

UNIVERSITAT POMPEU FABRA, Barcelona, Spain Department of Experimental and Health and Life Sciences – CEXS International PhD Programme BASIC BIOMEDICAL RESEARCH

Pathway oriented steroid hormone-dependent transcriptome analysis

Establishment of a custom cDNA microarray to study hormone signaling in Breast Cancer

Belén Miñana Gómez

Doctoral thesis

Barcelona, 2007

International PhD Programme BASIC BIOMEDICAL RESEARCH

Department of Experimental and Health and Life Sciences (CEXS)

UNIVERSITAT POMPEU FABRA, Barcelona, Spain

Pathway oriented steroid hormone-dependent transcriptome analysis

Establishment of a custom cDNA microarray to study hormone signaling in Breast Cancer

Report presented by

Belén Miñana Gómez

to apply to the Doctoral Degree in Biomedical Research

from the Universitat Pompeu Fabra

Doctoral thesis done under the supervision of Dr. Lauro Sumoy Van Dyck and Dr. Miguel Beato del Rosal from the Department of Genomics and Bioinformatics and Gene Expression, respectively, of the Center for Genomic Regulation (CRG, Barcelona).

Dr. Lauro Sumoy Van Dyck Dr- Miguel Be	ato del Rosal Belén Miñana Gómez
--	----------------------------------

Thesis director

Thesis director

the author

Barcelona, December 2007

To my parents, Rafael and Julia, for their encouragement at all times, to my beloved daughter Lucía, and Álvaro for taking care of me.

Acknowledgements

Many thanks to Dr. Lauro Sumoy and Dr. Miguel Beato for the supervision and critical reviewing of my manuscript. Thank you, Miguel, for admitting me in your weekly group meetings, getting the chance to learn about hormone signaling. Thank you Lauro, for teaching me so many statistical analysis methods and useful discussions. Thank you for your trust.

Many thanks to Dr M^a Jesús Melià and Dr Cecilia Ballaré for precious cell line RNA samples. Thank you for the time spent with me to understand hormone signaling.

Many thanks to Dr Beatriz Bellosillo, Dr Ignaci Tusquets, Dr Corominas, Dr Francesc Solé from the Hospital del Mar (Barcelona) for breast tumor biopsy samples, and many thanks to Raquel Longarón for her RNA preparations of Breast biopsy samples.

I would like also to thank the scientists who encouraged me in the past to enroll in a PhD programme, especially Dr Vladimir Benes for updating me always on bibliography, and Dr Martina Muckenthaler for her catching enthusiasm creating the first microarrays in the early times.

List of contents

Abstract	
1 Introduction	1
1.1 The biology of the breast	4
1.2 Mechanisms of action of steroid hormones	4
1.3 Breast cancer pathology	6
1.4 Molecular markers in breast cancer	7
1.5 Molecular profiling in cancer	10
2 Objectives	15
3 Materials and methods	19
3.1 Clone selection	21
3.2 Array controls	22
3.3 Microarray construction	22
3.4 Cell cultures	23
3.5 Breast biopsy samples	24
3.6 RNA quality assessment	25
3.7 Linear T7 oligo-dT mediated mRNA amplification	25
3.7.1 First Strand cDNA synthesis	26
3.7.2 Second Strand cDNA synthesis	26
3.7.3 In vitro transcription with T7 RNA polymerase	26
3.7.4 aRNA direct labeling method	
3.8 Design of the microarray experiment	27
3.9 Microarray hybridization	28

3.9.1 Slide processing	28
3.9.2 Hybridization	28
3.9.3 Array post-processing	29
3.10 Image acquisition	_29
3.11 Array raw data normalization	_31
3.12 Hierarchical clustering methods	_32
3.12.1 Measures of similarity (or distance)	33
3.12.2 Cluster analysis	33
3.13 Class comparison methods	_34
3.14 Time course microarray analysis	_35
3.15 Class prediction methods	_36
3.16 Full analysis in DNA microarrays (FADA)	_37
3.17 Between groups analysis (BGA)	_38
3.18 Prediction analysis of microarrays (PAM)	_38
3.19 Functional analysis (EASE-DAVID, EA, GSEA, Ingenuity)	39
3.19.1 EASE-DAVID	39
3.19.2 Enrichment analysis (EA)	40
3.19.3 Gene set enrichment analysis (GSEA)	40
3.19.4 Ingenuity Pathways Analysis (IPA)	42
3.20 Real time qPCR assays	_42
3.20.1 Primer-design	42
3.20.2 Two-step RT-PCR	43
3.20.3 Determination of reaction efficiency	44
3.20.4 Data analysis	44

3.20.5 Determination of the normalization factor by geNORM
Results47
4.1 Reproducibility assays of the microarray platform49
4.2 Comparison with previously published cell line data50
4.3 Comparison of the microarray cDNA platform58
4.4 Application to an extended time course experiment61
4.4.1 Temporal differential gene expression due to progestin R5020 hormone treatment
4.4.2 Temporal differential gene expression due to estradiol hormone treatments
4.4.3 Distinctive profiles of temporal differential gene expression between progestin and estradiol hormone treatments74
4.4.4 Common profiles of temporal differential gene expression among progestin and estradiol hormone treatments
4.5 Hormonal induction inhibitors79
4.6 Confirmation of microarray results by Real Time qPCR86
4.7 Pathway analysis of the time course experiment93
4.8 Application to the breast tumor classification99
4.9 Classification of breast tumor samples by unsupervised hierarchical clustering101
4.10 Principal component analysis (BGA) 109
4.11 Prediction analysis of microarrays (PAM)117
4.11.1 Determination of the training set of samples
4.11.2 Selection of the most significant molecular markers
4.11.3 Analysis of PAM predicted subtypes by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis

4.11.4 Analysis of the test or validation set	145
4.12 Real Time qPCR assay for confirming results of breas samples	
5 Discussion	153
5.1 Establishment of the custom cDNA breast cancer mic platform	•
5.2 In vitro studies of the dynamic hormonal response.	155
5.3 Breast tumor gene expression signatures	157
5.4 Analysis of PAM predicted subtypes by Gene Set Enrie Analysis (GSEA) and Ingenuity Pathway Analysis.	
5.5 Prediction of the test set	161
5.6 Gene expression patterns as a tool for risk assessment	161
6 Conclusions	165
7 Future work	169
Appendices	201
Publications	_ 203
List of references	173
List of tables	189
List of figures	193

Abstract

The purpose of this doctoral thesis is to improve our understanding of the biological pathways involved in breast cancer tumor progression. With this objective, a cDNA microarray platform containing 800 genes was constructed. These genes were chosen because they are in several representatives signaling pathways, namely estrogen and progesterone receptor related pathways, cell cycle, DNA repair, chromatin remodeling, cell proliferation, apoptosis, cell adhesion, cell invasion and angiogenesis. This gene expression platform was validated using, as a model, the endogenous hormone-receptorexpressing epithelial breast cancer cell line T47D with a synthetic progestin R5020 treatment in a time course experiment. The results of this validation experiment had a good correlation with previously published microarray data. Next, in order to identify the most representative signaling pathways in response to these hormones, an analysis of an extended time series of hormonal treatment (progestin and estradiol) was performed using the above mentioned model. Recent algorithms originally designed for microarray analysis in time course experiments were applied in order to investigate the dynamic hormonal response of our model and perform a functional study of the most significant gene expression profiles. Additionally, target genes induced by the action of hormones via cytoplasmatic kinase cascades or by direct genomic pathways were further classified, with the help of specific gene inhibitors or hormone antagonists. SAM (Significance Analysis of Microarrays) was employed as a statistical method for the identification of significant differentially expressed genes between conditions of specific time points of hormone response. Finally, an analysis of the gene expression profile of a group of breast tumors was carried out and good correlation with their clinicalhistopatological data was obtained. We focused on those hormone dependent tumors within our set of breast tumor biopsy specimens in order to identify different tumor subclusters with distinctive phenotype characteristics within our population, which could later correlate with clinical outcome. The most significant genes able to discriminate between different tumor phenotypes of our training set of samples were determined applying a "Leave-one-out" crossvalidation method of statistical analysis called PAM (Prediction analysis of microarrays). The predictor was further tested on a new incoming set of samples where we determined to which subtype of tumor new samples were allocated and predicted outcome was compared to clinical data, showing how some distinct tumor phenotypes correlate with a poor prognosis. Pathway analysis of the most significant genes belonging to each phenotype was performed to elucidate the most representative biological signaling pathways through which tumor progression might elapse. Breast tumor phenotype gene expression signatures were compared to the gene expression patterns obtained from the hormone treated breast cancer cell line model and significant resemblance with hormone dependant breast tumors was found.

We hope that, in the future, our established cDNA microarray platform or, after appropriate validation, a real time expression profiling platform constructed with a selection of the most differentially expressed genes in each subtype, could be used as a technique to help improve the diagnosis and prognosis of the breast tumor samples of our sample population.

Keywords: Breast cancer, hormone dependent tumors, steroid hormones, T47D cell line, progestin, R5020, cDNA microarrays, breast tumor, basal subtype, luminal subtype, breast tumor phenotypes, gene expression profiling.

List of abbreviations

18S 28S	ribosomal protein 18S ribosomal protein 28S
aRNA	antisense RNA
BCA	breast cancer array
BCC	breast cancer cells
BGA	between groups analysis
BRCA1	breast cancer associated 1
BRCA2	breast cancer associated 2
BSA	bovine serum albumine
cat.no.	catalogue number
cDNA	complementary DNA
CA	correspondence analysis
CRG	Center for Genomic Regulation, Barcelona, Spain
Cy3	fluorochrom dye Cyanine Cy3
Cy5	fluorochrom dye Cyanine Cy5
dA	desoxyadenosine
dC	desoxycytidine
DCC	dextran-coated charcoal-treated
ddH ₂ O	double distilled water
DEPC	diethyl pyrocarbonate
dG	desoxiguanidine
DNA	deoxyribonucleic acid
dNTPs	deoxinuclotide mix
dT	deoxythymidine
DTT	dithiothreitol
dUTP	deoxy uridinetriphosphate
E2	estradiol
EA	enrichment analysis
EB	elution buffer
EDGE	extraction of differential gene expression
EDTA	Ethylenedinitrilotetraacetic acid
EMBL	European Molecular Biology Laboratory
ER	estrogen receptor
ES	enrichment score
ERBB2	V-erb-b2 erythroblastic leukemia viral oncogene homolog 2
ESTs	expressed sequence tags
FA	factor analysis
FADA	full analysis of microarrays
FBS	Fetal bovine serum
FDR	
FISH	False Discovery Rate
FWER	fluorescent in situ hybridization
	family wise error rate
gDNA	genomic DNA
GO GSEA	gene ontology
	gene set enrichment analysis
HER2	protein for the ERBB2/ <i>neu</i> gene
hr	hour

HPLC HRE	high performance liquid chromatography hormone response element
HUGO	Human Genome Organization ICI1822780, commercial name Fulvestrant
ICI IHC	immunohistochemistry
IMAGE	Integrated Molecular Analysis of Genomes and their Expression
	Consortium
IMIM	Institut Municipal d'Investigació Mèdica
IPA	Ingenuity Pathway Analysis
kb	kilobase
KEGG	Kyoto encyclopedia of genes and genomes
LOH	loss of heterozygosity
LIMMA	Bioconductor package, linear models for microarray analysis
M	molar Ion Datio
M M A plot	log ₂ Ratio
<i>M-A</i> plot milliQ	plot of <i>M</i> versus <i>A</i> high quality grade purified water
min	minute
mJ	millijoules
ml	milliliter
mМ	millimolar
MMARGE	microarray report generator from Genepix replicated experiments
MMTV	mouse mammary tumor virus
mRNA	messenger RNA
MsigDB	molecular signature database
NES NF1	normalized enrichment score nuclear factor 1
ng	nanogram
nm	nanometer
nM	nanomolar
PAM	prediction analysis of microarrays
PCA	principal component analysis
PCR	polymerase chain reaction
PD	PD98059
pmol	picomol
PMT	photomultiplier tube
PR	progesterone receptor
qPCR RefSeq	quantitative PCR
R5020	reference sequence accession number artificial progesterone, commercially as promegestone
RIN	RNA integrity number
RNA	ribonucleic acid
rpm	revolutions per minute
ŔPMI	Roswell Park Memorial Institute medium (red phenol free)
RT	reverse transcription
RT-PCR	reverse transcription polymerase chain reaction
RZPD	Deutsches Ressourcenzentrum für genomforschung GmbH
S	second
SAM	significance analysis of microarrays

SSC	salt - sodium citrate
SDS	sodium dodecyl sulfate
SH	steroid hormones
SHR	steroid hormone receptors
TIFF	tagged image file format
TIGR	The Institute for Genome Research (currently Craig Venter
TMEV TNM TP53	Institute) TIGR multiple experiment viewer tumor-lymph node-metastasis tumor protein 53
U	unit
UGRepAc	UniGene Repository Accession Number
UHRR	universal human reference RNA
UV	ultraviolet
var	variance microgram
μg μL	microliters
μM	micromolar
SRC	steroid receptor coactivator

1 Introduction

Breast Cancer is the most prevalent non-skin cancer in the world and the second leading cause of cancer related death in women. One in eight women is expected to be diagnosed with breast cancer sometime during their lives. Breast cancer accounts for approximately 30% of all cancers diagnosed and about 16% of all cancer deaths (Feuer EJ et al. 1993)

In Spain about 16,000 women are diagnosed with breast cancer yearly; from those, more than 6,000 will die from metastatic disease. The mortality index has decreased in the last 5 years, 1,4 % annually, possibly due to the early detection campaigns.

Mortality from breast cancer results from the ability of some tumors to metastasize to distant sites. Selecting patients with micrometastasis at diagnosis is crucial for clinicians in deciding who should receive toxic and expensive adjuvant chemotherapy to eradicate these metastatic cells. Axilliary node status, the best marker available, is still an imperfect indicator, since about 25% of node-negative patients still carry micrometastasis and are destined to recur even without adjuvant treatment after many years of follow-up.

The primary treatments of localized breast cancer are either 1) complete tumor excision and radiation, or 2) mastectomy, with or without radiotherapy. The addition to the primary treatments of localized breast cancer, systemic adjuvant therapies (chemo, endocrine or Trastuzumab), which are designed to control micrometastatic disease, has been shown to increase the chance of long-term survival (Colozza M *et al.* 2006). Thus, adjuvant systemic therapy represents a standard option for most patients with localized breast cancer.

Various clinical and pathological factors, such as age, menopausal status, tumor size, histological grade, lymph vascular invasion, estrogen receptor (ER) and ERBB2 receptor status, have been carefully evaluated as prognostic indicators of clinical course. Most of these variables are combined into prediction models such as the Nottingham Prognostic Index (NPI) and <u>Adjuvant!</u> <u>Online (http://www.adjuvantonline.com)</u> or included in algorithms used for the development of guidelines for treatment decision-making, such as the proposed by the St. Gallen consensus expert panel (Goldhirsh *et al* 2005, and 2006).

Nevertheless, despite providing valuable information about the risk of recurrence, such prognostic indicators have only limited ability to predict individual patient outcomes. Indeed, patients with the same clinical-pathological parameters can have markedly different clinical courses. In addition, these prognostic indicators are derived from the analysis of patient cohorts, which offer no information about treatment effects on outcome. In other words, models and guidelines based on prognostic factors provide too little information that is of use for determining an individual patient's needs for systemic adjuvant therapy.

Sometimes, over-treatment of many patients, in whom cure would have been achieved without chemotherapy or even endocrine treatment, sometimes have significant side effects, such as as cardiotoxicity, neurotoxicity and secondary cancers.(<u>http://www.cancer.org</u>; Asociación Española contra el cancer (AECC): <u>http://www.anticancer.org</u>).Therefore, better tools are needed for improved diagnosis and prognosis.

Expression levels of most genes individually have not proven powerful enough for routine clinical use to predict distant metastasis over the lifetime of patient. Recent developments in applying microarray technologies to breast tumor samples suggest that these new techniques, by providing measures of expression of multiple genes at once, may allow the transfer of molecular biological discoveries to a clinical application. The hypothesis is that genomic profiles generated using microarrays could predict a more accurately long-term outcome of individual breast cancer patients.

1.1 The biology of the breast

The breast is a glandular organ. It is a network of mammary ducts, which lead to lobes that are made up of lobules. The lobules contain cells that secrete milk and are stimulated by the ovarian hormones estrogen and progesterone, required for proliferation and morphogenesis of the normal mammary gland. Estrogen drives ductal development during puberty, whereas estrogen and progesterone together mediate the proliferative and morphological changes of ductal side-branching and alveologenesis that occur at sexual maturity and during pregnancy (Wooward *et al.* 1998, Fendric *et al.* 1998). Progesterone is a mitogen in the premenopausal and postmenopausal human breast. Progestins are compounds that demonstrate progesterone-like activity and are used in oral contraception, hormone therapy, and treatment of some reproductive disorders. The greater risk of breast cancer in postmenopausal women receiving combined estrogen plus progestin hormone replacement therapy than in those receiving estrogen alone indicates a significant role for progesterone in mammary carcinogenesis (Stadel 2002).

Estrogen and progesterone dependent proliferation and morphogenesis in the epithelium depends on the surrounding stromal cell, and it is modulated by differential expression of specific growth factor and extracellular matrix proteins (Haslam and Woodward et al. 2003).

1.2 Mechanisms of action of steroid hormones

including Steroid hormones (SH) estrogens, progestins, androgens. glucocorticoids and mineralcorticoids) regulate many physiological processes in target cells which contain the corresponding steroid hormone receptors (SHR). SHR are intracellular transcription factors that can be activated in many ways, owing to the fact that they are able to bind high-affinity ligands. SHR-ligand complexes can translocate to the nucleus, bind to hormone response elements (HRE) in promoters present in chromatin DNA, activating or repressing transcription of target genes. SHR can also regulate the activity of many genes through protein-protein interactions with other sequence-specific transcription factors bound to their target sequences. Sometimes transactivation by SHR

often requires a synergistic interaction with other sequence-specific transcription factors (Beato *et al.* 1995) and finally SH response can also be cytoplasmatic through cross-talk with other signal transduction pathways activating protein kinase cascades to nuclear transcription factors which activate various target genes (Beato and Klug 2000).

Progestins act via progesterone receptors (PR), which belong to the nuclear steroid receptor ligand-activated transcription factor superfamily. There are two receptor isoforms PR-A and PR-B, transcribed by the same gene, under the regulation of two distinct promoters. PR-A contains a DNA binding domain, a ligand binding domain, and two transcription activation motifs: the C-terminal, ligand dependent AF-2 and the N-terminal, more constitutively active AF-1. The more transcriptionally potent B isoform of PR (PR-B) contains an additional N-terminal activating function AF-3. As a result, PR-A and PR-B have differing transcriptional activities (Vegeto *et al.* 1993, Tung *et al.* 1993, McDonell *et al.* 1994).

SH can act through several mechanisms (**Figure 1**). In the classical action of SHR, binding of progesterone to PR, causes receptor homodimerization, nuclear translocation, binding to HRE in promoters of target genes activating transcription (Piña *et al.* 1990). Ligand-occupied PR binds directly to DNA at progesterone response elements (Beato *et al.* 1989). Also, liganded PR can activate transcription of genes whose promoters lack HREs by acting as a bridge between transcription factors and coactivators recruited at promoters containing AP-1 and SP1 sites (Owen *et al.* 1998, Bamberger *et al.* 1996, Wardell *et al.* 2002).

In addition to direct genomic effects, progestins can activate a cytoplasmic membrane-associated PR-B isoform, via its additional N-terminal motif, and crosstalk with membrane receptor ER, activating the cytoplasmatic MAP kinase cascade. Estrogens can activate the Src/p21ras/Erk and the PI3K/Akt pathways via direct interaction of the estrogen receptor ER with c-Src and the regulatory subunit of PI3K, respectively (Castoria *et al.* 2001, Migliaccio *et al.* 1996). This results in the activation of ERK1/2, which is imported into the nucleus and phosphorylates a variety of substrates, including transcription factors such as FOS (c-fos), MYC (c-myc), JUN (c-jun), or indirectly activating transcription of different target genes such as CCND1 (Cyclin D1)/CDK4 promoting cell cycle progression (Miglaccio *et al.* 1998, Cicatello *et al.* 2004, Castoria *et al.* 1999).

SH can act by non-genomic mechanisms involving crosstalk with growth factor receptors and other cytoplasmatic signaling pathways (Lange *et al.* 1991, Lösel and Wehling 2003). PR-dependent transcriptional specificity depends on the PR isoforms and coregulators available in a target cell (Vegeto *et al.* 1993, Tung *et al.* 1993, McDonell and Goldman 1994, Richer *et al.* 2002). A functional difference between PR-A and PR-B is that PR-A can act as a dominant repressor of both PR-B and ER in a promoter- and cell type-specific manner.

Progestins can also crosstalk to kinase cascades through a direct interaction of PR with c-Src (Ballaré *et al.* 2003), which is activated in the absence of

estrogens and triggers activation of the MAP kinase cascades (Miglaccio *et al.* 1998). The ultimate targets of the activated kinase cascades are not known but likely include transcription factors and co-regulators (Bjornstrom ans Sjoberg 2005). There is also a direct connection between rapid kinase activation and gene induction by steroid hormones. The activation of Erk and Msk1 results in the recruitment of phosphorylated PR to the MMTV promoter leading to phosphoacetylation of histone H3, thus the non-genomic and genomic pathways converge on chromatin to enable gene regulation (Vincent *et al.* 2006).

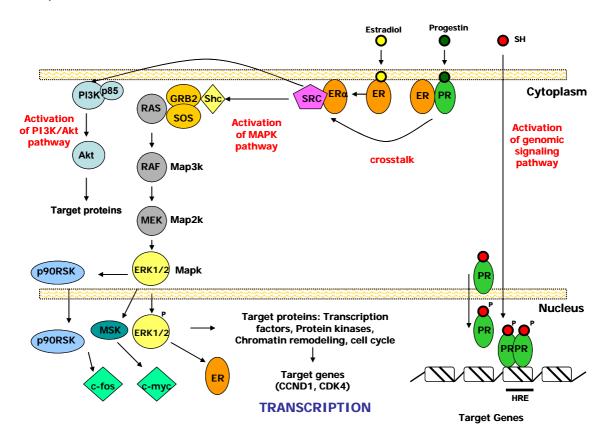


Figure 1: Genomic and ligand-mediated signaling effects of steroid hormones.

1.3 Breast cancer pathology

The most common histological types of invasive breast cancer are infiltrating ductal carcinoma (70-80%), which is caused by an abnormal proliferation in the epithelium of the ducts, and infiltrating lobular carcinoma (10%), which begins in the lobules of the mammary glands. Most cancer types can be classified by clinical stage and pathological subtype. Clinical staging is according to the TNM criteria used as indicators of breast cancer recurrence and overall survival. In the case of breast cancer, the most significant risk factors are large tumor size (T), lymph node positive status (N) and presence of distant metastases (M). These morphological classifications have only a minor prognostic significance compared to tumor grade (determined by the mitotic count or state of cell proliferation) which can be more valuable.

In most cases, death results from metastasis of breast cancer cells (BCC) which migrate to other vital organs such as bone and lungs. Elucidating the mechanisms that make BCC able to migrate and metastasize, remains a major research challenge. These cells are genetically unstable; the classical hypothesis is that they sequentially acquire genetic and phenotypic alterations in a single cell followed by clone selection and expansion, acquiring cell aggressiveness with alterations in properties such as cell proliferation, cell adhesion, angiogenic ability and loss of estrogen receptor (ER).

1.4 Molecular markers in breast cancer

The pathogenesis of this disease is thought to involve multiple genetic and epigenetic events. The molecular markers routinely used in breast cancer diagnosis, are ER, PR, TP53 (p53) and ERBB2 (also know as the Her-2/neu oncogene). These markers are commonly scored by immunohistochemistry (determination of the presence of the protein) in the form of a percentage (percentage of positive cells in a visual field). These molecular markers have formed the basis of the three molecular classes of breast cancer recognized in medicine: 1) hormone receptor positive tumors, 2) ERBB2 positive tumors, and 3) tumors negative for both markers. These markers have helped significantly in the diagnosis and treatment of breast cancer during the past three dacades.

Predictive markers can be defined as factors that indicate sensitivity or resistance to a specific treatment. These are often confused with prognostic markers. Both types of markers are used to provide information on the likely future behavior of a tumor, but whereas predictive markers are used to prospectively select responsiveness or avoid resistance to a specific treatment, prognostic factors provide information on outcome independently of systemic adjuvant therapy. Some markers can have both predictive and prognostic utility, such as ER, that not only predicts response to endocrine therapy but also correlates with good prognosis, at least in the short term.

The presence of Estrogen receptor (ER) or Progesterone receptor (PR) is a predictive marker that tumors are likely to respond to endocrine therapy, and predicts response to anti-estrogens (e.g., Tamoxifen), aromatase inhibitors (e.g., Anastrozole and letrozole), and luteinizing hormone-releasing hormone agonists (e.g., goserelin). About 70% of ER/PR-positive tumors will respond to Tamoxifen, whereas only 34% of ER-positive/PR-negative, and 45% of cases in ER-negative/PR-positive (Clarke *et al.* 2001).

However, the measurement of ER and PR alone is more complex, due to the impact of the two isoforms of ER (ER α and ER β) and PR (PR-A and PR-B), as well as several variant and mutant forms, and the "cross-talk" with growth factor and other cell-signaling pathways. Therefore, analysis of additional tumor biomarkers is needed to better classify the various phenotypes of breast tumors.

Bardou et al. (2003) showed that the combined measurement of ER and PR is superior to ER alone in predicting benefit from adjuvant hormone therapy. They showed that it can be especially useful identifying ER+ PR- tumors which have worse prognosis than ER+ PR+ tumors. ER+ PR- tumors are less responsive to hormonal treatment (Anti-estrogens), show early Tamoxifen resistance (Arpino et al. 2005), and may benefit from treatment with Aromatase Inhibitors (Anastrozole), which suppress tumor and plasma estrogen levels by blocking testosterone conversion to estrogen, avoiding unnecessary costly and toxic antiestrogen treatment. (Baum et al. 2002, Smith et al. 2003, Bardou et al. 2003, Dowsett et al. 2003, Jordan et al. 2004, Schiff et al. 2004, Ross et al. 1998, Fugua et al. 2004, Tovey et al. 2005, Ellis et al. 2005, Osborne et al. 2005). The contribution of PR to ER may also depend on the relative amounts of the two forms of PR present. Hopp et al. (2004) reported that patients with high PR-A:PR-B ratios in their breast cancer responded poorly to adjuvant therapy. Genes that are known to confer susceptibility to developing breast cancer also affect expression of PR: BRCA1 or BRCA2 mutation results in PR-A predominance. Therefore, changes in progesterone signaling may be involved in the increased risk of cancer observed in women with BRCA1 or BRCA2 mutations (for a review on the clinical significance in breast cancer of estrogen and progesterone receptor isoforms see Fugua et al. 2005).

The HER-2 protein, also known as c-erbB-2 or neu is a member of subclass 1 of the superfamily of receptor tyrosine kinases. Other members include epidermal growth factor receptor (HER-1), HER-3, and HER-4. All these proteins possess an extracellular ligand-binding domain, a membrane spanning region and a cytoplasmatic domain with tyrosine kinase activity (Olaviove et al. 2000). ERBB2 can act as receptor for EGF (epidermal growth factor). It can heterodimer with other HER family members. also form а After heterodimerization, HER-2 complexes initiate intracellular signaling via the mitogen-activated protein kinase, phosphatidyl-inositol 3'-kinase, and phospholipase C pathways.

In breast cell lines and model tumor systems, overexpression of the HER-2 gene has been associated with increased mitogenesis, cell motility, invasiveness, and metastasis. ERBB2 has been found amplified and overexpressed in 20-30% in primary invasive tumors of all human breast cancers. With up to 100 copies of the gene that can lead to a larger amount of receptors per cell. Either gene amplification or increased production of HER-2 is generally associated with adverse prognosis, particularly in node-positive breast cancer patients (Winston *et al.* 2004).

The presence of ERBB2 is also a predictive marker of response to trastuzumab (Herceptin[®], Genentech Inc.), a monoclonal antibody with specificity for the extracellular domain of the receptor (Slamon *et al.* 2001). Therapy with this antibody has been officially accepted in women with metastasis, with ERBB2-positive tumors, either with overexpression of HER-2 protein scored by immunohistochemistry or with fluorescence *in situ* hybridization (FISH) for gene amplification. However, the initial response of inducing tumor regression is only of about 40% when this agent is used (Albanell and Baselga 2001). Also,

cancers overexpressing HER-2 are likely to benefit from CMF (cyclophosphamide, methotrexate, and 5-fluorouracyl) or anthracycline-based adjuvant therapy.

Other cases of breast cancer can be due to inherited germline mutations in the susceptibility genes BRCA1 or BRCA2, which account for ca. 75% of autosomal dominant breast and ovarian familial cancer. There are other susceptibility genes such as PTEN, TP53, and MYC (Liao and Dickson 2000) that also act as tumor suppressors and are found to be associated with breast cancer.

However, familial breast cancer is rare, accounting for only 5% of all cases (Gayther *et al.* 1998). BRCA1/2 mutations result in a premature protein truncation; when the presence of a mutant allele is accompanied by somatic loss of the wild-type allele (loss of heterozygosity, LOH) this results in complete loss of gene function (Collins *et al.* 1997, Venkitaraman 2002). In very few cases, allele inactivation by promoter hypermethylation (gene silencing) occurs at the BRCA1 locus in somatic breast cancer, but this does not happen at the BRCA2 locus (Dobrovic and Simpfendorfer 1997). The virtual absence of BRCA1 and BRCA2 mutations in sporadic breast cancer is still unexplained.

The most commonly mutated gene in human cancer is the p53 tumor suppressor gene located on chromosome 17p. It is found mutated in a 35% of sporadic breast cancers, and 66% of BRCA1-associated breast cancers, although the mutation spectrum is distinct from that of triple-negative sporadic tumors (Crook *et al.* 1998). Most p53 mutations are missense and occur in the DNA binding domain. The consequence of these mutations is loss of the ability of p53 to bind DNA in a sequence-specific manner. The p53 protein controls the expression of multiple genes that are divided in four categories: cell cycle inhibition, induction to apoptosis, control of genome stability, and inhibition of angiogenesis (Velculescu and El-Deiry 1996).

Also, the MYC (c-myc) gene is amplified in 15-20% of human breast cancers (Bieche *et al.* 1999), however this amplification does not appear to be frequent in sporadic breast cancers (23%). But it has been reported to occur in 53% of BRCA1-mutation-related breast cancer (Grushko *et al.* 2004).

Clinical staging and routine pathology methods for identification of individuals at risk of developing metastases are still relatively basic. Current diagnostic methods to determine who should receive adjuvant chemotherapy often result in "over-treatment" of many patients, who would otherwise have survived with milder interventions, hormone alone or no treatment. whatsoever Other tools are needed to better define which patients have a poor prognosis and would benefit the most from chemotherapy and which, even though being ER-positive, would show tamoxifen resistance (Michalides *et al.* 2004, Ma *et al.* 2004), or how they would react to different treatments.

1.5 Molecular profiling in cancer

Unlike standard methodologies that rely on a few pathological and immunohistochemical markers, molecular expression profiling using microarray technology allows to define tumors by the expression pattern of thousands of genes simultaneously (Macgregor and Squire 2002, Winegarden 2003). The use of microarrays for providing diagnosis and predicting patient outcome has two major advantages: (1) microarrays permit the screening of multiple genes without a previous knowledge of which genes might be predictive, and (2) with microarrays, groups of genes rather than single genes may be a more reliable indicator of clinical response. Therefore, tumors could be better classified based on a combination of genes whose expression level can discriminate efficiently between clinically distinct subtypes of breast tumors which would require different treatment strategies.

Genome-wide expression profiling using DNA microarrays (Schena *et al.* 1995, Schena *et al.* 1996) has been widely applied to the characterization of different cancer diseases whose genetic heterogeneity is not readily resolved by standard clinical diagnostics. Initial studies demonstrated that distinct pathological features could be separated by expression microarrays. Genomic classifications from microarrays have now been developed for many diseases (Golub *et al.* 1999). At the same time gene expression profiling was used to identify systematic phenotypic variation between human cancer cell lines used to screen for anti-cancer drugs (Ross *et al.* 2000).

Early studies on the use of microarrays for predicting anticancer drug response focused on cell line (Scherf *et al.* 2000, Staunton *et al.* 2001). These studies showed that the gene expression profile of untreated cells could be used for chemosensitivity testing. However, only a few studies have been published predicting clinical response or resistance to anticancer agents. Chang *et al.* (2003) found 92 genes were differentially expressed in tumors from patients that were sensitive from those resistant to neoadjuvant (given before surgery) docetaxol therapy. Ayers *et al.* (2004) also used microarrays to identify genes predictive of response to neoadjuvant therapy in patients with breast cancer.

Technical aspects of microarray applications for genomic classification approaches have been reviewed extensively (Schulze and Downward, 2001). Subclassification of tumors by gene expression microarray analysis can be performed in two ways. Microarray data from a selection of clinical samples of tumors can be questioned for groups of samples or "clusters" that are significantly related in terms of their expression profile. Samples that share expression profile features are expected to share phenotypic features, such as, for example, the clinically relevant estrogen receptor (ER) status. This approach is referred to as unsupervised clustering analysis (Quackenbush 2001). In contrast, supervised analysis begins with the designation of the samples into a "labeled" phenotypic subcategory. A search is made to define a list of genes that are distinct in their expression between the two "labeled" groups, belonging to the "training" set, that can subsequently be used to distinguish between them. The discriminatory accuracy of the list of genes defined in this way can be tested for its ability to separate the samples into the defined groups on an independent set of samples (called "validation set").

Using unsupervised analysis of microarray data by hierarchical clustering, it is possible to differentiate "signatures" in breast cancer as a dominant pattern of gene expression that represent the origin and function of the predominant cell type, be it epithelial cells, infiltrating lymphocytes, adipose cells or surrounding stromal cells. Perou *et al.* (1999 and 2000) defined the "intrinsic list": a set of 427 genes that varied significantly in tumors of different individuals but not within tumor pairs of the same individual. These genes were chosen to show that each tumor was unique and identifiable by a molecular "portrait".

These signatures could be grouped into categories such as cell proliferation, apoptosis, cell adhesion, cell cycle, DNA repair or hormonal receptor status. They defined two major groups and 5 classes: The first group is the ER-positive family which was also named "luminal" class, with a molecular signature with resemblance to the luminal cells of the breast duct (Taylor-Papadimitriou *et al.* 1989) showing high expression of luminal epithelial endocrine specific genes, such as estrogen receptor (ER), X-box binding protein 1 (XBP1), trefoil factor 3 (TFF3), hepatocyte nuclear factor 3a (HNF3a), and estrogen-regulated LIV-1. The second major group is the ER-negative family, in turn composed by at least three classes: (1) (ER- PR-), (2) an ERBB2 (HER-2) positive group with amplification of this gene, and (3) a group of tumors with a signature of genes expressed in "basal"-contractile myoepithelial cells, including cytokeratins 5 (KRT5) and 17 (KRT17), c-kit (KIT), c-myc (MYC), a modulator of wnt signaling (SFRP1) and fatty acid binding protein 7 (FABP7).

West et al. (2001) made another classification by a supervised analysis of their microarray data depending on the ER status, and identified 100 genes that could discriminate between an ER+ and ER- tumor, and could classify tumors that were ambiguous in their clinical diagnostic assavs bv immunohistochemistry (IHC). This revealed the risk of relying only on a single prognostic marker for classification, bringing in a larger dataset that may more accurately predict the diagnosis and clinical outcome. Several other groups demonstrated that supervised data analysis can be used to derive a set of genes that can distinguish ER-positive from ER-negative tumors (Gruvberger et al. 2001), and how these molecular subtypes are entirely different disease entities, possibly resembling the precursor cell types.

Sorlie *et al.* (2001) and Sotiriou *et al.* (2003) expanded the classifications of the "luminal-ER-positive" to three other subtypes, one with a favorable prognosis (Luminal A), and two with less favorable prognosis (Luminal B y C). Sotiriou *et al.* (2003) found two subgroups in the "basal" type, one with genes involved in cell cycle and growth, such as PCNA, BUB1, and CDC2, and another one showing higher expression of the transcription factors c-fos, c-jun and fos B. Basal tumors have also been associated with BRCA1 inherited mutations, although it is not a necessary condition to develop this tumor type (Sorlie *et al.* 2003). By using a method called SAM (Significance Analysis of Microarrays),

identified 264 genes, involved in DNA replication, cell division, and genomic stability. They overlapped in 81 with the previous description of luminal, basal and proliferation of the "intrinsic set". By the use of gene expression microarray profiling, the molecularly distinct subtypes of breast tumors were associated with differences in clinical outcome (Sotiriou *et al.* 2003, Sorlie *et al.* 2003) demonstrating that clinical subtypes derived from unsupervised hierarchical clustering were indeed of clinical significance.

The studies from Van't Veer *et al.* (2002) and Van de Vijver *et al.* (2002) were the first ones to use gene expression profiling to predict survival in a multivariate analysis. They used a "leave-one-out" method to get a minimal discriminatory set of 70 genes, whose expression pattern identified a group of patients with lymph node negative sporadic tumors whom had not developed metastasis despite of systemic treatment, from the ones whom developed metastasis. They determined a signature that could identify BRCA1 carriers. In a "poor prognosis" signature they found overexpression of genes involved in cell cycle regulation, cell invasion, metastasis, and angiogenesis.

According to these microarray studies, only a few distinct breast tumor classes seem to exist. This suggests that phenotype transition from one class to another is very unlike to occur in the same tumor during disease progression. Tumor phenotypes seem to be defined very early in development of the lesions. Besides, no "mixed classes" have been observed (Ma *et al.* 2003). This could mean that breast tumors do not really progress, as they could acquire very early the ability to invade and metastasize (Weigelt *et al.* 2003).

Other studies followed the approach to find genes correlating with disease outcome (Huang *et al.* 2003). Nevins *et al.* 2003 introduced the term "metagenes" as a multiple gene expression signature or weighted average measure of expression of defined groups of genes, capable of resolving the biological heterogeneity, together with traditional clinical factors, and achieving a more accurate prediction of outcome for individual patients. Some other studies focused on the clinical response to treatment (Michalides *et al.* 2004, Ma *et al.* 2004). Van Laere *et al.* (2005) employed microarray analysis to distinguish inflammatory breast cancer disease (IBC) from non-IBC with a set of 50 discriminant genes.

More recent studies have focused on a "wound-response signature" in a variety of epithelial tumors, and have revealed links between wound healing and cancer progression, based on the hypothesis that the molecular program of normal wound healing might play an important role in cancer metastasis. Chang *et al.* (2004) previously identified consistent features in the transcriptional response of normal fibroblasts to serum, which they called "core serum response" (CSR). The CSR genes were chosen to minimize overlap with cell cycle genes, and appeared to represent important processes in wound healing such as matrix remodeling, cell motility, and angiogenesis, processes that contribute to cancer invasion and metastasis. Subsequently, they validated the prognostic value of this gene signature and independently predicted the outcome in a large independent dataset (Chang *et al.* 2005). Also, West *et al.*

(2005) used cDNA microarrays and SAM, for differential expression statistical analysis, to determine the stromal signature in breast carcinoma in order to distinguish between two types of tumors with fibroblastic features: solitary fibrous tumor (SFT) and desmoid-type fibromatosis (DTF). They found significant differences in the patterns of expression of extracellular matrix genes and growth factors, besides that DFT group had a more favorable disease outcome.

Other studies had focused on genomic chromosomal aberrancies and changes in DNA copy number (Pollack *et al.* 1999, Pollack *et al.* 2002, Monni *et al.* 2001, Hyman *et al.* 2002). The ERRB2 tumors are seen by fluorescent *in situ* hybridization (FISH) to have an amplification of the chromosomal region that include ERBB2, a tyrosine kinase that acts as an epidermal growth factor (EGF) receptor, but which may also include other genes such as GRB7, GARP, EMSY (Hugues-Davis *et al.* 2003). There are also studies where amplifications have been seen in different chromosomal regions which may contain other familial susceptibility genes (Hedenfalk *et al.* 2001 and 2003, Albertson, 2003, Selaru *et al.* 2004).

Usary et al. (2003) investigated the different mutation variants of GATA3 in human breast ER α positive tumors, and corroborated the studies of Sorlie *et al.* (2001 and 2003) of the Luminal A subtype, which is the subtype associated with the most favorable survival outcome, where there is the highest expression of ER α and GATA3 (Hoch *et al.* 1999).

Recent scientific and technological developments from gene-array technologies enable breast cancers to be classified into prognostic categories depending on the expression of certain genes and gene panels. In February 2007, MammaPrint[®] (Agendia) became the first multi-gene panel test to be approved by the US Food and Drug Administration (FDA) for predicting breast cancer relapse. MammaPrint was the first customized 60-mer oligo microarray suitable for a high-throughput processing, with 1900 features or spots, containing the 70-prognosis signature from Van't Veer *et al.* (2002), where those genes were spotted in triplicate. This test is suitable for young breast cancer patients (age < 55 years) who are lymph none negative. In Glas *et al.* (2006) study, they hybridized the 162 samples from the previous study from Van't Veer, using as the common reference a breast cancer reference pool, obtaining only 7 discordant cases between MammaPrint[®] risk assessment and the published data.

Another gene panel, Oncotype DX[®] (<u>http://www.genomichealth.com/oncotype/about/hcp.aspx</u>), based on Real Time qPCR has been commercially available for the same use since 2004, approved by other regulatory pathway for clinical trials. The facts that both gene panels use different technologies, have a one single gene in common, and were cleared for public use in public by different regulatory agencies is indicative of the disease heterogeneity and challenges that this field must overcome. Onco*type* DX[®] is a diagnostic test that quantifies the likelihood of disease recurrence in women with early stage breast cancer and assesses the likely benefit from chemotherapy. Onco*type* DX[®]

analyzes a specific set of genes within a tumor to determine a Recurrence Score[®]. The Recurrence Score is a number between 0 and 100 that corresponds to a specific likelihood of breast cancer recurrence within 10 years of the initial diagnosis.

A comparison of breast cancer microarray data publications is at **Appendix A1**.

2 Objectives

The main objectives of this work are:

- 1. To establish a functional Breast Cancer Array cDNA microarray platform in order to investigate the expression profiles of breast cancer cell lines and breast tumor biopsies.
- 2. To determine new molecular markers that can be used both for diagnosis and prognosis.
- 3. To analyze the signaling pathways involved in tumor progression in hormonal dependent tumors.
- 4. To correlate hormonal response of hormone receptor-expressing breast cancer cell lines and hormone dependent breast tumors.
- 5. The application of different statistical algorithms and current applications for the analysis of microarray gene expression data.

3 Materials and methods

3.1 Clone selection

800 cDNA clones corresponding to genes possibly involved in breast cancer were selected to constitute our cDNA platform. In this platform there are different interlinked biological pathways represented: cell cycle, DNA repair, DNA damage, apoptosis, DNA remodeling, PR related pathways (West *et al. 2001*), endometrial and ovarian cancer related genes, and prognosis genes (Sotiriou *et al. 2002*; Van't Veer *et al. 2002*; Sorlie *et al. 2003*).

Clones were selected from the German Human Genome Resource Center (http://www.rzpd.de/) from different endometrial, ovary or breast cDNA libraries, and a clone information database was constructed using several web resources such as SOURCE (http://source.stanford.edu/cgi-bin/source/ sourceSearch, Diehn et al. 2003). The selection criterion was to choose the most 3' end clone, which contained a polyadenylation signal with a maximum length of 2 kb. We visualized these features and confirmed the position of the clone within its GeneNest graphical (http:// cluster using the database genenest.molgen.mpg.de). All cDNA clones were confirmed by sequencing from the 5'-end, and their position within the gene was determined by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). About 10-12% of clones gave a different match after sequencing. New clones for those genes were ordered from the German Human Genome Resource Center, and were subsequently incorporated to the current version of the cDNA microarray platform. See **Appendix A2**: Breast Cancer Array complete clone list and annotations.

An overview of the steps involved in the cDNA clone selection and sequence confirmation, with all the web resources used, is detailed in **Figure 2**.

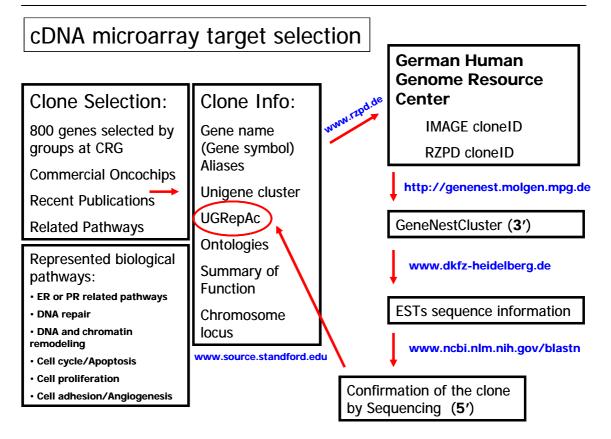


Figure 2: Overview of the steps involved in the cDNA clone selection and sequence confirmation, with all the web resources used.

3.2 Array controls

We incorporated sets of negative and positive microarray controls from EMBL (*Arabidopsis* and bacterial genes, Preiss 2001, Richter *et al.* 2002), Utrecht Microarray Controls (*B. subtilus*, Van der Peppel *et al.* 2003), and the *Amersham Universal ScoreCard* ®, in order to normalize gene expression in cases of global changes, and set a noise level cutoff.

3.3 Microarray construction

DNA plasmid preparations were generated using the Plasmid miniprep 96 kit (Millipore®; cat.no.LSKP09604). Inserts were PCR amplified in a 100 μ L total volume reaction using a homemade thermostable *Thermus aquaticus* (Taq) DNA polymerase clone (Desai and Pfaffle, 1995), with vector specific primers. PCR products were purified with the PCR 96 Cleanup kit (Millipore®; cat.no.LSKC09604), eluted in 100 μ L milliQ water, and 2 μ L of the PCR product were visualized on 96-well format agarose gels using electrophoresis chambers (AbGene®). PCR products were normalized to 100 ng/ μ L and allocated on 384-well plates. PCR products were printed in 1x Corning Pronto! ® spotting solution on CORNING UltraGAPS® II amino-modified glass slides, using a Robotic arrayer ChipWriter (Bio-Rad) and a pin-head of 16 SMP3 printing needles (Telechem®). Each spot contains millions of copies of cDNA fragments

from each gene. cDNA spots were immobilized by UV crosslinking at 2500 mJ/s with an UV oven and stored under vacuum in desiccators until they were used for hybridization.

Each gene product was printed in quadruplicates on each microarray, two of them side-by-side on the same row, and the other two in different subgrids, by inverting the spotting plates, on the top or bottom half of the array. Therefore we are using different spotting needles to control intra-slide replicate variation and the specificity of hybridization (see **Appendix A3** for microarray printing design). Replicated spots had a mirrored orientation, which made it easier to control the specificity of hybridization at once just by looking at the raw scanner images. Indeed multiple prints of each clone can be used to control within-array variability and performance owing to spatial effects due to the labeling and hybridization procedure and local artifacts (Tran *et al.* 2002) because they are printed by different spotting pins. Replicate spots in the top and bottom halves of the array are likely to be less well correlated than the side-by-side replicates.

The cDNA platform with the name "CRG Human Breast Cancer Array v4.0-0.8K" can be downloaded from GEO (Gene Expression Omnibus, <u>http:</u> //www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL5953) with the accession number GPL5953. GEO is a gene expression/molecular abundance repository supporting MIAME compliant data submissions, and a curated online resource for gene expression data browsing, query and retrieval (Barrett *et al.* 2007).

3.4 Cell cultures

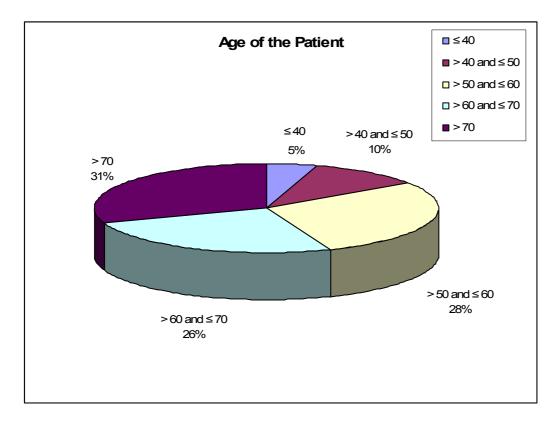
The cell line used in this study was originated from the breast cancer epithelial cell line T47D-MTVL, which endogenously expresses high levels of progesterone and estrogen receptors, with a modification in its genome consisting in of stably integrated copy of the luciferase reporter gene driven by the MMTV promoter (Truss *et al.* 1995). The MMTV promoter contains five HRE (hormone response element) responsive to progestins, androgens and glucocorticoids, but not estrogens (Payvar *et al.* 1983) and an adjacent site for the ubiquitous transcription nuclear factor NF1 (Beato *et al.* 1995).

The progestin-responsive T47D breast cancer cell line has been used for examining progestin-dependent gene expression in vitro (Richer *et al.* 2002, Wan and Nordeen 2002, Bray *et al.* 2003, Bray *et al.* 2005).

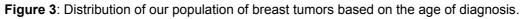
Cell cultures were grown to confluence in RPMI 1640 medium (Invitrogen®) supplemented with hormone-free (charcoal-treated) 10% fetal bovine serum FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 μ g/ml streptomycin. Cells were plated in RPMI medium in the absence of phenol red to prevent known estrogenic effects, supplemented with dextran-coated charcoal-treated FBS (DCC/FBS), and 48 hr later medium was replaced by fresh medium without serum. After 24 hr in serum-free conditions, cells were incubated with R5020 (10 nM) or vehicle (ethanol) during different times at 37°C. When indicated ICI182780 (10 μ M, commercial name Fulvestrant) or PD98059 (50 μ M) were

also added after 6 hr of hormone induction (R5020, Estradiol). Cells were collected after 30 min, and after 1, 2, 6, 12, 24 and 48 hr.

3.5 Breast biopsy samples


Frozen tumor samples come from surgical biopsies provided by the *Hospital del Mar* (Barcelona). Samples were collected from 2002 on, and all relevant clinicalhistopatological data were determined: TNM criteria; grading; ER, PR, HER2 and TP53 status; age of the patient at the time of diagnosis; whether there existed treatment before surgery and what type of treatment. In 95% of cases, treatment was given after surgery, while only 3% of cases received neoadjuvant chemotherapy before surgery, leaving a very small number of cases that can be used to study the correlation with tumor response to treatment. All follow-up clinical history is currently being collected since the possibility of recurrence is still unknown in many cases. The clinical and molecular features of these tumors are listed in **Appendix A4**.

Total RNA was prepared by using Ultraspec® RNA isolation system (Biotecx laboratories Inc.) following manufacturer's instructions. We took 111 of these samples for further analysis, since some of them were handicapped in either quantity or quality of the total RNA material. Universal human reference RNA (UHRR) was obtained from Stratagene® (cat.no.740000).


The pathological diagnose is listed in table 1.

Pathological diagnose	No. of patients	%
infiltrating ductal carcinoma	65	61.9
intraductal + infiltrating ductal	15	14.3
lobulillar infiltrating	9	8.6
lobulillar in situ	2	1.9
intraductal carcinoma	2	1.9
metaplasic + ductal carcinoma	2	1.9
papilar invasive	2	1.9
lobulillar "in situ" + infiltrating lobulillar	1	1.0
lobulillar "in situ" + ductal infiltrating	1	1.0
mucinous carcinoma	1	1.0
atypical medular	1	1.0
medular infiltrating carcinoma	1	1.0
Ca Ductal with apocrine differentiation+Ca intraductal	1	1.0
tubular infiltrating	1	1.0
carcinoma celullar neuro endocrine	1	1.0

Table 1: Pathological diagnose of the patients and percentages in our population.

Distribution of the age of diagnosis of our population of breast tumors is shown at **Figure 3**:

3.6 RNA quality assessment

To assess the quality of the RNA and to evaluate the level of degradation, 1 μ l of intact Total RNA samples were analyzed using the Agilent Bioanalyzer 2100® and the RNA 6000 LabChip Kit (Agilent®) with the Eukaryote Total RNA Nano Assay®. 28S/18S ratios, degradation factor and RIN numbers were used to quantify the state of degradation. We decided to choose specimens with RIN quality factor higher than 6.5 for microarray analysis. This is so because, after visual inspection of the graphical representation on the RNA, we thought that below the threshold of 6.5, the 28S ribosomal peak was too small in comparison to the 18S, and degradation also affected the mRNA population.

3.7 Linear T7 oligo-dT mediated mRNA amplification

Modifications of the method described by Van Gelder *et al.* 1990 and Eberwine *et al.* 1992 are described in detailed next.

3.7.1 First Strand cDNA synthesis

Total RNA templates were quantified with a spectrophotometer, and 3 μ g were used for mRNA amplification. To each sample, 1 μ l (100 pmol/ μ l) of T7-oligo-dT composite primer, 5'-GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA GGG AGG CGG(T)₂₄–3'; Sigma-Genosys) was added in 12 μ l of total volume in a 0.2 ml PCR tube and RNA was denatured for 10 minutes at 70°C in a MJ Research Thermocycler, and chilled on ice. Then 4 μ l of 5X first strand buffer (Invitrogen), 2 μ l of 0.1 M DTT, 1 μ l 10 mM dNTPs (Roche) and 1 μ l of Superscript II Reverse Transcriptase (Invitrogen) were added to the primer and RNA solution and reverse transcribed in a 20 μ l reaction at 42°C during 2 hr in a thermal block (Eppendorf [®]).

3.7.2 Second Strand cDNA synthesis

After the first strand synthesis, reactions were chilled on ice, and 16.7 μ l DEPC-H₂O, 10 μ l 5X second strand synthesis buffer (Invitrogen), 1 μ l 10 mM dNTPs, 0.35 μ l *E.coli* DNA ligase (10 U/ μ l, Invitrogen), 1.3 μ l DNA polymerase (10 U/ μ l, Invitrogen), and 0.7 μ l RNaseH (2 U/ μ l, Invitrogen) were added to the first strand reaction, well mixed and incubated in a heating block placed in a cold room at 16°C during 2 hr.

Then, reactions were chilled and quickly spun to bring down condensation of the sample on the lid. This was followed by addition of 100 μ l ddH₂O, and 10 μ l 0.5 M EDTA to stop the reaction. The cDNA was purified by addition of 160 μ l of a Tris saturated Phenol:Chloroform:Isoamylalcohol solution pH 8.0, mixed by pipetting and spun at 12000 rpm for 5 minutes at room temperature. The clear aqueous phase was transferred to a clean RNase-free 1.5 ml tube. Then, 1 μ l of glycogen carrier was added, mixed, followed by 80 μ l 7.5 M NH₄OAc, mixing again, and adding 600 μ l of ice-cold absolute Ethanol. The tube was shaken and spun down for 30 min. Supernatant was removed, and the double-stranded cDNA pellet was washed with 500 μ l of 75% ice-cold ethanol. Pellets were airdried during 5 min and dissolved in 6 μ l DEPC-treated H₂O.

3.7.3 In vitro transcription with T7 RNA polymerase

RNA was *in vitro* transcribed using as a template all the double-stranded cDNA product using Megascript T7 RNA polymerase (Ambion) in a 15 μ l reaction at 37°C for 4 hr. Template DNA was digested with 0.5 μ l of DNAsel (Ambion) and aRNA purified using RNeasy mini spin columns (Qiagen), and eluted from the column with 50 μ l RNAse-free H₂O. *In vitro* amplified aRNA samples were quantified with a Nanodrop® spectrophotometer.

3.7.4 aRNA direct labeling method

This method was previously described and validated by Richer *et al.* (2002). Our modifications are the following: $3 \mu g$ of the *in vitro* amplified aRNA samples

were reverse transcribed with 4 μ l 5X first strand buffer, 2 μ l 0.1 M DTT, 0.4 μ l low dT-dNTP mix (25 mM dA, dC, dG, 10 mM dT), 1.5 μ l Superscript II (Invitrogen) and 2 μ l 25 mM Cy3-dUTP or Cy5-dUTP (Amersham). The reaction was incubated at 42°C for 2 hr, chilled on ice and quick spun to bring down condensation. To stop the reaction 1 μ l 1 M NaOH/20 mM EDTA, was added followed by 80 μ l MilliQ-H₂0 and 10 μ l 3M NaOAc pH 5. Labeled samples were purified with Quiaquick PCR purification columns (Qiagen) and eluted twice with 50 μ l EB (10 mM Tris pH 8.5). Labeling efficiency was calculated by quantification with Nanodrop, obtaining between 50-80 pmol/ μ l of Cy3 or Cy5 labeled probes. Labeled samples for the same array were combined, 1 μ l 1 μ g/ μ l Human Cot DNA (Invitrogen) was added, and the labeled mix was desiccated by Speed-Vac centrifugation.

3.8 Design of the microarray experiment

The objective of the design is to facilitate the interpretation of the data analysis results. For this aim, this design must be simple but conclusive given the purpose of the experiment, which may be to find differentially expressed genes, to search for phenotypic class or significant dynamic time dependent changes. As many replicates as possible are needed to control for all random variation in order to have accurate enough measurements. For example, the statistical variance decreases as the number n of samples increases,

$$\operatorname{var}(\overline{A}) = \frac{\sigma_A^2}{n}$$
,

where \bar{A} is the mean of the measurement, and σ is the standard deviation of \bar{A} . In the case of the experiments with breast cancer cell line samples it was feasible to have biological replicates, that is, another parallel specimen for labeling and hybridization. In the case of the experiments of breast tumor biopsy samples, where sample amount is a limiting factor, biological replicates were not possible. However, we did incorporate two biological replicates of a couple of samples and technical replicates to check correlation and hybridization specificity.

The design choice in our microarray experiments was always the same one whether the purpose was to select differentially expressed genes, to search for specific gene-expression patterns in a time-course setting, or to identify tumoral phenotypic subclasses. In every case, we used an indirect design, that is, the commercially available Universal Human Reference RNA was always used as reference sample. We found this reference very useful since it can serve as a consistent control for data set comparisons, as well as can be used in multiple experiments that need to be carried out over long periods of time. It is also the most stable, unlimited sample, where every gene is represented but no gene is

biased for overrepresentation since it is a pool of ten different tumor cell lines from different human tissues.

In this manner we would be able to correlate directly the response to progestins of a breast tumor cell line and the immortalized picture of the gene expression breast tumor biopsy. The samples under study would be always labeled with Cy5 fluorochrom and reference RNA always labeled with Cy3. Cy3- or Cy5conjugated nucleotides are bulky, which makes their incorporation using standard enzymes very inefficient. In addition, rates of incorporation can differ between dyes, potentially resulting in dye biases (Yang *et al.* 2002). If some gene were preferentially labeled by any of these fluorochrom, it would never show up as significant at the time of contrasting two hybridizations since comparison would be between same dye channels. For that reason we did not routinely perform dye-swap experiments.

In order to infer the relative gene expression difference between two samples in the indirect design, we need to subtract two hybridizations (**Figure 4**) with the handicap that the variance of the measurement is four times the associated to the direct design.

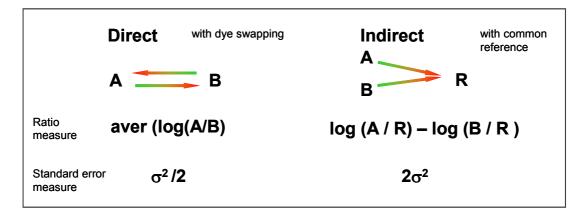


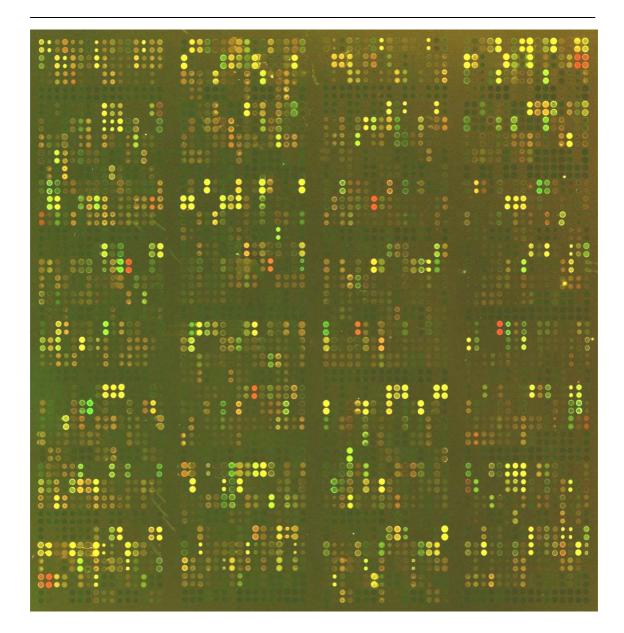
Figure 4: Standard error associated to the experimental design.

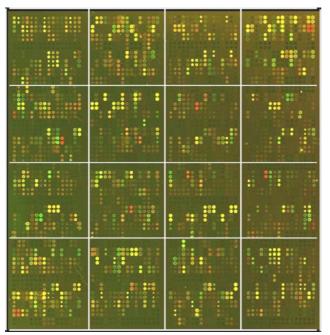
3.9 Microarray hybridization

3.9.1 Slide processing

Slides were pre-hybridized in prewarmed 5X SCC, 0.1% SDS and 0.1% BSA at 42°C for 45 min, rinsed under milliQ water and spun dry using a centrifuge for 5 min at 1500 rpm.

3.9.2 Hybridization


Labeled samples were redissolved in 42°C prewarmed 12 μ l of Hybridization buffer A (50% formamide, 6X SSC, 0.5% SDS and 5X Denhardt's) applied to a glass coverslip, covered with the spotted glass slide. Arrays were incubated in a Corning hybridization chamber for 18 hr at 42°C in a humid environment (In Slide Out oven, Boeckel).


3.9.3 Array post-processing

Arrays were washed at room temperature using an orbital shaker for 10 min with a high stringency wash buffer (0.1X SSC, 0.1% SDS), twice for 10 min with a low stringency wash buffer (0.1X SSC), rinsed for 5 min in milliQ water and spun dry for 5 min at 1500 rpm using a centrifuge.

3.10 Image acquisition

Fluorescent images were obtained using the G2565BA Microarray Scanner System (Agilent) with 100% laser power and 100% PMT settings and 16-bit TIFF images, one for each channel, were guantified using GenePix Pro 6.0 microarray analysis software (Molecular Devices, www.moleculardevices.com). This software discriminates between the relevant spots and the spot surrounding background by a segmentation method allowing for non-circular spots and recording every pixel intensity. First of all, mean foreground and background intensities were extracted from the red (Cy5) and green (Cy3) channels for every spot on the microarray. The background intensities are used to correct the foreground intensities for local variation on the array surface, resulting in corrected red and green intensities. A secondary purpose of the image analysis is to collect quality measurements for each spot that can be used to flag unreliable spots, which are those spots with abnormal background level due to spatial effects or "dye-dust" that interferes with spot measurement. The quality measures were the variation coefficient and the mean-median correlation of the foreground and surrounding background intensities of the spot. As a last quality control, images were also checked manually by flagging abnormal spots and the specificity of hybridization was checked by comparison of replicate spots side-by-side and at the opposite side of the array in a mirrored orientation (Figure 5).

Figure 5: (Up) Image of a Breast Cancer Array v4.0. Notice (in the reduced copy on the left) the 16-print tip grid and the four spot quadruplicates: two of them side-by-side on the vertical and the other two on the bottom part of the array in a mirrored orientation. Spike-in were not included in the labeling reactions. Their spot were used as negative controls.

3.11 Array raw data normalization

processed using MMARGE (see Raw data were user's quide: http://nin.crg.es/manuals/MMarge170707.pdf) an in house developed web implementation of LIMMA, a microarray statistical analysis package of Bioconductor (http://www.bioconductor.org, Dudoit et al. 2003) that is run in the R programming environment (Gentleman et al. 2004, Wettenhall et al. 2004). Gene intensities were locally background subtracted using Normexp algorithm. This method adjusts the foreground adaptively for the background intensities and results in strictly positive adjusted intensities, so negative or zero corrected intensity are avoided. This results in a smooth transformation of the background subtracted intensities such that all the corrected intensities are positive. Spots with intensities smaller than two times the local background in both dye filter channels (Cy3 or Cy5), as well as control spots, were excluded from normalization, and were referred to as "non reliable".

Expression ratios *T* of each gene *i* were calculated as

$$T_i = rac{R_i}{G_i}$$
 ,

where R and G are the red and green color intensities, respectively, commonly used to represent array data. We transformed ratios to logarithm base 2, to be able to treat upregulated and downregulated genes in the same manner and produce a symmetrical distribution of the ratio values.

Next, since $Log_2Ratios$ could have a systematic dependence on intensity which most commonly appears as a deviation from zero for low-intensity spots, an intensity dependent normalization algorithm was applied (Yang IW *et al.* 2002; Yang IV *et al.* 2002). Locally weighted linear regression (Lowess) analysis was used as a normalization method to remove those intensity-dependent effects of Log_2Ratio values. The variables M and A are defined as

$$M_i = \log_2 \frac{R_i}{G_i}$$
, $A_i = \frac{1}{2}\log_2(R_i \times G_i)$

Normalization effect can be observed on M-A plots before and after normalization, which show M, the Log₂Ratio, for each element on the array as a function of the A, the log2 geometric average intensity. Final M-A plots can be visualized at <u>http://nin.crg.es/res/MM207610732042/index.html</u>.

Print-tip Lowess normalization was applied to each print-tip group or subgrid to correct any systematic spatial variation on the array, between spotting needles or variability on slide surface, beside correcting for intensity-based trends, by adjusting the mean of the Log₂Ratio values in each subgrid to zero. This function relies on the assumption that most genes do not respond to experimental conditions, and so the average log ratio on the array should be

zero. The variance across all subgrids was adjusted using a smoothing factor for normalization. The smoothing factor applied was f=0.2 in order to homogenize the variance of the log₂Ratio within each print-tip. The appropriate smoothing factor is chosen as the variance for a particular subgrid divided by the geometric mean of the variances for all subgrids (Huber *et al.* 2002).

Lowess normalization methods combine the least square regression with a nonlinear regression. Each M-value is normalized by subtracting from it the corresponding value of the tip-group Lowess curve, constructed applying local regression for each point in the M-A plots.

Normalized $Log_2Ratios$ across all arrays were scaled so that every array has the same median intensity and same absolute standard deviation, in order to give the same weight to every gene on all arrays, and therefore changes of the expression ratio between arrays are not only due to the magnitude of M. Interarray normalization adjusts the range of Log_2Ratio data.

The non-parametric empirical Bayes *B*-statistic was also computed for replicate hybridizations at time-course experiments, since we included hybridization replicates to determine the genes with significant regulation (Lönnsted and Speed, 2001). The *B*-statistic is an estimate of the posterior log-odds for each gene being differentially expressed. Values of *B* equal to zero correspond to a 50-50 chance that the gene is differentially expressed. The B-statistic is similar to a penalized *t*-statistic

$$t = \frac{\overline{M}}{\sqrt{(a + \sigma^2)/n}}$$

where the penalty *a* is estimated from the mean \overline{M} , σ is the standard deviation, and *n* is the number of sample replicates. With this data set, we considered genes that showed a 1.4-fold gene up or down-regulation relative to control sample with a *B*-rank value above 90% significant.

In the analysis of the breast tumor samples, which only had hybridization replicates of a few samples, we did not compute any other statistical criteria, and we considered as "reliable" all the genes with expression above the described background threshold, and as "non reliable" those which signal was below background level in both dye channels.

The value of fold change or relative copy number change was calculated as $2^{\log_2 Ratio}$ = ratio, if the ratio is positive, or $2^{-1/\log_2 Ratio}$ if the ratio is negative.

3.12 Hierarchical clustering methods

Results of multiple hybridization experiments can be further analyzed to seek for similarities between gene expression profiles or sample gene expression

patterns by assembling all normalized and scaled Log₂Ratios measurement in a numerical matrix where rows correspond to genes and columns correspond to samples. In this matrix each gene or sample can be defined as a vector of Log₂Ratio value coordinates.

For all gene expression matrix analysis, we have used the open-source, freely available software package for microarray data management, visualization and (Saeed et al. 2003) obtained from TIGR analysis TM4 (http://www.tigr.org/software/microarray.shtm), TMEV: TIGR multiple experiment viewer) that uses hierarchical clustering analysis from Cluster and Treeview (Eisen et al. 1998). These packages can be also freely downloaded software (http://genomefrom Stanford programs database www5.stanford.edu/).

3.12.1 Measures of similarity (or distance)

A measure is needed in order to compare the similarity or the distance between two or more genes or samples. We can regard any of these objects (rows or columns on a matrix) as points in an n-dimensional space or as n-vectors, where n is the number of genes or the number of samples.

There are two types of distance metrics extensively used in the comparison of expression profiles: the Euclidean distance and the Pearson correlation coefficient. We would like to search for genes with an identical expression profile which may represent a co-ordinate response to a stimulus, or genes with opposite profiles which may represent activation versus repression. The Euclidean distance is obtained as the absolute distance between two points in space, in this case defined by the two expression profiles or also called expression vectors. The Euclidean distance usually finds two genes or samples similar when these have the same magnitude of expression.

Although this property may be significant in some cases, it is usually biologically more relevant to search for genes expressed at different levels but with the same overall profile. The Pearson correlation coefficient is useful to identify profiles with similar shapes. It can be also be used to detect negatively correlated genes.

3.12.2 Cluster analysis

Clustering is the most widely used tool for microarray data analysis. The goal of clustering is to group together objects (genes or samples) with similar properties. It produces groups of gene expression profiles based on a distance function. Clustering can be used to find groups of co-expressed genes (Eisen *et al.* 1998), which are often functionally related, or to obtain clusters of experimental conditions (Perou *et al.* 1999). Depending on the way the data is clustered, we can distinguish between hierarchical and non-hierarchical clustering. Hierarchical clustering allows detecting higher order relationships between clusters or profiles. While the majority of non-hierarchical classification

techniques work by allocating gene expression profiles to a predefined number of clusters, without any assumption on the inter-cluster relationships. We could chose different distance functions (based on Euclidean or correlation coefficient) which can produce alternative clustering of data. Aggregative hierarchical clustering (Sneath and Sokal, 1973) is still the preferred choice for analysis of patterns of gene expression. We have always used the average linkage algorithm, which works as follows: firstly, the closest pair of genes or samples is selected and joined by a node, secondly these are averaged, and finally a new correlation matrix is created which replaces the previous pair of genes or samples by their average. The process continues until only one single element remains.

3.13 Class comparison methods

We have used SAM (Significance Analysis of Microarrays, Tusher *et al.* 2001, <u>http://www-stat.stanford.edu/%7Etibs/SAM/index.html</u>) in order to identify differentially expressed genes associated to a variable such as treatment or time. SAM can be used to pick out statistically significant genes based on a different expression ratio between sets of experiments by assigning gene-specific t-tests. A score is assigned to each gene on the basis of its change in gene expression relative to the standard deviation of repeated measurements for that gene with the assumption of gene-specific fluctuations. This procedure allows to dynamically change the threshold value for significance through a parameter delta Δ after looking at the distribution of the *d*-statistic. This makes the data-mining process more sensitive.

The test gives an estimate of the False Discovery Rate (FDR), which is the percentage of genes likely to have been misidentified by chance as significantly differentially expressed. To estimate the FDR, nonsense genes are identified by analyzing permutations of the measurements.

We have mainly employed a two-class unpaired design to pick out genes whose mean expression level is significantly different between two groups of samples (analogous to between subjects *t*-test), where under the null hypothesis of no differential expression the question we asked was whether the mean expression level of a gene in group A significantly different from the mean expression level in group B.

$$\frac{\overline{A}_{ij} - \overline{B}_{ij}}{\operatorname{var}_{ij}}$$

where *i* and *j* are the gene and experiment indices, respectively, and var is an estimate of the variance of a "gene-specific" *t*-test. A *d*-value, analogous to the t-statistic, is computed for each gene, and is called the "observed" *d*-value (*d*-statistic)

$$d_i = rac{r_i}{\sigma_i + s_0}$$
 ,

where *r* is the ratio for *i*= 1, 2, ..., *p* is the gene index, σ is the standard deviation, and s_0 is a small positive constant that makes that the genes with small fold-change will not be selected as significant even when the standard deviation is very small. An "expected" *d*-value *d*' is computed by order statistics permutation tests. For each permutation of the data, the test calculates the number of positive and negative significant genes for a given parameter Δ . The cutoff for significance is determined by the user by tuning Δ , based on the false discovery rate.

The median number of significant genes from these permutations divided by the median number of genes called significant is the median FDR. We set Δ so that only a 1 to 5% of falsely discovered genes show up as false positives. We can select also a fold change threshold, to ensure that "called" genes change at least a pre-specified amount. We obtain also a *q*-value for each gene, which is the lowest FDR at which that gene is called significant. It is like a *p*-value but adapted to multiple-testing situations.

The selected settings for every situation were (1) the FDR threshold to 0.05, that is, a 5% of falsely discovered genes, and (2) the fold-change threshold of 1.3, that is, the relative change of the expression ratio between two unpaired classes must be at least of 1.3.

With these conditions multiple gene-lists were generated and saved for posterior comparisons with other hybridization experiments, Ingenuity[©] pathway software package analysis and GSEA functional analysis (see chapter below on methods for functional analysis).

3.14 Time course microarray analysis

The identification of genes whose expression varies when biological conditions change is a frequent goal in microarray experiments. Differential expression can be analyzed from a static or a dynamic point of view. In a static experiment, gene expression is obtained instantaneously as it happens in the analysis of a breast tumor biopsy sample. In a dynamic experiment the arrays are collected as a time series, which allows us to observe the dynamic behavior of gene expression.

Up until recently, there were no established general statistical methods for identifying differentially expressed genes in a time course study, where gene expression data is collected as a function of time. None of the available clustering methods (PCA, K-means, and Bayesian model-based) are directly applicable to identify genes that show significant changes in expression over time. These previous methods require that the statistical significance be calculated under the assumption that the clustering model estimated for each

variable is true, and fail to properly use the temporal structure present in the data, leading to loss of power or incorrect calculation of significance.

EDGE, an open-source software package, applies ideas of spline-based methods. It is able to identify statistically significant genes, whose expression varies between groups of treatment or within a single group, accounting for sources of dependence over time and the untreated group. The EDGE algorithm considers two types of sampling: longitudinal or independent. We applied longitudinal sampling since, in our case, there is a dependence of the data on the cell batch (that is, the day of the experiment). Using this technique we identified statistically significant genes, whose expression varies within a single treatment (R5020, E2) or between treatments (Storey *et al.* 2005, http://faculty. Washington edu/jstorey/edge/).

Since we had two biological replicates, we first referred treated samples T_i , at a given time t_i = 30 min, 1 hr, 2, 6, 12, 24, and 48 hr, to their associated T_0 , or untreated sample, of their corresponding biological replicate as follows:

$$\log_2 \frac{T_i}{T_0} = \log_2 \frac{T_i}{UHRR} - \log_2 \frac{T_0}{UHRR} .$$

We also decided that the time series of collected hormone treated cell line samples had a longitudinal distribution due to sampling of each biological replicate. Pre-filtered data with a threshold q-value less than 0.01 which is less than 1% FDR level was averaged and grouped into just one M value.

Following the above describe procedures, we took the significant gene list, imported the values into the TMEV (TIGR Multiple experiment viewer) microarray statistical analysis program, and finally used K-Means (a supervised hierarchical clustering method, Hartigan and Wong, 1979) with Pearson correlation coefficient as the distance metric, in order to cluster genes which follow similar trends in gene expression along time. The clustering of genes for finding co-regulated and functionally related groups had been successfully earlier carried out by DeRisi *et al.* (1997), Brazma *et al.* (1998), and Van Helden *et al.* (1998). From these clusters of genes we also generated gene-lists that can be subsequently imported into other functional analysis software (chapter 3.19: methods for functional analysis).

3.15 Class prediction methods

Conventional diagnosis of cancer has been based traditionally on the examination of the morphological appearance of stained tissue specimens under light microscopy. This method is subjective and depends on highly trained pathologists. The microarray technique could make cancer classification more objective and accurate.

Two of the most important uses for microarray data are 1) to generate gene expression profiles which can discriminate between different known cell types or conditions (like for example, to differentiate between tumor and normal tissues or different types of tumors) and 2) to identify previously unknown types or conditions (e.g. new subclasses of existing class of tumors). These two tasks have been referred to respectively as class prediction and class discovery in the work of Golub *et al.* 1999. The class prediction and discovery techniques are also known as supervised and unsupervised learning of gene expression profiles, or discrimination and class clustering, respectively. Clustering methods are appropriate if classes do not exist in advance, but if the classes are pre-existing, then discriminant analysis methods are more suitable and more efficient than clustering methods.

Initially, the FADA (Full analysis of DNA microarrays, Lozano *et al.* 2005) unsupervised clustering method was used to define new classes and assign samples to these classes, as a hierarchical clustering method. The objective was to identify and define the possible tumor classes, discriminate tumors from normal samples, find a distinct expression signature for each subcluster, find associated statistically significant GO terms, and predict the diagnosis category of a sample on the basis of its gene expression profile.

3.16 Full analysis in DNA microarrays (FADA)

FADA applies a Factor Analysis (FA, Reyment and Joreskog, 1996) a multivariate tool related to PCA, along with clustering algorithms applied to sample sets, t-test scores in gene set and data mining procedures. FA assumes that the observed gene expression levels are a result of a linear combination of an unknown number of independent underlying transcriptional programs, called factors. The contribution of each factor to the expression levels of the genes in each sample is given by the elements of the loaded data matrix. FA calculates the covariance of a data matrix. Covariance in the mRNA expression levels occurs in proteins involved in related pathways and functions, as well as colocalized proteins in the cell, and is indicative of common regulation of gene expression, and may uncover of a shared regulatory mechanism (Bar-Joseph *et al.* 2003). Specific variance of a given gene which is not associated to other genes is most probably related to artifacts, and would not represent biological significance.

Data matrix reduction is achieved by FA along with clustering algorithms to generate clusters in sample space or sample dendrograms (Hartigan *et al.* 1975). Multiple testing corrected Student *t*-test (*q*-value) is employed for the associated gene extraction of each obtained subcluster for the measurement of the differential gene expression of the gene compared with the rest of the samples. The *q*-value is similar to the *p*-value, except that it is a measure of significance in terms of the false discovery rate. Genes with *q*-value less than 0.05 were taken as differentially expressed for that particular cluster.

Significant genes associated to each cluster are used for the detection of pathways predominantly activated in that cluster in order to find statistically significant GO terms (Ashburner *et al.* 2000).

3.17 Between groups analysis (BGA)

BGA is a supervised classification method (Culhane *et al.* 2002). The basis of this method is to ordinate the formed groups rather than individual samples on a tri-dimensional space. BGA is a multiple discriminant analysis approach, which uses a dimension reduction technique such as principal component analysis (PCA) and correspondence analysis (COA, Fellenberg *et al.* 2001) to examine the correspondence to the most discriminant genes on each axis. Instead of dimension reduction of the individual samples performed in these classical ordination techniques, BGA ordinates the groups. It finds the eigenvectors or axes that discriminate the groups so as to maximize the between group variances. BGA, when used together with COA, ranks the genes, so that at the end of the axis the most discriminating genes are selected. In this way the genes associated with each group are determined. BGA is implemented as one of the microarray analysis tools of our laboratory group web-based server as SUCA (SUpervised ClAssification Bioconductor R-scripts) and also runs on the R programming language environment.

3.18 Prediction analysis of microarrays (PAM)

The supervised class prediction method used was PAM (Prediction Analysis of Microarray, Tibshirani *et al.* 2003). This method for class prediction was firstly applied to distinguish molecular subtypes in breast cancer and to predict overall survival (Sorlie *et al.* 2003).

PAM can be freely downloaded from <u>http://www-stat.stanford.edu/~tibs/PAM/</u>, as excel add-in which runs on the R environment.

Briefly, the method computes a standardized centroid for each class. This is the average gene expression for each gene in each class divided by the withinclass standard deviation for that gene. Nearest centroid classification takes the gene expression profile of a new sample, and compares it to each of these class centroids. The class whose centroid it is closest to, in squared distance, is the predicted class for that new sample. Nearest shrunken centroid classification makes an additional modification to standard nearest centroid classification. It "shrinks" each of the class centroids toward the overall centroid for all classes by a constant called "threshold". This shrinkage consists of moving the centroid towards the zero. After shrinking the centroids, the new sample is classified by the usual nearest centroid rule, but using the shrunken class centroids. This shrinkage has two advantages: 1) it can make the classifier more accurate by reducing the effect of noisy genes; 2) it does automatic gene selection. In particular, if a gene is shrunk to zero for all classes, then it is eliminated from the prediction rule. Alternatively, it may be set to zero for all classes except one, and high or low expression for that gene characterizes that class. Typically, the user would choose the threshold value that gives the minimum cross-validated misclassification error rate.

PAM applied to breast tumor classification, shifts the mean expression level of each gene for each class towards the overall mean expression level for all classes by a fixed standardized difference (shrunken centroids). For a given shrunken centroid, only those genes for which the shrunken means still differ from the overall mean will contribute to the distance between centroids and any individual tumor sample's expression pattern. The class for which the shrunken centroids most closely reaches the observed expression pattern of a certain patient by using a Pearson correlation is then the predicted class for that patient. The standardized difference, and the number of relevant genes, is chosen by minimizing the prediction error using a 10-fold balanced, leave-10%out cross-validation within the training set.

The same method is then used to predict classes for new samples (when they have a prior class assignment they represent a validation set): Pearson correlation coefficient is computed for each new sample to each of the five centroids and assigns each sample to the subtype with which it showed the highest correlation. Therefore, in our study, we are applying a Nearest Shrunken Centroid method to successfully find a minimal set of genes to distinguish classes with the minimal misclassification error.

3.19 Functional analysis (EASE-DAVID, EA, GSEA, Ingenuity)

3.19.1 EASE-DAVID

In order to gain biological understanding from microarray data, it is necessary to analyze functional annotations of all genes in the obtained gene lists. The Gene Ontology database (Ashburner *et al.* 2000) provides a useful catalogue to annotate and analyze the functions of a large number of genes.

With every gene lists from every produced cluster, we performed a functional analysis using EASE-DAVID (NIH, <u>http://david.niaid.nih.gov/david/ ease.htm</u>, Dennis *et al.* 2003). The EASE algorithm (Hosack *et al.* 2003) looks at the representation of functional classes in a significant set and compares it to the representation on the entire array taken as the reference or the background list using a Fisher's exact probability test to calculate *p*-values for a particular category. The resulting list of *p*-values is sorted. The GO terms that are more distinctive in the analyzed list of genes have lower *p*-values.

Since the number of GO terms for which we tested significance is large, the computed p-values were corrected in order to control the error rate associated to multiple testing (Shaffer *et al.* 1995, Dudoit *et al.* 2002). The Benjamini and Hochberg (1995) correction was selected which controls the FDR. To avoid type I errors when multiple comparison are being made, by selecting 1000 iterations for bootstrapping, and a FDR percentile threshold of 1%. Selecting a p-value below 0,01, we expect that a 1% of the selected GO terms will not be specific.

EASE can be installed and run locally on a personal computer; we have used the version 2.0 and run up locally since the number of genes (about 800) is small enough. Hyperlinks to all databases are listed in an output file.

3.19.2 Enrichment analysis (EA)

The software package GOstat (Beißbarth and Speed, 2004) is a tool that utilizes GO information to uncover which annotations are distinctive for the analyzed list of genes. GOstat automatically obtains annotations from a database and generates statistics of the annotations that are over- or underrepresented in the analyzed list of genes. EA (Enrichment analysis, Falcon and Gentleman, 2007) is a Bioconductor package written in R, and implemented in our laboratory web server, that uses GOstats. EA implements GOstats, which applies a conditional hypergeometric test that use the relationships among GO terms. EA allows to test GO terms of one gene list for over or under-representation using the complete array gene list as reference or background list. For all the genes analyzed, GOstat determines the annotated GO terms and a χ^2 test is used in order to approximate the *p*-value.

EA differentiates with EASE in that EASE uses Fisher's exact test probability or the EASE score, the upper bound distribution of Jackknife Fischer exact test probabilities.

3.19.3 Gene set enrichment analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an *a priori* defined set of genes shows statistically significant, concordant differences in gene expression changes between two biological states (e.g. phenotypes). This method evaluates microarray data at the level of gene sets. GSEA-P is a software package which can be freely downloaded from: http://www.broad.mit.edu/gsea/msigdb/index.jsp.

GSEA compares and finds similar lists of genes in curated gene lists from a Molecular Signature Database (MsigDB), The gene sets are defined based on prior biological knowledge, as published information about biochemical pathways or coexpression in previous experiments.

The MSigDB (version 2.1) gene sets are divided into four major collections:

- c1: positional gene sets for each human chromosome and each cytogenetic band.
- c2: curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.
- c3: motif gene sets based on conserved cis-regulatory motifs from a comparative analysis of the human, mouse, rat and dog genomes.
- c4: computational gene sets defined by expression neighborhoods centered on 380 cancer-associated genes.

An additional customized gene set was constructed, which we called c5, with all the obtained gene lists on microarray experiments using the Breast Cancer Array cDNA microarray platform. This includes up- or down- regulated gene lists obtained from hormonal treatments (R5020, estradiol) on a time series, gene lists obtained from K-Means cluster analysis, gene lists obtained after significance microarray contrast analysis (SAM) of the hormonal treatments with and without specific ihhibitors or hormone antagonists, and significantly over- or under-represented genes in the different classified breast tumor phenotypes.

c1, c2, c4 and c5 are mainly the gene sets used.

GSEA first calculates an enrichment score (ES) as a degree to which a set S is overrepresented at the extremes (top or bottom) of the entire ranked list L. It is calculated as the maximum deviation from zero encountered in the random walk; it corresponds to a weighted Kolmogorov-Smirnov-like statistic. On a second step, GSEA estimates the statistical significance (nominal P value) of the ES by using an empirical phenotype-based permutation test procedure that preserves the phenotype structure of the gene expression data, permutes the phenotype labels and recompute the ES of the gene set for the permuted data, which generates a null distribution for the ES. The empirical, nominal p-value of the observed ES is then calculated relative to this null distribution. The permutation of class labels preserves gene-gene correlations and, thus, provides a more biologically reasonable assessment of significance than would be obtained by permuting genes. On a third level, GSEA adjusts the estimated significance level to account for multiple hypothesis testing. First the ES for each gene is normalized to account for the size of the gene set, yielding a normalized enrichment score (NES), and determines the proportion of false positives by calculating the false discovery rate (FDR) corresponding to each NES. The FDR q-value is the estimated probability that a set with a given NES represents a false positive; it is computed by comparing the tails of the observed and null distributions for the NES. There are other corrections for multiple hypothesis testing such as the conservative family wise error rate (FWER), but nominal p-value < 0.05 were selected since the primary purpose was to generate hypothesis.

Later, the so called "Leading-edge subset" similarity analysis" is performed. Gene sets can be defined by using a variety of methods, but not all of the members of a gene set will typically participate in a biological process. Often it is useful to extract the core members of high scoring gene sets that contribute to the ES. The leading-edge subset can be interpreted as the core of a gene set that accounts for the enrichment signal across diverse experimental data sets.

3.19.4 Ingenuity Pathways Analysis (IPA)

The Ingenuity Pathways Knowledge Base (Ingenuity Systems[©]) was used for functional analysis of genes. Briefly, the Ingenuity Pathways Knowledge Base consists of 106 individually modeled relationships into an ontology with more than 550 000 biological concepts. Relationships between genes, proteins, small molecules, complexes, cells, processes and diseases were manually extracted by scientists from more than 200 000 peer-reviewed articles.

3.20 Real time qPCR assays

Real time qPCR is a standard method for validation of microarray results, and has already been extensively reviewed (Bustin 2000, Bustin 2002, Bustin et al. 2005, and Stahlberg et al. 2005). It is currently the most sensitive method to determine the amount of a specific DNA in a complex biological sample. In realtime PCR, the amount of product is measured during an ongoing amplification using fluorescent reporters or dsDNA dyes (SYBR Green 1). Fluorescence signal is monitored each cycle during the annealing/extension phase of PCR to be guantified, the product has to accumulate enough to generate signal above background noise. The point where fluorescence rises above the background level is guantified as the second derivative maximum (Cp) or crossing threshold of the curve (Ct) and correlates with the amount of starting copies within a PCR reaction. Real time PCR is characterized by a wide quantification dynamic range (with seven to nine orders of magnitude), high sensitivity, and high reproducibility. Real time PCR is a more suitable diagnostic platform than microarrays especially for small gene sets and large numbers of samples are analyzed.

Below we describe in detail the standard procedure we followed, consisting in four steps: primer design, two step RT-PCR, determination of the reaction efficiency, and data analysis.

3.20.1 Primer-design

The primers were designed using Primer 3 (Rozen and Skaletzky 2000) (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3-www.cgi) with their distinctive RefSeq Accession number (**Appendix A5**: List of primers for Real Time qPCR Assays). The primers were designed such that their annealing temperature was 60°C, giving a 90 - 200 base pair product. In order to minimize primer-dimer formation, the maximum self-complementary score was 4 and the maximum 3' self-complementary score was 2. The primers were designed, when possible, within the last 3 kb from the 3' end of the gene, flanking one or more introns to avoid gDNA amplification, or across exon boundaries.

The targets amplified by the primer pairs were characterized using M-fold (Santa Lucia 1998, <u>http://bioinfo.math.rpi.edu/~mfold/dna/form1.cgi</u>) in order to predict any secondary structures which might form at the site of primer or probe binding.

Primers were synthesized by Sigma-Genosys in a 0.2 μ M scale, desalted while purified, and without any additional HPLC purification.

3.20.2 Two-step RT-PCR

First strand cDNA synthesis was carried out with a constant sample quantity of 0.5 μ g total RNA using 70 pmoles of oligo-dT, and Reverse Transcriptase Superscript II (Invitrogen[®], cat.no. 18064-014) in a final volume of 20 μ l. Firstly, total RNA together with oligo-dT, and 1 μ l of 10 mM dNTP in a total volume of 12 μ l, prepared in 0.2 ml microtubes, was incubated for 5 min at 65°C in a heat block in order to denature RNA. Reaction was chilled on ice for 5 min. A first strand reaction mix was added containing 4 μ l of First strand buffer, 2 μ l of 0.1 M DTT and 1 μ l of RNAseOUT RNAse-inhibitor (40u/ μ l, Invitrogen[®]). Reverse transcription reaction was prewarmed at 42°C and then 1 μ l of Superscript II (200 u/ μ l) was added.

Reaction was further incubated at 42°C for one hour on a thermal cycler (MJ Research), and then an additional incubation was performed at 70°C for 15 min in order to inactivate the enzyme, followed by the chill on ice.

Before PCR amplification, every reverse transcription reaction was diluted at the proportion 1 to 20, to avoid Taq polymerase inhibition by DTT or excess of salts. No additional purification was performed.

We added, to the set of samples for reverse transcription, a duplicated RNA sample without reverse transcriptase to verify the absence of any gDNA contamination. We named it as "–RT negative control".

PCR amplification was carried out with 1 μ l of the previously diluted reverse transcription sample, as described above, with 5 μ l of 2x SYBR Green Master Mix (ROCHE, cat.no. 4309155), and 3 pmol of specific gene primer pairs to a 10 μ l total volume. Reactions were aliquoted in 384-well microtiter plates. The optical lid was applied and fixed to microtiter plates. Reactions were mixed by short plate vortexing, and spun for 2 min at 1600 rpm speed in a centrifuge with a rotor with microtiter plate adaptors (Eppendorf[©]). PCR reactions were run on a Lightcycler 480[®] system (ROCHE), using the following temperature cycling program:

1. Denaturing and Taq DNA polymerase heat activation step:

95°C for 10 min

2. Amplification step consisting of 45 cycles with the following cycle program:

Denaturing step: 15 s at 95°C Annealing step: 40 s at 60°C Extension: 5 s at 72°C

A single fluorescence measurement at 533 nm wavelength was taken at 72°C.

 Dissociation step: ramp (4.8°C/s?) from 72°C to 95°C with a continuous measurement of the fluorescence. This dissociation step was added in order to verify that a single amplification product and no unspecific secondary products or other products due to primer dimer formation were formed.

3.20.3 Determination of reaction efficiency

Standard dilution curves (1:4 serial dilutions) of a RNA sample were produced by dilution in nuclease-free water. A master mix was made up and aliquoted into the PCR plate prior to individual addition of the template into each reaction tube. A graph of the threshold cycle (C_i) versus the $\log_{10}[copy-number]$ of the sample from the dilution series was produced. The slope *m* of this graph was used to determine the reaction efficiency *E* as

 $E = 10^{-1/m} - 1$.

3.20.4 Data analysis

PCR reactions were always run three times, so that first of all mean Ct values and mean standard deviations were calculated for error propagation. Relative copy number (RCC) or fold-change ratio was calculated as:

 $RCC = \frac{E_{\text{target}}^{\Delta C_t}}{E_{\text{reference}}^{\Delta C_t}}$, where $\Delta C_t \equiv C_t$ (calibrator) – C_t (sample),

E is the calculated efficiency of each gene target or reference, and ΔC_t the difference of the mean cycle threshold C_t of the calibrator sample and the experimental sample (Pfaffl 2001).

Standard error associated to the relative copy number was calculated as:

$$SD = \sqrt{SD_{TC}^2 + SD_{TS}^2 + SD_{RC}^2 + SD_{RS}^2}$$
,

where subscripts T and R mean target and reference genes, respectively, and subscripts C and S mean calibrator and experimental samples, respectively.

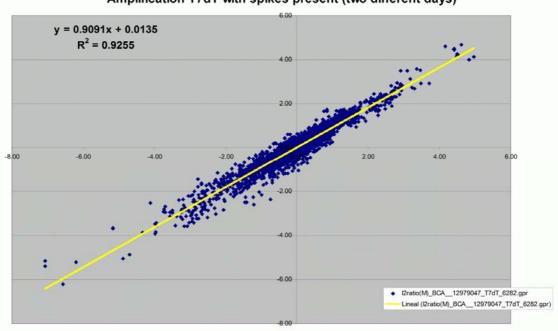
3.20.5 Determination of the normalization factor by geNORM

The geNorm VBA applet for Microsoft Excel (http://medgen.ugent.be/~jvdesomp/genorm/ determines the most stable housekeeping genes from a set of tested genes in a given cDNA sample panel. This application calculates a gene expression normalization factor for each tissue sample based on the geometric mean of a user-defined number of housekeeping genes. geNorm calculates the gene expression stability measure M for a control gene as the average pairwise variation V for that gene with all other tested control genes. Stepwise exclusion of the gene with the highest Mvalue allows ranking of the tested genes according to their expression stability. The underlying principles and calculations are described in Vandesompele et al. 2002. The geometric mean of the n housekeepers (HGK) is calculated as a reliable normalization factor (NF_n) :

 $NF_n = \sqrt[n]{HGK_1 \times HGK_2 \times ... \times .HGK_n}$

4 Results

4.1 Reproducibility assays of the microarray platform


Initial microarray performance tests with the human breast cancer cell line T47D-MTVL in response to hormones were performed. Reference sample was the commercially available Universal Human Reference RNA UHRR (Stratagene[®], a pool of 10 types of tissue cancer cell lines) for broad gene coverage. Methods of linear mRNA amplification and aRNA labeling have been previously validated (Van Gelder *et al.* 1990, Eberwine *et al.* 1992) from starting RNA material of 3 μ g.

A random amplification method has been adapted and validated using a composite random primer T3-N₉ (Xiang *et al.* 2003), to detect differentially expressed transcripts in partially degraded RNA samples. This method was successfully applied to bladder tumor biopsies in a collaborative study with the Puigvert Foundation (Mengual *et al.* 2006). We found that transcripts were not as 3'-end biased as with the primer T7-dT, able to call more genes but, as disadvantages, there was a large amount of additional ribosomal RNA as part of the yield and amplified transcripts were smaller, as we verified using the Agilent Bioanalyzer mRNA assay, with a subsequent loss in sensitivity. Since breast tumor biopsies are often poorly preserved, we found that this method could be a good alternative to the standard T7-dT protocol.

Correlation coefficients from different mRNA amplification methods hybridizing the same sample were determined and gave good reproducibility with a linear correlation coefficient up to 0.96 when the same amplification method was compared (**Figure 6**).

Hybridization assay tests were also performed with different conditions, giving a low intra-chip variation coefficient between replicate spots (specificity) and a good hybridization signal when freshly spotted arrays were used. We learned how high ambient humidity and aging affect the quality of the hybridization signal and increase dramatically the background Cy3 intensity level of the substrate.

"Spike-in" controls had a good behavior, whenever samples similar in RNA integrity were co-hybridized. Calibration controls (with ratio T = R/G = 1) need to be adjusted within the concentration range of the experimental sample, since they are often found to be in the saturation region and might compete during the amplification reaction with the experimental sample owing to the fact that they can be more abundant than the sample mRNA population. Artificial "fold-ratio" controls had a good behavior too.

Amplification T7dT with spikes present (two different days)

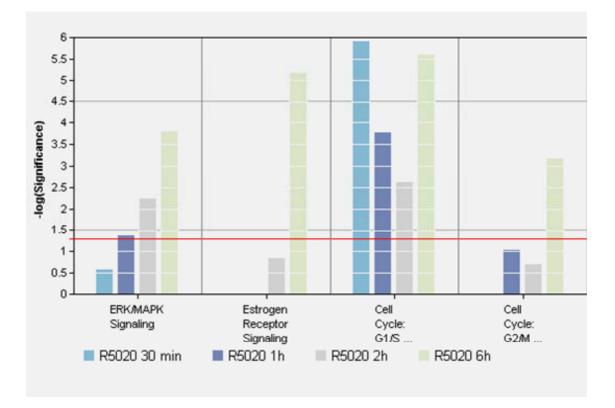
Figure 6: Correlation between two amplifications, labeling and hybridization of the same sample performed on different days giving a linear correlation coefficient of 0.96 taking only spots which were 2 times above background level threshold as reliable.

We have been also testing different methods for very low amount of total RNA increasing the number of rounds of mRNA amplification in order to apply them to laser microdissected cells (Baugh *et al.* 2001, Kenzelmann *et al.* 2004) up to one ng total RNA (in collaboration with F.X. Real, IMIM, Barcelona). After testing different protocols, and estimating linear correlation coefficients with standard conditions, we found high correlation with those methods that are able to extend and preserve the length of the transcripts.

4.2 Comparison with previously published cell line data

Firstly the microarray platform was validated with a short time course experiment, with only four time points, using a ER and PR expressing human breast cancer cell line T47D-MTVL. We hybridized every cell culture sample treated either with progestin R5020 or vehicle ethanol after 30 min, and 1, 2, and 6hr, using as common reference UHRR (in collaboration with M.J. Melià, CRG, Barcelona).

After normalization of the individual arrays, median scaling in their array intensities, and data processing as explained in material and methods (chapter 4.11), we selected the genes that were differentially expressed only due to the hormonal treatment by referring to the expression of the time-paired ethanol (hormone vehicle) treated. This was achieved by subtracting the logarithms of


the ratio from each pair of arrays corresponding to vehicle and hormone treated samples from each experimental replicates as follows

$$\log_2 \frac{R5020}{EtOH} = \log_2 \frac{R5020}{UHRR} - \log_2 \frac{EtOH}{UHRR} .$$

We found 147 genes that were expressed with a minimum of 1.4 fold-change in at least one of the time points, relative to the ethanol-only control treatment (**Appendix A6:** Short time course experiment), including representative GO annotations (Ashburner *et al.* 2000). Since there was no biological replicate there is not an alternative statistical parameter for thresholding.

It has been reported that progestins stimulate growth, have no effect, or even inhibit growth depending on experimental conditions or the status of the cellular hormone receptors (Sutherland *et al.* 1998, Groshong *et al.* 1997, Jeng *et al.* 1992, Lin *et al.* 1999). This disagreement reflects the insufficient understanding of progesterone biology and has hindered the effective application of progestins or antiprogestins in breast cancer treatment.

In mammary epithelial cells, ovarian hormones induce the recruitment of quiescent cells (cell cycle phase G_0) to enter the cell cycle, undergo progression G_1 , and go through G_1/S transition. This is achieved in part through the direct transcriptional control of genes encoding key cell cycle regulators such as CCND1 (Cyclin D1). An immediate cell cycle arrest early in G_1 , and growth inhibition, both mediated by PR have been observed after completing one round of replication (Musgrove *et al.* 1991, Skildum *et al.* 2005). These findings were corroborated in our experimental results as the most represented canonical KEGG pathways (<u>http://david.niaid.nih.gov/david/</u>) as shown in **Figure 7**, obtained by functional analysis using Ingenuity. Similar results were obtained using EASE. The figure shows a maximum number of expressed genes involved in ER signaling at 6 hr after hormone induction, a progressive increase in the ERK/MAPK signaling, G_1/S reach its maximum at 30 min and G_2/M reached its maximum at 6 hr.

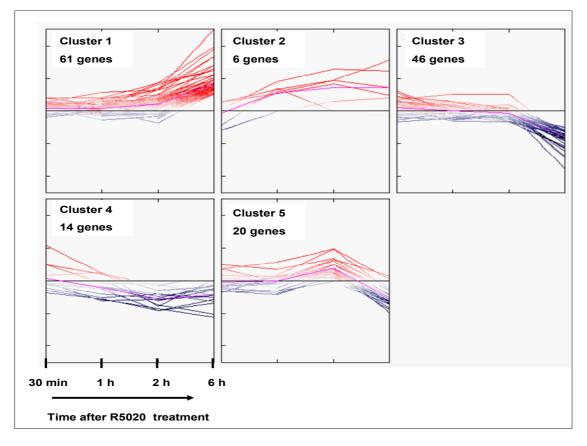
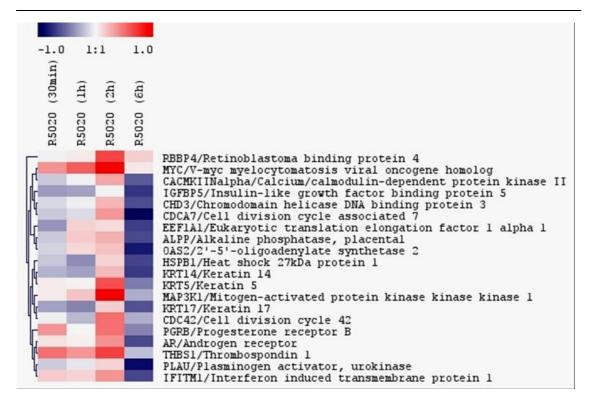


Figure 7: Representation of the most representative canonical KEGG pathways calculated from the regulated genes belonging to each pathway. Red bar denotes significance threshold (*p*-value smaller than 0.05). Significance is calculated from the number of genes present belonging to each pathway in each time point (figure from Ingenuity® pathway analysis software program).

The small subpopulation of cells that might have escaped cell cycle arrest which respond differently to hormones can dilute the measured response to hormone treatment. This occurs even though our population of cells was serum deprived 24 hr before treatment, and most cells were presumable quiescent.


We confirmed previous observations from other groups that progestins act on genes that regulate cell cycle progression, such as a high increase in EGF (epidermal growth factor) and TGF α (transforming growth factor α) after 6 hr rather than an early response (Musgrove *et al.* 1991). Also MYC (c-myc) was also previously found to be induced by progestins, suggesting that this transcription factor might participate in growth modulation (Musgrove *et al.* 1991). MYC is already activated after 30 min.

In order to visualize these events, using TMEV we applied a K-means unsupervised hierarchical grouping (Soukas *et al.* 2000) using Pearson correlation as the distance metric with complete linkage, grouping the 147 genes in 5 groups with similar patterns of expression throughout the set of experimental conditions (**Figure 8**). Since co-regulated genes are usually co-expressed, those co-regulated genes that follow a similar pattern of gene expression might be regulated by the same transcription factors, through the same binding sites.

Figure 8: K-Means unsupervised grouping using Pearson correlation as the distance metric and complete linkage of the 147 regulated genes during the time course hormonal treatment with progestin R5020 of the T47D cell line in 5 groups which follow similar patterns of gene expression. The *x*-axis is time (hr) after R5020 treatment, and the *y*-axis is the Log₂Ratio.

Taking a closer look at cluster 5 (**Figure 9**), the one that shows an expression profile of a higher peak at 2 hr, and downregulation at 6 hr, we observe some of the nuclear receptors PR-B (Progesterone receptor B) and AR (Androgen Receptor) co-regulated with differentiation markers such as cytokeratins KRT5, KRT16 and KRT17. The MAP kinase pathway, by GO functional analysis, appear to be activated earlier on by 30 min -1 hr, and we see MAP3K1 (Mitogen activated protein 3 kinase 1) and MYC (c-myc) following this expression profile.

Figure 9: Cluster 5. K-Means unsupervised grouping using Pearson correlation as the distance metric with complete linkage, which shows early activation of MYC and MAP3K1. Scale-1.0 to +1.0 are log_2Ratio values.

Clusters 1 and 2 (**Panel 10**) assemble all the genes whose expression increases with time of hormone treatment. The genes most highly expressed at 6 hr are, mainly

- TGFα (transforming growth factor alpha)
- DUSP1 (dual specificity phosphatase 1)
- RPS6KA5 (ribosomal protein S6 kinase, 90kDa, polypeptide 1, MSK1)
- ELL2 (elongation factor, RNA polymerase II, 2)
- HMGB3 (high-mobility group box 3)
- JUN (V-jun sarcoma virus 17 oncogene homolog, avian)
- EGF (epidermal growth factor)
- GRB2 (Growth factor receptor-bound protein 2)
- IL6ST (Interleukin 6 signal transducer)
- CCND1 (Cyclin D1).

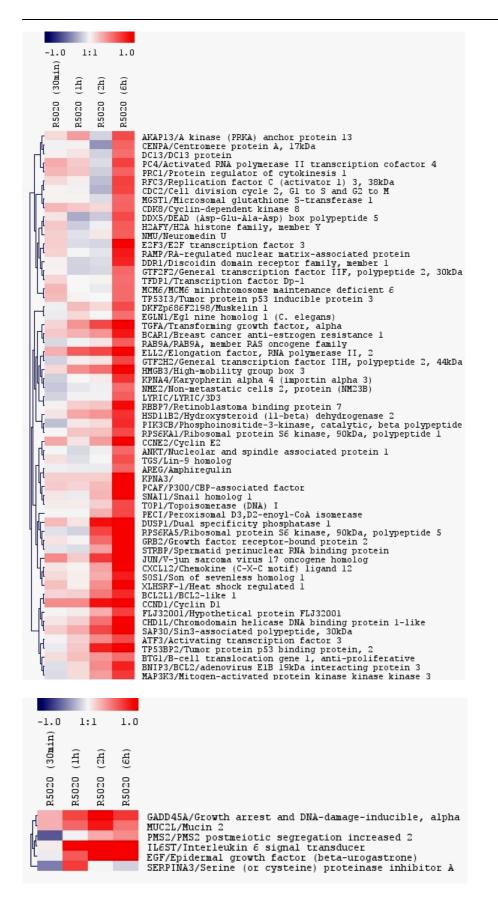
Transcription factors that are expressed by 30 min., from our microarray results are

- TFDP1 (transcription factor dp-1)
- E2F3 (E2F transcription factor 3)
- SP1 (sp1 transcription factor)
- JUN (V-jun sarcoma virus 17 oncogene homolog)
- PR-B (progesterone receptor B)

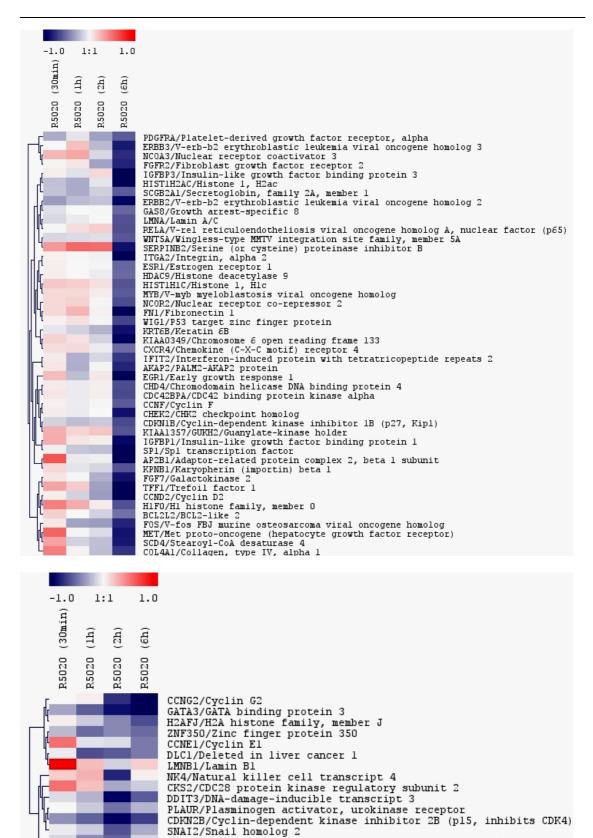
- AR (Androgen receptor)
- ELL2 (elongation factor, RNA polymerase II, 2)
- SAP30 (sin3-associated polypeptide, 30kDa)
- GTF2H2 (general transcription factor IIH)
- PC4 (activated RNA polymerase II transcription cofactor 4).

Clusters 3 and 4 are shown in **Panel 11**.

Some of the downregulated genes after 6 hr of hormonal induction were


- ER- β Estrogen receptor β
- MYB (V-myb myeloblastosis viral oncogene homologue)
- SRC-2 (NCOR2 or Nuclear receptor coactivator 2)
- SRC-3 (NCOR3 or Nuclear receptor coactivator 3)

and previously reported co-regulators or direct downstream targets of ER such as


- FN1 (Fibronectin1)
- FGFR2 (Fibroblast growth factor receptor 2)
- IGFBP1 (Insulin-like growth factor binding protein 1)
- IGFBP3 (Insulin-like growth factor binding protein 3)
- GAS8 (Growth-arrest specific 8)
- TFF1 (PS2 or Trefoil factor 1)
- FOS (c-fos)
- SP1 (Sp1 transcription factor)
- PLAUR (Plasminogen activator, urokinase receptor)
- GATA3 (GATA binding protein 3)
- ZNF350 (Zinc finger protein 350)

The above list shows that the expression profile may be, in part, mediated by endogenous estrogen receptor.. Also, early response genes upregulated at 30 min, after the cell cycle progressed from G_1 to S, are rapidly downregulated such as

- CCNE1 (Cyclin E1)
- H1F0 (H1 histone family, member 0)
- LMNB (Lamin B1)
- CKS2 (CDC28 protein kinase regulatory subunit 2).

Panel 10: Cluster 1 (upper figure) and 2 (lower figure). K-Means grouping using Pearson correlation as the distance metric with complete linkage. Scale-1.0 to +1.0 are log₂Ratio values.

Panel 11: Cluster 3 (upper figure) and 4 (lower figure). K-Means grouping using Pearson correlation as the distance metric and complete linkage. Scale-1.0 to +1.0 are log₂Ratio values.

GNAZ/Guanine nucleotide binding protein (G protein), alpha z

4.3 Comparison of the microarray cDNA platform

Independent hybridizations show high reproducibility with correlation coefficient up to 0,983 from the sample and different aRNA amplification and labeling. Some of the genes identified as being differentially expressed in our research, have been previously mentioned in earlier hormone response studies using gene expression microarrays. We confirmed the genomic and non-genomic representative pathways, in which progesterone may act, and the crosstalk with the ER ligand-activated pathway initiating the MAP kinase signaling cascade.

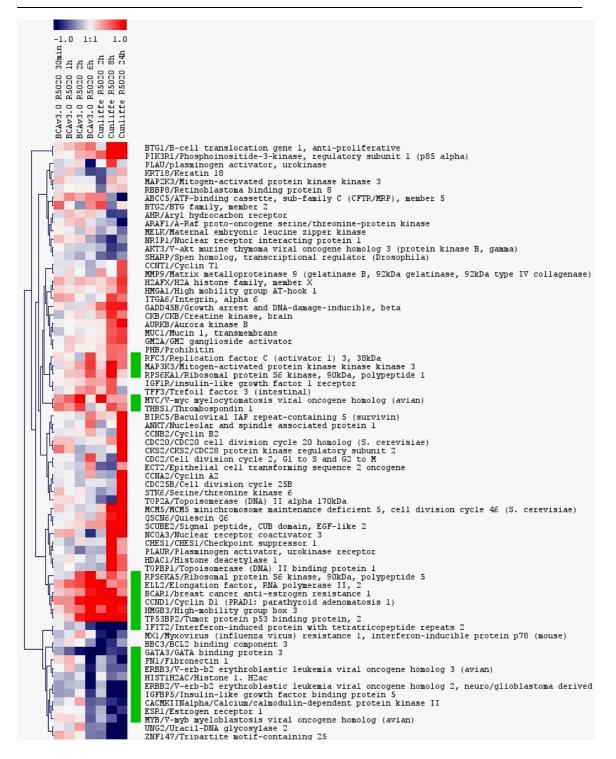
In order to validate the results obtained with the breast cancer cell line T47D-MTVL treated with R5020, we compared these results with those from Cunliffe *et al. 2003.* They used another cDNA platform of 13 824 sequence-verified cDNA clones (corresponding to 10 535 genes) from the National Human Genome Research Institute (NHGRI), applied different growth and differentiation regulators on three different breast cancer cell lines with different estrogen receptor status (T47D, MCF7 and MDA-MB-436), and compared the patterns of gene regulation to previously published tumor expression profiles.

We focused on the results obtained from the cell line T47D and treated with progestin R5020, in a time course of 2, 8 and 24 hr. We note the difference in the dose of the drug, which was 1000 fold higher (10^{-6} M) than the 10^{-9} M used in our test experiments, as well as the design of the microarray experiments, since they directly compared on the same array the effects of the drug against the mock treated, instead of using, as we did, a common external reference and performing indirect comparisons

After quality filtering of the data they obtained 1023 genes that responded with a fold-change larger than 1.5 fold in at least 2 or more of the 42 conditions. Among these genes, we have an overlap of 108 sequences (107 genes). We note that from these 107 genes, 36 genes did not respond to progestin in the T47D cell line with fold change above the threshold of 1.5, leaving only 72 genes (**Appendix A7:** BCA overlap with Cunliffe *et al.*). From these 72 genes, there is an overlap of 35 between our regulated genes with fold change larger than 1.4. To better visualize the genes that are regulated in the same direction, we performed an unsupervised hierarchical clustering in search for similarities of the combined data using the Euclidean distance as distance metric (Figure 12).

We observe that of the 35 genes mentioned above, there are 21 genes with a high degree of overlap after 2, 6 or 8 hr, marked in figure 10 with a green bar.

Among the upregulated genes are


- ELL2 (Elongation factor, RNA polymerase II, 2)
- BCAR1 (breast cancer anti-estrogen resistance 1)
- CCND1 (Cyclin D1)
- TP53BP2 (Tumor protein p53 binding protein, 2)
- HMGB3 (High-mobility group box 3)

- RPS6KA5 (MSK1; Ribosomal protein S6 kinase, 90kDa, polypeptide 5)
- RPS6KA1 (RSK1; Ribosomal protein S6 kinase, 90kDa, polypeptide 1)
- RFC3 (Replication factor C (activator 1) 3, 38kDa)
- MYC (V-myc myelocytomatosis viral oncogene homolog, avian)
- MAP3K3 (Mitogen-activated protein 3 kinase 3), and
- THBS1 (Thrombospondin 1).

Among the downregulated genes

- IFIT2 (Interferon-induced protein)
- CACMKIINα (Calcium/calmodulin-dependent protein kinase II)
- ERBB2 (V-erb-b2 erythroblastic leukemia viral oncogene homolog 2)
- ERBB3 (V-erb-b2 erythroblastic leukemia viral oncogene homolog 3)
- IGFBP5 (Insulin-like growth factor binding protein 5)
- FN1 (Fibronectin 1)
- HIST1H2AC (Histone 1, H2ac)
- MYB (V-myb myeloblastosis viral oncogene homolog)
- ESR1 (Estrogen receptor), and
- GATA3 (GATA binding protein 3).

We conclude that our results have good concordance with the results obtained in Cunliffe *et al.* (2003), although they obtained a greater response probably because they used 1000 fold higher progestin concentrations.

Figure 12: Comparison of the cDNA microarray data from our experiments and the published results by Cunliffe *et al.* 2003. To better visualize the results we applied a hierarchical clustering using the Euclidean distance as the similarity parameter to compare the genes that are regulated in the same orientation. Marked with a green bar are the 21 genes with a high degree of overlap after 2, 6 or 8 hr of treatment.

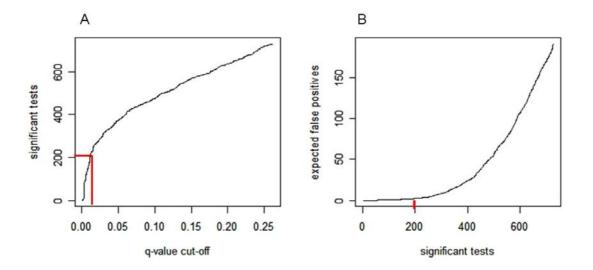
4.4 Application to an extended time course experiment

We performed an extended time course experiment with hormone treated breast cancer cell line samples, with either progestin R5020 or estradiol, using as a model the endogenously $ER^+ PR^+$ breast cancer cell line T47D-MTVL for an extended time in cell culture of up to two days of treatment. This work was done in collaboration with C. Ballaré (CRG, Barcelona).

The purpose of this experiment was to investigate the dynamic behavior of our population of cells in response to added hormones.

We collected the gene expression data using our cDNA microarray platform latest version v4.0 at times 0, 30 min, and 1, 2, 6, 12, 24 and 48 hr. We incorporated in this study two biological replicate experiments, that is, a replicate experiment was performed one week after the first experiment. By doing this we assured some statistical inference could we applied. The reference sample chosen was the universal human RNA reference (UHRR). We decided that our data had a longitudinal structure which means that samples of the same cell batch have a natural dependence between time points since they originate from the same sample.

Time course experiments allow us to study the dynamic behavior of the genes in response to hormone and to follow metabolic pathways. For this purpose, recent algorithms for analysis of microarray time-course experiments such as the software program called EDGE (Storey *et al.* 2005, <u>http://faculty.washington.edu/jstorey/edge/</u> were used (see chapter 3.14 on methods for time course experiments).


The q-value is the estimate of FDR that we used to call a gene significant. These estimates are obtained by resampling of the data by bootstrapping (Efron *et al.* 1993). The resampling scheme takes into account dependence between time points since our study is structured as a longitudinal sampling. Our q-Value cut-off is 0.01, a fixed FDR of 1%, which means that one percent of the genes assumed to be differentially expressed in a time series are false positives.

4.4.1 Temporal differential gene expression due to progestin R5020 hormone treatment

First of all, we carried out a "within-class" temporal differential expression analysis of the progestin treated cell line culture T47D. After referring every time point of the gene expression data to their corresponding T_0 , of each biological replicate or cell batch, EDGE found 173 genes (*p*-value ≤ 0.01) or 226 genes (*q*-value ≤ 0.01). To decide which "cut-off" value would have more sense, we looked at the plot of the function of the *q*-value cut-off (*x*-axis) versus the number of significant tests (*y*-axis), and the plot of the function of the number of

Results

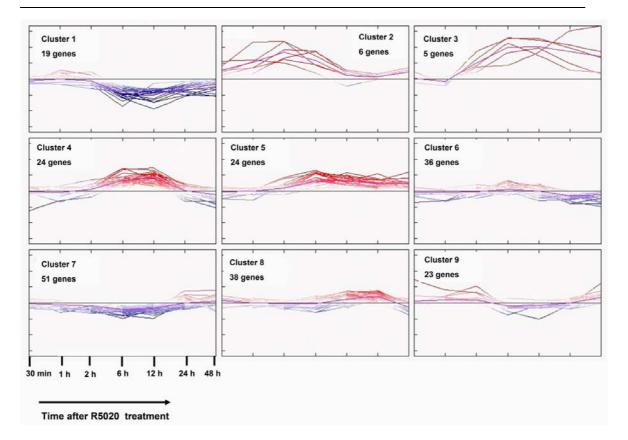
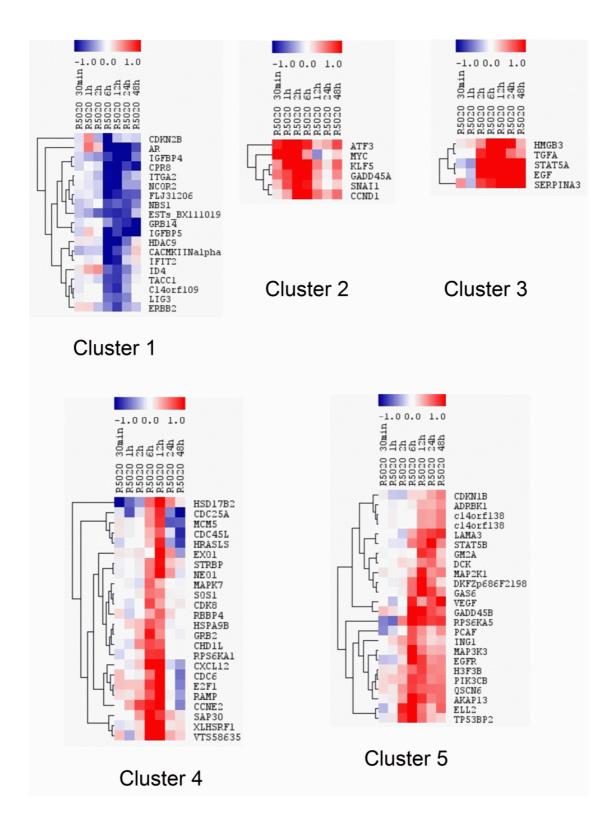

significant genes (*x*-axis) versus the number of false positives (*y*-axis) as in Storey and Tibshirani (2003). These plots are represented in **Figure 13**. There is change in the slope of the function of the *q*-value cut-off versus the number of significant tests at *q*-value \approx 0.01 (**Figure 13A**) while the number of expected false positives increase after the selection of 226 significant genes (**Figure 13B**).

Figure 13: (A) The *q*-value cut-off (*x*-axis) versus the number of significant tests (*y*-axis), and (B) the number of significant genes (*x*-axis) versus the number of false positives (*y*-axis).


In addition, we looked at the significant gene list and the fold-change of both replicates to check if this decision makes sense and we concluded that the q-value cut-off of about 0.01 was the best option. Subsequently, from the obtained gene list, we averaged the M values of the two biological replicates at every time point and imported the significant gene list averaged data into TMEV for visualization and clustering analysis.

A clustering analysis compatible with the now reduced data set of time series was carried out using a supervised clustering by K-Means. The Euclidean distance was used as the similarity metric for grouping genes with a similar trend and magnitude in gene expression. This was done in order to generate a smaller gene list and to look for co-regulated genes and to perform functional analysis by looking at their overrepresented GO terms, and later on import them into pathway databases. In this case, where the data are already normalized and the data set is reduced, the Euclidean distance as the distance metric, gives results very similar to the ones given by the Pearson correlation. The Euclidean distance is the default method for this type of clustering. We decided, by inspection of the average cluster size and the gene expression vector components, that the best fitting number of groups was nine. A representation of the groups of the expression vector clusters is shown in **Figure 14**.

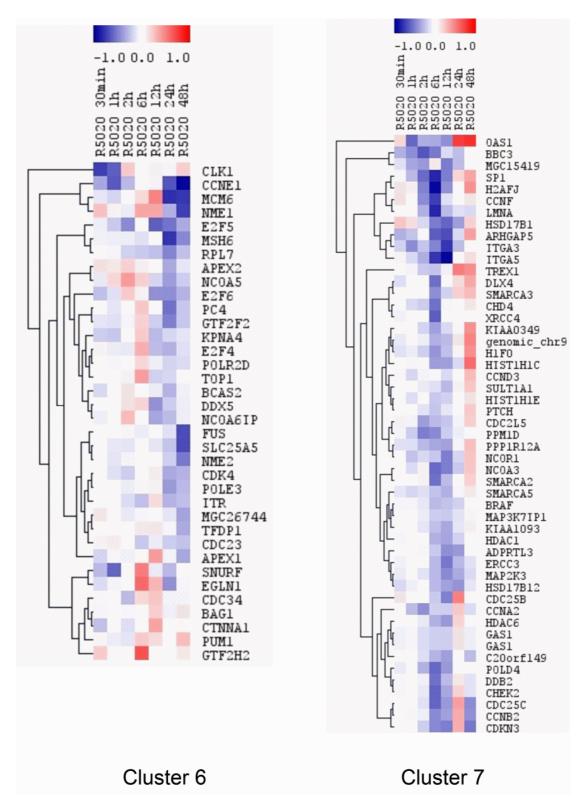
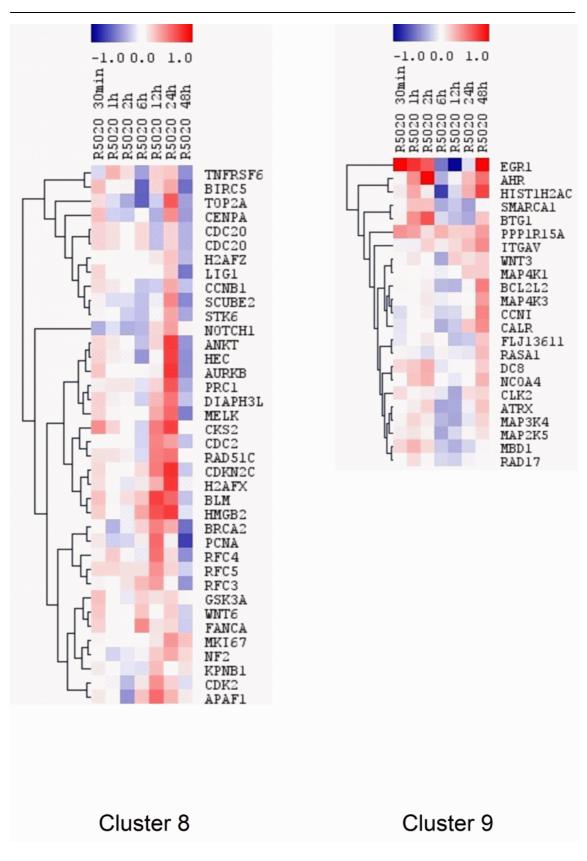


Figure 14: Time series of M (*y*-axis) as a function of time after R5020 treatment (*x*-axis) for the nine groups obtained by K-Means clustering.


The resulting K-Means clusters grouping using the Euclidean distance as the distance metric and complete linkage of the EDGE 226 "within-temporal" significant genes (q < 0.01) in 9 groups which follow similar patterns of gene expression are shown in, **Panel 15**, **Panel 16** and **Panel 17**. Every resulting gene list from every cluster is also stored for future examination during the analysis of breast tumor samples, with the aim to identify similar patterns of gene expression in comparison with the breast cancer cell line hormonal response.

Panel 15: Resulting significant K-Means cluster (clusters number 1 to 5) grouping using the Euclidean distance as the distance metric and complete linkage of the EDGE 226 R5020 responsive significant genes (q < 0.01) in 9 groups which follow similar patterns of gene expression.

Panel 16: As in Panel 13 but for clusters 6 and 7.

Panel 17: As in Panel 13 but for clusters 8 and 9.

A functional analysis using EASE-DAVID (NIH, <u>http://david.niaid.nih.gov/david/ease.htm</u>) was performed with every resulting cluster gene list to find overrepresented ontology categories among GO molecular function, GO biological process, and pathway databases such as the KEGG and the GenMAPP. The Fisher's exact probability taken as threshold was a *p*-value equal or less than 0.05. Top Ontology categories obtained are summarized in **Table 2.** We also obtain a Benjamini and Hochberg corrected *p*-value for multiple testing procedures (Benjamini and Hochberg 1995).

It was used as a background, the list of 820 genes of the collection of the Breast Cancer Array v4.0, therefore, since this list is a small set of genes, after multiple testing correction by Benjamini and Hochberg p-values are larger. Therefore functional analysis can be only considered it as an exploratory instrument unless BH p-values are less than 0.05.

Table 2: Overrepresented GO categories and GenMAPP pathways obtained with a threshold of 0.05 of the probability value of Fisher's exact test applied by the EASE program. Genes belonging to the cluster causing this overrepresentation are listed. Symbols mf and bf stand for molecular function and biological process, respectively.

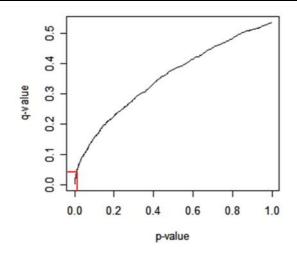
K- means Cluster	Enrichment categories	Functional annotations categories	Genes	Fisher's exact test <i>p</i> -values	BH p.value
1	GO mf	receptor activity	IGFBP4, IGFBP5, AR, ERBB2, ITGA2	4.5E-3	0.2
	GO mf	protein binding	IGFBP4, IGFBP5, AR, NCOR2, ITGA2, ID4	1.1E-2	0.2
	GO mf	insulin-like growth factor binding	IGFBP4, IGFBP5	1.3E-2	0.2
	GO bp	regulation of cell growth	IGFBP4, IGFBP5	2.4E-2	0.2
	GO mf	signal transducer activity	IGFBP4, IGFP5, AR, ERBB2, ITGA2, GRB14	2.6E-2	0.2
	GO mf	transcription co- repressor activity	ID4, NCOR2, HDAC9	4.0E-2	0.2
2		no significant			
3	GO mf	epidermal growth factor receptor binding	EGF, TGFA	4.8E-5	1.8E-03
	GO mf	cytokine activity	EGF, TGFA	4.2E-2	8.9E-02
	GO bp	growth factor activity	EGF, TGFA	5.5E-3	8.9E-02
	GO bp	protein kinase cascade	EGF, STAT5A	1.2E-2	1.1E-01

0	GO mf				
	GO III	receptor binding	EGF. TGFA	1.8E-2	1.2E-01
4	GO bp	cytokinesis	CDC45L, MCM5, CDC25A, CDC6, CDK8, CCNE2	8.1E-4	1.7E-01
0	GO bp	mitotic cell cycle	RBBP4, SAP30, CDC45L, MCM5, CDC25A, EXO1, E2F1, CDC6, CCNE2	1.1E-3	1.7E-01
(GO bp	DNA replication checkpoint	CDC45L, CDC6	5.3E-3	2.6E-01
(GO bp	DNA replication initiation	CDC45L, MCM5	5.3E-3	2.6E-01
	GO bp	DNA dependent DNA replication	CDC45L, MCM5, EXO1, CDC6	5.7E-3	2.6E-01
0	GO bp	S phase of mitotic cell cycle	RBBP4, CDC45L, MCM5, EXO1, CDC6	7.0E-3	2.6E-01
	KEGG pathway	integrin mediated cell adhesion	GRB2, HRASLS, SOS1, MAPK7	8.6E-3	2.6E-01
5	GO bp	protein kinase cascade	GADD45B, STAT5B, RPS6KA5, PIK3CB, MAP3K3	2.2E-3	2.5E-01
	GO bp MAPKKK cascad		GADD45B, PIK3CB, MAP3K3	7.0E-3	2.5E-01
	GO bp	cell communication	ADRBK1, LAMA3, GADD45B, STAT5B, EGFR, RPS6KA5, AKAP13, VEGF, GAS6, PIK3CB, MAP2K1, MAP3K3	7.5E-3	2.5E-01
	GO bp	signal transduction	ADRBK1, GADD45B, STAT5B, EGFR, RPS6KA5, AKAP13, VEGF, GAS6, PIK3CB, MAP2K1, MAP3K3	1.0E-4	2.5E-01
	GO bp	negative regulation of cell proliferation	PCAF, QSCN6, ING1, CDKN1B	1.0E-2	2.5E-01
	GO bp	intracellular signaling cascade	GADD45B, STAT5B, RPS6KA5, AKAP13, PIK3CB, MAP3K3	1.1E-2	2.5E-01
	GO bp	regulation of cell proliferation	PCAF, VEGF, QSCN6, ING1, CDKN1B	!.2E-2	2.5E-01
	GO mf	kinase activity	ADRBK1, EGFR, RPS6KA5, AKAP13, PIK3CB, MAP2K1, DCK, MAP3K3	1.6E-2	2.5E-01
	GenMAPP pathway	Hs MAPK cascade	MAP2K1, MAP3K3	5.6E-2	2.5E-01
6	GO mf	RNA binding	RPL7, DDX5, PUM1, FUS, SNURF, BCAS2	5.1E-5	1.3E-02

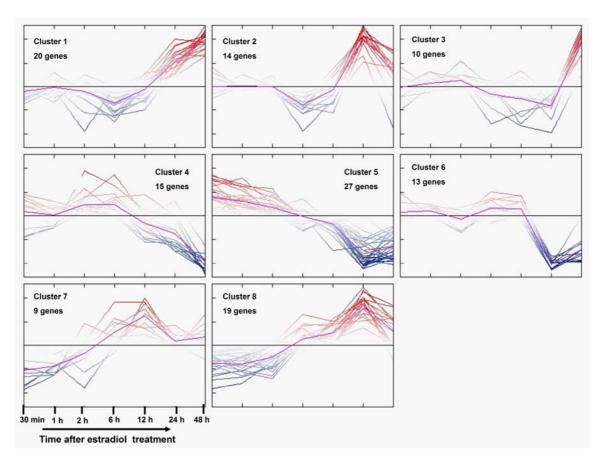
Results

	GO mf	nucleoside- diphosphate kinase activity	NME1, NME2	2.3E-3	2.8E-02
	GO mf	Nucleic acid binding	RPL7, GTF2H2, DDX5, APEX1, PUM1, FUS, POLE3, MSH6, NME2, SNURF, MCM6, TFDP1, BCAS2, E2F4, E2F5, E2F6, TOP1, GTF2F2	2.6E-3	2.8E-02
	GenMAPP pathway	Hs Cell cycle	CDC34, MCM6, TFDP1, E2F4, E2F5, E2F6, CDK4, CCNE1	2.9E-3	8.8E-02
	GO mf	pre-mRNA splicing factor activity	SNURF, BCAS2	6.9E-3	5.3E-02
	GO bp	ribonucleoside triphosphate biosynthesis	NME1, NME2	2.5E-3	2.8E-02
	GO bp	G1/S transition of mitotic cell cycle	CDK4, CCNE1, CDC34	1.1E-3	0.02
7	GO mf	phosphoprotein phosphatase activity	CDKN3, PPM1D, CDC25B, CDC25C	2.1E-3	3.0E-01
	GO mf	hydrolase activity	TREX1, CHD4, CDKN3, ERCC3, HDAC1, HDAC6, ARHGAP5, SMARCA2, SMARCA3, SMARCA5, PPM1D, CDC25B, CDC25C	4.4E-3	3.0E-01
	GO bp	establishment and/or maintenance of chromatin architecture	HIST1H1C, HIST1H1E, CHD4, H2AFJ, HDAC1, HDAC6, SMARCA5, H1F0	7.7E-3	3.3E-01
	GenMAPP pathway	Hs Cell cycle	CHEK2, HDAC1, HDAC6, CCNA2, CDC25B, CDC25C, CCNB2, CCND3	1.2E-2	3.4E-01
8	GO bp	mitotic cell cycle	LIG1, BIRC5, KNTC2, TOP2A, BRCA2, PCNA, CDC20, PRC1, STK6, CDC2, RFC3, RFC4, RFC5, CCNB1, CKS2, CDK2, BLM	2.0E-6	5.9E-04
	GO bp	M phase of mitotic cell cycle	KNTC2, BRCA2, CDC20, PRC1, STK6, CDC2, CCNB1, CDK2	1.1E-4	9.2E-03
	GO bp	cell proliferation	BLM, BRCA2, LIG1, NF2, TOP2A, BIRC5, CDC20, CDKN2C, CDC2, CDK2, CKS2, MKI67, PCNA, RFC3, RFC5, PRC1, AURKB, HEC, RFC5, CCNB1, STK6	1.7E-3	3.9E-02

Results


-					
9	GO mf	small GTPase regulatory / interacting protein activity	MAP4K1, MAP4K3, RASA1	6.5E-3	4.2E-01
	GO mf	transcriptional repressor activity	MBD1, PPP1R15A	1.3E-2	4.2E-01
	GO mf	transcription regulator activity	BTG1, ATRX, MBD1, NCOA4, PPP1R15A, CALR, AHR, EGR1	2.4E-2	4.2E-01
	GO mf	transcription factor activity	BTG1, ATRX, MBD1, AHR, EGR1	4.6E-2	4.2E-01

Every gene lists from the obtained K-Means cluster analysis was added to the customized gene list collection c5 for GSEA posterior analysis.


4.4.2 Temporal differential gene expression due to estradiol hormone treatments

Secondly, we carried out a "within-class" temporal differential expression analysis of the estradiol treated cell line culture T47D. After referring every time point of the gene expression data to their corresponding T_0 , of each biological replicate or cell batch, we found (using EDGE) 127 genes (*p*-value ≤ 0.01) or 82 genes (*q*-value ≤ 0.01). In this case *p*-values behave better, and we obtained a larger number of significant genes because of a greater variability between the two estradiol cell treated replicates. The *q*-value as a function of the *p*-value is shown in **Figure 18.** There is a better behavior of the *p*-values with respect to the *q*-values, as we can note from the range and magnitude of the scale, the slope of the function of the *p*-value to the *q*-value of the "within-class" estradiol temporal differential gene expression.

Afterwards, M values were averaged from the obtained gene list of 127 genes of every experimental time of both biological replicates and imported into TMEV for visualization and clustering analysis. We performed, as with the R5020 time course experiment, a K-Means clustering analysis. We decided that, in this case, the best number of groups was 8 by looking at the average cluster size and the trend of the gene expression vector components. A representation of the obtained expression vector clusters is shown in **Figure 19**.

Figure 18: The *q*-value (*y*-axis) as a function of the *p*-value (*x*-axis). The red lines mark the location corresponding to p-value = 0.01.

Figure 19: Time series of M (*y*-axis) as a function of the time after the Estradiol treatment (*x*-axis) for the eight groups obtained by K-Means clustering.

Smaller gene lists from each subcluster were generated, and functional analysis was performed to search their overrepresented GO term. We brought those 8 gene lists into EA (Enrichment Analysis) which uses GOstat (Falcon and Gentleman 2007), a Bioconductor package written in R, that allows to test GO terms for over or under-representation. We mainly looked into the GO

categories of biological process and molecular function. EA calculates the probability that any GO term would be overrepresented by the conditional hypergeometric test. We also obtain a Benjamini and Hochberg corrected p-value for multiple testing procedures (Benjamini and Hochberg 1995). The top GO terms are listed in **Table 3**. These values were obtained with a threshold value of 0.01 of the probability value of the conditional hypergeometric test.

K- Means Cluster	GO.Term	raw_p.value (p<0.01)	BH.p.value	Associated genes represented
1	chromosome condensation	6.2E-5	0.13	TOP2A, NUSAP1
	induction of apoptosis by intracellular signals	2.2E-3	0.14	CHEK2, CDKN1A, BBC3
	regulation of enzyme activity	2.2E-3	0.14	CDKN3, CKS1B, MAP4K1, CDKN1A, BBC3, CCNA2
	regulation of cyclin dependent protein kinase activity	3.3E-3	0.14	CDKN3, CKS1B, CDKN1A, CCNA2
2	DNA replication	0	8.0E-06	RFC5, RFC4, CCNE2, RBBP4, DTL, CDC6, RFC1, EXO1, CDK2
	DNA metabolism	1.0E-06	9.4E-05	RFC5, RFC4, CCNE2, HAT1, TOPBP1, RBBP4, HLTF, DTL, CDC6, RFC1, EXO1, CDK2
	DNA-dependent DNA replication	7.0E-06	3.2E-5	RFC4, CCNE2, CDC6, RFC1, EXO1, CDK2
	nucleobase, nucleoside, nucleotide and nucleic acids	2.1E-05	1.0E-2	RFC5, RFC4, E2F1, CCNE2, HAT1, TOPBP1, RBBP4, HLTF, DTL, CDC6, RFC1, EXO1, CDK2
	G1 phase of mitotic cell cycle	9.4E-6	0.03	E2F1, CDK2, CDC6
3	mitosis	2.1E-05	1.1E-3	BIRC5, CCNB1, CCNG1, CCNB2, AURKA
	M phase of mitotic cell cycle	2.1E-05	1.1E-3	BIRC5, CCNB1, CCNG1, CCNB2, AURKA

Table 3: Overrepresented GO terms from the GO biological process category.

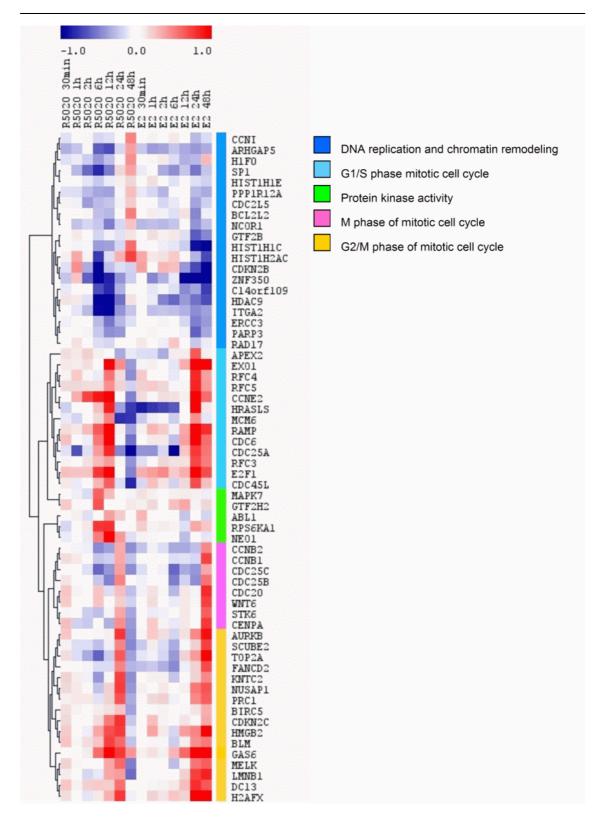
	M phase	1.5E-6	0.01	BIRC5, CCNB1, CCNG1, CCNB2, AURKA
	mitotic cell cycle	2.2E-5	0.01	BIRC5, CCNB1, CCNG1, CCNB2, AURKA
	G2/M transition of mitotic cell cycle	1.1E-3	0.03	BIRC5, CCNB1
	cell division	3.3E-3	0.06	BIRC5, CCNB1, CCNG1, CCNB2
4	no significant			
5	B cell differentiation	1.2E-3	0.24	HDAC7A, HDAC9, PIK3R1
	nucleosome spacing	0.01	0.24	HIST1H1A, HIST1H1E
	phospholipid metabolism	0.01	0.24	AYTL1, PIK3R1
6	cellular protein metabolism	0.01	0.24	UBR2, MAP3K2, RASA1, CDC2L5, SEP15, MAP4K3, PARP3
	negative regulation of cell adhesion	0.01	0.24	RASA1
	posttranslational protein folding	0.01	0.24	SEP15
7	regulation of fibroblast growth factor receptor	0.01	0.34	RUNX2
	negative regulation of smoothened signaling pathway	0.01	0.34	RUNX2
	fibroblast growth factor receptor signaling pathway	0.01	0.34	RUNX2
8	purine ribonucleotide metabolism	1.1E-3	0.07	NME1, GMPS
	purine ribonucleotide biosynthesis	1.1E-3	0.07	NME1, GMPS
	ribonucleotide biosynthesis	1.1E-3	0.07	NME1, GMPS
	ribonucleotide metabolism	1.1E-3	0.07	NME1, GMPS
	nucleotide biosynthesis	2.2E-3	0.08	NME1, GMPS

It was used as a background, the list of 820 genes of the collection of the Breast Cancer Array v4.0, therefore, since this list is a small set of genes, after multiple testing correction by Benjamini and Hochberg p-values are larger. Therefore functional analysis can be only considered it as an exploratory instrument unless BH p-values are less than 0.05.

We conclude from this experiment that gene expression changes (M values) with estradiol hormonal treatment are larger than in the case of progestin treatment. This is so because the absolute changes of the Log₂Ratio values are larger throughout the time (greater M values) in the case of estradiol hormonal treatment.

However, the cell cycle progression to mitosis is delayed, the transition of G_1 (the first gap phase of the cell division cycle) to the S phase (the DNA replication phase) occurs only after 24 hr, and the M phase of the mitosis takes place only once 48 hr after hormonal induction. It seems that activation of transcription on our model cell line T47D-MTVL by estradiol is not as effective as it is with progestin. This probably happens because cytoplasmatic signaling cascades through MAPK and PI3K kinases signaling pathway are to a large extent effective initiating transcription on cell cycle progression target genes.

Every gene lists from the obtained K-Means cluster analysis after estradiol treatment was also added to the customized gene list collection c5 for GSEA posterior analysis.


4.4.3 Distinctive profiles of temporal differential gene expression between progestin and estradiol hormone treatments

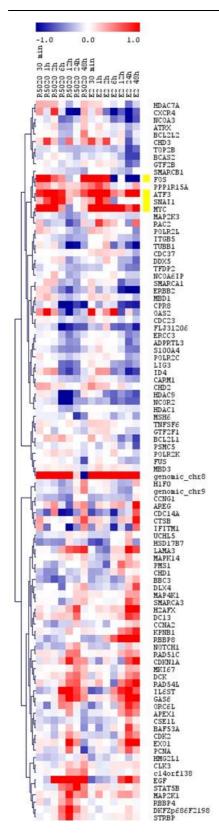
In order to further investigate this differential response to progestin or to estradiol in a dynamic temporal analysis, combined data from both treatments were imported into the time-dependent statistical analysis program EDGE. "Between-class" temporal differential expression was selected, beina "treatment", either progestin or estradiol the class variable selected for differential analysis of gene expression. A set of 113 significant genes were obtained with *p*-value \leq 0.01, and 62 significant genes with *q*-value \leq 0.01. The *q*-value threshold was selected this time in order to obtain a more conservative set of genes. Log₂Ratio values of both experimental biological replicates were averaged, and resulting M data of the 62 genes were imported into TMEV for visualization and clustering. Genes were clustered using an unsupervised hierarchical clustering algorithm, and the resulting gene tree obtained is shown in Figure 20 with the most significant GO terms which show up as the output from the statistical program EASE-DAVID for functional analysis of each gene list.

As is observed in the pattern of the gene subclusters, genes are time delayed in the estradiol treatment in comparison with the progestin treatment, as we previously noted, so that it looks like cell cycle progression is more efficiently activated by progestins. This behavior is observed in every gene subcluster. However, it seems that genes in the group marked with a light green bar are only activated by progestins between 6 and 12 hr, and not by estradiol, or have an inferior response. These genes are the transcription factor GTF2H2 (General transcription factor IIH, polypeptide 2, 44kDa), the membrane receptor NEO1 (Neogenin chicken homolog 1), the protein tyrosine kinases MAPK7 (Mitogen-

activated protein kinase 7), ABL1 (V-abl Abelson murine leukemia viral oncogene homolog 1), and RPS6KA1 (RSK1, Ribosomal protein S6 kinase, 90kDa, polypeptide 1). These are genes involved in cytoplasmatic mitogen kinase cascades that we found in our search for functional annotations.

Results

Figure 20: Unsupervised hierarchical cluster of the genes found with distinctive temporal differential expression between progestin and estradiol treatment. The different genes were clustered using the Pearson correlation coefficient as distance metric and complete linkage as the aggregative clustering algorithm. These clusters are labeled with a different color code with the significant functional analysis output from the statistical program EASE-DAVID.


4.4.4 Common profiles of temporal differential gene expression among progestin and estradiol hormone treatments

In order to investigate the genes that behave similarly on the dynamic response to progestin or to estradiol, combined data from both treatments were analyzed. The data were imported into the time-dependent statistical analysis program EDGE and a "within-class" temporal differential expression was carried out. Our aim here was to find similarities among treatments while in the previous case our aim was to search for dissimilarities.

The class variable selected for differential analysis of gene expression was "treatment", either progestin or estradiol. A set of 97 significant genes was obtained with a threshold *p*-value \leq 0.01, or a set of 24 significant genes with *q*-value \leq 0.01. The *p*-value threshold was this time selected to obtain a larger gene list, since this time a smaller number of significant genes were found with the *q*-value threshold. Log₂Ratio values of both experimental replicates were then averaged, and the resulting data matrix was imported into TMEV for visualization and clustering.

Genes were clustered using an unsupervised hierarchical clustering algorithm, and the resulting gene tree obtained is shown in **Figure 19**. We observed the genes that after a different hormonal treatment, progestin or estradiol, follow a similar gene expression pattern along the time. Remarkably, there is a group of transcription factors that are activated early by both treatments, with estradiol and progestins, such as FOS (V-fos FBJ murine osteosarcoma viral oncogene homolog), ATF3 (Activating transcription factor 3), SNAI1 (Snail homolog 1, Drosophila), and MYC (V-myc myelocytomatosis viral oncogene homolog, avian). This group of genes is marked with a yellow bar in **Figure 21**.

In the next chapter we further investigate the reason why the genes in this group behave similarly, so that it is possible that different hormone treatments might activate the same transcription factors. They may have the same mechanism of transcriptional activation, or ultimately what are their target proteins as transcription factors.

Figure 21: As in Figure 16 but for the genes found similarly expressed across time in response to both progestin and estradiol treatments.

4.5 Hormonal induction inhibitors

As described on chapter 2.2, addressing the different mechanisms of action of steroid hormones, progestins transactivate rapidly and transiently estrogentarget genes via a cross-talk between ER α and PR-B, and activate the MAP kinase Erk1/2 signaling pathway. This induction of endogenous estrogen target genes by progestins might be essential for its proliferative effects on breast cancer. It is also known that progestins repress estradiol-induced endometrial proliferation *in vivo* and repress estrogen receptor function *in vitro* (Vegeto *et al.* 1993, Tung *et al.* 1993, McDonell *et al.* 1994, Kraus *et al.* 1995).

To elucidate the contribution of the different mechanisms of action of progestins in the induction of hormone target genes, we have used PD98059 (hereafter PD) as an inhibitor of the Erk1/2 pathway, and ICI182780 (hereafter ICI) as an antagonist of ER, and investigated which hormone target genes are inhibited by PD, by ICI, or both drugs (in collaboration with C. Ballaré, CRG, Barcelona).

Genes that are induced by progestin and later on inhibited by both PD and ICI will be genes that are activated via $ER\alpha$ -PR-B crosstalk and are dependent on the Erk1/2 signaling pathway. On the other hand, genes that are induced by progestin and later only inhibited by PD and not by ICI will be genes dependent on the Erk1/2 signaling pathway but ER independent. Genes that are induced by progestins but inhibited only by ICI and not by PD are consequently independent of the Erk1/2 pathway and only ER dependent, and therefore are dependent on the PI3K/Akt signaling pathway or other still unknown mechanisms. And finally, genes that are induced by progestins but neither inhibited by PD nor by ICI will be independent of ER-PR crosstalk, independent of Erk1/2 and would be due to a purely genomic signaling pathway or other undefined mechanisms (**Figure 22**).

In order to investigate the effect of PD and/or ICI on the differential gene expression of hormone target proteins, we treated our model cell line T47D-MTVL with either R5020 or estradiol, and simultaneously added either PD or ICI. After 6 hr of treatment with R5020, or 1 hr after estradiol, total RNA was prepared from the corresponding cell cultures. There were also untreated cell culture samples and a sample treated with PD drug vehicle. Two biological replicates of every sample were prepared for statistical inference with one week of time difference.

Every sample was labeled and hybridized on the breast cancer array platform v3.1 taking, as usual, as reference sample the UHRR, since we wanted to contrast paired samples between two different conditions. Images were quantified, arrays were normalized, and M values were calculated (see chapters 3.9.2, 3.10, and 3.11). We carried out a paired sample contrast analysis between different conditions, using SAM "two-class unpaired" (see chapter 3.13).

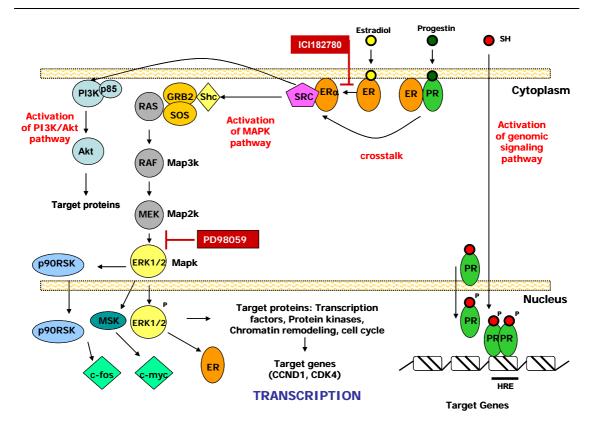


Figure 22: Effect of inhibitors PD98059 and ICI182780 on the ligand-mediated signaling pathways by steroid hormones.

The selected settings to discriminate significantly differentially expressed genes were (1) the FDR threshold to 0.05, that is, a 5% of falsely discovered genes, and (2) the fold-change threshold of 1.3, that is, the relative change of the expression ratio between two unpaired classes must be at least 1.3. Less stringent than the previous 1.4 fold-change threshold since this time we have a replicate experiment.

The SAM version used runs on the R environment and is implemented in our laboratory server. The first contrast analysis use samples induced by R5020 after 6 hr versus the untreated samples and, as a result, 120 genes were obtained with a FDR less than 5%. **Appendix A8** (inhibition by PD or ICI or both of R5020 responsive genes) represents the genes that are induced by R5020 after 6 hr, either upregulated or downregulated, and the corresponding q-value percentage. The columns show the results after PD or ICI treatment and the corresponding q-value obtained in the contrast analysis. NA means "not applicable" since the p-value is larger than our FDR threshold.

We conclude, from the results of the experiments, that some of the genes belong to the investigated signaling pathways since they were found inhibited by PD, ICI or both.. Genes that are induced by progestin and later on inhibited by both PD and ICI are genes that are activated via $ER\alpha$ -PR-B crosstalk and hence are target genes dependent on the Erk1/2 signaling pathway. These include, for example,

- RASL10B (RAS-like. family 10. member B)
- ELL2 (Elongation factor. RNA polymerase II. 2)
- EGFR (Epidermal growth factor receptor)
- CDKN1C (Cyclin-dependent kinase inhibitor 1C, p57. Kip2)
- EGLN1 (Egl nine homolog 1, *C. elegans*)
- H3F3B (H3 histone. family 3B)
- PTCH2 (Patched homolog 2, Drosophila)
- ORC6L (Origin recognition complex. subunit 6 homolog-like, *S. cerevisiae*)
- FANCA (Fanconi anemia. complementation group A)
- POLD4 (Polymerase (DNA-directed). delta 4)
- IGFBP5 (Insulin-like growth factor binding protein 5).

Genes that are induced by progestin and later only inhibited by PD but not by ICI are genes dependent on the Erk1/2 signaling pathway but independent of ER. Some examples are,

- EGF (epidermal growth factor)
- MUC2L (mucin 2 like)
- PPARGC1B (Peroxisome proliferative activated receptor γ coactivator 1 β)
- GRB2 (Growth factor receptor-bound protein 2)
- CCNE2 (Cyclin E2)
- PLAUR (Plasminogen activator. urokinase receptor)
- QSCN6 (Quiescin Q6)
- STAT3 (Signal transducer and activator of transcription 3)
- RAMP (Denticleless homolog, Drosophila)
- MXI1 (MAX interactor 1)
- MKLN1 (Muskelin 1. intracellular mediator containing kelch motifs)
- CDC6 (CDC6 cell division cycle 6 homolog, S. cerevisiae)
- NEO1 (Neogenin homolog 1, chicken)
- MTA1 (Metastasis associated 1
- NCOA3 (Nuclear receptor coactivator 3)
- CHEK2 (CHK2 checkpoint homolog, *S. pombe*)
- ARHGAP5 (Rho GTPase activating protein 5)
- NBS1 (Nibrin)
- IGFBP4 (Insulin-like growth factor binding orotein 4)
- ITGA5 (Integrin. alpha 5 (fibronectin receptor α polypeptide)

Genes that are induced by progestins but inhibited only by ICI and not by PD, are consequently independent of the Erk1/2 pathway and only dependent on ER, therefore dependent on the PI3K/Akt signaling pathway or other still unknown mechanisms. Examples are,

- BIRC3 (Baculoviral IAP repeat-containing 3)
- TP53BP2 (Tumor protein p53 binding protein 2)
- SERPINA3 (Serine (or cysteine) proteinase inhibitor clade A member 3)
- HSPA9B (Heat shock 70kDa protein 9B, mortalin-2)
- IGFBP3 (Insulin-like growth factor binding protein 3)
- HSD17B3 (Hydroxysteroid, 17 β dehydrogenase 3)
- SOS1 (Son of sevenless homolog 1, Drosophila)
- E2F3 (E2F transcription factor 3)
- NFIB (Nuclear factor I)
- LMNA (Lamin A/C)
- NOTCH3 (Notch homolog 3, Drosophila)
- GATA3 (GATA binding prorein 3)
- AR (Androgen receptor)
- UNG2 (Uracil-DNA glycosylase 2).

And finally, genes that are induced by progestins but not inhibited by neither PD nor ICI are genes that are independent of ER α -PR-B crosstalk, independent of Erk1/2 pathway and likely to be pure genomic signaling, PI3K/Akt or JAK/STAT signaling pathway or other still unknown mechanisms. As examples, we have,

- STAT5A (Signal transducer and activator of transcription 5A)
- TGFA (Transforming growth factor α)
- DUSP1 (Dual specificity phosphatase 1)
- GADD45A (Growth arrest and DNA-damage-inducible α)
- CCND1 (Cyclin D1)
- HMGB3 (High-mobility group box 3)
- JUN (v-jun sarcoma virus 17 oncogene homolog, avian)
- IL6ST (Interleukin 6 signal transducer gp130 oncostatin M receptor)
- SAP30 (Sin3-associated polypeptide 30kDa)
- KLF5 (Kruppel-like factor 5, intestinal)
- XLHSRF-1 (Dynein axonemal. heavy polypeptide 1)
- CDC14B(CDC14 cell division cycle 14 homolog B, S. cerevisiae)
- RPS6KA5 (Ribosomal protein S6 kinase 90kDa polypeptide 5)
- AKAP13 (A kinase (PRKA) anchor protein 13)
- GADD45B (Growth arrest and DNA-damage-inducible β)
- MAP3K3 (Mitogen-activated protein 3 kinase 3)
- CXCL12 (Chemokine (C-X-C motif) ligand 12)
- SNAI1 (Snail homolog 1, Drosophila)
- VEGF (Vascular endothelial growth factor)
- RPS6KA1 (Ribosomal protein S6 kinase. 90kDa. polypeptide 1).

Secondly, a two-class unpaired contrast analysis was performed using SAM, samples induced by estradiol after 1 hr versus the untreated samples were confronted, but the FDR threshold selected could not be so stringent since, in the case of the estradiol treatment, there was a greater variation between biological replicates at the earlier time of 1 hr, and the fact that we only had two biological replicates gave us, in this case, too little statistical power. Therefore

we just selected the 96 genes induced by a fold greater than 1.3 or smaller than 1.3. (**Appendix A9**: Inhibition by PD or ICI or both of estradiol responsive genes).

On this table the genes that are induced by estradiol after 1 hr of hormonal treatment is represented, the upregulated or the downregulated ones. Also the corresponding q-value percentage is calculated by SAM. The following columns are the result after PD or ICI treatment and the corresponding q-value due to the two class contrast analysis. NA means "not applicable" since the FDR threshold came above 5%.

As a conclusion from our experiment, we could note some of the genes that are induced by estradiol and are inhibited by both PD and ICI, therefore are activated via ER α -PR-B crosstalk and thus are dependent on the Erk1/2 signaling pathway are, for example,

- TOP3B (Topoisomerase DNA, III b)
- SNAI1 Snail homolog 1, Drosophila)
- IGFBP3 (Insulin-like growth factor binding protein 3)
- GADD45A (Growth arrest and DNA-damage-inducible α)
- TIMP3 (Tissue inhibitor of metalloproteinase 3)
- SERPINA3 (Serine or cysteine proteinase inhibitor clade A member 3)
- CDKN1C (Cyclin-dependent kinase inhibitor 1C, p57 Kip2)
- PPP1R15A (Protein phosphatase 1 regulatory inhibitor subunit 15A)
- AKAP9 (A kinase PRKA anchor protein 9)
- STAT5A (Signal transducer and activator of transcription 5A)
- SCD4 (Stearoyl-CoA desaturase 5)
- MYB (V-myb myeloblastosis viral oncogene homolog, avian)
- KRT5 (Keratin 5)
- WISP2 (WNT1 inducible signaling pathway protein 2)
- DDB1 (Damage-specific DNA binding protein 1 127kDa)
- DNMT3B (DNA cytosine-5--methyltransferase 3 β)
- E2F1 (E2F transcription factor 1)
- GATA3 (GATA binding protein 3)
- MGST1 (Microsomal glutathione S-transferase 1)
- GSTM3 (Glutathione S-transferase M3, brain)
- RPS6KA5 (Ribosomal protein S6 kinase. 90kDa. polypeptide 5)
- TGFB3 (Transforming growth factor β 3)
- IGF1 (Insulin-like growth factor 1, somatomedin C)

Genes that are induced by estradiol and later only inhibited by PD but not by ICI would be genes dependent of the Erk1/2 signaling pathway but independent of ER. As examples we could note:

- ATF3 (Activating transcription factor 3)
- DDIT3 DNA-damage-inducible transcript 3)
- ITGA5 (Integrin. α 5)

- CDC14A (CDC14 cell division cycle 14 homolog A, S. cerevisiae)
- ZNF350 (Zinc finger protein 350)
- MAP3K5 (Mitogen-activated protein kinase kinase kinase 5)
- PIK3CA (Phosphoinositide-3-kinase catalytic α polypeptide)
- ADRA1B (Adrenergic α 1B receptor)
- BRCA2 (Breast cancer 2 early onset)
- SAP18 (Sin3-associated polypeptide 18kDa)
- RUNDC1 (RUN domain containing 1)
- IL6ST (Interleukin 6 signal transducer, gp130 oncostatin M receptor)
- GPR126 (G protein-coupled receptor 126)
- CTNNB1 (Catenin cadherin-associated protein- β 1. 88 kDa)
- NCOA2 (Nuclear receptor coactivator 2)
- FLT1 (Fms-related tyrosine kinase 1 vascular endothelial growth factor)
- ESRRB (Estrogen-related receptor β)
- C20orf46 (Chromosome 20 open reading frame 46)
- CaMKIINalpha (Calcium/calmodulin-dependent protein kinase II inhibitor 1)
- UNG2 (Uracil-DNA glycosylase 2)
- WNT5B (Wingless-type MMTV integration site family. member 5B)
- ERBB3 (V-erb-b2 erythroblastic leukemia viral oncogene homolog 3, avian)
- MAPK13 (Mitogen-activated protein kinase 13)
- ATM (Ataxia telangiectasia mutated)
- SNRPN (Small nuclear ribonucleoprotein polypeptide N)
- ADAM15 (A disintegrin and metalloproteinase domain 15 (metargidin))
- HIRA (HIR histone cell cycle regulation defective homolog A, S. cerevisiae)
- AR (Androgen receptor)
- DNMT3A (DNA, cytosine-5-methyltransferase 3 α)

Genes that are induced by estradiol but inhibited only by ICI and not by PD, are consequently independent of the Erk1/2 pathway and only dependent of ER, therefore dependent of the PI3K/Akt signaling pathway or other still unknown mechanisms are, for example,

- FOS (V-fos FBJ murine osteosarcoma viral oncogene homolog)
- MYC (V-myc myelocytomatosis viral oncogene homolog, avian)
- TFF1 (Trefoil factor 1)
- GADD45B (Growth arrest and DNA-damage-inducible β)
- IGFBP1 (Insulin-like growth factor binding protein 1)
- ENPP2 (Ectonucleotide pyrophosphatase phosphodiesterase 2)
- CDC42 (Cell division cycle 42, GTP binding protein 25kDa)
- HSD17B3 (Hydroxysteroid 17-β dehydrogenase 3)
- PTCH (Patched homolog, *Drosophila*)
- WT1 (Wilms tumor 1)
- HSD17B7 (Hydroxysteroid 17-β dehydrogenase 7)

And finally, genes that are induced by estradiol but not inhibited by neither PD nor ICI are genes independent of ER α -PR-B crosstalk, independent of Erk1/2 pathway, and would be due to pure genomic signaling pathway or other still unknown mechanism. Some of the genes that are strongly upregulated at 1 hr after hormone induction are:

- EGR1 (Early growth response 1)
- JUN (V-jun sarcoma virus 17 oncogene homolog, avian)
- DUSP1 (Dual specificity phosphatase 1)
- ID4 (Inhibitor of DNA binding 4)
- CKS2 (CDC28 protein kinase regulatory subunit 2)

See **Appendix A10** for the generated Venn diagrams of progestin and estradiol hormone induction and inhibition by PD and ICI.

Every gene lists from this analysis was also added to the customized gene list collection c5 for GSEA posterior analysis.

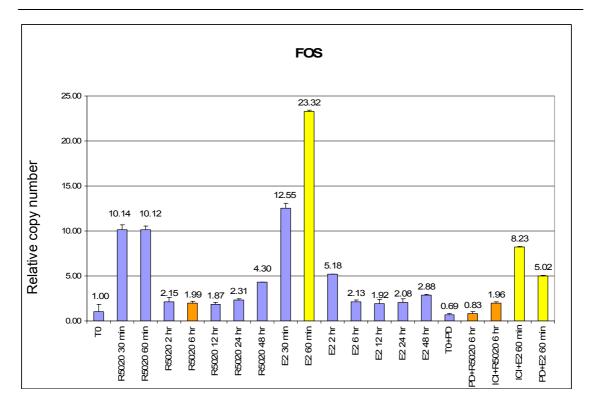
4.6 Confirmation of microarray results by Real Time qPCR

Real time quantitative PCR assays were performed to confirm the gene expression of some of the genes. This is important in order to validate the results obtained by microarray experiments. Primer design, procedures, efficiency calculation, and data analysis are described in detail in chapter 3.20.

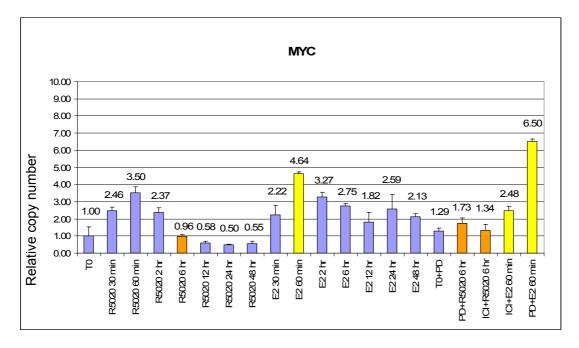
The obtained PCR efficiencies of the assayed genes are listed in Table 4.

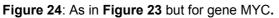
Gen symbol (alias)	RefSeq Acc. No.	Efficiency	Efficiency (%)
GAPD	NM_002046	1.754	87.70
ACTN	NM_001102	1.775	88.75
FOS	BX647104	1.764	88.20
MYC	NM_002467	1.654	82.70
TFF1 (PS2)	NM_003225	1.733	86.65
CCND1	NM_053056	1.747	87.35
RPS6KA1 (RSK1)	BC014966	1.670	83.50
RPS6KA5 (MSK1)	AB209667	1.694	84.70
MUC2L	BG675392	1.665	83.25
CCNE2	NM_057749	1.855	92.75

Table 4: Assay efficiency obtained for the evaluated genes.


First of all, we determined which gene was the best one we could use for normalization in relative quantification analysis. It is well known that there is not a universal endogenous gene, also called housekeeping, since their levels of expression are not always constant (Barber *et al.* 2005). We first carried out a bibliographic search looking for reference genes used in real time assays for our tissue type (Szabo *et al.* 2004). The reference gene of choice should be stably expressed in breast tissue, and in our breast cancer cell line model, and most importantly, with a minimal variation between treated and untreated samples or normal and tumor tissue.

A combination of genes has been used as a normalization factor as well. This is usually done by calculating a geometric mean of a combination of 3 to 5 reference genes (Vandesompele et al. 2002). The underlying assumption is that gene pairs showing stable expression patterns relative to each other are appropriate control genes. However, this model requires extensive practical validation to identify a combination of reference genes appropriate for an individual experiment. To avoid this extensive search, we first tried a couple of reference genes, commonly used as endogenous genes such as ACTN (Actinin, α 1) and GAPD (Glyceraldehyde-3-phosphate dehydrogenase), and carried out real time quantitative PCR assays against our treated and untreated cell line samples. Three more target genes (FOS, MYC, and TFF1) were included for comparison. Overall behavior of ACTN and GAPD with respect to the target genes was analyzed. We used for the data analysis, the excel-based program Bestkeeper[©], that performs a pair-wise correlation analysis between various reference and target genes, in order to find the best reference gene with a minimal variation with the assayed samples (Pfaffl et al. 2004). We concluded, after this analysis, that GAPD had the minimal pair-wise correlation to the target genes, and consequently, we used it as our reference gene.


We observed, looking at the PCR amplification plots, the perfect overlap of the amplification plots of treated and untreated samples in the case of GAPD, while this did not occur with ACTN. This is because the total RNA starting amount before reverse transcription was the same one in all samples, and all these samples were equally treated throughout the qPCR procedure. This observation was our best confirmation that GAPD was the best endogenous gene to use as reference gene in relative quantification of the cell line experiments.


The results obtained with the set of analyzed genes are shown in graphical bar representation of the relative copy number of every sample normalized to the calibrator sample T_0 (**Figures 23-30**). We can compare the R5020 samples before and after PD or ICI inhibitors at 6 hr after hormone induction (orange color bars in **Figures 23-30**). For comparison we include also the estradiol treated samples before and after 1 hr of treatment with PD or ICI treatment (yellow bars).

Microarray measurements are not as accurate as those by real time qPCR assays. Fold-change ratios are larger when analyzed by real time qPCR due to the different type of complementary DNA strand hybridization. In the case of microarray hybridization, one DNA strand, the PCR product of the cDNA, is fixed to a solid support, the slide. However, in the case of Real Time qPCR, both hybridizing complementary DNA strands are in solution. This might be the reason why real time qPCR measurements are more sensitive and reproducible than microarray measurements. Besides, there is a risk of cross-hybridization at microarray experiments since it is performed under a single hybridization temperature that might not be optimal for all probes. Real time qPCR has a much broader dynamic range than microarray techniques.

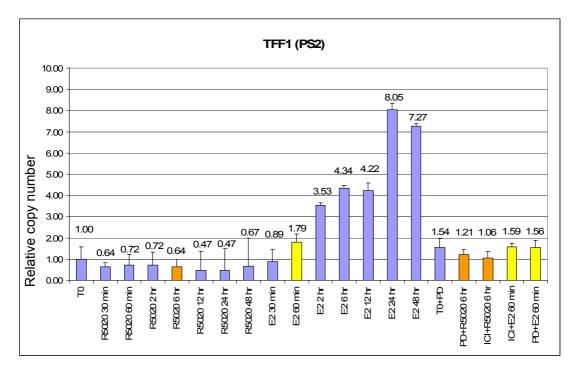


Figure 23: Relative copy number for the hormone treated time series and inhibitors by Real Time qPCR in the analysis of FOS.

FOS and MYC are transcription factors that are strongly upregulated by estradiol after 1 hr of treatment, and are inhibited by the estrogen antagonist ICI. FOS is also inhibited by PD but to a minor degree as it is shown in the bar graph (**Figure 23** and **Figure 24**). FOS is induced by R5020 treatment with a 2 fold ratio at 6 hr and later inhibited by PD and not by ICI. This was not seen by

microarray analysis since fold-change ratio is below cut-off of significance, and fold-change ratios values are compressed in microarray measurements.

Figure 25: As in Figure 23 but for the TFF1 (PS2) gene.

Real time PCR quantification shows that TFF1 (PS2, trefoil factor 1) is not affected by any of the two inhibitors, at least, at these times, but from microarray results seems affected by ICI after estradiol treatment (see **Table 5**: Inhibition by PD or ICI or both of estradiol responsive genes). TFF1 is strongly induced by estradiol after one hour of hormone treatment (**Figure 25**).

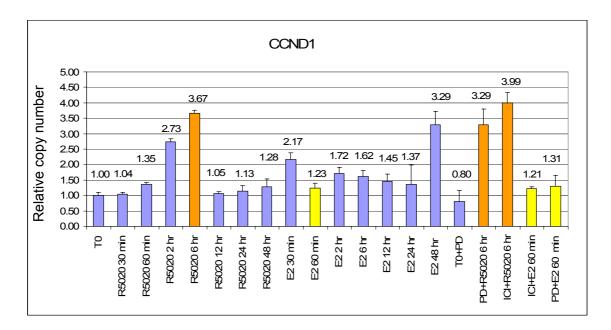


Figure 26: As in Figure 23 but for gene CCND1 (Cyclin D1).

CCND1 (Cyclin D1) is consistently induced by progestin at 6 hr, and no inhibitor is able to affect this expression level (**Figure 26**). This fact is in agreement with microarray results. Induction by estradiol is below our microarray detection threshold, which we set at 1.3 fold-change ratio. Only at 48 hr, CCND1 has similar expression levels after estradiol hormonal treatment as it happens with progestin at 6 hr, therefore promoting cell cycle progression at earlier times in our model cell line.

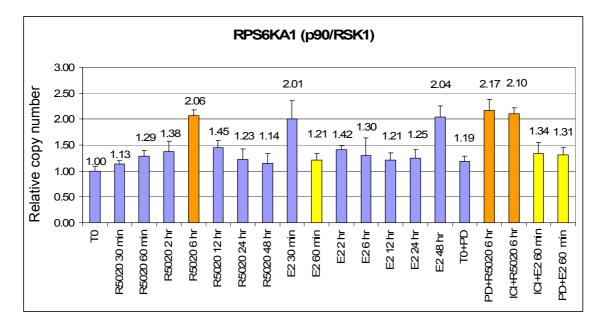


Figure 27: As in Figure 23 but for gene RPS6KA1 (p90/RSK1).

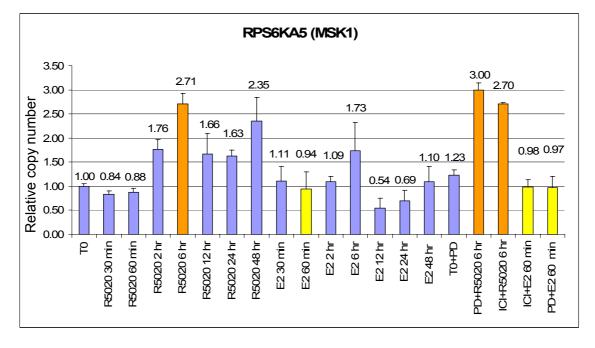


Figure 28: As in Figure 23 but for gene RPS6KA5 (MSK1).

Neither PRS6KA1 (p90/RSK1, **Figure 27**) nor RPS6KA5 (MSK1, **Figure 28**) gene expression responses to hormones are affected by PD or ICI inhibitors, this fact agrees with microarray results. Hormone induction of both genes is independent of the ER-PR crosstalk, and independent of Erk signaling pathway, this probably means that these genes are target genes due to direct genomic signaling or other still unknown mechanisms.

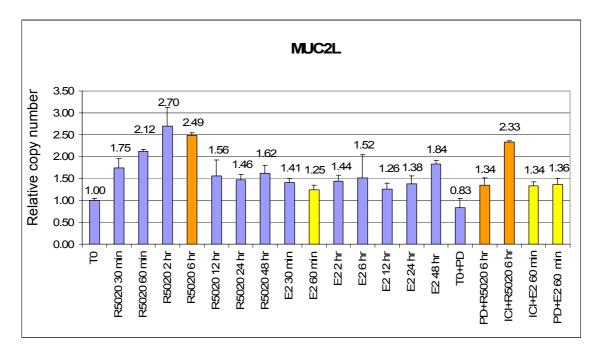


Figure 29: As in Figure 23 but for gene MUC2L (TFCP2L3).

MUC2L (TFCP2L3, transcription factor CP2-like 3, **Figure 29**) upregulated expression in response to R5020 at 6 hr is only inhibited by PD, as it is shown from microarrays results. For that reason MUC2L is independent of ER and activated by progestins via the Erk signaling pathway.

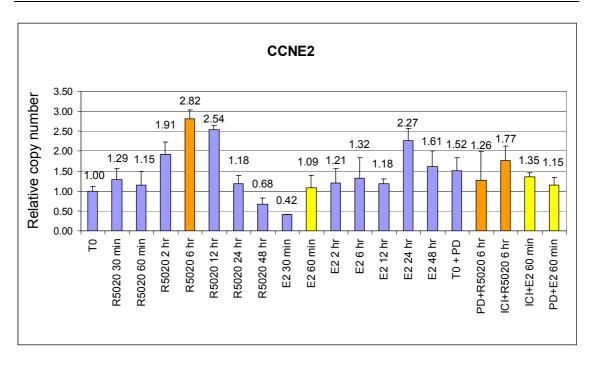
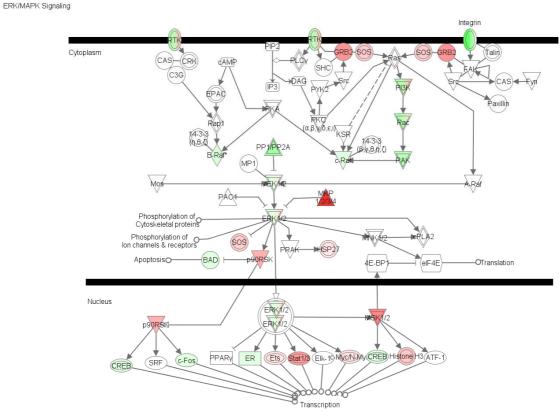


Figure 30: As in Figure 23 but for gene CCNE2 (Cyclin E2)

CCNE2 (Cyclin E2, **Figure 30**) is strongly induced by R5020 at 6 hr. Real Time qPCR results agree with microarray measurements, though it is also observed that CCNE2 might be also affected by ICI, which means that CCNE2 is dependent of ER and the Erk signaling pathway. Induction of CCNE2 by estradiol is below the detection threshold at 60 min, and it has expression levels similar to progestin only 24 hr after estradiol hormonal induction. This is an indication of the delayed cell cycle progression in response to estradiol treatment in comparison with progestin treatment in our model cell line.


See **Appendix A11** for a comparison between Real Time qPCR values and Log₂Ratio values obtained by microarray analysis.

4.7 Pathway analysis of the time course experiment

Global functional pathway analysis was performed using a gene ontology built from experimental evidence compiled in the Ingenuity Pathways Knowledge Base (see chapter 3.19.4).

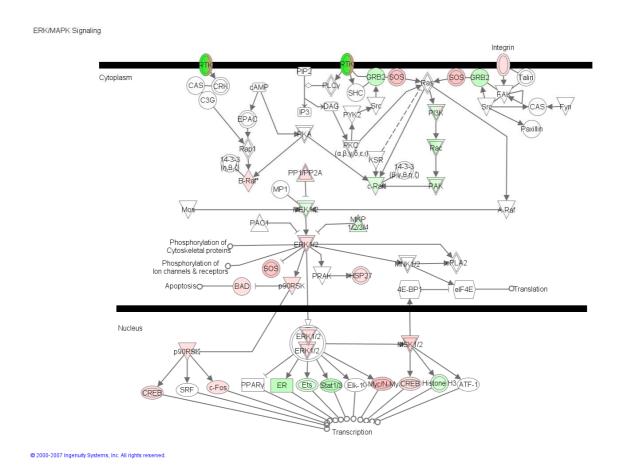

We focused on the ERK/MAPK signaling pathway to observe the genes induced by R5020 and the effect of PD as an inhibitor of the Erk1/2 pathway or the effect of ICI as the antagonist of ER on the ERK/MAPK pathway component transcript levels.

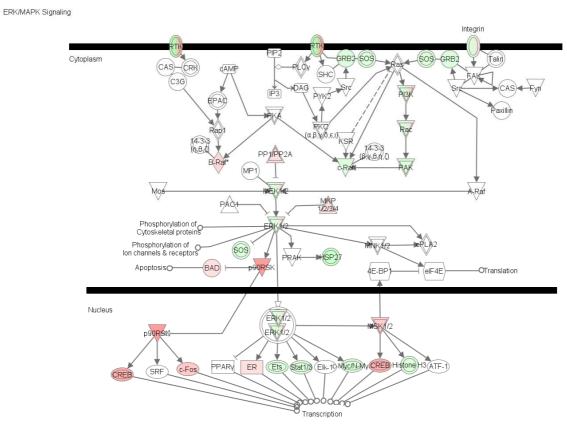
Figure 31, shows the gene expression values (M values) of the induced genes 6 hr after progestin treatment. Genes are highlighted in red or green based on their gene expression values, as up-regulated or down-regulated respectively, interpreting them as long term changes as a possible modulation on signal transduction.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 31: ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R5020

Figure 32: Effect of PD on ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R5020.

In order to observe the effect of PD, average M values from each of microarray experiments which were referred to average T0 were subtracted as follows:


$$\log_2(PDeffect) = \log_2 \frac{R5020 + PD}{EtOH} - \log_2 \frac{R5020}{EtOH}$$

These expression values were imported into Ingenuity Pathway analysis software. This effect is shown in **Figure 32**. Among the genes whose gene expression is reduced by the effect of PD are GRB2, and DUSP1 (MKP1) indicating that Erk signaling is not active. Gene expression of MSK1 and RSK1 are also found under expressed. Downstream Histone H3, STAT3, ER and ETS transcription regulators are down-regulated, and MYC is under-expressed.

To observe the effect of ICI, we proceeded in a similar way:

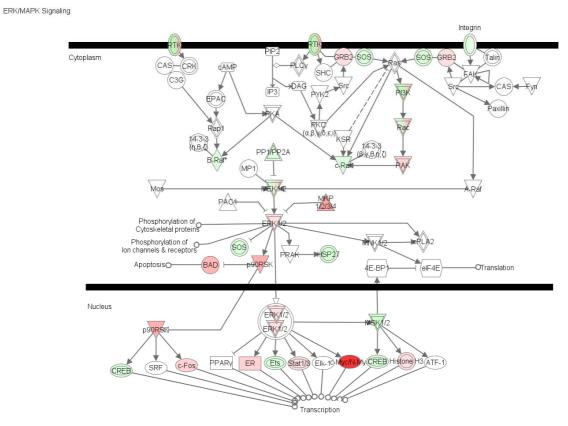
$$\log_2(ICIeffect) = \log_2 \frac{R5020 + ICI}{EtOH} - \log_2 \frac{R5020}{EtOH}$$

Erk/MAPK signaling pathway after the effect of ICI shows a different situation (**Figure 33**) where SOS1 and GRB2 are down-regulated, DUSP1 (MKP1), and HSP9B (HSP27) are over-expressed, and downstream transcription regulators such as Histone H3, STAT3, MYC, and ETS1 (Ets protein) are down-regulated and ER is up-regulated.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 33: Effect of ICI on ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R5020.

Likewise, if we focused on the estradiol induced genes after 1 hr of treatment, in **Figure 34**, the gene expression values (M values) of the induced genes 1 hr after estradiol treatment are shown. Genes are also highlighted in red or green based on their gene expression values, as up-regulated or down-regulated respectively, in response to estradiol.



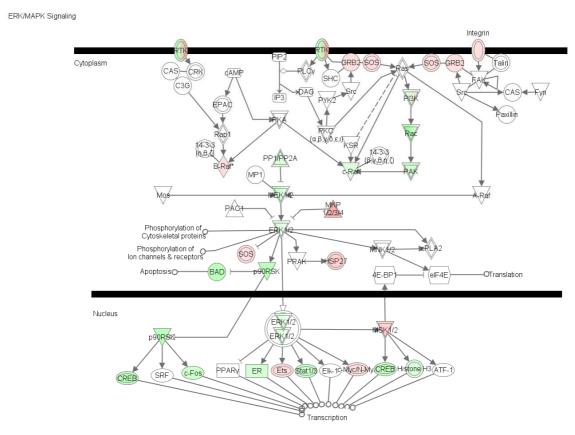


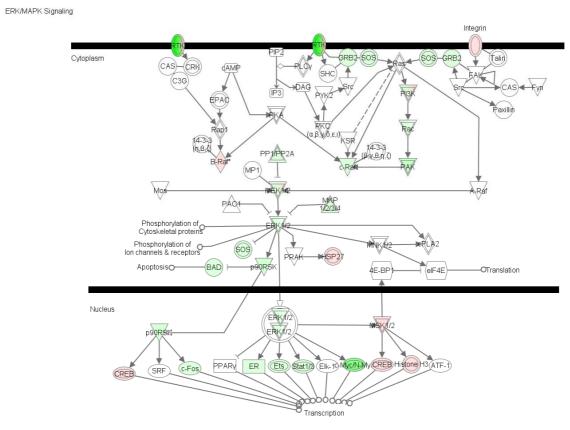
Figure 34: ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol.

In order to observe the effect of PD after estradiol treatment, we proceed as follows:

$$\log_2(PDeffect) = \log_2 \frac{E2 + PD}{EtOH} - \log_2 \frac{E2}{EtOH}$$

In this case, the ERK/MAPK pathway is shown in **Figure 35**, where ERK1/2, p90RSK, PAK2 (p21 Activated Protein Kinase 2) transcripts are down-regulated, and SOS1 GRB2, DUSP1 (MKP1), HSP27 are being over-expressed. And downstream, transcription regulators such as FOS, ER, STAT3 are under-expressed, and MYC and Histone H3 are also affected by this treatment over-expressing them.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.


Figure 35: Effect of PD on ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol.

Moreover, the effect of ICI 1hr after hormone induction with estradiol was calculated similarly as:

$$\log_2(ICIeffect) = \log_2 \frac{E2 + ICI}{EtOH} - \log_2 \frac{E2}{EtOH}$$

At this case, ERK/MAPK pathway looks as in **Figure 36** where this effect is more profound and SOS1, GRB2, PAK2, ERK1/2, DUSP1, and p90RSK, are under-expressed.

FOS and MYC are strongly under-expressed, as well as transcription regulators such as ER, ETS1, and STAT3.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 36: Effect of ICI on ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol.

4.8 Application to the breast tumor classification

A set of 108 breast tumor tissue samples and 3 from normal breast tissue adjacent to tumors of different individuals were amplified, labeled and hybridized, as described in the methods section (chapter 3.7) to our cDNA platform, version 4. UHRR was used as reference RNA. A first batch of 77 samples, including normal breast samples was hybridized on a first batch of arrays. The second batch of 34 tumor samples was hybridized a year later with a new array printing batch. Therefore, in order to avoid any additional sources of variability due to the microarray batch, the first set of 77 samples, which have characterized clinical-histopathological parameters. was well analvzed separately and used as our training set in class prediction. The new breast sample batch was treated as a test set, and its characteristics assumed to be unknown were corroborated a posteriori. Clinical and histopathological features of the training and the test set are shown in Table 5.

The objectives of the experiment were (1) to classify tumor samples of our population in the various gene expression phenotypes, (2) to identify distinctive genes that can distinguish breast cancer subtypes, (3) to relate these phenotypes to specific cell-signaling pathways, and (4) identify molecular biomarkers, within our small gene collection, for breast cancer tumor progression.

The molecular biomarkers could be used in the future in clinical diagnosis, to improve the choice of treatment, to predict prognosis and identify patients at higher risk of developing metastasis, as well as for following the response to therapy.

The comparison of tumor data with the data obtained from our hormonal dependent breast cancer cell line model treated with progestin and estradiol in a time series, as well as the effect of the specific inhibitor and antagonist of the genomic and non-genomic ligand-activated pathways through which progestins act, might provide additional information about the most represented pathways influencing how hormone-dependent tumors develop.

Table 5: Clinical and histopathological characteristics of the training and the test set of breast tumor samples.

All patients (n	= 105)	Training set (n=74)	Test set (n=31)
Age (years)	Number of cases (%)	Number of cases (%)	Number of cases (%)
≤ 40	5 (4.8%)	3 (4.1%)	2 (6.5%)
> 40 and ≤ 50	11 (10.5%)	7 (9.5%)	4 (12.9%)
> 50 and ≤ 60	30 (28.6%)	22 (29.7%)	8 (25.8%)
> 60 and ≤ 70	27 (25.7%)	17 (23%)	10 (32.3%)
> 70	32 (30.5%)	23 (31.1%)	9 (29.0%)
Therapy	Number of cases (%)	Number of cases (%)	Number of cases (%)
HT only	21 (20%)	19 (25.7%)	3 (9.7%)
QT only	26 (24.8%)	24 (32.4%)	4 (9.7%)
HT + QT	38 (36.2%)	26 (35.1%)	19 (61.3%)
neoadjuvant QT	()	· /	· · · ·
	3 (2.9%)	1 (1.4%)	2 (6.5%)
HT + QT + Herceptin	1 (1%)		3 (9.7%)
none	5 (4.8%)	4 (5.4%)	1 (3.2%)
Tumor size, cm	Number of cases (%)	Number of cases (%)	Number of cases (%)
1	51 (48.6%)	32 (43.2%)	19 (61.3%)
2 3	42 (40%)	32 (43.2%)	10 (32.3%)
3	9 (8.6%)	7 (9.5%)	2 (6.5%)
4 isquemic	2 (1.9%) 1 (1%)	2 (2.7%) 1 (1.4%)	
Lymph node	Number of cases (%)	Number of cases (%)	Number of cases (%)
none	60 (57.1%)	46 (62.2%)	15 (48.4%)
1	29 (27.6%)	16 (21.6%)	13 (41.9%)
		· · · ·	()
2	8 (7.6%)	6 (8.1%)	2 (6.5%)
3	6 (5.7%)	5 (6.8%)	1 (3.2%)
micro	1 (1%)	1 (1.4%)	
Metastatic sites	Number of cases (%)	Number of cases (%)	Number of cases (%)
none	101 (96.2%)	70 (94.6%)	31 (100%)
one	4 (3.8%)	4 (5.4%)	
Vascular invasion	Number of cases (%)	Number of cases (%)	Number of cases (%)
yes	30 (28.6%)	18 (24.3%)	12 (38.7%)
none	74 (70.5%)	55 (74.3%)	17 (54.8%)
Histological grade	Number of cases (%)	Number of cases (%)	Number of cases (%)
1	17 (16.2%)	12 (16.2%)	5 (16.1%)
2	30 (28.6%)	21 (28.4%)	9 (29.0%)
3	33 (31.4%)	23 (31.1%)	10 (32.3%)
unknown	25 (23.8%)	18 (24.3&)	7 (22.6%)
Recurrence	Number of cases (%)	Number of cases (%)	Number of cases (%)
	· · · ·		Number of cases (78)
free of disease (VL)	58 (55.2%)	57 (77%)	
with disease (VE)	5 (4.8%)	3 (4.1%)	
exitus	10 (9.5%)	10 (13.5%)	
unknown	31 (29.5%)		31 (100%)
no follow-up	2 (1.9%)	2 (2.7%)	
p53 status	Number of cases (%)	Number of cases (%)	Number of cases (%)
negative	70 (66.7%)	47 (63.5%)	23 (74.2%)
positive	34 (32.4%)	27 (36.5%)	7 (22.6%)
unknown	1 (1%)		1 (3.2%)
Steroid receptor status	Number of cases (%)	Number of cases (%)	Number of cases (%)
ER+ PR+	56 (53.3%)	36 (48.6%)	20 (64.5%)
ER+ PR-	15 (14.3%)	11 (14.9%)	4 (12.9%)
ER- PR+	2 (1.9%)	2 (2.7%)	
ER- PR-	32 (30.5%)	25 (33.8%)	7 (22.6%)
her-2 status (IHC/FISH)	Number of cases (%)	Number of cases (%)	Number of cases (%)
negative/negative	90 (85.7%)	67 (90.5%)	23 (74.2%)
positive/amplified polysome	10 (9.5%)	5 (6.8%)	5 (16.1%)
negative/amplified polysome	4 (3.8%)	1 (1.4%)	3 (9.7%)
positive/non-amplified polysome	1 (1%)	1 (1.4%)	0 (0.1 /0)

HT = hormone therapy; QT = quimiotherapy: IHC = immunohistochemistry; FISH =fluorescence "in situ" hybridization

4.9 Classification of breast tumor samples by unsupervised hierarchical clustering

FADA was applied as described in methods (chapter 3.16) using complete linkage as the hierarchical clustering algorithm. An unsupervised cluster dendrogram was obtained where breast tumor samples were distributed based on similarity of gene expression profiles (**Figure 37**).

Results

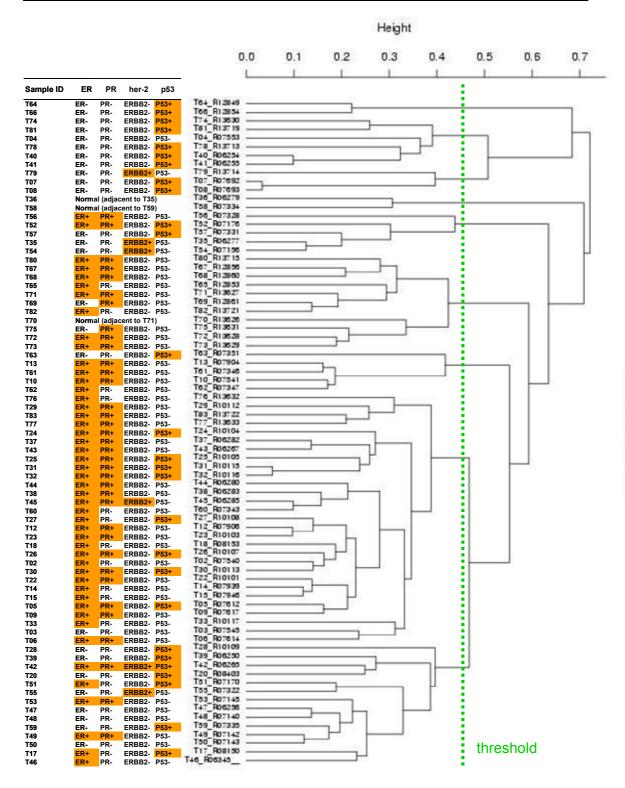


Figure 37: Unsupervised hierarchical clustering of breast samples with complete linkage.

Primarily, samples were distributed into two main branches of the tree dendrogram. These two main clusters gave two distinctive profiles with opposite differentially expressed genes (**Figure 38**). The first profile (**Figure 38** A) brought together 11 tumor samples with significantly differential genes such as

Results

TP53BP2 (tumor protein p53 binding protein 2), S100A2 (s100 calcium binding protein 2), HRASLS (HRAS-like suppressor), KRT5 (cytokeratins 5), NF1B (transcription factor 1B), GPR180 (G protein-coupled receptor 180) and RUNX2 (Runt-related transcription factor 2) characteristic upregulated markers for the basal myoephitelial subtype of breast cancer, often p53+, and ER- and ERBB2breast tumors (Rakha et al. 2007). Cytokeratin markers have been also shown to correlate with poor prognosis in breast cancer (Sorlie et al. 2003). Runtrelated transcription factor RUNX2 has been associated as a breast cancer marker for developing bone metastasis (Barnes et al. 2005). The second profile (Figure 38 B) includes genes such as DDB2 (Damage-specific DNA binding protein 2), GATA3 (GATA binding protein 3), TFF1 (trefoil factor 1), CCNH (cyclin H), HSD17B4 (hydroxysteroid 17 β dehydrogenase 4, TNFRSF4 (tumor necrosis factor receptor superfamily, member 4), ITGB5 (Integrin β 5), AR (androgen receptor), and IL6ST (interleukin 6 signal transducer). Some of these genes have been reported as upregulated markers for ER+ tumors (West et al. 2001).

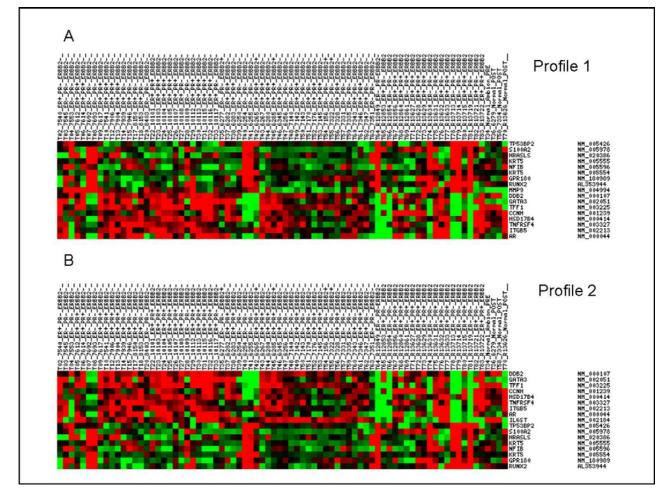


Figure 38: Expression levels of the most relevant genes selected from the two main clusters.

To reveal new distinctive tumor phenotypes within these two main branches, a threshold value (green dash line in **Figure 37**) was chosen. This threshold gives us 9 groups of samples, therefore performing a supervised analysis, with a

minimum number of 2 sample tumors per group. The most relevant gene list, up and downregulated, of each cluster was obtained with a q-value of 0.05 of being differentially expressed relative to the other cluster. The most significant gene expression profiles are represented in **Panel 39**.

Next, functional analysis was performed with the most differentially expressed genes of each group in both directions, up or downregulated, in search of enriched functional categories among GO terms in biological process (GO bp) or molecular function (GO mf). The significant hits are summarized in the following **Table 6**. Most of the groups have no relevant enriched GO term with a Fisher's exact probability less than 0.01, and a Benjamini and Hochberg (1995) adjusted p-value lower than 0.05. Background gene list used was the 820 genes from BCA v4.0.

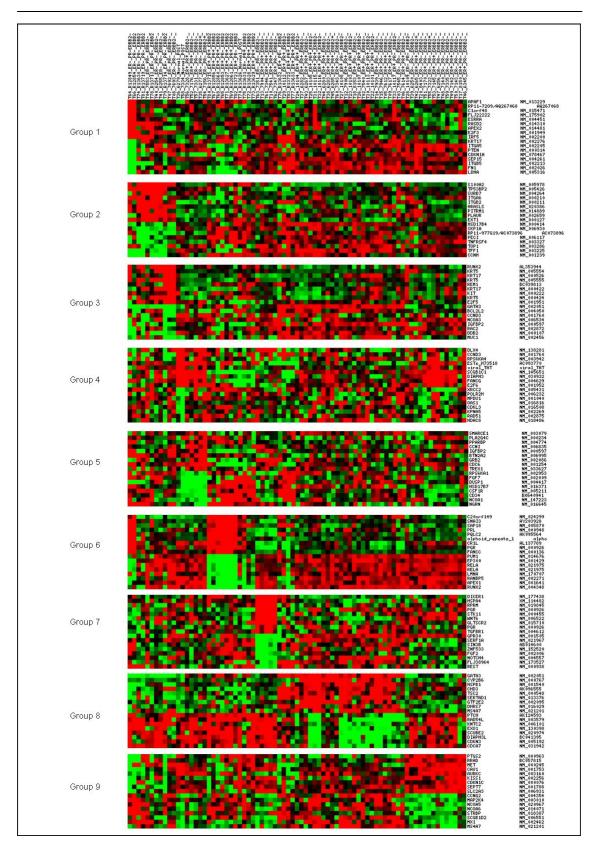
Table 6: Significant (BH <i>p</i> -value<0.05) GO terms of the first three groups of gene expression
clusters. ("GO mf" means GO molecular function, "GO bp" means GO biological process).

Group	Enrichment categories	Functional annotations categories	Genes	Fisher's exact <i>p</i> -values
1 (Down)	GO bp	Cell adhesion	ITGA5, PTEN, ITGB5, FN1	1.1E-3
	GO bp	Regulation of cell cycle dependent kinase activity	PTEN, CDKN1A, GTF2H1	2.2E-3
	GO bp	Integrin-mediated signaling pathway	ITGB5, ITGA5	1.0E-2
2 (Down)	GO bp	Cell motility	S100A2, ITGA6, ITGB2, PLAUR	5.9E-5
	GO bp	Cell migration	S100A2, ITGA6, ITGB2	1.1E-4
	GO bp	Integrin-mediated signaling pathway	ITGA6, ITGB2	1.0E-2
	GO mf	Isomerase activity	HSD17B4, PECI, TOP1	9.4E-5
	GO mf	Sterol transporter activity	HSD17B4	1.0E-2
3 (Up)	GO bp	Ectoderm development	KRT6A, KRT6B, KRT14, KRT17, KRT5	0.0
	GO bp	Tissue development	KRT6A, KRT6B, KRT14, KRT17, KRT5, RUNX2	2.0E-6
	GO mf	Structural constituent of cytoskeleton	KRT14, KRT17, KRT5, KRT6B	1.0E-6
	GO mf	Structural molecule activity	KRT6A, KRT6B, KRT14, KRT17, KRT5	1.3E-5

The profile for the groups 1, 2 and 3 clusters 11 tumor samples, 9 of which (82%) are positive for p53 and are negative for ER, PR and ERBB2 receptors. All these tumors present histological grade 3, or have developed metastatic sites. Relapse occurred in 6 cases resulting in death shortly after. These tumors would appear to match a particularly well defined class of tumors, usually called basal-cell or myoepithelial-like since they show high expression of cytokeratins 5/6, 14 and 17, are very aggressive (Nielsen *et al.* 2004). Basal-like tumor samples are included in the so-called triple-negative tumor class as defined by the absent expression of these three receptors. But not all triple-negative are basal-like tumors (for a review see Cleator *et al.* 2007). This tumor subtype do not respond to targeted therapies such as hormonal or trastuzumab treatment. This subtype of tumor (15% of all breast tumor samples) is supposed to arise from the outer (basal) layer of breast duct (myoepithelial cells). Basal-like breast

cancers usually show high p53 protein expression due to p53 mutations. Protein p53 acts as a checkpoint in the cell-cycle to trigger molecular response to DNA damage, including repair and apoptosis. A proportion (57%) of basal-like tumors expresses EGFR (epidermal growth factor receptor), c-KIT (29%) and Cyclin E (80%). Sporadic triple-negative breast cancers share similar features with BRCA1-related cancer, including ER negativity, high nuclear grade, high Ki-67 staining, and high CK5/6 and EGFR expression. Results from a report indicate that BRCA1 mRNA expression was significantly 2-fold lower in basal-like sporadic breast cancer. Additionally, ID4, a negative regulator of BRCA1, is also expressed at higher levels in basal-like breast cancers (Turner *et al.* 2006)

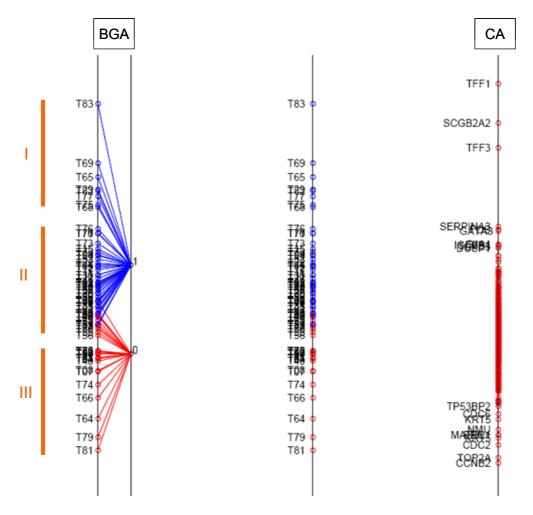
Group 4 clusters two samples from normal tissue adjacent to tumors.


Group 5 gathers 5 samples of the ERBB2+ subtype. They present also high histological grade 2/3. Positive staining for her-2 protein was only seen in 2 cases out of 5. Gene expression profiling of this group shows high expression for the genes ERBB2, PPARBP, SMARCE1, and GRB2 among others, which has been already shown by Sorlie *et al.* 2003.

Group 6 clusters 11 samples. One of them, T70 (R13626) being a normal tissue sample adjacent to tumor sample T71 (R13628), it is assembled into the same cluster as its paired sample. We thought that it could still contain tumoral cells, but it was confirmed by pathologists that it is indeed a normal sample. Most interesting in this cluster is that 60% of these samples are positive for both estrogen and progesterone receptor proteins, and the other 4 samples are positive for either progesterone or the estrogen receptor. The gene expression profile shows high expression of PR, and some known genes found to be regulated by progestins in breast cancer cell line experiments, such as SNAI3, SAP18, PQLC2, CR1L, PRL, FANCC, and C20orf149, indicating that these samples have PR activity. These tumor samples are also all ERBB2 and p53 negative.

Group 7 assembles 5 samples, which are positive for both estrogen and progesterone receptor proteins, and negative for ERBB2 (her-2) and p53 proteins, except in one case that was found by clinicians to be p53 positive. Among the most significant genes are PR, WNT6, STK11, TGFBR1, RPRM, HSPA4, DICER1, and GLTSCR2. We hypothesize that this group of samples are hormone dependent tumors and the tumor progression is due to signaling pathways different to those of group 6.

Group 8 clusters 29 samples: 76% are ER+PR+, 20% are ER+, and only one sample (T03-R7545) is negative for both hormone receptors and negative for ERBB2 (her-2) and p53 protein. We hypothesize that this tumor sample has intact ER signaling pathway, and it is a hormonal-dependent tumor. The gene expression profile shows activated ER signaling pathways showing high levels of GATA3, CYP2B6, HSPB1, CHD3, TSC2, SERTAD1, GTF2E2, DHRS7, and MS4A7. Some of these genes have been previously reported as being regulated by ER or have been found to be co-expressed with ER.


Group 9 collects 14 samples. These breast tumor samples are more heterogeneous in their immunohistochemical clinical data: only 6 of them are either positive for one or both hormone receptors, half of them are triplenegative and p53+. Significant overexpressed genes for this cluster are PTGS2, RRAD, MET, CAV1, AURKC, KISS1, CDKN1C, SEPT7, and SLC2A3. Functional analysis gave no significant result.

Panel 39: Expression levels of the most relevant genes selected from the nine groups obtained by supervised analysis.

4.10 Principal component analysis (BGA)

Datasets were divided into training and test dataset. The training set consisted in 77 samples. At the time of the gene expression analysis by microarray technique, the clinical-histopatological characteristics of these samples (including status of the molecular markers such as ER, PR, p53, and her-2 proteins scored by immunohistochemistry) were known. On the contrary, at the time of the gene expression analysis, nothing was know about the newly hybridized batch of 34 breast tumor samples. Therefore we used this dataset as the test set, and wait for their clinical-histopatological parameters be determined. Initially a two class supervised analysis was performed. Depending on their estrogen receptor status, which was determined by IHC, samples were classified into ER positive (class 1) or ER negative (class 0). Appendix A4 displays the clinical-histopatological patient data. Between groups analysis (BGA) was applied, and samples were distributed along one axis for visualization purposes (Figure 40). Since BGA used correspondence analysis (CA), the most dicriminant genes are also determined. It is observed that samples are grouped into three sets along the axis, leaving the middle group as a mixed class.

Figure 40: Supervised classification of breast samples by BGA into two groups 0 and 1 based on their ER status reveals an intermediate mixed class.

Table 7 summarizes the distribution of the samples along the axis and their clinical markers scored by immunohistochemistry. The column "IHC ER status" provides the assignment of class prior the BGA analysis, defined based on clinical status of the ER. The samples that are lying on the axis discordant with the clinical data are colored in red. Sample T70 (R13626) is a normal sample adjacent to the tumor sample T71 (R13627) and, instead of grouping with the ER- samples, close to the other normal breast samples, behaves as its paired tumor sample. This is indicative of its heterogeneity; it might contain tumoral cells. This fact was reported to the Pathology Department at the Hospital del Mar for clarification of this result and they confirm that it is indeed a normal sample.

Marked with orange color are the molecular markers ER, PR, ERBB2 (her-2) and p53 analyzed by IHC and found positive. It is observed that the classification by BGA performs well, with a few exceptions. In **Figure 40** assorted with the group 0 and labeled in red, there are several breast tumor samples that are being predicted as ER-, although this could be due to a different subtype of tumor, BGA considers that these samples are closer in distance to the ER- group as to the ER+ group. There are also a few ER+ tumor samples which are grouped with the ER- samples, such as T49 (R7142), T51 (R7170), T53 (R7145), T56 (R7328), and T52 (R7176). On the ER+ positive side, there are 2 samples ER- but PR+, which could be due to still active ER+ signaling pathway. Tumor sample T03 (R7545) is also allocated between ER+ samples, even though it has been classified by IHC as ER-. There is also a higher proportion of samples which are P53+ between the ER- samples, as it is expected from epidemiological studies.

A summary for the prediction of the ER status of the test set consisting of a new independent series of 34 breast samples is shown in **Table 8**.

Based on these results we decided to group the samples into six groups, and perform a multiple class supervised classification. The groups for the multiple class supervised clustering analysis were assigned by looking at the best fitting of the PCA model. Since this is a supervised clustering analysis, by "trial-anderror", samples were exchanged from one group to another to get the best fitting picture of the PCA. The final class assignment is stated on the last column of Table 7. The best fitting picture of the PCA by multiple classes BGA is shown in Figure 41. BGA uses correspondence analysis (CA) to select the genes that discriminate the groups situated on the 3D space (Figure 42). The most distant and well-defined groups are 1 and 5. The other groups are also well-separated but the distances between them are smaller than from the group 1 to group 5. From this analysis it is corroborated that among ER+ hormonedependent tumors there are different subtypes that can be allocated in 3D space into groups 1 and 2. Groups 2 and 3 are less well defined. The summary for the class prediction of the test set consisting of a new independent series of 34 breast samples is shown in Table 9.

From this analysis, we could not correlate the genes that differentiate the formed groups, but just the most significant on the four axes on the 3D space.

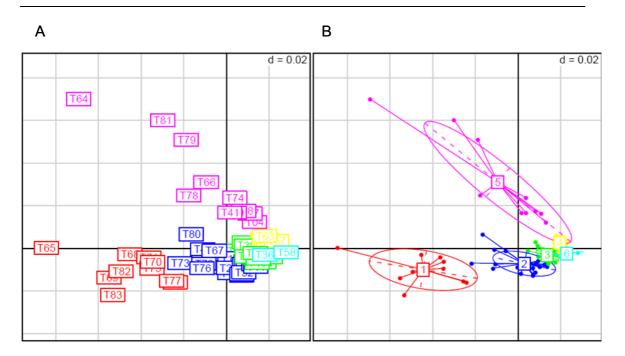

For this aim, Prediction Analysis of Microarrays (PAM) was employed in the next chapter.

Table 7: Distribution of tumor samples along one axis after BGA two class supervised classification upon the ER status. Samples are sorted according the BGA axis 1 value. Status of their immunohistochemical markers and predicted class into which the application would distribute the samples is stated.

Sample ID	Patient ID	IHC ER status	ER	PR	her-2	p53	BRCA1/2	Histological grade	Tumor size	Lymph node	Metastatic sites	BGA - Two Class - Axis1	BGA predicted	multiclass
T83	R13722	1	ER+	PR+	ERBB2-	P53-		HG1	T2	status N1	MO	756.2	1	1
T69	R12861	1	ER-	PR+	ERBB2-	P53-		HG2	T1	NO	MO	525.3	1	1
T65	R12853	1	ER+	PR-	ERBB2-	P53-		HG2	T2	N2	MO	469.9	1	1
T29	R10112	1	ER+	PR+	ERBB2-	P53-		HG0	T1	N0	MO	423.5	1	1
T82	R13721	1	ER+	PR-	ERBB2-	P53-		HG0	T2	N0	MO	414.9	1	1
T77	R13633	1	ER+	PR+	ERBB2-	P53-		HG1	T2	N0	MO	397.3	1	1
T75	R13631	1	ER-	PR+	ERBB2-	P53-		HG1	T1	N0	MO	362.5	1	1
T68 T76	R12860	1 1	ER+ ER+	PR+ PR-	ERBB2- ERBB2-	P53- P53-		HG2 HG2	T2 T2	N3 N0	MO MO	352.6	1	1 2
T71	R13632 R13627	1	ER+	PR+	ERBB2-	P53-		HG2	T3	NU N1	MO	268.2 252.5	1	1
T70	R13626	Ó			ent to T71			1102	15		1110	252.5	1	1
T73	R13629	1	ER+	PR+	ERBB2-	, P53-		HG1	T1	NO	MO	212.3	1	2
T15	R7946	1	ER+	PR-	ERBB2-	P53-		HG0	T2	N1	MO	189.8	1	2
T72	R13628	1	ER+	PR+	ERBB2-	P53-		HG3	T2	N1	MO	179.6	1	2
Т09	R7617	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	167.9	1	2
T24	R10104	1	ER+	PR+	ERBB2-	P53+		HG2	T1	NO	MO	163.8	1	2
T32	R10116	1	ER+	PR+	ERBB2-	P53+		HG2	Т3	N0	MO	149.9	1	2
T22	R10101	1	ER+	PR+	ERBB2-	P53-		HG1	T2	N0	MO	134.0	1	2
T14	R7939	1	ER+	PR-	ERBB2-	P53-		HG0	T1	N0	MO	127.8	1	2
T05 T12	R7612	1 1	ER+ ER+	PR+ PR+	ERBB2-	P53+ P53-		HG0	T1 T2	N0	MO	124.3 117.2	1	2 2
T17	R7906 R8150	1	ER+	PR-	ERBB2- ERBB2-	P53-		HG0 HG0	IS	N1 N0	MO MO	108.9	1	2
T18	R8153	1	ER+	PR-	ERBB2-	P53-	•	HG0	T1	NO	MO	88.8	1	2
T31	R10115	1	ER+	PR+	ERBB2-	P53+		HG2	Т3	NO	MO	88.3	1	2
T27	R10108	1	ER+	PR-	ERBB2-	P53+		HG2	T4	N1	MO	73.9	1	2
T42	R6265	1	ER+	PR+	ERBB2+	P53+		HG3	T1	N1	MO	59.9	1	2
T02	R7540	1	ER+	PR-	ERBB2-	P53-	-	HG2	T2	N3	MO	56.3	1	2
T23	R10103	1	ER+	PR+	ERBB2-	P53-		HG2	T2	N1	MO	55.5	1	2
T67	R12856	1	ER+	PR+	ERBB2-	P53-	_	HG1	T1	N0	MO	49.2	1	2
T26	R10107	1	ER+	PR+	ERBB2-	P53+		HG3	T1	N1	MO	46.6	1	2
T13	R7904	1	ER+	PR+	ERBB2-	P53-		HG0	Т3	N0	MO	43.8	1	2
T44	R6280	1	ER+	PR+	ERBB2-	P53-		HG3	T2	N0	MO	36.3	1	2
T37	R6282	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	28.4	1	2
T80 T25	R13715 R10105	1	ER+ ER+	PR+ PR+	ERBB2- ERBB2-	P53- P53+		HG2 HG2	T2 T1	N0 N0	MO MO	17.0 16.6	1	2 2
T30	R10105	1	ER+	PR+	ERBB2-	P53+		HG2 HG3	T1	NO	MO	2.1	1	2
T60	R7343	1	ER+	PR-	ERBB2-	P53-		HG2	T2	NO	M1	-9.1	ò	3
T03	R7545	o	ER-	PR-	ERBB2-	P53-		HG2	T1	N2	MO	-12.4	Ō	3
T38	R6283	1	ER+	PR+	ERBB2-	P53-		HG0	T1	NO	MO	-14.6	0	3
T43	R6267	1	ER+	PR+	ERBB2-	P53-		HG3	T2	N1	MO	-16.8	0	3
T46	R6345	1	ER+	PR-	ERBB2-	P53-		HG1	T1	N0	MO	-19.4	0	3
Т33	R10117	1	ER+	PR-	ERBB2-	P53-		HG1	T1	NO	MO	-33.3	0	3
T45	R6285	1	ER+	PR+	ERBB2+	P53-		HG0	T1	N0	MO	-36.0	0	3
T61	R7346	1	ER+	PR+	ERBB2-	P53-		HG2	T1	NO	MO	-44.7	0	3
T10	R7541	1	ER+	PR+	ERBB2-	P53-		HG0	T2	N2	MO	-59.1	0	3
T06	R7614	1	ER+	PR+	ERBB2-	P53-		HG2	T1	N0	MO	-62.6	0	3
T50 T62	R7143	0 1	ER- ER+	PR- PR-	ERBB2-	P53- P53-		HG3 HG2	T2 T2	N3 N2	M1 M0	-63.2 -64.5	0	3 3
T47	R7347 R6256	0	ER-	PR-	ERBB2- ERBB2-	P53-		HG2 HG3	T2	N2 N2	MO	-68.0	0	3
T20	R8403	ŏ	ER-	PR-	ERBB2-	P53+		HG3	T2	N3	MO	-70.4	ŏ	3
T48	R7140	ŏ	ER-	PR-	ERBB2-	P53-	•	HG3	T2	N2	MO	-71.5	ō	3
T49	R7142	1	ER+	PR+	ERBB2-	P53-		HG1	T1	NO	MO	-73.4	0	3
T59	R7335	0	ER-	PR-	ERBB2-	P53+		HG1	T2	N0	MO	-89.9	0	3
T51	R7170	1	ER+	PR-	ERBB2-	P53+		HG2	T1	N0	MO	-103.0	0	3
Т39	R6250	0	ER-	PR-	ERBB2-	P53+		HG3	T2	N0	MO	-104.9	0	3
T53	R7145	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	-109.4	0	3
T28	R10109	0	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	MO	-115.1	0	3
T36	R6279 R7322	0			ent to T35 ERBB2+			HG0	Т3	N3	мо	-122.4	0	6 4
T55 T56	R7328	0	ER- ER+	PR+	ERBB2-	P53- P53-		HG0 HG3	T4	NO	MO	-135.8 -146.9	0	4
T78	R13713	0	ER-	PR-	ERBB2-	P53+		HG3	T1	NO	MO	-208.0	0	5
T35	R6277	ŏ	ER-	PR-	ERBB2+			HG3	T1	NO	MO	-208.6	Ő	5
T52	R7176	ŏ	ER+	PR+		P53+		HG2	T1	NO	MO	-211.2	ō	5
T58	R7334	ō	Normal		ent to T59		•				-	-214.8	ō	6
T63	R7351	0	ER-	PŔ-	ERBB2-	P53+	BRCA2	HG2	T2	N0	MO	-217.8	0	4
T54	R7156	0	ER-	PR-	ERBB2+		_	HG3	T2	N0	MO	-219.8	0	4
T41	R6255	0	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	M1	-234.8	0	5
T57	R7331	0	ER-	PR-	ERBB2-	P53+		HG3	T2	NO	MO	-238.3	0	4
T04	R7553	0	ER-	PR-	ERBB2-	P53-		HG3	T3	N1	MO	-238.9	0	5
T40	R6254	0	ER-	PR-	ERBB2-	P53+		HG3	T1	NO	M1	-248.7	0	5
T08	R7693	0	ER-	PR-	ERBB2-	P53+		HG0	T3	N1	M1	-285.7	0	5
T07	R7692	0	ER-	PR- PR-	ERBB2- ERBB2-	P53+ P53+		HG0	T3 T1	N1 N0	M1 M0	-290.6	0	5 5
T74 T66	R13630 R12854	0	ER- ER-	PR- PR-	ERBB2- ERBB2-	P53+ P53+		HG3 HGx	T2	NU N1	M0 M0	-341.4 -392.0	0	5
T64	R12854 R12849	0	ER-	PR-	ERBB2-	P53+ P53+		HGX HG3	T1	NO	MO	-392.0 -471.3	0	5
T79	R12045	ŏ	ER-	PR-	ERBB2+			HG3	T2	NO	MO	-545.6	Ö	5
T81	R13719	ŏ	ER-	PR-	ERBB2-			HG3	T2	NO	MO	-598.0	ŏ	5
							-							

Table 8: Distribution of tumor samples of the test set along one axis after two class supervised classification by BGA "two class "based on ER status determined by IHC. Samples are sorted on the table according the PCA axis 1 value.

Sample ID	BGA - Two Class - Axis1	closest.centre	BGA predicted
T88	226.0	1	1
T91	184.9	1	1
T95	170.0	1	1
T102	164.1	1	1
Т99	160.2	1	1
T106	159.7	1	1
T101	158.4	1	1
Т90	140.9	1	1
T115	120.7	1	1
T108	111.1	1	1
T89	110.2	1	1
T116	104.9	1	1
T100	104.5	1	1
T114	101.9	1	1
Т98	97.3	1	1
T117	87.2	1	1
T105	84.5	1	1
Т96	62.0	1	1
T104	55.4	1	1
T85	53.9	1	1
T111	51.9	1	1
T92	47.1	1	1
T84	45.4	1	1
T112	35.7	1	1
T109	32.1	1	1
T113	30.3	1	1
Т97	25.3	1	1
T103	1.7	1	1
Т93	-14.5	0	0
Т94	-17.9	0	0
T87	-63.5	0	0
T86	-71.5	0	0
T107	-100.8	0	0
T110	-120.5	0	0

Figure 41: Supervised classification of breast samples by multiple class Between Groups Analysis (BGA) in six groups. (A) Allocation of breast samples. (B) Diagram of the spatial position of the six classes.

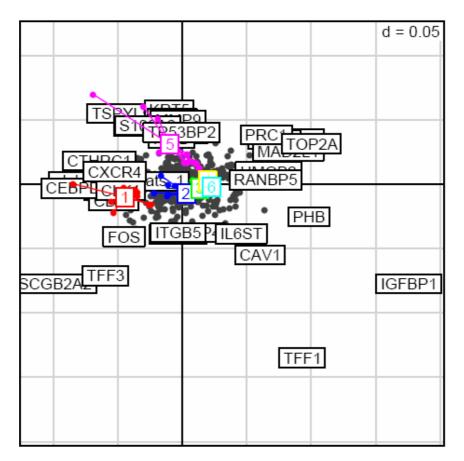


Figure 42: Most discriminant genes oriented on each axis after supervised classification of breast samples by multiple class BGA into six groups.

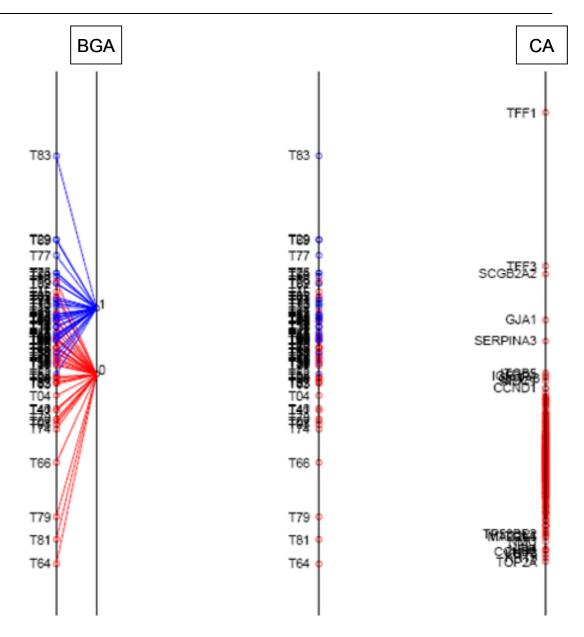

Sample ID	projected.Axis1	projected.Axis2	projected.Axis3 projected.Axis4 project		projected.Axis5	closest.centre	predicted
T84	64.5	-99.1	-23.2	-7.4	12.7	6	6
T85	94.6	-109.9	-3.3	30.9	53.3	6	6
T86	100.4	23.6	-28.3	-6.2	81.4	6	6
T87	61.4	38.4	3.5	-35.3	94.2	6	5
T88	-24.2	-227.3	105.0	18.8	-31.8	1	1
T89	49.3	-150.6	24.3	26.5	13.3	2	2
T90	-70.8	-114.1	84.7	-45.8	-5.8	1	1
T91	-168.0	-140.9	-11.3	-53.7	40.0	1	6
T92	-59.3	-52.7	-50.4	9.5	4.4	1	1
T93	48.2	-46.6	-112.4	-72.3	97.9	6	6
T94	-66.8	48.7	57.7	-109.2	21.4	5	5
T95	-121.6	-143.4	-6.7	-48.0	-36.6	1	1
T96	-9.0	-95.4	-70.8	-82.2	89.2	6	6
T97	49.1	-69.1	-46.0	52.3	63.0	6	6
T98	10.8	-122.9	3.9	-6.8	46.1	6	6
T99	-33.0	-146.4	117.9	-14.6	39.8	1	5
T100	25.3	-135.6	14.0	19.3	11.8	2	2
T101	-81.0	-130.1	85.3	-99.9	-27.3	1	1
T102	-54.5	-154.7	81.7	-10.7	-49.4	1	1
T103	54.9	-40.9	-13.4	-0.1	-8.3	6	3
T104	2.4	-63.3	62.9	-0.5	-64.2	2	3
T105	49.2	-118.0	36.1	-4.4	-23.7	2	3
T106	-14.8	-173.7	50.7	4.9	-32.1	1	1
T107	143.7	31.3	-17.4	4.8	8.1	6	4
T108	-3.8	-120.6	39.1	-33.8	34.5	1	5
T109	-15.0	-57.2	-93.4	-64.7	99.1	6	6
T110	52.9	100.1	-14.2	19.6	38.8	5	4
T111	117.9	-105.8	51.0	4.7	-2.8	6	2
T112	104.5	-86.7	39.7	28.4	6.9	6	2
T113	60.7	-61.7	10.2	17.6	0.1	6	2
T114	-20.9	-105.3	16.9	44.8	16.9	1	2
T115	-32.2	-115.7	56.7	-7.8	29.3	1	5
T116	-39.9	-110.1	-8.1	15.3	-6.9	1	1
T117	-2.0	-110.1	-17.4	-41.2	39.1	1	6

Table 9: Distribution of tumor samples of the test set as a result of multiple class supervised classification by BGA.

in addition, a BGA two class classification based on the PR status was performed, yielding a similar plot as with the previously shown for the ER status (see **Figure 43**) where all samples are distributed likewise as in **Figure 40**, and the most discriminant genes are comparable to the ones obtained for the BGA classification by means of the ER status.

On **Table 10** a summary of the distribution of samples along the axis and their clinical markers scored by immunohistochemistry. The column "IHC PR status" provides the assignment of class prior the BGA analysis, defined based on the clinical status of the PR. The samples that are lying on the axis discordant with the clinical data are colored in red.

Results

Figure 43: Supervised classification of breast samples by BGA into two groups based on their PR status.

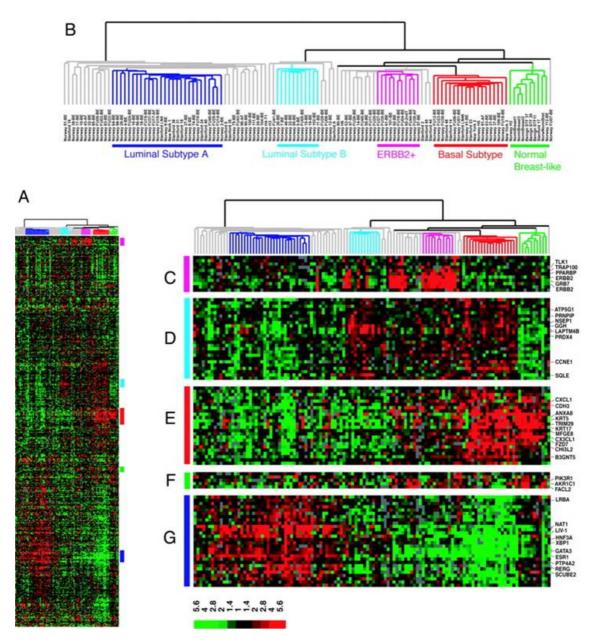
Table 10: Distribution of tumor samples along one axis after two class supervised classification by BGA considering the PR status. Samples are sorted according the PCA axis 1 value. Status of their immunohistochemical markers and the predicted class into which the application would distribute the samples are stated.

Sample ID	Patient ID	IHC	ER	PR	her-2	p53	BRCA1/2	Histological	Tumor	Lymph	Metastatic	BGA - Two	BGA
		PR status						grade	size	node status	sites	Class - Axis1	predicted
T83	R13722	1	ER+	PR+	ERBB2-	P53-		HG1	T2	N1	MO	653.0	1
T29	R10112	1	ER+	PR+	ERBB2-	P53-		HG0	T1	NO	MO	364.5	1
T69	R12861	1	ER-	PR+	ERBB2-	P53-		HG2	T1	N0	MO	359.7	1
T77	R13633	1	ER+	PR+	ERBB2-	P53-		HG1	T2	N0	M0	307.7	1
T75 T24	R13631 R10104	1 1	ER- ER+	PR+ PR+	ERBB2- ERBB2-	P53- P53+		HG1 HG2	T1 T1	N0 N0	M0 M0	247.6 245.6	1 1
T68	R12860	1	ER+	PR+	ERBB2-	P53-		HG2	T2	N3	MO	233.6	1
T76	R13632	ò	ER+	PR-	ERBB2-	P53-		HG2	T2	NO	MO	219.1	1
Т09	R7617	1	ER+	PR+	ERBB2-	P53-		HG1	T1	NO	MO	209.9	1
T32	R10116	1	ER+	PR+	ERBB2-	P53+		HG2	Т3	N0	MO	208.2	1
T15	R7946	0	ER+	PR-	ERBB2-	P53-		HG0	T2	N1	MO	179.3	1
T82	R13721	0	ER+	PR-	ERBB2-	P53-		HG0	T2	NO	MO	164.6	1
T05	R7612	1	ER+	PR+	ERBB2-			HG0	T1	N0	MO	161.6	1
T72 T31	R13628 R10115	1	ER+ ER+	PR+ PR+	ERBB2- ERBB2-	P53- P53+		HG3 HG2	T2 T3	N1 N0	M0 M0	153.5 151.8	1 1
T73	R13629	1	ER+	PR+	ERBB2-	P53-		HG1	T1	NO	MO	141.0	1
T12	R7906	1	ER+	PR+	ERBB2-	P53-		HG0	T2	N1	MO	136.2	1
T22	R10101	1	ER+	PR+	ERBB2-	P53-		HG1	T2	NO	MO	126.8	1
T27	R10108	0	ER+	PR-	ERBB2-	P53+		HG2	T4	N1	MO	112.6	1
T23	R10103	1	ER+	PR+	ERBB2-	P53-		HG2	T2	N1	MO	103.3	1
T13	R7904	1	ER+	PR+	ERBB2-	P53-		HG0	T3	NO	MO	102.8	1
T37	R6282	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	98.2	1
T25 T71	R10105 R13627	1	ER+ ER+	PR+ PR+	ERBB2- ERBB2-			HG2 HG2	T1 T3	N0 N1	M0 M0	91.6 90.0	1 1
T44	R13627	1	ER+	PR+	ERBB2-	P53-		HG2	T2	NO	MO	88.6	1
T14	R7939	ò	ER+	PR-	ERBB2-	P53-		HG0	T1	NO	MO	84.9	1
T02	R7540	Ō	ER+	PR-	ERBB2-	P53-		HG2	T2	N3	MO	82.1	1
T43	R6267	1	ER+	PR+	ERBB2-	P53-		HG3	T2	N1	MO	78.6	1
T26	R10107	1	ER+	PR+	ERBB2-	P53+		HG3	T1	N1	MO	78.5	1
T30	R10113	1	ER+	PR+	ERBB2-	P53+		HG3	T1	N0	MO	62.5	1
T18	R8153	0	ER+	PR-	ERBB2-	P53-		HG0	T1	N0	MO	58.2	1
T38 T17	R6283 R8150	1	ER+ ER+	PR+ PR-	ERBB2- ERBB2-	P53- P53+		HG0 HG0	T1 IS	N0 N0	M0 M0	56.9 40.8	1 1
T61	R7346	1	ER+	PR+	ERBB2-	P53-		HG2	13 T1	NO	MO	35.1	1
T45	R6285	1	ER+	PR+	ERBB2+	P53-		HG0	T1	NO	MO	29.0	1
T10	R7541	1	ER+	PR+	ERBB2-	P53-		HG0	T2	N2	MO	28.3	1
T67	R12856	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	21.9	1
T46	R6345	0	ER+	PR-	ERBB2-	P53-		HG1	T1	N0	MO	21.2	1
Т03	R7545	0	ER-	PR-	ERBB2-	P53-		HG2	T1	N2	MO	20.4	1
T60	R7343	0	ER+	PR-	ERBB2-	P53-		HG2	T2	NO	M1	17.0	1
T80	R13715	1	ER+ ER+	PR+ PR+	ERBB2-	P53-		HG2	T2 T1	N0	MO	11.8	1 1
T42 T33	R6265 R10117	1	ER+	PR-	ERBB2+ ERBB2-	P53+ P53-		HG3 HG1	T1	N1 N0	M0 M0	10.5 10.5	1
T06	R7614	1	ER+	PR+	ERBB2-	P53-		HG2	T1	NO	MO	8.3	1
T62	R7347	0	ER+	PR-	ERBB2-	P53-		HG2	T2	N2	MO	-13.0	0 0
T65	R12853	0	ER+	PR-	ERBB2-	P53-		HG2	T2	N2	MO	-14.6	0
T48	R7140	0	ER-	PR-	ERBB2-	P53-		HG3	T2	N2	MO	-16.5	0
T47	R6256	0	ER-	PR-	ERBB2-	P53-		HG3	T2	N2	MO	-16.7	0
T70	R13626	0			ent to T71							-18.4	0
T53	R7145	1	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	-29.4	0
T50 T51	R7143 R7170	0	ER- ER+	PR- PR-	ERBB2- ERBB2-	P53- P53+		HG3 HG2	T2 T1	N3 N0	M1 M0	-31.2 -35.3	0
T49	R7170	1	ER+	PR-	ERBB2-	P53-		HG2 HG1	T1	NO	MO	-35.3	0
T20	R8403	o	ER-	PR-	ERBB2-	P53+		HG3	T2	N3	MO	-48.7	o
T55	R7322	Ō	ER-	PR-	ERBB2+	P53-		HG0	Т3	N3	MO	-56.1	ō
T59	R7335	0	ER-	PR-	ERBB2-	P53+		HG1	T2	NO	MO	-62.5	0
T56	R7328	1	ER+	PR+	ERBB2-	P53-		HG3	T4	N0	MO	-68.6	0
Т39	R6250	0			ERBB2-			HG3	T2	N0	MO	-72.0	0
T36	R6279	0			ent to T35							-76.9	0
T52	R7176	1 0	ER+		ERBB2-			HG2	T1	N0	MO	-106.3	0 0
T58 T54	R7334 R7156	0	ER-		ent to T59 ERBB2+			HG3	Т2	NO	MO	-114.1 -121.2	0
T28	R10109	0	ER-		ERBB2-			HG3	T1	NO	MO	-121.2	0
T57	R7331	Ő	ER-		ERBB2-			HG3	T2	NO	MO	-132.6	ŏ
T35	R6277	Ő	ER-		ERBB2+			HG3	T1	NO	MO	-135.6	õ
T63	R7351	0	ER-				BRCA2	HG2	T2	NO	MO	-141.2	0
Т04	R7553	0	ER-	PR-	ERBB2-	P53-		HG3	Т3	N1	MO	-181.5	0
T40	R6254	0	ER-		ERBB2-			HG3	T1	NO	M1	-227.2	0
T41	R6255	0	ER-		ERBB2-	P53+		HG3	T1	N0	M1	-233.8	0
T78	R13713	0	ER-		ERBB2-			HG3	T1	N0	MO	-262.5	0
Т07 Т08	R7692 R7693	0 0	ER- ER-		ERBB2- ERBB2-			HG0 HG0	T3 T3	N1 N1	M1 M1	-273.2 -283.0	0 0
T08 T74	R7693 R13630	0	ER- ER-		ERBB2- ERBB2-			HG0 HG3	13 T1	N1 N0	MO	-283.0 -299.0	0
T66	R12854	0	ER-		ERBB2-			HGx	T2	N1	MO	-414.5	0 0
T79	R13714	õ	ER-		ERBB2+			HG3	T2	NO	MO	-604.5	ŏ
T81	R13719	0	ER-		ERBB2-			HG3	T2	NO	MO	-683.5	0
T64	R12849	0	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	MO	-765.9	0

4.11 Prediction analysis of microarrays (PAM)

Variation in expression patterns of human breast tumors analyzed by cDNA microarrays and hierarchical clustering provides a "molecular portrait" of each tumor, and tumors can be classified into subtypes based solely on differences in these patterns. Sorlie *et al.* 2003, performed an analysis of a large number of tumor samples and explored the clinical value of the found subtypes by searching for correlations between gene expression patterns and clinically relevant parameters. They found that classification of tumors based on gene expression patterns could be used as a prognostic marker with respect to overall and relapse-free survival. Local recurrence is associated with an increased risk of developing distant metastasis and subsequent death from breast cancer. Their approach was to correlate the PAM predicted tumor subtypes with already known local recurrence, presence of metastatic sites or death. The supervised class prediction method employed by Sorlie was PAM (Prediction analysis of microarrays; Tibshirani *et al.* 2003).

Sorlie's training set was a pre-selected set of samples of invasive ductal carcinoma (IDC), the ones that showed best fitting in their model (see **Figure 44**). IDCs constitute 80% of all breast cancers. Invasive lobular carcinoma, constitute an additional 10-15% of breast cancers. Besides, ten additional types of breast cancer have also been described, although they account for less than 10% (Vargo-Gogola and Rosen, 2007).


Sorlie "training" set of tumors, a total of 81, classified in five groups:

- Luminal A (28),
- Luminal B (11),
- Basal (19),
- ERBB2+ (11), and
- Normal (10).

Firstly, we tried to follow the classification of our set of tumors based on Sorlie's set to see if we could find similar patterns. We tried to use the overlapping genes within the "intrinsic list" (552 spots that correspond to 526 genes; Sorlie *et al.* 2003, hereafter Sorlie). Genes from the Sorlie "intrinsic list" that overlap with BCA v4.0 were determined using Matchminer (<u>http://discover.nci.nih.gov/matchminer/index.jsp</u>). There were only 50 spots corresponding to 42 genes. Gene expression data from Sorlie were downloaded from the Stanford database (<u>http://genome-www5.stanford.edu/</u>). We observed that from these 50 spots there were several gene products or ESTs included for the same RefSeq accession number but with a significantly different behavior.

We have also noticed in their array data that they had many spots with missing values, which could handicap the data and give misleading results, even though PAM checks for missing values and imputes them, using the K-nearest neighbor average expression for that gene (by default k=10).

We tried to use this overlapping set of genes to classify samples of our dataset, but in this way the misclassification error was too large, and even the training error for her training set of tumors was larger than 10%.

Figure 44: Hierarchical clustering of 115 tumor tissues and 7 nonmalignant tissues using the "intrinsic" gene set. Dendrogram shows the clustering of the samples into five subtypes of IDC. Figure from Sorlie *et al.* 2003.

Besides, Sorlie's "intrinsic list" has also failed for class prediction when applied to other sets of breast tumor microarray data, possibly due to work with a small number of overlapping genes, change of nature of microarray platform (oligos/cDNA), microarray technology, sample used as reference, selection of genes represented on the array, experimental conditions, patient selection or breast tumor sample origin. This is being reported in various studies (Ein-Dor *et al.* 2005; Michiels *et al.* 2007; Wang *et al.* 2005).

Therefore after this attempt, we concluded that it was better to use our own dataset of well-characterized samples by clinicians and our complete gene collection to find distinctive breast tumor subtypes. Later, our approach was, once the discriminant genes from our phenotypes were selected, to extract the data from Sorlie, and see if with our gene set we could find other patterns in their expression and clinical data.

4.11.1 Determination of the training set of samples

The first set of 74 well characterized tumor samples tumors was used as a training set. Starting from the BGA supervised classification into 6 groups, we considered 5 subtypes labeled 1-5 after removing the "normal" group due to its small size (only 3 samples). Besides, there is no need for a prediction of normal samples since these samples are extracted from tissue adjacent to tumor. Scheme for this analysis is shown in **Figure 45**.

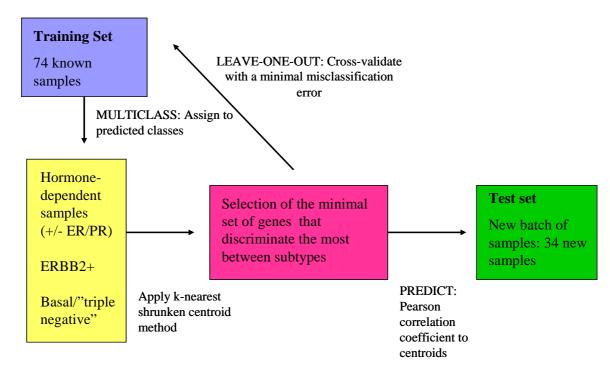


Figure 45: Scheme of the PAM procedure applied to our set of breast tumor samples.

The K-nearest neighbor shrunken centroid method was used as classification engine, employing 10 neighbors. Columns, that is, tumor samples, were centered to the mean and scaled, for correction of batch effects. Training error was plotted and sample classification was observed. Tumor samples were exchanged among the classes, in order to obtain the lowest training error. The training error plot is represented in **Figure 46**.

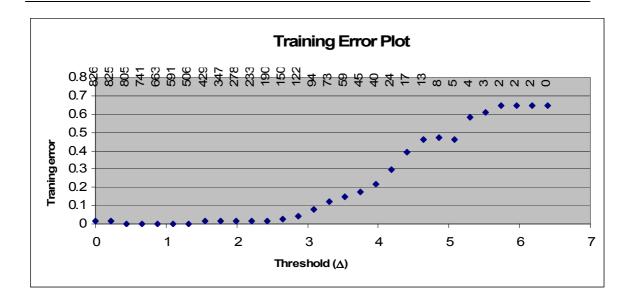


Figure 46: Training error plot for PAM classification. The minimum training error is found at a threshold Δ of 1.32, using a set of 506 genes as the minimal classification set. Using only 94 genes the training error is still below 10%.

Classification of tumor samples was distributed as shown in Table 11.

Table 11: Tumor sample prediction among the 5 predicted classes.	

Training Confusion Matrix (Threshold=1.32)												
True\Predicted	1	2	3	4	5	Class Error rate						
1	12	0	0	0	0	0						
2	0	26	0	0	0	0						
3	0	0	19	0	0	0						
4	0	0	0	5	0	0						
5	0	0	0	0	12	0						

Т

During the cross-validation the parameter Δ , which sets the amount of shrinkage, is iteratively increased to balance prediction accuracy and the selection of a minimal set of genes. Using as threshold a Δ of 1.33, which includes 506 genes as significant, just two samples were differently assign: sample T77 which would change from class 1 to class 3, and sample T60 classified as belonging to class 2 (Figure 47).

Results

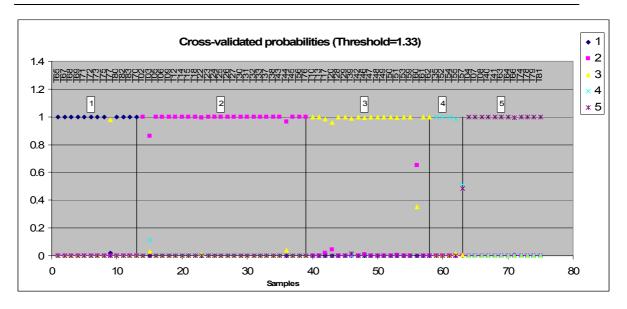
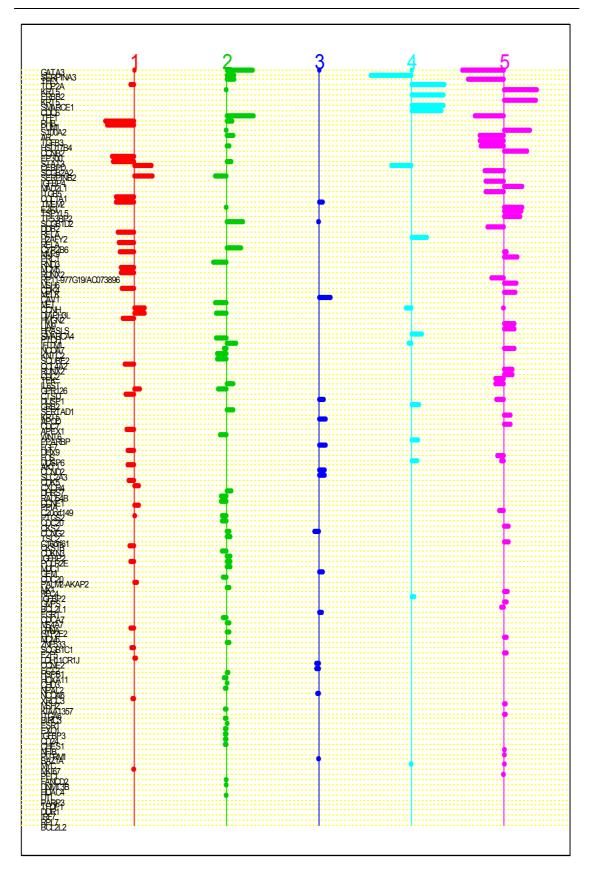


Figure 47: Cross-validated probabilities of the training set of tumor samples.

From those 506 genes, our "intrinsic list", a set of top discriminating genes between classes can be selected, which have greater classification weight due to their absolute change in gene-expression amongst the classes. The parameter Δ is further used to minimize the gene list during the prediction. During a ten-fold cross-validation, Δ was increased so that a lesser misclassification error could be chosen for the final model. Using just 150 significant genes between classes, that is, selecting a threshold Δ of 2.65, misclassification error was less than 1%, and only two samples were misclassified after cross-validation: sample T60 firstly assign to class 3 was predicted to belong to class 2, and sample T77 was predicted to be in class 3. The final class prediction model with their nearest shrunken centroids is shown in **Figure 48** showing their cross-validated probabilities.

From the clinical histopatological records, the 12 tumor samples from the training set which belonged to PAM class 1 are ER+ (10/12) and PR+ (10/12), all are p53- and have low histological grade. From these 12 samples, 11 are free of disease and only one, tumor sample ID T65, had recurrence in liver and bone. From these findings, this subtype of tumor consists of hormone-dependent tumors, often luminal or endocrine-like, which may reflect the origin of the cancer cell, with overall good prognosis.


PAM Class 2 contains 26 samples which are mostly ER+ (25/26), PR+ (18/26), a few samples were positive for p53+ (8/26), and also a few have high histological grade (5/26). From these 26 samples, only 2 had recurrence of visceral or systemic type. The other 24 samples are disease-free. This class has high expression of ER co-regulated genes such as GATA3, genes found regulated by estrogens as TFF1, TFF3, SERPINA3, or products of estradiol metabolism as CYP2B6 or HSD17B4. This tumor subtype is hormone-dependent, luminal or endocrine-like, and has good prognosis with a 92% of

disease-free-survival. This class is similarly termed in Sorlie's as luminal subtype A and shares genes in common with Sorlie's luminal subtype A.

Class 3 contains 19 samples, including ER+ (12/19), PR+ (7/19), p53+ (7/19) and high grade is found in 7 samples. There has not been follow-up in three cases, and in three other cases patient had recurrence locally, liver and bone.

Class 4 is the ERBB2+ subtype characterized by high expression of several genes in the ERBB2 amplicon at 17q12-q24 (Bergamaschi *et al.* 2006) including the ERBB2 gene, TOP2A, CDC6, PPARBP, GRB2, and SMARCE1. One out if five samples is ER+. These patients are now, after treatment, disease-free.

Class 5 is the characteristic basal-like subtype characterized by high expression of keratins 5A and 5B and showed also high expression of other basal epithelial genes as KIT1 and ID4. These are also termed as "triple-negative tumors" as they are found negative for ER, PR and ERBB2. 9 out of 12 samples are p53+ and have high histological grade (10/12). This tumor subtype has a lower disease-free survival time and 7 patients presented metastasis in lung, viscerae, central nervous system, systematically or locally, and died from the disease.

Figure 48: Expression shrunken centroids of each of the five subclasses showing the most discriminating genes, with higher scores, between predicted breast tumor subtypes.

A summary of the PAM predicted classification of the training set together with the clinical histopathological features is shown at **Table 12**. BGA two classes and BGA multiple class predicted classes is shown in parallel to PAM.

Sample ID	Patient ID	ER	PR	her-2	p53	BRCA1/2	Histological grade	Tumor size	Lymph node	Metastatic sites	BGA - Two Class - Axis1	BGA ER two class	BGA multiclass	PAM multiclass
	B3540	50.			850				status		=			
T02	R7540	ER+	PR-	ERBB2-	P53-		HG2	T2	N3	MO	56.3	1	2	2
T03 T04	R7545	ER- ER-	PR- PR-	ERBB2- ERBB2-	P53-		HG2	T1	N2 N1	MO	-12.4	0	3 5	2 5
	R7553				P53-		HG3	T3		MO	-238.9	-		
T05 T06	R7612	ER+ ER+	PR+ PR+	ERBB2-			HG0	T1	N0	M0 M0	124.3	1 0	2 3	2
	R7614		PR-	ERBB2-	P53-		HG2	T1 T3	N0		-62.6	0	5	2
T07	R7692	ER-		ERBB2-	P53+		HG0		N1	M1	-290.6	0		5
T08	R7693	ER-	PR-	ERBB2-	P53+		HG0	T3	N1	M1	-285.7	-	5	5
T09	R7617	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	167.9	1	2	2
T10	R7541	ER+	PR+	ERBB2-	P53-		HG0	T2	N2	MO	-59.1	0	3	3
T12	R7906	ER+	PR+	ERBB2-	P53-		HG0	T2	N1	MO	117.2	1	2	2
T13	R7904	ER+	PR+	ERBB2-	P53-		HG0	T3	N0	MO	43.8	1	2	3
T14	R7939	ER+	PR-	ERBB2-	P53-		HG0	T1	N0	MO	127.8	1	2	2
T15	R7946	ER+	PR-	ERBB2-	P53-		HG0	T2	N1	MO	189.8	1	2	2
T17	R8150	ER+	PR-	ERBB2-	P53+		HG0	IS	N0	MO	108.9	1	2	3
T18	R8153	ER+	PR-	ERBB2-	P53-		HG0	T1	N0	MO	88.8	1	2	2
T20	R8403	ER-	PR-	ERBB2-			HG3	T2	N3	MO	-70.4	0	3	3
T22	R10101	ER+	PR+	ERBB2-	P53-		HG1	T2	N0	MO	134.0	1	2	2
T23	R10103	ER+	PR+	ERBB2-	P53-		HG2	T2	N1	MO	55.5	1	2	2
T24	R10104	ER+	PR+	ERBB2-	P53+		HG2	T1	N0	MO	163.8	1	2	2
T25	R10105	ER+	PR+	ERBB2-	P53+		HG2	T1	N0	MO	16.6	1	2	2
T26	R10107	ER+	PR+	ERBB2-	P53+		HG3	T1	N1	MO	46.6	1	2	2
T27	R10108	ER+	PR-	ERBB2-	P53+		HG2	T4	N1	MO	73.9	1	2	2
T28	R10109	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	MO	-115.1	0	3	3
T29	R10112	ER+	PR+	ERBB2-	P53-		HG0	T1	NO	MO	423.5	1	1	3
T30	R10113	ER+	PR+	ERBB2-	P53+		HG3	T1	NO	MO	2.1	1	2	2
T31	R10115	ER+	PR+	ERBB2-	P53+		HG2	Т3	NO	MO	88.3	1	2	2
T32	R10116	ER+	PR+	ERBB2-	P53+		HG2	T3	NO	MO	149.9	1	2	2
T33	R10117	ER+	PR-	ERBB2-	P53-		HG1	T1	NO	MO	-33.3	o	3	2
T35	R6277	ER-	PR-	ERBB2+	P53-		HG3	T1	NO	MO	-208.6	0	5	4
T37	R6282	ER+	PR+	ERBB2-	P53-		HG1	T1	NO	MO	28.4	1	2	2
		ER+	PR+					T1	NO			0	3	
T38	R6283			ERBB2-	P53-		HG0			MO	-14.6	-		2
T39	R6250	ER-	PR-	ERBB2-	P53+		HG3	T2	N0	MO	-104.9	0	3	3
T40	R6254	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	M1	-248.7	0	5	5
T41	R6255	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	M1	-234.8	0	5	5
T42	R6265	ER+	PR+	ERBB2+	P53+		HG3	T1	N1	MO	59.9	1	2	3
T43	R6267	ER+	PR+	ERBB2-	P53-		HG3	T2	N1	MO	-16.8	0	3	2
T44	R6280	ER+	PR+	ERBB2-	P53-		HG3	T2	N0	MO	36.3	1	2	2
T45	R6285	ER+	PR+	ERBB2+	P53-		HG0	T1	N0	MO	-36.0	0	3	2
T46	R6345	ER+	PR-	ERBB2-	P53-		HG1	T1	N0	MO	-19.4	0	3	3
T47	R6256	ER-	PR-	ERBB2-	P53-		HG3	T2	N2	MO	-68.0	0	3	3
T48	R7140	ER-	PR-	ERBB2-	P53-		HG3	T2	N2	MO	-71.5	0	3	3
T49	R7142	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	-73.4	0	3	3
T50	R7143	ER-	PR-	ERBB2-	P53-		HG3	T2	N3	M1	-63.2	0	3	3
T51	R7170	ER+	PR-	ERBB2-	P53+		HG2	T1	N0	MO	-103.0	0	3	3
T52	R7176	ER+	PR+	ERBB2-	P53+		HG2	T1	N0	MO	-211.2	0	5	4
T53	R7145	ER+	PR+	ERBB2-	P53-		HG1	T1	NO	MO	-109.4	Ō	3	3
T54	R7156	ER-	PR-	ERBB2+	P53-		HG3	T2	NO	MO	-219.8	Ō	4	4
T55	R7322	ER-	PR-	ERBB2+	P53-		HG0	T3	N3	MO	-135.8	ŏ	4	4
T56	R7328	ER+	PR+	ERBB2-	P53-		HG3	T4	NO	MO	-146.9	ő	4	2
T57	R7320	ER-	PR-	ERBB2-	P53+		HG3	T2	NO	MO	-238.3	0	4	4
T59	R7335	ER-	PR-	ERBB2-	P53+		HG1	T2	NO	MO	-238.5	0	3	3
T60	R7343	ER+	PR-	ERBB2-	P53-		HG2	T2	NO	M1	-9.1	0	3	3
T61	R7345	ER+	PR+	ERBB2-	P53-		HG2	T1	NO	MO	-9.1	0	3	3
T62	R7346 R7347	ER+	PR-	ERBB2-	P53- P53-		HG2	T2	N2	MO		0	3	3
						PPCAA					-64.5			
T63	R7351	ER-	PR-	ERBB2-	P53+	BRCA2	HG2	T2	N0	MO	-217.8	0	4	5
T64	R12849	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	MO	-471.3	0	5	5
T65	R12853	ER+	PR-	ERBB2-	P53-		HG2	T2	N2	MO	469.9	1	1	1
T66	R12854	ER-	PR-	ERBB2-	P53+		HGx	T2	N1	MO	-392.0	0	5	5
T67	R12856	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	49.2	1	2	1
T68	R12860	ER+	PR+	ERBB2-	P53-		HG2	T2	N3	MO	352.6	1	1	1
T69	R12861	ER-	PR+	ERBB2-	P53-		HG2	T1	N0	MO	525.3	1	1	1
T71	R13627	ER+	PR+	ERBB2-			HG2	Т3	N1	MO	252.5	1	1	1
T72	R13628	ER+	PR+	ERBB2-	P53-		HG3	T2	N1	MO	179.6	1	2	1
T73	R13629	ER+	PR+	ERBB2-	P53-		HG1	T1	N0	MO	212.3	1	2	1
T74	R13630	ER-	PR-	ERBB2-	P53+		HG3	T1	N0	MO	-341.4	0	5	5
T75	R13631	ER-	PR+	ERBB2-	P53-		HG1	T1	NO	MO	362.5	1	1	1
T76	R13632	ER+	PR-	ERBB2-	P53-		HG2	T2	NO	MO	268.2	1	2	2
T77	R13633	ER+	PR+	ERBB2-	P53-		HG1	T2	NO	MO	397.3	1	1	1
T78	R13713	ER-	PR-	ERBB2-			HG3	T1	NO	MO	-208.0	o	5	5
T79	R13714	ER-	PR-	ERBB2+	P53-		HG3	T2	NO	MO	-545.6	0	5	5
T80	R13715	ER+	PR+	ERBB2-	P53-		HG2	T2	NO	MO	17.0	1	2	1
T81	R13719	ER-	PR-	ERBB2-			HG2	T2	NO	MO	-598.0	0	5	5
T82	R13719	ER+	PR-	ERBB2-	P53-		HG0	T2	NO	MO		1	5	5 1
											414.9		1	
T83	R13722	ER+	PR+	ERBB2-	P53-		HG1	T2	N1	MO	756.2	1	1	1

Table 12: Class prediction of tumor samples by PAM.

4.11.2 Selection of the most significant molecular markers

PAM can identify the minimal subsets of the genes that distinctively characterize each cluster. The effect of selecting a lower threshold Δ gives a higher weight to those genes whose expression is more stable within samples of the same gene expression signature class. The 150 most dicriminant genes for each identified class and their scores is shown in **Table 13**.

Table 13: List of most significant genes for subtype discrimination at a shrinkage parameter Δ of 2.65. A positive score means up-regulated gene expression, and a negative score means down-regulated gene expression.

	CLASS 1			CLASS 2			CLASS 3			CLASS 4			CLASS 5	
Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score
SERPINB2 CEBPD CCNH DIAPH3L GPR126 CXCR4 PPIA PALM2-AKAP2 LOH11CR1J PTGS2 EGR1 SCUBE2 DTL GADD45A	NM_002575 BM924801 NM_001239 BC041395 NM_020455 NM_003467 NM_002130 NM_007203 AB096249 NM_000963 NM_001964 NM_001924	0.24 0.1314 0.1244 0.1105 0.0807 0.0615 0.0402 0.0213 0.0158	TFF1 GATA3 SCGB1D2 CYP2B6 IFITM1 SERTAD1 LL6ST PHB DHRS7 STAT3 TSC2 IGFBP2 POLR2E MUC1 MX1 MS4A7 GTF2E2 ZNF533 IGFBP4 DDR1 IGFP7 BCL2L2	NM_003225 NM_003225 NM_003251 NM_0003651 NM_001085 NM_001085 NM_001085 NM_001085 NM_001085 NM_002184 NM_016029 NM_130276 NM_002634 NM_000548 NM_000548 NM_000548 NM_000548 NM_000548 NM_002455 NM_002455 NM_002455 NM_002455 NM_002455 NM_002455 NM_002455 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_01540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_001540 AK096555 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00125 NM_00205 NM_00205 NM_00205 NM_00245 NM_0045	0.5936 0.582 0.3562 0.3195 0.227 0.1779 0.1774 0.1631 0.1631 0.1631 0.1631 0.1492 0.1247 0.1203 0.1094 0.1022 0.0923 0.0893 0.078 0.078 0.078 0.07727 0.0675 0.0765 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326	GAV1 APOD FGF7 CCND2 SLC2A3 DUSP1 TMEM2 GEM EGR1 HDAC4	NM_001753 NM_001647 NM_002009 NM_000509 NM_006931 NM_004417 NM_004417 NM_0045261 NM_001964 NM_001964 NM_005037	0.2563 0.1576 0.1458 0.1321 0.1318 0.1318 0.1318 0.0878 0.0725 0.013	TOP2A ERBB2 SMARCE1 CDC6 H2AFY2 SMARCA4 GRB2 PPARBP DUSP6 IGFBP2	NM_001067 NM_00448 NM_003079 NM_001254 NM_001254 NM_002086 NM_002076 NM_002076 NM_002776 NM_000597	0.717 0.709 0.7011 0.6574 0.3366 0.236 0.1721 0.1495 0.1385 0.0773	KRT5 KRT5 S100A2 CCNB2 MAD2L1 E2F3 TSPYL5 TP538P2 PRC1 MSH6 MELK LIN9 HRASLS NCOA7 RUNX2 CDC2 KRT5 CDC7 CKS2 C16orf61 RFC4 GMPS MMP9 NCM6 E2F5 NFIB PITRM1 MYC TFDP1 KNTC2 RPL7 TOP2A	NM_00555 NM_005555 NM_005555 NM_005578 NM_002578 NM_001547 NM_001949 NM_003512 NM_001949 NM_003811 NM_0014791 NM_014791 NM_0120386 NM_001786 NM_003503 NM_003503 NM_00216 NM_00216 NM_00216 NM_00216 NM_00216 NM_00216 NM_002467 NM_002467 NM_0006101 NM_000241 NM_002467 NM_0006101 NM_0006101 NM_000711 NM_0006101 NM_000711 NM_000711 NM_000711 NM_000711 NM_000610 NM_000610 NM_000610 NM_000610	0.7143 0.7006 0.579 0.5079 0.401 0.3796 0.3796 0.288 0.2881 0.2591 0.2362 0.2362 0.2252 0.2001 0.2362 0.2252 0.2001 0.2362 0.2252 0.2001 0.1966 0.1552 0.0983 0.1052 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 0.0775 0.0688 0.0271 0.0252 0.009 0.0252 0.009 0.0052 0.0052

GENES UP-REGULATED

GENES DOWN-REGULATED

	CLASS 1			CLASS 2			CLASS 3			CLASS 4			CLASS 5	
Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score	Symbol	GenBank	Score
PHB PUM1 EP3300 STAT3 COL1A1 TMEM2 RELA RELA MMP9 MCM5 RUNX2 CDK4 HMGN2 COL4A2 CTSD APEX1 DHX9 AKT1 CDK5 CK51B TOP2A POLR2E LMNA SCGB1C1 XRCC3 MKI67 RPL7	NM_002634 NM_01429 NM_01429 NM_0139276 NM_021975 NM_021975 NM_004394 NM_004394 NM_001307 NM_001307 NM_001357 NM_001846 NM_001845 NM_001857 NM_001846 NM_001857 NM_001857 NM_001867 NM_00187 NM_001826 NM_00187 NM_00187 NM_00187 NM_00187 NM_00187 NM_002895 NM_005431 NM_004345 NM_002895 NM_005431 NM_005432 NM_005432 NM_005431 NM_000971	-0.5897 -0.4536 -0.4536 -0.3928 -0.3928 -0.3469 -0.3309 -0.285 -0.2787 -0.2643 -0.2097 -0.2787 -0.2643 -0.2097 -0.1533 -0.1453 -0.1453 -0.1453 -0.1453 -0.1271 -0.095 -0.0846 -0.0732 -0.0661 -0.0661 -0.0661 -0.0022	RND3 MET SERPINE2 PTCH JUAPH3L KNTC2 SCUBE2 GPR126 GPR126 GPR126 CRE1 PTCS2 CDC20 CDCA7 CDC20 CDCA7 CDC20 CDCA7 NCCA7 HOXA11 NPAL2 EXC01 IGFBP3 EXC01 IGFBP3 EXC01 IGFBP3 S100A2 E2F3 FANCD2 DNMT38	X97758 NM_00245 NM_002575 AK124593 BC041395 NM_0020974 NM_020974 NM_020974 NM_001238 NM_001238 NM_001255 NM_001255 NM_005192 NM_005192 NM_005192 NM_005192 XM_005192 XM_005192 NM_005193 NM_005193 NM_0051954 NM_0051954 NM_005195 NM_005197 NM_005554 NM_005554 NM_005554 NM_005554 NM_005554 NM_005554 NM_005554 NM_005554 NM_005978 NM_001949 NM_003949 NM_003949 NM_003949 NM_003949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_001949 NM_0005978	-0.2853 -0.2457 -0.2457 -0.2457 -0.2167 -0.2184 -0.2141 -0.2127 -0.1812 -0.11812 -0.11813 -0.1167 -0.1061 -0.0933 -0.00828 -0.0717 -0.08828 -0.03648 -0.0341 -0.03296 -0.03295 -0.0225 -0.0255 -0.0055	CCNG2 CCNE2 ECT2 NCOA6 BAZ1A SCGB1D2	NM_004354 NM_057749 NM_018098 NM_014071 NM_013448 NM_006551	-0.104 -0.054 -0.0539 -0.0359 -0.0234 -0.0158	SERPINA3 CEBPD CCNH IFITM1 MYC	NM_001085 BM924801 NM_001239 NM_003641 NM_002467	-0.8794 -0.4391 -0.1246 -0.0619 -0.0252	GATA3 KRT5 TFF3 TFF1	NM_002051 NM_003256 NM_003226 NM_003226 NM_003225 NM_00044 NM_002339 NM_002411 NM_00251 NM_002181 NM_002183 NM_002184 NM_002184 NM_002184 NM_002525 NM_002525 NM_00252 NM_0025236 NM_0025236 NM_005252 NM_0025236 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005252 NM_005485	-0.9088 0.7006 -0.7792 -0.6242 -0.5344 -0.5131 -0.4286 -0.4012 -0.4012 -0.4012 -0.4012 -0.4012 -0.4007 -0.3569 -0.7145 -0.1745 -0.1745 -0.17443 -0.0748 -0.0748 -0.0194 -0.0194 -0.0098

4.11.3 Analysis of PAM predicted subtypes by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis.

GSEA was supplied with our data files: a chip annotation file, an expression dataset file, a phenotype label file, and gene sets files. Firstly the Breast Cancer Chip v4.0 chip annotation file (file extension .chip) with HUGO gene symbols was loaded in GSEA in order to employ it as background for gene set enrichment analysis.

The expression dataset containing features (genes), samples and an expression value of all 74 tumor samples (format .gct) and the PAM predicted phenotype labels (format .cls) were also imported into GSEA following (see chapter 3.19.3).

Gene sets of most significant genes of each of the PAM predicted breast tumor phenotypes on our set of tumor samples were added to the customized collection of gene sets c5.

GSEA was used in order to perform gene expression signature analysis with already known gene set collections previously described (c1, c2, c3, and c4), and the newly created customized gene-set collection c5, to identify pathways in which the genes could be associated to the predicted breast tumor phenotype. Enrichment test were run using the default settings of the program but changing the minimal size of the gene set to 10 since some of them are smaller than the default minimum of 15.

We selected gene sets with nominal p-value less than 1%, since our intention was to discover similarities between gene sets without being too stringent, since and our gene sets were sometimes small. Nominal p-value is an unadjusted p-value which estimates the statistical significance of a gene-set without adjusting for gene-set size or multiple hypothesis testing. The FDR statistic adjusts for both. Typically, an FDR of less than 25% is most likely to generate more consistent hypothesis but is infrequent to achieve this statistical power with small gene sets.

Analysis of PAM subtype 1

PAM class 1 has 2 gene sets form the c5 dataset collection which are significantly enriched at nominal *p*-value < 1% and 6 gene sets are significantly enriched at nominal *p*-value < 5%. In this case no gene sets were found enriched with a FDR of less than 25%.

Leading-edge analysis was performed to find the similarities among different significant gene lists and to determine which genes would have more weight. Mainly, the enriched gene sets correspond to genes which were typically induced by progestins after 6 h in studies using T47D model cell line, such as

AKAP13, CXCR4, BIRC3, GADD45A, ARID1A (SMARCF1), EGR1, DUSP1, CHES1, TGFB3, and FOS (**Figure 49**).

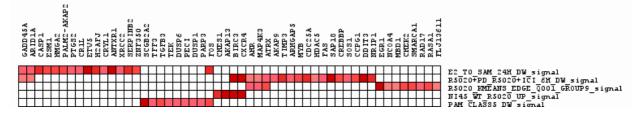
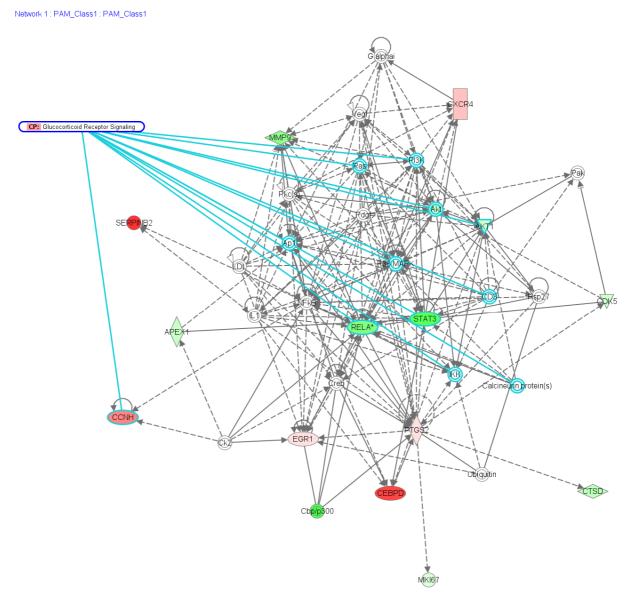



Figure 49: Leading edge analysis of PAM 1 tumor phenotype versus de rest of tumors.

Ingenuity pathway analysis (IPA, see chapter 3.19.4) was used to analyze the most significant signaling pathways and functions of this phenotype. Lists of the most significant genes of each phenotype were imported into IPA. The most relevant functions of this tumor phenotype were cancer (with 26 molecules involved, p-value = 6.97E-26) showing 3 activated molecules involved in cell tumorigenesis such as EGR1, PTGS2 and CXCR4, and others such as CEPDB, CCNH, SERPINB2 and GADD45A, are associated to tumor growth. The most represented molecular and cellular functions are cell growth and proliferation with 25 molecules taking part, and cell signaling with 20 genes of the list. PAM class 1 gene expression signature yielded three main networks. In **Figure 50** is shown the most represented network with the discriminant genes of this subtype.

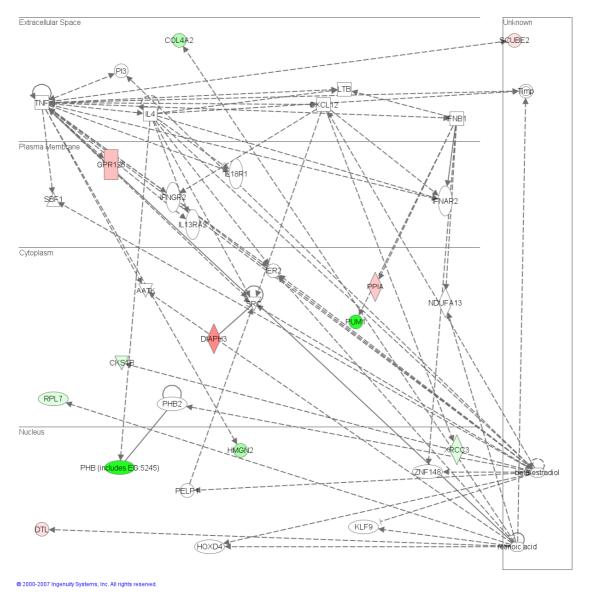
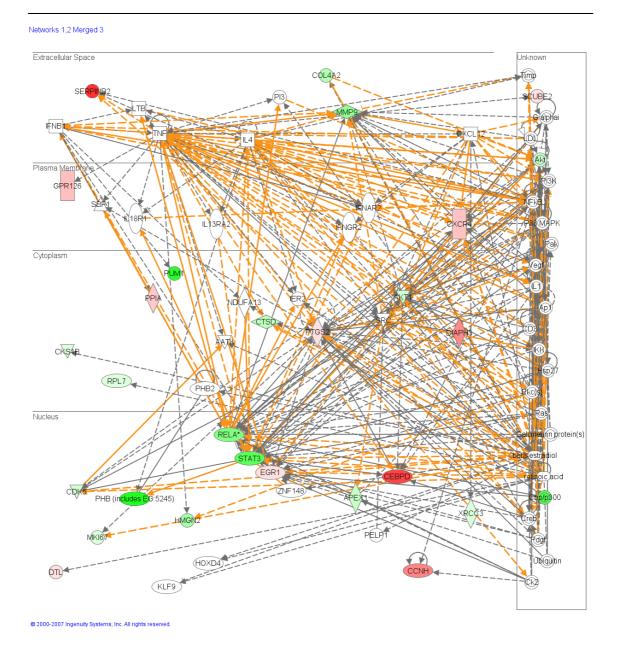


Figure 50: Network 1 of phenotype 1, in which the most significant signaling pathway is the activated glucocorticoid receptor signaling pathway. Molecules are shown in red/green relative to the PAM centroid expression value, red represented a positive score or up-regulated gene expression and green represented a negative score or down-regulated gene expression.


In network 1, there are 14 molecules of our intrinsic list involved, and there appear to be an activated glucocorticoid receptor pathway characteristic of a hormone-dependant tumor type. In network 2, there are 12 molecules of our set involved, related with ongoing inflammatory disease (**Figure 51**).

Network 2 : PAM_Class1 : PAM_Class1

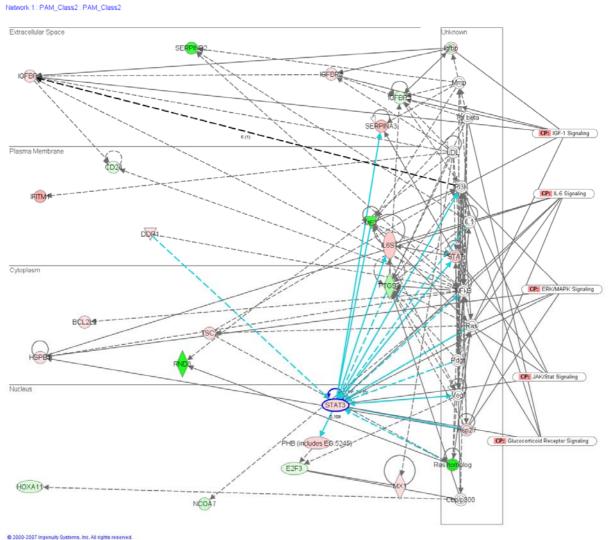
Figure 51: Network 2 of phenotype 1 in a subcellular view, in which to most significant function is related to an inflammatory disease state.

If these two networks are merged, a gene network is obtained in which activated glucocorticoid receptor signaling is connected with inflammation and cell proliferation (**Figure 52**).

Figure 52: Merged network in a subcellular view of most significant genes of predicted subtype 1.

Analysis of PAM subtype 2

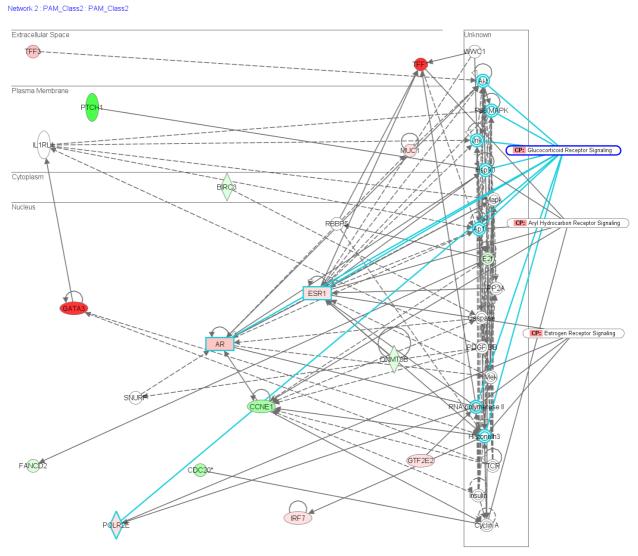
Gene set analysis of this tumor phenotype overlaps significantly with a gene list of estrogen signaling (nominal *p*-value of 0.017), the Sorlie's Luminal A phenotype list (nominal *p*-value of 0.040 and the Van't Veer good prognosis signature, a gene set which is called "BRCA_ER_positive_signal" (**Figure 53**).


Results

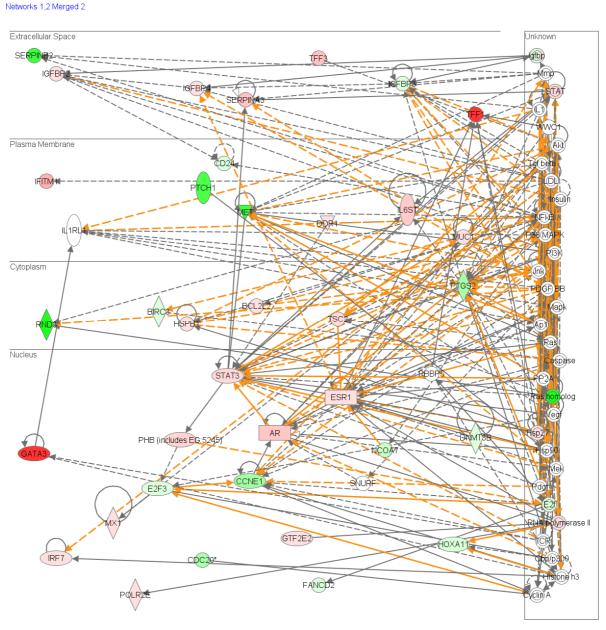
SCGBID2 HSFB1 INC1 INC1 INC2 FSR1 FFE1 TFE1 TFE1 TFE1 TFE1 TFE1 TFE1 TFE	CCTRID ACTF ACTF PACNH PACNH DDB2 DDB2
	PAM_CLASS2_UP_signal BREAST_CANCER_ESTROGEN_SIGNALING_signal BRCA_ER_POS_SIGNAL ER_POSITIVE_UP_signal PAM_CLASS5_DW_signal CHREP21_signaI R5020_TU_SAN_6H_DW_signal T47D_J_17_R5020_DW_signal

Figure 53: Leading-edge Analysis of the GSEA results of the PAM phenotype 2. Genes found distinctive from PAM subtype 2 are aligned on the horizontal axis. Found similar gene lists from other studies are on the vertical axis. Red boxes are marked the overlaps between the different gene sets showing genes that are found over-expressed on those studies.

The analysis with IPA gave to their distinctive gene signature of that tumor phenotype a top scoring functional molecular categories which includes 37 significant molecules which were previously found in cancer (p-value of 9.11E-28). The top molecular and cellular functions are cell growth and proliferation with 31 molecules being involved, and cell signaling with 28 molecules being represented. Top canonical pathways found are aryl hydrocarbon receptor signaling, Erk/MAPK pathway, IL-6 signaling, and IGF-1 signaling.


Pathway analysis gave 3 most relevant networks. The most significant with 21 molecules (**Figure 54**) gave canonical signaling pathways strongly activated as the Erk/MAPK pathway with genes up-regulated such as ESR1, DDR1, HSPB1 and STAT3; IGF-1 signaling pathway with genes being up-regulated such as IGFBP1 and IGFBP4, but IGFBP2 down-regulated; IL-6 signaling with genes such as HSPB1, IL6ST, and STAT3; and glucocorticoid receptor signaling (PI3K, RAS, STAT3, and TGFB) and JAK/STAT signaling (PI3K, RAS, STAT3, and TGFB) and JAK/STAT signaling (PI3K, RAS, STAT3, and STAT3).

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

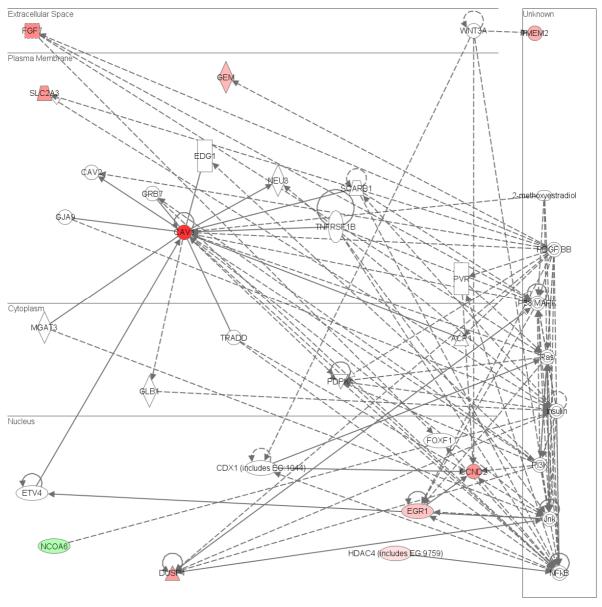

Figure 54: Network 1 of phenotype 2 in a subcellular view, in which the most significant canonical pathways are marked.

A second relevant network with a high score since it contains 30 genes from our gene list as it is shown in **Figure 55**. The score is based on a *p*-value calculation, which calculates the likelihood that the Network Eligible Molecules that are part of a network are found therein by random chance alone. A merged network 1 and 2 of phenotype 2 is shown in **Figure 56** in a subcellular view.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved

Figure 55: Network 2 of phenotype 2 in a subcellular view, in which to most significant canonical pathways are added, such as estrogen receptor signaling, glucocorticoid receptor signaling and the aryl hydrocarbon receptor signaling.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved


Figure 56: Merged networks 1 and 2 of phenotype 2 in a subcellular view.

Analysis of PAM subtype 3

Ingenuity pathway analysis shows that this tumor subtype gene signature contains 12 significant molecules which were previously found in cancer (*p*-value of 1.95E-11). The top molecular and cellular functions are cell cycle (12 genes involved), gene expression (9), cell growth and proliferation (9), cellular development (8), and cell-cell signaling (8). Top canonical signaling pathways found significant are G1/S cell cycle checkpoint regulation with 3 genes involved: a positive expression of CCND2 and HDAC4, and negative expression of CCNE2; aryl hydrocarbon receptor signaling (CCND2 and CCNE2); PDGF signaling (CAV1, caveolin); and FGF signaling (FGF7). This tumor subtype has

two high scoring networks which overlap in two molecules (DUSP1 and CAV1). The first network (**Figure 57**) is driven to cellular growth and proliferation containing 10 molecules of our gene list of this tumor subtype. It is observed at the diagram that cell proliferation could be driven extracellularly by the fibroblast growth factor FGF7, an EGF-like molecule, interacting downstream with the transcription regulators CCND2 and EGR1. DUSP1 is known to take part in the glucocorticoid receptor pathway and act as negative feedback regulator of JNK/STAT and p38 MAPK signaling pathway (Amit *et al.* 2007). This phenotype of tumors partially resembles the "core serum response" described by Chang *et al.* (2004). Plasma membrane associated ER interacts with CAV1 which plays an important role in E2 induced signal transduction. Phosphorylation of caveolin-1 forces *caveolae* to leave the plasma membrane, thereby decreasing the amount of plasma membrane-associated caveolin-1. This loss of caveolin/*caveolae* activates the signal cascade that triggers cell proliferation (Kiss *et al.* 2005).

Network 1 : PAM_Class3 : PAM_Class3

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 57: Network 1 of phenotype 3 in a subcellular view, of the cell growth and proliferation signaling is driven extracellular by FGF7.

GSEA analysis shows an overlap with a gene list of down-regulated genes after hormone induction by means of progestin on breast cancer model cell line T47D, and with early induced genes 1 hr after E2 treatment such as MYC, EGR1, WISP2, STAT5A, CDKN1C, ITGA5, IGFBP1 and IGFP3 (NOM *p*-value = 0.045). Also there is an overlap with a gene set of MYC target genes such as CCND2, CCNE1, DUSP1, CDKN1A, CDK4, CDKN2B, CCNA2, FN1, APEX1, HSPA4, and MYC itself (NOM *p*-value = 0.045). Leading edge analysis of this tumor subtype is shown in **Figure 58**.

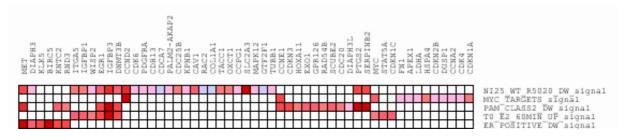
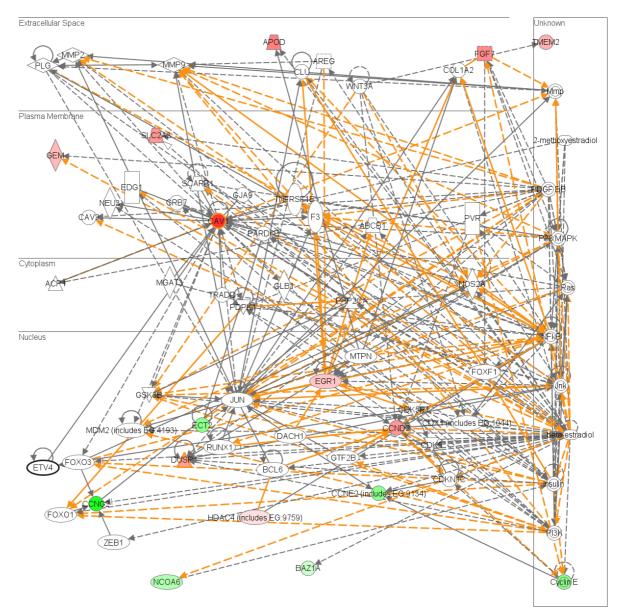
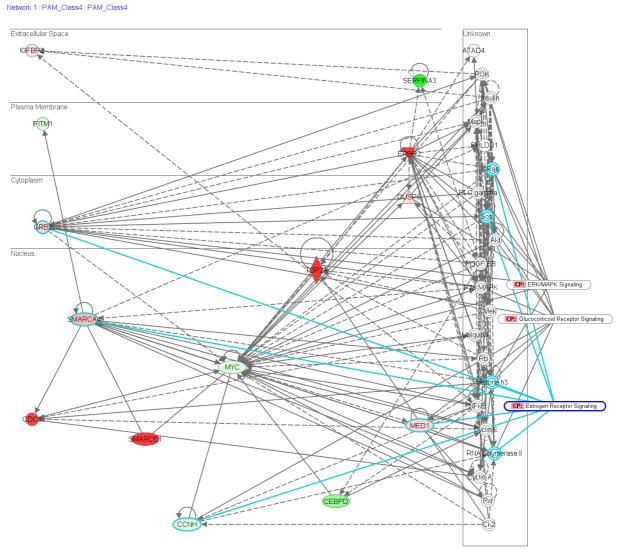



Figure 58: Leading edge analysis of tumor subtype 3.

If the two networks are merged, the obtained figure is shown in Figure 59.


Networks 1,2 Merged 3

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 59: Merged network 1 and 2 of phenotype 3 in a subcellular view.

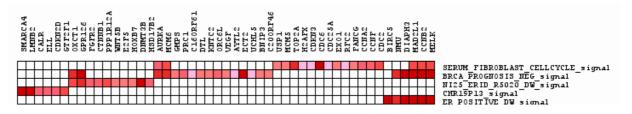
Analysis of PAM subtype 4

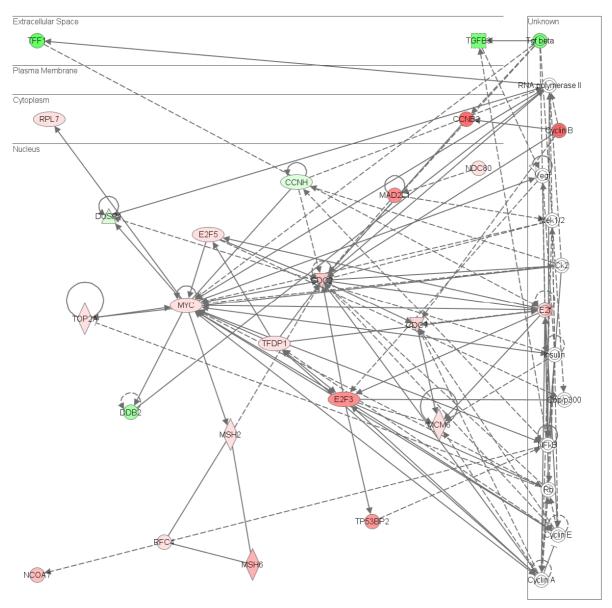
This tumor subtype consists of the know ERBB2+ like tumors. 3 of the 5 cases in this class had HER-2 gene amplification by fluorescence in situ hybridization analysis. The most discriminating genes of this subtype are genes mainly involved in cell cycle progression and proliferation in breast cancer such as ERBB2, SMARCE1, TOP2A, SMARCA4, IGFBP2, and PPARBP (MED1), involved in cell signaling and activating Erk/MAPK signaling through GRB2 and the transcription modulator DUSP6 which acts as a repressor of Erk. The network obtained has a score of 40, and connects 14 genes of our list of 15 discriminant genes of the PAM predicted ERBB2+ tumor subtype (Figure 60). The most represented pathways are the estrogen receptor pathway, the glucocorticoid receptor pathway and the Erk/MAPK pathway. There is some evidence for the interaction of growth factor signaling (EGF, ERBB2) and steroid hormone pathway in controlling the growth of breast cancer cells. It seems that there is an apparent cross-talk between these growth regulatory systems (Wilson and Slamon 2005). ERBB2 overexpression is associated to resistance to Tamoxifen and could directly modulate ER levels (Arpino et al. 2005). As it is shown in the diagram, ERBB2 directly interacts with DUSP6 which act as a specific transcriptional repressor of Erk (Amit et al. 2007). All these findings have led to the hypothesis that involves peptide growth factor pathways as possible mediators of the steroid hormone-independent phenotype in some human breast cancers, where peptide hormone pathways are replacing, in part, the steroid hormone pathways in regulating growth for these tumors.

© 2000-2007 Ingenuity Systems, Inc. All rights reserved

Figure 60: Network 1 phenotype 4, ERBB2+-like, which shows how most of the discriminating genes (14/15) are connected.

GSEA analysis shows an overlap with Van't Veer negative prognosis gene list (called "BRCA_PROGNOSIS_NEG_signal", nominal *p*-value = 0.006) with 18 genes (**Figure 61**), being highly expressed genes such as AURKA, MCM6, ECT2, NMU, DIAPH3, MAD2L1, CCNB2, and MELK. Other gene lists are genes of a serum fibroblast signature (NOM *p*-value = 0.011), and a set of down-regulated genes after hormonal induction by progestins using another model cell line T47y which does not express PR endogenously but was transfected with a vector containing PR carrying a point mutation on the ERID domain, the interaction domain with ER α , and therefore has lost its ability to crosstalk and activate Erk1/2 signaling pathway (Ignacio Quiles, pH Doctoral Thesis, University of Pompeu Fabra, CRG, Barcelona).This indicates that genes that are usually induced by progestins are by introducing a mutation on the ERID domain down-regulated, and overlap in part with the discriminant genes of the PAM subtype 4.



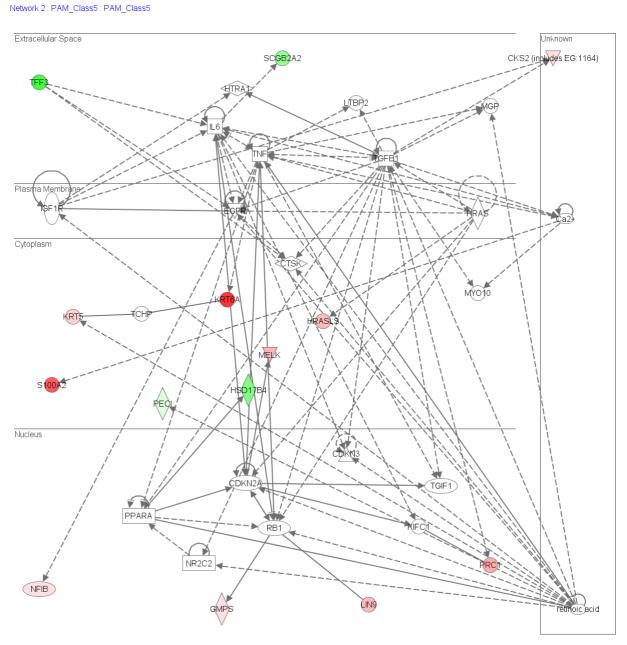

Figure 61: Leading edge analysis of ERBB2+ tumor phenotype.

Analysis of PAM subtype 5

This tumor subtype is the characteristic basal-like subtype characterize with high expression of keratins 5A and 5B and showed also high expression of other basal epithelial genes as KIT1 and ID4. These are also termed as "triple-negative tumors" as they are found negative for ER, PR and ERBB2. As we mentioned earlier, 9 out of 12 samples are p53+ and have high histological grade (10/12).

Ingenuity analysis shows that the genes most discriminating for this tumor subtype are mainly involved in cancer (36 of them, obtaining a p-value of 2.17E-30. The molecular and cellular functions of this subtype are cell death, cell cycle, cellular growth and proliferation, and cell signaling. Pathway analysis gives three significant networks.

Network 1 : PAM_Class5 : PAM_Class5



© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 62: Network 1 phenotype 5, basal-like-like.

A first network involves 21 molecules of our list, is shown at **Figure 62.** ER signaling pathway is inactive, ER regulated genes TFF1, FOS, TGFB3 and CCNH are down-regulated, and now, there is high expression of genes involved in G1/S mitotic cell phase with transcription factors being up-regulated such as E2F3, E2F5, MYC, TFDP1, promoting cell cycle progression to mitosis, indicative of high proliferative tumors. Erk/MAPK pathway is also inactive with dual specificity phosphatases DUSP1 and DUSP6, TEK tyrosine kinase and FOS down-regulated in this tumor subtype.

Results

© 2000-2007 Ingenuity Systems, Inc. All rights reserved.

Figure 63: Network 2 phenotype 5, basal-like-like.

On a second significant network there is high expression of basal/myoepithelial genes such as KRT5/6 and calcium binding protein such as S100A (**Figure 63**).

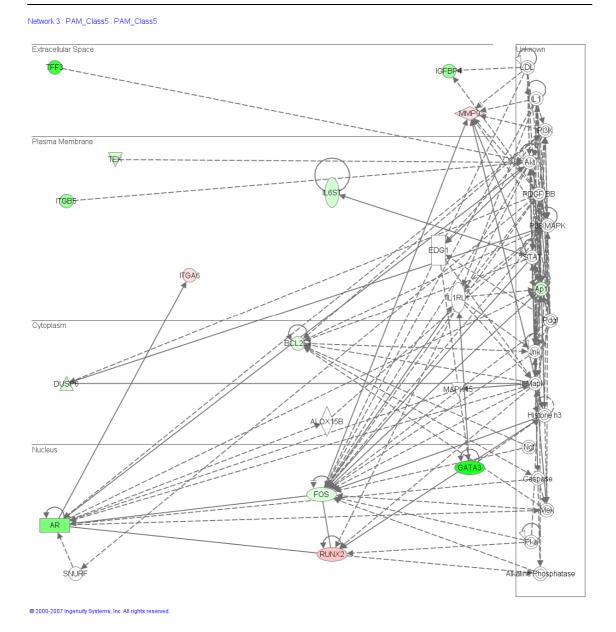
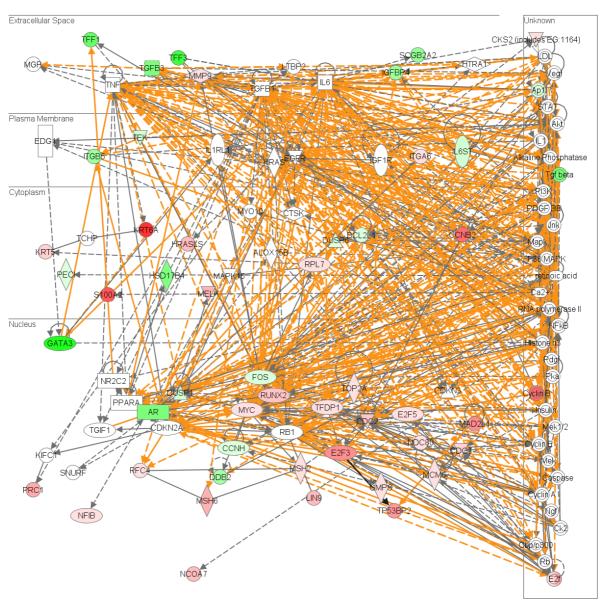



Figure 64: Network 3 phenotype 5, basal-like-like.

On the third significant network by IPA, ER signaling pathway is also shown inactive in this tumor phenotype, as many genes typically regulated by ER or co-expressed by ER are down-regulated such as TFF3, ILST6, GATA3, FOS, and AR. (**Figure 64**).

143

Networks 1,2,3 Merged 1

Figure 65: Merged networks of PAM predicted phenotype 5, basal-like breast tumors.

Merging the three networks (**Figure 65**), a gene expression picture of this tumor subtype is obtained where the ER signaling pathway is shut off, and a set of transcription factors such as MYC, RUNX2, TFDP1, E2F3 activate CCD2 and CCNB2, inducing the breast cancer cell to proliferate.

GSEA analysis found significant the list of Sorlie's basal-like subtype (called "BRCA_ER_negative_signal") with an FDR q-value of 0.101, nominal p-value of 0.006), Van't Veer poor prognosis (FDR q-value of 0.209, nominal p-value of 0.004), and Van't Veer breast cancer outcome good versus poor (FDR q-value of 0.464, nominal p-value of 0.064). Leading edge analysis of most relevant results of GSEA is shown in **Figure 66**.

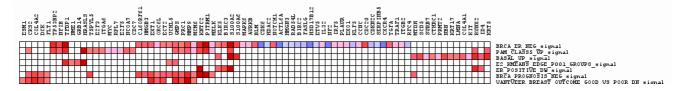


Figure 66: Leading edge analysis of GSEA result of PAM predicted subtype 5.

4.11.4 Analysis of the test or validation set

Using the 150 centroid genes used to classify into five breast cancer subtypes described above, a classification was performed of a new incoming batch of breast biopsy samples using Pearson correlation coefficient to centroids to assign each tumor sample into a predicted phenotype.

Since in this new batch of breast biopsies there were also included 3 samples of normal breast tissue taken from a tissue adjacent to a tumor, it was also used a classifier adding the centroid resulting from normal breast samples. The training set had only 3 normal samples, but one of them was not consistent by unsupervised clustering and was aligned with tumor samples (T70).

Selecting a threshold Δ of 1.31, breast samples were assigning to a subtype centroid by means of Pearson correlation coefficient as the probability to belong to that class. Probabilities of the test set of new incoming samples are shown in **Figure 67**.

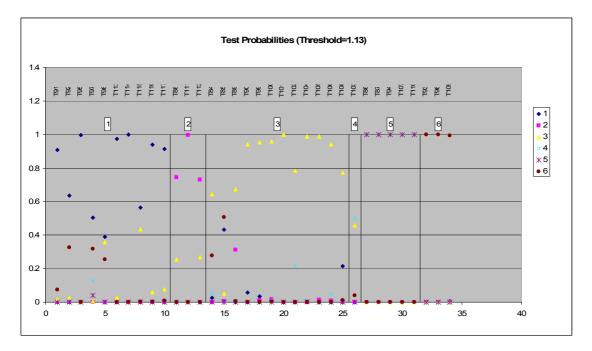


Figure 67: Class assignment and probabilities of the predicted test set.

In **Table 14** the predicted probability is shown together with the clinical and histopathological patient data showing good correlation with molecular markers. Normal breast samples are correctly assigned. Triple-negative samples, those samples which are negative for ER, PR, and HER-2, are assigned with high probability to the poor prognosis basal-like subtype 5. Only one sample is left unclassified, since probability of being assigned to a tumor subtype did not reach a 50%. Grey cells means data not yet available.

		Predicted Probabilities						Clinical and Histopathological data								
Array ID	Predicted Class	1	2	3	4	5	6	Patient ID	ER	PR	HER-2	p53	Histological Grade	Tumor size	Lymph node status	Metastatic sites
T84	3	0.02	0.00	0.64	0.05	0.00	0.28	R15301	POS	NEG	3+++	NEG	HG2	T1	N0	MO
Т85	3	0.24	0.00	0.76	0.00	0.00	0.00	R15302	POS	POS	NEG- POLISOMICO	NEG	HG2	T2	N0	MO
Т86	5	0.00	0.00	0.00	0.00	1.00	0.00	R15303	NEG	NEG	NEG	POS	HG3	T1	N0	MO
Т87	5	0.00	0.00	0.00	0.00	1.00	0.00	R15304	NEG	NEG	NEG	POS	HG3	T1	N0	MO
Т88	2	0.00	0.75	0.25	0.00	0.00	0.00	R15305	POS	POS	NEG	NEG	HG2	T1	N1	MO
Т89	3	0.00	0.31	0.67	0.01	0.00	0.01	R15306	POS	POS	NEG	NEG	HG1	T1	N0	MO
Т90	3	0.06	0.00	0.94	0.00	0.00	0.00	R15307	POS	POS	NEG	NEG	HG1	T1	N0	MO
T91	1	0.91	0.00	0.02	0.00	0.00	0.07	R15308	POS	NEG	NEG	NEG	-	-	-	-
T92	1	0.64	0.00	0.03	0.01	0.00	0.33	R15309	NEG	NEG	3+++	NEG	-	-	-	-
Т93	6	0.00	0.00	0.00	0.00	0.00	1.00	R15326	NORM	AL BR	EAST					
Т94	5	0.00	0.00	0.00	0.00	1.00	0.00	R15328	NEG	NEG	NEG	NEG	HG3	T1	N1	MO
Т95	1	1.00	0.00	0.00	0.00	0.00	0.00	R15330	POS	POS	NEG	NEG	-	T2	N0	MO
Т96	6	0.00	0.00	0.00	0.00	0.00	1.00	R15331	NORM	AL BR	EAST					
Т97	1	0.50	0.00	0.01	0.13	0.04	0.32	R15332	POS	POS	3+AMPLIFICADO FISH	NEG	HG3	Т3	N1	MO
Т98	Unclass	0.39	0.00	0.36	0.00	0.00	0.25	R15333	POS	POS	NEG	NEG	HG2	T2	N2	MO
Т99	3	0.03	0.01	0.95	0.00	0.00	0.00	R15334	POS	POS	NEG	NEG	HG1	T1	N1	MO
T100	3	0.01	0.02	0.96	0.02	0.00	0.00	R15335	POS	POS	NEG	NEG	-	T2	N1	MO
T101	3	0.00	0.00	1.00	0.00	0.00	0.00	R15336	POS	POS	NEG	NEG	HG1	-	-	-
T102	3	0.00	0.00	0.79	0.21	0.00	0.00	R15371	POS	POS	2+AMPLIFICADO	NEG	HG3	-	-	-
T103	4	0.00	0.00	0.46	0.50	0.00	0.04	R15372	POS	NEG	NEG 1+	POS	HG3	T1	N0	MO
T104	3	0.00	0.00	0.99	0.01	0.00	0.00	R15374	NEG	NEG	3+AMPLIFICADO FISH	NEG	HG3	-	-	-
T105	3	0.00	0.01	0.99	0.00	0.00	0.00	R15375	POS	POS	NEG	POS	-	-	-	-
T106	3	0.00	0.01	0.94	0.05	0.00	0.00	R15376	POS	POS	NEG	NEG	-	-	-	-
T107	5	0.00	0.00	0.00	0.00	1.00	0.00	R15378	NEG	NEG	NEG	POS	HG3	-	-	-
T108	3	0.22	0.00	0.77	0.00	0.00	0.01	R15398	POS	POS	NEG	NEG	HG2	-	-	-
T109	6	0.01	0.00	0.00	0.00	0.00	0.99	R15399	NORM	AL BR	EAST					
T110	5	0.00	0.00	0.00	0.00	1.00	0.00	R15400	NEG	NEG	NEG	POS	HG3	-	-	-
T111	2	0.00	1.00	0.00	0.00	0.00	0.00	R15401	POS	POS	NEG	-	HG2	-	-	-
T112	2	0.00	0.73	0.27	0.00	0.00	0.00	R15402	POS	POS	NEG	NEG	-	-	-	-
T113	1	0.97	0.00	0.03	0.00	0.00	0.00	R15404	POS	NEG	NEG	NEG	HG2	-	-	-
T114	1	1.00	0.00	0.00	0.00	0.00	0.00	R15405	POS	POS	NEG 1+	NEG	HG2	-	-	-
T115	1	0.56	0.00	0.44	0.00	0.00	0.00	R15406	POS	POS	NEG	NEG	HG2	-	-	-
T116	1	0.94	0.00	0.06	0.00	0.00	0.00	R15407	POS	POS	NEG	POS	HG3	-	-	-
T117	1	0.91	0.00	0.08	0.00	0.00	0.01	R15408	POS	POS	NEG	NEG	HG1	-	-	-

 Table 14: Test set probabilities and clinical histopathological data.

Clinical and histopathological characteristics of the all patients and their tumors of the PAM predicted groups in both training and test set are listed in **Table 15**.

Table 15: Clinical and histopathological characteristics of the patients and their tumors of the PAM predicted groups.

All patients (n	= 105)	PAM 1 (n=21)	PAM 2 (n=29)	PAM 3 (n=31)	PAM 4 (n=6)	PAM 5 (n=17)
Age (years)	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
≤ 40	5 (4.8%)	1 (4.8%)	2 (6.9%)	1 (3.2%)		
40 and ≤ 50	11 (10.5%)	2 (9.5%)	4 (13.8%)	3 (9.7%)		
> 50 and ≤ 60	30 (28.6%)	6 (28.6%)	4 (13.8%)	9 (29.0%)	2 (33.3%)	6 (35.3%)
> 60 and ≤ 70	27 (25.7%)	6 (28.6%)	7 (24.1%)	5 (16.1%)	3 (50%)	1 (5.9%)
> 70	32 (30.5%)	4 (19.0%)	11 (37.9%)	6 (19.4%)	1 (16.7%)	5 (29.4%)
Гherapy	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
HT only	21 (20%)	5 (23.8%)	9 (31.0%)	8 (25.8%)		
QT only	26 (24.8%)		3 (10.3%)	8 (25.8%)	2 (33.3%)	13 (76.5%)
HT + QT	38 (36.2%)	15 (71.4%)	17 (56.6%)	10 (32.3%)	3 (50%)	
neoadjuvant QT	3 (2.9%)					3 (17,6%)
HT + QT + Herceptin	1 (1%)	1 (4.8%)		2 (6.5%)		,
none	5 (4.8%)			2 (6.5%)	1 (16.7%)	1 (5.9%)
Tumor size, cm	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
I	51 (48.6%)	9 (42.9%)	17 (56.6%)	14 (45.2%)	2 (33.3%)	9 (52.9%)
2	42 (40%)	10 (47.6%)	8 (27.6%)	15 (48.4%)	4 (66.7%)	4 (24.5%)
3	9 (8.6%)	2 (9.5%)	2 (6.9%)	1 (3.2%)		4 (24.5%)
4	2 (1.9%)		2 (6.9%)	4 (0.00())		
squemic	1 (1%)			1 (3.2%)		
_ymph node	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of case
none	60 (57.1%)	11 (52.4%)	18 (62.1%)	20 (64.5%)	4 (66.7%)	8 (47.1%)
l	29 (27.6%)	7 (33.3%)	9 (31.0%)	4 (12.9%)		9 (52.9%)
2	8 (7.6%)	1 (4.8%)	1 (3.4%)	5 (16.1%)		
3	6 (5.7%)	2 (9.5%)	1 (3.4%)	2 (6.5%)	1 (16.7%)	
nicro	1 (1%)				1 (16.7%)	
Metastatic sites	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
none	101 (96.2%)	21 (100%)	29 (100%)	29 (93.5%)	6	15 (88.2%)
one	4 (3.8%)			2 (6.5%)		2 (11.8%)
Vascular invasion	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
ves	30 (28.6%)	7 (33.3%)	10 (34.5%)	7 (22.6%)	5	4 (23.5%)
none	74 (70.5%)	14 (66.7%)	19 (65.5%)	23 (74.2%)	1 (16.7%)	11 (64.7%)
Histological grade	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
1	17 (16.2%)	6 (28.6%)	3 (10.3%)	8 (25.8%)	Number of cases	Number of cases
2		8 (38.1%)	12 (41.4%)		4 (40 70/)	1 (5.9%)
2 3	30 (28.6%) 33 (31.4%)	3 (14.3%)	4 (13.8%)	7 (22.6%) 9 (29.0%)	1 (16.7%) 4	13 (76.5%)
-						
unknown	25 (23.8%)	4 (19.0%)	10 (34.5%)	7 (22.6%)	1 (16.7%)	3 (17.6%)
Recurrence	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of cases
ree of disease (VL)	58 (55.2%)	11 (52.4%)	24 (82.8%)	13 (41.9%)	4 (66.7%)	5 (29.4%)
with disease (VE)	5 (4.8%)	2 (9.5%)	1 (3.4%)	3 (9.7%)		1 (5.9%)
exitus	10 (9.5%)	1 (4.8%)	1 (3.4%)	2 (6.5%)		6 (35.3%)
unknown	31 (29.5%)		3 (10.3%)	14 (45.2%)	1 (16.7%)	5 (29.4%)
no follow-up	2 (1.9%)			1 (3.2%)	1 (16.7%)	
o53 status	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of case
negative	70 (66.7%)	20 (95,2%)	20 (69.0%)	23 (74.2%)	3 (50%)	3 (17,6%)
positive	34 (32.4%)	1 (4.8%)	8 (27.6%)	8 (25.8%)	3 (50%)	14 (82.4%)
unknown	1 (1%)		1 (3.4%)			
Steroid receptor status	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of case
ER+ PR+	56 (53.3%)	14 (66,7%)	23 (79.3%)	17 (54.8%)	1 (16.7%)	
ER+ PR-	15 (14.3%)	4 (19.0%)	5 (17.2%)	5 (16.1%)	1 (16.7%)	
ER- PR+	2 (1.9%)	2 (9.5%)				
ER- PR-	32 (30.5%)	1 (4.8%)	1 (3.4%)	9 (29.0%)	4 (66.7%)	17 (100%)
er-2 status (IHC/FISH)	Number of cases (%)	Number of cases	Number of cases	Number of cases	Number of cases	Number of case
negative/negative	90 (85.7%)		28 (96.6%)	26 (83.9%)		16 (94.1%)
oositive/amplified polysome	10 (9.5%)	2 (9.5%)	1 (3.4%)	4 (12.9%)	3 (50%)	1 (5.9%)
negative/amplified polysome	4 (3.8%)	2 (9.5%)	`, <i>`</i> ,	1 (3.2%)	1 (16.7%)	, , ,
ositive/non-amplified polysome	1 (1%)	,,	1		1 (16.7%)	1

HT = hormone therapy; QT = chemotherapy: IHC = immunohistochemistry; FISH =fluorescence "in situ" hybridization

The more discriminating parameters of the basal-like subtype, PAM class 5, are the higher percentage of high grade tumors (76.5%) higher percentage of recurrence with *exitus* cases (35.55), higher percentage of p53 positive tumors (82.4%), all are ER-PR- (100%), and ERBB2- (94.1%).

4.12 Real Time qPCR assay for confirming results of breast tumor samples

To validate the class prediction of the test set, breast samples T84 to T117, it was performed real time qPCR assays with a set of genes selected from the top discriminatory genes from each predicted class. It was also included DUSP1 and DUSP6, for their role as negative feedback in growth factor signaling. DUSP1 preferentially inactivates JNK/p38 signaling, and DUSP6 is a repressor of Erk signaling pathway (Amit *et al.* 2007).

Primer pairs were design as explained in chapter 3.20.1. Reverse transcription of Total RNA samples were performed as stated in chapter 3.20.2, with a difference, which is that it was employed a mix of oligo-dT and random primers (hexamers) in a 1 to 1 proportion, that is, 50 pmoles of oligo dT and 100 ng/µl per transcription reaction, since our breast tumor samples are not intact but partially degraded.

List of primers for real time qPCR assays are listed at **Appendix A4**.

Assay efficiencies for each primer pair were calculated as in chapter 3.20.3, but using for these assays a pool of breast tumor samples, for taking in consideration the quality of the RNA besides of the primer pair efficiency (**Table 16**).

6 genes were included as endogenous controls to determine whether a single gene or a combination of various genes were suitable for normalization of the whole set. These genes were selected since they were previously selected for primary breast tumor samples (Szabo *et al.* 2004). Each sample was assayed by duplicate. It was included a "minus RT" control for checking any genomic DNA carry-over, and a "non-template" control for each primer pair for check for the specificity of the assay. As a result, the breast tumor "gene panel" consisted in 21 genes, and looked as in **Figure 68**.

Ct values from duplicates were averaged, and referred to the calibrator sample, which is UHRR, as it was used at microarray gene profiling analysis.

Function	Symbol (alias)	RefSeq	Efficiency	Efficiency (%)
Endogenous	ACTN	NM_001102	1.855	92.75
Endogenous	GAPD	NM_002046	1.943	97.15
Endogenous	MRPL19	NM_014763	1.831	91.55
Endogenous	SF3A1	NM_005877	1.904	95.20
Endogenous	PUM1	NM_014676	1.98	99.00
Endogenous	PSMC4	NM_006503	1.97	98.50
Up-regulated in PAM Class 1	SERPINB2	NM_002575	1.806	90.30
Up-regulated in PAM Class 1	CEBPD	NM_005195	1.852	92.60
Up-regulated in PAM Class 2	TFF1 (pS2)	NM_003225	1.894	94.70
Up-regulated in PAM Class 2	GATA3	NM_002051	1.942	97.10
Up-regulated in PAM Class 2	SERPINA3	NM_001085	1.873	93.65
Up-regulated in PAM Class 3	CAV1	NM_001753	1.916	95.80
Up-regulated in PAM Class 3	APOD	NM_001647	1.989	99.45
Up-regulated in PAM Class 3	DUSP1	NM_004417	1.864	93.20
Up-regulated in PAM Class 4	TOP2A	NM_001067	1.97	98.50
Up-regulated in PAM Class 4	ERBB2	NM_004448	1.517	75.85
Up-regulated in PAM Class 4	SMARCE1	NM_003079	1.788	89.40
Up-regulated in PAM Class 4	SMARCA4	NM_003072	1.866	93.30
Up-regulated in PAM Class 4	DUSP6	BC037236	1.982	99.10
Up-regulated in PAM Class 5	KRT5	NM_000424	1.855	92.75
Up-regulated in PAM Class 5	S100A2	NM_005978	1.845	92.25

 Table 16: Breast tumor samples gene panel.

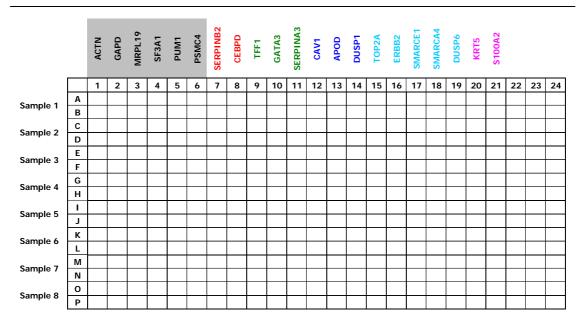


Figure 68: Gene panel the breast tumor samples for microarray data validation.

Three of the assayed tumor samples failed, T91, T92, and T93, since there was not enough Total RNA sample for reverse transcription.

Real time qPCR data was normalized applying geNORM (see chapter 3.20.5) to determine the more suitable set of genes for normalization of real time qPCR data. This algorithm gives as the most stable genes across all tumor samples, were MRPL19 and PSMC4, and the least stable was GAPD and ACTN1 (**Figure 69**).

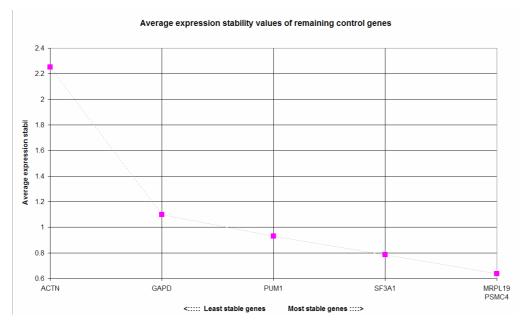


Figure 69: Average expression stability of reference genes by geNORM.

GeNORM calculates the pairwise variation V between two sequential normalization factors containing an increasing number of genes. A large variation means that the added gene has a significant effect and should preferably be included for calculation of a reliable normalization. The lowest cut-off value for the pairwise variation was 0.247 using 4 genes (excluding ACTN1 and GAPD) (**Figure 70**).

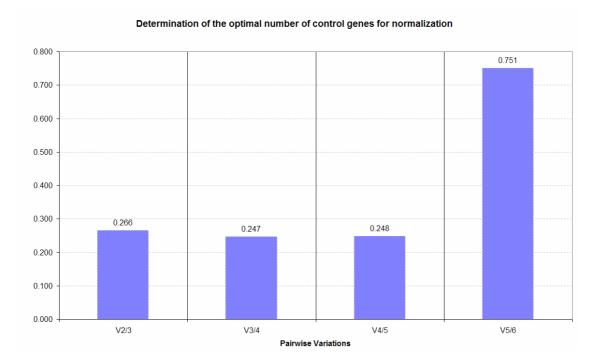


Figure 70: Pairwise variation is the lowest by using 4 control genes (V3/4) to compute the normalization factor for each gene.

The obtained Cp values are transformed to quantities by referring to the calibrator sample, in our case the UHRR sample, which was our reference sample at microarrays. A normalization factor for each gene is calculated from the geometric mean of all control genes (n=4). Normalized quantities of each gene are obtained by dividing raw quantity values by the normalization factor.

Results of the screen of the later test set of 34 tumor samples are resumed at **Appendix A12**. Microarray log₂Ratio value is also stated in parallel. It is observed how the expression values by real time qPCR are similar to those obtained by means of microarray analysis.

Microarray data has good correlation with Real Time qPCR; expression values as it is noted by the coefficient of correlation between both data values of each tumor sample. As expected, values are larger by means of Real Time qPCR than with microarray technique.

As a conclusion from this experiment, gene panel could be useful, it is able discriminate between distinct phenotypic subtypes by its distinctive genes in a context of a group of samples.

But, in my opinion, a gene panel with only 15 genes, it is a too reduced approximation to the reality. Gene expression profiling by means of microarray gives a much better characterization of the breast tumor samples.

Discussion

5.1 Establishment of the custom cDNA breast cancer microarray platform

Gene expression profiling using DNA microarrays allows the simultaneous determination of gene expression status of hundreds to thousands of genes, thus it permits to obtain an instant picture of a tissue, being either a cell line or a more heterogeneous sample such as a breast tumor specimen.

The establishment of the customized breast cancer cDNA microarray has been a major success at the CRG. Due to its replicate sample reproducibility, the highest signal to noise at microarray facility, and the intrinsic hybridization specificity due to DNA long probes, it has been successfully used, so far in 476 samples at various gene expression studies at the CRG. Since it has a reduced format, having only 820 unique genes, and the actual lower cost of whole genome commercial platforms, it has been slowly replaced.

Another interesting feature of this platform is that in every new print were included new biomarkers that were found interesting at references and potentially involved in breast cancer. This made the BCA platform to be always evolving.

5.2 *In vitro* studies of the dynamic hormonal response.

To study the signaling pathways that play a major role in a breast tumor environment and lead to tumor progression, an *in vitro* model system was first approached to understand the underlying mechanisms of gene expression in response to hormones.

Breast cancer model cell line T47D-MTVL was investigated under the effect of progestins and estradiol, with the objective to elucidate the signaling pathways in which the endogenously expressing hormone receptors ER and PR respond to artificially added hormones over time. Recent mathematical algorithms specially indicated for this type of experiment, were applied to investigate the dynamic behavior of our population of cells. These algorithms account for the longitudinal sampling of each replicate, and lead us to the identification of the molecules involved in hormonal response, assigning them to various cell biological and molecular functions. Statistical significance analysis was performed to detect genes whose expression changed with a single hormone treatment (E2, R5020) and to identify genes responding differently or similarly between treatments. Genes were further classified based upon their behavior throughout the experimental course, grouping genes that have the same trend, following the premise by which genes that are found to be co-expressed at a certain time and follow similar patterns of expression are functionally related, and often activated through the same transcription factors. Early response

Discussion

transcription factor genes whose transcription was activated by hormonal induction were also identified, which will be later involved in the rapid activation of various target genes initiating transcription of target proteins. A group of transcription factors were activated early by both hormone treatment which included FOS, ATF3, MYC and SNAI1. This fact indicated that both hormone treatments share similar mechanisms of cell signaling. On the contrary, another set of genes were found to be only activated by progestins and not by estradiol or with a minor response. These genes are GTFH2, NEO1, MAPK7, ABL1, and RPS6KA1, which are involved in cytoplasmatic mitogenic signaling cascades. As a global result, cell cycle progression is time delayed with estradiol in comparison with progestin.

By means of the Erk1/2 pathway specific kinase inhibitor PD98059 (PD) or ER antagonist ICI182780 (ICI), the contribution of the different mechanisms of action of progestins or estradiol in the induction of hormone target genes were further elucidated. Genes which are inhibited by PD, by ICI, or by both drugs at fixed time intervals after hormone induction were also identified. The genes that are induced by hormones and later are inhibited by both PD and ICI are genes that are activated via ERa-PR-B crosstalk mechanism and are dependent on the activation of the Erk1/2 signaling pathway. On the other hand, genes that are induced by hormones, and later only inhibited by PD and not by ICI, are genes dependent on the Erk1/2 signaling pathway but ER independent. Genes that are induced by hormones, but inhibited only by ICI and not by PD, are consequently independent of the Erk1/2 pathway and only ER dependent, and therefore are dependent on the PI3K/Akt signaling pathway, the JAK/STAT signaling pathway or other still unknown mechanisms. And finally, genes that are induced by hormones but neither inhibited by PD nor by ICI will be independent of ERa-PR-B crosstalk, independent of Erk1/2 and would be due to a purely genomic signaling pathway or other still unknown mechanisms (see Appendix 10 for Venn diagrams).

From the analysis of 120 genes found to be induced by progestin, 75 of them are neither inhibited by PD nor ICI after 6 h of hormonal induction. Therefore it can be confirmed that the majority of genes in our analysis are induced independently of the ER α -PR-B crosstalk, independent of the Erk1/2 signaling pathway, and are most probably due to a direct genomic signaling pathway, PI3K/Akt signaling pathway, JAK/STAT signaling pathway or other still unknown mechanisms.

In the case of E2, from the 95 genes induced by E2 in the T47D model cell line, a third of them are unaffected by either PD or ICI one hour after induction. Again, global gene response to progestins, in our model cell line, is more mitogenic than with estradiol. In the case of estradiol, the cell cycle progression to mitosis is delayed. This probably occurs since cytoplasmatic signaling cascades through MAPK and PI3K kinase signaling pathways are to a large extent more effective at initiating transcription of target genes. It has been observed that other model cell lines, like for example MCF7, have a stronger response to estradiol, possibly due to a higher content of ER.

5.3 Breast tumor gene expression signatures

Gene expression profiling using microarray technology allows the definition of a tumor phenotype from the expression pattern of several genes simultaneously, in contrast to standard methodologies which rely on a few pathological and immunohistochemical markers. Tumors can be more finely classified based on a combination of genes whose expression level is able to discriminate efficiently between clinically different phenotypes of breast tumor. This in turn could be used to establish if they require different treatment strategies.

Due to the genetic heterogeneity of the sample, breast tumors can not be treated individually. Probably, expression profiling variation due to the heterogeneity of the biopsy specimen (proportion of tumoral cells, blood vessels, stromal cells, ductal or lobular tissue), can be observed on the microarray result of different samples from the same tumor, and can explain variability among tumors of similar clinical type.

Our first objective was to classify tumor samples in our population of breast tumor biopsies into various gene expression phenotypes. This was firstly approached employing an unsupervised hierarchical clustering algorithm, where samples were distributed into two groups with maximal differential gene expression. The two main branches of the tree dendrogram, segregated samples based upon their hormone receptor status into ER negative or positive. The first profile of 11 breast tumor samples had characteristic overexpression of genes such as TP53BP2, S100A2, KRT5, NF1B, HRASLS, GPR180, MMP9 and RUNX2, which are distinctive basal/myoepithelial-like molecular markers. These breast tumors are hormone independent and often p53+, and have a poor prognosis (Sorlie *et al.* 2003, van't Veer *et al.* 2002, and van de Vijver *et al.* 2002). To discover new subtypes a threshold line was drawn and 7 sets of tumors were obtained. These were investigated at the functional ontology level to see whether they showed any characteristic cell signaling property, but since the gene lists were small, significant hits were found in three groups of seven.

Unsupervised clustering can be a first exploratory approach as a method to distribute samples on a tree dendrogram, grouping samples upon their similarity metric as the distance, and ultimately for class discovery. Unsupervised clustering can be used only when the discovered classes are clearly divergent. In our dataset of tumor samples, the basal/myoepithelial-like subtype showed this behavior and yielded significant functional annotation traits.

A supervised approach was employed applying principal components analysis by BGA, dividing the tumor collection into two datasets, the training and the test set, since at the time of the analysis the clinical histopathological data were unknown. Unexpectedly, the use of this test set as a validation set awaits follow up of patients' disease progress. The distribution of the samples versus their ER status resulted in more than two groups. The samples that were determined to be basal-like by FADA were again distributed together in a separate group, indicating that this set of tumors is a coherent class with a distinct signature in agreement with other studies in different patient populations. The limit between ER+ or ER- is unclear, since there is mix of samples, it can not be set from this sample classification.

However the prediction for the test set yields that 6 samples are predicted to be ER- (group 0). We later learned that all these samples (T94, T87, T86, T107, T110) but one (T93) would be also predicted to be basal-like by PAM.

Since the collection comprehended more than two classes, a multiple-class analysis by PCA was performed. This analysis gave that the most distant and coherent groups were the basal-like subtype (group 5) which also included a few ERBB2+ samples, and a group of 10 tumor samples positive for ER, PR, or both receptors (group 1). The other groups were also distant in the 3D PCA space but not enough compared to the previous groups.

Finally, applying prediction analysis of microarrays 6 subtypes (5 breast tumor subtypes and one normal breast subtype) were successfully predicted with a miss-classification error of less than 1%. However, the "normal breast" subtype has to be excluded since it had only three members, and one of them showed dubious aggregative results.

Discriminant genes for each of the 5 predicted pathological subtypes were determined. PAM class 1 and 2 were found to have the lowest number of recurrence cases. PAM class 5 was found to be the class associated with the lowest disease-free survival, and the majority presented recurrence in a period of time of less than 5 years.

5.4 Analysis of PAM predicted subtypes by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis.

To relate these phenotypes to specific cell-signaling pathways and compare tumor data with the data obtained from the hormone dependent breast cancer cell line model treated with progestin and estradiol in a time series, as well as the data from the experiments with inhibitors, we employed recently developed specific applications such as GSEA and Ingenuity pathway analysis.

PAM class 1 over-expresses genes commonly found induced by progestins after 6 hr such as AKAP13, CXCR4, GADD45A, ARID1A (SMARCF1), EGR1, DUSP1, CHES1, TGFB3, and FOS, as well as genes found down-regulated by ICI but not by PD after the effect of progestin treatment. Therefore R5020 induced but ER dependent, such as BIRC3 and SOS1. PAM class 1 overexpressed genes overlap with the gene list of the K-Means cluster 9 after EDGE analysis of the progestin treatment time series with genes such as EGR1, RASA1, and MBD1 functionally related with transcription regulator activity.

Pathway analysis of the discriminating genes of PAM class 1 showed a connection between the glucocorticoid receptor signaling pathway, inflammation and cell proliferation. My hypothesis is that once patients are treated with a hormonal therapy, such an ER antagonist, tumor growth and inflammation could be diminished. All these patients received hormone therapy, and some received adjuvant chemotherapy and the majority are disease-free (11/12).

PAM class 2 matches ER expressing phenotype described by Sorlie, with good overall prognosis. GSEA analysis gave significant overlaps with the good prognosis signature of Van't Veer and Sorlie. It also overlaps with gene lists of T47D cell line found down-regulated after 6 hr of R5020 treatment, such as GATA3, AR, SCGB1D2, HSPA5, NCOR2, ITGA2, UNG2, and NOTCH3.

Top canonical pathways represented are ER signaling, with up-regulated genes such as ESR1, AR, GTF2E2, POLR2A, GATA3, and TFF1; Erk/MAPK signaling, with up-regulated genes such as ESR1, DDR1, HSPB1 and STAT3; glucocorticoid receptor signaling with genes involved such as HSP27, STAT3, and RAS; IL-6 signaling with genes involved such as PI3K, RAS, STAT3 and TGFB3; IGF-1 signaling (IGFBP1 and IGFBP4), and JAK/STAT signaling with PI3K, RAS, STAT, and STAT3.

PAM class 3 analyses by GSEA finds significant overlaps with genes downregulated after 6 hr of progestin treatment induced early by estradiol after 1 hr of hormonal induction, showing that these tumor subtype is of the luminal or endocrine type with still a hormonal dependence. Cellular growth and proliferation is driven by FGF7, an EGF-like molecule, interacting with CCND2 and EGR1. DUSP1, a gene with is known to act as a negative feedback regulator of JAK/STAT and p38 signaling pathway is activated in this subtype.

PAM class 4 matches the ERBB2+ subtype. In this tumor subtype there is a genomic amplification typically found by fluorescence *in situ* hybridization localized on chromosome region 17q12-q21, which amplifies genes such as SMARCE1 (17q21.2), GRB2 (17q24-26), PPARBP (17q12-21), CDC8 (17q21.3), ERBB2 (17q11.3-q12-17q21.1), TOP2A (17q21-22), and deletes NME1 (17q21.3). Some of these genes are involved in cell cycle progression and proliferation such as ERBB2, SMARCE1, TOP2A, SMARCA4, IGFBP2, and PPARBP. GRB2 is involved in cell signaling by the Erk/MAPK pathway, which is later repressed by DUSP6.

Ingenuity pathway analysis shows that the most represented canonical pathways are the Erk/MAPK pathway, the ER pathway and the glucocorticoid receptor pathway. There is evidence for the interaction of growth factor signaling by EGF and ERBB2, and steroid hormone signaling in controlling the growth of breast cancer cells, in the form of an apparent cross-talk between these growth regulatory systems (Wilson and Slamon, 2005). ERBB2 directly interacts with DUSP6 which is a specific inhibitor of Erk which acts desphosphorylating MAPK and p38 (Amit *et al.* 2007). ERBB2 overexpression is associated to resistance to Tamoxifen and could directly modulate ER levels (Arpino *et al.* 2005). This finding has lead to the hypothesis which involves

peptide growth factor pathways as possible mediators of the steroid hormoneindependent phenotype in some human breast cancers, suggesting that the peptide hormone pathways are replacing, in part, the steroid hormone pathways in regulating growth for these tumors.

GSEA analysis of PAM class 4 shows an overlap with the Van't Veer negative prognosis gene set, with highly expressed genes such as AURKA, MCM6, ECT2, DIAPH3·, MAD2L1, CCNB2, and MELK. It also overlaps with a fibroblast serum response gene set. Another significant overlap is with a set of down-regulated genes after hormonal induction by progestins using another model cell line T47y which does not express PR endogenously but was transfected with a vector containing PR carrying a point mutation on the ERID domain, the interaction domain with ER α , where PR has lost its ability to crosstalk and activate Erk1/2 signaling pathway (Ignacio Quiles, Doctoral Thesis, University of Pompeu Fabra, CRG, Barcelona). Thus, some genes that are usually induced by progestins are down-regulated by introducing a mutation on the ERID domain, and overlap in part with the discriminant genes of the PAM subtype 4.

PAM class 5 is the characteristic basal-like subtype characterized by high expression of keratins 5A and 5B and showing high expression of other basal epithelial genes such as KIT1 and ID4. They are also termed as triple-negative tumors as they are found negative for ER, PR and ERBB2. 9 out of 12 samples are p53+ and have high histological grade (10/12).

Ingenuity analysis shows that the significant molecular and cellular functions of this subtype are cell death, cell cycle, cellular growth and proliferation, and cell signaling. The ER signaling pathway is inactive, ER regulated genes TFF, FOS, TGFB3 and CCNH are down-regulated, and now, there is high expression of genes involved in G1/S mitotic cell phase with transcription factors being up-regulated such as E2F3, E2F5, MYC, TFDP1, promoters of cell cycle progression to mitosis, indicative of high proliferative tumors. The Erk/MAPK pathway is also inactive.

High expression of basal/myoepithelial genes such as KRT5/6 and the calcium binding protein S100A, shutt off the ER signaling pathway, and up-regulation of an alternative set of transcription factors such as MYC, RUNX2, TFDP1, and E2F3 which in turn activate cell cycle genes CCND2 and CCNB2 induces the breast cancer cell to proliferate.

Employing GSEA a significant overlap was found with gene lists from Van't Veer's poor prognosis and Sorlie's basal-like phenotype. Poor prognosis of this set of tumors has been also observed by clinicians where tumor samples have high histological grade (HG3 in 10 of 12 samples), most of them are p53+ (9/12), and 7 patients presented early recurrence and died from metastatic disease.

Our PAM predicted phenotypes partially corroborate the tumor subtypes found by Sorlie: the basal-like subtype, which is predominantly ER negative, PR negative and ERBB2 negative (often referred as triple-negative); the ERBB2like subtype characterized by the increased expression of several genes at the ERBB2 amplicon, and at least 3 luminal-like subtypes, predominantly hormone receptor positive. Besides identifying the Sorlie's Luminal A, we find 2 additional hormone-dependent tumor phenotypes: PAM class 1 and 3. These defined molecular subtypes have distinct molecular outcomes and responses to therapy. The low grade and low proliferation of the ER positive Luminal A, in our classification PAM class 2, are sensitive to endocrine therapy, and have more favorable prognosis than the ER negative and high grade tumors as in our case the PAM class 5, that are unresponsive to endocrine therapy and respond better to chemotherapy.

Another interesting finding from all these studies was that the identification of extremely distinct expression patterns that differentiated breast tumors beyond the expression of ER, ERBB2 and tumor grade may reflect distinct cell types of origin. However, other factors like menopausal status, tumor size, and nodal status were not associated to dissimilar gene expression patterns

5.5 Prediction of the test set

Normal breast samples which were also included in the test set were correctly assigned considering the 6 PAM predicted subtypes, being PAM class 6 the normal-like. Triple-negative samples, which are negative for ER, PR, and HER-2, are assigned with high probability to the poor prognosis basal-like subtype 5: T86, T87, T94, T107, and T110. Only one tumor sample was left unclassified, since the predicted probability of being assigned to a specific tumor subtype did not reach a 50%. Up to now there is no prognosis data available for this test set of breast tumors samples to corroborate our prediction.

It could be interesting for this type of triple-negative tumors to discover of a functional androgen receptor (AR) pathway in this subgroup of ER and PR negative patients reported by two independent groups. These investigators identified a subgroup with an expression pattern that suggests an active hormone-regulated transcriptional program involving the AR, suggesting to the potential of this pathway for therapeutic targeting in breast cancer (Farmer *et al.* 2005, Doane *et al.* 2006).

5.6 Gene expression patterns as a tool for risk assessment

The potential advantages of improving tumor classification by expression profiling has been central for several-large scale breast cancer studies that have reported identification of signature gene lists with potential for prediction of clinical outcome over the past few years. The ability to identify patients who have a favorable prognosis could, after independent confirmation, allow clinicians to avoid systemic therapy or to choose less aggressive therapeutic options. About 60-70% of patients with lymph node negative breast cancer are cured by local or regional treatment alone. St Gallen (Goldhirsh *et al.* 2003) and the US National Institutes of Health' consensus criteria (Eifel *et al.* 2000)

recommend adjuvant systemic therapy for 85-90% of lymph-node negative patients (Early Breast Cancer Trialists, 1998). There is a need for a definition of an individual patient's risk of disease recurrence to ensure that she receives appropriate therapy.

In the work of van't Veer *et al.* (2002) focused on younger patients (44± 8 years) who were lymph node negative (See **Appendix A1** for more details) they was determined a 70-gene signature (the "Amsterdam signature") was able to predict distant metastasis in less than five years after diagnosis. Van't Veer randomly selected a set of 78 patients as training set, which was used to measure for the correlation between each gene expression and disease outcome. The genes were ranked according to this correlation, and the 70 most-correlated genes were used to construct a classifier discriminating between patients with good and poor prognosis. The remaining 19 patients served as the test set to validate their prognosis classifier. They developed the "MammaPrint" in collaboration with Agilent for patients below 55 years of age, and lymph node negative, as a predictor for distant metastasis-free survival. Following they validated this prognostic gene signature on a cohort of 295 young patients, including lymph node negative and positive breast tumors.

Sorlie *et al.* (2003) concentrated on the classification of breast cancer subtypes and survival-related feature of each of these subtypes was demonstrated on two independent breast cancer datasets (Van't Veer *et al.* and West *et al.*). Only 17 genes appeared in both lists of the "intrinsic list" of 456 genes and the 231 predictor genes of Van't Veer. A follow-up study (van de Vijver et al. 2002) proved the efficiency of Sorlie's classifier as a survival predictor on a large set of 295 tumor specimens.

On a third study, Ramaswamy *et al.* (2003) identified a set of 128 genes separating metastasis from primary tumors. A set of 17 metastasis associated genes were tested on a large diverse set of primary tumors, and were found to successfully distinguish patients with good versus poor prognosis, with only a 2 gene overlap with the 456 intrinsic list of Sorlie's.

Wang *et al.* (2005), in collaboration with a company called Veridex LLC, identified a 76-gene signature consisting in 60 genes for ER+ patients and 16 genes in ER- patients (the "Rotterdam signature"). This gene profile could identify patients who develop distant metastasis within 5 years in lymph node negative patients. Cohort size of ER+ patients was 80, and for ER- patients were 35. Test set consisted in 171 patients. Patients came from 25 different hospitals. There were no differences among the ER+ and ER- groups in age or menopausal status. The test set also did not differ from the training set in any of the characteristics of patients and tumors. Comparison of their results with those of Van der Vijver is difficult because of differences in patients, techniques, and materials used. Their study included node-negative and node positive patients, who had not received adjuvant systemic therapy, and only women younger than 53 years. Microarray platforms differ, Affymetrix and Agilent. Of the 70 genes in the study of Van't Veer and co-workers, 48 genes are present on the Affymetrix, whereas only 38 of the 76-gene signature are present on the

Discussion

Agilent array. The most striking finding when comparing the signature lists is the virtually complete lack of agreement in the included genes, only a 3 gene overlap between the two signatures. However, both signatures included genes that identified several common pathways that might be involved in tumor recurrence. This finding supports the idea that effective signatures could be required to include representation of specific pathways. The importance of Wang' 76-gene prognostic signature is that, only 30-40% of untreated lymph node negative patients would develop tumor recurrence, and this signature could provide a powerful tool to identify patients at low risk, preventing overtreatment and thus reducing the amount of systemic treatment used in early breast cancer.

In their study, Huang *et al.* (2003) also identified aggregate patterns of gene expression that associate with lymph node status and disease recurrence, capable of predicting outcome in individual cancer patients. Genes found implicated in recurrence prediction were found associated to distinct biological processes as cell proliferation control, specific to cell-cycle, cell signaling activities, growth factor receptors, and G-protein coupled receptors. None of the 70-gene "Amsterdam" Van't Veer signature genes appears to be present in key metagenes in their recurrence study. They believe that the integration of genomic data with clinical risk factors determines the strategy for treating patients as individuals with distinct genomic disease feature, and that genomic data can not replace traditional clinical risk factors but can add substantial detail to this clinical data, especially in a disease such as breast cancer in which multiple, interacting biological and environmental processes define a physiological state.

In our opinion, only the change in microarray technology from Van't Veer, Wang and Huang' works can not satisfactorily explain the disagreements in gene signature, since the different platforms have thousands of genes in common. Also neither age nor the microarray analysis method can be relevant factors in this disagreement. One possible cause is the observation made by Ein-Dor et al. 2005 that many genes might correlate with survival, and it is possible to combine genes in many ways to produce signatures with similar predictive power, even from the same data set. In their study, they commented how several microarray studies yielded gene sets whose expression profiles successfully predicted survival, nevertheless with an overlap of the gene sets of almost zero. They focused on data from a single experiment (van't Veer et al. 2002) using a bootstrapping method selected 10 training sets of samples randomly, and obtained 10 different top 70 genes correlating with survival with a minimal overlap between them. They confirmed that the dataset is characterized by three main properties: (1) many genes are correlated with survival, (2) the differences between these correlations are small, and (3) the correlation-based rankings of the genes depend strongly on the training set. These properties indicate that the top 70 genes are not superior to others in predicting disease outcome and raises doubts about the reliability and robustness of the reported predictive gene lists. This has been also observed in other complex diseases, how many variables can account for the found differences, and how it is strongly influenced by the subset of patients used for

gene selection, and the small number of samples that were used to generate the gene lists. The same author (Ein-Dor *et al.* 2006) introduce a mathematical model called probably approximately correct (PAC), for evaluating how many samples are needed to generate a robust gene list for predicting outcome in cancer and calculate this number for several breast cancer published studies. He states that thousand of samples are needed to achieve an overlap of 50% between two predictive lists.

Also Michiels *et al.* 2007 investigated the stability of 7 predictive gene lists from 7 large microarray studies and showed that the prediction performances were overoptimistic in comparison with results obtained by reanalysis of the same data performed using different training sets. They listed the potential limitations of microarray for the prediction of cancer outcome in the context of a disease characterized by complex heterogeneous mechanisms.

However, despite these differences most classifiers show a high degree of concordance in predicting the outcome of independent patient populations, suggesting that all these signatures contain very similar information with regards to the outcome. This has been investigated by Fan *et al.* (2006), in which they applied 5 different gene expression signatures with a very small gene overlap to the same data set and found that four of the five predictors showed similar prognostic values.

We can conclude that the ability to use appropriate profiles of gene expression, in clinically homogeneous group of patients, as, for example, dividing the patients into smaller subgroups or phenotypes as in the work of Sorlie's, or to correlate tumor characteristics such as the S-phase fraction, tumor histological grade, ERBB2 overexpression, vascular invasion, presence of lymph node metastasis, hormone receptor status, could add great information towards the a best characterization of a breast tumor, besides the few known clinical histopathological attributes.

Conclusions

The main conclusions from this work are:

- We have establishment a cDNA breast cancer array platform, which has been successfully applied as a useful tool for exploring gene expression profiles of various studies of hormone signaling.
- Tumor samples from our population were classified into various gene expression phenotypes.
- Predicted breast tumor subtypes can be identified by distinctive genes, which discriminate efficiently between them.
- Basal-like phenotype is efficiently discriminated from the other subtypes, and correlates with tumors with high histological grade, p53 negative, triple-negative tumors, and with a large number of recurrence cases which ends in a big percentage in death of the patients.
- An ERBB2 phenotype which typically over-expresses genes of the ERBB2 amplicon region is efficiently discriminated from the other subtypes.
- Sorlie's Luminal subtype A, an ER+ expressing phenotype which correlates with good prognosis, can be discriminated from the other subtypes efficiently. Discriminant genes of this subtype overlap partially with genes inhibited by ER antagonist ICI after hormone induction by R5020.
- Pathway analyses of the predicted breast tumor phenotypes have predominantly characteristic cell-signaling pathways mostly related to cell cycle progression.
- We have been able to detect similar breast tumor subtypes associated with differential survival outcome found in other populations in a heterogeneous local population.
- Different molecular biomarkers were identified for breast cancer tumor progression for each tumor subtype. This set of molecular markers could be used in the future in clinical diagnosis, to improve the choice of treatment, to predict prognosis and identify patients at higher risk of developing metastasis, as well as for following the response to therapy.
- We have accomplished the purpose of giving an alternative tool to clinicians for the complementary validation of their standard diagnostic methods.

6 Future work

Real Time qPCR of multiple marker sets is an alternative emerging technique to obtain expression profiles of a manageable number of genes which could be faster, cheaper, give more reproducible results, and it is a more suitable routine diagnostic platform especially for samples whose RNA integrity is not optimal for gene expression arrays.

To develop appropriate profiles of gene expression, in clinically homogeneous group of patients, as to correlate tumor characteristics such as the S-phase fraction, tumor histological grade, ERBB2 overexpression, vascular invasion, presence of lymph node metastasis, hormone receptor status, could add greater detail in tumor characterization besides the few known biological attributes

It is desirable to use gene expression profiling in diagnosis, prognosis and prediction to treatment, since this technique can potentially be a more precise diagnostic tool and a fine predictor of poor prognosis than any standard diagnostic parameter.

Once all the clinical history is collected, the long term goal of this study will be to carry out prognosis studies with the help of a statistician.

List of references

- 1. Albanell J, Baselga J. 2001 Unraveling resistance to trastuzamab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J Natl Cancer Inst 93(24):1830-32.
- 2. Albertson D. 2003 Profiling breast cancer by array CGH. Breast Cancer Research and Treatment, 78:289-298.
- 3. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, and Elledge RM. 2005 Estrogen receptor-positive, progesterone receptornegative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97: 1254-61.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, and Sherlock G. 2000 Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.
- 5. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, *et al.* 2004 Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluoracil, doxorubicin, and cyclophophamide chemotherapy in breast cancer. J. Clin. Oncol.22:2284-93.
- Bamberger AM, Bamberger CM, Gellersen B, and Schulte HM. 1996 Modulation of AP-1 activity by the human progesterone receptor in endometrial adenocarcinoma cells. Proc Natl Acad Sci U S A 93(12):6169-74.
- 7. Barber RD, Harmer DW, Coleman RA, and Clark BJ. 2005 GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21: 389–395.
- 8. Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark, GM. 2003 Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21:1973-1979.
- Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, and Gifford DK. 2003 Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337-1342.
- 10. Barnes GL, Herbert KE, Kamal M, Javed A, Einhorn TA, Lian JB, Stein GS, and Gerstenfeld LC. 2004 Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer research 64, 4506–4513.
- 11. Barrett T, Dennis B. Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M and Edgar R. 2007 NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic acid Res (35) D760-D765.
- 12. Baum M, Buzdar AU, Cuzick J, Forbes J, Houghton J, Howell A, and Sahmoud T. 2002 The ATAC (Arimidex, Tamoxifen Alone or in Combination) Trialists' Group. Anastrozole alone or in combination with tamoxifen vesus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer : first results of the ATAC randomized trial. Lancet 359:2131-2139.

- 13. Beato M, and Klug J. 2000 Steroid hormone receptors: an update. Human reproduction update 6(3):225-236.
- 14. Beato M, Herrlich P, and Schutz G. 1995 steroid hormone receptors: many actors in serach of a plot. Cell 83:851-7.
- 15. Beato M. 1989 Gene regulation by steroid hormones. Cell 56:335-344.
- 16. Beißbarth, T and Speed, TP. 2004 GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20(9): 1464-1465.
- 17. Benjamini Y, and Hochberg Y. 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Society series B57, 289-300.
- 18. Bergamashi A, Kim YH, Wang P, Sørlie T, Hernandez-Boussard T, Lonning PE, Tibshirani R, Børresen-Dale AL, and Pollack JR. 2004 Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033-40.
- 19. Bieche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R, and Vidaud M. 1999 Quantitation of MYC Gene Expression in Sporadic Breast Tumors with a Real-Time Reverse Transcription-PCR Assay. Cancer Research 59, 2759-2765.
- 20. Bonferroni CE. 1936. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3-62.
- 21. Bray JD, Jelinsky S, Ghatge R, Bray JA, Tunkey C, Saraf K, Jacobsen BM, Richer JK, Brown EL, Winneker RC, Horwitz KB, and Lyttle CR. 2005 Quantitative analysis of gene regulation by seven clinically relevant progestins suggests a highly similar mechanism of action through progesterone receptors in T47D breast cancer cells. J Steroid Biochem Mol Biol. 97(4):328-41.
- 22. Bray JD, Zhang Z, Winneker RC, and Lyttle CR. 2003 Regulation of gene expression by PRA-910, a novel progesterone receptor modulator, in T47D cells. Steroids 68:995-1003.
- 23. Brazma A, Jonassen I, Vilo J and Ukkonen E. 1998 Predicting gene regulatory elements *in silico* on a genomic scale. Genome Res. 8:1202-1215.
- 24. Bustin SA, Benes V, Nolan T, and Pfaffl. 2005 Quantitative real-time RT-PCR – a perspective. J Mol. Endocrinol. 34: 597-601.
- 25. Bustin SA. 2001 Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J Mol Endocrinol. 29:23–39.
- 26. Bustin, S.A. 2000 Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25:169-193.
- 27. Castoria G, Barone MV, Di Domenico M, Bilancio A, Ametrano D, Migliaccio A, and Auricchio F. 1999 Non-transcriptional action of oestradiol and progestin triggers DNA synthesis EMBO J 18(9):2500-10
- 28. Castoria G, Miglaccio A, Bilancio A, Di Domenico M, de Falco A, Lombardt M, Gong W, Beato M, and Auricchio F. 2001 Pl3-kinase in

concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20:6050-9.

- 29. Chang HY, Nuyten DSA, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, Dai H, He YD, van't Veer LJ, Bartelink H, van de Rijn M, Brown PO, and van de Vijver MJ. 2005 Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl. Acad. Sci. USA 102(10):3738-3743.
- 30. Chang HY, Sneddon JB, Alizadeh AA, Sood R, west RB, Montgomery K, Chi JT, van de Rijn M, Botstein D, and Brown PO. 2004 Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLOS biology 2(2):206-214.
- 31. Chang JC, Wooten EC, Tsimeizon A, Hilsenbeck SG, Gutierrez MC, Elledge R, *et al.* 2003 Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362-9.
- 32. Cicatello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, and Weisz A. 2004 Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-jun/c-fos/Estrogen receptor (Progesterone receptor) complex assembly to a distal regulatory element and recruitment of Cyclin D1 to its own gene promoter. Mol and Cell Bio 24(16):7260-7274.
- 33. Clarke R, Leonessa F, Welch JN, and Skaar TC. 2001 Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol. Rev. 53(1):25-71.
- 34. Cleator s, Heller W, and Coombes RC. 2007 Triple-negative breast cancer:therapeutic options. The Lancet 8:235-244.
- 35. Collins N, Wooster R, and Stratton MR. 1997 Absence of methylation of CpG dinucleotides within the promoter of the breast cancer susceptibility gene BRCA2 in normal tissues and in breast and ovarian cancers. Br J Cancer 76(9):1150-6.
- 36. Crook T, Brooks LA, Crossland S, *et al.* 1998 p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2- associated breast tumors. Oncogene 17:1681-89.
- 37. Culhane AC, Perrière G, Considine EC, Cotter TG, and Higgins DG. 2002 Between-group analysis of microarray data. Bioinformatics 18(12):1600-8.
- 38. Cunliffe HE, Ringner M, Bilke S, Walker RL, Cheung JM, Chen Y, and Meltzer PS. 2003 The gene expression response of breast cancer to growth regulators: Patterns and correlation with tumor expression profiles.Cancer Research 63:7158-7166.
- 39. Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, and Lempicki RA. 2003 DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4(5):P3.
- 40. DeRisi JL, Lyer VR, and Brown PO. 1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278: 680-686.

- 41. Desai UJ, and Pfaffle PK. 1995 Single-step purification of a thermostable DNA polymerase expressed in *Escherichia coli*. Biotechniques 19:780-784.
- 42. Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T, Rees CA, Cherry JM, Botstein D, Brown PO,and Alizadeh AA. 2003 SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 31(1):219-223.
- 43. Doane, A. S. *et al.* 2006 An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25, 3994–4008.
- 44. Dobrovic A, and Simpfendorfer D. 1997 Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 15;57(16):3347-50.
- 45. Dowsett M, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghouse I, Salter J, Detre S, Hills M, Ashley S, Francis S, Walsh G, and Smith IE. 2003 Biomarker changes during neoadjuvant Anastrozole, Tamoxifen, or the combination: influence of hormonal status and HER-2 in breast cancer – A study from the IMPACT Trialists. J Clin Oncol 23:2477-2492.
- 46. Dudoit S, Gentleman RC, and Quackenbush J. 2003 Open source software for the analysis of microarray data. Biotechniques Mar Suppl:45-51.
- 47. Dudoit S, Yang YH, Speed TP, and Callow MJ. 2002. statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12: 111-140.
- 48. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of randomised trials. 1998 Lancet 351: 1451–67, and 352: 930-42.
- 49. Eberwine J, Teh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, and Coleman P. 1992 Analysis of gene expression in single live neurons. Proc Natl Acad Sci 89:3010-3114.
- 50. Efron, B and Tibshirani, RJ. 1993 An introduction to the Bootstrap (Chapman & Hall, Boca ratón, FL.).
- 51. Eifel P, Axelson JA, Costa J, *et al.* 2000 National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer. J Natl Cancer Inst 2001; 93: 979–89.
- 52. Ein-Dor I, Kela I, Getz G, Givol D, and Dormany E. 2005 Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21:171-178.
- 53. Ein-Dor L, Zuk O, and Domany E. 2006 Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci 103:5923-5928.
- 54. Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein. 1998 Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA *95*:14863-14868.
- 55. Ellis MJ. 2005 Neoadjuvant endocrine therapy for breast cancer: more questions than answers. J Clin. Oncol. 2005 Aug 1;23(22):4842-4.
- 56. Falcon and Gentleman. 2007 Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257-8.

- 57. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, van't Veer LJ, and Perou CM. 2006 Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 355(6):560-9.
- 58. Farmer, P. et al. 2005 Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671.
- Fellenberg K, Hauser NC, Brors B, Neutzer A, Hoheisel JD, and Vingron M. 2001 Correspondance analysis applied to microarray data. Proc. Natl. Acad. Sci. 98 (19):10781-10786.
- 60. Fendrick JL, Raafat AM, and Haslam SZ. 1998 Mammary gland growth and development from the postnatal period to menopause: ovarian steroid receptor ontogeny and regulation in the mouse. J Mammary Gland Biol Neopla 3:7-22.
- 61. Fuqua SAW and Cui Y. 2004 Estrogen and progesterone receptor isoforms: clinical significance in breast cancer. Breast cancer Research and treatment 87:S3-S10.
- 62. Fuqua SAW, Cui Y, Lee AV, and Osborne CK. 2005 Insights into the role of progesterone receptors in breast cancer. J Cli Oncol 5:931-932.
- 63. Gayther SA, Pharoah PD, and Ponder BA. 1998 The genetics of inherited breast cancer. J Mammary Gland Biol Neoplasia 3(4):365-76.
- 64. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, and Zhang J. 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80.
- 65. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Baks N, Lahti-Domenici JS, Bruinsma TJ, Warmoes MO, Bernards R, Wessels LFA, and Van't Veer LJ. 2006 Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7: 278.
- 66. Goldhirsch A, Wood C, Gelber RD, Coates AS, Thürlimann B, Senn HJ. 2003 Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol. 21: 3357–65.
- 67. Golub TR, Slonim DK, Tamayo P, Huard C, Gasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfeld CD, and Lander ES. 1999 Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science 286:531-537.
- 68. Graham JD, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, and Clarke CL. 1995 Characterization of progesterone receptor A and B expression in human breast cancer. Cancer Res 55(21):5063-8.
- 69. Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, Sclafani RA, Lange CA, and Horwitz KB. 1997 Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol 11:1593-1607.
- 70. Grushko TA, Dignam JJ, Das S, et al. 2004 MYC is amplified in BRCA1associated breast cancer. Clin. Cancer Res. 10:499-507.
- 71. Gruvberber S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, and Meltzer PS. 2001 Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61:5979-5984.

- 72. Hartigan JA and Wong MA. 1979 A k-means clustering algorithm. Appl. Stat. 28:100-108.
- 73. Hartigan JA. 1975 Clustering algorithms. New York, NY, Wiley & Sons.
- 74. Haslam SZ and Woodward TL. 2003 Epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res. 5(4):208-215.
- 75. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallionemi OP, Wilfond B, Borg A, and Trent J. 2001 Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539-548.
- 76. Hedenfalk I, Ringner M, Ben-Dor A, Yakhini Z, Chen Y, Chebil G, Ach R, Loman N, Olsson H, Meltzer P, Borg A, and Trent J. 2003 Gene expression profiles in hereditary breast cancer. Proc Natl Acad Sci 100:2532-2537.
- 77. Hoch RV, Thompson DA, Baker RJ, and Weigel RJ. 1999 GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer 84;122-128.
- 78. Hopp TA, Weiss HL, Hilsenneck SG, Cui Y, Allred DC, Horwitz KB, *et al.* 2004 Breast cancer patients with progesterone receptor PR-A rich tumors have poorer desease-free survival rates. Clin. Cancer Res. 10:2751-2760.
- 79. Hosack DA, Dennis G, Sherman BT, Lane HC, and Lempicki RA. 2003 Identifying biological themes within lists of genes with EASE. Genome Biol. 4(10):R70.
- 80. Hovland AR, Powell RL, Takimoto GS, Tung L, and Horwitz KB. 1998 An N-terminal inhibitory function, IF, suppresses transcription by the Aisoform but not the B-isoform of human progesterone receptors. J Biol Chem 273(10):5455-60.
- 81. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A, Iversen ES, Liao M, Chen CM, West M, Nevins JR, Huang AT. 2003 Gene expression predictors of breast cancer outcomes. Lancet 362:95-102.
- 82. Huber W, von Heydebreck A, Sültman H, Poustka A and Vingron M. 2002 Variace stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: S96-S104.
- 83. Hugues-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, and Kouzarides T. 2003 EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523-535.
- 84. Huse B, Verca SB, Matthey P, and Rusconi S. 1998 Definition of a negative modulation domain in the human progesterone receptor. Mol Endocrinol 12(9):1334-42.
- 85. Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, Ringner M, Sauter G, Monni O, Elkahloun A, Kallioniemi OP, and Kallioniemi A. 2002 Impact of DNA amplification on Gene expression patterns in breast cancer. Cancer Research 62:6240-6245.

- 86. Jeng MH, Parker CJ, and Jordan VC. 1992 Estrogenic potential of progestins in oral contraceptives to stimulate human breast cancer cell proliferation. Cancer Res 52:6539-6546.
- 87. Jordan VC. 2004 Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5:207-213.
- 88.Kiss AL, Turi A, Müllner N, Kovács E, Botos E, and Greger A. 2005 Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localization: an in vivo study. Mol Cel Endocrinol. 245(1-2):128-37.
- 89. Kraus WL, Weis KE, and Katzenellenbogen BS. 1995 Inhibitory crosstalk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist- and antagonist-occupied progestin receptors. Mol. Cell. Biol. 15:1847-1857.
- 90. Lange CA, Richter Jk, Horwitz KB. 1999 hypothesis: Progesterone primes breast cancer cells for cross talk with proliferative or antiproliferative signals. Mol. Endocrinol. 13:829-36.
- 91.Leo JCL, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, and Lin VCL. 2005 Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor. Int. J. Cancer. 117(4):561-8.
- 92.Liao DJ and Dickson RB. 2000 c-Myc in breast cancer. Endocr. Relat. Cancer 7(3):143-163.
- 93.Lin VC, Ng EH, Aw SE, Tan MG, Ng EH, Chan VS, and Ho GH. 1999 Progestins inhibit the growth of MDA-MB-231 cells transfected with progesterone receptor complementary DNA. Clin Cancer Res 5:395-404.
- 94. Lönnsted L and Speed T. 2001 Replicated microarray data. Statistica Sinica 12:31.
- 95. Lösel R, Wehling M. 2003 Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46-56.
- 96. Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thompson TM, and Ortiz AR. 2005 Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data. BMC Genomics 6:109.
- 97. Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thomson TM, Ortiz AR. 2005 Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data. BMC Genomics. Aug 17;6(1):109.
- 98. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, and Sgroi DC. 2003 Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974-5979.
- 99. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang Wilson, Wang Wei, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habib K, Baer TM, Brugge J, Haber DA, Erlander MG, and Sgroi DC. 2004 A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with Tamoxifen. Cancer Cell 5:607-616.

- 100. Macgregor PF and Squire JA. 2002 Application of microarray to the analysis of gene expression in cancer. Clin. Chem. 48:1170-7.
- 101. McDonell DP, and Goldman ME. 1994 RU486 exerts antiestrogenic activities through a novel progesterone receptor A form-mediated mechanisms. J. Biol. Chem. 269:11945-11949.
- 102. McDonell DP, Shahbaz MM, Vegeto E, and Goldman ME. 1994 The human progesterone receptor A-form functions as a transcriptional modulator of minaralcorticoid receptor transcriptional activity. J. Steroid Biochem. Mol. Biol. 48:425-432.
- 103. Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jalink K, Floore A, Velds A, van't Veer, and Neefjes J. 2004 Tamoxifen resistance by a conformational arrest of the estrogen receptor a after PKA activation in breast cancer. Cancer Cell 5:597-605.
- Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jalink K, Floore A, Velds A, van't Veer L, and Neefjes J. 2004 Cancer Cell 5:597-604.
- 105. Michiels S, Koscielny S, and Hill C. 2007 Interpretation of microarray data in cancer. British J Cancer 96:1155-1158.
- 106. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F. 1996 Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292-1300.
- 107. Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F. 1998 Activation of the src/p21ras/erk pathway by progesterone receptor via a crosstalk with estrogen receptor. EMBO J 17:2008-2018.
- 108. Monni O, Hyman E, Mousses S, Barlund M, Kallioniemi A, and Kallioniemi OP. From chromosomal alterations to target genes for therapy: integrating cytogenetic and functional genomic views of the breast cancer genome. 2001 Cancer Biology, 11:395-401.
- 109. Mote PA, Bartow S, Tran N, and Clarke CL. 2002 Loss of coordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat. 72(2):163-72.
- 110. Muckenthaler M, Richter A, Gunkel N, Riedel D, Polycarpou-Schwarz M, Hentze S, Falkenhahn M, Stremmel W, Ansorge W, and Hentze MW. 2003 Relationships and distinctions in iron regulatory networks responding to interrelated signals. Blood 101(9):3690-8.
- 111. Musgrove EA, Lee CS, and Sutherland RL. 1991 Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol 11(10):5032-43.
- 112. Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, and West M. 2003 Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mol. Genet. (15):12.
- 113. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. 2004

Immunohistochemical and clinical characterization of the basal-subtype of invasive breast carcinoma. Clin. Cancer Res. 10:5367-74.

- 114. Olayioye MA, Neve RM, Lane HA, and Hynes NE. 2000 The erbB signaling network: heterodimerization in development and cancer. EMBO J. 19:3159-3167.
- 115. Osborne CK and Schiff R. 2005 Aromatase inhibitors: Future directions. J Steroid Biochem Mol Biol 95(1-5):183-7.
- 116. Owen GI, Richer JK, Tung L, Takimoto G, and Horwitz KB. 1998 Progesterone regulates transcription of the p21(WAF1) cyclin- dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem 273(17):10696-701.
- 117. Payvar F, DeFranco D, Firestone GL, Edgar B, Wrange O, Okret S, Gustafsson JA, and Yamamoto KR. 1983 Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35:381-392.
- 118. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT, Pergamenshikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D, Brown PO, and Botstein D.1999 Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96:9212-9217.
- 119. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, ,Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenshikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO and Botstein D. 2000 Molecular portraits of human breast cancer tumors. Nature, 406:747-752.
- 120. Pfaffl et al. 2004 Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509-512.
- 121. Pfaffl MW. 2001 A new mathematic model for relative quantification in real-time RT-PCR. Nucleic Acid Res. 29:2002-2007.
- 122. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamanshikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO. 1999 Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet, 23:41-46.
- 123. Pollack JR, Sorlie T, Perou CM, Rees CM, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borrelsen-Dale AL, Brown PO. 2002 Microarray analysis reveals a major direct role of DNA copy number alterations in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 99:12963-12968.
- 124. Preiss T. 2001 Analysis of transcriptome changes in response to rapamycin using DNA microarrays. Habilitation report. University of Heidelberg, Germany.
- 125. Quanckenbush J. 2001 Computational analysis of microarray data. Nat Rev Genet 2: 418-427.
- 126. Rakha EA, EI-Sayed ME, Green AR, Lee AH, Robertson JF, and Ellis IO. 2007 Prognostic markers in triple-negative breast cancer. Cancer 109:25-32.

- 127. Ramaswamy S, Ross KN, Lander ES, and Golub TR. 2003 A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49-54.
- 128. Reyment RJ, and Joreskog KG.1996 Applied Factor Analysis in the Natural Sciences. Cambridge, Cambridge University Press.
- 129. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, and Horwitz KB. 2002 Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J. Biol. Chem. 277:5209-5218.
- 130. Richter A, Schwager C, Hentze S, Ansorge W, Hentze MW, and Muckenthaler M. 2002 Comparison of fluorescent tag DNA labeling methods used for expression analysis by DNA microarrays. Biotechniques 33(3):620-8, 630.
- 131. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, van der Rijn M, Waltham M, Pergamenschikov A, Lee JCF, Lashkari D, Salón D, Myers TG, Weinstein JN, Botstein D, and Brown PO. 2000 Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227-235.
- 132. Ross JS and Fletcher JA. 1998 The HER-2/*neu* oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16:413-428.
- 133. Rozen S and Skaletzky H. 2000 Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. (132):365-86.
- 134. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky L, Liu Z, Vinsavich A, Trush V, and Quackenbush J. 2003 TM4: A Free, Open-Source System for Microarray Data Management and Analysis, BioTechniques 34:374-378.
- 135. Schena M, Shalon S, Davis RW, and Brown PO. 1995 Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467-470.
- 136. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, *et al.* 2000 A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24:236-44.
- 137. Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, and Osborne SK. 2004 Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331-6S.
- 138. Schulze A, and Downward J. 2001 Navigating gene expression using microarrays a technology review. Nat Cell Biol 3: E190-E195.
- 139. Selaru FM, Yin J, Olaru A, Mori Y, Xu Y, Epstein SH, Sato F, Deacu E, Wang s, Sterian A, Fulton A, Abraham JM, Shibata D, Baquet C, Stass SA, and Meltzer SJ. 2004 An unsupervised approach to identify molecular phenotypic components influencing breast cancer features. Cancer Res 64:1584-1588.
- 140. Shaffer, JP. 1995 Multiple hypothesis testing. Annu. Rev. Psychol. 46, 56 1—576.

- 141. Shena M, Shalon D, Heller R, Chai A, Brown PO, and Davis RW. 1996 Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93:10614-10619.
- 142. Skildum A, Faivre E, and Lange CA. 2005 Progesterone receptors induce cell cycle progression via activation of mitogen activated protein kinases. Mol Endocrinol 19(2):327-39.
- 143. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, and Norton L. 2001 Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783-92.
- 144. Smith IE, and Dowsett M. 2003 Aromatase inhibitors in breast cancer. N Engl J Med 348:2431-2442.
- 145. Sneath PHA and Sokal RR. 1973 numerical Taxonomy. WH Freeeman, San Francisco.
- 146. Sorlie T, Perou CM, Tibshirani R, Aas T, Gelder S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, and Borresen-Dale AL. 2001 Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 98 :10869-10874.
- 147. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. 2003 Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA, 100:8418-8423.
- 148. Sotiriou C, Neo SY, NcShane LM, korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, and Liu ET. 2003 Breast cancer classification and prognosis based on gene expressión profiles from a population-based study. Proc Natl Acad Sci USA 100(18):10393-10398.
- 149. Soukas A, Cohen P, Socci ND, and Friedman JM. 2000 Leptinspecific patterns of gene expression in white adipose tissue. Genes Dev. *14*:963-980.
- 150. Szabo A, Perou CM, Karaca M, Perreard L, and Quackenbush JF, Bernard PS. 2004 Statistical modeling for selecting housekeeper genes. Genome Biol. 5(8): R59.
- 151. Stadel BV. 2002 Hormone replacement therapy and risk of breast cancer. JAMA 287:2360-61.
- 152. Stahlberg A Zoric N, Aman P, and Kubista M. 2004 Quantitative real-time PCR for cancer detección: the lymphoma case. Expert Rev. Mol. Dign. 5(2):221-230.
- 153. Staunton JE, SlonimColler HA, Tamayo P, Angelo MJ, Park J, *et al.* 2001 Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. USA 98:10787-92.
- 154. Storey JD and Tibshirani, R 2005 Genome wide studiesProc Natl Acad Sci USA 98:31-36.
- 155. Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. 2005 Significance analysis of time course microarray experiments. Proc Natl Acad Sci USA 102:12837-12842.

- 156. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gilette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, and Mesirov JP. 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545-15550.
- 157. Sumida T, Itahana Y, Hamacaba H, and Desprez PY. 2004 Reduction of human metastatic breast cancer cell aggressiveness on introduction of Esther form A or B of the progesterona receptor and then treatment with progestins. Cancer Research 64:7886-7892.
- 158. Sutherland RL, Hall RE, Pang GYN, Musgrove EA, and Clarke CL. 1998 Effect of medroxyprogesterone acetate on proliferation and cell cycle kinetics of human mammary carcinoma cells. Cancer Res 48:5084-5091.
- 159. Szabo A, Perou CM, Karaca M, Perreard L, and Quackenbush JF, and Bernard PS. 2004 Statistical modeling for selecting housekeeper genes. Genome Biol. 5(8): R59.
- 160. Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, and Leigh IM. 1989 Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci 94 (Pt 3):403-13.
- 161. Tibshirani R, Hastie T, Narasimhan B, and Chu G. 2003 Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl acad Sci USA 99:6567-6572.
- 162. Tovey S, Dunne B, Witton CJ, Forsyth A, Cooke TG, and Bartlett JMS. 2005 Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer?. Clin Cancer Res 11(13):4835-4842.
- 163. Tran PH, Peiffer DA, Shin Y, Meek LM, Brody JP and Cho KW. 2002 microarray optimizations: increasing spot accuracy and automated identification of true microarray signals. Nucleic Acid Res. 30(12):e54.
- 164. Tung L, Mohamed JP, Hoeffler JP, Takimoto GS, and Horwitz KB. 1993 Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol. Endocrinol. 7:1256-1265.
- 165. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, and Tutt AN. 2006 BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126-32.
- 166. Tusher VG, Tibshirani R, Chu G. 2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5115-5121.
- 167. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler Lg, Lonning Pe, Strausberg RL, Chanock S, Borresen-Dale AL, and Perou CM. 2004 Mutation of GATA3 in human breast tumors. Oncogene 23(46):7669-78.
- 168. van de Peppel J, Kemmeren P, van Bakel H, Radonjic M, van Llenen D, and Holstege FCP. 2003 Monitoring global messenger RNA changes in externally controlled microarray experiments. EMBO reports 4:387-393.

- 169. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, and Bernards R. 2002 A gene expression signature as a predictor of survival in breast cancer. N. Engl.J.Med, 347:1999-2009.
- 170. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, and Eberwine JM. 1990 Amplified RNA synthesized from limited quantities of heterogenous cDNA. Proc Natl Acad Sci USA 87:1663-1667.
- 171. Van Helden J, Andre B, and Collado-vides J. 1998 Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol. 281(5):827-42.
- 172. Van Laere S, Van der Auwera I, Van den Eynden GG, Fox SB, Bianchi F, Harris AL, van Dam P, Van Marck EA, Vermeulen PB, and Dirix Ly. 2005 Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res.Treat. 93(3):237-46.
- 173. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy, K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, and Friend SH. 2002 Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530-536.
- 174. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time geometric averaging of multiple multiple internal control genes. 2002 Genome Biol. 0034.1–0034.11.
- 175. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O'Malley BW, and McDonell DP. 1993 Human progesterone receptor A form is a celland promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7:1244-1255-
- 176. Velculescu V, and El-Deiry WS. 1996 Biological and clinical importance of the p53 tumor suppressor gene. Clin. Chem. 42: 858-68.
- 177. Venkitaraman AR. 2002 Cancer Susceptibility and the Functions of BRCA1 and BRCA2. Cell 108:171-182.
- 178. Wan Y and Nordeen SK. 2002 Overlapping but distinct gene regulation profiles by glucocorticoids and progestins in human breast cancer cells. Mol.Endocrinol. 16:1204-1214.
- 179. Wang Y, Klijn JGM, Zhang Y, Siuwerts AM, Look MP, Yang F, Talantov D, timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EMJJ, Atkins D, and Foekens JA. 2005 Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet 365:671-679.
- 180. Wardell SE, Boonyaratanakornkit V, Adelman JS, Aronheim A, and Edwards DP. 2002 .Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator. Mol Cell Biol. 22(15):5451-66.
- 181. Weigelt B, Glas AN, Wessels LFA, Witteveen AT, Peterse JL, and van't Veer LJ. 2003 Gene expression profiles of primary breast tumors

maintained in distant metastases. Proc Natl Acad Sci USA 100:15902-15905.

182. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, and Nevins JR. 2001 Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl, Acad. Sci. USA 98:11462-11467.

183. West RB, Nuyten DSA, Subramanian S, Nielsen TO, Corless CL, Rubin BP, Montgomery K, Zhu S, Patel R, Hernandez-Boussard T, Goldblum JR, Brown PO, van de Vijver M, and van de Rijn M. 2005 Determination of stromal signatures in breast carcinoma. PLOS biology 3(6):e187.

184. Wettenhall JM, Smyth GK. 2004 limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20(18):3705-6.

185. Wilson CA and Slamon DJ. 2005 Evolving understanding of growth regulation in human breast cancer: interaction of the steroid and peptide growth regulatory pathways. J Natl Cancer Inst 97:1238-1239. Amit I, Citri A, Shay T, Lu S, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, Amariglio N, Abisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, and Yarden Y. 2007 A module of negative feedback regulators defines growth factor signaling. Nat Genet 39: 503-512.

186. Winegarden N. 2003 Microarrays in cancer: moving from hype to clinical reality. Lancet 362:1428.

187. Winston JS, Ramanaryanan J, and Levine E. 2004 HER-2/neu evaluation in breast cancer. Am. J. Clin. Pathol. 121(Supl.):S33-49.

188. Woodward TL, Xie JW, and Haslam SZ. 1998 Role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neopla 3: 117-131.

189. Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, et al. Within the fold: assessing differential expression measures and reproducibility in microarray assays. 2002 Genome Biol.3, 0062.1-0062.12.

190. Yang YW, Dudoit S, Liu P, Lin DM, Peng V, Ngai J, and Speed TP. 2002 Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4)e15.

191. Zheng ZY, Bay BH, Aw SE, and Lin VCL. 2005 A novel antiestrogenic mechanism in progesterone receptor-transfected breast cancer cells. J Biol Chem 280(17):17480-7.

192. Zuker M. 2003 Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acid Res. 31(13):3406-15.

List of tables

Table 5: Clinical and histopathological characteristics of the training and the testset of breast tumor samples.100

Table 6: Significant (BH *p*-value<0.05) GO terms of the first three groups of</th>gene expression clusters. ("GO mf" means GO molecular function, "GO bp"means GO biological process).105

Table 9: Distribution of tumor samples of the test set as a result of multiple classsupervised classification by BGA.114

 Table 12: Class prediction of tumor samples by PAM.
 124

Table 13: List of most significant genes for subtype discrimination at a shrinkage parameter Δ of 2.65. A positive score means up-regulated gene expression, and a negative score means down-regulated gene expression. 125

Table 14: Test set probabilities and clinical histopathological data.	146
Table 15: Clinical and histopathological characteristics of the patients and t tumors of the PAM predicted groups.	
Table 16: Breast tumor samples gene panel.	149

List of figures

Figure 1: Genomic and ligand-mediated signaling effects of steroid hormones. 6

Figure 5: (Up) Image of a Breast Cancer Array v4.0. Notice (in the reduced copy on the left) the 16-print tip grid and the four spot quadruplicates: two of them side-by-side on the vertical and the other two on the bottom part of the array in a mirrored orientation. Spike-in were not included in the labeling reactions. Their spot were used as negative controls. 30

Figure 7: Representation of the most representative canonical KEGG pathways calculated from the regulated genes belonging to each pathway. Red bar denotes significance threshold (*p*-value smaller than 0.05). Significance is calculated from the number of genes present belonging to each pathway in each time point (figure from Ingenuity® pathway analysis software program). 52

Figure 12: Comparison of the cDNA microarray data from our experiments and the published results by Cunliffe *et al.* 2003. To better visualize the results we

Figure 19: Time series of M (*y*-axis) as a function of the time after the Estradiol treatment (*x*-axis) for the eight groups obtained by K-Means clustering........71

Figure 27: As in Figure 23 but for gene RPS6KA1 (p90/RSK1)
Figure 28: As in Figure 23 but for gene RPS6KA5 (MSK1)90
Figure 29: As in Figure 23 but for gene MUC2L (TFCP2L3)
Figure 30: As in Figure 23 but for gene CCNE2 (Cyclin E2)
Figure 31: ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R502093
Figure 32: Effect of PD on ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R5020
Figure 33: Effect of ICI on ERK/MAPK signaling pathway component transcript levels 6 hr after hormone induction with R5020
Figure 34: ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol
Figure 35: Effect of PD on ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol
Figure 36: Effect of ICI on ERK/MAPK signaling pathway component transcript levels 1 hr after hormone induction with estradiol
Figure 37: Unsupervised hierarchical clustering of breast samples with complete linkage
Figure 38: Expression levels of the most relevant genes selected from the two main clusters
Panel 39: Expression levels of the most relevant genes selected from the nine groups obtained by supervised analysis
Figure 40: Supervised classification of breast samples by BGA into two groups 0 and 1 based on their ER status reveals an intermediate mixed class 109
Figure 41: Supervised classification of breast samples by multiple class Between Groups Analysis (BGA) in six groups. (A) Allocation of breast samples. (B) Diagram of the spatial position of the six classes
Figure 42: Most discriminant genes oriented on each axis after supervised classification of breast samples by multiple class BGA into six groups
Figure 43: Supervised classification of breast samples by BGA into two groups based on their PR status 115

Figure 46: Training error plot for PAM classification. The minimum training error is found at a threshold Δ of 1.32, using a set of 506 genes as the minimal classification set. Using only 94 genes the training error is still below 10%...120

Figure 47: Cross-validated probabilities of the training set of tumor samples. 121

Figure 55: Network 2 of phenotype 2 in a subcellular view, in which to most significant canonical pathways are added, such as estrogen receptor signaling, glucocorticoid receptor signaling and the aryl hydrocarbon receptor signaling.

Figure 56: Merged networks 1 and 2 of phenotype 2 in a subcellular view. ... 134

Figure 57: Network 1 of phenotype 3 in a subcellular view, of the cell growth and proliferation signaling is driven extracellular by FGF7
Figure 58: Leading edge analysis of tumor subtype 3
Figure 59: Merged network 1 and 2 of phenotype 3 in a subcellular view 137
Figure 60: Network 1 phenotype 4, ERBB2+-like, which shows how most of the discriminating genes (14/15) are connected
Figure 61: Leading edge analysis of ERBB2+ tumor phenotype
Figure 62: Network 1 phenotype 5, basal-like-like 141
Figure 63: Network 2 phenotype 5, basal-like-like 142
Figure 64: Network 3 phenotype 5, basal-like-like
Figure 65: Merged networks of PAM predicted phenotype 5, basal-like breast tumors
Figure 66: Leading edge analysis of GSEA result of PAM predicted subtype 5.
Figure 67: Class assignment and probabilities of the predicted test set 145
Figure 68: Gene panel the breast tumor samples for microarray data validation. 150
Figure 69: Average expression stability of reference genes by geNORM 150

Appendices

				ומוצערי הובמסו המווכהו סומתוכם מסוווא וווה המוומלס			
Publication	Title	Array Platform	Patients (invasive tumor size)	Reference sample used	Cohort sze	Follow-up	Minimal discriminatory element
Pollack, Nature Genetics, 1999	Genome-wide analysis of DNA copy- number changes using cDNA microarrays	cDNA microarray (5,240), CGH analysis		BT-474 tumor cell line			
Perou et al, Nature 1999	Distinctive gene expression patterms in human mammary epithelial cells and breast cancers	cDNA/Stanford 8,102 genes	T3-T4: >5 cm	HMEC cell line	38 invasive		496 elements. 4 biological classes of invasive
Perou et al, Nature 2000	Molecular portraits of Human Breast Tumors	cDNA/Stanford 8,102 genes		Pool of mRNAs isolated from 11 different cultured cell lines	42 breast tumors		
Hedenfalk, N Engl J Med., 2001	Gene-Expression Profiles in Hereditary Breast Cancer			MCF-10A			
Gruvberger, Cancer Res, 2001	Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns	cDNA microarray (6,728)		BT-474 tumor cell line			
West, PNAS, 2001	Predicting the clinical sstatus of human breast cancer by using gene expression profiles	Affymetrix 7,129 25-mer oligos	T1-T2: 1.5-5 cm		49		100 genes. Differentiate ER+ from ER-
Sortie, PNAS,2001	Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications	cDNA microarray 8,102 features		Four normal breast tissue samples from different individuals, three of which were pooled, plus normal breast samples from multiple individuals (Clontech), gave three different batches of common reference, each differently produced	78 breast tumor samples (49 samples forsurivral analysis)		
Dan Cancer Res, 2002	An Integrated Database of Chemosensitivity to 55 Anticancer Drugs and Gene Expression Profiles of 39 Human Cancer Cell Lines	cDNA microarray (9,216)		mRNA pool from all 39 human cancer cell lines			
Ellis et al, Clin Cancer Research, 2002	Development and Validation of a Method for Using Breast Core Needle Biopsies for Gene Expression Microarray Analyses	nylon filter arrays (4032)		housekeeping genes, normalizing factor			top 30 breast cancer genes
an, Kallioniemi, Cancer Research,	Hyman, Kallionierni, Cancer Research, Impact of DNA amplification on GE patterns 2002	cDNA microarray, CGH analysis		Universal Human RNA reference (Stratagene)			
Van 't Veer, Nature, 2002	Gene Expression profiling predicts clinical outcome of breast cancer	Agilent 24,479 60-mer oligos	T1-T2: <5 cm	Reference cRNA made by pooling equal amounts of cRNA from each of the sporadic carcinomas	97 young patients (prediction set: 78 patients, test set: 19 patients) 44± 8 years	5 years minimum	70 genes. Risk of distant metastasis in LN- patients
Van de Vijver, N Engl J Med, 2002	A gene expression signature as a predictor of survival in breast cancer	Agilent 24,479 60-mer oligos	T1-T2: <5 cm	Reference cRNA made by pooling equal amounts of cRNA from each of the sporadic carcinomas	295	5 years minimum	70 genes. Risk of distant metastasis in LN- and LN+ patients
Pollack, PNAS 2002	Microarray analysis reveals a major direct role of DNA copy number alterations in the transcriptional program of human breast tumors	cDNA array (6,691), CGH analysis		Normal female leukocyte DNA from a single donor			

Appendix_A1: Breast cancer studies using microarrays

Sotiriou, PNAS, 2003	Breast cancer classification and prognosis based on gene expession profiles from a	CDNA microarray (7,650 features, NCI)	T1-T2: <5 cm	Universal Human RNA reference (Stratagene)	66	6 yeras minimum	706 elements. 6 biological classes of invasive
Hedenfalk, PNAS, 2003	Population concerned on of familial non- Molecular classification of familial non- BRCA1/BRCA2 breast cancer	cDNA microarray (Agilent), CGH analysis		Breast Cancer cell likne BT-474 (ATCC)			
Soriie, PNAS,2003	Repeated obsevation of breast turnor samples subtypes in independent gene expression data sets	cDNA/Stanford 8,102 genes	T3-T4: >5 cm	Four normal breast tissue samples from different individuals, three of which were pooled, plus normal breast samples from multiple individuals (Clontech), gave three different batches of common reference, each differently produced	115 tumor samples (81 samples for training set)	8 years	
Ramaswamy et al. Nat Genet 2003	A molecular signature of metastasis in primary solid tumors	Rosetta inkjet (24,479 genes; breast adenocarcinoma) oligonucleotide microarrays.	78 small stage I primary breast adenocarcinomas		279 primary tumors of diverse types (lung, breast, prostate)		Identified a set of 128 genes separating metastasis from primary tumors able to distinguish patulents with good versus poor prognosis. Selection of the 17-gene signature associated with metastasis.
Huang et al, Lancet, 2003	Gene expression predictors of breast cancer outcomes	Hu U95Av2 Affymetrix			89 tumor samples		Identification of aggregates of gene expression (metagenes) that associate with lymph node status and recurrence, predicting outcome.
Selaru, Cancer Research, 2004	An unsupervised approach to identify molecular phenotypic components influencing breast cancer features	cDNA microarray (8,064 features)		Mixture containing aRNAs from eight human cancer cell lines			
Ma et al. Cancer Cell, 2004	A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen	22K oligonucleotide array	103 ER+ early stage cases	Universal Human RNA reference (Stratagene)	103 ER+ early stage cases	minimum 5 years	2 gene expression ratio to predict tumor recurrence in the setting of adjuvant tamoxifen therapy
Nielsen TO, et al. Clin Cancer Res, 2004	Immunohistochemical and clinical characterization of the Basal-like subtype of invasive breast carcinoma.	22K oligonucleotide array	T3-T4: >5 cm	Universal Human RNA reference (Stratagene) plus 1/10 of RNA from MCF7 cells plus 1/10 ME16C	115 breast primary tumors	median 17.4 years	
Nevins et al. 2003	Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction.	multiple gene expression signatures "metagenes"	86 LN+ breast cancer samples		86 LN+ breast cancer samples	5 years minimum	Determination of two metagenes of 117 genes and 31 genes, to predict clinical outcome
Zhao et al. ,Mol Biol Cell, 2004	Different gene expression patterns in invasive lobular and ductal carcinomas of the breast	cDNA microarray > 42,000 features (Stanford)	samples were IDC (38) or ILC (21)	Universal Human RNA reference (Stratagene)	59 primary breast cancer		78 clones selected to discriminate between IDC and ILC
Usary et al . Oncogene, 2004	Mutation of GATA3 in human breast cancer	Agilent Human 1A plus 3000 custom oligos		(SAM analysis multiclass (tumor grade i, II, III) breast cancer cell lines and 122 tumors from Sorlie	breast cancer cell line samples		identification of 74 GATA3 regulated genes
Michalides 2004	Tamoxiten resistance by a conformational arrest of the $\text{ER}\alpha$ after PKA activation in breast cancer	NKI 18K Human cDNA array	ER+ tumors stagel-III Tamoxifen versus no- Tamoxifen	Reference pool mada with 56 tumors (16 recurrence, 40 non-recurrence	56 tumors samples	median 132 months	phosporylation of serine-305 of ER α by protein kinase A (PKA) induces resistance to Tamoxifen
Van Laere et al. Breast Cancer Res Treat, 2005	Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis	cDNA microarray (Sanger center) 10,750 features	breast adenocarcinoma	Universal Human Reference RNA (Stratagene)	34 breast cancer samples		distinguish inflammatory breast cancer (IBC) and non-inflammatory breast cancer (non-IBC)

Appendix_A1: Breast cancer studies using microarrays

microarrays
using
studies
cancer
1: Breast
Appendix_A

West et al. PLOS Biology, 2005	Determination of the stromal signatures in breast carcinoma	42,000 cDNA microarray	early breast cancer (stage I and II)		58 tumors	7.8 years	SAM analysis between solitary fibrous tumor (SFT) and desmoid-type fibromatosis (DTF) with 700 discriminatory set
Chang et al 2004	Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.	36,000 cDNA microarray	50 fibroblast cultures from 10 anatomic sites	Pool of mRNAs isolated from 11 different cultured cell lines			459 genes of fibroblast core serum response, the CSR gene set
Chang et al 2005	Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival.	36,000 cDNA microarray	T1-T2: <5 cm	Pool of cRNA from all samples	295	5 years minimum	459 genes of fibroblast core serum response, the CSR gene set
Wang et al. The Lancet 2005	Gene-expression profiles to predict distant metastasis of lymph-node negative primary breast cancer	Affymetrix U133A 25-mer oligos	LN- and LN+ patients with invasive breast cancer		286 lymph-node- negative patients (Training set 80 patients ER+, 35 patients ER-, test set of 171	median 101 months	76-gene signature to distinguish LN- primary breast cancer to develop distant metastasis within 5 years
Rouzier et al. Clin Cancer Res. 2005	Breast cancer molecular subtypes respond differently to preoperative chemotherapy	Affymetrix U133A 25-mer oligos	Stage I to III breast cancer		83 invasive breast tumors		298 genes (SAM) to discriminate between four subtypes
Bertucci et al. Cancer Res. 2005	Gene expression profiling identifies molecular subtypes of inflamatory breast cancer	nylon membranes microarrays with 8016 spots			81 invasive breast cancer		120 commomn genes with Sorlie et al.
Naderi et al. Oncogene, 2006.	A gene-expression signature to predict survival in breast cancer across independent data sets	Agilent 22,575 60-mer oligos	No criteria for selection	reference cRNA pool generated by mixing the labelled targets from 50 samples chosen at random.	135 tumor samples (only quantity of RNA as criteria)	10-15 yeras	10-15 yeras 70-gen prognostic signature
Nuyten et al. Breast Cancer Res) 2006	Predicting a local recurrence after breast- is conserving therapy by gene expression profiling	Agilent 24,479 60-mer oligos	Stage I and II breast cancer with age < 53 years	Reference cRNA made by pooling equal amounts of cRNA from each of the sporadic carcinomas	81 patients (training set), 80 patients validation set	6.2 years median	70-gen predictor of local recurrence
Feng <i>et al.</i> Breast Cancer Res Treat. 2006	Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node positive breast cancer patients	Operon 70-mer two-color 21,239 probes	primary tumor and Lymph node metastasis paired samples	not stated	35 patients	43 months average	79 differentially expressed genes between primary cancers and metastasis samples
Sorlie et al. BMC Genomics 2006	Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across threee different platforms	Three different platforms: Aglient 44,000K, Applied Biosystems 31,700 60-mer; TaqMan array-based real time qPCR	early breast carcinomas (T1/T2)	Human reference RNA (Stratagene)	20 tumor biopsies	I	54 discriminatory genes to discriminate luminal subtype and basal-like subtype
Teschendorff et al. Genome Biology 2007	An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer	Agilent/Affyrmetrix	240 breast tumor samples from different datasets		186 ER- samples integrated from different datase4ts		immune response related 7-gene module for identifying higher risk of distant metastasis
Kapp et al. BMC Genomics, 2007	Discovery and validation of breast cancer subtypes	datasets from Sorlie et al. 2003	datasets from Sorlie et al. 2003	datasets from Sorlie et al. 2003	98 breast samples		classification of ESR1+/ERBB2-, ESR1-/ERBB2-, and ERBB2 subtypes
Glas et al. BMC Genomics 2006	Converting a breast cancer microarray signature into a high-throughput diagnostic test	Agilent customized 1,900 60- mer oligos "MammaPrint"	young breast cancer patients < 55 years (LN-)	Pooled and amplified RNA from 105 primary breast tumors selected from patients of the clinical validation series	162 patients	minimum 5 years	232-gen gene signature to predict disease outcome
Yau et al. Breast Cancer Res 2007	Aging impacts transcriptme but not genome of hormone-dependent breast cancers	expression Affymetrix 13,000 and array-CGH analysis	two cohorts of 66 and 71 breast tumor mixed samples		two cohorts of 66 and 71 breast tumor mixed samples		two-age independent phenotypes

		×	CC	ier	Ţ
Symbol	e E	GenBank AccNo	UGRepAcc	UGCluster	Cytoband
	A NA		ÐN	ne	Cyt
28SrRNA BC029276	28SrRNA BC029276	28rRNA BC029276			
ABCC5	ATP-binding cassette, sub-family C (CFTR/MRP), member 5	NM_005688	AF146074	Hs.368563	3q27
ABL1	V-abl Abelson murine leukemia viral oncogene homolog 1	NM_005157	NM_007313	Hs.431048	9q34.1
ACTB	Actin, beta	NM_001101	AK125561	Hs.520640	7p15-p12
ADAM15 PARP1	ADAM metallopeptidase domain 15 (metargidin) Poly (ADP-ribose) polymerase family, member 1	NM_003815 NM_001618	AB209157 NM_001618	Hs.312098 Hs.177766	1q21.3 1q41-q42
PARP3	Poly (ADP-ribose) polymerase family, member 3	NM_005485	NM_005485	Hs.271742	3p21.31-p21.1
ADRA1B	Adrenergic, alpha-1B-, receptor	NM_000679	NM_000679	Hs.368632	5q23-q32
ADRA1B ADRBK1	Adrenergic, alpha-1B-, receptor Adrenergic, beta, receptor kinase 1	NM_000679 NM 001619	NM_000679 AB209588	Hs.368632 Hs.83636	5q23-q32 11q13
AHR	Aryl hydrocarbon receptor	NM_001621	NM_001621	Hs.171189	7p15
AKAP13	A kinase (PRKA) anchor protein 13	NM_007200	NM_006738	Hs.459211	15q24-q25
PALM2-AKAP2	PALM2-AKAP2 protein	NM_007203	NM_053016	Hs.591908	9q31-q33
AKAP9 AKT1	A kinase (PRKA) anchor protein (yotiao) 9 V-akt murine thymoma viral oncogene homolog 1	NM_147171 NM_005163	NM_147171 NM_005163	Hs.527348 Hs.525622	7q21-q22 14q32.32 14q32.32
AKT2	V-akt murine thymoma viral oncogene homolog 2	NM_001626	AK122839	Hs.541273	19q13.1-q13.2
AKT3	V-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma		NM_005465	Hs.498292	1q43-q44
ALDH4A1 ALPP	Aldehyde dehydrogenase 4 family, member A1	NM_003748	NM_003748	Hs.77448	1p36
NUSAP1	Alkaline phosphatase, placental (Regan isozyme) Nucleolar and spindle associated protein 1	NM_001632 NM_016359	BC094743 BC037888	Hs.284255 Hs.406234	2q37 15q15.1
ANTXR1	Anthrax toxin receptor 1	NM_032208	AF279145	Hs.165859	2p13.1
AP2B1	Adaptor-related protein complex 2, beta 1 subunit	NM_001282		Hs.514819	17q11.2-q12
APAF1 APC	Apoptotic peptidase activating factor Adenomatosis polyposis coli	NM_013229 NM_000038	NM_181861 NM_000038	Hs.552567 Hs.158932	12q23 5q21-q22
APC APEX1	Adenomatosis polyposis coli APEX nuclease (multifunctional DNA repair enzyme) 1	BC002338	CR611116	Hs.158932 Hs.73722	5q21-q22 14q11.2-q12
APEX1	APEX nuclease (multifunctional DNA repair enzyme) 1	NM_001641	CR611116	Hs.73722	14q11.2-q12
APEX2	APEX nuclease (apurinic/apyrimidinic endonuclease) 2	NM_014481	NM_014481	Hs.555936	Xp11.21
APOD AR	Apolipoprotein D Androgen receptor	NM_001647 NM_000044	BF790155 NM_000044	Hs.522555 Hs.496240	3q26.2-qter Xq11.2-q12
ARAF	V-raf murine sarcoma 3611 viral oncogene homolog	NM_001654	AB208831	Hs.446641	Xp11.4-p11.2
AREG	Amphiregulin (schwannoma-derived growth factor)	NM_001657	BC009799	Hs.270833	4q13-q21
RND3	Rho family GTPase 3	X97758	X97758	Hs.6838	2q23.3
ARHGAP5 ATE1	Rho GTPase activating protein 5 Arginyltransferase 1	NM_001173 NM_007041	NM_001030055 BC022026	Hs.592313 Hs.501239	14q12 10q26.13
ATF2	Activating transcription factor 2	NM_001880	BC107698	Hs.591614	2q32
ATF3	Activating transcription factor 3	NM_004024	AB209032	Hs.460	1q32.3
ATF4 ATM	Activating transcription factor 4 (tax-responsive enhancer element B67) Ataxia telangiectasia mutated (includes complementation groups A, C and I	NM_001675	NM_001675 NM_000051	Hs.496487 Hs.435561	22q13.1
ATR	Ataxia telangiectasia mutated (includes complementation groups A, C and L Ataxia telangiectasia and Rad3 related	NM 001184	NM_0001184	Hs.271791	11q22-q23 3q22-q24
ATRX	Alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog,	U09820	NM_138271	Hs.533526	Xq13.1-q21.1
AURKB	Aurora kinase B	NM_004217	CD049340	Hs.442658	17p13.1
AURKC BAD	Aurora kinase C BCL2-antagonist of cell death	NM_003160 NM_004322	AF059681 AK023420	Hs.98338 Hs.370254	19q13.43 11q13.1
ACTL6A	Actin-like 6A	NM_178042	NM_178042	Hs.435326	3q26.33
BAG1	BCL2-associated athanogene	NM_004323	NM_004323	Hs.377484	9p12
BARD1	BRCA1 associated RING domain 1	NM_000465	AK223409	Hs.591642	2q34-q35
BAX BAZ1A	BCL2-associated X protein Bromodomain adjacent to zinc finger domain, 1A	NM_138764 NM_013448	AK001361 NM 013448	Hs.433670 Hs.592311	19q13.3-q13.4 14q12-q13
BBC3	BCL2 binding component 3	NM_014417	AF332558	Hs.467020	19q13.3-q13.4
BCAR1	Breast cancer anti-estrogen resistance 1	NM_014567	AK124526	Hs.479747	16q22-q23
BCAS2 BCCIP	Breast carcinoma amplified sequence 2 BRCA2 and CDKN1A interacting protein	NM_005872 NM_078469	BC022880 AK092054	Hs.22960 Hs.370292	1p21-p13.3 10q26.1
BCL2	Broaz and obrivity interacting protein	NM_000633	NM_000633	Hs.592350	18q21.33 18q21.3
BCL2L1	BCL2-like 1	NM_138578	CR936637	Hs.516966	20q11.21
BCL2L2	BCL2-like 2	NM_004050	AK024489	Hs.410026	14q11.2-q12
ACSBG2 BIRC2	Acyl-CoA synthetase bubblegum family member 2 Baculoviral IAP repeat-containing 2	NM_030924 NM_001166	AY358766 BC028578	Hs.465720 Hs.503704	19p13.3 11q22
BIRC3	Baculoviral IAP repeat-containing 2 Baculoviral IAP repeat-containing 3	NM_001165	NM_001165	Hs.127799	11q22
BIRC5	Baculoviral IAP repeat-containing 5 (survivin)	NM_001168	NM_001012271	Hs.514527	17q25
BIRC5	Baculoviral IAP repeat-containing 5 (survivin)	NM_001168	NM_001012271	Hs.514527	17q25
BLM BNIP3	Bloom syndrome BCL2/adenovirus E1B 19kDa interacting protein 3	NM_000057 NM_004052	BC034480 BX647339	Hs.169348 Hs.144873	15q26.1 10q26.3
BRAF	V-raf murine sarcoma viral oncogene homolog B1	NM_004333	NM_004333	Hs.550061	7q34
BRAF	V-raf murine sarcoma viral oncogene homolog B1	NM_004333	NM_004333	Hs.550061	7q34
BRCA1 BRCA2	Breast cancer 1, early onset	NM_007295	NM_007295	Hs.194143	17q21
BRCA2 BTG1	Breast cancer 2, early onset B-cell translocation gene 1, anti-proliferative	NM_000059 NM_001731	NM_000059 BC009050	Hs.34012 Hs.255935	13q12.3 12q22
BTG2	BTG family, member 2	NM_006763	NM_006763	Hs.519162	1q32
BTN2A2	Butyrophilin, subfamily 2, member A2	NM_006995	U90550	Hs.373938	6p22.1
C14orf130 C14orf138	Chromosome 14 open reading frame 130 Chromosome 14 open reading frame 138	BU739864 NM_024558	NM_018108 BX247997	Hs.275352 Hs.558541	14q32.12
C140f138 C20orf149	Chromosome 14 open reading frame 138 Chromosome 20 open reading frame 149	NM_024558 NM_024299	BG168849	Hs.558541 Hs.79625	14q22.1 20q13.33
C20orf46	Chromosome 20 open reading frame 46	NM_018354	AK126837	Hs.516834	20p13
VHL	Von Hippel-Lindau tumor suppressor	NM_018462	NM_000551	Hs.517792	3p26-p25
C9orf3	Chromosome 9 open reading frame 3	BX372918	AF043897	Hs.434253	9q22.32
CA2 CAMK2N1	Carbonic anhydrase II Calcium/calmodulin-dependent protein kinase II inhibitor 1	NM_000067 NM_018584	AK123309 CR604926	Hs.155097 Hs.197922	8q22 1p36.12
CAURZINT	Calreticulin	NM_004343	M84739	Hs.515162	19p13.3-p13.2
CARM1	Coactivator-associated arginine methyltransferase 1	XM_032719	NM_199141	Hs.371416	19p13.2
CASP1	Caspase 1, apoptosis-related cysteine peptidase	NM_033292	AK223503	Hs.2490	11q23
CAV1 CBFB	Caveolin 1, caveolae protein, 22kDa Core-binding factor, beta subunit	NM_001753 NM_001755	NM_001753 NM_001755	Hs.74034 Hs.460988	7q31.1 16q22.1
CCNA2	Cyclin A2	NM_001237	CR604810	Hs.58974	4q25-q31
				Hs.23960	
CCNB1 CCNB2	Cyclin B1 Cyclin B2	NM_031966 NM_004701	BX537394 AL080146	Hs.194698	5q12 15q22.2

CCND1	Cyclin D1	NM_053056	NM_053056	Hs.523852	11q13
CCND2	Cyclin D2	NM_001759	NM_001759	Hs.376071	12p13
CCND3	Cyclin D3	NM_001760	AK096276	Hs.534307	6p21
CCNE1	Cyclin E1	NM 001238	BC035498	Hs.244723	19q12
CCNE2	Cyclin E2	NM_057749	NM_057749	Hs.567387	8q22.1
CCNF	Cyclin F	NM 001761	NM_001761	Hs.1973	16p13.3
CCNG1	Cyclin F Cyclin G1	NM_004060	NM_004060	Hs.79101	5q32-q34
CCNG2	Cyclin G2	NM_004354	BC032518	Hs.13291	4q21.1
CCNH	Cyclin H	NM_001239	AB209342	Hs.292524	5q13.3-q14
CCNI	Cyclin I	NM_006835	NM_006835	Hs.591702	4q21.1
CCNK	Cyclin K	XM_085179	AB209373	Hs.510409	14q32
CCNT1	Cyclin T1	NM_001240	NM_001240	Hs.279906	12pter-qter
CCNT2	Cyclin T2	NM_058241	BX648174	Hs.591241	2q21.3
CCRK	Cell cycle related kinase	NM_178432	AF113130	Hs.522274	9q22.1
CD24	CD24 molecule	AK125531	AK057112	Hs.375108	6q21
CD34	CD34 molecule	BX640941	BX640941	Hs.374990	1q32
SEPT7	Septin 7	NM_001788	AB209677	Hs.191346	7p14.3-p14.1
CDC14A	CDC14 cell division cycle 14 homolog A (S. cerevisiae)	NM_003672	BC071578	Hs.127411	1p21
CDC14B	CDC14 cell division cycle 14 homolog B (S. cerevisiae)	NM_033332	AF064105	Hs.40582	9q22.33
CDC16	CDC16 cell division cycle 16 homolog (S. cerevisiae)	NM_003903	AB209850	Hs.374127	13q34
CDC2		NM 001786			
	Cell division cycle 2, G1 to S and G2 to M		CR933728	Hs.334562	10q21.1
CDC20	CDC20 cell division cycle 20 homolog (S. cerevisiae)	NM_001255	BG256659	Hs.524947	1p34.1
CDC20	CDC20 cell division cycle 20 homolog (S. cerevisiae)	NM_001255	BG256659	Hs.524947	1p34.1
CDC23	CDC23 (cell division cycle 23, yeast, homolog)	NM_004661	NM_004661	Hs.153546	5q31
CDC25A	Cell division cycle 25A	NM_001789	NM_001789	Hs.437705	3p21
CDC25B	Cell division cycle 25B	NM_021874	NM_021873	Hs.153752	20p13
CDC25C	Cell division cycle 25C	NM_001790	BC039100	Hs.656	5q31
CDC27	Cell division cycle 27	NM_001256	S78234	Hs.463295	17q12-17q23.2
CDC2L5	Cell division cycle 2-like 5 (cholinesterase-related cell division controller)	NM_003718	NM_003718	Hs.233552	7p13
CDC34	Cell division cycle 34	NM_004359	BM906315	Hs.514997	19p13.3
CDC34 CDC37		NM_007065			
	CDC37 cell division cycle 37 homolog (S. cerevisiae)		NM_007065	Hs.160958	19p13.2
CDC42	Cell division cycle 42 (GTP binding protein, 25kDa)	NM_001791	BC018266	Hs.487266	1p36.1
CDC42BPA	CDC42 binding protein kinase alpha (DMPK-like)	NM_003607	NM_003607	Hs.35433	1q42.11
CDC42BPB	CDC42 binding protein kinase beta (DMPK-like)	NM_006035	NM_006035	Hs.569310	14q32.3
CDC45L	CDC45 cell division cycle 45-like (S. cerevisiae)	NM_003504	NM_003504	Hs.474217	22q11.21
CDC6	CDC6 cell division cycle 6 homolog (S. cerevisiae)	NM_001254	NM_001254	Hs.405958	17q21.3
CDC7	CDC7 cell division cycle 7 (S. cerevisiae)	NM_003503	AB209337	Hs.533573	1p22
CDCA7	Cell division cycle associated 7	NM_031942	AL834186	Hs.470654	2q31
CDH1	Cadherin 1, type 1, E-cadherin (epithelial)	NM_004360	NM_004360	Hs.461086	16q22.1
CDH13	Cadherin 13, H-cadherin (heart)	NM_001257	NM_001257	Hs.436040	16q24.2-q24.3
CDK10	Cyclin-dependent kinase (CDC2-like) 10	NM_003674	BC045670	Hs.109	16q24
CDK2	Cyclin-dependent kinase 2	NM_001798	NM_001798	Hs.19192	12q13
CDK3	Cyclin-dependent kinase 3	NM_001258	BX647274	Hs.584745	17q22-qter
CDK4	Cyclin-dependent kinase 4	NM_000075	BM467999	Hs.95577	12q14
CDK5	Cyclin-dependent kinase 5	NM_004935	BG577212	Hs.166071	7q36
CDK6	Cyclin-dependent kinase 6	NM_001259	NM_001259	Hs.119882	7q21-q22
CDK7	Cyclin-dependent kinase 7	NM_001799	NM_001799	Hs.184298	5q12.1
CDK8	Cyclin-dependent kinase 8	NM_001260	BC047364	Hs.382306	13q12
CDK9	Cyclin-dependent kinase 9 (CDC2-related kinase)	NM_001261	NM_001261	Hs.557646	9q34.1
CDK9	Cyclin-dependent kinase 9 (CDC2-related kinase)	NM 001261	NM_001261	Hs.557646	9q34.1
CDKL1	Cyclin-dependent kinase-like 1 (CDC2-related kinase)	NM_004196	AF390028	Hs.280881	14q22.1
CDKL2	Cyclin-dependent kinase-like 2 (CDC2-related kinase)	NM_003948		Hs.591698	
			NM_003948		4q21.1
CDKL3	Cyclin-dependent kinase-like 3	NM_016508	BC041799	Hs.105818	5q31
CDKN1A	Cyclin-dependent kinase inhibitor 1A (p21, Cip1)	NM_078467	NM_078467	Hs.370771	6p21.2
CDKN1B	Cyclin-dependent kinase inhibitor 1B (p27, Kip1)	NM_004064	NM_004064	Hs.238990	12p13.1-p12
CDKN1C	Cyclin-dependent kinase inhibitor 1C (p57, Kip2)	NM_000076	BC067842	Hs.106070	11p15.5
CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	NM_058197	BQ945397	Hs.512599	9p21
CDKN2B	Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	NM_078487	NM_078487	Hs.72901	9p21
CDKN2C	Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	NM_001262	AK091170	Hs.525324	1p32
CDKN2D	Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)	NM_001800	NM_001800	Hs.435051	19p13
CDKN3	Cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phose		BQ056337	Hs.84113	14q22
CEBPA	CCAAT/enhancer binding protein (C/EBP), alpha	NM_004364	NM_004364	Hs.590973	19q13.1
CEBPB	CCAAT/enhancer binding protein (C/EBP), apha	BC021931	BC021931	Hs.592138	20q13.1
CEBPB	CCAAT/enhancer binding protein (C/EBP), beta	BC021931 BC021931	BC021931 BC021931	Hs.592138	20q13.1
CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	BM924801	BM924801	Hs.440829	8p11.2-p11.1
CEBPE	CCAAT/enhancer binding protein (C/EBP), epsilon	CR594219	CR594219	Hs.558308	14q11.2
CENPA	Centromere protein A, 17kDa	NM_001809	BM911202	Hs.1594	2p24-p21
CENPA	Centromere protein A, 17kDa	NM_001809	BM911202	Hs.1594	2p24-p21
CFTR	Cystic fibrosis transmembrane conductance regulator, ATP-binding cassette	_	NM_000492	Hs.489786	7q31.2
CHD1	Chromodomain helicase DNA binding protein 1	NM_001270	NM_001270	Hs.121098	5q15-q21
CHD1L	Chromodomain helicase DNA binding protein 1-like	NM_024568	AF537213	Hs.191164	1q12
CHD2	Chromodomain helicase DNA binding protein 2	NM_001271	NM_001271	Hs.220864	15q26
CHD2	Chromodomain helicase DNA binding protein 2	NM_001271	NM_001271	Hs.220864	15q26
CHD3	Chromodomain helicase DNA binding protein 3	AK096555	AK125928	Hs.596899	17p13.1
CHD1	Chromodomain helicase DNA binding protein 3	AK096553	AK125926	Hs.596897	17p13.1
CHD1 CHD4	Chromodomain helicase DNA binding protein 4	NM_001273	BC038596	Hs.162233	12p13
CHEK1	CHK1 checkpoint homolog (S. pombe)	NM_001274	NM_001274	Hs.24529	11q24-q24
CHEK2	CHK2 checkpoint homolog (S. pombe)	NM_007194	AF217975	Hs.291363	22q11 22q12.1
CHES1	Checkpoint suppressor 1	NM_005197	NM_005197	Hs.434286	14q31.3
chr6n21.3 HistoneClu	chr6p21.3_HistoneCluster	chr6p21.3_Histo			
	chr6p22.2_HistoneCluster	chr6p22.2_Histo	neCluster		
		NM_001823	BC040666	Hs.173724	14q32
	Creatine kinase, brain				1q21.2
chr6p22.2_HistoneClu CKB	Creatine kinase, brain		BQ278454	HS.374378	
chr6p22.2_HistoneClu CKB CKS1B	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B	NM_001826	BQ278454 BQ898943	Hs.374378 Hs.83758	
chr6p22.2_HistoneClu CKB CKS1B CKS2	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2	NM_001826 NM_001827	BQ898943	Hs.83758	9q22
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1	NM_001826 NM_001827 NM_004071	BQ898943 NM_004071	Hs.83758 Hs.433732	9q22 2q33
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1 CLK2	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1 CDC-like kinase 2	NM_001826 NM_001827 NM_004071 NM_003993	BQ898943 NM_004071 AK091036	Hs.83758 Hs.433732 Hs.73986	9q22 2q33 1q21
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1 CLK2 CLK3	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1 CDC-like kinase 2 CDC-like kinase 3	NM_001826 NM_001827 NM_004071 NM_003993 NM_003992	BQ898943 NM_004071 AK091036 CR933693	Hs.83758 Hs.433732 Hs.73986 Hs.584748	9q22 2q33 1q21 15q24
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1 CLK2 CLK3 COL1A1	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1 CDC-like kinase 2 CDC-like kinase 3 Collagen, type I, alpha 1	NM_001826 NM_001827 NM_004071 NM_003993 NM_003992 NM_000088	BQ898943 NM_004071 AK091036 CR933693 Z74615	Hs.83758 Hs.433732 Hs.73986 Hs.584748 Hs.591172	9q22 2q33 1q21 15q24 17q21.33
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1 CLK2 CLK3 COL1A1 COL4A1	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1 CDC-like kinase 2 CDC-like kinase 3 Collagen, type I, alpha 1 Collagen, type IV, alpha 1	NM_001826 NM_001827 NM_004071 NM_003993 NM_003992 NM_000088 NM_001845	BQ898943 NM_004071 AK091036 CR933693 Z74615 NM_001845	Hs.83758 Hs.433732 Hs.73986 Hs.584748 Hs.591172 Hs.17441	9q22 2q33 1q21 15q24 17q21.33 13q34
chr6p22.2_HistoneClu CKB CKS1B CKS2 CLK1 CLK2 CLK3 COL1A1	Creatine kinase, brain CDC28 protein kinase regulatory subunit 1B CDC28 protein kinase regulatory subunit 2 CDC-like kinase 1 CDC-like kinase 2 CDC-like kinase 3 Collagen, type I, alpha 1	NM_001826 NM_001827 NM_004071 NM_003993 NM_003992 NM_000088	BQ898943 NM_004071 AK091036 CR933693 Z74615	Hs.83758 Hs.433732 Hs.73986 Hs.584748 Hs.591172	9q22 2q33 1q21 15q24 17q21.33

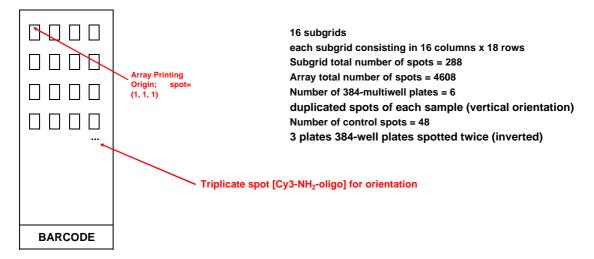
CCPG1	Cell cycle progression 1	NM_004748	NM_020739	Hs.126115	15q21.1
CR1L	Complement component (3b/4b) receptor 1-like	AL137789	XM_114735	Hs.632488	1q32.1
CREBBP	CREB binding protein (Rubinstein-Taybi syndrome)	NM_004380	NM_004380	Hs.459759	16p13.3
CSE1L	CSE1 chromosome segregation 1-like (yeast)	NM_001316	NM_001316	Hs.90073	20q13
CSF1R	Colony stimulating factor 1 receptor, formerly McDonough feline sarcoma vi	NM 005211	X03663	Hs.483829	5q33-q35
CSH1	Chorionic somatomammotropin hormone 1 (placental lactogen)	NM 022640	CR610932	Hs.406754	17q24.2
CTHRC1	Collagen triple helix repeat containing 1	BC021025	BC021025	Hs.405614	8q22.3
CTNNA1	Catenin (cadherin-associated protein), alpha 1, 102kDa	NM_001903	NM_001903	Hs.534797	5q31
CTNNB1			BC058926		
	Catenin (cadherin-associated protein), beta 1, 88kDa	NM_001904		Hs.476018	3p21
CTSB	Cathepsin B	NM_147780	NM_147780	Hs.520898	8p22
CTSD	Cathepsin D (lysosomal aspartyl peptidase)	NM_001909	AK022293	Hs.121575	11p15.5
CTSL	Cathepsin L	NM_001912	AK055599	Hs.418123	9q21-q22
CXCL12	Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	NM_000609	BX647204	Hs.522891	10q11.1
CXCR4	Chemokine (C-X-C motif) receptor 4	NM_003467	AF147204	Hs.421986	2q21
BRCC3	BRCA1/BRCA2-containing complex, subunit 3	NM_024332	NM 024332	Hs.558537	Xq28
CYP19A1	Cytochrome P450, family 19, subfamily A, polypeptide 1	NM 000103	NM 031226	Hs.511367	15q21.1
CYP2B6	Cytochrome P450, family 2, subfamily B, polypeptide 6	NM 000767	NM_000767	Hs.1360	19q13.2
CYR61	Cysteine-rich, angiogenic inducer, 61	Y11307	Y11307	Hs.8867	1p31-p22
C16orf61	Chromosome 16 open reading frame 61	NM_020188	BM463756	Hs.388255	16q23.2
C1orf48	Chromosome 1 open reading frame 48	NM_015471	AF255793	Hs.497692	1q41
DCK	Deoxycytidine kinase	NM_000788	CD014015	Hs.709	4q13.3-q21.1
DCLRE1A	DNA cross-link repair 1A (PSO2 homolog, S. cerevisiae)	NM_014881	D42045	Hs.1560	10q25.1
DDB1	Damage-specific DNA binding protein 1, 127kDa	NM_001923	BC050530	Hs.290758	11q12-q13
DDB2	Damage-specific DNA binding protein 2, 48kDa	NM 000107	BC050455	Hs.446564	11p12-p11
DDIT3	DNA-damage-inducible transcript 3	NM 004083	BC107859	Hs.505777	12q13.1-q13.2
DDR1	Discoidin domain receptor family, member 1	NM 013994	AB067472	Hs.485070	6p21.3
DDX5	DEAD (Asp-Glu-Ala-Asp) box polypeptide 5	NM 004396	BX571764	Hs.279806	
		-			17q21
DDX6	DEAD (Asp-Glu-Ala-Asp) box polypeptide 6	NM_004397	NM_004397	Hs.408461	11q23.3
DHX9	DEAH (Asp-Glu-Ala-His) box polypeptide 9	NM_001357	L13848	Hs.191518	1q25
DES	Desmin	NM_001927	BC032116	Hs.471419	2q35
DHRS7	Dehydrogenase/reductase (SDR family) member 7	NM_016029	BU541074	Hs.59719	14q23.1
DIAPH3	Diaphanous homolog 3 (Drosophila)	NM_030932	AY750055	Hs.283127	13q21.2
DIAPH3L	DIAPH3L	BC041395	BC041395		
DICER1	Dicer1, Dcr-1 homolog (Drosophila)	NM 177438	NM_177438	Hs.87889	14q32.13
MKLN1	Muskelin 1, intracellular mediator containing kelch motifs	BX648653			
			NM_013255	Hs.44693	7q32
DKFZp686P03110	DKFZp686P03110	AC097632	AC097632		
RPL27	Ribosomal protein L27	NM_173079	BC039247	Hs.514196	17q21.1-q21.2
RUNX2	Runt-related transcription factor 2	AL353944	NM_004348	Hs.535845	6p21
DLC1	Deleted in liver cancer 1	NM_006094	NM_182643	Hs.134296	8p22
DLX4	Distal-less homeobox 4	NM_138281	BC005812	Hs.591167	17q21.33
DNA2L	DNA2 DNA replication helicase 2-like (yeast)	XM 166103	D42046	Hs.532446	10q21.3-q22.1
DNMT1	DNA (cytosine-5-)-methyltransferase 1	NM 001379	NM_001379	Hs.202672	19p13.2
DNMT3A	DNA (cytosine-5-)-methyltransferase 3 alpha	NM_175629	AB208833	Hs.515840	2p23
DNMT3B	DNA (cytosine-5-)-methyltransferase 3 beta	NM_006892	DQ321787	Hs.570374	20q11.2
DUSP1	Dual specificity phosphatase 1	NM_004417	AK127679	Hs.171695	5q34
DUSP6	Dual specificity phosphatase 6	BC037236	BC037236	Hs.298654	12q22-q23
APBA2BP	Amyloid beta (A4) precursor protein-binding, family A, member 2 binding pro	NM 005225	BC050369	Hs.516986	20q11.22
E2F2	E2F transcription factor 2	NM 004091	NM_004091	Hs.194333	1p36
E2F3	E2F transcription factor 3	NM 001949	NM_001949	Hs.269408	6p22
E2F4	E2F transcription factor 4, p107/p130-binding	NM 001950	NM 001950	Hs.108371	16q21-q22
E2F5	E2F transcription factor 5, p130-binding	NM_001951	AB209185	Hs.445758	8q21.2
E2F6	E2F transcription factor 6	NM_001952	NM_198258	Hs.135465	2p25.1
ECT2	Epithelial cell transforming sequence 2 oncogene	NM_018098	AY376439	Hs.518299	3q26.1-q26.2
EEF1A1	Eukaryotic translation elongation factor 1 alpha 1	NM_001402	NM_001402	Hs.439552	6q14.1
EGF	Epidermal growth factor (beta-urogastrone)	NM_001963	NM_001963	Hs.419815	4q25
EGFR	Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) onc	NM 005228	NM_005228	Hs.488293	7p12
EGLN1	Egl nine homolog 1 (C. elegans)	NM_022051	AF229245	Hs.444450	1q42.1
EGR1	Early growth response 1	NM_001964	NM_001964	Hs.326035	5q31.1
ELL	Elongation factor RNA polymerase II	NM_006532	NM 006532	Hs.515260	19p13.1
ELL2	Elongation factor, RNA polymerase II, 2	NM_012081	BX538289	Hs.192221	
					5q15
CTTN	Cortactin	NM_005231	NM_003626	Hs.530749	11q13
C11orf30	Chromosome 11 open reading frame 30	NM_020193	NM_020193	Hs.352588	11q13.5
ENPP2	Ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)	NM_006209	NM_006209	Hs.190977	8q24.1
EP300	E1A binding protein p300	NM_001429	U01877	Hs.517517	22q13.2
ERBB2	V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblasto	NM_004448	NM_001005862	Hs.446352	17q11.2-q12 17q21.1
PA2G4	Proliferation-associated 2G4, 38kDa	NM_001982	NM_001982	Hs.524498	12q13
ERBB4	V-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)	NM_005235	BX537810	Hs.390729	2q33.3-q34
ERCC2	Excision repair cross-complementing rodent repair deficiency, complementa		AK092872	Hs.487294	19q13.3
ERCC3	Excision repair cross-complementing rodent repair deficiency, complementation for the construction of the		AK127469	Hs.469872	2q21
PGBD3				Hs.133444	
	PiggyBac transposable element derived 3	NM_000124	NM_000124		10q11
ESM1	Endothelial cell-specific molecule 1	NM_007036	X89426	Hs.129944	5q11.2
ESR1	Estrogen receptor 1	NM_000125	NM_000125	Hs.208124	6q25.1
ESR2	Estrogen receptor 2 (ER beta)	NM_001437	AB209620	Hs.443150	14q23.2
ESRRA	Estrogen-related receptor alpha	NM_004451	BC092470	Hs.110849	11q13
ESRRB	Estrogen-related receptor beta	NM_004452	NM_004452	Hs.435845	14q24.3
ESRRG	Estrogen-related receptor gamma	NM_001438	BC064700	Hs.444225	1q41
IGSF4	Immunoglobulin superfamily, member 4	AV728294	BX641042	Hs.370510	11q23.2
KREMEN1	Kringle containing transmembrane protein 1	BG741722	NM_001039570	Hs.229335	22q12.1
		BM701446	BG677838	Hs.446388	
					12012 11
CRYL1	Crystallin, lambda 1 Transforming, acidic coiled-coil containing protein 2	BX092299	BC071810	Hs.370703	13q12.11
TACC2	LITERATION TO A COMPARISON CONTRIDUCTION CONTRIPUT	BX111019	AF528099	Hs.501252	10q26
			AC093770		
ESTs_H73518	ESTs_H73518	AC093770			11~00.0
		AC093770 NM_005238	NM_005238	Hs.369438	11q23.3
ESTs_H73518	ESTs_H73518			Hs.369438 Hs.43697	3q28
ESTs_H73518 ETS1 ETV5	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule)	NM_005238 NM_004454	NM_005238 NM_004454	Hs.43697	3q28
ESTs_H73518 ETS1 ETV5 EXO1	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1	NM_005238 NM_004454 NM_130398	NM_005238 NM_004454 NM_130398	Hs.43697 Hs.498248	3q28 1q42-q43
ESTs_H73518 ETS1 ETV5 EXO1 EXT1	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1 Exostoses (multiple) 1	NM_005238 NM_004454 NM_130398 NM_000127	NM_005238 NM_004454 NM_130398 BX537744	Hs.43697 Hs.498248 Hs.492618	3q28 1q42-q43 8q24.11-q24.13
ESTs_H73518 ETS1 ETV5 EXO1 EXT1 FANCA	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1 Exostoses (multiple) 1 Fanconi anemia, complementation group A	NM_005238 NM_004454 NM_130398 NM_000127 NM_000135	NM_005238 NM_004454 NM_130398 BX537744 X99226	Hs.43697 Hs.498248 Hs.492618 Hs.567267	3q28 1q42-q43 8q24.11-q24.13 16q24.3
ESTs_H73518 ETS1 ETV5 EX01 EXT1 FANCA FANCC	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1 Exostoses (multiple) 1 Fanconi anemia, complementation group A Fanconi anemia, complementation group C	NM_005238 NM_004454 NM_130398 NM_000127 NM_000135 NM_000136	NM_005238 NM_004454 NM_130398 BX537744 X99226 NM_000136	Hs.43697 Hs.498248 Hs.492618 Hs.567267 Hs.494529	3q28 1q42-q43 8q24.11-q24.13 16q24.3 9q22.3
ESTs_H73518 ETS1 ETV5 EX01 EXT1 FANCA FANCC FANCD2	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1 Exostoses (multiple) 1 Fanconi anemia, complementation group A Fanconi anemia, complementation group C Fanconi anemia, complementation group D2	NM_005238 NM_004454 NM_130398 NM_000127 NM_000135 NM_000136 NM_033084	NM_005238 NM_004454 NM_130398 BX537744 X99226 NM_000136 BC038666	Hs.43697 Hs.498248 Hs.492618 Hs.567267 Hs.494529 Hs.208388	3q28 1q42-q43 8q24.11-q24.13 16q24.3 9q22.3 3p26
ESTs_H73518 ETS1 ETV5 EX01 EXT1 FANCA FANCC	ESTs_H73518 V-ets erythroblastosis virus E26 oncogene homolog 1 (avian) Ets variant gene 5 (ets-related molecule) Exonuclease 1 Exostoses (multiple) 1 Fanconi anemia, complementation group A Fanconi anemia, complementation group C	NM_005238 NM_004454 NM_130398 NM_000127 NM_000135 NM_000136	NM_005238 NM_004454 NM_130398 BX537744 X99226 NM_000136	Hs.43697 Hs.498248 Hs.492618 Hs.567267 Hs.494529	3q28 1q42-q43 8q24.11-q24.13 16q24.3 9q22.3

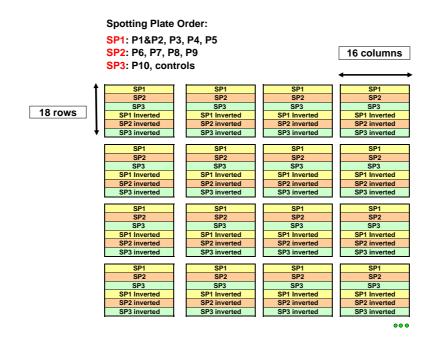
FGF1	Fibroblast growth factor 1 (acidic)	NM_000800	NM_000800	Hs.483635	5q31
FGF18	Fibroblast growth factor 18	NM_003862	AF075292	Hs.87191	5q34
FGF2	Fibroblast growth factor 2 (basic)	NM_002006	NM_002006	Hs.284244	4q26-q27
FGF7	Fibroblast growth factor 7 (keratinocyte growth factor)	NM_002009	NM_002009	Hs.567268	15q15-q21.1
FGFR2	Fibroblast growth factor receptor 2 (bacteria-expressed kinase, keratinocyte	NM_023028	NM_023028	Hs.533683	10q26
FHIT	Fragile histidine triad gene	NM_002012	BX641016	Hs.196981	3p14.2
AYTL2	Acyltransferase like 2	NM_024830	AK090444	Hs.368853	5p15.33
FLJ13611	Hypothetical protein FLJ13611	NM_024941	BX641157	Hs.591760	5q12.3
NPAL2 FLJ22222	NIPA-like domain containing 2 Hypothetical protein FLJ22222	NM_024759 NM_175902	AK025015 BM923625	Hs.309489 Hs.567578	8q22.2
ZNF533	Zinc finger protein 533	NM_152520	BC092423	Hs.580076	17q25.3 2q31.2-q31.3
RECQL5	RecQ protein-like 5	AL832643	AL832643	Hs.528605	17q25.2-q25.3
C1orf71	Chromosome 1 open reading frame 71	NM_152609	AL834246	Hs.368353	1q44
PQLC2	PQ loop repeat containing 2	AK095564	BC021040	Hs.523036	1p36.13
FLJ38964	Hypothetical protein FLJ38964	NM_173527	NM_173527	Hs.444911	14q11.2
SNRPD1	Small nuclear ribonucleoprotein D1 polypeptide 16kDa	NM_173484	NM_173484	Hs.567674	18q11.2
PTCH	Patched homolog (Drosophila)	AK124593	AB209495	Hs.494538	9q22.3
FLT1	Fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular p		NM_002019	Hs.507621	13q12
FN1	Fibronectin 1	NM_002026	NM_212482	Hs.203717	2q34
FOS FOSL1	V-fos FBJ murine osteosarcoma viral oncogene homolog FOS-like antigen 1	NM_005252 NM 005438	BX647104 AL833733	Hs.25647 Hs.283565	14q24.3 11q13
FOXO3A	Forkhead box O3A	NM_001455	BX649171	Hs.591328	6q21
FUS	Fusion (involved in t(12;16) in malignant liposarcoma)	NM_004960	AB208902	Hs.513522	16p11.2
GADD45A	Growth arrest and DNA-damage-inducible, alpha	NM 001924	CR612719	Hs.80409	1p31.2-p31.1
GADD45B	Growth arrest and DNA-damage-inducible, beta	NM_015675	AF087853	Hs.110571	19p13.3
GADD45G	Growth arrest and DNA-damage-inducible, gamma	NM_006705	CR613579	Hs.9701	9q22.1-q22.2
GAK	Cyclin G associated kinase	NM_005255	NM_005255	Hs.369607	4p16
GAS1	Growth arrest-specific 1	NM_002048	NM_002048	Hs.65029	9q21.3-q22
GAS1	Growth arrest-specific 1	NM_002048	NM_002048	Hs.65029	9q21.3-q22
GAS6	Growth arrest-specific 6	NM_000820	AL833761	Hs.369201	13q34
GAS8 GATA3	Growth arrest-specific 8	NM_001481 NM_002051	CR749499	Hs.431792	16q24.3 10p15
GATA3 GEM	GATA binding protein 3 GTP binding protein overexpressed in skeletal muscle	NM_002051 NM_005261	NM_001002295 NM_005261	Hs.524134 Hs.345139	10p15 8q13-q21
	5 genomic chr9 ok/AL513503.2	AL513503.2	1 1111_000201	13.040108	oq i o-q∠ i
GJA1	Gap junction protein, alpha 1, 43kDa (connexin 43)	NM_000165	NM 000165	Hs.74471	6q21-q23.2
GLTSCR2	Glioma tumor suppressor candidate region gene 2	NM_015710	NM_000554	Hs.421907	19q13.3
GM2A	GM2 ganglioside activator	NM_000405	NM_000405	Hs.483873	5q31.3-q33.1
GMPS	Guanine monphosphate synthetase	NM_003875	NM_003875	Hs.591314	3q24
GNAZ	Guanine nucleotide binding protein (G protein), alpha z polypeptide	NM_002073	BC037333	Hs.584760	22q11.22
GPR126	G protein-coupled receptor 126	NM_020455	NM_020455	Hs.318894	6q24.1
GPR30	G protein-coupled receptor 30	NM_001505	NM_001505	Hs.592167	7p22.3
GRB14	Growth factor receptor-bound protein 14	NM_004490	NM_004490	Hs.411881	2q22-q24
GRB2	Growth factor receptor-bound protein 2	NM_002086	NM_002086 BC027984	Hs.444356	17q24-q25
GSK3A GSK3B	Glycogen synthase kinase 3 alpha Glycogen synthase kinase 3 beta	NM_019884 NM_002093	BC027984 BC012760	Hs.466828 Hs.445733	19q13.2 3q13.3
GSTM3	Glutathione S-transferase M3 (brain)	NM_000849	NM_000849	Hs.2006	1p13.3
GTF2B	General transcription factor IIB	NM_001514	BC021000	Hs.481852	1p22-p21
GTF2E1	General transcription factor IIE, polypeptide 1, alpha 56kDa	NM_005513	NM_005513	Hs.445272	3q21-q24
GTF2E2	General transcription factor IIE, polypeptide 2, beta 34kDa	NM_002095	CR606311	Hs.77100	8p21-p12
GTF2E2	General transcription factor IIE, polypeptide 2, beta 34kDa	NM_002095	CR606311	Hs.77100	8p21-p12
GTF2F1	General transcription factor IIF, polypeptide 1, 74kDa	NM_002096	NM_002096	Hs.68257	19p13.3
GTF2F2	General transcription factor IIF, polypeptide 2, 30kDa	NM_004128	CR609785	Hs.58593	13q14
LDHA	Lactate dehydrogenase A	NM_005316	NM_005316	Hs.2795	11p15.4
GTF2H2	General transcription factor IIH, polypeptide 2, 44kDa	NM_001515	AF078847	Hs.398348	5q12.2-q13.3
GTF2H3 DDR1	General transcription factor IIH, polypeptide 3, 34kDa Discoidin domain receptor family, member 1	NM_001516 NM 001517	BU956289 AB067472	Hs.355348	12q24.31 6p21.3
H1F0	H1 histone family, member 0	NM_005318	NM_005318	Hs.485070 Hs.226117	22q13.1
H1FX	H1 histone family, member X	NM_006026	BC000426	Hs.75307	3q21.3
F8	Coagulation factor VIII, procoagulant component (hemophilia A)	BM722299	NM_000132	Hs.6917	Xq28
H2AFJ	H2A histone family, member J	NM_018267	AL133626	Hs.524280	12p12
H2AFX	H2A histone family, member X	NM_002105	BM917453	Hs.477879	11q23.2-q23.3
H2AFY	H2A histone family, member Y	NM_004893	AB209490	Hs.586218	5q31.3-q32
H2AFY2	H2A histone family, member Y2	NM_018649	AL359572	Hs.499953	10q22
H2AFZ	H2A histone family, member Z	NM_002106	AK056803	Hs.119192	4q24
H2AFV	H2A histone family, member V	NM_138635	AL110212	Hs.488189	7p13
H3F3B	H3 histone, family 3B (H3.3B)	NM_005324	BX537379	Hs.180877	17q25
HAT1 HDAC1	Histone acetyltransferase 1	NM_003642	AK127840	Hs.298250 Hs.88556	2q31.2-q33.1
HDAC1 HDAC2	Histone deacetylase 1 Histone deacetylase 2	NM_004964 NM 001527	BX648055 AB209190	Hs.88556 Hs.3352	1p34 6q21
HDAC2 HDAC3	Histone deacetylase 2	NM_003883	AF005482	Hs.519632	5q31
HDAC4	Histone deacetylase 3	NM_006037	NM_006037	Hs.20516	2q37.2
HDAC4	Histone deacetylase 4	NM_006037	NM_006037	Hs.20516	2q37.2
HDAC5	Histone deacetylase 5	NM_139205	NM_001015053	Hs.438782	17q21
HDAC6	Histone deacetylase 6	NM_006044	BC069243	Hs.6764	Xp11.23
HDAC7A	Histone deacetylase 7A	NM_015401	AK122588	Hs.200063	12q13.1
HDAC8	Histone deacetylase 8	NM_018486	AK074326	Hs.310536	Xq13
HDAC9	Histone deacetylase 9	NM_178423	AJ459808	Hs.196054	7p21.1
KNTC2	Kinetochore associated 2	NM_006101	NM_006101	Hs.414407	18p11.32
HGF	Hepatocyte growth factor (hepapoietin A; scatter factor)	NM_000601	NM_000601	Hs.396530	7q21.1
HIRA HIST1H1B	HIR histone cell cycle regulation defective homolog A (S. cerevisiae)	NM_003325 NM_005322	BC039835 BG292093	Hs.474206	22q11.2 22q11.21
HIST1H1B HIST1H1C	Histone 1, H1b Histone 1, H1c	NM_005322 NM_005319	BQ940876	Hs.131956 Hs.7644	6p22-p21.3 6p21.3
HIST1H1C HIST1H1D	Histone 1, H1C	NM_005319 NM_005320	NM_005320	HS.7644 Hs.136857	6p21.3 6p21.3
HIST1H1D HIST1H1E	Histone 1, H1e	NM_005320	BU603483	Hs.248133	6p21.3
HIST1H1E	Histone 1, H1e	NM_005321	BU603483	Hs.248133	6p21.3
HIST1H2AC	Histone 1, H2ac	NM_003512	CR608156	Hs.484950	6p21.3
HMG20A	High-mobility group 20A	NM_018200	NM_018200	Hs.69594	15q24
HMG2L1	High-mobility group protein 2-like 1	NM_005487	NM_005487	Hs.588815	22q13.1
HMGA1	High mobility group AT-hook 1	NM_145904	BC078664	Hs.518805	6p21
	High mobility group AT-hook 2	NM_003483	AB209853	Hs.505924	12q15
HMGA2 HMGB1	High-mobility group box 1	NM_002128	AK122825	Hs.434102	13q12

		T		r.	1
HMGB2	High-mobility group box 2	NM_002129	CR600021	Hs.434953	4q31
HMGB3	High-mobility group box 3	NM_005342	NM_005342	Hs.19114	Xq28
HMGN1	High-mobility group nucleosome binding domain 1	NM_004965	AB209245	Hs.356285	21q22.3 21q22.2
HMGN2	High-mobility group nucleosomal binding domain 2	NM_005517	BG034748	Hs.181163	1p36.1
HMGN3	High mobility group nucleosomal binding domain 3	NM_004242	BX648085	Hs.77558	6q14.1
HMGN4	High mobility group nucleosomal binding domain 4	NM_006353	NM_006353	Hs.236774	6p21.3
HOXA10	Homeobox A10	NM_018951	NM_018951	Hs.592166	7p15-p14
HOXA11	Homeobox A11	NM 005523	NM 005523	Hs.249171	7p15-p14
HOXB7	Homeobox B7	NM_004502	AK223249	Hs.436181	17q21.3
HRASLS	HRAS-like suppressor	NM_020386	BC005856	Hs.36761	3q29
PRMT2	Protein arginine methyltransferase 2	AL109794	AK123352	Hs.154163	21q22.3
STK32B					
	Serine/threonine kinase 32B	NM_018401	AY358353	Hs.133062	4p16.2-p16.1
HSD11B1	Hydroxysteroid (11-beta) dehydrogenase 1	NM_005525	BF698867	Hs.195040	1q32-q41
HSD11B2	Hydroxysteroid (11-beta) dehydrogenase 2	NM_000196	AF370400	Hs.1376	16q22
HSD17B1	Hydroxysteroid (17-beta) dehydrogenase 1	NM_000413	AK127832	Hs.50727	17q11-q21
HSD17B12	Hydroxysteroid (17-beta) dehydrogenase 12	NM_016142	BX537496	Hs.132513	11p11.2
HSD17B2	Hydroxysteroid (17-beta) dehydrogenase 2	NM_002153	BG261436	Hs.162795	16q24.1-q24.2
HSD17B3	Hydroxysteroid (17-beta) dehydrogenase 3	NM_000197	BC034281	Hs.477	9q22
HSD17B4	Hydroxysteroid (17-beta) dehydrogenase 4	NM_000414	AB208932	Hs.406861	5q21
HSD17B7	Hydroxysteroid (17-beta) dehydrogenase 7	NM_016371	AK022929	Hs.492925	1q23
RING1	Ring finger protein 1	NM 014234	NM_006979	Hs.415058	6p21.3
HSF1	Heat shock transcription factor 1	NM_005526	AK125467	Hs.530227	8q24.3
HSPA4	Heat shock 70kDa protein 4	XM_114482	NM_002154	Hs.90093	5q31.1-q31.2
HSPA5	Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)	NM_005347	NM_005347	Hs.522392	9q33-q34.1
				Hs.184233	
HSPA9B	Heat shock 70kDa protein 9B (mortalin-2)	NM_004134	NM_004134		5q31.1
HSPB1	Heat shock 27kDa protein 1	NM_001540	BM907768	Hs.520973	7q11.23
HSPB2	Heat shock 27kDa protein 2	NM_001541	AB096250	Hs.78846	11q22-q23
HSP90AA1	Heat shock protein 90kDa alpha (cytosolic), class A member 1	NM_005348	AJ890082	Hs.525600	14q32.33
HSP90AB1	Heat shock protein 90kDa alpha (cytosolic), class B member 1	NM_007355	AY359878	Hs.509736	6p12
HUS1	HUS1 checkpoint homolog (S. pombe)	NM_004507	CR619988	Hs.152983	7p13-p12
ID4	Inhibitor of DNA binding 4, dominant negative helix-loop-helix protein	NM_001546	NM_001546	Hs.519601	6p22-p21
IFIT2	Interferon-induced protein with tetratricopeptide repeats 2	NM_001547	BC032839	Hs.437609	10q23-q25
IFITM1	Interferon induced transmembrane protein 1 (9-27)	NM_003641	BF210063	Hs.458414	11p15.5
IGF1	Insulin-like growth factor 1 (somatomedin C)	NM_000618	NM_000618	Hs.160562	12q22-q23
IGF1R	Insulin-like growth factor 1 receptor	NM_000875	BX640783	Hs.592020	15q26.3
IGFBP1	Insulin-like growth factor binding protein 1	NM_000596	NM_000596	Hs.401316	7p13-p12
-					
IGFBP2	Insulin-like growth factor binding protein 2, 36kDa	NM_000597	AB209509	Hs.438102	2q33-q34
IGFBP2	Insulin-like growth factor binding protein 2, 36kDa	NM_000597	AB209509	Hs.438102	2q33-q34
IGFBP3	Insulin-like growth factor binding protein 3	NM_000598		Hs.450230	7p13-p12
IGFBP4	Insulin-like growth factor binding protein 4	NM_001552	NM_001552	Hs.462998	17q12-q21.1
IGFBP5	Insulin-like growth factor binding protein 5	NM_000599	NM_000599	Hs.369982	2q33-q36
IL18	Interleukin 18 (interferon-gamma-inducing factor)	NM_001562	NM_001562	Hs.83077	11q22.2-q22.3
IL2RA	Interleukin 2 receptor, alpha	NM_000417	X01057	Hs.231367	10p15-p14
IL6	Interleukin 6 (interferon, beta 2)	NM_000600	BM906445	Hs.512234	7p21
IL6R	Interleukin 6 receptor	NM_000565	NM_000565	Hs.591492	1q21
IL6ST	Interleukin 6 signal transducer (gp130, oncostatin M receptor)	NM_002184	BC071555	Hs.532082	5q11
ING1	Inhibitor of growth family, member 1	NM 005537	NM 198219	Hs.46700	13q34
IRF1					
	Interferon regulatory factor 1	NM_002198	AB209624	Hs.436061	5q31.1
IRF1	Interferon regulatory factor 1	NM_002198	AB209624	Hs.436061	5q31.1
IRF5	Interferon regulatory factor 5	NM_002200	NM_002200	Hs.521181	7q32
IRF7	Interferon regulatory factor 7	NM_004031	AF076494	Hs.166120	11p15.5
ITGA2	Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)	NM_002203	X17033	Hs.591770	5q23-q31
ITGA3	Integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 receptor)	NM_002204	AB209658	Hs.265829	17q21.33
ITGA5	Integrin, alpha 5 (fibronectin receptor, alpha polypeptide)	NM_002205	NM_002205	Hs.505654	12q11-q13
ITGA6	Integrin, alpha 6	NM_000210	X53586	Hs.133397	2q31.1
ITGAV	Integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)	NM 002210	NM_002210	Hs.436873	2q31-q32
ITGB1	Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 include			Hs.558072	10p11.2
ITGB2		NM_000211	NM_000211	Hs.375957	21q22.3
ITGB2	Integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	NM_000212	NM 000212	Hs.218040	17q21.32
ITGB3BP	Integrin beta 3 binding protein (beta3-endonexin)	NM_014288	CR596268	Hs.166539	1p31.3
ITGB4	Integrin, beta 4	NM_000213	X53587	Hs.592106	17q25
ITGB5	Integrin, beta 5	NM_002213	X53002	Hs.536663	3q21.2
ITGB8	Integrin, beta 8	NM_002214	AB209429	Hs.592171	7p15.3
GPR180	G protein-coupled receptor 180		NM_180989	Hs.439363	110-00 1
		NM_180989			13q32.1
JUN	V-jun sarcoma virus 17 oncogene homolog (avian)	NM_002228	NM_002228	Hs.525704	1p32-p31
CD82	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule	NM_002228 NM_002231		Hs.525704 Hs.527778	1p32-p31 11p11.2
	V-jun sarcoma virus 17 oncogene homolog (avian)	NM_002228	NM_002228	Hs.525704	1p32-p31
CD82	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule	NM_002228 NM_002231	NM_002228 NM_002231	Hs.525704 Hs.527778	1p32-p31 11p11.2
CD82 UBR2	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2	NM_002228 NM_002231 NM_015255	NM_002228 NM_002231 BX647467 NM_016081	Hs.525704 Hs.527778 Hs.529925 Hs.151220	1p32-p31 11p11.2 6p21.1 4q32.3
CD82 UBR2 PALLD PALLD	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein	NM_002228 NM_002231 NM_015255 NM_016081 NM_016081	NM_002228 NM_002231 BX647467 NM_016081 NM_016081	Hs.525704 Hs.527778 Hs.529925	1p32-p31 11p11.2 6p21.1
CD82 UBR2 PALLD PALLD KIAA1093	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093	NM_002228 NM_002231 NM_015255 NM_016081 NM_016081 XM_039385	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385	Hs.525704 Hs.527778 Hs.529925 Hs.151220	1p32-p31 11p11.2 6p21.1 4q32.3
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357	NM_002228 NM_002231 NM_015255 NM_016081 NM_016081 XM_039385 XM_050421	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1442 protein	NM_002228 NM_002231 NM_015255 NM_016081 NM_016081 XM_039385 XM_050421 XM_044921	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_044921	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.471955	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13
CD82 UBR2 PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA14357 KIAA1442 protein TSPY-like 5	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512	NM_002228 NM_002231 BX647467 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.471955 Hs.173094	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1
CD82 UBR2 PALLD FALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 BM807845	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32
CD82 UBR2 PALLD FALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor KiSS-1 metastasis-suppressor	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002256	NM_002228 NM_002231 BX647467 NM_016081 XM_016081 XM_039385 XM_050421 XM_04921 NM_033512 BM807845 BM807845	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor KISS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_03512 NM_003512 NM_002256 NM_002226 NM_000222	NM_002228 NM_002231 BX647467 NM_016081 XM_016081 XM_039385 XM_050421 XM_03512 BM807845 BM807845 BC071593	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008 Hs.95008 Hs.479754	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 4q11-q12
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KIT KLF5	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA14357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal)	NM_002228 NM_015255 NM_016081 NM_016081 XM_039385 XM_050421 XM_04921 NM_03512 NM_002256 NM_002226 NM_000222 NM_001730	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_03385 XM_050421 XM_044921 NM_033512 BM807845 BM807845 BM807845 BC071593 AF132818	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.508234	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 1q32 1q32 1q32 1q32.1
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KIT KLF5 KLK5	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5	NM_002228 NM_0102231 NM_015255 NM_016081 XM_039385 XM_050421 XM_033512 NM_002256 NM_00222 NM_000222 NM_0012427	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_044921 NM_03512 BM807845 BC071593 AF132818 AY359010	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008 Hs.479754 Hs.500234 Hs.50915	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KIF5 KLF5 KLK5 KPNA3	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA14357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal)	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002226 NM_000222 NM_001730 NM_012427 NM_002267	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_03385 XM_050421 XM_044921 NM_033512 BM807845 BM807845 BM807845 BC071593 AF132818	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.508234	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 1q32 1q32 1q32 1q32.1
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KIT KLF5 KLK5	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5	NM_002228 NM_0102231 NM_015255 NM_016081 XM_039385 XM_050421 XM_033512 NM_002256 NM_00222 NM_000222 NM_0012427	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_044921 NM_03512 BM807845 BC071593 AF132818 AY359010	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008 Hs.479754 Hs.500234 Hs.50915	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KIF5 KLF5 KLK5 KPNA3	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein RIAA1093 KIAA1093 KIAA1357 KIAA1357 KISA-1 metastasis-suppressor KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4)	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002226 NM_000222 NM_001730 NM_012427 NM_002267	NM_002228 NM_002231 BX647467 NM_016081 XM_039385 XM_050421 XM_04921 NM_033512 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.1713094 Hs.95008 Hs.95008 Hs.95008 Hs.479754 Hs.508234 Hs.50915 Hs.527919	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KIF5 KLF5 KLF5 KLK5 KPNA3 KPNA4 KPNA5	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 5 (importin alpha 6)	NM_002228 NM_015255 NM_016081 XM_050421 XM_0333512 NM_002256 NM_002256 NM_002226 NM_002226 NM_002226 NM_002226 NM_002226 NM_002226 NM_002226 NM_002226 NM_002268 NM_002268	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_050421 XM_050421 NM_033512 BM807845 BM807845 BM807845 BM807845 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_002269	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.508234 Hs.50915 Hs.527919 Hs.288193 Hs.182971	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2
CD82 UBR2 PALLD PALLD NLLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KIT KLF5 KLK5 KPNA3 KPNA4 KPNA5 KPNA6	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA142 protein TSPY-like 5 KISS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 6) Karyopherin alpha 6 (importin alpha 7)	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002256 NM_002226 NM_001730 NM_012427 NM_002267 NM_002268 NM_002269 NM_012316	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_039385 XM_030312 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.500234 Hs.50915 Hs.527919 Hs.288193 Hs.182971 Hs.5291500	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KIF5 KLK5 KPNA3 KPNA4 KPNA5 KPNA5 KPNA5 KPNB1	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 6) Karyopherin alpha 5 (importin alpha 7) Karyopherin (importin) beta 1	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_002256 NM_002256 NM_002256 NM_002226 NM_01730 NM_012427 NM_02267 NM_02268 NM_02268 NM_012316 NM_012265	NM_002228 NM_002231 BX647467 MM_016081 NM_016081 XM_039385 XM_050421 XM_03512 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316 L38951	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.95008 Hs.95008 Hs.95008 Hs.50754 Hs.508234 Hs.508234 Hs.50915 Hs.527919 Hs.288193 Hs.182971 Hs.595500 Hs.532793	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KIF5 KLK5 KENA3 KPNA4 KPNA5 KPNA6 KPNA6 KPNA6 KPNA1 TNPO1	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein RIAA1093 KIAA1093 KIAA1357 KIAA1442 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 5 (importin alpha 6) Karyopherin alpha 6 (importin alpha 7) Karyopherin (importin) beta 1 Transportin 1	NM_002228 NM_002231 NM_015255 NM_016081 XM_039385 XM_050421 XM_002256 NM_002256 NM_0002256 NM_000226 NM_012427 NM_002267 NM_002268 NM_02269 NM_012316 NM_02265 NM_02270	NM_002228 NM_002231 BX647467 NM_016081 XM_039385 XM_050421 XM_044921 NM_07845 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316 L38951 U70322	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.95008 Hs.479754 Hs.508234 Hs.508234 Hs.508234 Hs.508215 Hs.527919 Hs.288193 Hs.182971 Hs.591500 Hs.532793 Hs.482497	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KIF5 KLK5 KPNA3 KPNA3 KPNA4 KPNA5 KPNA6 KPNA6 KPNA6 KPNA6 KPNA6 KPNA6 KPNA6 KPNA7	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA14303 KIAA14357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 7) Karyopherin fumportin) beta 1 Transportin 1 RAN binding protein 5	NM_002228 NM_015255 NM_016081 XM_050421 XM_0333512 NM_002256 NM_002256 NM_002256 NM_002226 NM_002268 NM_002269 NM_002268 NM_002269 NM_002260 NM_002261 NM_002262 NM_002263 NM_002263 NM_002263 NM_002263 NM_022270 NM_002271	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_050421 XM_03385 XM_033512 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316 L38951 U70322 NM_002271	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.50915 Hs.527919 Hs.288193 Hs.182971 Hs.288193 Hs.182971 Hs.282193 Hs.182971 Hs.282193	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 1q32.2 1q32.2 13q22.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 13q32.2
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KIT KLF5 KLK5 KPNA3 KPNA4 KPNA5 KPNA6 KPNB1 TNPO1 RANBP5 KRT17	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1442 protein TSPY-like 5 KISS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 6) Karyopherin alpha 6 (importin alpha 7) Karyopherin (importin) beta 1 Transportin 1 RAN binding protein 5 Keratin 17	NM_002228 NM_015255 NM_016081 XM_050421 XM_033352 XM_002256 NM_0102256 NM_002256 NM_002267 NM_012427 NM_002268 NM_002269 NM_02270 NM_002271	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_039385 XM_03312 BM807845 BC071593 AF132818 AY359010 BC0268 NM_002268 NM_012316 L38951 U70322 NM_002271 AK122864	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.471955 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.500234 Hs.50915 Hs.527919 Hs.288193 Hs.182971 Hs.182971 Hs.581793 Hs.482497 Hs.285	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 13q32.2 17q12-q21
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KITS KIF5 KLK5 KPNA3 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA1 TNPC1 RANBP5 KRT17 KRT17	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 7) Karyopherin in alpha 6 (importin alpha 7) Karyopherin 17 Keratin 17 Keratin 17	NM_002228 NM_015255 NM_016081 XM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002226 NM_002226 NM_002267 NM_002267 NM_002268 NM_002269 NM_012316 NM_002270 NM_002271 NM_000526 NM_000422	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_03512 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316 L38951 U70322 NM_002271 AK122864 AK122864	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.50034 Hs.50915 Hs.527919 Hs.288193 Hs.182971 Hs.182971 Hs.582793 Hs.482497 Hs.588179 Hs.2785	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 13q32.2 17q12-q21 17q12-q21
CD82 UBR2 PALLD PALLD VIAA1093 KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS5 KPNA3 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA1 TNPO1 RANBP5 KRT17 KRT17 KRT18	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA142 protein TSPY-like 5 KISS-1 metastasis-suppressor KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallitrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 7) Karyopherin 1 RAN binding protein 5 Keratin 17 Keratin 17 Keratin 18	NM_002228 NM_015255 NM_016081 NM_016081 XM_050421 XM_0333512 NM_002256 NM_002256 NM_012427 NM_012427 NM_002268 NM_002267 NM_002268 NM_002267 NM_002267 NM_002267 NM_002267 NM_002265 NM_002270 NM_002270 NM_002271 NM_002224	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_03385 XM_050421 XM_033512 BM807845 BC071593 AF132818 AY359010 NM_002268 NM_002269 NM_012316 L38951 U70322 NM_002271 AK122864 CR616919	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.50915 Hs.528193 Hs.182971 Hs.528193 Hs.182971 Hs.528193 Hs.182971 Hs.588179 Hs.588179 Hs.288179 Hs.2785 Hs.2785 Hs.2785	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 17q12-q21 17q12-q21 12q13
CD82 UBR2 PALLD PALLD VALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KITS KFNA3 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA1 TNPO1 RANBP5 KRT17 KRT17	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA1357 KIAA1357 KIAA142 protein TSPY-like 5 KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallikrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 7) Karyopherin in Jpha 6 (importin alpha 7) Karyopherin 17 Keratin 17 Keratin 17	NM_002228 NM_015255 NM_016081 XM_016081 XM_039385 XM_050421 XM_044921 NM_033512 NM_002256 NM_002226 NM_002226 NM_002267 NM_002267 NM_002268 NM_002269 NM_012316 NM_002270 NM_002271 NM_000526 NM_000422	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_039385 XM_050421 XM_03512 BM807845 BC071593 AF132818 AY359010 BC035090 NM_002268 NM_012316 L38951 U70322 NM_002271 AK122864 AK122864	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.50034 Hs.50015 Hs.527919 Hs.288193 Hs.182971 Hs.182971 Hs.182971 Hs.582793 Hs.482497 Hs.2785	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 13q32.2 17q12-q21 17q12-q21
CD82 UBR2 PALLD PALLD KIAA1093 KIAA1357 RP5-860F19.3 TSPYL5 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS1 KISS5 KPNA4 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA4 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KPNA5 KR117 KR17 KR17 KR18	V-jun sarcoma virus 17 oncogene homolog (avian) CD82 molecule Ubiquitin protein ligase E3 component n-recognin 2 Palladin, cytoskeletal associated protein Palladin, cytoskeletal associated protein KIAA1093 KIAA142 protein TSPY-like 5 KISS-1 metastasis-suppressor KiSS-1 metastasis-suppressor V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Kruppel-like factor 5 (intestinal) Kallitrein 5 Karyopherin alpha 3 (importin alpha 4) Karyopherin alpha 4 (importin alpha 3) Karyopherin alpha 5 (importin alpha 7) Karyopherin 1 RAN binding protein 5 Keratin 17 Keratin 17 Keratin 18	NM_002228 NM_015255 NM_016081 XM_050421 XM_033355 XM_002256 NM_002256 NM_002256 NM_002256 NM_002256 NM_002268 NM_002268 NM_002269 NM_002260 NM_002261 NM_002262 NM_002263 NM_002264 NM_002267 NM_002270 NM_0002271 NM_000224 NM_000224 NM_0002276	NM_002228 NM_002231 BX647467 NM_016081 NM_016081 XM_03385 XM_050421 XM_033512 BM807845 BC071593 AF132818 AY359010 NM_002268 NM_002269 NM_012316 L38951 U70322 NM_002271 AK122864 CR616919	Hs.525704 Hs.527778 Hs.529925 Hs.151220 Hs.151220 Hs.151220 Hs.173094 Hs.95008 Hs.95008 Hs.479754 Hs.50915 Hs.528193 Hs.182971 Hs.528193 Hs.182971 Hs.528193 Hs.182971 Hs.588179 Hs.588179 Hs.288179 Hs.2785 Hs.2785 Hs.2785	1p32-p31 11p11.2 6p21.1 4q32.3 4q32.3 20p13 8q22.1 1q32 1q32 1q32 4q11-q12 13q22.1 19q13.3-q13.4 13q14.3 3q25.33 6q22.2 1p35.1-p34.3 17q21.32 5q13.2 17q12-q21 17q12-q21 12q13

VDT5	Karatin E (anidarmalyzia bullaga simplay, Dauling Maara/Kabaar/Mahar Ca		A 1500777	110 400045	10-10-010
KRT5 LAMA3	Keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Co	NM_005555 NM_000227	AJ508777 NM 198129	Hs.433845 Hs.436367	12q12-q13 18q11.2
LAMAS LCMT2	Laminin, alpha 3 Leucine carboxyl methyltransferase 2	NM_000227 NM_014793	NM_014793	Hs.200596	15q15.3
TSEN34	TRNA splicing endonuclease 34 homolog (S. cerevisiae)	NM 024075	AK054944	Hs.15580	19q13.4
LGP2	Likely ortholog of mouse D11lgp2	NM_024119	AK021416	Hs.55918	17q21.2
LIF	Leukemia inhibitory factor (cholinergic differentiation factor)	NM 002309	NM 002309	Hs.2250	22q12.2
PLA2G4C	Phospholipase A2, group IVC (cytosolic, calcium-independent)	NM_000234	AB208791	Hs.1770	19q13.3
LIG3	Ligase III, DNA, ATP-dependent	NM_013975	NM_013975	Hs.100299	17q11.2-q12
LIG4	Ligase IV, DNA, ATP-dependent	NM_002312	NM_002312	Hs.166091	13q33-q34
LMNA	Lamin A/C	NM_170707	NM_170707	Hs.491359	1q21.2-q21.3
LMNB1	Lamin B1	NM_005573	BC052951	Hs.89497	5q23.3-q31.1
LMNB2	Lamin B2	NM_032737	NM_032737	Hs.538286	19p13.3
LOC153770	Transcribed locus	CA430603	CA430603	Hs.623375	
LOC221143	Hypothetical protein LOC221143	NM_174928	BG403594	Hs.26674	13q12.11
LOC286052	Hypothetical protein LOC286052	AK095104	AK095104	Hs.588365	8q24.13
LOC286478	Transcribed locus	BX089115	BX089115	Hs.449499	
LOH11CR1J	CDNA: FLJ21561 fis, clone COL06415	AB096249	AK025214	Hs.96918	
LPXN	Leupaxin	NM_004811	BC034230	Hs.125474	11q12.1
MTDH	Metadherin	NM_178812	BC045642	Hs.377155	8q22.1
MAD1L1	MAD1 mitotic arrest deficient-like 1 (yeast)	NM_003550	NM_003550	Hs.209128	7p22
MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	NM_002358	U65410	Hs.591697	4q27
MAD2L2	MAD2 mitotic arrest deficient-like 2 (yeast)	NM_006341	AK094316	Hs.19400	1p36
MAP2K1	Mitogen-activated protein kinase kinase 1	NM_002755	NM_002755	Hs.145442	15q22.1-q22.33
MAP2K2	Mitogen-activated protein kinase kinase 2	NM_030662	BM809871	Hs.465627	19p13.3
MAP2K3	Mitogen-activated protein kinase kinase 3	NM_145110	AK093838	Hs.514012	17q11.2
MAP2K4	Mitogen-activated protein kinase kinase 4	NM_003010	AK131544	Hs.514681	17p11.2
MAP2K5	Mitogen-activated protein kinase kinase 5	NM_145160	AK025177	Hs.114198	15q23
MAP2K6	Mitogen-activated protein kinase kinase 6	NM_002758	BX641121	Hs.463978	17q24.3
MAP2K7	Mitogen-activated protein kinase kinase 7	Hs.531754	19p13.3-p13.2		vated protein kinase ki
MAP3K1	Mitogen-activated protein kinase kinase kinase 1	AF042838	AF042838	Hs.508461	5q11.2
MAP3K10	Mitogen-activated protein kinase kinase kinase 10	NM_002446	X90846	Hs.466743	19q13.2
MAP3K2	Mitogen-activated protein kinase kinase kinase 2	NM_006609	NM_006609	Hs.145605	2q14.3
MAP3K3	Mitogen-activated protein kinase kinase kinase 3	NM_002401	NM_203351	Hs.29282	17q23.3
MAP3K4	Mitogen-activated protein kinase kinase kinase 4	NM_005922	NM_005922	Hs.390428	6q26
MAP3K5	Mitogen-activated protein kinase kinase kinase 5	NM_005923	U67156	Hs.186486	6q22.33
MAP3K6	Mitogen-activated protein kinase kinase kinase 6	NM_004672	NM_004672	Hs.194694	1p36.11
MAP3K7IP1	Mitogen-activated protein kinase kinase kinase 7 interacting protein 1	NM_006116	AB209372	Hs.507681	22q13.1
MAP4K1	Mitogen-activated protein kinase kinase kinase kinase 1	NM_007181	NM_007181	Hs.95424	19q13.1-q13.4
MAP4K2	Mitogen-activated protein kinase kinase kinase kinase 2	NM_004579	NM_004579	Hs.534341	11q13
MAP4K3	Mitogen-activated protein kinase kinase kinase kinase 3	NM_003618	BC071579	Hs.468239	2p22.1
MAP4K4	Mitogen-activated protein kinase kinase kinase kinase 4	NM_145686	NM_145686	Hs.431550	2q11.2-q12
MAP4K5	Mitogen-activated protein kinase kinase kinase kinase 5	NM_006575	NM_198794	Hs.130491	14q11.2-q21
MAPK1	Mitogen-activated protein kinase 1	NM_002745	AL157438	Hs.431850	22q11.2 22q11.21
MAPK1	Mitogen-activated protein kinase 1	NM_002745	AL157438	Hs.431850	22q11.2 22q11.21
MAPK10	Mitogen-activated protein kinase 10	NM_002753	AK124791	Hs.125503	4q22.1-q23
MAPK11	Mitogen-activated protein kinase 11	NM_002751	BC027933	Hs.57732	22q13.33
MAPK12	Mitogen-activated protein kinase 12	NM_002969	CR620424	Hs.432642	22q13.33
MAPK13	Mitogen-activated protein kinase 13	NM_002754	AB209586	Hs.178695	6p21.31
MAPK14	Mitogen-activated protein kinase 14	NM_139012	NM_001315	Hs.588289	6p21.3-p21.2
MAPK3	Mitogen-activated protein kinase 3	AK091009	BX537897	Hs.861	16p12-p11.2
MAPK4	Mitogen-activated protein kinase 4	NM_002747	BC050299	Hs.433728	18q12-q21
MAPK6	Mitogen-activated protein kinase 6	NM_002748	NM_002748	Hs.411847	15q21
MAPK7	Mitogen-activated protein kinase 7	NM_139033	AB209611	Hs.150136	17p11.2
MAPK8	Mitogen-activated protein kinase 8	NM_139046	CR614448	Hs.138211	10q11.22
MBD1	Methyl-CpG binding domain protein 1	NM_015846	NM_015846	Hs.405610	18q21
MBD3	Methyl-CpG binding domain protein 3	NM_003926	NM_003926	Hs.178728	19p13.3
ENSA	Endosulfine alpha	NM_021960	NM_021960	Hs.163936	1q21.2
MCM5	MCM5 minichromosome maintenance deficient 5, cell division cycle 46 (S. c		AB209612	Hs.517582	22q13.1
MCM6	MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe		NM_005915	Hs.444118	2q21
MDH2	Malate dehydrogenase 2, NAD (mitochondrial)	NM_005918	AK095803	Hs.520967	7p12.3-q11.2
MDM2	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)	NM_002392	M92424	Hs.567303	12q14.3-q15
MED6	Mediator of RNA polymerase II transcription, subunit 6 homolog (yeast)	NM_005466	AK222587	Hs.497353	14q24.2
MELK	Maternal embryonic leucine zipper kinase	NM_014791	NM_014791	Hs.184339	9p13.2
MET	Met proto-oncogene (hepatocyte growth factor receptor)	NM_000245	NM_000245	Hs.132966	7q31
FBXO31	F-box protein 31	NM_024735	AF318348	Hs.567582	16q24.2
C9orf30	Chromosome 9 open reading frame 30	NM_080655	AK092292	Hs.530272	9q31.1
CYBASC3	Cytochrome b, ascorbate dependent 3	NM_153611	BC004391	Hs.22546	11q12.2
MGC26744	Hypothetical protein MGC26744	NM_144645	AK057662	Hs.339646	4q21.3
MGMT	O-6-methylguanine-DNA methyltransferase	NM_002412	CR618411	Hs.501522	10q26
MGST1	Microsomal glutathione S-transferase 1	NM_020300	AK058030	Hs.389700	12p12.3-p12.1
MKI67	Antigen identified by monoclonal antibody Ki-67	NM_002417	NM_002417	Hs.80976	10q25-qter
MLH1	MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)	NM_000249	BX648844	Hs.195364	3p21.3
MMP11	Matrix metallopeptidase 11 (stromelysin 3)	NM_005940	NM_005940	Hs.143751	22q11.2 22q11.23
MMP3	Matrix metallopeptidase 3 (stromelysin 1, progelatinase)	NM_002422	AK223291	Hs.375129	11q22.3
MMP9	Matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV c		NM_004994	Hs.297413	20q11.2-q13.1
MRE11A	MRE11 meiotic recombination 11 homolog A (S. cerevisiae)	NM_005591	NM_005590	Hs.192649	11q21
MS4A7	Membrane-spanning 4-domains, subfamily A, member 7	NM_021201	NM_021201	Hs.530735	11q12
MSH2	MutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)	NM_000251	AK223284	Hs.156519	2p22-p21
MSH6	MutS homolog 6 (E. coli)	NM_000179	BC071594	Hs.445052	2p16
MSX1	Msh homeobox homolog 1 (Drosophila)	NM_002448	NM_002448	Hs.424414	4p16.3-p16.1
MTA1	Metastasis associated 1	NM_004689	NM_004689	Hs.525629	14q32.3
MTA2	Metastasis associated 1 family, member 2	NM_004739	NM_004739	Hs.173043	11q12-q13.1
MTA3	Metastasis associated 1 family, member 3	AB033092	AB033092	Hs.435413	2p21
MUC1	Mucin 1, cell surface associated	NM_002456	X52228	Hs.89603	1q21
GRHL2	Grainyhead-like 2 (Drosophila)	BG675392	AK023844	Hs.561796	8q22.3
MX1	Myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (m		AK096355	Hs.517307	21q22.3
MXI1	MAX interactor 1	NM_005962	NM_130439	Hs.501023	10q24-q25
MYB	V-myb myeloblastosis viral oncogene homolog (avian)	NM_005375	AJ606319	Hs.591337	6q22-q23
MYC	V-myc myelocytomatosis viral oncogene homolog (avian)	NM_002467	NM_002467	Hs.202453	8q24.12-q24.13
	Nibrin	NM_002485	BX640816	Hs.492208	8q21
NBN NCOA1	Nuclear receptor coactivator 1	NM_147223	NM_147223	Hs.412293	2p23

NEOA3 Nuclear receptor coacivator 3 NM_00853 MM_118168 Heis92142 20[12 NCOA4 Nuclear receptor coacivator 5 NM_00967 All (2007 Heis9366 10[11.2 NCOA5 Nuclear receptor coacivator 5 NM_00967 All (20087) Heis9867 20[12.1 NCOA6 Nuclear receptor coacivator 6 NM_001471 Heis9312 20[11.2 20[21.1 NCOA6 Nuclear receptor coacivator 6 NM_001471 Heis33086 8[11.1.2] 12[22.1 NCOR1 Nuclear receptor co-pressor 1 NM_00312 AM_00312 Heis33086 8[22.1] 12[24] NCOR1 Neogenin homolog 1 (chicken) NM_00566 20[23.2] 1[24] 1[13] 1[23] NFR Nuclear receptor lactivation (RCAAV) NM_00566 RX37068 Heis271 [77]3.3 NFR Nuclear receptor lactivation (RCAAV) NM_00566 RX37068 Heis271 [77]3.3 NFR Nuclear receptor lactivation (RCAAV) NM_004221 FR3686 Heis272.4]1.2 NFR Nuclear receptor lactivation (RCAAV)	NCOAS		NIM 0005 10	AL 000440	110 110070	0~10.0
NCDA Nuclear requir cancer later 1 NL_05477 AL-85077 NL_55176 NL_55177 NL_551777	NCOA2	Nuclear receptor coactivator 2	NM_006540	AL832112 NM 181659	Hs.446678 Hs 592142	8q13.3 20g12
NRD26 Notest respite constrater 5 NR Object respite constrater 6 NR NR Object respite constrater 6 NR						
NROBE Nuclear receptor construint of instruinting protein NAL 04001 All 20001 Baseberg Distribution NCORD Nuclear receptor construint of instruinting protein NAL 00011 All 20001 Baseberg						
NCDAF Nuclear resports or operator 1 ALB3442 NLT7468 NLT7468 Status TryAL NLT7468 Status TryAL NLT7468 Status TryAL NLT7468 NLT7468 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
NCOR1 Nuclear resports or regressor 1 MML (2003) <i>Pro5766 n</i> , 42232 <i>1</i> , 112 NDD1 MMD1 <i>MML</i> (2004) <i>MML</i> (2004) <i>MML</i> (2004) <i>1</i> , 123 <i>1</i> , 124 <i>1</i> , 123 <i>1</i> , 123 <i>1</i> , 124 <i>1</i> , 124 <i>1</i> , 123 <i>1</i> , 124 124 124 124						
Nacher renotivo on egnesse 7 MM 000112 Hei 19501 19241 NDF36 MAD0110 Hei 30420 11943 MAD14 MAD14 Hei 30420 11942 MAD14 MAD14 Hei 30420 11942 MAD14 MAD14 Hei 30420 11942 11942 MAD14 MAD14 Hei 30420 11942						6q22.31-q22.32
NRDFF8 NRDF region from Sign (role and provide) PASD region from Sign (role and provide) NRD region from Sign (role and provide) NR						
NEO1 Neogenin formic approximation of the section of the						
NCNPN Neugèn. neutre doignoth associated MA, 101664 IM. 517056 ID52,11 NPIB Nuclear tacoit d'activation double neutrena) MA, 200268 IM. 11802 H. 179359 Ip24.1 NPIB Nuclear tacoit de neutrena) MA, 200268 IM. 17858 H. 179359 Ip24.1 NPIB Nuclear tacoit de neutrena) MA, 20027 IP34.1 IP34.2 IP37.1 IP37.2 IP37.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
NFIB Nucleir fastor 16 NNL 005566 BVS37098 Hs. 7028 NP2 Nucleir transcription factor V, pete NNL 00118 Hs. 400118 H						
NPE Number Number Stepster						
RTHMEL1 Retucked receiptor-like 1 NNL_178688 HL_178688 HL_178688 HL_17878 HL_178688 HL_17878 HL_178688 HL_178788 HL_1787888 HL_17878888 HL_1787888 <						
L3.2 Interlean 32 Figh 33.8 Figh 33.8 Figh 33.8 Figh 33.8 NNE I Non-metastatic calls 1, protein (NM2A) sepressed in NM. 002512 BG114841 Ha.643468 Figh 33.8 NNS 3 Non-metastatic calls 1, protein (NM2A) sepressed in NM. 002512 BG114841 Ha.643468 Figh 32.9 NOTGH1 Note homolog 1, translocation-associated (Drosophila) NM.0171971 NM.017171 Ha.64473 Spi3.2.9 NOTGH1 Noteh homolog 1, Grosophila) NM.02557 MM.004577 Ha.64473 Spi3.2.9 NOTGH1 Noteh monolog 1, Grosophila) NM.004587 HA.004567 Ha.00461 Spi3.2.9 Spi3.2.9<	NFYB	Nuclear transcription factor Y, beta	NM_006166	NM_006166	Hs.84928	12q22-q23
NNEE Non-metastatic calls 1, protein (MA22) segressed in NNL 002269 E0114821 Ph.458456 1721.3 NNUE Non-metastatic calls 1, protein (MA22) segressed in NNL 005651 BE73646 Fe.458456 1721.3 NNU Neuromedia 1, calls 1, protein (MA22) segressed in NNL 005651 BE73646 Fe.458177 713.6 NOTCH4 Nuch homolog 4, Dirosophila NNL 00545 HNL 00565 HS.458177 713.6 NOTCH4 Nuch homolog 4, Dirosophila NNL 00545 HNL 00566 HS.458177 713.6 NOTCH4 Nuch homolog 4, Dirosophila NNL 005457 HS.45806 821.2 312.2 31						
NMET NME does District (NM22A) oppresed in NML 000018 BC114001 H&418827 T/21.3 NR0 Neuromedin U NML 000018 BC130018 NML 000018 MC30015 ML 000018 MC30015 ML 000015 ML 0000015 ML 000015 ML						
NNU NNU-codes NNU-codes NNU-codes NRI-codes NRI-						
NNCS Ninc oxide synthase 3 (anothelial coll) NML 400003 NML 200003 NML 2000030 NML 2000030						
NOTCH1 Netch homolog 1, translocation-associated (Drosophila) NM_071711 Netch homolog 4, Drosophila) NM_07455 NM_07455 NM_07455 NM_07455 NM_07455 NM_07455 NM_07455 NM_07457 NM_074577 NM_074577 NM_074						
NOTCH3 Notch homolog 10 (Poscophila) NU_004657 NU_004677 NU_00467						
NR161 Nuclear receptor subtamp 1; group 1, member 2 NM_003887 AU00988 H=7303 Stg1213.3 NR01 Nuclear receptor interacting protein 1 NM_003490 NM_003490 NM_003490 NM_003490 NM_003480 NM_003490 NM_0034900 NM_003490 NM_00349						19p13.2-p13.1
NRG1 Nuclear receptor intracting protein 1 NM_03887 NM_03848 HM_03848 HM_03844 HM_03848 HM_03848			NM_004557	NM_004557	Hs.436100	
NRIP1 Nuclear receptor interacting potein 1 NM. 00488 NM. 002486 NM. 002535 NM. 012816 NM. 002535 NM. 012816 NM. 002535 NM. 012812 NM. 012816 NM. 002535 NM. 012812 NM. 002575 NM. 012812 NM. 002575 NM. 012812 NM. 002577 NM. 012812 NM. 00257 NM. 002555 NM. 002555 NM. 00256	NR1I2	Nuclear receptor subfamily 1, group I, member 2		AJ009936	Hs.7303	3q12-q13.3
NEDI Nuclear receptor binding SET domain protein 1 NML 22455 NML 02255 NML 02255 NML 02551 NML 015816 NML 02553 NML 015817 NML 02553 NML 015817 NML 025537 NML 015817 NML 025577 NML 025577 NML 025577 NML 025577 NML 025577 NML 025578 NML 02557 NML 025571 NML 05581 NML 02557 NML 025577 NML 025581 NML 02558 NML 02557 NML 025581 NML 02557 NML 025577 NML 025581 NML 02557 NML 02557 NML 02557 NML 025581 NML 02558 NML 01558 NML 025558 NML 02558 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
OAS1 2: 6:-0igoaderyjste syntheses 1, 80/46/Ca NM_010516 He.14320 176/24 OG61 0:-osoguarine DNA głoczyńste NM_010515 He.14321 126/24 OG61 0:-osoguarine DNA głoczyńste NM_010515 He.14321 126/24 OG61 0:-osoguarine DNA głoczyńste NM_01051 He.14306 16512 OGM 0:-osoguarine DNA głoczyńste NM_01051 He.14306 15612 OSM 0:-osoguarine DNA głoczyńste NM_010527 He.14306 26122 OSM 0:-osoguarine DNA głoczyńste NM_010527 He.143050 26122 OSM 0:-osoguarine DNA głoczyńste NM_010527 He.153503 320 PARA Patrich DNA głoczyńste NM_010527 He.153503 320 PARA Patrich DNA głoczyńste NM_00531 NM_002571 He.153641 1024 SUB1 NM_002613 NM_002573 He.35303 320 322 PARVA Patrich DNA głoczyńste Socia Socia 423 424116 5013 322						
OAS2 2:5-cligoademylate symptases NM_00235 NM_01253 Hs.41432 1'sq24.2 ORG1 B-xouguanne DNA glycosylates NM_014321 NM_012519 Hs.30271 3'sg26.2 ORG1 Oncotatini M NM_00436 NM_002530 Hs.42760 Fg12 OAC1 3-coosed CoA transferse 1 NM_002530 Hs.427627 Fg13.1 DAM2 PS3-regulated approtein -inducing protein 1 NM_002771 NM_002677 Hs.60551 Fg44.5 DAM2 PS1-regulated approtein -inducing protein 1 NM_002777 NM_002771 Hs.60551 Fg44.5 DAM2 PS1-regulated approtein -inducing protein 1 NM_002271 Hs.60552 Hs.604928 Fg43.2 PARVA Paring no, apha NM_002713 NM_002384 Hs.23644 Fg41.5644 Fg44.5644 Fg41.5644 Fg41.56444 Fg41.56444						
OGG1 B:x00211 Sig26.2 ORCEL Origin recognition complex, subunit 6 homologilike (yeast) NM. 014321 H-4.24760 16q12 OSM Oncostatini M MM. 004321 H-4.24760 16q12 OSM Oncostatini M NM. 004321 H-4.24760 16q12 PSAIP1 PS-screpulated apoptosis-inducing protein 1 NM. 002377 H-5.16833 32q2 PSAIP1 PS-screpulated apoptosis-inducing protein 1 NM. 002377 H-5.16833 32q2 PA42 P21 (CDNK1A)-activated binase 2 BCA8533 NM.003388 H-56443 10q4 PA42 Particity Apochrated binase protein A, pappalysin 1 MM.002577 H-5.16833 32q2 PA42 Particity Apochrated binase protein A, pappalysin 1 MM.003388 NM.003388 H-55644 10q4 PA42 Particity Apochrate binase protein A, pappalysin 1 MM.004388 H-553035 3q24 PCA7 P300/CEP-ssocialse factor NM.003388 NM.004489 H-55305 5q24 PCA17 Patotes-dethere down hactor receptor, sipha pohypeptide NM.004297 <						
ORCEL Origin recognition complex, subunit 6 homolog-like (yeast) NM, 14321 NM, 102530 Hs.49760 Tfg12 OXCT1 3-coasedi CA transferase 1 NM, 00036 NM, 00036 NM, 202530 Hs.24165 Zg122.2 DXCT1 3-coasedi CA transferase 1 NM, 00216 AB045832 Hs.160953 Tj24 PAK2 P21 (CDN14)-activated kinase 2 BC063536 NM, 00277 Hs.51853 3429 PAK2 P21 (CDN14)-activated kinase 2 NM, 002781 NM, 002777 Hs.51853 3429 PARA Payna, php-activated kinase 2 NM, 002781 Hs.51853 3429 PARA Payna, php-activated kinase 2 NM, 002781 Hs.518531 11013 PARA Payna, php-activated kinase 2 NM, 002781 Hs.518311 11014 PARA Payna, php-activated kinase 2 NM, 002781 Hs.518311 11015 PARA Payna, php-activated kinase 2 NM, 004713 NM, 002784 Hs.508311 11015 PCA Proliferating ontuber antigen NM, 00286 NM, 002864 Hs.20829 Hs.108						
OSM Oncostain M Constraint NM_002930 NM_002300 Hs.248156 S22127 F51311 PSANP1 PS3-regulated apoptosis-inducing protein 1 NM_002377 Hs.518530 3229 PAK2 P21 (CDKN1A)-activated Kinase 2 NM_002577 Hs.518530 3229 PAK2 P21 (CDKN1A)-activated Kinase 2 NM_002577 Hs.518530 3229 PAK2 P21 (CDKN1A)-activated Kinase 2 NM_002577 Hs.518530 3229 PAKA Parkan, apria NM_002577 Hs.518530 3229 PAKA Parkan, apria NM_002587 Hs.518503 3229 PAKA Parkan, apria NM_002587 Hs.518503 3224 PAKA Parkaney Control (Contrologia) NM_002587 Hs.518503 3224 PARA Parkaney Control (Contrologia) NM_002587 Hs.518503 3224 PCA Parkaney Control (Contrologia) NM_002587 Hs.51850 5224 113 PCDH17 Protocadmin (Dortrol (Contrologia) NM_002580 Hs.52506 52413 12014						
DXCT1 3:cxaacid CoA transferase 1 NM. 000436 NM. 002436 Hs.278277 Spir.3.1 PAK2 P21 (CDKN1A)-activated kinase 2 BCG65339 NM. 002577 Hs.518530 3;29 PAK2 P21 (CDKN1A)-activated kinase 2 NM. 002577 Hs.518530 3;29 PAPA Programcy-associated plasma protein A, papalysin 1 NM. 002587 Hs.618530 3;29 PARVA Parvin, ajha NM. 002587 Hs.618530 3;29 PARVA Parvin, ajha NM. 002767 Hs.518530 3;29 PARVA Parvin, ajha NM. 002767 Hs.518530 3;29 PARVA Parvin, ajha NM.00713 SX33784 Hs.528441 5;13.3 PCAF Poliotenzia of taclor areigen NM.00726 MM.007268 Hs.74923 2;02;er13.3 PCAR Proliferativa activated rooptor, gamma, coactivator 1, bet NM.00226 Hs.02920 Hs.519880 Hs.519880 1;62;243 PECI Proliferativa activated rooptor, gamma, coactivator 1, bet NM.00226 Hs.038072 1;12;24;243 PGR Progesterone rocoptor						
PESAMP1 PESAMP1 PESAMP1 PESAMP1 PESAMP1 PESAMP1 PESAMP1 PESAMP1 PESAMP3 Histores Hist						
PAK2 P21 (CDKN14)-activated kinase 2 NM, 002577 NM, 002581 NM, 00388 NM, 00386 NM, 00388 NM, 00386 NM, 00386 NM, 00450 NM, 14459 NM, 014459 NM, 014459 NM, 014459 NM, 014459 NM, 01438 DEVENT PDFRA PEREI Portioning 10024 NM, 000326 NM, 000926 NM, 000261 NM, 000261			NM_022112			11q24
PAPPA Pregnancy-associated plasma protein A, pappalysin 1 NM, 00281 Hs. 450818 11915.3 PARVA Paink john NM, 00388 Hs. 155644 10q24 PAX2 Painka ghba NM, 00388 Hs. 155644 10q24 PAX2 Painka ghba NM, 003788 Hs. 155644 10q24 PCAF P300/CBP-associated factor NM, 00384 HS. 238641 Hs. 156511 33211 PCNA Protoccadment of factor receptor, alpha polypeptide NM, 004528 BMA2028 Hs. 166511 32211-1713 PCNA Profilerating call nuclear antigen NM, 005628 BMA2028 Hs. 17433 20pter-p12 PCCH1 Perostion factor receptor login factor receptor in antigen on the nuclean in t						
PARVA Paring upina NML 014222 NML 014322 (bit 100,20 PAX2 Paired box gene 2 NML 000988 NML 000988 Hel 55644 Hel 200641 5013 3 PCAF P300CEP-sascoiated factor NML 004841 NML 014459 Hel 106241 513 3 PCDH17 Protocadherin 17 NML 014459 Hel 106511 132 1.1 PCRF Poliferating cell nuclear antigen NML 002502 BM462206 Hel 74733 20pter-p12 PCRA Pitelier derived growth factor receptor, alpha polypeptide NML 002502 Hel 74733 20pter-p12 PCRA Protessteron receptor NML 002926 HNL 002926 Hel 539121 1122-2223 PCR Progesteron receptor NML 000926 NML 000926 Hel 368072 11122-2223 PCR Progesteron receptor NML 000926 NML 000926 Hel 364301 11122-2223 PCR Progesteron receptor NML 000264 Hel 756307 Hel 226001 11122-2223 PCR Prosphoinositide-3-kinase, class 2, beta polypeptide NML 000264 Hel 378374 He 22607						
PAX2 Partice box gene 2 NM_003988 Het_156E44 10q24 SUB1 SUB1 honolog (S. cervvisiae) NM_00384 Het_523055 Sp24 PCAF P300/CBP-associated factor NM_003844 Het_523055 Sp24 PCN47 Protocatherin 17 NM_014459 NM_014459 HN_002864 Het_533055 Sp24 PCN47 Protocatherin 17 NM_002502 BM420206 Het_147433 20pter-p12 PDGFRA Platelet-dervide drowth factor receptor, alpha polypoptide NM_002502 NM_00026 Het_571835 Trp13.2 PELP1 Profiles, jutimic acid and lexicle rich protein 1 NM_014399 BC0609062 Het_531831 Trp13.2 PGR Progesterone receptor NM_000926 NM_000926 Het_30807 11422-q23 PFR Proopsterone receptor NM_000926 NM_000926 Het_534303 Trp13.2 PHIS2C Proopsterone receptor NM_000264 Het_53431 Trp32.2 PHIS3C Proopsterone receptor NM_000264 Het_534303 Trp32.2 PHIS3C						
SUB1 SUB1 homolog (5. cerevisiae) NM_008713 BX37584 He.329641 59.13.3 PCAF P300CEP-associated factor NM_014459 He.106511 13.21.1 PCINA Proliferating cell nuclear antigen NM_002592 BM45200 He.1473.3 20pter-p12 PDGFRA Platelet-derived growth factor receptor, alpha polypeptide NM_002502 BM45200 He.174615 4g11-113 PECI Peroxisoma DI3.22-encyC-to-a komerase NM_004309 He.501263 5g3.31 PECR Progestorone receptor NM_00926 He.501263 5g3.31 PCR Progestorone receptor NM_00926 He.308072 11.02-2423 PCR Progestorone receptor NM_009264 He.380072 11.02-2423 PHB Prohibitin NM_009264 He.380072 11.02-2423 PH3C2A Phosphoinositide-3-kinase, class 2, beta polypeptide NM_002646 He.175343 11.015-5.914 PH3C2A Phosphoinositide-3-kinase, class 2, beta polypeptide NM_002646 He.378037 He.27804 He.253021 12.012 HE.278171						
PEAF P300CBP-associated factor NM_00384 Hts.533055 3524 PCDH17 Protocadmenin 17 NM_01449 NM_01449 NM_002804 Hts.13321.1 13221.1 PCNA Proliferating cell nuclear antigen NM_002806 NM_002806 Hts.147433 20pterp12 PDGFRA Platelet-derived growth factor receptor, alpha polypeptide NM_002806 NM_002806 Hts.51280 6924.3 PELP1 Proxisome proliferative activated receptor, gamma, coactivator 1, beta NM_000926 NM_000926 Hts.36807.2 11422-223.2 PGR Progesterone receptor NM_000926 NM_000926 Hts.36807.2 11422-223.2 PGR Progesterone receptor NM_000926 NM_000926 Hts.3673.3 1712.2 PHSC22B Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_000264 Hts.3743.3 1712.2 PHSC3CA Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002645 NM_00264 Hts.3743.1 1715.2 PHSC3CA Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002640 Hts.3743.1 1716.2 PHSC3C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PCDH17 Protocadherin 17 NM. 014459 Hs.106511 Ti321.1 PCNA Proliferating cell nuclear antigen NM. 002592 BM462208 Hs.147433 20pter-p12 PDGFRA Platelet-derived growth factor receptor, alpha polypoptide NM. 006206 Hs.74815 4q11-q13 PECI Peroxisoma ID 3D.2-enoryt-CoA isomerase NM. 00417 AB209917 Hs.1520 6p24.3 PELP1 Perolene, glutamic acid and leucine rich protein 1 NM. 014389 BC690058 Hs.513833 Try13.2 PCR Progesterone receptor NM. 000926 Hs.308072 11/22-q23 PCR Progesterone receptor NM. 002644 BFG70806 Hs.147433 Total 2-q23 PRG Prosphonositide-S-kinase, class 2, alpha polypeptide NM. 002645 Hs.178433 Ti122-q32 PH33C2A Prosphonositide-S-kinase, class 2, alpha polypeptide NM. 002646 Y1312 Hs.447487 t52 PH33C2G Prosphonositide-S-kinase, class 2, alpha polypeptide NM. 005278 Hs.27876 3262.3 PH33C2G Prosphonositide-S-kinase, catalytic, alpma polypeptide NM. 0						
PCNA Proliferating cell nuclear antigen NM_002520 BM462208 Hs.147433 Z0pter-p12 PDGFRA Proteined morth factor receptor, alpha polypeptide NM_006206 Hs.74675 April 11-113 PECI Peroxisomal D3.D2-ennyl-CoA isomerase NM_00114 AB209017 Hs.15250 6p24.3 PFRAFC1B Peroxisome proliferative activated receptor, gamma, coactivator 1, beta NM_103263 AY188950 Hs.369072 H1422-423 PGR Progesterone receptor NM_000926 Hs.369072 H1422-423 PGR Progesterone receptor NM_000926 Hs.369072 H1422-423 PGR Progesterone receptor NM_000264 Hs.369072 H1422-423 PKSC2A Prosphoinositide-3-kinase, class 2, alpha polypeptide NM_002646 YH3313 T1142-154 PKSC2G Prosphoinositide-3-kinase, class 2, alpha polypeptide NM_002646 YH3767 Ag6.3 PKSC2G Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002646 YH3767 Ag6.3 PKSC2G Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002678 Hs.37876						
PDGFRA Petalet-derived growth factor receptor, alpha polypeptide NM. 006206 Hs.74615 4q11-q13 PECI Peroxisoma ID 3D2-enory-Cok isomerase NM. 006117 AE20917 Hs.15200 6p24.3 PELP1 Proline, glutamic acid and leucine rich protein 1 NM. 013263 AY188950 Hs.513833 17p13.2 PGR Progesterone receptor NM. 000926 NM. 000926 Hs.368072 11q22-q23 PGR Progesterone receptor NM. 000926 NM. 000926 Hs.368072 11q22-q23 PGR Progesterone receptor NM. 000264 NM. 000926 Hs.368072 11q22-q23 PKBC2 Prosphoinositide-3-kinase, class 2, alpha polypeptide NM. 002645 NM. 000264 Hs.37633 11p15.5p14 PKS22A Prosphoinositide-3-kinase, class 2, alpha polypeptide NM. 002645 NM.000264 Hs.37833 11p15.5p14 PKS32CA Prosphoinositide-3-kinase, class 2, alpha polypeptide NM.002619 CR34337 Hs.2280 12p12 PKS32CA Prosphoinositide-3-kinase, class 2, alpha polypeptide NM.002624 Ks.378376 32p2.3						
PELP1 Proline, glutamic acid and leucine rich protein 1 NM, 0133268 //188950 Hes.513883 17p13.2 PPARGC1B Perogesterone receptor NM<00026	PDGFRA		NM_006206	NM_006206	Hs.74615	4q11-q13
PPARCC1B Peroxisome proliferative activated receptor, gamma, coactivator 1, beta NML 13223 AY188950 Hs.591261 593.1 PGR Progesterone receptor NML 000926 NML 000926 Hs.388072 11q22-q23 PGR Progesterone receptor NML 000926 NML 000926 Hs.388072 11q22-q23 PRB Prohibitine NML 00254 NML 000926 Hs.368072 11q22-q23 PHB Prohibitine NML 00254 NML 000264 Hs.175343 11p15.5p14 PIK3C2A Phosphoinositide-3-kinase, class 2, beta polypeptide NML 002646 NML 002645 Hs.175343 11p15.5p14 PIK3C2G Phosphoinositide-3-kinase, class 2, gamma polypeptide NML 005026 NML 005027 NB.518451 1963.2 Pick2CD Phosphoinositide-3-kinase, cralafuic, gamma polypeptide NML 005027 NML 005027 NML 005027 NB.518451 1963.2 Pick21 Pick22 Pick22 Pick22 Pick23 Pick24 Pick233 Pick24 Pick233 Pick						
PGR Progesterone receptor Int_000926 NM_000926 NM_000926 Hs.388072 11q22-q23 PGR Progesterone receptor NM_000926 NM_000926 Hs.386072 11q22-q23 PGR Progesterone receptor NM_000926 NM_000926 Hs.386072 11q22-q23 PHB Prohibitin NM_002645 NM_002645 NM_002645 Y11312 Hs.436072 11q22-q23 PKSC2B Phosphoinositide-3-kinase, class 2, beta polypeptide NM_002646 Y11312 Hs.47487 1q32 PK3C2B Phosphoinositide-3-kinase, class 1, beta polypeptide NM_004570 A.000008 Hs.27801 3q26.3 PK3CB Phosphoinositide-3-kinase, catalytic, data polypeptide NM_00826 NM_005026 Hs.18437 1q22-q32 PK3CD Phosphoinositide-3-kinase, regulatory subuni 1 (p85 alpha) NM_181504 Ms.181522 5q13.1 PK3R2 Phosphoinositide-3-kinase, regulatory subuni 1 (p85 alpha) NM_181502 Hs.358201 10p15.2 PLAU Ptosphoinositide-3-kinase, regulatory subuni 1 (p85 alpha) NM_006627 NM_000507 Hs.358201						
PGR Progestrone receptor INIL_000926 NML_000926 Hs.386072 11q22-q23 PGR Progestrone receptor INIL_0009264 BF676086 Hs.514303 17q21 PIK3C2A Phosphoinositide-3-kinase, class 2, leta polypeptide NML_002845 MM_002846 Hs.5175343 11p155-p14 PIK3C2B Phosphoinositide-3-kinase, class 2, gamma polypeptide NML_002846 NM_000006 Hs.275343 12p12 PIK3C2B Phosphoinositide-3-kinase, class 2, gamma polypeptide NML_005276 AJ000006 Hs.278357 Hs.239818 3q26.3 PIK3CC Phosphoinositide-3-kinase, catalytic, beta polypeptide NML_005268 NM_05027 Hs.219817 1g32.2 3 PIK3CD Phosphoinositide-3-kinase, regulatory subunit 1 (p65 alpha) NM_181524 Hs.32825 513.1 1g32.2 3 1g32.2 3 1g12.2 1g32.2 3 1g12.2 1g32.2 1g13.2 1g13.						
PRG Progesterone receptor NM. 000926 INS. 000926 Hs. 388072 11/92-423 PHB Prohibitin NM. 002645 NM. 002645 Hs. 175343 11/p15.5-p14 PIK3C2B Phosphoinositide-3-kinase, class 2, beta polypeptide NM. 002646 Hs. 497487 11/p15.5-p14 PIK3C2B Phosphoinositide-3-kinase, class 2, apma polypeptide NM. 002616 EX40708 Hs. 497487 13/g2.0 PIK3CA Phosphoinositide-3-kinase, catalytic, alpha polypeptide NM. 006218 EX440788 Hs. 478376 3/g2.3 PIK3CB Phosphoinositide-3-kinase, catalytic, detta polypeptide NM. 005026 NM. 005026 Hs. 518451 19/a 2-g3.3 PIK3CB Phosphoinositide-3-kinase, catalytic, detta polypeptide NM. 005027 Hs. 312225 5113.1 PIK3CB Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM. 181504 NM. 181523 Hs. 528001 19/p13.2 PIK3CR Phosphoinositide-3-kinase regulatory subunit 2 (p85 beta) NM. 0005027 Hs. 456249 19p13.2 PIK3CB Phosphoinositide-3-kinase regulatory subunit 2 (p85 beta) NM. 002658 NM. 002674 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>		•				
PHB Prohibitin NM_002634 PF670086 Hs 514303 17q21 PIKSC2A Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002646 NM_002646 Hs 173343 11p15.5p14 PIKSC2A Phosphoinositide-3-kinase, class 2, gamma polypeptide NM_004570 AJ000008 Hs 22500 12p12 PIKSCA Phosphoinositide-3-kinase, catalytic, peta polypeptide NM_006218 EX40707 Hs 239818 3q22.3 PIK3CA Phosphoinositide-3-kinase, catalytic, delta polypeptide NM_005210 RN 478376 Hs 239818 3q22.3 PIK3CG Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_181504 NM_005227 HN 605027 Hs 32942 7q22.3 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 beta) NM_00527 NM 605027 Hs 458491 1913.2-q13.4 PIK3R2 Phosphoinositide-3-kinase eceptor NM 002568 NM_002658 Hs.77274 10924 PLAU Plasminogen activator, uokinase NM_00254 RK00573 Hs 520205 Fy2.2 PLAU Plasminogen activator, uokinase receptor NM_00254 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
PIK3C2A Phosphoinositide-3-kinase, class 2, alpha polypeptide NM_002645 INI_002645 INI_00101645 INI_00101645 INI_0011645 INI_0011645 INI_0011645 INI_0011645 INI_0011645 INI_0011645 INI_0011645 INI_001164 INI_001164 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PIK3C2B Phosphoinositide-3-kinase, class 2, beta polypeptide NM_002646 Y11312 Hs.497487 1g32 PIK3C2G Phosphoinositide-3-kinase, class 2, gamma polypeptide NM_006218 BX640788 Hs.478376 3g26.3 PIK3CA Phosphoinositide-3-kinase, catalytic, alpha polypeptide NM_006219 CR749357 Hs.239818 3g22.3 PIK3CD Phosphoinositide-3-kinase, catalytic, delta polypeptide NM_002602 Hs.105026 Hs.105026 Hs.105026 Hs.105026 Hs.212225 513.1 PIK3C1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_1015024 Hs.132245 Hs.313244 19g13.2-g13.4 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_005027 NM_005027 Hs.45849 19g13 PIKM1 Protein (peptidylproly cis/trans isomerase) NIMA-interacting 1 NM_005265 CR501067 Hs.468671 19g13 PLAUR Plasminogen activator, urokinase receptor NM_0002569 CR601067 Hs.46871 19g13 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000256 Hs.5230205 77p2.2						
PIKSCA Phosphoinositide-3-kinase, catalytic, beta polypeptide NM_006218 EX40788 Hes/47876 3q28.3 PIK3CB Phosphoinositide-3-kinase, catalytic, delta polypeptide NM_00526 NM_005026 NM_005026 NM_005026 NM_005026 NM_005026 NM_005026 NM_005026 NM_005027 Hs.518451 1p38.2 PIK3CG Phosphoinositide-3-kinase, catalytic, garma polypeptide NM_005027 NM_005027 Hs.371344 19913.2 213.3 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_101489 CR749279 Hs.371344 19913.2 913.3 PITRM1 Protein (peptidiase 1 NM_004889 CR749279 Hs.468871 19913 PITAU Plasminogen activator, urokinase receptor NM_002658 NM_002658 Hs.77274 10024 PLAUR Plasminogen activator, urokinase receptor NM_000534 CR749432 Hs.111749 231-q3312q3 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000535 AB037790 Hs.220057 Tp22.2 POLD4 Polymerase (DNA-directed) polypeptide A, 220kDa <	PIK3C2B			Y11312		
PIK3CB Phosphoinositide-3-kinase, catalytic, beta polypeptide NM_006219 CR749357 Hs.239818 3q22.3 PIK3CD Phosphoinositide-3-kinase, catalytic, gamma polypeptide NM_005026 NM_005026 Hs.518451 1p36.2 PIK3CG Phosphoinositide-3-kinase, catalytic, gamma polypeptide NM_002649 X8366 Hs.32942 7q22.3 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_0181523 Hs.371344 1913.2-13.1 PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (p85 beta) NM_005027 NM_005027 Hs.371344 1913.2-13.4 PIK1 Protein (peptidylprolyl cis/trans isomerase) NIMA-interacting 1 NM_002658 NM_002668 NM_002668 NM_002668 NM_002668 NM_002667 Hs.468471 1913.2 PLAU Plasminogen activator, urokinase receptor NM_000254 CR749432 Hs.523002 7p22.2 PMS1 Polymerase (DNA-directed), peision 3 (p17 subunit) NM_000937 MS029274 Hs.523293 11q13 POLE2 Polymerase (DNA-directed) polypeptide A, 220KDa NM_000937 NM_200937 Hs.27017 17p13.1				AJ000008	Hs.22500	
PIK3CD Phosphoinositide-3-kinase, catalytic, delta polypeptide NM_005026 INS_05026 Hs_518451 [1] 50.2 PIK3CG Phosphoinositide-3-kinase, catalytic, gamma polypeptide NM_0181504 NM_181504 N						
PIK3CG Phosphoinositide-3-kinase, catalytic, gamma polypeptide NM_00269 X83368 Hs.32942 7q22.3 PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM_181504 NM_101523 Hs.312225 7q31.3 PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (p85 beta) NM_005027 NM_005027 Hs.371344 19q13.2-q13.4 PIN1 Protein (peptidylprolyl cis/trans isomerase) NIMA-interacting 1 NM_002658 NM_002658 Hs.77274 10q24 PLAU Plasminogen activator, urokinase receptor NM_002659 CR601067 Hs.466871 19q13 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000534 CR749432 Hs.11749 2q31-q33[2q3] PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) NM_000533 AB037790 Hs.523829 11q13 POLE3 Polymerase (DNA-directed), polita 4 NM_001733 AK092840 Hs.012173 A8203274 Hs.523829 11q13 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_002937 NM_002937 Hs.24301 19p13.3 POLR2A<						
PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha) NM. 181504 NM. 181503 Hs.132225 5q13.1 PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (p85 beta) NM_005027 NM_005027 Hs.371344 19q13.2-q13.4 PIK1 Protein (peptid/poly cis/trans isomerase) NIMA-interacting 1 NM_006227 Hs.371344 19q13.2-q13.4 PITRM1 Pitritysin metallopeptidase 1 NM_0102658 NM_002658 Hs.77274 10q24 PLAU Plasminogen activator, urokinase receptor NM_000534 CR749432 Hs.11749 2q31-q3123 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000534 CR749432 Hs.11749 2q31-q3123 PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) NM_000534 CR749432 Hs.108112 9q31 POLE3 Polymerase (DNA-directed) polypeptide A, 220KDa NM_000937 Hs.52020 7p2z.2 POLR2A Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_002840 Hs.17841 4q14 POLR2C Polymerase (RNA) II (DNA directed) polypeptide F. NM_021974 AL832574 3q						
PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 (p85 beta) NM_005027 NM_005027 Hs.371344 1913.2-q13.4 PINT Protein (peptidy/proly) cis/trans isomerase) NIMA-interacting 1 NM_006221 AK092970 Hs.455849 19p13 PITRM1 Pitrilyis metallopeptidase 1 NM_014889 CR749279 Hs.523800 10p15.2 PLAU Plasminogen activator, urokinase NM_002658 NM_002658 Hs.77274 10q24 PLAUR Plasminogen activator, urokinase receptor NM_000534 CR749432 Hs.111749 2q31-q312q3 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000535 AB037790 Hs.520205 7p22.2 POLD4 Polymerase (DNA directed), peptide 4 NM_0117443 AK092840 Hs.108112 9q33 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 Ns.30786 4q12 POLR2A Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_0028240 Hs.130783 4q12 POLR2E Polymerase (RNA) II (DNA directed) polypeptide F NM_004805 NM_002873 Hs.232611 1						
PIN1 Protein (peptidylprolyl cis/trans isomerase) NIMA-interacting 1 NM_006221 AK092970 Hs.465849 19p13 PITRM1 Pitrilysin metallopeptidase 1 NM_014889 CR749279 Hs.528300 10p15.2 PLAU Plasminogen activator, urokinase NM_002658 NM_002658 NM_57724 10q24 PLAUR Plasminogen activator, urokinase receptor NM_0002659 CR601067 Hs.466871 19q13 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000253 AB03790 Hs.520205 722.2 POLD4 Polymerase (DNA-directed), delta 4 NM_001743 AB209274 Hs.523829 11q13 POLE3 Polymerase (RNA) II (DNA directed) polypeptide A, 220KDa NM_000937 NM_200937 Hs.270071 71713.1 REST RE1-silencing transcription factor NM_004055 NM_018383 Hs.574831 2q14.3 POLR2A Polymerase (RNA) II (DNA directed) polypeptide F. NM_002695 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_0026957 AK122813 Hs.243578 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PITRM1 Pitrilysin metallopeptidase 1 NM_014889 CR749279 Hs.528300 10p15.2 PLAU Plasminogen activator, urokinase receptor NM_002658 MM_002658 Hs.77274 10q24 PLAUR Plasminogen activator, urokinase receptor NM_000534 CR601067 Hs.466871 19q13 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000535 AB037790 Hs.528207 PJ2.2 POLD4 Polymerase (DNA-directed), delta 4 NM_0017443 AK092840 Hs.108112 9q33 POLE3 Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.270017 17p13.1 REST RE1-silencing transcription factor NM_000938 BC023503 Hs.274017 19p13.3 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_004805 NM_018383 Hs.57431 2q14.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_026954 AK122813 Hs.436778 2q11.1 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_002632 CR590527 Hs.436578<						
PLAU Plasminogen activator, urokinase NM_002658 NM_002658 Hs.77274 10q24 PLAUR Plasminogen activator, urokinase receptor NM_002659 CR601067 Hs.46871 19q13 PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000534 CR749432 Hs.511749 2q31-q332q3 PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) NM_000535 AB037790 Hs.520205 7p22.2 POLD4 Polymerase (DNA-directed), delta 4 NM_0017443 AK092840 Hs.108112 9q33 POLE3 Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.270017 17p13.1 RE5 RE1-silencing transcription factor NM_000938 BC023503 Hs.37402 16q13-q21 WDR33 WD repeat domain 33 NM_004805 NM_018383 Hs.548431 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002824 KN422813 Hs.43678 2q13.1 POLR21 Polymerase (RNA) II (DNA directed) polypeptide F NM_002824 KN422813 Hs.436774						
PMS1 PMS1 postmeiotic segregation increased 1 (S. cerevisiae) NM_000534 CR749432 Hs.111749 2q31-q33 2q3 PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) NM_000535 AB037790 Hs.520205 7p22.2 POLD4 Polymerase (DNA-directed), delta 4 NM_001713 AB209274 Hs.520205 7p22.2 POLD3 Polymerase (DNA directed), epsilon 3 (p17 subunit) NM_017443 AK092840 Hs.108112 9q33 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.37836 4q12 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_032940 NM_032940 Hs.79402 16q13-q21 WDR33 WD repeat domain 33 ND repeat domain 33 NM_004805 NM_018383 Hs.54831 2q14.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_002324 NM_0386578 2q31,3.1 POLR2I Polymerase (RNA) II (DNA directed) polypeptide J-related gene NM_006233 BU598062 Hs.430578 3q28 POLR2I Polymerase (RNA) II (DNA directed) polypeptide J-related gene	PLAU					
PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) NM_000535 AB037790 Hs.520205 7p22.2 POLD4 Polymerase (DNA-directed), delta 4 NM_021173 AB209274 Hs.520205 7p22.2 POLE3 Polymerase (DNA-directed), depsion 3 (p17 subunit) NM_017443 AK092840 Hs.108112 9q33 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_0003937 Hs.270017 17p13.1 REST RE1-silencing transcription factor NM_000938 BC023503 Hs.307836 4q12 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_004805 NM_018383 Hs.554831 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002695 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_006232 CR590527 Hs.432574 3q28 POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006234 NM_006989 Hs.530089 7q11.22 POLR2J DNA directed RNA polymerase II polypeptide J-related gene						
POLD4 Polymerase (DNA-directed), delta 4 NM_021173 AB209274 Hs.523829 11q13 POLE3 Polymerase (DNA directed), epsilon 3 (p17 subunit) NM_017443 AK092840 Hs.108112 9q33 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.270017 17p13.1 REST RE1-silencing transcription factor NM_0032940 NM_032940 Hs.79402 16q13-q21 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_004805 NM_018383 Hs.554831 2q14.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002695 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_006232 CR590527 Hs.432574 3q28 POLR2I Polymerase (RNA) II (DNA directed) polypeptide J-related gene NM_006233 BU598062 Hs.307089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_005034 BI758413 Hs.330089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide K, 7.0kDa						2q31-q33 2q31.1
POLE3 Polymerase (DNA directed), epsilon 3 (p17 subunit) NM_017443 AK092840 Hs.108112 9q33 POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.270017 17p13.1 REST RE1-silencing transcription factor NM_002940 NM_032940 Hs.307836 4q12 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_002895 NM_018383 Hs.554831 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002895 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_002832 CR590527 Hs.436578 22q13.1 POLR2H Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.436578 2q11.2 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.0kDa NM_005034 BI758413 Hs.330089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypepti						
POLR2A Polymerase (RNA) II (DNA directed) polypeptide A, 220kDa NM_000937 NM_000937 Hs.270017 17p13.1 REST RE1-silencing transcription factor NM_000938 BC023503 Hs.307836 4q12 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_0032940 NM_032940 Hs.79402 16q13-q21 WDR33 WD repeat domain 33 WD repeat domain 33 NM_004805 NM_0018383 Hs.24301 19p13.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_0021974 AL832562 Hs.436578 22q13.1 POLR2H Polymerase (RNA) II (DNA directed) polypeptide F NM_006232 CR590527 Hs.432574 3q28 POLR2J Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.47062 19q12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_001363 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) p						
REST RE1-silencing transcription factor NM_000938 BC023503 Hs.307836 4q12 POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_032940 NM_032940 Hs.79402 16q13-q21 WDR33 WD repeat domain 33 ND repeat domain 33 NM_004805 NM_018383 Hs.554831 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_00295 AK122813 Hs.243678 22q13.1 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_00232 CR590527 Hs.436578 22q13.1 POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.47062 19q12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide L, 7.6kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_002698 M36542 Hs.118900 19q13.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptid						
POLR2C Polymerase (RNA) II (DNA directed) polypeptide C, 33kDa NM_032940 NM_032940 Hs.79402 16q13-q21 WDR33 WD repeat domain 33 NM_004805 NM_018383 Hs.554831 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002695 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_021974 AL832562 Hs.436578 22q13.1 POLR2F Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006232 CR590527 Hs.432574 3q28 POLR2I Polymerase (RNA) II (DNA directed) polypeptide J-related gene NM_006233 BU598062 Hs.47062 19q12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006334 BI758413 Hs.330089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.330475 8g22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_002698 M36542 Hs.118990 19q13.2 POLR2L Polymerase (RNA) II (DNA directed) coeptor, gamma						
WDR33 WD repeat domain 33 NM_01 NM_018383 Hs.554831 2q14.3 POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002895 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_002895 AK122813 Hs.436578 22q13.1 POLR2H Polymerase (RNA) II (DNA directed) polypeptide H NM_006232 CR590527 Hs.436578 22q13.1 POLR2H Polymerase (RNA) II (DNA directed) polypeptide H NM_006233 BU598062 Hs.436578 2q11.2 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide K, 7.0kDa NM_00534 BI758413 Hs.35175 8q22.2 POLR2K Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_00134B BI758413 Hs.441072 11p15 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_002188 M36542 Hs.118990 19q13.2 POLR2L POU domain, class 2, transcription factor 2 NM_002698						
POLR2E Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa NM_002695 AK122813 Hs.24301 19p13.3 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_021974 AL832562 Hs.436578 22q13.1 POLR2F Polymerase (RNA) II (DNA directed) polypeptide F NM_0021974 AL832562 Hs.436578 22q13.1 POLR2I Polymerase (RNA) II (DNA directed) polypeptide H NM_006233 BU598062 Hs.436578 22q13.1 POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.432672 19g12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_0021128 BM919305 Hs.441072 11p15 POU2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARG Peroxisome proliferative activated receptor						
POLR2H Polymerase (RNA) II (DNA directed) polypeptide H NM_006232 CR590527 Hs.432574 3q28 POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.47062 19q12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2L Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_002898 M36542 Hs.118900 19q13.2 POLR2L POU domain, class 2, transcription factor 2 NM_002898 M36542 Hs.118900 19q13.2 PPARBP PPAR binding protein NM_015869 NM_138711 Hs.162646 3p25 PPIA Pertidylprolyl isomerase A (cyclophilin A) NM_015869 NM_01380101 Hs.356331 7p13-p11.2 PPMTD Protein phosphatase 1D magnesium-dependent, delta isoform N	POLR2E	Polymerase (RNA) II (DNA directed) polypeptide E, 25kDa	NM_002695	AK122813	Hs.24301	19p13.3
POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa NM_006233 BU598062 Hs.47062 19q12 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006034 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J, related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2K Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 Bq22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_0021128 BM919305 Hs.441072 11p15 POL2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein PPARG Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_021130 AK130101 Hs.356331 7p13-21.2						
POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene NM_006234 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2K Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_0021128 BM919305 Hs.441072 11p15 POU2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein NM_0024774 Y13467 Hs.462956 17q12-q21.1 PPARG Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_01300 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform						
POLR2J2 DNA directed RNA polymerase II polypeptide J-related gene BC050405 NM_006989 Hs.530089 7q11.22 POLR2K Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_0021128 BM919305 Hs.441072 11p15 POU2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein NM_004774 Y13467 Hs.462956 17q12-q21.1 PPARG Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_002810 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 Hs.591184 17q23.2 PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 H						
POLR2K Polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa NM_005034 BI758413 Hs.351475 8q22.2 POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_021128 BM919305 Hs.441072 11p15 POUZF2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein NM_0015869 NM_138711 Hs.162646 3p25 PPIA Petroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Petpidylprolyl isomerase A (cyclophilin A) NM_0021130 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 NM_003802 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
POLR2L Polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa NM_021128 BM919305 Hs.441072 11p15 POU2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein NM_00174 Y13467 Hs.462956 17q12-q21.1 PPARB Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.362331 7p13-p11.2 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_003620 NM_003620 Hs.91184 17q23.2 PPP1R12A Protein phosphatase 1D magnesium-dependent, delta isoform NM_003820 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
POU2F2 POU domain, class 2, transcription factor 2 NM_002698 M36542 Hs.118990 19q13.2 PPARBP PPAR binding protein NM_004774 Y13467 Hs.462956 17q12-q21.1 PPARB Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_021130 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 NM_003620 Hs.9184 17q23.2 PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
PPARBP PPAR binding protein NM_004774 Y13467 Hs.462956 17q12-q21.1 PPARG Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_021130 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 NM_003620 Hs.591184 17q23.2 PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
PPARG Peroxisome proliferative activated receptor, gamma NM_015869 NM_138711 Hs.162646 3p25 PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_021130 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 NM_003620 Hs.591184 17q23.2 PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
PPIA Peptidylprolyl isomerase A (cyclophilin A) NM_021130 AK130101 Hs.356331 7p13-p11.2 PPM1D Protein phosphatase 1D magnesium-dependent, delta isoform NM_003620 NM_003620 Hs.591184 17q23.2 PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_01430 AK001361 Hs.433670 19q13.3-q13.4 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 12A NM_002480 AF458589 Hs.49582 12q15-q21 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4	PPIA	Peptidylprolyl isomerase A (cyclophilin A)	NM_021130	AK130101	Hs.356331	
BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4 BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
BAX BCL2-associated X protein NM_014330 AK001361 Hs.433670 19q13.3-q13.4						
FINGE FINIE						
PRL Prolactin NM_000948 CD512992 Hs.1905 6p22.2-p21.3						


PSMC5			00505075	11- 7000-	47-00 05
PTCH	Proteasome (prosome, macropain) 26S subunit, ATPase, 5 Patched homolog (Drosophila)	NM_002805 NM_000264	CR595677 AB209495	Hs.79387 Hs.494538	17q23-q25 9q22.3
PTCH2	Patched homolog 2 (Drosophila)	NM_000738	AB209495 AY359016	Hs.591497	9q22.3 1p33-p34
PTEN	Phosphatase and tensin homolog (mutated in multiple advanced cancers 1)		NM_000314	Hs.500466	10q23.3
PTGS2	Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and c		NM_000963	Hs.196384	1q25.2-q25.3
PUM1	Pumilio homolog 1 (Drosophila)	NM_014676			1p35.2
QSCN6	Quiescin Q6	NM_002826	NM_002826	Hs.518374	1g24
RAB6A	RAB6A, member RAS oncogene family	NM_016577	NM 016577	Hs.12152	11q13.3
RAB9A	RAB9A, member RAS oncogene family	NM_004251	BM926730	Hs.495704	Xp22.2
RAC2	Ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding p		BC001485	Hs.517601	22q13.1
RAC3	Ras-related C3 botulinum toxin substrate 3 (rho family, small CTP binding p		BM561442	Hs.45002	17q25.3
RAD1	RAD1 homolog (S. pombe)	NM_133377	NM_133377	Hs.531879	5p13.2
RAD17	RAD17 homolog (S. pombe)	NM_002873	AF076838	Hs.16184	5q13
RAD50	RAD50 homolog (S. cerevisiae)	NM_005732	U63139	Hs.128904	5q31
RAD51	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)	NM_002875	NM_002875	Hs.511067	15q15.1
RAD51C	RAD51 homolog C (S. cerevisiae)	NM_058216	BC073161	Hs.412587	17q22-q23
RAD52	RAD52 homolog (S. cerevisiae)	NM_134423	NM_134423	Hs.410355	12p13-p12.2
RAD54B	RAD54 homolog B (S. cerevisiae)	NM_012415	NM 012415	Hs.30561	8q21.3-q22
RAD54L	RAD54-like (S. cerevisiae)	NM_003579	NM_003579	Hs.523220	1p32
RAD9A	RAD9 homolog A (S. pombe)	NM_004584	NM_004584	Hs.240457	11q13.1-q13.2
RAF1	V-raf-1 murine leukemia viral oncogene homolog 1	NM_002880	NM_002880	Hs.159130	3p25
DTL	Denticleless homolog (Drosophila)	NM_016448	NM_016448	Hs.126774	5p25
RASA1	RAS p21 protein activator (GTPase activating protein) 1	NM_002890	CR749722	Hs.553501	5q13.3
RASD2	RASD family, member 2	NM_014310	BC013419	Hs.474711	22q13.1
RB1	Retinoblastoma 1 (including osteosarcoma)	NM_000321	L41870	Hs.408528	13q14.2
RBBP4	Retinoblastoma binding protein 4	NM_005610	AK056550	Hs.16003	1p35.1
RBBP4	Retinoblastoma binding protein 4	NM_005610	AK056550	Hs.16003	1p35.1
RBBP7	Retinoblastoma binding protein 7	NM_002893	AK127332	Hs.495755	Xp22.2
RBBP8	Retinoblastoma binding protein 8	NM 002894	NM_002894	Hs.546282	18q11.2
RECQL	RecQ protein-like (DNA helicase Q1-like)	NM 002907	L36140	Hs.235069	12p12
RELA	V-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kapp		BC110830	Hs.502875	11q13
RELA	V-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kapp		BC110830	Hs.502875	11q13
REM1	RAS (RAD and GEM)-like GTP-binding 1	BC039813	BC039813	Hs.247729	20q11.21
RPRM	Reprimo, TP53 dependent G2 arrest mediator candidate	NM_019845	AB043585	Hs.100890	2q23.3
RFC1	Replication factor C (activator 1) 1, 145kDa	NM_002913	NM_002913	Hs.507475	4p14-p13
RFC2	Replication factor C (activator 1) 2, 40kDa	NM_002914	NM_181471	Hs.139226	7q11.23
RFC3	Replication factor C (activator 1) 2, 10020	NM 002915	NM 002915	Hs.115474	13q12.3-q13
RFC4	Replication factor C (activator 1) 4, 37kDa	NM_002916	NM_002916	Hs.591322	3q27
RFC5	Replication factor C (activator 1) 5, 36.5kDa	NM_007370	NM_181578	Hs.506989	12q24.2-q24.3
	RP11-1334A24/AC145098.2	AC145098.2		10.000000	129211292110
	RP11-137L15 /AC023991.9	AC023991.9			
	RP11-264I13/AL359076	AL359076			
	RP11-567N19/AC016772.9	AC016772.9			
RP11-62E9/012533	RP11-62E9/012533	AC012533			
	RP11-72O9/AQ267068	AQ267068			
	RP11-977G19/AC073896	AC073896			
	RP11-9919/AC099818.2	AC099818.2			
RPL7	Ribosomal protein L7	NM_000971	BQ057523	Hs.571841	8q21.11
RPS6KA1	Ribosomal protein S6 kinase, 90kDa, polypeptide 1	NM_002953	BC014966	Hs.149957	1p
RPS6KA4	Ribosomal protein S6 kinase, 90kDa, polypeptide 4	NM_003942	AK223561	Hs.105584	11q11-q13
RPS6KA5	Ribosomal protein S6 kinase, 90kDa, polypeptide 5	NM_004755	AB209667	Hs.510225	14q31-q32.1
RRAD	Ras-related associated with diabetes	BC057815	BC057815	Hs.1027	16q22
RUNX2	Runt-related transcription factor 2	NM_004348	NM_004348	Hs.535845	6p21
	Runt-related transcription factor 2 Secretoglobin, family 1C, member 1	NM_004348 NM_145651	NM_004348 BX098294	Hs.535845 Hs.127059	6p21 11p15.5
RUNX2 SCGB1C1		NM_145651	BX098294	Hs.127059	11p15.5
RUNX2 SCGB1C1 S100A2	Secretoglobin, family 1C, member 1	NM_145651 NM_005978			
RUNX2 SCGB1C1 S100A2 S100A4	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r	NM_145651 NM_005978	BX098294 BU589956 CF619147	Hs.127059 Hs.516484 Hs.557609	11p15.5 1q21 1q21
RUNX2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2	NM_145651 NM_005978 NM_002961	BX098294 BU589956	Hs.127059 Hs.516484	11p15.5 1q21
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin)	NM_145651 NM_005978 NM_002961 NM_014624	BX098294 BU589956 CF619147 BM904612	Hs.127059 Hs.516484 Hs.557609 Hs.275243	11p15.5 1q21 1q21 1q21
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa	NM_145651 NM_005978 NM_002961 NM_014624 NM_005870	BX098294 BU589956 CF619147 BM904612 AK126385	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899	11p15.5 1q21 1q21 1q21 1q21 13q12.11
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa	NM_145651 NM_005978 NM_002961 NM_014624 NM_005870 NM_003864	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1
RUNX2 SCGB1C1 S100A2 S100A4 S100A6	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, n S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3	NM_145651 NM_005978 NM_002961 NM_014624 NM_005870 NM_003864 NM_014706	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842	11p15.5 1q21 1q21 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1
RUNX2 SCGB1C1 5100A2 5100A4 5100A6 SAP18 SAP30 SART3 SCD5 SCCB5 SCCB1A1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, n S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5	NM_145651 NM_005978 NM_002961 NM_014624 NM_005870 NM_003864 NM_014706 NM_024906	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCCB1A1 SCCB1D2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 StearoyI-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin)	NM_145651 NM_005978 NM_002961 NM_014624 NM_005870 NM_003864 NM_014706 NM_024906 NM_003357	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1
RUNX2 SCGB1C1 S100A2 S100A4 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCCB1D2 SCGB2A1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_003864 NM_014706 NM_024906 NM_003357 NM_006551	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13
RUNX2 SCGB1C1 5100A2 5100A4 5100A6 SAP18 SAP30 SAP30 SCAP30 SCC5 SCC61A1 SCGB1D2 SCCB2A1 SCGB2A2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_003864 NM_014706 NM_024906 NM_003357 NM_006551 NM_002407	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCCB1A1 SCCB1D2 SCGB2A1 SCCB2A2 SCN9A	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, n S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1A, member 1 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_024906 NM_003357 NM_006551 NM_002407 NM_002411	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524999 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCGB1D2 SCGB2A1 SCGB2A2 SCN9A SCUBE2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_003357 NM_006551 NM_0024017 NM_002411 NM_002977	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 2q24
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCCB1A1 SCGB1D2 SCGB1D2 SCGB2A2 SCN9A SCUBE2 SCUBE2 SEH1L	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_003357 NM_006551 NM_002407 NM_002407 NM_002471 NM_002977 NM_020974	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 2q24 11p15.3
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SAP30 SART3 SCD5	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 2A, member 2 Secretoglobin, family 2A, member 2 Socretoglobin, family 2A, member 2 Socretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae)	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_0024906 NM_002551 NM_002407 NM_002411 NM_002974 NM_031216	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_02974 NM_031216	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.5301048	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 11q14 11p15.3 18p11.21
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SAP30 SCAP30 SCCB1A1 SCGB1A1 SCGB1D2 SCGB2A1 SCGB2A2 SCN9A SCUBE2 SEH1L SECH1L SERTAD1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A4 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_003864 NM_003406 NM_003357 NM_006551 NM_002407 NM_002407 NM_002411 NM_002977 NM_020974 NM_031216 NM_013376	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 Bl819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.223732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.269898	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q13.1-q13.2
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SCAP30 SCOP5 SCGB1A1 SCGB1A2 SCGB2A1 SCGB2A1 SCGB2A2 SCN9A SCUBE2 SEH1L SERTAD1 SERTAD1 SEP15	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024907 NM_002407 NM_002407 NM_002407 NM_002407 NM_002977 NM_031216 NM_013336 NM_004261 NM_02491	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.269898 Hs.362728	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11p15.3 18p11.21 19q13.1-q13.2 1p31
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCGB1D2 SCGB2A1 SCGB2A2 SCGB2A2 SCH9A SCUBE2 SEH1L SERTAD1 SERF1A SERPINA3	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric)	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024907 NM_002407 NM_002407 NM_002407 NM_002407 NM_002977 NM_031216 NM_013336 NM_004261 NM_02491	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261 AF073519	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.362728 Hs.32567	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 2q24 11p15.3 18p11.21 19q31.1-q13.2 1p31 5q12.2-q13.3
RUNX2 SCGB1C1 \$100A2 \$100A6 \$AP18 \$AP30 \$CD5 \$CGB1A1 \$CGB1D2 \$CGB2A1 \$CGB2A2 \$CGB2A2 \$CUBE2 \$ECH1L \$ERTAD1 \$EP15 \$ERF1A	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_0024906 NM_002551 NM_002407 NM_002977 NM_031216 NM_013376 NM_013376 NM_021967 NM_004261 NM_021967	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_02974 NM_001974 NM_004261 AF073519 NM_001085	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.42652 Hs.2319 Hs.523468 Hs.301048 Hs.269898 Hs.326567 Hs.534293	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 5q12.2-q13.3 14q32.1
RUNX2 SGGB1C1 \$100A2 \$100A4 \$100A6 \$AP18 \$AP30 \$AP30 \$CD5 \$CGB1A1 \$CGB1D2 \$CGB2A1 \$CGB2A1 \$CGB2A2 \$CGB2A1 \$CGB2A2 \$CH9A \$CUBE2 \$EH1L \$ERTAD1 \$ERTIAD1 \$ERP15 \$ERP1NA3 \$ERPINB2 \$ERPINB5	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 2A, member 2 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalburnin, member 2	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_003864 NM_0024906 NM_002551 NM_002407 NM_002407 NM_002471 NM_002974 NM_031216 NM_004261 NM_021967 NM_002575	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 Bl819219 BP314377 CB957406 BC067220 NM_002977 NM_002974 NM_004261 AF073519 NM_01085 BC012609	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.201048 Hs.301048 Hs.320468 Hs.301048 Hs.32667 Hs.532567 Hs.534293 Hs.514913	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q14 11q13 11q13 11q14 11q14 11q14<
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCCB1D2 SCGB2A1 SCGB2A1 SCGB2A2 SCCB2A2 SCCB2A2 SCCB2A2 SCH9A SCUBE2 SERT1A SERF1A3 SERF1A3 SERPINB2 SERPINB2 SERT	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5	NM_145651 NM_005978 NM_002961 NM_014624 NM_003864 NM_014706 NM_00357 NM_006551 NM_002407 NM_002411 NM_002977 NM_0022411 NM_0131216 NM_004261 NM_002455 NM_002657 NM_002657	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261 AF073519 NM_001085 BC012609 BX640597	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.362728 Hs.362728 Hs.32567 Hs.514913 Hs.55279	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q31q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3
RUNX2 SCGB1C1 5100A2 5100A4 5100A6 SAP18 SAP30 SCD5 SCGB1A1 SCGB1D2 SCGB1A1 SCGB2A2 SCGB2A2 SCUB2 SCUB2 SCUB2 SEH1L SERTAD1 SERTAD1 SERTAD1 SERTAD1 SERTIA SERPINA3 SERPINB5 SERPINB5 SET SET	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 SET translocation (myeloid leukemia-associated)	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_013864 NM_014706 NM_003857 NM_0024906 NM_0024907 NM_002407 NM_002407 NM_002407 NM_002111 NM_031216 NM_0133376 NM_004261 NM_001085 NM_0026375 NM_002639 NM_003011	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_0031216 AK074652 NM_004261 AF073519 NM_001085 BC012609 BX640597 NM_003011	Hs.127059 Hs.516484 Hs.557609 Hs.527639 Hs.52439 Hs.52439 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.3601248 Hs.362728 Hs.32567 Hs.534293 Hs.55279 Hs.436687	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 1931 5q12.2-q13.3 14q32.1 18q21.3 9q34
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SAP30 SCD5 SCCB1A1 SCGB1D2 SCGB2A1 SCGB2A2 SCGB2A2 SCN9A SCUBE2 SEH1L SERTAD1 SERTAD1 SERTIA2 SERPINB2 SERPINB2 SERPINB5 SET SETD51 SERD1 S	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Set rtanslocation (myeloid leukemia-associated) SET domain, bifurcated 1	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_024906 NM_002551 NM_002407 NM_002407 NM_002407 NM_002977 NM_0031216 NM_013376 NM_013376 NM_021967 NM_002611 NM_002637 NM_0030311	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_0031216 AK074652 NM_004261 AF073519 NM_001085 BC012609 BX640597 NM_003011 NM_012432	Hs.127059 Hs.516484 Hs.557609 Hs.5275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.302728 Hs.32667 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.436687	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 2q24 11p15.3 18p11.21 19q3.1-q13.2 1p31 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 SAP18 SAP30 SAP30 SCD5 SCGB1A1 SCGB1D2 SCGB2A1 SCGB2A2 SCGB2A1 SCGB2A2 SCN9A SCUBE2 SEH1L SERTAD1 SEF15 SERF1A SERPINB2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila)	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024907 NM_002407 NM_002407 NM_002407 NM_002977 NM_020974 NM_0131376 NM_001085 NM_002639 NM_002639 NM_012432 NM_015001 NM_01040 NM_01040	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_02974 NM_002977 NM_002974 NM_004261 AK074652 NM_004261 AF073519 NM_001085 BC012609 BX640597 NM_003011 NM_012432 NM_015001	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.40452 Hs.2319 Hs.523468 Hs.301048 Hs.32677 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.534687 Hs.534687	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q14 1q21 1p31.5 5q12.2-q13.3 14q21.3 18q21.3 18q21.3 1q21 1q23 1q21 1p36.33-p36.11
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 \$AP18 \$AP30 \$AP30 \$CD5 \$CGB1A1 \$CGB1D2 \$CGB2A1 \$CGB2A1 \$CGB2A2 \$CGB2A2 \$CGB2A2 \$CH9A \$CUBE2 \$EH1L \$ERTAD1 \$ERTAD1 \$ERTAD1 \$ERF1A \$ERF1A3 \$ERF1NA3 \$ERPINB2 \$ERPINB2 \$ERPINB2 \$ERPINB2 \$ERPINB5 \$ERTDB1 \$PEN \$MPDU1 \$HMT2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_014706 NM_014706 NM_003357 NM_006551 NM_002407 NM_002411 NM_002411 NM_002411 NM_002411 NM_0131216 NM_004261 NM_002455 NM_002461 NM_021967 NM_002639 NM_002639 NM_012432 NM_012432 NM_01240	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_0012977 NM_0012612 BC012609 BX640597 NM_0012432 NM_012601 NM_001678	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.301048 Hs.301048 Hs.362728 Hs.32567 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.552463 Hs.578463 Hs.78854	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q31.1q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3 18q21.3 18q21.3 1934 1q21 1p36.3-p36.11 17p13.1-p12
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 \$AP18 \$AP30 \$CD5 \$CGB1A1 \$CGB1D2 \$CGB2A1 \$CGB2A2 \$CGB2A1 \$CGB2A2 \$CN9A \$CUBE2 \$EH1L \$ERTAD1 \$ERTAD1 \$ERT1A \$ERT1A5 \$ERT1A5 \$ERT1A5 \$ERPINB3 \$ERPINB5 \$ERT \$ETDB1 \$PEN MPDU1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial)	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024907 NM_002407 NM_002407 NM_002407 NM_002977 NM_020974 NM_0131376 NM_001085 NM_002639 NM_002639 NM_012432 NM_015001 NM_01040 NM_01040	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_0031216 AK074652 NM_004261 AF073519 NM_001285 BC012609 BX640597 NM_003011 NM_012432 NM_015001 NM_01678 AK055053	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.5243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.3601248 Hs.302728 Hs.32567 Hs.534293 Hs.55279 Hs.436687 Hs.5591479 Hs.558463 Hs.75069	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q12.22 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q13.1-q13.2 1p31 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21 17p13.1-p12 12q12-q14
RUNX2 SCGB1C1 SI00A2 S100A4 S100A6 SAP18 SAP30 SART3 SCCD5 SCGB1A1 SCGB2A2 SCMPA SCGB2A2 SCHE2 SEH1L SERTAD1 SERPINB2 SERPINB3 SERPINB3 SERPINB5 SET SETDB1 SPEN MPDU1 SHMT2 SIN38 SKP1A	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SEH1-like (S. cerevisiae) SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Set ranslocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethytransferase 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast)	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_014706 NM_014706 NM_003357 NM_006551 NM_002401 NM_002411 NM_002977 NM_002411 NM_020974 NM_013376 NM_0021967 NM_002575 NM_002575 NM_002639 NM_012432 NM_012432 NM_012430 NM_012432 NM_012432 NM_005412 AB014600 NM_006930	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_0031216 AK074652 NM_004261 AF073519 NM_001085 BC012609 BX640597 NM_003011 NM_012432 NM_015260	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.5275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.302728 Hs.32567 Hs.534293 Hs.514913 Hs.558463 Hs.75069 Hs.75069 Hs.73069 Hs.13999	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 2q24 11p15.3 18p11.21 1931 5q12.2-q13.3 14q21.3 9q34 1q21 17p13.1-p12 12q12-q14 19p13.11
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP30 SAP18 SCD5 SCGB1A1 SCGB2A2 SCGB2A1 SCGB2A2 SCGB2A2 SCGB2A1 SCGB2A2 SCGB2A1 SCGB2A2 SCRPINA3 SERPINA3 SERPINB2 SERPINB5 SET SETDB1 SPEN MPDU1 SHN3B SKP1A SLC25A5	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalburnin), member 2 Serpin peptidase inhibitor, clade B (ovalburnin), member 5 SET ranslocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A)	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_014706 NM_014706 NM_003357 NM_006551 NM_002401 NM_002411 NM_002977 NM_002411 NM_020974 NM_013376 NM_0021967 NM_002575 NM_002575 NM_002639 NM_012432 NM_012432 NM_012430 NM_012432 NM_012432 NM_005412 AB014600 NM_006930	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261 AF073519 BX640597 NM_001085 BC012609 BX640597 NM_001601 NM_01678 AK055053 NM_015260 NM_006930	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.52499 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.40452 Hs.2319 Hs.523468 Hs.301048 Hs.32667 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.534687 Hs.534687 Hs.534687 Hs.57569 Hs.436687 Hs.75069 Hs.17569 Hs.13999 Hs.171626	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q14 1195.3 18p11.21 19q31.5-q13.1 14q32.1 18q21.3 18q21.3 18q21.3 19q34 1q21 1p36.33-p36.11 17p13.1-p12 12q12-q14 19p13.11 5q31
RUNX2 SGB1C1 SI00A2 SI00A4 SI00A6 SAP18 SAP30 SAP30 SCD5 SCGB1A1 SGB1D2 SCGB2A1 SGCB2A2 SCGB2A1 SGCB2A2 SCN9A SCUB22 SEH1L SERTAD1 SERTAD1 SERTAD1 SERPINA3 SERPINA3 SERPINA3 SERPINB2 SERTDB1 SERTDB1 SPEN MYDU1 SHMT2 SIN38 SKP1A SLC25A5 SLC2A3	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog b, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocation	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024906 NM_002407 NM_002407 NM_002407 NM_002407 NM_002977 NM_020974 NM_0131376 NM_001285 NM_002651 NM_002639 NM_002639 NM_002639 NM_012432 NM_015001 NM_005412 AB014600 NM_006930 NM_00152	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_0012452 NM_0012451 AF073519 NM_0012432 NM_012432 NM_015001 NM_001678 AK055053 NM_015260 NM_005930 AK092094	Hs.127059 Hs.516484 Hs.557609 Hs.275243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.301048 Hs.301048 Hs.362728 Hs.32567 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.57069 Hs.17854 Hs.75069 Hs.171626 Hs.171626 Hs.496658	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q13.1-q13.2 19g13.1-q13.2 19g13.1-q13.3 14q22.1.3 18q21.3 18q21.3 19g34 1q21 1p36.33-p36.11 17p13.1-p12 12q12-q14 19p13.11 5q31 Xq24-q26
RUNX2 SCGB1C1 SI00A2 S100A4 S100A6 SAP18 SAP30 SART3 SCCB1A1 SCGB1A1 SCGB2A2 SCH12 SCGB2A2 SCUBE2 SEH1L SERTAD1 SERFIA SERPINB2 SERPINB2 SETDB1 SPEN MPDU1 SHMT2 SIN3B SKP1A SLC2A3 SMARCA1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocat Solute carrier family 2 (facilitated glucose transporter), member 3	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_002407 NM_002407 NM_002974 NM_002977 NM_002977 NM_013376 NM_0013575 NM_002611 NM_002639 NM_002639 NM_002639 NM_012432 NM_012432 NM_005412 AB014600 NM_0065412 AB014600 NM_006930 NM_00831 NM_00369	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC07220 NM_002977 NM_020974 NM_002977 NM_020974 AK074652 NM_004261 AF073519 NM_001285 BC012609 BX640597 NM_003011 NM_012432 NM_015001 NM_01678 AK055053 NM_015260 NM_006930 AK092094 AB209607	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.52433 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.24652 Hs.2319 Hs.523468 Hs.301048 Hs.360128 Hs.302728 Hs.32567 Hs.534293 Hs.55279 Hs.436687 Hs.553463 Hs.5514793 Hs.558463 Hs.78654 Hs.78659 Hs.13999 Hs.171626 Hs.490658 Hs.419240	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q31.22 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19913.1-q13.2 1p31 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21 1p36.33-p36.11 17p13.1-p12 12q12-q14 19p13.11 5q31 Xq24-q26 12p13.3
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SAP13 SCCD5 SCGB1A1 SCGB2A2 SCMPA SCGB2A2 SCGB2A2 SCHE2 SEH1L SERTAD1 SERPINB2 SERPINB3 SERPINB2 SERPINB3 SETDB1 SPEN MPDU1 SHMT2 SIN38 SKP1A SLC25A5 SLC2A3 SMARCA1	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalburnin), member 2 Serpin peptidase inhibitor, clade B (ovalburnin), member 5 SET ranslocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 2 (facilitated glucose transporter), member 3 SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_014706 NM_014706 NM_003357 NM_006551 NM_002407 NM_002411 NM_002407 NM_002411 NM_022977 NM_022977 NM_02166 NM_002411 NM_022977 NM_0202974 NM_013376 NM_002407 NM_002407 NM_0013376 NM_002575 NM_002575 NM_002631 NM_01432 NM_015001 NM_005412 AB014600 NM_006930 NM_006301 NM_006301 NM_006301 NM_0036930 NM_003069 NM_003070	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261 AF073519 NM_0012609 BX640597 NM_003011 NM_012432 NM_015001 NM_001678 AK055053 NM_015260 NM_006930 AK092094 AB209607 NM_003069	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.5243 Hs.524899 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.302728 Hs.32567 Hs.534293 Hs.514913 Hs.558463 Hs.75069 Hs.13999 Hs.171626 Hs.496658 Hs.419240 Hs.12292	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q31.22 11q13 1q21 19913.1-q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3 18q21.3 1923.1 1934.3 1921.3 1931 5q31 Xq24-q26 12p13.3 Xq25 9p22.3
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCGB2A2 SCCB2A1 SCGB2A2 SCCB2A1 SCGB2A2 SCCB2A1 SCGB2A2 SCRPA SCUBE2 SERTAD1 SERPINA3 SERPINB2 SERPINB3 SERPINB5 SET SETDB1 SPEN WPDU1 SHNT2 SIN3B SKP1A SLC25A5 SLC2A3 SMARCA1 SMARCA2	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcriptional regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocata SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_006551 NM_002407 NM_002407 NM_002411 NM_002411 NM_002411 NM_002411 NM_013376 NM_004261 NM_002463 NM_0012432 NM_002575 NM_002639 NM_003011 NM_012432 NM_012432 NM_005412 AB014600 NM_005930 NM_0030670 NM_003077	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 Bl819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 AK074652 NM_0010451 AF073519 NM_0012432 NM_015001 NM_015001 NM_001678 AK092094 AB209607 NM_00306930 AK092094 AB209607 NM_0030693	Hs.127059 Hs.516484 Hs.557609 Hs.557609 Hs.275243 Hs.52439 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.301048 Hs.301048 Hs.362728 Hs.32567 Hs.534293 Hs.514913 Hs.55279 Hs.436687 Hs.75069 Hs.171626 Hs.171626 Hs.171626 Hs.496658 Hs.419240 Hs.12292 Hs.299900 Hs.3068	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q13.3 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19q13.1-q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3 18q21.3 9q34 1q21 1p36.33-p36.11 17p13.1-p12 12q12-q14 19p13.11 5q31 Xq24-q26 12p13.3 Xq25 9p22.3 3q25.1-q26.1
RUNX2 SCGB1C1 \$100A2 \$100A4 \$100A6 \$AP18 \$AP30 \$CGB1A1 \$CGB1D2 \$CGB2A1 \$CGB2A1 \$CGB2A2 \$CGB2A2 \$CGB2A2 \$CH1L \$ERTAD1 \$ERTAD1 \$ERTAD1 \$ERTAD1 \$ERTIA1 \$ERP15 \$ERTIA2 \$ERPINA3 \$ERPINA3 \$ERPINB2 \$ERPINB5 \$ETDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERPINB5 \$ERT \$ERDB1 \$ERD	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 StearoyI-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serpine peytidase inhibitor, serve 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocat Solute carrier family 2 (facilitated glucose transporter), member 3 SW/SNF related, matrix associated, actin dependent regulator of chromatin SW/SNF related, matrix associated, actin dependent regulator of chromatin	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_014624 NM_014706 NM_024906 NM_003357 NM_006551 NM_002407 NM_002407 NM_002407 NM_002407 NM_002407 NM_002407 NM_002407 NM_002407 NM_002407 NM_002977 NM_020974 NM_0012420 NM_0012450 NM_002575 NM_002639 NM_002639 NM_005412 AB014600 NM_001040 NM_005412 AB014600 NM_005412 AB014600 NM_005412 AB014600 NM_00531 NM_003070 NM_003071 NM_003072	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_002977 NM_020974 AK074652 NM_004261 AF073519 NM_00185 BC012609 BX640597 NM_003011 NM_01678 AK055053 NM_01678 AK055053 NM_01678 AK092094 AB209607 NM_003069 X72889 BC044659 NM_003072	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.52433 Hs.524399 Hs.591715 Hs.584842 Hs.27372 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.301048 Hs.302728 Hs.32567 Hs.534293 Hs.5534293 Hs.5534293 Hs.5534293 Hs.5534687 Hs.558463 Hs.78658 Hs.78659 Hs.171626 Hs.496658 Hs.419240 Hs.152292 Hs.208890 Hs.152292	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q34.1 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19913.1-q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21 12q12-q14 19p13.11 5q31 Xq24-q26 12p13.3 Xq25 9p22.3 3q25.1-q26.1 19p13.2
RUNX2 SCGB1C1 SI00A2 S100A4 S100A6 SAP18 SAP30 SART3 SCCB1A1 SCGB1A1 SCGB2A2 SCH12 SCGB2A2 SCUBE2 SEH1L SERTAD1 SERFIA SERPINB2 SERPINB2 SETDB1 SPEN WPDU1 SHMT2 SIN3B SKC2A3 SMARCA1 SMARCA3 SMARCA4	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 18kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine hydroxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcriptional regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocata SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_003864 NM_014706 NM_003357 NM_0024906 NM_002407 NM_002977 NM_002977 NM_002977 NM_013376 NM_001385 NM_002651 NM_002977 NM_020974 NM_013376 NM_001085 NM_002659 NM_002639 NM_002639 NM_005412 AB014600 NM_006930 NM_001152 NM_003070 NM_003071 NM_003072 NM_003071	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 Bl819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 AK074652 NM_0010451 AF073519 NM_0012432 NM_015001 NM_015001 NM_001678 AK092094 AB209607 NM_00306930 AK092094 AB209607 NM_0030693	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.5243 Hs.52439 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.46452 Hs.2319 Hs.523468 Hs.301048 Hs.362728 Hs.32567 Hs.534293 Hs.514913 Hs.5279 Hs.436687 Hs.534493 Hs.758463 Hs.75069 Hs.13999 Hs.171626 Hs.419240 Hs.4192240 Hs.152292 Hs.298990 Hs.327527 Hs.327527 Hs.5348489	11p15.5 1q21 1q21 1q21 13q12.11 4q34.1 12q24.1 4q21.22 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19g31 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21 1p56.33-p36.11 17p13.1-p12 12q12-q14 19p13.11 5q31 Xq24-q26 12p13.3 Xq25 9p22.1-q26.1 19p13.2 4q31.1-q31.2
RUNX2 SCGB1C1 S100A2 S100A4 S100A6 SAP18 SAP30 SART3 SCD5 SCGB1A1 SCGB2A1 SCGB2A1 SCGB2A2 SCH9A SCUBE2 SERTAD1 SERPINA3 SERPINB5 SET SERPINB2 SERPINB3 SERPINB5 SET SUL25A5 SLC25A5 SLC25A5 SMARCA1 SMARCA2 SMARCA3	Secretoglobin, family 1C, member 1 S100 calcium binding protein A2 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, r S100 calcium binding protein A6 (calcyclin) Sin3A-associated protein, 18kDa Sin3A-associated protein, 30kDa Squamous cell carcinoma antigen recognised by T cells 3 Stearoyl-CoA desaturase 5 Secretoglobin, family 1A, member 1 (uteroglobin) Secretoglobin, family 1D, member 2 Secretoglobin, family 2A, member 1 Secretoglobin, family 2A, member 2 Secretoglobin, family 2A, member 2 Sodium channel, voltage-gated, type IX, alpha Signal peptide, CUB domain, EGF-like 2 SERTA domain containing 1 15 kDa selenoprotein Small EDRK-rich factor 1A (telomeric) Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), mer Serpin peptidase inhibitor, clade B (ovalbumin), member 5 SET translocation (myeloid leukemia-associated) SET domain, bifurcated 1 Spen homolog, transcriptional regulator (Drosophila) Mannose-P-dolichol utilization defect 1 Serine pydoxymethyltransferase 2 (mitochondrial) SIN3 homolog B, transcription regulator (yeast) S-phase kinase-associated protein 1A (p19A) Solute carrier family 2 (facilitated glucose transporter), member 3 SW/SNF related, matrix associated, actin dependent regulator of chromatin SW/SNF related, matrix associated, actin dependent regulator of chromatin	NM_145651 NM_005978 NM_002961 NM_014624 NM_014624 NM_013870 NM_014706 NM_003864 NM_014706 NM_003357 NM_0024906 NM_0024906 NM_002407 NM_002411 NM_002977 NM_0202974 NM_013376 NM_0013376 NM_0021967 NM_002575 NM_002575 NM_002575 NM_003011 NM_012432 NM_0126001 NM_005412 AB014600 NM_006930 NM_003070 NM_003070 NM_003691 NM_003601 NM_003601 NM_003601 NM_003070 NM_003071 NM_003071 NM_003601 NM_003601	BX098294 BU589956 CF619147 BM904612 AK126385 BC016757 CR933631 AF389338 BI819219 BP314377 CB957406 BC067220 NM_002977 NM_020974 NM_031216 AK074652 NM_004261 AF073519 NM_004261 AK074652 NM_001085 BC012609 BX640597 NM_012432 NM_015001 NM_015260 NM_001678 AK055053 NM_005904 AB209607 NM_003069 X72889 BC044659 NM_003072 NM_003072	Hs.127059 Hs.516484 Hs.557609 Hs.57609 Hs.52433 Hs.524399 Hs.591715 Hs.584842 Hs.379191 Hs.523732 Hs.204096 Hs.97644 Hs.24652 Hs.2319 Hs.46452 Hs.3219 Hs.523468 Hs.301048 Hs.301048 Hs.32677 Hs.534293 Hs.5534293 Hs.5534293 Hs.5534293 Hs.5534687 Hs.558463 Hs.78658 Hs.171626 Hs.496658 Hs.419240 Hs.152292 Hs.298990 Hs.152292 Hs.327527	11p15.5 1q21 1q21 13q12.11 4q34.1 12q24.1 4q34.1 11q12.3-q13.1 11q13 11q13 11q13 11q13 11q13 11q13 11q13 2q24 11p15.3 18p11.21 19913.1-q13.2 1931 5q12.2-q13.3 14q32.1 18q21.3 9q34 1q21 12q12-q14 19p13.11 5q31 Xq24-q26 12p13.3 Xq25 9p22.3 3q25.1-q26.1 19p13.2


SMARCD1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin			Hs.79335	12q13-q14
SMARCD2	SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_003077	NM_003077	Hs.250581	17q23-q24
SMARCD3	SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_003078		Hs.44445	7q35-q36
SMARCE1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin	NM_003079	BC069196	Hs.547509	17q21.2
ARID1A	AT rich interactive domain 1A (SWI- like)	NM_006015	NM_006015	Hs.468972	1p35.3
SNAI1	Snail homolog 1 (Drosophila)	NM_005985		Hs.48029	20q13.1-q13.2
SNAI2	Snail homolog 2 (Drosophila)	NM_003068	NM_003068	Hs.360174	8q11
SNAI3	Snail homolog 3 (Drosophila)	AY203928	BX640980	Hs.499548	16q24.3
SNRPN	Small nuclear ribonucleoprotein polypeptide N	NM_005678	U81001	Hs.564847	15q11.2
SNW1	SNW domain containing 1	NM_012245	AF045184	Hs.546550	14q24.3
SOS1	Son of sevenless homolog 1 (Drosophila)	NM_005633	L13857	Hs.278733	2p22-p21
C14orf138	Chromosome 14 open reading frame 138	NM_024558	BX247997	Hs.558541	14q22.1
QSCN6L1	Quiescin Q6-like 1	NM_181701	NM_181701	Hs.144073	9q34.3
SP1	Sp1 transcription factor	XM_028606	BQ774060	Hs.620754	12q13.1
SPRR2C	Small proline-rich protein 2C	NM_006518	M21539	Hs.592363	1q21-q22
STAT3	Signal transducer and activator of transcription 3 (acute-phase response fac	NM_139276	NM_012448	Hs.463059	17q21.31
STAT5A	Signal transducer and activator of transcription 5A	NM_003152	NM_003152	Hs.437058	17q11.2
STAT3	Signal transducer and activator of transcription 3 (acute-phase response fac	NM_012448	NM_012448	Hs.463059	17q21.31
STK11	Serine/threonine kinase 11	NM_000455	AB209553	Hs.515005	19p13.3
STK11	Serine/threonine kinase 11	NM_000455	AB209553	Hs.515005	19p13.3
URKA	Aurora kinase A	NM_198433	NM_198433	Hs.250822	20q13.2-q13.3
STRBP	Spermatid perinuclear RNA binding protein	NM_018387	NM_018387	Hs.287659	9q33.3
STXBP3	Syntaxin binding protein 3	NM_007269	NM_007269	Hs.530436	1p13.3
SULT1A1	Sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1	NM_177534	AB209149	Hs.567342	16p12.1
SURB7	SRB7 suppressor of RNA polymerase B homolog (yeast)	NM_004264	NM_004264	Hs.286145	12p11.23
ACC1	Transforming, acidic coiled-coil containing protein 1	NM_006283	CR933618	Hs.279245	8p11
AF3	TAF3 RNA polymerase II, TATA box binding protein (TBP)-associated facto	BC028077		Hs.527688	10p15.1
CL6	T-cell leukemia/lymphoma 6	NM_012468		Hs.510368	14q32.1
ΈK	TEK tyrosine kinase, endothelial (venous malformations, multiple cutaneous	NM_000459		Hs.89640	9p21
CD248	CD248 molecule, endosialin	NM_020404		Hs.195727	11q13
FDP1	Transcription factor Dp-1	NM_007111	NM_007111	Hs.79353	13q34
FDP2	Transcription factor Dp-2 (E2F dimerization partner 2)	NM_006286		Hs.379018	3q23
TFF1	Trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in)	NM_003225		Hs.162807	21q22.3
TFF3	Trefoil factor 3 (intestinal)	NM_003226	BU536516	Hs.82961	21q22.3
ſGFA	Transforming growth factor, alpha	NM_003236	NM_003236	Hs.170009	2p13
GFB3	Transforming growth factor, beta 3	NM_003239	AK122902	Hs.592317	14q24
GFBR1	Transforming growth factor, beta receptor I (activin A receptor type II-like kir	NM_004612	NM_004612	Hs.494622	9q22
GFBR2	Transforming growth factor, beta receptor II (70/80kDa)	NM_003242	NM_001024847	Hs.82028	3p22
IN9	Lin-9 homolog (C. elegans)	NM_173083	BC045625	Hs.120817	1q42.12
HBS1	Thrombospondin 1	NM_003246	NM_003246	Hs.164226	15q15
HOC1	THO complex 1	NM_005131	AK055354	Hs.592342	18p11.32
TIE1	Tyrosine kinase with immunoglobulin-like and EGF-like domains 1	NM 005424		Hs.78824	1p34-p33
TIMP3	TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflamn	NM 000362	AB051444	Hs.297324	22q12.1-q13.2 22c
FIMP3	TIMP metallopeptidase inhibitor 3 (Sorsby fundus dystrophy, pseudoinflamn	NM 000362	AB051444	Hs.297324	22q12.1-q13.2 22q
TMEM2	Transmembrane protein 2	NM_013390	AF137030	Hs.494146	9q13-q21
TNF	Tumor necrosis factor (TNF superfamily, member 2)	NM_000594		Hs.241570	6p21.3
TNFRSF10B	Tumor necrosis factor receptor superfamily, member 10b	NM 003842		Hs.521456	8p22-p21
TNFRSF4	Tumor necrosis factor receptor superfamily, member 4	NM_003327		Hs.129780	1p36
FAS	Fas (TNF receptor superfamily, member 6)	NM_000043	AB209361	Hs.244139	10q24.1
INFSF10	Tumor necrosis factor (ligand) superfamily, member 10	NM 003810	NM_003810	Hs.478275	3q26
INFSF11	Tumor necrosis factor (ligand) superfamily, member 11	NM 003701		Hs.333791	13q14
ASLG	Fas ligand (TNF superfamily, member 6)	NM 000639		Hs.2007	1q23
NRC4	Trinucleotide repeat containing 4	NM 007185		Hs.26047	1q21
TOP1	Topoisomerase (DNA) I	NM_003286		Hs.592136	20q12-q13.1
TOP2A	Topoisomerase (DNA) II alpha 170kDa	NM_001067		Hs.156346	17q21-q22
TOP2B	Topoisomerase (DNA) II beta 180kDa	NM 001068		Hs.475733	3p24
ГОРЗВ	Topoisomerase (DNA) III beta	NM_003935		Hs.436401	22q11.22
TOPBP1	Topoisomerase (DNA) II binding protein 1	NM_007027		Hs.53454	3q22.1
P53	Tumor protein p53 (Li-Fraumeni syndrome)	NM_000546		Hs.408312	17p13.1
P53BP1	Tumor protein p53 binding protein, 1	NM 005657		Hs.440968	15q15-q21
P53BP2	Tumor protein p53 binding protein, 2	NM 005426		Hs.523968	1q42.1
P53I3	Tumor protein p53 inducible protein 3	AF010309		Hs.50649	2p23.3
RAF1	TNF receptor-associated factor 1	NM_005658		Hs.531251	9q33-q34
REX1	Three prime repair exonuclease 1	NM_033627	NM_033627	Hs.344812	3p21.3-p21.2
ISC2	Tuberous sclerosis 2	NM_000548		Hs.90303	16p13.3
TUBB1	Tubulin, beta 1	NM_030773		Hs.592143	20q13.32
JBE3A	Ubiquitin protein ligase E3A (human papilloma virus E6-associated protein,	NM_130839		Hs.22543	15q11-q13
JCHL5	Ubiquitin protein ligase ESA (numan papilionia virus Eo-associated protein, Ubiquitin carboxyl-terminal hydrolase L5	NM_015984		Hs.591458	1q32
JNC5B	Unc-5 homolog B (C. elegans)	NM_015984		Hs.585457	10q22.1
JNG2	Uracil-DNA glycosylase 2	NM_021147		Hs.3041	5p15.2-p13.1
JSP1	Ubiquitin specific peptidase 1	NM_003368		Hs.35086	1p31.3
/EGF	Vascular endothelial growth factor	NM_003376		Hs.73793	6p12
RASL10B	RAS-like, family 10, member B	NM_033315		Hs.437035	17q12
VEE1	WEE1 homolog (S. pombe)	NM_003390		Hs.249441	11p15.3-p15.1
VIG1	P53 target zinc finger protein	NM_022470		Hs.386299	3q26.3-q27
VISP1	WNT1 inducible signaling pathway protein 1	NM_003882		Hs.492974	8q24.1-q24.3
VISP1 VISP2	WNT1 inducible signaling pathway protein 2	NM_003881		Hs.592145	20q12-q13.1
VNT1	Wingless-type MMTV integration site family, member 1	NM_005430		Hs.248164	12q13
VNT10B	Wingless-type MMTV integration site family, member 1 Wingless-type MMTV integration site family, member 10B	NM_005430 NM_003394		Hs.248164 Hs.91985	
VNT2B	Wingless-type MMTV integration site family, member 10B Wingless-type MMTV integration site family, member 2B	NM_003394 NM_004185		Hs.258575	12q13 1p13
VNT3	Wingless-type MMTV integration site family, member 3	NM_030753		Hs.591180	17q21
VNT3A	Wingless-type MMTV integration site family, member 3A	NM_033131		Hs.336930	1q42
VNT4	Wingless-type MMTV integration site family, member 4	NM_030761		Hs.591521	1p36.23-p35.1
VNT5A	Wingless-type MMTV integration site family, member 5A	NM_003392		Hs.561260	3p21-p14
VNT5B	Wingless-type MMTV integration site family, member 5B	NM_032642		Hs.306051	12p13.3
VNT6	Wingless-type MMTV integration site family, member 6	NM_006522		Hs.29764	2q35
VNT7A	Wingless-type MMTV integration site family, member 7A	NM_004625		Hs.72290	3p25
VNT8A	Wingless-type MMTV integration site family, member 8A	NM_058244		Hs.591274	5q31
			B B B 4 B 4 B 4	LIA E01000	11012
VT1	Wilms tumor 1	NM_024426		Hs.591980	11p13
WT1 DNAH1	Wilms tumor 1 Dynein, axonemal, heavy polypeptide 1	NM_024426 AB037831		Hs.209786	3p21.1

GEO accesion number GPL5953

XRCC1	X-ray repair complementing defective repair in Chinese hamster cells 1	NM_006297	CR591751	Hs.98493	19q13.2
XRCC2	X-ray repair complementing defective repair in Chinese hamster cells 2	NM_005431	CR749256	Hs.591828	7q36.1
XRCC3	X-ray repair complementing defective repair in Chinese hamster cells 3	NM_005432	AK126706	Hs.592325	14q32.3
XRCC4	X-ray repair complementing defective repair in Chinese hamster cells 4	NM_022550	NM_022550	Hs.567359	5q13-q14
XRCC5	X-ray repair complementing defective repair in Chinese hamster cells 5 (dou	NM_021141	NM_021141	Hs.388739	2q35
YWHAE	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation proteir	NM_006761	NM_006761	Hs.513851	17p13.3
TRIM25	Tripartite motif-containing 25	NM_005082	NM_005082	Hs.528952	17q23.2
ZNF350	Zinc finger protein 350	NM_021632	NM_021632	Hs.407694	19q13.33

17/12/2007

Histological grade	62	62	63		62	I	I									63	61	62	62	62	63	62	63		63	62	62	61
BRCA1/2																												
Ĕ	NEG	NEG	NEG	POS	POS	NEG	NEG	POS	POS	POS	POS	NEG	POS	POS	POS	NEG	POS	POS	POS	POS	POS	NEG	NEG	POS	POS	POS	POS	NEG
ä	POS	NEG	NEG	POS	POS	NEG	NEG	POS	POS	POS	POS	POS	POS	POS	POS	NEG	POS	POS	POS	POS	POS	POS	NEG	POS	POS	POS	POS	POS
her2	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG
b23	NEG	NEG	NEG	SOd	NEG	POS	POS	NEG	NEG	NEG	NEG	NEG	NEG	POS	NEG	POS	NEG	NEG	POS	POS	SOd	SOd	SOd	NEG	POS	POS	POS	NEG
FINAL STATUS (VL=DISEASE-FREE, VE=WITH DISEASE)	VE	۲	VE	٨٢	Ч	01/07/2005-EXITUS	01/07/2005-EXITUS	ł	ł	ł	ł	ł	ų	۲	Ч	۲	Ч	ł	ł	ł	Ч	Ч	ł	Ч	ł	ł	ł	ĸ
RECURRENCE	SYSTEMICAL		SYSTEMICAL			PUNG	LUNG																					
DATE OF RECURRENCE	01/09/2003	Ŋ	01/06/2005	QN	QN	01/10/2003	01/10/2003	QN	QN	N	QN	QN	Q	QN	QN	Q	Q	Q	Q	Q	QN	Q	Q	Q	Q	Q	Q	N
TREATMENT (QT=chemotherapy, HT=hormone therapy)	aī	aī	QT NEOADJUVANT	aT	ат+нт	a	a	Ŧ	атнит	Ŧ	Ŧ	Ŧ	атнит		ат+нт	aī	атннт	ат+нт	Ŧ	атнит	ат+нт	Ŧ	aT	ат+нт	ат+нт	Ŧ	Ŧ	ат+нт
VASCULAR	QN	YES	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	YES	Q	Q	YES	YES	Q	Q	YES	Q	Q	Q
M (metastasis) + sites	OM	OM	QW	W	QW	¥	¥	QW	W	OM	QM	W	W	QW	W	OM	W	W	W	W	W	W	W	W	W	W	W	QM
N (Axilliary Lymph node status) + Number	N3	N2	Ξ	Q	Q	£	Σ	Ŷ	N2	Ξ	Ŷ	Q	Ξ	ON	Q	Z3	Q	٤	Q	Ŷ	Σ	Σ	Q	Ŷ	Q	Ŷ	Q	QN
T (Tumor size)	Т2	F	Ę	7	F	£	£	F	2	12	Ę	F	12	S	F	12	12	12	F	F	F	T4	F	F	F	£	£	4
MENOPAUSAL STATUS	PRE	POST	PRE	PRE	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST	PRE	POST	POST	PRE	POST	POST	POST	PRE	POST	POST	PRE
POST-QUIMO NEOADJUVANT	ON	Ŋ	Q	ON N	Q	N	Q	Q	Q	Ŋ	Q	Q	Q	Q	N	Ŷ	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Diagnose	Infikrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC) + Intraductal carcinoma	Infiltrating ductal carcinoma (IDC)	Infiltrating lobulillarl carcinoma (ILC)	Infiltrating ductal carcinoma (IDC)	Metaplasic carcinoma + Intraductal carcinoma	Metaplasic carcinoma + intraductal carcinoma	Infiltrating ductal carcinoma (IDC)	Infitrating ductal carcinoma (IDC) + Intraductal carcinoma	Infikrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Intraductal carcinoma	Infikrating ductal carcinoma (IDC) + Intraductal carcinoma	Intraductal carcinoma	Infiltrating ductal carcinomarcinoma (IDC)	Infikrante medular carcinoma (IMC)	Infiltrating ductal carcinoma (IDC)	Medular atypical carcinoma	Lobulillar carcinoma	Infiltrating ductal carcinoma (IDC)	Papilar carcinoma invasive (IPC)	Papilar carcinoma invasive (IPC)	Infiltrating ductal carcinoma (IDC)					
Age at diagnosis	38	65	51	49	67	84	84	73	57	83	81	63	54	58	61	52	5	8	82	55	6	28	8	6	84	62	62	5
nº clinical history	928837	107120	1107453	1061065	175284	330884	330884	421567	1077524	442621	610750	476285	539670	168150	991556	1087199	225014	107791	422591	463332	1137827	850976	47838	254821	138535	502904	502904	758269
No Biopsia	03B9690-T	03B3920	03B12106-T	02B8927	03B13019	03B9980-T	03B9980-T	03B1059	04B986	03B8737-T	02B8830-T/N	03B11058	03B213-A	02B8678	02B8725-T	03B3358	04B4839-A	04B5128-3	04B989	04B3507	04B1646-T	04B3805	04B1945	04B5421-2A	04B3820	04B1313-4TA	04B1313-4TB	04B2874
Sample ID Prediction Analysis Microarrays	PAM 2	PAM 2	AM 5 (BasaHike)	PAM 2	PAM 2	AM 5 (BasaHike)	AM 5 (BasaHike)	PAM 2	PAM3	PAM 2	PAM 3	PAM 2	PAM 2	PAM3	PAM 2	PAM 3	PAM 2	PAM3	PAM 3	PAM 2	PAM 2	PAM 2	PAM 2					
Sample ID M	R7540 P	R7545 P	R7553 P/	R7612 P	R7614 P	R7692 P/	R7693 P/	R7617 P	R7541 P/	R7906 P	R7904 P	R7939 P	R7946 P	R8150 P	R8153 P	R8403 P	R10101	R10103	R10104 P	R10105 P	R10107 P	R10108	R10109	R10112	R10113	R10115 P.	R10116	R10117 P
Date	01/02/2005	01/02/2005	01/02/2005	04/02/2005	04/02/2005	14/02/2005	14/02/2005	23/02/2005	01/03/2005	21/03/2005	08/04/2005	08/04/2005	08/04/2005	22/04/2005	22/04/2005	20/05/2005	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006	10/01/2006
Array ID	2 01	8 	4	5 04	6 04	14	8	53	1 0 9	12 21	13 08	14 08	15	17 22	18 73	20 20	2 70	23 10	24 10	25 10	26 10	27 10	28 10	29 10	30	31 10	32 10	33
Ā					I																							

Appendix A4: Clinical and histopathological patient data

QT = chemotherapy HT = hormone therapy

(-) unknown data

Appendix A4: Clinical and histopathological patient data

with with <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th></th<>																								1				
Norme Norm Norme Norme	8		6		63	63	63	G 3	6 3	8		6	63	63	6	63	62	62	6	63			G		6	62	62	62
Matrix Matrix<	NEG		POS	Pos	NEG	NEG	NEG	NEG	Pos	POS	POS	NEG	NEG	NEG	POS	NEG	NEG	POS	POS	NEG	NEG	POS	NEG		NEG	NEG	_	NEG
with the second of th			POS	SOd	NEG	NEG	NEG	NEG	POS	POS		POS	NEG	NEG	POS	NEG	POS	POS	POS		NEG	POS	NEG		NEG	POS	POS (LOW	POS
with original bands	3+/POLISOMIC O AMPLIFICADO		NEG	NEG	NEG	NEG	NEG	POS 3+	NEG	NEG	2+/NO AMPLIFICADO	NEG	NEG	NEG	NEG	NEG	NEG	NEG	NEG	3+/POLISOMIC 0 AMPLIFICADO	POS	NEG	NEG		NEG	NEG	NEG	NEG
with the interval of th	NEG		NEG	NEG	POS			POS	NEG	NEG	NEG	NEG	NEG	NEG	NEG		POS	POS 20%	NEG	NEG	NEG	NEG	SOA		POS (10%)		NEG	NEG
Wei wei wei wei in the second of th	۲		۲	٨٢	٨٢	EXITUS JULIO/2005	EXITUS JULIO2005	AE	۲	٨	٨٢	۲	VE	ΛE	Ϋ́		٨٢	٨٢	۲	٨٢		FEB 2007 EXITUS	۲		NO FOLLOW-UP	EXITUS AGOSTC 2007	٨٢	۲
International Internat						ILUNG	LUNG	LOCAL-CID								LIVER						VISCERAL				BONE		
Wet for the first in the first in the first interval in the first interval i	Q	:	Q	Q	Q	01/05/2004	01/05/2004	01/07/2007	Q	Ŷ	Ŷ	Ŷ	ō	ß	Q	07/06/2005	Ŷ	Q	Ŷ	Ŷ	NO FOLLOW-UP	01/09/2006	Q		NO FOLLOW-UP	01/10/2004	Ŷ	Q
With the interval of th	đ	!	QT+HT	토	at	ą	ę	b	QT+HT	토	атнт	토	ę	aT	토	þ	ę	атнт	토	ę	Q	атнит	đ			보	атнт	ат+нт
With the functional partial part of the function	Q.		Q	Ŷ	0 N	YES	YES	YES	YES	g	Q	Q	YES	YES	Q	YES	Q	Q	Q	Q	YES	YES	Q		Q	Q	Q	Q
1000 10000 10000 10000 10000 10000 10000 100000 1000000 100000 $1000000000000000000000000000000000000$	W		¥	W	W	W	QW	W	W	QW	W	W	OW	W	W	¥	W	W	QW	W	Ŵ	W	W		W	¥	W	W
International (a) Nut (10000)(1010)(1010)(1010)(1010)(1010) (1010)	Q	:	N	Q	N	N	٤	ž	ž	Q	Ð	QN	N2	Ş	Q	N3	N	MICRO	Q	Q	R	ON	N		Q	N	N	Ŋ
(11) (11)	13		F	F	Т2	ħ	F	F	12	13	F	F	T2	2	F	13	F	F	F	13	12	T4	12		13	T2	F	12
R627MAX (FORMES)GDI SQ2ATO3AGD<MINA (FORMES)MINA (FORMES)R628PMA2CDI SQ2AT7770CDCDMINA (FORMES) (TOTANIO MELLAST)R628PMA2CDI COMUL BELASTT7770CDCDMINA (FORMES) (TOTANIO MELLAST)R628PMA2CDENDE1T7700CDCDMINA (FORMES) (TOTANIO MELLAST)R628PMA2CDENDE1T7700CDCDMINA (FORMES) (TOTANIO MELLAST)R628PMA3CDENDE1T7400T7MINA (FORMES) (TOTANIO MELLAST)R628PMA3CDENDE1T7400T7MINA (FORMES) (TOTANIO MELLAST)R628PMA3CDENDE1T7400T7MINA (FORMES) (TOTANIO MELLAST)R628PMA3CDENDE1CDENDE1T7400TTO MINA (FORMES) (TOTANIO MELLAST)R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1R628PMA3CDENDE1CDENDE1CDENDE1CDENDE1	POST		POST	POST	POST	POST	POST	POST	POST	POST	POST	PRE	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST	POST		POST	POST	PRE	POST
REZT PAMA (FERERA) C0811535-1 71334 66 REZD PAMA (FERERA) C0811437-1 71334 66 REZD PAMA 2 C0811437-1 717406 71 REZD PAMA 2 C081046-1 717406 71 REZD PAMA 2 C081046-1 231909 66 REZD PAMA 2 C081047-1 71406 71 REZD PAMA 2 C081077-4 717406 71 REZD PAMA 2 C081077-4 717406 71 REZD PAMA 2 C081077-4 107 71 REZD PAMA 2 C081077-4 107 71 REZD PAMA 2 C081077-4 107 72 REZD PAMA 2 C081077-4 107 73 REGD PAMA 2 C081077-4 107 73 REZD PAMA 2 C081077-4 107 74 REZD PAMA 2 C081070-4 107607 74	Q	1	ON	QN	N	ON	QN	QN	QN	N	Q	ON	ON	ON	POST-QUIMO	ON	ON	ON	QN	Q	ON	POST-QUIMIO	ON		QN	ON	ON	QN
Re277 P.M.M. (ERREIS-) CER1:55-T 7.0334 R6276 P.M.M. (ERREIS-) CEB1:425-T 7.0334 R6280 P.M.2 CEB1:425-T 7.47106 R6280 P.M.2 CEB1:425-T 7.47106 R6280 P.M.2 CEB1:425-T 7.47106 R6280 P.M.3 CEB1:425-T 7.47106 R6280 P.M.3 CEB1:425-T 7.4906 R6280 P.M.3 CEB1:522-T 1007161 R6280 P.M.3 CEB1:522-T 1007161 R6280 P.M.3 CEB1:522-T 1017610 R6280 P.M.3 CEB1:522-T 1017610 R6280	Infiltrating ductal carcinoma (IDC)	NORMAL BREAST Infiltrating lobulilarl carcinoma (ILC) +	inmitrating iobuliliar carcinoma (ILC) + " <i>In situ</i> " lobuliliar carcinoma	Infiltrating ductal carcinoma (IDC) + Intraductal solid type	Infilkrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC) + "in situ" intraductal	Infiltrating ductal carcinoma (IDC)+ " <i>in situ</i> " intraductal	Infiltrating lobulillar carcinoma (ILC) + " <i>in situ</i> " ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)+Ca intraductal	Infiltrating ductal carcinoma (IDC) + Intraductal carcinoma	Infiltrating Iobuliliari carcinoma (ILC)	Infiltrating Iobulillari carcinoma (ILC)	Infiltrating ductal carcinoma (IDC)	Infiltrating Iobuliliari carcinoma (ILC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrante tubular carcinoma (ITC)	Infiltrating ductal carcinoma (IDC)	" <i>in situ</i> " lobuillar carcinoma	Infiltrating ductal carcinoma (IDC)	Infiktrating ductal carcinoma (IDC) + " <i>In situ</i> " intraductal carcinoma	NORMAL BREAST	Ductal carcinoma with apocrine differentiation + intraductal carcinoma	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)+ <i>"in situ</i> " intraductal carcinoma	Infiltrating ductal carcinoma (IDC) + "In situ" intraductal carcinoma
ReZT P.M.M. (ER083.) OEB11535 FT ReZD VORMAL BREAST DEB122344 ReZD PAMA (ER083.) DEB122344 ReZD PAMA (ER083.) DEB122344 ReZD PAMA (ER083.) DEB122344 ReZD PAMA (ER083.) DEB105.1 ReZD PAM3 (Ensatina) DEB175.1A ReZD PAM3 (Ensatina) DEB1752.1A ReZDS	99 5																69			99	82		82					26
ReZTT PAMA (ERCIRE >) REZTP PORMAL BREAST REZDS PORMAL BREAST REZDS PAMA 2 REZD PAMA 2 </td <td>70334</td> <td>70334</td> <td>747740</td> <td>1 064 204</td> <td>331909</td> <td>77 4806</td> <td>77 4806</td> <td>169883</td> <td>1027181</td> <td>1075673</td> <td>938536</td> <td>1018280</td> <td>640770</td> <td>640770</td> <td>113450</td> <td>133240</td> <td>39012</td> <td>924333</td> <td>958835</td> <td>70334</td> <td>12424</td> <td>499276</td> <td>84794</td> <td>1131458</td> <td>1131458</td> <td>1077899</td> <td>300752</td> <td>335.30</td>	70334	70334	747740	1 064 204	331909	77 4806	77 4806	169883	1027181	1075673	938536	1018280	640770	640770	113450	133240	39012	924333	958835	70334	12424	499276	84794	1131458	1131458	1077899	300752	335.30
Re2377 Re2379 Re2320 Re2321 Re2322 Re2323 Re2324 Re2323 Re2323 Re2323 Re2323 Re2323 Re2323 Re2323 Re	02B11538-T	02B12222-N	02B11437-T	02B10486	02B1020-1	02B478-TA	02B478-TB	02B5853-T	02B1757-A	02B12222-T	02B10780	02B10550-A	02B8601-T	02B8601-T	02B5536-T	02B11630-T	02B11964-T	02B3203-T	02B11349-T	02B11538-T	03B3918	03B8192-T	03B6280-T	03B13956-N	03B13956-T	03B1070-T	03B2680-T	03B13006
Re2275 Re2275 Re2226 Re226 Re236 Re23	PAM4 (ERBB2+)	NORMAL BREAST	PAM 2	PAM 2	PAM 3	PAM 5 (BasaHike)	PAM 5 (BasaHike)	PAM 3	PAM 2	PAM 2	PAM 2	PAM 3	PAM 3	PAM 3	PAM 3	PAM 3	PAM 3	PAN4 (69682+)	PAM 3	PAM 4 (ERBB2+)	PAM 4 (ERBB2+)	PAM 2	PARA (616824)	NORMAL BREAST	PAM 3	PAM 3	PAM 3	PAM 3
68.0772004 08.0772004 13.0172005 13.017205 13.01		R6279	R6282	R6283		R6254	R6255	R6265	R6267	R6280	R6285	R6345		R7140		R7143		R7176		R7156	R7322	R7328		R7334		R7343		R7347
	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/10/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	08/07/2004	03/12/2004	03/12/2004	03/12/2004	13/01/2005	13/01/2005	13/01/2005	13/01/2005	13/01/2005	13/01/2005	13/01/2005	13/01/2005
35 36 37 36 36 33 37 36 36 41 41 41 4 4 4 4 4 4 4 4 5 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5	35	8	37	38	39	40	4	42	43	44	45	46	47	48	64	20	5	52	53	54	55	26	57	28	20	09	5	6

Appendix A4: Clinical and histopathological patient data

							-			1																	
62	63	62	T	5	62	62	_	62	63	5	8	5	62	5	63	63	62	63		6	62	62	63	63	62	6	6
BRCA2																											
NEG	9 NEG	s NEG	3 NEG	S POS	Solos	POS		s Pos	s Pos	S POS	9 NEG	POS	NEG	POS	9 NEG	3 NEG	S POS	9 NEG	NEG	POS	NEG	POS	3 NEG	NEG	POS	POS	s Pos
NEG	NEG	POS	NEG	POS	POS	NEG	-	SOA	POS	POS	NEG	+ NEG	POS	POS	NEG	NEG	POS	NEG	POS	POS	POS	IICO POS	NEG	NEG	POS	POS	POS
NEG	NEG	NEG	NEG	NEG	NEG	NEG	-	NEG	NEG	NEG	NEG	NEG/1+	NEG	NEG	NEG	\$	NEG	NEG	NEG	NEG	3++	NEG- POLISOMICO	NEG	NEG	NEG	NEG	NEG
POS	POS	JUNE- NEG	DEC-2006 POS	NEG	NEG	NEG	-	NEG	NEG	NEG	POS	NEG	NEG	NEG	POS	NEG	NEG	POS	NEG	NEG	NEG	NEG	SOd	POS	NEG	NEG	NEG
۲	۲	EXITUS JU 2007	EXITUS DEC	Å	Ч	۲		۲	۲	Y	Ч	۲	Ч	۲	Å	EXITUS APRIL/2007	Å	Ł	۲	¥		·	I	I			
		BONE and LIVER	LOCAL, GANGLIONAR AND EY PLEURAL													VISCERAL & CNS											
Ŷ	Q	JUNE-2005	FEBRUARY/2005 0	Q	Q	Q	1	Q	Q	Q	Q	Q	Q	Q	Q	19/09/20.06	Q	Q	QN	Q			1	I			
			E				-														ž		5	5			
đ	ат	ат+нт	aT	Ŧ	QT+HT	토		QT+HT	QT+HT	토	I	Ŧ	ат+нт	노	ę	aT	QT+HT	러	ат+нт	QT+HT	QT+HT+HERCEPTIN	QT+HT	QT NEOADJUVANT	QT NEOADJUVANT	QT+HT	Ŧ	ат+нт
Q	Ŋ	Ŋ	I	Q	Q	YES	_	YES	Q	Q	Q	Q	Q	Q	Q	YES	YES	Q	ON	Q	YES	Ŋ	Ŋ	Q	YES	Q	Q
Ŵ	W	W	W	Ŵ	W	Ŵ		OM	W	Ŵ	Ŵ	W	Ŵ	W	W	Ŵ	¥	¥	OW	W	QW	Ŵ	W	W	QW	ow	W
Ŷ	QN	Ŋ	£	Ŷ	R3	Ŷ	-	ĩ	¥	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Q	QN	¥	Q	Ŷ	Q	Ŷ	Ξ	Q	Ŷ
12	F	12	12	F	12	F	-	£	12	F	F	F	12	12	F	12	12	12	12	12	F	12	Ŧ	F	F	7	F
POST	•	POST	POST	POST	POST	POST	-	POST	PRE	POST	POST	I	POST	POST	POST	I	POST	I	POST	PRE	PRE	POST	POST	POST	POST	POST	POST
								ANT																			
Ŷ	ON N	N	N N	о N	Q	Ŷ		POST-QUIMIO NEOADJUVANT	Ŷ	Q	ON N	Q	N	Q	Ŷ	N	Ŷ	Ŷ	ON ()	о Р	Ca	N	N	<u>р</u>	Q.	ON 1	о <u>х</u>
cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	celullar neuroendocrine carcinoma	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)		cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	nfikrating lobulillar carcinoma (ILC)	cinoma (IDC)	Infiltrating ductal carcinoma (IDC)+Ca intraductal no infilt	cinoma (IDC)	cinoma (IDC)	cinoma (IDC)	Infikrating ductal carcinoma (IDC) + " <i>in situ</i> " intraductal carcinoma	Infiltrating ductal carcinoma (IDC) + " <i>in situ</i> " intraductal carcinoma	cinoma (IDC)
Infikrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	neuroendocr	Infiltrating ductal carcinoma (IDC)	nfikrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	NORMAL BREAST	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infikrating ductal carcinoma (IDC)	Infikrating ductal carcinoma (IDC)	nfiltrating ductal carcinoma (IDC)	Infikrating ductal carcinoma (IDC)	Infikrating ductal carcinoma (IDC)	Infikrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	ing lobulillar o	Infikrating ductal carcinoma (IDC)	ing ductal car ctal no infilt	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	ing ductal car " intraductal c	ing ductal car	Infikrating ductal carcinoma (IDC)
Infikrat	Infiltrat	Infiltrat	celullar	Infikrat	Infikrat	Infikrat	NORM	Infikrat	Infikrat	Infikrat	Infiltrat	Infikrat	Infiltrat	Infikrat	Infikrat	Infikrat	Infikrat		Infikrat	Infikrat	Infiltrat intradu	Infikrat	Infikrat	Infikrat	Infikrat " in situ	Infikrat "in situ	Infikrat
23	57	60	62	78	72	99	99	99	41	67	23	54	99	72	73	51	6	56	60	41	42	4	99	99	64	13	28
1048947	852308	1155409	698695	028006	1161192	533215	1146211	1146211	403695	787895	1052080	510624	91985	116521	787007	1295730	90 299 5	319722	785120	730344	229461	529783	804492	804492	1089948	1269742	1038941
03B6680-T	04B6078	04B7412	04B7426	04B7479	04B8335	04B8509	04B8755-N	04B8755-T	04B8846	04B8940-3	04B9287	04B9474	04B9489	04B9669	05B11983	05B12298	05B12684-1	05B1274-T	05B1287-T	05B13766-1	05B1879-T-B	05B2482	05B3194-T2	05B3194-T1	0583232	05B3262	0584217
PAM 5 (BasaHike)	PAM 5 (BasaHike)	PAM 1	PAM 5 (BasaHike)	PAM 1	PAM 1	PAM 1	NORMAL BREAST	PAM 1	PAM 1	PAM 1	PAM 5 (BasaHike)	PAM 1	PAM 2	PAM 1	PAM 5 (BasaHike)	PAM 5 (BasaHike)	PAM 1	o AM 5 (Basa Hike)	PAM 1	PAM 1	PAM 3 (64%)	PAM 3 (76%)	• AM 5 (100%)	PAM 5 (100%)	PAM 2 (75%)	PAM 3 (67%)	PAM 3 (94%)
R7351 P	R12849	R12853	R12854 P	R12856	R12860	R12861	R13626	R13627	R13628	R13629	R13630	R13631	R13632 F	R13633	R13713 P	R13714 P	R13715 F	R13719 P	R13721 F	R13722	R15301 P	R15302 P	R15303 P	R15304 P	R15305 P	R15306	R15307 P
13/01/2005	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	15/03/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21,06/2007	21/06/2007	21/06/2007
63	64 15	65 15	66 15	67 15	68 15	69	70 15	71 15	72 15	73 15	74 15	75 15	76 15	77 15	78	79 15	80	81 15	82 15	83	84 21	85	86 21	87 21	88	89	90 21
L		1	1	1	1	I	I	I	I	1		I		I		I	1	1									

17/12/2007

VL = disease-free VE = with disease

(-) unknown data

Appendix A4: Clinical and histopathological patient data

•	•		63	•		6	63	6	•	6	63	63	63			<u>e</u> 3	62	-	G3	62	•	62	62	62	G	9
NEG	NEG		NEG	POS		POS	Pos	POS	Pos	Pos	Pos	NEG	NEG	POS	POS	NEG	POS		NEG	POS	Pos	NEG	POS	Pos	Pos	POS
N	NEG		NEG	e Soq		POS	POS	POS	POS	POS	d SO4	N	NEG	e SO4	POS	NEG	POS		NEG	POS	d SO4	N	d SO4	POS	POS	POS
NEG	3+++		NEG	NEG		3+AMPLIFICA DO FISH	NEG	NEG	NEG	NEG	2+AMPLIFICA DO	NEG1+	3+AMPLIFICA DO FISH	NEG	NEG	NEG	NEG		NEG	NEG	NEG	NEG	NEG 1+	NEG	NEG	NEG
NEG	NEG		NEG	NEG		NEG 3+1	NEG	NEG	NEG	NEG	NEG 2+1	SOd	NEG 3+	POS	NEG	POS	NEG	-	POS		NEG	NEG	NEG	NEG	POS	NEG
VE	VE		I													ı			I							
LUNG and GANGLIONAR	LUNG and GANGLIONAR																									
01/04/2007	01/04/2007		I							Q	Q		Q	Q	Q	Q	Q	a	Q	Ŷ	Q	Q	Q	Q	Q	Q
QT+HT	QT+HT		aī	QT+HT		QT+HERCEPTIN+HT	QT + HT	QT+HT	QT+HT	Ŧ		ат+ нт	QT+HT+HERCEPTIN	QT+HT	Ŧ	aī	QT+HT		b	QT+HT	QT+HT	QT+HT	QT+HT	QT+HT	QT+HT	QT+HT
Ŷ	Q		N	Q		Q	YES	Q	Ŷ	Ŷ		Q	YES	YES	Ŷ	I	Ŷ	ļ	YES	YES	YES	YES	YES	YES	YES	Ŷ
QW	W		W	W		QW	¥	Ŵ	¥	¥	¥	¥	Ŵ	Ŵ	Ŵ	W	W	-	W	¥	¥	Ŵ	¥	Ŵ	¥	Ŵ
QN	0N		ž	0N		ž	Z	ž	ž	Ŷ	Ŷ	Ŷ	¥	R	Ŷ	ž	Ŷ	-	ž	Σ	£	Æ	£	Ŷ	ž	Ŧ
F	Ę		£	13		T3	1	F	12	F	F	F	12	13	1	F	12		T3	F	F	12	F	F	12	F
POST	POST		POST	POST		PRE	POST	PRE	POST	POST	POST	POST	POST	PRE	POST	POST	POST		POST	POST	POST	POST	POST	PRE	POST	PRE
Q	ON		ON	ON		ON	Q	Q	Q	Q	Q	Q	Q	Q	Q	ON	Q		Ŷ	Q	Q	Q	Q	Q	Q	Q
Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	NORMAL BREAST	Infikrating ductal carcinoma (IDC)	Infiltrating lobulillar carcinoma (ILC)	NORMAL BREAST	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Infiltrating lobuilillari carcinoma (ILC)	Infiltrating ductal carcinoma (IDC)	Infiltrating lobulillarl carcinoma (ILC)	Infiltrating lobulillarl carcinoma (ILC)	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	NORMAL BREAST	Infiltrating ductal carcinoma (IDC)	Infiltrating ductal carcinoma (IDC)	Mucinous carcinoma	Infiltrating ductal carcinoma (IDC)							
28	58		62	59	34	34	74	46	60	60	67	63	50	47	76	61	72	75	75	74	74	89	72	36	68	52
1029905	1 029 905	834974	756733	789865	799616	799616	136483	1069288	858200	653988	878199	1284355	1293585	1101319	427209	1 289 294	294780	202854	202854	144369	1301901	39236	1249812	1263134	633021	442435
04B6939-T1	04B6939-T2	05B4526-1N	05B5491	05B5735-1T	05B5750-N	05B5750-T	05B6615-1	05B14082	05B14109-2	05B8816-3	05B7791-T	05B6910	05B8038	05B8169	05B6946	05B7801-T	05B9232-1T	05B9085-1N	05B9085-1T	05B9712-T	05B9882	05B966	05B981	05B8909-1	06B10736-2	06B10729-2
PAM 1 (91%)	PAM 1 (64%)	PAM 6 (100%)	PAM 5 (100%)	PAM 1 (100%)	PAM 6 (100%)	PAM1 (50%)	UNCLASSIFIED	PAM 3 (95%)	PAM 3 (96%)	PAM 3 (100%)	PAM 3 (79%)	PAM 4 (50%)	PAM 3 (99%)	P AM 3 (99%)	PAM 3 (94%)	PAM 5 (100%)	PAM 3 (77%)	PAM 6 (99%)	PAM 5 (100%)	PAM 2 (100%)	PAM 2 (73%)	PAM 1 (97%)	PAM 1 (100%)	PAM 1 (56%)	PAM 1 (94%)	PAM 1 (91%)
R15308	R15309	R15326	R15328	R15330	R15331	R15332	R15333	R15334	R15335	R15336	R15371	R15372	R15374	R15375	R15376	R15378	R15398	R15399	R15400	R15401	R15402	R15404	R15405	R15406	R15407	R15408
21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007	21/06/2007
5	92	93	94	95	96	97	8	66	6	ē	ĝ	1 8	104	105	90	107	6	109	5	Ē	Ę	13	114	115	116	44

orimers
qPCR
al Time
t of Re
A5: Lis
Appendix

		Aliacoc																
Symbol	Name		UGCluster L	LLID UGR	UGRepAcc Cyt	toband RefS	eq transcrip	RefSeq transcript size (bp primer start (bp) enghtm (°C) gc%	r start (bp)	enghtm (°C)	gc% any	ccr 3' cor I	any ccr 3' cor repeat oligo sequence	duence	Oligo Name F	product size (bp) localization (CDS	ocalization (CDS	intron size
ACTN1	Antinin data 4	ACTN1 ACTININ, ALPHA-1 alphæactinin 1 Actinin, alpha 1	Hs.509765	87 BX6	BX641076 14q2	14q24.1-q24.2 NM_001102		3398	1730			007	11 00 20000	to see to see of	ACTNI 1-64	231	11	1112
								right	1968	20 60.09	50 2.00	000	11.00 gatggttg	gatggttgtgtaggggftgg	ACTN1-right		exon 15	
GAPD	Chrone Mahuda-2-nh an heta	IIG 3PDIIMGC88685[11.2.1.12][GA PDIIG APDHI]Glyceraldehyde-3- phosphate dehydropenaseIIOC AS. p.38 COMPONENTIIOCT1	Hs.544577	2597 BF9	BF983396 1	12p13 NM_002046		1310								238		1632+90+129
	dehydrogenase	COACTIVATOR IN S PHASE, 38-KD COMPONENTI						left	122	20 59.97	50 3.00	0.0	10.00 gagtcaa	gagtcaacggatttggtcgt	GAPD-left		exon 2-exon3	
MRPL19		MRPL19 mitochondrial ribosomal protein L19	Hs.44024 9	9801 BF2	BF242952 2q11	2q11.1-q11.2 NM 014763		1347	800					וואמוווואאמאאאמיכורא		197	0 1000	2078
	Mitochondrial ribosomal protein							left	416	20 59.93	45 4.00	2.00	12.00 cagtttctc	cagtttctgggggatttgcat	MRPL19-left		exon 4	
								-	612	20 60.17	50 4.00	2.00	12.00 tattcagg	tattcaggaagggcatctcg	MRPL19-right		exon 5	
SF3A1	Splicing factor 3a, subunit 1,	IISAP114 SF3A1 SF3A120 SF3A, 120-KD SUBUNIT SPLICEOSOME-ASSOCIATED PROTEIN, 114-	Hs.406277 1	10291 NM	NM_005877 22	22q12.2 NM_00587		2462			-	1				104	:	1272
	120kDa	KDIIPRP21, S. CEREVISIAE, HOMOLOG OFIIsplicing factor 3a, subunit 1, 120kDall						rich+	2072	20 60.35	55 4.00 45 3.00	2.00	11.00 tcatgcca	tcatgccagaggaggagttc	SF3A1-left SF3A1-rinht		exon 13	
PSMC4		[[S6][TBP7][PSMC4][TAT-BINDING PROTEIN 7][PROTEASE 26S,	Hs.211594	5704 CR6	CR611800 19q13.	19q13.11-q13.13 NM_006503		1257 Ingin	2/17					ugurualitagiiituali		144		474
	Proteasome (prosome, macropail	In SUBUNIT 6 PROTEASOME 26S SUBUNIT, ATPase, 4 proteason (prosome, macropain) 26S subunit, ATPase, 4						left	1095	20 59.66	50 4.00	2.00	11.00 ccggcca	ccggc cagataagatt tcag	PSMC4-left		exon 10	
	200 Subuliit, A Irase, 4							right	1238	-	50 2.00	2.00	10.00 tcctgctc	tcctgctcgtccttcttgat	PSMC4-right		exon 11	
PUM1		PUM1 Pumilio homolog 1 (Drosophila)	Hs.281707 9696	9698; 28997 NM_00	NM_001020658 1p	35.2 NM_014676		3561								121		4315
	Pumilio homolog 1 (Drosophila)				+			left		-		1.00		cggtcgtcctgaggataaaa	PUM1-left		exon 20	
TCC4		IIHP1.AIID21S21IIHPS2IITFF1IIBCEIIIpNR-2IIpS2	16- 350470	7034 DMG	DM033763 34	214222 2 NM 002226		right	3276	20 59.93	55 6.00	2:00	9.00 cgtacgtç	cgtacgtgaggcgtgagtaa	PUM1-right	900	exon 21	750
	trefoil factor 1 (breast cancer, estrogen-inducible seguence	protein GASTROINTESTINAL TREFOIL PROTEIN pS2 BREAST CANCER FSTROGEN-INDI/CIRI F SEQUENCEIIRrosst cancer		-	+	1		left	160	20 59.98	45 3.00	3.00	11.00 ttataattt	ttataattttcctaatatca	TFF1-left	2	exon 2	3
	expressed in)	estrogen-inducible protein Trefoil factor 1 precursor trefoil factor 1 /heast rancer setromen inducible motein/	Lo I					right	368	20 60.35	+			ctgggactaatca	TFF1-right		exon 1	
EGFR	Epidermal growth factor receptor			1956 NM	005228 7	p12 NM_005228		5114		1 1						143		NA
	(erythroblastic leukemia viral (v- erb-b) oncogene homolog, avian)							left richt	4728	20 60.01	40 4.00 4.00	000	11.00 tggattca	tggattcatcagcatttgga	EGFR-left EGEP_richt		exon28	
EGF			Hs.419815	1950 NM	NM_001963	4q25 NM 001963		4874	200	_			n		- Receiption	193		4788
	Epidermal growth factor (beta-			-				left	3316	20 60.05	55 5.00	100	10.00 tcacctca	tcacctcagggaagatgacc	EGF-left		exon 20	
	(anolasiona)							right	3508	20 60	55 3.00	3.00	11.00 cagttcccaccacttcaggt	accacttcaggt	EGF-right		exon 21	
DUSP1		IPTPN10 3.1.3.48 CL100 MKP1 MKP- 1 DUSP1 3.1.3.16 HVH1 DUAL-SPECIFICITY PHOSPHATASE	Hs.171695 1	1843 AK1	AK127679 5	5q34 NM_004417		2448		-						183		NA
	Dual specificity prosphatase 1	1 Dual specificity phosphatase 1 PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR-TYPE, 10 MAP KINASE						left richt	0661	20 29.93	55 4 00	00.5	12.00 cagcrgc	cagctgctgcagtttgagtc	DUSP1-left		exon4	
TGFA		PHOSPHATASE TIlestinethireonine specific protein phosphatas TGFA Transforming growth factor, alpha	A Hs.170009 7	7039 NM	NM_003236 2	2p13 NM 003236		4119				-	8		2	144		NA
	Transforming growth factor, alpha	าล				ĺ		left	3423				9.00 cttcaagc	cttcaagc caggt tttc gag	TGFA-left		exon6	
		IIMGEIISTAT6AIIMAMMARY GI AND FACTORIIsirmal transducer	010101					right	3566	20 60.2	50 4.00	0.0	10.00 ggcaggt	10.00 ggcaggttggaagagatcaa	TGFA-right	4	exon6	0007
VCIVIC	Signal transducer and activator of	of and activator of transcription 5A	U5:43/000	MIN 0770	71 7C1 COO_MIN	211b/1		left	2832	20 60.17	55 4,00	2.00	11.00 ccccado	ccccadactccctataacat	STAT5A-left	<u></u>	exon19	7701
	transcription 5A							right	2974	-	55 6.00	2.00	10.00 cgggagt	10.00 cgggagtcaagactgtccat	STAT5A-right		exon20	
STAT5B	and additional	ISTAT5BISTAT5B STAT5B/RARA FUSION GENEI signal	Hs.132864 5	5171 NM	NM_012448 17	17q11.2 NM_012448		5171								151		NA
	signal transcucer and activator of transcription 5B							left	3867	-	55 4.00	2.00	ggctacae cctggaattgccactcagtt	ttgccactcagtt	STAT5B-left		exon19	
		II A LI DU CI A LE DI STU 13 LA LO DA //DI 17602-21 A IV 31 LA 160			_			right	4017	20 60.02	45 4.00	0.00	ptttttggg aacagcagctt cctgggtaa	gcttcctgggtaa	STAT5B-right		exon19	
AURKC	aurora kinasa C	IAURACIATEZISTAT 3/JAURAURAURLIZEG-2/JAURAJIaurora kunase Hs.98338 CISERINE/THREONINE PROTEIN KINASE 13/Jserine/threonine		6795 NM	NM_003160 19	19q13.43 AF059681		1321 bps left	250	_	45.00 4.00		11.00 attratto	atticationococtosan	ALIPKC-left	125	evon3	317
					$\left \right $			riaht	374	20 59.94	50.00 4.00	000		atacagococogago	AURKC-right		exon4	
RPS6KA1		IRSK1IRPS6KA1IRIBOSOMAL S6 KINASE 1 IRIBOSOMAL	Hs.149957 6	6195 NM	NM_002953 1p3	36-p35 BC014966		3186 bp						0	0	179		166+1667
	Ribosomal protein S6 kinase, 90kDa. polvpeptide 1	PROLEIN 36 KINASE, 30-KU, 1 III10000mai protein 36 Kinase, 90kDa, polypeptide 1						left	538	20 59.98	55 4.00	0000	9.00 gaagctg	gaagctgcactatgccttcc	RPS6KA1-left		exon5-exon6	
		IIMSK11100S6KA611MITCCEN. AND STDESS. ACTIVATED		-	-				716	20 59.96		3.00	12.00 aaatgata	aaatgatacccaggctgtgc	RPS6KA1-right		exon7	
CENOCIN	Ribosomal protein S6 kinase,	PROTEIN KINASE 1 RIBOSOMAL PROTEIN S6 KINASE, 90-KD,	07701C'SH	MIN 7076	NM_UU4/35 1443	1-452.1 AB20300/		3003 pp	1957	20 60 07	50 4 00		10.00 ctrrator	ctreator thear etteat	RDS6K A5-loft	2	exon14	07161
	90kDa, polypeptide 5							right	2089	20 60.04	50 3.00	9		taaaattaaaaaaaaaacta	RPS6KA5-right		exon15	
CCND1		IIBCL1IICCND1IID115287EIIU21B31IIB-cell CLL/lymphoma 1 IIG1/S ^{Hs.523852}		595 NM	NM_053056 11	Iq13 NM_053056		4304 bp		-	-	-				149		1519 bp
	Cyclin D1 (PRAD1: parathyroid adenomatosis 1)	spectric cyclin UTI/cyclin UT (PKAUT): parathyrold adenomatosis 1) B-CELL LEUKEMIA 1 CCND1/IGHG1 FUSION GENE						left	327					ccctcggtgtcctacttcaa	CCND1-left		exon1	
								right	475	20 60.13	55 3.00	0.00	10.00 aggaagc	aggaagc ggtc caggtagtt	CCND1-right		exon2	
CCNE2		CCNE2 Cyclin E2	Hs.408658 9134	9134; 55656 NM	NM_057749 8q	122.1 NM_057749		2748 bp		-						199		491 + 386
	Cyclin E2							left	1050	20 60	55 3.00 50 5.00	3.00	11.00 caggtttg	caggtttggagtgggacagt	CCNE2-left CCNE2-right		exon10-exon11	
CERNIC		IIWBSII657(KIP2)IIBWCRIICDKN1CIIBWSIIBeckwith-Wiedemann	He 100070	MN	NM 000076	11-1E BC711000		1604 hm	9471					เตญสสឫឫເឫเ		147	exourt	
	Cyclin-dependent kinase inhibito	Cyclin-dependent kinase inhibitor syndromelicyclin-dependent kinase inhibitor 1C (p57, Kip2)	00000		-			left	1309	20 59.87	50 4.00	3.00	12.00 gaccgttc	ga ccgttcat gt ag cag caa	CDKN1C-left	E	exon3	£
	10 (par, hipz)							right	1455	-		3.00		cacctt gggacca gt gtacc	CDKN1C-right		exon3	
MAP3K6	Mitoren-activated protein kinase	IIMAPKKK6 MAP3K6 Mitogen-activated protein kinase kinase kinase 6	Hs.194694 9	9064 NM	NM_004672 1p	36.11 NM_004672		4333 bp								129		280 + 199
	kinase kinase 6							left		_	50 3.00	1:00	10.00 agcctcc	agcctccaactgctctttca	MAP3K6-left		exon26-exon27	
MLC2L	Homo sapiens transcribed	IMAGE:4754978	Hs 33106	BGR	RG675392		12	1230 hn	4006	20 60.01	55 3.00	1.00	12.00 tggcataç	tggcataggtgagcagagtg	MAP3K6-right	122	exon28	
	sequence with weak similarity to protein sp. 002817 (H sapiens)				4000		!	left	72	20 59.96 50	50 4.00	0:00	4.00 0.00 11.00 gatctcaagctgcgttttcc	gctgcgttttcc	MUC2L-left	1		
												-						

17/12/2007

-		-															
901	MUC2_HUMAN Mucin 2 precursor			0000	or or or o		TO PERSON OF		right 193	20 59.84 8	55 4.00	2.00 10.00	10.00 cgacccacaatccctagtgt	MUC2L-right	100		76.0
2	V-fos FBJ murine osteosarcoma	fos FBJ murin murine osteos	HS.2304/	5002	ZGZGOOTIMN	149,24.3	BA04/104	da 1717		20 60.05	5.00	0.00 11.00	ccggggatagcctcttac	FOS-left	17	exon1	80
		FoSJI							right 343	59.97	50 3.00		11.00 gtgggaatgaagttggcact	FOS-right		exon2	
MYC	V-myc myelocytomatosis viral	IIMYCIIONCOGENE MYCIIPROTOONCOGENE HOMOLOGOUS TO MYELOCYTOMATOSIS VIRUSIIV-myc myelocytomatosis viral	0 Hs.202453	4609	NM_002467 84	8q24.12-q24.13 NM_002467	4M_002467	2377 bp	_		1				157		1376
	oncogene homolog (avian)	oncogene homolog (avian) V-MYC AVIAN MYELOCYTOMATOSI: VIRAL ONCOGENE HOMOLOG	s						right 1227	20 59.64 20 60.37	50 3.00	2.00 11.00	tcggatterergeteteteete cetacetettttecacagaa	MY C-left MY C-right		exon2 exon3	
CDKN1A	Contractions of the second sec	SDI1 WAF1 CDKN1A MDA-6 p21CIP1 CAP20 CDK-interaction Hs.370771	ⁿ Hs.370771	1026	NM_078467	6p21.2	NM_078467	2281 bp						0	93		1204
	Cyclin-dependent kinase innibitor 1A (p21, Cip1)								left 641		7.00			CDKN1A-left		exon 2	
-									right 733	60.03	55 3.00	0.00 12.00	ggattagggcttcctcttgg	CDKN1A-right	ļ	exon 3	1000
	Cyclin-dependent kinase inhibitor		066007.50	7201	NM_004004	710-1.61021	NIM_004004	4424 DD	left 1039	20 59.85	55 6.00	1.00 12.00	odoctcadaadacotcaaac	CDKN1B-left	14/	exon 2	7007
	1B (p27, Kip1)									20 58.72	4.00	-+ -+		CDKN1B-right		exon 3	
CDC25A		IICDC25A2 3.1.3.48 CDC25A cell division cycle 25A dual specificity phosphatase CDC25A M-phase inducer phosphatase	Hs.1634	993	NM_001789	3p21 N	NM_001789	3717 bp	-						165		258
	Cell division cycle 25A	1 cell division cycle 25A isoform a cell division cycle 25A isoform b	E						left 1707 richt 1871	20 60.04	50 4.00	0.00 11.00 2.00 11.00	11.00 gagatcgcctgggtaatgaa	CDC25A-left CDC25A-right		exon 15 exon 15	
PLAUR			Hs.466871	5329	CR601067	19q13 N	NM_002659	1548 bp	_	ee:e0	8.		ואראאממרוורוורמאאורו	ligitación	96		3067
	Plasminogen activator, urokinase	 activator, urokinase receptor PLASMINOGEN ACTIVATOR RECEPTOR, UROKINASE-TYPE 							left 764		3.00	2.00 12.00	caatggtttccacaacaacg	PLAUR-left		exon 5	
		A IIUOSOO IIVAIIIMA IIVAAAAA Laanaa kuutuu kuutu								59.96	4.00	11.00		PLAUR-right		exon 6	
SNAI1	Canil Lamaland (Dassachila)	ISNATI ISNATI STATE NOT I PROSOPPHILA, HOMOLOG OF, 1	Hs.48029	6615	NM_005985 2	20q13.1-q13.2 N	NM_005985	1708 bp		5	5			17-1 PLAN	134		3520
	Snail homolog 1 (Drosophila)								right 770	20 61.43 0	65 5.00 55 3.00	1.00 11.00 0.00 11.00	ctctaggccctggctgctac tgacatctgagtgggtctgg	SNAI1-left SNAI1-right		exon 2 exon 3	
ATF3		ATF3 Cyclic-AMP-dependent transcription factor ATF- 31A retivation transcription factor 31a retivation transcription factor	Hs.460	467	NM_001040619	1q32.3 N	NM_004024	2033 bp							131		1123
	activating transcription factor 3	3 long isoform activating transcription factor 3 delta Zip isoform	F						left 547	20 59.57	45 3.00		gaaaagaggcgacgagaaa	ATF3-left		exon 3	
SER PINB2		IPLANH2 SERPINB2 PAI2 UROKINASE INHIBITOR MONOCYTE 45:514813	E Hs.514913	5055	BC012609	18a21.3 N	NM 002575	1900 bn		59.86	2:00	2.00 11.00	tctgagccttcagttcagca	ATF3-rifgt	67	exon 4	
	Serpin peptidase inhibitor, clade	B ARGININE-SERPINIMONOCYTE-DERIVED PLASMINOGEN ACTIVATOR INHIBITORIJPLASMINOGEN ACTIVATOR INHIBITOR						•	left 878	60.07	4.00	2.00 10.00	cagatgaaattgccgatgtg	SERPINB2-left	;	exon 7	332
		TYPE 2 Serpin peptidase inhibitor, clade B (ovalbumin), membe. 2llserine for cvsteine) nroteinase inhibitor. clade B fovalbumin)							right 974	20 60.12	45 3.00	0.00 12.00	gccattttgtctttgctggt	SERPINB2-right		exon 8	
CEBPD	CCAAT/enhancer binding protein	CCAAT/enhancer binding protein detal/CELFICCAT/ENHANCER-BINDNG PROTEIN	Hs.440829	1052	NM_005195 4	8p11.2-p11.1	NM_005195	1269	_	50.01	8		10000000000000000000000000000000000000		101		
	(C/EBP), delta	DELTA CCAAT/enhancer binding protein delta CCAAT/enhance binding protein (C/EBP), delta	5				EIW924801		riaht 219	20 29.87 3	50 4.00	3.00 12.00	arcgacricagcgcctacat occtrutriatt octotiticaa	CERD-right		exon 1	AN
GATA3		IIMGC2346IMGC5445IGATA3IMGC5199IHDRIGATA-binding	Hs.524134	2625	NM_001002295	10p15 N	NM_002051	3067	_	8.00	8				158		
	GATA binding protein 3	protein 3 ENTANCER-BINDING PROTEIN GATA3 GATA binding protein 3 GATA binding protein 3 isoform 2 GATA binding							left 1502	20 60.03	55 5.00	3.00 10.00	gtcctgtgcgaactgtcaga	GATA3-left		exon 5	4140
		protein 3 isoform 1							right 1659	20 60.08	45 2.00	0.00 11.00	11.00 tttttcggtttctggtctgg	GATA3-right		exon 6	
SER PINA3	Serpin peptidase inhibitor, clade A	A antichymotrypsin MGC88254 AACT SERPINA3 ANTICHYMOTR	R.534293	12	NM_001085	14q32.1	NM_001085	1629	44	99 09	8	11.00		CEDDINIA2 104	134	l mono	1119
	antitrypsin), member 3	YPSIN, ALPHA-1 Serine (or cysterine) proteinase inhibitor, clade A member 3 precursof:Berpin peridase inhibitor, clade A (alpha-1 member 2010) member 3	× _						right 1234	20 59.67	45 4.00	1.00 12.00	tgcagaaaggagggggggtgattt	SERPINA3-right		exon 5	
CAV1	Caucalin 1 caucalao motoin	MSTP085 VIP21 CAV1 caveolae protein, 22-kD caveolin 1, bet soform caveolin 1, alpha isoform caveolae protein	ta Hs.74034	857	NM_001753	7q31.1 N	NM_001753	2704							152		32256
	caveolin I, caveolae protein, 22kDa	22kD caveolin 1, caveolae protein, 22kDa							left 381	20 60.04	5.00		gagctgagcgagaagcaagt	CAV1-left		exon 2	
APOD		APOD apolipoprotein D apolipoprotein D precursor	He 522555	347	RF740155	3026.2-ctter	NM 001647	1061		60.15		2.00 10.00	caaatgccgtcaaaactgtg	CAV1-right	130	exon 3	2141
	Apolipoprotein D		000440.01	5	+-	1		2	-	60.36	6.00	2.00 9.00	aagccaccccagttaacctc	APOD-left	3	exon 4	E .
						1			right 691	20 60.07	50 5.00	1.00 11.00		APOD-right		exon 5	
TOP2A	Topoisomerase (DNA) II alpha	ITOP2AIIDNA TOPOISOMERASE IIITOPOISOMERASE, DNA, II, ALPHAI topoisomerase (DNA) II alpha 170kDal	Hs.156346	7153	NM_001067	17q21-q22	NM_001067	5698							175		317
	170kDa								right 4666	20 60.05	50 4.00 50 4.00	2.00 11.00 2.00 10.00	gatcctgccaaaaccaagaa otacaaattttocccoagga	TOP2A-right		exon 34 exon 35	
ERBB2	kemi	IHER-2/neu/IERB2/I2.7.1.112/ITKR1 HERSTATIN/IONCOGENE	Hs.446352	2064	NM_001005862 q1	q11.2-q12 17q2 N	NM_004448	4624						•	181		141
	viral oncogene homolog 2, neuro/glioblastoma derived									20 60.17	5.00			ERBB2-left		exon 26	
SMARCE1	oncogene homolog (avian) SWI/SNF related, matrix	GLIOBLASTOMA-DERIVEDITYROSINE KNASE-TYPE CELL IIBAF57 SMARCE1 BRG1-ASSOCIATED FACTOR, 57- Hs	Hs.547509	6605	BC069196	17a21.2	NM 003079	2425	right 3674	20 59.68		0.00 10.00	gaacatctggctggttcaca	ERBB2-right	170	exon 27	1720
	fami	KDIJSWISNF-RELATED, MATRIX-ASSOCIATED, ACTIN- DEPENDENT REGULATOR OF CHROMATIN, SUBFAMILY E,							left 1128	20 60.07	4.00	2.00 9.00	acgagaacattccgatggag	SMARCE1-left		exon 10	
	e, member 1	MEMBER 1 SWI/SNF related, matrix associated, actin dependent requisitor of chromatin subfamily an member 1	Ŧ						right 1297	20 60.02 (60 5.00	3.00 9.00	gctctccgagcca gt gt tac	SMARCE1-right		exon 11	
SMARCA4	SWI/SNF related, matrix associated, actin dependent		Hs.327527	6597	NM_003072	19p13.2	NM_003072	5681		50.44	5			EMADCA4 lot	171	36 1010	1596
	regulator of chromatin, subfamily								right 5217	20 60.11	55 3.00	0.00 10.00	cggrccgrcaaagrgaagar ot cttcttcoctoccacttc	SMARCA4-left SMARCA4-riaht		exon 35 exon 36	
DUSP6		regulator of chromatin. subtamily a. member 4 [3.1.3.48][PVS1][MKP3][3.1.3.16][DUSP6][DUAL-SPECIFICITY PHOCeDH AT AS E 61[[m.e] snortificitu, shortsharea 61[MAD bith see	Hs.298654	1848	BC037236	12q22-q23	BC037236	2874							151		1026
	Dual specificity phosphatase 6	phosphatase 3 serine/theorine specific protein phosphatase 3 serine/theorine specific protein								20 59.94	5.00			DUSP6-left		exon 2	
KDTS	Keratin 5 (epidermolvsis bullosa	prosprataspirate specificity prospirates o isoroni ajuda specificity brochstase f isoform bi IRRT5[ReftRefth 5 (epidermolysis bullosa simplex, Dowling-	He 433845	386.7	A 1500777	12a12-a12	NM 000424	0330	right 1406	20 59.82		1.00 10.00	taggcatcgttcatcgacag	DUSP6-right	140	exon 3	557-1804
	simplex, Dowling- Meara/Kohner/Weher-Cockavne					1			left 1525	20 60.81		2.00 11.00	ggagctcatgaacaccaagc	KRT5-left	2	exon 7	
	types)								right 1673	20 59.08	45 4.00	0.00 10.00		KRT5-right		exon 9	
S100A2		S100L S100A2 S100 CALCIUM-BINDING PROTEIN A2 S100 calcium binding protein A2	Hs.516484	6273	BU589956	1q21	NM_005978	970	_						182		2142
	S100 calcium binding protein A2								left 365	20 60.33	60 3.00	1.00 11.00	ggctgtgctggtcactacct	S100A2-left		exon 2	
									_	P0.02	4.00		11.00 cctgctggtcactgttctca	STUUAZ-right		exon 3	

Appendix A5: List of Real Time qPCR primers

Symbol	GenBank AcNo	Symbol/Name	Symbol/GO terms R		Fold- Change R5020 (1 h)	Fold- Change R5020 (2 h)	Fold- Change R5020 (6 h)
AKAP13	NM_007200	AKAP13/A kinase (PRKA) anchor protein 13	AKAP13/cAMP-dependent protein kinase activity intracellular signaling cascade kinase activity receptor activity signal ransducer activity		1.27	-1.09	1.56
AKAP2	NM_007203	AKAP2/PALM2-AKAP2 protein	AKAP2/A-kinase anchor protein 2	1.05	-1.21	-1.01	-1.72
ALPP	NM_001632	ALPP/Alkaline phosphatase, placental	ALPP/alkaline phosphatase activity hydrolase activity integral to membrane magnesium ion binding metabolism		1.13	1.20	-1.56
ANKT	NM_016359	ANKT/Nucleolar and spindle associated protein 1	ANKT/NUSAP1/Nucleolar and spindle associated protein 1	-1.01	-1.08	-1.02	1.44
AP2B1	NM_001282	AP2B1/Adaptor-related protein complex 2, beta 1 subunit	AP2B1/ intracellular protein protein complex assembly AR/androgen receptor activity cell proliferation cell-cell	1.53	-1.04	-1.02	-3.43
AR	NM_000044	AR/Androgen receptor	signaling nucleus nucleus regulation of transcription, DNA- dependent signal transduction steroid binding transcription factor activity	1.06	1.03	1.30	-1.56
AREG	NM_001657	AREG/Amphiregulin	AREG/cell proliferation cell-cell signaling cytokine activity growth factor activity integral to membrane ATF3/DNA binding nucleus regulation of transcription, DNA-	-1.02	-1.03	-1.04	1.45
ATF3	NM_004024	ATF3/Activating transcription factor 3	dependent transcription corepressor activity transcription factor activity	1.02	1.11	1.32	1.56
BCAR1	NM_014567	BCAR1/Breast cancer anti-estrogen resistance 1	BCAR1/cell adhesion cell proliferation cytoplasm protein binding signal transducer activity BCL2L1/anti-apoptosis apoptotic mitochondrial	1.13	1.20	1.29	1.79
BCL2L1	NM_138578	BCL2L1/BCL2-like 1	changes integral to membrane mitochondrial outer membrane mitochondrion negative regulation of survival gene product activity regulation of apoptosis		1.11	1.39	1.69
BCL2L2	NM_004050	BCL2L2/BCL2-like 2	BCL2L2/anti-apoptosis cytoplasm membrane regulation of apoptosis spermatogenesis	1.11	-1.00	-1.10	-1.40
BTG1 CACMKIINal	NM_001731	BTG1/B-cell translocation gene 1, anti- proliferative CACMKIINalpha/Calcium/calmodulin-	BTG1/B-cell translocation protein 1 B-cell translocation gene 1, anti-proliferative	1.07	1.16	1.28	1.42
pha	NM_018584	dependent protein kinase II	CACMKIINalpha/kinase activity	-1.13	-1.01	1.23	-1.49
CCND1	NM_053056	CCND1/Cyclin D1	CCND1/G1/S transition of mitotic cell cycle/cytokinesis/nucleus/regulation of cell cycle	1.32	1.32	1.83	2.41
CCND2 CCNE1	NM_001759 NM_001238	CCND2/Cyclin D2 CCNE1/Cyclin E1	CCND2/cytokinesis nucleus regulation of cell cycle CCNE1/G1/S transition of mitotic cell cycle cytokinesis nucleus nucleus regulation of cell cycle	1.03 1.42	-1.10 -1.06	-1.27 -1.07	-2.11 -1.38
CCNE2	NM_057749	CCNE2/Cyclin E2	CNE2/cell cycle checkpoint[cytokinesis]nucleus[regulation of cell cycle] ccNE2/cell cycle checkpoint[cytokinesis]nucleus[regulation of cell cycle]	1.23	1.06	1.27	2.19
CCNF CCNG2	NM_001761 NM_004354	CCNF/Cyclin F CCNG2/Cyclin G2	CCNF/cytokinesis mitosis nucleus regulation of cell cycle CCNG2/cell cycle cell cycle checkpoint cytokinesis mitosis	1.02 -1.00	-1.03 1.03	1.01 -1.67	-1.49 -2.03
CDC2	NM_001786	CDC2/Cell division cycle 2, G1 to S and G2 to M	CDC2/ATP binding(cyclin-dependent protein kinase activity cytokinesis mitosis nucleus protein amino acid phosphorylation protein serine/threonine kinase activity protein tyrosine kinase activity transferase activity traversing start control point of mitotic cell cycle		-1.01	-1.19	1.59
CDC42	NM_001791	CDC42/Cell division cycle 42	CDC42/GTP binding GTPase activity actin filament organization cytoplasm establishment and/or maintenance of cell polarity filopodium macrophage cell differentiation protein binding protein small GTPase mediated signal transduction		-1.17	1.42	-1.21
CDC42BPA	NM_003607	CDC42BPA/CDC42 binding protein kinase alpha	CDC42BPA/ATP binding intracellular signaling cascade membrane protein amino acid phosphorylation protein amino acid phosphorylation protein serine/threonine kinase activity protein serine/threonine kinase activity protein-tyrosine kinase activity small GTPase regulatory/interacting protein activity		-1.04	1.03	-1.56
CDCA7	NM_031942	CDCA7/Cell division cycle associated 7	CDCA7/cytokinesis	-1.13	-1.07	1.28	-1.97
CDK8	NM_001260	CDK8/Cyclin-dependent kinase 8	CDK8/ATP binding cytokinesis protein amino acid phosphorylation protein serine/htreonine kinase activity regulation of cell cycle regulation of transcription, DNA- dependentItransferase activity	1.18	1.13	1.09	1.46
CDKN1B	NM_004064	CDKN1B/Cyclin-dependent kinase inhibitor 1B (p27, Kip1)	CDKN1B/cell cycle arrest[cyclin-dependent protein kinase inhibitor activity[cytoplasm negative regulation of cell proliferation nucleus protein binding regulation of cyclin dependent protein kinase activity[transforming growth factor beta receptor, cytoplasmic mediator activity	-1.09	-1.16	-1.13	-1.56
CDKN2B	NM_078487	CDKN2B/Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	CDKN2B/cell cycle/cell cycle arrest(cyclin-dependent protein kinase inhibitor activity(cyclin-dependent protein kinase inhibitor activity(cycloplasm)kinase activity(negative regulation of cell cycle/negative regulation of cell proliferation/nucleus/regulation of cyclin dependent protein kinase activity	-1.30	-1.46	-1.88	-1.60
CENPA	NM_001809	CENPA/Centromere protein A, 17kDa	CENPA/DNA binding chromatin binding chromosome organization and biogenesis nucleosome assembly nucleus	-1.01	1.02	-1.29	1.46
CHD1L	NM_024568	CHD1L/Chromodomain helicase DNA binding protein 1-like	CHD1L/ATP binding DNA binding helicase activity nucleus	1.05	1.11	1.41	1.92
CHD3	U91543	CHD3/Chromodomain helicase DNA binding protein 3	CHD1L/ATP binding DNA binding helicase activity nucleus	-1.08	-1.02	1.18	-1.55
CHD4	NM_001273	CHD4/Chromodomain helicase DNA binding protein 4	CHD1L/ATP binding DNA binding helicase activity nucleus	1.04	-1.04	1.03	-1.55
CHEK2	NM_007194	CHEK2/CHK2 checkpoint homolog	CHEK2/ATP binding DNA damage checkpoint cell cycle kinase activity membrane nucleus protein amino acid phosphorylation protein serine/threonine kinase activity	1.04	-1.04	-1.00	-1.80
CKS2	NM_001827	CKS2/CDC28 protein kinase regulatory subunit 2	CKS2/cell cycle cyclin-dependent protein kinase activity cytokinesis regulation of cyclin dependent protein kinase activity	1.41	1.16	-1.22	-1.12
COL4A1	NM_001845	COL4A1/Collagen, type IV, alpha 1	COL4A1/collagen collagen type IV cytoplasm extracellular matrix structural constituent phosphate	1.37	1.02	-1.16	-1.65
CXCL12	NM_000609	CXCL12/Chemokine (C-X-C motif) ligand 12	CXCL12/G-protein coupled receptor protein signaling pathway[calcium in homeostasis]cell adhesion[cell-cell signaling[chemokine activity]chemotaxis[growth factor activity]inflammatory response/signal transduction	1.05	1.01	1.25	1.96
CXCR4	NM_003467	CXCR4/Chemokine (C-X-C motif) receptor 4	CXCR4/C-C chemokine receptor activity/C-X-C chemokine receptor activity/G-protein coupled receptor protein signaling pathway/integral to membrane/rhodopsin-like receptor activity	1.07	1.08	-1.03	-1.42
DC13	NM_020188	DC13/DC13 protein	DC13	1.02	1.06	-1.10	1.42

			DDIT3/cell cycle arrest/nucleus/regulation of transcription,			1	
DDIT3	NM_004083	DDIT3/DNA-damage-inducible transcript 3	DNA-dependent[response to DNA damage stimulus[transcription corepressor activity]transcription factor activity	-1.07	-1.19	-1.89	-1.49
DDR1	NM_013994	DDR1/Discoidin domain receptor family, member 1	DDR1/ATP binding cell adhesion integral to plasma membrane protein amino acid phosphorylation protein kinase activity protein serine/threonine kinase activity protein-tyrosine kinase activity receptor activity transferase activity transmembrane receptor protein tyrosine kinase activity transmembrane receptor protein tyrosine kinase signaling pathway		-1.09	-1.07	1.73
DDX5	NM_004396	DDX5/DEAD (Asp-Glu-Ala-Asp) box polypeptide 5	DDX5/ATP binding ATP-dependent helicase activity RNA binding RNA helicase activity cell growth nucleus	1.06	-1.21	-1.13	1.56
DKFZp686F	BX648653	DKFZp686F2198/Muskelin 1	DKFZp686F2198/MKLN1/Muskelin 1, intracellular mediator	-1.02	1.16	1.09	1.56
2198	57040000		containing kelch motifs DLC1/Rho GTPase activator activity cytoplasm cytoskeleton	1.02	1.10	1.00	1.00
DLC1	NM_006094	DLC1/Deleted in liver cancer 1	organization and biogenesis extracellular region negative regulation of cell growth protein binding regulation of cell adhesion	-1.03	-1.54	-1.49	-1.38
DUSP1	NM_004417	DUSP1/Dual specificity phosphatase 1	DUSP1/MAP kinase phosphatase activity cell cycle hydrolase activity non-membrane spanning protein tyrosine phosphatase activity protein amino acid dephosphorylation response to oxidative stress		1.06	1.83	3.97
E2F3	NM_001949	E2F3/E2F transcription factor 3	E2F3/nucleus protein binding regulation of cell cycle regulation of transcription, DNA-dependent transcription factor activity transcription factor complex transcription initiation from Pol II promoter	1.12	-1.07	-1.09	1.96
EEF1A1	NM_001402	EEF1A1/Eukaryotic translation elongation factor 1 alpha 1		-1.28	1.10	1.07	-1.60
EGF	NM_001963	EGF/Epidermal growth factor (beta- urogastrone)	EGF/DNA replication activation of MAPK calcium ion binding chromosome organization and biogenesis (sensu Eukaryota) epidermal growth factor receptor activating ligand activity epidermal growth factor receptor signaling pathway extracellular region growth factor activity integral to membrane nucleus plasma membrane positive regulation of cell proliferation		1.51	1.93	2.99
EGLN1	NM_022051	EGLN1/Egl nine homolog 1 (C. elegans)	EGLN1/cytosol oxidoreductase activity oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen protein metabolism		1.09	1.01	1.41
EGR1	NM_001964	EGR1/Early growth response 1	EGR1/nucleus regulation of transcription, DNA- dependent[transcription factor activity zinc ion binding		-1.16	1.04	-2.64
ELL2	NM_012081	ELL2/Elongation factor, RNA polymerase II, 2	ELL2/RNA elongation from Pol II promoter/RNA polymerase II transcription factor activity/nucleus/regulation of transcription, DNA-dependent[transcription elongation factor complex		1.49	1.58	3.25
ERBB2	NM_004448	ERBB2/V-erb-b2 erythroblastic leukemia viral oncogene homolog 2	ERB2/ATP binding ErbB-3 class receptor binding cell proliferation electron electron er activity epidermal growth factor receptor activity extracellular region integral to membrane iron ion binding membrane non-membrane spanning protein tyrosine kinase activity protein amino acid phosphorylation protein amino acid phosphorylation protein serine/threonine kinase activity protein-tyrosine kinase activity treceptor activity protein-tyrosine kinase activity treceptor activity treceptor signaling protein tyrosine kinase activity transferase activity transmembrane receptor protein tyrosine kinase signaling pathway transmembrane receptor protein tyrosine kinase signaling pathway	-1.27	-1.16	-1.14	-1.87
ERBB3	NM_001982	ERBB3/V-erb-b2 erythroblastic leukemia viral oncogene homolog 3	ERBB3/ATP bindinglepidermal growth factor receptor activity[integral to plasma membrane]protein amino acid phosphorylation]receptor activity[transferase activity[transmembrane receptor protein tyrosine kinase signaling pathway	-1.00	1.16	-1.17	-1.77
ESR1	NM_000125	ESR1/Estrogen receptor 1	ESR1/DNA binding/cell growth/chromatin remodeling complex/estrogen receptor activity/ estrogen receptor signaling pathway/membrane/negative regulation of mitosis/nucleus/receptor activity/regulation of transcription, DNA-dependen(signal transduction/steroid binding/steroid hormone receptor activity/transcription factor activity	1.03	-1.00	-1.01	-1.44
FGF7	NM_002009	FGF7/Galactokinase 2	FGF7/cell proliferation cell-cell signaling epidermis development extracellular region growth factor activity positive regulation of cell proliferation regulation of cell cycle response to wounding signal transduction	1.05	1.01	-1.20	-1.80
FGFR2	NM_023028	FGFR2/Fibroblast growth factor receptor 2	FGFR2/ATP binding/fibroblast growth factor receptor activity/heparin binding/integral to membrane/protein amino acid phosphorylation/protein amino acid phosphorylation/protein serine/threonine kinase activity/protein tyrosine kinase activity/protein-tyrosine kinase activity/protein cativity/transferase activity	-1.01	1.05	-1.24	-1.72
FLJ32001	NM_152609	FLJ32001/Hypothetical protein FLJ32001	FLJ32001 FN1/acute-phase response cell adhesion cell	-1.01	1.04	1.21	1.60
FN1	NM_002026	FN1/Fibronectin 1	In radue-prase response/cent adhesion/cent migration/cellagen binding extracellular matrix structural constituent extracellular region extracellular region heparin binding metabolism oxidoreductase activity response to wounding	1.09	1.19	1.02	-2.71
FOS	NM_005252	FOS/V-fos FBJ murine osteosarcoma viral oncogene homolog	FOS/DNA binding DNA methylation inflammatory response nucleus regulation of transcription from Pol II promoter specific RNA polymerase II transcription factor activity	1.04	-1.24	-1.27	-1.72
GADD45A	NM_001924	GADD45A/Growth arrest and DNA-damage- inducible, alpha	GADD45A/DNA repair apoptosis cell cycle arrest nucleus regulation of cyclin dependent protein kinase activity	1.21	1.59	1.93	1.65
GAS8	NM_001481	GAS8/Growth arrest-specific 8	GAS8/cytoskeleton flagellum (sensu Eukaryota) microtubule molecular_function unknown negative regulation of cell proliferation sperm motility	-1.06	-1.00	1.01	-1.44
GATA3	NM_002051	GATA3/GATA binding protein 3	GATA3/defense response morphogenesis nucleus perception of sound regulation of transcription, DNA- dependent transcription factor activity transcription from Pol II promoter	-1.23	-1.48	-1.82	-2.16
GNAZ	NM_002073	GNAZ/Guanine nucleotide binding protein (G protein), alpha z	GNAZ/G-protein coupled receptor protein signaling pathway/GTP binding/GTPase activity/endoplasmic reticulum nuclear membrane plasma membrane receptor signaling protein activity/signal transduction	-1.09	-1.32	-1.45	-1.09
			-				

	1		CPR2/Pas protein signal transduction (21.9/21.9 adapted		1		
GRB2	NM_002086	GRB2/Growth factor receptor-bound protein 2	GRB2/Ras protein signal transduction(SH3/SH2 adaptor protein activity[cell-cell signaling]epidermal growth factor receptor binding epidermal growth factor receptor signaling pathway intracellular signaling cascade	1.06	1.01	1.43	2.50
GTF2F2	NM_004128	GTF2F2/General transcription factor IIF, polypeptide 2, 30kDa	GTF2F2/ATP binding DNA binding RNA elongation from Pol II promoter/general RNA polymerase II transcription factor activity helicase activity nucleus regulation of transcription, DNA-dependent transcription factor TFIIF complex transcription initiation from Pol II promoter	1.01	-1.10	-1.08	1.44
GTF2H2	NM_001515	GTF2H2/General transcription factor IIH, polypeptide 2, 44kDa	GTF2H2/transcription factor activity/DNA repair/Regulation of transcription, DNA-dependent/Nucleus	-1.10	1.03	1.06	1.58
H1F0	NM_005318	H1F0/H1 histone family, member 0	H1F0/DNA binding DNA binding chromosome chromosome organization and biogenesis (sensu Eukaryota) nucleosome nucleosome	1.37	1.22	1.04	-1.53
H2AFJ	NM_018267	H2AFJ/H2A histone family, member J	assembly/nucleus/nucleus H2AFJ/DNA binding/chromosome organization and biogenesis (sensu Eukaryota)/nucleosome/nucleosome assembly/nucleus	1.03	-1.12	-1.33	-1.55
H2AFY	NM_004893	H2AFY/H2A histone family, member Y	H2AFY/DNA binding DNA binding chromosome chromosome organization and biogenesis (sensu Eukaryota) nucleosome nucleosome nucleosome assembly nucleus	1.13	-1.12	-1.02	1.49
HDAC9	NM_178423	HDAC9/Histone deacetylase 9	HDAC9/histone deacetylase activity histone deacetylase complex histone deacetylation hydrolase activity inflammatory response negative regulation of myogenesis nucleus regulation of cell cycle regulation of transcription, DNA-dependent specific transcriptional repressor activity transcription factor binding		-1.00	-1.03	-1.43
HIST1H1C	NM_005319	HIST1H1C/Histone 1, H1c	HIST1H1C/DNA binding chromosome chromosome organization and biogenesis (sensu Eukaryota) nucleosome nucleosome assembly nucleus	1.13	1.12	1.06	-1.52
HIST1H2AC	NM_003512	HIST1H2AC/Histone 1, H2ac	HIST1H2AC/DNA binding chromosome chromosome organization and biogenesis (sensu Eukaryota) nucleosome nucleosome assembly nucleus	-1.15	-1.21	-1.05	-2.27
HMGB3	NM_005342	HMGB3/High-mobility group box 3	HMGB3/DNA binding activity DNA binding chromatin development nucleus regulation of transcription, DNA-dependent	1.09	1.31	1.42	3.23
HSD11B2	NM_000196	HSD11B2/Hydroxysteroid (11-beta) dehydrogenase 2	HSD11B2/cell-cell signaling glucocorticoid biosynthesis metabolism microsome oxidoreductase activity	1.06	1.23	1.29	1.66
HSPB1	NM_001540	HSPB1/Heat shock 27kDa protein 1	HSPB1/cytoplasm protein folding regulation of translational initiation response to unfolded protein response to unfolded protein	-1.13	-1.31	1.09	-1.58
IFIT2	NM_001547	IFIT2/Interferon-induced protein with tetratricopeptide repeats 2	IFIT2/binding cellular_component unknown immune response	1.04	-1.20	-1.09	-1.64
IFITM1	NM_003641	IFITM1/Interferon induced transmembrane protein 1	IFITM1/cell surface receptor linked signal transduction/immune response/integral to membrane/negative regulation of cell proliferation/plasma membrane/receptor signaling protein activity/regulation of cell cycle/response to biotic stimulus		1.09	1.29	-1.57
IGFBP1	NM_000596	IGFBP1/Insulin-like growth factor binding protein 1	IGFBP1/regulation of cell growth signal transduction	1.21	1.05	1.03	-1.85
IGFBP3	NM_000598	IGFBP3/Insulin-like growth factor binding protein 3	IGFBP3/negative regulation of signal transduction/positive regulation of apoptosis/positive regulation of myoblast differentiation/protein tyrosine phosphatase activator activity/regulation of cell growth	1.03	-1.06	1.09	-2.03
IGFBP5	NM_000599	IGFBP5/Insulin-like growth factor binding protein 5	IGFBP5/Signal Transduction/Regulation of cell growth	-1.27	-1.24	-1.01	-1.65
IL6ST	NM_002184	IL6ST/Interleukin 6 signal transducer	IL6ST/cell surface receptor linked signal transduction immune response integral to plasma membrane interleukin-6 receptor activity oncostatin-M receptor activity receptor activity	1.04	1.89	2.46	2.38
ITGA2	NM_002203	ITGA2/Integrin, alpha 2	ITGA2/cell-matrix adhesion collagen binding integral to membrane integrin complex integrin-mediated signaling pathway	1.02	1.01	-1.01	-2.38
JUN	NM_002228	JUN/V-jun sarcoma virus 17 oncogene homolog	JUN/RNA polymerase II transcription factor activity nuclear chromosome regulation of transcription, DNA- dependent transcription factor activity	1.33	1.13	1.64	2.68
KIAA0349	NM_015255	KIAA0349/Chromosome 6 open reading frame 133	KIAA0349/Protein ubiquitination	1.10	1.06	-1.09	-1.91
KIAA1357	XM_050421_3	KIAA1357/GUKH2/Guanylate-kinase holder	KIAA1357 KPNA3/intracellular protein nuclear localization sequence	1.21	1.09	1.14	-1.52
KPNA3	NM_002267	KPNA3/	binding/nuclear pore/nucleus/protein complex assembly/protein er activity	1.11	1.11	1.12	1.95
KPNA4	NM_002268	KPNA4/Karyopherin alpha 4 (importin alpha 3)	KPNA4/intracellular protein nucleus protein er activity	-1.11	1.01	1.04	1.66
KPNB1	NM_002265	KPNB1/Karyopherin (importin) beta 1	KPNB1/cytoplasm nuclear localization sequence binding nuclear pore nucleus protein protein er activity protein- nucleus import, docking protein-nucleus import, translocation zinc ion binding	1.09	-1.05	-1.09	-1.52
KRT14	NM_000526	KRT14/Keratin 14	KRT14/ intermediate filament structural constituent of epidermis	-1.19	-1.24	1.17	-1.62
KRT17	NM_000422	KRT17/Keratin 17	KRT17/epidermis development intermediate filament intermediate filament structural constituent of cytoskeleton structural molecule activity	-1.24	-1.34	1.11	-1.53
KRT5	NM_000424	KRT5/Keratin 5	KRT5/epidermis development[intermediate filament structural constituent of cytoskeleton	1.04	1.01	1.54	-1.37
KRT6B	NM_005555	KRT6B/Keratin 6B	KRT6B/cytoskeleton organization and biogenesis ectoderm development intermediate filament intermediate filament structural constituent of cytoskeleton structural molecule activity	-1.04	-1.10	-1.19	-1.80
LMNA	NM_170707	LMNA/Lamin A/C	LMNA/lamin filament muscle development nucleus protein binding structural molecule activity structural molecule activity	-1.08	-1.04	-1.00	-1.53
LMNB1 LYRIC	NM_005573 NM_178812	LMNB1/Lamin B1 LYRIC/LYRIC/3D3	LMNB1/lamin filament nucleus structural molecule activity LYRIC/integral to membrane nucleus	2.14 -1.09	1.16 -1.01	-1.10 -1.01	1.12 1.48
MAP3K1	AF042838	MAP3K1/Mitogen-activated protein kinase kinase 1	LYRIC/Integral to membrane/nucleus MAP3K1/ATP binding/MAP kinase kinase kinase activity/magnesium ion binding/protein amino acid phosphorylation/protein serine/threonine kinase activity/protein ubiquitination/transferase activity/ubiquitin ligase complex/ubiquitin-protein ligase activity/zinc ion binding	1.04	1.14	1.96	-1.21
MAP3K3	NM_002401	MAP3K3/Mitogen-activated protein kinase kinase s	MAP3K3/ATP binding MAP kinase kinase kinase activity MAPKKK cascade magnesium ion binding positive regulation of I-kappaB kinase/NF-kappaB cascade protein amino acid phosphorylation protein serine/threonine kinase activity signal transducer activity transferase activity	-1.07	1.08	1.27	1.64
			Jegen and a control downly hand blade downly				

MCM6	NM_005915	MCM6/MCM6 minichromosome maintenance deficient 6	MCM6/ATP binding DNA binding DNA replication DNA replication initiation DNA-dependent ATPase activity cell cycle nucleus regulation of transcription, DNA-dependent	1.18	-1.00	-1.04	1.43
MET	NM_000245	MET/Met proto-oncogene (hepatocyte growth factor receptor)	MET/ATP binding[cell proliferation]hepatocyte growth factor receptor activity[integral to plasma membrane]protein amino acid phosphorylation]protein binding[protein-tyrosine kinase activity]receptor activity[signal transduction]transferase activity	1.46	-1.01	-1.07	-1.79
MGST1	NM_020300	MGST1/Microsomal glutathione S-transferase 1	MGST1/glutathione transferase activity membrane microsome mitochondrion transferase activity	1.01	1.01	-1.07	1.45
MUC2L	BG675392	MUC2L/Mucin 2	MUC2L	1.21	1.45	1.79	1.40
MYB	NM_005375	MYB/V-myb myeloblastosis viral oncogene homolog MYC/V-myc myelocytomatosis viral oncogene	MYB/DNA binding nuclear matrix regulation of transcription, DNA-dependent transcriptional activator activity MYC/cell cycle arrest cell proliferation iron ion	1.08	1.09	1.04	-1.49
MYC	NM_002467	homolog	homeostasis nucleus protein binding regulation of transcription from Pol II promoter transcription factor activity	1.30	1.48	1.97	1.04
NCOA3	NM_006534	NCOA3/Nuclear receptor coactivator 3	NCOA3/acyltransferase activity histone acetyltransferase activity nucleus regulation of transcription, DNA- dependent signal transducer activity signal transduction thyroid hormone receptor binding transcription transcription coactivator activity transferase activity	1.18	1.23	-1.08	-1.68
NCOR2	NM_006312	NCOR2/Nuclear receptor co-repressor 2	NCOR2/DNA binding nucleus regulation of transcription, DNA- dependent transcription corepressor activity	1.08	1.10	1.01	-1.55
NK4	NM_004221	NK4/Natural killer cell transcript 4	NK4/cell adhesion immune response	1.12	1.20	-1.72	1.03
NME2	NM_002512	NME2/Non-metastatic cells 2, protein (NM23B)	NME2/ATP binding CTP biosynthesis GTP biosynthesis UTP biosynthesis kinase activity magnesium ion binding negative regulation of cell cycle negative regulation of cell proliferation nucleoside triphosphate biosynthesis nucleoside- diphosphate kinase activity nucleotide binding nucleotide metabolism nucleus regulation of transcription, DNA- dependent transcription factor activity transferase activity	-1.13	-1.04	-1.02	1.42
NMU	NM_006681	NMU/Neuromedin U	NMU/digestion neuropeptide signaling pathway receptor binding signal transduction	1.11	-1.06	1.04	1.47
OAS2	NM_002535	OAS2/2'-5'-oligoadenylate synthetase 2	OAS2/ATP binding RNA binding immune response membrane microsome nucleobase, nucleoside, nucleotide and nucleic acid metabolism nucleotidyltransferase activity transferase activity	-1.09	1.09	1.15	-1.78
PC4	NM_006713	PC4/Activated RNA polymerase II transcription cofactor 4	binding transcription transcription coactivator activity transcription factor complex	1.22	1.13	-1.07	1.60
PCAF	NM_003884	PCAF/P300/CBP-associated factor	PCAF/N-acetyltransferase activity cell cycle arrest chromatin remodeling histone acetyltransferase activity histone deacetylase binding negative regulation of cell proliferation nucleus protein amino acid acetylation regulation of transcription, DNA-dependent transcription cofactor activity transferase activity	1.13	1.09	1.17	2.06
PDGFRA	NM_006206	PDGFRA/Platelet-derived growth factor receptor, alpha	PDGFRA/ATP binding cell proliferation cell surface receptor linked signal transduction transmembrane receptor protein tyrosine kinase signaling pathway vascular endothelial growth factor receptor activity	-1.21	-1.05	-1.25	-1.49
PECI	NM_006117	PECI/Peroxisomal D3,D2-enoyl-CoA isomerase	activity metabolism peroxisome	-1.01	-1.01	1.20	1.57
PGRB	NM_000926	PGRB/Progesterone receptor B	PGRB/Steroid hormone receptor activity/Transcription factor activity/Regulation of transcription/Cell-cell signaling	1.29	-1.01	1.41	-1.34
РІКЗСВ	NM_006219	PIK3CB/Phosphoinositide-3-kinase, catalytic, beta polypeptide	PIK3CB/C-protein coupled receptor protein signaling pathwaylactivation of MAPK/regulation of cell cycle/signal transduction/transferase activity	-1.15	1.04	1.08	1.69
PLAU	NM_002658	PLAU/Plasminogen activator, urokinase	PLAU/blood coagulation[chemotaxis[chymotrypsin activity]hydrolase activity kinase activity negative regulation of blood coagulation plasminogen activator activity proteolysis and peptidolysis signal transduction[trypsin activity	-1.12	-1.04	1.09	-1.84
PLAUR	NM_002659	PLAUR/Plasminogen activator, urokinase receptor	PLAUR/U-plasminogen activator receptor activity blood coagulation cell surface receptor linked signal transduction chemotaxis extrinsic to membrane plasma membrane protein binding	-1.00	-1.13	-1.40	-1.18
PMS2	NM_000535	PMS2/PMS2 postmeiotic segregation increased 2	PMS2/ATP binding DNA binding mismatch repair negative regulation of cell cycle nucleus	-1.51	-1.01	1.22	1.32
PRC1	NM_003981	PRC1/Protein regulator of cytokinesis 1	PRC1/cytokinesis mitotic spindle elongation nucleus spindle microtubule	1.18	1.14	-1.11	1.46
RAB9A	NM_004251	RAB9A/RAB9A, member RAS oncogene family	RAB9A/GTP binding GTPase activity small GTPase mediated signal transduction	-1.08	-1.01	1.06	1.48
RAMP	NM_016448	RAMP/RA-regulated nuclear matrix-associated protein	pathway	1.10	-1.01	-1.05	1.78
RBBP4	NM_005610	RBBP4/Retinoblastoma binding protein 4	RBBP4/DNA repair DNA replication cell cycle negative regulation of cell proliferation nucleus regulation of transcription, DNA-dependent	-1.01	1.04	1.58	1.11
RBBP7	NM_002893	RBBP7/Retinoblastoma binding protein 7	RBBP7/cell proliferation development nucleus	1.02	1.12	1.14	1.85
RELA	NM_021975	RELA/V-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor (p65)	RELA/anti-apoptosis nucleus nucleus positive regulation of I- kappaB kinase/NF-kappaB cascade protein binding regulation of transcription, DNA-dependent response to toxin signal transducer activity transcription factor activity transcription factor activity transcription factor complex transcription from Pol II promoter	1.01	1.07	1.12	-1.54
RFC3	NM_002915	RFC3/Replication factor C (activator 1) 3, 38kDa	RFC3/DNA binding DNA replication DNA replication factor C complex DNA replication factor C complex DNA strand elongation DNA-directed DNA polymerase activity delta-DNA polymerase cofactor complex enzyme activator activity nucleoside-triphosphatase activity nucleotide binding nucleus	1.08	1.03	-1.16	1.60
RPS6KA1	NM_002953	RPS6KA1/Ribosomal protein S6 kinase, 90kDa, polypeptide 1	RPS6KA1/ATP binding protein amino acid phosphorylation protein serine/threonine kinase activity protein serine/threonine kinase activity protein-tyrosine kinase activity signal transduction transferase activity	1.01	1.14	1.16	1.56

RPS6KA5	NM_004755	RPS6KA5/Ribosomal protein S6 kinase, 90kDa, polypeptide 5	RPS6KA5/ATP binding epidermal growth factor receptor signaling pathway histone phosphorylation metallopeptidase activity nucleus protein phosphorylation metallopeptidase activity nucleus protein kinase cascade protein serine/threonine kinase activity protein serine/threonine kinase activity protein-tyrosine kinase activity proteolysis and peptidolysis regulation of transcription, DNA- dependent response to chemical substance response to external stimulus response to stress transferase activity zinc ion binding	-1.06	-1.09	1.59	3.76
SAP30	NM_003864	SAP30/Sin3-associated polypeptide, 30kDa	SAP30/histone deacetylase complex transcription corepressor activity	1.12	1.22	1.58	2.20
SCD4	NM_024906	SCD4/Stearoyl-CoA desaturase 4	SCD4/endoplasmic reticulum fatty acid biosynthesis iron ion binding membrane oxidoreductase activity	1.24	-1.10	-1.15	-1.78
SCGB2A1	NM_002407	SCGB2A1/Secretoglobin, family 2A, member 1	SCGB2A1/androgen binding	-1.14	-1.21	-1.11	-1.49
SERPINA3	NM_001085	SERPINA3/Serine (or cysteine) proteinase inhibitor A	SERPINA3/DNA binding acute-phase response chymotrypsin inhibitor activity extracellular region inflammatory response intracellular protein binding regulation of lipid metabolism serine-type endopeptidase inhibitor activity	-1.37	1.62	-1.01	-1.10
SERPINB2	NM_002575	SERPINB2/Serine (or cysteine) proteinase inhibitor B	SERPINB2/anti-apoptosis serine-type endopeptidase inhibitor activity	1.28	1.44	1.43	-1.80
SNAI1	NM_005985	SNAI1/Snail homolog 1	SNAI1/DNA binding nucleus zinc ion binding	1.05	-1.03	1.19	2.69
SNAI2	NM_003068	SNAI2/Snail homolog 2	SNAI2/DNA binding[development]ectoderm and mesoderm interaction[negative regulation of transcription from Pol II promoter]nucleus]regulation of transcription, DNA- dependent[zinc ion binding	-1.04	-1.12	-1.53	-1.21
SOS1	NM_005633	SOS1/Son of sevenless homolog 1	SOS1/DNA binding Ras guanyl-nucleotide exchange factor activity Ras protein signal transduction Rho GTPase activator activity Rho guanyl-nucleotide exchange factor activity	1.08	1.03	1.21	1.75
SP1	XM_028606	SP1/Sp1 transcription factor	SP1/DNA binding RNA polymerase II transcription factor activity nucleus regulation of transcription, DNA- dependent transcriptional activator activity zinc ion binding	-1.02	-1.13	-1.15	-2.20
STRBP	NM_018387	STRBP/Spermatid perinuclear RNA binding protein	STRBP/DNA binding double-stranded RNA binding intracellular nucleus regulation of transcription, DNA- dependent	-1.05	-1.07	1.25	2.04
TFDP1	NM_007111	TFDP1/Transcription factor Dp-1	TFDP1/nucleus/regulation of cell cycle/regulation of transcription from Pol II promoter/transcription coactivator activity/transcription factor activity/transcription factor complex	1.09	-1.00	1.01	1.42
TFF1	NM_003225	TFF1/Trefoil factor 1	TFF1/carbohydrate metabolism defense response digestion growth factor activity	1.24	1.13	-1.25	-2.17
TGFA	NM_003236	TGFA/Transforming growth factor, alpha	TGFA/cell proliferation cell-cell signaling epidermal growth factor receptor activating ligand activity growth factor activity integral to plasma membrane protein binding protein- tyrosine kinase activity regulation of cell cycle signal transducer activity soluble fraction	1.09	1.29	1.58	5.78
TGS	NM_173083	TGS/Lin-9 homolog	TGS/LIN9/Receptor activity	1.06	-1.06	1.01	1.55
THBS1	NM_003246	THBS1/Thrombospondin 1	THBS1/blood coagulation calcium ion binding cell adhesion cell motility development endopeptidase inhibitor activity extracellular region heparin binding neurogenesis protein binding signal transducer activity structural molecule activity	1.41	1.28	1.60	-1.15
TOP1	NM_003286	TOP1/Topoisomerase (DNA) I	TOP1/DNA topoisomerase type I activity DNA topological change DNA unwinding	1.04	1.04	1.11	1.56
TP53BP2	NM_005426	TP53BP2/Tumor protein p53 binding protein, 2	transduction	-1.04	1.13	1.75	2.39
TP53I3	AF010309	TP53I3/Tumor protein p53 inducible protein 3	TP53I3/alcohol dehydrogenase activity, zinc- dependent induction of apoptosis by oxidative stress zinc ion binding	1.16	1.01	-1.00	1.43
WIG1	NM_022470	WIG1/P53 target zinc finger protein	WIG1/nucleic acid binding nucleus zinc ion binding	1.02	1.06	-1.01	-1.58
WNT5A	NM_003392	WNT5A/Wingless-type MMTV integration site family, member 5A	WNT5A/cell-cell signaling frizzled-2 signaling pathway receptor binding signal transduction	-1.09	-1.07	-1.06	-1.51
XLHSRF1	AB037831	XLHSRF-1/Heat shock regulated 1	XLHSRF-1/Heat shock regulated 1 ZNF350/DNA binding nucleus regulation of transcription, DNA-	1.16	1.03	1.31	2.17
ZNF350	NM_021632	ZNF350/Zinc finger protein 350	dependent/zinc ion binding	-1.17	-1.43	-1.33	-1.43

GenBank Acc No	Symbol / Name		Fold Change (R5020 1h)	Fold Change (R5020 2h)	Fold Change (R5020 6h)	Fold Change (Cunliffe R5020 2h)	Fold Change (Cunliffe R5020 8h)	Fold Change (Cunliffe R5020 24h)	Overlap Regulated
NM_005688	ABCC5/ATP-binding cassette, sub-family C (CFTR/MRP), member 5	1.10	1.34	1.21	1.36	1.36	-1.30	-1.96	None
NM_001621	AHR/aryl hydrocarbon receptor	-1.08	1.16	1.08	1.13	-1.06	-1.61	-1.59	None
NM_005465	SDCCAG8/serologically defined colon cancer antigen 8	-1.01	-1.09	-1.11	-1.11	-1.19	-1.64	-1.52	None
NM_016359	ANKT/nucleolar protein ANKT	-1.01	-1.08	-1.02	1.44	-1.25	1.02	2.45	None
NM_001654	TIMP1/tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor)	1.04	1.12	1.19	-1.05	-1.15	-1.22	-1.92	None
NM_004217	STK12/serine/threonine kinase 12	-1.03	-1.00	1.03	1.05	1.04	1.53	1.88	None
NM_014417	BBC3/BCL2 binding component 3	-1.10	1.07	1.01	-1.28	-2.63	-1.69	-1.25	None
NM_014567	BCAR1/breast cancer anti-estrogen resistance 1	1.13	1.19	1.29	1.79	2.20	2.19	1.33	Overlap
NM_001168	BIRC5/baculoviral IAP repeat-containing 5 (survivin)	-1.01	1.03	-1.08	1.38	1.13	1.09	2.50	None
NM_001731	BTG1/B-cell translocation gene 1, anti-proliferative	1.07	1.16	1.28	1.43	-1.08	9.88	10.49	None
NM_006763	BTG2/BTG family, member 2	1.49	1.02	-1.30	1.32	1.58	-1.39	1.06	None
NM_018584	PRO1489/hypothetical protein PRO1489	-1.12	-1.01	1.23	-1.50	-1.43	-1.67	-1.82	Overlap
NM_001237	CCNA2/cyclin A2	-1.03	-1.00	-1.15	1.24	-1.20	-1.25	2.12	None
NM_004701	CCNB2/cyclin B2	-1.05	-1.03	1.04	1.22	-1.06	-1.23	2.83	None
NM_053056	CCND1/cyclin D1 (PRAD1: parathyroid adenomatosis 1)	1.32	1.32	1.83	2.41	3.12	2.49	1.91	Overlap
NM_001240	CCNT1/cyclin T1	-1.06	-1.05	-1.03	-1.20	-1.04	-1.00	1.57	None
NM_001786	CDC2/cell division cycle 2, G1 to S and G2 to M	1.01	-1.01	-1.19	1.59	-1.10	-1.47	2.01	None
NM_001255	CDC20/CDC20 cell division cycle 20 homolog (S. cerevisiae)	1.15	1.15	-1.07	-1.03	1.04	1.29	2.97	None
NM_021874	CDC25B/cell division cycle 25B	-1.06	-1.00	-1.15	-1.04	-1.04	-1.14	2.13	None
NM_005197	CHES1/checkpoint suppressor 1	-1.05	-1.20	1.08	-1.07	-1.06	2.04	1.26	None
NM_001823	CKB/creatine kinase, brain	-1.17	1.03	1.10	-1.05	1.22	1.71	1.38	None
NM_001827	CKS2/CDC28 protein kinase 2	1.42	1.16	-1.22	-1.12	-1.11	-1.03	3.03	None
NM_018098	ECT2/epithelial cell transforming sequence 2 oncogene	-1.03	-1.06	-1.12	1.31	-1.47	-1.54	1.28	None
NM_012081	ELL2/ELL-related RNA polymerase II, elongation factor	1.21	1.49	1.58	3.26	2.95	1.31	1.41	Overlap
NM_004448	ERBB2/v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)	-1.27	-1.17	-1.14	-1.86	-1.18	-2.44	-2.17	Overlap
NM_001982	ERBB3/v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)	1.00	1.16	-1.18	-1.76	-1.18	-1.49	-1.49	Overlap
NM_000125	ESR1/estrogen receptor 1	1.03	1.00	-1.01	-1.44	-1.19	-1.96	-1.64	Overlap
NM_002026	FN1/fibronectin 1	1.09	1.19	1.02	-2.72	-1.15	-1.43	-2.22	Overlap
NM_015675	GADD45B/growth arrest and DNA-damage-inducible, beta	1.06	-1.08	-1.07	1.11	1.44	1.78	1.78	None
NM_002051	GATA3/GATA binding protein 3	-1.23	-1.48	-1.82	-2.16	-2.78	-1.61	-1.69	Overlap
NM_000405	GM2A/GM2 ganglioside activator protein	-1.01	1.14	1.08	1.03	1.05	1.55	1.65	None
NM_002105	H2AFX/H2A histone family, member X	1.22	1.10	1.19	1.14	1.08	1.24	1.67	None

Appendix A7: Overlap regulated genes at Cunliffe et al and our study

		-				-			
NM_004964	HDAC1/histone deacetylase 1	-1.04	1.07	-1.02	-1.16	-1.08	2.56	1.50	None
NM_003512	H2AFL/H2A histone family, member L	-1.14	-1.21	-1.05	-2.27	-1.02	-1.43	-1.30	Overlap
NM_145904	HMGA1/high mobility group AT-hook 1	1.10	1.05	1.08	-1.01	1.09	1.17	1.61	None
NM_005342	HMGB3/high-mobility group box 3	1.09	1.31	1.42	3.23	1.48	2.11	1.76	Overlap
NM_001547	EST/ESTs, Highly similar to IFT2_HUMAN Interferon-induced protein with tetratricopeptide repeats 2 (IFIT-2) (Interferon- induced 54 kDa protein) (IFI-54K) (ISG-54 K) [H.sapiens]	1.03	-1.20	-1.09	-1.64	-3.45	-12.50	-3.45	Overlap
NM_000875	IGF1R/insulin-like growth factor 1 receptor	1.03	1.04	1.09	1.25	1.23	1.52	-1.03	None
NM_000599	ESTs/Homo sapiens, clone IMAGE:4183312, mRNA, partial cds	-1.27	-1.24	-1.01	-1.64	-1.12	-2.04	-2.44	Overlap
NM_000210	ITGA6/integrin, alpha 6	1.27	1.20	1.03	-1.09	1.02	1.62	1.39	None
NM_000224	KRT18/keratin 18	-1.08	1.13	-1.14	-1.59	-1.54	-1.18	1.20	None
NM_145110	MAP2K3/mitogen-activated protein kinase kinase 3	1.16	1.04	-1.04	-1.04	-1.56	1.20	1.08	None
NM_002401	MAP3K3/mitogen-activated protein kinase kinase kinase 3	-1.07	1.08	1.26	1.63	1.10	2.39	1.41	Overlap
NM_006739	MCM5/MCM5 minichromosome maintenance deficient 5, cell division cycle 46 (S. cerevisiae)	1.15	-1.03	-1.11	-1.06	1.12	4.15	2.95	None
NM_014791	MELK/maternal embryonic leucine zipper kinase	1.01	-1.03	-1.14	1.11	-1.23	-1.08	-1.43	None
NM_004994	MMP9/matrix metalloproteinase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	-1.05	1.10	1.01	-1.19	1.28	-1.00	1.58	None
NM_002456	MUC1/mucin 1, transmembrane	-1.14	1.00	-1.06	-1.01	1.04	1.51	1.61	None
NM_002462	MX1/myxovirus (influenza virus) resistance 1, interferon- inducible protein p78 (mouse)	-1.17	-1.05	1.23	1.03	-1.75	-5.26	-1.47	None
NM_005375	MYB/v-myb myeloblastosis viral oncogene homolog (avian)	1.08	1.09	1.03	-1.49	-1.16	-1.47	-2.22	Overlap
NM_002467	MYC/v-myc myelocytomatosis viral oncogene homolog (avian)	1.30	1.48	1.98	1.04	1.97	1.25	1.23	Overlap
NM_006534	NCOA3/nuclear receptor coactivator 3	1.18	1.23	-1.08	-1.68	-1.18	2.24	1.95	None
NM_003489	NRIP1/nuclear receptor interacting protein 1	1.17	1.04	1.09	-1.21	-1.43	-1.72	-1.28	None
NM_002634	PHB/prohibitin	1.00	1.11	1.01	1.02	1.09	1.43	1.41	None
M61906	PIK3R1/phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)	1.03	-1.00	1.20	1.24	1.48	4.74	6.68	None
NM_002658	PLAU/plasminogen activator, urokinase	-1.11	-1.05	1.09	-1.85	-1.00	1.65	-1.09	None
NM_002659	PLAUR/plasminogen activator, urokinase receptor	1.00	-1.13	-1.41	-1.18	-1.20	1.98	1.25	None
NM_002826	QSCN6/quiescin Q6	-1.03	-1.02	1.12	-1.12	1.26	1.78	2.58	None
NM_002894	RBBP8/retinoblastoma binding protein 8	-1.06	-1.00	1.02	1.02	-1.41	1.10	1.16	None
NM_002915	RFC3/replication factor C (activator 1) 3, 38kDa	1.08	1.03	-1.15	1.61	1.05	1.45	1.40	Overlap
NM_002953	RPS6KA1/ribosomal protein S6 kinase, 90kDa, polypeptide 1	1.01	1.14	1.16	1.56	1.19	2.16	1.11	Overlap
NM_004755	RPS6KA5/ribosomal protein S6 kinase, 90kDa, polypeptide 5	-1.06	-1.10	1.59	3.77	1.19	1.55	1.26	Overlap
NM_020974	CEGP1/CEGP1 protein	-1.01	1.06	1.09	1.26	1.28	2.27	2.64	None
NM_015001	SHARP/SMART/HDAC1 associated repressor protein	-1.05	-1.12	-1.22	-1.05	-1.45	-1.56	-1.30	None
NM_198433	STK6/serine/threonine kinase 6	1.17	-1.01	1.04	-1.09	-1.28	-1.16	1.97	None
NM_003226	TFF3/trefoil factor 3 (intestinal)	-1.07	1.03	1.27	1.37	1.11	1.53	-1.23	None
NM_003246	THBS1/thrombospondin 1	1.41	1.28	1.60	-1.15	1.04	1.57	1.33	Overlap
NM_001067	TOP2A/topoisomerase (DNA) II alpha 170kDa	1.07	1.09	1.03	-1.08	-1.43	-1.64	2.56	None
NM_007027	TOPBP1/topoisomerase (DNA) II binding protein	-1.07	1.00	-1.13	-1.16	-1.22	3.03	1.48	None
NM_005426	TP53BP2/tumor protein p53 binding protein, 2	-1.03	1.13	1.76	2.40	1.93	2.23	1.92	Overlap
NM_021147	UNG2/uracil-DNA glycosylase 2	-1.03	-1.08	1.26	-1.37	-1.33	-2.50	-2.00	None
NM_005082	EST/Homo sapiens cDNA: FLJ20944 fis, clone ADSE01780	1.21	1.13	1.03	-1.38	-1.41	-2.86	-2.38	None
	1	I	I	I	I		L	I	

Game Auc., No. symbol Fold q-Value				T0 and R5020 6 hr	T0 and R5020 6 hr	T0+PD and R5020+PD 6h	T0+PD and R5020+PD 6h	T0 and R5020+ICI 6 hr	T0 and 6 R5020+ICI 6 hr	5
Signal Transforming prove fractor of transcription SA NML 003122 STATSA 5.41 0.7161 5.60 0.0000 F.00	Gene name			Fold	q-value	Fold	q-value	Fold	q-value	Inhibited by
Transforming growth factor α NML 00236 TOFA 4.81 0.0000 3.83 0.0000 7.83 0.0000 Growth arrest and DNA-dmage-inducibleα NML 00124 GAD45A 3.43 0.0000 6.65 0.0000 2.55 0.0000 High-mobility group bar 3 NML 00124 GAD45A 3.29 0.0000 5.61 0.0000 2.46 0.0000 Sind-associated polypeptide 30x0 monogene homolog (winn) NML 00324 KIMS 2.28 0.0000 1.773 2.58 0.0000 Sind-associated polypeptide 30x0 NML 00334 KAP30 2.71 0.0000 1.753 2.58 0.0000 1.757 0.772 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 1.757 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	pidermal growth factor (beta-urogastrone)	—			0.0000				0.0000	PD
Dual specificity phosphatase 1 NML 004117 DUSP1 4.73 0.7161 3.43 0.0000 2.47 1.757 2.56 0.0000 Cyclin D1 NML 05056 CCN11 3.23 0.0000 2.48 0.0000 2.44 0.0000 2.40 0.0000 2.40 0.0000 Vijn sarcona virus 17 oncogren homolog (virun) NML 00228 UJN 3.10 0.0000 2.35 0.0000 2.40 0.0000 Provincia accoma virus 17 oncogren homolog (virun) NML 00228 UJN 3.10 0.0000 2.35 0.0000 2.40 0.0000 1.75 0.072 POR Provincia accoma virus 17 oncogren homolog (virun) ABD7331 KLASER 2.71 0.716 2.83 0.0000 3.00 0.0000 3.00 0.0000 2.83 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000 3.00 0.0000	-									
Growth arrest and DixA-damage-inducibleα NML 001924 GAD45A 3.42 0.0000 2.47 1.573 2.56 0.0000 High-mobility group box 3 YI0043 HMRGB3 3.20 0.0000 2.51 0.0000 2.44 0.0000 Interretwink 6 signal transducer (pp130. oncostant M receptor) NML 002144 LIST 2.96 0.7116 2.51 0.0000 3.14 0.0000 Turnpelvike forces (intestina) NML 002144 LIST 2.96 0.7116 2.51 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.0000 1.75 0.772 0.0000 1.75 0.772 0.0000 1.75 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.772 0.773 <										
Cyclin D1 Nu 63365 CCND1 3.29 0.0000 4.00 0.0000 Vj.an sarona virus 17 oncogene homolog (wian) Interleukin 6 signal transducer (grins). Nu 02228 JUN 3.10 0.0000 2.51 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.51 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.50 0.0000 2.55 0.0000 2.55 0.0000 2.55 0.0000 2.56 0.0000 2.56 0.0000 2.56 0.0000 2.56 0.0000 2.56 0.0000 1.57 0.772 2.56 0.0000 1.57 0.772 2.56 0.0000 1.67 0.0772 2.56 0.0000 1.67 0.072 2.56 0.0000 1.67 0.072 2.56 0.0000 1.67 0.0000 1.67 0.0000 1.67 0.0000 1.66 0.0000 1.66 0.0000 1.66 0.0000										
High-nobility group box 3 Y10043 HiddE3 1.20 0.0000 2.44 0.0000 Interleukin 6 signal transducer (gr130. encostatin M receptor) NML 002184 LEST 2.89 0.7161 2.61 0.0000 3.14 0.0000 Sind sesociated ophyspitid 500A3 NML 001730 KLFS 2.71 0.7161 0.0000 1.753 2.258 0.0000 1.753 2.258 0.0000 1.753 2.258 0.0000 1.75 0.0732 Dynein, axoomath Ravy polypoitol 1 A001733 KLFS 2.71 0.7161 1.80 0.0000 1.75 0.0772 0.0772 RAS-like samply the methors B ML 0.0020 2.83 0.0000 2.68 0.0000 1.07 0.0772 Ribosomal protein Sis kinase 90KDa polypoitol 3 NML 004755 RPS6KA5 2.24 0.0000 1.071 0.264 0.0000 1.0000 Contant area to the sinase sinase 3 NML 004755 RPS6KA5 2.19 0.7161 1.88 1.573 1.59 0.0000 1.44 0.0000 1.44	5									
y-ip.maccomis_truins 17 concogene homolog (evian) NML 02228 UNN 3.10 0.0000 2.53 0.0000 2.90 0.0000 Sin3-associated polyopitide 30k0a NML 003264 KSP3 2.71 0.0000 3.07 0.0000 3.05 0.0000 3.05 0.0000 3.00 0.0000	•									
Interleval: Experiment NML 002144 LEST 2.89 0.7161 2.61 0.0000 3.14 0.0000 Sin-associated polyspetid 300ha NML 00364 SAP0 2.71 0.7161 3.08 0.0000 1.75 0.0732 Dynein, anonemal, heavy polyspetid 51 NML 003763 KLIPSF 2.70 0.7161 1.38 0.0000 1.75 0.0732 Dynein, anonemal, heavy polyspetid 51 NML 03315 KLIPSF 2.70 0.7161 1.38 0.0000 1.87 0.0000 PD A Elongation factor, RNA polymerate IL 2 NML 02181 LL2 2.42 0.7161 1.38 NA 1.87 0.0000 2.39 0.0000 1.87 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.43 0.0000 1.68 0.0000 2.43 0.0000 1.48 0.0000 2.43 0.0000 2.43 0.0000 1.48 0.43 0.0000 1.66										
Kruppellike factor 5 (intestinal) NNL 001730 KLF5 2.71 0.7161 3.08 0.0000 1.75 0.0732 RAS-like, family 10. member B NML 033315 RAS-like, family 10. member B NML 03335 RAS-like, family 10. member B 1.33 NA 1.88 0.0000 P.05 CDC14 cell division cycle 14 homolog B (S. cerevisiae) NML 03332 CDC14 KA 2.34 0.0000 2.39 0.0000 1.87 0.0000 A A 0.39 0.0000 A 0.000 1.87 0.0732 P.0.6 Rubosomal protein 56 kinase SUAD polypeiptide 5 NML 00750 P.05A582 2.19 0.7161 1.88 1.3777 2.61 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.63 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 2.43 0.0000 P.053		_								
Dynein, axonemal, heavy polypeptide 1 AB037831 XLHSRF-1 2.70 0.000 2.83 0.000 1.09 0.000 PD 6 RAS-like, family to, member B NL,012081 ELL2 0.7161 1.81 1.1377 1.68 0.0000 PD 6 COC14 cell division cycle 1 A homolog § (5. cervisiae) NL03332 CACL 2.43 0.0000 2.69 0.0000 1.67 0.0000 Khase (FRKA) anchor protein 3 NL007200 KARNS 2.44 0.07161 1.88 1.1377 1.68 0.0000 2.67 0.0000 2.67 0.0000 2.67 0.0000 2.63 0.0000 E.43	in3-associated polypeptide 30kDa	NM_003864	SAP30	2.71	0.0000	2.07	1.5753	2.58	0.0000	
RÅS-like. family 10. member B NM. 03315 RÅSL10B 2.49 0.7161 1.33 NA 1.69 0.0000 PD 6 Elongation factor: RMA polymersal: L2 NM. 03332 CDC14B 2.35 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 3.09 0.0000 2.67 0.0000 PC 0.0000 PC 0.0000 1.68 1.573 1.99 0.0000 2.67 0.0000 PC 0.0000 1.69 0.0000 1.69 0.0000 1.69 0.0000 1.69 0.0000 1.69 0.0000 1.60 0.0000 1.60 0.0000 1.60 0.0000 1.69 0.0000 1.60 0.0000 1.60 0.0000 1.60 0.0000	Cruppel-like factor 5 (intestinal)		KLF5		0.7161		0.0000		0.0732	
Eiongation factor. RNA polymerase II. 2 CDC14 cell division cycle 14 homolog B (s. cervoisiae) Ribosomal protein S6 kinase 90kDa polypeptide 5 NM. 00332 CDC14B 2.33 0.0000 Ainase (PKA) anchor protein 13 NM. 00720 AKAP13 2.21 0.7161 Ainase (PKA) anchor protein 13 NM. 00690 CXC11 2.218 0.7161 Baculoviral IAP repeat-containing 3 Peroxisome protein 24 Ainase (PKA) anchor protein 2 NM. 00690 CXC12 2.14 0.7161 Ainase (PKA) anchor protein 2 NM. 00690 CXC12 2.14 0.7161 Ainase (PKA) anchor protein 2 NM. 00690 CXC12 2.14 0.7161 Ainase (PKA) anchor protein 2 NM. 006926 CKC12 2.14 0.7161 Ainase (PKA) anchor protein 2 NM. 002628 EGFR 2.13 0.7161 Ainase (PKA) anchor protein 2 NM. 00266 GRB2 1.88 Aina anchor protein 2 NM. 00276 CKNE 2.185 0.7161 Ainase (PKA) anchor protein 2 NM. 00278 CKNE 2.185 0.7161 Ainase (PKA) anchor protein 2 NM. 00278 Cyclin E2 Vascular endothelial growth factor (p57, Kip2) NM. 00076 CDKNH C.125 NM. 00076 Cyclin E2 Ainase report 3 NM. 00178 Cyclin Cyclin Ainase aceaptor NM. 00279 NM. 00279 NM. 00279 Cyclin Ainase aceaptor NM. 00279 NM. 00279 Cyclin Ainase aceaptor NM. 00279 Cyclin Ainase aceaptor NM. 00279 Cyclin Ainase aceaptor NM. 00279 Cyclin Ainase aceaptor NM. 00279 NM. 00279 NM. 00279 NM. 00279 Cyclin Ainase aceaptor NM. 00279 NM.									-	
CDC14 cell division cycle 14 homolog B(S, cerevisiae) NM 03332 CDC14B 2.35 0.0000 2.39 0.0000 1.877 0.0732 Ribosomal protein S6 kinase 90k0b polypoptide 5 NM 00756 PSSKA5 2.21 0.7161 1.88 1.1377 2.61 0.0000 A kinase (PBKA) anchor protein 13 NM 00756 PSGAD443 2.19 0.7161 1.68 1.577 2.61 0.0000 Growth arest and DNA damage-inducibleg NM 004756 PSGAD443 2.19 0.7161 1.68 1.577 0.0000 PC Chemokine (C-X-C motif) ligand 12 NM 00609 CXCL12 2.18 0.7161 1.63 1.573 1.99 0.0000 1.49 0.0000 PC Deatudorial RY factor receptor NM 00528 CGFR 2.11 0.7161 1.33 NA 1.74 0.0000 PC Cyclin Lagend kinase inhibitor clad A member 3 NM 00528 CGFR 2.11 0.7161 1.67 NA 1.14 4.033 NA 1.74 0.0000 PC PC PC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PD & ICI</td>										PD & ICI
Ribosomal protein Sc Kinase 90Kba polypeptide 5 NM 04755 RPSsKA5 2.34 0.0000 2.66 0.0000 3.09 0.0000 Arinase (PRKA) anchor protein 13 NM 04757 GAXPA13 2.211 0.7161 2.86 0.0000 2.67 0.0000 Mitogen-activator protein kinase ki						-				PD & ICI
A kinase (PRKA) anchor protein 13 NM 07200 AKAP13 2.21 0.7161 1.88 1.1377 2.61 0.0000 Growth arest and DNA-damage-inducible NM 05675 AcDD458 2.19 0.7161 2.86 0.0000 2.67 0.0000 Demokine (C-X-C motif) ligand 12 NM 00669 CXCL1 2 2.18 0.7161 3.05 0.0000 2.43 0.0000 FD Baculoviral IAP repeat-containing 3 NM 00569 CXCL1 2 2.18 0.7161 1.35 NA 1.72 0.0000 FD Epidermal growth factor receptor NM 00528 EFGFR 2.13 0.7161 1.35 NA 1.74 0.0000 FD Cyclin F25 Shinding protein 2 NM 005285 EFGFR 2.13 0.7161 1.35 NA 1.74 0.0000 FD 0.0000 <td></td>										
Growth arrest and DNA-damage-inducible NM 015675 GADD45B 2.19 0.7161 2.265 2.245 2.77 0.0000 Mitogen-activated protein kinase kinase kinase 3 NM 00241 APR3 2.19 0.7161 2.86 0.0000 2.47 0.0000 PD Chemokine (C-X-C motif) ligand 12 NM 000165 BRC132 2.16 0.7161 1.63 1.5753 1.99 0.0000 FD Baculoviral IAP repeat-containing 3 NM 001165 BIRC3 2.14 0.7161 1.30 NA 1.12 2.983 0.0000 FD Epidermal growth factor receptor NM 005228 EGR 2.11 0.7161 1.66 NA 1.12 2.983 C0.000 PD Small homolog 1 (Drosophila) NM 00528 SNA11 1.85 0.7161 1.41 3.129 1.86 0.0000 PD Vascular endothelial growth factor NM 003576 CVRIn-2 1.85 0.7161 1.26 NA 7.33 0.0000 PD Vascular endothelial growth factor										
Nitogen-activated protein kinase kinase 3 NM 002401 MAP3X3 2.19 0.7161 2.266 0.0000 2.67 0.0000 PD Chemokine (C-X-C motif) ligand 12 NM 00069 CXCL12 2.18 0.7161 1.63 0.0000 2.43 0.0000 CI Baculoviral IAP repeat-containing 3 NM 00155 BIRC3 2.16 0.7161 1.33 NA 1.49 0.0000 CI Epidemal growth factor receptor NM 005426 TP53BP2 2.11 0.7161 1.057 NA 1.14 4.0539 CI Growth factor receptor-bound protein 2 NM 005265 GFR 2.11 0.7161 1.67 NA 1.12 2.822 PD & A.114 4.0539 CI Cyclin E2 NM 00576 CVEC1 1.85 0.7161 1.44 3.1287 1.81 0.000 PD Vascular endothelial growth factor NM 0.00276 CVEC1 1.82 0.7161 1.44 3.1287 1.81 0.000 PD Dactivating transcription factor 3 <										
nucin 2 like B6675322 MU2LL 2.19 0.7161 1.633 1.575 1.99 0.0000 PD Baculoviral IAP repeat-containing 3 NM 00065 CXCL1 2 2.18 0.7161 1.63 1.5753 1.99 0.0000 PD Peroxisome proliferative activate receptory coactivator 1 β NM 005228 EGFR 2.14 0.7161 1.05 NA 1.74 0.0000 PD Convolt factor receptor- bound protein 2 NM 005426 TPS3BP2 2.11 0.7161 1.05 NA 1.14 4.0539 CCI Growth factor receptor- bound protein 2 NM 005426 GRB2 1.88 1.7644 1.33 NA 1.42 0.0000 PD Scripting crosphila NM 00759 CCNE2 1.85 0.7161 1.44 1.38 0.0000 PD Activating transcription factor 3 NM 001655 EEPFI Nation 1.142 1.68 1.74 1.80 0.761 1.25 NA 1.46 0.0000 PD Activating transcription factor 1 NM 000255 EEPFI Nation 1										
Chemokine (C-X-C moth) ligand 12 NM, 000609 CXCL12 2.16 0.7161 3.05 0.0000 2.4.3 0.0000 PC Baculoviral IAP repeat-containing 3 NM, 0115B BIRC3 2.16 0.7161 1.33 NA 1.12 2.9822 PD & Epidermal growth factor receptor NM, 00528 EGFR 2.11 0.7161 1.35 NA 1.12 2.9822 PD & Growth factor receptor-bound protein 2 NM, 005268 EGFR 2.11 0.7161 1.43 NA 1.82 0.0000 CC Snail homolog 1 (Drosophila) NM, 005769 CKNE2 1.88 0.7161 1.44 3.1287 1.81 0.0000 PD Vascular endothelial growth factor NM, 00576 CVEN1C 1.82 2.277 1.24 NA 4.33 0.0000 PD Vascular endothelial growth factor NM 000265 EZPI Nascription factor 1 1.46 0.0000 CC Vescular endothelial growth factor NM 001085 SERPINA3 1.80 0.7161 1.74	•									PD
Bacuborial IAP repeat-containing 3 NML 001155 BIRC3 2.14 0.7161 1.39 0.0000 I.49 0.0000 ICI Peroxisome proliferativa exituated receptor y coattivator 1 β NML 03528 EGGR 2.11 0.7161 1.30 NA 1.14 4.0538 ICI Comotr factor receptor-bound protein 2 NML 005286 CPSBP2 2.11 0.7161 1.36 NA 1.14 4.0538 ICI Concord NA 1.14 4.0538 ICI Concord NA 1.14 4.0538 ICI Concord NA 1.14 4.0538 ICI ICI Sinal homolog 1 (Drosophila) NML 00576 VEGF 1.88 1.761 1.41 3.1287 1.88 0.0000 PD Vascular endothelial growth factor NML 000265 SERPINAS 1.26 N.744 I.68 NA 3.00000 PD Scription factor 3 NML 000265 SERPINAS 1.36 0.7161 1.25 NA 1.68 0.0000 CD E2 FD Scription factor 3										-
Epidemal growth factor receptor NNL 005228 CGFR 2.13 0.7161 -1.05 NA -1.12 2.9822 PD & Growth factor receptor-bound protein 2 NML 005266 GRB2 1.88 1.7844 1.33 NA 1.82 0.0000 PD Snail homolog 1 (Drosophila) NML 005365 SNA11 1.85 0.7161 1.44 3.1227 1.84 0.0000 PD Vgscular endothelial growth factor NML 005376 VEGF 1.83 0.7161 1.44 3.1237 1.84 0.0000 PD Vgscular endothelial growth factor NML 003376 VEGF 1.83 0.7161 1.44 3.1237 0.0000 PD Activating transcription factor 3 NML 004024 ATF3 1.82 2.2677 1.24 NA 3.08 0.0000 PD Activating transcription factor 1 NML 005255 PLAUR 1.76 1.7844 1.60 NA 7.43 0.0000 PD Activating transcription factor 1 NML 005255 PLSAK1 1.77 1.784 1.60			BIRC3	2.16	0.7161	2.90	0.0000	1.49	0.0000	ICI
Tumor protein pS5 binding protein 2 NM_005426 FPS3BP2 2.11 0.7161 f.fr NA 1.14 4.0539 ICI Growth factor receptor-bound protein 2 NM_00286 GR2 1.88 1.7844 1.33 NA 1.82 0.000 PD Snail homolog 1 (Drosophila) NM_00586 SNAI1 1.85 0.7161 1.41 3.1287 1.86 0.000 PD Vascular endothelial growth factor NM_00376 VECF 1.83 0.7161 1.41 3.1287 1.81 0.0000 PD Vascular endothelial growth factor NM_00376 VECF 1.83 0.7161 1.74 2.8495 1.30 0.0000 PD Serine (or cysteine) proteinase inhibitor clade A member 3 NM_001085 SERPINA3 0.7761 1.25 NA 1.46 0.0000 PD Plasiminogen activator. urokinase receptor NM_005225 E2F1 1.73 1.7844 1.82 NA 1.35 0.0000 PD Cyclin-dependent kinase. 90kDa. polypeptide NM_005225			PPARGC1B	2.14	0.7161	1.33	NA	1.74	0.0000	
Growth factor receptor-bound protein 2 NM 002086 CRB2 1.88 1.7844 1.33 NA 1.82 0.0000 PD Snail homolog (Drosophila) NM 005895 SNAI1 1.85 0.7161 1.96 1.1377 1.68 0.0000 PD Cyclin-Egendent kinase inhibitor C (DF. Kip2) NM 003376 VEGF 1.83 0.7161 1.41 2.6845 1.83 0.0000 PD Serine (or cysteine) proteinase inhibitor clade A member 3 NM 004024 ATF3 1.82 2.2677 1.24 NA 3.08 0.0000 PD Serine (or cysteine) proteinase inhibitor clade A member 3 NM 004252 SEPINA3 1.80 0.7161 1.25 NA 1.46 0.0000 PD E2F transcription factor 1 NM 002525 E2F1 1.73 1.7844 1.10 NA 1.46 0.0000 PD Cystin-dependent kinase inkibitor of transcription 3 NM 102260 SCN64 1.66 1.61 1.57 3.00000 PD Signal transcription factor 1 NM 002267	pidermal growth factor receptor	NM_005228	EGFR	2.13	0.7161	-1.05	NA	-1.12	2.9822	PD & ICI
Snail homolog 1 (Drosophila) NM_06588 SNAI1 1.85 0.7161 1.96 1.1377 1.88 0.0000 Cyclin E2 Vascular endothelial growth factor NM_037749 CCNE2 1.85 0.7161 1.41 3.1287 1.81 0.0000 PD Cyclin-dependent kinase inhibitor 10 (p57. Kip2) NM_000264 ATTS 1.82 1.764 1.08 NA 7.33 0.0000 PD Activating transcription factor 3 NM_004024 ATTS 1.82 2.2677 1.24 NA 1.59 0.0000 PD Plasminogen activator. urokinase receptor NM_002659 PLAUR 1.76 1.7844 1.28 NA 1.55 0.0000 PD Cyclin-dependent kinase 6 NM_002252 E2F1 1.76 1.764 1.90 1.1377 2.53 0.0000 PD Cyclin-dependent kinase 8 NM_002260 QSCN6 1.66 0.7161 1.37 3.1287 1.55 0.0000 PD Cyclin-dependent kinase 8 NM_02260 CN8	umor protein p53 binding protein 2	NM_005426	TP53BP2	2.11	0.7161	1.67	NA	1.14	4.0539	ICI
Cyclin E2 NM_057749 CCKE2 1.85 0.7161 1.41 3.1287 1.81 0.0000 PD Vascular endothelial growth factor NM_00376 VEGF 1.83 0.7161 1.74 2.6945 1.93 0.0000 Cyclin-dependent kinase inhibitor 1C (p57. Kip2) NM_00076 CDKN1C 1.82 2.2677 1.24 NA 3.06 0.0000 PD 8 Serine (or cystenie) proteinase inhibitor 1cd ad A member 3 NM_001685 SERPINA3 1.80 0.7161 1.25 NA 1.59 0.0000 PD 8 Serine (or cystenie) proteinase inhibitor 1cd ad A member 3 NM_0016259 PLAUR 1.76 1.7844 1.10 NA 1.46 0.0000 PD 9 E2F transcription factor 1 NM_002250 RPS6K11 1.71 0.7161 1.66 2.6945 2.15 0.0000 PD 0 Cyclin-dependent kinase 8 NM_001260 CDK8 1.64 1.7844 1.60 1.5753 1.79 0.0000 PD 0 Cyclin-dependent kinase 8 NM_001260 <	Frowth factor receptor-bound protein 2	NM_002086		1.88	1.7844		NA		0.0000	PD
Vascular endothelial growth factor NM_00376 VEGF 1.83 0.7161 1.74 2.6945 1.93 0.0000 PD & Cyclin-dependent kinase inhibitor 1C (p57. Kip2) NM_000076 CDKN1C 1.82 2.2677 1.24 NA -7.33 0.0000 PD & Serine (or cysteine) proteinase inhibitor clade A member 3 NM_001265 SERPINA 1.82 2.2677 1.24 NA -1.59 0.0000 PD & Plasminogen activator. urokinase receptor NM_00255 PLAUR 1.76 1.7844 -1.10 NA 1.46 0.0000 PD & Plasminogen activator. urokinase receptor NM_002255 E2F1 1.73 1.7844 1.66 1.717 2.53 0.0000 PD & Quiescin Q6 Cyclin-dependent kinase 8 NM_002262 QSCN6 1.66 0.7161 1.66 2.6545 2.15 0.0000 PD & Cyclin-dependent kinase 8 NM_002262 QSCN6 1.66 1.73 1.737 0.757 1.57 0.0000 PD & Cyclin	inail homolog 1 (Drosophila)								0.0000	
Cyclin-dependent kinase inhibitor 1C (p57. Kip2) NM_000076 CDKN1C 1.82 1.7844 1.08 NA -7.33 0.0000 PD & Activating transcription factor 3 NM_004024 ATF3 1.82 2.2677 1.24 NA 3.06 0.0000 ICI Serine (or cysteine) proteinase inhibitor clade A member 3 NM_001085 SERPINA3 1.80 0.7161 1.25 NA 1.59 0.0000 ICI ZEF transcription factor 1 NM_002525 RPS6KA1 1.76 1.7844 1.28 NA 1.35 0.0000 PD 2.53 0.0000 <td< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>PD</td></td<>	•									PD
Activating transcription factor 3 NM_004024 ATF3 1.82 2.2677 1.24 NA 3.08 0.0000 ICI Serine (or cysteine) proteinase inhibitor clade A member 3 NM_001085 SERPINA3 1.80 0.7161 1.25 NA 1.59 0.0000 ICI Plasminogen activator. urokinase receptor NM_002525 E2F1 1.73 1.7844 1.10 NA 1.46 0.0000 PD Ribosomal protein S6 kinase. 0xbDa. polypeptide NM_002525 E2F1 1.73 1.7844 1.28 NA 1.35 0.0000 PD Quiescin Q6 Chinase. catalytic. beta polypeptide NM_002626 QSCN6 1.66 0.7161 1.37 3.1287 1.55 0.0000 PD Signal transducer and activator of transcription 3 NM_0024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.62 1.2369 1.67 1.5753 1.57 0.0000 PD	-								-	
Serine (or cysteine) proteinase inhibitor clade A member 3 NM_001085 SERPINA3 1.80 0.7161 1.25 NA 1.59 0.0000 PD Plasminogen activator. urokinase receptor NM_002659 PLAUR 1.76 1.7644 -1.10 NA 1.46 0.0000 PD Ribosomal protein S6 kinase. 90kDa. polypeptide 1 NM_002953 RPS6Kk1 1.71 0.7161 1.90 1.1377 2.53 0.0000 PD Phosphoinositide-3-kinase. catalytic. beta polypeptide NM_002853 RPS6Kk1 1.71 0.7161 1.66 2.6945 2.15 0.0000 PD Signal transducer and activator of transcription 3 NM_002260 CDK8 1.64 4.3086 1.15 NA 1.56 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.87 1.37 1.37 0.0000 PD Parvin. alpha NM_01527 NM_015269 FJA201 1.62 1.388 1.67 1.5753 1.57 0.0000 FD										PD & ICI
Plasminogen activator. urokinase receptor NM_002659 PLAUR 1.76 1.7844 -1.10 NA 1.46 0.0000 PD E2F transcription factor 1 NM_002525 E2F1 1.73 1.7844 1.28 NA 1.35 0.0000 Phosphoinositide-3-kinase. catalytic. beta polypeptide NM_002250 E2F1 1.73 1.7844 1.28 NA 1.35 0.0000 Quiescin Q6 NM_0022826 QSCN6 1.66 0.7161 1.366 2.6945 2.15 0.0000 Signal transducer and activator of transcription 3 NM_012260 CDKR 1.64 4.3066 1.15 NA 1.56 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Parvin. alpha NM_018222 PARVA 1.61 1.7844 1.48 1.5753 1.56 0.0000 P300/CBP-associated factor NM_00324 PCAF 1.59 1.2369 1.67 1.5753	- ·									
E2F transcription factor 1 NM_005225 E2F1 1.73 1.7844 1.28 NA 1.35 0.0000 Ribosomal protein 56 kinase. gokDa. polypeptide NM_00253 RP56KA1 1.71 0.7161 1.90 1.1377 2.53 0.0000 Quiescin Q6 NM_002826 QSCN6 1.66 0.7161 1.66 2.95 0.0000 PD Cyclin-dependent kinase 8 NM_001260 CDK8 1.64 1.7844 1.60 1.5753 1.79 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Parvin. alpha NM_04134 HSPA9B 1.60 3.2894 1.39 NA -1.23 0.0000 PD Parvin. alpha Imbibitor of growth family. member 1 NM_004134 HSPA9B 1.60 3.2894 1.39 NA -1.23 0.0000 PD Parvin. alpha 3 (importin alpha 4) NM_00557 ING1 1.59 2.2677 2.16		-								
Ribosomal protein S6 kinase. 90kDa. polypeptide 1 NM_002953 RPS6KA1 1.71 0.7161 1.90 1.1377 2.53 0.0000 Phosphoinositide3-kinase. catalytic. beta polypeptide NM_006219 PiK3CB 1.70 0.7161 1.66 2.6945 2.15 0.0000 PD Cyclin-dependent kinase 8 NM_001260 CDK8 1.64 1.7844 1.60 1.5753 1.79 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_012668 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_012620 FLJ32001 1.62 1.2369 1.89 1.1377 1.73 0.0000 PD Parvin. alpha NM_01822 STAT3 1.61 1.7844 1.48 1.56 0.0000 PD Parvin. alpha NM_0182458 CHD1L 1.63 1.2869 1.67 1.5753 1.67 0.0000 ICI General transcription factor IIL, polypeptide 2. 44kDa NM_001842	-									FD
Phosphoinositide-3-kinase. catalytic. beta polypeptide NM_006219 PIK3CB 1.70 0.7161 1.66 2.6945 2.15 0.0000 Quiescin Q6 NM_002286 QCN6 1.66 0.7161 1.37 3.1287 1.55 0.0000 PD Signal transducer and activator of transcription 3 NM_139276 STAT3 1.64 4.3086 1.15 NA 1.56 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CH01L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Chromosome 1 open reading frame 71 NM_156209 FLJ32001 1.62 1.2369 1.89 1.1377 1.73 0.0000 Heat shock 70kDa protein 9B (mortalin-2) NM_004134 HSPA9B 1.60 3.2894 1.39 NA -1.23 0.0000 General transcription factor IIH, polypetide 2. 44kDa NM_00537 ING1 1.59 0.2677 2.16 1.5753 1.56 0.0000 Faryopherin alpha 3 (importin alpha 4) NM_00584 FQA12 1.59	•									
Quiescin Q6 NM_002826 QSCN6 1.66 0.7161 1.37 3.1287 1.55 0.0000 PD Cyclin-dependent kinase 8 NM_001260 CDK8 1.64 1.7844 1.60 1.5753 1.79 0.0000 PD Signal transducer and activator of transcription 3 NM_139276 STAT3 1.64 4.3086 1.15 NA 1.56 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Parvin. alpha NM_018229 PARVA 1.61 1.7844 1.48 1.5753 1.68 0.0000 Heat shock 70kDa protein 9B (mortalin-2) NM_001515 GTF2H2 1.59 0.7161 1.32 NA 1.23 0.0000 ICI General transcription factor IIH. polypeptide 2.44kDa NM_0015267 KPNA3 1.58 2.2677 2.16 1.5753 1.56 0.0000 P300/CBP-associated factor NM_003246 FMBS1 1.56 1.774										
Cyclin-dependent kinase 8 NM_001260 CDK8 1.64 1.7844 1.60 1.5753 1.79 0.0000 PD Signal transducer and activator of transcription 3 NM_0139276 STAT3 1.64 4.3086 1.15 NA 1.56 0.0000 PD Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Chromosome 1 open reading frame 71 NM_018222 PARVA 1.61 1.7844 1.48 1.573 1.68 0.0000 Parvin. alpha NM_001315 GTF2H2 1.59 0.2894 1.39 NA -1.23 0.0000 ICI General transcription factor IIH, polypeptide 2. 44kDa NM_001515 GTF2H2 1.59 1.2369 1.67 1.5753 1.56 0.0000 PD P300/CBP-associated factor NM_002267 KPNA3 1.58 2.2677 2.16 1.5753 2.44 0.0000 IA 1.37 0.0000 ID Insulin-like growth factor binding protein 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PD</td>										PD
Chromodomain helicase DNA binding protein 1 long isoform NM_024568 CHD1L 1.63 1.2369 1.67 1.5753 1.57 0.0000 Parvin. alpha NM_01222 PARVA 1.61 1.7844 1.48 1.5753 1.68 0.0000 Heat shock 70kDa protein 9B (mortalin-2) NM_012422 PARVA 1.61 1.7844 1.48 1.5753 1.68 0.0000 General transcription factor IIH. polypeptide 2. 44kDa NM_001515 GTF2H2 1.59 0.7161 1.32 NA 1.23 0.0000 Inhibitor of growth family. member 1 NM_002267 KPNA3 1.56 2.2677 2.16 1.5753 2.44 0.0000 Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.56 2.2677 2.01 1.1377 1.63 0.0000 Denticleless homolog (Drosophila) NM_016448 RAMP 1.56 1.7844 -1.09 NA 1.37 0.0000 ICI Insulin-like growth factor binding protein 3 NM_00598 IGFBP3 1.56 2.2677 1.70 1.13			CDK8	1.64	1.7844	1.60		1.79	0.0000	
Chromosome 1 open reading frame 71 NM_152609 FLJ32001 1.62 1.2369 1.89 1.1377 1.73 0.0000 Parvin. alpha NM_018222 PARVA 1.61 1.7844 1.48 1.5753 1.68 0.0000 ICI General transcription factor IIH. polypeptide 2. 44kDa NM_001355 GTF2H2 1.59 0.7161 1.32 NA 1.23 0.0000 ICI P300/CBP-associated factor NM_003884 PCAF 1.59 2.2677 2.16 1.5753 2.44 0.0000 Chromosomo 1 (mportin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.16 1.5753 2.44 0.0000 Denticles homolog (Drosophila) NM_002267 KPNA3 1.56 1.7844 -1.09 NA -2.54 0.0000 ICI Insulin-like growth factor binding protein 3 NM_005962 KXI1 1.54 2.2677 1.70 1.1377 2.17 0.0000 PD Mixtigen-activated protein kinase 7 NM_005962 MXI1 1.54	Signal transducer and activator of transcription 3	NM_139276	STAT3	1.64	4.3086	1.15	NA	1.56	0.0000	PD
Parvin. alpha NM_018222 PARVA 1.61 1.7844 1.48 1.5753 1.68 0.0000 Heat shock 70kDa protein 9B (mortalin-2) NM_004134 HSPA9B 1.60 3.2894 1.39 NA -1.23 0.0000 ICI General transcription factor IIH. polypeptide 2. 44kDa NM_001515 GTF2H2 1.59 0.7161 1.32 NA 1.38 0.0000 Inhibitor of growth family. member 1 NM_005537 ING1 1.59 1.2369 1.67 1.5753 1.56 0.0000 Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.01 1.1377 1.63 0.0000 Denticleless homolog (Drosophila) NM_005588 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI Thrombospondin 1 NM_005982 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI MAX interactor 1 NM_005962 MXI1 1.54 2.2677 1.47 NA	Chromodomain helicase DNA binding protein 1 long isoform	NM_024568	CHD1L	1.63	1.2369	1.67	1.5753	1.57	0.0000	
Heat shock 70kDa protein 9B (mortalin-2) NM_004134 HSPA9B 1.60 3.2894 1.39 NA -1.23 0.0000 ICI General transcription factor IIH. polypeptide 2. 44kDa NM_001515 GTF2H2 1.59 0.7161 1.32 NA 1.38 0.0000 ICI P300/CBP-associated factor NM_005537 ING1 1.59 1.2369 1.67 1.5753 1.56 0.0000 P300/CBP-associated factor NM_003884 PCAF 1.59 2.2677 2.16 1.5753 2.44 0.0000 Denticleless homolog (Drosophila) NM_002267 KPNA3 1.56 2.2677 2.01 1.1377 1.63 0.0000 Insulin-like growth factor binding protein 3 NM_00598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI Thrombospondin 1 NM_003246 THBS1 1.54 2.2677 1.37 0.1377 0.0000 PD Mitogen-activated protein kinase 7 NM_005962 MXI1 1.54 3.2894 1.61	Chromosome 1 open reading frame 71	NM_152609	FLJ32001	1.62	1.2369		1.1377	1.73	0.0000	
General transcription factor IIH. polypeptide 2. 44kDa NM_001515 GTF2H2 1.59 0.7161 1.32 NA 1.38 0.0000 Inhibitor of growth family. member 1 NM_005537 ING1 1.59 1.2369 1.67 1.5753 1.56 0.0000 P300/CBP-associated factor NM_003884 PCAF 1.59 2.2677 2.16 1.5753 2.44 0.0000 Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.01 1.1377 1.63 0.0000 Denticleless homolog (Drosophila) NM_003246 RAMP 1.56 2.2677 1.35 NA -2.54 0.0000 PD Insulin-like growth factor binding protein 3 NM_003246 THBS1 1.54 2.2677 1.35 NA -2.54 0.0000 PD MAX interactor 1 NM_003246 THBS1 1.54 2.2677 1.70 1.1377 2.17 0.0000 PD Myeloid cell leukemia sequence 1 (BCL2-related) NM_005962 MXI1 1.54 3.2894	•									
Inhibitor of growth family. member 1 NM_005537 ING1 1.59 1.2369 1.67 1.5753 1.56 0.0000 P300/CBP-associated factor NM_003884 PCAF 1.59 2.2677 2.16 1.5753 2.44 0.0000 Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.16 1.5753 2.44 0.0000 Denticleless homolog (Drosophila) NM_002267 KPNA3 1.56 1.7844 -1.09 NA -2.54 0.0000 PD Insulin-like growth factor binding protein 3 NM_00598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 PD MAX interactor 1 NM_005962 MXI1 1.54 2.2677 1.70 1.1377 2.17 0.0000 PD Mitogen-activated protein kinase 7 NM_005962 MXI1 1.54 2.2677 1.47 NA 1.74 0.0000 PD Myeloid cell leukemia sequence 1 (BCL2-related) NM_00197 HSD17B3 1.52 3.2894										ICI
P300/CBP-associated factor NM_003884 PCAF 1.59 2.2677 2.16 1.5753 2.44 0.0000 Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.01 1.1377 1.63 0.0000 Denticleless homolog (Drosophila) NM_016448 RAMP 1.56 1.7844 -1.09 NA 1.37 0.0000 PD Insulin-like growth factor binding protein 3 NM_00598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 PD Insulin-like growth factor binding protein 3 NM_00598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI MAX interactor 1 NM_005962 MXI1 1.54 3.2894 1.16 NA 1.37 0.0000 PD Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 Hydroxysteroid (17-beta) dehydrogenase 3 NM_00197 HSD17B3 1.52 3.2894 <			-							
Karyopherin alpha 3 (importin alpha 4) NM_002267 KPNA3 1.58 2.2677 2.01 1.1377 1.63 0.0000 Denticleless homolog (Drosophila) NM_016448 RAMP 1.56 1.7844 -1.09 NA 1.37 0.0000 PD Insulin-like growth factor binding protein 3 NM_000598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI Thrombospondin 1 NM_003246 THBS1 1.54 2.2677 1.70 1.1377 0.0000 PD MAX interactor 1 NM_005962 MXI1 1.54 3.2894 1.16 NA 1.37 0.0000 PD Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 Hydroxysteroid (17-beta) dehydrogenase 3 NM_000197 HSD17B3 1.52 3.2894 1.64 2.6945 1.32 0.0000 Egl nine homolog 1 (C. elegans) NM_020205 EGLN1 1.50 1.7844 1.08 NA										
Denticleless homolog (Drosophila) NM_016448 RAMP 1.56 1.7844 -1.09 NA 1.37 0.0000 PD Insulin-like growth factor binding protein 3 NM_000598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI Thrombospondin 1 NM_003246 THBS1 1.54 2.2677 1.70 1.1377 2.17 0.0000 PD MAX interactor 1 NM_005962 MXI1 1.54 3.2894 1.16 NA 1.37 0.0000 PD Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_00197 HSD17B3 1.52 3.2894 1.64 2.6945 1.32 0.0000 PD Egl nine homolog 1 (C. elegans) NM_022051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & H3 histone, family 3B (H3.3B) NM_005324 H3F3B 1.48										
Insulin-like growth factor binding protein 3 NM_000598 IGFBP3 1.56 2.2677 1.35 NA -2.54 0.0000 ICI Thrombospondin 1 NM_003246 THBS1 1.54 2.2677 1.70 1.1377 2.17 0.0000 P MAX interactor 1 NM_005962 MXI1 1.54 3.2894 1.16 NA 1.37 0.0000 P Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 P Hydroxysteroid (17-beta) dehydrogenase 3 NM_000197 HSD17B3 1.52 3.2894 1.64 3.1287 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_021960 MCL1 1.50 3.2894 1.64 2.6945 1.32 0.0000 PD Egl nine homolog 1 (C. elegans) NM_022051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & H3 histone, family 3B (H3.3B) NM_005224 H3F3B										PD
Thrombospondin 1 NM_003246 THBS1 1.54 2.2677 1.70 1.1377 2.17 0.0000 MAX interactor 1 NM_005962 MXI 1.54 3.2894 1.16 NA 1.37 0.0000 PD Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 PD Hydroxysteroid (17-beta) dehydrogenase 3 NM_00197 HSD17B3 1.52 3.2894 1.61 3.1287 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_021960 MCL1 1.50 3.2894 1.64 2.6945 1.32 0.0000 Egl nine homolog 1 (C. elegans) NM_022051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & Growth arrest-specific 6 NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677									-	
MAX interactor 1 NM_005962 MXI1 1.54 3.2894 1.16 NA 1.37 0.0000 PD Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 PD Hydroxysteroid (17-beta) dehydrogenase 3 NM_000197 HSD17B3 1.52 3.2894 1.61 3.1287 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_021960 MCL1 1.50 3.2894 1.64 2.6945 1.32 0.0000 PD & Egl nine homolog 1 (C. elegans) NM_022051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & Growth arrest-specific 6 NM_00820 GAS6 1.48 2.2677 1.34 NA 1.64 0.0000 HS H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653	• •									
Mitogen-activated protein kinase 7 NM_139033 MAPK7 1.53 2.2677 1.47 NA 1.74 0.0000 Hydroxysteroid (17-beta) dehydrogenase 3 NM_000197 HSD17B3 1.52 3.2894 1.61 3.1287 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_021960 MCL1 1.50 3.2894 1.64 2.6945 1.32 0.0000 Egl nine homolog 1 (C. elegans) NM_0202051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & Growth arrest-specific 6 NM_000820 GAS6 1.48 2.2677 1.14 NA 1.64 0.0000 H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.65 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.0000		_								PD
Hydroxysteroid (17-beta) dehydrogenase 3 NM_000197 HSD17B3 1.52 3.2894 1.61 3.1287 1.24 0.7326 ICI Myeloid cell leukemia sequence 1 (BCL2-related) NM_021960 MCL1 1.50 3.2894 1.64 2.6945 1.32 0.0000 Egl nine homolog 1 (C. elegans) NM_0202051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & Growth arrest-specific 6 NM_000820 GAS6 1.48 2.2677 1.34 NA 1.64 2.8000 PD & H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.00000 PD										
Egl nine homolog 1 (C. elegans) NM_022051 EGLN1 1.50 1.7844 1.08 NA 1.04 4.7046 PD & Growth arrest-specific 6 NM_000820 GAS6 1.48 2.2677 1.34 NA 1.64 0.0000 H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.0000 PD										ICI
Growth arrest-specific 6 NM_000820 GAS6 1.48 2.2677 1.34 NA 1.64 0.0000 H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.0000 PD	Iyeloid cell leukemia sequence 1 (BCL2-related)	NM_021960	MCL1	1.50	3.2894	1.64	2.6945	1.32	0.0000	
H3 histone. family 3B (H3.3B) NM_005324 H3F3B 1.48 2.2677 1.14 NA 1.15 2.8707 PD & Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.0000 PD	gl nine homolog 1 (C. elegans)	NM_022051	EGLN1	1.50	1.7844	1.08	NA	1.04	4.7046	PD & ICI
Muskelin 1. intracellular mediator containing kelch motifs BX648653 MKLN1 1.47 2.2677 1.12 NA 1.40 0.0000 PD										
										PD & ICI
	-									PD
		NM_002646	PIK3C2B	1.46	3.2894	1.33	NA	1.98	0.0000	
Son of sevenless homolog 1 (Drosophila) NM_005633 SOS1 1.45 2.2677 1.83 1.1377 1.13 2.8707 ICI CDC6 cell division curls 6 homolog 1 (Constraints) NM_004364 CDC6 1.45 2.3804 1.05 NA 0.0000 DD										
CDC6 cell division cycle 6 homolog (S. cerevisiae) NM_001254 CDC6 1.45 3.2894 -1.05 NA 1.36 0.0000 PD Signal transducer and extinctor of transposition FR NM_012448 STATER 1.42 2.9577 1.60 1.5752 1.55 0.0000 PD	, ,									PD
Signal transducer and activator of transcription 5B NM_012448 STAT5B 1.43 2.2677 1.69 1.5753 1.55 0.0000 Neogenin homolog 1 (chicken) NM 002499 NEO1 1.43 2.2677 1.23 NA 1.51 0.0000 PD										PD
		_								PD & ICI
E2F transcription factor 3 NM_001949 E2F3 1.42 4.3086 1.62 2.6945 1.24 1.8657 ICI										
Small nuclear ribonucleoprotein polypeptide N NM_005678 SNRPN 1.42 3.2894 1.33 NA 1.52 0.0000	•	_								
Spermatid perincelear RNA binding protein NM_018387 STRBP 1.41 3.2894 1.51 3.1287 1.70 0.0000										
										PD & ICI
		NM_000135	FANCA	1.38	3.2894	-1.03	NA	1.11	2.8707	PD & ICI

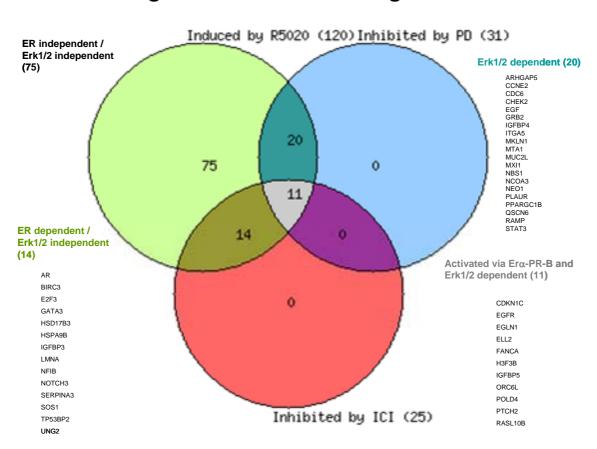
Т

Г

2

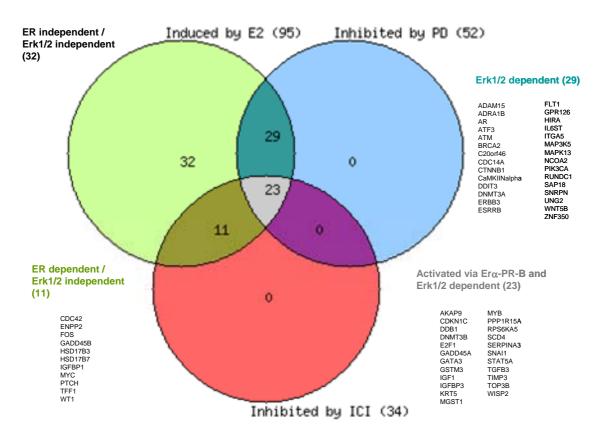
			T0 and R5020 6 hr	T0 and R5020 6 hr	T0+PD and R5020+PD 6h	T0+PD and R5020+PD 6h	T0 and R5020+ICI 6 hr	T0 and 6 R5020+ICI 6 hr	5
Gene name	GenBank Acc. No.	Gene symbol	Fold	q-value	Fold	q-value	Fold	q-value	Inhibited by
P21 (CDKN1A)-activated kinase 2	NM_002577	PAK2	-1.37	4.3086	-1.32	NA	-1.53	0.0000	
Protein phosphatase 1D magnesium-dependent. delta isoform	NM_003620	PPM1D	-1.38	4.3086	-1.22	NA	-1.93	0.0000	
Metastasis associated 1	NM_004689	MTA1	-1.43	4.3086	-1.15	NA	-1.39	0.0000	PD
Phosphoinositide-3-kinase. catalytic. alpha polypeptide	NM_006218	PIK3CA	-1.46	4.3086	-1.25	NA	-1.15	0.0000	
Chromodomain helicase DNA binding protein 4	NM_001273	CHD4	-1.46	4.3086	-1.42	NA	-1.56	0.0000	
LIM homeobox 3 SWI/SNF related, matrix associated, subfamily a. member 2	NM_000107 NM 003070	DDB2 SMARCA2	-1.46 -1.47	3.4015 4.3086	-1.21 -1.38	NA 3.3663	-1.27 -1.26	0.0000 0.0000	
Ligase III. DNA. ATP-dependent	NM 013975	LIG3	-1.47	4.3086	-1.23	3.3003 NA	-1.20	0.0000	
Nuclear receptor interacting protein 1	NM_003489	NRIP1	-1.49	4.3086	-1.38	NA	-1.58	0.0000	
Nuclear receptor coactivator 3	NM_006534	NCOA3	-1.49	3.4015	-1.11		-1.30	0.0000	PD
Inhibitor of DNA binding 4. dominant negative helix-loop-helix pr	NM_001546	ID4	-1.50	4.3086	-1.32	NA	-1.76	0.0000	
Polymerase (DNA-directed). delta 4	NM 021173	POLD4	-1.50	4.3086	-1.23	NA	-1.24	0.0000	PD & ICI
Cell division cycle 25C	NM 001790	CDC25C	-1.51	3.4015	-1.62	3.3663	-1.39	0.0000	
CHK2 checkpoint homolog (S. pombe)	NM_007194	CHEK2	-1.51	4.3086	-1.29	NA	-1.45	0.0000	PD
Homeo box B7	NM_004502	HOXB7	-1.52	3.4015	-1.75	2.8979	-2.41	0.0000	
Rho GTPase activating protein 5	NM_001173	ARHGAP5	-1.53	4.3086	-1.16	NA	-1.30	0.0000	PD
Fibroblast growth factor receptor 2	NM_023028	FGFR2	-1.53	4.3086	-1.52	3.3663	-1.41	0.0000	
X-ray repair complementing defective repair in Chinese hamster	NM_022550	XRCC4	-1.54	4.3086	-1.45	NA	-1.57	0.0000	
Chromosome 14 open reading frame 109	BU739864	C14orf109	-1.60	3.4015	-1.40	3.3663	-1.78	0.0000	
Nuclear factor I	NM_005596	NFIB	-1.61	1.7844	-1.52	3.3663	-1.14	1.8657	ICI
Nibrin	NM_002485	NBS1	-1.62	3.4015	-1.30	NA	-1.72	0.0000	PD
Cyclin G2	NM_004354	CCNG2	-1.64	3.4015	-1.39	NA	-1.42	0.0000	
Transforming. acidic coiled-coil containing protein 1	NM_006283	TACC1	-1.65	4.3086	-1.40	NA	-1.77	0.0000	
Cyclin F	NM_001761	CCNF	-1.67	3.4015	-1.85	2.8979	-1.60	0.0000	
Insulin-like growth factor binding protein 4	NM_001552	IGFBP4	-1.67	3.4015	-1.13	NA	-1.55	0.0000	PD
Integrin. alpha 5 (fibronectin receptor. alpha polypeptide)	NM_002205	ITGA5	-1.71	3.4015	1.08	NA	-1.70	0.0000	PD
Transforming. acidic coiled-coil containing protein 2 Histone 1. H2ac	BX111019 NM 003512	TACC2 HIST1H2AC	-1.72 -1.73	1.7844 4.3086	-1.94 -1.36	2.8979 NA	-1.80 -2.03	0.0000 0.0000	
Lamin A/C	NM_003512 NM_170707		-1.73	4.3086 3.4015	-1.30	3.3663	-2.03	0.0000	ICI
V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avia		ERBB3	-1.74	1.7844	-1.98	3.3663	-1.63	0.0000	
Sp1 transcription factor	NM_138473	SP1	-1.75	1.6007	-1.50	3.3663	-1.03	0.0000	
Alkaline phosphatase. placental (Regan isozyme)	NM_001632	ALPP	-1.77	3.4015	-1.85	3.3663	-1.38	0.0000	
Notch homolog 3 (Drosophila)	NM_000435	NOTCH3	-1.88	1.6007	-1.54	3.3663	-1.20	0.0000	ICI
CDC14 cell division cycle 14 homolog A (S. cerevisiae)	NM 003672	CDC14A	-1.90	1.6007	-1.77	3.3663	-2.60	0.0000	
Integrin. alpha 2 (CD49B. alpha 2 subunit of VLA-2 receptor)	NM 002203	ITGA2	-1.94	1.6007	-1.73	2.8979	-2.02	0.0000	
H2A histone family. member J	NM_018267	H2AFJ	-1.94	1.6007	-3.06	0.0000	-2.17	0.0000	
DNA (cytosine-5-)-methyltransferase 3 alpha	NM_175629	DNMT3A	-1.95	4.3086	-1.85	NA	-6.36	0.0000	
Nuclear receptor co-repressor 2	NM_006312	NCOR2	-1.97	1.6007	-1.94	3.3663	-2.74	0.0000	
Insulin-like growth factor binding protein 5 PP12104	NM_000599 AF370408	IGFBP5 PP12104	-1.98 -2.01	1.6007 1.7844	-1.05 -1.99	NA 2.8979	-1.25 -2.51	0.0000	PD & ICI
Cell cycle progression 1	NM_004748	CCPG1	-2.01	1.6007	-1.40	3.3663	-1.99	0.0000	
GATA binding protein 3	NM_002051	GATA3	-2.22	1.6007	-2.68	0.0000	-1.44	0.0000	ICI
Interferon-induced protein with tetratricopeptide repeats 2	NM 001547	IFIT2	-2.26	1.6007	-5.74	2.8979	-3.88	0.0000	
Androgen receptor	NM 000044	AR	-2.29	1.7844	-1.64	NA	1.30	1.8657	ICI
Cadherin 13. H-cadherin (heart)	NM 001257	CDH13	-2.31	3.4015	-2.15	NA	-3.86	0.0000	
Histone deacetylase 9	NM_178423	HDAC9	-2.32	1.6007	-3.50	2.8979	-6.28	0.0000	
PiggyBac transposable element derived 3	NM_000124	PGBD3	-2.47	4.3086	-1.82	3.3663	-1.34	0.0732	
Calcium/calmodulin-dependent protein kinase II inhibitor 1	NM_018584	CaMKIINalph	-2.63	1.6007	-2.00	3.3663	-2.34	0.0000	
Zinc finger protein 350	NM_021632	ZNF350	-2.67	1.6007	-1.84	1.6167	-2.13	0.0000	
Uracil-DNA glycosylase 2	NM_021147	UNG2	-2.78	1.6007	-1.81	3.3663	1.07	4.9641	ICI
Cyclin-dependent kinase inhibitor 2B (p15. inhibits CDK4)	NM_078487	CDKN2B	-3.28	1.6007	-5.37	0.0000	-3.28	0.0000	

17/12/2007


1

			T0 and E2 1 hr	T0 and E2 1 hr		T0+PD and E2+PD 1h		T0 and E2+ICI 1 hr	
Gene name	GenBank Acc. No.	Gene symbol	Fold	q-value	Fold	q-value	Fold	q -value	Inhibited by
V-fos FBJ murine osteosarcoma viral oncogene homolog	NM_005252	FOS	9.05	0.0000	22.64	NA	3.19		ICI
V-myc myelocytomatosis viral oncogene homolog (avian)	NM_002467	MYC	4.15	0.0000	4.30	0.0000	1.68	NA	ICI
Early growth response 1	NM_001964	EGR1	4.09	0.0000	3.45	NA	2.99	NA	
V-jun sarcoma virus 17 oncogene homolog (avian)	NM_002228	JUN	3.49	NA	3.12	NA	2.73	NA	
Activating transcription factor 3	NM_004024		3.15	NA	1.32	NA	2.50		PD
Dual specificity phosphatase 1	NM_004417		2.91	NA	5.58	NA	2.52	NA	
Trefoil factor 1	NM_003225		2.62	NA	1.99	NA	-5.70		ICI
Topoisomerase (DNA) III β	NM_003935	TOP3B	2.51	NA	-1.16	NA	1.46	NA	PD&ICI
Snail homolog 1 (Drosophila)	NM_005985	SNAI1	2.23	0.0000	1.46	NA	1.03	NA	PD&ICI
Insulin-like growth factor binding protein 3	NM_000598	IGFBP3	2.06	NA	1.57	NA	-1.43	NA	PD&ICI
Growth arrest and DNA-damage-inducible α	NM_001924	GADD45A	2.03	NA	-1.14	NA	1.28	NA	PD&ICI
Growth arrest and DNA-damage-inducible β	NM_015675	GADD45B	1.96	NA	3.76	NA	-1.09		ICI
Tissue inhibitor of metalloproteinase 3	NM_000362	TIMP3	1.92	NA	1.02	NA	-1.07		PD&ICI
Insulin-like growth factor binding protein 1	NM_000596	IGFBP1	1.86	NA	2.43	NA	-1.10	NA	ICI
Serine (or cysteine) proteinase inhibitor clade A member 3	NM_001085	SERPINA3	1.81	NA	-1.09	NA	-1.53	NA	PD&ICI
Cyclin-dependent kinase inhibitor 1C (p57 Kip2)	NM_000076	CDKN1C	1.74	NA	-2.05	NA	-8.38	NA	PD&ICI
Protein phosphatase 1 regulatory (inhibitor) subunit 15A	NM_014330	PPP1R15A	1.72	NA	1.08	NA	-1.12	NA	PD&ICI
DNA-damage-inducible transcript 3	NM_004083	DDIT3	1.68	NA	-1.91	NA	1.69	NA	PD
A kinase (PRKA) anchor protein 9	NM_147171	AKAP9	1.52	NA	1.02	NA	-1.50	3.4057	PD&ICI
Signal transducer and activator of transcription 5A	NM_003152	STAT5A	1.51	NA	1.24	NA	-1.15	NA	PD&ICI
Stearoyl-CoA desaturase 5	NM_024906	SCD4	1.48	NA	1.02	NA	-1.04	NA	PD&ICI
V-myb myeloblastosis viral oncogene homolog (avian)	NM_005375	MYB	1.45	NA	-1.37	NA	-1.90	3.2435	PD&ICI
Integrin. α 5 (fibronectin receptor. alpha polypeptide)	NM_002205	ITGA5	1.44	NA	1.24	NA	1.47	NA	PD
Keratin 5	NM_000424	KRT5	1.44	NA	-1.11	NA	-1.65	0.0000	PD&ICI
WNT1 inducible signaling pathway protein 2	NM_003881	WISP2	1.43	NA	1.24	NA	1.25	NA	PD&ICI
Inhibitor of DNA binding 4	NM_001546	ID4	1.35	NA	1.24	NA	1.16	NA	
Ectonucleotide pyrophosphatase phosphodiesterase 2	NM_006209		1.35	NA	2.07	NA	-4.39	NA	ICI
Cell division cycle 42 (GTP binding protein 25kDa)	NM_001791	CDC42	1.33	NA	1.30	NA	1.17	NA	ICI
Damage-specific DNA binding protein 1 127kDa	NM_001923	DDB1	1.32	NA	-1.10	NA	1.02	NA	PD&ICI
Hydroxysteroid (17-beta) dehydrogenase 3	NM_000197	HSD17B3	1.32	NA	1.24	NA	-1.27	NA	ICI
DNA (cytosine-5-)-methyltransferase 3 β	NM_006892		1.32	NA	1.06	NA	-1.36	4.9293	PD&ICI
E2F transcription factor 1	NM_005225	E2F1	1.31	NA	-1.07	NA	1.08	NA	PD&ICI
CDC28 protein kinase regulatory subunit 2	-	CKS2	1.30	NA	1.27	NA	1.23	NA	

1	7/	12	/2	007


Rho GTPase activating protein 5	NM_001173	ARHGAP5	-1.31	NA	-1.14	NA	-1.20	NA	1 1
RAD54 homolog B (S. cerevisiae)	NM 012415	RAD54B	-1.32	NA	1.10	NA	-1.10	NA	
Dynein. axonemal. heavy polypeptide 1	AB037831	XLHSRF-1	-1.33	NA	1.04	NA	-1.05	NA	
CDC14 cell division cycle 14 homolog A (S. cerevisiae)	NM_003672	CDC14A	-1.34	NA	1.70	NA	-1.60	4.1702	PD
Mucin 1. transmembrane	NM_002456	MUC1	-1.34	NA	1.10	NA	-1.13	NA	
Cyclin-dependent kinase inhibitor 2A (p16 inhibits CDK4)	NM_058197	CDKN2A	-1.34	NA	-1.18	NA	-1.37	NA	
Laminin α 3	NM_000227	LAMA3	-1.34	NA	1.19	NA	-1.35	4.9293	
Tumor protein p53 inducible protein 3	AF010309	TP53I3	-1.35	NA	-1.30	NA	-1.06	NA	
Cyclin-dependent kinase inhibitor 1A (p21 Cip1)	NM_078467	CDKN1A	-1.35	NA	-1.52	NA	1.10	NA	
Alkaline phosphatase. placental	NM_001632	ALPP	-1.35	NA	-1.15	NA	-1.35	4.1702	101
Patched homolog (Drosophila)	AK124593	PTCH ACTL6A	-1.35 -1.35	NA	1.26	NA	1.33	NA	ICI
Actin-like 6A Cell division cycle 25A	NM_178042 NM 001789	CDC25A	-1.35	NA NA	1.08 -1.29	NA NA	-1.07 -1.27	NA NA	
Tissue inhibitor of metalloproteinase 3	NM 000362	TIMP3	-1.30	NA	-1.57	NA	-1.98	4.5409	
Zinc finger protein 350	NM_021632		-1.37	NA	1.37	NA	1.12	NA	PD
General transcription factor IIH. polypeptide 1 62kDa	NM 005316	GTF2H1	-1.38	NA	-1.39	NA	-1.12	NA	
Cyclin G2	NM 004354	CCNG2	-1.38	NA	-1.07	NA	-1.41	3.4057	
Pitrilysin metalloproteinase 1	NM_014889	PITRM1	-1.38	NA	-1.09	NA	-1.04	NA	
Mitogen-activated protein kinase kinase kinase 5	NM_005923	MAP3K5	-1.38	NA	1.30	NA	-1.47	4.5409	PD
Phosphoinositide-3-kinase class 2 α polypeptide	NM_002645	PIK3C2A	-1.38	NA	-1.15	NA	-1.12	NA	
Mitogen-activated protein kinase kinase kinase 6	NM_004672	MAP3K6	-1.39	NA	-1.37	NA	-1.12	NA	
Phosphoinositide-3-kinase catalytic α polypeptide	NM_006218	PIK3CA	-1.39	NA	-1.05	NA	-1.03	NA	PD
Adrenergic. alpha-1B receptor	NM_000679	ADRA1B	-1.39	NA	1.02	NA	-1.25	NA	PD
Forkhead box O3A	NM_001455	FOXO3A	-1.40	NA	-1.72	NA	-1.38	NA	
Breast cancer 2 early onset	NM_000059	BRCA2	-1.41	NA	1.23	NA	-1.27	NA	PD
Sin3-associated polypeptide 18kDa	NM_005870	SAP18	-1.41	NA	-1.17	NA	-1.57	3.4057	PD
RUN domain containing 1	NM_173079	RUNDC1	-1.42	NA	1.35	NA	-1.41	2.1285	PD
3-oxoacid CoA transferase 1	NM_000436	OXCT1	-1.43	NA	-1.35	NA	-2.08	4.1702	
Small EDRK-rich factor 1A (telomeric)	NM_021967	SERF1A	-1.44	NA	-1.17	NA	-1.97	2.1285	
Interleukin 6 signal transducer (gp130 oncostatin M receptor)	NM_002184	IL6ST	-1.44	NA	1.22	NA	-1.13	NA	PD PD
G protein-coupled receptor 126 Catenin (cadherin-associated protein) β 1. 88 kDa	NM_020455 NM_001904	GPR126 CTNNB1	-1.45 -1.46	NA NA	1.12 1.15	NA NA	-1.51 -5.53	NA 0.0000	PD PD
Wilms tumor 1	NM_001904 NM 024426	WT1	-1.46	NA	-1.63	NA	-5.55	NA	
Nuclear receptor coactivator 2	NM_024426 NM_006540	NCOA2	-1.40	NA	1.12	NA	-1.73	3.2435	PD
Aldehyde dehydrogenase 4 family member A1	NM 003748	ALDH4A1	-1.47	NA	-1.15	NA	-1.42	NA	FU
Mitogen-activated protein kinase 8	NM_139046	MAPK8	-1.47	NA	-1.13	NA	-1.66	3.4057	
Cell division cycle 27	NM 001256	CDC27	-1.48	NA	-1.17	NA	-1.31	3.2435	
Fms-related tyrosine kinase 1 (vascular endothelial growth factor)	NM 002019	FLT1	-1.51	NA	1.23	NA	-1.57	NA	PD
Estrogen-related receptor β	NM_004452	ESRRB	-1.54	NA	-1.02	NA	-2.28	4.5409	PD
Chromosome 20 open reading frame 46	NM_018354	C20orf46	-1.54	NA	1.91	NA	-2.52	4.5409	PD
Calcium/calmodulin-dependent protein kinase II inhibitor 1	NM_018584	CaMKIINalpha	-1.55	NA	-1.03	NA	-1.42	NA	PD
Uracil-DNA glycosylase 2	NM_021147	UNG2	-1.55	NA	1.13	NA	-1.53	4.1702	PD
Wingless-type MMTV integration site family. member 5B	NM_032642	WNT5B	-1.57	NA	1.34	NA	-2.52	3.2435	PD
V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)	NM_001982	ERBB3	-1.59	NA	-1.04	NA	-1.32	NA	PD
Mitogen-activated protein kinase 13	NM_002754	MAPK13	-1.59	NA	1.14	NA	-1.55	3.2435	PD
Hydroxysteroid (17-β) dehydrogenase 7	NM_016371	HSD17B7	-1.60	NA	-1.41	NA	-1.12	NA	ICI
Ataxia telangiectasia mutated	NM_000051	ATM	-1.64	NA	1.22	NA	-1.45	NA	PD
GATA binding protein 3	NM_002051	GATA3	-1.66	NA	1.14	NA	-1.03	NA	PD&ICI
Microsomal glutathione S-transferase 1	NM_020300	MGST1	-1.70	NA	-1.16	NA	1.01	NA	PD&ICI
Glutathione S-transferase M3 (brain)	NM_000849	GSTM3	-1.72	NA	-1.10	NA	1.23	NA	PD&ICI
Ribosomal protein S6 kinase. 90kDa. polypeptide 5	NM_004755 NM 000465	RPS6KA5 BARD1	-1.72 -1.75	NA NA	-1.00	NA NA	-1.17 -1.58	NA 3.4057	PD&ICI
BRCA1 associated RING domain 1	NM 005678	SNRPN	-1.75	NA	-1.37 -1.11	NA	-1.56	3.4057 4.1702	PD
Small nuclear ribonucleoprotein polypeptide N	NM_003815	ADAM15	-1.70	NA	1.04	NA	-1.70	4.1702 0.0000	PD
A disintegrin and metalloproteinase domain 15 (metargidin) HIR histone cell cycle regulation defective homolog A (S. cerevisiae)	NM_003815 NM_003325	HIRA	-1.79	NA	1.04	NA	-1.65	NA	PD
Peroxisome proliferative activated receptor γ coactivator 1 β	NM_003325 NM_133263	PPARGC1B	-1.79	NA	-1.77	NA	-1.95	3.2435	
Androgen receptor	NM 000044		-1.81	NA	1.40	NA	-1.62	4.1702	PD
Mdm2. transformed 3T3 cell double minute 2	NM 002392	MDM2	-1.82	NA	-1.34	NA	-1.68	NA	-
Transforming growth factor β 3	NM 003239	TGFB3	-2.25	NA	8.25	0.0000	1.39	NA	PD&ICI
Crystallin. lambda 1	BX092299	CRYL1	-2.32	NA	-1.55	NA	-2.14	3.4057	
DNA (cytosine-5-)-methyltransferase 3 alpha	NM 175629	DNMT3A	-2.34	NA	-1.16	NA	-3.19	3.2435	PD
Complement component (3b/4b) receptor 1-like	XM_114735	CR1L	-2.69	NA	1.06	NA	-1.01	NA	
Insulin-like growth factor 1 (somatomedin C)	NM_000618	IGF1	-2.92	NA	1.93	NA	-1.12	NA	PD&ICI
- · · · · · · · · · · · · · · · · · · ·	-								

Appendix A10: Venn diagram generated with genes induced by R5020 or estradiol and inhibited by PD, ICI, or both. (<u>http://www.pangloss.com/seidel/Protocols/venn.cgi</u>)

A Venn diagram of R5020 induced genes

B Venn diagram of E2 induced genes

Gene	Sample	Log ₂ Ratio (RTqPCR)	Log ₂ Ratio (Microarray BCA)	Graphical representation of the comparison between Real Time qPCR and Microarray of values
	T0 D5020 20 min	0.00 3.34	0.00	
	R5020 30 min		1.10	FOS y = 0.5733x - 0.63
	R5020 60 min	3.34	1.38	$R^2 = 0.3479$
	R5020 2 hr	1.10	0.48	K = 0.3479
	R5020 6 hr	0.99	1.09	4
	R5020 12 hr	0.90	-0.04	
	R5020 24 hr	1.21	0.49	3
	R5020 48 hr	2.10	1.14	•
	E2 30 min	3.65	1.86	
FOS	E2 60 min	4.54	2.80	1 1
	E2 2 hr	2.37	0.16	
	E2 6 hr	1.09	-1.23	
	E2 12 hr	0.94	-1.05	2 -5 -4 -3 -2 -1 1 2 3 4
	E2 24 hr	1.06	-2.67	
	E2 48 hr	1.53	-1.68	•
	T0+PD	-0.53	0.85	
	PD+R5020 6 hr	-0.27	-0.22	-3
	ICI+R5020 6 hr	0.97	-0.19	Log2Ratio (RTqPCR)
	ICI+E2 60 min	3.04	2.21	Logzitatio (Krigi ok)
	PD+E2 60 min	2.33	0.12	
	ТО	0.00	0.00	
	R5020 30 min	1.30	0.69	MYC y = 0.5414x + 0.19
	R5020 60 min			
		1.81	1.20	R ² = 0.7487
	R5020 2 hr	1.24	0.88	3 1
	R5020 6 hr	-0.06	0.04	
	R5020 12 hr	-0.80	-0.56	2.5
	R5020 24 hr	-1.01	0.18	2
	R5020 48 hr	-0.87	0.14	
	E2 30 min	1.15	0.94	
	E2 60 min	2.21	1.67	
MYC				05
	E2 2 hr	1.71	1.55	
	E2 6 hr	1.46	1.15	
	E2 12 hr	0.87	1.05	$3^{\circ} -3 -2 -1 - 0.5 \phi -1 -2$
	E2 24 hr	1.37	0.54	• •••
	E2 48 hr	1.09	0.59	-1 -
	T0+PD	0.37	-0.22	1.5
	PD+R5020 6 hr	0.79	0.36	
	ICI+R5020 6 hr		0.53	-2 J
		0.42		Log2Ratio (RTqPCR)
	ICI+E2 60 min	1.31	0.54	
	PD+E2 60 min	2.70	1.78	
	Т0	1.00	0.00	
	R5020 30 min	-1.56	-0.64	TFF1 (PS2)
	R5020 60 min	-1.38	-0.47	
	R5020 2 hr	-1.39	-0.47	
	R5020 6 hr	-1.55	-0.64	4 1
	R5020 12 hr	-2.14	-1.10	
	R5020 24 hr	-2.11	-1.08	
	R5020 48 hr	-1.50	-0.59	2
	E2 30 min	-1.12	-0.17	
TEEA	E2 60 min	1.79	0.84	
TFF1	E2 2 hr	3.53	1.82	ation at the second sec
	E2 6 hr	4.34	2.12	
	E2 12 hr	4.34	2.08	
				87-4 -3 -2 -1 0 1 2 3
	E2 24 hr	8.05	3.01	1
	E2 48 hr	7.27	2.86	
	T0+PD	1.54	0.62	2
	PD+R5020 6 hr	1.21	0.28	
	ICI+R5020 6 hr	1.06	0.08	-3 J
	ICI+E2 60 min	1.59	0.67	Log2Ratio (RTqPCR)
	PD+E2 60 min	1.56	0.64	· · · · ·
	TO	0.00	0.04	
				CCND1 v = 0.8976v - 0.3
	R5020 30 min	0.06	-0.06	y = 0.0510x = 0.0
	R5020 60 min	0.43	0.41	R ² = 0.4011
	R5020 2 hr	1.45	1.28	4
	R5020 6 hr	1.88	1.67	
	R5020 12 hr	0.07	0.32	3
	R5020 24 hr	0.18	0.20	•
	R5020 48 hr	0.36	0.60	
	E2 30 min	1.12	-0.19	3
CCND1	E2 60 min	0.30	0.01	
	E2 2 hr	0.78	-0.18	
	E2 6 hr	0.70	-0.56	
	E2 12 hr	0.54	-0.47	§ -2.5 -2 -1.5 -1 -0.5 - 0 Q.\$ ◆ 1 1.5 ◆ 2
		0.45	-0.72	1 · · · ·
	E2 24 hr	0.40		
	E2 24 hr	1 70		
	E2 48 hr	1.72	-0.51	-2
	E2 48 hr T0+PD	-0.32	-1.26	
	E2 48 hr T0+PD PD+R5020 6 hr	-0.32 1.72	-1.26 2.75	
	E2 48 hr T0+PD	-0.32	-1.26	
	E2 48 hr T0+PD PD+R5020 6 hr	-0.32 1.72	-1.26 2.75	2

T0 R5020 30 min R5020 60 min R5020 2 hr R5020 6 hr R5020 12 hr	0.00 0.18 0.37	0.00 -0.27	RPS6KA1 (RSK1) y = 0.8842x - 0.1996 R ² = 0.5632
R5020 60 min R5020 2 hr R5020 6 hr R5020 12 hr	0.37	-0.27	
R5020 2 hr R5020 6 hr R5020 12 hr		-0.11	
R5020 6 hr R5020 12 hr	0.46	0.03	-
R5020 12 hr	1.04	0.83	1.5
	0.54	0.76	1
R5020 24 hr	0.29	-0.04	
R5020 48 hr	0.19	0.06	0.5 0 1 0 1 0 1 0 1 1 0 1 1 0 1
E2 30 min	1.00	0.36	
RPS6KA1 E2 60 min (p90/RSK1) E2 2 hr	0.27 0.50	0.31 0.34	₩ ₩ -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
(p90/K3K1) E2 2 hr E2 6 hr	0.38	0.34	8 0.5
E2 0 11	0.38	-0.02	
E2 24 hr	0.32	0.42	
E2 48 hr	1.03	0.39	-1.5
T0+PD	0.25	0.06	
PD+R5020 6 hr	1.12	0.78	-21
ICI+R5020 6 hr	1.07	1.29	Log2Ratio (RTqPCR)
ICI+E2 60 min	0.42	-0.19	Eugznaliu (RTYFUR)
PD+E2 60 min T0	0.39	-0.16 0.00	
R5020 30 min	-0.25	-0.46	RPS6KA5 (MSK1) y = 0.9096x - 0.2928
R5020 60 min	-0.18	-0.47	$R^2 = 0.4367$
R5020 2 hr	0.82	0.54	2 -
R5020 6 hr	1.44	1.22	
R5020 12 hr	0.73	0.91	1.5
R5020 24 hr	0.71	0.80	
R5020 48 hr	1.23	0.83	3
E2 30 min RPS6KA5 E2 60 min	0.15 -0.09	-0.59 -1.25	0.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2
(MSK1) E2 2 hr	0.13	0.42	
E2 6 hr	0.79	-2.12	₩ -2 -1.5 -1 -0.5 0.5 1 1.5 2
E2 12 hr	-0.89	-0.52	
E2 24 hr	-0.53	-0.64	
E2 48 hr	0.13	-0.51	-1.5 -
T0+PD	0.30	-0.10	_2
PD+R5020 6 hr ICI+R5020 6 hr	1.58	1.57	Log2Ratio (RTqPCR)
ICI+R5020 6 hr	1.43 -0.03	1.60 -0.45	Log2Ratio (RT qPCR)
PD+E2 60 min	-0.03	0.11	
ТО	0.00	0.00	
R5020 30 min	0.80	0.66	MUC2L y = 0.782x + 0.2348
R5020 60 min	1.08	0.99	R ⁻ = 0.5732
R5020 2 hr	1.43	1.24	2
R5020 6 hr	1.32	1.26	1.5
R5020 12 hr R5020 24 hr	0.64 0.55	0.94 0.74	
R5020 24 m	0.55	0.37	
E2 30 min	0.49	0.58	
MUC2L E2 60 min	0.32	0.45	
EZ Z hr	0.52	0.72	t -2 -1.5 -1 -0.5 ▲ 0 0.5 1 1.5 2
E2 6 hr	0.60	0.36	-0.5
E2 12 hr	0.34	0.84	
E2 24 hr	0.46	1.41	15
E2 48 hr T0+PD	0.88 -0.27	1.19 -0.35	1.0
PD+R5020 6 hr	0.43	0.62	-2
ICI+R5020 6 hr	1.22	1.05	Log2Ratio (RTqPCR)
ICI+E2 60 min	0.42	0.53	Logenado (KTYFOK)
PD+E2 60 min	0.44	0.79	
TO	0.00	0.00	
R5020 30 min	0.37	0.13	CCNE2 y = 0.4755x + 0.0905 R ² = 0.433
R5020 60 min R5020 2 hr	0.21 0.94	0.38 0.71	
R5020 2 hr	1.49	0.97	1.4
R5020 12 hr	1.35	1.05	1.2
R5020 24 hr	0.24	0.10	1
R5020 48 hr	-0.56	-0.43	0.8
E2 30 min	-1.25	0.22	
CCNE2 E2 60 min	0.12	0.16	0
EZ Z Nr	0.27	0.25	
E2 6 hr E2 12 hr	0.40 0.24	0.29 0.22	
E2 12 hr E2 24 hr	1.18	0.22	
E2 48 hr	0.69	0.74	-1.5 -1 0.5 0.5 1 1.5 2
T0+PD	0.60	-0.39	0.4
PD+R5020 6 hr	0.33	0.05	-0.6
ICI+R5020 6 hr	0.83	0.30	
ICI+E2 60 min	0.43	-0.05	Log2(RTPCR)
PD+E2 60 min	0.20	-0.24	

PAM class	e	e	5	5							2	s														-			-	-	
Ratio (RTqPCR)	T84	T85	T86 .		T88]																			-		T113			T116	T117	
SERPINB2 CEBP TFF1 GATA3 SERPINA3 CAT1	0.014 0.315 0.242 0.367 0.220 0.197	0.650 4.237 0.764 0.107	0.451 0 0.451 0 0.091 0 1.968 1 0.035 0	0.004 0.368 0.000 0.049 1.597 1.597 0.021 0.021		0.080 0. 0.193 0. 1.642 0. 0.495 0. 0.257 1. 0.078 0.	0.082 0. 0.807 0. 0.013 0. 1.258 0. 0.115 0.		0.011 0.0 0.652 0.7 0.032 0.1 1.248 0.0 0.134 0.0 0.149 2.3	0.012 0.0 0.710 0.6 0.112 0.0 0.089 1.0 0.065 0.2 2.350 0.0	0.004 0.1 0.664 0.4 0.039 0.0 1.068 0.0 1.068 0.0 0.217 0.3 0.225 0.0	0.164 0.0 0.435 0.3 0.097 1.2 0.093 1.0 0.345 1.9 0.345 1.9	0.012 0.0 0.366 1.11 1.207 6.7 1.207 6.7 1.903 1.3 0.133 0.9	0.014 0.008 1.186 1.049 6.723 0.004 0.983 1.644 1.343 2.136				00000		4 ###### 1 0.359 1 0.359 4 0.047 5 0.010	 ### 0.004 59 1.158 1.361 1.361 1.361 0.552 10 4.675 0.351 	4 0.042 8 2.415 1 0.026 2 0.174 5 0.813	2 0.006 5 0.472 5 0.000 4 0.021 4 0.021 4 0.044	0.003 0.769 2.597 1.592 1.592 1.592 1.592 1.3803	0.004 0.832 1.352 1.352 1.247 0.829 0.062	0.004 0.391 0.009 0.636 0.629 0.629	####### 0.412 0.000 0.342 1.601 0.169	 # 0.002 0.524 0.520 0.829 4.865 0.164 	0.028 0.872 0.255 0.871 0.497 0.153	0.014 1.751 0.390 0.368 2.116 0.266	
APOD DUSP1 TOP2A ERBB2	6.78 2.750 0.014 0.823											-				-									0,00	13.07 1.546 0.025 0.435			9.84 4.390 0.018 0.690	23.10 19.181 0.004 0.760	
SMARCE1 SMARCA4 DUSP6 KRT5	2.815 1.514 1.221 204.67		1.696 1 2.361 1 0.225 0 1322.97 73	1.204 1 1.470 0 0.157 0 734.46 2	1.525 2 0.940 1 0.412 0 23.45 5 23.45 5			0.444 0.5 2.112 2.0 0.118 0.2 373.01 27					-	79 3.648 77 3.320 16 1.761 1.95 861.27	48 6.724 20 5.973 61 1.565 27 105.21	24 8.285 73 6.166 65 0.672 .21 184.56	35 4.215 36 2.792 72 1.855 56 42.19	15 7.024 32 4.970 55 0.626 19 20.29	4 14.132 0 4.745 6 0.929 9 14.84	-		-				3.755 3.576 1.125 226.75			5.820 4.607 0.843 81.37	3.871 2.261 1.927 281.38	
Log2Ratio (RTqPCR)	7.30/											•					•				· ·	·	·						Z1.302 T116	T117	
SERPINB2 CEBPD GATA3 SECDMA3	-6.152 -1.666 -2.045 -1.446			-8.100 -1.442 -1 12.155 1 -4.366 0.676 0.076							-8.059 -2.6 -0.590 -1.2 -4.683 -3.2 0.095 -3.4	2.608 -6.3 1.201 -1.4 3.362 0.2 3.434 0.0	-6.366 -6.164 -1.449 0.246 0.272 2.749 0.025 -0.025	164 -7.032 146 0.069 149 -7.965 125 0.718 125 1.065	032 -8.029 69 1.577 965 -4.004 18 0.407 05 -0.178	29 -7.537 77 -0.278 04 -2.410 07 -1.536 78 -3.005	37 -9.377 78 -1.249 10 -4.319 36 -1.599 36 -2.183	77 -7.652 49 -0.932 19 -5.010 99 -0.649	2 -7.817 2 1.158 0 0.058 9 0.268	17 21.366 8 -1.477 8 -4.412 8 -4.412	66 -7.913 77 0.212 0.444 12 -0.857 as 2.275	(3 -4.568 2 1.272 4 -5.261 57 -2.525 57 -0.200	2 -7.306 2 -1.084 1 -12.447 5 -5.603	5 -8.343 1 -0.380 7 1.377 3 0.671 4 0.77	-7.801 -0.266 0.435 0.319	-8.117 -1.355 -6.835 -0.653	23.690 -1.278 -11.671 -1.547 -1.547	-8.888 -0.933 -0.944 -0.271	-5.138 -0.198 -1.974 -0.200	-6.200 0.808 -1.358 -1.443	
GAV1 APOD DUSP1 TOP2A	-2.103 -2.340 1.459 -6.153		-4.851 -5 -1.474 -5.826 -7			· ·									, ta ta ip						· ·								-1.000 -2.713 3.299 2.134 -5.806		
ERB22 SMARCE1 SMARCA4 DUSP6 KRT5	-0.281 1.493 0.598 0.288 7.677	-3.249 1.519 0.774 -0.376 4.503 1	0.762 0 1.239 0 -2.155 -2 10.370 9	0.267 0 0.555 -0 -2.669 -1 9.521 4	-3.190 -2 0.609 1 -0.089 0 -1.279 -0 4.552 5	-2.502 -2. 1.115 1. 0.135 -0. 7.42 -1. 5.783 7.	2.154 -3. 1.772 -1. 0.595 1. 1.512 -3. 7.632 8.	3.261 -2. 1.171 -0. 1.079 1.0 3.081 -2. 8.543 4.1	2.110 -2.4 0.811 -0.4 1.024 0.5 2.284 1.0 4.793 8.7	-2.873 0.7 -0.424 -0.4 0.566 2.9 0.566 2.9 1.011 -2.4 8.718 4.3				364 -0.840 27 1.867 117 1.731 200 0.816 88 9.750		36 -1.110 49 3.051 78 2.624 46 -0.573 17 7.528		· ·						· ·					-0.535 2.541 2.204 -0.247 6.346	-0.397 1.953 1.177 0.946 8.136	
S100A2 Log2Ratio (Microarray)	2.408 T84																													4.084 T117	
SERPINB2 CEBPD TFF1 SERPINA3 SERPINA3 APOD DUSP1 DUSP1 FRB22 ERB22	-0.552 0.073 -0.228 -0.370 -0.848 -0.163 -0.163 -0.237 -3.421 -0.237 -0.053	m	-0.395 -C 0.654 0 0.654 0 -0.198 -C 0.748 -C 0.712 1 0.712 1 0.0325 -C 0.0325 0 0.205 -C	0.2566 -0.566 -0.228 0 0.228 0 0.228 0 0.179 -0.179 -0.0983 3 3 0.0983 3 0.0286 1 1.658 1 1.658 1 1.658 1 1.658 1 0.129 -0.129 -0.129 -0.129 -0.265 -0.266 -0.265 -	-0.439 -0.439 -0.0.439 -0.0.439 -0.0.095 -0.0.267 -0.0.267 -0.0.267 -0.0.267 -0.0.126 -0.0.126 -0.0.126 -0.0.126 -0.0.622 0 -0.0622 0 -0.043 0 -0.045 0 -0.0	0.530 0.530 0.036 0.036 0.036 0.036 0.036 0.036 0.0001 1.716 1.1716 1.1716 1.1716 1.1193 2.200.0103 2.10022 0.0225	0.610 0.245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0178 0.02561 0.0146 0.0146 0.0146 0.0231 0.146 0.031 0.146 0.031 0.361 0.031 0.031 0.361 0.031 0.031 0.361 0.0361 0.031 0.0361 0.031 0.0381 0.031 0.0381 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.361 0.000 0.030 0.030 0.030 0.030 0.030 0.030 0.0000 0.000	0.0484 0.0154 0.0154 0.0154 0.0154 0.0189 0.025697 1.125697 1.1213 0.0116 0.0116 0.0116 0.0218 0.0218 0.0218 0.0218 0.0218 0.0219 0.019 0.	-0.050 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.054 -0.144 -0.144 -0.124 -0.124 -0.1256 -0.1	0.034 0.1 0.283 0.1 0.283 0.5 0.200 0.2 0.215 0.2 0.247 0.0 0.447 0.0 5.490 0.2 5.490 0.2 0.340 -0.1 0.080 -0.1	0.103 0.1 0.594 0.1 0.594 0.1 0.452 1.6 0.452 1.6 0.452 1.6 0.1462 0.1 0.306 4.1 0.306 4.1 0.306 4.1 0.336 4.1000 0.306 4.1000 0.0000 0.00000000000000000000000	0.772 0.4 0.112 0.5 0.036 0.5 0.036 0.5 0.139 4.3 0.139 4.3 0.072 0.6 0.072 0.6 0.072 0.5 0.130 0.5 0.130 0.0 0.130 0.0	0.442 -0.592 0.2333 0.137 0.547 0.167 0.547 0.167 2.193 1.817 4.336 0.370 0.662 -0.483 0.662 -0.483 3.201 3.607 0.213 0.015 5.817 0.3120	592 -0.462 37 0.372 67 -0.092 67 -0.092 770 3.180 3.74 143 -0.205 483 -0.205 483 -0.205 160 007 6.600 015 0.678 320 -7.110 118 0.047	162 -0.488 72 1.239 992 -0.199 74 2.746 880 0.139 880 0.139 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 800 0.133 810 0.530 778 0.530 778 0.530	88 -0.503 39 -0.285 99 -0.285 99 -0.285 339 -0.285 339 -1.969 339 -1.963 339 -1.963 339 -1.963 339 -1.963 330 -1.963 333 -1.963 333 -1.963 223 0.001 233 0.002 234 -3.743 234 -0.163 234 -0.163 234 -0.163	0.503 0.503 88 0.136 85 0.391 86 1.084 96 1.084 97 1.084 96 1.084 96 1.084 96 1.084 96 1.084 96 1.084 96 1.084 97 2.882 96 0.240 96 0.240 96 0.240 96 0.240 97 5.803 99 0.443	03 -0.512 96 0.216 97 0.132 98 0.216 98 0.2471 94 0.132 93 2.370 93 -4.380 146 146 146 146 146 146	2 0.515 6 1.068 2 0.042 6 0.301 6 0.301 8 0.301 1 2.501 1 2.501 1 2.501 6 0.301 6 0.307 6 0.2904 6 0.187	15 -0.366 8 0.364 8 0.364 11 -0.293 11 -0.263 11 -2.534 11 -2.533 11 -2.533 12 1.769 17 1.769 17 1.769 17 1.769 17 1.769 17 1.769 17 1.769 17 1.769 17 1.769 18 0.17305	56 -0.308 34 0.112 34 0.112 33 1.422 34 2.437 79 0.005 79 0.005 99 3.843 94 -0.010 95 -0.010 96 -0.010 97 -0.010 96 -0.010 97 -0.010	08 -0.284 2 1.043 9 0.027 9 0.027 2 -1.074 7 -1.074 3 3.112 3 3.112 86 -5.920 86 -3.920 88 0.083	4 -0.322 3 0.071 5 -2.255 5 -2.255 5 -2.255 6 -0.066 1 -053 1 -0.433 0 -5.180 0 -5.180 0 -147	-0.347 0.310 -0.060 -2.071 -2.071 -2.071 -2.071 -2.073 -2.942 -2.942 -2.942 -0.041	-0.165 0.272 0.277 1.830 0.630 0.630 0.630 0.630 0.630 0.630 0.456 0.456 0.456 0.456	-0.161 -0.246 -0.246 1.762 0.251 0.255 0.162 3.973 3.973 3.973 -0.128 -0.171	-0.136 -0.134 -0.326 1.199 0.449 0.449 -0.245 -5.503 -5.503 -5.503	-0.263 0.027 0.188 1.937 1.833 1.833 0.156 5.708 5.708 5.708 0.033 0.033 0.033	-0.261 0.055 -0.054 1.620 -1.530 0.003 3.068 3.068 3.068 0.174 -5.321 0.091	-0.101 0.264 0.250 0.686 0.571 0.571 0.286 0.546 0.546 0.546 0.577	
SMARCE1 SMARCA4 DUSP6 KRT5 S100A2	-0.693 0.753 0.678 1.540 0.339											11001									110.00						· ·			-0.364 -1.161 0.515 0.849 0.849	
CORRELATION COEFFICIENT R R^2	0.735 0.540	0.633 0.401	0.737 0 0.543 0	0.638 0 0.407 0	0.573 0 0.329 0	0.573 0. 0.328 0.	0.642 0.	0.761 0.4 0.579 0.2	0.485 0.8 0.236 0.6	0.813 0.2 0.661 0.0	0.217 0.7 0.047 0.5	0.721 0.661 0.520 0.437		0.546 0.633 0.298 0.400	33 0.401 00 0.161	01 0.731 61 0.534	31 0.552 34 0.305	52 0.439 05 0.192	9 0.455 2 0.207	5 0.420 7 0.177	20 0.664 7 0.441	4 0.784 1 0.614	4 0.439 4 0.193	0.669	0.468 0.219	0.544 0.296	0.234	0.670 0.449	0.607 0.369	0.693 0.480	

Appendix A12: Comparison between Real Time qPCR and micrioarrays

17/12/2007

Publications

It is expected that after the conclusion of the follow-up time of the breast cancer patients, prognosis studies carried out with the help of a statistician, this work will be published.

Publications from collaborative studies with the group of Albert Jordán and Miguel Beato (CRG, Barcelona) are also expected to be published soon.

During these four years period I participated in several publications which I attach.

- Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schümann K, Hentze MW. 2005 Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). 106(7):2580-9.
- Muckenthaler MU, Rodrigues P, Macedo MG, Minana B, Brennan K, Cardoso EM, Hentze MW, de Sousa M. 2004 Molecular analysis of iron overload in beta2-microglobulin-deficient mice. Blood Cells Mol Dis. 33(2):125-31.

My contribution on these two articles was in the design of the experiment, microarray platform establishment; carry out microarray experiments and in the analysis of the microarray data.

 Mengual L, Burset M, Ars E, Ribal MJ, Lozano JJ, Minana B, Sumoy L, Alcaraz A. 2006 Partially degraded RNA from bladder washing is a suitable sample for studying gene expression profiles in bladder cancer. Eur Urol. 50(6):1347-55

I contributed in the design of the experiment, collected all relevant publications, carried out RNA amplification, sample labeling, quality control, microarray hybridization and analysis.

Mengual L, Burset M, Ars E, Ribal MJ, Lozano JJ, Minana B, Sumoy L, Alcaraz A. Partially degraded RNA from bladder washing is a suitable sample for studying gene expression profiles in bladder cancer. Eur Urol. 2006 Dec;50(6):1347-55; discussion 1355-6. Epub 2006 Jun 15. Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schümann K, Hentze MW. <u>Altered body iron distribution and microcytosis in mice</u> <u>deficient in iron regulatory protein 2 (IRP2).</u> Blood. 2005 Oct 1;106(7):2580-9. Epub 2005 Jun 14. Muckenthaler MU, Rodrigues P, Macedo MG, Minana B, Brennan K, Cardoso EM, Hentze MW, de Sousa M. <u>Molecular analysis of iron overload in beta2-microglobulin-</u> <u>deficient mice.</u> Blood Cells Mol Dis. 2004 Sep-Oct;33(2):125-31.