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to Laia






Macroeconometricians do four things: describe and summarize macroeconomic data, make
macroeconomic forecasts, quantify what we do or do not know about the true structure of
the macroeconomy, and advise (and sometimes become) macroeconomic policymakers.

Stock, J.H, and M.H. Watson, (2001).
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Foreword

Since the seminal contribution by Sims (1980), Structural Vector Autoregressions (SVAR)
models have been assigned a central role for policy analysis. SVAR models are built on the
idea, first introduced by Frisch (1933) and Slutzky (1937), that the economic system can
be described as the summation of exogenous random disturbances which are propagated
through some mechanisms called impulse response functions. Within this class of models,
policy analysis coincides with impulse response functions analysis and allows the researcher
to study the dynamic effects on macroeconomic variables of demand, technology, monetary
policy shocks and any other type of shock of interest.

Standard SVAR models stand on the assumption that the mechanisms through which
economic disturbances are propagated over time are constant. For instance, the response of
the economic system to a technology shock is always the same, independently on the time
period in which the shock occurs. In recent years a huge amount of contributions provided
convincing evidence in favor of several changes in the structure of the economy of most
industrialized economies (see e.g. Stock and Watson, 1996 among others). Changes are
of different types: changes in the conduct of economic policies, changes in business cycle
fluctuations, changes in the behavior of firms and consumers, institutional changes, etc. All
such evidence stands in sharp contrast with the assumption that propagation mechanisms
are constant over time. This may have two serious consequences. First, conclusions reached
from policy analysis with standard VAR can be very misleading and distorted because
potentially important changes in the transmission of economic shocks are a priori ruled out.
Second, changes in the transmission mechanisms of structural shocks are completely hidden,
and therefore the correct comprehension of the dynamics characterizing the economic system
might be seriously undermined.

Time-Varying Coefficients Vector Autoregressions (TVC-VAR) represent a generaliza-
tion of standard VAR models where the coefficients are allowed to evolve over time according
to some process. Up to now, however, these models have been employed exclusively as re-
duced form models (see Cogley and Sargent, 2001) mainly for forecasting or to describe
the statistical properties of economic time series. The purpose of this research is to extend
structural dynamic analysis to TVC-VAR, focusing both on the theoretical foundations and
the implications for economic policy design. The main motivation is that by allowing for
changes in the structural relationships among macroeconomic variables, and therefore in
the propagation mechanisms of structural shocks, important new implications for macro-
economic policy management may emerge and new and important insights can be provided
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to policy makers.

The present thesis is a collection of three separate essays, each corresponding to a chap-
ter. Each essay represents an application of structural dynamic analysis within TVC-VAR
models. In the first chapter, coauthored with Fabio Canova, we investigate the relationship
between changes in output and inflation and monetary policy in the US. There are variations
in the structural coefficients and in the variance of the structural shocks but only the latter
are synchronized across equations. The policy rules in the 1970s and 1990s are similar as
is the transmission of policy disturbances. Changes in inflation persistence are only partly
explained by monetary policy changes. Variations in the systematic component of policy
have limited effects on the dynamics of the system. Results are robust to alterations in the
auxiliary assumptions.

In the second chapter, coauthored with Fabio Canova and Evi Pappa, we examine the
dynamics of US output and inflation. We show that there are changes in the volatility of
both variables and in the persistence of inflation. Technology shocks explain changes in
output volatility, while a combination of technology, demand and monetary shocks explain
variations in the persistence and volatility of inflation. We detect changes over time in the
transmission of technology shocks and in the variance of technology and of monetary policy
shocks.

In the third chapter we study whether hours worked rise or fall after a positive technology
shock. According to the existing evidence it depends on whether they enter the VAR in levels
(hours rise) or growth rates (hours fall). We argue that conflicting results may ultimately
arise because important structural time variations in the US economy are a priori ruled
out by empirical models. We identify technology shocks as the only shocks driving long-run
labor productivity using postwar US quarterly data. We find that, under both specifications
for hours (levels and growth rates), (i) hours fall, and (ii) technology shocks explain about
11-23% of total aggregate fluctuations giving rise to positive but small correlations between
output and hours. Differences with respect to fixed coefficients VAR are due to instabilities
in the relationship between labor productivity and levels of hours.

To conclude, the main contribution of the present research work as a whole is twofold.
First, from an empirical perspective, we provide new evidence on some important macro-
economic issues of the US economy. In all the applications new interesting results, absent
in standard VAR, emerge. Second, from a theoretical perspective, we contribute to develop
new tools useful for policy analysis within the class of TVC-VAR models.
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Chapter 1

Structural changes in the US
economy: bad luck or bad policy?

1.1 Introduction

There is considerable evidence suggesting that the US economy has fundamentally changed
over the last couple of decades. In particular, several authors have noted a marked decline in
the volatility of real activity and in the volatility and persistence of inflation since the early
1980s (see e.g. Blanchard and Simon, 2000, McConnell and Perez Quiros, 2001, and Stock
and Watson, 2003). What are the reasons behind such a decline? A stream of literature
attributes these changes to alterations in the mechanisms through which exogenous shocks
spread across sectors and propagate over time. Since the transmission mechanism depends
on the structure of the economy, such a viewpoint implies that important characteristics,
such as the behavior of consumers and firms or the preferences of policymakers, have changed
over time. The recent literature has paid particular attention to monetary policy. Several
studies, including Clarida, Gali and Gertler (2000), Cogley and Sargent (2001) (2005), Lubik
and Schorfheide (2004), have argued that monetary policy was "loose” in fighting inflation
in the 1970s but became more aggressive since the early 1980s and see in this change of
attitude the reason for the observed changes in inflation and output. This view, however,
is far from unanimous. For example, Bernanke and Mihov (1998), Leeper and Zha (2003),
Orphanides (2004), find little evidence of significant changes in the policy rule used in the
last 25-30 years while Hanson (2001) claims that the propagation of monetary shocks has
been stable. Sims (2001) and Sims and Zha (2004) suggest that changes in the variance of
exogenous shocks are responsible for the observed changes.

This controversy is not new. In the past rational expectations econometricians (e.g.
Sargent, 1984) have argued that policy changes involving regime switches dramatically alter
private agent decisions and, as a consequence, the dynamics of the macroeconomic variables,
and searched for historical episodes supporting this view (see e.g. Sargent, 1999). VAR
econometricians, on the other hand, often denied the empirical relevance of this argument
suggesting that the systematic portion of monetary policy has rarely been altered and that
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policy changes are better characterized as random variations for the non-systematic part
(Sims, 1982). This long standing debate now has been cast into the dual framework of
"bad policy” (failure to adequately respond to inflationary pressure) vs. ”bad luck” (shocks
are drawn from a distribution whose moments vary over time) and new evidence has been
collected thanks to the development of methods which allow to examine time variations
in the structure of the economy and in the variance of the exogenous processes. Overall,
and despite recent contributions, the role that monetary policy had in shaping the observed
changes in the US economy is still open.

This paper provides novel evidence on this issue. Our framework of analysis is a time
varying coefficients VAR model, similar to Cogley and Sargent (2001), where the coefficients
evolve according to a nonlinear transition equation which puts zero probability on paths
associated with explosive roots, and we use Markov Chain Monte Carlo (MCMC) methods
to estimate the posterior distributions of the quantities of interest. Cogley and Sargent
(2005) and Primicieri (2005) add to this framework a stochastic volatility model for the
reduced form innovations. We also allow the variance of the forecast errors to vary over
time but, as in Canova (1993), we do this in a simpler and more intuitive manner, which
retains conditional linearity and links changes in the variance of the coefficients to changes in
the variance of the forecast errors in an economically meaningful way. We identify structural
disturbances via sign restrictions on dynamic response of certain variables to shocks. While
we focus on monetary policy disturbances, the methodology is well suited to jointly identify
multiple sources of structural disturbances (see e.g. Canova and De Nicolo’, 2002). We
choose to work with sign restrictions for two reasons. First, the contemporaneous zero
restrictions conventionally used are often absent in those theoretical models one likes to
use to guide the interpretation of the results. Second, while the restrictions we employ
are robust to the parameterization, common to both flexible and sticky price models (see
e.g. Gambetti et al., 2005) and independent of whether the economic environment delivers
determinate or indeterminate solutions (see e.g. Lubik and Shorfheide, 2004), those imposed
by zero type restrictions leave the system underidentified when indeterminacies emerge.
This is important since one version of the bad policy hypothesis relies on the presence of
indeterminacies in the earlier part of the sample.

The resulting structural system can be used to evaluate the magnitude of structural
variations produced by changes in i) the systematic component of policy, ii) the propagation
of policy shocks, iii) the variance of the structural disturbances and iv) the rest of the
economy. Moreover, we can do this examining short and long run features of the estimated
system. Both reduced form time varying coefficient and structural but constant coefficient
approaches are unable to separate the relative importance of i)-iv) in accounting for the
observed changes.

Contrary to the literature up to date, we construct posterior distributions which are
consistent with the information available at each ¢t. While such an approach complicates
estimation considerably, it provides a more reliable measure of time variations present in
the structural system and of the timing of the changes, if they exist. We innovate relative
to the existing literature in another important dimension. Because time variations in the
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coefficients induce important non-linearities, standard statistics summarizing the dynamics
in response to structural shocks are inappropriate. For example, since at each ¢ the coef-
ficient vector is perturbed by a shock, assuming that between ¢ + 1 and ¢ + k& no shocks
other than the monetary policy disturbance hit the system may give misleading results.
To trace out the evolution of the economy in response to structural shocks, we employ a
different concept of impulse response function, which shares similarities with those used in
Koop, Pesaran and Potter (1996), Koop (1996), and Gallant, Rossi and Tauchen (1993). In
particular, impulse responses are defined as the difference between two conditional expec-
tations, differing in the arguments of their conditioning sets. The combined use of a robust
identification scheme, of recursive analysis and of appropriately defined responses is crucial
to deliver meaningful answers to the questions at stake.

Four main conclusions emerge from our investigation. First, as in Bernanke and Mihov
(1998) and Leeper and Zha (2003), we find that excluding the Volker experiment, the
monetary policy rule has been quite stable over time. Interestingly, point estimates of
the coefficients obtained in the end of the 1990’s are similar to those obtained in the late
1970’s. Second, as in Sims and Zha (2004), we find posterior evidence of a decrease in the
uncertainty surrounding the structural disturbances of the system but no synchronization
in the timing of the changes in the variance of the shocks hitting various equations . Third,
we show that the transmission of policy shocks has been very stable: both the shape and the
persistence of output and inflation responses are very similar over time and quantitative
differences statistically small. Fourth, we find that structural inflation persistence has
statistically changed over time, that both monetary and non-monetary factors account for
its magnitude and that the relative contribution of monetary policy shocks is increasing
since the early 1980s.

We investigate, by way of counterfactuals, whether a more aggressive policy response
to inflation would have made a difference for the dynamics of output and inflation. Such
a stance would have reduced inflationary pressures and produced significant output costs
in 1979, but produced no measurable inflation effects in the 1980s or 1990s and a perverse
outcome in the 2000s. Hence, while the Fed could have had some room to improve economic
performance at the end of the 1970s, altering the policy response to observable variables,
it seems unlikely that such an alteration would have produced the changes observed in the
US economy. Finally, we show that our results are robust to a number of changes in some
auxiliary assumptions, in particular, the treatment of trends, the variables included in the
VAR and to the identification procedure.

Overall, while the crudest version of the "bad policy’

)

proposition has low posterior
support, the evidence appears to be consistent both with more sophisticated versions of
this proposition as well with the alternative "bad luck” hypothesis. To disentangle the
two interpretations, a model in which preferences, technologies and the distributions of the
shocks are allowed to change along with the preferences of the Fed is needed. While such a
model is still too complex to be analyzed and estimated with existing tools, approximations
of the type employed in Canova (2004), can shed important light on this issue.

The rest of the paper is organized as follows. Section 2 presents the reduced form model,
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describes our identification scheme and the approach used to obtain posterior distributions
for the structural coefficients. Section 3 defines impulse response functions which are appro-
priate for our TVC-VAR model. Section 4 presents the results and Section 5 concludes. T'wo
appendices describes the technical details involved in the computation of impulse responses
and of posterior distributions.

1.2 The empirical model

Let y; be a n x 1 vector of time series with the representation
yr = Ao + Argys—1 + Aopyeo+ oo+ Apili—p + &t (1.1)

where Ag; is a m x 1 vector; A;;, are n X n matrices, ¢ = 1,...,p, and & is a n x 1
Gaussian white noise process with zero mean and covariance ;. Let Ay = [Aoy, A1 t...Ap s
xy = [Ln, Yi_1---Y;—p), where 1, is a row vector of ones of length n . Let vec(-) denote the
stacking column operator and let 6; = vec(A}). Then (1.1) can be written as

Y = X{Ht + &t (12)

where X| = (I, @ x}) is a n x (np + 1)n matrix, I,, is a n x n identity matrix, and 6; is a
(np 4+ 1)n x 1 vector. If we treat 6; as a hidden state vector, equation (1.2) represents the
observation equation of a state space model. We assume that 8; evolves according to

p(0t|0t_1,§2t) o<I(9t)f(0t|9t_1,Qt) (13)

where Z(6;) is an indicator function discarding explosive paths of y;. Such an indicator
is necessary to make dynamic analysis sensible and, as we will see below, it is easy to
implement numerically. We assume that f(6;]0;—1,$;) can be represented as

Ht = Ht_l + ug (14)

where u; is a (np + 1)n x 1 Gaussian white noise process with zero mean and covariance
Q;. We select this simple specification because more general AR and/or mean reverting
structures were always discarded in out-of-sample model selection exercises. We assume that
¥y =3 Vt; that corr(ug,e¢) = 0, and that €, is diagonal. At first sight, these assumptions
may appear to be restrictive, but they are not. For example, the first assumption does not
imply that the forecast errors are homoschedastic. In fact, substituting (1.4) into (1.2) we
have that y; = X]0;_1 + v; where v; = & + X/u;. Hence, one-step ahead forecast errors
have a time varying non-normal heteroschedastic structure even assuming ¥; = X and
Q; = Q. The assumed structure is appealing since it is coefficient variations that impart
heteroschedastic movements to the variance of the forecasts errors (see Canova,1993, Sims
and Zha, 2004, and Cogley and Sargent, 2005, have alternative specifications). The second
assumption is standard but somewhat stronger and implies that the dynamics of the model
are conditionally linear.

16



Sargent and Hansen (1998) showed how to relax this assumption by equivalently letting
the innovations of the measurement equation to be serially correlated. Since in our setup
€t is, by construction, a white noise process, the loss of information caused by imposing
uncorrelation between the shocks is likely to be small. The third assumption implies that
each element of 8; evolves independently but it is irrelevant since structural coefficients are
allowed to evolve in a correlated manner.

Let S be such that ¥ = SS’. Let H; be an orthonormal matrix, independent of &,
such that H;H/ = I and let J; ' = H/S™'. J; is a particular decomposition of ¥ which
transforms (1.2) in two ways: it produces uncorrelated innovations (via the matrix S) and
gives a structural interpretation to the equations of the system (via the matrix H;). We
have

g =Aog+ > Aj—j + Jrey (1.5)
J
where e; = J; 'e; satisfies E(e;) = 0, E(ese}) = I,,. Equation (1.5) represents the class of
"structural” representations of y; we are interested in. For example, a standard Cholesky
representation can be obtained setting S to be lower triangular and H; = I, and more
general patterns of zero restrictions result choosing S to be non-triangular and Hy = I,,. In
this paper S is arbitrary and H; implements interesting economic restrictions.
Letting Cy = [J; " Aot, J; YAy, ..., J7 Ay, and v, = vec(C}), (1.5) can be written as

Jt_lyt = Xt/’}/t + e (16)

As in fixed coefficient VARs, there is a mapping between ~; and 6; since y; = (Jt_1 & Lp)b:
where I, is a (np + 1) X (np + 1) identity matrix. Whenever Z(6;) = 1, we have

M= (Jt_l ® Inp)(Jt_l ® Inp)_l%—l + (1.7)

where 1, = (Jt_l & Inp)us, the vector of shocks to structural parameters, satisfies E(n;) = 0,
Emm,) = E((J7' @ Lp)uwh(J;7 @ Ip)'). Hence, the vector of structural shocks & =
[e}, ;] is a white noise process with zero mean and covariance matrix

I, 0

0 E((Jt_l X Inp)utu:t(*]t_l & Inp)’)

Since each element of +; depends on several w;; via the matrix J;, shocks to structural

Eftfé =

parameters are no longer independent.

The structural model (1.6)-(1.7) contains two types of shocks: disturbances to the obser-
vations equations, e;, and disturbances to structural parameters, 7;. While the formers have
the usual interpretation, the latters are new. To understand their meaning, suppose that
the n — th equation of (1.6) is a monetary policy equation and suppose we summarized it
by ¥t = [Yn—1)(np+1),ts > yn(np+1)7t]’, which describes, say, how interest rates respond to the
developments in the economy, and the policy shock e, ;. Then, if variations in the parame-
ters regulating preferences and technologies are of second order, an assumption commonly
made in the literature, 4; captures changes in the preferences of the monetary authorities
with respect to developments in the rest of the economy.
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1.3 Impulse Responses

One question we would like to address is whether the transmission of monetary policy shocks
has changed over time. In a fixed coefficient model, impulse response functions provide
information on how the variables react to policy shocks. Impulse responses are typically
computed as the difference between two realizations of y; ;4 which are identical up to time
t, but one assumes that between ¢ + 1 and ¢ + k a shock in e; occurs only at time ¢ + 1 and
the other that no shocks take place at all dates between t+1 andt+k,k=1,2,...,. Ina
TVC model, responses computed this way are inadequate since they disregard the fact that
between t + 1 and t + k the coefficients of the system may also change. Hence, meaningful
impulse response functions ought to measure the effects of a shock in e;; 1 on y;4 4, allowing
future shocks to the coefficients to be non-zero.

In order to understand the mechanics of impulse response functions in our setup let us
rewrite model (1.1) in companion form

Vi =t +Aryi—1+ e

where y; = [y.-y1_pi1]’s € = [€10...0]" and py = [A5,0...0]" are np x 1 vectors and

t pr—
Lip-1)  Onp-1)m

where A; = [Ay...Ap ] is an n X np matrix, I,;,_1) is an n(p — 1) x n(p — 1) identity matrix
and Op(p—1),, 18 @ n(p — 1) x n matrix of zeros. Iterating k period forward and omitting for
simplicity the constant term, we obtain

Vitk = Aigio Aryi—1 + Appr Apprer + Appp Aypoen + oo+ Appi€rpn—1 + €4k

Let S; j(M) be a selection function, a function which selects the first ¢ rows and j columns
of the matrix M. Taking as a benchmark case the case of no-shock occurrence, and as-
suming that coefficients and shocks €; are uncorrelated, the matrix of dynamic multiplier
Spn(Atsk...Arp1) describes the effects of e, on yyy, while the effects associated to struc-
tural shocks can be derived from the relation e; = Jye; and are given by S, p(A¢yg...Avp1)J;.
Therefore impulse response functions to a shock e; at horizon k are given by

IR(t, k) = Wy iy

where Wy = Spn(A¢yk...Ary1). Thus for each ¢ = 1,...,T we have a path of impulse
response defined by the sequence {¥,;;J;}7_;. In this class of models impulse response
functions are time-varying and they collapse to traditional impulse response functions only
when autoregressive coeflicients are constant.

A second complication is that in the TVC model is that we also have shocks to the sys-
tematic component of the monetary policy, that is shocks to the coefficients of the observed
variables in the monetary policy rule. Unlike equations shocks, the effects of shocks to the
coefficients produce highly non linear dynamics since they enter in a multiplicative way. In
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order to trace out the effects of a change in the monetary policy preferences to observed
variables we proceed as follows. We define a realization of the impulse response functions at
horizon k to a shocks 7;; as the difference between two realizations, yf ), and yto ' ,» which are
identical except for the shock n;; which is equal to § in the first and zero in the second. For
instance, let us consider the univariate AR(1) process y; = ary¢t—1 + €¢, ar = az—1 + ug. The
contemporaneous effect of a shock wuy is given by (a;—1406)ys—1 —(ar—1+0)y—1 = dy;—1 and at
horizon one will be (a;—1 + 8 +upr1)yd — (ar—1 +0+u1)y) = 6y + (are1 —wes1) (9 —y?) =
(5yf + (at41 — wgy1)0ys—1. Therefore impulse response functions to nit are random vari-
ables that depend on the coefficients at time ¢, future shocks and, unlike impulse response

functions to equation shocks, also on the value of the initial vector of time series!.

1.4 Identification

In our setup, identifying structural shocks is equivalent to choosing H;. As in Faust (1998),
Canova and De Nicolé (2002) and Uhlig (2005), we select H; so that the sign of the impulse
response functions at t + k, k = 1,2,..., K1 matches some theoretical restriction. In partic-
ular, we assume that a contractionary monetary policy shock must generate a non-positive
effects on output, inflation and nominal balances and a non-negative effect on the interest
rate for two quarters. (see Gambetti et al., 2005, for a class of DSGE models which robustly
generates this set of restrictions).

We choose sign restrictions to identify shocks for two reasons. First, the contempora-
neous zero restrictions conventionally used are often absent in those theoretical (DSGE)
models economists like to use to guide the interpretation of VAR results. Second, a set zero
restrictions which satisfies the standard order condition for identification, does not deliver
an identified system in the case of indeterminacy (in this case, there are n+1 shocks). Sign
restrictions do not suffer from this problem. Moreover, as shown by Lubik and Schorfheide
(2004), a small scale version of the model used in Gambetti et al (2005) delivers the same
qualitative implications we use as identifying both in determinate and in indeterminate
scenarios. To implement sign restrictions we proceed as follows. (i) From the posterior
distribution we draw 6 and we iterate in the non linear evolution equation to compute
9%1{ (ii) We draw a realization of the variance covariance matrix of the reduced for shocks
¥ and we compute its square root S. (iii) We draw a candidate for H as follows: we draw a
(n x n) matrix X with each element having an independent standard normal distribution,
and then we take its QR decomposition X = QH, with the diagonal of R normalized to
be positive. H is uniformly distributed. (iv) We compute impulse response functions. (v)
If sign restrictions are satisfied we collect the draw otherwise we discard it and go to point

(i).

! As shown by Canova and Cambetti (2005), the so defined impulse response functions coincide with the

difference between two conditional expectations, as in Gallant et al. (1996), Koop et al. (1996), where both
information sets include the history of the data (y1,...,y:), the states (01,...,60:), the structural parameters
of the transition equation (which are function of J;), all future shocks and they differ because in the former
a shock of size § is included while in the second it is not.
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In the last section we report, as a robustness check, results obtained identifying policy
shocks as the third element of a Cholesky system, i.e. we let the interest rate to react to
output and inflation but assume that it has no effects within a quarter on these variables.
Since we are interested in recovering the systematic and non-systematic part of monetary
policy and in analyzing how the economy responds to their changes over time, we arbitrarily
orthogonalize the other disturbances without giving them any structural interpretation.

1.5 Estimation

The model (1.6)-(1.7) is estimated using Bayesian methods. That is, having specified prior
distributions for all the parameters of interest, we use data up to ¢ to compute posterior
distributions of the structural parameters and of continuous functions of them. Since our
sample goes from 1960:1 to 2003:2, we initially estimate the model for the sample 1960:1-
1977:3 and then reestimate it moving the terminal date by one quarter up to 2003:2.

Posterior distributions for the structural parameters are not available in a closed form.
MCMC methods are used to simulate posterior sequences consistent with the information
available up to time t. KEstimation of reduced form TVC-VAR models with or without
time variations in the variance of the shocks to the transition equation is now standard
(see e.g. Cogley and Sargent, 2001): it requires treating the parameters which are time
varying as a block in a Gibbs sampler algorithm. Therefore, at each ¢ and in each Gibbs
sampler cycle, one runs the Kalman filter and the Kalman smoother, conditional on the
draw of the other time invariant parameters. In our setup the calculations are complicated
by the fact that at each cycle, we need to obtain structural estimates of the time varying
features of the model. This means that, in each cycle, we need to apply the identification
scheme, discarding paths which are explosive and paths which do not satisfy the restrictions
we impose. The computational costs are compounded because we need to run the Gibbs
sampler more than a 100 times, one per sample we analyze. Convergence was checked using
a CUMSUM statistic. The results we present are based on 10,000 draws for each ¢2.

Because of the heavy notation involved in the construction of posterior distributions
and the technicalities needed to produce draws from these posteriors, we present the details
of the estimation approach in the appendix.

1.6 The Results

The data we use is taken from the FREDII data base of the Federal Reserve Bank of San
Louis. In our basic exercise we use the log of (linearly) detrended real GDP, the log of first
difference of GDP deflator, the log of (linearly) detrended M1 and the federal funds rate in
that order. Systems containing other variables are analyzed in the next section.

We organize the presentation of the results around four general themes: (i) Do reduced
form coefficients display significant variations? (ii) Are there synchronized changes in the

2Total computational time for each specification on a Pentium IV machine was about 100 hours.
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structural coefficients and/or in the structural variances of the model? (iii) Are there
changes in the propagation of monetary policy disturbance in the short and the long run?
(iv) Would it have made a difference for macroeconomic performance if monetary policy
were more aggressive in fighting inflation, in particular, at the end of the 1970’s?

1.6.1 The evolution of reduced form coefficients

The first panel of figure 1 plots the evolution of the mean of the posterior distribution
of the change in reduced form coefficients in each of the four equations. The first date
corresponds to estimates obtained with the information available up to time 1977:3, the
last one to estimates obtained with the information up to time 2003:2.

Several interesting aspects of the figure deserve some comments. First, consistent with
the evidence of Sargent and Cogley (2001) and (2005) all equations display some coefficient
variation. In terms of size, the money (third) and interest rate (fourth) equations are
those with the largest changes, while variations in the coefficients of the inflation (second)
equation are the smallest of all. Second, while changes appear to be stationary in nature,
there are few coefficients which display a clear trend over time. For example, in the output
(first) equation, the coefficient on the first lag of money is drifting downward from 0.6 in
1977 to essentially zero at the end of the sample; while in the money equation, the first
lagged money coefficient is drifting upward from roughly zero in 1977 to about 0.9 in 2002.

Perhaps more importantly, there is little evidence of a once-and-for-all structural break
in the coefficients of the output and inflation equation (i.e. coefficients do not jump at
some date and stays there afterward). Third, the majority of the changes appear to be
concentrated at the beginning of the sample. The 1979-1982 period is the one which displays
the most radical variations; there is some coefficient drift up to 1986, and after that date
variations appear to be random and small.

Finally, centered 68% posterior bands for the coefficients at the beginning (1977:3) and
at the end of the sample (2003:2) overlap in many cases. Therefore, barring few relevant
exceptions, instabilities appear to be associated with the Volker (1979-1982) experiment
and the adjustments following it. Furthermore, they are temporary and mean reverting in

nature.

Figure 2 reports the posterior mean drift of inflation and a posterior mean of inflation
persistence obtained in the system. The mean drift of inflation tracks well the ups and
downs of inflation over the period and the posterior mean of inflation persistence shows a
dramatic decline at the beginning of the 1980’s. Both of these patterns agree with those
presented by Cogley and Sargent (2005), despite the fact that the VAR system differ in the
number and kind of variables used. To go beyond the documentation of patterns of time
variations in reduced form statistics and study whether monetary policy is responsible for
the changes, we next examine the dynamics of structural coefficients.
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1.6.2 Structural time variations

The second panel of figure 1 presents the evolution of the posterior mean of the changes
in the lagged structural coefficients of each equation at each date in the sample. The first
date corresponds again to estimates obtained with the information up to time 1977:3, the
last one to estimates obtained with the information up to time 2003:2.

It is immediate to notice that changes in the structural coefficients are typically larger
and more generalized than those in the reduced form coefficients. The output and the
monetary policy equations are those displaying the largest absolute coefficient changes -
these are up to 4 times as large as the largest absolute changes present in the other two
equations - while the coefficients of the structural inflation equation are still the most
stable ones. Furthermore, except for the money (demand) equation, most the variations
are concentrated in the first part of the sample, are large in size, statistically and often
economically significant.

More interestingly from our point of view, there is a pattern in the structure of time
variations. The output equation displays two regimes of coefficient variations (one with
high variations up to 1986 and one with low variations thereafter) and, within the high
volatility regime, the largest coefficient variations occur in 1986. The inflation equation
shows the largest coefficient changes up to 1982 and, barring few exceptions, a more stable
pattern resulted since then. Finally, our identified monetary policy equation displays large
and erratic coefficient changes up to 1986 and coefficients variation is considerably reduced
after that. Since the timing of the variations in the structural coefficients of the output and
inflation equations are somewhat asynchronous with those of the monetary policy equation,
figure 1 casts some doubts on a causal interpretation of the observed changes running from
changes in the policy equation to changes in the dynamics of output and inflation.

Figure 3 zooms in on the evolution of the coefficients of the monetary policy equation
(which is normalized to be the last one of the system). Three facts stand out. First,
posterior mean estimates of all contemporaneous coefficients are humped shaped: they
significantly increase from 1979 to 1982 and smoothly decline afterwards. Second, although
all contemporaneous coefficients are higher at the end than at the beginning of the sample,
they are typically lower than the conventional wisdom would suggest. In particular, the
contemporaneous inflation coefficient peaks at about 1.2 in 1982 and then declines to a
low 0.3, on average, in the 1990s and this pattern is also shared by the two lagged inflation
coefficients. In this sense, Alan Greenspan’s regime was only marginally more effective than
Arthur Burns’s in insuring inflation stability: interest rate responses to inflation movements
were barely more aggressive in the 1990s than they were in the 1970s. Note also that,
again excluding the beginning of the 1980’s, the estimated monetary policy rule displayed
considerable stability, in line with the subsample evidence presented, e.g. by Bernanke and
Mihov (1998). Since macroeconomic performance was considerably different in the two time
periods, the size and characteristics of the shocks hitting the US economy in the two periods
must have been different. We will elaborate on this issue later on.

Our estimated policy rule displays a six fold-increase in all contemporaneous and first
lagged coefficients from 1979 to 1982. Interestingly, this increase is not limited to the
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inflation coefficients, but also involves output and the money coefficients. The high respon-
siveness of interest rates to economic conditions is consistent with the idea that by targeting
monetary aggregates the Fed forced interest rates to jump to equilibrate a ”fixed” money
supply with a largely varying money demand - the period was characterized by a number
of important financial innovations. The pervasive instability characterizing this period and
the subsequent three years adjustments contrasts with the substantial stability of the coef-
ficients of the monetary policy rule in the rest of the sample. Hence, excluding the ” Volker
experiment”, the systematic component of monetary policy has hardly changed over time
and if, any change must be noted, it is more toward a decline in the responsiveness of inter-
est rates to economic conditions. This outcome is consistent with the ”business as usual”
characterization of monetary policy put forward by Leeper and Zha (2003) and with the
time profile of the policy rule recursively estimated in a DSGE model (see Canova, 2004).

The evidence we have so far collected seems to give little credence to the crudest version
of the ”bad policy” hypothesis: there is no permanent increase in the inflation coefficient
of the policy rule, nor clear evidence that the Taylor’s principle was violated in the 1970’s
and satisfied afterwards. Both more sophisticated versions of the "bad policy” and the
"back luck” hypotheses suggest that alterations in the distribution of the shocks hitting
the economy are responsible for the improved macroeconomic outcome. In the former case,
changes in the variance of policy shocks ”caused” the observed changes; in the latter case,
policy has little or nothing to do with the dynamics of output and inflation which are simply
driven variations in the distributions of the shocks hitting the two equations.

Figure 4 presents some evidence on this issue. In the top panel we report the evolution
of the posterior mean estimate of the variance of the structural forecast errors and, in the
bottom panel, the variations produced by its heteroschedastic component, i.e the variations
induced by product of the estimated innovations in the coefficient and the regressors of the
model. Three features are of interest. First, the forecast error variance in three of the four
equations is humped shaped: it shows a significant increase from 1979 to 1982 followed by
a smooth decline. As it happened with structural coefficients, the posterior mean estimate
of the variance of the shocks in the end of the sample is roughly similar in magnitude to the
posterior mean estimate obtained in 1977. Second, the time profile of the changes in the
forecast error variances of the output and the inflation equations are not synchronized with
the variations in the forecast error variance of our estimated policy equation, which starts
declining significantly after 1986. Third, the contribution of changes in the coefficients to
the forecast error variance is much larger in the output and inflation equations than in the
other two equations up to 1982 but similar after that date. Shocks to the model contribute
most to the variability of the forecast error between 1979 and 1982 - they account for about
50% of the variance in the output and inflation equations - but their importance declined
after 1982 and the decline is stronger in the inflation equation.

1.6.3 Changes in the propagation of monetary policy disturbances?

Figure 5 reports the posterior mean responses of output and inflation to identified monetary
policy shocks in each date of the sample, for horizons running from 1 to 12 quarters. We do
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not report interest rate responses because they are similar over time and quite standard in
shape and magnitude: after the initial impulse, the increase dissipates rather quickly and
becomes insignificantly different from zero after the 3th quarter for each date in the sample.

The shape of both output and inflation responses is roughly unchanged over time. Out-
put responses are U-shaped; a through response occurs after about 3 quarters and there is a
smooth convergence to zero after that date. Inflation responses are also slightly U-shaped;
the effect at the one quarter horizon is typically the largest, and responses smoothly con-
verge toward zero afterwards.

There is a small quantitative difference in the mean responses over time. For output,
the posterior mean of the instantaneous response is always centered around -0.15 and the
size of the through responses at lag 3 varies in the range (-0.20,-0.05). For inflation, minor
differences occur at lag one (posterior mean varies between -0.07 to -0.16) while in 1978
responses are more persistent than at all the other dates at horizons ranging from 3 to 8.

Differences in inflation responses are both statistically and economically small. The
posterior 68% confidence band for the largest discrepancy (the one at lag 1) includes zero
at almost all horizons and, if we exclude the initial three years, the time path of inflation
responses is unchanged over time. The posterior 68% confidence band for the largest dis-
crepancy in output responses (the one at lag 3) does at times exclude zero - the trough
response in 1982 appear to be significantly deeper than the trough response in 1978 and
1979 and at some dates after 1992 - but differences are economically small: the maximum
discrepancy in the cumulative output multiplier twelve quarters ahead is only 0.5%. In
other words, a one percent increase in interest rates produced output responses which differ
over time on average by 0.04% points at each horizon. Overall, the dynamics induced by
monetary policy shocks are remarkably stable over time and, in agreement with the results
of section 5.2, responses in the end of the 1990’s look similar, in shape and size, to those in
the end of the 1970’s.

1.6.4 Inflation Dynamics and Monetary Policy

Cogley and Sargent (2001,2005) have examined measures of core inflation to establish their
claim that monetary policy is responsible for the observed changes in inflation dynamics.
They define core inflation as the persistent component of inflation, statistically measured
by the zero frequency of the spectrum (that is, by the sum of all autocovariances of the
estimated inflation process), and show i) persistence has substantially declined over time
and ii) there is synchronicity between the changes in persistence and a narrative account of
monetary policy changes. Pivetta and Reis (2004), using univariate conventional classical
methods, dispute the first claim showing that differences over time in two measures of in-
flation persistence are statistically insignificant. Since our study has so far concentrated on
short /medium run frequencies, we turn to investigate the longer run relationship between
inflation and monetary policy. In particular, we are curious as to whether different frequen-
cies of the spectrum carry different information and whether our basic conclusions on the
role of monetary policy are altered.

Our analysis differs from existing ones in two important respects: we use output in
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place of unemployment in the estimated system; we measure persistence using the estimated
structural model. While the first difference is minor, the second is not. In fact, thanks the
orthogonality of the structural shocks and of the ordinates of the spectrum, we can not only
to describe the evolution of the spectrum of inflation over time, but also directly measure
of proportion of the spectral power at frequency zero due to monetary policy shocks and
describe its evolution over time. From the structural MA representation of the system we
have that m, = >71" | ¢ (¢)eir, where ej; is orthogonal to ej;. Hence the spectrum of inflation
at Fourier frequencies w is Sr(w) = 5= >i-; ¢i¢(w)|?0? and the component at frequency zero
1

due to monetary policy shocks is Si(w = 0) = 5=|¢ne(w = 0)[202.

The top panel of figure 6 shows the time evolution of the posterior mean of the spectrum
of inflation at the zero frequency and the contribution that monetary policy shocks had in
shaping its changes. The estimate of the zero frequency displays an initial increase in
1978-1980 followed by a sharp decline the year after; since 1981 the estimated posterior
mean of the zero frequency of the spectrum has been relatively stable (with the exclusion
of 1991). The initial four fold jump and the following ten fold decrease are visually large
and statistically significant. In fact, the bottom panel of figure 6 indicates that the 68%
posterior band for the differences between the log spectrum in 1979 and 1996 (the date with
the lowest estimates) does not include zero at the zero frequency. At all other frequencies,
differences over time are negligible both in terms of size and shape. Hence, except for
the zero frequency, the posterior distribution of the spectrum of inflation has also been
relatively stable. What is the role of monetary policy shocks? The top panel of figure 6
indicates that the two graphs track each other reasonably well suggesting that, at least in
terms of timing, monetary policy shocks are important in determining inflation persistence
dynamics. Second, the contribution of monetary policy to inflation persistence varies over
time: fluctuations are large and the percentage explained ranges from about 20 to about
75 percent. Interestingly, there is a significant trend increase since 1981. Third, there
is a substantial portion of inflation persistence (roughly, 50 percent on average) which
has nothing to do with monetary policy shocks. While the determination of the forces
behind this large percentage is beyond the scope of this paper, one can conjecture that real
and financial factors could account for these variations. As mentioned, the years between
1978 and 1982 were characterized by financial innovations and high nominal interest rate
variability. The pattern present at the zero frequency over this period is consistent with
these two features while the subsequent decline is consistent with the reduction of the
volatility of interest rate disturbances shown in figure 4.

In conclusions, there is visual and statistical evidence of instabilities in the posterior
mean of inflation persistence. Changes in the posterior mean of inflation persistence go
hand in hand with changes in the contribution of monetary policy shocks. Perhaps more
importantly, we find that the contribution of monetary policy shocks to variations in the
posterior means of inflation persistence is smaller than expected, that factors other than
monetary policy are crucial to understand its evolution over time, and that the relative
contribution of monetary policy has increased since the early 1980s.
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1.6.5 What if monetary policy would have been more aggressive?

It is common in the literature to argue, by mean of counterfactuals, that monetary policy
failed to perform an inflation stabilization role in the 1970s (see e.g Clarida, Gali and
Gertler, 2000, or Boivin and Giannoni, 2002) and that, had it followed a more aggressive
stance against inflation, dramatic changes in the economic performance would have resulted.
While exercises of this type are meaningful only in dynamic models with clearly stated
microfundations, our structural setup allows us to approximate the ideal type of exercise
without falling into standard Lucas-critique type of traps. In fact, to the extent that
the monetary policy equation we have identified is structural, and given that we estimate
posterior distributions which are consistent with the information available at each t, we
can examine what would have happened if the policy response to inflation was significantly
stronger, where by this we mean a (permanent) two standard deviations increased in the
inflation coefficients above the estimated posterior mean. Figure 7 plots the percentage
output and inflation changes from the value of the baseline year which would have been
produced at selected dates in the sample. To interpret the numbers note, e.g., that the
maximum inflation response in 1979 (-5 percent) correspond to a 1.0 point absolute decline
in the annual inflation recorded at that date (which was around 19 percent) and that a 15
percent decline in 2003, at the annual rate of 2.5 percent, corresponds to an absolute fall of
less than a 0.4 points.

A permanent more aggressive stance would have had important inflation effects in 1979,
primarily in the medium run. However, at all dates in the 1980s and 1990s, the effect would
have been statistically negligible. Interestingly, if such a policy were used in 2003, it would
have produced a small but significant medium run increase in inflation. A tougher stance
on inflation, however, is not painless: important output effects would have been generated.
In 1979, the fall would have lasted about four years while the 7 percent fall recorded in 2003
would have lasted for quite a long time. The Phillips curve trade-off, measured here by the
conditional correlation between output and inflation in response to the change, displays an
interesting pattern: it is positive and significant in 1979, it is zero in 1983, and it is negative
in 1992 and 2003, and at the last date it is statistically significant. While there are many
reasons which can explain the change in the sign of the trade-off, a better control of inflation
expectations and an improved credibility in the policy environment are clearly consistent
with this pattern.

Overall, while there was room for stabilizing inflation in the end of the 1970, it is not
clear that a tougher inflation stance would have been costless in terms of output. There
is a sense in which the conventional view is right: being tough on inflation in the end of
the 1970s would have produced a different macroeconomic outcome than in the end of the
1990s. However, the reasoning seems to be wrong: being tough on inflation is dangerous
when the slope of the Phillips curve trade-off is different from the conventional one.
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1.7 Robustness analysis

There is a number of specification choices we have made which may affect the results. In
this section we analyze the sensitivity of our conclusions to variations in the identification
method, in the treatment of trends, and in the variables included in the VAR. All the results
we have presented so far have been produced identifying monetary policy shocks using sign
restrictions on the dynamics of money, inflation and output. Would the pattern of time
variations, the estimated policy rule and the time profile of impulse responses be altered if an
alternative identification scheme was used? Figure 8 shows the evolution of the variance of
the forecast errors and of output and inflation responses obtained identifying policy shocks
with a Cholesky decomposition. Since here contemporaneous coefficients are time invariant,
the evolution of structural coefficients reproduces the pattern of time variations present in
the reduced form coefficients (they are simply multiplied by a constant). Therefore, the
discussion of subsection 5.1 apply here without a change. Overall, the main conclusions
we have derived are robust to this change: there are time variations in the coefficients
but they are not synchronized across equations; the sum of the inflation coefficients in the
policy equation is roughly the same in the end of the 1970s and of the 1990s; the evolution
of the estimated forecast error variances reproduces the one present in figure 4; impulse
responses are broadly similar across time. Clearly, there are changes in pattern of responses
relative to our baseline case - inflation increases for at least a year after an interest rate
shock. However, it is still true, that differences over time in the posterior mean of output
and inflation responses are small and insignificant. Some feel uncomfortable with dynamic
exercises conducted in a system where linearly detrended output and linearly detrended
money are used. One argument against this choice is that after these transformations
these two variables are still close to be integrated and are not necessarily cointegrated.
Hence, the dynamics we trace out may be spurious. A second argument, put forward in
Orphanides (2004), has to do with the fact that measures of the output gap obtained linearly
filtering the data are plagued by measurement error. This measurement error is presumably
reduced when output growth is employed. To verify whether arguments of this type alter
our conclusions we have repeated estimation using the growth rate of output and of M1 in
place of the detrended values of output and M1. A sample of the results appears in figure 9,
where we plot the evolution of the posterior of the contemporaneous policy coefficients, of the
variances of the forecasts errors and of the time profile of output and inflation in response
to a policy shock, identified using sign restrictions. Once again, our basic conclusions
remain unchanged. In particular, the variability of GDP and inflation forecast errors in the
1990’s is about half what it was in the 1980’s and 1970’s; policy coefficients are stable; the
transmission of policy shocks is stable and numerical difference emerge only in the response
of inflation in the medium run, which is stronger at the beginning of the sample than at
the end. We have also examined the sensitivity of our conclusions also to changes in the
variables of the VAR. It is well known that small scale VAR models are appropriate only to
the extent that omitted variables exert no influence on the dynamics of the included ones.
A-priori it is hard to know what variables are more important and to check if our system
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effectively marginalized the influence of all relevant variables. We have therefore repeated
our exercise substituting the unemployment rate to detrended output. Figure 10 reports the
evolution of the posterior mean of the contemporaneous policy coefficients, of the variances
of the forecast errors and of the responses of unemployment and inflation to a policy shock,
identified via sign restrictions. Also in this case, our conclusions appear to be robust.

Finally, it is now common to examine monetary policy in empirical and theoretical
models in which money play no role. We believe that such a practice is dangerous in
a system like ours for two reasons. First, omission of money may cause identification
problems (demand and supply of currency can not be disentangled). Second, money was
a crucial ingredient in the considerations that shaped monetary policy decisions, at least
up to the end of the 1980’s. Commentators have argued that the inclusions of money in
the policy rule may lead to an improper characterization of the policy decision of the Fed,
especially during Greenspan’s tenure. Figure 11 presents a sample of the results obtained
with a trivariate system which excludes money. Our basic conclusions are robust also to
this change. Interestingly, the posterior mean of the contemporaneous output coefficient
in policy rule is counterintuitively negative and significant, suggesting that such a system
could be misspecified.

1.8 Conclusions

This paper provides novel evidence on the contribution of monetary policy to the struc-
tural changes observed in the US economy over the last 30 years. We use a time varying
structural VAR model to analyze the issues. Our exercise is truly recursive and, method-
ologically, we innovate on the existing literature in two important respects: we provide a
sign scheme to identify structural shocks in a TVC model and a way to calculate impulse
responses, which is coherent with the assumptions of the model. These three feature to-
gether allows us to assess how much time variation there is in the propagation of policy
shocks, both in the short and in the long run, and to run counterfactuals to understand
whether permanent changes in the systematic component of policy would have significantly
altered macroeconomic performance.

We would like to emphasize four main conclusions of our investigation. First, excluding
the 1979-1982 period, the posterior distribution of the policy coefficients has been relatively
stable over time. Second, there is a clear trend decline in the posterior mean of the variability
of the shocks hitting the economy but the changes observed in the output and inflation
equations are unsynchronized with those present in the policy equation. Third, the posterior
distribution of responses of output and inflation to policy shocks has been relatively stable
over time, while changes in posterior distribution of inflation persistence appear to be
partially related to changes in the contribution of policy shocks. Fourth, a more aggressive
policy would have decreased inflation in the medium run in 1979 but not later. If this policy
would have been implemented, output costs would have been large.

Since our results go against several preconceived notions present in the literature, it is
important to highlight what are the features of our analysis which may be responsible for the
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differences. As repeatedly emphasized, our analysis uses a structural model, it is recursive
and employs a definition of impulse responses which is consistent with the nature of the
model we use. Previous studies which used the same level of econometric sophistication
(such as Cogley and Sargent, 2001 and 2005) have concentrated on reduced form estimates
and were forced to use the timing of the observed changes to infer the contribution of
monetary policy to changes in output and inflation. Our approach allows not only informal
tests but also to quantify a-posteriori the relationship between monetary policy, output and
inflation dynamics. In studies where a semi-structural Cholesky based model is used, as
in Primicieri (2005), the analysis is not recursive and the impulse responses are computed
in the traditional way. Relative to earlier studies such as Bernanke and Mihov (1998),
Hanson (2001) or Leeper and Zha (2003), which use subsample analyzes to characterize the
changes over time in structural VARs, we are able to precisely track the evolution of the
coefficients over time and produce a more complete and reliable picture of the relatively
minor variations present in the monetary policy stance in the US.

Our results agree with those obtained recursively estimating a small scale DSGE model
with Bayesian methods (see Canova, 2004) and contrast with those of Boivin and Giannoni
(2002) who use an indirect inference principle to estimate the parameters of a DSGE model
over two subsamples. We conjecture that identification problems could be responsible for the
difference since the latter method has problems exploring flat objective functions. Finally,
our results are consistent with those of Sims and Zha (2004), despite the fact that, in
that paper, variations in both the coefficients and the variance are accounted for with a
Markov switching methodology. Relative to their work, our analysis emphasizes that factors
other than monetary policy could be more important in explaining the structural changes
witnessed in the US economy and provides recursive impulse response analysis.

While the decline in the variance of the shocks hitting both the economy and the coeffi-
cients of its structural representation seems to suggest that exogenous reasons are responsi-
ble for the changes in the US economy, it is important to emphasize that our conclusions are
consistent both with the analysis of McConnell and Perez Quiros (2001) and with the idea
that a more transparent policy process has reduced the volatility of agent’s expectations
over time. It is therefore important to extend the current study, enlarging the number of
variables included in the structural model, identifying other sources of shocks and disentan-
gling possible factors which may be behind the decline in the volatility of structural shocks.
Also, we have repeatedly mentioned that the monetary policy rule is similar in the 1970s
and in the end of the 1990s. Why is it that inflation in the 1990s did not follow the same
pattern as in the 1970s? What is the contribution of technological changes to this improved
macroeconomic framework? We plan to study these and related issues in future work.
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Figure 1: Mean changes: reduced form coefficients (top), structural coefficients (bottom).
In clockwise direction GDP, inflation. money and interest rate.
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Figure 2: Reduced form mean inflation drift (top) and mean inflation persistence (bottom).
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Figure 5: Structural impulse response to monetary policy shocks
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Chapter 2

The structural dynamics of US
output and inflation: what explains
the changes?

2.1 Introduction

A growing amount of evidence suggests that the US economy has fundamentally changed
over the last couple of decades. For example, Blanchard and Simon (2000), McConnell
and Perez Quiros (2001), Sargent and Cogley (2001) and Stock and Watson (2003) have
reported a marked decline in the volatility of real activity and inflation since the early 1980s
and a reduction in the persistence of inflation over time. What causes these changes? The
recent literature has paid particular attention to changes in policymakers’ preferences. For
example, Clarida, Gali and Gertler (2000), Cogley and Sargent (2001) and (2005), Boivin
and Giannoni (2002), and Lubik and Schorfheide (2004) have argued that monetary policy
was "loose” in fighting inflation in the 1970s but became more aggressive since the early
1980s. Leeper and Zha (2003), Sims and Zha (2004), Primiceri (2005), and Canova and
Gambetti (2004) are critical of this view since they estimate a stable policy rule and find
the transmission of policy shocks roughly unchanged over time.

There has been a resurgence of interest in the last few years in analyzing the dynamics
induced by technology shocks, following the work of Gali (1999), Christiano, Eichenbaum
and Vigfusson (2003), Uhlig (2004), Dedola and Neri (2004), Francis and Ramey (2005)
and others. However, to the best of our knowledge, the link between structural changes
and the way technology shocks are transmitted to the economy has not been made. This
is a bit surprising given that the increase in productivity of the 1990s was to a large extent
unexpected (see e.g. Gordon, 2003) and that it may have produced changes in the way
firms and consumers responded to economic disturbances. Similarly, the way fiscal policy
was conducted in the 1970s and the early 1980s differed considerably from the way it was
conducted in the 1990s. For example, large deficits in the 1980s were turned into surpluses
in the 1990s. Furthermore, benign neglect about the size of the public debt has been
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substituted by a keen awareness of the wealth effects and of the inflation consequences
that large debts may have. Studying whether the dynamics induced by technology and
fiscal shocks have changed over time may help to clarify which structural feature of the
US economy has changed and whether variations in output and inflation dynamics reflect
changes in the propagation mechanism or in the variance of the exogenous shocks.

This paper provides evidence on these issues investigating the contribution of technology,
government expenditure and monetary disturbances to the changes in the volatility and in
the persistence of US output and inflation. We employ a time varying coefficients VAR
model (TVC-VAR), where coefficients evolve according to a nonlinear transition equation,
which puts zero probability on paths associated with explosive roots, and the variance of
the forecast errors is allowed to vary over time. As in Cogley and Sargent (2001,2005) we
use Markov Chain Monte Carlo (MCMC) methods to estimate the posterior distributions
of the quantities of interest. However, contrary to these authors, and as in Canova and
Gambetti (2004), we analyze the time evolution of structural relationships. To do so, we
identify structural disturbances which are allowed to have different features at different
points in time. In particular, we permit time variations in the characteristics of the shocks,
in their variance and in their transmission to the economy.

Our analysis is recursive. That is, we can construct posterior distributions for structural
statistics, using the information available at that point in time. This complicates the com-
putations significantly - a MCMC routine is needed at each t where the analysis is conducted
- but provides a sharper picture of the time evolution of structural relationships. With this
strategy our analysis becomes comparable with the one of Canova (2004), where a small
scale DSGE model featuring three types of shocks with similar economic interpretations,
is recursively estimated with MCMC methods. We identify structural disturbances using
robust sign restrictions obtained from a DSGE model featuring monopolistic competitive
firms, distorting taxes, utility yielding government expenditure, and rules describing fiscal
and monetary policy actions, which encompasses RBC style and New-Keynesian style mod-
els as special cases. We construct robust restrictions allowing the parameters to vary within
a range which is consistent with statistical evidence and economic considerations. We focus
on sign restrictions for several reasons. First, magnitude restrictions typically depend on
the parameterization while the sign restrictions we employ are less prone to such problem.
Second, our model fails to deliver the full set of zero restrictions one would need to identify
the three shocks with more conventional approaches. Third, the link between the theory
and the empirical analysis is more direct, making the analysis transparent and inference
stand on more solid ground.

Because time variations in the coefficients induce important non-linearities, standard
response analysis is inappropriate. For example, since at each t the coefficient vector is
perturbed by a structural shock, assuming that between ¢ + 1 and ¢ + k£ no shocks other
than the disturbance under consideration hit the system may give misleading conclusions.
To trace out the evolution of the economy when perturbed by structural shocks, we define
impulse responses as the difference between two conditional expectations, differing in the
arguments of their conditioning sets. Such a definition reduces to the standard one when
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coefficients are constant, allows us to condition on the history of the data and of the para-
meters, and permits the size and the sign of certain shocks to matter for the dynamics of
the model (see e.g. Canova and Gambetti, 2004).

Our results are as follows. First, while there is evidence of structural variations in both
the volatility of output and inflation and in the persistence of inflation, our posterior analysis
fails to detect significant changes because of large posterior standard errors. Second, the
three structural shocks we identify explain between 50 and 65 percent of the variability of
output and inflation on average across frequencies for every date in the sample: technology
shocks account for the largest portion of output variability at frequency zero and, on average,
across frequencies, while real demand and monetary shocks account for the bulk of inflation
variability at frequency zero and, on average, across frequencies. Variations in inflation
persistence are due to a decline in the relative contribution of real demand and technology
shocks while changes in output and inflation volatility are accounted for by all three shocks,
with the contribution of technology shocks showing the largest time variations. Third, there
are important variations in the transmission of technology shocks and significant changes in
the variances of technology and monetary policy shocks. Finally, technology shocks always
imply positive contemporaneous comovements of hours and productivity but the correlation
turns negative after a few lags.

In sum, consistent with McConnell and Perez Quiros (2001) and Gordon (2003), our
analysis attributes to variations in the magnitude and the transmission of technology shocks
an important role in explaining changes in output volatility. It also suggests that variations
in the magnitude of both technology and monetary shocks and the transmission of technol-
ogy shocks are important in explaining changes in the volatility and in the persistence of
inflation. Therefore, it complements those of Sims and Zha (2004), Primiceri (2005) and
Gambetti and Canova (2004), who only examined the role of monetary policy shocks.

The rest of the paper is organized as follows. The next section describes the empirical
model. Section 3 presents a DSGE model which produces the restrictions used to identify
structural shocks. Section 4 briefly deals with estimation - all technical details are confined
to the appendix. Section 5 presents the results and section 6 concludes.

2.2 The empirical model

Let y; be a 5 x 1 vector of time series including real output, hours, inflation and the federal
funds rate and M1 with the representation

yr = Aot + At + Ao ye—1 + A3 pyi—o + oo + Ap1Yi—p T €t (2.1)

where Agy, A1 are a 5 x 1 vectors; A;;, are 5 X 5 matrices, ¢ = 2,...,p + 1, and & is
a 5 x 1 Gaussian white noise process with zero mean and covariance Y;. Letting A; =
[Aot, Are, Aop Apyri], oy = [Is,15 % ¢,y 1...y;_p], where 15 is a row vector of ones of
length 5, vec(-) denotes the stacking column operator and 6; = vec(A}), rewrite (1) as

Yt = Xéet + &¢ (22)
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where X{ = (Is @ ;) is a 5 x (5p + 2)5 matrix, I5 is a 5 x 5 identity matrix, and 6; is a
(5p 4+ 2)5 x 1 vector. We assume that 6; evolves according to

P(Oc|0r—1, ) o< Z(Or) f(04]0r—1, ) (2.3)
where Z(6;) discards explosive paths of y; and f(0|0;—1,) is represented as
Ht = Ht—l + Uy (24)

where u; is a (5p + 2)5 x 1 Gaussian white noise process with zero mean and covariance 2.
We select this specification because more general AR and/or mean reverting structures were
always discarded in out-of-sample model selection exercises. We assume that corr(ug,e) =
0, and that €; is diagonal. The first assumption implies conditional linear responses to
changes in &;, while the second is made for computational ease - structural coeflicients are
allowed to change in a correlated fashion. Our model implies that forecast errors are non-
normal and heteroschedastic even when ¥; = ¥ and Q; = Q. In fact, substituting (4) into
(2) we have that y; = X[0;—1 + v, where vy = £, + X u;. Such a structure is appealing
since whatever alters coefficients also imparts heteroschedastic movements to the variance
of the forecasts errors. Since also €); is allowed to vary over time, the model permits various
forms of stochastic volatility in the forecast errors of the model (see Sims and Zha, 2004,
and Cogley and Sargent, 2005, for alternative specifications).

Let S; be a square root of Xy, i.e., ¥y = 5.5}, let H; be an orthonormal matrix, indepen-
dent of &, such that H;H, = I and set J; ' = H/S;'. J; is a particular decomposition of
¥¢ which transforms (2) in two ways: it produces uncorrelated innovations (via the matrix
S¢) and it gives a structural interpretation to the equations of the system (via the matrix
H;). Premultiplying y; by J; ' we obtain

J e = J7 Aoy + T At + Y I Aj e e (2.5)
J

where e; = J; 'e; satisfies: F(e;) = 0, E(ese}) = Is. Equation (2.5) represents the class of
"structural” representations of interest: for example, a Cholesky system is obtained choosing
S; = S to be lower triangular matrix and H; = I5, and more general patterns, with non-
recursive zero restrictions, result choosing S; = S to be non-triangular and H; = I5. In this
paper, since S; is an arbitrary square root matrix, identifying structural shocks is equivalent
to choosing H;. We select it so that the sign of the responses at t + k, k =1,2,..., Ky, Kj
fixed, matches the robust model-based sign restrictions presented in the next section. We
choose sign restrictions to identify structural shocks for three reasons. First, magnitude
restrictions typically depend on the parameterization of the model while the sign restrictions
we employ are less prone to such problem. Second, our model fails to deliver the full
set of zero restrictions one would need to identify the three shocks of interest with more
conventional approaches. Third, as it would be clear from the next section, the link between
the theory and the empirical analysis is more direct.
Letting C; = [J; " Aoy, . .., J7 ' Api1d], and = vec(CY), (2.5) can be written as

Ji tye = X + e (2.6)
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As in fixed coefficient VARs there is a mapping between the structural coefficients v; and
the reduced form coefficients 6; since v; = (J; ' @ I. 5p))0t. Whenever Z(6;) = 1, we have

Y= (Jt_l ® Inp)(Jt_l ® Inp)_l’}’t—l + (2.7)

where n; = (J; ' @ Isp)uy satisfies E(n;) = 0, E(nen)) = E((J;7 @ Isp)uruly(J;7E @ Isp)').
Since each element of 4 depends on several w; via the matrix J;, shocks to structural
parameters are no longer independent. Note that the (6)-(7) contain two types of structural
shocks: VAR disturbances, e;, and structural parameters disturbances, 7;. This latter type
of shocks will not be dealt with here and is analyzed in details in Canova and Gambetti
(2004).

To study the transmission of disturbances in a fixed coefficient model one typically
employs impulse responses. Impulse responses are generally computed as the difference
between two realizations of y; ;14 which are identical up to time ¢, but one assumes that
between ¢t and ¢t + k a shock in the j-th component of e, occurs only at time ¢, and the
other that no shocks take place at all dates between t and t + k, k=1,2,.....

In a TVC model, responses computed this way disregard the fact that structural coeffi-
cients may also change. Hence, meaningful response functions ought to measure the effects
of a shock in ej; on ¥4, allowing future shocks to the structural coefficients to be non-zero.
Let us rewrite the model in companion form

Vi =t +Aryi—1+ €

where y; = [y-y1_pi1]’s € = [€10...0]" and py = [A5,0...0]" are np x 1 vectors and

t pu—
Inp-1)  Onp-1)m

where Ay = [A1;...Ap4] is an n X np matrix, I,y is an n(p— 1) x n(p — 1) identity matrix
and On(p—l),n
simplicity the constant term, we obtain

is a n(p — 1) X n matrix of zeros. Iterating k period forward and omitting for

Yirk = AprpAryi1 + Appp Apprer + Appp Apoerin + o+ A1 + €4k

Let S; j(M) be a selection function, a function which selects the first ¢ rows and j columns
of the matrix M. Taking as a benchmark case the case of no-shock occurrence, and as-
suming that coefficients and shocks ¢; are uncorrelated, the matrix of dynamic multiplier
Spn(Atsk...Arp1) describes the effects of e, on yyyy, while the effects associated to struc-
tural shocks can be derived from the relation e; = Jye; and are given by S, p(A¢yg...Avp1)J;.
Therefore impulse response functions to a shock e; at horizon k are given by

IR(t, k) = Uy ],

where Wi = Spn(Atyk...Ary1). Thus for each ¢ = 1,...,7 we have a path of impulse
response defined by the sequence {W; ;. J¢}7_;.
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2.3 The identification restrictions

The restrictions we use to identify the shocks come from a general equilibrium model that
encompasses flexible price RBC and New-Keynesian sticky price setups as special cases.
The restrictions we consider are robust, in the sense that there are generated by a wide
range of parameterizations and for alternative specifications of the policy rules. We use
a subset of the large number of model’s predictions and, as in Canova (2002), we focus
only on qualitative (sign) restrictions, as opposed to quantitative (magnitude) restrictions,
to identify shocks. While it is relatively easy to find robust sign restrictions, magnitude
restrictions are typically fragile and depend on the exact parameterization of the model.

The economy is a simplified version of the one in Pappa (2004). It features a represen-
tative household, a continuum of firms, a monetary authority and a fiscal authority which
consumes goods that may yield utility for the households.

2.3.1 Households

Households derive utility from private, C?, and public consumption, CY, leisure, 1 — N;

0 pqz_l _ 92;1 @ _ 1—-60p)l—0o _
and real balances %. They maximize Ey . 3 [(aC; ° +(-a)C, 1_); TA=Ny) ] !
=0

_l’_

1 (%
1=0n \ pe
period Kiyi, nominal state-contingent bonds, D;; i, nominal balances and government

)= choosing sequences for private consumption, hours, capital to be used next

bonds, By+1. Here 0 < 8 < 1 is the subjective discount factor and ¢ > 0 a risk aver-
sion parameter. Public consumption is exogenous from the point of view of households.
The degree of substitutability between private and public consumption is regulated by
0 < ¢ <o00;0<a<1 controls the share of public and private goods in consumption: when
a = 1, public consumption is useless from private agents’ point of view. J5; > 0 regulates
the elasticity of money giemand. Household time is Anormalized to one at each t. We assume
Ct = [f(} C’Z(z)¥dz} Mool = [fol C’Z(z)¥dz} *“T and A > 0 measures the elasticity of
substitution between types of goods. The sequence of budget constraints is:

P(CP + I,) + E{Qu1+1Dyy1} + Ry 'Bir + My <
(1 — ™Y PaweNy + [y — 7%(ry — 8)|PKy + Dy + By — Ty Ps + My + = (2.8)

where (1—7%) Paw; N, is the after tax nominal labor income, [r; —7%(r; — )] P K; is the after
tax nominal capital income (allowing for depreciation), =; are nominal profits distributed by
firms (which are owned by consumers), and T3 P; are nominal lump-sum taxes. We assume
complete private financial markets: D41 are holdings of state-contingent nominal bonds,
paying one unit of currency in period ¢ + 1 if a specified state is realized, and Q¢ +1 is their
period-t price. Finally, R; is the gross return on a one period government bond B;. With
the disposable income the household purchases consumption goods, C?, capital goods, I,
and assets. Capital accumulates according to:

K,
Kt+1 = It + (1 — 5)Kt — VUV (il> Kt (29)
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and

a1 2
where 0 < § < 1 is a constant depreciation rate, v (K;(* 1) = g M -0
t t

b > 0 determines the size of the adjustment costs. Since households own and supply capital
to the firms, they bear the adjustment costs.

2.3.2 Firms

A firm j produces output according to the constant returns to scale production function:
Yij = (ZeNy)' ™ (Ky)® (2.10)

where K;; and NV;; are capital and labor inputs and Z; is an aggregate technology shock.
We assume perfectly competitive in the input markets': firms minimize costs choosing

private inputs and taking wages and the rental rate of capital as given. Since firms are

identical, they all choose the same amount of inputs and cost minimization implies

Ktj [0 Wt
— = — 2.11
th (1 — Oé) Tt ( )
Equation (13) and the production function imply that (nominal) marginal costs are:
_ 1 a—1, 1—a, .«
MCy = Zywy Y Py (2.12)

a®(1 — a)l-«

In the goods market firms are monopolistic competitors. The strategy used to set prices
depends on whether they are sticky or flexible. In the former case, each domestic producer
is allowed to reset her price with a constant probability, (1 — ), independently of the time
elapsed since the last adjustment. When a producer receives a signal, she chooses her

o
new price, Py, to maximize £y kzo Wth+k+1,t+k(P§} — MCyi1j)Yitk; subject to the demand

P

curve Yy = ( P:k )~ *Yj4x. Optimization implies
Y AV EAQurkr1 i48 Yok (P — 11 MGk} =0 (2.13)
k=0 T

where 7 = —(A = 1)7! is a subsidy that, in equilibrium, eliminates the monopolistic

competitive distortion . Given the pricing assumption, the aggregate price index is
1
P=[ P+ (1= )P (2.14)

When firms can reset the price at each ¢, prices become flexible and:

A 1

LThe robust restrictions we emphasize below are independent of the presence of frictions in labor markets
such as sticky wages or labor unions.
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2.3.3 Fiscal and Monetary Policy

Government’s income consists of seigniorage, tax revenues minus subsidies to the firms and
proceeds from new debt issue. The government budget constraint is:

P,CY + 1 PY; — 'wy PN, — 7 (ry — 6P )PK;, — BT, + By + My = Ry ' Byyy + My (2.16)

We treat tax rates on labor and capital income parametrically; assume that the government
takes market prices, hours and capital as given, and that B; endogenously adjusts to ensure
that the budget constraint is satisfied. In order to guarantee a non-explosive solution for
debt (see e.g., Leeper 1991), we assume a tax rule of the form:

,Tt Bt Bss \
S AL (2.17)

where the superscript ss indicates steady states. Finally, there is an independent monetary
authority which sets the nominal interest rate according to the rule:

R,
T

where m; is current inflation, and u; is a monetary policy shock. Given this rule, the

T ybmyy (2.18)

ﬂ-SS

authority stands ready to supply nominal balances that the private sector demands.
There are two types of aggregate constraints. First, labor supply must equate labor
employed by the private firms. Second, aggregate production must equate the demand for
goods from the private and public sector, that is Y; = C? + I + CY.
We assume that the three exogenous processes Sy = [Z;, C7, uy]', evolve according to

log(S;) = (I4 — o) log(S) + olog(Si—1) + Vi (2.19)
where I3 is a 3 x 3 identity matrix, g is a 3 x 3 diagonal matrix with all the roots less than
one in modulus, S is the mean of S and the 3 x 1 innovation vector V; is a zero-mean, white
noise process 2. Let A = (A!, A?) represent the vector of parameters of the model.

2.3.4 Deriving the identification restrictions

Figure 1 presents responses to impulses in the three shocks when the parameters are allowed
to vary within the ranges listed in table 1. To be precise, each box reports 68% of the
10000 paths generated randomly drawing A;, j = 1,2,... independently from a uniform
distribution covering the range appearing in table 1. The first column of figure 1 represents
responses to technology shocks, the second responses to government expenditure shocks, and
the third responses to monetary shocks. Since our VAR includes output, hours, inflation,
nominal rate and money, we only plot the responses of these variables.

Few words regarding the assumed ranges are in order. First, we decompose the parame-
ter vector in two components: A! includes the parameters held fixed to a particular value

2A previous version of the paper allowed also for government investment and government employment
disturbances. Since the sign restrictions we emphasize are the same for shocks to government consumption,
government investment and government employment, the last two type of shocks are currently omitted.
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because of steady state considerations, while in A? are the parameters which are allowed to
vary. In A! we have the discount factor, set so that the annual real interest rate equals 4%,
and the debt ratio,(g)ss , which is selected to match the average US debt to GDP ratio.

The intervals for the other parameters are centered around standard values and the
ranges are selected to contain existing estimates, values assumed in calibration exercises or
chosen to satisfy theoretical considerations. For example, the range for the risk aversion
parameter o includes the values typically used in RBC (o from 0.5 to 2), and New-Keynesian
models (o from 1 to 6). Theoretical considerations suggest that the share of public goods
in total consumption, 1 — a, should be low (since the private wealth effects following fiscal
shocks crucially depend on this parameter) and the chosen range reflect this concern. The
range for ¢ allows for both complementarities and substitutabilities between private and
public goods. The parameters 6,,, 03 regulate the labor supply and money demand elasticity
and the chosen ranges cover well the range of existing estimates. The ranges for the capital
share in production, «, the capital adjustment costs parameter, b, and the depreciation of
capital, § include standard values. The ranges for labor and capital income tax parameters
(7!, 7%) cover the values of interest to policymakers and those for the expenditure ratio (%)
match the cross sectional range of values for US states. The range for the degree of price
stickiness - is wide and covers cases where prices are very sticky and almost flexible.

Finally, the coefficient on inflation ¢, and the coefficient on debt ¢y in the policy rules
control whether equilibria are determinate or not. The ranges we have selected imply that
fiscal policy is passive and monetary policy is active, in the terminology of Leeper (1991);
this insure determinacy of the equilibria and implies that our analysis neglects equilibria of
the types considered in Lubik and Schorfheide (2004). Therefore, the interpretation of our
monetary policy shocks is different from theirs. Considering active fiscal policy and passive
monetary policy leave the qualitative features of the responses unchanged.

The model produces several robust sign implications in responses to the shocks. For
example, a persistent technological disturbance increases output, decreases inflation, nom-
inal rates and nominal balances and the sign of the response is independent of the horizon.
Furthermore, when government consumption expenditure increase, output, hours, inflation,
nominal interest rates and nominal balances all increase, while surprise decreases in the
interest rate increase output, hours, inflation and nominal balances. Note, in particular,
that these patterns obtain for a wide range of values of the elasticity of substitution between
private and public goods, the strength of the reaction of interest rates and taxes to inflation
and debt and the degree of price stickiness.

The identification restrictions used are summarized in table 2. Note that the dynamics
of hours (and labor productivity) are unrestricted in all cases.

There are many ways of implementing sign restrictions. The results we present are ob-
tained using an acceptance sampling scheme where draws that jointly satisfy the restrictions
for all three shocks are kept and draws that do not are discarded. Tim Cogley pointed out
to us that, since the bands in figure 1 do not insure that some parameter combinations
may fail to satisfy the restrictions, an importance sampling scheme, which gives positive
but different weights to different types of draws, could be more appropriate. In general,
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since identification restrictions make the prior for the reduced form parameters informative,
one may want to analyze how sensitive are the conclusions we reach to these choices. We
have tried few alternatives to implement an importance sampling scheme. First, we have
weighted draws in proportion to the number of horizons at which restrictions are satisfied.
Thus, if we impose restrictions at three horizons, we give weight 0.5/n; to draws that satisfy
restrictions at all horizons, weight 0.33/n9 to draws that satisfy restrictions at two hori-
zons, and weight 0.17/ng to draws that satisfy restrictions at one horizon, ny 4+ ng +ng = n,
where n is the total number of draws. Second, we have weighted the draws satisfying all
the restrictions by 0.68/n; and draws which do not satisfy all the restrictions by 0.32/ns,
n1 + ng = n. The results we present are qualitatively independent of the scheme used to
weight draws even though, quantitatively, some conclusions become more or less signifi-
cant. An appendix available at www.econ.upf.edu/crei/people/canova, contains the results
obtained with these alternatives weighting schemes.

Since the sign restrictions we use are robust to the horizon, we are free to choose how
many responses we wish to restrict. However, there is an important trade-off to be con-
sidered, since the smaller is the number of restrictions, the larger is the number of draws
consistent with the restrictions but, potentially, the weaker is the link between the model
and the empirical analysis. As the number of restricted responses increases, we tight up
the empirical analysis to the model more firmly, but the number of draws satisfying the
restrictions may drop dramatically, making estimates of standard errors inaccurate. Since
the relationship between number of restrictions and number of accepted draws is highly
nonlinear, there is no straightforward way to optimize this trade-off. We present results
obtained imposing restrictions at two horizons (0 and 1) since this choice seems to account
for both concerns.

2.4 Estimation

The model (2.6)-(2.7) is estimated using Bayesian methods. That is, having specified prior
distributions for all the parameters of interest, we use data up to ¢t to compute posterior
distributions of the structural parameters and of continuous functions of them. Since our
sample goes from 1960:1 to 2003:2, we initially estimate the model for the period 1960:1-
1970:2 and then reestimate it 33 times moving the terminal date by one year up to 2003:2

Our estimation approach proceeds in two steps. First, we characterize the (truncated)
posterior distribution of the reduced form parameters. Second, given these posteriors and
the identification restrictions, we construct posteriors for the structural parameters. Unfor-
tunately, posterior distributions for the structural parameters are not available in a closed
form. Therefore, MCMC methods are used to simulate posterior sequences consistent with
the information available up to time ¢. Construction of the truncated posterior for reduced
form parameters is relatively standard (see e.g. Cogley and Sargent 2005): it requires
treating the parameters which are time varying as a block in a Gibbs sampler algorithm.
Hence, at each ¢ and in each Gibbs sampler cycle, one runs the Kalman filter and the
simulation smoother, conditional on the draw of the other time invariant parameters, and
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discard paths for the coefficients generating explosive time series for the endogenous vari-
ables. These standard calculations are complicated in our setup by the fact that at each
cycle, we need to obtain structural estimates of the time varying features of the model and
that we need to run an MCMC routine for each t. This means that, in each cycle and
each ¢, we also need to discard paths which do not satisfy the restrictions. Convergence
was checked using a CUMSUM statistic. The results we present are based on 20,000 draws
for each t - of these, after the non-explosive and the identification filters are used, about
200 are kept for inference. The methodology used to construct posterior distributions for
the unknowns is contained, together with the prior specifications, in the appendix. The
data comes from the FREDII data base of the Federal Reserve Bank of St. Louis and
consists of GDP (GDPC1), GDP deflator inflation (AGDPDEF), the Federal funds rate
(FEDFUNDS), hours of all persons in the non-farm business sector (HOANBS) and M1
(M1SL) - in parenthesis are the mnemonic used by FREDII. Four lags of each variable are
used in the estimation.

2.5 The Results

2.5.1 The dynamics of structural volatility and persistence

Figure 2,3 and 4 present respectively the posterior estimates of the structural spectrum
of output and inflation for dates ranging from 1970:1 to 2003:2, the median and the 68%
central posterior bands for structural persistence (figure 3) and for structural volatility
(figure 4) of output and inflation. Persistence is measured by the height of the spectrum
at frequency zero; volatility by the value of the cumulative spectrum. Few interesting
features are worth commenting upon. First, the structural spectrum of inflation is relatively
stable over time, except for the zero frequency. Therefore, changes in structural inflation
volatility are closely associated with changes in its structural persistence. The spectrum of
output is also relatively stable over time at almost all frequencies. However, variations in
structural volatility are primarily linked to structural variations occurring in the frequencies
corresponding to three to five years cycles (w € [0.314,0.52]).

Second, inflation persistence shows a marked hump-shaped pattern: it displays a five
fold increase in 1973-1974 and then again in 1977-1978, it drops dramatically after that
date, and since 1982 the posterior distribution of inflation persistence displays marginal
variations. The size of the drop is economically large: from its peak value, the median
persistence in the 1990s is about 66 percent smaller. On the contrary, variations over time
in the posterior distribution of output persistence are relatively small. Third, as expected
from previous discussion, the dynamics of the posterior structural inflation volatility reflect
those of the posterior of structural inflation persistence. On the other hand, the median
of the posterior distribution of output volatility declines by roughly 25 percent from the
beginning to the end of the sample.

Since posterior standard errors are large, even remarkable changes, like those displayed
by the posterior median of inflation persistence, or of output volatility, turn out to be
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statistically insignificant. This outcome is consistent with the univariate, reduced form
evidence presented by Pivetta and Reis (2004) and their classical statistical analysis and
casts some doubts on inference derived analyzing the evolution of the mean (or the median)
of these statistics. What features of our approach could be responsible for these large
posterior standard errors? We singled out three possibilities. First, it could be that some
parameter draws are more consistent than others with the sign restrictions. If these draws
imply larger volatility in the coefficients, it could be that the estimated variance of the
error in the law of motion of the coefficients is larger for accepted than rejected draws. This
turns out not to be the case: the two variances are statistically indistinguishable. As a
further check, we have computed posterior standard errors using a non-structural Cholesky
decomposition and results are unchanged. Second, figure 2,3 and 4 are constructed using
recursive analysis. Therefore, our estimates contains less information than those produced
using estimates of the parameters obtained from the full sample. Although standard errors
are reduced when full sample estimates are considered, the pattern of changes is qualitative
unaltered. Third, since our spectral estimates are constructed allowing future coefficients
to be random, it could be that this uncertainty is responsible for the large standard errors
we report. We have therefore repeated the computations averaging out future shocks to
the coefficients and found that posterior standard errors are smaller by about 25 percent.
Hence, even changing a few features in our estimation approach, we would not be able to
confidently claim that the observed changes in output and inflation persistence and volatility
are statistically large.

In summary, three points can be made. First, while there is visual evidence of a decline
in the median estimates of output and inflation volatility, the case for evolving volatility is
considerably reduced once posterior standard errors are taken into account. This evidence
should be contrasted with the one obtained with univariate, in-sample, reduced form meth-
ods, for example McConnell and Perez Quiros (2001) or Stock and Watson (2003), which
overwhelmingly suggest the presence of a significant structural break in the variability of
the two series. Second, when structural, recursive, multivariate analysis is used, the case for
evolving posterior distributions of persistence measures is also far weaker. Consistent with
the evidence contained in Cogley and Sargent (2001) and (2005), the posterior median of
inflation persistence shows a declining trend but posterior uncertainty is sufficiently large
to make time differences irrelevant. The posterior distribution of output persistence, on the
other hand, displays neither breaks nor evolving dynamics. Third, leaving aside issues of
statistical significance, the timing of the changes in persistences and volatilities does not
appear to be synchronized. Hence, contrary to what it is commonly perceived, it is un-
likely that a single explanation accounts for the observed variations in output and inflation
dynamics.

2.5.2 What drives variations in structural volatility and in persistence?

Recall that our structural model has implications for three types of disturbances, roughly
speaking, supply, real demand and monetary shocks. Therefore, we can identify at most
three of the five structural shocks driving the VAR. This means that there will be a residual
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capturing unexplained variations in output and inflation volatility and persistence.

Before discussing in details sources of structural volatility and persistence, we would like
to note that our identification exercise was quite successful. Our three structural shocks
explain between 50 and 65 percent of the variability of output and inflation on average across
frequencies for every date we consider. We believe this magnitude is remarkable, given
our analysis has completely disregarded e.g. labor supply or investment specific shocks,
which Chang and Schorfheide (2004) and Fisher (2003) have shown to be important in
explaining output (and potentially inflation) fluctuations. On average over time, technology
shocks explain 25% of inflation variability and about 15% of output variability, demand
shocks about 17% of inflation variability and 25% of output variability, and monetary
shocks about 14% of inflation variability and 12% of output variability. When we look at
specific frequencies, we find that technology shocks exercise their largest impact on inflation
variability at business cycle and high frequencies (mean contribution is about 28%) while
their largest impact on output variability is at low frequencies (mean contribution is about
17%). On the other hand, the two demand shocks explain the largest portion of inflation
variability at low frequencies (roughly, 20% for real demand shock and 17% for monetary
shocks) and have their largest explanatory power for output fluctuations at business cycle
frequencies (roughly, 25% for demand shocks and 17% for monetary shocks).

Given that the spectrum at frequency w is uncorrelated with the spectrum at frequency
w’, when w and ' are Fourier frequencies, it is easy to compute the relative contribution
of each of the three structural shocks to changes in the volatility and in the persistence of
output and inflation. In fact, disregarding the constant and the trend, the (time varying)
structural MA representation is y;; = 2?21 Bji(€)ej: where ey is orthogonal to e, i Fii =
1,...,5. Since structural shocks are independent, the (local) spectrum of y;; at frequency

w can be written as Sy, (w(t) = ?:1 |Bjt(w)|*Se, (w)(t). Therefore, the fraction of the

B, (omega=0)|2Se . (w=0)(t)
S, =0 and
the fraction of the volatility in y;; due to structural shock j is -, 57, (w)(t). Intuitively, these

persistence in y; due to structural shock j is SJ (w = 0)(t) =

measures are comparable to variance decomposition shares. Variance decomposition shares
inform us on the relative contribution of different shocks at various forecasting horizons.
The measures we propose evaluate the contribution of structural shock j to the variability
of y;; at either one frequency or at all frequencies.

We divide the discussion of the results into two parts. First, we examine the contribu-
tion of monetary policy shocks to the variations presented in figure 2,3 and 4. The large
number of papers studying this issue and the consequent discussion that followed the orig-
inal contribution of Clarida, Gali and Gertler (2000) justify our focus. Second, we assess
the role of the two other shocks in accounting for the observed changes.

It is useful to recall that if the conventional wisdom is correct, the decline observed
in the median of output and inflation volatility and inflation persistence should be largely
explained by a decline in the contribution of monetary shocks to these statistics. Figure 5,
which reports the median and the 68% posterior bands for the percentage of the persistence
of output and inflation explained by the three shocks, and figure 6, which reports the
same statistics for the volatility of output and inflation, tell a different story. For example,
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the share of inflation and output persistence attributable to monetary shocks displays an
increasing trend and the median contribution at the end of the sample is about 30 percent
larger than in the 1970s. Also, the contribution of monetary policy shocks to output and
inflation volatility is roughly constant over time.

Several authors have attempted to relate changes in inflation persistence with changes
in the stance of monetary policy (see e.g. Cogley and Sargent, 2001, or Benati, 2005), or to
the way monetary shocks are transmitted to the economy (see e.g. Leeper and Zha, 2003,
or Sims and Zha, 2004). Contrary to the views of many policymakers, our results suggest
that monetary policy could not have been a major factor behind the observed declines in
inflation persistence, and that other shocks may have played a larger role. Similarly, the
claim that the increased stability observed in the US economy since the mid 1980s, is a
result of a more conservative monetary policy actions appears to be in contrast with the
empirical evidence we present: the decline in output and inflation volatility is only partially
explained by monetary policy and other sources of disturbances appear to have contributed
to the decline.

The percentage of the persistence of output and inflation explained by real demand
and supply shocks fluctuates around a constant mean value. Hence, these two shocks are
equally responsible for the decline in inflation persistence we have observed since 1980s.
Interestingly, the peak in inflation persistence in the early 1970s is attributed by our iden-
tification scheme to technology shocks while the one in the mid-late 1970s is attributed
to demand disturbances. Furthermore, it appears that the sluggishness in the changes in
inflation persistence is due to a very slow change in the contribution of technology shocks.

The relative contribution of real demand shocks to output and inflation volatility is rel-
atively stable over time suggesting that the decline in inflation volatility since the beginning
of the 1980s is due to a proportional decline in the contribution of these shocks. Finally,
the mean contribution of technology shocks to output volatility declines over time and the
mean contribution to inflation volatility shows first a downward jump in the mid of the
1970s and then upward jump in the end of the 1970s.

In sum, while the decline in inflation persistence seems to be largely due to a decline
in the contribution of real demand and technology shocks, the fall in output and inflation
volatility is attributed by our identification scheme to all three structural shocks, with the
contribution of technology shocks showing the largest variations over time.

2.5.3 Time Varying Transmission?

Since the relative contribution of a shock varies because its relative variance at frequency w
(i.e. %) changes, or because its transmission mechanism (i.e. |Bj:(w)|?) changes, we
need to disentangle the two sources of variations to explain the somewhat surprising set of
results we obtain. In Figure 9 we plot the median responses of output and inflation to the
three structural shocks. Since we normalize the impulse to be the same in every period, the
evolution of these responses over time gives us an idea of the changes in the transmission

of shocks in isolation from the changes in the distribution of the shocks (i.e. we trace out
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time variations in Bj;.

Few striking features of the figure are worth discussing. First, the pattern of responses to
the three structural shocks is qualitatively similar over time. Second, there are quantitative
changes in the magnitude of some responses. For example, the peak response of output
to technology shocks changes location and size and the through response of inflation to
demand shocks changes location over time. The most stable responses appear to be those
to monetary shocks: the shape, the size and the location of output and inflation peak and
through responses are very similar over time. Third, real demand shocks appear to produce
the largest displacements of the two variables followed by technology and monetary shocks.
Fourth, the largest relative changes in the transmission appear to be associated with output
responses to technology shocks. For example, the magnitude of contemporaneous responses
is 50% larger in the 1990s than in was in the 1970s.

Hence, while the qualitative features of the transmission of structural shocks are similar
over time, changes in the quantitative features, involving the magnitude of the responses
and, at times, the location of the peak/through are present. Interestingly, while responses
to monetary disturbances appear to be similar over time, the transmission of technology
disturbances shows important changes.

2.5.4 Time Varying volatility of the structural shocks?

To examine whether there have been significant changes in the relative distribution of the
structural shocks hitting the economy, we plot the time profile of the estimated posterior
median of their volatility in figure 10. Real demand shocks are those associated with the
first structural equation (normalized on output), supply shocks are those associated with
the second structural equation (normalized on inflation) and the monetary policy shocks
are those associated with the third structural equation (normalized on the nominal rate).

Overall, the volatility of supply and of the monetary policy disturbances has declined
over time. However, while the decline is smoother for the former, it is much more abrupt
for the latter, where a drop of 15% in the late 1970s is evident. The volatility of demand
shocks is higher on average than for the other two shocks and, except for late 1980s and
the late 1990s, it is relatively similar across time. Interestingly, the decline in the volatility
of technology and monetary policy shocks terminates by the early 1980s and since then no
changes are detected.

The decline in the volatility of monetary policy shocks of the late 1970s appears to
precede the one found by Sims and Zha (2004). However, differences can be reconciled
if one takes into account different estimation techniques and the different ways in which
these volatilities are computed (recursive vs. smoothed estimates). Several authors have
argued that there is very little evidence that the monetary policy rule and the transmission
of monetary policy shocks have changed over time. Instead, they have suggested that drops
in the volatility of monetary policy shocks could be responsible for the fall in the variability
of output and inflation. Our results are consistent with these view but also suggest that
the contribution of technology shocks to the changes observed in the US economy is non-
negligible. The sharp increase and rapid decline in the variability of reduced form output
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and inflation forecast errors observed at the end of the 1970s is due, in part, to variations
in the distribution from which technology shocks are drawn.

2.5.5 The dynamics of hours and labor productivity

Although somewhat unrelated to the main scope of the paper, our estimated structural
system allows us to also discuss a controversial issue which has been at the center of attention
in the macroeconomic literature since work by Gali (1999), Christiano, et. al. (2003), Uhlig
(2003), Dedola and Neri (2004) and others: the dynamics of hours and productivity in
response to technology shocks. The empirical evidence on this issue is at best mixed,
it appears that under some identification and some data transformations (in particular,
identification via long run restrictions and variables in the VAR in growth rates) technology
disturbances increase labor productivity and decrease hours while with other identifications
and other data transformations (in particular, hours in log level and identification based on
short or medium run restrictions) both labor productivity and hours increase.

The dynamics of hours and labor productivity are thought to provide important infor-
mation about sources of business cycle dynamics. In fact, a negative response of hours to
technology disturbances is considered by some to be inconsistent with RBC-flexible price
based explanations of business cycles (a point disputed e.g. by Francis and Ramey, 2005).
In a basic RBC model, in fact, technology shocks act as a supply shifter and therefore have
positive effects on hours, output and productivity, unless they induce considerable wealth
effects. On the other hand, in a basic sticky price model without capital, technology shocks
act as labor demand shifters. Therefore, regardless of the nature of the technological dis-
turbance, firms experience a decline in their marginal costs but, because price are sticky,
aggregate demand increases less than proportionally than the increase in output making
hours decline. These qualitative patterns are present in the model we have presented in
section 3: when prices are flexible and the policy rules appropriately chosen, technology dis-
turbances imply robust positive contemporaneous hours responses; when prices are sticky,
the contemporaneous response of hours is mostly negative.

Our estimated structural model allows us to investigate two interesting questions related
to this the issue. First, what are the dynamics of hours and labor productivity when sign
restrictions derived from a general model are used to identify technology shocks? It is well
known, at least since Faust and Leeper (1997), that long run restrictions are only weakly
identifying the objects of interest and that they are vacuous in near-integrated systems,
despite the fact that the time series pattern of integrated and near-integrated systems
can hardly be distinguished with finite stretches of data. Since model based robust sign
restrictions offer a viable alternative, void to a large extent of these problems, they can be
used to sharpen our understanding of the effects of technology shocks in near-integrated
systems. Second, is there any evidence that the responses of hours to technology shocks
displays a time varying pattern? In other words, could it be that the contemporaneous
response of hours changes sign as the sample changes?

Figure 11 indicates that the contemporaneous response of hours and productivity to
technology shocks is positive at all dates. Interestingly, the response of hours is humped
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shaped, with the peak occurring after 2 or 3 quarters and this, combined with a smoothly
declining output responses, implies that labor productivity becomes negative after some
periods. While the results are consistent with a RBC-flexible price explanation of the prop-
agation of technology shocks, one should also stress that the technology shocks we recover
are not necessarily permanent and that permanent shocks in the model may deliver sign re-
strictions different from those we use. Hence, although are conclusions are fully comparable
with the evidence in Ulhig (2004), Dedola and Neri (2004), or Peersman and Straub (2005),
they do not necessarily disproof the idea that permanent technological improvements may
induce a decline in hours worked.

There are quantitative variations in the responses of hours and productivity over time,
but the sign of the responses is the same at every date in the sample. Therefore, the
mixed results found in the literature can not be due to time variations in the response of
hours. Note also that, consistent with both RBC and sticky price models, hours positively
comove with output in response to both demand shocks. However, the magnitude of the
changes is such that in response to demand shocks labor productivity responds positively
instantaneously but turns negative afterwards, while in response to monetary policy shocks
labor productivity responses are instantaneously negative and the sign of the responses
changes with the horizon of the analysis.

2.6 Conclusions

In this paper we examined structural sources of output and inflation volatility and persis-
tence and attempted to draw some conclusions about the causes of the variations experi-
enced in the US economy over the last 30 years. There has been a healthy discussion in
the literature on this issue, thanks to the work of Clarida, Gali and Gertler (2000), Cog-
ley and Sargent (2001,2005), Boivin and Giannoni, (2002), Leeper and Zha (2003), Sims
and Zha (2004), Lubik and Schorfheide (2004), Primiceri (2005) and Canova and Gambetti
(2004) among others, and although opinions differ, remarkable methodological improve-
ments occurred trying to study questions having to do with time variations in structure of
the economy and in the distributions of the shocks.

In this paper, we contribute to advance the technical frontiers estimating a structural
time varying coefficient VAR model; identifying a number of structural shocks using sign
restrictions derived from a general DSGE model; providing recursive analysis, consistent
with information available at each point in time; and using frequency domain tools to
address questions concerning time variations in persistence and volatility. In our opinion, the
paper also contributes to advance our understanding of the cause of the observed variations
in output and inflation. In particular, we show that while there are time variations in
both the volatility of output and inflation and in the persistence of inflation, differences are
statistically insignificant. Standard errors are larger than in other studies for two reasons:
our recursive analysis makes them depend on the information available at each t; shocks to
future parameters are not averaged out.

We show that output has become less volatile because the contribution of technology
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shocks has declined over time and that changes in the persistence and the volatility of
inflation are jointly explained by changes in the contribution of technology, real demand and
monetary policy shocks. Furthermore, we find that there are changes in the transmission of
technology shocks and that the variance of both technology and monetary policy shocks has
declined over time. We also provide novel evidence on the effects of technology shocks on
labor market variables. In our estimated system, technology shocks robustly imply positive
contemporaneous comovements of hours and labor productivity, even though the correlation
between the two variables turns negative after a few lags.

All in all, our results question the conventional wisdom which attributes changes in
the dynamic properties of output and inflation to monetary policy, and instead indicates
that variations in both the magnitude and the transmission of technology shocks are an
important vehicle to explain observed variations. Therefore, our conclusions are consistent
with those of McConnell and Perez Quiros (2001) and Gordon (2003) and those of Sims
and Zha (2004), Canova and Gambetti (2004) and Primiceri (2005).

Few words of caution are important to put our results in the correct perspective. First,
by construction, our analysis excludes the possibility that in one period of history the mon-
etary policy rule produced indeterminate equilibria. Therefore, our analysis differ from the
one of Lubik and Schorfheide (2004), even though it points out that we can account for a
large portion of the observed variations without the need to resort to sunspot explanations.
Second, while the decline in the volatility of the shocks is consistent with exogenous expla-
nations of the changes in output and inflation dynamics, such a pattern is also consistent
with explanations which give policy actions some role. For example, if monetary policy had
a better control of inflation expectations over the last 20 years and no measure of inflation
expectations is included in the VAR, such an effect may show up as a reduction of the
variance of the shocks.

Clearly, much work still needs to be done. We think it would be particularly useful to try
to identify other structural shocks, for example, labor supply or investment specific shocks,
and examine their relative contribution to changes in output and inflation volatility and
persistence. It would also be interesting to study in details what are the technology shocks
we have extracted, how do they correlate with what economists think are technological
sources of disturbances and whether they proxy for missing variables or shocks. The model
has implications for a number of variables which are excluded from the empirical analysis.
Enlarging the size of our VAR could provide additional evidence on the reasonableness
of the structural disturbances we have extracted. Finally, while much of the evidence is
available for the US, very few exercises have looked at other countries or compared sources
of output and inflation volatility and persistence across countries.
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Tables

Table 1: Parameter values or ranges

16} discount factor 0.991
(B/Y)®® | steady state debt to output ratio 1.2
o risk aversion coeflicient [0.5,6.0]
1—a share of public goods in consumption [0.0,0.15]
S elasticity of substitution public/private goods | [0.5,3.0]
0 preference parameter [0.1,0.9]
b adjustment cost parameter [0.1,10]
) capital depreciation rate [0.013,0.05]
o capital share [0.2,0.4]
Tt average labor tax rate [0,0.3]
Tk average capital tax rate [0,0.2]
(C9/Y)*s | steady state C9/Y ratio [0.07,0.12]
0% degree of price stickiness [0.2,0.85]
O Taylor’s coeflicient [1.1,2.0]
o coefficient on debt rule [1.05, 4.05]
A elasticity of substitution between varieties [7.0,8.0]
O elasticity of money demand [1.0,10]
Pz persistence of Z; shock [0.8,0.95]
pC, persistence of C7 shock [0.6,0.9]
Pu persistence of uf* shock [0.7,0.9]
Table 2: Identification restrictions
Output | Inflation | Interest rate | Money

Technology | >0 <0

Government | >0 >0 >0 >0

Monetary >0 >0 <0 >0
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Figure 1: responses to shocks in the model.
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Figure 2: spectra of output (top) and inflation (bottom).
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Figure 7: Contribution of different shocks to output spectrum
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Chapter 3

Technology shocks and the
response of hours worked:
time-varying dynamics matter

3.1 Introduction

The short-run dynamics of hours worked following a positive technology shock have an
essential role in assessing competing theories of the business cycle. Standard versions of Real
Business Cycle (RBC) models (see e.g. Prescott, 1986) predict that hours must increase:
an improvement in technology raises marginal productivity of labor and the labor demand
which, with an upward sloping supply, implies a rise in hours worked'. On the other
hand, other theories of the business cycle, like models embodying nominal rigidities (see
e.g. Gali, 1999) or RBC models with habits formation and capital adjustment cost (see
e.g. Francis and Ramey, 2003) predict that hours fall. The sign of the response of hours
has very important implications for the role of technology shocks in explaining aggregate
fluctuations. Actually a shock that fails in generating a strong positive correlation between
output and hours can hardly be considered one of the main forces driving business cycles.

In recent years an interesting and intense debate on whether, in the data, hours rise
or fall after a positive technology shock has emerged. Implicitly, the contention is whether
the standard RBC paradigm can correctly describe the business cycle and whether tech-
nology shocks can be considered important sources of economic fluctuations. Gali (1999),
using reduced form vector autoregressions augmented with the restriction that technology
shock is the only shock driving long-run labor productivity, finds that hours fall. Moreover
technology shocks can account just for a very small part of total fluctuations in output and
hours worked at the business cycles frequencies. The author interprets all this as compelling
evidence against the RBC paradigm. Similar conclusions are reached, through different ap-
proaches, by Basu Fernald and Kimball (2004), Francis and Ramey (2003) and Francis,

!Under standard calibrations, such a mechanism arise no matter when the technology shock is modeled
as a persistent stationary AR or a random walk.
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Owyang and Theodorou (2003), Pesavento and Rossi, (2004) and Shea (1998). The reac-
tion to this growing consensus came soon. Christiano Eichenbaum and Vigfusson (2004)
(CEV henceforth), using a similar reduced form vector autoregressions representation and
the same identifying restriction, replicate the exercise by Gali (1999) and they find the
opposite result: as predicted by standard RBC models, hours persistently rise? Evidence in
line with the CEV conclusions is provided in the works by Dedola and Neri (2004), Fisher
(2005), Peersman and Straub (2003, 2005) and Uhlig (2001).

Why are the results of Gali and CEV so different? The reason is in the different speci-
fication for the time series of hours worked used in the VAR. Gali, arguing that hours are
difference stationary, uses growth rates®. On the contrary CEV, justifying their choice with
an encompassing argument, specify hours in levels. The whole debate is nowadays at a
standstill because of such a specification controversy?: the response of hours to a positive
technology shock depends on whether they are specified in levels (hours rise) or growth
rates (hours fall). Consequently much effort has been spent in trying to justify from a sta-
tistical and economic point of view each of the two specifications. CEV show that the levels
specification can easily explain the growth rates specification while the converse is not true.
On the other hand Gali (2005) provides empirical and theoretical evidence in favor of the
nonstationarity of hours worked across industrialized countries.

This paper contributes to the debate from a completely different perspective. We in-
vestigate the effects of technology shocks on hours worked in the US using Bayesian Vector
Autoregressions with drifting coefficients, thus allowing for general forms of time variations
and structural changes. The basic idea of the paper comes from the simple consideration
that despite the different treatment of hours worked, all empirical models used in previous
contributions stand on the assumption that model coefficients are constant over time. Al-
though standard in VAR literature, such an assumption seems to be very strong when the
analysis is run over a sample of fifty years and mainly when variables describing the labor
market are included. Actually important changes in labor market trends, like changes in the
composition of hours worked or participation rates, and in the US economy in general, like

5

changes in the central bank anti-inflationary preferences® or changes in labor productivity

trends®, have been extensively documented in literature. Moreover these changes seem to

2Chari Kehoe and McGrattan (2005) call into question the VAR approach as a useful guide to assess the
relevance of theoretical models. They show, using simulated data, that VAR analysis would imply a fall of
hours when the underlying theoretical model predicts a positive response after a technology shock. However
Christiano Eichenbaum and Vigfusson (2005) show that the Chari Kehoe and McGrattan model is a case of
little empirical relevance since it is strongly rejected by the data. On the contrary when models with higher
posterior support are employed, VAR predict the right responses. Similar findings emerge in the works by
Erceg, Guerrieri and Gust (2004) and Francis, Owyang and Roush (2005).

3The same results emerge when hours are detrended using quadratic trends.

“See Whelan (2004) for a detailed review and a study of the robustness of the results to alternative
specifications.

®See among others Boivin and Giannoni (2002a, 2002b), Clarida, Gali and Gertler, (2000), Cogley and
Sargent, (2001, 2003) documenting a change in the response of monetary authorities to inflation after 1979.

6See Brainard and Perry, (2001), Kahn and Rich, (2003) and Roberts, (2000) documenting that two big
changes in labor productivity took place in early 70’s and again during the mid 90’s.
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be relevant for the transmission mechanisms of technology shocks since in many works (see
Gali, Lopez-Salido and Valles 2003, GLV henceforth, CEV, Fisher 2005, and Fernald 2005)
it clearly emerges that results are highly sensitive to the sample or subsamples considered
in the analysis. In this paper we argue that conflicting results may ultimately arise simply
because some of these changes are a priori ruled out by previous empirical models. Specif-
ically, differences in the results that are apparently due to a different treatment of hours
worked may simply originate from a more fundamental misspecification arising from the too
strong assumption of model coefficients constancy. Actually we show that once one allows
for changes in the US economy whether hours should be specified in levels or growth rate
becomes of secondary importance since competing specifications yield the same answer: at
least until mid 90’s hours persistently fall.

This paper addresses the following questions. What are the effects of technology shocks
on hours worked and what is the importance of technology shocks in explaining aggregate
fluctuations when time variations are accounted for? Can we reach robust conclusions by
allowing for time variations in the US economy? To address these questions we augment
the reduced form model, which is almost identical to the one originally proposed by Cogley
and Sargent (2001), with the same restriction as in Gali (1999) and CEV that technology
shocks are the only shocks driving labor productivity in the long-run and we use both
specifications for hours worked, levels and growth rates. Given that the specification is
identical to the one used in literature, our analysis can concentrate on differences directly
attributable to coefficients time variations. To conduct dynamic analysis we use conditional
impulse response functions, that is we condition on all out-of-sample coefficients being equal
to the end-of-sample coefficients. This is motivated, on the one hand, by the fact this is the
best forecast whenever coefficients evolve according to a random walk. On the other hand,
under such a definition, impulse response functions display useful long-run properties. The
model is estimated using Bayesian MCMC methods: we use the Gibbs sampling algorithm
augmented with a rejection sampling to generate draws from the posterior distributions of
the objects of interest. We check the robustness of the results to alternative end-of-sample
dates and alternative identification schemes and eventually we extend the model in order
to consider also investment-specific technology shocks.

Our main findings can be summarized as follows. (i) Hours fall under both specifica-
tions, levels and first differences. (ii) The impact effect is more pronounced and significantly
different from zero only before 1990. For the level specification also the degree of persis-
tency of the response substantially reduces over-time. (iii) Differences with respect to fixed
coefficients VAR are due to instabilities in the relationship between labor productivity and
the levels of hours worked. (iv) Technology shocks generate positive but small correlations
between output and hours at the business cycles frequencies and the portion of output
variance explained by technology shocks over the business cycles is about 11-25%. When,
in addition to aggregate sector-neutral shocks, also investment-specific technology shocks
are considered the percentages relative to technology shocks as a whole raise up to 39-53%.
(v) Results are robust to alternative identifying restrictions. (vi) The response of monetary
policy to technology shocks has changed over time but this does not seem to affect the
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response of hours worked.

The paper is organized as follows: section 2 revisits the evidence from fixed coefficients
VARs; section 3 describes the empirical model; section 4 discusses main results; section 5
explains the differences between time-varying and fixed coefficients VARs; section 6 provides
some structural interpretations of the results; section 7 assesses the robustness of the results
to various alternatives; section 8 concludes.

3.2 Revisiting the Evidence from Fixed Coefficients SVARs

Let y; be a n x 1 vector of time series with the following VAR representation
A(L)y: = e (3.1)

where L is the lag operator, A(L) = I — AjL — AsL? — ... — ApLP, A; are n x n matrices of
coefficients and ¢; is a n x 1 Gaussian white noise process with zero mean and covariance
Y. If the roots of A(L) in modulus are outside the unit circle, y; admits the following MA
representation of infinite order

yr = B(L)ey (3.2)

where B(L) = A(L)~!. Let S be the unique lower triangular matrix such that SS’ =
B(1)LB(1)" where B(1) = I + By + By + ... and let K = B(1)71S. We can rewrite (3.2) in
terms of orthogonal shocks

where e; = K~ '¢ and C(L) = B(L)K. If labor productivity growth is ordered first in the
vector y;, then the first shock, ey, is the technology shock identified by the restriction that
is the only shock affecting long-run productivity.

Figure 1 plots the impulse response functions of per capita hours to a technology shock
from a bivariate VAR with labor productivity growth and hours worked. Top and bottom
panels refer to the specification with hours in first differences and levels respectively. When
specified in first differences, hours persistently and significantly decline. On the contrary,
in levels, the response is positive, significant and hump-shaped, reaching its maximum after
two years after the shock. Here the terms of the controversy clearly emerge: when hours are
specified in growth rates they persistently decline while in levels they persistently increase.

To motivate our interest in time variations let us consider what happens when we repeat
the analysis for the subsamples considered in GLV and Fisher (2005), 1954:111-1979:IV
and 1982:111-2003:1V, and corresponding to the presumed breaks in the monetary policy
conduct. Instabilities are evident for the levels specification (Figure 2): in the second
subsample the response is positive while in the first it becomes negative. On the other
hand, in growth rates, results appear to be more robust since in both subsamples hours
reduce. The lack of robustness of results is not limited to the two subsamples considered
above. For instance Fernald (2005) shows that if one takes into account potential shifts in
trend productivity, specifically the slow-down in 1973 and pick-up in mid 90’s hours worked
fall for both specifications in all the subsamples. Perhaps the most striking result is that if
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the analysis had been done ten years before the paper by CEV, say at the very beginning of
the 90’s, no debate would have emerged. Actually if we exclude from the analysis the last
ten years (1994-2003), hours fall under both specifications. All these findings are hard to
explain unless we admit the possibility that when we use the whole sample we are mixing
periods in which the structural features characterizing the US economy are different. This,
we believe, strongly suggests that the link between structural changes and the propagation
mechanisms of technology shocks and the way the formers may have influenced the seconds
deserves further investigations.

3.3 The Empirical Model

We use a Bayesian Vector Autoregression where the coefficients are allowed to smoothly
drift over-time to describe the evolution of the US economy. Several reasons drive our
choice. First, time variations and structural changes may be important. Second, there can
be various features of the US economy that have changed and they should be considered
simultaneously rather than separately. Third, we believe that changes in macroeconomic
relationships suggest more evolution rather than sudden breaks”. Fourth, our model repre-
sents a generalization of fixed coefficients VAR and includes this as a special case.

3.3.1 VAR Representation

Let 3 be a m x 1 vector of time series which admits the following reduced form VAR
representation
yr = Ao + Argys—1 + Aopyeo + oo+ Apili—p + &t (3.3)

where Agp; is an n x 1 vector of time-varying intercepts, A;;, for i = 1,...,p, are n x n
matrices of time-varying coefficients® and ¢; is a n x 1 Gaussian white noise process with
zero mean and covariance .. Let K3 be any, possibly time varying, nonsingular matrix such
that Ky K[ =Y. Rewriting the model in terms of orthogonal shocks we have

yr = Aoy + A1ye—1 + A2pyi—2 + oo+ Apyi—p + Kiey (3.4)

where e; = K, 1€t is a Gaussian white noise process with zero mean and covariance the
identity matrix I,,. Equation (3.4) represents the class of structural representations of the
vector of time series and each particular matrix K; defines a particular representation of ;.

3.3.2 Dynamics

Model dynamics are summarized in the mechanisms through which shocks spread over time.
Impulse response functions measure the effects of a shock on future time series relative to
some benchmark case. Equation (3.3) has the following companion form

Vi =t +Aryi—1 + €

"We do not claim that breaks from period to period are unlikely to occur but rather we argue that most

of macroeconomic changes, in particular those related to the labor market, take place in a gradual way.
8The fixed coefficients VAR is a special case of the model in which A;; = A; for all ¢ and ¢.
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where y; = [y.-y1_pi1]’s € = [€10...0]" and py = [A5,0...0]" are np x 1 vectors and

t pu—
-1y Onp-1)m

where Ay = [A1...Ap4] is an n X np matrix, I,,_1) is an n(p— 1) x n(p — 1) identity matrix
and Op(p—1),, 18 @ n(p — 1) x n matrix of zeros. Iterating k period forward and omitting for
simplicity the constant term, we obtain

Vitk = Aigio Aryi—1 + Appr Apprer + Appp Aypoen + oo+ Appi€rpn—1 + €4k

Let S; j(M) be a selection function, a function which selects the first ¢ rows and j columns
of the matrix M. Taking as a benchmark case the case of no-shock occurrence, and as-
suming that coefficients and shocks €; are uncorrelated, the matrix of dynamic multiplier
Snon(Atsk... A1) describes the effects of e; on y;4 1, while the effects associated to structural
shocks can be derived from the relation e, = Kie; and are given by Sy, p(A¢tg... A1) K.
Few important features of the impulse response functions in our setup need to be high-
lighted. First, the effects of the shocks depend on future coefficients: unlike in the fixed
coeflicients case, here propagation mechanisms are subject to future changes in the structure
of the economy. Second, the effects of a shock for the same k but different ¢t may vary over
time, both because at each time period we can associate a particular reduced form dynamic
multiplier, and because the identifying matrix, K;, may change over time. Third, data
provide information about model dynamics up to the end of the sample date, T, because
posterior information is available only for VAR coefficients up to that date. Thus in order
to study dynamics after T some forecast of future VAR coefficients is needed. To construct
impulse response functions we assume A7, ; = Ap for all j = 1,2,.... Three reasons moti-
vate our choice. First, we want to use all the information contained in the data. Second,
A7 represents the best forecast of Ar,; whenever coefficients evolve according to a ran-
dom walk. Third, impulse response functions, under this assumption, have useful long-run
properties?. Formally impulse response functions of a shock occurring at time t at horizon
k are given by
IR(t, k) = By i Ky

where

By =

)

Sn,n(At—l—k'-'At-i-l) if t4+k<T
Sun(AFFTAr Ayy) if t+E>T
Thus for each ¢t = 1,..., 7 we have a path of impulse response defined by the sequence
{B; K }72; and cumulated impulse response functions {Bt7th}zO:1 where Bt,k = Z?:l By .
First note that, as in the fixed coefficients case, if all the eigenvalues of any realization of Ay

9Other alternatives are available. For instance, Canova and Gambetti (2004), in a similar Bayesian
approach, consider the effects of the shock under all the possible realizations of future coefficients for some
finite horizon of interest. This implies drawing future coefficients from the prior density conditional to a draw
for coefficients up to time T from the posterior. Actually, while useful for finite horizons, such an approach
creates non-trivial complications for infinite horizons since available necessary and sufficient conditions for
the convergence of Zle H§-:1 Ayiyj... Ay are too restrictive for our purposes.
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are smaller than one in modulus impulse response functions converge pointwise (see appen-
dix). In particular the limit of cumulated impulse response functions will be varying over
time, depending on t. Second, the speed of convergence and thus the long-run cumulated
effects will depend on the end-of-sample date coefficients. We use the last available time
period observation in order to maximize the quantity of information from the data, but in
the empirical part we will investigate the sensitivity of our results to different end-of-sample
dates'?, that is we will end the sample at arbitrary dates different from 7.

3.3.3 Identification

In order to identify the model and recover the representation of y; in terms of structural
shocks we should, in general, fix for all £ = 1,...T" a particular matrix K. Since our focus is
only on technology shocks we only partially identify the model, that is we only fix a column
of K; without attempting to identify all the other shocks. The restriction we use is the
same as in Gali (1999) and CEV: the technology shock is the only shock affecting long-run
labor productivity!'. For each t = 1,...T", let S; be the unique lower triangular matrix such
that S;S5; = Bt,m23£7oo- We set
K = B; 1S,
Thus the path of structural impulse response functions for each t = 1,...T" will be given by

IR(t,k) = By Bi S, k=12, ...

If, as in the fixed coefficients case, labor productivity is ordered first, the first shock ey; is
the technology shocks'?.

3.3.4 Specifications and Estimation

A State-Space Representation

In order to understand model estimation it is useful to rewrite the model in a state space
form. Let Ay = [Aoy, A1p...Apy], ) = [1n,y£_1...yg_p], where 1,, is a row vector of ones of
length n , let vec(-) denote the stacking column operator and let ; = vec(A}), 07 = [0}...0%]
and y? = [y}...v%7). Then (3.3) can be written as

Yt = Xéet + &¢ (35)

10 Another feasible alternative would be to study local dynamics, i.e assuming that all the coefficients are
constant from the period in which the shock occurs. In this case however a lot of in-sample information
would not be used and for this reason we do not purse this strategy.

Tt is clear that it is the only shock affecting long-run labor productivity among the shocks in e;. In fact
in our model potentially shock to coefficients could affect variables at long-run horizons, but in this case
they would have a different interpretation, since they would affect permanently the growth rates of labor
productivity.

12WWe do not attempt to identify the others n — 1 shocks and we simply fix them using an atheoretical
recursive long-run ordering among the other variables. However it is important to stress that such an
ordering does not affect the dynamics of the so identified technology shock, in fact it can be showed that
by changing the ordering of the other variables the responses of all variables to technology shocks remain
unchanged.
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where X{ = (I, @ x}) is a n x (np + 1)n matrix, I,, is a n x n identity matrix, and 6 is
a (np+ 1)n x 1 vector. Treating 6, as a hidden state vector, equation (3.5) represents the
observation equation of a state space model. Let f(-) be a normal density and let us assume
that f(60;41|0:, ¢) can be represented as

Or11 = FOp + upp1

where u; is a (np+ 1)n x 1 Gaussian white noise process independent of ; with zero mean
and covariance Q'3, ¢ = {Q, X} and F is a diagonal matrix of constant coefficients. We
assume that 6; evolves according to

P(Or+1|0t, 8) < T(Or41) f (0141101, D) (3.6)

where Z(6;41) is an indicator function assuming value zero if roots of the associated VAR
polynomial are outside or on the unit circle and one otherwise. In other words the function
discards path of #; whenever the associated VAR polynomial roots are unstable. Such a
restriction ensures convergence of impulse response functions and then makes the above
discussed identification scheme implementable since it cuts the support of the distribution
in correspondence of draws with unit or explosive roots'4. Equation (3.6) represents the
conditional prior for §;. We assume that Fj; = 1 if the coefficient is associated to lagged
variables or equal to 0.999 for the time-varying intercept terms. The first assumption
yields random walk coefficients for lagged variables provided that the roots restriction is
satisfied. On the other hand, we assume that the intercept term evolve according to a very
highly persistent but stationary process. This is needed since a random walk process for
the intercept term would signify infinite prior variance. Except for the restriction on the
unit root and the assumption of stationarity of the time-varying intercept term the above
state space representation is identical to the one originally proposed by Cogley and Sargent
(2001).

Estimation Strategy

Estimation is done in two steps. First, we characterize the unrestricted posterior distribution
pu (07, 6lyT). Second, we discard the draws that do not satisfy the restrictions on the VAR
polynomial roots. Since the posterior distribution is not available in closed form, we simulate
it using MCMC methods. Specifically, the first step is done using the Gibbs sampling
algorithm where the time-varying parameters and the hyperparameters are treated as two
different blocks, while the second is done by applying a rejection sampling to the unrestricted
posterior distribution. Because of the heavy notation and the technicalities involved with

13We estimate the model under different assumption on Q: diagonal, block-diagonal with the block corre-
sponding to the coefficients of the same equation and for the bivariate case we also specify it as full matrix.
While the degree of time variation depends on the specific assumptions main results are roughly unchanged.
Furthermore independently on the particular specification, structural coefficients are always allowed to evolve
in a correlated manner (see Canova and Gambetti, 2004).

' The restriction on the VAR polynomial roots makes the model locally stationary at each point in time,
which does not imply global stationarity.
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the construction of posterior distributions we defer the details of the estimation to the
appendix. Once the posterior distribution is available, we draw a path for the states and
the variances, we identify the technology shock and we compute the associated structural
impulse response functions. After having computed a sufficiently large number of draws
inference is implemented by taking the mean and 68% confidence band.

Specifications and Data

We use a bivariate VAR including labor productivity growth and per capita hours worked,
and a four variables VAR in which the interest rate and inflation are added (the Rm-
specification henceforth). The bivariate VAR is important since it is the benchmark spec-
ification from which the debate originates. On the other hand, VARs that include more
variables are important both because it is of interest to study the effects of technology shocks
also on other macroeconomic variables, and because the results may change compared to
the bivariate specification.

We use quarterly US data spanning from 1954:1V to 2003:I11 taken from the FRED II
data base of the Federal Reserve Bank of San Louis. We initially estimate the model for
the sample 1954:1V-1966:1V using fixed coefficients VAR to calibrate prior parameters and
then reestimate it from 1967:1 up to 2003:111. The variables used are the following: the first
differences of the logs of labor productivity in the non-farm business sector (OPHNFB);
the first difference of the logs of the GDP deflator (GDPDEF); the federal funds rate
(FEDFUNDS); per capita hours are defined as hours worked (HOANBS) divided by the
non-institutional population over 16 (CNP160V). We use both growth rates of hours worked
and the levels in logs.

3.4 Results

3.4.1 Impulse Response Functions

For each quarter we collect the posterior mean'® of the impulse response functions for
horizons up to 20 quarters. All 3D IRF are plotted using the following convention: on the
zr-axis there are quarters after the shock, on the y-axis there are the time periods, from
1967:1 up to 2003:II and the z-axis there is the value of the response.

Bivariate VARs

Figure 3 displays the response of per capita hours worked (level specification in the bottom
panel and the growth rates in the top panel) to a positive technology shock in the bivariate
VAR. No matter the specification used, levels or growth rates, before early 90’s the response
of hours worked is negative and significant on impact. It is also quite persistent, lasting on
average about one year and reaching the minimum at about two or three quarters after the
shock. In the levels specification the degree of persistency gradually reduces from mid 80’s.

15Results are very similar when the medians are considered instead of the means.
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Starting from mid 90’s, the response becomes positive on impact, although not significant,
and hump shaped. On the other hand in the growth rates specification the response is
always negative and after mid 80’s also permanent. While generating slightly different
dynamics in the last part of the sample, until early 90’s both empirical specifications point
to a persistent reduction of hours.

Larger VARs

Figure 4 displays the response of per capita hours worked (level specification in the bottom
panel and the growth rates in the top panel) to a positive technology shock in the Rm VAR.
Figure 5 focuses on the posterior mean of the impact effect with 68% confidence bands.
The mean response of hours at all dates and for both specifications is negative on impact
although significant only until mid 90’s. As in the bivariate case, in the levels specification
the response is much more persistent and pronounced before mid 80’s while after that
date the degree of persistency tends to reduce. A similar pattern concerns the size of the
response. At the end of the 90’s the response is about one fifth of the response during the
70’s and the reversion to the pre shock level is completed after one year, while in the first
part of the sample it occurs after two or more years. The response for the growth rate
specification is almost identical to the one in the bivariate case, it is negative at al horizon
and permanent after mid 80’s. In sum, two important results arise. First, no matter the
specification for hours worked, until early 90’s technology shocks are contractionary, hours
worked fall. Second the response on impact displays a break dated early 90’s: before that
date it is very pronounced and statistically different from zero while after it is much smaller
and not significant.

Figure 6, 7 and 8 display the response of labor productivity and output and inflation
respectively for the levels specification'®. Labor productivity and output increase on impact,
the former increasing more than the second because of the reduction in the labor input.
At few quarters after the shock, both responses begin to climb to their new steady state
level. Notice that, consistently with the response of hours, the response of output in the
levels specification is smaller on impact in the first part of the sample and it takes more
quarters to reach the new long-run level. Interestingly, at all dates, the impact effect of labor
productivity is smaller that the long-run effect. Hence technology shocks appear to spread
gradually or, at least, they affect both labor productivity and output gradually. It should be
stressed that while the same finding emerges in the fixed coefficients case with hours worked
in growth rates, in the level specification the response of labor productivity is substantially
different (see CEV): when hours enters in levels the impact effect of labor productivity
generally overshoots its new steady state. So that, labor productivity gradually decline to
the new long-run equilibrium instead of increasing to it. Thus,when one takes into account
time variations, not only the dynamics of hours change compared to fixed coefficients VAR,
but also those of labor productivity. Inflation falls on impact and for few quarters after

6 We omit impulse response functions for first differences specifications, available upon request, since are
very similar.
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the shock at all dates. The response of inflation is much more persistent before 1980 than
after, in particular before 1980 the response is hump shaped reaching the minimum after
one year, while after it steadily reduces after a large initial effect. The result suggests that
technology shocks could have contributed substantially to the changes in terms of volatility
and persistence of inflation after mid 80’s confirming results by Canova, Gambetti and
Pappa (2005).

3.4.2 Technology Shocks and the Business Cycle

Are technology shocks important for business cycles? Are technology shocks responsible for
the pattern of output and employment fluctuations associated with the business cycle? The
empirical framework we use allows us to address these questions by decomposing historical
fluctuations in output, labor productivity and hours into a technology and a non-technology
component. From the posterior distribution we draw realizations for structural coefficients
and for each realization we collect the particular realization of structural shocks. Then
using only the estimated technology shocks and the structural coefficients we compute the
predicted time series for output, labor productivity and hours worked. Using a bandpass
filter, we extract from the resulting series the component associated with business cycle
frequencies and we compute correlations and variances. We repeat the same exercise for
the non-technology component. We perform the analysis using both the levels and the
growth rates specification for hours worked.

Table 1 reports the results for the technology shock. Point estimate of the correlation
between output and hours attributable to technology shocks is 0.76 in the bivariate and
0.55 in the multivariate case when hours are specified in levels. Only in the bivariate case
the correlation generated by technology shocks is similar to the correlation arising in actual
data and it is entirely attributable to the dynamics arising in the last ten years of the
sample. Correlations reduce substantially when hours are specified in first differences. In
this case they are 0.46 in the bivariate and 0.28 in the larger VAR. On the other hand, non-
technology shocks produce correlations between output and hours which are of the order of
about 0.9. The picture is even more clear if we look at the portion of explained variance.
In the levels specification technology shocks account for about 15-28% of the hours variance
and 14-25% of the output variance, while in first difference they are even smaller, 9-15%
and 11-14% respectively. This means that the non-technology component account for at
least the 75% of cyclical output fluctuations.

By investigating the pattern of output fluctuations and the component associated with
technology shocks under various specifications two robust facts emerge. First, the amplitude
of total output fluctuations substantially reduces over time, particularly starting from mid
80’s. Second, the size of fluctuations due to technology shocks are roughly constant over
time. This has two main implications. First, technology shocks can hardly be considered
the main cause of the changes observed in the US business cycles in terms of size of fluctu-
ations. Second, because fluctuations associated to technology shocks are roughly constant
while those associated to the non-technology component reduce over time, this means that
contribution of technology shocks must have increased after mid 80’s.
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A new interesting feature emerges in our framework. The non-technology component in-
cludes two elements: the non-technology shocks (e, ...e4;), and a second part resulting from
shocks in the time-varying intercept term propagated by the stochastically time-varying co-
efficients. Adding the portion of variance explained by technology and non-technology
shocks a portion of output variance of about 5-15%, depending on the particular specifica-
tion, is left unexplained. This means that even if no such shocks occur, nonetheless we could
observe fluctuations in output and hours accounting for about the 5-15% of the variance
of actual output fluctuations and generating correlations of about 0.8-0.9. This finding
is clearly ruled out in fixed coefficients. However when the linear structure is replaced
by a non-linear one in which non-linearity comes from stochastically varying coefficients,
multiplicative disturbances and shocks to the intercept term play a role in shaping US busi-
ness cycles fluctuations. This evidence is consistent with the idea that transition dynamics
arising from changes in trends or means are gradual instead of abrupt and they generate
substantial movements in output and hours which are recognizable at the business cycles
frequencies.

3.4.3 Testing Time-Variations

We perform two types of test: the first is an informal test on the rate of drift of the
reduced form coefficients, while the second is based on posterior intervals for the differences
in impulse response functions. Recall that €2 represents the variance of the shocks in the
unrestricted law of motion of the coefficients. As shown in the appendix, we calibrated the
prior scale matrix, g, so that a priori there is a high probability of small changes in the
coefficients. In all the specifications the posterior distribution of ¢r(€2) shifts to the right of
tr(€p), with a 80-90% of posterior mass concentrated on values higher than tr(£y). This
means that the data are shifting the distribution toward a region of higher, compared to
our prior, coefficients time variations. In other words data seem to favor a specification in
which coefficients are varying over time. Figure 9 exemplifies the result for the bivariate
case with hours in levels: the trace of the prior scale matrix, tr(€g) (the segment) lays on
the left tail of the posterior histogram of ¢r(£2).

The second test is a simple posterior interval test. The idea is to test whether the
responses are different over the sample. Let ¢ be some fixed date. For all ¢t = 1,...,t —
1, +1,...,T we draw from the posterior distribution of the impulse response functions to
characterize the posterior of

D(t, £, k) = IRy (t, k) — IRy (L, k)

which is the difference between the response of hours at time ¢ and ¢ at lag k to a technology
shock. We take a posterior interval centered at the posterior mean of D(t,t, k) and we check
whether the zero is included. In case of no significant time-variations we should find that
zero is included in the interval for all t. In the levels specification we set £ =1998:I1T'7. For

"We choose t to be the date in which the 68% lower bound for the impact effect is higher. That is the
date in which is more probable to find differences with the responses at other dates.
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k = 0, we find that there are 42 dates, concentrated between 1972 and 1981, for which the
difference is significantly different from zero. At such dates the posterior probability of the
impact effect to be smaller than the impact effect in 1998:1I is on average about 0.9. For
k = 4, one year after the shock, there are 4 dates, between 1978 and 1979, for which the
response is different from zero. For the bivariate case numbers are very similar: we find 36
dates for k=0 and 4 for k=4 in which the differences are significant. For the growth rates
specifications we choose 2003:II1. In this case we do not find significant differences in the
responses, probably because the high uncertainty surrounding the response after early 90’s
makes the confidence band for D(t,%, k) extremely wide.

3.5 Fixed vs. Time-Varying Coefficients VARs

We compare our findings with those arising from standard VAR. In order to make the
comparison clear and simple we limit the attention to the bivariate specification.

3.5.1 What Explains the Differences?

Once time variations are allowed for, hours significantly reduce on impact at least until
mid 90’s also when specified in levels. Why do results change with respect to the fixed
coefficients case?” The goal here is to investigate what are the reduced form coefficients
responsible for the switch in sign of the response. We proceed as follows: first we divide
all the reduced form coeflicients in four blocks, each corresponding to the coefficients of the
lags of the same variable in one equation; second, we set all the coefficients belonging to the
same block constant and equal to the corresponding fixed coeflicient estimates; third, we
draw from the posterior for all the remaining time-varying coefficients and we compute the
implied impulse response functions; we repeat this procedure for all the blocks. The switch
from negative to positive occurs when the block corresponding to hours worked in the labor
productivity equation is set to be constant over time. In this case the implied impulse
response functions at all dates are positive and hump-shaped (see Figure 10), whereas
when the other coefficients are replaced the resulting dynamics are roughly unchanged, in
particular the sign of the response is unaffected. Moreover, time variations in the response of
hours completely disappear, the impact effect being nearly constant over the whole sample.
Therefore, such coefficients not only account for the switch of the sign, but they also seem
to drive time variations in the response of hours.

Figure 11 focuses on both the fixed and time-varying estimates of the coefficients of the
lags of hours worked in the labor productivity equation. Few features are worth noting.
First, all the time-varying estimates, apart the coefficient for lag one which is roughly
constant over-time, display the same pattern. They are U-shaped with a clear upward
trend starting from mid 80’s and crossing fixed coefficients estimates at some date around
the end of the 80’s (for lag 2) and the beginning of the 90’s (for lag 3 and the sum of lagged
coefficient). Second, the long-run coefficient, the sum of lagged coefficients, seems to be
the most important, from a quantitative point of view, in tracking time variations in the
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response of hours since it exactly matches the pattern of variations in the impact effect.
Interestingly we find that the correlation between this coefficient and the impact effect is
0.9. Third, fixed coefficients estimates resemble a sort of weighted average of the time-
varying estimates in which the weight attributed to the last part of the sample is higher
than that attributed to the first part. This is probably due to the sharp and synchronized
increase in labor productivity growth and per capita hours worked starting from early 90s.
This is consistent with the finding that by running the analysis with fixed coefficients and
hours in levels excluding from the sample the last ten years, hours fall.

As an additional check we re-estimate the model constraining the intercept term to be
constant over time while letting all other coefficients vary. This is an important exercise
since, as shown by Fernald (2004), once one allows for trend breaks in fixed coefficients VAR,
hours fall also in levels. The reason, he claims, is that short-run dynamics are dominated
by a non causal low frequencies correlation between labor productivity growth and the
levels of hours worked attributable to synchronized changes in the means of the two series.
Therefore, it could be that these, rather than changes in VAR coefficients, are the true
responsible for the negative response of hours. If actually trend changes are responsible for
the switch, by constraining them we should observe a rise of hours. We find that hours
reduce and the response both in terms of persistence and size is nearly identical to the
benchmark case. Thus, although probably important, changes in trend labor productivity
do not seems to be the main, or at least the only, factor affecting dynamics of hours worked.

3.5.2 Encompassing Fixed Coefficients Specifications

CEV show that when the true model is the VAR with hours in levels and the analysis is
performed using hours in growth rates, hours fall. The converse is not true: when the growth
rates is the true model and hours are specified in levels again hours reduce. Therefore, they
argue that the specification with hours in levels is more plausible since it can explain also
the results of the misspecified model while the growth rates specification does not. Here,
using a similar approach we investigate whether our model can encompass fixed coefficients
VARs. Specifically we study whether, by running the analysis with fixed coefficients and
data generated by the time varying-coefficients model, we can replicate the two basics facts:
hours fall in growth rates and increase in levels. We proceed as follows. We assume that
the time varying coefficients VAR is the true model and we set all the coefficients at their
posterior mean values. Using the true model we generate 500 new time series data for labor
productivity growth and hours worked. Then for each new vector of time series we estimate
the response of hours to technology shocks under fixed coefficients using both specifications,
levels and growth rates. Finally we average over the 500 responses.

Figure 12 displays the results when the time varying coefficients VAR with hours in
growth rates is assumed to be the true model. Solid and dotted lines represent the responses
of hours, specified in levels and growth rates respectively, estimated with fixed coefficients
VARs and actual data. Starred lines, solid and dotted, represent the same responses but
arising with simulated data and averaged over the 500 realizations. When the true model
is the time varying coefficients VAR with hours in growth rates hours decline under both
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specifications. This means that, while easily explaining the Gali’s results, the model fails
in explaining the CEV’s results, since the response of hours is negative instead of being
positive. Figure 13 displays the same responses but when the time varying coefficients
VAR with hours in levels is assumed to be the true model. In this case hours reduce when
specified in first differences and increase when specified in levels, exactly as with actual data.
The model encompasses both fixed coefficients specifications, since the misspecified VAR
exactly reproduces the results of Gali and CEV. This means that using fixed coefficients VAR
and hours in levels we would conclude that hours increase while the true model implies a
significant decline in hours for most of the sample period. Under this encompassing criterion
the time-varying levels specification seems to perform better than the growth rates one since
it is able to explain all the results previously found in literature.

3.6 Structural Explanations for the Dynamics of Hours Worked

3.6.1 Explaining the Decline of Hours

There exist basically two classes of structural explanations of why hours worked may fall
after a positive technology shock. The first relies on the presence of some frictions in the
economy, while the second relies on frictionless models in which technology generates large
wealth effects. Here we investigate whether theoretical predictions match our empirical
findings.

Nominal vs. Real Frictions

A first explanation of the decline of hours relies on the presence of sticky prices and a
not completely accommodative monetary policy. The intuition originally provided by Gali
(1999) is the following. Consider an economy where in equilibrium output equals real
balances, prices are set in advance and the monetary policy follows a simple money rule!®. If,
in response of a positive technology shock, monetary policy is not sufficiently accommodative
and aggregate demand expands less than the increase due to the technological improvement,
then employment must fall in order to keep supply and demand in the goods market in
equilibrium®. A second explanation relies on the presence of some real rigidities. Francis
and Ramey (2001) propose a modification of the standard RBC model which can potentially
account for the reductions of hours after a technological improvement. The basic ingredients
are habit formation in consumption and capital adjustment costs. The authors show that
the response of consumption and investment is much more sluggish than in the standard
case because consumers prefer not to change consumption by too much and investment is

18Similar mechanisms generate from more complete dynamic models in which price predeterminacy is
substituted with a Calvo-type random price adjustment, see e.g. King and Wolman (1996).

9While monetary policy is a crucial ingredients for such an explanation, it should be stressed that a
money target rule is not a necessary condition to generate the fall in hours worked; actually some authors
(Basu, 1998, Gali and Rabanal, 2004) show that sticky prices model with more realistic policy rules, like a
Taylor rule, are still able to generate the decline in hours.
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made expensive by the capital adjustment costs. Thus if the resulting increase in output is
smaller than the increase in productivity hours must fall.

The two explanations have, as stressed by Francis and Ramey (2004), very different
implications in terms of the response of real wages. In the sticky price model real wages
either fall or at most increase by little on impact and then they gradually converge to a
new higher steady state level. On the other hand the habit formation adjustment costs
model predicts that real wages immediately rise overshooting the long-run level slightly.
We reestimate the model adding the real wage. The resulting response of wages closely
track from a qualitative point of view that of productivity. Specifically real wages slightly
increase on impact and then gradually rise until reaching the new long-run level. While in
sharp contrast with the predictions of the model embedding real rigidities, the behavior of
wages appears to be roughly consistent with sticky prices models.

Wealth Effect and Slow Technological Change

In an important paper, Campbell (1994) showed that technology improvement may gener-
ate "perverse effects” on labor inputs. Contrary to common wisdom, in a RBC model a
persistent and permanent negative technology shock (what the author calls a ”productivity
slowdown”) may actually increase hours worked for some quarters. The reason is that, due
to its slow diffusion, the shock triggers a large wealth effect that dominates the substitution
effect in the short-run and makes consumers to substitute leisure for work. The increase
in hours can be so sustained that output can rise in the very short-run. By reversing the
sign of the shock, the above mechanism could explain why a technological improvement
may actually reduce, instead of raising, hours worked. A similar mechanism emerges in the
recent works by Linde (2004) and Rotemberg (2000).

One of the main implications of the dynamics arising from those models is that both
consumption and consumption-to-output ratio must increase on impact. The former in-
creases because of the wealth effect, while the second increases because investment reduces
since agents anticipate that marginal productivity of capital will be higher in the future. In
order to assess the relevance of this explanation we estimate the model adding consumption
and investigating the response of hours and both consumption and consumption-to-output
ratio. As in previous specification hours fall on impact and the dynamics are almost un-
changed. Consumption rises on impact over all the sample although the response is not
significantly different from zero except for few year at the end of the 90s. On the contrary
consumption-to-output declines on impact for all the dates and until mid 80s the response
is also significantly different from zero. The sign of the response of consumption-to-output
ratio is at odds with the predictions of RBC models with slow technological changes. There-
fore while it cannot be excluded that large wealth effects stand behind the reduction of hours
worked, such effects do not seem to be generated by technological progress diffusing slowly
throughout the economy.
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3.6.2 Explaining Time Variations: the Fed’s Time-Varying Response

From an econometric point of view the reduction in magnitude of the response of hours
on impact seems to depend to a large extent on changes in the reduced form coefficients
in the labor productivity equation. Nevertheless there could be several possible structural
explanations for this pattern. As mentioned earlier, in a sticky prices model the response of
hours worked crucially depends on the monetary policy conduct. The more expansionary
is the monetary policy after the technological improvement, the smaller is the decline of
hour worked because the higher is the expansion in the aggregate demand. Therefore,
changes in monetary policy could explain why the response of hours has changed over time.
Some authors (see e.g. Orphanides and GLV) argue that before 1979 monetary authorities
had a less aggressive stance against inflation and were giving more importance to output
stabilization. Due to mismeasurements of potential output, movements in interest rate
overshooted those prescribed by the optimal rule and policies adopted before 1979 turned
out to be overstabilizing. Such a conjecture could explain why the fall of hours worked is
more pronounced before mid 80’s than after2’.

Our framework allows us to study whether changes in the response of hours depend
on shifts in monetary policy preferences. We estimate a simple Taylor rule in which the
interest rate responds only to contemporaneous inflation and output growth?!

iy = agmiet 4 b Aytet + ¢ (3.7)
where 4; is the federal funds rate and 7/°°", Ayt°" are respectively the component of inflation
and output growth associated to technology shocks??. The previous explanation would hold
if the coefficient on output is high before mid 1980 than after. Figure 14 displays the two
coefficients, a; b, along with the 68% confidence bands. First, consistently with a large
amount of evidence in empirical literature, we find that monetary policy stance becomes
more aggressive against inflation from early 80’s, the coefficients raising from about 1 during
the 70’s up to 2.5-3 during the 80’s. However, differently from what is argued by the
majority of works, and consistently with a growing stream of literature (see e.g., Bernanke
and Mihov, 1998, Canova, 2004, Canova and Gambetti, 2004, Primiceri, 2005, Sims, 2001,
and Sims and Zha, 2004) the change does not represent a permanent break. Interestingly
around 1992 the coefficient reduces again, being about 1.4, and in 2001 is not significantly
different from the 70’s level, around 1. Second, the coefficient on output is almost constant
over all the sample, in particular we do not find a significant change after mid 80’s. Hence
the result is hardly consistent with a primary role of monetary policy in shaping changes
in the transmission of technology shocks?.

20Gimilar results can arise in a framework where monetary authorities are learning, see Lansing (2000).

21 An alternative strategy would be to compute the ratio between the response of the interest rate and
inflation and output growth. We do not follow this strategy because in that case we would not control for
the other variables.

22Note that by construction the regressors exogenous and orthogonal to the residuals justifying the Kalman
Filter estimation.

23The same conclusion is reached by looking at the response of the real interest rate. Actually we do not
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3.7 Robustness and Extensions

We perform a number of robustness checks. We first check whether our results are robust to
the choice of the end-of-sample date and definitions of IRF and second whether alternative
identification schemes give qualitatively similar results. In addition, we extend the model
to consider also investment-specific technology shocks.

3.7.1 Alternative End-of-Sample Dates and IRF Definitions

The definition of impulse response functions used in the paper has a potential drawback
when identification is achieved with long run restrictions. Structural short-run dynamics
for each date in the sample depend on the end-of-sample coefficients matrix A7. We choose
as end-of sample date the last available observation for the data in order to maximize the
available information. However, it could be that different choices of T yield different results,
in particular for the last part of the sample. Therefore, we cut the sample at arbitrary dates,
we choose two and four years before the last available observation and we run the analysis
using Ap_g and Ar_15. As expected small quantitative differences emerge mainly for the
quarters in the last part of the sample. However our main conclusions are very robust. First,
the response of hours worked is still negative at all horizons with shapes almost identical to
those resulting from the benchmark case. Second, the size of the impact effect is reducing
over time in absolute value, in particular the response of hours is not significantly different
from zero after early 90’s.

We also check if results are robust using a different definition of impulse response func-
tions. Specifically, we sample future coefficients from the prior density conditional to a draw
from the posterior for the in-sample-coefficients. In so doing we take into account future
coefficients variation. Clearly, we have to discard the draws which yield impulse response
functions which do not satisfy some convergence criterion. Also in this case, mean impulse
response are almost identical to the benchmark case.

3.7.2 Sign Restrictions

Recently, a number of papers questioned the validity of the conclusions drawn using long-run
restrictions (see e.g. Uhlig, 2003). Some authors (Francis, Owyang and Theodorou, 2003,
Dedola and Neri, 2004, and Peersman and Straub, 2004, 2005), taking a radically different
approach, suggest to use inequalities restrictions directly derived from DSGE models, in
the spirit of the restrictions originally proposed by Canova and De Nicolo (200) and Uhlig
(2005). Here we check the robustness of results when long-run identifying restrictions are
replaced with sign restrictions. We take as identifying restrictions a set of sign inequalities
which are robust under different specifications of the technology process. Specifically we
assume that a positive technology shock (i) does not raise inflation and the interest rate
for three quarters and (ii) does not decrease labor productivity for 40 quarters after the

find evidence that the real interest rate reacts more before 1979 than after. Nevertheless we do find a clearly
declining trend in the response of the real rate but only starting from early 90’s and lasting until 2000.
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shock. We leave all the other shocks unidentified. We use the same draws for reduced form
coefficients used under long-run restrictions and the implementation of the restrictions is
identical as Canova Gambetti and Pappa (2005). Again per capita hours worked fall after a
positive technology shock. The impact effect is negative, the responses reach their minimal
level between the first and second quarter after the shock and then they begin to climb
back toward the pre-shock level and after between one and two years the responses become
positive. Responses are qualitatively similar to those found under long-run restrictions
while time variation seem to be relatively limited: in fact responses are roughly similar at
all dates.

3.7.3 Investment-Specific Technology Shocks

Greenwood, Hercowitz and Krussel (2000) (GHK henceforth) put forward a version of the
RBC model in which the main source of technological progress is not of the aggregate
sector neutral kind as we identified but rather is specific to the investment sector. Using a
calibrated version of the model, the authors find, that investment-specific technology shocks
explain about 30% of output fluctuations. Similarly, Fisher (2005) through VAR analysis
finds that unlike neutral shocks investment specific technological change contribute for about
40-60% to aggregate fluctuations. We investigate how results change when also investment-
specific technology shocks are considered in the analysis. We estimate the TVC-BVAR
using, in the following order, real price of investment, labor productivity and per capita
hours worked. Following the identification scheme proposed by Fisher (2005), we assume
that (i) neutral and investment-specific technology shocks are the only shocks affecting
long run labor productivity and that (ii) investment-specific technology shocks the only
shock affecting long run real price of investment. Using the previous recursive long run
scheme, the first shock will be the investment-specific and the second the sector-neutral
shock. Differently from the benchmark case here both shock may affect long run labor
productivity.

Unlike the case of neutral technological progress, hours increase at all dates after an
investment-specific technology shocks and except for some quarters around early 80’s the
response is particularly persistent and hump-shaped. Furthermore, in response to neutral
technology shocks hours fall in both specifications. Table 2 documents the contribution of
the two types of technology shocks to aggregate fluctuations and the implied correlations
among variables. Panel A refers to the levels specification, panel B to the first difference
specification. The two technology shocks together explain about 39-53% of the total volatil-
ity of output ad hours worked at business cycles frequencies, depending on the particular
specification. In particular neutral technology shocks, as in the benchmark case, account
for about 10-20% while investment-specific for about 20-30% of the total variability at the
business cycles fluctuations for both variables. Interestingly investment-specific shocks gen-
erate a high correlation between output and hours, about 0.8-0.9, which is similar to the one
found in actual data, while correlation generated by neutral shocks are similar to the previ-
ous case, about 0.5-0.6. When also investment-specific shocks are included in the analysis
the importance of technology shocks on the whole in explaining aggregate fluctuations is
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remarkably increased. On the other hand, results for neutral technology found previously
are confirmed here.

3.7.4 Sensitivity to the Choice of Variables

Finally we check whether results are sensitive to the choice of variables. CEV argue that
it is important, at least in fixed coefficients VARs, to include consumption-to-output and
investment-to-output ratio. Taking their suggestion we estimate the model using a different
specification including labor productivity growth rates, hours consumption-to-output and
investment-to-output ratio. Results using the new specification are qualitatively very similar
to previous results. In the growth rates specification hours reduce persistently at all dates.
In the levels specification the pattern of the response of hours worked is almost identical to
the bivariate case. The response is negative, particularly persistent and significant on impact
until mid 90’s. From mid 90’s the mean response turns positive and humped shaped but
not significantly different from zero on impact. Table 3 displays the implied correlations
and percentages of variances explained by technology shocks. When hours are specified
in levels technology shocks generate a correlation between output and hours of 0.79 and
explain about the 38% of the total output variance. Numbers are slightly higher than in
the benchmark specifications. In the growth rates specification technology shocks generate
a correlation between output and hours of 0.52 and the percentage of explained output
variance is about 17%. Also under the new specification main conclusions are confirmed.

3.8 Conclusions

The response of hours worked to technological improvements is a key issue in assessing the
relevance of different theoretical characterizations of the business cycle. From the point of
view of the empirical research, evidence in favor of both a decline and a rise of hours worked
emerges. Results crucially depend on how the time series for hours worked is specified in
the VAR. In this paper we argue that conflicting results may arise because important time
variations and structural changes the US economy underwent during the postwar period
are a priori ruled out by standard models. In other words, we argue that differences in
the results depending on the particular specification for hours worked may simply originate
from a more fundamental misspecification arising from the too strong assumption of model
coefficients constancy. We investigate the effects of technology shocks on hours worked
using a Bayesian Vector Autoregression with drifting coefficients augmented with the same
standard restriction used in the literature, that is the technology shock is the only shock
affecting long-run labor productivity.

Time-varying dynamics matter. Once time variations are allowed for, competing empir-
ical specifications (levels and growth rates) yield similar results: hours fall at least until mid
90s. The decline is particularly pronounced and statistically different from zero until early
90’s, while after that date hours are less responsive to technology shocks. We argue that the
differences between fixed and time-varying coefficients are due to instabilities in the coeffi-

88



cients of hours worked in the labor productivity equation. Other findings complement our
main result. Aggregate sector neutral technology shocks of the kind emphasized by RBC
proponents can hardly be considered the only force driving business cycles since they can
only explain about 11-25% of the total output variance. Nevertheless when also investment-
specific technology shocks are considered, the percentage of output variance accounted for
by technology shocks as a whole is remarkably increased.

The decline of hours worked is in line with models of nominal rigidities or with RBC
models in which technology generates large wealth effects. However while the negative
sign of the response has reliable structural explanations, time variations in the size of the
response are left unexplained. Actually changes in the monetary policy conduct are not
able to account for the reduction in absolute value of the impact effect on hours. So why
are technology shocks less and less contractionary beginning from early 90’s? We leave the
answer to this question to future investigations.
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Figures

Levels

Figure 1:Effects of technology shocks on hours worked (first differences and levels specifica-
tion in top and bottom panel respectively) in the bivariate VAR, full-sample.
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Figure 2: Effects of technology shocks on hours worked (levels) in two subsamples:
1954:111-1979:1V in the top panel, 1982:111-2003:1IV in the bottom panel.
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Figure 3: Response of hours worked to a technology shock in the bivariate VAR: top panel

bottom panel levels specification.
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Figure 4: Response of hours worked to a technology shock in the Rm VAR: top panel first
difference specification, bottom panel levels specification.
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Figure 5: Impact effects of technology shock on hours worked in the Rm VAR, posterior
median and 68% confidence bands. Top panel first difference specification, bottom panel

levels specification.
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Figure 6: Response of labor productivity to a technology

specification.
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Figure 7: Impulse response functions of output to a technology shock in the Rm VAR,

levels specification.
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Figure 8: Impulse response functions of inflation to a technology shock in the Rm VAR,

levels specification.
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Figure 9: Trace of the posterior (histogram) and prior (segment) variance matrix of the
coefficients.
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Figure 10: Top panel impulse response of levels of hours with coefficients of hours in the
labor productivity equation replaced, bivariate VAr with hours in levels.
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Figure 11: Estimates of lagged coefficients of hours worked in the labor productivity
equation in the fixed and time-varying coefficients VAR.
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Figure 12: Encompasing test for the growth rates specificaion. Dotted line: response of
hours in the growth rates specification using real data. Solid line: response of hours in the
levels specification using real data. Dotted starred line: response of hours in the growth
rates specification using data generated by the time varying model with hours in growth
rates. Solid starred line: response of hours in the levels specification using data generated
by the time varying model with hours in growth rates.

Figure 13: Encompasing test for the levels specificaion. Dotted line: response of hours
in the growth rates specification using real data. Solid line: response of hours in the levels
specification using real data. Dotted starred line: response of hours in the growth rates
specification using data generated by the time varying model with hours in levels. Solid
starred line: response of hours in the levels specification using data generated by the time
varying model with hours in levels.
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Figure 14: Central banks preferences: coefficients on inflation and output growth in levels
(top panel) and growth rate (bottom panel) specifications.
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Appendix

A Estimation

Priors

We assume 6y, ¥ and € to be independent. We specify the following prior distributions?*

p(HO) = N(e_’p)
p(E) = IW(S5w)
Q) = IW(Q", )

The joint prior is

p(0",0) = p(0T|p)p(e)
o Z(07) £ (07 |¢)p(60)p(2)p(9)

where Z(67) = [To Z(6:) and f(67|6) = £(60l) [T F(Burl6r. 6.

Posterior Density

The posterior density, p(HT, qﬁ\yT) can be decomposed as
p(07, oly™) o< p(y" 107, d)p(6", ¢)

where the first term of the right hand side is the likelihood and the second the joint posterior
density. Conditional to the states up to time 7" and the hyperparameters the measurement
equation is linear with Gaussian innovation, thus the conditional likelihood is Gaussian.

The second term can be splitted into a conditional and a marginal density thus we have

p(0",6ly") o< fy" 16", 0)p(67 |8)p(9)
7(07) [£(" 107, 0) 1 (67 19)p(9)]

#For the block diagonal and diagonal specification we use respectively p(€;) = II/V(Q;Ol7 Vo), where 4

refers to the i — th equation and p(Q:) = IG(3, %)
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where from the first to the second line we used the restricted prior distribution for the states.
Note that the term in brackets is the posterior without the restriction on autoregressive
coefficients. Thus our posterior distribution is proportional to the unrestricted posterior

density, py,
p(0", 6ly") < Z(0")pu (07, ¢ly")

This is particularly convenient since we can first characterize the unrestricted posterior
and then perform the rejection sampling (see below) to collect the draws satisfying the

restriction.

Drawing from the posterior of reduced form parameters

The Gibbs Sampler we use to compute the posterior for the reduced form parameters iterate

on two steps. The implementation is identical to Cogley and Sargent (2001).

e Step 1: States given hyperparameters
Conditional on y”, ¢, the unrestricted posterior of the states is normal and pu(HT]yT, ¢) =
f0r|y”, ¢) HtT:_ll (0410141, 9", ). All densities on the right end side are Gaussian they their
conditional means and variances can be computed using the Kalman backward filter. Let
9t|t = E(9t|yt,¢)§Pt\t—1 = Var(0t|yt_1,¢);Pt‘t = Var(f:ly', ). Given Fojos 90\07  and X%,

we compute Kalman filter recursions

Oije—1 = FOi_111—1

Py = FPt—l\t—lF/ +Q
Ki = (Pp1 Xo)(X{Py1 X; + %)~
Oge = Oye1 + Ke(ye — Xi0p-1j-1)
Py = Py — Ki(X{Py_1)

The last iteration gives 67 and Ppjp which are the conditional means and variance of
f(0y™, ¢). Hence f(0r|y”, ¢) = N (077, Prir). The other T'—1 densities can be computed

using the backward recursions

Operr = Oy + Pt|tF/Pt:_11‘t(9t+1 — Fy)
-1
Pt\t+1 = Pt\t - Pt\tF/Pt_;,.l‘tFPt\t

where 0y,11 = E(0:0¢11,y",¢) and Py = Var(0:|0:11,9", ¢) are the conditional means
and variances of the remaining terms in p, (07 |y”, ¢). Thus f(60:|0:11,v", ¢) = N(Oyis15 Pojs1)-
Therefore, to sample A7 from the conditional posterior we proceed backward, sampling 67
from N (077, Prp) and 6" from N (04441, Pyeyq) for all t < T.
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e Step 2: Hyperparameters given states
Since (X, ) are independent, we can sample them separately. Conditional on the states
and the data &; and u; are observable and Gaussian. Combining a Gaussian likelihood with

an inverse-Wishart prior results in an inverse-Wishart posterior, so that

p(EI0T,y") = IW(SThm)
p(QwTvyT) = IW(Ql_lvyl)

where X1 = ¥y + Zthl eey, Q1 = Qo + Zthl uguy, vy = vg + T%.

Under regularity conditions and after a burn-in period, iterations on these two steps
produce draw from p, (07, %, Qy”). We have constructed CUMSUM graphs to check for
convergence and found that the chain had converged roughly after 2000 draws for each date
in the sample. The densities for the parameters obtained with the remaining draws are
well behaved and none is multimodal. We keeping one every four of the remaining 18000
draws and discard all the draws generating non convergent impulse response functions. The

autocorrelation function of the 2000 draws which are left is somewhat persistent.

The Rejection Sampling

This second step ensures that posterior density puts zero probability to draws which do not
satisfy the restriction on impulse response functions convergence®®. The implementation of
the rejection sampling is very similar to those in Cogley and Sargent (2001). First we need
a candidate density g(67, ¢), satisfying three properties: i) must be non negative and well
defined for all (87, ¢) for which p(67,4|Y'T) > 0; ii) it must have finite integral; iii) the

importance ratio R(67, ¢) must have an upperbound Z

r o pd"9lYT)
R(® ’¢)_W§Z<oo
where
(07 Gy = — L0 P07, Sly”)

S TZOT)pu (07, dlyT)doT dg
A natural candidate density is the unrestricted posterior pu(HT, (b]yT) because is a probabil-

ity density, integrates to one and it is non-negative and it is defined for all (8, ). Moreover

we have
R(O7, ¢) < L iy
T T TZOT)pu(6T, ¢lyT)doT d
*For the block diagonal and diagonal specification we have p(Q:|0",y") = IG(H, %) where

Qiin = Quio + 3_,_, u% and when block-diagonal p(Q:[67,y") = IW(Q;", v1), Qi1 = Qo + Qir and Qir =
Zz;l uiui' where ui is the vector of shocks in the coefficients of equation <.
26See Gellman, Carlin, Stern and Rubin (1995).
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and Z is finite if the probability of a draw with associated convergent impulse response

functions from the unrestricted posterior, the denominator, is non-zero. First we draw a trial
T

(HZ-T , ¢;) from the unrestricted posterior, second we accept it with probability w =7(07)

that is with probability one if it satisfies restrictions or zeros if it does not.

B Impulse response functions
Convergence in chapter 3

Consider any 7 < T'. Long-run impulse response and cumulated impulse response functions
are given respectively by the limits

lim AXA7 AL

k—oo

k
: J
Jim Az 4 (1 + ]z::l A))B,
where A, = I+AT+1—I—A7—+2A7—+1—|—...+AT_1AT_2...AT+2A7—+1 and B, = ATAT_l...AT+2A7—+1.
If for any realization of A7 the largest eigenvalue is smaller than one in absolute value then
impulse response converge pointwise to zero while long-run cumulated impulse response

converge pointwise to A, + (I — A7)~ 'B,. This comes from
lim A% =0
k—oo

k
lim (I + Y AL)=(I—-Ap)™*

k—o0 =
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