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Chapter 1

Introduction

The Council of Logistics Management! defines Logistics Management as “that
part of Supply Chain Management that plans, implements, and controls the efficient,
effective forward and reverse flow and storage of goods, services, and related infor-
mation between the point of origin and the point of consumption in order to meet
customers’ requirements.”

Logistics management, from this total systems viewpoint, is the means whereby
the needs of customers are satisfied through the coordination of materials and infor-
mation flows that extend from the marketplace through the firm and its operations
and beyond to suppliers (Christopher 1998). The process of integration along the
supply chain of a firm to its suppliers and customer is known as external integration.

However, effective logistic operations cannot exist without the high level of coor-

thttp://www.clm1.org/
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dination among various functional areas. This means that there is also a need for
internal integration. At minimum, such coordination requires eflicient and accurate
communication among the different logistics functions. While purchasing, production,
logistics and marketing functions have each been integrated within their individual
processes, there has been less progress integrating between these areas (Johnson et.
al. 1999).

The most demanding issues in Logistics today remain all about integration pro-
cesses (Christopher 1998). From these processes, firms gain important competitive
advantages and leading organizations are paying attention to these issues. There has
been a growing recognition of the importance of the integration topic, not only inside
the firm but also on a research level. However, most of what has been written about
integration on logistics refers to the integration of logistics information, the next level
is to extract value out of the integrated information, and use it to improve the plan-
ning. The advanced level of integration makes use of integrated decision models in
which the concerns of the different functional areas are taken into account in the
decision process. The present work embraces this key issue of integrating logistic pro-
cesses both inside the logistics field and with other areas of the firm, from a strategic
planning point of view.

Logistics as defined above covers a broad spectrum of activities and the integration
process can be divided into two different areas, internal integration and external inte-

gration. Therefore, there are various directions in the study of integration processes.



Chapter 1. Introduction 3

In our case, we will concentrate our analysis on integrating decisions between three
specific areas, transportation, inventory and customer service, under the umbrella of
the distribution management field.

One of these areas is Transportation, which generates one of the largest logis-
tics costs and, in many cases, accounts for a significant portion of the selling price
of some products. Transportation physically moves products to markets that are
geographically separated and provides added value to customers when the products
arrive on time, undamaged and in the quantities required. In this way, transporta-
tion contributes to the level of customer service, which is one of the cornerstones of
customers satisfaction. In general, the benefits of improved transportation, include
greater vehicle utilization, high levels of customer service, lower transportation costs,
reduced capital investments in equipment and better management decision making.

In leading organizations, Customer Service will increasingly become the key
strategic issue. Customer Service concerns will be also covered along our work and
can be defined as the collection of activities performed in filling orders and keeping cus-
tomers happy, or creating in the customers’ minds the perception of an organization
that is easy to do business with. In many organizations, the marketing department
is responsible for customer service and for the definition of customer service levels.

Inventory management is a logistics activity that can be a source of value to the
firm. Management must have a true knowledge of inventory carrying costs to make

decisions about customer service levels and logistics systems design, such as, the
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number and location of distribution centers, inventory levels, where to hold inventory
and in which forms and transportation modes to use. Inventory decisions can be
very complex and imply a trade-off between costs. For example, ordering in smaller
quantities on a more frequent basis will reduce inventory investment, but, may result
in higher ordering costs and increased transportation costs. It is necessary to compare
the savings in inventory carrying costs with the increasing costs of ordering and
transportation to determine how the decision to order affects profitability.

The goal of this thesis is the study of different logistics systems which integrate
decisions in the logistics distribution network while searching for improving service
levels and reducing costs. The questions we will try to answer are: Can efficiency
be improved by the coordination of different areas of distribution management? and
are there any alternative strategies for distribution that will allow the decision maker
to make a better choice?

The main focus of this theses is to answer the above questions by solving three
different distribution management problems. These problems reflect different distri-
bution management situations, with specific characteristics, which have yet not been
studied in the literature, as far as we know. Our study contributes to state of knowl-
edge by constructing distribution management strategies that contribute to improve
the performance of the Logistics functions and consequently the overall organization.

The first study explores three different distribution strategies: the first strategy

corresponds to the classical vehicle routing problem; the second is a master route
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strategy with daily adaptations, and the third is a strategy that takes into account
a cross-functional planning, between Marketing and Transportation, through a bi-
objective model, the improvement in the customer service level, through customer
relationship focus and the minimization of routing costs. All strategies are analyzed
in a multi-period scenario. A metaheuristic based on Iterated Local Search (ILS) is
used to solve the models and compare the strategies. Some examples are computed
and results show that the three different strategies present good alternatives for dis-
tribution policies. The results also show that by integrating into the optimization
model the objectives of different functional areas, better overall distribution policies
can be achieved.

In the second study, we develop two models for an inventory system in which the
distributor manages the inventory at the retailers’ location. These type of systems
correspond to the Vendor Managed Inventory (VMI) systems which are described in
the literature. These systems are very common in many different types of industries,
such as retailing and manufacturing. The objective of our models is to minimize
total inventory cost for the distributor in a multi-period multi-retailer setting. The
inventory systems include holding and stock-out costs for the first model. And, for
the second model, an additional fixed setup cost is charged per delivery. We construct
a computational experiment to analyze the model behavior and observe the impact
of the characteristics of the model on the solutions.

Finally, in the third study, the need for integration in the Supply Chain Manage-
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ment (SCM) leads us to consider the coordination of two logistics planning functions:
Transportation and Inventory. The coordination of these activities can be an ex-
tremely important source of competitive advantage in the Supply Chain Management.
The battle for cost reduction can pass through the equilibrium of transportation ver-
sus inventory managing costs. A study of a specific case of an inventory-routing
problem for a week planning period with two types of demand is conducted. The two
types of demand come from two different types of customers: the vendor-managed
inventory customers and the customer-managed inventory customers, with stochas-
tic and known demand, respectively. A heuristic methodology, based on the ILS, is
proposed to solve the Multi-Period Inventory Routing Problem with stochastic and
deterministic demand.

The organization of this thesis is the following: In the next chapter, the first study
is presented, describing and analyzing a group of three strategies for a distribution
management problem. It starts by presenting each strategy and the correspondent
model. Afterwards, a metaheuristic based on ILS is proposed for each strategy and
a computational experiment is shown. In Chapter 3, the second study, based on two
models for a VMI systems is presented. In this chapter, we also make a computa-
tional experiment. In Chapter 4, the Inventory Routing Problem (IRP) model of the
third study is explained,with the correspondent heuristic methodology. In this chap-
ter, again we conduct a computational experiment on a set of randomly generated

examples. Finally, in Chapter 5, the main conclusions of the thesis are exposed.



Chapter 2

Strategies for an Integrated

Distribution Problem

The growing number of problems that firms are facing nowadays with relation to
the distribution of their products and services, has lead logistics to be of primary
concern to many industries.

An important aspect of the logistics management task is to coordinate the ac-
tivities of the traditional distribution functions together with purchasing, materials
planning, manufacturing, marketing and often R&D. One important direction of the
integration process is the cross functional planning, which consists of coordinating
different areas inside the firm, allowing for cost reductions and improving service (see
Christopher 1998).

The motivation of our work arises in this context of integration of logistics func-
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tions with other functions of the firm. In our case, we will focus our study in two key
areas: the distribution management and marketing management.

On one hand, the importance of good distribution strategies in today’s competi-
tive markets can not be overstressed. In many industries, an important component of
the distribution systems is the design of the routes of vehicles to serve their customer’s
demand. And, on the other hand, new trends in the supply-chain management are,
as pointed out by some industry leaders, “.better customer service...greater customer
sophistication” (Partyka and Hall 2000). Customer service is becoming more impor-
tant, customers demand more than a product, they demand a product arriving on
time, an easy ordering system or a just-in-time distribution.

In this work, we will study the decision making problems in distribution manage-
ment related with the delivery of products to customers, on a given period of time,
using a fleet of vehicles. The decisions on how to assign customers to drivers and
to design the routes made by each vehicle constitute the Vehicle Routing Problem
(VRP). Usually, the vehicle routing is responsibility of the Distribution department.
However, since many drivers also perform commercial activities, the Marketing de-
partment has the objective of maintaining always the same delivery agent assigned
to the same customer. How to balance these two, possible opposite, objectives is an
interesting issue when the firm wants to implement integrated distribution processes.

To analyze the impact of integrating the two areas of the firm, Distribution and

Marketing, we will explore three possible distribution strategies that reflect different
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policies in distribution in the organizations.

The first strategy, Strategy 1, has a distribution policy that minimizes distance.
The appropriate model for this strategy is the classical VRP, which consists of design-
ing the routes minimizing total routing cost, measured in distance units. However,
this VRP objective is often object of criticism by the users and planners, since it does
not take into consideration other concerns of the company, for example, customer
service. The second strategy, Strategy 2, tries to implement a marketing policy. In
a growing competitive environment many firms adopt strategies of tight relationships
with their customers where loyalty and friendship play a key role, through the de-
livering agents. In this strategy, the routes are predefined such that one delivering
agent is associated with a specific set of customers.

The third strategy, Strategy 3, is the one that considers both objectives, mar-
keting and distribution at the same time, in an integrated manner.

The motivation to work on this VRP arises by the distribution problems faced
by the food and beverage industry. In these industries the tendency is to have lower
inventories and higher delivery frequencies. And also, to have drivers responsible for
commercial activities such as: promotions or introduction of new products.

The present chapter is organized in the following way: In Section 2.1 we will
present the three distribution strategies. In Section 2.2, a review of the VRPs is
summarized. Then, we will describe the mathematical formulation of each strategy

and the solution approach, based on ILS, to analyze those models. In section 2.5, we
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will present a computational experiment and analyze the results obtained. Finally,

the conclusions of the work are presented.

2.1 The Distribution Strategies

The distribution strategies correspond to different situations and concerns inside
the firm. By comparing them, we can analyze the effect that integrating two areas
can have on the distribution policies. The objective of this analysis is to provide a
set of possible alternative solutions to the decision maker. Whom, with the use of
additional side information on each particular distribution problem, can make a good
choice.

The strategies are settled in a planning horizon of a week, this is: five working
days. The choice of this period is based on the need for a strategic perspective,
we want to study the impact of a sequence of decisions on different objectives. As
a consequence we need several periods to analyze the marketing effect and a week
seems to be a reasonable choice since in many industries, the behavior of the orders
for a customer have a week pattern (examples are the Beverage & Food industry).
In any case, this assumption can be relaxed and the problem could be extended to

more periods.
e Strategy 1: Distance Minimization

In this strategy the distribution policy is constructed based on routing cost. Cost
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reduction is one of the biggest concerns in transportation and distribution manage-
ment, but not the only one as we will see later. We want to find the route for each
of the vehicles that will pass through the demand points in such a way as to satisfy
all the demand with the smallest travelling cost. The classical VRP considers only
one period at a time and chooses the optimal routes for that period. Strategy 1

corresponds to the classical VRP repeated for each day of the planning horizon.

e Strategy 2: Master Routes

The second strategy is based on marketing principles, and the distribution strategy
is based on service measures. An important source of value to the firm can be obtained
from a close connection between firm and customers. This can be achieved through
the development and investment on the relationship with its customers.

In this strategy, each driver will serve always the same customer. This marketing
policy is giving emphasis to the personal relationship between drivers and customers
as a way to improve customer service. In many industries, drivers are more than
drivers, they also perform sales tasks, promotions and introduction of the new prod-
ucts.

One of the advantages pointed out to this customer relationship management
policy is that it makes more difficult for a customer to switch to another provider.
Since, a relationship requires an investment of time from both the customer and the
provider, Simchi-Levi et al. (2003). These marketing strategies allow the firm to

obtain more information on customer needs. And, at the same time, it becomes more
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easy to introduce new products, construct promotions and even speeds up the delivery

process due to experience effects from both parts.

e Strategy 3: Multi-Objective

The third strategy is the integrated distribution management model, which con-
sists of taking into account in the decision process the concerns of the Distribution
department and Marketing department i.e. the reduction of transportation costs and
the emphasis on the personal relationship between driver and customer. We propose
a multi-objective model with two objectives, each objective corresponds to a different
function. The first is the transportation and the second a marketing function. This
strategy tries to include in the same model the objectives of the two previous strate-
gies. The best solution for the transportation problem might not always be the best
solution for the marketing objective, and vice versa. In some cases these two objec-
tives may conflict and that is the main justification for a trade-off analysis between
them. We need to find a solution (or several solutions) that integrate a marketing

policy and route design policy.

2.2 Literature Review on VRP

The classical VRP model is behind the models for the three distribution strategies.
Therefore, we make here a brief review of the classical VRP.

Vehicle routing decisions are extremely important within a company to maintain
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its competitiveness an allow it to best exploit the available resources and to distribute
its products at the lowest possible cost.

Significant amount of research effort has been dedicated to VRP, see the survey
articles on VRP by Laporte and Osman (1995), Laporte (1992); Desroisers et al.
(1996), Bodin (1983), Cristofides et al. (1979) and Fisher (1995) and the book of
Crainic and Laporte(1998). An extensive list of VRP research papers can be found
on http://www.imm.dtu.dk /or/VRP_ref /vrp_1.html.

The most well known is a basic VRP which can be briefly defined in the following
way: given a set of customers with known demand and location, define a set of routes,
starting and finishing at one depot, that visits all customers with minimal cost.

The basic model of the vehicle routing problem considers a set of nodes, repre-
senting retailers or customers, at a known location, that must be served by one depot.
Each node has a known demand. A set of vehicles, with equal capacity is available
to serve the customers. The routes must start and finish at the depot. The objective
is to define the set of routes to serve all customers with minimal cost.

For each pair of nodes, a fixed known cost is associated. We assume this cost
matrix is symmetric and can represent a real cost, distance or time. The main con-
straints of the problem are that all the demand must be satisfied and the vehicles
capacity can not be exceeded.

The basic VRP is a generalization of the Traveling Salesman Problem (TSP),

where more than one vehicle is available, for TSP references see for example Lawer
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et al. (1985).

There are several formulations of the classical VRP in the literature, for some
of these formulations see Fisher and Jaikumar (1978) (1981), Kulkarni and Bhave
(1985), Gouveia (1995) and Toth and Vigo (2002).

The classical model of the VRP can be formulated as an integer linear program-
ming and this is the formulation we will use along further chapters.

Consider the following data:

I =1,..n set of nodes, that correspond to the different locations of the

customers, node 1 corresponds to the depot.
K=1,..m set of vehicles;

() = capacity of each vehicle;

g; = demand of customer i, 7 =1,...,n;

c;; = cost of going fromito j,i=1,..,.n;j=1,..,n.

This formulation considers two types of variables:

1, if vehicle k visits customer j immediatly after customer i
Tijk =
0, otherwise

1, if customer 7 is visited by vehicle k
Yik =
0, otherwise
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The formulation of the problem is:

Objective Function :

k=1

i=1 j=1
Subject to :
Zyzk_lu VZZQJ , T (22)
k=1
Zylk =m, (2.3)
k=1
gy <Q, Yk=1,..m (24)
=2
Za7zjk = Z%‘z‘k Yik,
j=1 j=1
Vi=2,.mk=1,...m (2.5)
Z Tigr < 1S] =1,
§yi€S
v S non-empty subset of {2, ,n} ; k= 1,....m (2.6)

T € 10,1} v € {0, 1},

Vi=1,...mk=1,...m (2.7)

Constraint (2.2) ensures that each customer is visited by one vehicle only. Con-
straint (2.3) guarantees that all vehicles visit the depot. Constraint (2.4) represents
the vehicle capacity constraint. For each vehicle k, we guarantee that the sum of the
demand of the nodes that the vehicle covers is less or equal to its maximum capacity.
Here we assume that none of the customers has a daily demand that exceeds (). The

constraint (2.5) ensures that if a vehicle visits a customer it also has to leave that
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customer.

Constraint (2.6) is the sub-tour elimination constraint. This constraint implies
that the arcs selected contain no sub-cycles. It states that for every vehicle, the
following holds: for every non-empty subset S of {2,..,n}, the number of arcs that
are in the route of this vehicle, with both nodes belonging to S, has to be less or
equal to the number of elements of S minus 1.

The last constraint, (2.7) defines the variables z and y as binary. The objective
function is minimizing the total cost of the routes.

The TSP is a sub-problem of the VRP, the TSP belongs to the class of N P-
hard (non-deterministic polynomial time) problems, and so does the basic VRP and
extensions. This means that the computational complexity of the problem grows
exponentially with its size, i.e., it grows exponentially with the number of customers.

In the next section we will describe the mathematical model of each distribution

strategy.

2.3 The models for the distribution strategies

In this section we will present the mathematical models associated with the three
distribution strategies. First of all, we describe the assumptions of the model.

The first assumption is that the firm is responsible for the distribution of its own
products. Therefore, there are no questions of outsourcing to be handled. These firms

face the pressures of a competitive market making them concerned both on consumer
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satisfaction and internal efficiency.

The classical VRP considers only one period and chooses the optimal routes for
that period. Here we will introduce more periods by considering a week length of
analysis. Each day we have a different set of customers to serve and quantities to
deliver. The reduction of the inventory levels, and the increase in the frequency of
orders is a tendency in many businesses to lower stock handling costs.

Other assumptions of the model are:

e All the demand is satisfied in the same day that it is required and not on any

other day of the week.

e Only unload is done at each customer.

e The number of vehicles is fixed and there are no fixed costs associated with the
use of the vehicles. They all have the same capacity. Moreover, the number of

vehicles available is enough to satisfy all the demand.

e Another assumption is that the distance matrix between customers and between
customers and warehouse is known and fixed. This matrix does not depend on

the day or the quantity loaded.

e Each vehicle is assigned to a driver. And we consider that they work every day

in the period in question.

e One vehicle can only be used once a day and the time it takes to deliver the



2.3 The models for the distribution strategies 18

full capacity is less than a working day.

Next the model we will be presented in detail. The following data is considered

in the mathematical formulation:

7,1 = index and set of nodes, I = 1,...,n where 1 is the depot and 2 to n are

the customers locations;

k, K = index and set of vehicles, K =1,....m;

t,'T" = index and set of days which represent the period, T'=1, ... p;

T; = set of days where customer i has a demand that is greater than zero,

1=2,...,1;

¢! = demand of customer i on day ¢t,i=1,....nand t =1,..., p;

c;;j = the cost of going from 4 to j, this is a fixed matrix , i« = 1,...,n and
7=1..n;

() = capacity of a vehicle.

The variables of the model are:

;

if vehicle k visits customer j

ik = immediatly after customer i on day ¢

0, otherwise
\
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1, if customer i is visited by vehicle k on day ¢
¢
Yix =
0, otherwise

2.3.1 Strategy 1: Distance Minimization

The objective function minimizes routing costs, for all customers during the week
period. This strategy corresponds to repeating a classical VRP for each day of the
week.

The formulation of this objective will be the same as the one used for the classical

model but with a new parameter, ¢, representing the day of the week.

p n n m

Objective function: Min Z Z Z Z cl-jaﬁfjk (2.8)

t=1 i=1 j=1 k=1
2.3.2 Strategy 2: Master Routes

First we construct a set of routes, “master routes”, using the same VRP formula-
tion as in Strategy 1.

This startegy and the model associated is very close to a common practice in
several companies. It consists in: first defining “master routes” and, afterwards
performing daily adjustments depending on the demand of the customer and on the
capacity of the vehicle. To obtain the “master routes” we consider a VRP model,
where all customers are in the input data and the demand of each customer depends

on the average daily demand. To adjust the daily routes we consider other constraints
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such as capacity and number of vehicles.

So, the requirement that a customer will always be served by the same driver
may have to be sacrificed but we will try to enforce this at least to the best cus-
tomers. Therefore, the idea is, the better the customer the more interest we have in
maintaining the same driver.

The mathematical formulation for this strategy is identical to the one of the
classical VRP for one period presented in section 2.2, but, in this case all customers

are considered for the “master routes”.

2.3.3 Strategy 3: Multi-Objective

In this strategy we propose a multi-objective model with two objectives: mini-
mizing of routing costs and minimization of service levels, that reflect the integrated
strategies between Distribution and Marketing departments.

As far has we know there are no studies on routing problems with multiple peri-
ods and this marketing oriented objective function. Although there are some multi-
objective VRP that consider other types of objectives. Examples of these are the
papers by Hong and Park (1999) that consider the minimization of both the total
vehicle travel time and the total customer waiting time, in a VRP with time windows
constraints. Lee and Ueng (1999) developed an integer linear model that searches for
the shortest travel path and balances driver’s load simultaneously. The work is mea-

sured in terms of traveling and loading time. The objective function is the weighted
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sum of the above objectives. This second objective minimizes the difference between
the working time of each vehicle and the working time of the vehicle with the shortest
working time.

In most cases of multiple objectives it is unlikely that the problem is optimized by
the same alternative parameter choices. Hence, some trade-off between the criteria is
needed to ensure a satisfactory design.

In the multi-objective optimization an important relation is the dominance rela-
tion.

Let (z;) and (zy) be two solutions of a multi-objective problem with R objectives.

We say that:

Solution (z;) dominates (z3) if 2z, < 29, V objectives r in {1,..., R} and

21, < Z9, for at least one r and (z1) # (29).

A feasible solution is efficient if it is non-dominated. Based on this concept we
will optimize the two objective functions to find non-dominated solutions.

Ideally, we would like to find the solution that would be optimal for both objectives
at the same time. In multi-objective programming this solution point rarely exists.
So, we would like to find solutions that are closer to this ideal point.

Mathematically, all dominated solutions are equally acceptable, it is the decision
maker, who is responsible for choosing the final solution. The decision maker is

someone who has a deep knowledge of the problems, relationships and implications
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of each solution. The choice among these non-dominated solutions is determined by
the decision maker’s preferences among the multiple objective.

The two objective functions considered within the integrated strategy are:

Objective A: Minimizing Cost
The formulation of this objective will be the same as in (2.8), the one used for the

model of strategy 1.

p n n m

Objective function A: Min Z Z Z Z cl-jaﬁfjk

t=1 i=1 j=1 k=1

Objective B: Marketing Objective

In terms of mathematical formulation, the second objective works as follows: For
each customer we have a set of pairs of days with positive demand, T}, for each pair
of days g, h in T; (with g # h) we want to minimize the difference in the assignment
to a vehicle k. The objective is to minimize |yj, — yfk‘

The importance is given by the total demand in the period, therefore a weight is
introduced by the total amount ordered by each customer. The objective function
becomes:

n m P
{35375 (30 ) vt

i=1 k=1 g,heT; t=1
g<<h

The importance of a customer is measured in terms of sales. In some cases other
measures could be used to classify the goodness of a customer, for example, frequency

of orders, credit history, etc. This function is non-linear.
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Considering a multi-period model is an essential point in our study since, objective
B is not static, it measures decisions allong more than one period, it only makes sense
in a continued time base.

In this integrated strategy the objective is to find a set of non-dominated solutions
and give the decision maker the possibility to choose not only between strategies but
also between solutions.

The constraints of the model for strategy 1 and 3 are:

oy =1Vi=2.,ntel (2.9)
k=1
d yh=m, VieT; i=1 (2.10)
k=1
=2
Zajzjk = Zﬂvzzk = Yir»
j=1 j=1
Vi=2 .. mk=1..mt=1..p (2.12)
Y Yk =0,Vi=2 .. nandt¢T, (2.13)
k=1

t
Z Tijp < 5] =1,
J2eS

V S non-empty subset of {2,...,n};

ct=1,...p (2.14)

Vi=1,..mk=1,...m;t=1,..,p (2.15)

Constraints (2.9) to (2.15) are similar to the ones in the basic model, but for each
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day of the period in question.

Constraint (2.9) ensures that in the days where the customers have a positive
demand, that customer is visited by only one vehicle.

The constraint (2.10) forces that each day all vehicles go to the depot. Constraint
(2.11) ensures that, the daily loading of a vehicle does not exceed its capacity.

Constraint (2.12) guarantees that if the vehicle enters a node, on day ¢, it also has
to leave that node, on the same day.

Constraint (2.13) prohibits a vehicle to visit a customer on a day where he has
zero demand.

Finally constraint (2.14) avoids sub-tours, but now not only for each vehicle but
also for each day. The sub-tour elimination constraint represents an exponential
number of constraints.

The last constraint (2.15) define all variables as binary.

For Strategy 2, the constrains of the model are the same as for VRP formulation

in section 2.2, applied in this occasion to the “master routes”, only for one period.

2.4 Solution Approach

The above models are complex combinatorial optimization problems, classified as

NP-hard!. The effort required to solve N P-hard problems increases exponentially

INP-hard problems are the class of network and combinatorial problems for which no polynomial-
bounded algorithm has yet been found.
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with problem size. The approach for solving these type of problems optimally suffers
from computational burden with problem size. As a result they require an heuristic
methodology in order to solve them. Since our objective is to compare the three

distribution strategies we will use the same solution technique for each strategy.

2.4.1 Heuristics method

A heuristic algorithm is a solution method that does not guarantee an optimal
solution, but in general had a good level of performance in term of solution quality
and convergence. Heuristics may be constructive (producing a single solution) or
local search (starting from one given random solutions and moving iteratively to
other nearby solutions) or a combination of both. Heuristics for VRP have been
extensively studied. Cordeau et. el. (2002) summarize the most important classical
and modern heuristics for the VRP. Laporte and Osman (1996) have a bibliography
review on theory and application of metaheuristics.

Local search is the most powerful general approach for finding high quality solu-
tions to hard combinatorial optimization problem in reasonable time. It is based on
the iterative exploration of neighborhoods of solutions trying to improve the current
solution by local changes. The type of local search that may be applied to a solution
is defined by a neighborhood structure.

The most basic local search is the iterative improvement. It typically starts with

an initial solution, generated randomly or by some constructive heuristic and tries
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to repeatedly improve a current solution by moves to better neighboring solutions.
A major drawback of iterative improvement local search is that it may stop at very
poor quality local minimum. To avoid the disadvantage of iterative improvement
and, in particular, multiple descendent, we need to allow the local search to escape
from local optima. To escape from stagnation at local optima is the main goal of
methaheuristics. Metaheuristics are typically high level strategies, which guide an
underlying, more problem specific heuristics, to increase their performance.

Our proposal is to use a metaheuristic algorithm that as proven to give quiet good
results on other problems and is easy to implement and modify, adapting to different

strategies, Iterated Local Search (ILS).

Iterated Local Search for the VRP

ILS algorithms have been applied successfully to a variety of combinatorial opti-
mization problems. In some cases, these algorithms achieve extremely high perfor-
mance and even constitute the current state-of-the-art metaheuristics, while in other
cases the ILS approach is merely competitive with other metaheuristics. ILS has
many of the desirable features of a metaheuristic: it is simple, easy to implement,
robust, and highly effective.

ILS is a simple and generally applicable meta-heuristic which iteratively applies
local search to modifications of the current search point, for more detailed informa-

tion on ILS see Lourengo et. al. (2001), Lourengo et. al. (2002) and Stiitzle (1998).
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At the start of the algorithm a local search is applied to some initial solution. Then,
a main loop is repeated until a stopping criterion is satisfied. This main loop consists
of a modification step (“perturbation”), which returns an intermediate solution corre-
sponding to a modification of a previously found locally optimal solution. Next, local
search is applied to yielding a locally optimal solution . An “acceptance criterion”
then decides from which solution the search is continued by applying the next “per-
turbation”. Both, the perturbation step and the acceptance test may be influenced
by the search history. ILS is expected to perform better than if we just restart local
search from a new randomly generated solutions.

The architecture of the ILS is as follows:

Architecture of the ILS algorithm

Procedure ILS:
§% = GenerateInitial Solution
s* = LocalSearch(s)
Repeat
s’ = Perturbation(s*, history)
s* = Local search(s’)

s* = Acceptance Criterion(s*

, ¥, history)
Until termination condition met
End

The proposed ILS heuristics is based on the ILS metaheuristic developed by Stutzle
(1998) and Kunz (2000) to solve the classical VRP. The ILS used for the VRP is the

following:
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ILS for the VRP

Step 1. Savings Heuristic - Initial Solution
Step 2. ILS for TSP on each tour:
Step 2.1. Local Search for TSP
Step 2.2. Perturbation for TSP
Step 2.3. Acceptance criterion
Step 3. ILS for the VRP
Step 3.1. LS for the Assignment Problem
Step 3.2. Perturbation for VRP
Step 3.3 Acceptance Criterion
Step 4. ILS for the TSP on the new routes

We will now present the implementation of each step the above algorithm in more

detail.

- Savings Heuristic

This is a greedy heuristic to construct an initial solution. It has been proved
that starting from a random solution gives worst results (Stiitzle 1998). This savings

heuristic gives us the tours to start the search, it was proposed by Clarke and Wright

(1962).

- ILS for the TSP

On each of the tours obtained in the savings heuristic we apply an ILS. At this
step of the algorithm we ignore any relation between routes.
LS for TSP
The LS used was a 2-opt, this is: on a tour 2 connections are exchanged as soon

as all customers are tested with the others, we have a new constellation, since there
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Figure 2.1: Example of a 2-opt move for the TSP.

are now new crusts that have not been checked, the process is repeated. Only when
a complete run without improvements finishes, one has reached a 2-opt resolution.

Searching in a complete 2-opt would not be efficient. So, to reduce the search
space, some techniques are introduced that faster the process and still arrive to good
quality solutions: A list of candidates and “don’t look bits”. One “don’t look bit”
is associated with each node. Initially, all “don’t look bits” = 0, if for a node no
improving move can be found, then “don’t look bit” is turned on (set to 1) and is not
considered as a starting node in the next iteration. If an edge incident to a node is
changed by a move, the node’s “don’t look bit” is turned off again - reduces to O(n).

Perturbation (Kick-move) for TSP

On the local minimum that has been reached, we apply the kick-move and arrive
to a new start solution. The goal here is to escape from local optima by applying
perturbations to the current local minimum.

For the LS on the TSP we use “double bridge”, this perturbations cuts four edges,
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Figure 2.2: Example of a Double Bridge move.

and introduces 4 new ones.
Acceptance criterion
The acceptance criterion used at this step is better; this means that the new tour

is accepted if it has a lower cost.

- ILS for the VRP

The ILS for the VRP is implemented considering the initial solution the routes
obtained from the ILS of the TSP.

Local Search for the assignment problem

The local search for the VRP is a 2-opt and again a list of candidates and “don’t
look bits ” techniques are applied to restrict the search.

We have two possibilities for a 2-opt: A customer of a tour is postponed into
another or a customer trades with another customer from another tour. First, if
capacity restrictions allow and it reduces costs, a city is inserted in the tour. Only if
it cannot be inserted, then we check if an exchange with another tour improves the

solution.
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Figure 2.3: Example of a 2-opt move for the VRP.

The same techniques as in Local Search for the TSP are used: “don’t look bit”
and List of candidates.
Kick-moves
“Numb-crosser”: This perturbation consists in exchanges a group of customers
from 2 tours. In this case, 1/3 of the customers of the tour are exchanged.

Acceptance criterion: Best, the same as the acceptance criterion for the TSP.

- ILS for the TSP on the new routes

Repeats the ILS procedure for the TSP.

The ILS for each strategy

The ILS for the VRP is now adapted to solve the 3 models for the different

strategies. Next we will describe in detail th ILS for each of them.
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Strategy 1: Since in this strategy we have a classical VRP model, for each day, we
apply the ILS to find the best daily routes, according to the capacity of the vehicle and
daily demand. The algorithm is repeated for several runs and for each day chooses
the best solution.

Let L be the total number of loops:

Structure of the algorithm for Strategy 1

Step 1: Set loop = 0

Step 2: Set day =1

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;
Step 8. Set loop = loop + 1

Step 9. Repeat Step 2 to 8 until loop = L

Strategy 2: In this strategy, we have considered a classical VRP model to obtain
the “master routes”, where all customers are taken into account using its average
demand. Therefore, to obtain the master routes we apply an ILS.

Afterwards, the routes, for each day of the week, are obtained in the following
way: exact the same routes are maintained for each day; eliminate from the routes
the customers that have no demand on that day; if in any of the routes the capacity
constraint is being violated, we pick up from the tour the customer that is considered
less important and we delete it from this tour and insert it on another tour. This

tour is chosen in such a way as to minimize routing costs.
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Structure of the algorithm for Strategy 2

Step 1: For all customers do
Step 1.1. Savings Heuristic - Initial Solution
Step 1.2. ILS for TSP on each tour
Step 1.3. ILS for the VRP
Step 1.4. ILS for the TSP on the new routes
Step 2: Set day =1
Step 3. For each tour eliminte customers with zero demand
Step 4: For each tour, if capacity constraints are violated
remove customer with lowest total demand
Step 5: ILS for the TSP on the new routes
Step 6: Set day = day + 1
Step 7: Repeat Step 3 to 6 until day = 5;

Strategy 3: In this strategy we face a Multi-Objective Combinatorial Optimization
Problem (MOCOP). Ehgott and Gandibleux (2000) provide an annotated bibliogra-
phy on MOCOP.

Two main approaches can be found in the metaheuristics for the MOCOP: meth-
ods of local search in object space and population based methods. In the Local Search
methods, we start from an initial solutions, and the procedure approximates a part
of the non-dominated frontier corresponding to the search direction A given. A local
aggregation mechanism of the objectives, based on the weighted sum, produces the
effect to focus the search on a part of the non-dominated frontier. The principle is
repeated for several search directions. In the population based methods, all popula-
tion contributes to the evolution process toward the non-dominated frontier. Here we

will use the first approach, i.e. methods based on local search.
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In this case, after having decided the routes for the first day, the program takes
into consideration objectives B, through a wheighted function of both objectives. To
do this, we calculate the effect of a move on the weighted function of the objectives.
Then, in the acceptance criterion, a new solution is accepted if the weighted function
has improved. The algorithm is repeated for several different sets of weights. All the
non-dominated solutions are keep during the run of the algorithm.

A objective function Z is used as weighted function, which is a weighted sum of
the single objectives A and B.

Let f. be the single objective function of objective 7,

2 2
Z = Zwrfr and Zwr =1
r=1 r=1

The solution is very sensitive to the weights that have been defined. There is also
the problem of having objectives with different variables and scales. In our case, for
example we are adding costs and quantities.

Notation:

w, weight for Objective A, with 0 < w, < 1;

wy, weight for Objective B, with 0 < w, < 1;

and

w, +w, =1

z = w,(ObjectiveA) + w,(Objective B)
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Structure of the algorithm for Strategy 3

Step 1: Set wg =1 and wp =0
Step 2: Set day = 1
Step 3. Savings Heuristic - Initial Solution
Step 4. ILS for TSP on each tour
Step 5. ILS for the VRP
Step 5.1. LS for the Assignment Problem
Step 5.1.1 For each move calculate the effect on objective A and B
Step 5.1.1 Accept only if the new z is smaller
Step 5.2. Perturbation for VRP
Step 5.3. Repeat Step 3.1
Step 5.3 Acceptance Criterion
Step 6. ILS for the TSP on the new routes
Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;
Step 8. Set w, = w, — 0.1 and w, = wy, + 0.1
Step 9. Repeat Step 2 to 8 until w, = 1 and wb = 0

2.5 Computational experiment

The main objective of this experience is to evaluate the three strategies and ana-
lyze the effect of each objective in the solutions. With this purpose we have applied
the above algorithms on several sets of randomly generated examples. The results are
expressed in terms of the values of the objectives and total number of vehicles needed.
For each strategy two values were calculated: the Routing Cost and the Marketing
(or service) Value (these are the two objectives of strategy 3). The first is measured
in distance and the second can be interpreted as the unit cost for the distributor for
not serving a customer with the same salesman, working in a similar way as a penalty

cost.
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Next we will explain the data used and analyze some important results of this

experiment.

2.5.1 The data

For the computational experiment, we have generated several sets of examples
concerning the total number of customers (50, 100, 200,400). Also, we have examples
with two types of demand (low variation and high variation) and two types of vehicles’
capacity, high and low.

To obtain the demand, we have used a normal distribution with mean 50 and
standard deviation 20, for the case demand has a high variation and a standard
deviation of 5, for the examples with low variation. For each day, on average, 25% of
the customers have zero demand. This implies that in a problem of 100 customers,
with 5 days week, we will have around 375 deliveries to make.

The customers locations are uniformly generated in a 100 x 100 square with the
depot located in the center with the coordinates (50, 50).

Truck capacity is 300 for problems of sizes 50, 100, 200 and 700 for size 400. And
we also ran cases with size 200 and capacity 500. In total we have studied 30 examples

for each strategy, therefore we will consider 90 problems per run.
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2.5.2 Analysis of the results

In this section we will present the results obtained for each example in terms of
the objective functions values, number of vehicles used, non-dominated solutions and
run times.

We can start illustrating the aim of the different strategies by looking at a small
example with 2 days and a few customers: in Figure 2.4 we have the routes for two
days, in strategy 1, 2 and 3. Strategy 1 has fewer and more efficient routes in terms
of distance, Strategy 2 has more routes, but the routes are the same for each day.
And, Strategy 3, has a solutions that is not completely efficient in terms of distance,
but allowing for a better service level.

Table 2.1 and 2.2 show the results for each example and for each strategy. Strategy
1 tries to find lowest cost, strategy 2 the best service level and strategy 3 the set of
non-dominated solutions with respect to the integrated strategy. We can observe that,
as expected, strategy 1 will always give us the solution with the lowest objective A
and the highest objective B when compared with strategy 2. In the strategy 2 we
have much lower marketing values but the cost of routes increases significantly.

Concerning Strategy 3, we can say that, in almost every example, we can find
more than one non-dominated solution and it would be the responsibility of the
decision maker to decide on one of the alternatives. As can be seen from the results,
Strategy 3 presents very good results for both objectives. The total routing cots is in

general slightly higher than for Strategy 1, but, has a much lower value of objective



2.5 Computational experiment

38

Strategy 1
Day 1 Day 2
—e— Route 1 —m— Route 2 —e— Route 1 —m— Route 2
Strategy 2
Day 1 Day 2
—e— Route 1 —m— Route 2 ——Route 3 —e— Route 1 —m— Route 2 —a— Route 3
Strategy 3
Day 1 Day 2
—e—Route 1 —m— Route 2 —e— Route 1 —m— Route 2

Figure 2.4: Routes for Strategy 1, 2 and 3.
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Figure 2.5: Example of a set of dominated and non-dominated solutions for Strategy

3.

B. When compared to the solutions of Strategy 2, the solutions of Strategy 3 have
much lower routing costs and slightly higher values for objective B. These results
represent a good trade-off between both objectives and, together with the possibility
of obtaining several non-dominated solutions, leads us to the conclusion that Strategy
3 can be an excellent approach to solve this integrated distribution problem.

In Figure 2.5, we can see the set of all solutions obtained for 22 iterations for an
example of 50 customers. The blue squares correspond to the dominated solutions
and the red squares correspond to non-dominated solutions.

The number of vehicles needed for each solution strategy also varies and this is

reflected in the total distance cost. In Table 2.3, we can observe these differences.
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Strategy 1 Strategy 2 Startegy 3
N Example a b a b a b
50 1 14344,15 36840 17018,93 3306 14510,34 32327
14344,15 36840
2 13589,47 38538 16304,18 4590 13755,11 35826

13697,92 38148

13589,47 38538

13680,72 38278

3 13225,97 40284 15744,37 4997 13289,63 36178
13228,96 40284

13278,06 40140

4 11710,85 32341 15597,20 5950 11850,30 25753
11811,55 31776

11710,85 32341

11788,70 32289

5 13452,19 38084 16832,33 3012 13541,62 30733
13462,15 38426

13473,14 38198

13485,40 37925

100 6 22970,35 75096 28356,94 8368 23240,29 64967
23033,34 75012

22971,54 75096

23162,88 74404

23153,67 74601

7 21999,94 73497 27755,47 7209 22045,08 61244
22041,77 73416

21999,94 73497

8 21839,25 74834 26873,79 10264 21907,99 63623
21839,25 74834
9 17062,82 70744 24874,82 5045 17236,27 59365

17036,71 70838

17220,50 69385

17167,73 70579

10 22383,01 76252 27892,61 5987 22632,56 63871

22467,32 76110

22493,46 75632

22462,16 76252

200 11 40438,91 152536 52738,09 19418 40682,93 132320
40438,91 152536

40484,59 152292

12 40420,20 152564 52089,76 9967 40757,39 134118
40420,20 152564
13 38484,12 151187 49881,28 19803 38498,67 131916
38423,13 150677
14 38481,27 148056 47837,33 9999 38681,92 129944

38710,30 147051
38731,63 147035
38601,73 148056
38502,60 148186
38581,57 148113
38624,37 147863
38457,64 148254
38649,82 147718
15 40047,94 130399 50744,95 15778 40047,94 130399
40028,26 151554

Table 2.1: Routing Cost (a) and Marketing Cost (b) for Strategy 1, 2 and 3.
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Strategy 1 Strategy 2 Strategy 3

N Example a b a b a b
200 16 28589,23 152040 35849,68 8375 28883,37 132744
(cap=500) 28782,42 151361
28780,13 151569
28686,55 151883
28551,02 152164
28630,92 152040
17 28675,59 150844 34171,21 2096 28814,46 130891
28711,49 150542
28704,59 150844
18 27350,06 149576 33919,55 9715 27511,86 130867
27474,54 149315
27255,56 150108
27503,72 149261
27397,52 149435
27371,87 149576
19 27674,99 147608 33632,54 9637 27676,81 128579
27613,74 147754
20 27836,23 152388 34002,28 9320 28035,45 130763
27896,09 151456
27824,33 151509
27990,09 151355
400 21 40013,37 304388 49637,54 9607 40120,91 260814
40101,29 304184
40023,38 304388
22 39758,16 308956 47691,43 9401 39961,71 270449
39845,06 308604
39842,24 308956
23 39576,79 300057 47635,00 6954 39658,17 255775
39584,53 299568
24 39949,22 302980 47978,58 9525 40022,79 266906
39956,93 303057
39970,21 302980
25 39552,16 299976 46682,13 9538 39593,31 264664
39583,24 299976
50 26 12606,09 37756 11465,43 2032 12870,39 33258
(low stdev) 12716,22 37124
12606,09 37756
12867,78 36802
27 13752,04 37759 11913,72 0 13861,01 34403
13715,64 37757
13855,72 37428
28 12723,78 39888 11096,46 0 12820,78 33940
12781,62 39888
29 12468,30 32983 11225,91 0 12571,04 25854
12489,20 32330
30 12687,26 36396 10831,83 0 12765,22 31287
12657,08 36504
12685,23 36352
12747,45 36043

Table 2.2: Routing Cost (a) and Marketing Cost (b) for Strategy 1, 2 and 3.
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The master routes approach has always much higher number of vehicles a week, this
happens due to the procedure of the routes design, they are constructed considering
all customers, and then for each day eliminating the ones with no demand. When
constructing the “master routes” we have used the daily average demand of each
customer. Nonetheless, if we had chosen higher values for the demand, associated
with each customer, the higher the number of vehicle used in the “master routes”
and the lower the marketing objective.

Comparing the number of vehicles from Strategy 1 and Strategy 3 we observe
that, on average, Strategy 3 has the same or a higher number of vehicles, see Table
2.3, this is due to the existence of the second objective, that introduces a preference
for service rather than distance. To have a better service we need to sacrifice the
routing efficiency and this can pass through the use of an additional vehicle.

In terms of running time, the importance of the results can be overstressed. The
first and third strategies are the ones that take more time to compute. But, since
we are referring to strategic planning, it does not seem ineflicient for a firm, with a
network of 400 customer, to spend one hour on a strategic planning task for a week.
Take into consideration that in many cases the week planning pattern is repeated in
the next weeks. Table 2.4 summarizes running times. For Strategy 1 and 3 we have
done the same number of iterations. The magnitude of the difference in run time of
strategy 2 is due to the fact that we only run once the VRP, for the master case.

On the other two strategies we have to run VRP for each day of the panning period



2.5 Computational experiment

43

N Strategy 1 Strategy 2 Strategy 3
50 36 44 36
100 68 84 68
200 135 167 135
200(cap=500) 80 99 81
400 114 141 114
50 (low stdev) 36 26 36

Table 2.3: Average number of vehicles needed per week, for Strategy 1, 2 and 3.

several times.

Finally, in Table 2.5 we show the results of other versions of algorithm for Strategy

3. In version 2, we have introduced more iterations for each weight. And, in version 3

we have done more iterations for the ILS for each day, and kept the same number of

iterations per weight. From the results we can conclude that by allowing more running

time, the algorithm of version 2, on average, gives more non-dominated solutions in

3 of the 5 problems. In version 3, on average the number of non-dominated solutions

is smaller than in the other versions but we are able to improve the solutions, when

comparing with version 1 and 2.
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N Strategy 1 Strategy 2 Strategy 3
50 146,19 2,32 142,40
100 383,95 6,24 384,38
200 1116,73 17,09 1076,41
200(cap=500) 1497,82 21,13 1409,40
400 3199,07 29,07 3088,93
50 (low stdev) 152,59 3,05 149,16

Table 2.4: Average run time in seconds, per problem size, for Strategy 1, 2 and 3.
2.6 Summary and Conclusions

In this chapter we have explored different distribution strategies to analyze an
integrated distribution problem. The strategies cover a week planning horizon and
reflect different ways of looking at the distribution problem. The first strategy is the
classical VRP approach, which reflects only transportation cost: for each day of the
planning horizon the routes are designed minimizing routing costs. The second strat-
egy 1s a more customer oriented strategy based on customer relationship management
principle, where “master routes” are constructed to ensure a marketing policy where
each customer is always served by the same driver. The third strategy is a multi-
objective combinatorial optimization problem with two objectives: minimizing cost

and improving customer service. This third strategy results from the integration of
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Startegy 3, version 1

Startegy 3, version 2

Startegy 3, version 3

Examples a b a b a b

1 14510,34 32327 14510,34 32327 14372,34 32327

14344,15 36840 14376,34 36570 14251,39 36840
14318,05 36840

Run Time 151,60 369,65 406,61

2 13755,11 35826 13755,11 35826 13657,49 35826
13697,92 38148 13697,92 38148 13631,61 38148
13589,47 38538 13680,72 38278
13680,72 38278 13644,05 38376

13589,47 38538

Run Time 141,22 358,72 386,46

3 13289,63 36178 13289,63 36178 13235,85 35668
13228,96 40284 13224,70 40284 13229,69 40148
13278,06 40140 13183,31 40284

Run Time 150,23 378,33 398,76

4 11850,30 25753 11850,30 25753 11812,68 25393
11811,55 31776 11805,80 31416 12126,23 31416
11710,85 32341 11751,11 32062
11788,70 32289 11710,85 32341

Run Time 123,64 311,10 329,89

5 13541,62 30733 13541,62 30733 13515,69 30336
13462,15 38426 13485,40 37925 13441,13 36998
13473,14 38198 13452,19 38084 13364,65 38084
13485,40 37925

Run Time 145,33 368,83 397,50

Table 2.5: Routing Cost (a) and Marketing Cost (b) for the non dominated solutions
of Strategy 3, for 3 different versions of the algorithm.
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the two other strategies and brings together two important areas in many industries:
Distribution and Marketing. The idea was to compare this new approach with the
other two strategies.

For each of the above strategy we have presented a mathematical model and a
heuristic procedure, based on the ILS, to solve the problems. Then, the three algo-
rithms were applied to a set of randomly generated instances. The main conclusion
is that the multi-objective model gives several non-dominated solutions, that can be
seen as a good balance between optimizing the transportation cost or customer ser-
vice. The decision maker has to choose the solution which meets better his business
needs, since cost minimization is not the only concern in distribution management.

There are several possible extensions of this work, one is in the area of the meta-
heuristics and here it would be interesting to develop multi-objective population based
metaheuristic to solve the multi-objective model and to perform a comparison with
the current approach. The second extension would be to include other objectives
that reflect different business needs, as for example, the one of balancing the routes.
This is particularly interesting if we assume that driver’s remuneration is related with
truck loading. In this case, we would be studying the integration decisions with the

Human Resources department.



Chapter 3

Multi-Period Vendor Managed

Inventory Systems

Inventory systems vary throughout many dimensions, such as: the activities in-
volved, parts studied, degrees of structural complexity, flows (information flows versus
product flows) and the time horizon of the problem (one period, and finite and infinite
horizons). See Zipkin (2000) for an overview of inventory systems

We can make a distinction between models with deterministic elements and stochas-
tic elements. There are also some studies on how the introduction of inventory man-
agement technologies affects the inventory movements in some sectors, an example is
the study by Worthington (1998).

The Vendor Managed Inventory (VMI) system is a particular type of inventory

management system that can be defined as a production/distribution and inventory
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control system where the manufacturer or the retailer makes the replenishment de-
cisions for the consuming organization. This means the vendor monitors the buyers
inventory levels (physically or via electronic messaging) and makes periodic resupply
decisions regarding order quantities shipping and timing, Waller et al. (1999).

Examples of industries where VMI policies are being used include: the petro-
chemical industry (gas stations), the grocery industry (supermarkets), the soft drink
industry (vending machines) and the automotive industry (parts and components).
There are several firm that have been adopting a type of a VMI system: Wal-Mart,
Kmart, Dillard department stores, JCPenny are among the early adopters of VMI.
But also in Hospital Materials Management, VMI achieved higher penetration, Dong
and Xu (2002). Another example of a VMI system is the Campbell Soup continuous
replenishment program, Cachon and Fisher (1997).

Many advantages have been pointed out by several authors on the use of VMI
systems: with VMI, greater coordination supports the supplier’s need for smoother
production without sacrificing the buyers service and stock objectives. Transportation
costs are reduced, as well as truckload management, since the distributors do not
respond automatically to orders as they are received, they can hold orders and decide
when to execute them. Another attractive option pointed to VMI is a more efficient
route planning.

Improving coordination of replenishment orders and deliveries across multiple cus-

tomers helps to improve service by, for example, changing critical deliveries. Most of
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the inventory reduction achieved with VMI can be attributed to the more frequent
inventory reviews, order intervals and deliveries.

In our particular case, we are studying an inventory management system, with
multiple and finite periods. The demand is stochastic, and the system has a single
product and multiple-retailers. There is one warehouse or distributor that delivers
a single product to multiple-retailers. A particular element is the week planning
period, with no possibility of observing stock levels during that period, and at least
one delivery during the planning period. The objective is to decide the delivery
quantities and the delivery days for a set of vendor managed points such that the
total inventory costs are minimized.

The organization of this chapter is the following: In Section 3.1 a literature re-
view on VMI will be briefly summarized. Then, on Section 3.2, we will present two
Multi-Period Vendor Managed Inventory (MPVMI) models. The first model does
not consider any setup cost and the second model includes this additional cost. In
Section 3.3, we will perform a computational experiment on some examples. Finally,

some conclusions and further research are drawn in Section 3.4.

3.1 Literature review

There exists a considerable amount of literature regarding inventory management
problems and control systems. However, in this section we will focus our literature

review on the work that has been done about VMI system:s.
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The VMI systems affect the supply chain, Dong and Xu (2002) evaluates this
effect and states that VMI always leads to a higher buyer’s profit, but the supplier’s
profit varies. And, these benefits are obtainable only in a fully integrated Supply
Chain.

Many references study the benefits of a VMI system over other inventory man-
agement systems. Waller et al. (1999) studies the effect of the VMI in several en-
vironments. He states that, in this relationship, buyers relinquish control of key
re-supply decisions and sometimes even transfer financial responsibility for the in-
ventory to the supplier. The arrangement transfers the burden of asset management
from the consuming organization to the vendor, who, may be obliged to meet spe-
cific customer service goal (usually some sort of in stock target). Some advantages
of VMI are pointed, for example, reducing costs for each partner, reducing demand
volatility, mitigating uncertainty of demand and solving the dilemma of conflicting
performance measures. With VMI the frequency of replenishment is usually increased
from monthly to weekly (or even daily), which benefits both sides. The vendor can
make replenishment decisions and the buyer transfer inventory responsibilities.

Emigh (1999) presents an overview of VMI and its growing use throughout the
retail industry. The author states that VMI is popular throughout the supply chain
because it lets companies shift responsibility for inventory management to vendor
in order to reduce overhead. Typically the manufacturer takes a daily review of

inventory by pulling down EDI files from the distributor. The manufacturer then
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uses the inventory data to put together an anticipated order for the distributor.
The apparel industry and hospital supplies, have been using non-automated VMI for
decades, supermarkets have taken longer than department stores. VMI practitioners
range from food manufacturers like Kraft Inc. to chain stores such as Wal-Mart stores
to industries that use VMI automation like car and paper manufacturing industries.

Harrington (1996) describes the difference between VMI and consignment selling.
Consignment selling allows manufacturers to place inventory at retailer’s location,
with the retailer never actually owning the product. Consignment selling is similar
to VMI but differs in one key area. In traditional VMI, the retailer still owns the
inventory; the manufacturer simply manages it. Consignment selling is the next step,
the manufacturer owns the inventory and the retailer takes a percentage for providing
shelf space and customers. In our work will refer our model as a VMI system although
we will not make any distinction between who owns the inventory.

Andel (1996), suggests that many manufacturers are more adept to handling in-
ventory than the retailers they supply. In a VMI relationship, vendors receive with-
drawal and current balance information from the retailer and the vendor can arrange
their shipments, build their loads, and cut their purchase orders to optimize their
transportation and inventory requirements.

Dong and Xu (2002) evaluates how VMI affects a supply channel. VMI always
leads to higher buyer’s profit, but the supplier’s profit varies. VMI is an effective

supply chain strategy that can realize many of the benefits obtainable only in a fully
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integrated supply chain.

Aichlymayr (2000) shows some benefits of VMI and collaborative planning, fore-
casting and replenishment.

Other authors have studied the information sharing issue at VMI systems. Chueng
and Lee (2002), considers a supply serving multiple retailers located in a close proxim-
ity, in his paper he examines the benefit of using customer demand information. Two
types of Supply Chains are considered that are often linked to VMI programs: the
first uses information on the retailers’ inventory position to coordinate shipments from
the supplier to enjoy economies of scale; the second uses information for unloading
the shipments to the retailers to rebalance their stocking positions.

Finally, some authors have worked on modeling VMI and optimizing replenish-
ment policies. Disney and Towill (2002) defines VMI has a production/distribution
and inventory control system where stock positions and demand rates are known
across more than l-echelon of the supply chain. VMI comes in many different forms
described by terms such as Synchronized Consumer Response, Continuous Replenish-
ment Programs, Efficient Consumer Response, and Rapid Replenishment, Collabora-
tive Planning, Forecasting and Replenishment, Centralized Inventory Management.
In his paper, the system is designed to minimize inventory-holding costs and adap-
tation related costs covering the need to ramp production up and down to meet
perceived needs. In this work the system is designed for various different ratios of

production adaptation costs and inventory holding costs and presents a decision sup-
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port system that allows tuning the VMI system.

Fry et al. (2001) models a type of VMI agreement where optimal replenishment
and production policies for a supplier are found to be up-to-policies. The conclusion
is that VMI performs better than a Retailer Managed Inventory (RMI) system (where
the retailer managed inventory), in many settings but can perform worse in others,
depending on the scenario and the contract parameters. For example, VMI performs
better if outsourcing is very expensive or variance is high.

The VMI can also provide benefits by allowing the vendor to coordinate production
and delivery, particularly in the case of multiple retailers, the following authors have
studied this situation: Cheung and Lee (2002); Campbell et al. (1999) studied a VMI
policy where the objective was to minimize the average daily distribution cost during
the planning period without causing stock-outs at any of the customers’ location;
Kleywest et al. (2000), formulates an inventory routing problem for a VMI system
where the supplier can measure the inventory level and decisions are made daily;
Cetinkaya and Lee (2000) present an analytical model for coordinating inventory and
transportation decisions in a VMI system where the vendor can hold the orders.

Our work can be included in this last group of literature. The basic idea is to
develop a model for a VMI system with the characteristics of a week planning period,
stochastic demand, unobservable stock levels and with a minimum of one visit per
week.

The motivation of this work is to respond to a strategic need and a growing ten-
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dency for planning deliveries and coordinating strategies within an integrated supply
chain. Given a set of inventory managing costs we want to design the best delivery
strategy taking into consideration the entire planning horizon. Even if, in practice,
you may adapt your deliveries to customers and orders, you can obtain substantial
gains by planning your inventory needs in advance. Another motivation for this work
was based on the advantages that seem to exist when using a VMI system, in the
coordination of the inventory management area with other management areas at the
operational and strategic level, such as distribution, scheduling or location.

In the next section we will present the two models of VMI system.

3.2 The MPVMI Models

Our model consists of a VMI system with one supplier and multiple retailers.
The distributor has the responsibility to decide when to visit the retailer’s locations
and how much to deliver. This particular model has the objective of designing the
deliveries for a planning period, for a five day week period. One of the characteristics
of the VMI systems is that the distributor is responsible for managing the inventory at
the retailer point. He would like to minimize inventory handling costs while avoiding
stock-out situations.

In a stock-out situation, a customer arrives at the selling point and there is no unit
of product available at the site. This situation leads the distributor to incur a stock-

out cost. These costs can be seen in two different ways: the cost of an emergency
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delivery to be able to serve the customer or an opportunity cost of a lost sale (in
this case, assuming the customer leaves the retailers point and goes elsewhere). In
both cases there is a strong cost, higher than the cost of handling an item on the
shelves. So, one assumption of the model is that stock-out cost is always bigger than
the holding cost and both are costs applicable per unit of product per day.

Next, we will list other assumptions of the model.

3.2.1 Assumptions of the model

e A week planning period is considered. We want to analyze a delivery strategy,
we could have chosen two weeks or even one month but we have considered that
one week is a common frequency in many industries and it is reasonable to plan

for a week.

e There are no handling stock costs at the warehouse, and we assume that there
is enough amount of product (unlimited capacity). Keeping stock at the ware-
house is always relatively cheep when comparing with the cost of keeping stock
at retailers location, due to economies of scale and dispersion of locations. We

will consider this cost as being part of production costs.

e Retailers have stochastic demand, but the distribution function of the demand

for each customer and for each day is known.

e At the retailers location there are inventory handling costs and a cost for stock
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out, payed by the distributor.

e Each location is visited at least once a week. There is a periodic need for
visiting the location for many possible reasons like: control reasons, checking
stocks, shelves positions, promotion controls or other marketing activities. This

assumption, in a way, reflects the cross-functional integration within a firm.

e The stock is only observed at the beginning of the planning period, and the
decisions are made for the all planning horizon, independently of what occurs
during the week. So, if demand exceeds the amount available there is a stock-
out cost. There are no emergency deliveries or changes in the delivery plan
due to the arrival of information. This does not mean that in practice these
situations do not occur. But, we are analyzing a strategy for the best delivery

policy with the information that we have, to minimize expected costs.

e The holding and stock-out costs only depend on quantities and not on retailers.
They are both applied per unit of product per day and are the same for all

retailers.

e We will consider two models: On the first model, there is no delivery cost, the
only costs considered are the holding and stock-out cost at the retailers point.

On the second model, there is an additional fixed setup cost per delivery made.

e The setup cost is a delivery cost per visit. This cost varies by retailers location

and by day, but does not depend on the quantities delivered.
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3.2.2 The MPVMI model with no setup cost

In the first model, we consider that there is no cost associated with the delivery of
the product to the retailer. The only costs considered are the costs of managing the
inventory at the retailers point and the cost of a stock-out situation. The distributor
has to decide, for each day, how much to deliver and to which retailers, minimizing
total costs. Delivering higher quantities increases the holding cost but decreases the
possibilities of a stock-out.

The costs of the problem are:

e Inventory handling costs (holding costs) per unit of product at the retailers

point, per day;
e Stock out costs at the retailers point, per unit lost, per day;
The decisions to make are the following:

e Decide, for each day, which points will be visited;

e How much to deliver at these points on each day.

Objective function:

Objective is to minimize the expected total cost at the end of the week;

Min Weekly cost = Inventory holding cost + Stock-out cost.

Notation:
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n = number of retailers, indexed from 1 to n;

P = number of periods (in this case, 5 periods, from 0 to 4);
h = inventory carrying cost per unit;

s = shortage cost per unit;

B, = initial inventory at location 7 on day p, i =1,..n; p=1,.... P and f, is

known;

F;,(.) = cumulative distribution function of the one period demand at retailer’s

location i, for day p,i=1,..nand p=1,..., P;
fip = distribution function of the one period demand at retailer’s location 4, for

day p,i=1,..nand p=1,..., P;

t;, = random variable representing the demand of retailer i on day p, i = 1,...n

andp=1,..., P;

Decision Variables:

w;, = amount delivered to retailer 7 on day p

1 if retailer 7 is visited on day p
Yip =
0 if otherwise
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Inventory cost:

tip=—0

Biptwip
{ h Y. (B +wip — tip) [ip(tip)dtsy w
(3.1)

22 -
icB p { +s > (tip— Bip — wip) fip(Lip)dlip J

BipTwip

For each day and for each retailer, the inventory cost is equal to the the sum of
the expected inventory holding and stock-out costs.

For each period, if demand exceeds the initial stock of that period plus the quantity
delivered, there is a cost s per unit exceeded. Otherwise, if the demand is smaller
than the quantity delivered and the initial stock, the vendor incurs in a holding cost
h, per unit of end stock.

This expression applies for the case where demand is a discrete variable. Since
the representation of the probability distribution is difficult to find, particularly when
demand ranges over a large number of possible values, the discrete random variable is
often approximated by a continuous random variable (Hillier and Lieberman 1995).
Furthermore, when demand ranges from over a large number of possible values, this
approximation will generally yield a nearly exact value of the optimal amount. In
addition, when discrete demand is used, the resulting expression may become slightly
more difficult to solve analytically. So, we will approximate the demand as a con-
tinuous random variable and at the end we approximate the solution to the closest

integer.



3.2 The MPVMI Models 60

Let I;,(w;,) represent the inventory managing cost of location i on day p.

Z Z Lip(wip)

_ Z Z h foﬁierwip (ﬂip + Wip — tip)fz‘p (tip)dtip

P +s f;;wip (tip — Bip — Wip) fip(tip)dtip

The problem can be stated as follows:

Min Z Z I, (w;y) (3.2)

Subject to:
Wip < M x Yip, Y i, p (33)

1<)y, Vi (3.4)
p
wip, >0,  Yi, p (3.5)

yip €{0,1} Vi, p (3.6)
The meaning of the above constraints is:

(3.3) If the quantity to be delivered is positive, than that location has to be visited

on that day.
(3.4) The VMI retailers are visited at least once a week.

(3.5) The variable w;,, that represents the quantity delivered to a retailer on a given

day is always greater or equal to 0.

(3.6) This constraint defines y;, as binary.
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At this point, we have an additional problem with the initial inventory: The
initial stock in only observed at the beginning of the planning horizon. Then, we
have to decide the delivery days and quantities without considering any information
of the stocks during the period. We observe the initial inventory of each retailer at
the beginning of period 0, so the initial stock of the future periods is also a random
variable, since it depends on demand of all the previous periods.

At each period, if there is a stock-out, a cost is incurred and the initial stock of
the following period will be zero. There is an interdependence between all periods,

the initial inventory for each period is:

B = wu; >0, observed
By = Max{0,u; +wj —ti}
ﬂiQ = Maa’) {O,ﬂil —I—wil _tzl} = Maa’) {O,MCLJ) {O,Ui—l—wio—tio}—l—wil _tzl}

Bz = Max{0,B8,y+wy —tn} =

;

0, Maa’) {O,U,Z —I— W0 — tlo} —I—
= Max< 0, Max + wip — Lo
w;1 — L
\
By = Max {07@3 + wiz — ti3} =

4 4
0, Maz {0, u; +wyo — tio}

0, Max
= Maa') 0, Maa’) +wi1 _ til + W3 — ti3

FWio — Lo

\ \

So, the initial stock of period p will be a function of the initial stock at period 0
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and of the quantities delivered and demand of all previous periods.

Bip (s, Wig, o, Wip_1, Lin, - Tip_1)

In this model we will assumed a stochastic demand that follows an exponential

distribution known by the distributor, with the form:

f<tip) = aipeiaiptip

with the average demand 1/a;,. There are many different statistical distribtuions
to choose from when working with inventory control. The exponential distribution
function is commonly used to represent the demand variation in inventory models.
See Lidke and Malstrom (1987) and Snyder (1984).

It makes sense that in some cases demand varies from day to day and from retailer
to retailer, we have considered a demand function parameter for each retailer and for
each day.

We need to calculate the inventory cost for each period. So, for each period we
need to consider all the possible scenarios of the previous periods initial inventory.
This is, for period 0, we know the initial inventory, for period 1 we need to consider
two possibilities: stock-out at the end of period zero (zero initial inventory at period 1)
and positive stock at the end of period 0 (initial stock at period 1 positive). Extending

this for all the periods we obtain the complete inventory cost function.
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o0

Bip‘i‘wip
h/ (ﬂip + Wip — tip)fip<tip)dtip + 3/ (tip - ﬂip - wip)fip<tip>dtip
0 Ié]

ip T Wip

We will use the Heaviside function to simplify the expression,

substituing:

Loaf ty— ﬂip — Wiy <0
1<tip < ﬂip + wy) =
0 if otherwise

becomes:
oo | hX Lty < By + wip) (B + wip — Lip)
/ )it
° +s X 1<tip > ﬂip + wip)<tip - ﬂip — Wip)

For simplicity, in the next sections we will derive the expressions for one retailer
only, then add for all retailers.

Since obtaining the expression for the inventory cost function is complex we will
first obtain the expressions for the inventory cost expression for each period separately,
the complete cost function is the sum of the inventory cost of each day.

For the first period, the inventory cost, [, is:

Period 0:

o0 ho 1(u+ wo — to) * (u+ wo — to)
/ [ (to)dto
0

—s* L(—u —wo +tg) * (u 4wy — 1)
= exp(—ag* (u+wp)) * (s+ h)/ag+ h* (ag * u+ ag * we — 1) /ag

Iy 1s the inventory cost in period 0. It is equal to a holding cost of h* (u+we—to)

if u 4+ wp >ty and a shortage cost of s % (tg — u — wy) if u+ wy < tp.
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For period 1 we will have to consider the 2 possible outcomes of period 0.

Period 1:

LT(u+wo —to) * (h* L{u+ wo + wy — to — 11)
*(’U,—I—wo—l—wl—to—tl)

o0 o0 —8*1<—U,—w0—w1+t0+t1)

n=[f F(to) £ (41) oty

0 0 *(u—l—wo—l—wl _tO_tl))

+1(—u — wg + to) * (h* 1(wy — 1) * (wy — t1)

—s* L(—wy +t1) % (wy — 1))

I = ((apxutayxweg+ 1) ag*xh+ (aq *u+ aq *wy
+1)/ay * s) * exp(—ay * (u+ wo + wy))
+1/ay * h* exp(—ay * (u+ wp))

H(=2+ oy xwy + oy *u+ oy xwp) /oy x h

I, is the inventory cost of period 1. It is the inventory cost considering two

possibilities:

- Positive stock in period 0:

Tu—+wo—to) * (h* 1(u+wo+wy —tg —t1) * (u+ wo+wy —to—t1)

—s* 1(—u—wo—wy +tg+1t1) * (u+ wo+wy —to—t1))



3.2 The MPVMI Models 65

- Stock-out in period 0:

(—u—wo+to) * (h* 1wy —t1) % (wy —t1) — sx L(—wy +t1) * (w1 — 1))

For the third period we would have to consider 4 possibilities, for the fourth

period 8 and 16 for the fifth.

The analytical expression for the inventory cost function of all the periods is in
Appendix A.

The total inventory cost will be the sum of the cost of each period:

4
25
p=0
The inventory cost function is a non-linear function. The first order derivatives of the
inventory cost function are also non-linear functions. And, we also have the constraint
that the w’s can not assume negative values. So, to minimize the function we will
use the Gauss-Newton’s approximation methods (Bertsekas 1995).

The result obtained after solving this model is a delivery policy which implies
that the distributor visits a location almost every day. In some cases, if initial stock
is sufficiently high, then the best solution will be to deliver after this stock has ran
out. Nonetheless, it makes sense to include a cost per delivery that might change the
above delivery policy. This cost, in a way, reflects the transportation cost. This is

what we will consider in the next model.
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3.2.3 The model with setup cost

Consider now that there is an additional cost, a setup cost per delivery. This
setup cost is a fixed charge, independent of the quantity delivered, that will vary
from retailer to retailer and eventually from day to day and is applied whenever
a deliver is made to a retailer. It does not depend on the quantities delivered, it
corresponds to the cost of preparing the order, transportation cost and delivery cost.

The model will again minimize total cost, but this time it includes holding and
stock-out costs per unit of product per day and the setup cost per day and per retailer
visited.

The setup cost varies from retailer and day, this assumption is justified when look-
ing at the setup cost as a transportation cost. Customer far away from the warehouse
or with more difficult access (for example: downtown areas) have associated a higher
delivery cost.

Delivery costs might also vary by day, looking again in terms of transportation
and analyzing the group of retailers to be served, a retailer away from the warehouse
but closer to other group of retailer being visited has a lower cost than if he is isolated.
Another aspect is the number of routes, a retailer served on a given day might be
included in a tour which is costly than if it is included on another day.

Let us now introduce the setup cost in the inventory function:

2ip = setup cost of delivering to retailer ¢ on day p, withi =1,..nandp =1,..., P;
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The inventory cost function with setup cost, (1.9), is:

IS5 = ] ]
1(wip < 0) X Zip
. +h [, (Bip + wip — Lip) fip(Lip)dlsy
i op
TS fﬁjwip (tip = Bip — wip) fip(Lip)dlsp
with

0 if otherwise

Let us start by analyzing the inventory cost for only one retailer 7 and one period

Zip + L(wy,) if wp >0

I{w;) if w;,=0
To solve this problem:
First, let w}, be the delivering quantity that Minimizes /;
If we deliver, it becomes: ](wl’-“p) + Zip
So we have to compare [(w;, = 0) with ](w;‘p) + Zip

Let 77 be the value that equals [(wy, = 0) = [(w},) + zip

Then the optimal cost will be:
< + ]<w:p) Zf ﬂz‘p S T;'kp

Iw;, =0) if Bip > T3
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30=u

31>0 31<0

32>0 32<0 32>0 32<0

— T T

33>0 33<0 33>0 33<0 33>0 33<0 33>0 33<0

B4>0 RB4<0 R4>0 R4<0 RB4>0 R4<0 R4>0 RB4<0 R4>0 R4<0 R4>0 R4<0 R4>0 R4<0 RB4>0 R4<0

Figure 3.1: Decision tree for the MPVMI model with setup cost.

If we try to extend this problem to more than one period the decision tree will increase,
see Figure 3.1 for the decision tree of all the planning horizon.

To solve this problem becomes a complex task. The solution we propose is to
analyze the best delivery quantities for all the possible combinations of delivery days
and choose the solution with minimum total costs (inventory + stock-out + setup
costs).

So, for each retailer given the setup cost for each day of the week, we calculate
the best delivery quantities for all the possible combinations of days.

We do not consider the case when there is no delivery since one of the assumptions
is that at least once a week the retailer has to be visited.

The procedure to solve the problem is the following :
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- Minimize the inventory cost for each combination of delivery days.
- Obtain the best delivery quantities for that combination.

- Calculate the total inventory cost by adding to the inventory cost the corre-

sponding setup-cost.

- Choose the combination and quantities that gives the best solution (minimum

total inventory cost).

- Repeat the procedure for each retailer.

Another point is the constraint that imposes only positive values for the deliveries,
which transforms the problem into a constrained minimization problem.

The solution to the first model, with no setup cost corresponds to the combination
where we considered that is possible to delivery every day of the planning period (5
days). The second model, with the setup costs, chooses the best solution from all the
possible combinations, including delivering every day.

In the next section, we will describe the computational experiment that we have

done on several examples, and show the main results.

3.3 Computational experiment

In this section, we will present a numerical study on the two MPVMI models with

and without setup costs. We will refer to Model 1 (M1) for the MPVMI with no
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setup cost and Model 2 (M2) to the MPVMI with setup cost.

The objective of this experiment is to compare the solutions of the two models in
terms of costs and delivery days.

Results show that optimal solutions depend on the type of demand and on the
setup cost. When introducing a setup cost, the average number of delivery days
decreases while total costs increase.

Next, we will explain the data used and analyze some important results of this

experiment.

3.3.1 The data

For the computational experiment we have generated several instances that can be
divided in different groups according to their size, measured by the number of retailers
(10, 50,100, 200), type of setup cost (equal every day versus different for each day,
and low versus high) and type of demand (same every day and different every day).

For the demand data we have generated the distribution function parameter o,
So, for each retailer ¢ and day p we have generated a value for o;,. These values were
randomly chosen from a Normal distribution with mean 50 and standard deviation
20 between retailers. For instances with demand varying from day to day, the mean
was the same as before, but the standard deviation between days was equal to 2.

The initial stock for each retailer was generated by a random uniform distribution

between 0 and 50. Finally, the setup cost was generated for each retailer and for each
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day of the week, following a uniform distribution between 10 and 200 for high setup
cost and between 5 and 50 for low setup cost. The total number of cases analyzed

was 160.

3.3.2 Analysis of the results

We can start by analyzing and comparing the Inventory Cost. In Table 3.1, we
have the Inventory Cost for M1 and M2, with and without the setup cost!, separated
by size and type of setup cost. The cost in this table is an average of all instances
with the same size.

From Table 3.1 we can observe that M2 has always an Inventory Cost (free of the
setup cost) greater than M1. However, M1 and M2 are closer to each other when the
setup cost is low. These results were expected since if we are using an additional cost
in the decision process the solution will be worst. The opposite happens when looking
at both models when adding the correspondent setup cost, M1 will have always the
highest total cost.

In Table 3.2, the instances were separated into two groups: the group with a setup
cost that is equal every day and a group with setup cost that differs each day.

The results show that, when setup cost differs from day to day, then the best

solution of M2 has a higher cost than when the setup cost is equal every day. This

I Although we have assumed that in M1 there are no setup costs, we have added to M1 the setup
cost that would be applied if we were delivering on the days proposed by M1. This is done so that
we can compare both models.
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N Setup M1 M1+setup M2 M2+setup
10 HS 6211,60 11039,55 7193,79 8270,99
LS 6211,60 7335,95 6318,67 6989,07
50 HS 30304,26 55249,71 35309,20 40974,90
LS 30304,26 36798,16 31431,37 34983,87
100 HS 60588,02 110789,07 70499,63 81778,17
LS 60588,02 73643,97 62803,86 69832,36
200 HS 120429,09 222111,27 140718,38 163254,89
LS 120429,09 146841,40 125169,50 139334,50

Table 3.1: Average Inventory Costs for M1 and M2 for Low (LS) and High (HS) setup

costs.
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N Low Setup M1 M1+setup M2 M2+setup
10 = 6211,60 7314,10 6298,71 6997,01
7 6211,60 7357,80 6338,63 6981,13
50 = 30304,26 36592,86 31176,13 34944,93
Z 30304,26 37003,46 31686,60 35022,80
100 = 60588,02 73531,22 62465,64 70004,54
7 60588,02 73756,72 63142,08 69660,18
200 = 120429,09 146875,40 124546,33 139814,12
z 120429,09 146807,40 125792,68 138854,89
N High Setup M1 M1+setup M2 M2+setup
10 = 6211,60 10994,00 7142,08 8441,98
Z 6211,60 11085,10 7245,50 8100,00
50 = 30304,26 54572,06 34918,82 41780,72
£ 30304,26 55927,36 35699,58 40169,08
100 = 60588,02 110704,02 70171,28 83733,48
z 60588,02 110874,12 70827,97 79822,86
200 = 120429,09 223041,82 140034,83 167567,55
£ 120429,09 221180,72 141401,92 158942,23

Table 3.2: Average inventory cost for M1 and M2 with equal setup cost (=) every
day versus different setup cost (#) for each day.
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N Demand M1 M1+setup M2 M2+setup
10 _ 6494,42 9512,12 7128,76 8060,41
7 5928,78 8863,38 6383,69 7199,64
50 _ 29787,64 45563,24 33150,73 37696,18
% 30820,88 46484,63 33589,84 38262,59
100 _ 60830,22 92653,16 67667,79 76941,63
# 60345,83 91779,88 65635,70 74668,90

200 _ 121550,58 185917,46 135340,07 153995,22

7 119307,60 183035,21 130547,82 148594,18

Table 3.3: Average Inventory Cost for M1 and M2 with equal demand (=) every day
versus different demand (#) for each day.

can be explained by the higher influence setup cost plays on solutions, if it varies,
solutions adjust more to these differences.

We have also analyzed and separated the instances by the type of demand. In
Table 3.3, we have the inventory cost for M1 and M2 with equal demand every day and
different demand for each day. The same relation applies for the difference between
M1 and M2. This difference is smaller when demand varies from day to day. This is,
the model leads to lower costs by playing with the variations on the expected demand.

In Table 3.4, we can see the average number of delivery days in the solutions of M1

and M2. The first observation is that the number of delivery days does not depend on
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N M1 M2
10 4,70 2,41
50 4,76 2,37
100 4,63 2,23
200 4,78 2,32

Table 3.4: Average number of delivery days per week in M1 and M2.

the size of the problem (retailer have an inventory cost that is independent of other
retailers). As expected M1 has high delivery days in the planning period, on average
4,7 days per week (in 5 days). When introducing a setup cost in the decision process
(M2), the number of days a retailer is visited during the planning horizon falls to an
average of 2,3 days a week.

And, if we analyze the two instances separated by high and low setup cost (see
Table 3.5), in M2, the average number of delivery days goes from an average of 3 days
per week for the Low setup cost case to an average of 1,6 delivery days for the case
of high setup costs. There is a strong relation between the magnitude of the setup
cost and the number of delivery days per week in the solution.

The relation between the two models can also be observed in Figure 3.2. In this

graph we have the inventory cost for M1 and M2 with and without setup cost, for a
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N Setup M1 M2
10 HS 4,70 1,58
LS 4,70 3,25
50 HS 4,76 1,64
LS 4,76 3,10
100 HS 4,64 1,74
LS 4,62 2,72
200 HS 4,78 1,61
LS 4,78 3,03

Table 3.5: Average number of delivery days in M1 and M2 for the cases of Low (LS)
and High (HS) setup cost.

set of 20 retailers with equal demand and low and equal setup cost. As can be seen,
the inventory cost of M1 is always the lowest if free of setup costs and the highest
costs if we add the correspondent setup cost.

Finally, concerning the run time of the algorithm, in Table 3.6, we see that it is
proportional to the size of the problem (number of retailers), this result is due to
independence of the inventory cost function among retailers. The run time, in these
particular models, does not have major implications since it takes an average of 0,38
seconds per retailer to solve a week planning problem.

The objective of the above numerical experiment is twofold: In the first place

analyze the two models in terms of inventory cost and number of delivery days.
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Figure 3.2: Inventory Costs for M1 and M2 for a group of 20 Retailers.

Run time in
N
seconds
10 4,03
50 19,32
100 38,26
200 76,59

Table 3.6: Run time in seconds for M1-+M2.
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Secondly, to give an insight on the effect the delivery frequency can have in terms of
costs. There is a clear trade-off between delivery days and inventory costs and the
decision maker might evaluate what is the effect, for example, in terms of marketing

or other control policies, of not visiting a retailer on a given day.

3.4 Summary and Conclusions

Inside the trend to a wider cooperation and integration of logistics processes is an
initiative called the VMI system. In a VMI system the supplier makes the inventory
decisions for the consuming organization.

These type of systems have gained importance during the last few years. The
introduction of technologies for information sharing and coordination has contributed
for the success of those policies in many industries. Nonetheless, there are still gaps
to fill in the research in the area of modeling these agreements and using algorithms
to strategically plan the inventory managing systems.

The motivation of this work arrives from the need to strategically respond to
the growing tendency for planning deliveries and coordinating strategies within an
integrated suplly chain. And also, from the advantages that seem to exist when
using a VMI system, in the coordination of the inventory management area with
other management areas at the operational and strategic level, such as distribution,
scheduling or location.

This work presents two inventory models: the MPVMI with no setup cost and the
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MPVMI with setup costs. In these models it is the responsibility of the distributor
to manage the inventory at the retailers’ location. The distributor does not know
the demand of the product and only observes the initial stock at the beginning of
the planning period. He has to decide how much and when to deliver to each of its
retailers while trying to minimize total inventory costs. We have done a computational
experiment and the results show that, by introducing a setup cost, the number of
deliveries per planning period are reduced while holding plus stock-out costs increase.
The impact of this increment depends on the type of demand and level of setup cost
used.

However, when comparing both models adding the setupcost we can observe that
the model M2 holds better results. This observation leads us to conclude that devel-
oping integrated decision models will result in a better global decision process. So,
our models gain interest in the above setting if we consider them as tools for the coor-
dination with other areas in the Supply Chain. One example is to consider the setup
cost as a transportation cost and to use this model to manage and define policies for
a large scope of the supply chain management, in this particular case the transporta-
tion and inventory management. This is commonly known as the inventory-routing
model and will be the subject of the next chapter: design a model for the integration
of this VMI system with other transportation issues, such as the routing of vehicles

for the distribution the products to retailers.



Chapter 4

Multi-Period Inventory-Routing

Model with two types of customers

In many industries, the logistic planning functions of transportation and inventory
play an important role and integrating these two areas may lead to significant gains
and more competitive distribution strategies. The coordination of these activities
can be an extremely important source of competitive advantage in the supply chain
management. The battle for cost reduction can pass through the equilibrium of
transportation costs versus inventory managing costs.

Both the Vehicle Routing and the Inventory Management problems have been
extensively studied separately and there exists a vast amount of literature on these
areas. However, when looking at the two problems together, the amount of work

found is much less. Many models have been proposed for inventory problems with no
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routing decisions considered and many studies exists on vehicle routing problems in
which no inventory management is mentioned.

The problem that considers Vehicle Routing and Inventory Management decisions
together is known as the Inventory Routing Problem (IRP). The main objective in
the IRP is to design the set of routes and delivery quantities that minimize trans-
portation cost while controlling inventory costs. Considering these two problems in
an integrated manner can reduce total costs.

The model we propose is a Multi-Period Inventory-Routing with two types of
customers: the Vendor-Managed Inventory customers and the Customer Managed
Inventory (CMI) customers. The VMI customers have a random demand and the
distributor manages the stock at the VMI customer location. The CMI have fixed
demand and the distributor faces no inventory costs associated with these customers.

The objective is to determine the routes for a week planning period and the
quantities delivered to the VMI points, minimizing total transportation plus inventory
costs.

The motivation of this work can be found on the advantages that can be obtained
when integrating decision processes along the supply chain. In this particular case,
trying to reduce total costs through the coordination of decisions between distribution
management and inventory management areas. Although there exist some literature
on the integration issue, none of them addresses the specific case of this model: two

types of customers, a week minimum visit and no information on the inventory levels
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during the period.

This chapter is organized in the following way: First we make a review on some
relevant IRP literature. Then, we expose our Multi-Period Inventory-Routing
Problem with Stochastic and Deterministic Demand (MPIRP-SDD) model
in detail. In section 4.3, the solution method, based on the Iterated Local Search is
presented. In section 4.4, we show the results of a computational experiment. And

finally, we draw some conclusions and further research.

4.1 Literature review

Ferdergruen and Simchi-Levi (1995) make a good summary on inventory-routing
problems. These authors divided the IRP models into two variants: the single period
model and the infinite horizon model.

Baita et al. (1998) also present a review on dynamic routing and inventory. These
problems are characterized by having a dynamic environment. Repeated decisions
have to be taken at different times within some time horizon and, earlier decisions
influence later decisions.

We will now present a review on IRP literature relevant to our study, separating

the existing work into Finite and Infinite Horizon Models.
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4.1.1 Finite Horizon

For the single period inventory routing model, Ferdergruen and Zipkin (1984)
addressed the problem of allocating a scarce resource, available at the central depot,
among several locations, each with random demand while planning the deliveries using
a fleet of vehicles. At the beginning of the period the initial inventory is reported
to the depot. This information is used to determine the allocation of the available
product, for the next day, among the locations. At the same time the assignment
of customers to vehicles and their routes are determined. After deliveries are made,
the demands occur and inventory carrying and shortage costs are incurred at each
location proportional to the end of the period inventory level. In this model it is
possible to choose not to visit some of the locations.

Dror and Ball (1987), decompose the multi-period problem into series of single
period problem. They studied the case where, in each time interval, only customers,
who will reach their safety stock level during this interval, are serviced. Trudeau and
Dror (1992) solve the problem for stochastic demand.

Bard et al. (1998) present a decomposition scheme for solving inventory routing
problems with satellite facilities, in which a central depot must restock a subset of
customers on an intermittent basis. In this setting, the customer demand is not
known with certainty. A unique aspect is the presence of satellite facilities where
vehicles can be reloaded and customer deliveries continue until the closing time is

reached. Jaillet et al. (2002) present an incremental cost approximation to be used
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in a rolling horizon framework for the above problem of minimizing total expected
annual delivery costs.

Campbell et al. (1999) presents an inventory-routing problem and an optimization
based approach for its solution. In the 1% phase they decide which customers receive
a delivery on each day of the planning period and decide on the size of deliveries

2"? phase the actual delivery routes and schedules for each day. They

and on the
consider a small set of delivery routes, constructed using a cluster and vehicles are
allowed to make multiple trips per day. The objective is to minimize the average
daily distribution cost during the planning period without causing stockouts. There
is no inventory holding costs or stockouts costs included in this model.

In the literature we find IRP with specific characteristics, such as considering a
limited amount of product at the warehouse, see Chien et al. (1989). They address
the problem of distributing a limited amount of inventory among customers using a
fleet of vehicles so as to maximize profit. The problem is to decide how to allocate
its available inventory to the different customers and they assume that the warehouse
does not have enough supply to satisfy each customer maximum demand. In order to
determine which customers must be served and the amount to supply to each selected
customer, we need routing cost information so that the marginal profit (revenue minus
delivery cost) for each customer can be accurately computed. The delivery cost for

each customer depends on the vehicle routes, which in turn requires information about

customer selection and the mount of inventory allocated.
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Some research can also be found on the Direct Deliveries Strategies' in IRPs.
Burns et al. (1985) developed an analytical method for minimizing the costs of
distributing freight by truck from a supplier to many customers. They derive formulas
for transportation and inventory costs, and determine the optimal trade-off between
these costs. The paper analyses and compares two distribution strategies Direct
Shipping (Direct Delivery) and Peddling?. For Direct Shipping, the optimal shipment
size is given by Economic Order Quantity (EOQ) model while for Peddling, the
optimal shipment size is a full truck. There is no VRP, they consider a Minimum
Path model inside each region.

Bertazzi et al. (2002) study a multi-period model with deterministic demand
in which a set of products is shipped from a common supplier to several retailers.
A retailer can be visited several times during the time horizon. A shipping policy
consists of determining for each delivery time instant the set of retailers to visit, the
quantity of each product to ship to each retailer and the route of the vehicle. The
inventory policy is an Order Up-to Level policy®. They investigate the case of a single

product and a single vehicle.

'Direct Delivery Strategies consists in shipping separate loads for each customer.

2 A peddling strategy consists in dispatching trucks that deliver items to more than one customer.

3A Order Up-to Level policy is a policy where every time a retailer is visited, the quantity of
each product delivered is such that the maximum level of inventory is reached.
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4.1.2 Infinite Horizon

In the Infinite Horizon IRP, Anily and Ferdergruen (1990) developed a model
of a one warehouse multi-retailer system with vehicle routing costs. The objective
is to determine the feasible replenishment strategies minimizing long run average
transportation and inventory costs. A replenishment strategy specifies a collection of
regions covering all outlets. If an outlet belongs to several regions a specific fraction
of its sales is assigned to each of these regions. Each time, one of the outlets in a
given region, receives a delivery; this delivery is made by a vehicle that visits all
other outlets in the region as well (in an efficient sequence or route). These authors
allow regions to overlap. See Hall (1991) and Anily and Ferdergruen (1991) for more
comments on this model.

Anily and Federgruen (1993) extended their analysis on the one warehouse mul-
tiple retailer system with vehicle routing costs, to the case where inventories may be
kept in the warehouse.

Another work on the Infinite Horizon IRP is the one by Barnes-Schuster and Bas-
sok (1997). These authors studied the situation where retailers face random demands
from known distributions functions. Ordered goods arrive at depot and are allocated
and delivered to the retailers. Retailers see demands, report to the depot and are
charged inventory holding and shortage costs; depot decides whether or not to place
the order for retailer 7. The question that the authors answer is: when it will be

effective for the depot to use Direct Shipping and Order Up-to Level rounded to full
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trucks as its sole ordering policy. Effectiveness is defined as the ratio of the long run
average cost per period of the policy at hand to a lower bound on the long run average
cost over all possible policies.

Chan et al. (1998), consider a distribution system consisting of a single warehouse
and many geographically dispersed retailers. The objective is to determine an inven-
tory policy and a routing strategy such that each retailer can meet its demands and
the long-run average transportation and inventory costs are minimized. This paper
studies the Zero-Inventory Ordering policy* and the Fixed Partition Policies®.

Also, Kleyweght et al. (2002), studied the problem of determining optimal policies
for the distribution of a single product from a single supplier to multiple customers.
The objective is to maximize expected discounted value, incorporating sales revenues,
production costs, transportation costs, inventory holding costs and shortage penalties,
over an infinite horizon. They study the special case of the Direct Deliveries.

In Berman and Larson (2001), the objective is to adjust dynamically the amount
of product provided on scene to each customer so as to minimize total expected costs,
comprising costs of earliness, lateness, product shortfall, and returning to depot non-
empty. This problem can be encountered within an “industrial gases context”.

Following the above classification, our work can be included in the Finite Horizon

and multi-period group. The model has infinite capacity at the warehouse, distributor

4Zero Inventory Policies, are policies under which a retailer is replenished if and only if its
inventory is down to zero.

5Fixed Partitioning Policies, partitions the set of retailers into a number of regions, such that
each region is served separatly and independently from all other regions, whenever a retailer in a set
is visited by a vehicle, all other retailers in the set are visited as well.
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faces both stockout and holding costs, initial stock is only known at the beginning
of the first period and each customer is visited at least once in the planning period.
This model distances from the above literature on another aspect: the incorporation

in the routing problem of both CMI points and VMI points.

4.2 The MPIRP-SDD

In this MPIRP-SDD model we consider two types of customers: the Vendor-
Managed Inventory (VMI) customers and the Customer Managed Inventory (CMI)
customers. The VMI customers have a random demand with a known distribution
function for each period in the planning horizon. The distributor manages the stock
at the VMI customer location and is responsible for the inventory cost incurred on
these locations. For this group, it is the responsibility of the distributor to decide how
much to deliver and when. The distributor has two types of costs related to these
points: the holding cost ( i.e. the cost of having inventory at these points, this cost
is per unit and per period); and a stock out cost (i.e. cost per unit not sold).

The CMI have fixed demand that has to be fully satisfied on a specific day and
the distributor faces no inventory costs associated with these customers. The CMI
customers place an order to the distributor, some time in advance, to be delivered
on an agreed date. These customers decide the quantity and delivery days and the
distributor has no responsibility on the inventory they posses.

The objective is to determine the routes for a week planning period (composed of
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five working days) and the quantities delivered at the VMI points, minimizing total
transportation plus inventory costs. The choice of a week planning period is motivated
by two aspects: the strategic perspective of the model, our objective is to design a
distribution policy in advance; and for control reasons, there is a minimum frequency
of visiting a customer, we assume that it is at least once in the planning period. We
have to decide when to visit the VMI customers and how much to deliver each time
we visit them. The costs of the model include traveling cost, inventory managing
costs associated with the VMI customers and a fixed cost of using a vehicle.

Although there exist some literature on the integration issue, none of them ad-
dresses the specific case of this model: two types of customers, a week minimum visit
and no information on the inventory levels during the period.

The motivation of this work is based on the need for coordination within the
supply chain management. In this case, we are trying to coordinate decisions from
the distribution management area with decisions from the inventory management
area. The aim of this model is, by coordinating strategies in different areas of the
SCM try to reduce total costs. In other words, define an integrated inventory-routing
strategy that proves to be more efficient than a non-integrated inventory routing
strategy (solving both problems independently).

So, based on this idea, the objective of this model will be to design the routes and
the delivering quantities in such a way has to minimize total cost. The decisions will

be based on the assumptions explained below.
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4.2.1 Assumptions of the model

The model tries to define the best routes for all customers and the best delivering
quantities for the VMI customers. The first assumption is that we have two sets of
customers and the VMI customers are visited at least once a week. Another important
aspect is that we only know the initial inventory at the beginning of the first period,
and the decisions are taken for the all week, independently of what occurs during the
week.

The assumptions of the model are.

Set of customers with well known geographical locations.

e Week period delivery system is considered (five working days).

e The CMI customers have a demand that is fixed, that is, at the beginning of
the period we know the demand and, this exact amount has to be delivered at

a specific day.

e There are no inventory costs to be managed at the CMI sites.

e There are no handling stock costs at the depot, and we assume that there is

enough amount of product at the depot (unlimited capacity).

e VMI customers have stochastic demand, the quantities to deliver depend on the

expected demand.
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e For the VMI customers, demand probability function is known and varies by

customer and from day to day.

e At the VMI points, there are inventory holding costs and a cost for stock out.

e The vehicles have a fixed capacity.

e The highest demand is always smaller than a vehicle capacity.

e There is no fixed number of vehicles but a high fixed cost for the use of a vehicle.

e Fach customer can only be visited once a day and is visited at least once a

week.

e The holding and stock out costs only depend on quantities and not on customers.

And the stock out cost is always bigger than the holding cost.

4.2.2 The MPIRP-SDD

The costs of the problem are:

e Transportation cost between locations;

e Stock out and inventory costs for the VMI customers, per unit of product and

per day;

e Fixed cost per vehicle used.
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The decisions to be made are the following:

Decide the routes for each day of the week, for each vehicle;

Decide the number of vehicles needed each day of the period;

Decide for each day which of the VMI customers will be included and where in

the tour;

How much to deliver to the VMI customers, on each day.

Objective function:

Objective is to minimize the expected cost at the end of the week:

Min Weekly cost = transportation cost +
inventory holding cost +
stockout cost +

fixed cost for the use of vehicles

Notation:

A = set of CMI customers.

B = set of VMI customers.

n = number of customers, indexed from 1 to n; index 0 denotes the central

depot.
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() = capacity of a vehicle.
P = number of periods (in this case, P = 5 periods, from 0 to 4).
¢;; = cost of direct travel from location i to location j.

F(.) = cumulative distribution function of the demand of one period, in loca-

tion i, with ¢ € B for day p.

fip = distribution function of the one period demand for customer i and day p,
i=1,.nandp=1, .. PF,;

h = inventory holding cost per unit and per day.

s = shortage cost per unit and per day.

(32 = initial inventory at location i on day p.

d? = demand of customer i on day p with i € A.

T, = set of days where 7 has a positive demand, with i € A.

C = fixed cost per vehicle used per day.

K = maxdimum number of available vehicles.

Variables:

if vehicle k travels directly
Lijk = from customer i to customer j on day p;

0, otherwise.
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1, if customer i is assigned to vehicle k on day p;
Yir, =

0, otherwise.

wh = amount delivered to location i on day p, by vehicle k.

K, = number of vehicles needed on day p.

Transportation cost:

.rP
E :Cljxijk

L5k
Inventory cost:
Consider
K
w; = wak
k=1
w! = amount delivered to location i on day p
p—1 | Bitw] 0
Z Z h Z (87 +wi — tip) fip(tip)dlsy + 5 Z (tip — 87 — wi) fip(Lip)dlip
i€B p=0 0 8P Fwip
Fixed cost per vehicle used:
P-1
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Let I;,(w?) represent the inventory managing cost of VMI location i on day p.

The problem can be stated as follows:

n n K P=1 P=1 P=1
=0 7=0 k=1 p=0 i€ B p=0 p=0
Subject to:
K
d =1, VieA  Vpel (4.2)
k=1
Kp
d yh=K, Vp=0..,P-1 (4.3)
k=1
dodh 4> wh<Q Vp=0,..P-1 k=0,.K (4.4)
€A i€B

oaly = al, =y, Yi=1..n k=1,.,K;p=0.,P—1 (4.5)
5=0 5=0

Z af%k < ’S’ — 1, V S non-empty subset of {1,...,71}

jaes

k=1, K p=0,.. P—1 (4.6)
K P-1

1§Z Y, VieB (4.7)
k=1 p=0

K

Yy <1, VieB p=0,.,P-1 (4.8)

k=1

yh <wh <yh M, VieB p=0,...P—1; k=1,.. K; (4.9)

wh. >0, i€ B p=0,..,P—1 (4.10)

zh, €40,1}; yh, €{0,1}Vi=0,...,nk=1..K; p=0,...,P—1 (4.11)
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The meaning of the above constraints is:

(4.2)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

For the CMI, in days where the customer have a positive demand, that customer

is visited by only one vehicle.
The second constraint forces that each day all vehicles go to the depot.

This constraint ensures that the daily loading of a vehicle does not exceed its

capacity.

This constraint guarantees that if the vehicle enters a node, on day p, it also

has to leave that node, on the same day.

Avoids sub-tours, for each vehicle for each day. The sub-tour elimination con-
straint represents an exponential number of constraints. The problem with this

constraint is that its number grows exponentially with n.
The VMI customers are visited at least once a week.
Each day, there can only be at most one vehicle visiting the VMI customers.

If the amount delivered, by vehicle k, to a VMI i on day p is positive then,

vehicle k£ has to visit that location on that day. M represents a very big value.

The variable w;;,, representing the quantity delivered to a random demand cus-

tomer on a given day is always greater or equal to 0.

This constraint define the variables z? o and yb. as binary.
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The inventory cost only applies for the VMI customers and is equal to: the ex-
pected inventory holding cost, if the initial stock plus the quantity delivered is less
than the demand, or a stockout cost otherwise. This expression applies for the case
where demand is a discrete variable.

Since the representation of the probability distribution is difficult to find, particu-
larly when demand ranges over a large number of possible values, the discrete random
variable is often approximated by a continuous random variable. Furthermore, when
demand ranges from over a large number of possible values, this approximation will
generally yield a nearly exact value of the optimal amount. In addition, when discrete
demand is used, the resulting expression becomes more difficult to solve analytically.

So, from now on we will consider the demand of the VMI customers as a continuous

random variable:

pP-1
22 L)
i€B p=0
PP
= 0 (0
Yy 2
T | o gl = 2 — )0

The above inventory cost function (4.12) only works if the initial inventory of each
period is known in advance, or observed. Since we are planning for several periods
in advance we do not know the demand on each period. The initial inventory is then

also a random variable that depends on the demand of all the previous periods and

on quantities delivered in all the previous periods.
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We will assume that the only quantity we can observe is the initial inventory of
each customer at the beginning of period 0.

At each period, if there is a stockout, a cost is incurred and the initial stock of
the following period will be zero.

Then, the initial inventory for each period is:

B = Maxz {O,Ui—l—w? —t?}

By = Maz{0,8; +w —t/}=
Maz {0, Maz {0,u; + w) — 7} + w} —t}}

B = Max {O,ﬂ? —I—wi2 —t?} =

;

0, Max {0, u; + w? — 19} +
Max < 0, Mazx Hw?—12

w.l—tl
L 7 7
Bu = Maa:{O,ﬂ?—l—wf—t?}:

4

0, Max {0, u,+wd—1%}
0, Max < 0, Max +w?—1?
= Max +w)—t}

3_43
\ +w; —t;

So, the initial stock of period p will be a function of the initial stock of period 0,

of the quantities delivered and demand of all previous periods.

-1 -1
B (ug, wd, o wl P

7 A
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Assume from now on that the demand follows an exponential distribution function

with the form:
f(t) = a;e” " (4.13)

There are many different statistical distribtuions to choose from when working with
inventory control. The exponential distribution function is commonly used to repre-
sent the demand variation in inventory models. See Lidke and Malstrom (1987) and
Snyder (1984).

We need to calculate the inventory cost for each period. So, for each period we
need to consider all the possible scenarios of the previous periods initial inventory.
This is, for period 0, we know the initial inventory, for period 1 we need to consider
two possibilities: stock-out at the end of period zero (zero initial inventory at period
1) and positive stock at the end of period 0 (initial stock at period one positive). Then
we extend this for the second, third and fourth periods for all possible combinations.

The expression of the inventory cost function for each customer and each period

can be seen in detail in Section 3.2.2.

4.3 Heuristics Solution Method for the MPIRP-

SDD

The limitations of available computational techniques make it impractical to try

to solve this problem directly for all but very small instances. The structure of
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the problem argues for some type of decomposition. As mentioned there are two
subproblems embedded in the IRP. The first is to decide the delivery day and the
quantity, the second involves routing decisions.

Our decomposition scheme for the IRP is outlined in the following steps:

e Step 1: Obtain an initial solution where the inventory problem is solved sepa-

rately without considering any delivery cost.

e Step 2: For each day in the planning horizon, try to find a good feasible solution

by solving a VRP.
e Step 3: Calculate an approximation of the VMI customers delivery cost.

e Step 4: Determine the new quantities and delivery days for the VMI customers,

taking into account the setup cost.

e Step 5: For each day in the planning horizon, try to find a good feasible solution

by solving a VRP.

e Step 6: Repeat steps 3 and 4 until a satisfied solutions is found.

Next, we will explain in more detail each step of the heuristics for the MPIRP-
SDD.

Step 1: The Initial solution - The inventory problem

In the first step of the algorithm we will solve the inventory problem alone. Con-

sidering that there are no transportation costs to be handled. The cost function (4.12)
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only works if the initial inventory of each period is known in advance. However, one
of the assumptions of the model is that the stock at the VMI locations can only be
observed at the beginning of the planning period. Therefore, the initial inventory is
also a random variable that depends on the demand of all the previous periods and
on quantities delivered in all the previous periods.

We need to calculate, for each VMI customer, the inventory cost for each period.

For period zero, we observe the initial stock and incur in holding cost if expected
demand exceeds the initial inventory plus the quantity delivered or a stockout cost
otherwise. If there is a stockout, in the next period the initial stock will be zero.

For the other periods (period 1 to 4), we have to consider all the possible scenarios
of the previous periods. For period 1, for example, we need to consider two possibil-
ities: stock-out in period zero (zero initial inventory at period 1) and positive stock

at the end of period 0 (initial stock at period one positive). For each VMI customer

Period 1:
gt > 0
\
For period 2 we need to consider 4 scenarios:
(

gt = 0 and A% = 0

' = 0 and £ > 0
Period 2:

' > 0 and B = 0

gt > 0 and 3 > 0

Then we eX\tend this for period 3 and 4 following the same reasoning.
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This inventory problem, is different from other inventory problems that can be
found in the literature. Since, in this particular case we have a planning horizon,
5 days, for which we need to plan the delivery quantities. Also, we do not known
what is the initial stock at each day for each customer. We have to decide how often
and how much to deliver. Since we do not allow for negative quantities, we have a
non-linear constrained minimization problem.

This initial solution is obtained by solving the inventory model for each customer.
The inventory cost function results in a complex integral with 5 integrals. This
expression is minimizes using the Gauss-Newton method, with the average demand
as a starting point. The objective is to minimize inventory costs (holding + stock-out
costs). The best solution is to deliver almost every day to the VMI customers, since
there is no setup cost associated with the deliveries.

In summary, in step 1 we calculate the optimal quantities to deliver on each day
of the week to each VMI customer. We assume an initial solution for the first day
and an exponential distribution function for the demand of each customer on each
day. For the detailed inventory cost function analysis and solution method refer to
Section 3.2.

Step 2: The VRP

After step 1, we known the quantities and the days to delivery to each customer.
Therefore, we have to solve a VRP each day to obtain the best routes. To solve

the VRP each day, we consider an ILS for all customers on that specific day and
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their respective quantities. After, we calculate the total cost: transportation cost
and inventory cost associated with the VMI customers.

Due to the complexity of the VRP problems (NP-hard) we need to develop an
heuristic. Our proposal is to use an heuristic algorithm that as proven to give quiet
good results on other problems and is easy to implement and modify, the ILS. For

more details on this metaheuristic see Section 2.4.1.

Structure of the algorithm for the VRP

Step 2.1: Set day =1

Step 2.2. Savings Heuristic - Initial Solution

Step 2.3. ILS for TSP on each tour

Step 2.4. ILS for the VRP

Step 2.5. ILS for the TSP on the new routes

Step 2.6. Set day = day + 1; Repeat Step 3 to 6 until day = 5;

At the end of 2, we have obtained an initial solution for the MPIRP-SDD model
based on a sub-optimization of the two existing problems: the routing and the in-
ventory problem. Now, Step 3 to 6 consists in developing an heuristic method that
improves this initial solution.

Step 3: Inventory and transportation - The setup cost ap-
proach

When considering the inventory problem separately from the transportation prob-
lem, the best solution is to deliver frequently, every day or almost every day, however,
this implies higher transportation costs. Our objective is to balance the delivery costs

with the inventory cost. One way to do this is by considering a setup cost: a cost
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per delivery made to a VMI customer. This setup cost only applies to these set of
customers since, the CMI customers have to be visited on a specified day and no
changes are allowed on these customer’s orders. If a VMI customer is visited on day
p, then there is a fixed cost associated with this customer, on this day.

We will obtain the setup cost by calculating the approximate cost of serving a
VMI customer on a specific day, this is, the cost of including a customer i on tour j
on day p. This is an approximation since the real value would have to consider the
relationship between the delivering decisions of all the other customers and the best
corresponding routes.

It is logical to think that if a customer is close to a group of customers that are
visited on day p, than we have a lower cost of delivering that customer on that day.
This is, the setup cost of customer i will depend on the location of this customer with
respect to other customers in the route.

This cost represents the cost associated with delivering to a customer on a day p,
and will only depend on distance. This setup cost will be calculated in the following
way:

g% = cost of going to customer i on day p.

0 = a fixed setup weight per distance unit.

Let j and k be the previous and successor customer in the route of customer 7 on

day p, then.
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At Step 3 we have calculated the setup cost for each VMI customer on each day.

Step 4: New deliveries

Now, we have an inventory model with a setup cost. For each VMI customer we
need to redefine the optimal deliveries. For a more detail discription of this inventory
model with setup costs see Section 3.2.3.

The procedure can be summarized as follows:

- Consider all possible combinations of delivery days.
- Solve the inventory problem for each combination.
- Add the corresponding setup cost in each solution.(obtained in Step 3).

- Choose, for each VMI customer, the solution with the lowest total cost (inven-

tory + setup).

At this stage we obtain the new set of delivery days and quantities.

Step 5: New VRP

For each day in the planning horizon, and using the new delivering quantities from
Step 4, find a good feasible solution by solving a VRP (repeating Step 2).

Step 6: Repeat

Repeat steps 3 to 6 until a satisfied solution is found, or until a certain number

of iterations have been performed.

Next, we will present a computational experiment on the application of this

method to the MPIRP-SDD.
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4.4 Computational Results

In this section we will present a computational study that assess the impact of
integrating transportation and inventory. To analyse this impact it is interesting to
compare two solutions: The integrated solution and the non-integrated solution. This
non-integrated solution is characterized by the separability of the two problems: the
inventory and the routing are independent, first we solve the inventory problem and
use the solution to decide the routes. The solution of the integrated problem is the
one obtained after the running of the algorithm presented in the previous section.

The objective is to compare the two solutions (the integrated versus the non-
integrated solution) obtained when solving the two different problems (Inventory and
Routing) and analyzing the impact of considering the problems in an integrated form.

There are two ways in which we will orient this analysis: the first is to compare
total costs; and the second is to make a multi-objective approach. In this second
perspective the inventory cost and the routing cost are the two objectives that we
would like to minimize. Instead of choosing the best total cost we will consider all
non-dominated solutions obtained from the algorithm and would be the responsibility
of the decision maker to choose.

Next, we will explain the data used and analyze some important results of this

experiment.
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4.4.1 The data

For the computational experiment we have generated several sets of examples, each
group with different characteristics concerning: total number of customers (100, 200, 400);
percentage of VMI customers (10% and 50%); type of demand (equal every day, dif-
ferent each day) and setup cost parameter (high setup cost #=100 per distance unit
and low setup cost, # = 10 per distance unit).

For the VMI customers, we have used a demand parameter o, (for each customer
i and day p) that follows a normal distribution with mean 50 and standard deviation
20 for each customer. In the cases where demand is different every day the standard
deviation between days used was 5.

The initial stock for each customer was generated by a random uniform distribu-
tion between 0 and 50.

The results were obtained considering 8 iterations. The stockout cost used was

twice the holding cost, in this experiment h = 2 and s = 4. There is a fixed charge

per vehicle used per day: C' = 200.

4.4.2 Analysis of the results

We can start by looking at a few examples in terms of the solutions obtained at
each iteration, see Figure 4.1.
The non-integrated solution corresponds to the initial solution obtained at the end

of step 2 of the algorithm. By continuing the algorithm (step 3 to 6) and exploring
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other VMI delivery strategies, the new inventory cost increases but, allows some sav-
ings in terms of routing. In Figure 4.1, iteration 0 corresponds to the non-integrated
solution while the other iterations 1 to 7 correspond to integrated solutions. In these
two particular examples, the best solution would be found at iterations 1. However,
supposing that a higher preference was given to reduce routing costs, then the best
solution would be at iteration 7 for example A and at iteration 2, for example B.

In Table 4.1, we present the average total cost improvemet for each problem
size. This average Cost Reduction was calculated by comparing, for each group of
examples, the best solution for the non-integrated (i.e. the initial solution obtained
at the end of step 2) versus integrated case (i.e. the best solution in terms of total
cost, obtained by the algorithm). The average savings, for instances of 100 customers
with 10% VMI customers, when integrating routing and inventory is 1,42% of the
total cost.

In Figure 4.2, we can see the trade-off between Inventory cost and Routing cost.
This corresponds to viewing the problem has a multi-objective problem, where all the
set of non-dominated solution are of interest for the decision maker to choose the best
delivering and routing strategy. In example C' we would have three non-dominated
solutions (the three circles in the graph). In example D, only two solutions would be
non-dominated (the two circles in the graph).

We also compared the non-integrated solution with the best solution in terms

of routing cost. Table 4.2 considers the trade-off between inventory and routing
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Example A : Inventory, Routing and Total Costs, example Example B : Inventory, Routing and Total Costs, example
of 200 customers, 10% VMI, high setup cost.

of 100 customers, 50% VMI, low setup cost.
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Figure 4.1: Examples of Inventory, Routing and Total Costs at each iteration.
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Routing Cost

Problem  Number Average Total Cost
Size vMI Reduction

100 10 1,42%

50 0,99%

200 20 0,94%

100 2,09%

400 40 0,26%

200 0,06%

Table 4.1: Average Total Cost Reduction for each group size.

Example C
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Example D
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Figure 4.2: Trade-off between Inventory and Transportation cost.
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ik N High setup cost parameter Low setup cost parameter
rgiZ:m li/”,\]/”er Equal demand Different demand Equal demand Different demand

ip_cost vrp_cost ip_cost vrp_cost ip_cost vrp_cost ip_cost vrp_cost
100 10 -18,71% 2,77% -22,09% 3,28% -6,98% 1,24% -7,73% 1,75%
50 -21,40% 4,95% -18,67% 3,77% -5,66% 4,57% -6,04% 4,99%
200 20 -15,97% 2,59% -14,88% 2,02% -4,61% 1,19% -2,85% 1,09%
100 -18,35% 12,33% -17,17% 12,25% -4,23% 3,23% -4,33% 3,43%
400 40 -14,92% 2,27% -13,87% 2,09% -2,17% 0,51% -2,26% 0,79%
200 -15,31% 11,10% -15,10% 10,86% -2,72% 2,33% -2,45% 2,30%

Table 4.2: Trade-off between inventory and routing costs.

costs when going from the solution of the non-integrated case to the integrated one.
The results are shown in terms of average variation in routing and inventory: the
inventory costs increase and the routing costs decrease, for the solutions of each case
see appendix C.

The best solution in terms of transportation cost always implies an increase in
inventory cost. The difference in the magnitude of these variations is justified on
one hand by the values chosen for the inventory costs and transportation cost. And,
on the other hand, by the existence of other customers, the CMI customers. These
customers have fixed delivery days and quantities: The higher is the percentage of
CMI customers the less we can reduce routing costs by concentrating deliveries (the
impact on total routing cost is less visible).

In terms of delivery days, when optimizing separately we obtain an average of

4,68 delivery days a week, for the VMI customers, while for the integrated case, this
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average falls to 3,49 delivery days a week.

Another analysis that can be done is in terms of vehicles needed. When we
integrate transportation and inventory, this implies that the delivery frequency is
reduced and we are able to reduce the number of routes. Assuming that the distributor
pays a fixed charge per use of a vehicle then, by reducing the number of routes at the
end of the week the distributor is able to reduce routing costs. Table 4.3, shows for
each group of examples, the average reduction in the number of vehicles needed per
week. The higher is the percentage of VMI customers, the more we can reduce the
number of vehicles needed. This reduction is higher when the setup cost parameter
is high. A higher setup cost parameter means that solutions with fewer deliveries are
preferable. For example, in the group with 100 customers 10 of them VMI, for the
integrated solution, the total number of vehicles needed per week reduces on average
2,81% and 1,73% for the cases with high and low setup cost parameter respectively.

In terms of run time, Table 4.4 summarizes the average number of running time
per problem, measured in seconds for the integrated solutions.

The above results show that the distributor who has VMI customers gains from
considering inventory and routing in an integrated manner, and this gain can be seen
in terms of total cost reduction. The best delivery strategy will be to deliver very
frequently which implicates higher transportation costs. When including the cost of
delivering, the solution has few delivery days and transportation costs are reduced.

The magnitude of this improvement depends on the problem size, on the proportion
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Problem  Number

Reduction N. of vehicles

Size VMI High setup cost Low setup cost
parameter parameter
100 10 -2,81% -1,73%
50 -12,34% -4,67%
200 20 -2,55% -1,65%
100 -12,02% -3,19%
400 40 -2,08% -0,99%
200 -10,65% -2,14%

Table 4.3: Reduction in the total number of vehicles.

Problem Number Average Run
Size VMI Time in seconds
100 10 110,73
50 113,88
200 20 465,72
100 376,39
400 40 1783,901
200 1490,591

Table 4.4: Average run time in seconds, per problem size.
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of VMI customers in the problem and also on the unit costs chosen for both problems.
It is also interesting to consider the problem in a multi-objective perspective. For this
case, analyze the set of non-dominated solutions and it becomes the responsibility of
the decision maker to choose the best solution based on a given inventory strategy

and a delivering plan associated.

4.5 Summary and Conclusions

The logistic planning functions of transportation and inventory play an important
role in may industries and integrating these two areas may lead to significant gains
and more competitive distribution strategies. The movement towards more integrated
processes cannot ignore these tow key logistic fields.

In this chapter, we present a Multi-Period Inventory Routing Problem with Stochas-
tic and Deterministic Demand (MPIRP-SDD). We have considered the particular case
of a distribution firm that has to decide on its distribution and inventory strategies.
This firm has two types of customers, the VMI and CMI customers and decisions
have to be made on the quantities delivered and days of visit to the VMI customers,
and also in relation with the route planning for the complete set of customers for a
week planning period. The additional assumption of only observing stock levels at
the beginning of the planning period brings more complexity into the model. The
objective of this model is to design an integrated Inventory-Routing strategy for a

distributor that has to manage inventory and transportation costs of their VMI cus-



4.5 Summary and Conclusions 115

tomers. Considering the inventory and transportation management in an integrated
mode can yield to a better performance. As far as we know, there no studies on
the IRP with these characteristics. This model can be applied in many distribution
processes: for example, in the retailing industry for suppliers of supermarkets and
department stores.

An heuristic approach, based on the ILS was constructed to solve this problem.
The heuristic has 6 steps, on the first step an initial solution for the inventory problem
is obtained. Then, for each day in the planning horizon, tries to find a good feasible
solution by solving a VRP. On step 3, an approximation of the VMI customers delivery
cost is calculated and based on the results the new quantities and delivery days for
the VMI customers are obtained. The process is repeated on the new routes until a
satisfied solution is found.

A computational study was done to analyze the impact of integrating Inventory
and Routing: the results show that cost reductions are obtained when considering
inventory and routing in an integrated manner. The degree of this improvement
depends on the problem size, on the proportion of VMI customers in the problem
and also on the unit costs chosen for both problems. Given the relationship between
the inventory and transportation costs, the decision maker can decide how much of
the deliveries to the VMI customers to concentrate.

We are considering future extensions of this work: One includes the analysis of

the case where demand faces a distribution function different than the one we have
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assumed in our work, for example, the Normal distribution. Another interesting
extension is to measure the setup costs, in Step 3 of the algorithm, in a dynamic way,
this is, taking into consideration not only the precessor and successor customers in
the tour but a global effect on the week plan. Finally, we would also like to develop

a multi-objective model and solution method to solve the MPIRP-SDD.



Chapter 5

Conclusion

The previous decision models are related with integration issues in Distribution
Management and, from their analysis, we can conclude that given a specific logistics
structure, a firm can improve their distribution strategy by taking into considera-
tion a diversity of concerns and joint them together in an integrated decision policy.
Moreover, this effect can be found both in the cases which integrate decisions from
other business areas, such as marketing policies, and in the cases in which the in-
tegration process happens along several logistics functions, such as inventory and

transportation.

In the first study we have explored different distribution strategies to analyze an
integrated distribution problem. The first strategy is the classical VRP approach,
which reflects only transportation cost. The second strategy is a customer oriented

strategy based on customer relationship management principles. The third strategy
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is a multi-objective combinatorial optimization problem with two objectives: min-
imizing cost and improving customer service. This third strategy results from the
integration of the two other strategies and brings together two important areas in
many industries: Distribution and Marketing. The main conclusion is that the multi-
objective model gives several non-dominated solutions, that can be seen as a good
balance between optimizing the transportation cost and the customer service.

The second work presents two inventory models: the MPVMI with no setup cost
and the MPVMI with setup costs. The distributor has to decide how much and
when to deliver to each of its customers while trying to minimize total inventory
costs. Results show that, when introducing a setup cost, the number of deliveries
per planning period are reduced while inventory costs (holding and stockout cost)
increase. The impact of this trade-off depends on the type of demand and level of
setup cost used. However, when comparing both models adding the setupcost we
can observe that the model M2 holds better results. This observation leads us to
conclude that developing integrated decision models will result in a better global
decision process.

In the last study, we presented a Multi-Period Inventory Routing Problem with
Stochastic and Deterministic Demand, we have considered the particular case of a
distribution firm that has to decide on its distribution and inventory strategies. The
objective of this model is to design an integrated inventory routing strategy for a firm

that has two types of customers, the VMI and CMI customers and decisions have to be
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made on the quantities delivered and days of visit to the VMI customers, and also in
relation with the route planning for the complete set of customers for a week planning
period. A numerical study was done to analyze the impact of integrating Inventory
and Routing: the results show that cost reductions are obtained when considering
inventory and routing in an integrated manner. Given the relationship between the
inventory and transportation costs, the decision maker can decide how much of the
deliveries to the VMI customers to concentrate.

The three different studies are an important contribution to the field of integrated
distribution management, since they cover three specific logistic systems whose char-
acteristics have not been studied before, as far as we know.

Efficiency can be improved by the coordination of different areas of distribution
management and there are alternative strategies for distribution that will allow the
decision maker to make a better choices.

As mentioned before, the importance of the integration process within a firm or
a Supply Chain is an important issue both in management and at research level.
This integration can be seen from two perspectives: the information integration and
the decision process integration. In this second perspective, the integrated decision
models play and will continue to play an important role in the logistics field.

As future research, the models and approaches done in this thesis can be extended

to other areas within the firm or outside the firm within its Supply Chain.
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Appendix A

Inventory cost function for each

period

For one retailer:
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Appendix B

Simulation

The inventory cost function is a complex expression. To verify if the expression
was obtained in a correct form, we have ran a simulation.

For M1 and M2, we have picked up a retailer and solve the optimization problem.
Additionaly, we have simulated the demand with the same behaviour (same mean and
same standard deviation) for 10000 iterations and compared the solution obtained
by optimization with the simulated one. The simualtion converges to the optimal
solution, the slightly difference is due to the conversion from continuous to dicrete

delivery quantities.
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Figure B.1: Simulation versus Optimization, for M1 and M2, for one customer.



Appendix C

Computational experiment

Results from computational experiment of Chapter 4.
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High setup cost parameter

Solution without integration Best solution in terms of routing cost
ip_cost vIp_cost irp cost ip_cost vip_cost irp cost
1 6498,22 30628,63 37126,86 7861,85 29828,59 37690,43
2 6355,31 31375,62 37730,93 7434,59 30262,58 37697,17
3 5243,26 30977,93 36221,19 6381,84 30459,46 36841,30
4 7121,96 29147,56 36269,52 8711,73 28427,08 37138,81
5 5467,93 31655,90 37123,83 6098,23 30532,67 36630,91
6 5799,68 30833,62 36633,31 7001,11 29609,45 36610,57
7 5875,08 31035,80 36910,88 7174,82 29948,35 37123,17
8 4881,30 31509,59 36390,89 6125,71 30384,86 36510,57
9 6371,38 28611,75 34983,13 7677,00 27876,12 35553,12
10 5940,05 30928,22 36868,28 7223,96 30071,99 37295,95
11 29461,91 134669,51 164131,42 35229,64 128655,93 163885,57
12 26378,18 137100,31 163478,48 31618,04 131219,73 162837,77
13 26649,86 137002,51 163652,37 32837,95 128848,28 161686,23
14 30342,85 131775,51 162118,36 37047,23 123413,53 160460,77
15 28903,85 134073,11 162976,96 35336,77 129087,49 164424,26
16 30467,18 126200,44 156667,62 36374,30 121183,70 157558,00
17 25354,41 128423,79 153778,20 29423,74 124898,44 154322,18
18 29855,08 127208,54 157063,61 35623,64 121325,79 156949,43
19 31942,34 122568,69 154511,03 38293,11 116961,38 155254,49
20 29788,85 125960,32 155749,17 35364,07 122279,06 157643,13
21 11851,10 146009,14 157860,24 13609,64 141526,73 155136,37
22 11620,89 148817,97 160438,86 13591,28 146417,56 160008,85
23 10988,98 148994,77 159983,76 13166,90 143583,57 156750,47
24 13520,39 144356,64 157877,03 15510,37 138884,68 154395,05
25 10896,98 145440,85 156337,83 12368,91 144215,66 156584,57
26 11136,77 146623,41 157760,18 12563,53 143234,13 155797,66
27 12040,65 150948,77 162989,41 13690,65 148648,29 162338,94
28 10678,55 146053,11 156731,66 12292,63 141718,82 154011,45
29 12319,38 141799,48 154118,86 14570,24 138363,20 152933,44
30 12003,82 146401,55 158405,36 13743,45 145150,91 158894,37

Table C.1: Trade-off between inventory and routing costs.



High setup cost parameter
Solution without integration

Best solution in terms of routing cost

ip_cost vIp_cost irp cost ip_cost vip_cost irp cost
31 58674,63 133829,29 192503,93 69005,01 119925,65 188930,66
32 59889,80 137499,71 197389,52 71463,35 119506,11 190969,46
33 58313,88 136085,59 194399,48 69508,10 118919,19 188427,29
34 59371,39 132244,21 191615,60 71085,14 113293,53 184378,67
35 60901,65 137730,66 198632,32 70592,22 122290,03 192882,25
36 63463,89 138273,92 201737,81 75402,09 120275,84 195677,92
37 57826,86 135862,69 193689,54 66186,96 121223,22 187410,18
38 55050,70 131415,18 186465,88 64829,78 116630,75 181460,52
39 62090,84 133501,33 195592,17 72921,35 116603,68 189525,04
40 58096,64 133894,36 191991,00 68180,87 115780,98 183961,85
41 23405,30 145807,66 169212,97 26920,70 142360,28 169280,98
42 25022,88 146285,91 171308,79 28592,83 143859,95 172452,78
43 22712,34 141635,34 164347,68 25752,70 138121,55 163874,26
44 25192,47 144722,15 169914,62 29463,98 141190,34 170654,32
45 22747,68 141185,46 163933,14 26155,48 137765,47 163920,95
46 24299,35 147304,68 171604,03 28150,52 142829,40 170979,92
47 21002,83 145300,65 166303,48 23441,20 141974,75 165415,95
48 23747,97 142127,97 165875,94 27215,04 139737,67 166952,71
49 25225,42 147922,02 173147,44 28565,95 145433,92 173999,87
50 23659,68 141671,12 165330,80 26983,41 139201,34 166184,75
51 122100,85 136956,93 259057,78 141602,91 120886,17 262489,07
52 116837,25 135295,62 252132,87 133106,36 121465,77 254572,13
53 119174,04 134272,18 253446,21 138728,67 119115,67 257844,34
54 120608,52 137250,82 257859,35 138362,39 121179,12 259541,51
55 117370,26 132365,88 249736,14 135575,56 118380,05 253955,61
56 120053,16 140289,70 260342,86 138177,69 125344,54 263522,22
57 118380,38 135432,22 253812,61 136176,59 120430,08 256606,68
58 122992,87 136707,75 259700,62 142040,55 121633,15 263673,70
59 120800,61 133394,11 254194,72 139646,92 118506,20 258153,12
60 119347,77 133058,10 252405,86 136401,03 119234,27 255635,30

Table C.2: Trade-off between inventory and routing costs.




Low setup cost parameter

Solution without integration Best solution in terms of routing cost
ip_cost vIp_cost irp cost ip_cost vip_cost irp cost
1 6498,22 111428,63 117926,86 7105,70 111246,53 118352,23
2 6355,31 115375,62 121730,93 6654,56 115301,78 121956,34
3 5243,26 114977,93 120221,19 5672,49 112649,15 118321,64
4 7121,96 106747,56 113869,52 7743,07 105621,18 113364,25
5 5467,93 116455,90 121923,83 5683,68 113094,02 118777,70
6 5799,68 112433,62 118233,31 6105,84 110355,38 116461,22
7 5875,08 115035,80 120910,88 6244,89 111829,06 118073,95
8 4881,30 116309,59 121190,89 5413,04 113104,59 118517,63
9 6371,38 105411,75 111783,13 6764,85 105070,48 111835,33
10 5940,05 113328,22 119268,28 6535,36 112132,27 118667,62
11 29461,91 69315,38 98777,29 30616,47 66929,56 97546,03
12 26378,18 68389,74 94767,91 28143,20 64831,80 92975,00
13 26649,86 69186,54 95836,40 28313,92 66614,39 94928,31
14 30342,85 66902,88 97245,73 32169,24 62389,47 94558,71
15 28903,85 68358,42 97262,27 30465,54 65804,42 96269,96
16 30389,25 71295,01 101684,26 32386,09 67559,76 99945,86
17 25354,41 65223,79 90578,20 26807,99 63753,90 90561,89
18 29855,08 73608,54 103463,61 31592,56 69142,17 100734,73
19 31942,34 68168,69 100111,03 33698,29 64788,00 98486,29
20 29788,85 69960,32 99749,17 31746,63 65460,39 97207,02
21 11851,10 146009,14 157860,24 12524,70 143691,04 156215,74
22 11620,89 148817,97 160438,86 12011,40 148643,22 160654,62
23 10988,98 148994,77 159983,76 11638,76 146923,80 158562,56
24 13520,39 144356,64 157877,03 14090,26 141249,13 155339,39
25 10896,98 145440,85 156337,83 11319,79 144435,96 155755,75
26 11136,77 146623,41 157760,18 11543,56 143247,09 154790,65
27 12040,65 150948,77 162989,41 12312,05 150897,17 163209,22
28 10678,55 146053,11 156731,66 10934,04 143835,58 154769,62
29 12319,38 141799,48 154118,86 12687,48 139528,32 152215,80
30 12003,82 146401,55 158405,36 12359,90 146397,36 158757,26

Table C.3: Trade-off between inventory and routing costs.



Low setup cost parameter

Solution without integration

Best solution in terms of routing cost

ip_cost vrp_cost irp cost ip_cost vip_cost irp cost
31 58674,63 133829,29 192503,93 61569,35 130357,64 191926,99
32 59889,80 137499,71 197389,52 62306,07 132912,07 195218,13
33 58313,88 136085,59 194399,48 61337,93 132281,43 193619,36
34 59371,39 132244,21 191615,60 61547,91 126663,45 188211,36
35 60901,65 137730,66 198632,32 62923,54 133313,04 196236,59
36 63463,89 138273,92 201737,81 66238,09 135706,20 201944,30
37 57826,86 135862,69 193689,54 60573,85 129060,16 189634,00
38 55050,70 131415,18 186465,88 57207,93 127862,95 185070,88
39 62090,84 133501,33 195592,17 64709,21 128985,01 193694,21
40 58096,64 133894,36 191991,00 60646,84 128258,76 188905,61
41 23405,30 145807,66 169212,97 24040,76 144638,47 168679,23
42 25022,88 146285,91 171308,79 25763,50 146098,80 171862,30
43 22712,34 141635,34 164347,68 23341,04 139409,23 162750,27
44 25192,47 144722,15 169914,62 25795,77 144621,35 170417,12
45 22747,68 141185,46 163933,14 22747,68 141185,46 163933,14
46 24299,35 147304,68 171604,03 24811,48 144170,32 168981,80
47 21002,83 145300,65 166303,48 21578,16 144106,24 165684,40
48 23747,97 142127,97 165875,94 24334,98 141941,15 166276,13
49 25225,42 147922,02 173147,44 25735,83 146767,94 172503,77
50 23659,68 141671,12 165330,80 24121,99 141571,93 165693,92
51 122100,85 136956,93 259057,78 125263,46 134423,73 259687,19
52 116837,25 135295,62 252132,87 119849,04 131709,03 251558,07
53 119174,04 134272,18 253446,21 123186,39 130697,41 253883,80
54 120608,52 137250,82 257859,35 123494,64 133836,59 257331,23
55 117370,26 132365,88 249736,14 120507,41 129714,36 250221,77
56 120053,16 140289,70 260342,86 123388,88 136659,86 260048,74
57 118380,38 135432,22 253812,61 120873,64 132857,53 253731,17
58 122992,87 136707,75 259700,62 125877,36 133182,79 259060,15
59 120800,61 133394,11 254194,72 123769,99 130972,43 254742,43
60 119347,77 133058,10 252405,86 122403,42 129607,21 252010,64

Table C.4: Trade-off between inventory and routing costs.






