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Abstract 
 
 
Despite some great success, many human diseases cannot be effectively treated, 

prevented or cured, yet. Moreover, prescribed drugs are often not very efficient and 
cause undesired side effects. Hence, there is a need to investigate the molecular 
basis of diseases and adverse drug reactions in more detail. For this purpose, 
relevant biomedical data needs to be gathered, integrated and analysed in a 
meaningful way.  

In this regard, we have developed novel integrative analysis approaches based 
on both perspectives, classical multivariate statistics and systems biology. A novel 
multilevel statistical method has been developed for exploiting molecular and 
pharmacological information for a set of drugs in order to investigate undesired side 
effects. Systems biology approaches have been used to study the genetic basis of 
human diseases at a global scale. For this purpose, we have developed an integrated 
gene-disease association database and tools for user-friendly access and analysis. 
We showed that modularity applies for mendelian, complex and environmental 
diseases and identified disease-related core biological processes. We have 
constructed a workflow to investigate adverse drug reactions using our gene-disease 
association database. A detailed study of currently available pathway data has been 
performed to evaluate its applicability to build network models. Finally, a strategy 
to integrate information about sequence variations with biological pathways has 
been implemented to study the effect of the sequence variations onto biological 
processes.  

In summary, the developed methods are of immense practical value for other 
biomedical researchers and can aid to improve the understanding of the molecular 
basis of diseases and adverse drug reactions. 

 
Resumen 

 
 
A pesar de que existen tratamientos eficaces para las enfermedades, no hay 

todavía una cura o un tratamiento efectivo para muchas de ellas. Asimismo los 
medicamentos pueden ser ineficaces o causar efectos secundarios indeseables. Por 
lo tanto, es necesario investigar en profundidad las bases moleculares de las 
enfermedades y de los efectos secundarios de los medicamentos. Para ello, es 
necesario identificar y analizar de forma integrada los datos biomédicos relevantes.  

En este sentido, hemos desarrollado nuevos métodos de análisis e integración de 
datos biomédicos que van desde el análisis estadístico multivariante a la biología de 
sistemas. En primer lugar, hemos desarrollado un nuevo método estadístico 
multinivel para la explotación de la información molecular y farmacológica de un 
conjunto de drogas a fin de investigar efectos secundarios no deseados. Luego, 



x 

hemos usado métodos de biología de sistemas para estudiar las bases genéticas de 
enfermedades humanas a escala global. Para ello, hemos integrado en una base de 
datos asociaciones entre genes y enfermedades y hemos desarrollado herramientas 
para el fácil acceso y análisis de los datos. Mostramos que las enfermedades 
mendelianas, complejas y ambientales presentan modularidad e identificamos los 
procesos biológicos relacionados con dichas enfermedades. Hemos construido una 
herramienta para investigar las reacciones adversas a los medicamentos basada en 
nuestra base de datos de asociaciones entre genes y enfermedades. Realizamos un 
estudio detallado de los datos disponibles sobre los procesos biológicos para evaluar 
su aplicabilidad en la construcción de modelos dinámicos. Por último, 
desarrollamos una estrategia para integrar la información sobre las variaciones de 
secuencia de genes con los procesos biológicos para estudiar el efecto de dichas 
variaciones en los procesos biológicos. 

En resumen, los métodos presentados en esta tesis constituyen una herramienta 
valiosa para otros investigadores y pueden ayudar a mejorar la comprensión de las 
bases moleculares de las enfermedades y de las reacciones adversas a los 
medicamentos. 
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Preface 
 
 
Ever since, people have been suffering from diseases and thus scientists and 

health professionals have been trying to unravel and understand the underlying 
mechanisms in order to find effective remedies. In this context, drugs constitute key 
tools to treat the diseases. However, a significant number of diseases cannot be 
effectively treated yet. Additionally, many of the prescribed drugs are not efficient 
enough and cause undesirable adverse reactions. Thus, there is an urgent need to 
further investigate the molecular basis of diseases and adverse drug reactions. For 
this purpose relevant biomedical data has to be gathered, integrated and analysed in 
a meaningful way. However, biomedical data is typically very heterogeneous and 
scattered over various repositories and the scientific literature.  

Hence, the main objective of this PhD thesis was the development and 
application of novel integrative data analysis approaches to investigate the 
molecular basis of diseases and adverse drug reactions in more detail. In this regard, 
the biomedical problems were studied from two different points of view: classical 
multivariate statistics and systems biology. 

This PhD thesis addresses several studies on the mechanisms underlying 
diseases and adverse drug reactions and introduces several novel methods and tools, 
which are capable to deal with the magnitude, diversity and fragmentation of 
biomedical data. Each study started with an extensive evaluation of available and 
relevant biomedical data followed by the development of tools for its automatic 
retrieval, integration and subsequent analysis of the gained information.  

In particular, we started the work with the more classical multivariate statistical 
approaches and developed a novel multilevel statistical method for its application in 
drug discovery projects (Selent et al, 2010). When studying the statistical 
approaches it became clear that statistical associations are not necessarily causal 
and other approaches have to be followed up to get a mechanistic understanding of 
the biological processes under study. Such mechanistic understanding requires the 
integration of all information available about the involved key players and how they 
interact in the cell. Hence, the focus shifted from statistical to systems biology 
approaches, which are trying to study a biological system at a more global scale by 
considering the interactions between the involved entities. These interactions are 
typically represented by means of biological networks. We systematically studied 
public pathway data regarding its accessibility and applicability for building models 
that simulate static and dynamic properties of biological networks (Bauer-Mehren 
et al, 2009b). Another work started with the extensive analysis of repositories of the 
state-of-the-art knowledge about the genetic origin of human diseases. We 
developed an integrated gene-disease association database and implemented tools 
for retrieval, integration and analysis (Bauer-Mehren et al, 2010b; Bundschus et al, 
2010). A detailed study based on the newly integrated gene-disease associations 
revealed several interesting findings about human diseases (Bauer-Mehren et al, 
2010a). We furthermore present a workflow for investigating the molecular 
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mechanisms underlying adverse drug reactions, which also uses the our gene-
disease association database (see section 3.1.4). In another work, we introduce an 
approach to integrate biological pathways with information about the functional 
effects of sequence variations to build network models that allow assessing the 
effect of the variations on the dynamics of the biological processes. This approach 
can be of particular interest to investigate the mechanisms underlying diseases and 
adverse drug reactions being associated to sequence variations (Bauer-Mehren et al, 
2009a). 

In summary, the developed approaches and tools are very user-friendly and 
hence of immense value for other biomedical researchers. Their direct applicability 
in clinical practice and drug development projects has been demonstrated. It is 
therefore hoped that these methodologies and tools will eventually help to improve 
our understanding of the molecular basis of diseases and adverse drug reactions and 
will hence bring us closer to an improved clinical practice being more personalized 
and preventive.  

 
This PhD thesis is divided into several chapters. In the first chapter typical 

biomedical problems are introduced regarding the understanding of the mechanisms 
underlying diseases and adverse drug reactions. Moreover, the need of data 
integration in biomedical research is discussed in detail. Current statistical and 
systems biology approaches are introduced. In chapter two, the objectives of this 
PhD thesis are explained and it is pointed out how they have been addressed. In the 
third chapter, the research carried out during this PhD thesis is presented. The final 
discussion critically evaluates the research carried out and puts the findings into the 
current state-of-the-art context. Finally, the list of publications resulting from the 
research carried out during this PhD thesis is provided.    
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1.1. Typical problems in biomedical research 
Ever since, people have been suffering from diseases and have been trying to 

unravel and understand the underlying mechanisms in order to find effective 
remedies. Herbs that are for instance traditional in Chinese medicine, and later 
chemical substances or drugs have been used to prevent and cure the diseases. 
Despite the success of drug therapies, several diseases cannot be effectively treated 
yet. Additionally, many of the prescribed drugs and also herbs are not very efficient 
and cause undesirable side effects, which in severe cases can even lead to the 
withdrawal of the drug.  

In 2001, the first draft of the human genome was published (Lander et al, 2001; 
Venter et al, 2001) and it was widely believed that this would revolutionize 
medicine. In the following years, the rapid maturation of low-cost high-throughput 
technologies for genotyping made possible genetic association studies which 
allowed to determine genetic variants associated to a large variety of common 
human diseases including hearth disease (Helgadottir et al; McPherson et al, 2007), 
obesity (Herbert et al, 2006) and type I and II diabetes (Grant et al, 2006; Sladek et 
al). Nowadays, with the next-generation sequencing techniques, we are even able to 
sequence an individual’s genome in few weeks at few costs.  

However, most of the gained information has not been translated into clinical 
practice yet. While for some diseases the underlying mechanisms are known and 
have led to effective therapies for instance through drugs, for some others this is not 
the case. This can be explained as many common human diseases originate from 
complex interactions between genetic variations and environmental factors such as 
diet, age, sex and exposure to environmental toxins. Hence, for many diseases the 
underlying mechanisms are very complex and not completely understood. 
Consequently, we are still not able to fully treat common human diseases such as 
cardiovascular disorders, mental diseases or cancers. Moreover, there is a 
dramatically high number of drug candidates failing in clinical development due to 
lack of efficacy or because they cause severe adverse effects. In many cases such 
adverse effects only appear in some patients. Hence, even if the mechanism of the 
drug action seems to be understood, there are other factors such as genetic variants 
and environmental influences, which are responsible for individual drug response.  

Human diseases and drug adverse reactions pose significant social and financial 
burdens to the public. Thus, the study of the underlying mechanisms is a major 
concern for biomedical research and therefore focus of this thesis. It is greatly 
hoped that success in this area will further support the vision of a personalized 
medicine being predictive and preventive. 

1.1.1. Human disease mechanisms 
For many years, scientists have been trying to understand the molecular and 

physiopathological mechanisms of diseases in order to design new preventive and 
therapeutic strategies. In the last decades the improvement of high-throughput 
technologies led to the generation of massive amounts of large-scale and high-
dimensional molecular and physiological data. In this context, the combination of 
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experimental and computational methods resulted in the discovery of disease-
related genes, which were then studied to gain better understanding of disease 
mechanism (Botstein and Risch, 2003; Kann, 2010). A well-known example is 
Phenylketonuria, where first an association between the mutant PAH genotype and 
the disease was found, and then the function of the encoded PAH enzyme was 
studied with respect to the mechanism leading to the disease (Scriver and Waters, 
1999). Another more recent example is the association of mutations of the BRCA1, 
respectively BRCA2 gene with an increased risk of breast and ovarian cancer, 
which had important implications for diagnosis and prognosis of these diseases 
(Futreal et al, 1994; Miki et al, 1994).  

Despite some success, we are still far from understanding the molecular 
mechanisms underlying many human diseases. Although there are successful 
treatments for many human diseases we are still not able to cure or prevent common 
diseases, including asthma, cardiovascular diseases, mental disorders and cancer. 
This can mainly be explained by the complexity of the underlying mechanisms that 
is caused by several factors. 

First, it has to be kept in mind that the associations found between genes and 
diseases are of statistical nature and do not necessarily mean that the found genes 
cause the disease (see figure 1A). Hence, the mere association between a genetic 
variant and a disease is usually not sufficient to explain disease development (Kann, 
2010). It is therefore required to determine the exact role of the genetic variant in 
the disease mechanism. Second, DNA variations on their own do not lead to disease 
but affect molecular traits, such as the function of the proteins the genes are 
encoding, and these changes in turn affect the disease risk (see figure 1B). Finally, 
the biological context in which disease-related genes operate needs to be considered 
(see figure 1C). Many human diseases cannot be attributed to malfunction of single 
genes but arise due to complex interactions among multiple genetic variants 
(Hirschhorn and Daly, 2005). Ultimately, the influence of external variables such as 
environmental factors, infectious agents or drugs has to be considered when 
studying the occurrence and evolution of a disease. Hence, overall the mechanism 
underlying human diseases can be extremely complex. Even for mendelian 
diseases, such as Phenylketonuria, the underlying mechanisms are not fully 
understood. For instance, even if the mutant PAH genotype is known to be 
associated with the disease and also the role of the encoded PAH enzyme is well 
studied, there are many patients with the same mutation but greatly differing 
phenotype. Hence, phenotypic outcome cannot be predicted solely based on the 
genotype (Scriver et al, 1999). As a consequence, the interactions of genetic and 
environmental factors have to be studied in order to understand the molecular 
mechanism of disease development (Schadt, 2009). Such interactions can then be 
used to generate predictive models in order to study which molecular states drive 
disease development. This is furthermore of particular value for drug discovery, 
where the molecular states associated with the disease could be targeted in order to 
prevent or treat the disease. The identification and subsequent analysis of these 
molecular, disease-related states can have further implications, such as for the 
discovery of biomarkers that can be used for early detection and diagnosis of 
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diseases, or the prediction of clinical outcome and response to treatment (Chin and 
Gray, 2008). A well-known example for early detection and diagnosis is the 
aforementioned association of BRCA1/2 mutations with breast cancer. As a result, 
women with family breast cancer incidence can undergo genetic testing for 
BRCA1/2 mutations and hence can pursue stronger cancer surveillance and 
prevention regimens if tested positive or avoid unnecessary interventions if tested 
negative (Armstrong et al, 2000). Another example is where the genetic variation 
was found to be associated with individual drug response. For instance, it has 
become clinical practice to genotype patients with non-small cell lung cancer for 
mutations in the gene encoding the epidermal growth factor receptor (EGFR), in 
order to aid decision making about which drug to use for treatment (Sharma et al, 
2007). Both examples can be seen as first attempts of personalized or patient-
specific medication being one of the most promising and pushing fields in modern 
medicine. 

In the last years we have made important improvements in understanding 
disease mechanisms and we have accumulated tremendous amounts of genomic 
data. Many findings, however, have not been translated into clinical practice, yet. 
Hence, to the best of our current knowledge, the mere associations between 
genomic information and diseases, although necessary, are not sufficient for 
understanding complex disease mechanisms. Besides, even the knowledge of a 
specific gene making substantial contribution to a disease phenotype can often not 
be directly translated to effective treatment due to complex downstream interactions 
in transcriptional, translational and posttranslational processes. Additionally, the 
influence of environmental factors on human health has to be considered when 
studying disease development and progression. An example is arsenic being a well-
established human carcinogen. Accordingly, many studies support an association 
between arsenic exposure and increased incidence of solid tumours, such as lung, 
bladder, prostate, renal and skin tumours (Celik et al, 2008; Chiou et al, 1995; 
Radosavljevi! and Jakovljevi!, 2008; Smith et al, 1992; Tsuda et al, 1995; Yang et 
al, 2008). Studies conducted in developing countries show a general increase in the 
incidence of different types of cancers, which is hypothesised to be associated with 
exposure to environmental toxins among other factors, some of them of genetic 
origin (Park et al, 2008; Sankaranarayanan and Boffetta, 2010; Thun et al, 2010). 
Thus, there is a strong need to investigate the interactions among environmental 
carcinogens and genetic factors (Sankaranarayanan et al, 2010). Moreover, for 
many diseases, dysfunction of whole pathways or functional modules of interacting 
genes plays an important role in disease aetiology. For instance, (Lim et al, 2006) 
showed that a set of functionally related proteins is relevant to several forms of 
human ataxias, and (Jones et al, 2008) discovered a set of core signalling pathways, 
which are genetically altered in pancreatic cancers. Hence, in order to understand 
disease mechanisms, a network of the key players related to the disease and their 
interactions, for instance through biological pathways, has to be considered. These 
disease-related molecular networks can then be studied with respect to genetic and 
environmental perturbations and how they affect the disease risk (see figure 1C).  
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At the end of the day, in order to achieve such understanding of disease 
mechanisms, the entire body of knowledge about genes, their association to 
diseases, their interactions, influence of environmental variables, etc. has to be 
taken into account. To achieve this, integrative data analysis approaches are 
required that cope with the heterogeneity and amount of biological data and are able 
to produce the complete picture. This picture can eventually be used to predict 
disease progression, treatment outcome and therefore aid development of safer and 
more efficient drugs.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Causal gene-disease relationships, extracted from (Schadt, 2009).  

(A) Classical approach where DNA variation correlates directly with disease  
(B) DNA variation leads to modified molecular traits that in turn affect disease risk 
(C) More realistic view where DNA variation and environmental perturbations affect 

molecular states of networks that in turn affect disease risk 
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1.1.2. Adverse drug reaction mechanisms 
It is widely accepted that any substance that has a therapeutic effect can also 

produce an undesirable adverse reaction (Edwards and Aronson, 2000). Not 
surprisingly, such unwanted effects or adverse drug reactions (ADRs) caused by 
drugs are a major clinical problem. Depending on severity, which ranges from mild 
to life threatening, they can cause immediate withdrawals of drugs and hence are 
significant financial burden to health care and pharmaceutical industry (Wilke et al, 
2007).  

The reasons for ADRs are diverse and include inappropriate use or 
administration of the drug, nonselective action of the drug and genetic 
predisposition. In this context, genetic variants have gained more and more 
attention since the 1950/60s. Genetic variants can determine susceptibility to ADRs 
by affecting both, pharmacokinetics (absorption, distribution, metabolism and 
excretion of the drug), and pharmacodynamics (mechanisms of the drug such as 
receptor binding or signalling) (Pirmohamed and Park, 2001; Wilke et al, 2007). In 
addition, drug-drug interactions and environmental factors can play an important 
role.  

Typically, ADRs are divided into type A, being predictable from the 
pharmacology of the drug, and type B, being bizarre and unpredictable 
(Pirmohamed et al, 2001). Figure 2 shows a schematic representation of possible 
mechanisms of drug adverse events, which are explained in more detail the next 
section.  

In general, mechanisms of ADRs can be grouped into the following, sometimes 
overlapping, categories related to: (i) on-target pharmacology (ii) off-target 
pharmacology, (iii) immunological reactions, (iv) biological activation to toxic 
metabolites, and (v) idiosyncratic toxicities, which are specific to an individual and 
usually difficult to predict or explain. 

A drug or its metabolites can react directly with an intended (target) or an 
unintended (off-target) receptor, which may cause adverse reactions related to on-
target or off-target pharmacology.  

On-target effects are highly predictable as they are related to the mechanism of 
the drug and typically arise due to improper activation or inhibition of the intended 
target, for instance due to expression of the target in an another tissue not 
considered during drug development (Taniguchi et al, 2007).  

Off-target effects are common since most drugs are not selective and interact 
with more than one target. For instance, a growing body of evidence confirms that 
the therapeutic effects of antipsychotic drugs are complex and cannot be ascribed to 
a single receptor. Hence, the traditional concept of a single receptor must be 
expanded to a whole set of biomolecules that are putatively involved in the 
pharmacological effect of the drugs (Roth et al, 2004). Consequently, activation or 
inhibition of unexpected receptors can lead to unwanted ADRs. 

Furthermore, adverse reactions are possible due to impaired drug metabolism 
during detoxication and excretion processes. In this respect, genetic variations are a 
key determinant of drug metabolism phenotypes and individual drug response 
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(Liebler and Guengerich, 2005). An interesting example highlighting the influence 
of genetic variation on drug response is CYP2D6. CYP2D6, which is responsible 
for the metabolism of many drugs is also prone to genetic variations causing loss of 
function, decreased activity of the enzyme, altered substrate specificity or increased 
activity (Pirmohamed et al, 2001). These effects in turn lead to decreased 
metabolism and elimination, accumulation of the drug or re-routing of the 
metabolism. For instance, the anticoagulant drug Warfarin, shows major risk for 
haemorrhage and could be made safer by considering the patients genotype for 
CYP2D6 and VKORC1, another gene related to Warfarin resistance (Gurwitz and 
Motulsky, 2007). Furthermore, mechanisms of genetically induced drug effects can 
be polygenic (as in the case for Warfarin) and also depend on environmental factors 
such as diet, exposure to xenobiotics, smoking or alcohol (Gurwitz et al, 2007). 
Hence, complexity is an issue when studying the mechanisms underlying ADRs.  

Another possible mechanism of ADRs is related to the binding of drug 
metabolites with nucleophiles in the cell, such as DNA, proteins or small molecules. 
These drug-nucleophile aggregates can trigger regulatory processes that lead to 
inflammation, apoptosis and necrosis. Reactions involving DNA can furthermore 
lead to impaired DNA repair or DNA mutations, which in turn may cause 
carcinogenesis.  

Immunological reactions are very common, usually unpredictable and lead to 
hypersensitivity or autoimmune responses of the body. They range from mild skin 
rashes to immune-mediated organ failure. Moreover, there is evidence that 
idiosyncratic drug reactions are mainly immune-related (Uetrecht, 2007).  

In the last years, idiosyncratic drug reactions have gained attention, as they are 
least understood and least predictable and pursuant to their definition difficult to 
reproduce in human populations (Liebler et al, 2005). Nowadays, idiosyncratic drug 
reactions are mostly responsible for drug withdrawal and therefore major factor 
contributing to cost and uncertainty in drug development. As already mentioned, 
many idiosyncratic drug reactions are immune-related or appear due to reactive 
metabolites. Moreover, the identification of genetic variants that are strongly 
associated with idiosyncratic drug reactions is promising to predict the risk of such 
ADRs.  

In summary, in order to predict and prevent ADRs, a deep comprehension of the 
molecular mechanisms of disease, drug action as well as the influence of genetic 
variants and environmental factors on the human body is required.  
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1.1.3. Summary 
Despite some break-through discoveries in the last century, including the 

sequencing of the whole human genome, we are still far from having a complete 
understanding of the molecular processes involved in diseases. We are therefore not 
able to prevent and cure common diseases such as asthma, Alzheimer or cancer. 
Ever since, people have been trying to find remedies, and as a consequence drugs 
are prescribed to prevent or treat the diseases. However, in some patients the use of 
drugs leads to the development of undesired side effects. These adverse drug 
reactions remain a major clinical problem and have led to the withdrawal of a 
variety of drugs.  

Human diseases as well as adverse drug reactions impose major burdens, 
including financial costs, on both patients and society, and are therefore major 
problems to be addressed by biomedical research. The pharmaceutical industry and 
public institutes spend significant amounts of money and effort on the development 
of new technologies, analysis methods and computational approaches to study the 
molecular mechanisms underlying complex human traits. However, still most 

Figure 2: Mechanism of adverse drug reaction, taken from (Taniguchi et al, 2007) 

A drug or its metabolite interacts with a specific receptor to mediate on-target or off-
target adverse effects (upper left side). In addition, metabolites can be detoxificated and 
excreted, here adverse effects can occur, for instance due to genetic variants in 
metabolizing enzymes leading to impaired drug metabolism. Moreover, metabolites can 
react with nucleophiles including DNA, proteins and small molecules. The formation of 
unrepaired or mispaired DNA adducts is often mutagenic and may lead to carcinogenesis 
(upper right side). The impairment of oxidative defence can lead to inflammation and cell 
death (apoptosis or necrosis, lower part in the middle). The formation of drug-protein 
adducts can trigger immune responses from protective to apoptosis and necrosis can 
result. Chronic inflammation and repair can also lead to tissue fibrosis (lower left side). 
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available drugs are not as effective and safe as they should be. For instance, the 
efficacy rate of drugs within major disease areas such as asthma, cancer, psychiatric 
illnesses and cardiovascular diseases are in the range of 25–60 % (Jørgensen and 
Winther, 2009). A more profound understanding of human disease mechanisms 
would clearly lead to a better understanding of drug action and would therefore 
benefit current drug discovery in order to develop more efficient and safer drugs. 
Such understanding could moreover pave the way for a personalized medicine 
being predictive and preventive and will therefore benefit our society in a variety of 
ways. 



INTRODUCTION 
 

 11 
 

1.2. Need of data integration in biomedical research 
Within the recent years, the development and improvement of high-throughput 

technologies for DNA sequencing and analysis of transcriptomes, proteomes and 
metabolomes have led to an explosion of “omics” data. In contrast to the classical 
hypothesis-driven research, where data is gathered in a focused manner to answer a 
specific question (Searls, 2005), this accumulation of large-scale data allowed the 
evolvement of data-driven research, which aims at gathering extensive data and 
making it available for sampling and interpretation. At the same time, technical 
innovations in computer science yield to construction of advanced repositories for 
storage and novel computational methods for analysis of large-scale data.  

Nowadays, biomedical data is typically stored in online databases that are 
automatically as well as manually populated. In most of the cases, experts of the 
field curate the information manually from the literature or directly from 
experiments and annotate the data with additional information. This process not 
only ensures high quality of the data but also facilitates data integration, for 
instance by means of incorporation of cross-links to further databases by the 
curators. However, such curation process is very work-intensive and time-
consuming, and requires considerable expertise. Moreover, much of the information 
is still not available in databases but only as free text in published articles. Clearly, 
this unstructured form of data hinders automatic retrieval tremendously. In this 
regard, text-mining has evolved as a useful tool not only to extract the information 
that is locked in the literature but also to make the task of curation easier and less 
time-consuming (Zweigenbaum et al, 2007). In this manner, the field of biocuration 
has evolved very recently to make biomedical information accessible to both 
humans and computers (Howe et al, 2008). 

Biomedical data is typically fragmented, distributed over various databases and 
partly locked in the literature. This poses difficulties to the individual scientist to 
acquire, validate and analyze the data. In some cases, information even seems to be 
hidden since it is stored in databases or part of articles that are not accessible to or 
simply not known by the researcher. Conversely, large-scale data properties can 
only be revealed considering the whole information available (Cokol et al, 2005). 
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Another peculiarity of biomedical data is that properties differ immensely 
depending on the type of technique to produce the data and on the type of 
biomedical entity the data describes. An illustrative example for this is given by 
studies on drug-toxicity, where diverse experiments are carried out, accumulating 
data of completely different types (see figure 3). Among them are categorical values 
derived from clinical surveys on the patient’s well being, for example. Further data 
sources might be microarray experiments producing continuous values of gene 
expression levels measured for all genes before and after drug use. Here, the genes 
are the biomedical entities while the expression values represent their attributes. 
Eventually, the study might include information about the interactions between the 
biomedical entities involved, for example through biological pathways. Though 
difficult, all the different kind of data could be combined by means of 
computational approaches in order to give valuable clues on the mechanisms 
underlying drug toxicity (see figure 3).  

All in all, data integration and analysis approaches are required to collect and 
combine biomedical data in a meaningful way and to subsequently produce novel 

Figure 3: Data integration in biomedical research, taken from (Nigsch et al, 2009) 

Different kinds of data need to be integrated in biomedical research in order to shed light 
on the molecular mechanisms underlying complex human traits. Then, computational 
approaches are required to interpret the data and propose hypotheses. Finally, the mere 
data is converted into knowledge and aids further decision-making for instance regarding 
drug development or drug safety regulation. 

 



INTRODUCTION 
 

 13 
 

knowledge from the integrated data. Today, it is widely recognized that the 
challenge of combining biomedical data is not due to the sheer data quantity but its 
diversity (Searls, 2005). In this regard, bioinformatics and computational 
approaches have evolved to cope with the unprecedented wealth of diverse, 
complex and distributed information (Goble and Stevens, 2008). 

This section depicts some of the major current sources of biomedical 
information, including online-databases and literature accessed through text-mining 
(section 1.2.1). Furthermore, it describes some data standards that have been 
developed to ease automatic data exchange (section 1.2.2). In the last two sections 
(sections 1.2.3 and 1.2.4), some approaches for data integration are discussed.  

 

1.2.1. Biomedical data sources 
The conjunction of the extraordinary amount of information generated by high-

throughput methods and the improved capabilities of computer hardware resulted in 
a remarkable increase of data repositories. In 2001, the Nucleic Acid Research 
journal database supplement listed only 96 databases covering different aspects of 
molecular and cell biology while this year, in 2010, there are 1230 recorded 
(Cochrane and Galperin, 2010).  

Moreover, there is a lot of information available in the literature and the amount 
of publications is dramatically increasing, it has been demonstrated that the number 
of publications in PubMed/MEDLINE grows exponentially (Hunter and Cohen, 
2006). Hence it is difficult for individual scientists to keep up with the relevant 
publications in their own discipline. In this regard, text-mining methods are 
required to extract relevant information automatically from text.  

In this section, some of the major sources, including databases and literature, 
are described that are important for biomedical research, especially for investigating 
the molecular mechanism underlying human traits and that were used throughout 
this thesis (see table 1). While some of the presented sources cover more general 
information about biomedical entities, some others focus on a specific matter.  
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1.2.1.1. Entrez Gene 
NCBI Entrez Gene is a database for gene-specific information including 

sequence, chromosomal localization, gene products, associated markers, and 
phenotypes. Moreover, it provides links to citations, related sequences, variation, 
maps, expression, homologs, protein domain content and external databases 
(Maglott et al, 2006). Entrez Gene identifiers (GeneIDs) are species-specific and 
hence unique gene identifiers. Most biomedical data sources provide cross-links to 
Entrez Gene such as GO, KEGG, Reactome or UniProt, which are discussed in the 
following. Thus, Entrez Gene can be considered as primary source for gene 
information.  

1.2.1.2. UniProt 
The Universal Protein Resource (UniProt) is a centralized resource for protein 

sequences and functional information. It unites Swiss-Prot, TrEMBL and PIR 
protein database activities and creates three layers of protein sequence databases: 
the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the 
UniProt Reference (UniRef) databases. This section only discusses the UniProt 
Knowledgebase, a comprehensive database storing information on protein 
sequence, structure and function (Apweiler et al, 2004; The UniProt, 2010). It 
consists of two sections, UniProt/Swiss-Prot and UniProt/TrEMBL, where the first 
contains fully manually curated entries, and the latter automatically annotated 
information. The manual curation process of Swiss-Prot involves extensive cross-
referencing to other biomedical databases, functional and feature annotation as well 
as annotation to evidence found in literature. Hence, UniProt/SwissProt serves as a 
reliable source of protein information and is a good starting point for studies 
involving proteins.  

UniProt/SwissProt provides curated information on the functional and 
phenotypic effects of natural variations, including SNPs, as well as on mutations of 
protein sequences. For several of these natural variants and mutants, it furthermore 
provides associations to disease phenotypes. Thus, it provides a comprehensive 
framework to extract information about the association of sequence variations and 
human diseases. 

1.2.1.3. Gene-disease association databases 
Aim of this thesis is to investigate the molecular mechanisms underlying 

complex human traits including diseases and adverse drug reactions. In this regard, 
it is of importance to connect genotypic with phenotypic information. Hence, in this 
section specific sources of gene-disease associations are briefly introduced. 

In the 60s, Dr. McKusick started collecting information about genes and their 
association to diseases first as a book and later as online database. His Online 
Mendelian Inheritance in Man (OMIM) database has become a highly popular 
source in medical genetics (Hamosh et al, 2005). OMIM traditionally focused on 
monogenic diseases and later started to include complex diseases as well. Next to 
providing a summary of the clinical features of the disorder, it links to numerous 
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databases, such as DNA and protein sequence, PubMed and mutation databases, 
among others.  

In the last years, further databases with different focus have been built. Among 
them PharmGKB has evolved, a database specialized on the knowledge about genes 
that are involved in modulating drug response (pharmacogenes) (Klein et al, 2001). 
In general, genes are classified as pharmacogenes because they are involved in the 
pharmacokinetics of a drug (how is the drug absorbed, distributed, metabolized and 
eliminated), or the pharmacodynamics of a drug (how does the drug act on its target 
and what are the downstream effects) (Altman, 2007).  

 Another important source is the Comparative Toxicogenomics Database 
(CTD), which contains manually curated information about gene-disease 
relationships with focus on understanding the effects of environmental chemicals on 
human health (Mattingly et al, 2006). It is, similar to the other databases, highly 
cross-linked with other biomedical databases. 

Moreover, as mentioned above, UniProt/SwissProt not only contains curated 
information about protein sequence, structure and function but also provides 
information on the functional effect of sequence variants and their association to 
disease.  

 

1.2.1.4. Pathway databases 
 A biological pathway can circumscribe several types of biological processes 

including regulatory, metabolic and signalling processes or protein-protein 
interactions. Throughout this thesis, we will use the term pathway for regulatory, 
metabolic or signalling processes but not referring to protein-protein interactions. 
Currently, there exist a vast variety of databases containing information about 
pathways or protein-protein interactions. The Pathguide resource serves as a good 
overview of these databases (Bader et al, 2006). More than 200 pathway 
repositories are listed, from which over 60 are specialized on reactions in human.  

 In this section some of the major state-of-the-art pathway databases are 
discussed, namely Reactome, KEGG, WikiPathways, the Nature Pathway 
Interaction Database (PID) and Pathway Commons. They present pathways in a 
graphical format comparable to the representation in text books, as well as in 
standard formats allowing exchange between different software platforms and 
further processing by network analysis, visualization and modelling tools  

Reactome is currently one of the most complete and best curated pathway 
databases (Joshi-Tope et al, 2005). It covers reactions for any type of biological 
process, including metabolic, regulatory and cell signalling pathways, and organizes 
them in a hierarchal manner. Expert biologists curate all pathways and reactions 
from biomedical literature or experiments (Joshi-Tope et al, 2005).  

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is not only a database 
for pathways but consists of 19 highly interconnected databases, containing 
genomic, chemical and phenotypic information (Kanehisa et al, 2008; Kanehisa and 
Goto, 2000). KEGG categorizes its pathways into metabolic processes, genetic 
information processing, environmental information processing including signalling 
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pathways, cellular processes, information on human diseases and drug 
development. However, the best-organized and most complete information can be 
found for metabolic pathways. KEGG is not organism specific but covers a wide 
range of organisms including human.  

A recently developed resource for pathway information that strongly differs 
from other pathway repositories is WikiPathways. WikiPathways is an open source 
project based, like Wikipedia, on the MediaWiki software (Adriaens et al, 2008). It 
serves as an open and collaborative platform for creation, edition and curation of 
biological pathways in different species. WikiPathways aims to achieve a public 
commitment to pathway storage and curation by keeping pathway creation and 
curation processes simple. Any user with an account on WikiPathways can create 
new pathways, and edit already existing ones. WikiPathways does not use standard 
formats like BioPAX (http://biopax.org) or SBML (Hucka et al, 2003) but offers a 
much simpler representation called GenMAPP Pathway Markup Language 
(GPML). Hence, interoperability with other pathway databases is impeded, and 
substantial efforts towards combining WikiPathways with the other pathway 
repositories are required. 

The Pathway Interaction Database (PID) contains data on cell signalling for 
human (Schaefer, 2006). It combines three different sources, the NCI-curated 
pathways that are obtained from peer-reviewed literature, as well as pathways 
imported from Reactome and BioCarta. Similar to Reactome, PID structures 
pathways hierarchically into pathways and its sub-pathways.  

Pathway Commons is a compilation of the public pathway databases Reactome, 
PID and Cancer Cell Map as well as protein-protein interaction databases such as 
HPRD (Mishra et al, 2006), HumanCyc, IntAct (Kerrien et al, 2007) and MINT 
(Zanzoni et al, 2002). Herein, the pathway hierarchies of Reactome and PID are 
conserved. Hence, it serves as an access point for a collection of public databases 
and provides technology for integrating pathway information. Pathway creation, 
extension and curation remain duty of the source pathway databases.  

 
Most of the here presented pathway databases allow querying and browsing 

their data through a web interface but also provide programmatic access through 
webservices or APIs. They contain manually curated information and provide cross-
references to other biomedical databases such as Entrez Gene or UniProt and 
annotate entities and processes with GO terms. Furthermore they mostly support 
current pathway exchange formats such as BioPAX and SBML, which is not the 
case for many other pathway databases. However, there is overlap in the 
information available; for specific pathways some databases offer more accurate 
and complete information than others. (Adriaens et al, 2008) describe a workflow 
developed for gathering and curating all information on a pathway in order to obtain 
a broad and correct representation. Nonetheless, the described process heavily relies 
on manual intervention and is very work-intensive and time-consuming. 
Consequently, there is a need for automation of both the pathway retrieval process 
and the integration of different data sources.  
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In the last years, several tools for pathway visualization and analysis have been 
developed and the aforementioned standard formats ease import of pathways into 
these tools (Suderman and Hallett, 2007). One of the most known and widely used 
open-source software is Cytoscape. It offers, next to pathway visualization, a vast 
variety of analysis tools ranging from advanced network analysis to webservices 
(Shannon et al, 2003), for instance to retrieve pathways from the here described 
pathway repositories.  

 
The databases presented above allow the access to a wide range of data on 

biological pathways. However, the data is fragmented and the representation of the 
biochemical reactions differs between databases, as well as coverage and accuracy 
of annotations. In addition, often data is not provided in interchangeable formats 
hampering its automatic integration. Nevertheless, integration is needed to obtain a 
complete view of the biological process of interest. This is of particular interest for 
studying the molecular mechanisms underlying human diseases and adverse drug 
reactions, aim of this thesis. Currently, an automatic integration of data from the 
diverse repositories is difficult due the aforementioned limitations concerning 
missing possibility to automatically access the data, lack of annotation and misuse 
of standard formats. As a consequence, development of improved tools for data 
integration but also more accurate data curation and annotation are needed.  

1.2.1.5. Text-mining derived information 
Due to the vast increase of published literature in health and life sciences, it is 

not possible (not even for expert curators of the aforementioned databases) to keep 
track of the relevant knowledge that is regularly published (Cokol et al, 2005). In 
this regard, text-mining has evolved as a useful tool to automatically extract 
information about biomedical entities and their relationships reported in the 
literature (Ananiadou et al, 2010; Jensen et al, 2006). Clearly, this task is very 
difficult since the extraction of information from text typically requires a human 
understanding of the text, which also takes into account background knowledge to 
make inferences (Ananiadou et al, 2010). Goal of text-mining is to convert 
unstructured into structured information to aid knowledge discovery and hypothesis 
making.  

In biomedical research, we not only study the biomedical entities themselves, 
such as genes or proteins, but also how they interact. In this regard, automatic 
information extraction from text has to address the identification of the biomedical 
entities and their relationships in free text.  

Text-mining has already been successfully used to extract biomedical entities 
from literature. This process contains two steps, first the synonyms are located in 
the text (named entity recognition) (Ananiadou et al, 2004) and second they are 
mapped to unique and standard identifiers of curated databases (normalization) 
(Cohen et al, 2008), such as UniProt or Entrez Gene. Some examples are OSIRIS, a 
system for the identification of DNA variation terms in text and their mapping to 
dbSNP identifiers (Furlong et al, 2008), ProMiner for the recognition of gene and 
protein mentions (Hanisch et al, 2005) and Peregrine, which is based on 
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dictionaries and can thus be used for the recognition of any biomedical entity, such 
as small molecules and drugs, genes or proteins (Schuemie et al, 2007).  

The difficult task of relationship extraction has gained more attention recently, 
since we have moved from classical molecular biology focusing on single entities to 
Systems biology studying their interactions (Ananiadou et al, 2010). Some 
examples for the extraction of different kind of associations between biomedical 
entities are systems for extraction of protein-protein interactions (Donaldson et al, 
2003; Fundel et al, 2007) or gene-disease associations (Bundschus et al, 2008). 
Text-mining has also been applied to link pathways to literature evidence and even 
to construct biological reactions and pathways from literature (Oda et al, 2008).  

As for any other computational and experimental method, data quality and 
reliability are an issue. Typically, results are compared to gold standards that are 
prepared by domain experts for the training and testing of text mining applications. 
Then, the quality of the system in comparison to the gold standard is defined by 
measurements such as recall and precision or the F-Score, a combination of recall 
and precision (Hersh, 2005). Moreover, recently the BioCreative challenge has 
established as a community-wide effort for the evaluation of text-mining and 
information extraction systems applied to the biological domain (Krallinger et al, 
2008). This challenge poses tasks to the community for systems to be developed 
that are not only useful to general researchers but also for specific end users such as 
database curators. 

In summary, text-mining has important influence on biomedical research as it 
allows the automatic extraction of biomedical entities and their relationships from 
free text. Moreover, it is of major importance for database curation since the vast 
amount of information published in the biomedical domain impedes to keep track 
manually.  

 

1.2.2. Data heterogeneity and standards 
Nowadays, main challenges of data integration are not related to data quantity 

but data heterogeneity and the fact that data is spread among diverse often 
overlapping and redundant repositories. Some examples for data heterogeneity, 
hindering data integration, are differing data formats or the use of different 
vocabularies (Searls, 2005). For instance, the protein WS-1 has 21 different 
accession numbers and 10 distinct names (Goble et al, 2008). Multiple identifiers 
can be explained by rediscovery, assignment of new function, alternative 
transcription and post-translational modifications, among others. However, for 
proper data integration, shared and common identities and names are essential. 
Same identities and unambiguous naming of biomedical entities does not only allow 
individual researchers to easily combine information about the same entity from 
various sources but also facilitates automatic integration of information by means of 
computational tools. For instance, UniProt and KEGG both use their own identifiers 
to represent proteins. Common practice to alley the problem of diverse identifiers is 
the use of cross-links to connect between the same entities in the different 
databases, such as the case for UniProt and KEGG. Such cross-linking, which can 
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be seen as a tool for data integration itself, is based on accurate identifier mapping 
and usually requires manual work by means of database curation. However, the 
advantages and disadvantages of a single global unique identity schema, which 
would in principle allow an unobstructed automatic data integration, are still 
discussed (Goble et al, 2008).  

Moreover, there is a need for shared semantics or standards for data schemas 
and values. This is especially important as different conceptualisations and 
representations hinder the process of data integration immensely and urge manual 
intervention and interpretation by humans, yet again achieved by expensive data 
curation.  

In the systems biology community, several standards for representation and 
exchange of pathway data have evolved. For instance, Systems Biology Markup 
language (SBML) (Hucka et al, 2003) is widely accepted standard to represent 
mathematical models of biochemical pathways. A database storing such models in 
SBML format is BioModels, a resource of quantitative models of biomedical 
interest, which furthermore curates the models by annotating entities with terms 
from controlled vocabularies and by adding cross-links to other data resources. (Le 
Novère et al, 2006).  

Another important standard for the systems biology community is Biological 
Pathway Exchange (BioPAX) (http://biopax.org), a unified framework for pathway 
representation, which is supported by the major pathway databases such as 
Reactome and KEGG. Although some of the formats have established as standards, 
conversion between formats and misuse of formats are still issues to be solved. In 
this regard, some attempts have been made to define the minimal information 
required to represent a certain data type, such as MIAME for microarray data 
(Brazma et al, 2001) and MIRIAM for biochemical models (Le Novère et al, 2005).  

Nevertheless, some limitations to data integration still exist, for instance due to 
incorrect use of standard identifiers and data formats or the lack of annotation of 
required attributes of biomedical entities.  

 

1.2.3. Computational data integration approaches 
Several computational approaches have been developed to cope with the vast 

amount of data that is spread over isolated and overlapping repositories. In 
principle, these approaches have to tackle two problems: first, to automatically 
access the data and second to merge it correctly.  

Common approaches allowing programmatic access to data and tools are web 
services or the use of APIs. Although almost all biomedical databases provide such 
programmatic access to their data, real data integration is not provided and the 
automated process of data collection by means of bioinformatic scripts and tools is 
only facilitated. In this context, workflow approaches, in which data is gathered, 
integrated and even analysed in several, consecutive steps, have become popular. 
Software has been developed that allows manually creating such workflows without 
the need of programming skills. One example is Taverna, a tool to integrate 
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resources that are shared as web services into a scientific workflow to perform in 
silico experiements (Oinn et al, 2004).  

Probably the simplest way of connecting biomedical entities is the 
aforementioned use of cross-links. Here, same entities with different identifiers are 
directly linked through hyperlinks on the web or by providing identifier-mapping 
tables. However, yet again, real data integration is only possible by means of 
bioinformatics tools making use of the available mapping.  

Another approach, allowing true data integration, is data warehousing. Here, the 
data is first collected, systematically combined and stored in a central repository. 
Then, the data is regularly updated which causes high maintenance costs due to data 
and format changes in the original data sources (Goble et al, 2008). Prominent 
approaches in the biomedical domain include BioMART (Haider et al, 2009) and 
BioWarehouse (Lee et al, 2006), among others.  

One of the most promising and more recent solutions for an automated 
information retrieval and data management system is the use of semantic web 
technologies. They provide the aforementioned warehouse capabilities on the fly. 
Hence, they do not move all data in a central repository but leave it at the original 
repositories and simply link it through unique URLs. One example is the Bio2RDF 
project, which aims at building a mashup combining major databases relevant for 
the biomedical and bioinformatics domain by making use of semantic web 
technologies (Belleau et al, 2008). However, the applicability of such approaches is 
still limited but remains promising (Antezana et al, 2009; Dumontier and 
Villanueva-Rosales, 2009). 

 

1.2.4. Ontologies 
Ultimate goal of data integration in biomedical research is not only to gather all 

data regarding a specific question but also to automate its analysis and to provide 
testable hypotheses (Slater et al, 2008).  

However, in order to uncover the meaning of the gathered data, or in other 
words to convert mere data into knowledge, information has to be interpreted and 
put into context.  

In this regard, ontologies have emerged providing vocabularies to describe 
biomedical data and it is hoped that such described data aids the automated analyses 
of the data eventually (Bodenreider and Stevens, 2006). An ontology represents 
explicit formal specifications of the concepts and their relationships in a domain 
(Gruber, 1993). Ontologies go well beyond controlled vocabularies by not only 
providing the same vocabulary for the entities but also by organizing them within 
classifications and hierarchies (Bodenreider et al, 2006). The basic idea is that 
given such well-defined structure automatic inference of knowledge about the 
entities and their relations is automatically possible.  

With the advent of semantic web technologies RDF (Resource Description 
Framework) and OWL (Web Ontology Language) have evolved that are 
particularly well suited for representing bio-ontologies (Bodenreider et al, 2006). 
Some examples of bio-ontolgies are introduced in the following. 
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Probably the most used and known ontology in the biomedical domain is The 
Gene Ontology (GO) (Ashburner et al, 2000), which captures three major aspects 
about a gene product that are represented by the three branches Molecular Function, 
Biological Process and Cellular Component (Bodenreider et al, 2006).  

Another example is the aforementioned BioPAX, a standard for pathway 
representation, which uses OWL to represent the pathways and is widely accepted 
by the pathway databases explained in section 1.2.1.4. 

Even longer practice have ontology-like clinical and medical terminologies such 
as ICD (International Classification of Disease) (Nahler, 2009), SNOMED 
(Systematized Nomenclature of Medicine) (Cote and Robboy, 1980) and MeSH 
(Medical Subject Headings) (Sewell, 1964). In this regard, UMLS (Unified Medical 
Language System) was built to integrate these different disease vocabularies into 
one system (Bodenreider, 2004).  

In summary, the use of ontologies in biomedicine has become a trend recently. 
Ontologies aim at describing entities and their relationships in a structured way to 
allow automatic analysis of the described data.  

 

1.2.5. Summary 
In the last years, the generation and analysis of genomic, transcriptomic, 

proteomic and other genome-scale data have become routine approaches of 
biomedical research. The parallel development and improvement of computational 
approaches allowed the building of various online databases storing the large-scale 
data produced by high-throughput technologies (see section 1.2.1). In parallel, great 
effort has been made to manually curate the information such that the available data 
serve as valid sources to study the molecular processes underlying human diseases 
and adverse drug reactions. Moreover, these improvements triggered the 
implementation of data standards and ontologies with the aim to allow automated 
data access, integration and subsequent analysis (see sections 1.2.2, 1.2.3 and 
1.2.4).  

Nevertheless, there are still major issues to be solved regarding annotation, lack 
of standards or their misuse, as well as lack of computational approaches for data 
integration and analysis. Also, data fragmentation still poses obstacles to our 
understanding of the molecular processes in the human body. This is especially 
visible considering the fact that individual researchers are often restricted to so 
called knowledge pockets (Cokol et al, 2005), which constitute only small fractions 
of the complete knowledge being available and are furthermore distributed over 
distinct databases or literature.  

To some extent, text-mining approaches have helped to alleviate this problem of 
data fragmentation and are promising tools to aid database maintenance and 
curation. However, there is still an urgent need for improved integrative approaches 
to analyse the data in a meaningful way in order to create novel hypotheses and to 
eventually aid to understand the molecular mechanisms underlying complex human 
traits.  
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1.3. Integrative biomedical analysis approaches 
While the previous section has discussed the need for data integration 

approaches in biomedical research and has introduced some methods for data 
integration, this section concentrates on approaches focusing on data analysis and 
therefore can be referred to as integrative biomedical data analysis approaches. In 
this regard, two major types of methodologies are introduced, statistical approaches 
that mainly aim at establishing associations between biomedical entities or 
phenomena and systems biology approaches, which study in more detail how 
biomedical entities interact and how perturbations affect the whole system.  

1.3.1. Statistical approaches 
As already discussed, one major challenge in biomedical research is to make 

sense out of the vast amount of available data. Also, it has been discussed that much 
of this data is redundant, cross-linked and therefore highly correlated. Hence, data 
reduction and data visualization are crucial to allow high-quality data analysis. In 
this regard, mathematical and statistical methods have been established for a long 
time, such as principal component analysis (PCA) or clustering (Howe et al, 2007). 
PCA, for instance, transforms a number of correlated variables into a smaller 
number of uncorrelated principal components such that the first principal 
component reflects the greatest variance of the data, the second principal 
component the second greatest variance, and so on. Thus, by creating new views of 
the data, it detects trends, groupings and outliers of the data. PCA has been used, for 
instance, to cluster gene expression data (Yeung and Ruzzo, 2001) or to cluster 
drugs according to their receptor binding profiles (Lange et al, 2007).  

Next to methods that focus on analysing the structure underlying the data, 
biomedical research requires methods studying relationships between variables. In 
this regard, regression analyses are among the most flexible and most used 
approaches. These methods allow studying how a set of predictor (independent) 
variables influences some outcome (dependent) variables. In addition, a regression 
model can predict the outcome for new predictor values.  

One such approach is logistic regression. It has wide application in health 
science and clinical studies (Harre et al, 1988) due to its ability to model 
dichotomous outcome (i.e. yes/no or healthy/disease) (Bagley et al, 2001). For 
instance, a logistic regression model was used for the early diagnosis of acute 
myocardial infarction (Kennedy et al, 1996).  

Another related approach for multivariate data analysis is projections to latent 
structures by means of partial least squares (PLS) (Wold, 1982). PLS combines data 
projection, similar to the aforementioned PCA, and regression analysis and is 
particularly well suited when the number of variables describing some objects is 
much higher than the number of objects. The most simple and most used form of 
PLS is the PLS regression (PLSR). However PLS can be extended in various 
directions, for instance to perform discriminative analysis (PLS-DA), among others 
(Wold et al, 2001a). PLS is applied in various fields including multivariate 
calibration and quantitative structure-activity relationships (QSAR) (Wold et al, 
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2001b). QSAR models are typically used to predict the activity of a chemical with 
respect to a specific biological target or to predict its likelihood to produce a 
specific toxic effect. For instance, it has been used to detect relationships between 
structural properties of a series of antipsychotic drug candidates and their binding 
affinities to G-protein-coupled receptors (GPCRs) (Dezi et al, 2007). Moreover, 
PLS has found various applications in the biomedical domain including the analysis 
of microarray data to predict clinical outcome (Pérez-Enciso and Tenenhaus, 2003). 
Examples are classification of different types of human tumours (Tan et al, 2004) 
and prediction of transcription factor activities (Boulesteix and Strimmer, 2005).  

In summary, there is a wide range of methods being widely used to detect 
relationships between objects or between objects and their properties by means of 
data reduction, projection and regression analysis. Nevertheless, it has to be kept in 
mind that such found relationships represent statistical associations rather than 
causation. Therefore, a combination of these approaches with further analysis of the 
underlying mechanism is required in order to explain the found relationships. For 
instance, to mechanistically explain a found association between a drug and a 
specific side effect. However, these statistical methods represent meaningful tools 
to uncover relationships between different types of entities and to build predictive 
models, being able to cope with typical issues of biomedical data such as high 
dimensionality, high correlation between variables and missing data.  
 

 

1.3.2. Systems biology approaches 
Systems biology is an analytical approach to investigate the relationships 

among the components of a biological system in order to understand its emergent 
properties (Arrell et al, 2010).  

In order to achieve such system level understanding, the biological system or 
network of study is systematically perturbed, the responses of the involved genes, 
proteins, and pathways are monitored, and ultimately mathematical or 
computational models are built that describe the underlying structure of the system 
and its response to individual perturbations (Ideker et al, 2001). This process is 
performed in an iterative manner, where experimental observations are matched 
against model predictions which in turn allows the formation of new models, new 
predictions, and new experiments to test them (Ideker et al, 2001). Figure 4 shows 
an overview of systems biology. The required combination of experimental and 
computational methods, as well as the iterative nature of the approach is visible. 
Moreover, the important role of network biology, which will be discussed in more 
detail in this section, is shown.  
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Figure 4: Systems Biology overview, taken from (Arrell and Terzic, 2010) 

Systems Biology aims at understanding biological processes at a systems level. For this 
purpose different kinds of data are integrated. In this context, experimental and 
computational approaches are combined in an iterative manner. A network of 
interacting biomedical entities is perturbed, the responses of the involved genes, 
proteins and pathways are measured. A mathematical or computational model is built, 
which in turn provides hypotheses that can then be tested experimentally. This process 
is iterated until a model is built, which is able to predict the outcome of the experiments 
and hence can be used in drug discovery or systems pharmacology projects, for 
example.  
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Systems biology approaches aim at understanding how a biological system is 
maintained, or in other words, how growth, development and adaption are achieved. 
Moreover, it tries to explain and predict the influence of environmental or genetic 
perturbation on the system. This process is studied at different levels, ranging from 
genes, proteins, their interactions through biological pathways, organelles, cells, 
tissues up to the whole organism (see figure 5). While cell- and organ-scale models 
have a long history such as for glucose metabolism and homeostasis (Bergman et 
al, 1979; Kansal, 2004), the advent of high-throughput technologies led to the 
construction of models at lower levels, such as models of signalling pathways. For 
instance, the epidermal growth factor receptor (EGFR) signalling cascade is one of 
the best-studied and most important signalling pathways in mammals and is 
important for regulation of cell growth, proliferation and differentiation. Therefore, 
in the last years several models have been built, each focusing on different aspects 
of EGFR signalling (Birtwistle et al, 2007; Borisov et al, 2009; Hornberg et al, 
2005; Kholodenko et al, 1999; Li et al, 2009a; Schoeberl et al, 2002).  

However, such low-level pathway models are quite disconnected from 
systematic disease biology, and hence it has been argued that they have only limited 
use in drug discovery (Butcher et al, 2004). For instance, signalling cascades are 
not isolated units within the cell, but form part of a mesh of interconnected 
networks through which the signal elicited by an environmental cue can traverse 
(Yaffe, 2008). Ultimately, each cell is exposed to a variety of signalling cues, and 
the specificity of the response will be determined by the signalling mechanisms that 
are activated by the cue (Alberts et al, 2007). In this regard, recent research has 
highlighted the importance of so-called cross-talks between pathways, such as 
connections between signalling through the purinergic receptors and the Ca2+ 
sensing (Chaumont et al, 2008) or the link between extracellular glycocalyx 
structure and nitric oxide signalling pathway (Tarbell and Ebong, 2008). Hence, in 
order to understand biological processes at all levels, it has to be considered that 
pathways do not function as isolated units but instead they form a 'network of 
networks' that is responsible for the behaviour of the cell (Barabási and Oltvai, 
2004). In this regard, network analysis has emerged as a representational formalism 
to study the interactions between biomedical entities (Butts, 2009). In this section, 
static and dynamic network analysis approaches are presented. Static network 
analysis can be used to derive emergent biological features from the topology of the 
networks, such as feedback loops. And dynamic network analysis approaches study 
the evolution of a biological process, over time under certain conditions, such as 
upon external perturbations of genetic or environmental origin.  
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1.3.2.1. Static network analysis 
The development of high-throughput technologies has not only helped to 

identify genes or proteins but also to determine how these molecules interact with 
each other. In this context, various types of networks are possible including 
protein–protein interaction, metabolic, signalling and transcription-regulatory 
networks. The study of these molecular interactions, also called network analysis, is 
therefore of major importance to achieve the goal of fully understanding biological 
processes.  

Typically, a network consists of nodes (for instance the genes and/or proteins) 
and edges, representing their interactions or associations. Recent examples are 
protein-protein interactions (Przulj et al, 2004), drug-target interactions (Yildirim et 
al, 2007), as well as genotype-phenotype relationships (Goh et al, 2007; Lee et al, 
2008; Li and Agarwal, 2009b). Such network formalism allows the representation 
of integrated data sources as a single framework and the subsequent analysis of its 
emergent properties, such as robustness.  

In this respect, it has been shown that network topology properties of biological 
networks differ from random networks. For instance, biological networks tend to 
have few hub nodes, which are connected to many neighbours and many other 

Figure 5: Granularity of systems biology, taken from (Butcher et al, 2004) 

Systems Biology approaches try to understand biological processes at all levels. From the 
identification of molecules and their properties (“omics”), to the building of interaction 
networks or pathways, up to modelling the processes at the cell, tissue, organ or whole 
human body level. In this regard, experimental and computational approaches are 
combined. 
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nodes with only few neighbours. On the contrary, in random networks all nodes 
have roughly the same number of neighbours (Barabási et al, 2004). Moreover, it 
was found that biological networks show certain local interaction patterns, so called 
network motifs, such as feedback or feed-forward loops (Han, 2008). Network 
motifs and their functions have been extensively studied for transcription regulation 
networks in Escherichia coli suggesting that biological networks have a degree of 
structural simplicity which could ultimately help to understand the behaviour of 
large and complex networks in terms of elementary circuit patterns (Alon, 2007; 
Shen-Orr et al, 2002). Furthermore, biological networks tend to be modular by 
forming local neighbourhoods of shared properties. For instance, the analysis of 
protein-protein interaction networks revealed clusters or modules of highly 
interacting proteins that were found to have functional relevance (Przulj et al, 2004; 
Sharan et al, 2007). This concept of modularity has also been discussed in the 
context of human genetic diseases using malformation syndromes as examples, 
where the relevance of the identified modules was studied with respect to disease 
development (Oti and Brunner, 2007; Suthram et al, 2010; Zaghloul and Katsanis, 
2010). These modules might be responsible for properties such as robustness to 
environmental perturbations and evolutionary conservation (Hartwell et al, 1999). 
Hence, it is crucial to identify these modules, as they can play a key role in the 
aetiology of diseases. In addition, they can be used for different purposes such as 
the identification and prioritization of candidate disease genes (Cerami et al, 2010; 
Oti et al, 2006), the development of new treatments or drug repurposing. Within 
this context, (Suthram et al, 2010) identified modules which are affected in a 
variety of distinct diseases and showed that they contain several proteins being 
targets of drugs already known to effectively treat several diseases. Network 
topology analysis can be used to identify such functionally relevant modules 
(Aittokallio and Schwikowski, 2006). 

An example where different types of networks are used for drug discovery and 
safety studies is given in figure 6. Here, drug information and biological data, such 
as protein-protein interactions, are integrated into a global drug network. Then, the 
network properties can give information about historical drug development trends 
and suggest new drug targets. Another network type combining disease and drug 
information can be used, for instance, to identify new indications for drugs, to 
detect new drug targets or to unravel unwanted adverse drug reactions.  

In summary, topological properties of biological networks differ strongly from 
random networks and hence can be used to explain a variety of biological 
behaviours. Network analysis approaches have gained a lot of importance especially 
in systems biology and are more and more used to analyse the complex mechanisms 
underlying disease and adverse drug reactions.  
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Figure 6: Different types of biological networks and their application in drug 
discovery and safety studies, taken from (Berger and Iyengar, 2009) 

(A) Drug information and biological data, such as protein-protein interactions, are 
integrated into a global drug network. The network properties can then give 
information about historical drug development trends and suggest new drug targets. 

(B) Information about a specific disease is used to identify potential new drug targets and 
therapeutic strategies. 

(C) Disease and drug information is integrated to identify new indications for drugs, 
unknown targets of drugs, and other interesting properties of the drugs, for instance to 
avoid unwanted adverse drug reactions. 



INTRODUCTION 
 

30 

1.3.2.2. Dynamic network analysis 
Besides the analysis of the static properties of biological networks, 

mathematical and computational approaches have been proposed to simulate their 
dynamical behaviour. These approaches study the evolution of a biological process 
under certain conditions or upon perturbations over time. Such perturbations can be 
of genetic origin or due to external factors including drugs. Dynamic modelling 
approaches range from qualitative to quantitative formalisms.  

Qualitative approaches are suitable to induce dynamical properties of complex 
systems, when few data is accessible and especially if kinetic data is missing 
(Chaouiya et al, 2008). Examples are Boolean or Petri net models. In contrast, 
quantitative models aim at representing the system in a detailed way and require 
accurate kinetic data. Here, typical models are based on differential or stochastic 
equations. The applicability of the modelling approach strongly depends on the kind 
of biological process to be modelled (metabolic, regulatory or signalling pathway), 
the question to be answered, and the amount and detail of data available. For 
instance, Boolean models become suitable if quantitative data is missing, and 
differential equation models can be used if details on kinetic parameters are 
measurable and available. Both approaches are explained in more detail in the 
following. 

In a Boolean model, pathways are represented as interaction, directed graphs in 
which the nodes represent the molecules (e.g. proteins) and the edges are signed 
arcs denoting the direct influence of one species upon another, being either 
activating (+) or inhibiting (!). This first representation requires little a priori 
knowledge about the network under study and allows detection of important 
features such as feedback loops. On top of this interaction graph, a logical model is 
built in which each component can be either ON (“1”) or OFF (“0”). Here, Boolean 
rules or functions define how different causal effects converging at a certain species 
are combined (e.g. by using AND, OR or NOT operators) (Kauffman, 1969). 
Examples of applications are T-cell receptor signalling (Saez-Rodriguez et al, 2007) 
or EGFR signalling (Samaga et al, 2009). A widely used software for Boolean 
models is CellNetAnalyzer (Klamt et al, 2007). The clear advantage of Boolean 
models is that they can interpret and predict behaviour based on qualitative 
topological data, which is readily available in the literature (Hendriks, 2010).  

However, in order to get a deeper understanding of the underlying dynamics, 
quantitative aspects such as kinetic rates have to be considered. In this regard, 
differential equations have been used as mathematical formalism to create kinetic 
models, which typically represent protein-protein interactions and enzymatic events 
with a series of mass-action kinetic reactions. There are plenty examples of such 
quantitative models, including the aforementioned EGFR signalling (Birtwistle et 
al, 2007; Borisov et al, 2009; Hornberg et al, 2005; Kholodenko et al, 1999; Li et 
al, 2009a; Schoeberl et al, 2002), Akt signalling (Chen et al, 2009; Hatakeyama et 
al, 2003) or apoptosis (Bentele et al, 2004; Fussenegger et al, 2000). A widely used 
software for quantitative modelling is COPASI (Hoops et al, 2006), among others 
(Alves et al, 2006). Moreover, markup languages such as SBML (Hucka et al, 
2003) and CellML (Lloyd et al) were created to allow model exchange and storage. 
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Finally, BioModels, a database storing and curating quantitative models of 
biochemical and cellular systems was built (Le Novère et al, 2006).  

So far, the here presented examples model the behaviour of a single specific 
biological process. Recently, some attempts have been made to make use of these 
models for clinical practice. For instance, to predict individual patient response to 
treatment (Hendriks et al, 2006) or to identify pathway nodes for therapeutic 
intervention (Schoeberl et al, 2009).  

  

1.3.3. Summary 
All in all, the complexity and multilevel nature of biological functions and 

processes pose an extraordinary challenge to our understanding of biological 
processes. Nevertheless, the improvements of high-throughput technologies, 
computational approaches as well as the development of data standards and online-
databases, allowed the identification of biomedical entities and how they interact in 
the cell. 

Statistical methods capable of dealing with the multivariate nature of 
biomedical data are suitable to study the underlying data structure, for instance in 
order to detect clusters of biomedical entities with similar properties. Moreover, 
they allow the prediction of outcome dependent on a set of descriptive biomedical 
properties such as it is the case for predicting clinical outcome based on patient data 
or predicting binding affinities based on drug properties. However, the relationships 
that are established by such methods are statistical associations not to be 
confounded with causation. In this regard, systems biology methods have gained 
attention and application in the biomedical domain. They aim at gaining a systems 
level understanding by studying interconnected biomedical entities at different 
levels. In particular, network analysis has widely been used to uncover topological 
and dynamic properties to gain better understanding of the studied biological 
system. For instance, it has been found that biological networks, different to random 
networks, contain network motifs and modules of particular biological function. 
Also, a variety of predictive mathematical and computational models have been 
built that simulate the dynamics of important cell signalling and regulatory 
pathways. Hence, systems biology and in particular network approaches serve as 
suitable frameworks to investigate how genetic and environmental perturbations 
lead to complex traits such as disease or adverse drug reaction in human. In this 
context, they will have large impact on drug discovery and development and will 
provide the foundation for a prospective medicine that overcomes the current 
limitations of disease complexity and drug discovery (Auffray et al, 2009). 
However, in order to build such predictive models, heterogeneous data from various 
sources needs to be united and thus improved integrative data analysis approaches 
are required. 
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The previous section has extensively discussed the most important 
achievements and difficulties in studying the molecular mechanisms underlying 
human diseases and adverse drug reactions. Moreover, the strong need for 
integrative analysis approaches to study these mechanisms was discussed and some 
approaches were presented. Against this background, this section discloses the main 
objectives of this PhD thesis and points out in which particular publications they 
have been addressed.  

 
 
The main objectives of this PhD project can be summarized as follows: 
 

1 . Development and application of statistical approaches to study associations in 
multivariate biomedical data.  
In particular, development of new multivariate statistical approaches 
integrating different levels of drug-related data with the purpose of aiding drug 
development projects. 

 
 

2 . Development and application of systems biology approaches to investigate the 
molecular basis of diseases and adverse drug reactions. 

 
a In particular, exploitation of available repositories of biomedical data to 

evaluate their suitability for automatic data extraction and use in integrative 
biomedical research. 
 

b Subsequent development of new integrative bioinformatics tools for the 
merging, visualization and analysis of the gathered biomedical data in order 
to tackle typical problems in biomedical research, especially regarding the 
mechanisms leading to diseases and drug adverse reactions. 
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2.1. Objective 1: Development and application of statistical 
approaches 

As described in the introduction, there is a large number of drugs failing in 
clinical development due to a lack of efficacy or because they are causing severe 
side effects. It has been recognized that many of these failures relate to the fact that 
the classic concept of a single pharmacological receptor to be targeted by the drug 
is usually not valid. On the contrary, most drugs are not as selective as thought and 
target many receptors that are then either involved in the pharmacological effect of 
the drug or responsible for undesired side effects or sometimes both.  

Statistical methods have been previously introduced that can be used to study 
the relationship of drug properties with some biological endpoints. It has also been 
shown that a deep and detailed understanding of those relationships is required to 
comprehend the molecular basis of diseases and therapies. Hence, the first objective 
of this thesis was to develop new multivariate statistical approaches that advance in 
this way. In this regard, we developed a novel multilevel statistical method, which 
is presented in section 3.1. The method is based on the sequential building of linked 
multivariate statistical models, each one introducing a new level of drug 
description. On the one hand, this allows overcoming the one-target assumption that 
typically does not apply to most drugs and on the other hand takes into account 
important information about the drugs at different levels, which are integrated by 
this method. A variety of studies about multivariate data analysis in drug design 
preceded this publication, presented as oral or poster communications at 
international conferences (see publications 15, 20, 21, 22 in section 6). Moreover, in 
collaboration with the Erasmus Medical Center Rotterdam, we developed a logistic 
regression model for the prediction of 60 days mortality of patients after aneurismal 
subarachnoid haemorrhage (Risselada et al, 2010). 

 

2.2. Objective 2: Development and application of systems 
biology approaches 

The second objective addresses the development and application of systems 
biology approaches to study the molecular mechanisms underlying human diseases 
and adverse drug reactions. This objective can be split into two parts. First, suitable 
biomedical data has to be identified, collected and subsequently exploited by 
integrative analysis approaches. And second, these approaches have to be 
developed making use of the evaluated biomedical data. Throughout this thesis, 
both objectives (2a and 2b) were tackled in this order.  

In section 1.2 problems relevant to data integration were presented. Biomedical 
data is typically heterogeneous, fragmented and distributed over various online 
databases and literature. Despite some major improvements in defining data 
standards needed for correct and automatic data integration and exchange, there are 
still major problems related to a lack of common identifiers or standards, misuse of 
data formats and issues regarding curation and annotation of biomedical data. An 
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example for a deep analysis of biomedical repositories (objective 2a) was the 
extensive study of publicly available biological pathways with the aim to use the 
data to realize systems biology approaches (see section 3.2). In particular, in this 
work we present a vision of how to employ publicly available pathway data to 
generate network models in an automatic manner that can subsequently be used to 
answer practical biological problems.  

Objective 2b addresses the major goal of this thesis, the development of new 
integrative bioinformatics tools for integration, visualization and analysis of 
biomedical data in order to solve typical problems in biomedical research, 
especially regarding disease mechanisms and drug adverse reactions. This objective 
was addressed in several publications.  

First, a new comprehensive database on human gene-disease associations 
including information about mendelian, complex and environmental diseases was 
developed (see sections 3.3 and 3.5). For this purpose, first an extensive analysis of 
available repositories of gene-disease associations was performed (objective 2a). 
This is of particular interest as data about the genetic origin of human diseases is 
dispersed over various databases and literature. Hence integration is required in 
order to get a comprehensive view of all the genes associated to human diseases. 
The integrated gene-disease association database combines information about the 
genetic origin of mendelian, complex and environmental diseases, where the latter 
refers to diseases caused by environmental chemicals including drugs. Hence, this 
new integrated gene-disease association database serves as a suitable framework for 
studying human diseases and adverse drug reactions (objective 2b). It was 
furthermore used as a gold standard to be compared with associations extracted 
from the information extraction system Text2SemRel (Bundschus et al, 2010).  

 
Systems biology approaches, in particular network analysis tools, have been 

introduced since they serve as suitable frameworks to investigate how genetic and 
environmental perturbations lead to complex traits, such as diseases or adverse drug 
reactions in human. Hence, in this work we used network analysis tools to detect 
functional modules related to human diseases (see section 3.3).  

In another work, we present a strategy for the study of the mechanisms of 
adverse drug reactions, which makes use of our new integrated gene-disease 
association database. In brief, a Taverna workflow is presented to substantiate 
signals consisting of drug-adverse event pairs by checking if there are genes 
associated to the adverse event that are also targets of the drug. This work is 
presented in section 3.1.4 and oral presentations (see publications 9 and 10 in 
section 6). 

Moreover, we developed DisGeNET, a Cytoscape plugin for user-friendly 
access to our new integrated gene-disease association database. DisGeNET 
represents a user-friendly tool allowing integration, analysis, interpretation and 
visualization of human gene-disease association networks, which will intensely aid 
investigating the molecular basis of human diseases and adverse drug reactions (see 
section 3.5).  
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As mentioned above, a statistical association between a genetic variant and a 
disease or an adverse drug event is usually not sufficient to explain the underlying 
processes. In order to study the effect of genetic variations, it is first crucial to 
determine how they influence the function of the protein encoded by the affected 
gene. Furthermore, a more detailed study is required to investigate how this 
modification reflects in further downstream processes, such as in signalling 
pathways. Consequently, in another project (3.6), we integrated data about sequence 
variations and their effect on protein function with biological networks for 
visualization, analysis and modelling purposes. This approach aids building of 
predictive models that simulate the effect of sequence variations on the dynamics of 
cell signalling processes and is therefore useful to shed light on the molecular basis 
of human diseases and adverse drug reactions. The presented method moves 
towards the analysis of disease-related states important to understand how genetic 
and environmental perturbations affect processes in the human body.  

Moreover, our work related to objective 2 was presented in various oral and 
poster communications at international conferences (see publications 8, 11, 12, 15, 
16 and 18 in section 6). 
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Abstract 
 
Background 

For many years, scientists have been trying to understand the mechanisms 
underlying diseases in order to design new preventive and therapeutic strategies. 
Most human diseases arise due to interactions between multiple genetic variants and 
environmental factors. The fragmentation of information, so called knowledge 
pockets, poses obstacles to our understanding of the molecular processes underlying 
human diseases. 

 
Methodology/Principal Findings 

We developed a comprehensive database of gene-disease associations by 
integrating data from diverse sources including text-mining derived associations. 
We furthermore built gene-disease association networks and used network topology 
analysis to study their emergent properties. The global network analysis confirms 
the need of integrating gene-disease associations to bridge the aforementioned 
knowledge pockets. The analysis also shows that human diseases have many gene 
associations in common indicating a highly shared genetic origin. We furthermore 
extracted disease-related modules by means of clustering and demonstrate that most 
diseases are associated to a core set of biological processes. More strikingly, similar 
findings are obtained when studying groups of diseases. This suggests that the 
diseases in these groups, which can be very similar but also very unrelated, might 
arise due to dysfunction of the same biological processes in the cell. Our analysis 
also shows that only few diseases are solely caused by defects in direct interactions 
between proteins. We present in several case studies how the detection of disease-
related modules and their adjacent functional analysis can be used to shed light on 
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disease development or the influences of environmental variables on human health. 
 
Conclusions/Significance 

For the first time, we include mendelian, complex and environmental diseases 
in an integrated gene-disease association database. We furthermore show that the 
concept of modularity applies for all of them and provide a functional analysis of 
disease-related modules. Such analysis can provide important new biological 
insights, which might not be discovered when considering each of the gene-disease 
association repositories independently. Hence, we present a suitable framework for 
the study of mechanisms leading to diseases and adverse drug reactions. 
Additionally, we make all data publicly available through DisGeNET, a plugin for 
Cytoscape to access and analyse our data with the aim to aid future studies of 
disease development and drug discovery projects. 

 
Introduction 

For many years, scientists have been trying to understand the molecular and 
physiopathological mechanisms of diseases in order to design new preventive and 
therapeutic strategies. In the near past, the combination of experimental and 
computational methods led to the discovery of disease-related genes (Botstein and 
Risch, 2003; Kann, 2010). A well-known example is Phenylketonuria, where the 
function of the gene encoding the PAH enzyme was studied with respect to the 
mechanism of the disease (Scriver and Waters, 1999). However, we are still far 
from fully understanding disease causation, especially regarding complex diseases 
such as cancer (Kann, 2010). Even for mendelian diseases, such as Phenylketonuria, 
this is not fully achieved because phenotypic outcome cannot be predicted solely 
based on the genotype (Scriver et al, 1999). It has become evident, that many 
human diseases cannot be attributed to malfunction of single genes but arise due to 
complex interactions among multiple genetic variants (Hirschhorn and Daly, 2005). 
Moreover, influence of external variables such as environmental factors, infectious 
agents or drugs have to be considered when studying the occurrence and evolution 
of a disease. Furthermore, for many complex diseases alterations in several genes 
can make subtle contributions to the susceptibility of a particular individual. At the 
end of the day, how a disease is caused and thus how it can be treated can only be 
studied on the basis of the entire body of knowledge including all genes that are 
associated to the disease and their interactions through biological pathways. 
However, with the unprecedented wealth of information available, it is extremely 
difficult to obtain a complete picture of the genetic basis of diseases. As a 
consequence, in order to obtain such a complete picture, data integration from 
different sources is required. This is of special interest considering the fact that 
individual researchers are often restricted to so called knowledge pockets (Cokol et 
al, 2005) that are much smaller than all the knowledge available but spread over 
literature or distinct databases. This fragmentation of information poses obstacles to 
our understanding of the molecular processes underlying human disease.  

In the 60s, Dr. McKusick started collecting information about genes and their 
association to diseases first as a book and later as a database. His Online Mendelian 
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Inheritance in Man (OMIM) database has become a highly popular source in 
medical genetics (Hamosh et al, 2005). OMIM traditionally focused on monogenic 
diseases and later started to include complex diseases. In the last years, further 
databases have been built, among them PharmGKB, a database specialized on the 
knowledge about genes that are involved in modulating drug response 
(pharmacogenes) (Klein et al, 2001) or CTD, which is focused on the effect of 
environmental chemicals on human disease (Mattingly et al, 2006). However, each 
of the databases focuses on different aspects of phenotype-genotype relationships. 
Moreover, due to the vast increase of published literature in health and life sciences, 
no one (not even expert curators of such databases) can keep track of the relevant 
knowledge that is regularly published (Cokol et al, 2005).  Here, text-mining has 
evolved as a useful tool to automatically extract information about the relationships 
between biomedical entities reported in the literature (Ananiadou et al, 2010). Thus, 
to obtain a comprehensive picture of the state of the art knowledge about the genes 
influencing human diseases, integration of information from different databases and 
literature is needed. 

In the last years network analysis has emerged as a representational formalism 
to study the interactions between biomedical entities (Butts, 2009).  Recent analysis 
examples are protein-protein (Przulj et al, 2004a), drug-target interactions (Yildirim 
et al, 2007), as well as genotype-phenotype relationships (Goh et al, 2007; Lee et 
al, 2008; Li and Agarwal, 2009). Such network formalism allows the representation 
of integrated data sources as a single framework and the subsequent analysis of its 
emergent properties. In this respect, it has been shown that network topology 
properties of biological networks differ from random networks. For instance, 
biological networks tend to have few hub nodes, which are connected to many 
neighbours and many other nodes with a much smaller degree, whereas in random 
networks most nodes have roughly the same number of neighbours (Barabási and 
Oltvai, 2004).  

In this context, analysis of protein-protein interaction networks revealed clusters 
or modules of highly interacting proteins that were found to have functional 
relevance (Przulj et al, 2004b; Sharan et al, 2007). This concept of modularity has 
also been discussed in the context of human genetic diseases using malformation 
syndromes as examples (Oti and Brunner, 2007; Suthram et al, 2010; Zaghloul and 
Katsanis, 2010). Many human diseases show overlap in their phenotype and hence 
diseases have been clustered according to phenotypic similarity (Freudenberg and 
Propping, 2002; Hidalgo et al, 2009). Many phenotypically similar diseases are 
caused by functionally related genes, such as Stickler, Marshall and OSMED 
syndromes (Ahmad et al, 1991; Melkoniemi et al, 2000; Snead and Yates, 1999). 
Also, it was found that several forms of human ataxias are related to the same set of 
interacting proteins (Lim et al, 2006). Thus, many diseases are caused by 
dysfunction of interacting proteins or biological pathways (D'Andrea and Grompe, 
2003; Jones et al, 2008; Lim et al, 2006). It is crucial to identify these modules, as 
they play a key role in the aetiology of the diseases. In addition, they can be used 
for different purposes such as the identification and prioritization of candidate 
disease genes (Cerami et al, 2010; Oti et al, 2006), the development of new 
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treatments or drug repurposing. For instance, Suthram et al. identified modules, 
which are affected in a variety of distinct diseases and showed that they contain 
several proteins being targets of drugs that are already known to effectively treat 
several diseases (Suthram et al, 2010). Network topology analysis can be used to 
identify such functionally relevant modules (Aittokallio and Schwikowski, 2006). 

Similarly, Goh et al. used a global analysis of a human gene-disease network 
based on OMIM to show that gene products related to the same disease have a 
higher likelihood to physically interact (Goh et al, 2007). In this article, we pick up 
the concept of modularity of human genetic diseases with the aim of assessing it at 
a global scale for the whole spectrum of human diseases including mendelian, 
complex and environmental diseases. For this purpose, we first create a 
comprehensive database of human gene-disease associations including data from 
several databases and text-mining derived associations in order to bridge the 
aforementioned knowledge pockets. The resulting database comprises the whole 
spectrum of human diseases with genetic origin, including mendelian, complex and 
environmental diseases, and represents, to the best of our knowledge, the most 
complete view on human gene-disease associations that is currently publicly 
available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. 
Moreover, we represent our database as graphs and study global properties by 
means of network analysis. Our results indicate that for most human diseases, and 
even for sets of related diseases, functional modules exist. Such modules are in 
general comprised of more than one biological process. We show in several case 
studies how our network representation of human genetic diseases and the adjacent 
detection of functionally related gene modules can be used not only to shed light on 
the molecular basis of human diseases but also to gain a better understanding of the 
influence of environmental factors, including drugs, on human health. Our results 
confirm the need of integrating human gene-disease associations from various 
sources. Moreover, they support the concept of modularity of human genetic 
diseases, which we studied for the first time at a global level for the whole spectrum 
of human diseases. Finally, we make all data publicly available through DisGeNET, 
a plugin for Cytoscape to access and analyse our data (Bauer-Mehren et al, 2010). 

 
 
Results 

Global network analysis of a comprehensive database on gene-disease 
associations 

A comprehensive database on gene-disease associations was developed by 
integrating information from four repositories: Online Mendelian Inheritance in 
Man (OMIM) (Hamosh et al, 2005), UniProt/SwissProt (UNIPROT) (Apweiler et 
al, 2004), Pharmacogenomics Knowledge Base (PHARMGKB) (Altman, 2007), 
and Comparative Toxicogenomics Database (CTD) (Mattingly et al, 2006). In 
addition, associations from a literature-derived human gene-disease network 
(LHGDN) (Bundschus et al, 2008) were included to increase the coverage of our 
database (see Materials and methods). In this regard, two aspects had to be 
considered: the different data sources represent gene-disease associations in 
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different ways and they use different gene and disease vocabularies. To ensure an 
accurate integration of gene-disease association data, we developed a gene-disease 
association ontology (see Figure 1 in Supplementary Material). Moreover, we 
performed a mapping of disease and gene vocabularies (see Materials and 
methods). Diseases were classified into 26 disease classes according to the MeSH 
hierarchy allowing the analysis of groups of related diseases based on standard 
disease classification. Using this disease classification, many diseases are assigned 
to more than one disease class as several systems or organs are affected.  

This integration resulted in an increase in coverage of (i) diseases, (ii) genes and 
(iii) their associations compared to the original data sources (see Figure 1). 
Moreover, the overlap among databases was surprisingly small, highlighting the 
need of integrating different data sources to obtain a comprehensive source of 
current knowledge about gene-disease associations (see Figure 2 in the 
Supplementary Material).  

We used bipartite graphs as network formalism to represent the gene-disease 
association database. We created four different bipartite graphs called OMIM (only 
including data from OMIM), CURATED (including data from expert curated 
databases), LHGDN (text mining data only) and ALL (including all available gene-
disease associations) (Figure 2). The more data sources were considered the denser 
the networks became indicating that many more diseases share genetic origin than 
reflected in a single source. In OMIM, most diseases are associated to one or few 
genes. Contrasting, in the other networks most diseases are part of a large connected 
component. This largest connected component increases noticeably when 
integrating more data, while the number of diseases associated to only one gene 
decreases concomitantly (see curly brackets in Figure 2). This indicates that most 
diseases are associated to more than one gene, even for mendelian diseases. These 
findings are in agreement with several studies showing that in many monogenic 
disorders, the observed phenotype is the result of the combined effect of a primary 
gene, modifier genes and other factors (Dipple and McCabe, 2000; Scriver et al, 
1999). Thus, even for mendelian diseases, complexity of the gene-disease 
associations is an issue.   

 
 
 

THESIS PUBLICATIONS

75



 

 
 

Topological analysis of the networks can uncover important properties of gene-
disease associations. For example, the node degree follows distinct frequency 
distributions according to the type of network (Newman, 2003). Our analysis shows 
that the degree distributions of diseases and genes are different from degree 
distribution of random networks, but none of them follows a power law distribution 
(Figure 3 in Supplementary Material). Nevertheless, there are two main trends 
visible. Both, the number of hubs (nodes that are highly connected with other 
nodes) and the average degree size increase dramatically through the integration 
process. For the gene nodes, the average degree ranges from 1.6 in OMIM to 5.6 in 
ALL and for the disease nodes, from 1.5. in OMIM to 10.1 in ALL (see Figure 3 in 
Supplementary Material). The degree of a disease node represents the number of 
associated genes and hence can be used as a measure for the locus heterogeneity of 
the disease. There is a dramatic increase in the maximum locus heterogeneity 
observed in each data set; there are 30 genes annotated to Diabetes Mellitus Type II 
in OMIM, 350 genes associated to Prostatic Neoplasms in CURATED, 1133 genes 
associated to Neoplasms in LHGDN and 1274 genes associated to Breast 
Neoplasms in ALL. With respect to the genes, the increase in the node degree is 
less dramatic but still visible (see Figure 3 in Supplementary Material). Two 
network projections were obtained from the bipartite gene-disease networks to 
generate disease centric and gene centric representations of the data. Both 
projections allow studying diseases with genetic origin in a more detailed way (see 
next section). We can also consider the degree distributions of the disease and gene 

Figure 1: Number of distinct gene/disease nodes and edges per data source 
 

The number of diseases refers to the actual number of disease nodes in the networks after 
mapping of disease vocabularies. The number of edges (simplified) refers to the number 
of distinct gene-disease associations. The number of edges (multiple) represents all 
edges, considering one edge for each source or evidence reporting the gene-disease 
association. 

 

OMIM UNIPROT PHARMGKB CTD CURATED LHGDN ALL

sedon esaesid/eneg fo reb
mun

genes
diseases

edges (simplified)
edges (multiple)

0
0001

0003
0005

0007

0
00002

00004
00006

00008

segde fo reb
mun

THESIS PUBLICATIONS

76



  

projection networks. In contrast to the bipartite graph degree distribution, the degree 
of a gene (disease) node indicates the number of gene (disease) neighbours in the 
gene (disease) projection network. Interestingly, the degree distributions of the 
projected networks are much broader than the degree distributions of the bipartite 
graph (data not shown). The right tails of the distributions get much more populated 
the more data sources are included (more hubs in CURATED than in OMIM and 
many more hubs in LHGDN than in CURATED). Moreover, in the disease 
projection the average number of diseases connected to another disease is 2.2 in 
OMIM, 8.5 in CURATED and 103.6 in ALL. All these findings suggest a much 
higher level of interrelation of human diseases than observed by solely considering 
a single data source (e.g. OMIM).  

 
 

 

 
 
 

Figure 2: Cytoscape screenshot of the four gene-disease networks 
 

Cytoscape screenshot depicting the four gene-disease networks. The Cytoscape layout 
“Group attributes layout” was used to group gene (blue) and disease (magenta) nodes. The 
colour of the edges corresponds to the type of gene-disease association according to our 
gene-disease association ontology. Grey edges represent Marker association, red denotes 
GeneticVariation, blue corresponds to Therapeutic class, green to RegulatoryModification. 
The curly brackets frame diseases with only one gene associated, the number of diseases 
with single gene annotation decreases visibly when incorporating more data (from OMIM 
to ALL).   
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Functional analysis at the level of individual diseases 
Integration of different sources resulted in an increase in the locus heterogeneity 

for many diseases. This is particularly evident when incorporating text-mining 
derived associations. Several studies based on OMIM database indicated that, for 
diseases with high locus heterogeneity, the associated genes are involved in the 
same biological process (Freudenberg et al, 2002; Goh et al, 2007; van Driel et al, 
2006). Goh et al. introduced the homogeneity measure, defined as the maximum 
fraction of genes sharing the same biological annotation (Goh et al, 2007). Thus, we 
used the homogeneity measure to test if the aforementioned concept still applies to 
our integrated data set. We calculated GO biological process (GO-BP) homogeneity 
for each disease as defined in equation 2. We obtained similar results for OMIM 
data as other authors (Goh et al, 2007), however for the larger networks 
(CURATED, LHGDN, ALL) the homogeneity values decreased. In addition, we 
also calculated homogeneity using annotations to biological pathways. For single 
diseases, we obtained similar results as for GO-BP with average values ranging 
between 56 % and 77 % (77 % in OMIM, 67 % in CURATED, 56 % in LHGDN 
and 59 % in ALL). Hence, for the integrated data sets, more than one biological 
process is associated to a single disease.  

In order to further explore why there is a decrease in homogeneity when 
integrating more data into the network, we studied the dependency of homogeneity 
values on the number of associated genes. Interestingly, homogeneity values varied 
with the number of genes associated to a given disease (see Figure 3). For all data 
sources, even for OMIM, the homogeneity decreases with increasing number of 
associated gene products (r » -0.25) and was significantly higher (p-value < 0.05) 
than for random controls (see Figure 3). For instance, in CURATED, diseases with 
two to five annotated gene products have on average 75 % of the gene products 
annotated to the same pathway, while this value decreases to 38 % if 50 to 100 gene 
products are annotated to the disease. For diseases with two to five annotated gene 
products, approximately 70 % of them participate in the same pathway for all data 
sources. On the other hand, for diseases with more than 10 gene products annotated, 
it is more likely that more than one pathway is involved. Moreover, it is striking 
that although the text-mining derived network is very dense with an average of 18.7 
genes per disease, the pathway homogeneity still differs significantly from random, 
with values comparable to the ones observed in the CURATED set. Similar results 
were obtained for GO-BP term homogeneity analysis (Figure 4 in Supplementary 
Material). 
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Functional analysis of gene and disease clusters  
In the disease projection network, most diseases are highly connected with 

average degrees of 2.2 in OMIM up to 103.6 in ALL, and depending on the data 
source, the largest connected component gets very dense. Hence, we applied a 
graph-clustering algorithm to identify highly connected units, so called clusters or 
modules, in the projected networks (see Materials and methods). Diseases in the 
resulting disease clusters have a common genetic aetiology. The clustering revealed 
some disease clusters being homogeneous in terms of disease class and other 
clusters containing diseases from different disease classes (disease clusters can be 
visualized within Cytoscape using the session file available at 
http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download). We then 
investigated if the genes associated to the disease clusters are more likely to 
participate in the same biological processes, by analysing the GO-BP and pathway 
homogeneity (see Supplementary Material). On average, pathway homogeneity is 

2<=x<5 5<=x<10 10<=x<20 20<=x<30 30<=x<50 50<=x<100 x>=100

OMIM
OMIM random
CURATED
CURATED random
LHGDN
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ALL random
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Figure 3: Pathway homogeneity for diseases 
 

Mean pathway homogeneity values of single diseases and random controls are plotted for 
all four networks binned by the number of associated gene products per disease. Pathway 
homogeneity values range from 0 to 1, where 1 means that all gene products associated to 
the disease are annotated to the same pathway. Confidence intervals of 95% were added to 
allow comparison of real to random values. For OMIM, there are only two diseases with 
more than 30 gene products annotated, both with a pathway homogeneity of 1. 
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68 % for OMIM and 59 % for CURATED, suggesting that in these datasets 60-70 
% of the gene products belonging to a disease cluster participate in the same 
pathway. For the more populated networks (LHGDN and ALL) the average 
pathway homogeneity values of disease clusters decreases to approximately 50 %. 
Compared to single diseases, homogeneity values are slightly smaller, but still 
significantly different from random. No correlation was observed between the 
homogeneity values and the number of diseases per cluster or the disease class (data 
not shown). However, similarly to single diseases, we observe a decrease of the 
pathway homogeneity with increasing number of gene products annotated to the 
diseases in a cluster (r » -0.26) (Figure 5 in Supplementary Material). In addition, 
the analysis identified disease clusters with different degrees of pathway/GO-BP 
homogeneity; some disease clusters are characterized by one main pathway or 
biological process, while other disease clusters might involve several biological 
processes. Interestingly, in CURATED, a high proportion of the disease clusters (71 
%) have more than one pathway annotated (similar values were obtained for GO-
BP).  

The gene projection networks are also very dense and a graph-clustering 
algorithm was applied in order to identify groups of phenotypically related genes 
(see Materials and methods). These clusters represent genes that share disease 
associations. By exploring their functional annotation we can gain insight into 
biological processes that are common to the genes of each cluster and hence 
common to their associated diseases. Several studies presented evidence arguing for 
a modular nature of human diseases, especially for congenital malformations and 
related syndromes (Lim et al, 2006). Thus, we wanted to assess at a global scale 
including the whole spectrum of diseases, to what extent the groups of 
phenotypically related genes represent functional modules in the cell.  

Gene products can be functionally related to each other in different ways. For 
example, they can be related by means of direct, physical protein-protein 
interactions or by more indirect associations, as observed between enzymes in the 
context of a metabolic pathway.  

First, we assessed to which degree the proteins encoded by the genes in the 
clusters physically interact in the cell. For this purpose, we used a recently 
published human interaction network (HIN) based on protein-protein and signalling 
interactions (Cerami et al, 2010). We introduce the HINscore, which represents the 
number of connected components in a subgraph of HIN containing all nodes of the 
gene cluster (see equation 3). The score is defined as the fraction of disease-
clustered gene products that are actually involved in physical interactions. For 
CURATED and OMIM, clusters including less than 50 nodes show HINscores 
significantly higher than for random clusters, while for the other networks the 
difference is significant for clusters of less than 15 nodes (see Figure 4A). In larger 
clusters, it is more likely to find the same number of connected components as in 
randomly selected gene clusters. Figure 4B illustrates some selected clusters from 
CURATED with high HINscores. The upper part shows the clusters from the gene 
projection network, highlighting in red the edges corresponding to physical 
interactions between the gene products. The lower part shows their corresponding 
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subgraphs in HIN highlighting the physically interacting modules of genes related 
to the disease. For instance, cluster B.1 contains genes mainly associated to 
mitochondrial complex I deficiency (genes in the lower right part of the gene 
cluster), and Leigh and Alexander diseases (genes in the upper left part of the gene 
cluster). The latter are neurometabolic disorders that result from defects in the 
mitochondrial respiratory chain. Genes associated to these diseases encode proteins 
that form a physically interacting module as illustrated by the HIN subgraph 
(bottom). Other examples of clusters with high HIN score are related to 
peroxisomal disorders (e.g. Zellweger syndrome), different types of anemia 
(Diamond-Blackfan anemia or Heinz body anemia) or Walker-Warburg and 
Fukuyama syndromes. Thus, the HINscore can be used to identify phenotypically 
derived gene clusters in which physical, direct interactions between the gene 
products might play an important role. 

Second, we evaluated the indirect relationships between disease gene products. 
For this purpose we calculated the degree of homogeneity of the phenotypically 
related gene clusters with respect to biological processes and pathways. The 
average GO-BP homogeneity for clusters smaller than 50 nodes is significantly (p-
value < 0.05) higher than for randomly selected clusters (except for ALL). 
Moreover, similar to disease clusters, we observe that homogeneity decreases with 
increasing size of the cluster for all data sets (r » -0.20). For very large clusters 
(clusters larger than 50 nodes), the results are not significantly different to random 
controls; however, such clusters under represented in our dataset. 74 % of the 
clusters in CURATED have a GO-BP homogeneity value smaller or equal to 75 %, 
hence for most of the clusters, there are at least two GO-BP terms annotated (see 
Figure 6 in the Supplementary Material). Similar results were obtained when 
assessing pathway homogeneity (see Figure 7 in the Supplementary Material).  
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Figure 4: HINscores for phenotypically derived gene clusters 
 

A: Mean HINscores plotted for different cluster sizes for all networks and random 
controls.  
B: Selected gene clusters denoted as B.1, B.2, B.3 and their corresponding HIN 
subgraphs from the CURATED dataset. Upper part shows the gene clusters and lower 
part the HIN subgraphs. In the phenotypically derived gene clusters, red edges represent 
physical interactions among the gene products. In the HIN subgraphs, red edges denote 
phenotypic relationship among the corresponding genes. Nodes in light blue belong to the 
phenotypically derived gene clusters that are not present in HIN. B.1 is associated to 
mitochondrial respiratory chain deficiencies, Leigh and Alexander Disease. B.2 
corresponds to Hypertension and Cardiovascular Diseases. B.3 represents different types 
of Hyperlipoproteinemia.  

 

B.1 B.2 B.3

A

HINScore = 0.71 HINScore= 0.42 HINScore = 0.5

B.2

B.1

B.3

2<=x<5 5<=x<15 15<=x<50 x>=50

0.0
2.0

4.0
6.0

8.0
0.1

OMIM
OMIM random
CURATED
CURATED random
LHGDN
LHGDN random
ALL
ALL random

THESIS PUBLICATIONS

82



  

Most of the gene clusters (72 %) in CURATED are of size smaller than 15. 
Interestingly, for such cluster sizes, HINscores and homogeneity values differ 
significantly from random for all four networks. In general, clusters with high 
HINscore, pathway or GO-BP homogeneity are homogeneous in terms of 
associated diseases, meaning that the genes are annotated to similar diseases. For 
example, gene products from the cluster depicted in Figure 4 (B.1), which 
corresponds to mitochondrial respiratory chain deficiencies and Alexander and 
Leigh Disease, physically interact and hence the HINscore is very high. In addition, 
they are all annotated to the same pathway resulting in a pathway homogeneity 
value of 1.  

In contrast, clusters with very low homogeneity values (< 0.25) are 
heterogeneous in terms of disease annotation, and are underrepresented in the 
dataset. Such clusters contain genes with very high allelic heterogeneity. In 
CURATED, for instance, genes that have more than 20 associated diseases, belong 
to heterogeneous clusters with low GO-BP (mean = 0.17) and pathway 
homogeneity values (mean = 0.28).  

The majority of clusters show medium range HINscore, pathway and GO-BP 
values, suggesting that more than one biological process is relevant to a disease or a 
group of related diseases. All in all, the results show that the concept of modularity 
applies for most diseases, even for clusters of related diseases, as homogeneity and 
HINscore values differ significantly from random. 

 
 
Case studies 
Our database represents a suitable framework to study human diseases with 

genetic origin, including those in which environmental factors play an important 
role. As environmental factors we consider toxins to which we are exposed in our 
daily life but also therapeutic drugs. Thus, the database can serve to explore all the 
genes known to be associated to a disease, to study relationships among diseases at 
the genetic level or to identify biological processes associated to certain diseases.  

Here we provide some exemplary case studies to illustrate the kind of outcomes 
that can be obtained using our integrated database and to inspire future studies. The 
results presented in the previous section indicate that the gene clusters resemble 
functional units, in terms of shared biological processes, and these processes can be 
studied more deeply to shed light on the mechanisms related to the diseases. Hence, 
we determined the specific biological processes relevant for each gene cluster by 
calculating GO term and pathway enrichment (see Materials and methods). In total, 
we obtained significant (p-value < 0.05) GO and pathway enrichment for 94 % of 
the clusters in CURATED. The first two clusters are very large (740 and 144 
genes). Hence, we applied a second round of clustering on these two clusters to 
obtain smaller modules to ease their analysis. Details on the enrichment results are 
available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#ClusterAnalysis. 
Moreover, we provide a Cytoscape session file (DisGeNET.cys) including the 
examples presented here, available at 
http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download). 

THESIS PUBLICATIONS

83



 

The following examples illustrate the (i) prediction of disease candidate genes, 
(ii) study of the interactions between environmental factors and diseases at the 
genetic level, (iii) identification of shared mechanisms of distinct diseases and (iv) 
analysis of mechanisms of adverse drug reactions.  

 
Example 1 - Gene clusters and pathway analysis to predict new disease 

candidate genes 
One of the clusters is composed of 20 genes, most of them associated to 

melanoma and developmental diseases affecting pigmentation, eye and ear 
functions, such as Tietz and Waardenburg syndromes. Most genes of the cluster are 
associated to melanoma with the exception of MITF. GO enrichment analysis 
resulted in terms like “melanin biosynthetic process from tyrosine” (GO:0006583), 
“eye pigment biosynthetic process” (GO:0006726) and “melanocyte differentiation” 
(GO:0030318), among others. These are all processes relevant to skin, hair and eye 
pigmentation, hearing function in the cochlea, and skin carcinogenesis. Figure 5B 
shows the Melanogenesis pathway (KEGG hsa:04916), which is the most 
significantly enriched pathway for this cluster. The proteins encoded by genes TYR 
and ASIP (ASP in KEGG) and the transcription factor encoded by MITF regulating 
expression of the TYR gene, are highlighted in red in the pathway. Since MITF 
appears not only in the same phenotypically derived cluster but also in the same 
pathway as the genes associated to Melanoma, it could be proposed that MITF is a 
candidate disease gene for Melanoma. In fact, we could confirm this finding by 
checking the disease neighbourhood of MITF in the gene-disease network (ALL) 
that also includes text-mining derived information (see Figure 5C). The information 
extracted by text-mining indicates that MITF has been reported as a gene involved 
in melanocyte development and characterized as melanoma oncogene (Carreira et 
al, 2006; Garraway and Sellers, 2006). In conclusion, clustering analysis of the 
gene projection network followed by functional enrichment analysis can be used to 
propose new candidate disease genes.  
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Example 2 - Interaction between environmental exposure with arsenic 

compounds and cancer at the genetic level 
Another cluster contains 67 genes mostly associated to Arsenic Poisoning, skin 

and nervous system diseases, and different types of neoplasms. Arsenic is a well 
established human carcinogen, and many studies support an association between 
arsenic exposure and increased incidence of solid tumours, such as lung, bladder, 
prostate, renal and skin tumours (Celik et al, 2008; Chiou et al, 1995; Radosavljevi! 
and Jakovljevi!, 2008; Smith et al, 1992; Tsuda et al, 1995; Yang et al, 2008). 
Moreover, studies conducted in developing countries show a general increase in the 
incidence of different types of cancers, which is hypothesised to be associated with 
exposure to environmental toxins, among other factors, some of them of genetic 
origin (Park et al, 2008; Sankaranarayanan and Boffetta, 2010; Thun et al, 2010). 
Thus, there is a need to investigate the interactions among environmental 
carcinogens and genetic factors (Sankaranarayanan et al, 2010). Although more 
studies are needed to determine a linkage between arsenic exposure and Breast 
Cancer incidence (Navarro Silvera and Rohan, 2007), this cluster indicates a 
possible association at the genetic level. Some of the genes that are associated to 
Arsenic Poisoning are also known to be associated to Breast Cancer, such as TNF, 
CCL20, CXCL2, CXCL3 and IL1B. Apoptosis-inducing factors IL1B and TNF are 
down regulated by arsenic compounds (C, 2006), as indicated by the supporting 
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Figure 5: Candidate disease gene prediction 
A: Phenotypically derived gene cluster associated to Melanoma. MITF is the only gene in 
the cluster not associated to Melanoma. B: The Melanogenesis pathway (KEGG: 
hsa:04916) with genes MITF, TYR and ASP (ASIP in A) coloured in red. C:  
Neighbourhood of MITF gene in network ALL.   
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evidence of one of the associations in the dataset. This observation combined with 
the DNA damaging effect of arsenic (Bau et al, 2002) may provide a mechanistic 
hypothesis for the tumorigenic effects of arsenic.  

All in all, cluster analysis of the gene projection network uncovered an 
interesting relationship between environmental exposure to arsenic compounds and 
cancer. This relationship deserves further investigation at the epidemiological and 
molecular levels.  

 
Example 3 – Identification of shared mechanisms of different diseases  
Another cluster containing 79 genes is an example of a heterogeneous cluster in 

which genes are associated to different diseases. Figure 6 shows the three main 
disease groups, Atopic Dermatitis (an autoimmune skin disease), Diabetes Mellitus 
Type I (an early onset, insulin-dependent, autoimmune disease), and Inflammatory 
Bowel Diseases (including Crohn Disease and Ulcerative Colitis). All these 
diseases are related as they share many gene associations. Interestingly, according 
to MeSH, one of the diseases (Crohn Disease) is not classified as Immune Systems 
Disease but only as Digestive Systems Disease (genes coloured in pink). However, 
it is well established that Crohn Disease is an autoimmune disease (Duerr, 2003; 
Scaldaferri and Fiocchi, 2007).  

GO term and pathway enrichment analysis showed that for this heterogeneous 
cluster, there are common biological processes associated to the distinct diseases. 
For instance, although there are 59 pathways annotated to this cluster, the pathway 
homogeneity is 41 % indicating that almost half of the gene products appear in the 
same pathway. The most significantly enriched processes are related to immune 
(GO:0006955) and inflammatory response (GO:0006954), while the most 
significantly enriched pathway is the Jak-STAT signalling pathway (KEGG 
hsa:04630). Figure 6 shows the Jak-STAT signalling pathway, which contains 
genes associated to all three diseases of this cluster. Interestingly, the connections 
of the different diseases can be seen on different levels of this signalling pathway, 
from receptor-ligand interactions towards downstream signalling and transcriptional 
regulation. 

This example shows the value of clustering and subsequent GO and pathway 
enrichment analysis to identify mechanisms that are common to distinct diseases.  

 
Example 4 - Knowledge about genetic basis of diseases can shed light on 

mechanisms underlying drug toxicity 
Rhabdomyolysis can result from a traumatic injury, but also appears as a 

consequence of other diseases or due to intoxication with recreational and 
prescription drugs. We use Rhabdomyolysis as an example to illustrate how to use 
our database to understand mechanisms underlying drug toxicity. Using the gene-
disease network from ALL, we found several Myopathies, CPT Deficiencies and 
other diseases, such as Acute Renal Failure and Malignant Hyperthermia, in the 
neighbourhood of Rhabdomyolysis. One of the genes associated to Rhabdomyolysis 
is CPT2, which encodes the mitochondrial carnitine palmitoyltransferase II. 
Inherited deficiencies in this enzyme lead to CPT2 deficiency, an autosomal 
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recessive disorder characterized by recurrent Myoglobinuria, episodes of muscle 
pain, stiffness, and Rhabdomyolysis. On the basis of this knowledge it is possible to 
create a hypothesis on the mechanisms by which certain drugs such as Perhexiline 
can lead to Rhabdomyolysis. Perhexiline, which is prescribed for severe Angina 
Pectoris (De Luca et al, 2008) inhibits CPT1, shifting myocardial substrate 
utilization from long chain fatty acids to carbohydrates. Perhexiline can also target, 
but to a lesser extent, CPT2 (Kennedy et al, 2000), which would explain the toxic 
effects of the drug in skeletal muscles due to the association of CPT2 with 
Rhabdomyolysis. This example shows the power of using our gene-disease data in 
combination with drug-target data for the analysis of drug toxicities.  

 
 

 
 

 
 
 

 

Discussion 
We presented a global analysis of a comprehensive database of gene-disease 

associations revealing a modular nature of the whole spectrum of human genetic 
diseases. We compiled our database by integrating data from various expert-curated 
sources and text-mining derived associations. The overlap among databases is 
surprisingly small, which highlights the need of integrating different data sources to 
obtain a more complete picture of the current knowledge of gene-disease 
associations. This is of special interest considering the vast amount of literature 
published in the biomedical field that precludes individual researchers and even 
expert curators from keeping track of all accessible knowledge. Moreover, distinct 
databases set their focus differently and hence cover different aspects of genotype-

Figure 6: Identification of shared mechanisms of distinct diseases 
 

A cluster containing genes associated to distinct diseases is shown on the left part of the 
figure. There are three main disease groups, Atopic Dermatitis (an autoimmune skin 
disease), Diabetes Mellitus Type I (an early onset, insulin-dependent, autoimmune disease), 
and Inflammatory Bowel Diseases (including Crohn Disease and Ulcerative Colitis). 
Diseases are coloured according to their disease class (see Figure 8 in Supplementary 
Material). The most significantly enriched Jak-STAT signalling pathway is displayed with 
some nodes from the cluster coloured in red (right part).  
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phenotype relationships.  
We furthermore represented gene-disease associations as networks to obtain an 

overall overview of the genetic origin of human diseases and to subsequently study 
global properties of the data by means of network analysis. The topological analysis 
revealed several trends, which provide interesting new insights concerning the 
understanding of human diseases. First, the more data sources we consider, the 
denser the networks become indicating that the aforementioned knowledge pockets 
exist and that an integration of diverse repositories is required to bridge the gap 
between them. Second, the degree distributions of diseases and genes show a highly 
populated right tail differing from the typical degree distribution of random 
networks. This supports the idea that many diseases cannot be attributed to a single 
gene but to several genes that might interact in complex ways leading to the disease. 
Interestingly, the degree distributions of our networks, though different from 
random, do not follow power-law. Although many early studies on topology of 
biological networks proposed power-law behaviour, recent re-evaluation of these 
studies indicate that this is not always the case and other models need to be 
considered (Lima-Mendez and Helden, 2009). 

The small number of associated genes in OMIM (on average 1.5 genes per 
disease) can be partly explained as OMIM was formerly built as a database focusing 
on mendelian, monogenic diseases and just recently started including complex 
diseases. However, the increase in the number of associated genes per diseases (2.7 
in CURATED, 18.7 in LHGDN, 10.1 in ALL) is in agreement with discussions 
about the complexity of human genetic diseases, even in case of monogenic traits 
(Dipple et al, 2000; Scriver et al, 1999). These studies suggest that the distinction 
between mendelian and multiple gene disorders is rather artificial and that the 
influence of a variety of genes, including the so-called modifier genes, and 
environmental factors, cannot be neglected. Moreover, when studying the 
relationships among diseases in the disease projection networks, we observe that the 
average number of diseases connected to other diseases increases, suggesting a 
higher level of interrelation between human diseases than observed by solely 
considering a single data source (e.g. OMIM). This result points out that the genetic 
origin of mendelian, complex and environmental diseases is much more common 
than expected.  

For single diseases, the functional analysis showed that homogeneity values 
(GO-BP and pathway) are significantly higher than for random controls. This shows 
that genes related to the same disease are more likely to be involved in the same 
biological processes than randomly selected disease genes. These findings support 
the concept of modularity of human diseases not only for mendelian diseases, as 
already shown by other authors (Freudenberg et al, 2002; Goh et al, 2007; Lim et 
al, 2006; Oti et al, 2007; van Driel et al, 2006), but also for complex and 
environmental diseases which are all integrated in our database. Interestingly, 
similar findings were obtained for disease clusters. This implies that there are 
biological processes common to groups of different diseases, which might represent 
shared underlying mechanisms of the groups of different diseases.  

Intriguingly, we found an indirect correlation between the number of disease 
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related gene products and the homogeneity values. This shows that the number of 
biological processes that are related to a disease or a disease cluster increases with 
increasing number of gene products. A more detailed analysis of disease clusters 
revealed that the majority has medium pathway and GO-BP homogeneity values 
and there are only few extremely homogeneous or heterogeneous disease clusters. 
Overall, the results indicate that with the exception of a small set of diseases, for 
most of the diseases there are at least two biological processes or pathways 
associated. Similar results were recently reported by (Li et al, 2009) showing on 
average 12 pathways associated to a disease. Moreover, there is evidence that for 
many human diseases more than just one pathway, a set of so-called core pathways, 
are playing an important role such as the case for Pancreatic Cancer (Jones et al, 
2008) or Glioblastoma (Cerami et al, 2010). Hence, for several diseases or groups 
of diseases, for example those with more genes associated and thus lower 
homogeneity values, cross-talks of pathways could play an important role. For 
instance, the cross-talk between Integrin and TGF-b pathways has been found to be 
related to several human pathologies including systemic sclerosis, idiopathic 
pulmonary fibrosis, chronic obstructive pulmonary disease and cancer (Margadant 
and Sonnenberg, 2010).  

Regarding the phenotypically derived gene clusters, an indirect correlation 
between homogeneity values and cluster sizes was also observed. However, for 
very large clusters the difference to randomly generated clusters is not statistically 
significant. For the majority of gene clusters, pathway and GO-BP homogeneity 
values lie in a medium range indicating that more than just one biological process is 
associated to each set of phenotypically related genes.  

We furthermore introduced another measurement, the HINscore, to identify 
gene clusters in which the proteins encoded by the genes physically interact and 
hence, the associated diseases might be related to dysfunction of whole protein 
machineries. Clusters with high HINscore are homogeneous in terms of disease 
association and also show high pathway and GO-BP homogeneity values. However, 
the percentage of clusters with high homogeneity or HINscore values is small and 
for most clusters these values are within medium range suggesting that only few 
diseases are solely caused by defects in protein complexes. Clusters with very low 
homogeneity values (< 0.25) are heterogeneous in terms of disease annotation, and 
are underrepresented in the dataset. Interestingly, such clusters contain genes with 
very high allelic heterogeneity. In CURATED, for instance, genes having more than 
20 associated diseases belong to heterogeneous clusters with low GO-BP and 
pathway homogeneity values. It could be argued that such genes encode 
multifunctional proteins, and mutations in these proteins affecting different 
functions can then lead to different disease phenotypes. This set of genes might be 
classified as pleiotropic genes (Chavali et al, 2010) or represent genes that 
“moonlight” between different functions (Huberts and van der Klei, 2010). It would 
be interesting to further investigate the role of these proteins with respect to disease 
development.  

There are some limitations in our analysis, which we would like to mention. 
Although we provide a comprehensive database of gene-disease associations, it is 
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not complete due to natural limitations in the curation process of the original 
databases, and might contain inaccurate associations derived from text-mining.  
Moreover, incomplete annotation of genes to GO terms and biological pathways is 
another issue. Only about half of the disease genes are annotated to pathways or 
appear in HIN. Also, the pathway databases suffer from annotation issues such as 
incomplete coverage of cross-talks, and the integration of pathways from different 
databases is still not fully achieved (Bauer-Mehren et al, 2009b).  

Even taking into account the aforementioned limitations, to the best of our 
knowledge this is the first analysis of human genetic diseases including mendelian, 
complex and environmental diseases at a global scale. We observe good quality of 
text-mining derived associations, as values for LHGDN are comparable to the 
networks derived from expert-curated databases. We also demonstrate how the 
integration of text-mining derived gene-disease associations can close knowledge 
gaps found in the curated databases such as shown in Example 1. For instance, the 
association between MITF, a transcription factor regulating the expression of TYR 
gene, and Melanoma (Carreira et al, 2006; Garraway et al, 2006) was not found in 
any of the curated databases but was present in the text-mining derived network.  

Finally, our results point out that for most diseases not a single but several 
biological processes might be affected. We believe that this has important 
implications for disease treatment and drug development. If a disease is associated 
to several pathways, a therapy considering the diversity of biological processes 
could be of advantage. And if a set of diseases is related to the same pathways, a 
treatment already successful for one of the diseases could also be applied to the 
other diseases (Berger and Iyengar, 2009).  

In addition to the topological analysis of the networks, we identified the core 
biological processes related to each phenotypically derived gene cluster. In several 
exemplary use cases we demonstrated the value of such analysis to unveil 
biological processes related to diseases in order to gain a better understanding of the 
mechanism underlying them. We explored a variety of scenarios to (i) determine 
candidate disease genes, (ii) discover associations between environmental factors 
and diseases at the genetic level, (iii) identify shared mechanisms of different 
diseases and (iv) exploit the data to shed light on drug adverse reaction mechanism. 
Nevertheless, many other applications are feasible such as the identification of 
potential new drug targets and therapies, drug repurposing (Berger et al, 2009), 
prediction of disease comorbidity (Park et al, 2009), and prediction of candidate 
disease genes (Kann, 2010). All these approaches strongly depend on data quality 
and coverage. Hence, the use of the here presented unified gene-disease association 
database can provide important new biological insights, which might not be 
discovered when considering each of the single data repositories independently. 

In summary, we provide a comprehensive database of gene-disease associations 
covering mendelian, complex and environmental diseases, as well as a detailed 
analysis on the modularity of the whole spectrum of human diseases at a global 
scale. Moreover, we make all data publicly available through DisGeNET, a plugin 
for Cytoscape (Bauer-Mehren et al, 2010), with the aim of easing future studies on 
human diseases.  
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Materials and methods 
Data sources 
In this study we combine five repositories of gene-disease associations to 

generate a comprehensive view of human diseases with genetic origin.  
OMIM: Online Mendelian Inheritance in Man (OMIM) focuses on inherited or 

heritable diseases. Gene-disease associations were obtained by parsing the 
mim2gene file for associations of type “phenotype” (data was downloaded from 
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene on June, 6th 2009). All 
associations were labelled “phenotype” as provided in the mim2gene file and 
classified as Marker in our gene-disease association ontology (see Figure 1, 
Supplementary Material). In total, we obtained for 2198 distinct genes and 2473 
distinct disease terms 3432 gene-disease associations. After mapping of disease 
vocabularies, the OMIM network contained 2417 distinct diseases.  

UNIPROT: UniProt/SwissProt is a database containing curated information 
about protein sequence, structure and function. Moreover, it provides information 
on the functional effect of sequence variants and their association to disease. We 
extracted this information from UniProt/SwissProt release 57.0 (March 2009) as 
described in (Bauer-Mehren et al, 2009a). All protein identifiers were converted to 
Entrez Gene identifiers in order to allow integration with the other data sources. All 
gene-disease associations were classified as GeneticVariation. UniProt provided 
1746 distinct gene-disease associations for 1240 distinct genes and 1475 distinct 
diseases. 

PHARMGKB: The Pharmacogenomics Knowledge Base (PharmGKB) is 
specialized on the knowledge about pharmacogenes, genes that are involved in 
modulating drug response. Genes are classified as pharmacogenes because they are 
(i) involved in the pharmacokinetics of a drug (how the drug is absorbed, 
distributed, metabolized and eliminated) or (ii) the pharmacodynamics of a drug 
(how the drug acts on its target and its mechanisms of action) (Altman, 2007).  
Hence, it covers less broadly human gene-disease associations but was found to be 
complementary to the other sources, as it contains some gene-disease associations 
not present in the other repositories. We downloaded the genes.zip, diseases.zip and 
relationships.zip from 
http://www.pharmgkb.org/resources/downloads_and_web_services.jsp on June 6th 
2009 and parsed the files to extract gene-disease associations. We furthermore 
made use of the perl webservices to obtain all available annotations and supporting 
information. We included 1772 associations for 79 distinct genes and 261 distinct 
diseases. PharmGKB associations were classified as Marker if the original label 
was “Related” and as RegulatoryModification if the original label was “Positively 
Related” or “Negatively Related”. 

CTD: The Comparative Toxicogenomics Database (CTD) contains manually 
curated information about gene-disease relationships with focus on understanding 
the effects of environmental chemicals on human health. We downloaded the 
CTD_gene_disease_relations.tsv file from http://ctd.mdibl.org/downloads/ on June 
2nd 2009 and parsed it for gene-disease associations of type “marker” or 
“therapeutic” (see http://ctd.mdibl.org/help/glossary.jsp for description of the 
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original labels). CTD includes associations from OMIM but with some differences 
(i) for some associations extra information such as cross-links to PubMed are 
available and (ii) some associations are missing in either of the two databases. 
Hence, we kept all available gene-disease associations from both sources. All CTD 
gene-disease associations were classified as Marker if the original label was 
“marker” and as Therapeutic if the original label was “therapeutic”. All cross-links 
to PubMed were kept. In total CTD data provided 6469 associations for 2702 
distinct diseases and 3345 distinct genes. 

LHGDN: The literature-derived human gene-disease network (LHGDN) is a 
text mining derived database with focus on extracting and classifying gene-disease 
associations with respect to several biomolecular conditions. It uses a machine 
learning based algorithm to extract semantic gene-disease relations from a textual 
source of interest. The semantic gene-disease relations were extracted with F-
measures of 78 (see (Bundschus et al, 2008) for further details). More specifically, 
the textual source utilized here originates from Entrez Gene’s GeneRIF (Gene 
Reference Into Function) database (Mitchell et al, 2003). This database represents a 
rapidly growing knowledge repository and consists of high-quality phrases created 
or reviewed by MeSH indexers. Hereby, the phrases refer to a particular gene in the 
Entrez Gene database and describe its function in a concise phrase. Using this 
textual repository for text mining has recently gained increasing attention, due to 
the high quality of the provided textual data in the GeneRIF database (Bundschus et 
al, 2008; Lu et al, 2007; Rubinstein and Simon, 2005). LHGDN was created based 
on a GeneRIF version from March 31st, 2009, consisting of 414241 phrases. These 
phrases were further restricted to the organism Homo sapiens, which resulted in a 
total of 178004 phrases. We extracted all data from LHGDN and classified the 
original associations using our ontology. In total, LHGDN provided 59342 distinct 
gene-disease associations for 1850 diseases and 6154 distinct genes. The LHGDN 
is also available in the Linked Life Data Cloud (http://linkedlifedata.com/sources).  

 
Generation of gene-disease networks 
Gene-disease associations were collected from several sources. The source 

databases use two different disease vocabularies (MIM and MeSH). EntrezGene 
identifiers are used for genes (except for UniProt/SwissProt which uses UniProt 
identifiers). Moreover, the kind of association differs among the databases and 
ranges from the generic term related to more specific terms such as altered 
expression. In order to merge all gene-disease associations and to present them in 
one comprehensive gene-disease network, we (i) mapped UniProt identifiers to 
EntrezGene identifiers if necessary, (ii) mapped MIM to MeSH vocabulary if 
possible (see Mapping of disease vocabularies) and (iii) integrated associations 
through our gene-disease association ontology. We furthermore constructed four 
different gene-disease networks, OMIM (only containing OMIM data), CURATED 
(containing gene-disease associations of OMIM, UNIPROT, PHARMGKB or 
CTD), LHGDN (only containing text mining data) and ALL (containing all gene-
disease associations). Our comprehensive database is available as sqlite database as 
well as through DisGeNET, a plugin for Cytoscape for visualization and analysis of 
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the gene-disease association networks (Bauer-Mehren et al, 2010). Moreover, we 
provide a Cytoscape session including all examples discussed in this article; all data 
is available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.  

All gene-disease networks are represented as bipartite graphs. A bipartite graph 
has two types of vertices and the edges run only between vertices of un-like types 
(Newman, 2003). The bipartite graphs are multigraphs in which two vertices can be 
connected by more than one edge. In our networks, the multiple edges represent the 
multiple data sources reporting the gene-disease association. Bipartite graphs have 
two degree distributions, one for each of the two types of vertices. We generated 
two projections, one for the diseases and one for the genes using the igraph library 
in R (Gabor and Tamas, 2006). The projected graphs contain only vertices of the 
same kind (monopartite) and two nodes are connected if they share a neighbour in 
the original bipartite graph. Before calculating node degree distributions and 
projecting the networks, we simplified the graphs and removed multiple edges. 
Hence, nodes that are connected by multiple edges are only connected by one edge 
in the simplified graph. This simplification is needed in order to correctly run the 
projection as implemented in the igraph library. Moreover, the node degree in the 
simplified graphs represents the number of first neighbours. 

 
Gene-disease association ontology 
For a correct integration of gene-disease association data, we developed a gene-

disease association ontology (see Figure 1 in Supplementary Material). We 
classified all association types as found in the original source databases into 
Association if there is a relationship between the gene/protein and the disease, and 
into NoAssociation if there is no association between a gene/protein and a certain 
disease (in other words, if there is evidence for the independence between a 
gene/protein and a disease). The different association types from the original 
databases were mapped to the ontology for a seamless integration. In this study, we 
only considered gene-disease associations of type Association. The ontology is 
available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. 

 
Mapping of disease vocabularies and disease classification 
We used the MeSH hierarchy for disease classification. The repositories of 

gene-disease associations use two different disease vocabularies, MIM terms for 
OMIM diseases (used by OMIM, UniProt, CTD) and MeSH terms (used by CTD, 
PharmGKB, LHGDN). We used the UMLS metathesaurus to map from MIM to 
MeSH vocabularies. This step was performed to merge disease terms representing 
the same disorder, thus reducing redundancy. We were able to map 497 MIM terms 
directly to MeSH using UMLS and we additionally mapped 23 MIM terms by using 
a string mapping approach. Briefly, we searched the UMLS metathesaurus for 
MeSH terms for which there is at least one synonym exactly matching one of the 
synonyms describing the MIM term of interest. The resulting 63 matched terms 
were manually checked and reduced to 23 terms. For disease classification, we 
considered all 23 upper level concepts of the MeSH tree branch C (Diseases), plus 
two concepts (“Psychological Phenomena and Processes” and “Mental Disorders”) 
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of the F branch (Psychiatry and Psychology). Moreover, we added one disease class 
“Unclassified” for all disease terms for which a classification was not possible. We 
categorized all diseases into one or more of the 26 possible disease classes. For 
MeSH disease terms we directly used its position in the MeSH hierarchy, for MIM 
disease terms that were not mapped to MeSH, we used the disease classification of 
(Goh et al, 2007). Then, we mapped their disease classification to the MeSH 
hierarchy and extended the mapping using a disease classification available at CTD 
(CTD_disease_hierarchy.tsv downloaded August, 8th 2009). In total, we were able 
to classify 3980 (98.39 %) diseases. The disease classification allows filtering and 
searching of the network restricted to disease class, all implemented within 
DisGeNET (Bauer-Mehren et al, 2010). 

 
Graph clustering  
We used a graph-clustering algorithm with edge weights to identify functional 

units in the disease and gene projection networks. We used a local installation of the 
MCL graph cluster algorithm (van Dongen, 2000), which had successfully been 
applied to protein family detection (Enright et al, 2002). We calculated edge 
weights as follows: 

 

   
we(v1,v2) =

av1,av2!
min(av1,av2 )

,we(v1,v2) !]0,1],      (1) 

 
where e(v1, v2) is the edge connecting vertices v1 and v2 and av is the number of 

annotations to vertex v (genes to disease nodes or diseases to gene nodes). 
Edge weights range from zero to one (excluding zero), where one means that 

the two vertices share all annotations of the node with less annotation. The most 
critical parameter of the MCL is the inflation value, which has large impact on the 
number of clusters, cluster sizes and cluster densities. We run the MCL cluster 
algorithm on the gene and disease projection networks with different inflation 
values. For OMIM we chose an inflation value of 1.8 following the suggestion by 
(Brohee and van Helden, 2006). The CURATED network is much denser and thus 
we used a higher inflation value of 3.6 to ensure better granularity. For LGDH and 
ALL, an inflation value of 5.0, respectively 3.6 was chosen.  

 
GO-BP and pathway homogeneity   
We calculated GO and pathway homogeneity as first defined by (Goh et al, 

2007) for (i) each disease separately, (ii) for the disease clusters resulting from 
graph clustering with edge weights, and (iii) the gene clusters.  Homogeneity is 
defined as the maximum fraction of genes sharing the same biological annotation: 

 

  
Hi = max j[

n j
i

ni

],       (2) 
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where ni is the total number of genes in the disease, disease cluster or gene 
cluster (i) with annotations, and nj

i is the number of genes sharing the same 
biological annotation (j). 

GO annotation was downloaded October, 6th 2009 from 
(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HUMAN/gene_association.goa_human.g
z) and then restricted to the branch biological process. We used all annotations and 
did not restrict to evidence type. The pathway annotation was downloaded from 
KEGG (ftp://ftp.genome.jp/pub/kegg/genes/organisms/hsa) and Reactome 
(http://www.reactome.org/download/index.html) on November, 11th 2009.  

To calculate random controls for pathway (see Figure 3) and GO-BP 
homogeneity for single diseases and disease clusters, we randomly sampled genes 
from the set of disease genes of the studied network with annotation to pathway or 
GO-BP. We then took the annotation of the corresponding gene products and 
calculated pathway and GO-BP homogeneity values. Random controls for gene 
clusters were obtained by randomly assigning genes to clusters while total number 
of clusters and original cluster sizes were maintained. Random sampling was 
repeated 104 times to reach statistical significance and averages were compared to 
real values. A two-sided Kolmogorov-Smirnov test was performed to calculate p-
values for comparison of real and random homogeneity values. Moreover, binning 
of cluster sizes was performed to show dependence of cluster sizes and 
homogeneity values, for the bin-wise comparison of mean values, 95 % confidence 
intervals were calculated. For this purpose, we calculated the Pearson correlation 
coefficient between homogeneity values and number of associated gene products. 

 
HINscore calculation 
Cerami et al. recently published a human interaction network (HIN) based on 

protein-protein interaction data from HPRD and pathway data from Reactome, 
NCI/Pathway Interaction database and the MSKCC Cancer Cell map (Cerami et al, 
2010). We used this network to evaluate if disease genes belonging to clusters were 
more likely to be connected in HIN than expected from randomly generated 
clusters. For this purpose, we calculated the HINscore for each gene cluster defined 
as: 

 

  
HINscoreclusteri

= 1!
ccsgclusteri

!1

n !1
,      (3) 

 
where cc is the number of connected components of subgraph sg built using all 

nodes in clusteri connected by edges appearing in the human interaction network 
(HIN). 

We compared the HINscores calculated for each gene cluster of the four 
networks with random controls. For the random controls, we randomly selected the 
same number of genes per cluster from the samples set consisting of all genes in the 
network of study being present in HIN. We repeated the randomization process 104 

times to achieve statistical significance and took the average as random reference. 
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We display mean HINscore for different cluster sizes and 95 % confidence intervals 
to show statistically significant difference to random controls.  

 
GO and pathway enrichment 
For the functional enrichment analysis, we used the R package GOstat (Falcon 

and Gentleman, 2007) and calculated for each gene cluster in CURATED the 
enrichment of terms in each GO category (biological process, molecular function, 
cellular component), as well as enriched pathways (KEGG). As reference 
background we used the list of disease genes that have at least one term annotated. 
We applied conditional hypergeometric test using a p-value cut-off of 0.05 and 
restricted the result to terms for which there were at least two genes annotated to in 
the reference background. The annotation of gene ids to GO terms was taken from 
the annotation package “org.Hs.eg.db” based on data provided by Entrez Gene 
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/) with a date stamp of September 2009. 
Annotation to pathways was taken from “KEGG.db” with mappings to pathways 
from KEGG Genome of March 2009. We only calculated GO term and pathway 
enrichment for clusters containing more than 3 genes. 
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1. Data integration 
A comprehensive database on gene-disease associations was developed by 

integrating information from four repositories: Online Mendelian Inheritance in 
Man (OMIM) (Hamosh et al, 2005), UniProt/SwissProt (UNIPROT) (The UniProt, 
2010), Pharmacogenomics Knowledge Base (PHARMGKB) (Altman, 2007), and 
Comparative Toxicogenomics Database (CTD) (Mattingly et al, 2006). In addition, 
associations from a literature-derived human gene-disease network (LHGDN) 
(Bundschus et al, 2008) were included to increase the coverage of the database. For 
a correct integration of gene-disease association data, we developed a gene-disease 
association ontology (see Figure 1). The ontology is available at 
http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. 

 
 
 

 
 

Figure 1: Gene-disease association ontology 
Gene-disease association ontology developed to allow correct integration of information 
from diverse repositories.  

 
The integration of data from various sources allowed an increase in coverage of 

the resulting database. Moreover, the overlap among the different databases is 
surprisingly small. Hence data integration from diverse sources is needed to get a 
comprehensive picture of current gene-disease associations. Figure 2 shows the 
overlap among databases regarding diseases, genes and their associations. 
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Figure 2: Venn diagrams of data overlap among databases 
The upper panel shows the overlaps among the individual expert curated databases. The 
lower panel displays the overlap of CURATED and the text-mining derived network 
(LHGDN).  

 

2. Network properties - node degree distributions  
Studying the degree distribution of networks allows us to distinguish between 

different types of networks. For example, random networks show a typical peak 
corresponding to the average degree in the degree distribution.  

In a bipartite graph there exist two degree distributions, one for each vertex type 
(disease and genes) (Newman, 2003). The first important observation is that the 
degree distributions for diseases and genes are different from degree distribution of 
random networks, but none of them follow a power law distribution.  

For the diseases, the average node degree increases from 1.5 in OMIM to 10.1 
in ALL. The node degree can be used as a measure of the locus heterogeneity of a 
given disease. There is a dramatic increase in the maximum locus heterogeneity 
observed in each data set, from 30 genes annotated to Diabetes Mellitus Type II in 
OMIM, 350 genes associated to Prostatic Neoplasms in CURATED, 1133 genes 
associated to Neoplasms in LHGDN and 1274 genes associated to Breast 
Neoplasms in ALL (see Figure 3). Interestingly, when considering the 10 top-
ranking diseases in terms of locus heterogeneity, three diseases in OMIM belong to 
the “Neoplasm” disease class, 7 in CURATED and 10 in ALL. This may be due to 
the fact that cancer is one of the most studied diseases and hence more knowledge is 
available on the relationship of genes and different cancer types.  

With respect to the genes, the increase in the node degree is less dramatic but 
still visible (from an average degree of 1.6 in OMIM to 5.6 in ALL). The degree of 
the gene in the bipartite graph can be used as a measure of the allelic heterogeneity 
(the number of diseases associated to a gene). In OMIM, collagen type II alpha 1 
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(COL2A1) has most disease annotations and there is another collagen, collagen 
type I alpha 1 in the list of the 10 top-ranked genes. In CURATED, collagen type II 
is in the top-ranked 30 genes but not for LHGDN or ALL. Moreover, the 10 top-
ranked genes of OMIM and CURATED include some cancer related genes such as 
PTEN and TP53, which is also one of the genes with most disease associations in 
LHGDN and ALL. The list of the 10 top-ranked genes in CURATED includes 
cancer related genes (TNF, KRAS) but also many genes related to inflammation 
such as PTGS2 and IL6. In LHGDN and ALL the 10 top-ranked lists are very 
similar and contain mainly cancer related genes (TNF, TP53, TGFB1 and genes 
involved in immune system responses (IL6, IL10, IL1B).  

We can also consider the degree distributions of the disease and gene projection 
networks. In contrast to the bipartite graph degree distribution, the degree of a gene 
(disease) node indicates the number of gene (disease) neighbours in the gene 
(disease) projection network. Interestingly, the degree distributions of the projected 
networks are much broader than the degree distributions of the bipartite graph (data 
not shown). The right tail of the distributions get much more populated the more 
data sources are included (more hubs in CURATED than in OMIM and again many 
more hubs in the LHGDN than in CURATED). Moreover, in the disease projection 
the average number of diseases connected to any disease is 2.2 in OMIM, 8.5 in 
CURATED and 103.6 in ALL, suggesting a higher degree of relatedness of human 
diseases than expected by solely considering a single data source (e.g. OMIM). 

In summary, the degree distributions for diseases and genes are different from 
degree distribution of typical random networks, but none of them follows a power 
law. Moreover, there is a large dispersion of the right tail that is more evident the 
more data is incorporated into the networks. There is an increase in the average 
degree of the nodes, in the number of hubs and also in the degree of the hubs as a 
consequence of including more information in the network.  
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Figure 3: Degree distributions of the bipartite networks 
The node degree distributions of the bipartite networks are plotted showing (A) the number 
of associated genes per disease and (B) the number of associated diseases per gene. Red 
arrows highlight the two disease- or gene-nodes with highest degree. Moreover, average 
degree values are plotted. 
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3. Functional analysis 

3.1.  GO homogeneity – individual diseases 
It has been shown that, for OMIM diseases, the associated genes are involved in 

the same biological and cellular processes (Goh et al, 2007; Hartwell et al, 1999; 
Ravasz et al, 2002).  In order to test if this concept still applies for our data set, we 
calculated GO term and pathway homogeneity for each disease. Mean GO-BP 
homogeneity values are plotted for different numbers of associated gene products 
and compared to random controls.  First, for all data sources, the homogeneity 
values decrease with increasing number of associated gene products. Second, for all 
networks homogeneity values are significantly different (p-value < 0.05) from 
random control. For instance, in CURATED, diseases with two to five annotated 
gene products have on average 68 % of the gene products annotated to the 
biological process, while this value decreases to 38 % if there are between 50 and 
100 gene products annotated to the disease. Moreover, it is striking that although 
the text-mining derived network is very dense with an average of 18.7 genes 
associated per disease, the GO-BP homogeneity still differs significantly from 
random. Similar results were obtained for pathway homogeneity analysis (Figure 3 
in main text).  

 

 
 

Figure 4: GO-BP homogeneity for individual diseases 
Mean pathway homogeneity values for different number of associated gene products are 
plotted and compared to random controls (IC 95 %). For OMIM, there are only two 
diseases with more than 50 gene products annotated, both with a GO-BP homogeneity 
value of 1. 
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3.2.  GO-BP and pathway homogeneity – disease clusters 
We calculated GO-BP and pathway homogeneity as before for individual 

diseases for our disease clusters derived from graph clustering of the disease 
projection networks. Overall, we obtained similar results as for individual diseases. 
Figure 5 shows the average pathway homogeneity values of disease clusters plotted 
for different sizes of associated gene products. Similarly to individual diseases, 
pathway homogeneity decreases with increasing size of associated gene products. 
On average, pathway homogeneity for OMIM is 68 % and 59 % for CURATED 
suggesting that 60 - 70 % of the gene products belonging to a disease cluster 
participate in the same pathway. For the larger networks (LHGDN and ALL) the 
average pathway homogeneity values of disease clusters slightly decreases to 
approximately 50 %. All values are significantly different from random (p-value < 
0.05). For complexity reason, GO-BP homogeneity values are not shown but are 
similar to pathway homogeneity.  

 

 
 

Figure 5: Pathway homogeneity – disease clusters 
Mean pathway homogeneity values for different number of associated gene products 
are plotted and compared to random controls (IC 95 %).  

 

3.3.  GO-BP and pathway homogeneity – gene clusters 
We calculated GO-BP and pathway homogeneity for gene clusters. Figure 6 and 

7 show average GO-BP, respectively pathway homogeneity values for different 
cluster sizes. Here, the cluster size refers to the number of associated gene products 
of the cluster with annotation to GO-BP, respectively pathway. Up to cluster size 
50, the average GO-BP homogeneity is significantly (p-value < 0.05) higher with 
respect to randomly selected clusters (except for ALL). On average, 72 % of the 
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clusters have a GO-BP homogeneity value larger than 0.5 or higher, hence more 
than half of the genes are annotated to the same GO-BP term.  

 

 
 

Figure 6: GO-BP homogeneity for gene clusters 
Mean GO-BP homogeneity values for different number of associated gene products are 
plotted and compared to random controls (IC 95 %).  

 

 
 
Figure 7: Pathway homogeneity for gene clusters 
Mean pathway homogeneity values for different number of associated gene products are 
plotted and compared to random controls (IC 95 %).  
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4. Disease classification 
Diseases were classified into 26 disease classes according to the MeSH 

hierarchy allowing the analysis of groups of related diseases based on standard 
disease classification. Many diseases are assigned to more than one disease class as 
several systems or organs are affected. Figure 8 shows the disease colour mapping 
used in DisGeNET (Bauer-Mehren et al, 2010). Disease and gene nodes can be 
coloured according to their disease class and can have multiple colours if they are 
assigned to more than one disease class.  

 

 
 
Figure 8: Disease classes colouring 

 

5. Gene annotations 
We used annotation of genes to GO-BP, pathways and HIN. Table 1 shows the 

number of disease genes per network that actually have annotation to GO-BP, 
pathways or were part of HIN.  
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Table 1: GO and pathway annotation  

With annotation to OMIM  
(2198) 

CURATED 
(3820) 

LHGDN 
(6154) 

ALL 
(7314) 

GO-BP 2117 3417 5704 6460 
Pathway  
(KEGG and Reactome) 

1249 2007 3271 3620 

HIN 1628 2685 4670 5175 
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substantiation of drug safety signals 
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Development of webservices and workflows for substantiation 
of drug safety signals 

 
 
Introduction 

Drug safety issues can arise during pre-clinical screening, clinical trials and, 
more importantly, after the drug is marketed and tested for the first time on the 
population (Giacomini et al, 2007a). Although relatively rare once a drug is 
marketed, drug safety issues constitute a major cause of morbidity and mortality 
worldwide. Every year about 2 million patients in the US are affected by a serious 
adverse drug reaction (ADR) resulting in approximately 100000 fatalities, ranking 
ADRs between the fourth and sixth cause of death in the US, not far behind cancer 
and heart diseases (Lazarou et al, 1998).  Similar figures were estimated from other 
western countries(van der Hooft et al, 2006). Serious ADRs resulting from the 
treatment with thalidomide prompted modern drug legislation more than 40 years 
ago (Härmark and Grootheest, 2008). Over the past 10 years, 19 broadly used 
marketed drugs were withdrawn after presenting unexpected side effects 
(Giacomini et al, 2007a). The current and future challenges of drug development 
and drug utilization, and a number of recent high-impact drug safety issues (e.g. 
rofecoxib (Vioxx)) highlight the need of an improvement of safety monitoring 
systems (Olsson, 1998).  

Moreover, unravelling the molecular mechanisms by which the ADR is elicited 
is of great relevance as well, since it has important implications in both public 
health and drug development. Understanding the molecular mechanisms of ADRs 
can be achieved by placing the drug adverse reaction in the context of current 
biomedical knowledge, which might explain it. Due to the huge amounts of data 
generated by the “omics” experiments, and the ever increasing volume of data and 
knowledge stored in databases and knowledge bases for studying ADRs, the 
application of bioinformatic analysis tools is essential in order to study and analyse 
ADRs.  

Although the factors that determine the susceptibility to ADR are not 
completely well understood, accumulating evidence over the years indicate an 
important role of genetic factors (Chiang and Butte, 2009; Gurwitz and Motulsky, 
2007; Wilke et al, 2007). Most of the ADRs are mechanistically related to drug 
metabolism phenomena, leading for instance to an unusual drug accumulation in the 
body (Gurwitz et al, 2007; Wilke et al, 2007). In addition, they can also be 
associated to inter individual genetic variants, most notably single nucleotide 
polymorphisms (SNPs), in genes encoding drug metabolising enzymes and drug 
target genes (Gurwitz et al, 2007; Wilke et al, 2007). One of the first ADRs 
explained by a genetic determinant was the inherited deficiency of the enzyme 
glucose-6-phosphate dehydrogenase causing severe anaemia in patients treated with 
the antimalarial drug primaquine (Giacomini et al, 2007b). Alternatively, an ADR 
can be caused by the interaction of the drug with a target different from the 
originally intended target (also known as anti-targets) (Ekins, 2004). A well known 
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example of an anti-target ADR is provided by aspirin, whose anti-inflammatory 
effect, exerted by inhibition of prostaglandin production by COX-2, comes at the 
expense of irritation of the stomach mucosa by its unintended inhibition of COX-1 
(Kawai, 1998). Furthermore, in addition to mechanisms related to off-target 
pharmacology, it is becoming evident that ADRs may often be caused by the 
combined action of multiple genes (Gurwitz et al, 2007). The anticoagulant 
warfarin, which shows a varying degree of anticoagulant effects, is often associated 
with haemorrhages, and leads the list of drugs with serious ADR in the US and 
Europe. A 50 % of the variable effects of warfarin are explained by polymorphisms 
in the genes CYP2C9 and VKORC1, while the associated genes accounting to the 
remaining variability in the response to warfarin in the population are unknown 
(Chiang et al, 2009). 

Other cases of ADRs may arise as a consequence of drug-drug interactions, or 
the interaction of the action of the drug with environmental factors(Chiang and Yu, 
2003; Gurwitz et al, 2007). Indeed, the interplay between genotype and 
environment observed in several aspects of health and disease also extend to drug 
response and safety. For example, alcohol consumption and smoking are both 
associated with changes in the expression of the metabolic enzyme CYP2E1, 
therefore affecting the pharmacokinetics of certain drugs (Howard et al, 2003). 

From the above paragraphs it is clear that the study of the molecular 
mechanisms underlying ADR requires achieving a synthesis of information across 
multiple disciplines. In particular, it requires the integration of information from a 
variety of knowledge domains, ranging from the chemical to the biological up to the 
clinical. Different resources cover information about these knowledge areas, and 
many of them are freely available on the web, such as biological and chemical 
databases and the literature. On the other side, new knowledge is produced 
continuously, and the list of the resources and published papers that a researcher 
interested in ADRs needs to cope with is turning more into a problem than into a 
solution. It has been already recognized that the adequate management of 
knowledge is becoming a key factor for biomedical research, especially in the areas 
that require traversing different disciplines and/or the integration of diverse and 
heterogeneous pieces of information (Ruttenberg et al, 2007). Furthermore, 
computational approaches are becoming critical for the translation of relevant 
discoveries into the clinical practice (Butte, 2008). 

Knowledge management (KM) is the process of systematically capturing, 
representing and using information to develop an understanding on how a particular 
system works (Antezana et al, 2009). Most scientific information is present in 
unstructured format, such as free text in publications, and therefore can only be 
understood by humans. By manual curation of the literature, several databases have 
been developed to store information on different aspects of biomedical research, 
and are continuously updated (e.g. UniProt (Apweiler et al, 2004), PharmGKB 
(Klein et al, 2001)). However, the manual curation process is very difficult to scale 
up in order to cope with the vast amount of publications that are being generated on 
a daily basis, and in consequence there is a gap between the information stored in 
these expert curated databases and the information present in publications. Thus, to 
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be able to systematically extract information on a particular domain approaches for 
its automatic extraction from knowledge resources and texts are required. In the 
particular case of scientific publications, computer assisted approaches such as text-
mining is needed (Ananiadou et al, 2006; Rzhetsky et al, 2008). 

Once the data has been collected, it has to be organised, structured and stored in 
order to allow its subsequent analysis and interpretation by computational 
approaches. Data integration is one of the most important aspects of KM, and at the 
same time one of the most challenging areas of research in Computer Science 
(Antezana et al, 2009). Data integration in the life sciences has its own difficulties, 
as already discussed by several authors (Fisher and Henzinger, 2007; Louie et al, 
2007; Philippi and Kohler, 2006). These problems are rooted in the inherent 
complexity of the biological domain, its high degree of fragmentation, the data 
deluge problem, and the widespread incidence of ambiguity in the naming of 
entities (Antezana et al, 2009). The latter is evident in the nomenclature of genes 
and proteins, which poses a challenge to text mining systems as well.  

On the other hand, the computational analysis of several biomedical problems 
can only be addressed by using a variety of bioinformatic methods. An attractive 
approach that emerged in the last years is the combination of different bioinformatic 
analysis modules by means of processing pipelines or workflows (Oinn et al, 2004). 
This technology allows the integration of a variety of computational techniques into 
a processing pipeline in which data input and outputs are standardized. In the last 
years, this kind of integration has been greatly facilitated by the use of APIs and 
webservices allowing programmatic access to data repositories and analysis tools. 
For instance, PharmGKB, a database specialized on the knowledge about genes that 
are involved in modulating drug response (Klein et al, 2001), allows accessing the 
data by means of webservice clients. In this context, software has been developed 
that allows manually creating workflows without the need of programming skills. 
Taverna is one of such approaches that allows integration of different analysis 
modules, shared as web services, into a scientific workflow to perform in silico 
experiements  (Oinn et al, 2004). It was especially developed for bioinformatic 
applications (Oinn et al, 2004). Similar approaches are also used for the processing 
of free text documents (http://incubator.apache.org/uima/) or for combining data 
mining methods (http://www.knime.org/). 

Recent studies by several groups highlight the use of disparate data sets in the 
study of ADRs, enabled by bioinformatics methodologies. Combining the study of 
protein–drug interactions on a structural proteome-wide scale with protein 
functional site similarity search, small molecule screening, and protein–ligand 
binding affinity profile analysis, Xie and colleagues have elucidated a possible 
molecular mechanism for the previously observed, but molecularly uncharacterised, 
side effect of selective estrogen receptor modulators (SERMs). The results of this 
study show that the side effect involves the inhibition of the Sacroplasmic 
Reticulum Ca2+ ion channel ATPase protein transmembrane domain. The 
prediction provides molecular insight into reducing the adverse effect of SERMs 
and is supported by clinical and in vitro observations (Xie et al, 2007). In another 
series of studies, Huang and colleagues sought to determine the genetic variants 
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associated with the side effects caused by the drugs cisplatin (Huang et al, 2007), 
carboplatin (Huang et al, 2008) and daunorubicin (Duan et al, 2007). To this end, 
they analysed gene expression profiles in response to the different drug treatments 
on lymphoblastoid cell lines, for which there was SNP genotype data available from 
the HapMap project. The studies pinpointed SNPs associated with the cytotoxicity 
of the above mentioned drugs. Finally, Campillos and colleagues exploited the side 
effect information from prescription drug labels to identify novel molecular 
activities of existing drugs, information that can be used for drug re-purposing 
(Campillos et al, 2008). The Unified Medical Language System (UMLS)  
Metathesaurus was used as a vocabulary for the side effects, and a weighting 
scheme to account for the rareness and interdependence of side effects was 
developed. Since similarity in side effects correlated with shared targets between 
drugs, side effect similarity was used to predict novel targets between any two 
“unexpected” drug pairs. By combining side effect similarity with chemical 
similarity, 13 of 20 novel target predictions were validated, thereby identifying 
novel anti-target effects that could be used to derive novel indications for these 
drugs (Campillos et al, 2008). 

These studies illustrate how computational approaches are paving the way 
toward elucidating the molecular mechanisms of ADRs. Here we present software 
tools for investigating the mechanisms of adverse drug reactions. In this regard, 
different web services were developed that can be combined into data processing 
workflows to achieve the signal substantiation.  

 
Concept for the substantiation of drug-event pairs 
The framework of this work is the EU-ADR project (Trifirò et al, 2009), which 

aims to develop an innovative computerized system to detect adverse drug reactions 
from electronic health records and biomedical databases to aid in the early detection 
of adverse drug reactions. The automatic mining of electronic healthcare record 
(EHR) databases will enable a more proactive alternative to drug safety monitoring, 
but at the same time, the huge increase in the number of potential signals presents a 
major challenge to evaluating and confirming significant drug-adverse event 
associations. Thus, another important goal of the project is, once a signal is 
detected, to provide a possible biological explanation for each signal. We refer to 
this as the signal substantiation process. The purpose of this substantiation process 
is to place the signals in the context of the current biomedical knowledge that might 
explain the signal. Essentially, we are searching for evidence that supports causal 
inference of the signal. The list of signals is assessed by investigating feasible paths 
that connect the drug and the adverse reaction involved in the signal. The general 
strategy is the automatic linkage of biomedical entities (drugs, proteins and their 
genetic variants, biological pathways, and clinical events) by means of a variety of 
bioinformatic approaches. 

In pharmacovigilance, a signal is defined as an unexpected association of a 
clinical event with a given drug. According to the WHO definition (Edwards and 
Biriell, 1994), it refers to reported information on a possible causal relationship 
between an adverse event and a drug, the relationship being unknown or 
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incompletely documented previously. However, for the sake of simplicity, from 
now on we refer to signals to any drug-event pair irrespective of the knowledge 
about its causal relationship.  

One of the key aspects of the substantiation process is the knowledge about all 
the targets of the drugs. A drug can be regarded as an environmental factor, upon 
drug binding the target triggers cellular events that ultimately lead to certain 
phenotypic changes. Another aspect to be considered is the knowledge about the 
genetic basis of diseases, that is, all the genes that are known to lead to a disease 
phenotype. Thus, if the adverse effect elicited by a drug is similar to the phenotype 
observed in a genetic disease, we can propose that the drug acts on the same 
molecular processes that are altered in the disease.  

Hence, the most simple scenario that can provide a causal inference of the 
signal is found if one of the targets of the drug is known to be directly associated to 
the clinical event. Here, we only present this simple scenario, however there are 
other paths connecting drug and event possible. For instance, it is well established 
that many adverse drug reactions are caused by altered drug metabolism for which 
genetic variants in metabolizing enzymes are often responsible. Consequently, 
another substantiation scenario involves assessing if the metabolites of the drug 
target proteins are known to be associated to the clinical event. Another scenario 
includes biological pathways. Here, the drug target is part of a molecular network, 
such as a signalling pathway, and its activity has an effect on another component of 
the pathway that is known to be directly associated with a disease phenotype. Thus, 
it could be argued that the drug triggers a signalling cascade that mimics the altered 
function of the protein associated to the disease. In the following, we present the 
webservice developed during this PhD thesis that will be part of an automatic signal 
substantiation pipeline. Moreover, we present one possible workflow in more detail. 

 
Implementation of the substantiation concept 
The view on the substantiation of signals was implemented in different software 

modules that can be combined in different ways to perform specific tasks for signal 
filtering and signal substantiation. We have implemented webservices and sub-
workflows useful for signal substantiation. Here, we present one workflow in detail 
(see Figure 2). This workflow tries to establish a direct connection between the 
clinical event and the drug through a gene or protein, by identifying the proteins 
that are targets of the drug and are also associated with the event. In such a case it 
can be argued that the direct binding of the drug to the protein leads to the observed 
event phenotype. Associations between the event and proteins are found by 
querying our integrated gene-disease association database (Bauer-Mehren et al, 
2010). As this database provides annotations of the gene-disease associations to the 
articles reporting the association and in case of text-mining derived associations 
even the exact sentence, the article or sentence can be studied in more detail in 
order to find a mechanistic explanation for the adverse event. It has to be mentioned 
that our gene-disease association database also contains information about genetic 
variants or SNPs and their association to diseases or adverse drug events.  
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Workflows 
The workflow for signal substantiation was developed within Taverna, a tool to 

integrate resources that are shared as web services into a scientific workflow to 
perform in silico experiments (Oinn et al, 2004). Taverna provides several built-in 
functions, such as XML splitters or various local services for file handling, string 
manipulation, among others. Figure 1 shows the signal substantiation workflow. It 
uses three weservices that are described below. Moreover, it uses several XML 
splitters for parsing, as well as local services to remove duplicated entries from lists 
of entities and to find intersections between two lists of entities. In more detail, as 
input it uses an ATC code for the drug and the event. The following steps are 
performed in parallel. The SMILE of the drug is obtained using the 
getSmileFromATC service. Subsequently, the output of this service (the SMILE 
code of the drug) is passed to the getUniprotListFromSmile service in order to 
obtain all targets of this drug. At the same time, the event is mapped to CUI concept 
identifiers by the eventToCuis service. The CUI concept identifiers are subsequently 
processed by the getDiseaseGenes service, which provides a list of proteins 
associated to list of CUI concept identifiers representing the event. It is important to 
mention that both services (getUniprotListFromSmile and getDiseaseGenes) 
provide annotations to proteins represented by their UniProt identifiers. This allows 
intersecting the output of the two services. A XPath query (XQuery_getTargets) is 
used to parse the output of the two webservices for the two lists of proteins (list of 
drug-targets and list of proteins associated to the event). Using the built-in service 
Remove String Duplicates (namely Script_removeDuplicatedGenes and 
Script_removeDuplicatedDrugTargets) duplicated proteins are removed from the 
two lists. The local service String List Intersection is then used to intersect the two 
lists. The result is stored in an output document called intersection. It contains a list 
of proteins associated to the event and the drug. Moreover, a small beanshell script 
is used to provide a binary output, “YES” if there is at least one protein annotated to 
both drug and event, and “NO” if there are no proteins in the intersection list.  
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Figure 1: Taverna workflow for signal substantiation 

The inputs are the event and the ATC code of the drug. The different modules run in 
parallel. The event is translated into CUI concept identifiers by the eventToCuis service. The 
CUI concept identifiers are input of the module getDiseaseAssociatedGenes, which returns 
relationships between the event and proteins (stored in the output element 
geneDiseaseOutput. The list of proteins is extracted by means of a XPath query 
(XPath_getDiseaseGeneTargets) and a Taverna built-in function to remove duplicates from 
string lists (Script_removeDuplicatedGenes). The drug ATC code is processed by the 
module getSmileFromATC, which returns the SMILE code of the drug. The SMILE code is 
further processed by the module getUniprotListFromSmile, which return the relationships 
between the drug and the targets (stored in the output element drugTargetOutput). The drug 
targets can be found in the output element drugTargets, obtained by using a XPath query 
and a Taverna built-in function to remove duplicates from string lists 
(XPath_getDurgTargets and Script_removeDuplicatedDrugTargets). The two lists, one 
containing proteins being associated to the event and one containing the drug-targets are 
then intersected (Script_checkIntersection) in order to find overlapping proteins. The list of 
intersection proteins is stored in an output element intersection. The final output of the 
workflow is a yes/no (signal_yes_no). A yes is returned if the list of intersecting proteins is 
not empty, a no if the list is empty.  
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 Modules for Signal substantiation 
In this section a description of the modules is provided. There are several 

webservices useful for generating workflows for signal substantiation. The 
getDiseaseAssociatedGenes webservice was implemented as part of this PhD thesis. 

 
getDiseaseAssociatedGenes 
This webservice provides for a given CUI concept identifier all associated 

proteins. In particular, it queries a new integrated database of human gene-disease 
associations, which also contains adverse events. Detailed information about the 
database can be found in (Bauer-Mehren et al, 2010). In brief, the integrated 
database combines information about gene-disease associations of expert-curated 
databases and text-mining derived associations. The webservice returns a list of 
relationships between the source CUI concept identifier and the target protein 
identifiers. Additionally, information is provided regarding the source repository 
reporting the association, the type of association (such as “Genetic Variation” and 
available literature evidence. Herein, the literature evidence is given by means of 
PubMed identifiers to the articles reporting the associations, and in case of text-
mining derived associations the exact sentence stating the association. The WSDL 
for this service is available at 
http://ibi.imim.es/axis2/services/AdrPathService?wsdl. 
 

getSmileFromATC and getUniprotListFromSmile 
These webservices were developed by the CGL group and annotate a drug given 

by its ATC code to the protein targets. A detailed description can be found in 
(García Serna et al, 2010). 

 
eventToCuis 
This webservice was developed by Aveiro University. It annotates an adverse 

event with the according CUI concept identifiers of the UMLS metathesaurus. A 
detailed description will be reported elsewhere. 

 
Discussion and conclusions 
We have presented an exemplary workflow for the automatic substantiation of 

drug-event pairs. The system capitalizes on prior knowledge and uses state of the 
art bioinformatic approaches, such as in silico profiling methods, text mining and 
analysis and advanced data integration approaches. In the future, we plan to validate 
the framework by applying it to a test set of true positive and true negative signals. 
Moreover, we are working on the implementation of additional workflows using 
metabolite and pathway information.  
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ABSTRACT 
Summary: DisGeNET is a plugin for Cytoscape to query and ana-
lyze human gene-disease networks. DisGeNET allows user-friendly 
access to a new gene-disease database that we have developed by 
integrating data from several public sources. DisGeNET permits 
queries restricted to (i) the original data source, (ii) the association 
type, (iii) the disease class or (iv) specific gene(s)/disease(s). It 
represents gene-disease associations in terms of bipartite graphs 
and provides gene centric and disease centric views of the data. It 
assists the user in the interpretation and exploration of the genetic 
basis of human diseases by a variety of built-in functions. Moreover, 
DisGeNET permits multicolouring of nodes (genes/diseases) accord-
ing to standard disease classification for expedient visualization.  
Availability: DisGeNET is compatible with Cytoscape 2.6.3 and 
2.7.0, please visit http://ibi.imim.es/DisGeNET/DisGeNETweb.html 
for installation guide, user tutorial and download. 
Contact: lfurlong@imim.es  

1 INTRODUCTION  
One of the most challenging problems in biomedical research is to 
understand the underlying mechanisms of human diseases. Great 
effort has been spent on determining genes associated to diseases 
(Botstein and Risch, 2003; Kann, 2010). However, there is more 
and more evidence that most human diseases cannot be attributed 
to single genes but arise due to complex interactions between 
multiple genetic variants and environmental risk factors 
(Hirschhorn and Daly, 2005). Several databases have been devel-
oped storing associations between genes and diseases such as 
Online Mendelian Inheritance in Man (OMIM) (Hamosh, et al., 
2005). Each of these databases focuses on different aspects of 
phenotype to genotype relationships. For instance, PharmGKB is 
specialized on how genetic variation is related to drug response 
(Altman, 2007), whereas the toxicogenomics database CTD stores 
information about the effect of environmental chemicals on human 
health (Mattingly, et al., 2006). Hence, integration of different 
databases is needed to allow a comprehensive view of the state of 
the art knowledge within this research field. It is widely estab-
lished in bioinformatics to represent associations between bio-
medical entities as networks and to analyze their topology to get a 
  
*To whom correspondence should be addressed.  

global understanding of underlying relationships (Butts, 2009; 
Goh, et al., 2007; Yildirim, et al., 2007). Cytoscape is a widely 
used Java-based, open-source software for networks visualization 
and analysis (Shannon, et al., 2003). The Cytoscape framework is 
extendable through the implementation of plugins. Up to now, a 
vast variety of plugins has been developed ranging from advanced 
network analysis tools to webservices. In the following, we present 
DisGeNET, a new Cytoscape plugin to query, integrate and visual-
ize networks of human gene-disease associations.  

2 OVERVIEW 
2.1 The human gene-disease database 
We compiled a comprehensive database of human gene-disease associa-
tions by integrating data from various expert curated databases and text-
mining derived associations including mendelian, complex and envi-
ronmental diseases (Bauer-Mehren, et al., 2010). We created bipartite 
graphs called OMIM, UNIPROT, PHARMGKB, CTD, CURATED (com-
bining data from the curated databases), LHGDN (from the text-mining 
data only) and ALL (including all available gene-disease associations). 
Moreover, we calculated two network projections for each bipartite graph 
in order to generate disease and gene centric data representations. These 
projections allow an enhanced view on the genetic basis of complex dis-
eases. We furthermore classified all diseases into one of 26 possible disease 
classes following the MeSH hierarchy (Bauer-Mehren, et al., 2010).  

2.2 Gene-disease networks within Cytoscape 
The gene-disease networks are bipartite graphs with two types of nodes 
(gene and disease) (Goh, et al., 2007; Newman, 2003). Gene and disease 
nodes are connected through edges if the according gene-disease associa-
tion is covered in the gene-disease database. We allow displaying multiple 
edges between nodes, each representing a unique association found in the 
original data sources. Moreover, we colour the edges according to the 
association type following our gene-disease association ontology (Bauer-
Mehren, et al., 2010). The disease and gene projection networks are mono-
partite graphs only containing either gene or disease nodes. Nodes are 
connected through edges if the two genes (diseases) share a disease (gene) 
in the bipartite gene-disease network. Thus, this representation allows 
studying diseases with similar genetic origin or genes associated to similar 
diseases. DisGeNET can be started from the plugins menu in Cytoscape. 
The main panel consists of three tabs, one for the gene-disease networks 
called “Gene Disease Network” and one for each projection, namely “Dis-
ease Projections” and “Gene Projections”. The “Gene Disease Network” 
tab contains three drop-down menus allowing a restriction to (i) source, (ii) 
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association type and (iii) disease class. The two projection panels only 
contain two drop-down menu options to restrict the query to source and 
disease class. DisGeNET incorporates an advanced search function for each 
of the three network types. The user can search for a gene or a disease of 
interest and even for any set of diseases or genes by using the wild card 
symbol (asterisk). The search box can be either used to create new net-
works or to select nodes of already generated networks. DisGeNET makes 
use of the Cytoscape VizMapper to create visual styles for the networks. 
Gene nodes are coloured in blue and disease nodes in magenta (see Figure 
1A). The node size increases with increasing number of associated dis-
eases, respectively genes. Edges are coloured corresponding to the associa-
tion type. Moreover, disease and gene nodes can be coloured according to 
the disease class by using the “Colour nodes with disease class” button. 
Since it is possible to have diseases and genes assigned to more than one 
disease class, multicolour pie charts can be overlaid onto (and removed 
from) nodes (see Figure 1B).  

2.3 Use cases 
Some exemplary use cases showing the utility of DisGeNET are available 
at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#UserGuide.  
They address problems such as (i) which are the genes annotated to breast 
neoplasm in expert-curated databases?, (ii) do comorbidities of alzheimer 
disease and myocardial infarction observed in patients reflect in a common 
genetic origin? or (iii) which are the diseases that are associated to post-
translational modifications such as phosphorylation?  

3 CONCLUSION 
DisGeNET is a coherent tool for easy analysis and interpretation of 
human gene-disease networks. It allows user-friendly access to a 
comprehensive database comprising gene-disease associations for 
mendelian, complex and environmental diseases. DisGeNET dis-
plays gene-disease association networks as bipartite graphs and 
provides gene centric and disease centric views of the data. It 
assists the interpretation and exploration of human diseases with 
respect to their genetic origin. Diverse options for generating 
subnetworks, as well as an advanced search tool, facilitate not only 
the analysis of single diseases but also the study of sets of diseases 
or certain disease classes specified through their associated genes. 
Herein, the multicolouring of gene and disease nodes offers a 
convenient visualization of disease classifications in the networks. 

We plan regular updates of the underlying gene-disease association 
database as well as the integration of further data sources. 

4 ACKNOWLEDGEMENTS 
This work was generated in the framework of the EU-ADR (no. 
ICT-215847) and the eTOX projects (no. 115002) co-financed by 
the European. The GRIB is a node of the Spanish National Institute 
of Bioinformatics and member of the COMBIOMED network. We 
thank the AGAUR for a grant to author ABM. 
 
Conflict of interest: None declared. 

REFERENCES 
 
Altman, R.B. (2007) PharmGKB: a logical home for knowledge relating genotype to 

drug response phenotype, Nat. Genet., 39, 426. 
Bauer-Mehren, A., Bundschus, M., Rautschka, M., Mayer, M.A., Sanz, F. and Fur-

long, L.I. (2010) Network analysis of an integrated gene-disease association 
database reveals functional modules in mendelian, complex and environmental 
disease, submitted. 

Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human pheno-
types: past successes for mendelian disease, future approaches for complex 
disease, Nat. Genet., 228-237. 

Butts, C.T. (2009) Revisiting the Foundations of Network Analysis, Science, 325, 
414-416. 

Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M. and Barabási, A.-L. (2007) 
The human disease network, Proc. Natl. Acad. Sci., 104, 8685-8690. 

Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A. and McKusick, V.A. (2005) 
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human 
genes and genetic disorders, Nucleic Acids Res., 33, D514-517. 

Hirschhorn, J.N. and Daly, M.J. (2005) Genome-wide association studies for common 
diseases and complex traits, Nat. Rev. Genet., 6, 95-108. 

Kann, M.G. (2010) Advances in translational bioinformatics: computational ap-
proaches for the hunting of disease genes, Brief. Bioinform., 11, 96-110. 

Mattingly, C.J., Rosenstein, M.C., Davis, A.P., Colby, G.T., Forrest, J.N. and Boyer, 
J.L. (2006) The comparative toxicogenomics database: a cross-species resource 
for building chemical-gene interaction networks, Toxicol. Sci., 92, 587-595. 

Newman, M.E.J. (2003) The structure and function of complex networks, SIAM 
Review, 45, 167-256. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 
Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for 
integrated models of biomolecular interaction networks, Genome Res., 13, 
2498-2504. 

Yildirim, M.A., Goh, K.-I., Cusick, M.E., Barabasi, A.-L. and Vidal, M. (2007) Drug-
target network, Nat. Biotechnol., 25, 1119-1126. 

 
 

Figure 1: (A) Cytoscape screenshot of DisGeNET. The diseases Alzheimer Disease and Myocardial Infarction and their shared genes are displayed (in 
yellow). (B) The same network is shown with nodes colored according to the disease classes of the nodes. 
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1. DisGeNET installation guide 
 
1.1. Download and install DisGeNET 
 
• Download DisGeNET.jar from http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download 

 
• Put the jar (DisGeNET.jar) in the Cytoscape "plugins" folder.  

(The default location in Windows is C:\Program Files\Cytoscape-v2.x\plugins).  
The plugin will be automatically loaded the next time Cytoscape is started, and will appear as a menu 
item in the plugins menu. You can start the plugin by clicking on Start DisGeNET. 
 
 

 
 
 

• The first time you start the plugin it will automatically download and unpack the gene-disease database 
(DisGeNET.db ~326,5MB) into a directory of your choice.  
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• The download might take several minutes. When the download is finished, the plugin starts 
automatically.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

• Now the plugin is ready to be used. 
 

 
 
 
• The database folder can be changed at any time. 

Please restart the plugin to activate the changes. 
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1.2. Troubleshooting 
 
1.2.1. Allocating more memory 
Some of the networks are very large, especially when using LHGDN or ALL as source databases. In order to 
visualize large networks, you need to allocate more memory to Cytoscape. Memory usage depends on the 
number of nodes/edges and number of attributes. For detailed information check the Cytoscape manual 
available at http://www.cytoscape.org/. For Cytoscape version 2.7.0, you can find the information here: 
http://www.cytoscape.org/manual/Cytoscape2_7Manual.html#How%20to%20increase%20memory%20for
%20Cytoscape 
 
 
1.2.2. Download and installation problems 

 
• Make sure you have writing permission for the Cytoscape subfolders  

 
• Download is interrupted with NullPointerException (in Linux or Mac OSX) 
 

! Instead of starting Cytoscape via the icon, try to start it via command line from the installation folder, 
e.g..:  
sh /Applications/Cytoscape-6.x/cytoscape.sh  
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2. DisGeNET database 
The DisGeNET database integrates human gene-disease associations from various expert curated databases 
and text-mining derived associations including mendelian, complex and environmental diseases (Bauer-
Mehren, et al., 2010). The integration is performed by means of gene and disease vocabulary mapping and 
by using a gene-disease association ontology as described below. 
 
2.1. Original data sources 
OMIM: Online Mendelian Inheritance in Man (OMIM) focuses on inherited or heritable diseases (Hamosh, 
et al., 2005). Gene-disease associations were obtained by parsing the mim2gene file for associations of type 
“phenotype” (data was downloaded from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/mim2gene on June, 6th 
2009). All associations were labelled “phenotype” as provided in the mim2gene file and classified as Marker 
in our gene-disease association ontology. In total, we obtained 2198 distinct genes and 2473 distinct disease 
terms resulting in 3432 gene-disease associations. After mapping of disease vocabularies, the OMIM 
network contained 2417 distinct diseases.  
 
UNIPROT: UniProt/SwissProt is a database containing curated information about protein sequence, 
structure and function (Apweiler, et al., 2004). Moreover, it provides information on the functional effect of 
sequence variants and their association to disease. We extracted this information from UniProt/SwissProt 
release 57.0 (March 2009) as described in (Bauer-Mehren, et al., 2009). All protein identifiers were 
converted to Entrez Gene identifiers in order to allow integration with the other data sources. All gene-
disease associations were classified as GeneticVariation. UniProt provided 1746 distinct gene-disease 
associations for 1240 distinct genes and 1475 distinct diseases. 
 
PHARMGKB: The Pharmacogenomics Knowledge Base (PharmGKB) is specialized on the knowledge 
about pharmacogenes, genes that are involved in modulating drug response. Genes are classified as 
pharmacogenes because they are (i) involved in the pharmacokinetics of a drug (how the drug is absorbed, 
distributed, metabolized and eliminated) or (ii) the pharmacodynamics of a drug (how the drug acts on its 
target and its mechanisms of action) (Altman, 2007).  Hence, it covers less broadly human gene-disease 
associations but was found to be complementary to the other sources, as it contains some gene-disease 
associations not present in the other repositories. We downloaded the genes.zip, diseases.zip and 
relationships.zip from http://www.pharmgkb.org/resources/downloads_and_web_services.jsp on June 6th 
2009 and parsed the files to extract gene-disease associations. We furthermore made use of the perl 
webservices to obtain all available annotations and supporting information. We included 1772 associations 
for 79 distinct genes and 261 distinct diseases. PharmGKB associations were classified as Marker if the 
original label was “Related” and as RegulatoryModification if the original label was “Positively Related” or 
“Negatively Related”. 
 
CTD: The Comparative Toxicogenomics Database (CTD) contains manually curated information about 
gene-disease relationships with focus on understanding the effects of environmental chemicals on human 
health (Mattingly, et al., 2006). We downloaded the CTD_gene_disease_relations.tsv file from 
http://ctd.mdibl.org/downloads/ on June 2nd 2009 and parsed it for gene-disease associations of type 
“marker” or “therapeutic” (see http://ctd.mdibl.org/help/glossary.jsp for description of the original labels). 
CTD includes associations from OMIM but with some differences (i) for some associations extra 
information such as cross-links to PubMed are available and (ii) some associations are missing in either of 
the two databases. Hence, we kept all available gene-disease associations from both sources. All CTD gene-
disease associations were classified as Marker if the original label was “marker” and as Therapeutic if the 
original label was “therapeutic”. All cross-links to PubMed were kept. In total CTD data provided 6469 
associations for 2702 distinct diseases and 3345 distinct genes. 
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LHGDN: The literature-derived human gene-disease network (LHGDN) is a text mining derived database 
with focus on extracting and classifying gene-disease associations with respect to several biomolecular 
conditions. It uses a machine learning based algorithm to extract semantic gene-disease relations from a 
textual source of interest. The semantic gene-disease relations were extracted with F-measures of 78 (see 
(Bundschus, et al., 2008) for further details). More specifically, the textual source utilized here originates 
from Entrez Gene’s GeneRIF (Gene Reference Into Function) database (Mitchell, et al., 2003). This database 
represents a rapidly growing knowledge repository and consists of high-quality phrases created or reviewed 
by MeSH indexers. Hereby, the phrases refer to a particular gene in the Entrez Gene database and describe 
its function in a concise phrase. Using this textual repository for text mining has recently gained increasing 
attention, due to the high quality of the provided textual data in the GeneRIF database (Bundschus, et al., 
2008; Lu, et al., 2007; Rubinstein and Simon, 2005). LHGDN was created based on a GeneRIF version from 
March 31st, 2009, consisting of 414241 phrases. These phrases were further restricted to the organism Homo 
sapiens, which resulted in a total of 178004 phrases. We extracted all data from LHGDN and classified the 
original associations using our ontology. In total, LHGDN provided 59342 distinct gene-disease associations 
for 1850 diseases and 6154 distinct genes. The LHGDN is also available in the Linked Life Data Cloud 
(http://linkedlifedata.com/sources/).  
 
2.2. Generation of gene-disease networks 
Gene-disease associations were collected from several sources. The source databases use two different 
disease vocabularies (MIM and MeSH). Entrez Gene identifiers are used for genes (except for 
UniProt/SwissProt which uses UniProt identifiers). Moreover, the kind of association differs among the 
databases and ranges from the generic term “related” to more specific terms such as “altered expression”. In 
order to merge all gene-disease associations and to present them in one comprehensive gene-disease 
network, we (i) mapped UniProt identifiers to EntrezGene identifiers if necessary, (ii) mapped MIM to 
MeSH vocabulary if possible (see Mapping of disease vocabularies) and (iii) integrated associations through 
our gene-disease association ontology (see Gene-disease association ontology). We furthermore constructed 
different gene-disease networks for each source (OMIM, UNIPROT, PHARMGKB, CTD, LHGDN), as well 
as two integrated networks CURATED (containing gene-disease associations of OMIM, UNIPROT, 
PHARMGKB or CTD) and ALL (containing all gene-disease associations). Our comprehensive database is 
also available as SQLite database (DisGeNET.db). All gene-disease networks are represented as bipartite 
graphs. A bipartite graph has two types of vertices and the edges run only between vertices of un-like types 
(Newman, 2003). The bipartite graphs are multigraphs in which two vertices can be connected by more than 
one edge. In our networks, the multiple edges represent the multiple data sources reporting the gene-disease 
association. We generated two projections, one for the diseases and one for the genes using the igraph library 
in R (Gabor and Tamas, 2006). The projected graphs contain only vertices of the same kind (monopartite) 
and two nodes are connected if they share a neighbour in the original bipartite graph. Before projecting the 
networks, we simplified the graphs and removed multiple edges. Hence, nodes that are connected by 
multiple edges are only connected by one edge in the simplified graph. This simplification is needed in order 
to correctly run the projection as implemented in the igraph library. Moreover, the node degree in the 
simplified graphs represents the number of first neighbours. 
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2.3. Mapping of disease vocabularies 
We used the MeSH hierarchy for disease classification. The repositories of gene-disease associations use two 
different disease vocabularies, MIM terms for OMIM diseases (used by OMIM, UniProt, CTD) and MeSH 
terms (used by CTD, PharmGKB, LHGDN). We used the UMLS metathesaurus to map from MIM to MeSH 
vocabularies. This step was performed to merge disease terms representing the same disorder, thus reducing 
redundancy. We were able to map 497 MIM terms directly to MeSH using UMLS and we additionally 
mapped 23 MIM terms by using a string mapping approach. Briefly, we searched the UMLS metathesaurus 
for MeSH terms for which there is at least one synonym exactly matching one of the synonyms describing 
the MIM term of interest. The resulting 63 matched terms were manually checked and reduced to 23 terms. 
For disease classification, we considered all 23 upper level concepts of the MeSH tree branch C (Diseases), 
plus two concepts (“Psychological Phenomena and Processes” and “Mental Disorders”) of the F branch 
(Psychiatry and Psychology). Moreover, we added one disease class “Unclassified” for all disease terms for 
which a classification was not possible. We categorized all diseases into one or more of the 26 possible 
disease classes. For MeSH disease terms we directly used its position in the MeSH hierarchy, for MIM 
disease terms that were not mapped to MeSH, we used the disease classification of (Goh, et al., 2007). Then, 
we mapped their disease classification to the MeSH hierarchy and extended the mapping using a disease 
classification available at CTD (CTD_disease_hierarchy.tsv downloaded August, 8th 2009). In total, we 
were able to classify 3980 (98.39 %) diseases. The disease classification allows filtering and searching of the 
network restricted to disease class.  
 
2.4. Gene-disease association ontology 
For a correct integration of gene-disease association data, we developed a gene-disease association ontology. 
We classified all association types as found in the original source databases into Association if there is a 
relationship between the gene/protein and the disease, and into NoAssociation if there is no association 
between a gene/protein and a certain disease (in other words, if there is evidence for the independence 
between a gene/protein and a disease). The different association types from the original databases were 
mapped to the ontology for a seamless integration. In this study, we only considered gene-disease 
associations of type Association. The ontology is available at 
http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. 
 

 
 

Figure 1: Gene-disease association ontology 
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3. DisGeNET tutorial 
 
DisGeNET is a plugin for Cytoscape (Shannon, et al., 2003) to query and analyze human gene-disease 
networks. For this purpose, we have developed a new gene-disease assocciation database integrating 
information from several expert curated databases and a resource containing text-mining derived associations 
(Bauer-Mehren, et al., 2010).   
 
3.1. Basic functions 
By selecting different data sources, association types and/or disease classes from their respective drop-down 
menus, you can generate different gene-disease association networks. In addition, gene-disease association 
networks can be generated around a specific disease or gene of interest using the search box provided with 
the plugin. Most of these functionalities are also available to generate disease and gene monopartite 
networks. 
 
3.1.1. Generate gene-disease association network 
In order to obtain a gene-disease association network without any restrictions on association type and disease 
class follow the next steps: 

 
 
 

• Select the source of interest, e.g. CURATED containing information from 
all expert curated databases in our database (OMIM, PHARMGKB, 
UNIPROT and CTD). 

 
• Set Association Type and Disease Class Any 

 
• Press Create Network  

 
 
 
 
 
 

 
 
 
 
 
 
• Apply a Cytoscape layout algorithm 

to generate the view of choice, e.g. 
select the layout Organic 
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Once the network is obtained, specific information on the nodes and their relationships can be explored as 
detailed below: 

 
• Select nodes and edges and check their attributes.  

 
• For example, use the Cytoscape search function to query for 

Alzheimer Disease. For this purpose, modify the search options 
and select the attribute diseaseName. 

 
 
 
 

 
 
 
 

• Search for a particular disease, e.g. Alzheimer 
Disease 

 
 

 
 
 

• Zoom into the network and select the Alzheimer 
Disease node 

 
• More information about this node is found in the Node 

Attribute Browser 
 

• All available node and edge attributes are listed in 
Tables 1 and 2. 

 
 
 
 

 
 

 
• For this purpose you might want to select attributes to 

be displayed in the Node Attribute Browser or Edge 
Attribute Browser of the Cytoscape Data Panel. 
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• Select an edge to display information about a particular 
gene-disease association such as associationType, data 
source providing this association, supporting evidence 
(PubMed identifiers), etc.  

 
 
 
 
 
 
 
 
 
 
 
 

3.1.2. Generate gene or disease projection network 
In addition to bipartite graphs representing gene-disease associations, DisGeNET allows generating 
monopartite networks representing the gene or the disease projection of the gene-disease association 
network. In order to obtain the disease projection of the network generated from CURATED source 
(described in 2.1.1) follow the instructions detailed below: 

 
 

• Select the Disease Projection tab in the 
DisGeNET main panel.  

 
• Select the source, e.g. CURATED 

 
• Press Create Network 
 
 

 
 
 
 

 
3.1.3. Restrict the network to a certain association type  
Note: This option is only available for Gene Disease Networks. 

 
 

• Select the Source, e.g. CURATED 
 

• Select the Association Type, e.g. Genetic variation 
 

• Press Create Network 
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3.1.4. Restrict the network to a certain disease class 
Note: This option is available for all types of networks. The classification is based on the disease branch of 
the MeSH hierarchy.  

 
 

• Select the Source, e.g. CURATED 
 

• Select the Disease Class, e.g. Digestive 
System Diseases 

 
• Press Create Network 

 
 
 

 
3.1.5. Search for a particular gene/disease or set of genes/diseases 
The search option included in the DisGeNET tab can be used to generate networks around a disease or gene 
of interest. In addition, it can be used to search for a given disease or gene of interest in a network already 
generated. 
 
 

 
• If only current net is not ticked, a network only containing 

associations related to the query will be created (using Create 
Network). 

 
• If only current net is ticked, the according node will be selected 

(highlighted yellow) in the current network (with active view) 
when pressing [Enter].  

 
• The search is restricted to Source, Association Type and Disease 

Class as selected.  
 
• In this example, we are searching for any kind of Alzheimer 

Disease (there are four different types) in the CURATED dataset 
without any restriction of association type or disease class.  

 
• Note: The DisGeNET search allows the use of the wildcard symbol 

(*).  For performance reasons only the first 50 matching terms are 
listed in the drop-down box but all are included in the generated 
network.   
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3.1.6. DisGeNET LinkOut 
In order to get more information about a gene or a disease node, you can linkout to the according website 
(Entrez Gene, OMIM or MeSH) using the DisGeNET LinkOut function. It is available in the node context 
menu, which can be accessed by right-clicking a selected node. 

 
• For gene nodes, a linkout to Entrez Gene is 

given.  
 

• For disease nodes, linkouts to MeSH or OMIM 
(depending on the type of disease node) are 
given.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.1.7. DisGeNET Expand 
In order to find all diseases/genes that are associated to a gene/disease node in an existing network you can 
use the DisGeNET Expand function. It can either be used to create new DisGeNET networks using the 
selected nodes for the query or to expand the existing nodes with edges found in DisGeNET.  
Note: the function works with one or more selected nodes. To call the function, select one or more nodes, 
then click the right mouse button. This will open the node context menu containing the DisGeNET LinkOut 
and DisGeNET Expand functions. You can then choose between DisGeNET Expand -> Expand current net 
and DisGeNET Expand -> Build new net. 
 
3.1.7.1. Expand DisGeNET networks 

  
 
• This is a network generated with DisGeNET using as source 

OMIM, as AssociationType and DiseaseClass Any and as 
search term PSEN2.  
 

• In OMIM, there is only one disease (Alzheimer disease-4) 
annotated to the gene PSEN2. 
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• The DisGeNET Expand function can be 
used to query for more associated 
diseases (click the right mouse button on 
the PSEN2 node to open the context 
menu). This function uses as data source 
the whole DisGeNET database. You can 
either add more gene-disease 
associations to the current net or build a 
new net. 

 
 

 
 

• The result is this expanded network in 
which all found gene-disease 
associations for PSEN2 were added. 
You can see that there are 5 more 
diseases annotated to PSEN2.  

 
 
 
 
 
• The expansion can be repeated various 

times. For instance, in a next step, we can 
expand this network by querying for more 
genes associated to Alzheimer disease - 4 
and Alzheimer Disease. 
 

 
 
• This results in a large network with 373 nodes and 893 

edges. It is visible that there are many more genes 
associated to Alzheimer Disease. 
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3.1.7.2. Expand foreign networks 
The same functionality to expand gene or disease nodes with more associations found in DisGeNET can be 
used to expand foreign network that were not created with DisGeNET but contain gene or disease nodes. In 
order to use the DisGeNET Expand function on nodes that were not built within DisGeNET, the node label 
needs to contain a valid Entrez Gene identifier or valid disease identifiers that are allowed by DisGeNET.  
Note: DisGeNET only contains human gene-disease associations and hence can only be queried with human 
gene identifiers. 
 
Examples for valid identifiers:  

• 5080 for PAX 6 gene 
• mesh:D000544 for Alzheimer Disease 
• omim:217700 for Corneal endothelial dystrophy 2  

 
 
 
In the following example, we show how a network not generated with DisGeNET can be expanded with 
DisGeNET gene-disease associations. 

 
 
• First, we generate a network using the File->Import-

>Network from webservices function within 
Cytoscape. 

 
 
 
 
 
 
 
 

 
 
 
 
 
• We query the Pathway Commons database for pathways 

containing the human gene PSEN2. For this, first set the Data 
Source to Pathway Commons Web Service Client, enter 
PSEN2 in the Search field and select the organism Human. 
Press search. 
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• We select a pathway we are interested in, for 

instance the NOTCH signalling pathway from the 
Cancer Cell Map database. Double-click the 
pathway to retrieve it. 
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• This results in a network with 113 node and 272 edges.  
• The network contains the PSEN2 gene (PSN2_HUMAN).  

Morever, there are various node attributes available among them the Entrez Gene identifier 
(biopax.xref.ENTREZ_GENE) 
 
 

 
 
 
 
 

• In order to use DisGeNET expand, we need to ensure that the node labels contains the Entrez Gene 
identifier since DisGeNET uses node labels to query the database. 
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• To do so, we first create a new visual style in the VizMapper, for example called 
“ExpandDisGeNETStyle” 

 
 

• Then, we set the node label to the attribute 
containing the Entrez Gene identifiers, here 
to biopax.xref.ENTREZ_GENE and use the 
Passthrough Mapping. 

  
 

 
 
 
 
• Now, we can use the DisGeNET Expand function 

to search for gene-disease associations containing 
the selected node. Using the function for the 
PSEN2 node, we can search for all associated 
diseases in DisGeNET. We can either add the 
found associations to this net or create a new net. 

 
 

 
 
 
 
 
• In the resulting network all diseases 

associated to PSEN2 are added  
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• For Cytoscape 2.7.0 users: You can make use of the Nested networks functionality to add the gene-
disease association networks as nested networks to the nodes. 
 
 

• To add the gene-disease association 
network as nested network to the 
PSEN2 gene node, right click on the 
node and select Nested Network -> Set 
Nested Network 
 

 
 
 
 

 
• Now select the gene-disease association 

network for PSEN2 as created before 
using DisGeNET Expand 

 
 
 
 
 
 
 

 
 
 

 

 
 
 

• The PSEN2 node now contains the gene-disease association network as nested network, which can 
directly be opened by using the Nested Network->Go to Nested Network function. 
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• If the node label does not contain valid identifiers for DisGeNET, an error message is shown.  
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3.2. Specific use cases 
In this section some examples that illustrate the kind of questions that can be answered using DisGeNET are 
presented. 
 
3.2.1. Which are the genes annotated to breast cancer in expert curated databases? 
This is an example of a more general question that can be phrased as “Give me all the genes known to be 
associated to disease x from a given data source”. 
 
In order to answer this question, query the Gene Disease network selecting CURATED as source, no 
restriction on the association type or disease class, but specifying Breast Neoplasms in the search field to 
restrict the search to the genes annotated to this disease term.  This will generate a network with 277 nodes  
(one disease and 276 gene nodes) and 417 edges. The edges are coloured according to the association type. 
 
 

 
 
 
Many genes associated to Breast Neoplasms are also annotated to other diseases.  We can inspect these 
diseases by exploring the node attributes associatedDiseases in the Node Attribute browser and also by 
colouring the nodes according to MeSH disease classification. For this purpose, use the function Colour 
nodes with disease class. 
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Breast Neoplasms is classified as Neoplasms and Skin and Connective Tissue Disease. MAP3K1 is a gene 
annotated only to Breast Neoplasms in the CURATED data set, while COL7A1 is annotated to 8 different 
diseases belonging to 4 different disease classes. 
 
In order to know if there are other genes described in the literature but not recorded in the set of curated 
databases considered, we perform the query on the LHGDN set. This query will retrieve annotations derived 
from text-mining. The result is a network composed of 1099 genes annotated to Breast Neoplasms (1100 
nodes and 3321 edges).  
 
If we inspect the association between gene CDH1 and Breast Neoplasms, we see that there are 12 edges 
connecting the two nodes. The associations belong to different classes (Marker, GeneticVariation, etc.), 
hence they are coloured differently.  
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Furthermore, we can explore the supporting evidence for each gene-disease association by inspecting the 
edge attribute browser. We can examine the associations by either linking out to the according publication 
(using the Cytoscape function Search on the web). 
 

 
 
Or we can view the sentence that was found by text-mining that supports the association between the gene 
and the disease (using the node attribute sentence).  
 

 
 
This example illustrates the value of incorporating information from literature, since the curated databases 
currently don’t cover all knowledge about gene-disease association available in the literature.  
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3.2.1.1. Do comorbidities observed in patients reflect a common genetic origin of the 
diseases? 

This is a specific example of a more general question such as: Are diseases x and y related by genetic origin?  
 
Some diseases are known to co-occur in a patient, a process known as disease comorbidities (Park, et al., 
2009). Disease comorbidities can be studied considering the common genetic origin of both diseases. 
Alzheimer Disease and Myocardial Infarction are one example of comorbidity. By querying the Gene 
Disease network we can answer the question if these two diseases share a common genetic origin.  
 
First, we query the Disease projection (CURATED) for Alzheimer Disease with no restriction to Disease 
class and create the network. Then, we search this network for Myocardial Infarction using the DisGeNET 
search function with the option only current net ticked.  
We immediately see that both diseases are connected.  
 

 
 
Once we know that there is at least one gene shared between both diseases, we can go back to the 
CURATED Gene Disease Network (or create it) and then create a subnetwork containing the two diseases 
and their associated genes. For this purpose, we first select the four nodes representing subtypes of Alzheimer 
Disease (Alzheimer Disease, Alzheimer disease-2, Alzheimer disease-4, Alzheimer disease, type 3) and the 
two nodes for Myocardial Infarction (Myocardial Infarction and Myocardial infarction, susceptibility to) and 
their associated genes using the Cytoscape function Select -> Nodes -> First neighbours of selected nodes.  
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Then, we create a subnetwork containing all selected nodes and all edges using the Cytoscape function File -
> New -> Network -> From selected nodes, all edges. 
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As a result we obtain a network containing 62 nodes and 126 edges. We can see that Alzheimer disease and 
Myocardial Infarction are both annotated to the genes NOS3, ACE and APOE, supporting the hypothesis 
that alterations in the function of these genes can result in the development of both diseases in the same 
patient. 
The same result can be obtained using the Cytoscape plugin “Advanced Network Merge”. For this purpose, 
we can create two separate gene-disease networks for Alzheimer Disease and Myocardial Infarction and then 
use the “Advanced Network Merge” to merge these networks using for instance the geneId as matching 
attribute. 
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3.2.2. Which are the diseases that are associated to post-translational modifications such as 
phosphorylation?  

This is an example of a more general search query that can be expressed as: Give me all the diseases for 
which there are alterations in post-translational modifications such as x. 
 
This type of use case might be of interest for drug discovery projects in which the identification of disease 
genes able to be targeted by drugs interfering with phosphorylation is needed.  
 
First, we create a network querying the complete Gene Disease network (ALL) and restricting the 
Association Type to Methylation/phosphorylation (no restriction to any Disease class). The query results in a 
network composed of 621 nodes (157 disease nodes) and 1117 edges.  
By exploring the diseases (use Colour nodes with disease class), it can be observed that most of them belong 
to the class Neoplasms, but there are other diseases such as those belonging to Nervous systems Diseases, 
Hemic and Lymphatic diseases, Immune Systems Diseases. The supporting evidence for each gene-disease 
association can be explored using the edge attribute browser as explained in section 2.1. 
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3.3. Analyzing DisGeNET data using external tools 
Some of the networks can get very large, especially when using LHGDN or ALL and for this reason the 
plugin will not create gene projections with the LHGDN or ALL setting. 
In order to analyze DisGeNET data with external network analysis tools such as the igraph library for 
complex network research (Gabor and Tamas, 2006), we provide all networks and attributes in a sqlite 
database available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. 
 
3.3.1. Extract data from DisGeNET database 
Sqlite can be downloaded from http://www.sqlite.org/download.html. Please also check the sqlite 
documentation for more information. 
 
Connect to the DisGeNET database using the following command (call from the folder containing the 
DisGeNET database, e.g. ../cytoscape-v2.6.3/plugins/DB/): 
 
sqlite3 DisGeNET.db 
 
Use the following commands to extract the whole (ALL) gene-disease network and to write them into a tab 
delimited text file named DisGeNET_ALL.txt: 
   
sqlite> .mode tab 
sqlite> .output ./DisGeNET_ALL.txt 
sqlite> select * from geneDiseaseNetwork where source=“ALL“; 
 
3.3.2. Build networks using igraph library 
Once you have saved the network, you can access and visualize it with any external tools for network 
analysis. Many tools can read tab delimited text files such as the igraph library for R. The igraph library can 
be downloaded from http://igraph.sourceforge.net. 
 
Start R and use the igraph library. 
 
R 
R> library(igraph) 
 
Read in the network and build a graph object. 
 
R> edges -> read.csv(file=“./DisGeNET_ALL.txt“, sep=“\t“, header=F) 
R> graph -> graph.data.frame(edges, directed=F) 
 
Now you can make use of a variety of graph manipulation functionalities available in igraph. For further 
information check the igraph documentation.  
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4. Contact 
 
4.1. Biomedical Informatics group 
We are interested in the understanding of the mechanisms underlying biomedical related problems at the 
molecular scale. This involves the study of the network of interactions between molecules that underlay, for 
instance, the etiology of a complex disease. In addition to the study of diseases of complex origin, we are 
also interested in the mechanisms underlying the appearance of side effects after drug treatments. 
One part of our research is focused on strategies to, once a network of molecular interactions is obtained, 
characterize the network and model its behavior in order to gain insight into the etiology of the disease 
phenotype. In particular, we are interested in the application of qualitative modeling approaches, such as 
Petri Nets and Boolean networks. 
Another line of research involves strategies for obtaining the networks that are relevant for the biomedical 
related problems already mentioned. For this, we are developing software for the retrieval and analysis of 
data from public network repositories (databases of signaling pathways, gene regulatory networks and 
metabolic reactions). Although the publicly available network databases contain valuable information, we 
are aware that their coverage is not complete: a lot of information regarding interaction between biomedical 
entities (genes, proteins, phenotypes, chemicals, drugs, etc) still lies in the biomedical literature as free text. 
This is where our third line of research comes in, which involves the use of text mining approaches for the 
extraction of relationships between biomedical entities from the biomedical literature. In the past years we 
have developed NER systems for the identification of mentions of gene sequence variants from MEDLINE 
abstracts, and linkage of the mentions found in text to the corresponding database identifiers (in this case 
dbSNP). In addition, we have developed a corpus with annotations for variation mentions for the evaluation 
of this kind of NER systems. Currently, we are working on the application of NLP approaches for the 
identification and extraction of different types of relationships between biomedical entities. 
 
4.2. Citation 
If you are using DisGeNET for your own research, please cite: 
 
Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI: Network analysis of an 
integrated gene-disease association database reveals functional modules in mendelian, complex and 
environmental diseases. Submitted. 
 
Bauer-Mehren A, Rautschka M, Sanz F, Furlong LI: DisGeNET - a Cytoscape plugin to visualize, 
integrate, search and analyze gene-disease networks. Submitted. 
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5. Attribute tables 
 
Table 1: Edge attributes in the gene-disease network  
 
Name Description 

associationType Association type of the gene-disease association according to the gene-disease 
association ontology (see Gene-disease association ontology}). 

interaction Unique identifier for this association. 

label Association type as originally assigned by the source database 

pmids List of PubMed identifiers of publications supporting the reported gene-disease 
association, if available. 

sentence The actual sentence in which the gene-disease association was detected (only 
available for LHGDN). 

source Database in which this gene-disease association was reported (OMIM, 
UNIPROT, PHARMGKB, CTD, CURATED, LHGDN, ALL) 

 
 
Table 2: Node attributes in the gene-disease network 
 
Name Description 

associatedDiseases List of disease identifier associated to a gene node. 

associatedDiseaseNames List of disease names which are associated to a gene node. 
associatedPathwayNames List of KEGG and Reactome pathways the gene is annotated to (only 

for gene nodes). 
associatedPathways List of KEGG and Reactome pathway identifiers the gene is annotated 

to (only for gene nodes). 
nrAssociatedDiseases/ 
nrAssociatedGenes 

Number of associated diseases or genes (number of first neighbours of 
the node). 

diseaseClass List of disease class identifiers (disease classes according to MeSH 
hierarchy). 

diseaseId MIM or MeSH identifier for the disease node 

diseaseName Name of the disease according to MeSH or OMIM morbidmap. 

geneId Entrez Gene identifier of the gene. 

geneName Name of the gene. 

nodeType The type of node (gene or disease). 

styleName Name of gene or disease, needed for the DisGeNET visual style. 

styleSize Number of first neighbours of the node, needed for the DisGeNET 
visual style. 
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This thesis is focused on understanding the molecular basis of human diseases 

and adverse drug reactions by means of novel integrative analysis methodologies. 
Clearly, there is an urgent need for such new methods considering the fact that we 
are on the one hand able to generate vast amounts of “omics” data but on the other 
hand we are not fully able to automatically combine and analyse all that information 
in a meaningful way, yet. Although for many diseases there is successful treatment, 
we are still not able to prevent and cure common human diseases, such as cancer. In 
addition, the number of drug candidates failing in the last phase due to lack of 
efficacy or severe side effects is still dramatically high, despite the recent advances 
in experimental and computational technologies. Hence, it becomes obvious that the 
knowledge about the molecular basis of human diseases and drug adverse reactions 
can often not be directly translated into clinical practice. In many cases, the problem 
is related to the fact that the knowledge is fragmented and difficulties in data 
retrieval and integration are hindering the direct use of the available information. In 
other cases, the molecular mechanisms underlying the disease or the adverse drug 
reaction are partly understood but need to be studied in more detail.  

In this regard, the main objective of this PhD thesis was the development of 
novel integrative analysis approaches for investigating the molecular basis of 
human diseases and adverse drug reactions. In the previous chapter (chapter 3), the 
results of the research carried out during this PhD thesis have been presented. These 
results were published or are under review for their publication in peer-reviewed 
journals, or in case of chapter 3.1.4. in preparation. In this section, the main results 
and outcomes of this thesis are critically discussed. Herein, the results are ordered 
by the methodological approach they are based on ranging from the classical 
multivariate statistical methods to the recent systems biology approaches. 

 

4.1. Multivariate statistical approaches to study adverse 
drug reactions 

In the introduction of this PhD thesis we have explained the difficulty of 
advancing in the understanding of the molecular basis of human diseases and 
adverse drug reactions. Due to the extreme complexity of this task we need new 
methodological approaches able to shed light on the relationships between the 
involved entities and their descriptors. In this regard, we developed a new method 
for exploiting molecular and pharmacological information for a set of drugs known 
to interact with multiple receptors in order to investigate, for instance, undesired 
side effects of the drugs. This method introduces a multilevel approach, which is 
based on the sequential building of linked multivariate statistical models, all based 
on PCA or PLS where each model introduces a different level of drug description. 
These levels comprise 1) clinical/in vivo observations related to the therapeutic and 
side effects of the drugs, 2) in vitro binding affinities of the drugs to receptors and 
3) the molecular structures of the ligand-receptor complexes (see section 3.1). The 
method was described and validated using as example a set of antipsychotic drugs 
for which data at all three levels was available. Herein, it is important to mention 
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that the selected set of drugs should consist of structurally diverse compounds since 
the underlying statistical models work by grouping together objects with similar 
properties. The results of the method applied to the set of antipsychotic drugs 
strongly support the usefulness of the proposed methodology and literature 
evidence was found for most findings (see section 3.1). The clear advantage of this 
method is that instead of producing models that behave like “black boxes”, the 
obtained models can be inspected in different ways. This is possible due to the use 
of the statistical methods PCA and PLS, which allow inspecting on the one hand the 
objects clustered by their similarity and on the other hand the factors responsible for 
the clustering. All in all, the developed methodology for the first time uses 
multivariate statistical models to study the properties of drugs at different levels, 
facilitating the design of more efficient and safer drugs. Nevertheless, it has to be 
kept in mind that the found relationships are of statistical nature, which have not to 
be causal relationships. Hence, in order to gain a mechanistic understanding of the 
established relationships, a more detailed approach has to be followed up. 
Nonetheless, the clear advantage of the proposed method is that it requires few data 
regarding clinical/in vivo, in vitro and structural properties of the studied drugs, all 
typically available during drug development and after drug marketing. Moreover, 
finding a statistical association between, for instance, drug properties and adverse 
drug reactions could be seen as first step guiding mechanistic subsequent analysis 
approaches.  

 

4.2. Systems biology approaches to investigate the molecular 
basis of diseases and adverse drug reactions 

A promising research area for a more detailed analysis of the molecular basis of 
human traits is the recent systems biology as introduced in section 1.3.2. It has been 
mentioned several times that in order to gain a mechanistic understanding of the 
biological processes implicated in diseases and adverse drug reactions, the 
interactions between the involved key players have to be taken into account. In this 
respect, within the field of systems biology, network analysis approaches have 
evolved to study the static and dynamic properties of network models for biological 
pathways. This has immensely improved our understanding of important cell 
signalling processes. However, up to now the building of such network models is 
typically done manually by inspecting all literature related to the processes of study. 
Consequently, in this PhD thesis we extensively studied public pathway databases 
with respect to their suitability to provide data ready to be used for automatic 
building of network models. As shown in section 3.2, a smooth automatic 
integration of pathway data is currently not possible although the data quality would 
in principle allow using the data directly to answer specific biological questions. 
We extensively discussed the current major limitations and illustrated them in 
several examples. Mostly they are related to lack of data, misuse of standard data 
formats and incorrect or missing annotations. Moreover, our analysis revealed a 
lack of communication between the systems biologists building network models to 
study specific biological processes and the database owners and curators. We 
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therefore proposed a workflow for an automatic merging of publicly available 
pathway data and the subsequent automatic network model building (see section 
3.2). We also suggested that model builder and database curator should engage in 
collaborative projects to take advantage of the data already available in public 
databases and work together on representations that fit the needs of both 
communities. We believe that a closer collaboration will yield in more accurate 
data, improved automatic access and integration, which will eventually allow the 
fast and automatic generation of network models useful to answer important 
biological questions. Future directions in this regard include the development of 
more advanced computational tools allowing the merging of biological pathways 
that overcome the shortcomings of current approaches and that cope with the 
annotation issues we have discussed. Moreover, automatic building of network 
models would require the collection of additional information, for instance on the 
kinetics of the involved processes, for which to the best of our knowledge no 
standard databases exist at the moment. We are hoping to advance in this direction 
by building qualitative models, which are mainly based on the network structure 
and do not require information about the kinetics. Hence, in the future we plan to 
work extensively on automatic pathway integration and qualitative network 
modelling with the ultimate goal of accomplishing the proposed scenario for 
automatically building network models useful to answer biomedical questions.   

 
Throughout working on this PhD thesis, it has become evident that in order to 

solve biomedical questions related to disease mechanisms and adverse drug 
reactions, an integrative analysis approach is the most promising for the task. In the 
introduction it has been pointed out that there are, however, currently several 
limitations to such integrative analysis approach. Biomedical data is typically 
dispersed over various databases each covering different aspects of the biomedical 
entities they are addressing. This has become especially visible when analysing 
public pathway repositories, as discussed above. Moreover, much of the 
information is still locked in the literature and has not made its way into such 
expert-curated databases, yet. Another issue is the lack of data standards allowing 
smooth and automatic integration. Hence, most work in this PhD thesis was 
directed towards the development of bioinformatics analysis tools for integration, 
visualization and analysis of biomedical data in order study the molecular basis of 
diseases and drug adverse reactions.  

One example for which integration of different kinds of data is required is the 
study of disease mechanisms. In the last years, it has become evident that most 
human diseases arise due to complex interactions among multiple genetic variants 
and environmental factors variants (Hirschhorn et al, 2005). Hence, in order to 
study a particular disease all accessible information about the involved genetic and 
environmental variables has to be combined. Thus, we compiled a comprehensive 
gene-disease association database through integration of data from various expert-
curated sources and text-mining derived associations. To the best of our knowledge 
this resource combines mendelian, complex and environmental diseases for the first 
time, and hence allowed us to study all these diseases at a global scale (see section 
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3.3). This repository serves as a suitable framework to study diseases and also 
adverse drug reactions because it incorporates the whole range of human diseases 
including those of environmental origin, which are caused by the exposure to 
xenobiotics including drugs. Moreover, it has to be mentioned here that a global 
analysis of human diseases has so far only been done for mendelian diseases and 
hence our integrated database provides a new framework for studying human 
diseases at a broader scale.  

Our global analysis shows that the integration of data from various sources is 
required to obtain a complete picture of the genetic origin of human diseases. In 
particular, we demonstrate how text-mining derived associations close knowledge 
gaps existing in the expert-curated databases. Hence, the presented unified gene-
disease association database can provide important biological insights that might 
not be discovered when considering each of the data sources independently. 
Clearly, this integration was not trivial. Next to mapping of diverse controlled 
vocabularies (i.e. for diseases), we developed a gene-disease association ontology 
for a smooth integration of the gene-disease associations. The use of this ontology 
on the one hand allowed us to correctly integrate different types of relationships 
found in the original databases. On the other hand it will facilitate future population 
of the ontology with further data, for instance derived from other text-mining 
approaches or additional online databases. Moreover, the mapping of disease 
vocabularies allowed the use of a standard disease classification schema to classify 
all diseases in our database. This is of particular interest for studies in which whole 
disease classes are investigated. In addition, by performing the mapping through the 
UMLS Metathesaurus, it is possible to represent the diseases with any other 
vocabulary covered by this resource. For example, vocabularies used in the clinical 
practice, such as SNOMED-CT, ICD-9 or ICD-10, could be used in order to allow 
an integration of data coming from patient records, for example. Furthermore, it 
allows using vocabularies in different languages, hence facilitating the integration 
with clinical data. 

The global analysis also points out that human diseases have many gene 
associations in common indicating a highly shared genetic origin. In a next step, we 
extracted disease-related modules by means of clustering. Our findings confirm that 
the concept of modularity, which had been shown for mendelian diseases by other 
authors (Goh et al, 2007; Lim et al, 2006; Oti et al, 2007; van Driel et al, 2006), 
also applies to complex and environmental diseases. We furthermore demonstrate 
that most diseases are associated to a core set of biological processes indicating the 
importance of cross-talks between pathways in disease development. We believe 
that this has significant implications for disease treatment and drug development. A 
therapy that considers the diversity of biological processes related to a disease 
might be of advantage. More strikingly, similar findings are obtained when studying 
groups of diseases. Even for clusters of diseases, there is a set of core biological 
processes associated. This suggests that the diseases in these groups, which can be 
very similar but also very unrelated, might arise due to dysfunction of the same 
biological processes in the cell. This again has direct implications for disease 
treatment and drug development. If a set of diseases is related to the same 



DISCUSSION 

 191 
 

pathways, a treatment or drug already successful for one of the diseases could also 
be applied to the other diseases (Berger et al, 2009). Hence, we went a step further 
and identified these core biological processes. Moreover, our analysis shows that 
only few diseases are solely caused by defects in direct interactions between 
proteins and that for most diseases a set of core biological processes need to be 
studied in detail.  

All in all, our integrated database serves as a suitable starting point for 
individual researchers studying a particular disease in detail because it combines all 
available gene-disease associations for this disease, even including associations 
only reported in the literature and not available in curated databases, yet. As 
introduced in section 1, there is a major need to investigate the interactions among 
environmental carcinogens and genetic factors (Sankaranarayanan et al, 2010). Our 
database allows such analysis since it integrates mendelian, complex and 
environmental diseases. Hence, the comprehensive gene-disease association 
database provides a valid source for the extraction of disease-related modules, 
which can be studied in detail to understand how they respond to genetic and 
environmental perturbations (see figure 1c). It can also serve as a framework to 
study disease relationships, for instance, when trying to understand comorbitites in 
patients. This is possible by studying disease clusters or neighbours in the disease 
projection network because their shared genetic origin could explain why they co-
occur in patients. We are planning to further investigate in this direction by 
comparing data of comorbitites in patients derived from patient record databases 
with the found disease relationships in our networks. This is greatly facilitated by 
the use of disease vocabularies being part of the UMLS metathesaurus, which 
allows the direct integration with clinical data. Moreover, we showed in several 
use-case scenarios various other applications of the database. For instance, we used 
the gene clusters in conjunction with pathway data to predict new candidate disease 
genes in the networks derived solely from expert-curated databases. We then 
confirmed the prediction by checking the whole databases, which also includes text-
mining derived data, and found the according literature evidence for the prediction. 
In another example, we established a connection between environmental exposure 
with arsenic compounds and cancer at the genetic level stressing the usefulness of 
the database to study the effect of environmental factors on human health. Finally, 
we showed how the database could be used to study adverse drug reactions.  

In this regard, we have been working more deeply on a framework for the 
automatic substantiation of signals, which are unexpected associations of a clinical 
event with a given drug. For this purpose, we have implemented a webservice to 
query our integrated gene-disease association database allowing easy integration 
within analysis pipelines or workflows. Moreover, we have implemented an 
exemplary workflow for signal substantiation. It can be used to investigate 
biological explanations for adverse drug reactions. In this regard, the use of 
webservices allows the development of a variety of workflows for similar 
applications. In the near future we are planning to develop additional workflows 
and to submit our work regarding the automatic signal substantiation to a peer-
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reviewed journal for publication. In addition, the workflow is currently used within 
the EU-ADR project for the analysis of signals.  

In summary, we believe that our integrated gene-disease association database is 
of immense value for other biomedical researchers. In several example applications 
we have validated not only the usefulness of the database per se but the use of 
network analysis tools to uncover disease-related modules and to study disease 
mechanisms in detail. Hence, next to providing programmatic access to the database 
by means of a webservice, we developed DisGeNET, a plugin for Cytoscape (see 
section 3.5). DisGeNET represents a coherent tool for easy analysis and 
interpretation of human gene-disease networks. It allows user-friendly access to our 
integrated gene-disease association database by querying the data and creating 
gene-disease association networks within Cytoscape. DisGeNET assists the user in 
the interpretation and exploration of human diseases with respect to their genetic 
origin. Diverse options for generating subnetworks, as well as an advanced search 
tool, facilitate not only the analysis of single diseases but also the study of sets of 
diseases or certain disease classes specified through their associated genes.  

 
It was explained before that in order to understand the molecular basis of 

diseases and adverse drug reactions, networks of the involved key players have to 
be investigated in detail. In addition, it is crucial to study how these networks 
response to environmental influences including drugs. In this regard, static and 
dynamic network analysis approaches have been presented in the introduction. The 
advantage of such network models is clearly that they can be used not only to 
simulate the behaviour of biological processes in the cell but also to predict the 
effect of disruption or perturbation of these processes. This is of extreme value for 
studies of disease mechanisms or adverse drug reactions. Here the perturbation 
originates from genetic variations and environmental factors, including drugs, and 
modelling and predicting its effect might have direct implications for clinical 
practice.  

It is known that many human diseases and also many adverse drug reactions are 
associated to genetic variants. For instance, it has been found that impaired drug 
metabolism can result from genetic variations in metabolizing enzymes. In most of 
the cases, however, the exact role of the genetic variants in disease development or 
the progression of the undesired side effects of the drug is not fully understood. 
Nevertheless, the advances in experimental technologies have allowed us to define 
the functional effect of such genetic variations onto the gene products. It is very 
likely that this effect on the function of the encoded protein will also affect further 
downstream processes, in which the protein is involved. Hence, in principle the 
integration of this information with the biological processes, in which the affected 
genes or proteins play a role, could yield a better understanding of the effect of the 
sequence variations on the whole process. In this context, in section 3.6, we have 
presented a general strategy for the integration of pathway and sequence variation 
data, towards their use for network visualization and analysis, as well as for the 
modelling of signalling pathways. The detailed understanding of the effect of 
sequence variations on biological processes in the human body will give important 
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information about the mechanisms underlying development or homeostasis. 
Moreover, if the sequence variation is known to be associated to a disease or 
individual drug response, the underlying mechanisms could also be uncovered. In 
this context, the integration of gene-disease association data is useful. In the gene-
disease association database described before, we combine information about 
multiple kinds of relationships between genes and diseases including genetic 
variations. Moreover, information about biological processes is available by means 
of biological pathways in the aforementioned pathway databases. We succeeded in 
integrating the information about the functional effect of the sequence variations 
with the biological pathways by means of mapping it onto the nodes in the network 
representations of the pathways. Nevertheless, in order to really assess its affect on 
the involved biological reactions, a mapping onto the edges, which represent the 
actual reactions in a biological pathway, would be required. Herein, the basic 
problem is that the functional effect description and the biological reaction often 
differ from their level of granularity. For protein-protein interactions we achieved 
the mapping of the functional effect onto the network edges. In detail, if the textual 
description of the functional effect of a sequence variation contained both protein 
mentions, the functional effect was mapped onto the edge between the two proteins. 
However, for other interaction types, such as in signalling pathways, this mapping 
was more difficult. While the textual description of the functional effect is rather 
general (i.e. “leads to decreased protein activity”), the interactions in a pathway are 
described at the biochemical level. A careful evaluation showed that the fully 
automatic mapping goes beyond tasks that any current text mining system would be 
able to handle and that hence, manual intervention for a correct mapping would be 
required. Nevertheless, we proposed some strategies, which would make use of the 
fact that biological pathways are typically represented in the BioPAX format, an 
ontology providing detailed information that in principle could be used to allow 
such mapping. In this regard, future work is planned, for which the detailed analysis 
of pathway databases and pathway representation formats as presented in section 
3.2 is of extreme value.  

However, even considering the current limitations in fully automatically 
mapping the functional effects onto the biological reactions, the integration we 
achieved clearly aids the development of dynamic network models studying the 
effect on a systems level. Moreover, for working with protein-protein interaction 
networks, the approach provides a complete mapping. Moreover, we presented an 
example, in which we assessed the functional effect of a sequence variation onto the 
dynamics of a cell-signalling pathway. Such analysis can have practical applications 
for biomedical research. If the sequence variation has a clinical phenotypic effect 
(i.e. the sequence variation is associated with colon cancer) and the functional 
phenotypic effect is known (i.e. the sequence variation produces a decrease of 
enzymatic activity), the effect of the sequence variation can be evaluated in the 
context of the affected reactions and processes. This is a very important issue as it 
provides information about the functional effect of mutations at the cellular level 
that are relevant in the clinical practice. Moreover, in principle it would be possible 
to assess the effect of different sequence variations in the same model, an approach 
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particularly relevant to consider the polygenic character of complex diseases. 
Clearly, this can have significant consequences for understanding the mechanisms 
of diseases and adverse drug reactions.  Overall, this approach addresses the 
identification of disease-related molecular networks that can then be studied with 
respect to genetic and environmental perturbations and how these perturbations 
affect the disease risk (see figure 1c). 

 

4.3. Summary and outlook 
In summary, in this PhD thesis we have developed several integrative analysis 

approaches that address typical biomedical problems regarding the understanding of 
the molecular basis of human diseases and adverse drug reactions. We have 
extensively studied data sources providing the needed information, as well as 
analysis approaches and concepts. In this regard, both, the more classic statistical 
approaches and the more recent systems biology approaches have been considered. 
We unravelled important limitations of current repositories and methods and 
developed several approaches that overcome these limitations. The developed 
methodologies and tools are all of immense value for biomedical researchers since 
they represent user-friendly applications that can be directly used to address typical 
biomedical problems. In addition, several new important biological findings were 
presented that were derived from applying the novel approaches with respect to 
studying the mechanisms underlying human diseases and adverse drug reactions. 
The practical applications of the novel methodologies developed during this PhD 
thesis confirm their practical usefulness for other biomedical researchers.  

Moreover, we have pointed out some key points to be addressed in future work 
regarding the automatic generation of network models to answer specific questions. 
Hence, we would like to proceed in this direction by investigating in more detail 
network modelling techniques and by making use of all the methodologies 
developed throughout this PhD thesis. 

It is greatly hoped that the here presented methodologies and tools will 
eventually aid to improve our understanding of the molecular basis of diseases and 
adverse drug reactions and that this will bring us a step closer to an improved 
clinical practice being personalized and preventive. 
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1. A novel multilevel statistical method for its application in drug discovery 

projects has been developed. It is based on the sequential building of linked 
multivariate statistical models, where each model introduces a different level of 
drug description. By using antipsychotic drugs and metabolic side effects as 
example, the usefulness of the method was demonstrated. 
 

2. Public pathway repositories have been critically evaluated. We assessed the 
suitability of the pathways to be used to automatically build network models 
useful to answer biomedical questions. This evaluation showed that in principle 
the available data is accurate enough to be directly used, though currently not 
fully automatically. All limitations have been critically discussed and possible 
solutions have been proposed.  
 

3. The integration of gene-disease association data from various sources including 
expert-curated online databases and text-mining derived associations resulted in 
a comprehensive gene-disease association database. It has been shown that this 
new resource closes existing knowledge gaps in the original databases 
combining mendelian, complex and environmental diseases. 

 
4. The development of a gene-disease association ontology made possible an 

accurate integration of gene-disease association data from diverse sources. The 
ontology will be useful for future projects, for which the ontology can be 
populated with additional data from literature or other sources.  

 
5. The detailed analysis of the global properties of a network representation of the 

integrated gene-disease association database supports the concept of modularity 
for mendelian, complex and environmental human diseases. The combination of 
network and pathway analysis approaches allowed the identification of core 
biological processes related to human diseases and adverse drug reactions, 
which will aid future studies on both of them. 

 
6. We have shown several applications of the newly developed gene-disease 

association database. They include the discovery of novel gene-disease 
associations, the identification of shared mechanisms of different diseases, the 
study of the relationship of environmental and genetic factors in disease 
development, and the investigation of adverse drug reactions. Moreover, future 
applications for studies on the molecular basis of comorbidities in patients and 
for drug repurposing have been proposed.  
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7. A webservice allowing programmatic access to our integrated gene-disease 
association has been developed. It has been integrated into a workflow that 
combines information about associations between genes and adverse drug 
reactions with data about drugs and their targets. The proposed workflow will 
be of great usefulness for investigating the molecular mechanisms of adverse 
drug reactions. 

 
8. The implementation of DisGeNET, a Cytoscape plugin for user-friendly access 

to our integrated gene-disease association database, results in a useful tool for 
the biomedical community, supporting the studies on the molecular basis of 
human diseases and adverse drug reactions. The detailed user guide 
incorporating several use-cases has been developed to further support the user. 

 
9. The integration of information about sequence variations and their functional 

effect with biological pathway data allows the development of network models, 
which can directly assess the effect of the variations on the dynamics of the 
biological processes. This is of particular value if the sequence variations are 
known to be associated to a disease or an adverse drug reaction, because in such 
cases the effect of the genetic variations on the biological processes can give 
mechanistic explanations for the disease or the adverse drug reactions.  
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