−1

= (1− β) B
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× A×
[
E−1A−1

]
Step 3

Denominator [(1− β) AE] is common as well as term B, so we can tem-

porarily ignore them. We can, hence, write the numerator in W (x) as:

P (x, 0)

[{
1−

x−1∑
y=1

γ (y)

y−1∏
z=0

δ (z)

}
−

x−1∏
y=0

δ (y)

]
· · ·

− (1− β)
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× A
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= P (x, 0) E − (1− β)
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× A

= P (x, 0) E − P (x, 0)
x−1∏
y=0

δ (y)−
x−1∑
y=1

ε (y) P (y, 0)
z−1∏
y=0

δ (y) (1− β) · · ·

×

{
E + β

x−1∑
y=0

ε (y)
x−1∏
y=0

δ (y)

}

reordering and developing terms we get

= P (x, 0)E − P (x, 0)
x−1∏
y=0

δ (y) · · ·

− (1− β)
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× E · · ·

− (1− β)
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× βP (x, 0)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) .

The expression in the first line becomes:

P (x, 0) E − P (x, 0)
x−1∏
y=0

δ (y) = P (x, 0) (1− β)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) .

We can also eliminate the term (1− β) and the denominator becomes A−1E−1,

moreover:

= P (x, 0)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) · · ·

−
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)×

[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]
· · ·
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−
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)× βP (x, 0)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z)

= P (x, 0)
x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z)

[
1− β

x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)

]
· · ·

−
x−1∑
y=1

ε (y) P (y, 0)

y−1∏
z=0

δ (z)×

[
(1− β)

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]
.

Step 4

By using the expression above together with terms B, C and the denominator

A−1E−1 the Whittle index is found, after simplification, to be given by:

W (x) = B

[
P (x, 0) ε (0) +

x−1∑
y=1

ε (y)
(
P (x, 0)− P (y, 0)

) y−1∏
z=0

δ (z)

]
· · ·

×

[
(1− β + βP (x, 0))

x−1∑
y=0

ε (y)

y−1∏
z=0

δ (z) +
x−1∏
y=0

δ (y)

]−1

− C.
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