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Introduction

The background of this thesis is the analysis of time-to-event data, that is data
related with the individual time elapsed in a certain situation or state. Examples of
these kind of data comes from diverse fields such as medicine, biology, public health,
epidemiology, engineering, economics and demography. In economics, two examples
are the time on unemployment or the duration of an individual in a certain job.
The main feature of these data is the issue of censoring, which occurs when the
periods of time for some individuals cannot be completely observed. The presence
of censored observations requires the use of specific techniques and analyses, usually

named Survival Analysis (e.g. Klein & Moeschberger, 1997).

Survival analysis comprises a set of specialized statistical methods used to study
response time data. In analyzing such data the main goals are to determine the
length of time intervals spent in a state, and the transition probabilities from the

current situation to the next entered state.

Even though survival analysis arises from the analysis of life tables in demog-
raphy (see, e.g. Berkson & Gage, 1952, Cutler & Ederer 1958, Geham 1969) and
studies of mortality in biostatistics sciences (see, e.g. Irwin 1942, Armitage 1959,
Pike, 1966, Peto & Lee 1973), it is amenable to a wide range of questions in fields
such as epidemiology, social sciences and economics. Indeed, data related to employ-
ment and occupational careers are sequences of duration times in several states that
may be considered as survival data. The main advantages of this kind of analysis
compared to others commonly used in econometrics (linear regression, limited de-
pendent variable models or time series) are the ease of computing the probabilities
of transition between two different states and the absence of assumptions of implicit
hypotheses required by the other approaches. The development of survival analysis
adapted to econometric data is named the analysis of Duration Models with most

contributions starting in the seventies. Some of the important references are Lan-
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caster (1979), Nickel (1979), Heckman & Borjas (1980), Heckman & Singer (1984),
Kiefer (1988), Lancaster (1990), Han & Hausman (1990), and Narendranathan &
Stewart (1993).

Our work is focused on two aspects of the survival analysis. In Part I our empha-
sis is on linear regression model when the response variable is censored (Breiman,
Tsur & Zemel, 1993). Here we propose a method for estimating the coeflicients
of such linear models when covariates contain measurement error. In Part II we
propose the use of survival techniques in the analysis of Spanish labor histories.
From these multivariate data we make several analyses to study the duration of the

feasible states in the labor market.

0.1 Brief introduction to survival analysis

The interest of these statistical tools is mainly based on two distinguishing features
of time data. Firstly, duration times are non-negative values, usually describing a
highly skewed distribution, and therefore the assumption of a normally distributed
variable may not be valid. Secondly, the true duration is not always observed.
Indeed, if data are collected in a certain period of time, at the end of the study
some subjects remain in the same state before any change has occurred. Their
episodes of time, or spells, are then partly recorded. This characteristic is known
as censoring and it is the most important reason for using the special methods
developed in survival analysis.

Censored observations may appear in many situations and due to different mech-
anisms (see e.g. David & Moeschberger, 1978), the most usual types of censoring

being as follows:

e An observation is said to be right-censored if it is recorded from its beginning
until a well defined time before its end point. For instance, if we follow for
several months a set of individuals who became unemployed at a certain known
date, some of them will become employed and the others will still remain
in the same situation. For the latter group, we only know that the whole
period of unemployment runs past the end point of the follow-up. See Klein

& Moeschberger (1997) for a discussion about types of right censoring.

e An observation is said to be left-censored if the starting point of its spell is
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unknown, being recorded only from a well defined point until its end. For
instance, using the same example about unemployment data, left censoring
occurs when the entry date is before the start of the follow-up period, that is

when an unemployment period is recorded when it is already started.

e An observation is said to be interval-censored if it is only known that the
event occurs within a time interval but the exact point is unknown. This
situation is less usual with econometric data and it is mainly found in medical
studies. For instance in a study designed to know when people infected with
the AIDS virus develop AIDS, the patients are periodically examined with
negative results until they have the first positive examination. In such a case,
the exact time of developing AIDS is only known to be between the two last
dates.

In economic data two are the usual cases. On the one hand, the cohort studies
like the Cohort Study of the Unemployment in Britain (e.g. Nickel et al. 1989)
where the individuals are followed for a period of time and at the end some of them
are still at the same situation (censored observation) and others have been changed
and, therefore have a complete observation. On the other hand, data have been
collected on a certain moment on time so that all the observations are censored. In
this case it is required specialized method (see Salant, 1977 and Flinn, 1986).

We shall now introduce some notation and the basic concepts used in survival
analysis. Even though there is not sure a standard notation because survival analysis
is used in several fields we introduce what we consider the most usual in economet-
rics.

First of all we are going to introduce in a formal way the time variable that defines
the individual duration in a certain situation. That is, let T be a continuous and
non-negative random variable with density function f(¢) and distribution function
F(t). In the analysis of duration data two specifications of the distribution of T' are
very useful, the survival function, which is the probability of an individual remaining
in a certain state beyond time ¢, and the hazard rate (function) which is the chance
an individual ends the current state in the next instant.

The survival function is defined as

S(H)=P(T >t)=1— F(t),
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and it is the probability of having an episode larger than ¢ or surviving in a certain
situation beyond ¢. In economics the knowledge of the survival function may be used
to approximate the proportion of long-term unemployed people, the proportion of
employees with a large tenure job or the probability of retirement of older people.
Another fundamental concept in survival analysis is the hazard function, also

known as the inverse of the Mill’s ratio in economics, which is defined as

< >
A(t):Alimop(t_TdAtAt'T_t)’
%.

and it represents the instantaneous probability of changing the current state. Here
we note that A (¢)At approximates the conditional probability of leaving in the next
instant the state that has been occupied during the past ¢ time units. This function
is very useful for describing the way in which the chance of ending a current state
is changing with time.

Note that if we know any of the four functions, f(¢), F(t), S(t) and A(¢) the other

three can be uniquely determined. Some interesting relationship among them are

Ay = 110

(1)
S(t) = exp (- /0 tA(u)du) = exp (A (1))

where A(#) is the cumulative hazard function, and
F(&) = A(t) exp[=A(2)],

and hence, A (¢) = A, V¢ > 0 if and only if S(¢) = e and f(¢) = Ae™™, i.e. T has
the exponential distribution with parameter .1

The estimation of the distribution of T is one of the main goals in the analysis
of survival data. However, we note that the standard approximation coming from
the empirical distribution function cannot be used in survival analysis because of
censoring. In the next we introduce a non-parametric estimation of the survival
function for right-censored data.

We assume a type I censoring, a right-censored mechanism where the whole spell

is observable only if it ends prior to some specific time. That is, for each individual

!For general models with non-constant hazard functions see Cox & Oakes (1984) or Klein &

Moeschberger (1997).
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we have a fixed censoring time denoted by C. Thus, the observed duration data can
be conveniently represented by pairs of random variables (Z, ), where  indicates
whether Z corresponds to a complete observation (§ = 1) or is censored (6 = 0),
and Z equals T if it is observed, and Z = C for the censored observations, i.e.
Z = min{T,C}. Thus a sample of n individual durations may be expressed as
{(2i,0i), i=1,--- ,n}.

The standard estimator of the survival function, taking censoring into account,
was proposed by Kaplan & Meier (1958). Two quantities are required in order
to obtain such an estimator. Let ;) < #) < --+ < t(p) be the ordered times
corresponding to the complete observations. Let d; be the number of individuals
with #; = ¢(;) and let N; be the number of individuals at risk at time #(; (i.e. the

number of individuals with z; > #(;)). Then, the estimator proposed is defined as

1 if t« t(j)

[I P—%]ﬁtmﬁt

t(j) <t ’
where for ¢ beyond the largest observation this estimator is not well defined (see
Efron, 1967 and Gill, 1980). Estimators of F(¢) or A(t) are straightforward once
g (t) has been obtained. There is another non-parametric estimator of A(¢) proposed
in Nelson (1972) and Aalen (1978) which may be an alternate estimator of S(¢) and
it may also provide crude estimates of the hazard rate A(t).

Several examples of the Kaplan-Meier estimator will be given in the Part II of
the thesis, where we approximate the survival probabilities of remaining in three
states of the labor market (self-employment, wage-earner and non-working).

We shall now make some comments about modeling when additional character-
istics are also known about the individuals. In this case it is possible to analyze
the effect of these explanatory variables (or covariates) on the durations. Two ap-
proaches are commonly used in survival analysis. The first can be viewed as an
extension of the classical linear regression approach. Thus, the logarithm of the

durations Y = In 7 is modeled as

y=xp+w, (1)

where x is the vector of covariates, 3 is the vector of regression coefficients and w

is the residual term. This model is called the accelerated failure time model. A
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second class of models is based on the hazard function. Thus, given the covariates,
the conditional hazard rate is modeled as the product of a base-line hazard rate (a

function of ) and a non-negative function of the covariates, that is

A(t/x) = Xo(t) g (x'B).

Most applications use ¢g (x'8) = exp(x'8) proposed by Cox (1972). This model is
also called the proportional hazards model. Both models are introduced in Section

1.1 and more details about advantages and disadvantages of both families of models

are in Klein & Moeschberger, (1997).

0.2 Swurvival analysis in econometrics

Periods of unemployment, time to re-enrol in school, time developing a profession or
the age of retirement are economic examples of time response variables. Econometric
methods for analyzing these type of data are known as econometric duration analysis,
and these are based on survival analysis techniques. Even though the main results
have been obtained in the last two decades Silcock (1954) was already using the
hazard function in the study of employment durations. We now review some of the
literature about duration analysis.

As key references we single out Lancaster (1979), Heckman & Singer (1984) and
Kiefer (1988). The first one is a pioneer work about unemployment analysis linking
search theory and duration analysis. It starts assuming an exponential distribution
for the duration of unemployment which is generalized to a Weibull distribution.
Later on Lancaster (1979) allows for unobserved heterogeneity due to error of speci-
fication possibly due to the omission of relevant regressors. The second reference by
Heckman & Singer (1984) contains an introduction to the main ideas and concepts
of duration models, emphasizing the distinctive features of econometric data with
respect to data analyzed in biostatistics or reliability. They also report three ex-
amples of duration models that generalize the more standard discrete choice theory
(see also Sueyoshi, 1995). The paper says that the discrete choice models such as
logit and probit, when is defined for one time interval, are of a different functional
form when applied to another time unit, if they are defined at all. They also em-
phasize that continuous time models are invariant to the time unit used to record

the available data. Therefore a common set of parameters can be used to generate
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probabilities of events occurring in intervals of different length. For this reason the
use of continuous time duration models has become widespread in economics. The
paper of Kiefer (1988) is a good starting reference to the issue of the analysis of
economic duration data. It defines the specific concepts of the topic and reviews
the most important contributions in model specification, estimation, and hypothesis

checking.

The main development of duration models has been in the analysis labor data. In
this context interest is focused on the duration of individuals in a certain state (e.g.
employed, unemployed or out of the labor force) and which transition to another
state has taken place. Flinn & Heckman (1982a) present a duration model that ac-
commodates as special cases the model of Jovanovic (1979) and the index function
model widely used in labor economics. General surveys are provided by Lancaster
(1990) who deals with model building and inference for the econometric analysis
of transition data. Devine & Kiefer (1991) is a more specific reference about labor
economics analysis comparing duration models with job search theory. Two more
references partly related with the issue of duration analysis are Heckman & Singer
(1988) and Florens, Ivaldi, Laffont & Laisney (1990). The first one is about the
longitudinal analysis of labor market data, with a general review of duration anal-
ysis and some specific chapters about heterogeneity (Chamberlain, 1988), counting
processes (Andersen, 1988) and the analysis of data about transition to work (Mare
& Winship, 1988). Florens, Gérard-Varet & Werquin (1990) contains a survey of
micro-econometrics. We also draw attention to the chapter about general concepts in

duration analysis (Florens, 1990) and an empirical study of unemployment (Florens

et al. 1990).

The topics of interest when dealing with duration analysis are mainly the tran-
sition to a new state, the effects of unobserved heterogeneity and the identifiability
problems of the more usual models. When unemployed individuals may experience
some competing events such as employment, out of labor force or enrollment to
school the theory of competing risks models (David & Moeschberger, 1978) may be
applied, allowing differences among the entering states. Flinn & Heckman (1982b)
showed that the competing risks model can be applied to the three-state (employ-
ment, non-employment and non-market activity) model of labor force dynamics.
Narendranathan & Stewart (1993) using a competing risks model for analyzing un-

employment durations, showed that the effect of income is biased if there is no
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distinction among transitions. Han & Hausmans (1990) specified a flexible para-
metric proportional competing risks model which allows unrestricted correlation
among the risks. Recent references establishing a competing risks model are McCall
(1997) which analyzes the determinants of full-time and part-time reemployment;
Dolton & O’Neil (1996) which distinguish three transitions from unemployment: to
a job, a training placement or to signing-off unemployment benefits; and Mealli,
Pudney & Thomas (1996) which specify a competing risks model when there is a
natural limit on the duration of some state.

Unobserved heterogeneity is found when some relevant individual information is
not available. Heckman & Singer (1984) showed the effects of ignoring heterogeneity
among individuals using simple examples. More about this issue are in Flinn &
Heckman (1982) and Elbers & Rider (1982). Two specific papers are Van den Berg
& Van Ours (1996) which is about unobserved heterogeneity different from duration
dependence and McCall (1994) who proposes a proportional hazards testing under
unobserved heterogeneity.

The study of identification problems are centered on the two main classes of mod-
els used in survival analysis. Ridder (1990) deals with the generalized accelerated
failure time models while Heckman & Honoré (1989) is focused on the identifiability
of competing risks models or Heckman & Singer (1984) for the proportional hazards

model.

0.3 Main results

The common issue of the thesis is the survival analysis which is used in two different
ways. In this section we summarize the main results obtained in each part.

The first part of the thesis is focused on linear regression models with two fea-
tures: a dependent variable possibly censored, and the explanatory variable contam-
inated with measurement error. As expected, the well known techniques to estimate
the regression coefficients of linear models with explanatory variables measured with
error (Fuller, 1987), give biased estimates due to censoring. We propose a method-
ology which produces consistent estimates of the regression coefficients based on
errors-in-variables methods but taking into account the censoring of the dependent
variable. Since the estimation is performed in two stages, we have called it the

two-step estimator.



Introduction 9

The two-step estimator is a procedure easy to implement in practical applica-
tions. It combines two methods of estimation already existing but used separately:
on the one hand, the procedures of estimation for linear models with censoring and,
on the other hand, the estimation methods for linear models with measurement er-
ror. Standard errors of the estimator are computed using the Bootstrap method.
The performance of the the proposed estimator is studied carrying out Monte Carlo
studies varying the sample size, the magnitude of the measurement error and the
proportion of censoring. From the results of these simulations we conclude that the
two-step estimator remains unbiased in any scenario, and looking at the expected
sampling variability, the empirical values match the theoretical ones.

The second part of the thesis is about duration analysis, the term usually used
in econometrics to name the analysis of time-to-event data. We analyze data about
Spanish labor market histories during the period 1980-1993. The main goal is the
analysis of the duration of three types of labor spells (self-employment, wage-earner
and non-working). We start with non-parametric approaches of the survival func-
tions for several sets of spells. In the statistical analysis, we carry out several
studies: First we analyze the duration of the first spells of the labor history; sec-
ond, we carried out separate analysis for each state (self-employment, wage-earner
and non-working) using also competing risks models to allowing differences among
the possible transitions; third, we have considered the five early spells of the labor
histories taking into account the dependencies between observations of the same

individual.
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Typical analysis of survival data assesses the impact of several explanatory vari-
ables on the time duration response variable. The standard methodology for such
analysis assumes that the explanatory variables, or covariates, are measured without
error. This assumption is often violated in practice, since we frequently encounter
covariates that clearly suffer from measurement error (for example, income, dietary

fat consumption, learning skills, exposure levels, etc.).

The effect of measurement error on covariates has been mainly studied in the case
of linear and non-linear models. See Fuller (1987) and Carrol, Ruppert & Stefanski
(1995) for a general overview. In survival analysis the topic of measurement error
in covariates has not been too much studied. Some important exceptions are Cheng
& Wang (2001), Jiang, Turnbull & Clark (1999), Kulich & Lin (2000), Nakamura
(1992) and Prentice (1982). The recent paper by Cheng & Wang (2001) generalize
the linear transformation models (see Dabrowska & Doksum, 1988) to accommodate
measurement error on covariates. That is they assume a proportional odds model
for the survival time and a linear relationship between the observed and the true
covariates. There is also a sensitivity analysis using various measurement error reli-
ability ratios. In Jiang et al. (1999) consider a regression analysis for repeated event
where is taking account the presence of measurement error on covariates and mod-
elling the possible unobserved heterogeneity as random effects. The paper of Kulich
& Lin (2000) assumes an additive hazards model (see Breslow & Day, 1987) and
proposes consistent estimates for the regression coefficients that are asymptotically
normal distributed. The last two papers deal with the proportional hazards model
proposed by Cox (1972). Nakamura (1992) shows the effects of the measurement
error on the relative risk estimates and, the paper by Prentice (1982) develops a
modified partial likelihood for consistent estimation of the parameters of interest.
However, in both procedures the estimate are obtained after minimizing a function
and this could sometimes be cumbersome in practical applications. Other work
has paid attention also to measurement error on the duration variable (see Holt,

McDonald & Skinner, 1991).

In this first part of the thesis we deal with the analysis of data where a response
variable is right censored and some covariates are contaminated with measurement
error. Assuming a linear model we focus on obtaining consistent estimates of the
regression parameters. In Espinal & Satorra (1996) we showed that for the regression

coeflicients, the bias of the estimates obtained from the observed covariates increases
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when the amount of measurement error increases. Moreover, even when only one
covariate has measurement error, all the estimates for the regression coefficients
may be biased. Motivated by these results we develop a procedure for estimating
accelerated failure time models when the covariates are subject to measurement
error. We assume a log-linear model with a right-censored response, and a set of
covariates some of them measured with error. Thus, our model allows data that have
two sources of non-observability. On the one hand, the response variable may be
censored and, on the other, covariates may be contaminated with error. For this, we
propose a sequential procedure for consistent estimation of the regression parameters
that takes measurement error into account. It is a sequential method which uses
techniques from survival analysis followed by methods based on measurement error
models. A practical advantage of this two-step estimation procedure is that the

estimates may be obtained using standard software packages.

The first step of the method deals the issue of censoring. We take a method of
estimation valid for linear models with a censored response based on the paper of
Buckley & James (1979). The method used is proposed in Schneider & Weissfeld
(1986). We apply this procedure to estimate the log-linear model using the observed
covariates. From the estimates of the regression parameters we compute the linear
predictions for the response. Then, a consistent estimate of the moments matrix

between the covariates and the true response may be obtained.

The second step takes into account the measurement error of covariates. We
assume a linear relationship between the observed and the true covariates. Then
we advocate the linear regression models for the method of estimation, taking into
account measurement error on covariates. In order to avoid the usual identifiability
problems of these models, we assume that the covariance matrix of measurement
errors is known. However, this assumption could be relaxed (see Fuller, 1987). The
estimates of the regression parameters of the log-linear model are computed using
the observed covariates and the estimated moments matrix obtained in the previous
step.

The performance of the two-step estimator is studied using simulated data. We
carried out some Monte Carlo simulations varying sample sizes, proportion of cen-

soring and amount of measurement error.

Finally, standard errors are also obtained. Even though for the case of uncensored

data the standard errors from the normal theory are still valid, they are not so in
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the presence of censoring, and we require bootstrap methods.

This part is structured as follows. In Chapter 1 we review the methods of
estimation for survival models. We start with fully parametric models based on
maximum likelihood estimation when a family of distributions is specified up to a
vector of parameters. We note the impact of the presence of censored observations on
the form of the likelihood function. In particular, we discuss the likelihood function
for the families of proportional hazards and accelerated failure time models. Next, we
focus on linear models with a censored dependent variable. We introduce methods
for estimating unknown parameters based on the ordinary least squares which are
mainly iterative procedures due to censoring.

In Chapter 2 we discuss the topic of measurement error. We define the mea-
surement error on covariates as a random variable which is the difference between
the true and the observed value of the covariate. In Section 2.1 we describe the
estimation procedures for the regression parameters that takes measurement error
into account. In Section 2.2 our attention is on work dealing with survival analysis
and measurement error on covariates. Here there is a brief summary of the main
findings of previous papers dealing with this issue.

In Chapter 3 we introduce the proposed two-step estimator. In Section 3.1 we
introduce the linear model assumed between the complete response and the true
covariates and, we also define the mechanism of censoring for the response and the
measurement error equation of covariates. In order to motivate our procedure, in
Section 3.2 we do a Monte Carlo study in order to show the effects of ignoring
measurement error on covariates for survival data. In Section 3.3 we describe the
two steps of the method for obtaining consistent estimations of the regression pa-
rameters. We indicate how to take into account both the presence of censoring and
measurement error. The two-step estimator emerges as a result of iterating the pre-
vious two steps. Finally we indicate how to implement this methodology and discuss
the standard errors of the estimators. The performance of the two-step estimator is

analyzed in Section 3.4 using Monte Carlo methods.
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Chapter 1
Estimation in Survival Models

The standard methods for estimating parameters in regression type of models have
to be modified in order to accommodate the usual censoring of the failure time data.
For this reason in this chapter we review the main characteristics of methods for
estimating parametric or semi-parametric survival regression models.

Section 1.1 contains the fully parametric methods based on maximum likelihood
when a family of survival distributions is specified up to a vector of parameters. We
note the impact of censoring on the form of the likelihood function. That is, it has
two blocks due to the contributions of the censored and the complete failure times.
In particular, we discuss the likelihood function for the families of the proportional
hazards (PH) and the accelerated failure time (AFT) models. We give an intro-
duction to these procedures and describe some basic tools of survival analysis. A
more detailed discussion about these methods of estimation and general approaches
to survival analysis can be found in Kalbfleisch & Prentice (1980), Lawless (1982),
Cox & Oakes (1984), Blossfeld, Hamerle & Mayer (1989), Collett (1995), Andersen,
Bogard, Gill & Keiding (1993) and Klein & Moeschberger (1997).

In Section 1.2 we focus on linear models with a censored response. We present
least squares (LS) methods for estimating regression parameters. The presence of
censoring is not innocuous and induces bias in the LS estimates obtained from the
observed data. To correct this bias several modifications of the LS have been devel-
oped. Miller (1976) followed by Buckley & James (1979) are the starting references.
More papers related to this issue are by Koul, Susarla & Van Ryzin (1981) and
Schneider & Weissfeld (1986) among others. A review of these methods as well as

the hypotheses assumed for each of them are discussed. Even though these proce-

15



16 Chapter 1

dures have been seldom used in survival analysis, their ease of implementation and
the popularity of LS in fields such as econometrics, motivates our interest in them.
Moreover, these related methods to LS estimation are very appropriate when the

effects of covariates on the failure time can be formulated as a log-linear model.

1.1 Standard methods

In the context of survival models, the theory of maximum likelihood (ML) can be
applied to parametric models for time data with arbitrary censoring mechanism.

Let us consider failure times as observations of a non-negative continuous random
variable T' with Type I censoring. We denote by C a random variable independent
of T such that T > C corresponds to censoring. Here we also assume a single
observation for each individual.

Let F'(¢;8) be the distribution function of 7' known up to the vector of param-
eters, 0; that is, F(t;0) = P(T < t;6). For survival data, the contribution of
subjects to the likelihood depends on whether or not the individuals have a com-
plete or a censored observed time. That is, a subject with a complete failure time ¢,,
contributes to the likelihood with the density function, f(¢;;6). However, the con-
tribution of a subject with a censored time ¢; is the probability of surviving beyond
¢, that is P(T > ¢;;0). Let S(¢t;0) = P(T > t;0) = 1 — F(t;0) be the survival
function. Then the full likelihood function for a sample of n independent individuals
18

L(0;t,c) =[] Fti:0) [ S(eis 0), (1.1)
€U i€C
where ¢+ € U and ¢ € C denote, respectively, the product over the subsamples of
uncensored and censored observations.
If we denote the observed time as z; = min{¢;, ¢;} and the indicator of censoring

as 6; = 1g,<¢;}, we obtain an alternative expression for (1.1)

n

£(8;2) =[] [f(zi: 01 [S(=::0))

=1
Using the hazard function defined as A(z;;0) = f(z;;6)/S(z;;0), the likelihood

function may be expressed as

n

L£(6;z) = H P\(Zz;e)]éi 5(zi;0)

=1
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where taking logarithms and using the result!

log S(t;0) = — /t)\(u;e) du = —A(t;0),

the log-likelihood for right censored survival data is

n

L(0:z) = > (8 logM(z:;8) — Az 0)) (1.2)
i=1
which is the likelihood function expressed in terms of the hazard function. The ML
estimator 8 of 6 is obtained maximizing (1.2) and it has well known properties of
consistency and efficiency (see, e.g. Cox, 1979).

Results presented until now involve estimates for the unknown parameters of a
univariate distribution for 7. However, it is also interesting to assess the effects of
some explanatory variables on failure time. This is possible when for each individual
i of a sample, there is available a p—vector of covariates, x; = (wy;, -+, 2p). We
assume no missing values in the data.

The ML methodology proposed through equation (1.2) is again applicable. In
this case, the likelihood function involves a parameter vector 8 = (¢, 3), where
1) denotes the parameters of the specified survival distribution, and 3 denotes the
regression coefficients associated with the covariates. Thus, the hazard function will
depends not only on % but also on 8 = (¢, 3), so that the log-likelihood will have
the same expression (1.2) with unknown parameters (¢, 3).

Usually, estimates of 3 are of principal importance because the goal of the anal-
ysis is to describe the time elapsed before an event occurs among different sets of
subjects. For this setting there are two families of models. A brief discussion of the

ML procedure for each of them is given in the next two sections.

1.1.1 The proportional hazards models

This model was proposed by Cox (1975) and it has become a very popular model
in survival analysis. The model assumes that the hazard function of the random

variable T, for a fixed vector of covariates x, is

)‘(t;xv¢76) = )‘0(t3 ’l,b) qb(X,ﬁ) (1-3)

n the absolutely continuous case, A(t;8) = %fé—?z = —% log S(¢; 0).
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for some functions Ag(-) and ¢(-) such that ¢(0) = 1. Since Ag(-) is equal to the
hazard function when x = 0 is a non-negative function, it is named the baseline
hazard function. Note that no particular form of the probability distribution for T'
is assumed.

Property (1.3) implies that the effect of a certain value of a covariate over the
probability of leaving a state, is proportional to the hazard function of a reference
value. That is, given a sample of individuals, (1.3) establishes for each moment ¢, a
time-constant factor of proportionality between the hazard functions of any pair of
subjects say 7 and j. The constant factor of proportionality is given by

At;xi,¥.8) _ o(xi;8)
Mtixj . B)  o(x;:8)

hence the name “proportional hazards”. Thus, for a discrete variable defining a

(1.4)

finite number of subsamples, it allows us to compute the relative risks of leaving a
state of one subsample with respect to the others.

In order to estimate the parameters of this model by ML, we could substitute
(1.3) in the log-likelihood function (1.2). In any case, we note that this function
cannot be maximized without assuming a specific form for ¢(-) and for Ag(-). Cox
(1972) proposed a procedure in order to estimate parameters 3 when Ag(-) remains
arbitrary and ¢(x;8) = exp(x’8). This method is based on a modified likelihood
function called the partial likelihood developed in Cox (1975). Hence, the propor-
tional hazards model is also known as the Cox regression model.

Now, we summarize the partial likelihood approach (see Kalbfleisch & Prentice,
1980 for more details). Let (1), - ,t) be the oredered distinct failure times for a
sample of n individuals (i.e. there are n — k censored observations). For each t(;),
let R(t(;)) = {¢: z > t(;)} be the risk set, that is, the set of subjects still alive just
before t(;). Then the probability that the failure #; is on individual (j) as observed,
18

__ exp(xgP)
0 =TS (KB

iER(t(j))

By

Then contribution of each uncensored ¢(;) to the likelihood the partial likelihood

function is

exp(x(;0)

exp X?l)ﬁ)
ZER ())

L*ﬁ):HPt H
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which depends only on 3, so that its maximization does not involve Ag(-). In this
sense, the proportional hazards model is a semi-parametric model.

Even though it is not exactly a likelihood function, the value B that maximizes
L*(B) defined in (1.5) is the ML estimate. In particular, B is a consistent estimate
of B and it is asymptotically normally distributed. Cox (1975) presented the proof

of these properties.

1.1.2 The accelerated failure time models

A second broad family of models for analyzing survival data establishes a relationship
between the failure time and the covariates. Indeed it is assumed that the effects
of covariates are on the time scale, that is, different values of covariates lead to
shortening the duration of a time interval or hastening the occurrence of the event
of interest. For instance, looking at the survival function, the effects of two values of
a covariate x, say (") and (), may be written as S(t;2(")) = S(#;2®). Thus, the
probability of survival at time ¢ if the covariates take a reference value (usually it is
zero and corresponds to some standard set of conditions) is equal to the probability
of survival in # when covariates take a different value. Thus the effects of covariates
“accelerate” the time at which events occur. This class of models is widely used in
engineering (see, e.g. Nelson, 1989).
In terms of random variables, these models assume that
Ty
' oaB) )
where T; denotes the failure time under the standard conditions # = 0, and ¢(+) is a
positive function such that ¢(0) = 1, so that its natural form is ¢(x;3) = exp(x'3).
Using (1.5) and letting Ao(-) denote the hazard function of Tp, then the hazard

function of T is?

Altsx, 9, 8) = Ao(t o(x; 8); ¥) &(x;8) (1.6)

which in general does not have the proportional property defined in (1.3). Relation-
ship with the PH model and properties of these assumption are discussed in Cox &

Oakes (1984).

2By simple algebra of transforming random variables, we see that the hazard rates A(-) and
Ao(+) are related in the absolutely continuous case as A(t;x,4,8) = f(t;x,¢,8)/S{t;x,9,8) =
Ao(t ¢(x;8))¢(x; 3), where f(-), denotes the probability density function.
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Taking logarithms in (1.5) and using ¢(x;8) = exp(x'B) it can be proved that
the assumption of accelerated failure time is equivalent to assuming the log-linear

model defined as
logT = po—x'B+¢ (1.7)

where po = E(logT,) and € is a random variable. Therefore, specifying a dis-
tributional family for e, unknown parameters of (1.7) may be estimated by ML
substituting (1.6) in (1.2).

Since equation (1.7) is a standard linear model, other estimation methods for
these specific models could also be considered. However, the usual presence of
censoring in survival data requires some modification of the standard methods. The
next section contains a review of procedures based on least squares when censored

observations of the response variable are included.

1.2 Censored linear models

Often, to analyze the effects of a set of explanatory variables on a dependent variable,

a linear relationship is assumed, that is,

vi=xB+e, 1=1,---,n (1.8)
where yq, - - -, y,, are independent realizations of Y, x; is the px 1 vector of covariates
for individual ¢ and €;,--- €, are independent and identically distributed (i.i.d.)

random variables with unspecified distribution function F with finite mean not
2

necessarily equal to zero and finite variance of.

The usual estimates of the unknown parameters 8 in (1.8) are computed using
the least squares theory (LS). The interest of these procedures is mainly for two
reasons: the ease of implementation and the absence of parametric assumptions
about the distribution function for the residuals.

In survival analysis, however, there are at least two features that we need to take
into account before applying LS. First, the responses usually corresponding to times
are non-negative so that, the usual assumption of normality for the random variables

€1, , €, 1s not the most appropriate. Second, some of the values are not observable

due to the presence of censoring. Even though the first point is usually solved by
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taking an increasing transformation of the time variable, for instance ¥ = log T', the
problem of censoring is not so easily solved.

This section reviews the methods based on LS for estimating the regression
parameters of linear model (1.8) when Y is a right censored random variable. From
now on we will refer to it as the Censored Linear Model (CLM).

We will assume right censored data Type I, so that we do not observe y; but the

pairs (z;,9;), where

zi = min{y;, ¢; }

and
)1ty <
o 0 otherwise
with ¢y, - -+ , ¢, independent realizations of a random variable C, assumed to be inde-
pendent of Y. Note that ¢, - , ¢, are not the censored times but a transformation.

It depends on the transformation Y taken for the failure times, i.e. if ¥ = logT
then ¢q,- - , ¢, are the log-transformed censored times.
The estimation methods for CLM are mainly based on the paper due to Miller

(1976), where a simple model with one-dimensional covariate defined as
yi:a+$i6‘|‘€i7 izlv"'vn (19)

1s considered. This work is the starting point of LS methods for estimating regression
coefficients of linear models that take into account a censoring mechanism. However,
there are some previous papers (see, e.g. Zippin & Armitage, 1966; Glasser, 1967;
Mantel & Myers, 1971) where the mean survival time is related to an independent

variable by means of a linear relationship.

1.2.1 A first approximation: Miller (1976)

A first modification of the LS estimator on order to accommodate censored data
was suggested by Miller (1976). The proposed method is based on the definition of
the LS estimates for (1.9) as those values a and b that minimize Y (y; — a — bax;)?.

That is equivalent to minimizing

%Z (yi —a —bx;)* = /62 dE () (1.10)
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where Fab(e) is the empirical distribution of € obtained from the data (in this case
equal to 1/n, for each subject).

Using the product-limit estimator (Kaplan & Meier, 1958) of a distribution func-
tion with right censored data, Miller (1976) defined the Kaplan-Meier Least Squares

estimators (KMLS), say ™ and BKM, as the values ¢ and b that minimize
/62 dEEM (¢) (1.11)

where FJgM(e) is the product-limit estimate of F' (the distribution function of ¢)
computed with the uncensored and the censored residuals defined as ¢; = z; — a —
br;, 1 =1,--- ,n. That is,

N
FEM .y — 1 _ n—u
ab (6) i.e!:)[<e (n —1 + 1
where €(y), -+, €(n) are the residuals in increasing order.

For fixed @ and b the integral (1.11) is the weighted sum of squares given by

1
= wila,b) (yi — a — ba;)? (1.12)
n €U

where 7 € U denotes the subsample of uncensored observations and w;(a,b) is the

weight assigned to ¢; = y; — a — ba; by the product-limit estimate applied to {e;, 1 =

1,---,n}. The estimators "™ and BEM are obtained by minimizing (1.12).

Even though this method of estimation for the regression coefficients seems a
good suggestion it has at least two difficulties. On one hand, it is very hard to study
its asymptotic properties analytically. Moreover, it is possible to find examples

KM

where for some censoring patterns, & and %M do not converge to the true a

and 3 as n — oco. A sufficient condition to guarantee the asymptotic consistency of

65M and 3EM is that
G.(c+ pBa) = Go(c) (1.13)

where G, is the distribution function for the censoring variables C on the value x of
the independent variable. On the other hand, although the method can be general-
ized to multiple regression, it is computationally difficult to obtain the Kaplan-Meier

Least Squares with more than one regressor. These two reasons motivate a mod-

ification of the KMLS that is also introduced by Miller (1976), briefly described
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as follows. From the LS estimates computed for the uncensored observations only,

an iterative procedure may be applied in order to find B which satisfies B = @(5),

where
A Z[:sz*(oaé) yi (zi —T7)
o(B) = =< -
> wi(0,8) (w; —7)?
€U
and wl»*((),[;) = w,»(O,B)/ > w,'((),[;) are the normalized weights that sum to one

€U
and, 7° and y* denote the weighted averages computed with w;(0, ) for y; and z;,

respectively. However, Miller (1976) points out that this procedure does not always

converge.

1.2.2 Main result: Buckley & James (1979)

One of the most studied modifications of LS for a censored dependent variable has
been proposed by Buckley & James (1979).

Using simulated data, Buckley & James (1979) viewed that under the condition
(1.13), the iterative estimate of Miller (1976) and the LS estimate for the slope based
only on the uncensored observations perform similarly. In that way they proposed
an estimate that in some sense tries to relax this assumption. The method is also
restricted to the simple linear model, y; = o+ x;8+¢;, and it is based on the normal
equations instead of the sum of squared residuals.

Agssuming right censored data with ¢;,--- , ¢, known constants, consider a new
dependent variable Y* = §Y +(1—90)E(Y/Y > C; x) which satisfies E(Y™*) = a+x0.

Then, the usual estimate of 3 is computed from the normal equation

n

> (i =Ty — wiB) = 0. (1.14)

i=1
However, due to censoring, E(Y/Y > C; x) is unknown and therefore {yr, ¢ =
1,---,n} is also a set of unknown values. At this point a self-consistency approach
is used (Efron, 1967), which suggests estimating E(Y/Y > C; x) from FGI‘E‘;M, the
Kaplan-Meier estimator of F' based on the residuals ¢; = z; — a — bx;, where a and
b are the LS estimates computed using uncensored data only. That is, censored
observations are replaced by,

G7(b) = by + Y wij(0,b) (y; — 2,0) (1.15)

JjeEU
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where
o (b) if 6,’(0,[)) < 6]‘(0,[))

(I—FgfbM(ci—xib))

w;;(0,b) =
0 otherwise

and v;(b) is the probability mass assigned by FGI?;M to the uncensored residual €;(a, b).

Then, the proposed estimator ofB is the limit of the following iterative procedure:

(St SR @)
Bl = = o , k=12, (1.16)
X (e =

where > denotes summation over censored observations only. After convergence
1eC
has been reached and [ has been obtained, the intercept can be computed, as

s= (Sur Sirh) -7
€U i€C

The method just described will provide approximate solutions because it does
not ensure to achieve convergence and it may finish oscillating between two values.
However we note that the final values are closer approximations to the solution than
using the method proposed by Miller (1976). The properties of the estimator are
proved by Buckley & James (1979) in a heuristic way, but the displayed simulations
tend to support their arguments. The above approach was the motivation for the
following extensions of this extensively studied method.

Miller & Halpern (1982) point out the satisfactory performance of the Buckley &
James estimator in some simulations and empirical studies. In particular, Miller &
Halpern (1982) compared the performance of this estimate with two other proposed
modifications of LS (Miller, 1979 and Koul, Susarla & Van Ryzin 1981) in order to
accommodate censoring data.®> From these results they concluded that the estimator
defined in Buckley & James (1979) is the best method because they found that the
other procedures had methodological weaknesses. Also Heller & Simonoff (1990)

showed using simulations that the Buckley & James estimator was preferred in

3Koul, Susarla & Van Ryzin (1981) proposed another procedure for estimating the unknown
coefficients of a CLM. The method is based on the normal equations where responses are replaced

by estimates related to the distribution function of the censoring variable.
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terms of consistency compared to Miller (1976) and Koul, Susarla & Van Ryzin
(1980).

James & Smith (1984) showed that under some regularity conditions which avoid
restrictions on the censoring patterns, the estimated slope proposed by Buckley &
James (1979) is weakly consistent. They also point out that in practice the estimator

of the intercept tends to be biased downwards.

The paper due to Ritov (1990) gives asymptotic properties of an estimator close
to the Buckley & James (1979). This is a theoretical paper using the Counting
Processes approach (see, e.g. Andersen et al. 1993). It also proves the asymptotic
equivalence between the proposed estimate and the one suggested almost simulta-
neously by Tsiatis (1990).

Lai & Ying (1991) proved large sample properties for the slight modification
of the Buckley & James estimator. They get around the problems caused by the
instability of the upper tail of the Kaplan-Meier estimate of the distribution F' (see
Efron (1967) and Gill (1980) for properties of the Kaplan-Meier estimate) using a
weighted function. Introducing their modified Kaplan-Meier in (1.15), they obtain
new estimates for the censored responses that can be used in (1.16) to compute the
updated estimator. The consistency and the asymptotic normality of the limiting
estimator is proved under certain regularity conditions. To this end Lai & Ying
(1991) used the methodology of stochastic integrals (see Andersen, Borgan, Gill &
Keiding, 1993). Moreover they also extend the estimator as well as its properties to

the multiple regression model with random right censoring.

Another work related with the Buckley & James estimator is due to Schneider
& Weissfeld (1986). A new estimator for the variance of the error term based on the
uncensored and censored observations is proposed. Schneider & Weissfeld (1986)

introduce an alternative way of replacing censored observations that differs from

(1.15).

1.2.3 Suggested procedure: Schneider & Weissfeld (1986)

The procedure described in this section is a modification of Buckley & James (1979)
in the way the censored observations are used. Moreover, it also applies to multiple

regression. The estimator proposed in Schneider & Weissfeld (1986) is based on the
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random variable
YV*=Y+(1-HEXY | Y >C; X’ﬁ) (1.17)

for which E(Y*) = E(Y'). From here, the estimate of regression parameters based
on the LS is B = (X'X)"'X'y* where X = (x1,---,x,) and y* = (7, -+ ,45)".
However, the conditional expectation E(Y | Y > C; X'3) that appears in (1.17)
will be unknown if no distribution function is specified for the residual term e.
Motivated by this point, Schneider & Weissfeld (1986) developed an estimate of this
conditional expectation without imposing any assumptions about the parametric
form of the residual’s probability density function. This method is, as they also
said, in the spirit of the EM algorithm (see Dempster, Laird & Rubin, 1977). It is
an iterative procedure, initialized with the LS estimate computed from the observed

data {(zi,x;), t =1,--- ,n}, and then proceeding with the following two steps:

1. Given B(k), the conditional expectation E(yiﬂ) =EY, | Y, >C;;xiB) =
ExiB+e | XiB+e >C;;xi8) =x8+E( | & >C —xi8;x/8)is
estimated as

> €
o(k) | eB

E w=x
O R R VI

(1.18)

o (k
where the second term on the right is the mean of the residuals e; = z; —X;ﬂ( )

o (K
larger than residual e, = ¢; — X;ﬂ( ) corresponding to the censored observation
i. By Mi(k) we denote the cardinal of the set by El»(k) ={j:e; > e}

2. From (1.18), the updated value of B(k) is computed using standard LS with
dependent variable yl*(B(k)) = 5zyz + (1 — (S,)E( B(k)) instead of the observed
vi
z;, that is

o (k+1)

(k)
B

= (X'X)7'X'y*(8") (1.19)

5(F)

with X = (x4, ,x,) and y*(3 3"

AUNY
)= (18", wz8™)).
Steps 1 and 2 are iterated until convergence is achieved. The existence of the

limiting value 3 as well as its consistency are only shown using numerical simulations

by Schneider & Weissfeld (1986).
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In our opinion for practical applications, there are three important points for sug-
gesting the estimator due to Schneider & Weissfeld (1986) rather than the estimator
proposed by Buckley & James (1979):

e The iterative procedure proposed by Schneider & Weissfeld (1986) incorporates
both the censored and the uncensored residuals in contrast with the Buckley

& James method which uses only uncensored residuals.
e The ease of implementation

e The Schneider & Weissfeld estimator still remains valid for the multiple re-

gression model.

1.2.4 Other types of censoring

The results described until now have assumed right-censored data. However there
are some results for estimating CLM for other types of censoring. Here we empha-
size two recent papers suggesting methodologies based on LS taking into account
interval censoring and doubly censoring data (see, e.g. Lawless, 1985 or Kalbfleisch
& Prentice, 1980 for dealing with the issue of censoring).

Rabinowitz, Tsiatis & Aragon (1995) use regression theory on estimating the
coefficients of a linear model with an interval-censored response variable. Indeed,
they assumed that the log-transformed survival times are equal to a linear combina-
tion of the covariates plus independent and identically distributed residuals. Then a
procedure for estimating regression coefficients based on score statistics is described.
Moreover, the approach is also close to the one due to Buckley & James (1979).

On the other hand Zhang & Li (1996) considered a linear regression model with a
doubly censored response. They proposed a methodology for estimating regression
parameters analogous to the one suggested by Ritov (1990) for the case of right-
censoring. Some sufficient conditions for the asymptotic consistency and normality

of the estimators are also given.
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Chapter 2

Measurement Errors in Linear

Models

The issue of measurement error in variables is based on the unobservability of the
true values of the variables. It may be studied from several points of view. We focus
on the context of linear regression models where some of the explanatory variables
contain measurement error.

Let’s assume a standard linear model between a response variable Y and a vector

of explanatory variables X*, such that
Y =X"B+W (2.1)

where W is a random variable usually with zero expectation and finite variance
represented by 2.
In order to introduce measurement errors on covariates we also assume that

instead of X*, we observe the variables X which are linearly related, that is
X=X"+U

where U is a vector of random variables usually normal distributed with zero mean
and covariance matrix X,,. Hence, the relationship between the response variable

Y and the observed variables X is given by
Y =X'~v+e¢ (2.2)

where 4 are the regression coefficients we are able to estimate by LS methods.

We note there is a relationship between parameters - and the parameters 3 of

29
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(2.1). In order to see how these parameters are related we follow the arguments
due to Cochran (1968). We restrict our attention to the case of one non-constant
covariate and we will compute the covariance between Y and X, cov(Y, X), from
both models. When there is only one covariate the models (2.1) and (2.2) may be

written respectively as,

Y =G+ X3+ W (2.3)
and
Y =v+Xy+e (2.4)
From model (2.4), we have
cov(Y, X) = cov(yo + Xy + €, X) = v var(X) + cov(e, X) (2.5)

where var(X) denotes the variance of variable X.

On the other hand, from model (2.3) and using X = X* + U, we have

cov(Y,X) = cov(fo+ X B+ W, X)=cov(fBo+ X B+W,X"+U)

= [oar(X*) + f cov(X*,U) + cov(W, X*) + cov(W,U). (2.6)

Now if we set (2.5) equal to (2.6), we can isolate v as follows

_ Boar(X*) 4 B cov(X*,U) 4 cov(W, X*) 4 cov(W,U) — cov(e, X)
= var(X)

(2.7)

where we have made the usual assumption for linear regression models, namely that

W is independent of X* and e is independent of X, and where we have computed

var(X*) and cov(U, X*) in terms of X and U. This leads to the well known expres-

sion

B [var(X) — cov(U, X)] + cov(W,U)
var(X) '

V= (2.8)

From these results it is clear that estimation methods taking into account the
presence of measurement errors are required in order to obtain unbiased estimators of
the regression parameters of the true model (2.1). Such methods have been studied

extensively and there are two extensive reviews of the literature due to Fuller (1987)
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and Carrol, Ruppert & Stefanski (1995) dealing with linear and non-linear models,
respectively.

In this chapter we introduce in Section 2.1 a brief review of the estimation meth-
ods in linear models with measurement errors on covariates. Section 2.2 presents

previous work about survival analysis and measurement errors.

2.1 Estimation in linear measurement error model

Here we introduce the methods for estimating the coefficients of linear regression
models when some explanatory variables are measured with error.

The goal is to obtain unbiased estimates of the regression coefficients 4 in model
(2.1) using the observed linear model (2.2) and equation (2.8). We restrict attention
to the simple regression model. Assuming that random variables W and U are

independent, then

var(X) — cov(U, X)‘

var(X) (2.9)

y=p

where, assuming that X* and U are independent random variables, we have cov(U, X') =

o2, so that

VZQMZQM:[;]{ (2.10)

var(X) var(X)
where (%)
F e

is known as the reliability ratio. Note that k ranges from 0 to 1 and it represents the
amount of measurement error in the following sense: k& = 1 means var(X*) = var(X)
and indicates no measurement error on X; while small values of k mean large var(X)
compare with var(X*) and therefore presence of measurement error on X. Hence,
the LS estimator 4 of v in (2.2) is a biased estimator of 3. However, if k is known,

an unbiased estimator of # may be obtained as

N

B=4k" (2.11)

We note that this estimate also applies in the case of the multiple regression model

(see Fuller 1987).
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The presence of measurement error on covariates involves identifiability problems
in the model (2.1). Indeed, as Fuller (1987) points out, in order to obtain consistent
estimators for parameter (3 some specification of additional information with respect
to the distribution of (Y, X) is needed. The assumption of a known reliability ratio
allows us to identify the model, but other conditions may be used. For instance, to
use the method of moments to estimate 3 a frequent assumption is to consider that

2 is known. Thus if we consider that

the variance of measurement error, that is 0.,

the model is given by

Y — ﬁ0+X*6—|—W
X = X*4U (2.12)

then the method of moments gives

(M = 0) ™" 10y

=3
I

(6-925*7 aﬁ;

(/:va 60

where knowledge of o2 allows us to construct a one-to-one mapping from the minimal

= (mm - 012” Myy — Bmxy)

= (7,7 - f7) (2.13)

—— e

sufficient statistic to the vector of unknown parameters (i, 52, Bg, B, 52). Note that
under normality the method of maximum likelihood is equivalent to the method of
moments.

The estimates already presented may also be generalized to multiple regression
and similar expression are still valid without the hypothesis of normality. For the
case of non-linear models see Carroll et al. (1995).

Even though we have presented a restrictive case of the estimation in linear
models with measurement errors on covariates, we are not going to introduce more

general cases because we do not want to concentrate too much on this issue.

2.2 Survival analysis and measurement errors

Even though the issue of measurement errors has been largely developed in regres-
sion analysis, as far as we know, in survival analysis there is little work on this topic.
Moreover, the methodologies already proposed are focused on the proportional haz-
ards model (Cox, 1972) and on the additive hazards model (e.g. see Breslow & Day,
1987).
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The initial work is due to Prentice (1982). Assuming a proportional hazards

model defined in (1.3) for the true data (¢, X™*):
A(t; X)) = Ao(t) exp(X™P) (2.14)

where Ag(+) > 0 is the baseline hazard function, it examines the possible effect of
the measurement error on estimated relative risks. It also develops an improved risk
estimator under certain assumptions about the error distribution.

If X denotes the observed covariate, it is proposed to estimate the parameters
[ and Ao(+) in (2.14) coming from inference on the hazard function A(¢; X), which
is amenable to direct estimation. The basic assumption that allows A(#; X*) and
A(t; X) to be related asserts a conditional independence, given X*, of failure rate at
t and X that is,

Mt %, x) = At %) (2.15)
From this assumption,
Mt X) = E]NH XY X) | T >t X]=EM\&HXY) | T >t, X (2.16)
where using (2.14) we obtain:
At X) = Ao(t) Elexp(X*8) | T > t, X] (2.17)

which still assumes proportionality of the hazards. However, note that the presence
of {T > t} in the conditioning event will usually imply some dependence of the
relative risk function E[exp(a*'3) | T > ¢, X] on the baseline hazard function Ag(t).

In this paper a partial likelihood for (2.17) is derived using the argument of Cox
(1975) after some assumptions on the censoring mechanism of the data are made.
In that way the partial likelihood function can be used in a standard manner for
estimating [ just specifying the error distribution f(x* | T > t, x). Two cases are
considered: first when the error distribution does not depend on 3 and Ao(t), and
second, when errors are normally distributed.

Nakamura (1992) also proposes a method for estimating a proportional hazards
model under the presence of measurement error on covariates. He establishes the
relationship X = X*+ U where X* is the true covariate and U are random variables

with zero mean and covariance matrix ¥,,. The proposed procedure of estimation
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for parameters 3 is based on the score function obtained from the partial likelihood.

The log of the partial likelihood defined in (2.14) is given by

(8,6, X%) =) X"iB—InSi(t; 8, X7) (2.18)

2

where S9;(¢; 3, X™) is the survival function of T'. Hence, the score function is

V(31X =) X - Silts 6, X7) (2.19)

2

Even though it is well known that estimates obtained from (2.19) are unbiased,
when X is used instead of X* the resulting estimate (3, is asymptotically biased.
From here, Nakamura (1992) proposes a correction of this bias using a function
V*(8,t,X) whose expectation with respect to U given ¢ and X* coincides with
V(B,t,X*). The function V*(3,¢,X) is called the corrected score function and /3
such that V*(3,¢,X) = 0 is a corrected estimate. The procedure is based on the
hypothesis that the covariance matrix ¥, is known. The properties of the proposed
estimate are shown numerically.

A more recent paper about measurement errors on covariates in survival analysis

is due to Kulick & Lin (1998). They establish the additive hazard function given by
At X)) = Mo(t) + X3 (2.20)

where Ag(+) also remains unspecified. Moreover, they also model the observed co-
variate X as a linear function of the true covariate X* plus a random error and
only impose moment conditions on the measurement error distribution. The error
variance may depend on the true covariate through an arbitrary linear or quadratic
variance function.

In that context, Kulick & Lin (1998) develop a class of asymptotically unbiased
estimating functions for the regression coefficients 3. They obtain these estimating
funcions from an existing pseudo-score function without measurement error by incor-
porating a bias-correction term. The resulting estimator is proved to be consistent
and asymptotically normal.

Finally another paper related with the issue of measurement errors in survival
analysis is by Holt, McDonals & Skinner (1991). In this paper measurement error
is contained in the response variable of a linear regression model. However, the

covariates are considered well observed.
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Censored Linear Model with

Measurement Errors on Covariates

In this chapter we are concerned with the estimation of the regression parameters
in a censored linear model when the covariates are measured with error.

A frequent problem in statistics is to obtain the estimates of the regression pa-
rameters, that is, to assess the effects of a set of covariates on a response variable. In
survival analysis, the presence of censoring requires specialized methods for estimat-
ing unknown parameters. For linear models, we emphasize the procedures which are
modifications of Least Squares (LS) procedures in order to accommodate censored
values of the response (see, e.g. Miller 1976, Buckley & James 1979, Koul, Susarla
& Van Ryzin 1981 and Schneider & Weissfeld 1986). A common assumption un-
derlying these methods is that covariates are measured in a precise way. However,
many characteristics observed in practical applications are difficult to be measured
exactly and the true value is contaminated with measurement error.

The study of linear models with explanatory variables containing measurement
error is a topic of interest since the past century (see, e.g. Adcock, 1877, 1878 and
Kummell, 1879). Even though there is a wide range of methodologies for estimating
the regression parameters taking into account measurement errors (see Fuller, 1987
or Carrol, Ruppert and Stefanski, 1995), all of them are based on the values for the
dependent variable when no censoring is present.

We propose a method for estimating censored linear models with measurement
errors on covariates based on a combined procedure that merges known results from

measurement error theory together with methods for censored data. We describe a

35
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two-step approach for obtaining consistent estimates of the regression parameters.
In the first step we compute linear predictions for the censored values based on
methods for estimating linear models with censored response. In the second step we
compute the estimators of the regression coefficients based on estimators obtained
in the previous step.

In Section 3.1 we describe the model. Specifically, we consider a log-linear model
with a set of covariates and a linear relationship that defines the presence of mea-
surement error on covariates. In fact we note that this is an accelerated failure time
model (see Section 1.1 in Chapter 1) with errors in variables, which from now on we
will refer to as AFTME.

The motivation of a procedure for estimating regression parameters that takes
measurement error into account is given in Section 3.2. Indeed, a Monte Carlo simu-
lation shows the effects of ignoring measurement error on covariates when standard
procedures of estimation for survival models are used.

Section 3.3 develops the two-step estimator for the regression coefficients of the
AFTME already described. We remark that the proposed estimator is easy to imple-
ment with real data because it can be obtained using standard statistical software.
We also describe the Bootstrap method for computing standard errors.

Numerical studies are reported in Section 3.4. We use simulated data in order
to show the performance of the proposed estimator. For this we have carried out
several Monte Carlo studies where we varied sample sizes, levels of measurement
error and proportion of censored observation.

Finally in Section 3.5 we propose some extensions of the two-step estimator.

3.1 The model

We consider a non-negative and continuous random variable T' (this is time elapsed
in a certain state) and a set of explanatory variables {X7,---, X}, also called
covariates.

Let Y = logT be the log-transformation of the true duration 7. Consider
Y1, ,Yn, independent realizations of Y such that y; is related to the vector of

covariates Xj as

yi:Xflﬁ—l_wi? Z:]-v s 1 (31)
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where 3 is the vector of unknown parameters and wy, - -- ,w, are i.i.d. realizations
of a disturbance term W of variance o2 and mean not necessarily zero. We assume
that W and X7,5 =1,--- ,p are independent random variables.

As usual in survival analysis, we allow the presence of censoring. In particular
we assume a right censorship model (see Kalbfleisch & Prentice, 1980). That is, our

observable duration for the ¢th individual consists of the values
zi =min {y;, ¢}, i=1,---,n (3.2)
together with the indicator of censoring
0 = Lyiceiy, 1=1,---,n

where ¢, -+ , ¢, are independent realizations of a random variable C (in this case
¢; represents the log-transformed censored time for individual ¢). Here we assume
that the censoring mechanism is not informative (see Tsiatis, 1975). The indicator
of censoring §; equals 0 for the censored observations and 1 when the true duration
is observed.

The model defined by (3.1) and (3.2) stated for analyzing data of the form
{(2i,0i,x7"), @ =1,2,---,n} is usually known as the censored linear model (see,
e.g. Breiman, Tsur & Zemel, 1993). From now we will refer to it as CLM.

Here we consider a CLM including one more assumption in order to accommodate
the possible presence of measurement errors in the covariates. Thus we assume
that variables X¥ may be unobservable, with only the observed covariates X, j =
1,---,p, being available. The relationship between the observed covariates x; for the
i1th individual and the true value of the covariates x} is defined by the measurement

error model:
X, =X, +uw, t1=1--.,n (3.3)

where uy,--- ,u, are i.i.d. realizations of the random vector U = (Uy,---,U,)
with zero mean and known covariance matrix Y,,.! We also assume that U is
independent of X and W.

The main goal now is to estimate the regression coefficients in the model defined

by (3.1), (3.2) and (3.3). The next sections introduce a sequential procedure with two

IThis assumption could be relaxed, however some additional hypotheses on the error terms wu;

are needed (see Fuller, 1987).
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steps for obtaining consistent estimates of 3 when recorded data are {(z;,d;,x}), ¢ =
1

effects of ignoring the presence of measurement error.

.-+ ,n}. However, we shall first motivate the method we propose, by showing the

3.2 The effects of measurement error: Monte Carlo

illustration

In this section we are going to show what happens when we use standard methods
of estimation in survival analysis in the presence of measurement error in covariates.

Let (z;,6;,x7),¢ = 1,--- ,n be the survival data we want to analyze. However,
due to the difficulties of measuring covariates X* there are only available variables
X. Here we show the effects on the standard estimators of the regression coefficients,
when X is used instead of X*. To this end, we generate data with covariates subject
to measurement error. Then a model that ignores the presence of measurement error
will be estimated using maximum likelihood, and the bias of the estimators will be
assessed.

We consider a 2-dimensional vector of covariates X7 = (X7;, X3;) which are
i.i.d. realizations of A(0,diag(cZ ,02,)). The observed covariates are taken to be
Xy = X}, 4 €, and Xy, = X7, where the measurement errors {¢; } are i.i.d. normally
distributed of zero mean and variance ¢? . The vector of observed covariates for the
ith individual is augmented with a constant of 1, that is x; = (1, x1,, 22,)".

We first consider uncensored duration times ¢; simulated as independent obser-
vations from T;, a random variable with a Weibull distribution? with shape pa-

" and

rameter o = 2 and scale parameter v; = exp(x}'3*), where x = (1, 27;, 23;)
B* = (3,1,1). The values ¢; are censored according to a Type II censoring mecha-
nism;® that is, the observed duration for individual i is z; = §;#; + (1 — 5i)t(m). We
record also the censoring indicator ¢; (6; = 1 when ¢, is uncensored and 0 otherwise).

The Monte Carlo study considers variation on the sample size n and the variance

2

o’ of the measurement error variable €;. The sample size n takes the values 100,

2Assuming T} to have a Weibull distribution with parameters « and v; = exp(x}/3*), a linear
relationship like (3.1) may be established between logt; and x¥ where the regression parameters 3

are related through the Weibull parameters 3% and « by the expression: 8 = —3*/a.
3After sorting the survival times in increasing order, t1) <tz < -+ < in) and for a given

value m < n, all ¢(,) with r > m are censored to be equal to ().
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500 and 1000, while 6 is varied so that the reliability ratio k = 09251*/ <09251* + 0621>
ranges from k = 1 (no measurement error) to k = 0.2 (80% of the variance of Xj
is due to measurement error). The percentage of censoring ¢ is fixed at ¢ = 20%.

Each Monte Carlo run was based on 500 replications.

Table 3.1 shows the empirical bias of the estimator of 3* obtained for the different
values of k and n. From this table we see that the bias of the estimators of the
components of 8 increases with the decrease of the reliability ratio. That is, as
the amount of measurement error increases, the bias of the usual estimators of 8~
also increases. This behavior is observed for the three sample sizes. Note that even
though only z is affected by measurement error, the estimator of 3} is also affected

by bias.

Table 3.1: Monte Carlo results: Bias of the estimators when ignoring the

presence of measurement error

k 3 : iy

100 500 1000 | 100 500 1000 100 500 1000
1 .06 .03 .01 .01 .01 .00 .01 .00 .01
-24 -33 -33|-25 -28 -28| -.06 -10 -.10
-.54 57 -57|-48 -50 -50| -.14 -17 .17
-69 -78 -T78|-67 -69 -69| -20 -23 -.22
-87 -90 -96|-.8 -8 -86|-. 25 -27 27

N >

NoTE: Percentage of censoring ¢ = 20%. Population value of parameters 35 =

3.8=1,8=1.

These results show that under the presence of measurement error on covariates,
regression parameters have to be estimated using procedures that accommodate the
possible errors. Thus, in the next section we describe a procedure that gives con-
sistent estimates of regression coefficients for AFT models with covariates possibly

contaminated with error.
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3.3 The two-step estimator

In this section we develop a two-step estimator that gives unbiased estimates of the
regression coefficients of the model defined by (3.1), (3.2) and (3.3). The method
modifies the standard procedures of estimation for linear measurement error models
in order to account for censoring.

The first step of the method takes into account the presence of censoring in
the data. We take the model given by equations (3.1) and (3.2) with x; instead
of x7, that is, ignoring the measurement error. Thus we have a CLM and the
methodologies described in Chapter 1 may be applied. As a result of this step we
obtain a consistent estimator of the matrix of mean squares and products of ¥ and
the observed covariates X;,7 =1, -+, p, say Agy.

Second step consists in estimating a linear measurement error model defined by
(3.1) and (3.3). Here, a consistent estimator of the regression coefficients is obtained
using the methods for estimating error-in-variables models. However we point out
that the method is slightly modified because it involves the covariance matrix of Y
and X, and we propose the use of the matrix &, computed in the first step.

Once both steps have been performed, unbiased estimators of the regression

coefficient in model (3.1) are obtained.

3.3.1 Estimated censored values: Step 1

In this step we ignore the presence of measurement error in the sense that we state

the survival model defined by

yi = Xy te
zi = min {y;, ¢}
0 = lgy<e (3.4)

where x; is the vector of explanatory variables for individual ¢ (here we are using
the observed values of them) and = are the regression coeficients. We note that the
change of notation for the parameters is because, as pointed out in Chapter 2, in the
observed model (3.4) the parameters are not the same as those in the true model
defined in (3.1) and (3.2).

We note that (3.4) is a linear model with a censored response, therefore it is

a CLM like the model defined in Chapter 1. Thus, consistent estimates of param-
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eter v may be obtained using the methodologies described in the same chapter.
Based on the properties of the procedure, we propose the method due to Buckley &
James (1979). However, as it noted by Lai & Ying (1991), this estimator presents
unstability problems for large values of the response variable since it is based on
the Kaplan-Meier estimator (see Breslow & Crowley, 1974). In order to avoid this
problem, for the ease of implementation in practical situations including multiple
regression, we suggest using the modification proposed by Schneider & Weissfeld
(1986) (see page 17 for details about this algorithm). Thus, the estimator of ~, say
4, is obtained applying this method to the model defined in (3.4). However, we
point out the use of observed covariates instead of the true values, therefore we have
to check the properties of this modified estimator of Schneider & Weissfeld (1986).
In Section 3.4 we analyze the performance of this estimator and the empirical results
show that ¥ i 4 even though 4 is a biased estimator of B8 due to the use of X
instead of X*.

As we describe above, in this step we want to deal with the censoring of the
response variable. For this reason, we are not interested in the estimator 4 but in

computing the linear predictors, conditional on x;, for z; coming from model (3.4).

Indeed, from 4 may be obtained z; = x/4, ¢+ = 1,--- ,n. This leads to the following
result for the values (21, ,Z,):

Result 1:

The (21, -+, Z,) are “good” estimators of the censored response variable in the
sense that

I%xy = n_l Z X,’éi (35)
=1

is a consistent estimator of k,, = E(XY), where YV is the true response variable.
That is,

. P

Ryy — Ky

. . ~ _ 1 n o 1 n AN

This result arises because Ry = n7' D0 x;2, = (n7!' D, x;x,)%. From
: . . . P _

here, using the consistency of 4, we have £,, — k., where v = k. k,,. Thus,

the consistency of K, is proved.
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The usefulness of the estimator K, just defined is based on the following argu-
ment. If the response variable of a linear model is censored, for the observed z; the
cross products matrix K,. = n~! 2?21 X;z; 1s not a consistent estimator of k.
Indeed, z = (z1,---,z,)" contains a known proportion of censored values different
from the true durations (i.e. z; = ¢; for those subjects with a censored time). Here
we note that the estimator is useful for any set of p covariates. Thus we have de-
fined a consistent way of estimating the cross product matrix between a variable Y,
possibly censored, and a set of explanatory variables X;,7 =1,---,p when there is

a linear relationship among them.

3.3.2 Errors-in-variables model: Step 2

In this step we compute the estimator of 3, say B, using methodologies for estimating
linear measurement error models described in Chapter 2. The proposed procedure
is based on the estimator &,, defined in step 1.

We consider the errors-in-variables model

yi = X;B+w;

X, = X +u,. (3.6)
where the covariance matrix of U = (Uy,--- ,U,), denoted by X,,, is known. Then
for the standard case where y; are observed for all: = 1,--- , n, a consistent estimator

of B3 is defined as (see Fuller, 1987)
B =(Kuo — Su) T Ky, (3.7)

where K,, = n7! 2?21 x,;x, and K, = nt E?:l X,;y;. Here we note that K.,
and K, denote the matrix of the raw mean squares and products.

The consistency of (3.7) is proved with next results. Let k,, = E(XX) be the
cross products matrix of X and let k,, = E(XY") be the cross products matrix of X
and Y. Then K_, i> k., and K, i> k,,. Moreover, for a real-valued function

g, continuous at (kyu, k), we have (e.g. Rao, 1973)
P
9(Kaw, Kuy) — 9(kua, kuy)- (3.8)

Now, assuming that (K., — ¥,,) is a non-singular matrix and taking ¢(K,., K.,) =

(Kee — Zuu) K,y we have that

A
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Therefore using result (3.8) it can be proved that B L, 3. Moreover, note that
property (3.8) allows us to define consistent estimators of 8 by simply replacing the

K., used in (3.7) for any consistent estimator of k,,. Hence next result emerges.

Result 2:
The proposed estimator of 3 defined as

B = (Kuo — D) Ry (3.10)

is a consistent estimator of B, where K,, is the estimator computed in step 1.

The consistency of (3.10) comes from property (3.8) taking ¢(Kqz, Roy) = (Kpw—

Vo) Ry

3.3.3 The proposed procedure

The estimator emerging from steps 1 and 2 is a consistent estimator of the regression
parameters of model (3.1), (3.2) and (3.3). It is called the two-step estimator.

The two-step estimator is a procedure easy to implement in practical applica-
tions. Even though the first stage is carried out without using standard methodology,
our second step may be computed using standard software. In fact, the two-step
estimator combines two methods of estimation already existing but used separately.
On the one hand, the procedures of estimation for linear models with censoring and,
on the other hand, the estimation methods for linear models with measurement error
on covariates.

The available software for the second step and the ease of implementing the
procedure of the first step, imply that the issue of measurement errors on covariates
may be handled without a huge effort for some survival models. Indeed, the two-step

estimator may be applied to our data as follows:

1. Let (zi,x;,6;),t = 1,--- ,n be the observed data where z; is the observed
duration time, x; represents the vector of covariates and ¢; the indicator of

censoring.
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2. Step 1.

i) Compute the LS estimates, say =y, of model
Z; = X;’)’ + €.

i) Apply the iterative procedure of Schneider & Weissfeld (1986) described
in Section 2.3 of Chapter 1. Start with 7y, as the initial values and let

Y (sw, be the obtained estimator.
iii) Compute 2; = X{% g,

iv) Compute Ky =n~' S0 X%

3. Step 2.

Compute the measurement error estimator using &, instead of K,,, = n™* 2?21 X, Vi
That is, B8 = (M, — Euu)_l Ky, where ¥, is the known covariance matrix of

the measurement error term.

The performance of the estimator is shown using simulations in Section 3.4.

3.3.4 Standard errors

In order to obtain the standard errors of the two-step estimator we will start as-
suming uncensored observations only. In such a case, asymptotic robust standard
errors may be computed using the normal theory estimates. Indeed, Satorra (1992)
proved that even though X* and the disturbance term in model (3.1) and (3.3) are
not normally distributed, the standard errors using normal theory are asymptotically
correct.

However, we remark that, in the presence of censoring, the usual formulae for
standard errors in linear measurement error models do not apply. This is due to
step 1 of the estimation procedure, where the observed durations are replaced by
the estimated values of the true duration. Even though the asymptotic standard
errors are not straightforward to obtain, the asymptotic normality could be proved
by making a slight modification in step 1. Indeed, Lai & Ying (1991) give the
asymptotic covariance matrix and also prove the asymptotic normality for a mod-
ification of the Buckley & James (1979) estimator. However, based on the ease of

computation in practical application, we define our two-step estimator using the



Censored Linear Model with Measurement Errors on Covariates 45

Scheider & Weissfeld (1986) procedure for accomplishing step 1. Thus in this case,
we advocate computing standard errors using bootstrap methods (see, e.g. Efron &
Tibshirani, 1993). This methodology has been implemented for the case of simple

linear regression model as follows:
1. From the observed data
D ={(z,0i,21), t=1,--- ,n}
we select B = 50 independent bootstrap samples
{Dy, b=1,---,50}
each of size n = 1000.
2. For each bootstrap sample Dy, we compute the two-step estimates

dy = | 0
B1(D)

3. We compute the bootstrap standard errors s; as:

B , 1/2
5= {ﬁ IMCURED) }

1

where A B
B() = 525(5)
b=1

In Table 3.5 of Section 3.4 we show 5% and 10% tails of the empirical distri-
bution of the z-statistic of the two-step estimator defined in (3.10). Those results
indicate that these empirical values remain close to the theoretical ones when there

is censoring in the response and measurement error on covariates.

3.4 Monte Carlo studies

In this section we are going to describe some numerical studies as well as the common

data generating process.
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We consider a non-constant covariate such that x; = (1, z7;)" where the { X7;, + =

1,---,n}areiid. N(0,02 ). The uncensored response variables y; = x}’B+w;, i =
1,...,n where the {W;, ¢« = 1,...,n} are i.i.d. random variables with an extreme
value distribution, with shape parameter set to be 2 and scale parameter equal to
1. We set 8 =(3,1)".

The measurement error is introduced by taking the observed covariates to be
Xy, = X5 +wy, @ = 1,--+  n, where {Uy;, ¢ = 1,--- ;n} are i.i.d. distributed
normally random variables with zero mean and variance o . Thus, the observed
model is defined as y; = x/v +¢€, 1 =1,--- ,n.

On the other hand, the values {y;, ¢ = 1,--- ,n} are right censored according
to a Type I censoring mechanism. For this, we generate the censored values from
the 1.i.d. random variables Cy,--- ,C, independent of Yi,---,Y,. The probability
distribution for C;, ¢ = 1,--- ,n is Uniform [0, b] with parameter b fixed in terms of
¢, the desirable percentage of censoring in the observed sample. Hence we generate
the observed response values as z; = min{y;, ¢;}, 1 =1,--- n.

In order to implement the two-step estimation proposed in Sections 3.3.1 and
3.3.2 we follow the procedure described in 3.3.3. That is, step 1 consists in obtaining
4 from the model z; = X/ + ¢,. Step 2 is accomplished by computing the measure-
ment error estimator of model y; = x'3 + w; with xy; = 27, + uy;. From here the
expected estimator B is obtained.

The Monte Carlo study considers variation on the sample size n and the variance

o’ of the measurement error variable U;. The sample size n takes the values 100,

uy

500 and 1000, while 021 is varied so that the reliability ratio* k = 09251*/ <09251* + 021>
ranges from k£ = 1 (no measurement error) to k = 0.2 (80% of the variance of x4 is
due to measurement error). The percentage of censoring, ¢ is approximately equal
to 20%. Each Monte Carlo run was based on 500 replications.

All the simulation studies have been implemented using MATLAB (1997) and
all the files are available.

The results of the simulations are in the next subsections. Firstly we present
the performance of the estimates used in step 1 of the procedure. That is, we study
the method of Schneider & Weissfeld (1986) when covariates may be contaminated

with measurement error. Afterwards we display the results for the estimator ik,

defined in (3.5). Finally, the performance of the two-step estimator is displayed.

*see Section 3.2 for details about the reliability ratio
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Here we present results for the case of uncensored data only and for a 20% of
censored observations. The bias as well as the empirical probabilities for the tails of

the z-statistic are given.

3.4.1 The effects of the measurement error on the SW esti-

mator

The method proposed by Schneider & Weissfeld (1986) gives consistent estimates
of the regression parameters for censored linear models. However the procedure is
described assuming that covariates are fixed and free of measurement error. Here,
using simulated data, we analyze the performance of the SW estimator when covari-
ates may be measured with error.

For the case of uncensored data, the LS estimates of the regression parameters
coming from the observed data, that is, ignoring measurement error, are biased (see

Chapter 2). Indeed, if the true model is

yi=X; B+w, i=1,---,n
but we estimate

yi=xXyte, i=1,,n

where X; = X} 4+ u;,i = 1,--- ,n, the LS estimator, say ¥, = (X'X)~" (X'y) with
X = (X1, ,x,) and y = (y1, -+ ,yn) is such that 4 i v =k Kk,

The simulations carried out in this section show that when censored observations
are also included, the SW estimator of the regression parameters behaves similarly
to the LS estimator for the uncensored case. That is, even though ¥ g, is a biased
estimator of 3 it satisfies ¥ gy, L, 5.

In order to compare the behavior of 4 and the LS estimator, we restrict to a
simple regression model where 4 = (y0,71). In Table 3.2 we compare the empirical
bias of the estimator 4;sw) and the bias for the LS estimator 4y sw, obtained in the
case of uncensored data only. With respect to the parameter 4, of the observed

model, we emphasize that both estimators remain unbiased.
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Table 3.2: Bias of the LS estimator without censoring and the SW esti-

mator for censoring under measurement error

100 300 1000

A A A

Bl e Jiew | as Yew | Tas Tiew)
11 -.0014 -.0109 | .0008 —.0056 | —.0005 -.0073
0017  -.0056 | .0027 —.0035 | —.0012 -.0050
0003 —-.0039 | —.0001 —.0053 | —.0008 —.0054
—.0009 -.0060 | —.0020 —-.0060 | .0006 —.0042

e o

NOTE: Sample size n = 100, 500, 1000. Reliability ratio & = 1, .8, .6, .4. The

percentage of censoring c is approximately 20%. Population values of v; = k.

3.4.2 Consistency of the estimator &,

In step 1 of the two-step estimator an estimator of k,,, is defined as

n

Koy =1 Z TiZi,
i=1
where Z; = 2}¥ 4y, The consistency of &, is required in order to get a consis-
tent estimator of B obtained after the two steps of the proposed methodology are
accomplished.

Results in Table 3.3 show the empirical bias of &,,. We present the results
assuming a 20% censoring and varying the sample size n = 100, 500 and 1000. We
point out that K,,, computed from the observed values of the response variable,
defines an unbiased estimator of k,, = E(XY"), the cross products matrix of X and

the true response variable, Y.

3.4.3 Performance of the two-step estimator

Before applying the foregoing procedure to real-life examples some Monte Carlo
studies have been carried out. The results indicate that the estimator remains
unbiased for several sample sizes, amounts of measurement error and proportions of

censored observations.
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Table 3.3: Bias of K,y

k 100 300 1000
1| 0038 —.0066 —.0086
—-.0056 -.0081 —-.0060
—-.0155 -.0038 —.0057
—-.0108 —.0083 —.0075

N )

NOTE: Sample size n = 100, 500, 1000. Reliability ratio & = 1, .8, .6, .4. The

percentage of censoring ¢ is approximately 20%. Population values of k,, = 1.

Table 3.4 gives the results about bias and standard errors for the case of ¢ = 0,
that is non-censoring. The second and sixth columns contain the bias of the estima-
tions for parameter 3y and (1, respectively. We note that the estimates are unbiased
regardless of the value of the reliability ratio k, that is, the size of measurement error
of X;.

With regard to the expected sampling variability of the two-step estimator,
asymptotic robust standard errors have been computed using the normal theory
estimates. Results about sampling variability are displayed in the columns of 5%
and 10% in Table 3.4. They contain respectively, the empirical probability of the
5% and 10% tails for the z—statistic. These results show that for large sample sizes

the empirical percentiles match the theoretical ones.

The results obtained for data including censored observations (i.e. ¢ # 0) are
summarized in Table 3.5. We consider a Type I of right censoring and the censored
observations are ¢ = 20% approximately. The results for such a case were computed

using the two-step estimator developed in Section 3.3.

As we can see from the second and sixth columns of Table 3.5, the two-step
estimator is also unbiased regardless the values of the reliability ratio, k. Thus the
results suggest that the proposed procedure of estimation give consistent estimates
of the regression parameters of model defined by (3.1), (3.2) and (3.3).

The next issue we are interested are the standard error of the two-step estimator.
As pointed out in Section 3.3.4, under the presence of censoring, usual formulae for

standard errors in linear models with measurement error, do not apply. Thus we
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Table 3.4: Monte Carlo results for uncensored data. Sample size n =

1000

Bo B

E || B(fy) V(z) 5%—tail 10%—tail | B(81) V(z) 5%—tail 10%—tail

1 001 1.04 5.80 10.20 .001 87 4.80 8.00
.8 .000 1.06 4.60 11.60 .003 .88 3.40 7.40
.6 001 98 4.20 8.60 000  1.05 5.40 12.20
4 .001 97 5.40 10.00 .002 97 5.40 11.80

NOTE: B(:) is the bias of the estimator, V(-) denote the estimated variance of the
z-statistic, and 5%—tail, 10%—tail are the empirical P(|z| > 1.96) and P(|z| > 1.65),

respectively. Population values of parameters are 5y = 3, 51 = 1.

propose to use the bootstrap method.

Once the bootstrap standard errors have been obtained, we compute the z-
statistics for By and 3y, i.e. z = B(BO)/S(,(BO) and z = B(Bl)/sb(él), respectively.
The 5% and 10% columns in Table 3.5 show the empirical probability of |z| > 1.96
and |z| > 1.65, respectively. From these results we note that empirical values agree
with the theoretical ones. From here we conclude that the bootstrap methodol-
ogy allows us to obtain consistent standard error of the regression parameters for

censored linear models with measurement error on covariates.

3.5 A more general two-step estimator

An assumption behind the two-step estimator just described is that the covariance
matrix of the measurement error, ¥,,,, is known. However for real data this matrix is
not available, so other methods have to be applied. We consider two cases: methods
using consistent estimates of the ¥, and instrumental variables estimation. Thus
the two-step estimator has to be modified just in the second step.

If S, denotes an unbiased estimator of ¥,,, then the estimator analogous to

(3.7) is defined as

A

6 = (Kxx - Suu)_l ny-
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Table 3.5: Monte Carlo results with 20% of Type I of censoring.
Bo B
k| B(Go) V(z) 5%—tail 10%—tail | B(41) V(z) 5%—tail 10%—tail
n = 100
1] -011 1.04 6.20 11.20 || —.011  1.09 6.60 10.60
8| —.009 .95 4.00 9.20 .000 .92 3.60 8.80
.6 || —.004 .79 3.20 5.80 027 .85 4.20 8.00
4| -.017 .52 1.40 3.80 068 48 1.80 4.20
n = 500
1] —003 1.04 5.20 10.40 || —.006  1.07 6.20 10.80
8 —.008 1.09 6.80 11.80 || —.006 1.04 6.00 10.60
.6 || —.004 .98 5.00 10.00 002 1.03 5.00 10.00
4 -.010 87 5.00 10.00 005  1.01 4.60 9.60
n = 1000
1] -005 1.14 7.40 12.20 || —.006 1.02 5.80 12.40
8 -.007 1.03 6.40 11.80 || —.007 1.17 6.40 11.20
.6 —.008 1.06 6.20 11.60 || —.009 1.05 7.20 12.20
4 =011  1.02 6.20 11.40 || —.008 1.01 6.20 11.80

NOTE: B(:) is the bias of the estimator, V() denotes the estimated variance of the
z-statistic and 5%—tail, 10%—tail are the empirical P(|z| > 1.96) and P(]z| > 1.65),

respectively. Population value of parameters Gy = 3, 51 = 1.
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which is a consistent estimator of the regression parameter B and is asymptotically
normal under the hypothesis of normality (these properties are in Fuller, 1987). In
that case the two-step estimator should be obtained replacing K., by &, in the
previous equation.

The other case that is where it is not possible to have an estimator of the mea-
surement error covariance matrix. Here, if in addition to the observed data (y;,x;)
we also observe a third set of variables denoted by w; that is known to be correlated
with x7, we can use the method of the instrumental variables. In such a case it

follows that we can estimate parameters 8 in model (3.1) and (3.3) using

B=(WX)"'"Wy (3.11)
where W = (wy, -+ ,w,), X = (21, - ,x,) are the observed covariates and y =
(y1,-- ,yn) are the response variables. An overview of this topic as well as the

properties of this estimator are in Fuller (1987) and in Carrol et al. (1995). In such
a case the two-step estimator has to be modified in both steps. That is, in step 1 we
compute Ky = nt 2?21 W, Z; as a consistent estimator of E(WY'). The second
step uses (3.11) with K, instead of W'y.

Another assumption made in our model is that the measurement error model is

given as
f— * . y f— LEEIEY
X; =X, +u;, =1, , N

assuming that U; are independent of X*. However in certain situations the mea-
surement error can be correlated with the true value. In such a case Fuller (1987)

gives the modifications of (3.7) required to obtain consistent estimates.
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In this part we develop an empirical study about labor histories of workers of
the Spanish labor market in the period 1980-1993. The interest of this analysis
comes from the new flexible kind of contracts (temporary versus fixed) introduced
in 1984 (see Segura, Durdn, Toharia & Betolila, 1991), as well as the high rates of
unemployment in the beginning of 80’s together with the recovery period at the end

of the decade.

We focus on the dynamics and the transitions among labor states done by sub-
jects entering into the labor market in 1980. To this end we consider a sample of
labor histories, that is, individual sequences of episodes elapsed in several states
since the individual enters the labor market at any date between 1980 and 1993.
For these purposes we use duration models (see e.g. Kiefer, 1988 for a complete

review about this topic).

The analysis of Spanish duration data mainly has been related to unemployment
periods or working episodes, taking for each individual the duration of a single period
as the response variable. Some rellevant references are due to Andrés (1993), Gil,
Martin & Serrat (1994), Ahn & Ugidos-Olazabal (1995), Antolin (1995), Blanco
(1995), Garcia-Fontes & Hopenhayn (1995), Bover, Arellano & Bentolila (1997),
Carrasco (1997), Garcia (1997) and Gonzalo (1998). The goals of these papers may
be summarized in three points: first, the analysis of the time variable (the duration in
a certain situation) just in the distributional sense (the usual hypothesis of normality
for the response variable is not appropriate); second, assessing the effects of a set of
variables on this duration and, third, the study of the possible transitions once the
episode has finished. Specifically, Gil, Martin & Serrat (1994) analyze the duration
of unemployment establishing a competing risks model (that is several states are
taking account once the event has finished) with a Weibull distribution for the
response variable. Bover, Arellano & Bentolila (1997) focus on the duration of
unemployment and they used the hazard function (that is the instantaneously rate of
ending an episode) in order to estimate the effects of unemployment benefit duration
and the business cycle on the duration of unemployment periods. On the other
hand, Carrasco (1997) analyze the characteristics that determine transitions to self-
employment and the duration in this labor state (this work is restricted to the
case of discrete time). Finally, Gonzalo (1998) studies how the probability of being

unemployed varies along a period of time.

However, as far as we know the analysis of the whole sequence of spells that



Part II: Introduction 55

a subject has experienced during his/her labor life seems to be much less studied.
Here we would like to draw attention to a recent paper due to Arranz & Muro (1999)
about recurrent unemployment where an analysis is made of the correlation between
a past paid unemployment period with current and future paid unemployment spells.
We note that they do not have a single period for the individuals but a vector of

the durations in each of the three periods of paid unemployment.

From our point of view, one of the reasons because the analysis of duration have
not been applied to sequences of episodes in the Spanish labor market, is due to
the few availability of datasets about the labor market. Indeed, the main sources of
information about labor are collected by the Spanish Institute of Statistics (INE).
The datasets related to labor market are coming from the Labor Force Survey (EPA)
and the Continuous Family Expenditure Survey (ECPF). Briefly we are going to
emphasize the main features of both data bases. The EPA is defined as a quarterly
continuous investigation about families. It collects data about the labor force market
as well as the state when individual is out of the force market. The sample consists of
60,000 families per quarter, which belong to a rotating panel up to six quarters. The
labor situation of all members in a family and a few set of personal characteristics
are recorded. The ECPF is focused on family expenditures as well as demographic
and wealth characteristics of the families. In that sense it has more rich information
than EPA but not related with the labor status. It is also a rotating panel where
families are involved in up to eight quarters. Moreover it also contains discrete (once

per quarter) information about the labor market situation and income.

The data just described contain at least two problems when we are interested in
the time elapsed in a labor state. On the one hand, shorter durations than a quarter
are not observed and previous history is not always available. On the other hand,
the observed period of subjects is too short in order to study duration in the states

of the labor market and transitions among them.

In the studies we present in this part the data comes from a big data set of the
Spanish Social Security named “Fichero Técnico de Afiliados a la Seguridad Social”.
This file contains detailed information about the complete sequence of contribution
periods to the Social Security by nearly 1,000,000 workers in Spain. In this way the
data allows the analysis of several aspects related to the dynamics of the duration of
the spells occupied for the individuals inside the labor market. Indeed the starting

and the ending point of all episodes are available as well as three kind of states: self-
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employment, wage-earner or both simultaneously, in addition to the gaps between
them. However, in spite of the richness of time episodes and states, we note that
the file contains only a small set of individual characteristics namely gender, age,
province and a variable related with the job category. This is in contrast with other
sources of information related with the labor market in Spain as the EPA or ECPF
briefly described above. Our final dataset used in the analyses contains the labor
histories of 8,000 individuals affiliated to the Social Security system from January
1980 until July 1993.

This second part of the thesis is structured in two chapters. Chapter 4 displays
some features of the data. In Section 4.1 we show the results of the descriptive
analysis for all the variables. We have considered two separate sets of variables:
personal and job characteristics and the time variables which contain the duration
of all spells in the sequence. In Section 4.2 we have applied non-parametric tech-
niques coming from survival analysis (see e.g. Klein & Moeschberger, 1997) in order
to estimate distributional characteristics of the spell’s duration. We emphasize that
as in the standard analysis for survival data, our time variables have two remarkable
characteristics: they may contain censored values and, at the end of each episode
alternative transitions may be reached. We distinguish a first analysis for the uni-
variate case, that is taking a single kind of episodes for each individual. Here we
display separate analyses according to certain episodes in the whole sequence, the
starting date or the state occupied. A second analysis takes into account differences
due to the different transitions at the end of certain episodes. Here we compare the
estimated survival probabilities of certain kinds of episodes according to the transi-
tion done at the end. A complete table of variables used is in the Appendix at the
end of this part.

In Chapter 5, we present a comparison of several techniques used when data
related to the labor market are analyzed. Here we focus on statistical inference and
we discuss the most important contributions coming from our data. Because our
data contain information related to a large period of time, we have analyzed some
calendar effects, the state dependence of the previous history on the present spell
and the differences between the states that can be occupied along the labor history.
Thus the most important point about our results is related to dynamic aspects of

the labor histories in Spain.



Chapter 4
Data Analysis

In this chapter we introduce the data we will use afterwards and we point out their
most important features using standard descriptive analysis and non-parametric
techniques.

Firstly, we would like to emphasize that the main goal of using these data is
the analysis of durations elapsed in certain states of the labor market. Indeed, for
each subject of the sample we do not consider only a single period but a sequence
of episodes corresponding to their labor history from 1980 to 1993. Among the vari-
ables, we distinguish between two sets: personal characteristics and time durations.

The available data file contains all the contributions that each individual has
been made to the Social Security system while he was in the labor market. Hence,
it is possible to rebuild the individual labor histories elapsed during the analyzed
period in terms of the duration of episodes, types of job, some causes of finishing a
certain spell or the starting and ending dates of episodes. Therefore we emphasize
that we may define a multivariate vector of durations for each individual.

Even though the dataset have information about working spells, we also consider
the periods of time defined between two consecutive working episodes. We named
these gaps non-working spells and include unemployment and non-contributing episodes.
There are lots of causes behind a person has a non-contributing spell, so it is difficult
to modeling those intervals under a single criteria. To that respect we only consider
two categories: Volunteer causes like maternity or study and non-volunteer causes
like to be dismissed from a work. In spite of everything we include the non-working
episodes in our study because we consider that they are also components of the

whole labor history.

37
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Besides the time durations, a few set of personal characteristics about the indi-
viduals are also available. Moreover, we also introduce two macro-economic indica-
tors: the quarterly values of the Spanish unemployment rate and the gross domestic

product. The descriptive analysis of these variables is displayed in Section 4.1.

Section 4.2 is focused on the non-parametric analysis of duration time variables.
That is, we draw some features of the distribution of duration variables. This
analysis is developed using survival techniques. The goal here is to use graphical
methods in order to show differences in the durations among the several episodes.
Thus, for instance in the analysis of non-working spells, we would like to know the
probability of changing job in the first three months or how high is the probability
of remaining at the same state for more than two years. To this end, we draw the

product limit estimators (see Kaplan & Meier, 1958) for several sets of durations.

Finally, we summarize three outstanding conclusions of these data. First, the
behavior of the first working spell is different compared with the subsequent ones.
Second, there is an effect of the calendar period in which an episode started. Third,
there are differences of remaining in a job if it corresponds to a self-employed or a

wage-earner spell.

4.1 Descriptive analysis

The data used in the analyses consist of individual periods of time contributing
to the Spanish Social Security between 1980 and 1993, a service falling under the
Ministry of Work and Social Security. The complete file contains the whole labor
histories of about 38 million of people since they entered the labor market. That
is, the available information is the sequence of time episodes as well as a set of
characteristics of all different labor states carried out by each individual. There are

also some personal characteristics of individuals.

Our dataset is a sample of the complete file. It contains information about 50399
spells which describes the labor histories of 8986 individuals who started to work
between January 1980 and July 1993. From now on, we will denote by : = 1,--- | n
the number of individuals (i.e. n = 8986), and j; = 1,--- ,.J; the number of episodes
per subject ¢. Thus, > .J; = 50399 is the total number of episodes or spells.

2
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The episodes of our data are defined by three variables,
(begjmendjmdurji) Ji=1, i

The first two variables are calendar dates and they represent, respectively, the dates
of starting and finishing the episode. After a transformation both are measured in

1 Hence, we define the total duration of each

days elapsed from a common origin.
episode by subtracting beg;, from end;;. That is we obtain the variables durj, as
the days elapsed in state j; = 1,--- . J; for individual : = 1,--- . n. The analysis of
variables {durj,,j; = 1,---,J;} is the main goal of the study.

We emphasize two important features about the time variables. First, there is
no a single response variable for each subject in the sample but a sequence. Second,
the variables durj, may be censored if they correspond to the last spells of the
individual’s sequence. That is, the last episode could finish after July 1993, the end
point of the study period. Thus, we observe some values that do not correspond to

the true duration of this time interval.

The descriptive statistics of the main variables are in Table 4.3.

4.1.1 Personal and job characteristics

Even though our data mainly contain information about duration of spells, it has
been also possible to define some characteristics about the episodes, as well as a few
characteristics about the individuals.

Within an individual sequence, we distinguish between working episodes and non-
working episodes. The first ones correspond to periods where subjects are working
in a certain kind of job and therefore are contributing to the Social Security system.
The non-working episodes include unemployment periods as well as gap intervals
elapsed between two consecutive jobs where the subject does not contribute to the
Social Security system. Here we remark that the category of non-working episodes
is imprecise and includes a large number of situations (e.g. illness, study periods,
dismissing or maternity).

For the working spells, we distinguish two kind of different episodes according

to the type of job, that is self-employed and wage-earner.

'Due to the use of the SAS program, all the dates in the data are measured in days from
January 1960.
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Hence, we define three dummy variables self, w-e, bothc which equal 1 for spells
of self-employed, wage-earner and both contributions, respectively. Their frequency

distribution is given in the next table:

Table 4.1: Working spells

Variable Frequency Percent

self 811 1.6
w-e 33502 66.5
bothc 809 1.6

For the non-working episodes we distinguish four categories according to the type
of transition to a non-working spell: after a period of job the individual chooses do
not work for a while (volunteer), because a dismissal of the previous job, due to the
TLI (Temporary Labor Incapacity) has finished and other reasons. The next table

summarizes this variables.

Table 4.2: non-working spells

Variable Frequency Percent
volunteer 3938 25.78
dismissal 7770 50.86
end of TLI 3046 19.94
others 523 3.42

Because our data correspond to the period 1980-1993 which includes important
changes in the Spanish labor market, we also take into account the initial date where
the spell starts. Figure 4.1 displays the distribution of the spells with respect to
the year of starting within our study period. We remark the increasing shape of the
distribution. There are mainly two reasons to explain this shape: First, new types
of temporary short contracts were introduced in Spain from 1984, and second the
analyzed individuals started to work in 1980, so probably they are still looking for
a definitive work.

Another variable defined is related with the position of a certain episode inside

the entire sequence of intervals defining the labor history. This variable is named
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Figure 4.1: Bar chart according to starting dates

FRECQUENCY
000 3

7000 7
RO ]
3000 7
4000
000 3
2000 7

1000

E

UEED VIR 13982 189E3 ¥R 18980 19En 19875 THER VEEE 18930 1881 1882 1FE2

STARTIHG DATE

Figure 4.2: Bar chart for variable nepis

FREQUENCY
300007

200001

10000

-

1 B 11 16 21 26 N E M

HERIS MIDPOINT



62 Chapter 4

Table 4.3: Descriptive statistics of data

variable Mean StDev Minimum Maximum
sex 1.46 0.49 1.00 2.00
age 26.19 9.88 14.00 78.00
unemp 0.18 0.02 0.10 0.23
gdp 2.80 2.03 -1.67 6.11
self 0.02 0.12 0.00 1.00
w-e 0.66 0.47 0.00 1.00
non-work 0.30 0.46 0.00 1.00
nepis 6.02 5.48 1.00 43.00
nselfe 0.05 0.33 0.00 7.00
nw-ee 3.96 3.63 1.00 43.00
nnonce 1.92 2.08 0.00 19.00

nepis and its frequency distribution is displayed in Figure 4.2. Even though its
average is around 6 spells, it has a maximum of 42 spells. Therefore there are
some individuals with a large amount of spells in their labor history. This is likely
because our sample contains people starting to work in 1980, so that they are young

individuals which still do not have a definitive job.

Also related to the number of episodes we have nselfe, nw-ee, nbothe and nnonce.
They are count variables that for a given spell are, respectively, the number of pre-
vious episodes of self-employed, wage-earner, both contributions and non-working.

With respect to personal characteristics we have the gender of the subject (sex)

and the age at the beginning of the episode (age).

Even though the set of variables describing characteristics of individuals is lim-
ited, the interest of the dataset is on the sequence of durations describing the labor
histories. Thus, it is possible to analyze temporal aspects, as well as the impact
of changes in the labor regulations (for instance, a new contractual policy) intro-
duced in a calendar date of this period of time. We also can control the effect

of macroeconomic factors. In particular we are using two variables in our analy-
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Figure 4.3: Bar chart for variable dur,
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sis: Unemployment rate (unemp) and the Gross Domestic Product (gdp) defined by

quarterly values.

4.1.2 Time variables

In order to point out the main features of duration variables given by {dur;,, j; =
1,---,Ji, i =1,--+ ,n}, we carried out several analyses. From the 50399 spells, we
have 8986 first spells, 6873 second spells, 5590 third spells, 4705 fourth spells and
3950 fifth spells.

We start with variable dury, that is, the subsample of durations of the individual’s

first episode. We point out four important characteristics:

o All of the first episodes are working spells. As it is usual with variables related
to the time, they have distribution functions that are highly asymmetric to

the right. Here we emphasize the histogram displayed in Figure 4.3.

e The mean of the complete periods? is very small and equals to 398.55 days,

with a standard deviation of 582.63 days; the quartiles measured in days are

2The sample size in this case is 6942.
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Figure 4.4: Bar chart for the duration of the first non-working spell
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Q3 = 487, median = 181 and Q1 = 63. We note that for the following episodes

the mean becomes smaller.

e It contains around 23% of right censoring. However only the last spells of the

sequences may be censored.

The analysis of variables dur;;, which correspond to the states of self-employment,

wage-earner and both contributions are in the next table:

Table 4.4: Mean duration of working spells

Variable mean  stdev Q3 median Q1
self 197.54 470.09 119.25 29.00 15.50
w-e 636.24 897.70 807.00 244.00 88.50

For the first non-working episodes the histogram of variable durj; is in Figure 4.4.
The mean of complete periods is 320.86 days and the standard deviation equals
486.67 days.
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4.2 Empirical survival functions

Here we introduce a non-parametric analysis for the duration time variables. Us-
ing survival techniques we obtain estimators of the empirical distribution function
(equivalently the survival function, see Chapter 1) of the duration variables. We note
that the presence of censored values do not allow the use of the standard empirical
distribution function but a modification introduced by Kaplan & Meier (1958). The

next section briefly describes this estimator.

4.2.1 Univariate analyses: The product limit estimator

In this section we do not consider the whole sequence of spells but separate univariate
analyses for several types of episodes.

Let T be the random variable representing the duration of a certain type of spell.
We denote by F(t) = P(T < t) the distribution function and S(t) =1 — P(T > t)
the survival function of 7.

The main goal of this section is to estimate S(¢) without making any parametric
assumption about the distribution of T. Because S(t) = 1 — F(¢), a standard
approximation could be to compute the empirical distribution function using only
the given sample. However, as it occurs in survival analysis, variable T' may include
censored values, so that for some subjects the true value of the time variable is
unknown. For this kind of data, Kaplan & Meier (1958) suggested a procedure
for obtaining an estimator of S(¢), named the Product-Limit (PL) or Kaplan-Meier
estimator, which allows for censored and uncensored values.

In what follows we describe the Kaplan-Meier estimator for the simplest case of
an univariate sample of times with Type I censoring. That is, the observed times
denoted by zq,--- ,z, are defined as z; = min{¢;,¢;} where ¢; is the true time of
individual 7, also named failure time, and ¢; is the corresponding censored value.
Let #(1), -+ ,#r) be the ordered subsample of the different observed failure times
(i.e. if there are no ties, L will be the sample size of the uncensored observations).

Then the Kaplan-Meier estimator of the survival function S(¢) is

sty= 1 (”’n_ld’> (4.1)

l:tZt(l)

where n; denotes the number of individuals in the sample such that z; > #(;) and d
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is the number of subjects with a failure time equal to (.

We note that if there were no censored observations, i.e. z; = ¢, 1 =1,--- .n,
the PL estimator defined in (4.1) reduces to the ratio between the last numerator at
each t; and the first denominator. Thus, it is a decreasing step-function with discon-
tinuities of magnitude 1/n at each ¢;, that is, one minus the empirical distribution
function.

We also point out a problem of the PL method that arises if there exist censored
times larger than the largest true time. In that case, the PL estimator does not go
to zero and it is not possible to estimate the survival function for values of the time
beyond the largest failure time.

A nice development of the PL estimator as well as its properties can be found
in Kaplan & Meier (1958), the original paper where it was introduced. However,
it is also introduced in all the common literature about Survival Analysis (see, e.g.
Lawless, 1982; Cox & Oakes, 1984; Collet, 1994 or Klein & Moeschberger, 1997).

In our dataset, instead of computing the total survival function using the whole
vector of duration times, we focus on separate analyses after the data have been
stratified according to several criteria. In fact, this is the usual use of the PL esti-
mator in order to be able to compare the survival curves among several subsamples.
In addition to the visual display of the estimated survival functions from the graphi-
cal plots, some statistical tests may also be used in order to decide if can be accepted
differences among the survival curves obtained from the data. For instance, if we
have divided the sample in two subsamples, say 1 and 2, with survival functions
S1(t) and S(t), respectively, one wants to test the hypothesis Hy : Si(t) = 93(t) for
all . The most relevant statistics to test Hy, are the log-rank test and the Wilcoxon

test. Details about these tests are given for instance by Lawless (1982).

4.2.2 Empirical results of univariate analysis

We start these analyses focusing in the first episodes of the labor histories. Figure 4.5
shows the estimated survival functions of the first three working episodes. This plot
suggest that the probability of remaining in the first episode is higher compared
with the probabilities of the second and third working episodes which remain very

similar.

However, we emphasize that if we take into account the type of spells, the be-
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Figure 4.5: PL estimators for the first three contributed spells
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havior of the first three episodes is sometimes different. If we only consider self-
employment episodes the estimated survival curve for the second spell is above the
one for the first episode (see Figure 4.6). Thus for the self-employment status the
probability of remaining longer in that state is higher in the second episode than
for the first one. Looking at the first three unemployment periods (we restrict our
attention to spells shorter than 3 years because a longer period usually means a
non-contributing spell) we observe in Figure 4.7 differences among the episodes for
durations shorter than a year. However, the estimated survival curves are very
similar for longer durations, that is, there are no differences in the probability of

remaining in one of the first three unemployment spells after a year of duration.

In contrast, the results for the first three non-working spells are much more
different and the survival curves for the three episodes are almost parallel. Thus,
the probability of remaining in this kind of episodes goes down each time the subject

has a non-working spell. We display this last result in Figure 4.8.

The next analysis involves non-working spells only. Garcia-Fontes & Hopenhayn
(1995) wonder if there are differences in the survival of the non-working spells accord-
ing to the causes of this situation. Here we study the effect of having a non-working

spell depending on whether the individual wanted or not to have a non-working spell.
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Figure 4.6: PL estimators for the first two self-employment spells
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Figure 4.7: PL estimators for the first three unemployment spells
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Figure 4.8: PL estimators for the first three non-working spells
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That is, for each non-working episode we have kept the cause of ending the previ-
ous working episode and have classified it into two categories: non-volunteer causes
(unemployment and end of TLI) and volunteer causes (see the Appendix for details
about these categories). For the first episode in the non-working status, Figure 4.9
shows that subjects who decide to be out of the labor force remains longer in this
situation that people which have a non-volunteer spell of non-working. However,

this changes for the subsequent episodes where the differences appear to vanish (see

Figure 4.10).

As well as analyzing the different types of spells in our sample, our goal is also
to look at the effects of the calendar date. That is, taking into account the moment
where a certain episode started in the period 1980-1993. We start with the analysis
of the behavior of the first spell through the period 1980-1993. Here we obtain
a similar behavior for the working and the non-working episodes. In that sense,
Figure 4.11 shows that survivor function of remaining on the first episode is higher
if it starts on the intervals 1980-1984 than after 1984. Here we point out that some

changes in the labor market were introduced in Spain from 1984.

More generally, we stratify our sample in two subsamples of spells according to

their beginning date. The time periods we have analyzed are: 1980-88, 1985-93.
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Figure 4.9: PL estimators for the first non-working spell
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Because of the nature of the working and non-working spell is really different, we
analyze them separately. Thus, for the working episodes, the estimated survival
function of episodes starting between 1985 and 1993 is lower than the survivor
curve of episodes starting from 1980 until 1984. Thus it looks like the probability
of remaining in a job is higher if it started at early 80’s. These results are shown in
Figure 4.12.

For the non-working spells the analysis including all of them is quite similar to
the one obtained for the working episodes. However, if we consider only short spells
(i.e. less than 3 years) Figure 4.13 shows that both survival curves join from 2 years

onwards.

The last analysis take into account the working episodes. Here if we compare
the survivor curves of self-employment and wage-earner, we do not obtain significant
differences. However, if we analyze only the first episodes, then the probability of
remaining in a job is higher if the individual is a wage-earner than if he or she is a
self-employed. Figure 4.14 shows the survival curves in this case. For the subsequent

spells no differences are again obtained.
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Figure 4.10: PL estimators for the second non-working spell
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Figure 4.11: PL estimators for the first job by starting dates

s00 1000 1300 2000 2500 3000 3500 4000 4500 5000

)]

DUR
STRATA:  —— [80,84] - [85.93]



72 Chapter 4

Figure 4.12: PL estimators by starting dates for the working spells
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Figure 4.13: PL estimators by starting dates for the short non-working spells
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Figure 4.14: PL estimators for the first working episode
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4.2.3 Competing risks analyses

In the non-parametric analyses just displayed, we have not distinguished the sur-
vival curves among the several destination states that a subject can reach after an
elapsed spell. As we described before we have individual sequences of spells where
all possible states are available at each transition (i.e. we have four feasible states:
self-employment, wage-earner, both-contributions and non-working, that we will de-
note by j = 1,2,3,4). In that way it is possible to analyze the different probabilities
of having a specific transition according to the current state. Note that this kind of
analysis does not compare the survival curves of types of episodes but the survivors,

for a given class of spells, according to their transitions at the end of the episode.

The study of survival data taking account the specific transition at the end of a
spell is known as competing risks analysis (e.g. Klein & Moeschberger, 1997). Here
we are going to introduce a generalization of the Product Limit estimator taking

account of the destination state (see Kalbfleisch & Prentice, 1980)

Let t;1), -+ ,t;x,) be the subsample of the observed failure times of type j =
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1,---,J in increasing order. Then, the Kaplan-Meier estimator of S;(t) is

$i(t) = M) . 4.2

o= 11 ("= 42
where n;; denotes the number of sample individuals such that z; > ;) and dj; is the
number of subjects with a failure time of type j equal to ;). The estimator defined
in (4.2) is the Kaplan-Meier estimator regarding times that have transitions different
than j as censored. Even though (4.2) do not correspond to estimators of the survival
functions and are thus usually named pseudo survival functions (see Kalbfleisch &
Prentice (1980) for a discussion, and Allison (1995) for practical applications about

them) it is possible to estimate the overall survival function as®

S(t) = H S;(t). (4.3)

4.2.4 Empirical results of competing risks analysis

We are going to apply the competing risks analysis to several cases in our data. In
this case we have J = 4 because the possible states are wage-earner, self-employment,
both contributions and non-working and all the transitions are allowed except non-
working to non-working.

With respect to the first episode we display in Figure 4.15 the Product Limit es-
timators according to the three possible destinations (self-employment, wage-earner
and non-working). Here we can see that a non-working spell has the highest proba-
bility to be reached after the first episodes of the labor history. On the other hand if
the second episode is of self-employment the individual will have the highest prob-
ability of remaining in the first state. These results are in agreement with the fact
that the first episodes are mainly of wage-earner.

Another analysis taking into account the destination state is about the starting
dates. That is, Figures 4.16 and 4.17 show the survival of the states reached after a
spell starting before 1984 or after 1984, respectively.

We emphasize that the difference between both cases is about the behavior of
the wage-earner and non-working states. While for the periods starting before 1984

the destination to a non-working spell has the highest survival and different from the

3Here we are assuming that there are no ties with the times of different types of transitions.
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Figure 4.15: PL estimators for the first episodes according to the destination state

SURWIVAL
1.0

0.1
0.8
0.7 1
0.6
0.5
0.4 7
0.37

0 1000 2000 J00o 4000 3000

b
NLRT SELF-EMP e WALE-EARNER

Figure 4.16: PL estimators for the episodes starting before 1984 according to the
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Figure 4.17: PL estimators for the episodes starting after 1984 according to the

destination state
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destination to a wage-earner, for the periods starting after 1984 both states behave
similarly.

A final analysis is about working episodes followed by non-working episodes.
Here we distinguish between unemployment and non-contributed episodes. The
results are displayed in Figure 4.18 where the main feature is that unemployment
has lower probability to be reached than other kinds of non-working spells. That is,
a working individual has higher probability of surviving in this situation if the next

state 1s unemployment than if the final state is a non-contributing episode.
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Figure 4.18: PL estimators for working episodes according the following non-working
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Chapter 5

Statistical Analysis of Labor

Histories

In this chapter we analyze the duration of the episodes within an individual’s labor
history. From a set of characteristics classified into three categories (individual
characteristics, previous labor history and economic indicators) we study which are
the main factors determining the duration of the episodes.

We consider entire labor histories of a sample of individuals entering the labor
market in 1980. As we described in the previous chapter, the data we are using
come from the Social Security information files and their main attraction is their
richness with respect to longitudinal information. Indeed, the file contains the entire
sequence of individuals’ periods of contribution to the Spanish social security. That
is, for each individual it is possible to build the labor history elapsed on a time
interval. The disadvantage of these data compared with other databases such as
EPA or ECPF (see the introduction for more information about these data) is the
small set of available explanatory variables.

Most of the previous studies dealing with duration time data about Spanish labor
are focused on a single episode elapsed in a well defined state (usually unemployment,
but also working episodes or periods out of the labor force). Thus, the main goals
have been: the analysis of the time variable only in the distributional sense, to assess
the effects of a set of variables on that duration, and the study of possible transitions
at the end of the considered episode. As far as we know, the analysis of the entire
sequence of spells that a subject has experienced along his/her labor life seems to be

less studies. However, we emphasize the paper by Arranz & Muro (1999) where there

79
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is an investigation about recurrent unemployment. They analyzed a sequence of the
first three episodes of unemployment using data from INEM (Spanish Institute of
unemployment).

This chapter is based on the analysis of duration os spells, and it is structured
as follows: in Section 5.1 we describe the theoretical methodologies used in the
analysis of our datasets. In Section 5.2 we report an analysis for the first episode of
the labor sequences. From the descriptive analysis shown in the previous chapter,
the first contribution to the Social Security has its own behavior. In Section 5.3 the
analysis is about types of episodes. Here we carry out separate duration analysis for
the longitudinal data according to wage-earner, self-employment or non-contribution
spells. We also compare our results with previous studies about the labor market
in Spain. In Section 5.4 we analyze the five early spells of the labor histories. We
start with separate analysis for each of the five episodes, first ones, second ones,
and so on. We compare these results with the analysis using a pooled sample of all
the observations. At the end we compute corrected estimations taking into account
possible dependencies among the durations of the spells belonging to the same labor

history. Finally, in Section 5.5 the conclusions from these results are summarized.

5.1 Statistical models

In this section we introduce the main models for the study of multivariate survival
data, that is, when data involve more than one failure time on each subject. As
usual we distinguish two cases: first, the competing risks problem where there is
more than one cause of failure; second, when a sequence of spells one following the

other is available for each individual.

5.1.1 Competing risks model

A first extension of the univariate survival analysis is the case where an episode may
be ending due to several causes. Thus, in that case there is not only a non-negative
random variable T' but a pair of random variables (T, .J) where T represents the fail-
ure time and J represents the destination state reached when the failure time takes
place. Some classical references about this topic are David & Moeschberger (1978)
and Prentice, Kalbfleisch, Peterson, Flournoy, Farewell & Breslow (1978). We also
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emphasize a new reference by Crowder (2001) which gives a very complete overview
about this issue for continuous and discrete time, as well as several approaches such
as the Bayesian and the counting process.

The analyses of competing risks data are based on the cause-specific hazard

functions given by

PH<T<t+At, J=j/T>1)

Ai(t) = fim, A (5:1)
for y = 1,--- ,m where m is the finite number of feasible states. Then, assuming

that only one destination state may be reached at each failure time, the total hazard

function is defined as
At) =D N(t) (5.2)

which, as usual, is the instantaneous rate of observing a failure time ¢ conditional
on the failure time not having occurred before.

Even though from (5.2) we can define the survival function for T as

S(t) = exp {_ /0 Yo du} , (5.3)

we note that from (5.1) the functions defined as

G,(t) = exp {_ /Ot )\j(u)du] . j=1,-,m (5.4)

do not correspond to any survival function' for j > 1. This is based on the fact
that G;(t) # [~ Aj(u) S(u) du. Some authors refer to those functions as “pseudo”
survival functions. In spite of the point we just mentioned, from (5.4) it is possible

to define the overall survival function

sit) =[G (5.5)

"However, Allison (1995) suggests an interpretation as a survival function, after defining the
random variable T;; as the time at which the jth event type either occurred to the ¢th individual
or would have occurred if other event types had not preceded it. Then, (5.4) are the cause-specific

survival functions and they give the probability that transition to j occurs later than time ¢.
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The theory related to estimation procedures, as well as the use of covariates
presented in Chapter 1 for the univariate case, may be directly extended to the
case of competing risks models. In that way the likelihood function is completely
defined by the cause-specific hazard function. Indeed if A;(¢;6) denotes the cause-
specific hazard function depending on the unknown parameter 8, the total likelihood

function for a sample of n individuals is

n

z6:6) = [LOttso)” [ewo | [ vt (5)
i=1 j=1 0
where 4; denotes the indicator of censoring (J; = 1 if observation is complete and 0
otherwise).
Note that upon rearrangement the likelihood (5.6) factors into a component for
each 7. Moreover, each of these factors is precisely the same as those that would be
obtained considering as censored observations all the failures with destination state

other than j .

5.1.2 Multi-state and multi-episode model

This section introduces the method of maximum likelihood for the analysis of se-
quences of durations. We briefly emphasize the most relevant results we will use
in the analysis of our data presented later on. Some general references about re-
peated events and multi-state processes are Blossfeld, Hamerle & Mayer (1989),
Hamerle(1989) and Petersen (1995), Hougaard (1999). More in the context of eco-
nomics we emphasize the papers by Elbers & Rider (1982), Heckman & Singer (1984)
and Honoré (1993).

Here we assume that the multivariate survival data are represented by a sequence

of pairs (T}, Z;), where T represents the failure time and Z; the state for the jth

spell, 3 = 1,2,---. The failure times are considered non-negative and continuous
random variables that define an increasing sequence, 7y < Ty < ---, and the state
variables {Z; : j = 1,2, - } are defined as a sequence of discrete stochastic variables

in a finite state space with m possible values.? It is also assumed that the m possible
states are mutually exclusive.
The usual analysis for this multivariate duration time data is carried out by

modeling the hazard function. From here, the probability law of the transition

2For a more general case, the number of destination states could change among episodes.
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process as well as the duration distributions can be calculated. For a complete
specification of the hazard function, we have to define three points. As in the
univariate case, we have to decide the time dependence of the hazard function as
well as the dependence of the covariates. In addition we have to decide how much of
the previous history is included. In this respect Heckman & Borjas (1980) defined
four types of dependences. The first type is Markovian, so that the transitions
depend solely on the current state in which the individual is located. The second
type is termed “occurrence dependence”. It assumes that the probability that an
individual changes to a specific state depends of the number of previous spells he has
been in that state. The third type is named “duration dependence” and considers
that the probability of remaining in a certain state depends on the length of the
time interval that the individual has already been in that state, that is it depends
on the current duration. Finally, they defined the “lagged duration dependence”
when the probability of remaining in a state depends on the previous failure times
in that state.

The hazard function for multi-episode and multi-state data is defined by model-
ing the specific transition probabilities for each destination state and each episode.
The cause-specific hazard functions for the jth (j = 1,2,---) failure on a study
subject 1s defined for t > ¢;_; as

P(tST]‘ <t—|—At, Z]‘ =z | T]‘ >t H]‘_l,X]‘)

AL (txg, Hyjmy) = lim Y (5.7)
where z; = 1,2,--- ,m, are the possible states, x; is the vector of covariates for

the jth failure and H,—; = {(#;,z1), | = 1,2,---,j — 1} is the previous history of
the time process until ¢;_;. Note that )\gj (t;x;, Hj—1) will be identically zero for
t < tj_1. Equation (5.7) gives the rate for the jth episode at which a transition to
state z; occurs at duration ¢, given no transition prior to t and given that state z;_4
was occupied immediately prior to t.

The total hazard function for each failure j = 1,2,---, that is, the risk of any

transition from state z;_; in the jth episode is defined by

N(tixj, Hioa) = Y N, (6%, Hja), (5.8)

zj=1

From here the survival function $7(¢;x;, H; 1) = P(T; > t | x;, H;_;) and the
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joint density function of the random vector (T}, Z;) may be respectively obtained as

t
Sj(t;X]‘,H]‘_l) = exp !—/ )\j(u;X]‘,H]‘_l) du 5 tZ t]‘_l (59)
t

FLltix His) = M(tx,, Hio) S7(6 x5, Hi), 62> 150 (5.10)

From a parametric point of view, after assuming a statistical model for (73, Z;),
the next step is to estimate the unknown parameters of the distribution family. In
this case the method of the Maximum Likelihood is the most commonly used. As
in the univariate case introduced in Chapter 1, the likelihood function is completely
characterized by the hazard function, that is, by the cause-specific hazard functions
related to each destination state and each episode.

Here we derive the likelihood function for multivariate survival data. We assume
that each individual ¢+ = 1,2,--- . n has a sequence of J; failure times given by
t, < ty, <,---,t5. Let §; be the indicator of censoring for the jth failure of
individual i such that §; = 0 if ¢, is a censored observation and §;, = 1 otherwise.?

Thus, the likelihood contribution of individual 7 is

5.

Li= f(Hy | 20) [S7(ts; x5, Hyo1)]™ (5.11)
where f(Hy, | z0) = f(ts, 25, Xy, -+ t1;, 21,5 X1, | 20) 1s the joint density of {(¢;;, z;,), 7 =
1,2,-+-,J;} given that individual 7 is in state zo at time to, and S (¢,; 2, Hy,_1)

is the survival function for the last episode.

Using properties of the conditional probabilities, (5.11) can be written as*

J;

L= Hf(tjmzji

=1

5.

7

in?‘Hji—l)g(in Hji—l) [Sji(tJﬁXJmHJi—l)]

where ¢g(x;, | Hj—1) is the marginal distribution of the covariates and it does not

depend on the parameters we are interested in.> Thus, we need to maximize

Ji
i &,
L; = H f(tji7 25 | Xjss Hji—l) [S]l(tji; Xjis Hji—l)] i
J=1
3In fact, d;, = 1,j = 1,---,J; — 1 because only the last episode may be censored.

1See Hamerle (1989).

°If g(x; | Hj—1) contains some required parameters, one has to specify a parametric form for it.
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and using the relationships (5.9) and (5.10) one obtains

S 5, iy
=11 [/\‘Z.(t]‘i;xg‘mﬂji—l)] " exp l—/ N (u; i, Hi 1) du] (5.12)
‘ ¢

j=1 Jic1

Then the complete likelihood based on data {(tj;,2;),7 = 1,2,---,.J;; §j;; X, }
for the sample of + = 1,2,--- ,n individuals is the product of the terms defined in
(5.12), that is,

om t
L= H {H [)\Jl ]l,x]l,Hji_l)]éh Hexp !—/tl )\Z(U;X]‘“Hji—l) du]}
5=1 Jim1
From this likelihood we can estimate fully parameterized models, when the cause-
specific hazard function are written as )\gj (t;xj,H;—1,0), where 8 is the vector of
unknown parameters.

For the purpose of estimation we note that, for each individual, the total likeli-
hood defined in (5.12) can be factorized according to two criteria. On the one hand,
in the case of data about repeated events irrespective of the state, the total likeli-
hood of the entire sequence is obtained as a product of the density of the first spell,
density of the second spell, and so forth until the last spell®. On the other hand,
if we consider multi-state data, each term of the total likelihood refers to a single
cause-specific irrespective of the episode. Therefore if there are no unobserved vari-
ables common or correlated across the spells, estimates of the parameters involved in
a certain cause-specific hazard can be obtained from separate cause-specific hazards

for each spell or destination state.

5.2 Analysis of the first spell

Looking at the descriptive analysis presented in Chapter 4, we see that the first
episodes among the entire sequence of labor periods seems to be outstanding. Here
we analyze the duration of the first contributing spell of the labor histories.

We establish parametric models for the response variable dur (this is dury for the
first episode of the labor histories) and we estimate the effect of a set of covariates.

For the analysis of the first episode we use as covariates individual characteristics,

5Tf the last spell is censored the contribution to the likelihoof function is not the density but

the survival function
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economic indicators and variables defined from the episode itself. Furthermore in
the study of the first time on a certain state we also introduce explanatory variables

related with the previous history and the dynamics of the process.

5.2.1 A duration model for durq

In order to clarify the data we are using in the later duration analysis, first of all we
are going to introduce the main features of the sample we have used.

7 corresponding to individuals start-

The sample contains n = 8983 observations
ing to contribute to the Social Security system in the period 1980-1993.

The dependent variable is denoted by T such that ¢, = dury,, ¢ = 1,--- ,n
defined by the days elapsed in the first contributed episode. The average value of
this variable is ¢ = 633.70 days and the standard deviation is o; = 896.42 days.
Moreover we note that the 22.8% of the observations are censored.

The set of explanatory variables used contains:

1. Individual’s characteristics: sez (1 correspond to male and 2 is female) and age

categorized as 6 dummy variables agel-age6 corresponding to the age groups

[14,22],[23,27], [28, 32], [33, 42], [43, 54] and older than 55.

2. Spanish economic indicators: unemp the quarterly rate of unemployment, and
gdp the quarterly value of the Gross Domestic Product. For each episode these
two variables take the values corresponding to the quarter where the episode

began.

3. Spell’s characteristics. This is a set of 0/1 dummy variables defined as: w-
e with value 1 for the wage-earner spells,® pre84 with value 1 if the spell
started before 1984, volunt with value 1 if the spell ends because of volunteer
causes, equarterl-equarter4 indicators of the quarter where the episode ends
and squarterl-squarter4 indicators of the quarter where the episode starts.
In addition there is the variable trans with value 0 for the transition to a

self-employment, 1 to wage-earner and 2 to a non-contribution spell.

"We note that there is one observation per individual since we only consider the first spell of

the labor history.
8Note that such as we have defined the non-contributed spells, the first episode of the labor

history can not be of this kind.
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Table 5.1: Descriptive statistics of the explanatory variables

variable Mean StDev Minimum Maximum
sex 1.54 0.50 1.00 2.00
age 28.95 15.32 14.00 78.00
unemp 0.18 0.02 0.10 0.23
gdp 2.86 1.94 -1.67 6.11
w-e 0.99 0.07 0.00 1.00
pre84 0.24 0.43 0.00 1.00
volunt 0.19 0.39 0.00 1.00
equarterl! 0.17 0.38 0.00 1.00
equarter? 0.17 0.38 0.00 1.00
equarters 0.45 0.50 0.00 1.00
equartery 0.20 0.40 0.00 1.00
squarterl 0.23 0.42 0.00 1.00
squarter? 0.26 0.44 0.00 1.00
squarters 0.26 0.44 0.00 1.00
squartery 0.25 0.43 0.00 1.00
trans® 1.67 0.50 0.00 2.00

“The values are computed over the uncensored values

The summary statistics of these variables are in Table 5.1. From here we em-
phasize: the large number of people in the younger category due to the fact that
the sample contains individuals who started to contribute to the Social Security in
1980; the large percentage of wage-earner jobs; the 23.7% of the observations belong
to individuals with a single contribution, so that, the first episode is also the last
of the labor history; approximately 75% of spells started after 1984; around 45%
of episodes finished in the third quarter of the year, while the starting dates are
uniformly distributed among all the quarters.

The analysis of the duration of the first episode was carried out using the SAS
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System (see Appendix B). We assume a Weibull model (see Appendix A)for the
random variable dury = T conditioned on the covariates. Table 5.2 displays the
estimates of parameters for the explanatory variables as well as for the shape and
scale parameters of the distribution.

From these results we emphasize the following conclusions® for the duration of

the first spell of the labor history:

o older individuals have larger first episodes,
e an increment of 0.1 in the rate of unemployment means durations 0.9% higher,

e when the start of the episode is prior to 1984 the duration is 78% higher than
for episodes starting after 1984,

e if the transition from the first episode is to a wage-earner job then the duration

is 46% longer than if the episode goes to a non-contributing spell,
e volunteer causes of ending shorten the duration by 20%,

e starting to contribute in the third quarter reduces the duration of the episode

by 30%

The goodness-of-fit of the model we have just presented is based on a graphical
method of the residuals. We note that in survival models several kinds of residuals
have been proposed (see Collet, 1994) but the most suitable for this purpose are
the Cox-Snell residuals defined as in Section 5.1. The residual plot for the Weibull
model fitting the data related to the first episodes is given in Figure 5.4 of Appendix
D.

5.3 Analysis according to type of spell

Based on the richness of our data about characteristics of the episodes, here we show
different analyses for the three sets of spells according to their type (wage-earner,
self-employment and non-working). That is we try to know the main characteristics
which better explain the duration of episodes depending on the type of contribution

to the social security system. Due to the factorization of the total likelihood function

9The interpretations have to be made controlling for the other covariates.
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Table 5.2: Estimates of the model for the first episode

variable Estimate Std Error p—value
intercept 6.102 0.30 0.0001
sex -0.035 0.03 0.3056
agel —2.644 0.09 0.0001
age? -2.429 0.10 0.0001
ages -2.251 0.11 0.0011
age4 -1.875 0.11 0.0001
aged -1.463 0.12 0.0001
UNEMP 2.243 0.70 0.0001
gdp 0.007 0.01 0.5687
pre84 0.596 0.05 0.0001
volunt=0 0.195 0.04 0.0001
equarter] 0.144 0.04 0.0027
equarter? 0.005 0.04 0.9148
equarters 1.383 0.04 0.0001
squarterl 0.062 0.04 0.1984
squarter?2 || —0.074 0.05 0.1163
squarters3 || —0.367 0.04 0.0001
trans=0 0.138 0.16 0.3818
trans=1 0.383 0.04 0.0001
Scale 1.38 0.01

NoTE: The log-likelihood for the Weibull model is -14689.34
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defined in (5.12), we note that under some conditions, estimates of each cause-
specific rate can be obtained by separate analyses. Even though this procedure
is valid provided there are no restrictions on the parameters across cause-specific
hazards and there are no unobserved variables common to, or correlated across, the
hazards, it allows us to obtain naive estimates which approximate the behavior of
the duration of these episodes. We remark that these naive estimates may suffer the
same biases as in the case of ignoring unobserved heterogeneity.

In the three sets of spells, defined for each type of contribution, we have not
included the episodes which are the first of the labor sequences already analyzed in
the previous section.

The statistical analyses undertaken here have two goals. On the one hand, we
have fitted a parametric model for the duration of spells where there is also a set of
covariates (variables related with the spells, personal characteristics and economic
indicators). Thus we may compare the effect of these variables on the duration
depending on each kind of spell. On the other hand, we are also interested in the
differences according to the possible transitions at the end of the spell. That is,
we carried out competing risks analyses for the three feasible states available in our
data.

5.3.1 Self-employment versus wage-earner spells

Here we consider data coming from the two kind of contributed episodes: self-
employment and wage-earner spells. The analysis of working episodes in Spain
seems to be largely ignored. Thus, as far as we know very few papers deal with
this issue in the framework of the duration analysis. We emphasize the papers of
Carrasco (1997) for episodes of self-employment and Garcia-Fontes & Hopenhayn
(1996) and Garcia-Pérez (1997) for wage-earner jobs.

The work of Carrasco (1997) is concerned with the factors influencing the decision
of entry into self-employment and, the analysis of such episodes distinguishing exit
into employment from exit into unemployment. The dataset used in this paper comes
from the ECPF (Continuous Family Expenditure Survey) for the period 1985-1991.
Hence, the data do not contain information about time interval but discrete points
in the whole period. Moreover this survey is only related to the heads of household.

The set of covariates used contains three groups of variables: previous labor market
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situation'®, the quarterly unemployment rate and three variables related to the
number of quarters that the subject has been self-employed.!! In the analysis they
focus on the estimation of the hazard function for a discrete time model. The main
conclusions about their results are: first, the hazard rate is decreasing with the
duration of the self-employment spell; second, the effects of being employed in the
previous episode reduces the hazard of leaving the self-employment state; and third,
higher unemployment leads to higher risk of quitting the self-employment spell.
Our analysis extends to the period 1980-1993, defines the exact duration of the self-
employment spells using a continuous time variable, and carries out a competing

risks analysis for the feasible transitions after the current spell.

We fitted a generalized gamma distribution (see Appendix C) for the depen-
dent variable defined as the duration of self-employment episodes. In addition to
the variables introduced in Section 5.2, the set of covariates contains variables re-
lated to the previous history. Thus we use empl for the situation of the previous
episode (1 is self-employment, 2 is wage-earner and 3 is non-contribution), nselfe,
nw-ee, nnonce which are the the number of previous episodes of self-employed,
wage-earner, and non-working respectively, and lotimese, lotimewe, lotimenc the
logarithms of the previous time elapsed in self-employment, wage-earner and non-
working respectively. The rate of unemployment is introduced in this case us-
ing 5 dummy variables aturl, atur2, atur3, atur4, aturd according to the levels

0.10,0.16),[0.16,0.17), [0.17, 0.185), [0.185, 0.20), [0.20, 0.21), [0.21, 0.22].

The estimated coefficients of covariates are in Table 5.3. From the results we
emphasize the significant values for the variables referred to previous history, the
transition at the end of the spell, seasonal effects coming from the quarter of starting
and ending the episode and the rate of unemployment. For the previous history we
see that the longer the prior duration on self-employment, the longer the duration
of the current spell. Furthermore coming from self-employment reduces the hazard
of leaving the self-employment spell. Transition to a self employment is the most
likely and going to wage-earner increases by 35% the duration of the current self-

employment spell. For the rate of unemployment, low values mean shorter durations.

19She uses a dummy variable equals 1 in case of being employed before and 0 when the subject

had an unemployment episode.
HHere she uses three dummies for the first three quarters because of the small number of

durations longer than 3 quarters.
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Table 5.3: Estimates for the duration of self-employment

variable Estimate Std Error p—value
intercept 6.218 0.36 0.0001
sex —-0.019 0.09 0.8396
agel —0.375 0.17 0.0278
agel —-0.123 0.16 0.4538
agel -0.183 0.17 0.2998
aged —0.226 0.20 0.2524
ageb -0.114 0.31 0.7168
unemp I —0.358 0.19 0.0664
unemp2 —-0.318 0.14 0.0229
unemp3 —-0.641 0.14 0.0001
unemp4 0.065 0.19 0.7311
unempd —0.366 0.16 0.0224
pre84 0.191 0.16 0.2418
empl=1 0.392 0.13 0.0019
empl=2 0.093 0.14 0.5131
nselfe —0.408 0.07 0.0001
nw-ee -0.056 0.02 0.0086
nnonce 0.033 0.03 0.3456
lotimese 0.143 0.04 0.0001
lotimewe 0.015 0.02 0.5448
equarterl! 0.839 0.12 0.0001
equarter? || —0.468 0.15 0.0019
equarters 0.571 0.14 0.0001
squarterl 0.362 0.12 0.0036
squarter? 0.369 0.13 0.0058
squarters 0.126 0.13 0.3415
trans=0 -0.692 0.13 0.0001
trans=1 -0.513 0.15 0.0006
Scale 1.152 0.03

Shape 0.335 0.11

NoTE: The log-likelihood for the generalized gamma model is —1329.06
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The goodness of fit for the generalized gamma model has been analyzed using
the residual of Cox-Snell. In Figure 5.5 of Appendix D we display the log-survivor
plot versus the residuals. The graph is approximately linear so it is valid to assume
this model.

The significant values for the estimated coefficients of variable trans motivate the
analysis of competing risks according to the three feasible states at the end of a self-
employment spell. The possible transitions are to self-employment, wage-earning
and non-working. Using the theoretical framework introduced in Section 5.1, we
have assumed a model for each transition considering as censored observations all
the failures with destination state other than the analyzed. Appendix E contains
tables displaying all the estimates and statistics for each destination state. Here we

summarize the main differences among the three models.

e Transition to self-employment: the number of previous non-working episodes
is significant with a positive coefficient. The duration increases if the previous

spell was one of working.

e Transition to wage-earner: it is characterized by the null effect of the rate of
unemployment, and longer duration are associated with the episodes coming

from a non-working state.

e Transition to non-working: the variables sex and age become significant and
the variable empl now has no effect. In this case women have shorter duration
on self-employment, almost 50% less than men; and younger individuals have

shorter durations.

Let’s now to focus on the analysis of wage-earning spells. Two papers have
already dealing with this type of episodes. The analysis by Garcia-Fontes & Hopen-
hayn (1996) used a duration model in order to emphasize the effects of the changes
introduced in the Spanish labor market from 1994. We emphasize that they de-
fine the dependent variable as the duration of the “match” between a worker and
a certain firm. The paper due to Garcia-Pérez (1997) analyzed rates of leaving
employment using a sample of wage-earner episodes and a set of covariates related
to personal characteristics and economic indicators. Here we notice that these two
studies also used data coming from the the social security contributions, the same

file that we are using. Our analysis extend these papers in the sense that we use the
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previous history of individuals and we also analyze competing risks models for the
different transitions.

1?2 with scale

The analysis of the wage-earner spells assumes a log-normal mode
parameter equal to 1.1 (> 1) and therefore the hazard function highly increases un-
til a maximum and then decreases asymptotically to 0. The main differences with
respect to the duration of the self-employment spells are with respect to variable
pre84, which is now highly significant with a positive coeflicient (the expected du-
ration is 15 percent greater for those episodes starting prior 1984), and with respect
to the variables related with the previous non-working spells which in this case are
significant while the previous durations on self-employment now have no effect.

From Table 5.4 we emphasize the negative coeflicient for empl=2 (wage-earner)
with respect to the other previous states, thus having a previous spell of wage-earner
shortens the duration of the current one. The total time elapsed in this state has a
positive effect on duration while the total time spent in non-working has a negative
effect. With respect to seasonal effects we note that a longer duration is expected
for episodes ending in the third quarter and starting in the first or fourth.

The goodness of fit for the log-normal model has been analyzed using the residual
of Cox-Snell. In Figure 5.6 of Appendix D we display the log-survivor plot versus
the residuals. The graph is approximately linear so it is valid to assume this model.

The estimates of the competing risks analyses for the wage-earner state are also
given in Appendix E. The estimated coefficients of variable trans displayed in Ta-
ble 5.4 show evidence of significant differences among transitions. Indeed the neg-
ative values of the estimates mean a shorter expected duration for the transitions
to a working spells. In the next we points out the most relevant differences among

transitions.

o Transition to self-employment: the variable sex has a highly significant coef-
ficient which reveals the low probability of women becoming self-employed in
the period 1980-1993. The estimated coefficients for variable empl give longer
durations for those spells coming from non-working. There is no effect of

variable pre84.

e Transition to wage-earner: the log-normal distribution gives a worse fit than

the generalized gamma model. All the variables related with the total du-

121t is assumed that the log T is a normal random variable.
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Table 5.4: Estimates for the duration of wage-earner

variable Estimate Std Error p—value
intercept 4.768 0.08 0.0001
sex —-0.004 0.02 0.7978
agel —-0.329 0.04 0.0001
age? -0.193 0.04 0.0001
ages -0.031 0.04 0.4942
age4 -0.031 0.04 0.1456
ageb 0.188 0.07 0.0001
unemp I -0.091 0.03 0.0099
unemp? -0.089 0.03 0.0013
unemps -0.099 0.03 0.0003
unemp4 -0.014 0.04 0.7341
unempd -0.102 0.03 0.0014
gdp 0.015 0.01 0.0015
pre84 0.138 0.03 0.0001
empl=1 —0.005 0.10 0.9625
empl=2 —-0.401 0.02 0.0001
nselfe -0.056 0.07 0.4514
nw-ee -0.016 0.00 0.0001
nnonce -0.082 0.01 0.0001
lotimese 0.043 0.03 0.2113
lotimewe 0.222 0.01 0.0001
lotimenc —-0.012 0.00 0.0066
equarterl! -0.108 0.02 0.0001
equarter? || —0.081 0.02 0.0009
equarters 0.724 0.02 0.0001
squarterl -0.010 0.02 0.6614
squarter? || —0.153 0.02 0.0001
squarters3 | —0.275 0.02 0.0001
trans=0 —-0.436 0.09 0.0001
trans=1 —0.288 0.01 0.0001
Scale 1.099 0.01

NaoaTrs Tha lao alibhhand fAar the 1ace martral vriadal 1 L O9ORRT7TE RO
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rations on each of the feasible states are significant (positive coeflicients for
self-employment and wage-earner and negative value for non-working). More-
over, the wage-earner state of the prior episode give higher risks of leaving the

current wage-earner episode.

e Transition to non-working: there is no effect from the prior state (empl is not
significant). For the total time elapsed in each state there is only a positive
coefficient for the wage-earner jobs, but the number of previous episodes of

non-working has no effect.

5.3.2 Non-working spells

As we already explained, the non-working episodes have been defined as the gap pe-
riods between two jobs. Therefore, included in this kind of spells are many situations
such as unemployment, illness, temporal incapacity or other volunteer reasons. In
that sense the analysis we introduce in this section is restricted to the non-working
episodes which correspond with unemployment periods coming after a wage-earning
job.

The issue of unemployment in Spain has been largely studied. In the most part
of the papers have been used duration analysis and the covariates have mainly been
socio-economic variables. We emphasize the papers by Andrés, Garcia, Jiménez
(1989) Cebrian, Garcia-Serrano, Muro, Toharia & Villagémez (1995) and Bover,
Arellano & Bentolila (1996).

The main goal here is to state the main factors which explain the duration of
an unemployment episode which belongs to an individual labor history. We want to
extend the results of Garcia-Perez (1997) in two directions: to include previous labor
history, and a competing risks analysis according to whether the following episode 1s
on self-employment or wage-earner. To do this, we define some new variables already
used in Garcia-Perez (1997): bempl3 dummy variable equals 1 if the previous spell
was longer than 3 years, lodur, lodur2 which are the logarithms of the previous
durations and its square value, and qual12, qual34 defining the kind of previous job
according the category: engineers and bachelor degrees, and medium degrees.

A Weibull model is assumed for the duration of unemployment. The first result
we would like to note is that the estimated parameter « is 0.11 (< 1) and therefore

defines an increasing hazard function. Thus we conclude that longer unemployment
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durations means lower probability to leave it. The estimates and the statistics for
covariates are given in Table 5.5. We would like to emphasize the significance of
variables related with the previous episodes (lodur, lodur2, lotime) and variable sez,
with shorter duration for women, but we will see an important changing in the
competing risks model.

The goodness of fit for the Weibull model has been analyzed using the residual
of Cox-Snell. In Figure 5.7 of Appendix D we display the log-survivor plot versus
the residuals. The graph is approximately linear so it is valid to assume this model.

The competing risks analysis establishes differences between the possible tran-
sitions. The complete tables of the estimates and statistics are in Appendix E,

however here we summarize the main features:

e Transition to self-employment:'® for the significant variables we note that
the duration of unemployment is higher for women than for men. However,

variables like quall2, qual34, unemp or lodur are not significant in this case.

o Transition to wage-earner: here the Weibull model does not fit the data, so
we use the generalized gamma. The main difference is in the shape of the
hazard function. Related to the variables, we find that the type of previous
job and the qualification become significant as well as the previous history, the

seasonal factors, the rates of unemployment and the gross domestic product.

5.4 Analysis of the five early spells

In the previous sections we have dealt with duration analyses of several subsets of
spells treating them separately. However, some observations may belong to the same
labor history of an individual, and there may be possible correlations among them.
In such a case, as we point out in Section 5.1 the naive estimates as well as their
standard errors obtained from separate analysis according to a certain criteria (kind
of spells, job number or whatever) may be biased. In some sense it has the same
effect as ignoring the unobserved heterogeneity (e.g. Heckman & Singer, 1985).
The main goal here is to correct for possible dependence among observations of
our data. To achieve this we restrict our sample to labor histories with no more

than five episodes. In our opinion more than five labor spells in the study period

13We points out that the sample is really small (92 uncensored durations).
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Table 5.5: Estimates for the duration of unemployment

variable Estimate Std Error p—value
intercept 10.636 0.45 0.0001
sex -0.069 0.03 0.0360
agel -0.014 0.10 0.8983
age?2 —0.192 0.11 0.0698
agel —-0.138 0.11 0.2080
age4 -0.207 0.11 0.0696
quall?2 0.061 0.03 0.0854
qual34 0.013 0.04 0.7632
UNEMP 2.592 0.72 0.0003
gdp 0.111 0.01 0.0001
pre84 0.138 0.03 0.0001
bempls -0.114 0.15 0.4635
lodur —0.597 0.18 0.0013
lodur2 0.058 0.01 0.0016
lotimewe —0.150 0.02 0.0001
lotimenc —0.005 0.01 0.4972
equarterl! 0.026 0.04 0.5628
equarter? 0.215 0.04 0.0001
equarters 0.231 0.05 0.0001
squarterl -0.105 0.04 0.0209
squarter? || —0.023 0.05 0.6363
squarter3 || —0.050 0.04 0.2180
trans -3.584 0.10 0.0001
Scale 0.901 0.01

NoTE: The log-likelihood for the Weibull model is —4931.78
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(1980-1993) means very short durations with very heterogeneous data. Moreover,
using labor histories with up to five spells means 5729 individuals (almost 64% of
the sample) with a total of 30104 spells.

The duration analysis of the labor histories is carried out in three stages:

1. Separate analysis for each successive event. The first point we would like to
note is that this approach makes no assumptions about independence between
the spells on the same individual. However, it is valid if the hazard function
of each spell does not depend on unobserved variables common or correlated
across spells. On the other hand, there are a lot of parameters to estimate and
the results are difficult to interpret. Indeed the effect of a given covariate may
vary greatly from one spell to another. An additional problem is the length
bias: the duration of the fifth episodes will probably be shorter because these
belong to individuals who already had four episodes in the period 1980-1993.

2. Treating each spell as a distinct observation, pooling all the episodes and esti-
mating a single model. In this analysis one has to take into account that spells
coming from the same individual tend to be more alike than two randomly cho-
sen observations. Therefore, not taking into account this information means
that some unobserved heterogeneity in the sample is not included in the anal-

ysis.

3. Correcting the possible dependence among the spells because they belong to
the same labor history. A first approach to detect the dependence among
spells is suggested by Allison (1998). It is a simple ad-hoc method consisting
in estimating a model for a certain duration where the lengths of the previous
spells are included as covariates. The estimated coefficients of these variables

give an idea about their significance.

Once the three stages just described are accomplished, a method for estimating
multivariate survival data is needed. In our analysis we use the procedure
proposed by Wei, Lin & Weissfeld (1989) taking into account the dependence
among the observations. It is based on the Cox proportional hazards model
(see Chapter 1) and these authors have shown that the resulting estimates
are asymptotically normal with a covariance matrix that can be consistently

estimated.
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5.4.1 Separate analysis

From the five spells histories we carried out five duration analyses according to
the number of the episode. Thus we had five subsambles defined from the values
of the variable nepis with dependent variables durl, dur2, durS, dur4d and durd,
respectively. The main descriptive statistics of these variables are in Table 5.6.

The duration analyses were carried out assuming parametric models with a set
of covariates related to individual characteristics (sex and age categorized into the
categories already defined in Section 5.2), economic indicators (unemp and gdp)
and the features of the current spell (w-e, pre84, equarterl-equartery, squarteri-
squarter and trans) all of them defined in Section 5.2.

The fitted model in each case assumes a Weibull distribution. Tables 5.7-
5.11 give the coefficient estimates and the associated statistics for the log-linear
models with dependent variables ldurl = log(durl),ldur2 = log(dur2),ldur3 =
log(dur3),ldurd = log(durd) and ldur5 = log(durb), respectively. However, note
that is possible to convert these Weibull estimates to the estimates of the log-hazard
function by dividing by the scale estimate and changing the sign. Therefore we have
proportional hazards models for dur! to durb.

From these separate analysis some of the variables have a similar behavior for
the five spells (age, unemp, pre84), while others are quite different (w-e, trans).
The remaining variables are significant for some spells and non-significant for others
(sex, gdp, equarter squarter). One of the relevant coeflicients is for the variable
pre84 which gives an expected duration 75% longer for the spells started prior to

1984. The transition at the end of episode is also a very significant variable: going

Table 5.6: Descriptive statistics of the variables duri-durd

variable n  Mean StDev @y Median @3 Maximum
durl 8986 433.47 655.56 69 182 521 4958
dur2 6873 341.93 566.99 52 130 364 4919
dur8 5590 326.28 514.76 41 122 366 4717
dur/ 4705 307.73 490.29 45 125 365 4762
durd 3950 313.16 488.60 43 124 361 4323
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to wage-earner shortens the duration of the first job but increases the duration of
the successive episodes. There is also a seasonal effect, given by variables equarter,
squarter which gives longer duration to the episodes starting on the third quarter of
the year. From the macro-economic indicators we note the positive effect of the rate
of unemployment as well as the gross domestic product. Finally, for the individual
characteristics gender is significant only for the third and fourth spells while the
effect of age decreases with the number of the episode.

The shape of the hazard function, that is the rate of leaving an episode, is
decreasing for all the spells, with o = —0.276, —0.288, —0.306, —0.275 and -0.291,
respectively. This coeflicient is computed using the relationship o = (1/0) — 1 and
can be interpreted as follows for the first spell: a 1% increase in the duration of the

episode produces a 0.28% decrease in the hazard of leaving the first spell.

5.4.2 Pooled analysis

Here we consider the 30104 observations as a sample of randomly chosen observa-
tions. Therefore we fitted a single model with dependent variable dur irrespective
of the number of spell. We used the same set of covariates as in the previous sec-
tion and again a Weibull model was assumed. The estimated coefficients and the
statistics are given in Table 5.12.

For this large sample all variables except the gender of individuals are highly
significant. The duration of a certain episode of labor histories is increased by
starting prior 1984, ending in the first or the third quarter with a transition to
wage-earner and with the increase of unemployment and gross domestic product.
On the other hand, age, having a wage-earning job and starting in the third quarter

tends to short the duration of the episodes.

5.4.3 Correcting the dependence

In this section we consider two analyses. First, the main goal is to detect if there
is dependence or not among the length of the spells belonging to the same individ-
ual. To do this we establish several models for each spell where the duration of the
previous episodes are introduced as covariates. In the second analysis we computed
corrected pooled estimates taking into account for the dependencies among dura-

tions coming from the same labor history. We also tested if there were significant
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Table 5.7: Estimates for durl

variable Estimate Std Error p—value
intercept 6.552 0.27 0.0001
sex -0.041 0.03 0.2333
agel -2.662 0.10 0.0001
age?2 —2.453 0.10 0.0001
agesd -2.270 0.12 0.0001
age4 -1.899 0.11 0.0001
aged -1.489 0.12 0.0001
UNEMP 2.085 0.70 0.0031
gdp 0.004 0.01 0.7325
w-e 1.847 0.21 0.0001
pre84 0.559 0.05 0.0001
equarterl! 0.138 0.05 0.0041
equarter? 0.004 0.05 0.9256
equarters 1.419 0.05 0.0001
squarterl 0.054 0.05 0.2625
squarter? || —0.064 0.05 0.1716
squarters3 || —0.367 0.05 0.0001
trans —0.377 0.04 0.0001
Scale 1.381 .01

NoTE: The log-likelihood for the Weibull model is —14708.62
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Table 5.8: Estimates for dur2

variable Estimate Std Error p—value
intercept 4.301 0.23 0.0001
sex 0.057 0.04 0.1390
agel -1.066 0.13 0.0001
age? -0.967 0.14 0.0001
ages -0.653 0.15 0.0001
age4 -0.659 0.15 0.0001
aged -0.483 0.16 0.0022
unemp 4.857 0.84 0.0001
gdp 0.023 0.01 0.0796
w-e -1.037 0.05 0.0001
pre84 0.796 0.06 0.0001
equarterl! 0.119 0.05 0.0266
equarter? 0.140 0.05 0.0086
equarters 1.210 0.06 0.0001
squarterl -0.023 0.05 0.6610
squarter? || —0.013 0.05 0.8202
squarters3 || —0.041 0.05 0.4227
trans 1.041 0.04 0.0001
Scale 1.404 0.01

NoTE: The log-likelihood for the Weibull model is —11578.67
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Table 5.9: Estimates for dur3

variable Estimate Std Error p—value
intercept 4.711 0.27 0.0001
sex —-0.149 0.04 0.0006
agel -0.968 0.17 0.0001
agel —0.822 0.17 0.0001
ages -0.568 0.18 0.0019
aged —0.640 0.19 0.0007
aged —0.434 0.19 0.0257
UNEMP 5.303 0.97 0.0001
gdyp 0.073 0.01 0.0001
w-e 0.251 0.05 0.0001
pre84 0.654 0.07 0.0001
equarterl! 0.165 0.06 0.0063
equarter? || —0.023 0.06 0.6980
equarters 1.430 0.06 0.0001
squarterl -0.001 0.05 0.9823
squarter? | —0.014 0.06 0.8148
squarters3 | —0.275 0.06 0.0001
trans 0.207 0.04 0.0001
Scale 1.442 .02

NoTE: The log-likelihood for the Weibull model is —9936.65
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Table 5.10: Estimates for dur4

variable Estimate Std Error p—value
intercept 3.985 0.29 0.0001
sex 0.107 0.04 0.0169
agel —-0.694 0.19 0.0004
age? —0.632 0.20 0.0013
ages —0.428 0.20 0.0380
aged —0.346 0.21 0.1070
aged —0.055 0.22 0.8024
unemp 5.020 1.05 0.0001
gdp 0.042 0.01 0.0034
w-e —-0.182 0.05 0.0003
pre84 0.703 0.07 0.0001
equarterl! 0.280 0.06 0.0001
equarter? 0.035 0.06 0.5687
equarters 1.252 0.07 0.0001
squarterl -0.004 0.06 0.9442
squarter? || —0.020 0.06 0.7516
squarter3 || —0.111 0.06 0.0677
trans 0.576 0.04 0.0001
Scale 1.380 0.02

NoTE: The log-likelihood for the Weibull model is —8078.21
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Table 5.11: Estimates for durd

variable Estimate Std Error p—value
intercept 4.349 0.36 0.0001
sex -0.014 0.05 0.7712
agel —-0.605 0.25 0.0142
agel —0.441 0.25 0.0743
agesd -0.333 0.25 0.1922
aged —-0.238 0.26 0.3677
aged —-0.205 0.28 0.4576
unemp 2.606 1.22 0.0335
gdp 0.054 0.01 0.0006
w-e 0.107 0.05 0.735
pre84 0.359 0.08 0.0001
equarter] 0.026 0.07 0.7149
equarter? || —0.037 0.07 0.5957
equarters 1.376 0.07 0.0001
squarterl! 0.250 0.07 0.0003
squarter? 0.121 0.07 0.0841
squarters | —0.224 0.07 0.0014
trans 0.421 0.05 0.0001
Scale 1.411 0.02

NoTE: The log-likelihood for the Weibull model is —6801.49
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Table 5.12: Estimates for the Weibull model of the pooled observations

variable Estimate Std Error p—value
intercept 5.899 0.11 0.0001
sex 0.014 0.02 0.4492
agel -1.892 0.07 0.0001
agel -1.791 0.07 0.0001
ages -1.583 0.07 0.0001
aged -1.430 0.07 0.0001
aged -1.148 0.08 0.0001
unemp 3.702 0.41 0.0001
gdp 0.043 0.01 0.0001
w-e -0.086 0.02 0.0001
pre84 0.752 0.03 0.0001
equarterl! 0.101 0.03 0.0001
equarter? 0.024 0.03 0.3445
equarters 1.423 0.03 0.0001
squarterl 0.025 0.03 0.3233
squarter? | —0.011 0.03 0.6846
squarters || —0.192 0.03 0.0001
trans 0.328 0.02 0.0001
Scale 1.431 0.01

NoTE: The log-likelihood for the Weibull model is —51940.61
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differences of the parameters among the episodes of a labor history.

In order to detect if the duration of a given spell depends on the length of the
previous ones we can formulate a model where the set of covariates includes the
durations of the episodes prior to the analyzed one. Thus we estimate a Weibull
model for each of the durations dur2-durd and, for instance, in the analysis of the
third episode the dependent variable of the log-linear model is [dur$ while variables

ldurl and [dur2 are covariates.

The results for these analyses are given in Tables 5.13, 5.14, 5.15 5.16. The
first point we note is the smaller log-likelihoods for the fitted models including the
logarithms of the previous durations. Therefore if we use the Akaike information
criterion (AIC) for choosing a simple model which fits the data, we find that the more
appropriate parametric models are those with variables ldurl-ldur{ as covariates.
However, we emphasize that the effect of these covariates on the duration varies
according to the episode number. Indeed, for the fifth episodes, the duration of the
fourth episode is not significant. On the other hand, the estimated coefficients of

the previous durations have not the same sign for all the episodes.

From these results we see that there is some kind of dependence of the previ-
ous durations when a given spell is analyzed. However it is difficult to understand
this dependence. The method introduced by Wei, Lin & Weissfeld (1989) gives a
solution when sequences of spells have to be considered. The procedure is based on
modelling each marginal distribution by a Cox proportional hazards model. Thus
without imposing any structure on the dependence among spells the method allows
the computation of estimates of the regression coefficients which are asymptotically
normal with robust variance estimates. Therefore the obtained estimates are com-
puted using the pooled sample but taking into account for the possible dependence

among observations.

To implement this methodology we used a SAS code described by Allison (1998)
where the output contains the corrected estimates of the coefficients, the standard
errors and the statistics for testing the null hypothesis that for each covariate all
coeflicients, one for each spell of a labor history, are equal. The results for our data
are in Table 5.17. Note that the estimated values of the coefficients correspond to the
log-hazard model. Therefore, in order to see differences with the pooled estimations
we have to divide by ¢ and change the sign of the coefficients in Table 5.12. The main

point is that coefficients tend to be greater than in the naive pooled estimates for
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Table 5.13: Estimates for the Weibull model with covariate [durl

variable Estimate Std Error p—value
intercept 4.887 0.24 0.0001
sex 0.039 0.04 0.3008
agel -1.179 0.13 0.0001
age?2 -1.068 0.14 0.0001
ages —0.727 0.15 0.0001
age4 —-0.743 0.15 0.0001
aged -0.537 0.16 0.0006
unemp 5.062 0.84 0.0001
gdp 0.020 0.01 0.1189
w-e -0.865 0.05 0.0001
pre84 0.786 0.06 0.0001
equarterl! 0.123 0.05 0.0218
equarter? 0.140 0.05 0.0082
equarters 1.210 0.06 0.0001
squarter! || —0.008 0.05 0.8718
squarter? || —0.015 0.05 0.7910
squarters3 || —0.051 0.05 0.3171
trans 1.047 0.04 0.0001
[durl —-0.110 0.01 0.0001
Scale 1.400 0.01

NoTE: The log-likelihood for the Weibull model is —11547.10



110 Chapter 5

Table 5.14: Estimates for the Weibull model with covariates lduri, ldur2

variable Estimate Std Error p—value
intercept 3.967 0.29 0.0001
sex -0.123 0.04 0.0043
agel -0.787 0.17 0.0001
age? -0.671 0.17 0.0001
agel -0.497 0.18 0.0063
aged -0.509 0.18 0.0069
aged -0.372 0.19 0.0534
UNEMP 4.489 0.97 0.0001
gdyp 0.075 0.01 0.0001
w-e 0.342 0.05 0.0001
pre84 0.667 0.06 0.0001
equarterl! 0.129 0.06 0.0304
equarter? || —0.013 0.06 0.8195
equarters 1.408 0.06 0.0001
squarterl —-0.007 0.05 0.9065
squarter? | —0.016 0.06 0.7801
squarters | —0.281 0.06 0.0001
trans 0.194 0.04 0.0001
[durl —-0.110 0.01 0.0001
[dur2 -0.036 0.01 0.0077
Scale 1.430 0.01

NoTE: The log-likelihood for the Weibull model is —9862.71
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Table 5.15: Estimates for the Weibull model with covariate ldurl-ldur3

variable Estimate Std Error p—value
intercept 3.902 0.32 0.0001
sex 0.091 0.04 0.0405
agel —0.628 0.19 0.0012
age? -0.556 0.19 0.0045
ages -0.354 0.20 0.0848
age4 -0.277 0.21 0.1946
aged -0.016 0.22 0.9406
unemp 5.034 1.05 0.0001
gdyp 0.036 0.01 0.0100
w-e -0.155 0.05 0.0001
pre84 0.711 0.07 0.0001
equarterl! 0.235 0.06 0.0002
equarter? 0.029 0.06 0.6371
equarters 1.245 0.07 0.0001
squarterl 0.000 0.06 0.9965
squarter? || —0.032 0.06 0.6098
squarters | —0.131 0.06 0.0302
trans 0.596 0.04 0.0001
[durl 0.050 0.02 0.0019
[dur2 0.062 0.01 0.0001
[dur3 —-0.109 0.01 0.0001
Scale 1.371 0.02

NoTE: The log-likelihood for the Weibull model is —8037.09
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Table 5.16: Estimates for the Weibull model with covariate lduri-ldurj

variable Estimate Std Error p—value
intercept 3.074 0.40 0.0001
sex 0.038 0.05 0.4558
agel —-0.368 0.24 0.1310
age?2 —-0.253 0.24 0.2997
ages —-0.192 0.25 0.4452
aged —-0.093 0.26 0.7210
aged —0.063 0.27 0.8149
uUnemp 1.693 1.22 0.1645
gdp 0.062 0.01 0.0001
w-e 0.117 0.06 0.0484
pre84 0.378 0.08 0.0001
equarter] 0.028 0.07 0.6851
equarter? || —0.052 0.07 0.4460
equarters 1.355 0.07 0.0001
squarterl! 0.248 0.07 0.0003
squarter? 0.133 0.07 0.0559
squarters | —0.211 0.06 0.0023
trans 0.421 0.05 0.0001
[durl 0.115 0.01 0.0001
[dur2 0.001 0.01 0.9713
[dur3 0.145 0.01 0.0001
[dur/ —-0.025 0.02 0.1223
Scale 1.389 0.02

NoTE: The log-likelihood for the Weibull model is —6738.94
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Table 5.17: Corrected estimates for the five early spells

variable Estimate Std Error 2-sided p—value
sex 0.011 0.01 0.3911
agel 1.153 0.04 0.0000
age?2 1.041 0.04 0.0000
agel 0.843 0.05 0.0000
aged 0.779 0.05 0.0000
aged 0.608 0.05 0.0000
unemp -2.159 0.29 0.0000
gdp -0.013 0.00 0.0020
w-e 0.136 0.02 0.0000
pre84 -0.349 0.02 0.0000
equarterl! -0.092 0.02 0.0000
equarter? || —0.017 0.02 0.3054
equarter3 || —0.889 0.02 0.0000
squarterl -0.023 0.02 0.1693
squarter? 0.013 0.02 0.4469
squarters 0.140 0.02 0.0000
trans -0.168 0.01 0.0000

the variables related to the kind of spell while for variables related to the individuals
the coefficients tend to be smaller. This is emphasized for the variables age, w-e and

trans.
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5.5 Conclusions

In this section we are going to summarize the results we have obtained from the

analysis of the Spanish labor histories in the period 1980-1993.

The sample we used comes from the social security dataset and it contains the
labor spells of individuals starting to work in the analyzed period. We emphasize
the richness on longitudinal information of these database compare with the stan-
dard data coming from the EPA and the ECPF described in the introduction of
these second part. These data has been used very few times before our analysis,
we emphasize the papers by Garcia-Fontes & Hopenhayn (1996) and Garcia-Pérez
(1997). The data consist of contributed spells to the social security system, being
available the type of contribution, the starting and ending date and the transition
at the end of the spell. Therefore it has been possible to analyze the duration of
three different types of episodes: self-employment, wage-earning and non-working
taking into account for the destination state at the end of the spell (competing risks
models). Moreover we also have considered the longitudinal information available
in the dataset in order to analyze not only a single duration but a set of duration
per individual. As a first analysis for a given duration we have introduced the du-
ration of the previous spells as covariates. Afterwards a model taking into account
that several durations belong to the same individual history has been estimated. As
far as we know there are very few papers about analysis of multiple duration and
competing risks for Spanish labor data. We just emphasize two papers both of them
dealing with unemployment episodes: Gil, Martin & Serrat (1994) establishing a
competing risks model and Arranz & Muro (1999) analyzing three episodes of un-
employment. Thus we emphasize the contribution of the analysis already presented
in this chapter because: first, it is analyzed the duration of episodes which are the
first spells of labor histories; second, we made the analysis of the duration of three
types of spells of the labor market using previous history and calendar variables
as covariates and distinguishing according to their transitions at the end; finally,
in the last analysis we have considered a methodology for analyzing multiple dura-
tions allowing for possible dependencies among them. Standard analysis previous
to this one pooled all the observations and established duration models with all the

observations.

The statistical analysis of the data is focused on the duration of the spells. We
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stated parametric models for the duration conditioned to a set of covariates which
are related to individual characteristics, the spell and the previous labor history,

and economic indicators. We carried out three different analysis:

1. Duration of the first episodes of the labor history. From the descriptive analysis

of Chapter 4 we saw that theses episodes deserve special attention.

2. Duration of the episodes according to the type of them. In the data there
are available three types of episodes: self-employment, wage-earner and non-

working.

3. Duration of the five early episodes as longitudinal data, that is taking into
account the possible correlations among observations which belong to the same

individual.

In the first analysis we have a sample of durations, one for each individual. Thus
we carried out a standard duration analysis, that is, we stated a log-linear model
where the log-transformed duration is linearly related with a set of covariates. We
assumed a Weibull distribution for the duration of the spell. The fitted model gave
a decreasing hazard function, therefore larger durations have smaller probability of
leaving.

In the second analysis, we stated separate models for each of the subsamples
according the type of episodes. Here we have considered all the spells which are not
a first one and we introduced as covariates the labor history previous to the current
spell. Moreover we also used competing risks models in order to see differences
among destination states at the end of a certain spell.

The third analysis compare three situations for the labor histories of five episodes:
Analyzing each of the episodes separately, that is, the first ones, the second ones, and
so on; the pooled analysis where all the observations have been analyzed together as
independent ones; and the analysis correcting possible dependencies due to several
observations come from the same individual.

The most relevant conclusions of each of the analyses are described as follows:

e First spell. We fitted a Weibull model with a decreasing hazard function for
the duration. The statistical significant covariates are age, rate of unemploy-

ment at the beginning of the spell, starting date, the cause of finishing the
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spell and the transition at the end. Larger spells correspond to those start-
ing prior 1984, having a wage-earning destination state and ending due to a
non-volunteer cause. Related to other characteristics, older people have longer
durations, and the rate of unemployment at the beginning of the episode has

a positive sign in the duration.

Type of spell. We fitted several models according to the type of spell. We as-
sumed a generalized gamma model for the duration of self-employment spells,
while for the wage-earner we assumed a log-normal model with a non-monotone
hazard function. Finally for the non-working spells, we assumed a Weibull
model with an increasing hazard function. The significant variables for the
three models are related with the destination state and the previous labor his-
tory (type of previous episodes, the total time elapsed in other states than the
analyzed and the number of times has been on each type of episode). The com-
peting risks analyses allowed differences among the destination states. For the
self-employment spells we found differences according to the transition is work-
ing or non-working. For the wage-earning spells variable sex become significant
with a positive coefficient when the transition is to self-employment, and age
1s significant for the transition to non-working. Finally for non-working spells,
sex 1s significant with a positive value for the transition to self-employment

and the previous duration is significant for the wage-earning destination.

Five early spells. In this analysis we proceed in three stages. First we carried
out separate analyses for episodes according the place on the labor sequence.
Here we obtained a high variation among the estimated coefficients for the
variables depending on the episode correspond to the first, the second or so
on. In the second step we performed estimation on the pooled observations,
that is, without taking into account that some of them belonged to the same
labor history. For this analysis we found positive coefficients for age, starting
date prior 1984 and transition, and negative coefficient for the wage-earner
spells. Third, we analyzed the data introducing the possible dependence be-
tween durations using the previous durations as a covariates and we obtained
significant coefficients for the previous durations. Therefore we fitted a model
taking into account the dependencies among observations and we obtained

corrected estimates of the coefficients and standard errors. The main factors
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which lead to larger durations are: not to be a wage-earning spell, starting
date prior 1984, to have a transition to a wage-earning or non-working, ending
in the first or third quarter, low rates of unemployment at the beginning of the
spell. With respect to individual characteristics we does not find significant
differences between males and females and older people has larger durations

than younger subjects.

Even though duration analysis has been largely used for Spanish data, overall
for unemployment data, as far as we know the analysis of several durations for each
individual has been only used in Arranz & Muro (1999). The study we have carried
out contributes in two directions to the analysis of the Spanish labor data. On
the one hand, we have considered competing risks models to see differences among
transitions at the end of each episode of the labor history. On the other hand, we
have fitted a model for more than one duration per individual taking into account

the possible correlations existing among them.
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5.6 Appendix A: The Weibull regression

Consider a duration variable 7" which has a Weibull distribution with parameters ~

and «. That is the density function of T is given by

ft) = yat*™ exp(—17).

When in addition to the duration variable is also collected a set of explanatory
variables or covariates, we may establish a regression model to analyzed the effects
of these factors on the duration. A usual model is the log-linear model where the
response variables is Y = logT which is linearly related with X a vector of the

covariates, that is
yi=xB+ow, 1=1,--,n (5.13)

where w; is a random disturbance term and 8 and ¢ are parameters to be estimated.
Note that when the disturbance term has a standard extreme value distribution
(see Blossfeld, Hamerle, Mayer, 1989) the duration variable T follows a Weibull
distribution with parameters v = exp(x.8*) with 5" = =8 /o, k =1,--- | p, and
a=1/o.
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5.7 Appendix B: Brief introduction to the SAS®
System

The results obtained in this part are carried out with the SAS® system (www.sas.com)
which is an integrated system of software providing complete control over data ac-
cess, management, analysis and presentation.

The SAS/STAT software contains three procedures concerned with the analysis

of continuous duration data:

o LIFETEST is designed for the analysis of univariate time data and produces
life tables and graphs of the estimated survival functions. It does not produce

estimates of the parameters.

o LIFEREG estimates regression models with censored continuous time data

under several alternative distributional assumptions.

e PHREG uses Cox’s partial likelihood method to estimate regression models

with censored data.

5.7.1 The LIFETEST procedure

We mainly used this procedure in Chapter 4. It allowed to obtain the product limit
estimator using only the time values and the censoring indicator. The following SAS

code shows how to get the product limit estimator:

proc lifetest;
time dur*cens(0);

run;

where dur is the time variable (the value may be complete or censored) and cens(0)
is the indicator of censoring with the value that corresponds to a censored observa-
tion in parentheses.

Besides the estimated survival function S(t), with this procedure you can also
get the plots of the log survival, — log g(t), the log-log survival, log(— log g(t)), and
the empirical hazard. Moreover we can test the differences in survival functions
between groups as well as test whether quantitative covariates are associated with

survival time.



120 Chapter 5

5.7.2 The LIFEREG and PHREG procedure

Both of these procedures are used for estimating regression models with a censored
dependent variables related to a set of covariates.

Because we have mainly used the LIFEREG procedure in the previous chapters,
we are going to focus on it. It is used for computing the estimates of the accelerated
failure time models using the method of maximum likelihood. Indeed, LIFEREG

estimates a log-linear model where the dependent variable is log T', that is

logT; =xiB+o0e, i=1,---.,n (5.14)

where ¢, is a random disturbance term and (3, ) are the parameters to be estimated.

The SAS code to estimate this model is for the general case:

proc lifereg;

model dur*cens(0)=varl var2 var3 ... /dist= ;
run;
where varl var2 var3... are the covariates contained in the vector x; and dist=

expects the assumed distribution for 7', for instance dist= Weibull.

Here we note that the output obtained from LIFEREG is related to log T', how-
ever in survival analysis it is also of interest to control the effect of the covariates on
the hazard function, A(¢). To be able to do this we have to know the relationship

between the coefficients in equation (5.14) and

log A(t) = g(t; ) + xiB%; (5.15)

The two special cases of exponential and Weibull distributions come from this equa-
tion. For the exponential distribution ¢(¢;¢) = 1 and 8* = —8, and for the Weibull
model g(t;¢) = alogt and 8" = -3/

Moreover, for the estimated values of the coefficients in the output of
LIFEREG there are also the Wald tests for testing the hypothesis that each co-
efficient is 0. These are obtained by dividing each coefficient by its standard error
and squaring the result.

More extended details about these procedures are given by Allison (1998).
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5.8 Appendix C: Generalized gamma model

This distribution was firstly proposed by Stacey (1962) but was defined in a way
which presented several problems in statistical inference procedures. Later a work
due to Prentice (1974) proposed a re-parameterization of the density function and
this eliminated some of the difficulties.

The generalized gamma distribution has a probability density function (p.d.f.)
given by
a X7t exp (—A )

()

with parameters a > 0,y > 0 and A > 0. This family of distributions includes as

ft) = ,t>0 (5.16)

special cases the exponential (o = v = 1), the Weibull (v = 1), the Gamma (o = 1)
and tends to the log-normal as v — oc.
The re-parameterized function comes from considering ¥ = log T and setting

u=—a"tlog A and b = a~!. It follows that

Y —u
W =
b
has a log-gamma distribution with p.d.f.
(W =€) <o (5.17)
L(v)

From here, if we consider

Y —
Wi =2 (W —logy) = =—F

o
where

b
U:m and p =u+ blog~,

then the p.d.f. for W only depends on parameter v > 0 and it is given by,

12 oy Y2, — ~ exp(wyy~ 12
f(un)zﬁy p(’y 1=y exp(uny )), —00 < Wy < 00 (5.18)

()
From here the p.d.f. for Y = log T may easily be computed.

A further re-parameterization defines y and o as above but takes g = v~/2. The
generalization of this case to include g < 0 due to Prentice (1974) considers that W,
has p.d.f. defined by

Flun) = l9l(g~*)*" exp(g‘z(gwl—egwl))7 oo < < 5 (5.19)

['(g7?)
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where —oo < g < oo, g # 0. Using the transformations already described, we

obtain the p.d.f. for our variable T' of interest

R Y

(t) e ,

t>0 (5.20)
where g, i and o are parameters. Hence, the survival function is given by,

I(t9/7e¢=9nlo g=2 if g<0
sy=1 ! g7) g (5.21)
1— I(t9/7e9m/7 g=2) if g >0

where I(-,-) is the incomplete gamma function.'® From the quotient of functions
(5.20) and (5.21) the hazard function is obtained.

When some covariates are also available and we are interested in studying the
effects of those variables on T', then parameter p may be re-parameterized as p =
X', where X denotes the vector of covariates and 3 the unknown parameters. In
fact, this corresponds to assuming a linear relationship between ¥ = log T and X

given by
Y =X3+e€ (5.22)

where € is a random variable independent of X and with a p.d.f. defined in (5.18).

The effects of covariates on the hazard function are shown in Figure 5.1 and
Figure 5.3. Indeed, for a given value of parameters g, ¢ and p, the hazard function
increases faster until the maximum is reached and then it decreases slowly to zero.
Once we have fixed parameters g and o, the effects of varying p are mainly on the
maximum. That is, for large values of y (Figure 5.1) the hazard function takes very
small values and the maximum is reached at value that increases with u. However,
for small values of p (Figure 5.3), including negative values, the maximum of the
hazard function is taken for ¢ close to zero so that the hazard is almost decreasing
for all ¢.

MMore details about this are given by Lawless (1982).
5The incomplete gamma function for a general case of parameters a and b is defined by

a — —
fo ubt~le v du

I{a,b) = 0
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Figure 5.2: Hazard function for =0
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Figure 5.3: Hazard function for 4 = —5
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5.9 Appendix D: Residual plots

Here we display the plot of the residuals for the fitted models in the chapter. In the
graphics we have plotted the Cox-Snell residuals defined as ¢; = — log S(t,/x,) where
g(t) is the estimated probability of surviving to time ¢, based on the fitted model.
If the fitted model is correct the ¢; have approximately an exponential distribution
with the parameter equals 1. Therefore the plot of residuals against — log g(t), the
Kaplan-Meier estimator of the survival function, should be approximately a straight

line.
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Figure 5.4: Residual plot for the Weibull model of dur!

LOGAS
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Figure 5.5: Residual plot for the generalized gamma model for the self-employment

duration

LOGAS
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Figure 5.6: Residual plot for the log-normal model for the wage-earning duration

LOGAS |
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Figure 5.7: Residual plot for the Weibull model for the unemployment duration

LOGAS
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5.10 Appendix E: Competing risks models for types
of episodes

In the next tables there are the results of the estimates for the competing risks

models introduced in Section 5.3.

5.10.1 Self-employment:
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Table 5.18: Estimates for the transition self-employment to self-

employment

variable Estimate Std Error p—value
intercept 6.575 0.41 0.0001
sex 0.062 0.11 0.5815
agel -0.217 0.20 0.2798
agel —-0.012 0.19 0.9504
agel —0.073 0.21 0.7224
aged —-0.051 0.24 0.8277
ageb -0.406 0.38 0.7971
unempl —-0.244 0.23 0.2980
unemp2 -0.154 0.18 0.3861
unemps -0.536 0.18 0.0026
unemp4 0.249 0.23 0.2864
unempd —0.060 0.20 0.7621
pre84 0.053 0.20 0.7971
empl=1 1.056 0.14 0.0001
empl=2 0.275 0.17 0.1022
nselfe —0.433 0.06 0.0001
nw-ee -0.081 0.02 0.0010
nnonce 0.087 0.04 0.0461
equarterl! 0.223 0.16 0.1680
equarter? || —0.874 0.20 0.0001
equarters 0.494 0.20 0.0130
squarterl 0.107 0.15 0.4849
squarter? 0.105 0.16 0.5238
squarter3 || —0.010 0.16 0.9507
Scale 1.237 0.07

Shape 0.345 0.19

NoTE: The log-likelihood for the generalized gamma model is —1075.42
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Table 5.19: Estimates for the transition self-employment to wage-earner

variable Estimate Std Error p—value
intercept 8.245 1.07 0.0001
sex 0.331 0.23 0.1561
agel —-0.290 0.47 0.5348
age?2 —0.475 0.44 0.2769
ages —0.486 0.49 0.3254
age4 -0.291 0.51 0.5694
ageb —0.366 0.86 0.6715
unempl —0.089 4.60 0.9845
pre84 0.199 0.32 0.5452
empl=1 -1.185 0.37 0.0014
empl=2 —-0.998 0.37 0.0075
nselfe 1.128 0.27 0.0001
nw-ee —-0.076 0.04 0.0684
nnonce 0.023 0.08 0.7682
squarterl 0.723 0.26 0.0069
squarter? 0.624 0.27 0.0218
squarters || —0.089 0.282 0.9845
Scale 1.1186 0.34

Shape® 0.934 0.49

Tt is accepted a gamma model (shape=scale) with two parameters with shape=1.1
*NoTE: The log-likelihood for the generalized gamma model is —444.45. The

fitted model does not accept the seasonal variables equarteri-equarter3
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Table 5.20: Estimates for the transition self-employment to non-working

variable Estimate Std Error p—value
intercept 9.609 0.82 0.0001
sex —0.634 0.24 0.0088
agel —-1.545 0.49 0.0017
age? -0.704 0.49 0.1476
ages -0.331 0.53 0.5324
aged -1.300 0.56 0.0196
ageb -1.229 0.76 0.1089
unemp I -1.626 0.52 0.0020
unemp2 -1.750 0.40 0.0001
unemp3 -1.918 0.40 0.0001
unemp4 —-1.342 0.51 0.0084
unempd -1.730 0.45 0.0001
pre84 0.546 0.43 0.2079
empl 0.063 0.15 0.6814
nselfe —0.178 0.14 0.2034
nw-ee 0.087 0.07 0.2202
nnonce -0.118 0.11 0.2861
equarterl! 2.819 0.32 0.0001
equarter? || —0.017 0.36 0.9619
equarters 0.598 0.32 0.0599
squarterl 1.081 0.35 0.0019
squarter? 0.763 0.35 0.0301
squarters 0.199 0.34 0.5610
Scale 1.858 0.12

NoTE: The log-likelihood for the log-normal model is —406.79
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5.10.2 Wage-earner:
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Table 5.21: Estimates for the transition wage-earner to self-employment

variable Estimate Std Error p—value
intercept 12.152 0.94 0.0001
sex 0.716 0.19 0.0001
agel —-0.018 0.44 0.9677
age?2 —-0.052 0.43 0.9036
ages -0.029 0.45 0.9479
aged 0.353 0.55 0.5182
ageb 0.064 0.74 0.9307
unempl —-0.599 0.41 0.1446
unemp2 —0.864 0.32 0.0077
unemps —0.736 0.33 0.0257
unemp4 —-0.492 0.46 0.2904
unempd —0.528 0.37 0.1507
gdyp 0.073 0.05 0.1653
pre84 0.535 0.36 0.1349
empl=1 -4.214 0.42 0.0001
empl=2 -0.327 0.20 0.0994
nselfe 0.511 0.46 0.2697
nw-ee —-0.012 0.03 0.7530
nnonce —-0.019 0.07 0.7784
lotimese —0.320 0.17 0.0597
lotimewe —0.167 0.09 0.0535
lotimenc 0.014 0.04 0.7480
equarter! || —0.062 0.23 0.7885
equarter? 0.146 0.24 0.5409
equarters 1.329 0.23 0.0001
squarterl 0.332 0.24 0.1684
squarter? 0.168 0.25 0.4999
squarters 0.044 0.23 0.8476
Scale 2.499 0.15

NoTE: The log-likelihood for the log-normal model is —901.01
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Table 5.22: Estimates for the transition wage-earner to wage-earner

variable Estimate Std Error p—value
intercept 5.861 0.12 0.0001
sex 0.022 0.02 0.3233
agel -0.174 0.05 0.0018
age? —-0.136 0.05 0.0132
ages 0.011 0.06 0.8507
age4 0.029 0.06 0.6588
ageb 0.230 0.09 0.0143
unemp I -0.101 0.05 0.0312
unemp2 —-0.076 0.04 0.0394
unemps —-0.078 0.04 0.0308
unemp4 0.053 0.06 0.3486
unempd -0.015 0.04 0.7305
gdp —-0.026 0.01 0.0001
pre84 —0.008 0.04 0.8504
empl=1 0.077 0.14 0.5687
empl=2 —-0.579 0.03 0.0001
nselfe —-0.097 0.10 0.3521
nw-ee —0.057 0.00 0.0001
nnonce 0.002 0.01 0.8184
lotimese 0.096 0.05 0.0617
lotimewe 0.099 0.01 0.0001
lotimenc -0.015 0.01 0.0091
squarterl -0.003 0.03 0.9193
squarter? | —0.012 0.03 0.7106
squarters | —0.111 0.03 0.0004
Scale 1.434 0.01

Shape -1.138 0.23

NoTE: The log-likelihood for the generalized gamma model is —19701.19
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Table 5.23:

Estimates for the transition wage-earner to non-working
variable Estimate Std Error p—value
intercept 4.332 0.10 0.0001
sex 0.021 0.02 0.2845
agel —0.288 0.05 0.0001
age? -0.196 0.05 0.0001
ages -0.095 0.05 0.0727
age4 -0.086 0.06 0.1407
ageb 0.137 0.08 0.1047
unemp I —0.077 0.04 0.0614
unemp2 -0.052 0.03 0.1045
unemps —0.044 0.03 0.1707
unemp4 -0.045 0.05 0.3621
unempd —-0.093 0.04 0.0117
gdp -0.010 0.01 0554
pre84 —-0.031 0.04 0.3890
empl=1 0.158 0.12 0.1991
empl=2 —0.063 0.02 0.0084
nselfe —-0.083 0.08 0.2940
nw-ee 0.026 0.00 0.0001
nnonce -0.118 0.01 0.0001
lotimese 0.048 0.04 0.1757
lotimewe 0.225 0.01 0.0001
lotimenc —-0.008 0.01 0.1414
equarterl! -0.215 0.03 0.0001
equarter? || —0.172 0.03 0.0001
equarters 0.331 0.03 0.0001
squarterl 0.063 0.03 0.0392
squarter? || —0.171 0.03 0.0001
squarters3 || —0.367 0.03 0.0001
Scale 1.286 0.01

Shape -1.618 0.04

NoTE: The log-likelihood for the generalized gamma model is —20495.34
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5.10.3 Non-working:
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Table 5.24: Estimates for the transition non-working to self-employment

variable Estimate Std Error p—value
intercept 8.356 2.29 0.0003
sex 0.919 0.23 0.0001
agel -0.054 0.66 0.9340
age? —0.465 0.63 0.4615
ages —0.664 0.64 0.3031
age4 —-0.464 0.68 0.4935
quall?2 0.039 0.20 0.8472
qual34 -0.123 0.24 0.6094
pre84 0.738 0.26 0.0040
bempls 0.477 0.59 0.4176
lodur 0.196 0.97 0.8402
lodur2 -0.020 0.09 0.8348
lotimewe —-0.238 0.13 0.0719
lotimenc —-0.010 0.04 0.7938
equarter] 0.296 0.26 0.2637
equarter? 0.120 0.24 0.6119
equarters 1.747 0.28 0.0001
squarter! | —0.372 0.26 0.1572
squarter? || —0.524 0.27 0.0487
squarters || —0.045 0.26 0.8656
Scale 0.860 0.06

NoTE: The log-likelihood for the Weibull model is —432.83
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Table 5.25: Estimates for the transition non-working to wage-earner

variable Estimate Std Error p—value
intercept 7.066 0.50 0.0001
sex —0.064 0.04 0.0884
agel 0.095 0.12 0.4147
age?2 —-0.021 0.11 0.8545
agel 0.051 0.12 0.6677
aged 0.109 0.12 0.3754
quall?2 0.086 0.04 0.0323
qual34 -0.015 0.05 0.7515
unemp 3.239 0.82 0.0001
gdp -0.035 0.01 0.0003
pre84 0.208 0.05 0.0001
bempls —-0.001 0.17 0.9943
lodur —0.805 0.20 0.0001
lodur2 0.077 0.02 0.0001
lotimewe —0.154 0.03 0.0001
lotimenc 0.001 0.01 0.9477
equarterl! -0.040 0.06 0.5069
equarter? 0.389 0.06 0.0001
equarters 0.850 0.06 0.0001
squarterl -0.222 0.05 0.0001
squarter? || —0.510 0.06 0.0001
squarters || —0.410 0.05 0.0001
Scale 1.140 0.02

Shape -1.156 0.07

NoTE: The log-likelihood for the generalized gamma model is —5975.38
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This thesis has been structured in two parts with the common topic of the survival

analysis. In the first part is proposed a consistent estimator for the regression

coefficients of a censored linear model with measurement error on covariates. In the

second part is analyzed a database about episodes of individual labor histories. The

main goal has been the analysis of the duration of spells.

Results in Part I:

1.

Using a Monte Carlo illustration we showed that ignoring the presence of
measurement error on covariates lead to biases on the standard estimates of
the regression coefficients of an accelerated failure time model. Moreover,
even though only one of the covariates is affected by measurement error, the

estimator of all coefficients are also biased.

. We have proposed a methodology for obtaining consistent estimates for a linear

model with a censored response and convariates contaminated with measure-

ment error. It is named two-step estimator.

The two-step estimator modifies the standard procedures of estimation for
linear measurement error models in order to account for censoring. In the
first step is computing a consistent estimate, say Ky, of E(XY'), being X the
observed covariate and Y the complete response. The second step uses Ky,
instead of E(XY) in the standard methods for estimating errors-in-variables

models.
Standard errors have been computed using Bootstrap

The performance of the two-step estimator has been illustrated with a Monte

143
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Carlo study varying sample sizes, amount of measurement error and percentage

of censoring.

Results in Part II:

1. We have analyzed a database containing contributions to the social security,

that is, sequences of individual labor spells.

2. Non-parametric estimates of the survival functions has been obtained for sev-
eral sets of episodes: working versus non-working spells, first episodes com-

pared with the next ones and according to the starting dates.

3. Comparison of estimated survival curves according to the transition at the
end of the spell allow us to conclude that: the episodes of self-employment
has higher survival than wage-earning, for the spells starting prior 1984 those
of wage-earner has higher survival than non-working and lower survival than
self-employment, and unemployment has higher survival than other causes of

non-working spells.

4. Three statistical analysis have been carried out: for the first episodes, for
the three type of episodes, and the five early spells taking into account for

dependencies among observations.

5. The duration of the first episode, controlling for the other covariates, has been
determined by: age where older individuals have longer duration, starting
the episode prior 1984 lead to 81% larger durations, ending the spell in the
third quarter of a year also increases the duration, and the transition to a

non-working episode shorts the duration.

6. Differences have been found among type of episodes. Variables related with
the previous history like number of previous episodes, total time spent on each
type of episodes before the current one and the type of previous episode has
been used as covariates. Controlling for the other covariates, the duration
has been determined by: the starting date is significant for wage-earner and
unemployment spells increasing the duration by 15%; previous experience on
the same type of episodes increases the analyzed duration; the total number

of previous episodes shorten the duration by 44% for the self-employment and
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by 8% for the wage-earning; and the transition to non-working have longer

durations than going to a working episode.

7. To analyze the labor histories with up to five spells we carried out three alterna-
tives: Five separate analyses, one for each successive spell; a pooled analysis
for all the observation; and pooled analysis controlling by the dependencies

among observations.

8. From the corrected estimates for the five early spells, controlling for other
variables, we conclude that: older people have longer durations; the risk of
leaving a wage-earning spell is 14% greater than the risk of leaving from other
episodes; the hazard of spells starting prior 1984 is only 70% of the hazard
for those spells starting after 1984; and the risk to have a transition to wage-
earner is about 85% of the risk to have a self-employment spells at the end of

the current one.

Future research

The results and analyses presented in this thesis may be generalized on several

aspects that will be the goals of our future research:

e Define the two-step estimator for the case of unknown covariance matrix of

the measurement error.

o Generalize the two-step estimator to the case of multivariate regression model.
That is to the case with several responses. In that case the second step could

use the specialized methods of the factor analysis.

o Apply the generalized two-step estimator just mentioned to the analysis of the

labor histories.

o Fitting competing risks models for the labor histories taking into account for

the dependencies among observations.
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