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Preface

During the last century biologists have been accumulating an overwhelming amount of
information, but it has been during the last decade when we have experienced an explosion
of data acquisition. At all levels, living beings have become more and more complex than
the reductionists would ever have expected. Never before it was possible to assert, as
nowadays, that life is not only the sum of the constituent molecules, acting as the gears of
a clock, but also the raising network of interactions between them. Biology, starting as a
descriptive subject, has evolved into an information-driven subject, taking biologists from
the wet lab to the computer screens. Currently, quoting Lincoln Stein from his foreword to
Tisdall [2003], “if you can’t do Bioinformatics, you can’t do Biology”.

We, as humans, are prone to define sets, clustering elements with similar features into
groups, to face the complexity. Within this landscape, a bunch of “omics” terms have been
coined. We will focus on the analysis of genomic sequences, more precisely, the computa-
tional approach to genome annotation. As it has been pointed by Stein [2001]: annotation
is bridging the gap from sequence to the biology of the organism. All the steps required
to improve the understanding of biological processes can be grouped into three categories
to answer three complementary questions: where we can find the relevant information
encoded in the sequence (the gene-level annotation); what roles the products of the gene
expression play (the function-level annotation); and, how the genes and their products are
integrated into a network of interactions (the process-level annotation).

In the late eighties, obtaining the genome sequence of a single eukaryotic organism, the
human genome of course, was seen as a giant enterprise, that could only be tackled by an
international consortium of research centers in a coordinated long term project. Although
initially scheduled over fifteen years, as sequencing technology improved, faraway dead-
lines became closer, specially because of process automation. But it was the introduction
of shotgun methodology what really spurred the production of huge eukaryotic genomes.
The method heavily relies on the computational assembly of a myriad of sequenced frag-
ments. It was first applied to produce bacterial genomes after which the team at Celera
Genomics demonstrated its scalability to larger genomes by obtaining, in about a year, the
genome sequence of Drosophila melanogaster [Adams et al., 2000]. The competition between
Celera and the Public Consortium yielded early results with the publication of the first draft
version of the human genome in 2001 [Venter et al., 2001; Lander et al., 2001]. Nowadays,
several large eukaryotic genome projects are undergoing, with a rate of one per year being
published. The future will bring better sequences for more individuals and in less time.
Examples of current developments for those forthcoming technologies were described by
Kling [2003].
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PREFACE

On the other hand, computational power has increased along with the availability of
novel algorithms to analyze data. Traditional hypothesis testing is being more than com-
plemented with the acquisition of large-scale data sets to which pattern recognition and
data mining techniques are applied. The patterns arising from such analyses suggest novel
hypotheses to test, while hypotheses can be tested directly using databases. Another mile-
stone that must be taken into account is the development of the internet technologies dur-
ing the last decade. The widespread use of the web to share data, software to analyze it
and knowledge, has caused a revolution in science, among other subjects of our lives. It
has also changed the way collaborative projects among groups all around the world can
tackle larger and deeper analyses.

I have been part of this incessant flow of knowledge, of this never-ending endeavour,
in which the analysis of genomes has become a key element. Writing this dissertation was
like a stop in the road. Not only a break to rest, but also a time to think over, in order to
gain an insight of what has been done, what is going on around and what can be done in
the near future, before jumping again into the fast rivers of Genomics. In other words, I
have tried to summarize my contribution to this field, grouping topics by their relationship
rather than chronologically.

It is amazing how the availability of each new species genome can enhance our
knowledge, not only of our own species, but also of life on Earth. I hope this grain of sand
from the shores of Genomics will satisfy your scientific interest.

Josep Francesc Abril Ferrando
Barcelona, May 2005
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Abstract

The constantly increasing amount of available genome sequences, along with an increasing
number of experimental techniques, will help to produce the complete catalog of cellular
functions for different organisms, including humans. Such a catalog will define the base
from which we will better understand how organisms work at the molecular level. At the
same time it will shed light on which changes are associated with disease. Therefore, the
raw sequence from genome sequencing projects is worthless without the complete analysis
and further annotation of the genomic features that define those functions. This disser-
tation presents our contribution to three related aspects of gene annotation on eukaryotic
genomes.

First, a comparison at sequence level of human and mouse genomes was performed by
developing a semi-automatic analysis pipeline. The SGP2gene-finding tool was developed
from procedures used in this pipeline. The concept behind SGP2is that similarity regions
obtained by TBLAST Xare used to increase the score of exons predicted by geneid, in order
to produce a more accurate set of gene structures. SGP2provides a specificity that is high
enough for its predictions to be experimentally verified by RT-PCR. The RT-PCR validation
of predicted splice junctions also serves as example of how combined computational and
experimental approaches will yield the best results.

Then, we performed a descriptive analysis at sequence level of the splice site signals
from a reliable set of orthologous genes for human, mouse, rat and chicken. We have
explored the differences at nucleotide sequence level between U2 and U12 for the set of
orthologous introns derived from those genes. We found that orthologous splice signals
between human and rodents and within rodents are more conserved than unrelated splice
sites. However, additional conservation can be explained mostly by background intron
conservation. Additional conservation over background is detectable in orthologous mam-
malian and chicken splice sites. Our results also indicate that the U2 and U12 intron classes
have evolved independently since the split of mammals and birds. We found neither con-
vincing case of interconversion between these two classes in our sets of orthologous introns,
nor any single case of switching between AT-AC and GT-AG subtypes within U12 introns.
In contrast, switching between GT-AG and GC-AG U2 subtypes does not appear to be
unusual.

Finally, we implemented visualization tools to integrate annotation features for gene-
finding and comparative analyses. One of those tools, gff2ps, was used to draw the
whole genome maps for human, fruitfly and mosquito. gff2aplot  and the accompanying
parsers facilitate the task of integrating sequence annotations with the output of homology-
based tools, like BLAST. We have also adapted the concept of pictograms to the comparative
analysis of orthologous splice sites, by developing compi.
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Resum

L’incessant augment del nombre de seqiiéncies genomiques, juntament amb 1'increment del nombre
de tecniques experimentals de les que es disposa, permetra obtenir el cataleg complet de les funcions
cellulars de diferents organismes, incloent-hi la nostra espeécie. Aquest cataleg definira els fonaments
sobre els que es podra entendre millor com els organismes funcionen a nivell molecular. Al mateix
temps es tindran més pistes sobre els canvis que estan associats amb les malalties. Per tant, la se-
qliencia en brut, tal i com s’obté dels projectes de seqtienciaci6é de genomes, no té cap valor sense les
analisis i la subsegtient anotacié de les caracteristiques que defineixen aquestes funcions. Aquesta
tesi presenta la nostra contribucié en tres aspectes relacionats de ’anotaci6 dels gens en genomes
eucariotes.

Primer, la comparacié a nivell de seqiiéncia entre els genomes huma i de ratoli es va dur a terme
mitjancant un protocol semi-automatic. El programa de predicci6é de gens SGP2es va desenvolupar
a partir d’elements d’aquest protocol. El concepte al darrera de 1'SGP2és que les regions de simi-
laritat obtingudes amb el programa TBLASTX, es fan servir per augmentar la puntuaci6 dels exons
predits pel programa geneid, amb el que s’obtenen conjunts d’anotacions més acurats d’estructures
geéniques. SGP2té una especificitat que és prou gran com per que es puguin validar experimental-
ment via RT-PCR. La validacié de llocs d’splicing emprant la tecnica de la RT-PCR és un bon exemple
de com la combinacié d’aproximacions computacionals i experimentals produeix millors resultats
que per separat.

S’ha dut a terme 1’analisi descriptiva a nivell de seqiiéncia dels llocs d’splicing obtinguts sobre un
conjunt fiable de gens ortolegs per huma, ratoli, rata i pollastre. S’han explorat les diferéncies a nivell
de nucleotid entre llocs U2 i U12, pel conjunt d’introns ortdlegs que se'n deriva d’aquests gens. S’ha
trobat que els senyals d’splicing ortdlegs entre huma i rossegadors, aixi com entre rossegadors, estan
més conservats que els llocs no relacionats. Aquesta conservacié addicional pot ser explicada pero
a nivell de conservaci6 basal dels introns. D’altra banda, s’ha detectat més conservacié de 1’espera-
da entre llocs d’splicing ortolegs entre mamifers i pollastre. Els resultats obtinguts també indiquen
que les classes introniques U2 i U12 han evolucionat independentment des de 1’ancestre comu dels
mamifers iles aus. Tampoc s’ha trobat cap cas convincent d’interconversié entre aquestes dues classes
en el conjunt d’introns ortdlegs generat, ni cap cas de substituci6 entre els subtipus AT-AC i GT-AG
d’introns U12. Al contrari, el pas de GT-AG a GC-AG, i viceversa, en introns U2 no sembla ser
inusual.

Finalment, s’han implementat una série d’eines de visualitzaci6 per integrar anotacions obtin-
gudes pels programes de predicci6 de gens i per les analisis comparatives sobre genomes. Una
d’aquestes eines, el gff2ps, s’ha emprat en la cartografia dels genomes huma, de la mosca del vina-
gre i del mosquit de la malaria, entre d’altres. El programa gff2aplot i els filtres associats, han fa-
cilitat la tasca d’integrar anotacions de seqtiéncia amb els resultats d’eines per la cerca d’homologia,
com ara el BLAST. S’ha adaptat també el concepte de pictograma a l’analisi comparativa de llocs
d’splicing ortolegs, amb el desenvolupament del programa compi.
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Resumen

El aumento incesante del niimero de secuencias genémicas, junto con el incremento del ntimero de
técnicas experimentales de las que se dispone, permitira la obtencién del catdlogo completo de las
funciones celulares de los diferentes organismos, incluida nuestra especie. Este catdlogo definira las
bases sobre las que se pueda entender mejor el funcionamiento de los organismos a nivel molecular.
Al mismo tiempo, se obtendran més pistas sobre los cambios asociados a enfermedades. Por tanto, la
secuencia en bruto, tal y como se obtiene en los proyectos de secuenciacién masiva, no tiene ningtn
valor sin los analisis y la posterior anotacion de las caracteristicas que definen estas funciones. Es-
ta tesis presenta nuestra contribucién a tres aspectos relacionados de la anotacién de los genes en
genomas eucariotas.

Primero, la comparacién a nivel de secuencia entre el genoma humano y el de ratén se llevé a cabo
mediante un protocolo semi-automatico. El programa de prediccién de genes SGP2se desarroll6 a
partir de elementos de dicho protocolo. El concepto sobre el que se fundamenta el SGP2es que las re-
giones de similaridad obtenidas con el programa TBLASTX, se utilizan para aumentar la puntuacién
de los exones predichos por el programa geneid, con lo que se obtienen conjuntos més precisos de
anotaciones de estructuras génicas. SGP2tiene una especificidad suficiente como para validar esas
anotaciones experimentalmente via RT-PCR. La validacién de los sitios de splicing mediante el uso
de la técnica de la RT-PCR es un buen ejemplo de cémo la combinacién de aproximaciones computa-
cionales y experimentales produce mejores resultados que por separado.

Se ha llevado a cabo el andlisis descriptivo a nivel de secuencia de los sitios de splicing obtenidos
sobre un conjunto fiable de genes ortélogos para humano, ratén, rata y pollo. Se han explorado las
diferencias a nivel de nucleétido entre sitios U2 y U12 para el conjunto de intrones ortélogos deriva-
do de esos genes. Se ha visto que las sefiales de splicing ortdlogas entre humanos y roedores, asi
como entre roedores, estin méas conservadas que las no ort6logas. Esta conservacion puede ser ex-
plicada en parte a nivel de conservacién basal de los intrones. Por otro lado, se ha detectado mayor
conservacion de la esperada entre sitios de splicing ort6logos entre mamiferos y pollo. Los resultados
obtenidos indican también que las clases intrénicas U2 y U12 han evolucionado independientemente
desde el ancestro comtn de mamiferos y aves. Tampoco se ha hallado ningtin caso convincente de in-
terconversion entre estas dos clases en el conjunto de intrones ortélogos generado, ni ningtin caso de
substitucion entre los subtipos AT-AC y GT-AG en intrones U12. Por el contrario, el paso de GT-AG
a GC-AG, y viceversa, en intrones U2 no parece ser inusual.

Finalmente, se han implementado una serie de herramientas de visualizacion para integrar ano-
taciones obtenidas por los programas de prediccion de genes y por los andlisis comparativos sobre
genomas. Una de estas herramientas, gff2ps, se ha utilizado para cartografiar los genomas humano,
de la mosca del vinagre y del mosquito de la malaria. El programa gff2aplot v los filtros asocia-
dos, han facilitado la tarea de integrar anotaciones a nivel de secuencia con los resultados obtenidos
por herramientas de btsqueda de homologia, como BLAST. Se ha adaptado también el concepto de
pictograma al andlisis comparativo de los sitios de splicing ort6logos, con el desarrollo del programa
compi.
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Chapter 1

Infroduction

All our progress is an unfolding, like vegetable bud. You
have first an instinct, then an opinion, then a knowledge
—Ralph Waldo Emerson, “Essays”

Genes encode all the information necessary for the cell to carry out all its functions. Al-
though protein sequences are continuous!, the sequence of the genes defining them in the
eukaryotic organisms appears in the DNA sequence interspersed in a sea of non-coding re-
gions. Furthermore, evolution has made the problem of finding those genes in anonymous
DNA sequences harder. Not only because of the intrinsic mutational changes of the DNA
sequences, which makes homology finding more difficult; but also due to the variation ac-
cumulated in the gene catalog of each species, which has been expanded—Dby duplications,
for instance— or reduced—i.e., by deletions and lose of function (pseudogenes). In addi-
tion to that, genes have been reordered, some of them have lost their function, becoming
useless, and so on. On the other hand, to search for genes means that we have to look for
the features that characterize them, examining the raw DNA sequences for the signals that
delineate them. Therefore, obtaining the genome sequence of an organism does not grant
that we will be able to find all the genes easily, as the real ones will be hidden in a forest of
false signals and real non-coding regions. The fact that in the human genome, made up of
three billions? of nucleic acids distributed in 23 chromosomes (the haploid set of course),
there is only about 2% of sequence in coding regions, helps us to understand the magni-
tude of the problem of finding the genes encoded in it [Guigo et al., 2000; Venter et al., 2001;
Lander et al., 2001].

At the moment of transcription, the sequence containing a gene is copied from the DNA
to RNA, the so called primary transcript. This undergoes a series of modifications before
being transported from the nucleus to the cytoplasm. Once there, the sequence of the RNA,
known at this step as messenger RNA (mRNA), serves as a template to produce the cor-
responding protein, the translation process. The pathway from DNA to protein synthesis
became the central dogma of Biology. One of the most important changes performed on

1Genes that do not translate into proteins can still have a function, such as the transfer RNA (tRNA) genes and
other non-coding RNAs (ncRNA). Whatever they are still coding for a cellular function, the term coding will be
used along this document as protein-coding, as for protein-coding genes.

2US notation: 3 x 10°, more intuitively 3,000,000,000bp.
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Figure 1.1: The processing of RNA in the cell. Inmediately after the RNA is transcribed in the
nucleus, capping, splicing, editing and 3’ polyadenylation of the pre-mRNA occur. In mammals,
RNA editing can be of two types, either the conversion of cytidine to uridine or the conversion
of adenosine to inosine. Once the mRNA is transported into the cytoplasm, additional process-
ing of the polyA tail can occur. The elements required for this and for subcellular localization,
stability and translation are present in the untranslated regions (UTRs). Adapted from Keegan
et al. [2001].

the primary transcript is the elimination of the fragments not coding for proteins, the so
called introns, by means of a set of biochemical reactions in the cell nucleus, known as the
splicing process. The final product of splicing is a molecule of mRNA in which the gene’s
exons have been concatenated to get a continuous gene sequence. Figure 1.1 illustrates the
modifications that the primary transcript undergoes. Capping of the 5 terminus, splicing
of the exonic segments and polyadenylation are the major events leading to the mature
mRNA molecule. All those steps can be coupled in the cell as has been suggested in recent
publications [Proudfoot et al., 2002; Zorio and Bentley, 2004].

The next challenge is how to delineate the exonic structures that define a gene product.
Unlike prokaryotic organisms, for which genes are formed by a single exon—and the inter-
genic sequences, if present, are very short—, the eukaryotic genes can have more than one,
up to hundreds in some cases. In the human genome, for example, approximately a 10% of
the 33,000 genes annotated in the last human genome version® are single exon genes, and
all the rest are multi-exonic gene structures. The following big problem, yet to be solved,
is to find all the alternative exonic structures encoded in a given gene region, what is also
known as alternative splicing . Recent estimates suggest that more than 60% of human

3Calculated from ENSEMBL genes found in the GOLDEN PATH HG16 version (July, 2003), obtained from:
http://hgdownload.cse.ucsc.edu/goldenPath/hgl6/database/ensGene.txt.gz
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1.1. Finding Genes in the Genomes
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Figure 1.2: Common pitfalls among gene-finding approaches. No program is yet able to
find all genes in anonymous genomic sequences correctly. Some overpredict and report genes
where there are none; some misspredict genes; in other cases they are not able to properly group
exons belonging to one or more genes, joining or splitting the corresponding gene structures.
The upper track shows a putative set of real genes, the other tracks simulate the output of four
different gene-finding tools. Adapted from Pennisi [2003].

genes show this phenomenon [Lander et al., 2001; Modrek et al., 2001]. Landscape becomes
more complex if one wants to take into account the regulation of gene expression [Zhang,
2002] and the rules of the alternative splicing control [Woodley and Valcércel, 2002].

1.1 Finding Genes in the Genomes

In the early eighties, DNA sequences under analysis were long enough to find initially open
reading frames (ORFs), then exons. The first computational approaches focused then on the
search for coding regions—see, for example, the pioneering works of Pustell and Kafatos
[1982], Staden [ANALYSEQind the Staden package, 1984b; 1986 respectively], Devereux
et al. [GCGsuite, 1984], Keller et al. [1984], or Blattner and Schroeder [1984]. It was not
until the nineties that programs able to assemble those exons into a complete gene were
developed [Uberbacher and Mural, 1991; Guigé et al., 1992; Burge and Karlin, 1997]. Al-
though sequencing technology was improving, most of the available sequences contained
a single gene, often incomplete. By that time, the number of sequences stored in databases
was relatively small. Whole genome sequencing projects changed that scenario. Databases
started to grow exponentially and new problems had to be faced by the sequence analysis
algorithms. Speed was one of the main requirements of the new era, not only to look for
genes but also for the search of homologies between sequences of different species, map-
ping repetitive sequences, and so on. Novel algorithms for homology search, less sensitive
but faster, were developed to screen an ever growing set of sequences. Models underlying
the gene-finding software were developed from different approaches—for instance, neural
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Figure 1.3: Consensus sequences of U2 and U12 splicing signals. The consensus sequences of
the 5/ splice site, branch site and 3 splice site are shown from left to right for minor-class introns
(upper row) and for major-class introns (lower row). The letter heights at each position represent
the frequency of occurrence of the corresponding nucleotides at that position. The positions that
are thought to be involved in intron recognition are shown in black; other positions are shown
in blue. Adapted from Patel and Steitz [2003].

networks and hidden Markov models (HMMs). However, as the length of the sequences
increased, it was evident that gene distribution along them and their structural complexity
became a hard problem to solve. The reliability of the results obtained by computational
gene prediction tools has not improved so fast [Burset and Guigd, 1996; Guigé et al., 2000;
Reese et al., 2000].

Gene prediction has changed substantially in the past few years. The sequencing of an
increasing number of eukaryotic genomes, and the distribution through centralized ge-
nome browsers,—such as those at the University of California Santa Cruz (UCSC), the
National Center for Biotechnology Information (NCBI) and the European Bioinformatics
Institute (EBI)—of precomputed genome-wide annotations may often make it unnecessary
for scientists to run gene prediction programs themselves. Gene prediction, however, is
still useful in these genomes, because researchers may want, for instance, to investigate
in detail the pattern of alternative splicing of a given gene. On the other hand, gene pre-
diction is still essential to analyze sequences from the many genomes that have not been
completely characterized yet. The obvious conclusion is that gene prediction is still an open
problem. Figure 1.2 highlights some of the common failings that the current tools have yet
to overcome.

Chapter 3 presents a brief overview of gene finding, both classical and comparative
approaches, and the evaluation of the predictions, as well as a description of the semi-
automatic protocols used for large genome-sized data sets.

1.2 Eukaryotic Gene Structure

The precise removal of pre-mRNA introns is a critical aspect of gene expression. The splic-
ing machinery must recognize and remove introns to make the correct message for protein
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production, but also, for many genes, alternative splicing mechanisms must be in place to
generate functionally diverse protein isoforms in a spatially and temporally regulated man-
ner [Hastings and Krainer, 2001]. Paradoxically, in higher eukaryotes, the requirement for
accurate splicing is accompanied by exon-intron junctions that are defined, in most cases,
by weakly conserved intronic cis-elements, the splice sites and the branch point [Cartegni
et al., 2002]. These elements are necessary but by no means sufficient to define exon-intron
boundaries. Sequences that match the consensus splice site signals as well as, or better
than, natural splice sites are very common in introns. They define a set of pseudo-exons
that greatly outnumber genuine exons and greatly complicate the task of assembling real
gene structures by the computational gene-finding approaches.

The splicing reaction is mediated by two distinct yet analogous pools of small nuclear
ribonucleoprotein particles. The RNA component of such particles takes part in the recog-
nition of sequence motifs at both ends of the introns, the 5" and 3’ splice sites, and a region
within the intron known as the branch point [Patel and Steitz, 2003]. The works of Hall
and Padgett [1994] revealed a minor class of introns having unusual consensus splice site
sequences. Figure 1.3 shows, side by side, the sequence patterns for both the major and mi-
nor intron classes and illustrates the fact that the minor-class sequence motifs are far more
conserved than those for the major-class [Sharp and Burge, 1997].

After a detailed description of the splicing biochemistry, we will focus on the sequence
features that define the boundaries between exons and introns in chapter 4. Our contri-
bution to understanding the biological characteristics of such features, based on the com-
parative analysis of introns from orthologous genes of several vertebrate genomes, is also
described.

1.3 Visualizing Genomic Features

Despite substantial progress in computational gene finding, currently available methods
are not yet able to automatically provide accurate enough descriptions of the gene content
of eukaryotic genomes and a substantial amount of manual curation is required. This is a
task in which visualization and integration tools play an essential role.

Any result in Bioinformatics, whether it is a sequence alignment, a structure prediction,
or an analysis of gene expression patterns, should answer a biological question. For this
reason, it is up to the researchers to interpret their results in the context of such a question.
This interpretation is the most important part of the scientific process and a number of
programs are used to visualize the sort of data arising from Bioinformatics research. These
programs range from general-purpose plotting and statistical packages for the analysis of
numerical data to programs dedicated to presenting sequence annotations in an integrated,
intuitive and comprehensive fashion, such as the ENSEMBL genome browser examples from
Figure 1.4. Visualization tools exploit the abilities of the eye and brain to find patterns that
may be interesting. After that, statistical and data mining tools restrict those searches to
the patterns that can be quantitatively and repeatedly shown to be significant [Gybas and
Jambeck, 2003].

In chapter 5, we provide an overview of visualization tools that have been applied to the
analysis of genome annotations and the inter-specific comparative analyses. Furthermore,
we show a set of tools we have developed to visualize genomic annotations.
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Figure 1.4: Browsing through genome annotations. A quick tour through the ENSEMBL ge-
nome browser pinpoints the different information levels we can access via its web interface.
From their home page located in the upper left corner, a researcher can jump into the desired
genome, the human genome in this example. Specific queries can be performed by using the
text forms, but a very intuitive interface allows the user to zoom from the chromosome level
(the Map View window placed in the center of this figure), to the sequence level (the Contig
Viewer on the lower left panel), and to the gene or transcript reports (middle lower panels).
Integration with other species-specific genome databases is also possible by using the Synteny
panels (upper right panel). Comparative analyses at the genomic sequence level are shown in
the Multi-Contig View (lower right panel). Red arrows indicate only few of the possible paths a
researcher can follow through this browser.
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1.4 About This Thesis

None of the articles composing this thesis were collected in an appendix or as separate
chapters. They appear as sections where links to the journal web references and supple-
mentary material are provided, followed by the article itself. Presenting the publications
this way may break the storyline but it puts related subjects together which seems to be
more appropriate. In those papers in which we were part of an international consortium,
the article is reproduced in part due to its size but also because we have atempted to focus
on our specific contribution. This should not be a problem, since the link to retrieve the
whole article is provided as was already mentioned. Several figures and tables are referred
to along the text via hyperlinks pointing directly to the page of the corresponding embed-
ded article. Absolute page numbers relative to this document were used in all of these
hyperlinks and in the list of figures or tables. Nevertheless, the reader can find easily the
original paper page numbers just by following the hyperlinks.

The electronic version of this document has hyperlinks for the table of contents, for
the bibliographic references, but most important of all, also for the web addresses on the
Internet—from now on, their Uniform Resource Locator (URL). This means that you can
visit the corresponding web page by clicking your pointer on them, in case that you have
your PDF viewer properly customized. Many of the URLSs presented in this book have been
collected in a web links reference index available on page 213. URLs within paragraphs
have been moved into that web glossary in order to avoid unbalanced line breaks and
for a more pleasant reading. A reference to the corresponding page in the web reference
index is provided instead. That does not include those URLs refering to the supplementary
materials of the attached articles, which are put together in the corresponding article section
(see Section 3.2.1 in page 20 for an example).

An attempt has been made to keep software names as provided by their authors. Those
names appear in a monospaced serif font. Database names are typeset in a SMALL-
CAPS SANS-SERIF FONT. A slanted sans-serif font was used for gene names, while a upright
sans-serif font was chosen for protein names.

The first time an acronym appears in the document, the full name will be provided and
the acronym itself will be shown in parentheses. From then on, the short form will be used.
In order to help the reader, a list of abbreviations can be found on page 203. A glossary of
terms is also available on page 207.






Chapter 2

Objectives

Don’t bite my finger, look where it’s pointing.
—Warren S. McCulloch

The research in this PhD thesis was initially targeted, in late 1998, to the goals enumera-
ted below. In what follows, they are described and an account of their achievement status
given.

1.

To analyze through bioinformatic means the exonic structures of homologous genes,
in order to determine the extent of conservation at gene structure level.

To describe possible evolutive patterns for those exonic structures within mammals
and vertebrates.

To compare the conservation of the signals that delineate exons between different
species. Both, acceptor and donor, splice sites are the main players in the definition
of the exonic structure of eukaryotic genes.

To investigate the relationship between the conservation of exonic structures and al-
ternative splicing patterns.

. To develop visualization tools focusing specifically on the annotation of genomic se-

quences (including output from gene finding tools) and the comparative analysis of
exonic structures.

To provide and distribute the results of our analyses and the bioinformatic tools to
the research community.

These objectives were established based on data and knowledge of that time. They were
intended to explore very basic questions about the exonic structure of eukaryotic genes and
the evolutionary fates of introns. These goals have been accomplished to different degrees
as related further down. Therefore, several of these points should be considered as ongoing
work and yet many questions, both old and new, remain unanswered.

Some of the work presented in this dissertation has been done in collaboration with
international genome sequencing consortia. These collaborations gave me the opportunity

9
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to meet and work with specialists from all over the world, and made our work very rel-
evant. However, those collaborations put a lot of pressure on us and a lot of effort has
been invested in such genome annotation projects. On the other hand, participating in the
annotation of recently sequenced genomes has proven fruitful, as we have had to develop
methodologies to analyze large amounts of data from different sources for each species.
This means that we had to implement specific software to solve new problems, as well as
to establish protocols to handle large sequence and annotation data sets. Such an effort was
detrimental to some of the initial objectives and it made that this thesis took more time than
expected.

The protocols and software we developed for finding genes by the comparison of the
human and mouse genomes [Parra et al., 2003; Waterston et al., 2002], have been adapted
to produce gene annotations in a semi-automatic pipeline for each novel assembly version
of eukaryotic genomes. Annotations for several species, including human, chimpanzee,
mouse, rat, chicken and the fruitfly, are available through a web repository (see page 214,
on Web Glossary).

Despite the fact that we were able to undertake the analysis of the orthologous splice
sites for four vertebrate species, we have not been able to investigate the conservation of ex-
onic structures of alternatively spliced isoforms of orthologous genes. We could not tackle
the evolutionary analysis of exonic gene structure either. However, during the last year, our
group has joined the Alternative Splicing Database Project [Thanaraj et al., 2004], and has
been also chosen as a partner of the ENCODE project [ENCODE Project Consortium, 2004].
ASD aims to analyze the mechanism of splicing on a genome-wide scale by creating both,
human-curated and computer-generated databases containing alternatively spliced exons
from human and other model species. The main aims of the ENCODE project are both to
validate known genes and to confirm reliable computational predictions experimentally.
However, also to identify previously unknown genes and the characterization of a number
of splice variants of the genes found in the corresponding target regions. In both projects,
there are people in our laboratory that will continue this promising research line.

For the last objective, all the programs and data sets have been made available through
our group’s web server. Most of our published papers have their own web page with
supplementary materials, as can be seen in the corresponding sections. Regarding the vi-
sualization software developed, gff2ps and gff2aplot, both have several tutorials and
a user’s reference manual. Furthermore, these tools are distributed under the GNU General
Public License (GNU-GPL). The GNU-GPL is intended to guarantee the freedom to share
and change free software—-to make sure the software is free for all its users. If our research is
publicly funded, the fruits of our work should be made publicly available. Both, the GNU-
GPL and the Internet, are in our honest opinion most forthright approach to accomplish
that responsibility with the society. As stated in Jamison [2003], software security mea-
sures which don’t allow for examination of original code or for reasonable mechanisms of
validity testing are in contrast with the open communication needed to do science properly.



Chapter 3
Comparative Gene Finding

When this circuit learns your job,
what are you going to do ?
—Herbert Marshall McLuhan

Life processes, from the information flow from DNA to proteins to biochemical or re-
gulatory pathways, have an intrinsic algorithmic nature. An algorithm can be defined as a
detailed sequence of actions to perform to accomplish some task. The cells of living beings
steadily perform step-by-step chemical reactions. Interactions between molecules modu-
late the flow of energy or information across the cell. The analogy works the other way
around, as we attempt to emulate such biological processes by computational methods.
The organization of a gene, as any other biological structure, is determined by functional
and evolutionary constraints. All computational methods are therefore based on our ex-
perimental understanding of such constraints.

In this chapter we explore the computational modeling of protein-coding gene struc-
tures. After that, we describe our contribution to the gene-finding using comparative ge-
nomics approaches.

3.1 Computational Gene Prediction

After the genome of an organism is sequenced and assembled, comprehensive and ac-
curate initial gene prediction and annotation by computational analysis have become the
necessary first step towards understanding the functional content of the genome [Guigd
and Zhang, 2004]. Despite the fact that, in practice, there are tools that can be classified in
more than one of them, we can split the computational approaches to find genes in DNA
sequences into three main categories.

e “Ab initio” methods are based on a search for those signals that specify the boun-
daries of coding regions, as in the analysis of coding biases and regularities of the
protein-coding versus non-coding regions [Guig6, 1999]. The main handicap of such
approaches is that the molecular mechanisms used by eukaryotic cells to define the
signals that determine the gene structure are not completely well understood.
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¢ Homology-based methods use information related to the similarity of the query co-
ding region with respect to a set of known sequences from databases. The major
drawback here is the bias towards known genes or proteins. Therefore novel families
that are under-represented or not found in the databases, will still be hard to retrieve
[Guigé et al., 2000].

* The whole-genome sequencing projects allowed to extend the previous approach. In-
stead of searching for sequences of known genes, the entire genomes of two or more
species are compared. The idea behind this is that evolution tends to retain those re-
gions that are important because they have a function, whatever it encodes: a protein
or structural or regulatory elements. When comparing genomes of closely related
species, a set of genes emerges that is characteristic for the taxonomic group to which
they belong. A good example of this has been the comparison between the human
[Lander ef al., 2001] and mouse [Waterston et al., 2002] genomes, during which ap-
proximately 9,000 novel mouse and 1,000 novel human genes have been annotated
[Guigb et al., 2003; Flicek et al., 2003; Parra et al., 2003]. However, comparative ge-
nomics approaches are not only a useful tool to find novel genes, but they are also a
tool to improve the annotations of known genes [Reichwald et al., 2000] and to hy-
pothesize about their functions [Wiehe et al., 2000].

3.1.1 “Ab initio” developments

Computational gene finding is not a brand new field and a large body of literature has ac-
cumulated during the last 25 years. Early studies by Shepherd [1981], Fickett [1982] and
Staden and McLachlan [1982] showed that statistical measures related to biases in amino
acid and codon usage could be used to approximately identify protein coding regions in
genomic sequences. Based on these differences, the first generation of gene predictions pro-
grams, designed to identify approximate locations of coding regions in genomic DNA, was
developed. The most widely known of this kind of programs were probably testcode
(based on Fickett [1982]) and grail [Uberbacher and Mural, 1991]. These programs were
able to identify coding regions of sufficient length (100-200bp) with fairly high reliability,
but did not accurately predict exon locations.

In order to predict exon boundaries, a new generation of algorithms was developed.
A second generation of programs, such as sorfind [Hutchinson and Hayden, 1992],
grailll [Xu et al., 1994b,a] and xpound [Thomas and Skolnick, 1994], uses a combination
of splice signal and coding region identification techniques to predict potential sets of ex-
ons (spliceable open reading frames), but does not attempt to assemble predicted exons into
complete genes. A third generation of programs attempts the more difficult task of predict-
ing complete gene structures: sets of exons which can be assembled into translatable coding
sequences. The earliest examples of such integrated gene finding algorithms were proba-
bly the genemodeler program [Fields and Soderlund, 1990] for prediction of genes in
Caenorhabditis elegans and the method of Gelfand [1990] for mammalian sequences. Subse-
quently, there has been a mini-boom of interest in development of such methods and a wide
variety of programs have appeared, including: geneid [Guig6 et al., 1992], which used a
hierarchical rule-based structure; geneparser [Snyder and Stormo, 1993], which scored
all subintervals in a sequence for content statistics and splice site signals, then weighted
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them by a neural network and it chained the resulting features by dynamic programing;
genemark [Borodovsky and Mclninch, 1993] which combined the specific Markov models
of coding and non-coding region together with Bayes’ decision making function; genlang
[Dong and Searls, 1994], which treated the problem by linguistic methods describing a
grammar and parser for eukaryotic protein-encoding genes; and fgenes [Solovyev et al.,
1994] which used a discriminant analysis for identification of splice sites, exons and pro-
moter elements.

At the end of the last decade, the introduction of the Generalized Hidden Markov
Models (GHMMs) produced a new generation of gene prediction programs. GHMMs
have some advantages over the previous approaches. The main advantage is that all
the parameters of the model are probabilities and that, given a set of curated sequences
and defined states, the Viterbi algorithm can be used to compute the set of optimal pa-
rameters. A great variety of programs appeared simultaneously exploring the capabili-
ties of GHMMs: genie [Kulp et al.,, 1996], hmmgene [Krogh, 1997], veil [Henderson
et al., 1997], genscan [Burge and Karlin, 1997] and the GHMMs version of genemark
(genemark.hmm, Lukashin and Borodovsky [1998]) and fgenes (fgenesh, Salamov and
Solovyev [2000]).

Other gene prediction approaches have been appeared in the same period of time, for
instance: mzef [Zhang, 1997], which identified internal coding exons by quadratic discri-
minant analysis; morgan [Salzberg et al., 1998], which was an integrated system for finding
genes in vertebrate DNA sequences by combining different methods with a decision tree
classifier; and Augustus [Stanke and Waack, 2003], which incorporated an intron model to
an underlying HMM. However, genscan is still considered the standard gene prediction
program (at least for human) and it is used in most of the genome annotation pipelines like
ENSEMBL and the NCBI genome resources.

3.1.2 Homology based gene-finding

The backbone of similarity-aided or homology-based gene structure determination is cons-
tituted by those methods that rely on comparison f the query sequence with protein or
cDNA sequences. Database search software, such as BLAST[Altschul et al., 1990, 1997] and
related tools, is not capable of automatically identifying start and stop codons or splice
sites. Therefore, additional tools are required to define the exonic structures on the poten-
tial targets found by the database search programs. Several tools, though, have been devel-
oped to calculate spliced alignments, where large gaps—likely to correspond to introns—
are only allowed at legal splice junctions, between the query sequence and the to database
matches. Among those one can cite SIM4 [Florea et al., 1998], EST_genome [Mott, 1997],
Spidey [Wheelan et al., 2001] and exonerate [Slater and Birney, 2005].

Procrustes  [Gelfand et al., 1996] and genewise [Birney and Durbin, 1997; Birney
et al., 2004b], both predict genes based on a comparison of a genomic query with protein
targets. GeneSeqger [Usuka and Brendel, 2000] is a similar spliced alignment program for
plant genomes. Projector  [Meyer and Durbin, 2004] makes explicit use of the conser-
vation of the exon-intron structure between related genes, which outperforms other tools
when the conservation at the amino acid level is weak. Other tools increase the score of
candidate exons as a function of the similarity between these exons and known coding se-
quences resulting of a database search. Examples of this approach are genomescan [Yeh
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et al., 2001], grailexp ~ [Xu et al., 1997] and crasa [Chuang et al., 2003]; the first incorpo-
rates similarity to known proteins, the later two use ESTs instead.

3.1.3 Comparative genomics approach

With the availability of many genomes from different species, a number of strategies have
been developed to use genome comparisons to predict genes. The rationale behind com-
parative genomic methods is that functional regions, protein coding regions among them,
are more conserved than non-coding ones between genome sequences from different or-
ganisms. See, for instance, Figure 3.3 on page 22 (Parra et al. 2003, page 109, figure 1) and
Figure 5.2 on page 153. This characteristic conservation can be used to identify protein co-
ding exons in the sequences. The approach taken by different programs to exploit this idea
differ notably.

In one such approach [Blayo et al., 2002; Pedersen and Scharl, 2002], the problem is
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stated as a generalization of pairwise sequence alignment: given two genomic sequences
coding for homologous genes, the goal is to obtain the predicted exonic structure in each
sequence maximizing the score of the alignment of the resulting amino acid sequences.
Both Blayo et al. [2002] and Pedersen and Scharl [2002] solve the problem through a com-
plex extension of the classical dynamic programming algorithm for sequence alignment.
Although very appropriate for short sequences, in practice, the time and memory require-
ments of this algorithm limit its usefulness for very large genomic sequences. Although the
approach theoretically guarantees to produce the optimal amino acid sequence alignment,
the fact that sequence conservation may also occur in regions other than protein coding,
could lead to overprediction of coding regions, in particular when comparing large geno-
mic sequences from homologous genes from closely related species.

To overcome this limitation, the programs doublescan [Meyer and Durbin, 2002] and
SLAM[Alexandersson et al., 2003] rely on more sophisticated models of coding and non-
coding DNA and splice signals, in addition to sequence similarity. Since sequence align-
ment can be solved with Pair Hidden Markov Models [PHMMs, Durbin et al., 1998] and
GHMMs have proven to be very useful to model the characteristics of eukaryotic genes
[Burge and Karlin, 1997], SLAMand doublescan are built upon the so-called Generalized
Pair HMMs. In these, gene prediction is not the result of the sequence alignment, as in the
programs above, but both gene prediction and sequence alignment are obtained simulta-
neously.

A third class of programs adopts a more heuristic approach, and separates gene pre-
diction from sequence alignment. The programs rosetta[Batzoglou et al., 2000], SGP1
[from Syntenic Gene Prediction, Wiehe et al., 2001], and cem [from the Conserved Exon
Method, Bafna and Huson, 2000] are representative of this approach. All these programs
start by aligning two syntenic regions (specifically human and mouse in rosetta, and
cem; less species specific in SGP1), using some alignment tool (theglass program, spe-
cifically developed in the case of rosetta, or generic ones, such as  TBLASTX, orsim96
in the case of cem and SGP1respectively) and then predict gene structures in which the
exons are compatible with the alignment. This compatibility often requires conservation
of exonic structure of the homologous genes encoded in the anonymous syntenic regions.
Although conservation of exonic structure is an almost universal feature of orthologous hu-
man/mouse genes [Waterston et al., 2002], it does not necessarily occur when comparing
genomic sequences of homologous genes from other species.

The programs described so far rely on the comparison of fully assembled (and when
from different organisms, syntenic) genomic regions. This limits their utility when ana-
lyzing complete large eukaryotic genomes and in particular when the informant genome
is in non-assembled shotgun form. To overcome this limitation, the programs Twinscan
[Korf et al., 2001] and SGP2[Parra et al., 2003] take a still different approach. The approach
in these programs is reminiscent of that used in genomescan [Yeh et al., 2001] to incor-
porate similarity to known proteins to modify the genscan scoring schema. Essentially,
the query sequence from the target genome is compared against a collection of sequences
from the informant genome (which can be a single homologous sequence to the query se-
quence, a whole assembled genome, or a collection of shotgun reads) and the results of the
comparison are used to modify the scores of the exons produced by “ab initio” gene pre-
diction programs. In Twinscan, the genome sequences are compared using BLASTNand
the results serve to modify the underlying probability of the potential exons predicted by
genscan. In SGP2, the genome sequences are compared usingTBLASTX, and the results
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used to modify the scores of the potential scores predicted by geneid; see methods section
and Figure 3.4 on page 24 (page 110 and Figure 2 on page 111 of Parra ef al. 2003).

As the number of available genome sequences of species at different evolutionary dis-
tances increases, methods to predict genes based on the comparative analysis of multiple
genomes (and not only of two species) look promising. For instance, Dewey et al. [2004]
combine pairwise predictions from SLAMin the human, mouse and rat genomes to si-
multaneously predict genes with conserved exonic structure in all three species. In the
so-called Phylogenetic Hidden Markov Models (phylo-HMMSs) or Evolutionary Hidden
Markov Models (EHMMs), a gene prediction Hidden Markov Model is combined with a
set of evolutionary models, based on phylogenetic trees. Phylo-HMMs take into account
that the rate (and type) of evolutionary events differ in protein-coding and non-coding
regions. Recently, phylo-HMMs have been applied to gene prediction with encouraging
results [Pedersen and Hein, 2003; Siepel and Haussler, 2004].

Phylo-HMMs also have been used in the context of phylogenetic shadowing [Boffelli
et al., 2003]. Phylogenetic shadowing examines sequences of closely related species and
takes into account the phylogenetic relationship of the set of species analyzed. This ap-
proach enables the localization of regions of collective variation and complementary re-
gions of conservation, facilitating the identification of coding as well as non-coding func-
tional regions. The likelihood ratio under a fast (versus slow) mutation regime can be
computed for each aligned nucleotide site across all the sequences being analyzed. This
ratio represents the relative likelihood that any given nucleotide site was subjected to a
faster or slower rate of accumulation of variation and is related to functional constraints
imposed on each site. Exon containing sequences will display the least amount of cross
species variation, in agreement with the constraint imposed by their function. Regions
from different parts of the genome, in which functional non-coding sequences appear, may
evolve at different rates [Ebersberger et al., 2002], reflected by differences in their absolute
likelihoods. Despite that, functional non-coding regions can be retrieved from stretches of
sequence having minimal variation similar to exonic ones.

3.1.4 Analysis pipelines to automatize sequence annotation

Gene prediction software is often integrated into analysis pipelines in order to produce an-
notations on sets of genomic sequences, for instance a set of chromosome assemblies for a
given species or even a bunch of shotgun sequence reads. Here we will shift the focus to-
wards the management of data on which the programs are run and the flow of annotation
outputs among different tools. Systems developed to summarize and visualize annota-
tions, that can be incorporated as another step of the annotation process, are extensively
described in Chapter 5.

Human annotators use their intuition and experience to synthesize the often contra-
dictory evidence into a single gene structure. Pipelines generally use rules based on the
intuition and experience of their designers [Brent and Guigé, 2004]. Human interpreta-
tion of the results of these raw analysis by manual curators gives the highest-quality data
and most accurate gene structures. However, this process is slow by nature, and annotators
may produce conflicting interpretations of the analysis. Fully automated prediction of gene
structures has the advantage of being fast, does not require a team of trained annotators,
and will process the raw analysis results consistenly. Its major drawback, though, is that
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it can underpredict both the number of genes and the number of alternative transcripts
[Potter et al., 2004].

Pise [Letondal, 2001], a web interface generator for molecular biology software, can
combine related programs in order to perform more complex analyses. The macros gen-
erated by Pise constitute a procedure that will redo the same processing as that already
performed, with another initial input. SEALS[Walker and Koonin, 1997] provides a suite
of programs designed to facilitate analysis projects involving large amounts of data. The
system is designed to provide modular elements which can be combined, modified and
integrated with other methods. Pise can be understood as a web interface to analysis
programs, while SEALS can be seen as a Unix command-line tool set. However, the first
is not meant for automated large-scale analysis, and the latter requires too much manual
interaction to be considered a true analysis pipeline.

The ENSEMBL gene-building system [Curwen et al., 2004] enables fast automated anno-
tation of eukaryotic genomes. It annotates genes based on evidence derived from known
protein, cDNA and EST sequences. The initial stage of computation is known as the ‘raw
compute’ and comprises various stand-alone analyses, including homology searches using
BLAST [Altschul et al., 1997]. Then, ENSEMBL takes these types of analyses one step further
and provides a set of gene annotations based on them, to which extra biological informa-
tion such as gene family, expression data and gene ontologies are linked. Similar systems
have been developed for other databases: FLYBASE uses BOP[Mungall et al., 2002], NCBI
has its own pipeline [Kitts, 2002] as does the UCSC group [Kent et al., 2002]. The ENSEMBL
analysis pipeline [Potter et al., 2004] is split into two parts. The first deals solely with the
running of the individual analyses and parsing the output. The second part deals with the
automated running, in the correct order, of the many analyses that constitute the pipeline.
It keeps track of those that have run succesfully, while also coping with problems such as
job failures. In order to scale up the process for the analysis of whole genomes, the pipeline
only uses flat files locally on the execution nodes; input data are retrieved directly from a
database, and the output data are written back the same way.

Large software systems usually consist of many independently developed parts, and
there is a need for data exchange mechanisms to move information among the compo-
nents. Data integration is a related problem, but with the focus on combining information
in scientifically valid ways. Workflow management is the software technology used for
keeping track of tasks to be done in generating large datasets or in the automated analysis
of such datasets [Goodman, 2002]. A classification of tasks in Bioinformatics emphasizes
that most bioinformatics requirements may be described in terms of filters, transformers,
transformer-filters, forks and collections of data [Stevens et al., 2001]. Two themes are con-
sistent in these requirements: the need for running analyses in a serial rule-dependent fash-
ion (workflow) and the ability to run these tasks in parallel where possible (highthrough-

put).

Biopipe [Hoon et al., 2003] is a generic system for large-scale bioinformatics analysis,
that has been influenced by the ENSEMBL pipeline. Smaller pipeline systems also exist for
annotation of ESTs or individual clones. These systems include Genescript  [Hudek et al.,
2003] and ASAP[Glasner et al., 2003]. PLAN[Chagoyen et al., 2004] is a simple XML-based
language for the definition of executable workflows that simplifies data search and analysis
by providing a uniform XMLview on both data sources and analytical applications.
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Figure 3.2: SGP2-based analysis pipeline for pair-wise genome comparisons. Data is re-
trieved from a remote server and it is reformatted in the local repository to suit the input for the
programs involved in the pipeline. Annotations of known features can be used to train program
parameters and to evaluate the outputs for the whole process. In such a scenario, visualizing
tools, like gff2ps  and gff2aplot (see sections 5.2 and 5.3.1, respectively), can be integrated
in the pipeline to summarize predicted genes and homology features.

3.2 SGP2: Syntenic Gene Prediction Tool

The computational approach to incorporate information from the comparison of two
genomes to geneid is described in the research article attached in the following subsection
(see Section 3.2.1 on page 20), and it was briefly discussed on page 15 of Section 3.1.3. Here,
we would like to discuss SGP2in the context of the genomic comparison between human
and mouse, which is reflected in Section 3.2.2, page 31. The results for those analyses are
summarized in Section “De novo gene prediction” on page 38 (page 539 of Waterston et al.
2002).

Figure 3.2 on page 18 displays a general analysis protocol to produce a set of gene
predictions in a set of sequences for different species. SGP2can be seen there as a procedure
based on TBLASTXand geneid. It also requires some programs to filter the similarity
regions found by TBLASTX. In the figure, only theparseblast  filter was drawn for the
sake of simplicity, but there are a few other programs involved in the SGP2processing of
similarity data. The algorithms and the parameter settings for the software are detailed in
methods section and Figure 3.4 on page 24 (page 110 and Figure 2 on page 111 of Parra et al.
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A whole analysis pipeline was developed for the human and mouse genome compar-
isons. It included preprocessing of the genome sequences and annotations from the UCSC
FTP server; the search for homology between the sequences of the two genomes; the com-
putational gene prediction approaches, both the “ab initio” (geneid and genscan) and the
comparative genomics approach (SGP2). Results from other groups were also integrated
in the pipeline in order to perform the evaluation of the gene predictions against different
reference annotation sets (including REFSEQ and ENSEMBL genes). At that time there were
updates of sequence sets for each genome version that was assembled for the human and
mouse genomes. This required to run again the whole protocol on those new genomic se-
quences. Another issue was the growing number of elements to be included in the analysis
pipeline. To face both problems, we developed a simple task manager in perl to con-
trol the processes to be run on a given set of sequences, and to distribute the task among
different machines of our lab. The perl program was provided with a set of unix shell
scripts to be run in a given order and with a set of sequences. It scheduled all the jobs to be
run for each sequence by using a simple execution queue. The task manager sent each job
script to be executed on a sequence to a machine in the list of available computers of our
lab. This was achieved with rsh remote shell calls, while the sequence files and the results
were shared among all the computers involved in the analysis via the Network File System
(NFS). The task scheduler also kept a record of the execution status of each submitted job,
reporting those cases in which the remote execution failed, without resubmitting them.

The major drawback of this simple approach was the bottleneck of using flat files
throught the NFSon multiple computers when programs required intensive input/output
flow to the file system. This has been already stated in Potter et al. [2004], and was the
reason for the development of the ENSEMBL analysis pipeline with a relational database
system. However, the modular design of the shell scripts defining each job warranted that
many of the components of the semi-automated analysis pipeline described in this section
were recycled. They have been used to obtain predictions for new versions of the human
and mouse genomes, but also for other genomes of species such as rat and chicken. The
results have been collected in a web repository (see the “Gene Predictions on Genomes”
entry in the Web Glossary, on page 214).
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Comparative Gene Prediction in Human
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The completion of the sequencing of the mouse genome promises to help predict human genes with greater
accuracy. While current ab initio gene prediction programs are remarkably sensitive (i.e., they predict at least a
fragment of most genes), their specificity is often low, predicting a large number of false-positive genes in the
human genome. Sequence conservation at the protein level with the mouse genome can help eliminate some of
those false positives. Here we describe SGP2, a gene prediction program that combines ab initio gene prediction
with TBLASTX searches between two genome sequences to provide both sensitive and specific gene predictions.
The accuracy of SGP2 when used to predict genes by comparing the human and mouse genomes is assessed on
a number of data sets, including single-gene data sets, the highly curated human chromosome 22 predictions,
and entire genome predictions from ENSEMBL. Results indicate that SGP2 outperforms purely ab initio gene
prediction methods. Results also indicate that SGP2 works about as well with 3x shotgun data as it does with
fully assembled genomes. SGP2 provides a high enough specificity that its predictions can be experimentally
verified at a reasonable cost. SGP2 was used to generate a complete set of gene predictions on both the human
and mouse by comparing the genomes of these two species. Our results suggest that another few thousand

human and mouse genes currently not in ENSEMBL are worth verifying experimentally.

After the genome sequence of an organism has been obtained,
the very first next step is to compile a complete and accurate
catalog of the genes encoded in this sequence. For higher
eukaryotic organisms, however, the accuracy of currently
available gene prediction methods to perform such a task is
limited (Guigé et al. 2000; Rogic et al. 2001; Guigé and Wiehe
2003). The increasing availability of genome sequences from
different organisms, however, has lead to the development of
new computational gene finding methods that use sequence
conservation to help identifying coding exons, and improve
the accuracy of the predictions (Fig. 1; Crollius et al. 2000;
Wiehe et al. 2000; Miller 2001; Rinner and Morgenstern
2002). Indeed, three such comparative gene prediction pro-
grams, SLAM (Pachter et al. 2002), SGP2, and TWINSCAN
(Korf et al. 2001) have been used for the comparative analysis
of the human and mouse genomes. These analyses lead to
more accurate gene predictions, and to the verification of pre-
viously unconfirmed genes. In this paper, we describe the
program SGP2. Typical computational ab initio gene predic-
tion methods rely on the identification of suitable splicing
sites, start and stop codons along the query sequence, and the
computation of some measure of coding likelihood to predict
and score candidate exons, and delineate gene structures (see
Claverie 1997; Burge and Karlin 1998; Haussler 1998; Zhang
2002 and references therein for reviews on computational
gene finding).

Similarity between the query sequence and known cod-
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ing sequences (amino acid or cDNA) can also be used to infer
gene structures. When the query sequence encodes a protein
for which a close homolog exists, a special type of alignment
can be used between the DNA sequence and the target pro-
tein/cDNA sequence, in which gaps in the target sequence
corresponding to introns in the query sequence must be com-
patible with potential splicing signals. This is the approach in
GENEWISE (Birney and Durbin 1997) and PROCRUSTES
(Gelfand et al. 1996). Alternatively, the results of searching
the query sequence against a database of known coding se-
quences, using for instance BLASTX (Altschul et al. 1990,
1997; Gish and States 1993), can be incorporated more or less
ad hoc into the scoring schema of an ab initio gene prediction
method. The program GENOMESCAN (Yeh et al. 2001),
which incorporates BLASTX search results into the predic-
tions by the GENSCAN program (Burge and Karlin 1997), is an
example of a recent development in that direction.

Recently developed comparative gene prediction pro-
grams further exploit sequence similarity. Instead of compar-
ing anonymous genomic sequences to known coding se-
quences, anonymous genomic sequences are compared to
anonymous genomic sequences from the same or different
organisms, under the assumption that regions conserved in
the sequence will tend to correspond to coding exons from
homologous genes. The approach taken by the different pro-
grams to exploit this idea differs notably.

In one such approach (Blayo et al. 2002; Pedersen and
Scharl 2002), the problem is stated as a generalization of pair-
wise sequence alignment: Given two genomic sequences cod-
ing for homologous genes, the goal is to obtain the predicted
exonic structure in each sequence maximizing the score of the
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Mouse orthologous gene

Human HLA class II alpha-chain gene

bine sequence alignment pair hid-
den Markov Models (HMMs;
Durbin et al. 1998) with gene pre-
diction generalized HMMs
(GHMMs; Burge and Karlin 1997)
into the so-called generalized pair
HMMs. In these, gene prediction is
4000 15t the result of the sequence align-
L ment, as in the programs above;
gene prediction and sequence
i alignment are obtained simulta-
neously.

A third class of programs adopt
- a more heuristic approach, and
separate clearly gene prediction
from sequence alignment. The pro-
5 grams ROSSETA (Batzoglou et al.
2000), SGP1 (from ‘syntenic gene
B prediction’; Wiehe et al. 2001), and
CEM (from ‘conserved exon
method’; Bafna and Huson 2000)
- are representative of this approach.
All these programs start by aligning
two syntenic sequences and then
predict gene structures in which the
exons are compatible with the
B alignment. The programs described
thus far rely on the comparison of
fully assembled (and when from
- different organisms, syntenic) ge-
nomic regions. This limits their
utility when analyzing complete
large eukaryotic genomes, and in
particular when the informant ge-
B nome is in nonassembled shotgun
form. To overcome this limitation,
the programs TWINSCAN (Korf
- et al. 2001) and SGP2 take still
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Figure 1 Pairwise comparison using TBLASTX of the human and mouse genomic sequences coding
for the HLA class Il alpha chain. Black boxes indicate the coding exons, while black diagonals indicate
the conserved alignments. The score of the conserved alignments (divided by 10) is given in the lower
panels. Although conserved regions between the human and mouse genomic sequences coding for
these genes fully include the coding exons, a substantial fraction of intronic regions is also conserved.
The TBLASTX outptut was post-processed to show a continuous non-overlapping alignment.

alignment of the resulting amino acid sequences. Both Blayo
et al. (2002) and Pedersen and Scharl (2002) solve the problem
through a complex extension of the classical dynamic pro-
gramming algorithm for sequence alignment.

In a different approach, the programs SLAM (Pachter et
al. 2002) and DOUBLESCAN (Meyer and Durbin 2002) com-

T I = O
30003251

1 mant genome (which can be a

single homologous sequence to the
query sequence, a whole assembled
genome, or a collection of shotgun
reads), and the results of the com-
parison are used to modify the
scores of the exons produced by ab
initio gene prediction programs. In
TWINSCAN, the genome sequences
are compared using BLASTN, and
the results serve to modify the un-
derlying probability of the potential exons predicted by
GENSCAN. In SGP2, the genome sequences are compared us-
ing TBLASTX (W. Gish, 1996-2002, http://blast.wustl.edu),
and the results are used to modify the scores of the potential
scores predicted by GENEID. TWINSCAN and SGP2 have been
successfully applied to the annotation of the mouse genome
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(Mouse Genome Sequencing Consortium 2002), and have
helped to identify previously unconfirmed genes (Guigd et
al. 2003).

In the next section, we describe the algorithmic details of
SGP2, and its implementation. We also describe the sequence
sets used to benchmark SGP2 accuracy. Results based on these
data sets indicate that SGP2 is an improvement over pure ab
initio gene prediction programs, even when the informant
genome is only in shotgun form. We have found that 3x
coverage will generally suffice to achieve maximum accuracy.
Finally, we describe the application of SGP2 to the compara-
tive analysis of the human and mouse genomes.

METHODS
SGP2

SGP2 is a method to predict genes in a target genome sequence
using the sequence of a second informant or reference genome.
Essentially, SGP2 is a framework to integrate the ab initio
gene prediction program GENEID (Guig6 et al. 1992; Parra et
al. 2000) with the sequence similarity search program
TBLASTX. The approach is conceptually similar to that
used in TWINSCAN to incorporate BLASTN searches into
GENSCAN.

GENEID is a genefinder that predicts and scores all po-
tential coding exons along a query sequence. Scores of exons
are computed as log-likelihood ratios, which are a function of
the splice sites defining the exon, and of the coding bias in
composition of the exon sequence as measured by a Markov
Model of order five (Borodovsky and McIninch 1993). From
the set of predicted exons, GENEID assembles the gene struc-
ture (eventually multiple genes in both strands), maximizing
the sum of the scores of the assembled exons, using a dynamic
programming chaining algorithm (Guigé 1998).

When using an informant genome sequence to predict
genes in a target genome sequence, ideally we would like to
incorporate into the scores of the candidate exons predicted
along the target sequence, the score of the optimal alignment
at the amino acid level between the target exon sequence and
the counterpart homologous exon in the informant genome
sequence. If a substitution matrix, for instance from the
BLOSUM family, is used to score the alignment, the resulting
score can also be assumed to be a log-likelihood ratio: infor-
mally, the ratio between the likelihood of the alignment
when the amino acid sequences code for functionally related
proteins, and the likelihood of the alignment, otherwise. In
principle, this score could be added to the GENEID score for
the exon. TBLASTX provides an appropriate shortcut to often
find a good enough approximation to such an optimal align-
ment, and infer the corresponding score: The optimal align-
ment can be assumed to correspond to the maximal scoring
high-scoring segment pairs (HSP) overlapping the exon. How-
ever, when dealing in particular with the informant genome
sequence in fragmentary shotgun form, often different re-
gions of a candidate exon sequence will align optimally to
different informant genome sequences. Thus, in the approach
used here, we identify the optimal HSPs covering each frac-
tion of the exon, and compute separately the contribution of
each HSP into the score of the exon. In the next section, we
describe in detail how this computation is performed.

Scoring of Candidate Exons

Let e be one of the candidate exons predicted by GENEID
along the query DNA sequence S. In SGP2, the final score of ¢,
s(e), is computed as

s(e) = sg(e) + ws(e)

where s (e) is the score given by GENEID to the exon ¢, and
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s(e) is the score derived from the HSPs found by a TBLASTX
search overlapping the exon e. Both scores are log-likelihood
ratios (and we compute both base two). Assuming that both
components are independent, they can be summed up into a
single score. However, the assumption of independence is not
realistic, s,(e) depends on the probability of the sequence of ¢,
assuming that e codes for a protein, while s,(¢) depends on the
probability of the optimal alignment of e with a sequence
fragment of the mouse genome, assuming that both se-
quences code for related proteins. Obviously, these two prob-
abilities are not independent. Their joint distribution could
only be investigated—at least empirically—if the Markov
Model of coding DNA used in GENEID, and the substitution
matrix used by TBLASTX were inferred from the very same set
of coding sequences. Since this is quite difficult, if not unfea-
sible, we use an “ad hoc” coefficient, w, to weight the contri-
bution of TBLASTX search, s,(e) into the final exon score.

We compute s,(e) in the following way. Let h;---h, be the
set of HSPs found by TBLASTX after comparing the query
sequence S against a database of DNA sequences (Fig. 2A).

First, we find the maximum scoring projection of the HSPs
onto the query sequence. We simply register the maximum
score among the scores of all HSPs covering each position,
and then partition the query sequence in equally maximally
scoring segments (bounded by dotted lines in Fig. 2A) x;---x,,
with scores s,(x;)--s,(x,) (Fig. 2B).

Then, for each predicted exon e (Fig. 2C), we find X,, the
set of maximally scoring segments overlapping e

Xe={x;:x;ne # I}

where a N b denotes the overlap between sequence segments
a and b, and & means no overlap. We compute s,(e)in the
following way:

el
5i0= X 50

eXe Il

where lal denotes the length of sequence segment a.

That is, each exon gets the score of the maximally scor-
ing HSPs along the exon sequence proportional to the frac-
tion of the HSP covering the exon. In other words, s,(e) is the
integral of the maximum scoring projection function within
the exon interval.

Once the scores s have been computed for all predicted
exons in the sequence S, gene prediction proceeds as usual in
GENEID: The gene structure is assembled maximizing the
sum of scores of the assembled exons.

Running SGP2

In practice, we run SGP2 in the following way. Given a DNA
query sequence and a collection of DNA sequences, we com-
pare the query sequence against the collection using TBLASTX
2.0MP-WashU [23-Sep-2001]. The query sequence can be a
genomic fragment of any size, including complete eukaryotic
chromosomes, whereas the collection of sequences may be
almost anything from just a homologous region or a partial
collection of genomic sequences from the same or another
species to the whole genome sequence of a second species,
either completely assembled or in shotgun form at any degree
of coverage. In particular, two different regions of the same
genome coding for homologous genes can be used within
SGP2; in this case the same genome acts as target and infor-
mant.

In all the analyses reported here, we used BLOSUMG62 as
the amino acid substitution matrix, but changed the penalty
for aligning any residue to a stop codon to —500. This helps
to get rid of a large fraction of HSPs in noncoding regions.
Because of TBLASTX limitations, large query sequences may
need to be split in fragments before the search, and the results
reconstructed afterwards. Results of TBLASTX search are then
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Figure 2 Rescoring of the exons predicted by GENEID according to the results of a TBLASTX search. See the “SGP2” section for a detailed

explanation of the figure.

parsed to obtain the maximum scoring projection of the HSPs
onto the query sequence. The parsing includes discarding all
HSPs below a given bit score cutoff, subtracting this value
from the score of the remaining HSPs, weighting the resulting
score by w (see above), and collapsing the HSPs in to the
maximum scoring projections. In all analyses described here,
the bit score cutoff was set to 50, and w to 0.20. These values
were chosen to optimize the gene predictions in sequence sets
of known homologous human and mouse genomic sequences
(see the Results section).

The maximum scoring projection is given to GENEID in
general feature format (GFF; R. Durbin and D. Haussler,
http://www.sanger.ac.uk/Software/GFF/). GENEID uses it to
rescore the exons predicted along the query sequence as ex-
plained, and assembles the corresponding optimal gene struc-
ture. GENEID was already designed to incorporate external
information into the gene predictions, and no changes were
required in the program to accommodate it into the SGP2
context, only a small adjustment in the parameter file to cope
with the change in scale of the exon scores.

We have written a simple PERL script which, given a
query DNA sequence and the results of the TBLASTX search,
performs all the components of the SGP2 analysis transpar-
ently: the parsing of the TBLASTX search results, and the
GENEID predictions. In the case wherein both the query and
the informant sequence are single genomic fragments, the
gene predictions can be obtained in both sequences (without
the need for a second TBLASTX search). The script, as well as
the individual components, can be found at http://wwwl.
imim.es/software/sgp2/.

GENEID has essentially no limits to the length of the
input sequence, and deals well with chromosome size se-
quences. Limits to the length of the input query sequence that
can be analyzed by SGP2 are, thus, those imposed by

TBLASTX. GENEID is quite fast; given the parsed TBLASTX
results, it takes 6 h to reannotate the whole human genome in
a MOSIX cluster containing four PCs (PentiumIIl Dual 500
Mhz processors).

Accelerating TBLASTX Searches

TBLASTX searches, although efficient, are much slower. Its
default usage may become computationally prohibitive when
comparing complete eukaryotic genomes. In the context of
SGP2, however, a number of TBLASTX options can be
changed to speed up the search, without significant loss of
sensitivity in the predictions (see the Results section). Thus,
results in human chromosome 22 and whole-genome com-
parisons have been performed using the following set of pa-
rameters: W = 5, -nogap, -hspmax = 150,000, B = 200, V = 200,
E=0.01, E2 =0.01, Z=30,000,000, -filter = xnu + seg, and
S2 = 80. In these cases, the query sequences have been broken
up in 5 MB fragments, and the database sequences in 10 MB
fragments. In all cases, stop codons are heavily penalized
(—=500) in the alignments. After the search is completed, lo-
cations of the resulting HSPs are recomputed in chromosomal
coordinates. Results in the single-gene sequence benchmark
data sets were obtained with default TBLASTX parameters.

Sequence Data Sets

Benchmark Sequence Sets

To optimize some of the parameters in SGP2 and to test its
performance, we used a set of known pairs of genomic se-
quences coding for homologous human and rodent genes.
The set is built after the set constructed by Jareborg et al.
(1999). This is a set of 77 orthologous mouse and human gene
pairs. We considered only the 33 pairs of sequences in this set
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coding for single complete genes. In addition, we discarded
six additional pairs, when we suspected that one of the mem-
bers could be wrongly annotated. Orthology in the Jareborg et
al. (1999) data set is based on sequence conservation. This
could bias the set towards the more highly conserved human/
mouse orthologous genes. To compensate for this bias, we
obtained an additional set of pairs of human/rodent ortholo-
gous genes through an approach which does not involve se-
quence conservation: We obtained the set of pairs of human/
mouse sequences from the SWISSPROT database sharing the
prefix (indicating the gene) in their locus names. We kept
only those pairs for which it was possible to find the corre-
sponding annotated genomic sequence—including the map-
ping of the transcript, and not only of the coding regions—in
the EMBL database. Fifteen additional genes were found this
way. Three of them were discarded because we suspected
wrong annotation in at least one of the members of the pair.
We believe that orthology in the remaining cases is highly
likely because of the absolute conservation of the exonic
structure (number and length of exons, and intron phases)
that we observed. We will call the resulting concatenated set
of 39 pairs of human/mouse homologous genes the SCIMOG
dataset (from Sanger Center IMim Orthologous Genes). The
data set and the detailed protocol used to obtain it can be
accessed at http://www1l.imim.es/datasets/sgp2002/.

To test the accuracy of SGP2, we used the data set con-
structed by Batzoglou et al. (2000) of 117 orthologous human
and mouse genes. We discarded those pairs in which in at
least one of the sequences contained multiple genes, and
those in which the coding region started in position 1 in one
of the sequences of the pair. This resulted in 110 genes. We
will call this set the MIT data set. There is some overlap be-
tween the SCIMOG and MIT data sets, and thus the latter
cannot properly be called a test set. However, we decided not
to eliminate the redundant entries, so that the results could be
compared to those published for the ROSSETA program (Bat-
zoglou et al. 2000).

Finally, we tested SGP2 in the complete sequence of hu-
man chromosome 22 (Dunham et al. 1999). The masked se-
quence was obtained from http://genome.cse.ucsc.edu/
goldenPath/22dec2001/. Chromosome 22 is probably the best
annotated human chromosome. We used the gene annota-
tions at http://www.cs.columbia.edu/~vic/sanger2gbd/. The
CDS set contains 554 genes. This is a conservative set that
only contains the coding region of genes and does not include
pseudogenes. This may lead to an underestimation of the
specificity of the predictions.

Mouse and Human Genome Sequences

We used versions MGSCv3 of the mouse genome
(2,726,995,854 bp, http://genome.cse.ucsc.edu/goldenPath/
mmFeb2002/) and NCBI28 of the human genome
(3,220,912,202 bp, http://genome.cse.ucsc.edu/goldenPath/
22dec2001/). Both masked and unmasked sequences were ob-
tained from these locations. ENSEMBL gene annotations for
these genomes were obtained from http://genome.cse.
ucsc.edu/goldenPath/22dec2001/database/ensGene.txt.gz for

the human genome, and from http://genome.cse.ucsc.edu/
goldenPath/mmFeb2002/database/ensGene.txt.gz for the
mouse genome. ENSEMBL predicts 23,005 and 22,076
nonoverlapping transcripts genes on the human and mouse
genome, respectively.

Evaluating Accuracy

The measures of accuracy used here are extensively discussed
in Burset and Guigo (1996). We will restate them briefly. Ac-
curacy is measured at three different levels: nucleotide, exon,
and gene. At the nucleotide and exon levels, we compute
essentially the proportion of actual coding nucleotides/exons
that have been correctly predicted—which we call sensitivity—
and the proportion of predicted coding nucleotides/exons
that are actually coding nucleotides/exons—which we call
specificity. To compute these measures at the exon level, we
will assume that an exon has been correctly predicted only
when both its boundaries have been correctly predicted. To
summarize both sensitivity and specificity, we compute the cor-
relation coefficient at the nucleotide level, and the average of
sensitivity and specificity at the exon level. At the exon level,
we also compute the missing exons, the proportion of actual
exons that overlap no predicted exon, and the wrong exons,
the proportion of predicted exons that overlap no real exons.

At the gene level, a gene is correctly predicted if all of the
coding exons are identified, every intron-exon boundary is
correct, and all of the exons are included in the proper gene.
In addition, we compute the missed genes (MGs), real genes
for which none of its exons are overlapped by a predicted
gene, and the wrong genes (WGs), predictions for which none
of the exons are overlapped by a real gene. In general, gene
finders predict the initial and terminal exons very poorly.
This often leads to so-called chimeric predictions—one pre-
dicted gene encompassing more than one real gene—or to
split predictions—one real gene split in multiple predicted
genes. Reese et al. (2000) developed two measures, split genes
(SG) and joined genes (JG), to account for these tendencies.
SG is the total number of predicted genes overlapping real
genes divided by the number of genes that were split. Simi-
larly, JG is the total number of real genes that overlap pre-
dicted genes divided by the number of predicted genes that
were joined.

RESULTS
Benchmarking SGP2

We evaluated the accuracy of SGP2 using a number of differ-
ent data sets. The lack of a gold standard of gene prediction
makes it difficult to get accurate assessments from any single
data set. We primarily used three data sets as described earlier.

To benchmark SGP2, we constructed BLAST databases
from the mouse and human sections of SCIMOG and MIT,
and each mouse/human sequence to the entire human/
mouse database, respectively. This enabled us to predict genes
in both the mouse and human databases. The results from

Table 1. Gene Prediction in the SCIMOG Data Set

Nucleotide Exon
Program Sn Sp CccC Sn Sp (Sn+Sp)/2 ME WE
GENSCAN 0.98 0.86 0.92 0.84 0.75 0.79 0.04 0.14
TBLASTX default 0.89 0.76 0.81 0.81 — — 0.19 0.11
SGP2 (single complete genes) 0.97 0.98 0.97 0.89 0.89 0.89 0.03 0.03
SGP2 (multiple genes) 0.94 0.97 0.95 0.80 0.87 0.83 0.10 0.02
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Table 2. Gene Prediction Accuracy in the MIT Data Set

Nucleotide Exon
Program Sn Sp cC Sn Sp (Sn+Sp)/2 ME WE
GENSCAN 0.98 0.89 0.93 0.82 0.75 0.78 0.06 0.13
ROSSETA 0.95 0.97 — — — — 0.02 0.03
TBLASTX default 0.94 0.79 0.85 — — — 0.13 0.13
SGP2 (single complete genes) 0.97 0.98 0.97 0.84 0.85 0.84 0.05 0.03
SGP2 (multiple genes) 0.96 0.97 0.96 0.71 0.79 0.75 0.12 0.03

comparing SGP2, GENSCAN, and ROSSETA accuracy values in
this case are taken from Batzoglou et al. (2000), and the results
of a simple TBLASTX search on the MIT data set are in Table
2 (below). For the TBLASTX searches, the maximum scoring
projection of the HSPs (see the above section titled “SGP2”) was
assumed to be the gene prediction. The score cutoff for the
HSPs was chosen to maximize the correlation coefficient (CC)
between the projected HSPs and the coding exons. In Table
1,2, we report the accuracy of GENSCAN, SGP2, and TBLASTX
on the SCIMOG dataset. The accuracy values for SGP2 are
reported under two scenarios: assuming a single complete
gene and assuming multiple genes. Both GENEID and SGP2
allow the external specification of a gene model (i.e., a small
number of rules specifying the legal assemblies of exons into
gene structures). These rules can be used to force SGP2 to
predict a single complete gene to make the results comparable
to those of ROSSETA. Without such a restriction (i.e., making
no assumptions about the number and completeness of the
genes potentially encoded in the query sequence), the results
are more directly comparable to those of GENSCAN (although
GENSCAN also has a tendency to start a prediction in any
sequence with an initial exon, and to terminate it with a
terminal exon).

The accuracy of SGP2 is comparable to that of ROSSETA,
and is significantly higher than that of GENSCAN. SGP2 also
improves substantially over a simple TBLASTX search. The
relative low specificity of the TBLASTX search—even after the
large penalties for stop codons—reflects the fact that a sub-
stantial fraction of the conservation between the human and
mouse genomes extends into the noncoding regions (Mouse
Genome Sequencing Consortium 2002). At the nucleotide
level, SGP2 accuracy is almost equal in the MIT data set and
the SCIMOG data set (even though the SGP2 was trained on
SCIMOG). The accuracy at the exact exon level, however, de-
creases, in particular when prediction of multiple genes is
allowed. This is a problem inherited from GENEID, which
tends to replace short initial and terminal exons with longer
internal exons.

Accuracy of SGP2 as a Function of the Coverage

of the Mouse Genome

To investigate the utility of partial shotgun data as informant
sequence in our approach based on TBLASTX, we simulated
shotgun mouse sequence data at different levels of coverage
(1.5x, 3x, and 6x) from the mouse genes in the SCIMOG data
set, and used them to compare the human sequences in
SCIMOG using TBLASTX. The mouse genomic sequences was
shredded with uniformly distributed length between 500 and
600 bp with random starting points. No sequencing errors
were introduced. At each coverage, we measured the CC be-

tween the TBLASTX hits projected along the human genome
sequence, and the coding exons (choosing the TBLASTX score
cutoff resulting in the optimal CC). With 1.5x coverage, a
substantial fraction of the human coding region is not iden-
tified by TBLASTX, whereas with 3x, the results are quite simi-
lar to those obtained with 6x, which are identical to those
obtained with the fully assembled syntenic regions (Table 3).
This indicates that even with 3x coverage of the informant
genome, our method will produce results nearly identical to
those obtained with fully assembled regions. Assembled ge-
nomes, however, result in faster TBLASTX searches.

Accuracy of SGP2 in Human Chromosome 22
Human chromosome 22 was the first human chromosome
fully sequenced (Dunham et al. 1999), and it is quite the best
annotated thus far, due to a number of experimental fol-
lowups (Das et al. 2001; Shoemaker et al. 2001). Therefore, it
provides an excellent data set to validate any gene prediction
technology. Human chromosome 22 was searched using
TBLASTX against the masked whole-genome assembly from
the mouse genome (MGSCv3). The HSPs in chromosomal co-
ordinates resulting from the TBLASTX search were used in
GENEID to perform SGP2 gene prediction. Although the HSPs
had been computed on the masked sequence, in this case the
SGP2 predictions were obtained on the unmasked one. SGP2
predicted 729 genes on human chromosome 22. Table 4
shows the comparative accuracy of the SGP2, GENSCAN,
GENOMESCAN, and pure ab initio GENEID predictions (with-
out TBLASTX data). GENSCAN predictions on the masked se-
quence were taken from the USCS genome browser http://
genome.cse.ucsc.edu/. GENOMESCAN predictions were ob-
tained from ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
build28_chr_genomescan.gtf.gz. Pure ab initio GENEID
predictions were obtained on the masked sequence, and
can also be downloaded from http://wwwl.imim.es/
genepredictions/.

Although SGP2 is not more sensitive than GENSCAN, it
appears to be more specific (as it utilizes the mouse genome).

Table 3. Accuracy of TBLASTX Predictions as a Function of
the Degree of Coverage in the SCIMOG Data Set

Nucleotide Exon
Coverage Sn Sp CccC ME WE
Simulated 1.5x 0.79 0.78 0.77 0.25 0.10
Simulated 3x 0.86 0.76 0.80 0.21 0.11
Simulated 6x 0.89 0.76 0.81 0.19 0.11
Fully assembled 0.89 0.76 0.81 0.19 0.11
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Table 4. Accuracy of Gene-finding Programs on Human Chromosome 22

Nucleotide Exon Gene
Program Sn Sp (de Sn Sp (Sn+Sp)/2 ME WE Sn Sp  (Sn+Sp)/2 MG WG |G SG
GENSCAN 0.86 0.50 0.64 0.70 0.40 0.55 0.13 0.50 0.06 0.04 0.05 011 045 1.24 1.07
GENOMESCAN  0.87 0.44 0.59 0.72 0.36 0.54 0.10 0.55 0.11 0.06 0.08 012 0.52 1.07 1.14
GENEID 0.80 063 0.69 0.66 0.53 0.59 0.19 0.35 0.09 0.07 0.08 0.14 0.39 1.20 1.08
TBLASTX 084 039 054 — — — 012 074 — — — 011 — — —
SGP2 0.83 067 0.73 0.68 0.56 0.62 0.16 0.31 0.13 0.10 0.11 0.14 036 1.14 1.13

Fifty percent of the GENSCAN-predicted exons do not overlap
annotated chromosome 22 exons; this number is only 31%
for SGP2. Overall, SGP2 appears to be more accurate than
GENSCAN in human chromosome 22: GENSCAN’s CC at the
nucleotide level is 0.64, whereas that of SGP2 is 0.73. Al-
though accuracy decreases for both programs when going
from single-gene sequences (Tables 1, 2) to an entire chromo-
some, SGP2 retains more accuracy. GENSCAN overall shows
higher sensitivity than SGP2, but there were 45 real genes not
predicted by GENSCAN on human chromosome 22, and
SGP2 was able to predict, at least partially, 15 of them. This
suggests that SGP2 and GENSCAN may play complementary
roles. GENOMESCAN, on the other hand, did not appear to be
superior to GENSCAN in human chromosome 22.

Mouse matches (TBLASTX HSPs) covered 11% of the hu-
man chromosome 22. Though they covered 85% of the cod-
ing nucleotides, 74% of the HSPs fell outside annotated cod-
ing regions. This illustrates the difficulties of using genome
sequence conservation even at the protein level between hu-
man and mouse genomes to infer coding genes.

Prediction of Genes in the Human and

Mouse Genomes

We used SGP2 to predict the entire complement of human
(NCBI28) and mouse (MGSCv3) genes. The masked sequences
of these two genomes were compared using TBLASTX. The
TBLASTX HSPs were used within SGP2. SGP2 predicted 44,242
genes in the human genome, and 44,777 genes in the mouse
genome. Obviously, it is difficult to accurately assess these
predictions. We used ENSEMBL genes as the set of reference
annotations and compared both GENSCAN and SGP2 predic-
tions to it. Figure 3 shows summaries of the accuracy of SGP2
at the chromosome level in the human and mouse genomes.
When compared against ENSEMBL, SGP2 is more accurate
than GENSCAN.GENSCAN. It is more specific at the nucleo-
tide level: the average SGP2 specificity is 0.60 for human and
0.61 for mouse, whereas these values for GENSCAN are 0.43
and 0.44. SGP2 is also equally sensitive at the nucleotide level:
The average SGP2 sensitivity is 0.82 for human and 0.85 for
mouse; these values for GENSCAN are 0.82 and 0.84. Overall,
the average SGP2 CCs are 0.70 for human and 0.72 for mouse,
and for GENSCAN, the respective averages are 0.59 and 0.61.
The accuracy of the SGP2 predictions, moreover, appears to
be more consistent across chromosomes than that of the
GENSCAN predictions. Interestingly, human chromosome Y
is an outlier, with genes in this chromosome being poorly
predicted. Genes in chromosome Y appear to be more difficult
to predict than genes in other chromosomes for pure ab initio
gene prediction programs, because chromosome Y is also an
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outlier for GENSCAN. SGP2 suffers, in addition, on human
chromosome Y because the mouse chromosome Y has yet to
be sequenced, and thus there was no comparative informa-
tion available.

Overall, 23,913 of the human predictions and 24,203 of
the mouse predictions overlapped ENSEMBL genes, whereas
95% of the mouse and 93% of the human ENSEMBL genes
were among the genes predicted by SGP2. Of the remaining
putative novel 20,570 mouse SGP2 genes and 20,193 human
SGP2 genes, 10,456 mouse and 9,006 human predictions were
found to be similar at P < 10™° to a prediction in the coun-
terpart genome. Of these, 5,960 and 4,909 have multiple ex-
ons and are longer than 300 bp. A significant fraction of these
putative homologous predictions are likely to correspond to
real genes (Guigd et al. 2003). The predictions are interac-
tively accessible through the USCS genome browser (http://
genome.cse.ucsc.edu/) and through the DAS server at
ENSEMBL (http://www.ensembl.org, under “DAS sources”).
The complete set of prediction files is available at http://
wwwl.imim.es/genepredictions/.

Speeding Up TBLASTX Searches

Using TBLASTX to compare human and mouse whole-
genome sequences, even in masked form, is quite expensive
computationally because of the 6-frame translation on both
query and target. To substantially reduce the search time, we
used a word size of 5 and sacrificed some sensitivity (see the
section above titled “Accelerating TBLASTX Searches” for de-
tails). We also penalized stop codons heavily and did not per-
mit gaps. The computation took an estimated 500 CPU days
on a farm of Compaq Alphas.

Accuracy in Tables 1 and 2 was computed using default
TBLASTX parameters. Table 5 shows the comparative accu-
racy of TBLASTX and SGP2 predictions, under the default and
the speed-up configuration of TBLASTX parameters on the
SCIMOG data set. The sensitivity of speed-up TBLASTX
searches drops from 0.89 to 0.72, but specificity increases
slightly. SGP2 is more robust, and it compensates for some of
the sensitivity lost in the TBLASTX search. Overall accuracy
for SGP2, as measured by the CC, drops only from 0.95 to
0.93.

Predictions on human chromosome 22 and the whole
human and mouse genomes have been obtained with this
speed-up configuration of parameters.

DISCUSSION

We have described the program SGP2 for comparative gene
finding, and presented the results of its application to the
human and mouse genome sequences. Results in controlled
benchmark sequence data sets indicate that, by including in-
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quite conservative, and recent ex-
periments suggest that essentially
all ENSEMBL genes are indeed real
(Guigé et al. 2003). The problem
a2 remains with the tens of thousands
of additional computational predic-
tions that are not included in
ENSEMBL. A fraction of them are
likely to be real, but the question is
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+ sults obtained here in human chro-
mosome 22 seem to indicate that it
may not be very large. Although the
existence of hundreds of unidenti-
fied genes in this chromosome can-
not be completely ruled out, the re-
sults strongly suggest that a sub-
stantial fraction of these additional
computational gene predictions are
false positives.

In this regard, the results pre-
sented here demonstrate that
through the comparison of the hu-
man and mouse genomes using
SGP2 (or another available com-
parative gene prediction tool), the
false-positive rate can be reduced
significantly, and the catalog of
mammalian genes better defined.
SGP2 predicts a few thousand can-
didate genes not in ENSEMBL that
we believe are worth verifying ex-
perimentally. Indeed, the experi-
mental verification of a subset of
these provides evidence of at least
1000 previously nonconfirmed
genes (Guig6 et al. 2003).

I T
GENSCAN 8GP2
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Figure 3 Accuracy of the human and mouse SGP2 and GENSCAN predictions. The accuracy was
measured in the entire chromosome sequences using the standard accuracy measures: SN, (sensitiv-
ity); SP, (specificity); CC, (correlation coefficient); SNe, (exon sensitivity); SPe, (exon specificity); and
SNSP, (average of sensitivity and specificity at exon level). Predictions from both programs were
compared against the human and mouse ENSEMBL annotations. Each dot corresponds to the accuracy
measure of one chromosome. Chromosome labels are shown for outlier values. The boxplots (Tukey
1977) were obtained using the R-package (http://cran.r-project.org/).

formation from genome sequence conservation, predictions
by SGP2 appear to be more accurate than those obtained by
pure ab initio programs, exemplified here by GENSCAN and
GENEID. Although there is not a significant gain in sensitiv-
ity, the specificity of the predictions appears to increase sub-
stantially, and a smaller number of false positive exons are
predicted.

Indeed, one the major obstacles towards the completion
of the catalog of human (mammalian) genes is our inability to
assess the reliability of the large number of computational
gene predictions that have not been verified experimentally.
Whereas the ENSEMBL pipeline produces about 25,000 hu-
man and mouse genes, the NCBI annotation pipeline predicts
almost 50,000 genes in mouse, and the program GENOMESCAN
predicts close to 55,000 genes in this species. Although a large
fraction of the ENSEMBL genes correspond to computational
predictions without experimental verification, the method is

The predictions by SGP2 ob-
GENSCAN sCP2

tained here are, of course, still far
from definitively setting this cata-
log. For one thing, the mouse may
be too close a species to human: A
large fraction of the sequence has
been conserved between the ge-
nomes of these two species. Indeed,
most sequence conservation be-
tween human and mouse does not
correspond to coding exons (Mouse Genome Sequencing Con-
sortium 2002), compounding gene prediction. This suggests
that the genome of another vertebrate species evolutionarily
located between fish and mammals could be of great utility to-
wards closing in the vertebrate (and mammalian) gene catalog.

SGP2 is flexible enough so that it can be easily accom-
modated to analyze species other than human and mouse.
The fact that it can deal with shotgun data at any level of
coverage means that as the sequence of a new genome starts
becoming available, it can be used to improve the annotation
of other already existing genomes. Particularly relevant in this
context is a feature of SGP2 (and GENEID) that we have not
explored here. SGP2 can produce predictions on top of pre-
existing annotations. For instance, we could have given to
SGP2 the location and exonic coordinates (in GFF format) of
known REFSEQ genes (or ENSEMBL), and SGP2 would have
predicted genes only outside the boundaries of these genes of
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Table 5. Accuracy of TBLASTX and SGP2 Predictions Using “Default” versus Speed-Up Parameters

Nucleotide Exon
Sn Sp CccC Sn Sp (Sn+Sp)/2 ME WE
Default TBLASTX 0.89 0.76 0.81 — — — 0.19 0.11
SGP2 0.94 0.97 0.95 0.80 0.87 0.83 0.10 0.02
Speed-up TBLASTX 0.72 0.80 0.75 — — — 0.22 0.10
SGP2 0.88 0.98 0.93 0.77 0.85 0.81 0.12 0.02

already well known exonic structure. Preliminary results in-
dicate that this approach improves gene prediction outside of
the preassumed genes, and reduces the rate of chimeric pre-
dictions (i.e., predictions encompassing multiple genes).
Moreover, we believe that SGP2 can be substantially im-
proved. The flexibility of the SGP2/GENEID framework makes
it quite easy to integrate additional information that can con-
tribute to the accuracy of the predictions: synonymous versus
nonsynonymous substitution rates in the alignments by
TBLASTX, conservation of the splice signals in the informant
genome, amino acid substitution matrices specific to the phy-
logenetic distance between the species compared, etc.

In this regard, the reasons to use the default BLOSUM62
matrix are not obvious. Given the expected sequence similar-
ity between mouse-human orthologs, BLOSUMS8O0 appears to
be a better choice. However, we intended to also detect diver-
gent families. Towards that end, the superiority of BLOSUM80
is less clear. We have compared TBLASTX search results on
human chromosome 22 against the whole mouse genome.
Whereas the HSPs resulting from the BLOSUM62 search cover
84% of the chromosome 22 coding nucleotides, BLOSUM80
HSPs cover 88% of them. However, BLOSUMS8O0 is much less
specific than BLOSUM62: 60% of the nucleotides in the
BLOSUMSG62 HSPs fall outside coding regions, compared to
88% for BLOSUMSO. It is thus clear that the optimal matrix or
combination of matrices for comparative gene-finding using
TBLASTX requires further investigation.

Although a large fraction of the human genome se-
quence has been known for more than a year, the exact num-
ber of human genes and their precise definition remain un-
known. Gene specification in higher eukaryotic sequences is
the result of the complex interplay of sequence signals en-
coded in the primary DNA sequence, which is only partially
understood. Without an exhaustive catalog of human genes,
however, the promises of genome research in medicine and
technology cannot be completely fulfilled. The work pre-
sented here, in which it is shown that human-mouse com-
parisons can contribute to the completion of the mammalian
(human) gene catalog, underscores the importance of the
comparisons of the genomes of different organisms to fully
understand the phenomenon of life, and in particular to de-
ciphering the mechanism, central to life, by means of which
the genome DNA sequence specifies the amino acid sequence
of the proteins.
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3.3 Validation of Results from Gene Predictors

Annotations from computational gene-finding can be seen as hypotheses about given loci
in a genomic sequence encoding cellular functions. Therefore, we initially need to test one
of such tools against a controlled data set of reliable annotations to determine its perfor-
mance. On the other hand, evaluation of predicted genes will be part of the parameters
estimation for such software. An iterative procedure may test different program settings
under a fixed control set of training sequences in order to determine the parameters that
give the best results.

3.3.1 Measures of gene prediction accuracy

To evaluate the accuracy of a gene prediction program, the gene structure predicted by
the program is compared with the structure of the actual gene encoded in the problem
sequence. As extensively discussed in Burset and Guigé [1996], the accuracy can be eva-
luated at three different levels of resolution: the nucleotide, exon, and gene levels. These
levels offer complementary views of the accuracy of the program. At each level, there are
two basic measures: sensitivity and specificity. Briefly, sensitivity (Sn) is the proportion
of real elements (coding nucleotides, exons or genes) that have been correctly predicted,
while specificity (Sp) is the proportion of predicted elements that are correct. More spe-
cifically, if true positive (TP) is the total number of coding elements correctly predicted;
true negative (TN), the number of correctly predicted non-coding elements; false positive
(FP) the number of non-coding elements predicted as coding; and false negative (FN) the
number of coding elements predicted as non-coding. Then, in the gene finding literature,
Sn is defined as:

Sn—_ 1P
- TP+FN '’
and Sp as:
TP
P = TP 1 Fp

Both Sn and Sp take values from 0 to 1, with perfect prediction when both measures
are equal to 1. Neither Sn nor Sp alone constitute good measures of global accuracy, since
high sensitivity can be reached with low specificity and vice versa. It is desirable to use a
single measure for accuracy. In gene finding literature, the preferred such measure at the
nucleotide level is the Correlation Coefficient (CC), which is defined as:

(TP x TN) — (FN x FP)

cC =
V(TP ¥ EN) x (TN + FP) x (TP + FP) x (TN + EN)

4

and ranges from -1 to 1, with 1 corresponding to a perfect prediction, and -1 to a prediction
in which each coding nucleotide is predicted as non-coding and vice versa.

At exon level, these measures determine if predictions correspond to real exons, with
the exon boundaries perfectly predicted. The prediction is considered incorrect if only a
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single base does not correspond to the coordinates of the real exon. Therefore, Sn at exon
level measures the proportion of actual exons that have been correctly predicted, and Sp
measures the proportion of predicted exons that correspond to actual exons. The average
exon prediction accuracy SnSp is computed as:

SnSp

_ Sn+Sp
2

Apart from Sn, Sp and SnSp, two extra measures are used to determine the accuracy
at exon level: the missed exons (ME) and the wrong exons (WE). ME measures how
frequently a predictor completely failed to identify exons (no prediction overlap at all)
whereas WE identifies the ratio of exons that do not overlap with any exon of the training
data set.

At gene level Sn and Sp measure if a predictor is able to correctly identify and assemble
all of the exons of a gene. For a prediction to be counted as TP, all coding exons must
be identified, every intron-exon boundary must match exactly, and all the exons must be
included in the right gene. In addition, missed genes (MG) and wrong genes (WG) can also
be computed in the same way as at the exon level.

The exon level scores discussed above measure how well a predictor recognizes ex-
ons and gets their boundaries exactly correct. The gene level scores measure how well a
predictor can recognize exons and assemble them into complete genes. In general, gene
finders predict the initial and terminal exons very poorly. This often leads to so-called
chimeric predictions—one predicted gene encompassing more than one real gene—or to
split predictions—where one real gene split in multiple predicted genes. Reese et al. [2000]
developed two measures to account for these tendencies: split genes (5G) and joined genes
(JG). SG is the total number of predicted genes overlapping real genes divided by the
number of genes that were split. Similarly, |G is the total number of real genes that overlap
predicted genes divided by the number of predicted genes that were joined. A score of 1 is
perfect and means that each of the genes from the real genes set overlaps exactly one gene
from the set of predicted genes.

3.3.2 Evaluating computational gene-finding results

The evaluations by Burset and Guigé [1996], Rogic et al. [2001], and others suffered from
the same limitation: gene finders were tested in controlled data sets made of short genomic
sequences encoding a single gene with a simple gene structure. These datasets are not
representative of the genome sequences that are currently being produced: large sequences
of low coding density, encoding several genes and/or incomplete genes, with complex
gene structures. This was addressed in the acompanying research article in section 3.3.3,
page 54. Table 3.2 on page 56 (Table 1 on page 1632 of Guig6 et al. 2000) summarizes the
results of different gene finding tools in a set of single gene sequences.

The Genome Annotation Assessment Project (GASP) was the first attempt to test the
available gene-prediction tools with a well annotated genomic sequence. The 2.9Mb Adh
region from Drosophila melanogaster was chosen to provide both curated training datasets
for the programs and a set of curated annotations to evaluate predictions with them. Ta-
ble 3.4 on page 79 (Table 3 on page 494 of Reese et al. 2000) sums up the results of the
gene-finding tools that were evaluated in this experiment.
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Table 3.1 on page 27 (Table 4 on page 114 of Parra et al. 2003) reports the accuracy of
gene-finding programs, including geneid and SGP2, on human chromosome 22. For the
human and mouse comparative analysis we ended up with lots of tables taking into ac-
count results for each chromosome sequence and each program, and the evaluations were
made with different reference annotation sets. The box-plots shown on Figure 3.5, page 28
(Figure 3 on page 115 of Parra et al. 2003), illustrate the differences between gene-finding
tools better. This graphical representation provides a compact summary of the different
measures being compared, but also shows the dispersion distribution of the data and the
outliers. One of the most interesting outliers in the human-mouse analysis was chromo-
some Y, for which the comparative gene-finding approaches were yielding results similar
to those of the “ab initio” tools. Of course, this was a result of the lack of orthologous se-
quences between human and mouse, because for the rodent only female DNA samples
were used for sequencing.

In Guigo et al. [2003], a protocol for selecting computational predictions to be tested
by experimental means, via RT-PCR in this case, is described. SGP2results from the gene
prediction pipeline, detailed in section 3.2, were classified into three groups in function
of the homolgy between the human and mouse predictions and the conservation of their
exonic structures. Table 3.5 on page 92 (Table 1 on page 1143 of Guigé et al. 2003) sumarizes
the RT-PCR success rate within each of those groups. Figure 3.6 on page 39 (Figure 16 on
page 540 of Waterston et al. 2002) shows the structures, side by side, of a human and mouse
predicted new homologue of dystrophin, for which an exon pair from the mouse gene was
verified by RT-PCR. Another example, a novel homolog to Drosophila melanogaster brain-
specific homeobox protein, can be found on Figure 3.8, page 91, for which the primers and
RT-PCR results are depicted on the same page in Figure 3.9 (Figures 2 and 3 on page 1142
respectively, of Guigo et al. 2003). A database was built for the 476 gene structures that
were tested by RT-PCR. It contains not only the sequences and coresponding annotations
for those genes, but also the results yielded from each RI-PCR test done in 12 different
mouse tissues. Figure 3.10 on page 95 shows the web interface we have created for that
database.

All results indicate that there is room for improvement in the computational gene pre-
diction field. Efforts to provide more accurate gene-finding tools, as well as more reli-
able annotations, are ongoing. The best example of such efforts is the ENCODE project
[ENCODE Project Consortium, 2004]. During its pilot phase, the procedures that can be
applied cost-effectively and at high-throughput to accurately and comprehensively charac-
terize large sequences, will be evaluated.
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An Assessment of Gene Prediction Accuracy in
Large DNA Sequences
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One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic
scientific interest, the accuracy and completeness of this data set is of considerable importance for human health
and medicine. Though progress has been made on computational gene identification in terms of both methods
and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short
genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more
challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a
semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated
intergenic regions. This test set, which should still present an easier problem than real human genomic sequence,
mimics the ~200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the
accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly,
although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as
GENEWISE, PROCRUSTES, and BLASTX, was not affected significantly by the presence of random intergenic
sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy
dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this
decline. However, the specificities of these techniques are still rather good even when the similarity is weak,
which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that
though gene prediction will improve with every new protein that is discovered and through improvements in
the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of

every gene in the human genome using purely computational methodology.

The nucleotide genomic sequence is the primary prod-
uct of the Human Genome Project, but a major short-
and mid-term interest will be the amino acid sequences
of the proteins encoded in the genome. Thus, methods
that reliably predict the genes encoded in genomic se-
quence are essential, and computational gene identifi-
cation continues to be an active field of research (for
reviews, see Fickett 1996; Claverie 1997; Guigd 1997a;
Burge and Karlin 1998; Haussler 1998). A new genera-
tion of gene prediction programs based on Hidden
Markov Models (Burge and Karlin 1997) have shown
significantly greater accuracy than previous programs
based on other methodologies (Burset and Guigo
1996). Conversely, as the databases of known coding
sequences increase in size, gene prediction methods
based on sequence similarity to coding sequences,
mainly proteins and ESTs, are becoming increasingly
useful and are routinely used to identify putative genes
in genomic sequences (The C. elegans Sequencing Con-
sortium 1998). We have recently published an evalua-
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tion of sequence similarity-based gene prediction
methods, in particular of EST-based gene prediction
(Guig6 et al. 2000). The accuracy of gene identification
programs, however, has usually been estimated on
controlled data sets made of short genomic sequences
encoding a single and complete gene with a simple
structure. Moreover, these data sets are often similar if
not overlapping, to the sets of sequences on which the
programs have been trained. Thus, these data sets are
not representative of the sequences being produced at
the genome centers, which are mostly large sequences
of low coding density, encoding several genes or in-
complete genes with complex gene structure. It is thus
difficult to know how well the figures of accuracy es-
timated in the controlled benchmark data sets extrapo-
late to actual genomic sequences. Furthermore, pro-
grams that combine both sequence similarity and ab
initio gene finding approaches, and those that predict
genes by producing a splicing alignment between a
genomic sequence and a candidate amino acid se-
quence have become recently available, such as PRO-
CRUSTES (Gelfand et al. 1996) and GENEWISE (Birney
and Durbin 1997), (http://www.sanger.ac.uk/Software/
Wise2/). Programs that align genomic sequences with

Genome Research 1631
www.genome.org



56

Chapter 3. Comparative Gene Finding

Guigé et al.

EST sequences, such as EST GENOME (Mott 1997),
could also be included in this category. These programs
promise highly accurate predictions, but at the cost of
greater computational time. However, this increase in
accuracy has not been well-quantified on challenging
data sets. The effects of the degree of similarity be-
tween the candidate homolog and the genomic se-
quence also deserve careful evaluation.

We believe a more realistic evaluation of the cur-
rently available gene prediction tools on challenging
data sets would be useful. Ideally, one would like to
benchmark the computational gene identification pro-
grams in real genomic sequences. The main problem is
that most real sequences the structure of the genes has
not been verified exhaustively by experimental means,
and thus it is impossible to calibrate the accuracy of the
predictions. Only recently, extensively annotated large
genomic sequences from higher eukaryotic organisms
have become available from the human genome
(http://www.hgmp.mrc.ac.uk/Genesafe) and from the
tfly genome (http://www.fruitfly.org/GASP1/). In spite
of the experimental analysis, the possibility of unde-
tected genes in the sequence cannot be easily ruled out,
which makes accuracy difficult to measure. Here, we
attempt to overcome the lack of well-annotated large
genomic sequences by constructing semiartificial ones.
In these semiartificial sequences, known genomic se-
quences have been embedded in simulated intergenic
DNA, and therefore, the location of all coding exons is
known. Although the approach may seem unrealistic,
we believe that the results obtained are instructive with
regard to the accuracy of currently available gene iden-
tification tools.

We evaluate the accuracy of representatives of a
wide variety of computational gene identification ap-
proaches: GENSCAN (Burge and Karlin 1997), an ab ini-
tio genefinder; BLASTX (Altschul et al. 1990; Gish and
States 1993), a genefinding-oriented similarity search
program; and PROCRUSTES (Gelfand et al. 1996) and
GENEWISE (Birney and Durbin 1997), genefinders
based on aligning a genomic DNA sequence fragment
to a homologous protein sequence. We evaluate these
programs on two benchmark data sets: A set of well-

annotated single-gene DNA sequences, and a set of
semiartificial genomic (SAG) sequences created by em-
bedding the single-gene sequences from the first data
set in simulated intergenic DNA.

RESULTS

We investigated the accuracy of the gene prediction
tools (GENSCAN, PROCRUSTES, GENEWISE, BLASTX) de-
scribed in Methods on two benchmark sets. In all cases,
sequences were masked previously for repeated regions
using REPEATMASKER (A. Smit and P. Green, unpubl.).
The gene predictions obtained using the different tools
were compared with the actual gene annotations using
the accuracy measures described Methods.

Accuracy in Single Gene Sequences
Table 1 shows the accuracy of the different gene pre-
diction tools on h178, the set of single gene sequences.

GENSCAN's accuracy is comparable to that reported
earlier (Burge and Karlin 1997). On average, 90% of the
coding nucleotides and 70% of the exons are predicted
correctly by GENSCAN. Only 7% of the actual exons are
missed completely, and only 9% of the predicted exons
are wrong. We believe this is close to the maximum
accuracy that can be achieved using currently available
ab initio gene prediction programs.

The quality of the gene models inferred from
BLASTX searches depends on the strategy used. Default
usage of BLASTX produced poorer predictions than
more sophisticated strategies. (Results for BLASTX de-
fault correspond to those published in Guigé et al.
2000.) Discrepancies between numbers in Table 1 and
those reported in Guiqoet al. (2000) are due to the
differences in the way the accuracy measures are sum-
marized. In Guigé et al. 2000, we computed the accu-
racy measures on each test sequence, and averaged all
of them. Here, we compute the accuracy measures glo-
bally from the total number of prediction successes
and failures (at the base or exon level) on all sequences.
The default BLASTX strategy produces reasonably high
sensitivity (0.91) by projecting all HSPs over a given
threshold along the query DNA sequence, but the sen-
sitivity rises to an amazing 0.97, if the topcomboN fea-

Table 1. Accuracy of Gene Prediction Tools in the Set of Single Gene Sequences (h178)
Exon
Nucleotide
Sn+ Sp
Program No. Sn Sp CccC Sn Sp 2 ME WE
GenScan 177 0.93 0.90 0.90 0.78 0.75 0.76 0.08 0.10
Blastx default 175 0.91 0.79 0.82 0.04 0.04 0.04 0.12 0.05
Blastx topcomboN 174 0.97 0.80 0.86 0.04 0.04 0.04 0.08 0.05
Blastx 2 stages 175 0.90 0.92 0.90 0.10 0.12 0.11 0.19 0.02
GeneWise 177 0.98 0.98 0.97 0.88 0.91 0.89 0.06 0.02
Procrustes 177 0.93 0.95 0.93 0.76 0.82 0.79 0.11 0.04
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ture is used. The topcomboN feature eliminates the
need for low-complexity filters (seg + xnu), and for
strict secondary HSP cutoff (S2 threshold). Surpris-
ingly, its use does not appear to hurt specificity. The
two-stage method (in which the top homolog with
low-complexity filtering is chosen to build the BLASTX
model with topcomboN in the second stage) increases
specificity from 0.79 to 0.92. Using a single protein to
build a model improves specificity because the noise
from the less significant hits is reduced. But the two
stage method does have lower sensitivity from a lack of
information from the weaker secondary hits. However,
this is still the best purely BLASTX-based strategy in
terms of either specificity or overall accuracy, and the
numbers are comparable to the accuracy of ab initio
gene finders at the nucleotide level.

The proteins encoded by the sequences in h178
are mostly included in the nonredundant database of
amino acid sequences (nr). However, BLASTX still does
not produce perfect predictions. This certainly has an
artefactual component: We have discovered a few an-
notation errors in h178. However, perfect gene predic-
tions from BLASTX searches are intrinsically impossible
because of the inability of BLASTX to predict the splice
boundaries when they occur within codons (this espe-
cially affects its accuracy at the exon level, which is
actually rather meaningless for BLASTX). In this regard,
splicing alignment or sequence similarity-based gene
prediction tools (SSBGP), such as GENEWISE and PRO-
CRUSTES could, in principle, result in more accurate
predictions. Thus, the protein sequence with the low-
est P value after the BLASTX search was given to PRO-
CRUSTES and GENEWISE to model their gene predic-
tions. SSBGP tools improved the accuracy of the gene
predictions inferred directly from BLASTX searches,
and also slightly outperform GENSCAN in this set.
GENEWISE predictions with an overall accuracy of 0.97,
in particular, were close to perfect given the intrinsic
inaccuracy of the database annotation considered to be
the gold standard here. Of course, there is a price paid
in computational time, and GENEWISE is expensive
with its linear-memory dynamic programming tech-
nique.

GENSCAN accuracy, in theory, should be unaf-
fected, whether the query sequence encodes genes for
which a close homolog, remote homolog, or no homo-
log exists. GENEWISE and PROCRUSTES accuracy, on
the other hand, should decrease as the homology be-
comes distant, and these programs have little utility if
a homolog does not exist.

As we have already pointed out, nr database con-
tains protein translations of most of the genes in our
data set, which could be a significant drawback of the
data set. It is difficult (if not impossible) to come up
with criteria for eliminating just the translations.
Mouse orthologs are often 100% identical at the pro-

tein level and variants of the same protein may be
highly (98%-99%) identical. Thus, we chose to evalu-
ate the effect of the similarity level (P value) of an avail-
able homolog on the accuracy of GENEWISE and PRO-
CRUSTES by considering a variety of P value bins. Con-
ceptually, identical or close to identical proteins would
fall in the most significant P value bin, and other bins
would be devoid of identical hits.

A set of Blast-probability (P value) thresholds was
chosen to provide bins with varying levels of similarity
(107120, 1082, 10, 10-4°, 10 3°, 1020, 10~ 1°,
and 10 °). For each of these P values (10~ ®°, for in-
stance), we performed the following experiment. After
running BLASTX against nr for the DNA sequences in
h178, we discarded for each DNA sequence all HSPS
corresponding to all protein sequences with a P value
below cutoff (as if we were ignoring all known amino
acid sequences over a given level of similarity to the
protein encoded in the query DNA sequence). Then,
the protein with the remaining top hit below the next
higher P value threshold (10~°°, in the case of the
example) was used, if it existed, as a candidate homo-
log for the SSBGP tools. If there was no protein hit in
the bin (1089 to 10~ % in the example) then this gene
was discarded for the evaluation of this bin.

Thus, the BLASTX gene models are based on all the
protein homologs with probability higher than the
threshold considered. The P value thresholds were cho-
sen so as to generate roughly equal numbers of data
points (sequences from h178) for each set. The mini-
mum number of data points in any set is 73, large
enough to avoid significant sampling bias.

The accuracy results as a function of P value of the
homologs are shown in Figure 1. GENSCAN perfor-
mance is expected to be constant, and was for the most
part; the minor variations are because of changes in the
data set. Only a fraction of the genes had homologs in
each of the bins, thus the data set changed a little from
bin to bin. The overall performance of SSBGP tools
suffered substantially as the similarity decreased.
Somewhat surprisingly, the performance of GENSCAN is
superior to that of SSBGP tools even at rather high
levels of similarity (P value between 108 and 10~ %°).
When the similarity is strong, GENEWISE appears to
outperform PROCRUSTES in the h178 sequence set.
However, when the similarity is weak the difference in
performance between the two tools at the nucleotide
level is small, and for low levels of similarity PRO-
CRUSTES seems to outperform GENEWISE, particularly
at the exon level. This is not unexpected considering
the design of these programs: GENEWISE is primarily a
sequence alignment tool, and thus it performs very
well when there is strong sequence similarity. PRO-
CRUSTES is more of a gene prediction program; it pos-
sibly encodes a more sophisticated splice site and exon
model, which allows for better exon prediction at low
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levels of similarity. As shown in Figure 3, a decrease in
accuracy for sequence similarity-based methods is
most likely a result of the decline in sensitivity, while
specificity remains high, which is a very desirable fea-
ture.

Interestingly, when the similarity is weak (P
value > 10~29), the advantage of sophisticated SSBGP
tools as opposed to direct gene modeling from data-
base searches such as those performed by BLASTX,
seems to vanish. It is not unlikely that when the simi-
larity is weak, the query DNA sequence and the top
database search homolog share only a conserved do-
main. In such cases, SSBGP, relying on sequence simi-
larity only to the top homolog, are only able to detect
the part of the gene exonic structure encoding these

domains. Direct gene modeling from BLASTX search
results builds on all potential homologs (not only the
top one); thus, weak homologs that share different
conserved regions with the gene encoded in the DNA
sequence may allow for better recovery of the overall
exonic structure of the gene. In fairness to GENEWISE
and PROCRUSTES, they can be used with multiple pro-
tein homologs and complete gene models synthesized,
but that is computationally expensive and analytically
problematic. Figure 1 illustrates an extreme example. A
possible solution (at least when using GENEWISE) is to
build a profile or an HMM based on the top few ho-
mologs and then align this profile with the target ge-
nomic sequence.

Conversely, when the similarity with the top ho-
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Figure 1 The accuracy of the gene prediction tools as a function of the similarity to the chosen homolog. For each P-value cutoff, the
homolog with the lowest P value above the cutoff was chosen to build the gene prediction models. The table indicates the different ranges
considered, the log-average of the P values in each range, and the number of sequences with acceptable homologs in the range. For
example, there were 99 sequences in h178 for which after discarding all hits with P value < 107'2°, the top remaining hit had a P
value < 1072°. There were 73 sequences for which the top hit had a P value < 107'2°, and 119 sequences for which the top hit had a

P value > 107>,
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molog is weak, the BLASTX search picks up only the
stronger regions of similarity between the homolog
and the gene encoded in the query sequence, although
lower levels of sequence similarity are shared in other
regions between the protein and the query DNA se-
quences. These can be detected by the SSBGP tools (Fig.
1). Finally, in other cases, both situations occur simul-
taneously, and direct gene modeling from BLASTX
search and SSBGP tools may complement each other to
produce a more accurate overall prediction (Fig. 1).

Examining the data in Table 1 and Figure 1, one
may be tempted to conclude that the gene identifica-
tion problem is almost solved. When a strong homolog
exists, programs like GENEWISE and PROCRUSTES are
likely to pick up the correct exon structure; when such
a homolog does not exist, programs like GENSCAN will
still be able to recover most of this structure. This, we
believe, is rather optimistic, as the sequence set in
which these programs have been tested is extremely
easy. Although the results obtained are instructive of
the comparative performance of the tools, they cannot
necessarily be extrapolated to the performance of these
tools in the large genomic sequences. In the next sec-
tion, we present the results obtained on evaluating the
tools on a set of simulated genomic sequences, which
we believe provide a more realistic estimation of the
actual accuracy of the gene prediction tools in large
genomic sequences.

Accuracy in Semiartificial Genomic Sequences

A SAG data set containing known genes in random
intergenic context (as described in Methods) was con-
structed to check if the accuracy measures from the
previous section extrapolate to larger, more difficult
data sets.

Because each SAG sequence contains multiple
genes, the choice of the set of protein homologs to
predict all the genes was no longer trivial. For ease of
evaluation, we used the knowledge of the genes to pick
these homologs, but there are other techniques that

can be used to pick up a single candidate homolog for
each gene-like region. In short, the top-scoring protein
homolog from the BLASTX search for each of the genic
sequences was used by GENEWISE and PROCRUSTES to
predict the gene based on sequence similarity. For in-
stance, artificial sequence AGSO1 was obtained by em-
bedding EMBL sequences HS10116, HSDNAAMH]I, and
HSNUCLEO in artificial intergenic DNA, with BLASTX
top homologs being NCBI:gi 134635, 1136442, and
128841, respectively. The GENEWISE and PROCRUSTES
predictions on the artificial sequence AGSO1 were ob-
tained by three independent executions of the pro-
grams, with each of the above top homolog proteins in
turn. The programs were executed to predict genes on
both strands and the model on the strand with the
higher score was used to assess accuracy. This approach
isolated the issue of the accuracy of these programs if
the genomic sequence is large and the gene is encoded
only in a small region of this sequence. There are other
factors, such as the ability to choose the correct set of
homologs that affect accuracy, but these factors were
similar for all the programs, and other suboptimal (but
perhaps more realistic) techniques would lead to lower
accuracy. Thus, the accuracy numbers for the semiar-
tificial sequences are not underestimated.

Table 2 shows the accuracy of the gene identifica-
tion tools in Gen178, the set of simulated genomic
sequences. As expected from theoretical consider-
ations, SSBGP tools were mostly unaffected by the in-
clusion of genic sequences in the random intergenic-
like DNA. PROCRUSTES appears to be less robust than
GENEWISE when analyzing large genomic sequences.
In particular, there is a significant decrease in specific-
ity at the exon level (from 0.82 to 0.75), the likely
result of predicting a relatively large number of small
exons in otherwise noncoding DNA [wrong exons
(WE) increasing from 0.04 to 0.16]. The comparatively
low decrease in specificity at the nucleotide level, from
0.95 to 0.94, suggests that most of these false exons are
rather short. Surprisingly, PROCRUSTES sensitivity at

Table 2. Accuracy of Gene Prediction Tools in the Set of Semiartificial Genomic (SAG)

Sequences (Gen178)

Exon
Nucleotide Gene

B — Sn+ Sp [ —
Program No. Sn Sp cc Sn Sp 2 ME WE MG WG
GenScan 43 0.89 0.64 0.76 0.64 0.44 0.54 0.14  0.41 0.03 0.28

0.92 0.92 0.91 0.76 0.76 0.76 0.09 0.09
GeneWise 43 0.98 0.98 0.97 0.88 091 0.89 0.06 0.02

0.98 0.98 0.97 0.88 0.91 0.89 0.06 0.02
Procrustes 43 0.93 0.94 0.93 0.80 0.75 0.77 0.10 0.16

0.93 0.95 0.93 0.76 0.82 0.79 0.11 0.04

(Italics) The accuracy values in the set of single gene sequences (from Table 1).
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the exon level is slightly higher in the set of artificial
sequences than in the set of single gene sequences.

The accuracy of BLASTX was not affected by the
intergenic context (data not shown) because no hits
with a P value more significant than 10~ '° were found
in the simulated DNA.

Accuracy of ab initio gene finders suffered substan-
tially in the set of artificial genomic sequences. Because
of the tendency of gene finders to overpredict exons,
one would expect that by placing the genic sequences
in the simulated-intergenic context, some loss of speci-
ficity would be observed, with programs predicting
perhaps a few extra exons in otherwise random DNA.
On the other hand, one would expect the sensitivity to
remain essentially constant as the exons predicted in
the genic sequences should still be predicted when
these are included in simulated-intergenic DNA. How-
ever, a significant decrease in specificity is observed
(Table 2). For instance, GENSCAN specificity at the exon
level drops to 0.64 from 0.92, and the proportion of
WEs climbs to 41% from 9% in the single gene se-
quences. In addition, a significant decrease in sensitiv-
ity is also observed, with programs failing to predict
exons that were correctly identified in the single gene
sequences. For instance, the proportion of missing ex-
ons increases for GENSCAN from 9% to 14%. Almost
30% of the GENSCAN genes are predicted in the simu-
lated-intergenic DNA. For ab initio gene finders, we
believe these accuracy values (on SAG sequences) are
more representative of their true accuracy on large ge-
nomic sequences than those obtained in the typical
single gene benchmark experiments.

Figure 2 shows the predictions of the different pro-
grams in one of the artificially generated genomic se-
quences (~157-kb long). As mentioned, SSBGPs predict
the genic structure of the artificial genomic sequence
rather well. Performance of ab initio gene finders, on
the other hand, degrades substantially.

Although all genes predicted by GENSCAN overlap
real genes, it still predicts a large number of false posi-
tive exons. In addition, even when predicting the ex-
ons correctly, their assembly into genes is often incor-
rect. For instance, in the sequence in Figure 2, GENSCAN
has difficulty in predicting the correct gene bound-
aries, and it expands the gene beyond its actual limits.
In the lower portion of the Figure 2, we compare the
predictions in the region between positions 23,000 and
41,000 from the SAG sequence to the predictions on
just the actual genic sequence (without the random
context). GENSCAN performance suffers substantially
from this inclusion in pseudointergenic context. One
explanation is that GENSCAN uses the wrong isochore
model for this sequence: the actual isochore structure
being destroyed by the usage of artificial intergenic
context. In such a case, decrease in performance would
be an artifact of our SAG sequences rather than a fea-
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ture of GENSCAN. Experiments with gene finders other
than GENSCAN (data not shown) indicate that such a
decrease in performance is not specific to GENSCAN, but
rather a general feature of ab initio gene finders.

As with the set of single gene sequences, the com-
parison of GENSCAN with SSBGP tools is not strictly
fair. The SSBGPs are affected by the existence of closer
homologs, while GENSCAN is not affected. To study the
effects of the range of similarity on the accuracy of
gene prediction in the SAG data set, we extracted two
different sets of SAG sequences. In the first set, each
gene in each SAG sequence has a strong homolog
(BLASTX P value < 10°°), and in the other set, each
gene in each sequence had a moderate homolog
(BLASTX P value between 10~°° and 10~ ¢). Some of
the genes in the second set also had better homologs
which were ignored for this analysis. The results are
shown in Table 3. If the similarity is strong, the se-
quence similarity-based methods perform very well,
outperforming ab initio tools (as in Table 2). However,
if the average similarity between the genes encoded
and the known proteins is only moderate (though per-
haps, still better than expected for real genomic se-
quences), the performance of these tools is similar to
the performance of GENSCAN. At the exon level, the
overall accuracy stays at ~50%. A very similar accuracy
has also been observed independently on test sets on
actual genomic sequences (http://predict.sanger.ac.uk/
th/brca2/; see Discussion). We believe this is still an
overestimation of the actual accuracy of these tools in
real genomic sequences.

DISCUSSION

Computational genefinders produce acceptable predic-
tions of the exonic structure of the genes when ana-
lyzing single gene sequences with very little flanking
intergenic sequence, but are unable to correctly infer
the exonic structure of multigene genomic sequences.
In particular, ab initio genefinders predict and utilize
intergenic boundaries poorly. Conversely, as our re-
sults indicate, sequence similarity searches on data-
bases of known coding sequences are extremely helpful
in deciphering the exonic structure for the genes that
have known homologs. For very strong similarity,
SSBGP tools appear to be the most useful. Surprisingly
even for genes predicted based on homologs with a
moderate degree of similarity (10~°° < P value < 10~°),
GENSCAN performs comparably to SSBGP programs. It
appears that at such levels of similarity, potential splice
signals and statistical biases in the sequence composi-
tion carry information comparable to sequence simi-
larity for the purposes of identifying coding regions. It
is possible that the use of SAG sequences does not pro-
vide a realistic scenario to test the accuracy of compu-
tational gene finders. Ideally, one would like to use
large genomic sequences with gene structure experi-
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Figure 2 (AGS17, top) Gene predictions in one of the artificial genomic sequences. The row EMBL indicates the coordinates of the actual
genes. Exons corresponding to the same gene (or predicted to be in the same gene) are linked by a box. (AGS17, middle) Predictions of
GENSCAN finders in the region 23,000 to 41,000 from the semiartificial genomic sequence. (HSIL9RA, bottom) The predictions improve
if GENSCAN is provided only the 18,000-bp long genic sequence that has been inserted in this region. This figure, as well as Fig. 1, has

been prepared using gff2ps. (Abril and Guigé 2000)

mentally verified. However, experimentally verifying
each and every gene along with alternative splice struc-
tures in a large genomic sequence remains a difficult
challenge. Techniques such as exon-trapping (Church
et al. 1994) have high sensitivity but poor specificity,
while RT-PCR or identifying a cDNA clone for every

transcript can be fairly specific (Hochgeschwender
1992), but have less than perfect sensitivity and are
dependent on finding a tissue in a developmental stage
under an environmental condition in which that gene
(or alternative gene product) is expressed. In particular,
proving that a piece of sequence (that appears coding

Genome Research 1637

www.genome.org



62

Chapter 3. Comparative Gene Finding

Guigo et al.

A

blastx.

blastx

blastix.

blastx.

Piii

blastx

blastx.h

8

2134320(9.6e-19)

blastx.nsp |

blastx.hsp -

blastx.nr

2117901(7.7e-20)

annotation

procrustes

blastx_gene

HSCKBG

553231

genewise

| e |
[ )

B

e e [ — saoe 2o

blastx.hsp

-

blastx.hspD |

L = = = = == = = = = = = =~ =

461525(1.6e-12)

blastx.hsp

blastx.hsp -

klastx.nr

annotation -

procrustes

genewise

Cc

blastx_hep |

blastx.hsp

4(1.9e18)

blastx.nxr

2119521(3.50-13)

rmerasten _

genewise

588234

—— B
[]
[

688234

to gene-prediction programs) is not coding is ex-
tremely difficult. Thus, even though there are a num-
ber of attempts to consolidate genomic gene prediction
data sets [Banbury Cross (http://igs-server.cnrs-mrs.fr/
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igs/banbury), GeneSafe (http://www.hgmp.mrc.ac.uk/
Genesafe), GASP (http://www.fruitfly.org/GASP1/)],
the number of experimentally well-annotated large ge-
nomic sequences remains small, and even in those
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Figure 3 If the candidate protein sequence is a remote homolog, direct gene modeling from BLAST-like database searches may have
different predictions compared to more sophisticated SSBGP tools. (A) EMBL DNA sequence HSCKBG was compared with the protein
sequences in the nr sequence database using BLASTX. Hits with P value < 10~2° were discarded, the top remaining corresponded to a
fragmentary protein sequence gi:553231. Not surprisingly, only a small fraction of the actual gene was recovered using this homolog by
either GENEWISE or PROCRUSTES. Other choices of homologs may have yielded different predictions but none of them by themselves
appears to be perfect. Conversely, the gene model derived directly from the BLASTX search reproduces the exonic structure of the gene
fairly well. Thus, even though upon discarding the close homologs, the remaining proteins individually showed only little overall similarity
to the encoded protein product, as a collection they enable to walk its exonic structure. (B) If database protein sequences with hits below
P-value = 10~ 2° are discarded, BLASTX is able to detect significant similarity between only one of the encoded exons in EMBL sequence
HSPAC3G and the remaining protein sequences in the database. But with the top homolog among these, the SSBGP tools (GENEWISE
in particular) are able to infer the correct exonic structure, picking up both the additional upstream exons. This is because the SSBGP tools
are able to detect more distant sequence relationships than BLASTX with our choice of thresholds or because (as in this case) coding exons
occur in low-complexity regions, which are usually masked when performing BLASTX searches to avoid large numbers of false positives.
(O) In another case, direct gene modeling from BLASTX searches and SSBGP tools can complement each other to produce more accurate
gene predictions. As in A and B, HSP hits below P-value = 10~2° were ignored after comparing EMBL sequence HSFOLA with the

nonredundant protein sequence database.

cases, the reliability of the annotation is difficult to
assess (Reese et al. 2000). To compensate for the lack of
these verified data sets, we have built semiartificial data
sets with known genes placed in the context of random
intergenic sequence. This ensures that all the genes in
these sequences are known. In fact, most of these genes
have fairly small genomic spread (i.e., none of the in-
trons is very large), and a number of the ab initio gene
prediction programs have been trained on them. This
should make this data set easy for most programs.
However, our model for intergenic sequence is possibly
imperfect for at least two reasons: The genes are not
necessarily placed in the correct isochore context; and
the apparent codon composition in the simulated in-
tergenic DNA may be different from that of actual in-
tergenic sequence. These imperfections may conceiv-
ably make gene prediction more difficult on this data
set for ab initio programs, but we think these are more
than offset at least in part by the small genes and the
fact that the programs have partly trained on these
genes. Overall, the sensitivity and specificity numbers
are most instructive in the relative context. The sensi-
tivity of most tools remains high even when con-
fronted with large intergenic sequences, but the speci-
ficity of the ab initio tools drops because of large in-
tergenic regions.

Interestingly, the accuracy reported here for GEN-
SCAN is very similar to the accuracy found in the
BRCAZ2 region (Chruch et al. 1994; Couch et al. 1996);
probably the best annotated human genomic region
from an experimental standpoint. BRCA2 region is a
large genomic tract with multiple genes, thus, a diffi-
cult data set for most gene prediction programs. At the
exon level, Tim Hubbard and Richard Bruskiewich
(Sanger Center, UK) report for GENSCAN in this region
a sensitivity of 0.63 (termed coverage there) and a speci-
ficity of 0.38 (termed accuracy there) (http://
predict.sanger.ac.uk/th/brca2/). As anticipated, these
values are slightly worse than the ones we have found
here in the SAG data set (0.64 and 0.44, respectively).
This seems to indicate that the approach of building
artificial genomic sequences is not too unrealistic, and
that it could be useful both for training and testing
gene prediction programs. Results in these sequences,
however, should be taken as an upper bound estimate
of the accuracy of the programs in real genomic se-
quences.

There is a growing class of gene identification pro-
grams that combine both sequence similarity and tra-
ditional coding potential measures, such as Genie
(Kulp et al. 1996 1997), HMMgene (Krogh 1997), and
Gsa (Huang et al. 1997). Unfortunately, because of a

Table 3. Accuracy of Gene Prediction Tools in the Set of Semiartificial Genomic Sequences, When Either Strongly or

Moderately Similar Sequences are Used to Model the Genes

Strong similarity P Value < 10~>°
17 SAG sequences

Moderate similarity 10~°° < P value < 10~°
26 SAG sequences

Exon Exon
Nucleotide Nucleotide

Sn+ Sp Sn + Sp
Program Sn Sp cc Sn Sp 2 Sn Sp CccC Sn Sp 2
GenScan 0.91 0.66 0.77 0.67 0.46 0.56 0.91 0.61 0.74 0.67 0.43 0.55
GeneWise 0.99 0.99 0.99 0.90 0.93 0.91 0.68 0.98 0.81 0.46 0.63 0.54
Procrustes 0.92 0.96 0.94 0.80 0.75 0.77 0.66 0.79 0.72 0.48 0.32 0.40
The geometric mean of the P values of the strong similarity sequences was 10~ "3 and for the weaker similarity group it was 10~ 3.
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lack of public availability at the time of the initiation
of this study, their evaluation will have to await a fu-
ture analysis.

EST similarity can also provide useful information
regarding gene structure for ~85% of the common
genes (Guigd et al. 2000). A set of single gene se-
quences in h178 was used to optimize a method for
deriving exonic structures from EST matches. When
using the EST sequences in the public databases, the
method yielded an accuracy of Sn=0.72, Sp =0.87,
and CC = 0.69 at the nucleotide level, when predicted
gene structures were compared to the annotated
mRNA (not the coding) exonic structure. Other sec-
ondary questions regarding EST-based gene prediction
may also be important, such as the extent to which EST
matches help in delineating the gene boundaries.

Though there is considerable variation in the ac-
curacy of various gene prediction programs depending
on data sets and the availability and choice of homo-
log, we believe that a judicious use of these programs in
combination can result in highly accurate gene struc-
tures for genes with known homologs. There is, how-
ever, still considerable progress to be made on predict-
ing alternative spliced structures and genes with no
known homologs.

METHODS

Computational Gene Identification Tools

Gene identification tools may be categorized into ab initio
tools (those not utilizing sequence similarity and relying on
intrinsic gene measures such as coding potential and splice
signals), and those based (at least partly) on sequence similar-
ity.

Ab initio Gene Identification Tools

The ab initio gene identification tools use information from
both the gene signals in the genomic DNA (such as splice
sites, start and stop codons, and promoter elements), and the
statistical biases in DNA composition that is characteristic of
coding regions. There are a number of such programs (for
reveiws, see Fickett 1996; Claverie 1997; Guigd 1997a; Burge
and Karlin 1998; Haussler 1998). GENSCAN (Burge and Karlin
1997) is one of the most accurate and widely used programs in
this category, and we use it as a representative.

SSBGP Tools

A number of recent programs predict genes by aligning ge-
nomic sequences with candidate homologous protein se-
quences. These programs may include a splice site model, cod-
ing potential, and sequence similarity to known proteins to
infer gene predictions. We evaluated two of these programs,
PROCRUSTES (Gelfand et al. 1996), and GENEWISE (Birney and
Durbin 1997) (http://www.sanger.ac.uk/Software/Wise2/).
These programs require as input a candidate homologous
protein sequence; therefore, in typical use, a sequence simi-
larity database search with the query genomic sequence is
performed a priori and the top hit is used as the candidate (or
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top hits are used as candidates, in the case of a query sequence
encoding multiple genes). The database similarity searches
were performed against the nonredundant protein sequence
database from NCBI, nr, using BLASTX (Altschul et al. 1990;
Gish and Sates 1993). BLASTX performs a translation of the
query sequence into the six frames, and searches for similari-
ties between each of these translations and the protein se-
quences in the database.

BLASTX was designed as a similarity-based gene predic-
tion tool, and it is possible to model a gene directly from the
database search results. BLASTX, however, does not confine
its similarity to exon;, thus the similarity region is not con-
strained to begin or end on splice sites. Moreover, BLASTX
does not explicitly predict genes in genomic sequences, and
some postprocessing of its output is required to infer gene
predictions from the search results. Indeed, while computa-
tional gene finders predict genes, that is pairs of positions
(corresponding to exon starts and ends) along the query ge-
nomic sequence, database searches only produce lists of se-
quence database hits along the query sequence. Each hit
above a given similarity threshold may be assumed to be a
coding exon. For different database entries, however the set of
hits may be different. The problem is then to infer a gene
model from the set of database hits. A simple solution is to
project the hits into a single axis along the genomic sequence,
and to assume the union of these projections to be the coding
exons.

In total, three strategies based on BLAST were tested:

(1) default — A procedure consisting of projecting the HSPs
onto the genomic sequences was used (see Guigo et al.
2000). BLASTX was run with E = Ie-10 — filter xnu + seg
$2 = 60, and all HSPs with identity <40% were discarded.
The choices of S2 and percentage identity were influenced
by the need to restrict false matches.

topcomboN — BLASTX was used with default parameters
except for —filter xnu + seg topcomboN = 1. HSPs with P
value > 1072° were discarded, and the projections along
the query sequence of the remaining HSPs assumed to be
the predicted coding exons. WashU-BLAST has a param-
eter topcomboN that limits all HSPs generated to be in
one consistent group. For example, for BLASTX searches,
each region of the nucleotide sequence is only aligned to
a single region on the protein sequence and the ordering
of these HSPs has to be consistent along both the nucleo-
tide and protein sequences. This restricts spurious
matches arising from repetitive domains with query se-
quences, and from low scoring hits in introns and flank-
ing regions.

two-stage — BLASTX was used in a two stage process that
first identifies one or more candidate protein sequences in
the presence of a low-complexity filter. In the second
stage, BLASTX is used to align the candidates individually
with the genomic sequence, this time without the filter
and with topcomboN = 1. This two pass technique is
closer to the strategy used with GENEWISE and PRO-
CRUSTES, where a first BLASTX search pinpoints the pro-
tein homolog to be used, and a subsequent GENEWISE
uses this protein homolog.

@

-

3

N/

Both GENEWISE and PROCRUSTES were run with
mostly standard parameters: GENEWISE v2.1.16b -both
-8ff -pretty -para -cdna -genes -quiet and PROCRUSTES was
run in the local mode with MIN EXN 20, MIN _IVS
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50, GAP 2, INI _GAP 10, MATRIX pam120.mtx. GEN-
SCAN was run with default parameters.

Benchmark Sets

Two sets of sequences have been used to evaluate the pro-
grams discussed above. First, a typical benchmark set made of
sequences from the EMBL database release 50 (1997) that in-
cluded 178 human genomic sequences coding for single com-
plete genes for which both the mRNA and the coding exons
are known. The procedure used to extract the sequences is
described in Burset and Guigé (1996) and Guigé (1997b). We
will refer to this set here as h178. All the genes in this data set
are on the forward strand. Other characteristics of h178 are
provided in Table 4.

For the reasons discussed in this paper, this does not
appear to be a challenging benchmark set for estimating the
accuracy of gene identification programs in the larger ge-
nomic sequences. Unfortunately, very few large genomic se-
quences have been studied extensively to produce complete
experimental determinations of the exact structure of each
gene. To overcome this limitation, we generated a semiartifi-
cial set of genomic sequences in which accurate gene anno-
tation can be guaranteed.

In essence, a set of annotated genic sequences are placed
randomly in a background of random intergenic DNA. The
length of the semiartificial sequence is generated randomly
according to a normal distribution. Genomic fragments con-
taining genes and random-sized segments of intergenic se-
quence are then concatenated until their combined lengths
exceed the target. The strands are also chosen at random for
each genic subsequence.

Table 4 shows the characteristics of the generated se-
quences when the method is applied to the sequences in h178
and the intergenic background is generated using a Markov
Model of order 5 as described in Guigé and Fickett (1995)
assuming an average intergenic G + C content of 38%. The
178 genic sequences were collapsed into 42 SAG sequences.
Some of the resulting parameters, such as average G + C con-
tent of 40%, a gene every 43 Kb, and a coding density of 2.3%
are in agreement with that for the overall human genome.
This data set has flaws and is not a perfect representative of
the human genome. Some of the ignored characteristics in-
clude the isochore organization of the human genome,
known and unknown repeats in the intergenic regions, pres-
ence of pseudogenes and other evolutionary remnants, genes
with huge introns, and tandem gene clusters. Most of the
missing properties (pseudogenes, repeats, huge introns) make
gene prediction much more difficult. Thus, we expect the ac-

Table 4. Characteristics of the Benchmark Sequence Sets

curacy results on Genl78 to still be an overestimate of the
true accuracy.

Evaluating Accuracy

The measures of accuracy used here are discussed extensively
in Burset and Guig6 (1996). We will restate them briefly. Ac-
curacy is measured at three different levels: nucleotide, exon,
and gene. At the nucleotide and exon levels, we essentially
compute the proportion of actual coding nucleotides/exons
that have been predicted correctly—-(which we call Sensitivity)
and the proportion of predicted coding nucleotides/exons
that are actually coding nucleotides/exons (which we call
Specificity). To compute these measures at the exon level, we
will assume that an exon has been predicted correctly only
when both its boundaries have been predicted correctly. To
summarize both Sensitivity and Specificity, we compute the
Correlation Coefficient at the nucleotide level, and the aver-
age of Sensitivity and Specificity at the exon level. At the exon
and gene level, we also compute the Missing Exons/Genes
(the proportion of actual exons/genes that overlap no pre-
dicted exon/gene) and the Wrong Exons/Genes (the propor-
tion of predicted exons/genes that overlap no actual exon/
gene).

The measures are computed globally from the total num-
ber of prediction successes and failures (at the base and exon
level) on all sequences. Accuracy in Table 1 is computed ig-
noring predictions in the reverse (wrong) strand. The first
column in Tables 1 and 2 indicates the number of sequences
for which the progams produced predictions.

Data Availability

Both the set of single gene sequences and the set of semiarti-
ficially generated genomic sequences will be available from
http://www1.imim.es/databases/gpecal2000/.
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Sequence length

Genes (average) CDS (average)

Set No. G+ C average min max no. length density no. exons length  density
h178 178  50% 7169 622 86640 1 3657  53% 7169 5.1 968 21%
Gen178 42 40% 177160 70037 282097 4.1 15136 8.6% 43000 21 4007 2.3%
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The columns Genes (average) and CDS (average) provide values averaged over all the sequences (178 in h178 and 42 in Gen178).
Gene density provides the percentage of nucleotides that occur in genic regions (exons, introns, and UTRs), and the number of
kilobases per gene. CDS no. exons is the average number of coding exons per sequence, and CDS density is the percentage of
nucleotides that occur in coding regions.
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Computational methods for automated genome annotation are critical to our community’s ability to make full
use of the large volume of genomic sequence being generated and released. To explore the accuracy of these
automated feature prediction tools in the genomes of higher organisms, we evaluated their performance on a
large, well-characterized sequence contig from the Adh region of Drosophila melanogaster. This experiment, known
as the Genome Annotation Assessment Project (GASP), was launched in May 1999. Twelve groups, applying
state-of-the-art tools, contributed predictions for features including gene structure, protein homologies,
promoter sites, and repeat elements. We evaluated these predictions using two standards, one based on
previously unreleased high-quality full-length cDNA sequences and a second based on the set of annotations
generated as part of an in-depth study of the region by a group of Drosophila experts. Although these standard
sets only approximate the unknown distribution of features in this region, we believe that when taken in context
the results of an evaluation based on them are meaningful. The results were presented as a tutorial at the
conference on Intelligent Systems in Molecular Biology (ISMB-99) in August 1999. Over 95% of the coding
nucleotides in the region were correctly identified by the majority of the gene finders, and the correct
intron/exon structures were predicted for >40% of the genes. Homology-based annotation techniques
recognized and associated functions with almost half of the genes in the region; the remainder were only
identified by the ab initio techniques. This experiment also presents the first assessment of promoter prediction
techniques for a significant number of genes in a large contiguous region. We discovered that the promoter
predictors’ high false-positive rates make their predictions difficult to use. Integrating gene finding and
cDNA/EST alignments with promoter predictions decreases the number of false-positive classifications but
discovers less than one-third of the promoters in the region. We believe that by establishing standards for
evaluating genomic annotations and by assessing the performance of existing automated genome annotation
tools, this experiment establishes a baseline that contributes to the value of ongoing large-scale annotation
projects and should guide further research in genome informatics.

Genome annotation is a rapidly evolving field in ge-
nomics made possible by the large-scale generation of
genomic sequences and driven predominantly by com-
putational tools. The goal of the annotation process is
to assign as much information as possible to the raw
sequence of complete genomes with an emphasis on
the location and structure of the genes. This can be
accomplished by ab initio gene finding, by identifying
homologies to known genes from other organisms, by
the alignment of full-length or partial mRNA se-
quences to the genomic DNA, or through combina-
tions of such methods. Related techniques can also be
used to identify other features, such as the location of
regulatory elements or repetitive sequence elements.
The ultimate goal of genome annotation, the func-
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tional classification of all the identified genes, cur-
rently depends on discovering homologies to genes
with known functions.

We are interested in an objective assessment of the
state of the art in automated tools and techniques for
annotating complete genomes. The Genome Annota-
tion Assessment Project (GASP) was organized to for-
mulate guidelines and accuracy standards for evaluat-
ing computational tools and to encourage the devel-
opment of new models and the improvement of
existing approaches through a careful assessment and
comparison of the predictions made by current state-
of-the-art programs.

The GASP experiment, the first of its kind, was
similar in many ways to the CASP (Critical Assessment
of techniques for protein Structure Prediction) contests
for protein structure prediction (Dunbrack et al. 1997;
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Levitt 1997; Moult et al. 1997, 1999; Sippl et al. 1999;
Zemla et al. 1999), described at http://predictioncenter.lln-
l.gov. However, unlike the CASP contest, GASP was
promoted as a collaboration to evaluate various tech-
niques for genome annotation.

The GASP experiment consisted of the following
stages: (1) Training data for the Adh region, including
2.9 Mb of Drosophila melanogaster genomic sequence,
was collected by the organizers and provided to the
participants; (2) a set of standards was developed to
evaluate submissions while the participating groups
produced and submitted their annotations for the re-
gion; and (3) the participating groups’ predictions were
compared with the standards, a team of independent
assessors evaluated the results of the comparison, and
the results were presented as a tutorial at ISMB-
99(Reese et al. 1999).

Participants were given the finished sequence for
the Adh region and some related training data, but they
did not have access to the full-length cDNA sequences
that were sequenced for the paper by Ashburner et al.
(1999b) that describes the Adh region in depth. The
experiment was widely announced and open to any
participants. Submitters were allowed to use any avail-
able technologies and were encouraged to disclose
their methods. Because we were fortunate to attract a
large group of participants who provided a wide variety
of annotations, we believe that our evaluation ad-
dresses the state of art in genome annotation.

Twelve groups participated in GASP, submitting
annotations in one or more of six categories: ab initio
gene finding, promoter recognition, EST/cDNA align-

ment, protein similarity, repetitive sequence identifi-
cation, and gene function. Table 1 lists each participat-
ing group, the names of the programs or systems it
used, and which of the six classes of annotations it
submitted (see enclosed poster in this issue for a
graphic overview of all the groups’ results). Additional
papers in this issue are written by the participants
themselves and describe their methods and results in
detail.

It should be noted that the lack of a standard that
is absolutely correct makes evaluating predictions
problematic. The expert annotations described by the
Drosophila experts (Ashburner et al. 1999b) are our best
available resource, but their accuracy will certainly im-
prove as more data becomes available. At best, the data
we had in hand is representative of the true situation,
and our conclusions would be unchanged by using a
more complete data set. At worst, there is a bias in the
available data that makes our conclusions significantly
misleading. We believe that the data is not unreason-
able and that conclusions based on it are correct
enough to be valuable as the basis for discussion and
future development. We do not believe that the values
for the various statistics introduced below are precisely
what they would be using the extra information, and
we emphasize that they should always be considered in
the context of this particular annotated data set [for a
further detailed discussion of evaluating these predic-
tions, see Birney and Durbin (2000)].

In the next section we describe the target genomic
sequence and the auxiliary data, including a critical
discussion of our standard sets. Methods gives a short

Table 1. Participating Groups and Associated Annotation Categories

Program Gene Promoter EST/c DNA Protein Gene
name finding  recognition alignment similarity ~ Repeat  function

Mural et al.

Oakridge, US GRAIL X X X
Parra et al.

Barcelona, ES GenelD X
Krogh

Copenhagen, DK HMMGene X
Henikoff et al.

Seattle, US BLOCKS X X
Solovyev et al.

Sanger, UK FGenes X
Gaasterland et al.

Rockefeller, US MAGPIE X X X X X
Benson et al.

Mount Sinai, US TRF X
Werner et al.

Munich, GER Corelnspector X
Ohler et al.

Nuremberg, GER MCPromoter X
Birney

Sanger, UK GeneWise X X
Reese et al.

Berkeley/Santa Cruz, US Genie X X
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description of existing annotation methods that
complements other papers in this issue, including a
review article of existing gene-finding methods by
Stormo (2000) and papers describing the methods used
by the individual participants. Results assesses the in-
dividual annotation methods and the Conclusions dis-
cusses what the experiment revealed about issues in-
volved in annotating complete genomes. An article by
Ashburner (2000) provides a biological perspective on
the experiment.

Data: The Benchmark Sequence: The Adh Region

in D. melanogaster

The selection of a genomic target region for assessing
the accuracy of computational genome annotation
methods was a difficult task for several reasons: The
genomic region had to be large enough, the organism
had to be well studied, and enough auxiliary data had
to be available to have a good experimentally verified
“correct answer,” but the data should be anonymous
so that a blind test would be possible. The Adh region
of the D. melanogaster genome met these criteria. D.
melanogaster is one of the most important model or-
ganisms, and although the Adh region had been exten-
sively studied, the best gene annotations and cDNAs
for the region were not published until after the con-
clusion of the GASP experiment. The 2.9 Mb Adh con-
tig was large enough to be challenging, contained
genes with a variety of sizes and structures, and in-
cluded regions of high and low gene density. It was not
a completely blind test, however, because several
cDNA and genomic sequences for known genes in the
region were available prior to the experiment.

Genomic DNA Sequence

The contiguous genomic sequence of the Adh region in
the D. melanogaster genome spans nearly 3 Mb and has
been sequenced from a series of overlapping P1 and
BAC clones as a part of the Berkeley Drosophila Ge-
nome Project (BDGP; Rubin et al. 1999) and the Euro-
pean Drosophila Genome Project (EDGP; Ashburner et
al. 1999c¢). This sequence is believed to be of very high
quality with an estimated error rate of <1 in 10,000
bases, based on PHRAPquality scores. A detailed analy-
sis of this region can be accessed through the BDGP
Web site (http://www.fruitfly.org/publications/
Adh.html) as well as in Ashburner et al. (1999b).

Curated Training Sequences

We provided several D. melanogaster-specific data sets
to the GASP participants. This enabled participants to
tune their tools for Drosophila and facilitated a com-
parison of the various approaches that was unbiased by
organism-specific factors. The following curated se-
quence sets, extracted from Flybase and EMBL (pro-
vided by the EDGP at Cambridge and provided by the
BDGP, were made available and can be found at http://

www.fruitfly.org/GASP/data/data.html): (1) A set of
complete coding sequences (start to stop codon), ex-
cluding transposable elements, pseudogenes, noncod-
ing RNAs, and mitochondrial and viral sequences
(2122 entries); (2) nonredundant set of repetitive se-
quences, not including transposable elements (96 en-
tries); (3) transposon sequences, containing only the
longest sequence of each transposon family and ex-
cluding defective transposable elements (44 entries);
(4) genomic DNA data from 275 multi- and 141 single-
exon nonredundant genes together with their start and
stop codons and splice sites, taken from GenBank ver-
sion 109; (5) a set of 256 unrelated promoter regions,
taken from the Eukaryotic Promoter Database (EPD;
Cavin Périer et al. 1999, 2000) and a collection made
by Arkhipova (1995); and (6) an uncurated set of cDNA
and EST sequences from work in progress at the BDGP.
Five of the 12 participating groups reported making use
of these data sets.

Resources for Assessing Predictions: The “Correct” Answer

In a comparative study, the gold standard used to
evaluate solutions is the most important factor in de-
termining the usefulness of the study’s results. For the
results to be meaningful, the standard must be appro-
priate and correct in the eyes of the study’s audience.
Because our goal was to evaluate tools that predict
genes and gene structure in complex eukaryotic organ-
isms, we drew our standard from a complex eukaryotic
model organism, choosing to work with a 2.9-Mb se-
quence contig from the Adh region of D. melanogaster.
Comparing predicted annotations in such a region is
only consequential if the standard is believed to be
correct, if that correctness has been established by
techniques that are independent of the approaches be-
ing studied, and if the predictors had no prior knowl-
edge of the standard. Ideally, it would contain the cor-
rect structure of all the genes in the region without any
extraneous annotations. Unfortunately, such a set is
impossible to obtain because the underlying biology is
incompletely understood. We built a two-part approxi-
mation to the perfect data set, taking advantage of data
from the BDGP cDNA sequencing project (http://
www.fruitfly.org/EST) and a Drosophila community ef-
fort to build a set of curated annotations for this region
(Ashburner et al. 1999b). Our first component, known
as the std1 data set, used high-quality sequence from a
set of 80 full-length cDNA clones from the Adh region
to provide a standard with annotations that are very
likely to be correct but certainly are not exhaustive.
The second component, known as the std3 data set,
was built from the annotations being developed for
Ashburner et al.(1999b) to give a standard with more
complete coverage of the region, although with less
confidence about the accuracy and independence of
the annotations. We believe that this two-part approxi-
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mation allows us to draw useful conclusions about the
ability to accurately predict gene structure in complex
eukaryotic organisms even though the absolutely per-
fect data set does not exist.

Eukaryotic transcript annotations have complex
structures based on the composition of fundamental
features such as the TATA box and other transcription
factor binding sites, the transcription start site (TSS),
the start codon, 5’ and 3’ splice site boundaries, the
stop codon, the polyadenylation signal, exon start and
end positions, and coding exon start and end posi-
tions. Our gene prediction evaluations focused on an-
notations that are specific to the coding region, from
the start codon through the various intron-exon
boundaries to the stop codon, and on promoter anno-
tations. Although other types of features are also bio-
logically interesting, we were unable to devise reliable
methods for evaluating their predictions. Whenever
possible, we relied on unambiguous biological evi-
dence for our evaluations; when that was not available,
we combined several types of evidence curated by do-
main experts.

Our goal for our first standard set, called std1, was
to build a set of annotations that we believed were very
likely to be correct in their fine details (e.g., exact lo-
cations for splice sites), even if we were unable to in-
clude every gene in the region. We based std1 on align-
ments of 80 high-quality, full-length cDNA sequences
from this region with the high-quality genomic se-
quence for the contig. The cDNA sequences are the
product of a large cDNA sequencing project at the
BDGP and had not been submitted to GenBank at the
time of the experiment. Working from five cDNA li-
braries, the longest clone for each unique transcript
was selected and sequenced to a high-quality level.
Starting with these cDNA sequences, we generated
alignments to the genomic sequence using sim4 (Flo-
rea et al. 1998) and filtered them on several criteria. Of
the 80 candidate cDNA sequences, 3 were paralogs of
genes in the Adh region and 19 appeared to be cloning
artifacts (unspliced RNA or multiple inserts into the
cloning vector), leaving us with alignments for 58
cDNA clones. These alignments were further filtered
based on splice site quality. We required that all of the
proposed splice sites include a simple “GT”/“AG” core
for the 5" and 3’ splice sites, respectively, and that they
scored highly (5" splice sites = 0.35 threshold, which
gives a 98% true positive rate, and 3’ splice
sites = 0.25, which gives a 92% true positive rate) us-
ing a neural network splice site predictor trained on D.
melanogaster data (Reese et al. 1997). This process left
us with 43 sequences from the Adh region for which we
had structures confirmed by alignments of high-
quality cDNA sequence data with high-quality ge-
nomic data and by the fit of their splice sites to a Dro-
sophila splice site model. Of these 43 sequences, 7 had
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a single coding exon and 36 had multiple coding ex-
ons. We added start codon and stop codon annota-
tions to these structures from the corresponding re-
cords in the std3 data set.

After the experiment, we recently discovered four
inconsistent genes in the std1 data set. For two genes
(DS07721.1, DS003192.4), the cDNA clones (CK02594,
CKO01083, respectively) are likely to be untranscribed
genomic DNA that was inappropriately included in the
cDNA library. Two other genes from std3 (DS00797.5
and wb) were incorrectly reported in std1 as three par-
tial all incomplete EST alignments (cDNA clones:
CK01017, LD33192, and CK02229). In keeping with
std1’s goal of highly reliable annotations, all four se-
quences have been removed from the std1 data set that
is currently available on the GASP web site. The results
reported here use the larger, less reliable, data set as
presented at the ISMB-99 tutorial.

The complete set of the original 80 aligned high-
quality, full-length cDNA sequences was named std2.
This set was never used in the evaluation process be-
cause it did not add any further compelling informa-
tion or conclusions because of the unreliable align-
ments.

Our goal for the second, used standard set, called
std3, was to build the most complete set of annotations
possible while maintaining some confidence about
their correctness. Ashburner et al. (1999b) compiled an
exhaustive and carefully curated set of annotations for
this region of the Drosophila genome based on infor-
mation from a number of sources, included BLASTN
BLASTP (Altschul et al. 1990), and PFAMalignments
(Sonnhammer et al. 1997, 1998; Bateman et al. 2000),
high scoring GENSCANBurge and Karlin 1997) and
Genefinder (P. Green, unpubl.) predictions,
ORFFinder results (E. Friese, unpubl.), full-length
cDNA clone alignments (including those used in std1),
and alignments with full-length genes from GenBank.
This set included 222 gene structures: 39 with a single
coding exon and 183 with multiple coding exons. Of
these 222 gene structures, 182 are similar to a homolo-
gous protein in another organism or have a Drosophila
EST hit. For these structures, the intron-exon bound-
aries were verified by partial cDNA/EST alignments us-
ing sim4 (Florea et al. 1998), homologies were discov-
ered using BLASTX TBLASTX and PFAMalignments,
and gene structure was verified using a version of GEN-
SCANtrained for finding human genes. Of the 54 re-
maining genes, 14 had EST or homology evidence but
were not predicted by GENSCANr Genefinder , and
40 were based entirely on strong GENSCANind Gen-
efinder  predictions. All of this evidence was evalu-
ated and edited by experienced Drosophila biolo gists,
resulting in a protein coding gene data set that exhaus-
tively covers the region with a high degree of confi-
dence and represents their view of what should or
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should not be considered an annotated gene. Their
gene data set excluded the 17 found transposable ele-
ments [6 LINE-like elements (G, F, Doc, and jockey) and
11 retrotransposons with long terminal repeats (LTRs;
copia, roo, 297, blood, mdgl-like, and yoyo)], which al-
most all contain long ORFs. Some of these ORFs code
for known and some others for, so far, unknown pro-
tein sequences.

Both of these data sets have shortcomings. As
mentioned above, stdl only includes a subset of the
genes in the region. It also includes a pair of transcripts
that represent alternatively spliced products of a single
gene. Although this is not incorrect, it confounds our
scoring process. Because the cDNA alignments do not
provide any evidence for the location of the start and
stop codons, we based those annotations in std1 on
information from the std3 set. Many of the gene struc-
tures in std3 are based on GENSCANNd Genefinder
predictions without other supporting evidence, so it is
possible that the fine details are incorrect, that the en-
tries are not entirely independent of the techniques
used by the predictors in the experiment, and that the
set overestimates the number of genes in the region.

See Birney and Durbin (2000) and Henikoff and
Henikoff (2000) for further discussion of the difficul-
ties of evaluating these predictions especially in the
protein homology annotation category, in which, by
training, these programs will recognize protein-like se-
quences such as the ORFs in transposable elements as
genes. They and others (see other GASP publications in
this issue) have raised the issues of annotation over-
sights, transposons, and pseudogenes. In cases where
GASP submissions suggest a missed annotation, this
information has been passed onto biologists for further
research, including screening cDNA libraries. We be-
lieve that it would have been biased to retroactively
change the scoring scheme used at the GASP experi-
ment based solely on missed annotations discovered
by the participant’s submissions. See Discussion for an
example of an annotation that may be missing in the
standard data sets. In the std3 data set we based our
standard for what is or is not a Drosophila gene on the
expert annotations provided by Ashburner et al.
(1999Db). It is clear that both transposons and pseudo-
genes are genuine features of the genome and that
gene-finding technologies might recognize them. Be-
cause they were not included as coding genes in the
expert annotations, we decided against including them
in the standard set.

Building a set for the evaluation of transcription
start site or, more generally, for promoter recognition
proved to be even more difficult. For the genes in the
Adh region almost no experimentally confirmed anno-
tation for the transcription start site exists. As the 5’
UTR regions in Drosophila can extend up to several

kilobases, we could not simply use the region directly
upstream of the start codon. To obtain the best pos-
sible approximation, we took the 5’ ends of annota-
tions from Ashburner et al. (1999b) where the up-
stream region relied on experimental evidence (the 5’
ends of full-length cDNAs) and for which the align-
ment of the cDNA to the genomic sequence included a
good OREF. The resulting set contained 92 genes of the
222 annotations in the std3 set (Ashburner et al.
1999b). This number is larger than the number of cD-
NAs used for the construction of the std1 set described
above because we included cDNAs that were already
publicly available. The 5" UTR of these 96 genes has an
average length of 1860 bp, a minimum length of O bp
(when the start codon was annotated at the beginning,
due to the lack of any further cDNA alignment infor-
mation; this is very likely to be only a partial 5" UTR
and therefore an annotation error), and a maximum
length of 36,392 bp.

Data Exchange Format

One of the challenges of a gene annotation study is
finding a common format in which to express the vari-
ous groups’ predictions. The format must be simple
enough that all of the groups involved can adapt their
software to use it and still be rich enough to express the
various annotations.

We found that the General Feature Format
(GFB (formerly known as the Gene Feature Finding
format ) was an excellent fit to our needs. The GFF
format is an extension of a simple name, start, end re-
cord that includes some additional information about
the sequence being annotated: the source of the fea-
ture; the type of feature; the location of the feature in
the sequence; and a score, strand, and frame for the
feature. It has an optional ninth field that can be used
to group multiple predictions into single annotations.
More information can be found at the GFF web site:
http://www.sanger.ac.uk/Software/formats/GFF/. Our
evaluation tools used a GFF parser for the PERL pro-
gramming language that is also available at the GFF
web site.

We found that it was necessary to specify a stan-
dard set of feature names within the GFF format, for
instance, declaring that submitters should describe
coding exons with the feature name CDS. We pro-
duced a small set of example files (accessible from the
GASP web site) that we distributed to the submitters
and were pleased with how easily we were able to work
with their results.

METHODS

Genome annotation is an ongoing effort to assign functional
features to locations on the genomic DNA sequence. Tradi-
tionally, most of these annotations record information about
an organism’s genes, including protein-coding regions, RNA
genes, promoters, and other gene regulatory elements, as well
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as gene function. In addition to these gene features, the fol-
lowing general genome structure features are also commonly
annotated: repetitive elements and general A, C, G, T content
measures (e.g., isochores).

Genome Annotation Classes

Although the GASP experiment invited and encouraged any
class of annotations, most submissions were for gene-related
features, emphasizing ab initio gene predictions and pro-
moter predictions. In addition, two groups submitted func-
tional protein domain annotations, and two groups submit-
ted repeat element annotations. In the sections that follow,
we categorize and discuss the submitted predictions.

Gene Finding

Protein coding region identification is a major focus of com-
putational biology. A separate article in this issue (Stormo
2000) discusses and compares current methods, whereas an
early paper by Fickett and Tung (1992) and a more recent
review of gene identification systems by Burge and Karlin
(1998) give excellent overviews of the field. Table 2 lists the
six groups that predicted protein-coding regions with the cor-
responding program names. It also categorizes the submis-
sions based on the types of information used to build the
model for predictions. Although all groups used statistical in-
formation for their models—predominantly coding bias, cod-
ing preference, and consensus sequences for start codon,
splice sites, and stop codons—only two groups used protein
similarity information or promoter information to predict
gene structure. More than half of the groups incorporated
sequence information from cDNA sequences. In general,
state-of-the-art gene prediction systems use complex models
that integrate multiple gene features into a unified model.

Promoter Prediction
The complicated nature of the transcription initiation process
makes computational promoter recognition a hard problem.
We define promoter prediction as the identification of TSSs of
protein coding genes that are transcribed by eukaryotic RNA
polymerase II. A detailed description of the structure of pro-
moter regions and existing promoter prediction systems is
beyond the scope of this paper. Fickett and Hatzigeorgiou
(1997) provide an excellent review of the field.

We can broadly identify three different approaches to
promoter prediction, with at least one GASP submission in
each category. The first class consists of “search by signal”

Table 2. Gene-Finding Submissions

programs, which identify single binding sites of proteins in-
volved in transcription initiation or combinations of sites to
improve the specificity. The program Corelnspector by
Werner’s group (M. Scherf, A. Klingenhoff, and T. Werner, in
prep.) belongs to this category and searches for co-
occurrences of two common binding sites within the core
promoter (the core promoter usually denotes the region
where the direct contact between the transcription machin-
ery, the holoenzyme of the transcription complex, and the
DNA takes place). The second class is often termed “search by
content,” as programs within this group do not rely on spe-
cific signals but take the more general approach of identifying
the promoter region as a whole, frequently based on statistical
measures. Sometimes the promoter is split into several regions
to obtain more accurate statistics. The MCPromoter program
(Ohler et al. 1999) is a member of this second group. In com-
parison with the signal-based group, the content-based sys-
tems usually are more sensitive but less specific. The third
class can be described as “promoter prediction through gene
finding.” Simply using the start of a gene prediction as a pu-
tative TSS can be very successful if the 5" UTR region is not too
large. This approach can be improved by including similarity
to EST sequences and/or a promoter module in the statistical
systems used for gene prediction. The TSS predictions submit-
ted by the participants of the MAGPIEand the Genie groups
belong to this last class.

The notorious difficulty of the problem itself is exacer-
bated by the limited amount of existing reliably annotated
training material. The experimental mapping of a TSS is a
laborious process and is therefore not routinely carried out,
even if the gene itself is studied extensively. So, both training
the models and evaluating the results is a difficult task, and
the conclusions we draw from the results must be considered
with much caution.

Repeat Finders

Detecting repeated elements plays a very important role in
modeling the three-dimensional structure of a DNA molecule,
specifically, the packing of the DNA in the cell nucleus. It is
believed that the packing of the DNA around the nucleosome
is correlated with the global sequence structure produced pre-
dominantly by repetitive elements. Repeats also play a major
role in evolution (for review, see Jurka 1998). Two groups,
Gary Benson [tandem repeats finder v. 2.02 (TRF, Benson
1999)] and the MAGPIEteam using two programs Calypso (D.
Field, unpubl.) and REPuter (Kurtz and Schleiermacher 1999)
submitted repetitive sequence an-
notations. TRF (Benson 1999) lo-
cates approximate tandem repeats

Program EST/cDNA  Protein (i.e, two or more contiguous, ap-

name  Statistics Promoter alignment similarity proximate copies of a pattern of

nucleotides) where the pattern size

Mural et al. is unspecified but falls within the
(Oakridge, US) GRAIL X X range from 1 to 500 bases. The Ca-
Guigo et al. lypso program (D. Field, unpubl.)
Krglz]al:celona, ) ezl % is an evolutionary genomics pro-
(Copenhagen, DK) HMMGene X X X gram. I.ts prirr?ary f}mction is to find
Solovyev et al. repetitive regions in DNA and pro-
(Sanger, UK) FGenes X tein sequences that have higher
Gaasterland et al. than average mutation rates. The
(Rockefeller, US) MAGPIE X X X REPuter program (Kurtz and
Reese et al. Schleiermacher 1999) determines
(Berkeley/Santa Cruz, US) ~ Genie X X X X repeats of a fixed preselected length
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Protein Homology Annotation

Homologies to gene sequences from other organisms can of-
ten be used to identify protein-coding regions in anonymous
genomic sequence. In addition to the location, it is often pos-
sible to infer the function of the predicted gene based on the
function of the homologous gene in the other organism or of
a known structural and functional protein element in the
gene. Whereas the tools in the gene prediction category and
the EST/cDNA alignment category are usually intended to de-
termine the exact structure of a gene, the protein homology-
based tools are usually optimized to find conserved parts of
the sequence without worrying about the exact gene struc-
ture. Traditionally, this area of genome annotations has been
dominated by the suite of local alignment search tools of
BLAST (Altschul et al. 1990) and more global search tools such
as FASTA (Pearson and Lipman 1988). Recent reviews in this
area include Agarwal and States (1998), Marcotte et al. (1999),
and Pearson (1995).

In the GASP experiment, two groups specializing in func-
tional protein domain or motif identification in genomic
DNA submitted annotations. The Henikoff group found hits
to the BLOCKS+database (http://blocks.fhcrc.org), a database
consisting of conserved protein motifs (Henikoff and Heni-
koff 1994; Henikoff et al. 1999a). The second group in this
category submitted results from the GeneWise program (Bir-
ney 1999). This program searches genomic DNA against a
comprehensive hidden Markov model (HMM)-based library
(PFAM Sonnhammer et al. 1997, 1998; Bateman et al. 2000) of
protein domains. Both programs look for conserved regions
by searching translated DNA against a representation of mul-
tiple aligned sequences. Whereas in BLOCKS+the multiple
protein alignments consist of sets of ungapped regions, the
GeneWise program searches against a gapped alignment.
Both methods will turn up distantly related sequences.

EST/cDNA Alignment

Computational predictions of gene location and structure go
hand in hand with EST/cDNA sequencing and alignment
techniques for building transcript annotations in genomic se-
quence. Either can be used as a discovery tool, with the other
held in reserve for verification. A researcher can verify the
existence and structure of predicted genes by sequencing the
corresponding mRNA molecules and aligning their sequences
to the original genomic sequence. Alternatively, one can start
with an EST or cDNA sequence and build an alignment to the
genomic sequence that has been guided and/or verified by
tools from the gene prediction arsenal, for example, using
likely splice site locations and checking for long ORFs and
potential frame shifts.

There are many tools for aligning sequences. Although
they have generally been specialized for aligning sequences
that are evolutionarily related, some are designed for niche
applications such as recognizing overlaps among sequencing
runs. Aligning EST/cDNA sequences to the original genomic
sequence also presents a unique set of tradeoffs and issues. In
some cases (interspecies EST/genomic alignments), these tools
must model evolutionary changes in the sequence. Some-
times (e.g., for low-quality EST sequences), they need to
model errors in the sequence generated by the sequencing
process. For multiexon genes, they need to model the intron
regions as cost-free gaps tied to a model for recognizing splice
sites. Several tools have been developed for this task: Mott
(1997) and Birney and Durbin (1997) describe dynamic pro-
gramming approaches that include models of splice sites and

intron gaps. Florea et al. (1998) describe sim4 , a heuristic tool
that performs as well as the dynamic programming ap-
proaches and is efficient enough to support searching of large
databases of genomic sequence.

Using ¢cDNA clones and their sequences to build tran-
script annotations requires a variety of operations. The tools
discussed above align the cDNA sequences to the genomic
sequence, but steps must be taken to filter out clones that are
merely paralogs of genes in the sequence and to recognize and
handle various laboratory artifacts. If the clones represent
short ESTs, then a likely annotation can be built by assem-
bling a consistent model from their individual alignments.
Longer ESTs or cDNAs might generate several similar align-
ments, and an automated tool must be able to select the most
biologically meaningful variant. Although there are some
gene prediction tools that can use information about homolo-
gies to known genes or ESTs, and most large-scale sequencing
centers have some automated sanity checking for their data-
base search results, there are not any tools that automate the
production of transcript annotations from cDNA sequences.

Gene Function

Gene function predictions are the most difficult annotations
to produce and to evaluate. Current technologies use similar-
ity to proteins (or protein domains) with known function to
predict functional domains in genomic sequence. Although
some tools use simple sequence alignments, more powerful
tools have developed significantly more sensitive models.

It quickly became apparent that a consistent and correct
assessment of function predictions as part of the GASP experi-
ment was not possible because of the incomplete understand-
ing of the protein products encoded by the 222 genes in the
Adh region.

Evaluating Gene Predictions

An ideal gene prediction tool would produce annotations that
were exactly correct and entirely complete. The fact that no
existing tool has these characteristics reflects our incomplete
understanding of the underlying biology as well as the diffi-
culty to build adequate gene models in a computer. Although
no tool is perfect, each tool has particular strengths and weak-
nesses, and any performance evaluation should be in the con-
text of an intended use. For example, researchers who are
interested in identifying gene-rich regions of a genome for
sequencing would be happy with a tool that successfully rec-
ognizes a gene’s approximate location, even if it incorrectly
described splice site boundaries. On the other hand, someone
trying to predict protein structures is more interested in get-
ting a gene’s structure exactly right than in a tool’s ability to
predict every gene in the genome.

When assessing the accuracy of predictions, each predic-
tion falls into one of four categories. A true-positive (TP) pre-
diction is one that correctly predicts the presence of a feature.
A false-positive (FP) prediction incorrectly predicts the pres-
ence of a feature. A true-negative (TN) prediction is correct in
not predicting the presence of a feature when it isn’t there. A
false-negative (FN) prediction fails to predict the existence of
a feature that actually exists. The sensitivity (Sn) of a tool is
defined as TP / (TP + FN) and can be thought of as a measure
of how successful the tool is at finding things that are really
there. The specificity (Sp) of a tool is defined as TP / (TP + FP)
and can be thought of as a measure of how careful a tool is
about not predicting things that aren’t really there. Burset and
Guigd (1996) also use a correlation coefficient and an average
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correlation coefficient. We chose not to use these measures
because they depend on predictors’ TN information, and we
recognize that our evaluation sets were constructed in such a
way that the TN information is not trustworthy. These Sn and
Sp metrics are used for evaluating the submissions in the
gene-finding, promoter recognition, and gene identification
using protein homology categories. In the gene finding cat-
egory, they are used for all three levels: base level, exon level,
and gene level. In the protein homology category, they are
used for base level and gene level only.

In one of the first reviews of gene prediction accuracy,
Fickett and Tung (1992) developed a method that measured
predictors’ ability to correctly recognize coding regions in ge-
nomic sequence. They used their method to compare pub-
lished techniques and concluded that in-frame hexamer
counts were the most accurate measure of a region’s coding
potential. Burset and Guigo (1996) recognized that there are a
wide variety of uses for gene predictions and developed mea-
sures—including base level, exon level, and gene level Sp and
Sn—that describe a predictor’s suitability for a particular task.

Base Level

The base level score measures whether a predictor is able to
correctly label a base in the genomic sequence as being part of
some gene. It rewards predictors that get the broad sweeps of
a gene correct, even if they don’t get the details such as the
splice site boundaries entirely correct. It penalizes predictors
that miss a significant portion of the coding sequence, even if
they get the details correct for the genes they do predict. We
used the Sn and Sp measures defined above as the measures of
success in this category.

Exon Level

Exon level scores measure whether a predictor is able to iden-
tify exons and correctly recognize their boundaries. Being off
by a single base at either end of the exon makes the prediction
incorrect. Because we only considered coding exons in our
assessment, the first exon is bracketed by the start codon and
a 5’ splice site, the last exon is bracketed by a 3’ splice site and
the stop codon, and the interior exons are bracketed by a pair
of splice sites. As measures of success in this category, we used
two statistics in addition to Sn and Sp. The missed exon (ME)
score is a measure of how frequently a predictor completely
failed to identify an exon (no prediction overlap at all),
whereas the wrong exon (WE) score is a measure of how fre-
quently a predictor identifies an exon that has no overlap
with any exon in the standard sets. The ME score is the per-
centage of exons in the standard set for which there were no
overlapping exons in the predicted set. Similarly, the WE
score is the percentage of exons in the predicted set for which
there were no overlapping exons in the standard set.

Gene Level

Gene level Sn and Sp measure whether a predictor is able to
correctly identify and assemble all of a gene’s exons. For a
prediction to be counted as a TP, all of the coding exons must
be identified, every intron—-exon boundary must be exactly
correct, and all of the exons must be included in the proper
gene. This is a very strict measure that addresses a tool’s ability
to perfectly identify a gene. In addition to the Sn and Sp
measures based on absolute accuracy, we used the missed
genes (MG) score as a measure of how frequently a predictor
completely missed a gene (a standard gene is considered
missed if none of its exons are overlapped by a predicted
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coding gene) and the wrong genes (WG) score as a measure of
how frequently a predictor incorrectly identified a gene (a
prediction is considered wrong if none of its exons are over-
lapped by a gene from the standard set).

Split and Joined Genes

The exon level scores discussed above measure how well a
predictor recognizes exons and gets their boundaries exactly
correct. The gene level scores measure how well a predictor
can recognize exons and assemble them into complete genes.
Neither of these scores directly measures a predictor’s ten-
dency to incorrectly assemble a set of predicted exons into
more or fewer genes than it should. We developed two new
measures, split genes (SG) and joined genes (JG), which de-
scribe how frequently a predictor incorrectly splits a gene’s
exons into multiple genes and how frequently a predictor
incorrectly assembles multiple genes’ exons into a single
gene. Because the coverage of the stdl data set is so incom-
plete, we have only included SG and JG scores from the com-
parison with std3. A gene from the standard set is considered
split if it overlaps more than one predicted gene. Similarly, a
predicted gene is considered joined if it overlaps more than
one gene in the standard set. The SG measure is defined as the
sum of the number of predicted genes that overlap each stan-
dard gene divided by the number of standard genes that were
split. Similarly, the JG measure is the sum of the number of
standard genes that overlap each predicted gene divided by
the number of predicted genes that were joined. A score of 1
is perfect and means that all of the genes from one set overlap
exactly one gene from the other set.

Application of These Measures to Correct Answer Data Sets stdl/std3
We built the std1 data set in such a way that we believe it is
correct in the details of the genes that it describes, though we
know that it only includes a small portion of the genes in the
region. The std3 data set, on the other hand, is as complete as
was possible but does not have rigorous independent evi-
dence for all of its annotations. For the std1 data set, we be-
lieve that the TP count (it was predicted, and it exists in the
standard) and FN count (it was not predicted, but it does exist
in the standard) are reliable because of the confidence that we
have in the correctness of the predictions in the set. On the
other hand, we do not believe that the TN count (it was not
predicted, and it is not in the standard set) and FP count (it
was predicted, but is not in the standard set) are reliable be-
cause they both assume that the standard correctly describes
the absence of a feature and we know that there are genes
missing from std1. It follows that we believe that Sn is mean-
ingful for std1 because it only depends on TP and FN but that
we are less confident about the Sp score because it depends on
TP and FP. A similar logic applies to the std3 data set, where
our confidence in the set’s completeness but not its fine de-
tails suggests that the TP and FP scores are usable but that the
TN and FN scores are not. This means that for std3, we believe
that the Sp measure can be used to describe a predictor’s per-
formance but that Sn is likely to be misleading.

Evaluation of Promoter Predictions

We adopted the measures proposed by Fickett and Hatzigeor-
giou (1997). They evaluated the success of promoter predic-
tions by giving the percentage of correctly identified TSSs ver-
sus the FP rate. A TSS is regarded as identified if a program
makes one or more predictions within a certain “likely” re-
gion around the annotated site. The FP rate is defined as the

75



76

Chapter 3. Comparative Gene Finding

Genome Annotation Assessment in Drosophila

number of predictions within the “unlikely” regions outside
the likely regions divided by the total number of bases con-
tained in the unlikely set. As our annotation of the TSS is only
preliminary and not experimentally confirmed, we chose a
rather large region of 500 bases upstream and 50 bases down-
stream of the annotated TSS as the likely region. The upstream
region is always taken as the likely region, even if it overlaps
with a neighboring gene annotation on the same strand. The
unlikely region for each gene then consists of the rest of the
gene annotation, from base 51 downstream of the TSS to the
end of the final exon.

Visualization of the Annotations

Generating “good” annotations generally requires integrating
multiple sources of information, such as the results of various
sequence analysis tools plus supporting biological informa-
tion. Visualization tools that display sequence annotations in
a browsable graphical framework make this process much
more efficient. In this experiment we found that visualization
tools are essential to evaluate the genome annotation submis-
sions. When annotations are displayed visually, overall trends
become apparent, for example, gene-rich versus gene-poor re-
gions, genes that were predicted by most participants versus
those that were predicted by few. Additionally, as we discuss
below, a visualization tool that is capable of displaying anno-
tations at multiple levels of detail provides a way to examine
individual predictions in detail.

Building genome annotation visualization tools is a
daunting task. Many such tools have been developed, starting
with ACeDB (Eeckman and Durbin 1995; Stein and Thierry-
Mieg 1998). We were fortunate in that the BDGP has built a
flexible suite of genome visualization tools (Helt et al. 1999)
that could be extended to display the GASP submissions. We
adapted the BDGP’s annotated clone display and editing tool,
CloneCurator  (Harris et al. 1999), which is based on a ge-
nomic visualization toolkit (Helt et al. 1999), to read the an-
notation submissions in GFFformat and display each team’s
predictions in a unique color and location.

CloneCurator  (see Fig. 1) displays features on a se-
quence as colored rectangles. Features on the forward strand
appear above the axis, whereas those on the reverse strand
appear below the axis. The display can be zoomed and
scrolled to view areas of interest in more detail. A configura-
tion file identifies the feature types that are to be displayed
and assigns colors and offsets to each one. For example, the
std1 and std3 exons appear in yellow and orange close to the
central axis.

RESULTS

The results of an experiment such as GASP are only
meaningful if enough groups participate. We were for-
tunate to have 12 diverse groups involved, and we were
very grateful for the speed with which they were able
to submit their predictions. We believe that these 12
groups provide a fair representation of the state of the
art in annotation system technology. We collected
submissions by electronic mail and evaluated them us-
ing the std1 and std3 data sets as described above. Be-
fore releasing our results at the Intelligent Systems in
Molecular Biology conference in August 1999 in
Heidelberg, Germany, we assembled a team of inde-
pendent assessors (Ashburner et al. 1999a) to review

our techniques and conclusions. As discussed in the
introduction, the accuracy of the various measures dis-
cussed below depends heavily on how well our stan-
dard sets capture the true set of features in the region.
These values should only be considered in the context
of the standard data sets.

A detailed description of the results and the evalu-
ation techniques we used can be accessed through the
GASP homepage at http://www.fruittly.org/GASP/.

Gene Finding

Table 3 summarizes the performance of the gene-
finding tools using the measures defined above. Three
groups submitted multiple submissions. The first
group, Fgenesl, Fgenes2, and Fgenes3, submitted
three predictions at varying stringency (for details, see
Salamov and Solovyev 2000). For the GenelD program,
two submitted versions are presented, version 1 (Ge-
nelD vl ) being the original submission and version 2
(GenelD v2) being a newer submission from a cor-
rected version of the original program (for details, see
Parra et al. 2000). The third group with multiple sub-
missions used three versions of the Genie program:
the first a pure statistical approach (Genie ), the second
including EST alignment information (GenieEST ), and
the third using protein homology information (Ge-
nieESTHOM (for details, see Reese et al. 2000). For all
other groups from Table 2, only one submission was
evaluated. The following sections discuss the base
level, exon level, and gene level performance of these
submissions.

Base Level Results

Several gene prediction tools had a Sn of >0.95 at the
base level. This suggests that current technology is able
to correctly identify >95% of the D. melanogaster pro-
teome. A few tools demonstrated a specificity of >0.90
at the base level, only infrequently labeling a noncod-
ing base as coding. Generally, the tools have a higher
Sn than Sp. Two programs, Fgenes2 and GenelD, were
designed to be conservative about their predictions
and do not follow this trend.

Exon Level Results

There was a great deal of variability in the exon level
scores. Several tools had Sn scores [0.75, correctly
identifying both exon boundaries [75% of the time.
Their Sps were generally much lower (the highest was
0.68), probably a reflection of the strict definition of
exon level scores both splice sites had to be predicted
correctly and possible inaccuracies in the std3 data set.
The low ME scores (several <0.05) combined with the
fairly high Sn suggest that several tools were successful
at identifying exons but had trouble finding the cor-
rect exon boundaries. Programs that incorporate EST
alignment information, such as GenieEST and HM-
MGene had sensitivity scores that were up to 10% bet-
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ter than the other tools. The high WE scores suggest
either that the tools are overpredicting or that there are
genes that are missing even from std3.

Gene Level Results

All of the predictors had considerable difficulty cor-
rectly assembling complete genes. The best tools were
able to achieve Sns between 0.33 and 0.44, meaning
that they are incorrect over half of the time. This value
seems to be very similar in Drosophila and human se-
quences, based on a recent analysis of the BRCA2 re-
gion in human (T.J. Hubbard, pers. comm.). Even on
the more complete std3 data set, the programs tended
to incorrectly predict many genes. The very low MG
score (as low as 4.6%) is reassuring because it suggests
that several tools are able to recognize a gene, even if
they have difficulty figuring out the exact details of its
structure. Comparing the WG and MG measures sug-
gests that existing tools tend to predict genes that do
not exist more often than they miss genes that do exist.
Because it is almost certain that there are real genes
that are missing from both standard sets, this conclu-
sion must be viewed with some skepticism. Although
there were several tools with good SG or JG scores,
none of them performed well in both categories.

Promoter Prediction
Table 4 shows the performance of the promoter pre-

Figure 1 (See facing page.) Screen shot from the CloneCurator

diction systems, grouped by approach: search-by-
signal, search-by-region, and gene prediction pro-
grams.

Gene-finding programs that include a prediction
of the TSS obtained the best results. The number of
false predictions made by the region-based programs is
very high (giving them a low Sp), and because the sig-
nal-specific programs only identify one promoter, their
Sn is very low. The high Sp of the gene finders is ob-
viously due to the context information: All promoter
predictions within gene predictions are ruled out in
advance, and the location of the possible start codon
provides the system with a good initial guess of where
to look for a promoter. The MAGPIEsystem also uses
EST alignments to obtain information on 5’ UTRs,
which mirrors the way the std sets were constructed:
Roughly one-third of the putative TSS assignments rely
on cDNAs that were publicly available in GenBank. A
closer look at the results reveals that the region-based
programs have a Sn that is comparable with the gene
finders and the signal based program had only a single
FP, showing that both types of tools can be used for
different applications.

Our data set, and the evaluation based on it, relies
on the assumption that the 5’ ends of the full-length
cDNAs are reasonably close to the TSS. This makes it
very hard to draw strong conclusions from the pre-

program (Harris et al. 1999), featuring the genome annotations

of all 12 groups for the 2.9-Mb Adh region. The main panel shows the computational annotations on the forward (above axis) and
reverse sequence strands (below axis). Genes located on the top half of each map are transcribed from distal to proximal (with
respect to the telomere of chromosome are 2L); those on the bottom are transcribed from proximal to distal. Right below the axis
are the two repeat finding results displayed, followed by reference sets from Ashburner et al. (1999b; std1 and std3), followed by
the 12 submissions of gene-finding programs, followed by the two protein homology programs, and eventually, farthest away from
the axis, the four promoter recognition programs. (Left) The color-coded legend for the program and the number of predictions

made by the programs.

Program identifier Color Reference
TRF seafoam Benson (1999)

Calypso lightblue D. Field (unpubl.)

stdl yellow unpublished conservative alignment of cDNAs
std3 orange Ashburner et al. (1999b)
Grailexp red-orange Uberbacher and Mural (1991)
GeneMarkHMM red Besemer and Borodovsky (1999)
GenelD hotpink Guigb et al. (1992)
FGenesCGG1 pink Solovyev et al. (1995)
FGenesCGG2 magenta Solovyev et al. (1995)
FGenesCGG3 purple Solovyev et al. (1995)
HMMGene cornflower Krogh (1997)

MAGPIEexon blue Gaasterland and Sensen (1996)
MAGPIE turquoise Gaasterland and Sensen (1996)
Genie seagreen Reese et al. (1997)

GenieEST green Kupl et al. (1997)
GenieESTHOM chartreuse Kulp et al. (1997)

GeneWise red Birney (1999)

BLOCKS pink Henikoff et al. (1999b)
MAGPIEProm purple T. Gaasterland, (unpubl.)
LMEIMC blue Ohler et al. (1999)

LMESSM dark green Ohler et al. (2000)
GeniePROM chartreuse Reese (2000)
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Table 3. Evaluation of Gene-Finding Systems
FGenes FGenes FGenes GenelD GenelD Genie  Genie MAGPIE
1 2 3 vl Genie EST ESTHOM HMMGene exon  GRAIL
Base Sn 0.89 0.49 0.93 0.48 0.86 0.96 0.97 0.97 0.97 0.96 0.81
level std1
Sp 0.77 0.86 0.60 0.84 0.83 0.92 0.91 0.83 0.91 0.63 0.86
std3
Exon Sn 0.65 0.44 0.75 0.27 0.58 0.70 0.77 0.79 0.68 0.63 0.42
level std1
Sp 0.49 0.68 0.24 0.29 0.34 0.57 0.55 0.52 0.53 0.41 0.41
std3
ME (%) 10.5 45.5 5.6 54.4 8.1 4.8 3.2 4.8 121 243
std1
WE (%) 31.6 17.2 53.3 47.9 17.4 20.1 22.8 20.2 50.2 28.7
std3
Gene  Sn 0.30 0.09 0.37 0.02 0.26 0.40 0.44 0.44 0.35 0.33 0.14
level std1
Sp 0.27 0.18 0.10 0.05 0.10 0.29 0.28 0.26 0.30 0.21 0.12
std3
MG (%) 9.3 34.8 9.3 44.1 4.6 4.6 4.6 6.9 4.6 16.2
std1
WG (%) 243 24.8 523 22.2 10.7 13.0 15.5 14.9 55.0 23.7
std3
SG 1.10 1.10 2.11 1.06 1.06 117 1.15 1.16 1.04 1.22 1.23
|G 1.06 1.09 1.08 1.62 1.11 1.08 1.09 09 1.12 1.06 1.08

The evaluation is divided into three categories: base level, exon level, and gene level. The different statistical features reported are Sn,
Sp, ME, WE, MG, WG, SG, and ]G. std1 and std3 indicate against which standard set the statistics are reported.

sented results. Even the most sensitive systems could
identify only roughly one third of the start sites. This
could of course be caused by the fact that the existing
annotation is only an approximation and some of the
true TSSs may be located further upstream. It also hints
at the diversity of promoter regions that mirrors the
possibilities for gene regulation and at the existing bias
toward housekeeping genes in the current data sets
used for the training of the models.

Gene Identification Using Protein Homology
Gene-finding evaluation statistics, such as those de-
scribed above, can be used to summarize the ability of

Table 4. Evaluation of Promoter Prediction Systems

a program to identify complete and accurate gene
structures in genomic DNA. In Table 5 we have applied
the same evaluation statistics to the homology-based
search programs GeneWise and BLOCKS+ Because
these programs are not optimized to deal with exact
exon boundary assignments, Table 5 only shows the
performance for the base level and the MG and WG.
The very low Sns at the base level are not surpris-
ing, because the programs identify only conserved pro-
tein motifs or particular domains and make no effort to
predict complete genes. Sp, which should be high
given that only conserved protein motifs are scored,
was lower than expected. Detailed studies of these pre-

Rate of false-positive
predictions in region®

Rate of predictions
in region®

79

System name Sensitivity (853,180 bases) (2,570,232 bases)
Corelnspector 1 (1%) 1/853,180 1/514,046
MCPromoter v1.1 26 (28.2%) 1/2,633 1/2,537
MCPromoter v2.0 31 (33.6%) 1/2,437 1/2,323
GeniePROM 25 (27.1%) 1/14,710 1/28,879
GenieESTPROM 30 (32.6%) 1/16,729 1/29,542
MAGPIE 33 (35.8%) 1/14,968 1/16,370

We show the Sn for identified TSSs in comparison with the FP rate for non-TSS regions and general gene regions: “the unlikely region
defined as the rest of the gene starting 51 bases downstream from its annotated TSS; the general gene region, spanning from half
the distance to the previous and next annotated genes including the annotated TSS (taken from the std3 annotation).

494 Genome Research

www.genome.org



80

Chapter 3. Comparative Gene Finding

Genome Annotation Assessment in Drosophila

Table 5. Evaluation of Similarity Searching

MAGPIE MAGPIE Grail
BLOCKS GeneWise cDNA EST Similarity
Base level Sn std1 0.04 0.12 0.02 0.31 0.31
Sp std3 0.80 0.82 0.55 0.32 0.81

Gene level MG (%) std1 62.7 95.3 27.9 41.8
WG (%) std3 12.9 0.0 44.3 7.4

Base and gene level statistics are shown. The base level is described using Sn and Sp, and the statistics for the gene level are given as

MG and WG.

dictions (see Birney and Durbin 2000; Henikoff and
Henikoff 2000) show that most of the FP predictions
were hits to transposable elements or to possible genes
that are missing in the standard sets. Both programs
use a database of protein domains or conserved pro-
tein motifs. Both databases are large and are believed
to contain at least 50% of the existing protein do-
mains. The high number of MG, 62.7% for BLOCKS
and 69.7% for GeneWise, means that these programs
will miss a significant number of Drosophila genes
when used to search genomic DNA directly. The WG
scores of 12.9% BLOCKSand 14.1% for GeneWise are
lower than the gene finding programs discussed in the
previous section.

Gene Identification Using EST/cDNA Alignments

It is believed that some cDNA information exists for
approximately half of the genes in the D. melanogaster
genome. This cDNA database (available as the EST
data set at the GASP web site) was used as a basis for
the cDNA/EST alignment category. The Sn of 31% for
MAGPIEESTand GrailSimilarity (Table 5) implies
that the coding portion of the available EST data cur-
rently covers one-third of the genome’s coding se-
quence. The low Sp is very surprising and suggests that
the EST/cDNA alignment problem is not a trivial one.
The only program that tried to align complete cDNAs
to genomic DNA, MAGPIECDNA could find complete
cDNAs for only 2.4% of the genes. EST alignments also
resulted in high numbers of missed genes, suggesting
that the EST libraries are biased toward highly ex-
pressed genes. The high WG scores suggest that some
genes are missing even from std3.

Selected Gene Annotations
The summary statistics discussed above only provide a
global view of the predicting programs’ characteris-
tics. A much better understanding of how the various
approaches behave can be obtained by looking at in-
dividual gene annotations. Such a detailed examina-
tion can also help identify issues that are not ad-
dressed by current systems.

In the following paragraphs we will discuss a few

interesting examples. Figure 1 shows the color codes of
the participating groups that are used throughout this
section. Genes located on the top of each map are tran-
scribed from distal to proximal (with respect to the
telomere of chromosome arm 2L); those on the bottom
are transcribed from proximal to distal. std1 and std3
are the expert annotations described in Ashburner et
al.(1999b). Just below the axis, you can see the anno-
tations for the two repeat finding programs. These
have no sequence orientation and are therefore only
shown on one side. Farther away from the axis, after
stdl and std3, we grouped all of the ab initio gene-
finding programs together. Next to the gene finders are
the homology-based annotations. On the bottom and
the top of the figure we show the three promoter an-
notations, but for clarity we did not include these an-
notations in the subsequent figures. (On the front page
and in the legend of Fig. 1, you can see the full set of
annotations of all programs, which are also accessible
from the GASP web site.)

Our first example is a “busy” region with 12 com-
plete genes and 1 partial gene in a stretch of only 40 kb
(Fig. 2A). This region is located at the 3’ end of the Adh
region from base 2,735,000 to base 2,775,000. Genes
exist on both strands, and it is striking that in this
region the genes tend to alternate between the forward
and the reverse strands. We selected this region for its
gene density and because it has characteristics that are
typical of the complete Adh region. Figure 2A vividly
demonstrates that all of the gene-finding programs’
predictions are highly correlated with the annotated
genes from std1/std3. In the past, gene finders had of-
ten mistakenly predicted a gene on the noncoding
strand opposite of a real gene, leading to FP predictions
known as “shadow exons.” Figure 2A makes it clear
that gene finders have overcome this problem, because
there are almost no shadow exon predictions for any of
the genes in std3. Another characteristic, captured in
the high base level sensitivity and the low missing
genes statistics, is that every gene in the std3 set was
predicted by at least a few groups and that most of
these predictions agree with each other. Except for the
second and third genes [DS02740.5, 1(2)35Fb] on the
forward strand (2,740,000-2,745,000), which seem to
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Figure 2 (A) Annotations for the following known genes described in Ashburner et al. (1999b) are shown for the region from 2,735,000
to 2,775,000 (from the left to the right of the map): crp (partial, reverse (r)), DS02740.4 (forward (f)), DS02740.5 (f), 1(2)35Fb (f), heix (r),
DS02740.8 (f), DS02740.9 (r), DS02740.10 (f), anon-35Fa (r), Sed5 (f), cni (r), fzy (), cact (r). (B) Annotations for the following known gene
described in Ashburner et al. (1999b) are shown for the region from 600,000 to 635,000 (left to right): DS01759.1 (r).

be single exon genes, all of the genes in this region are
multiexon genes with between two and eight exons.
The exon size varies widely. There are genes that con-
sist of only two large exons, some that consist of a mix
of large and small exons, and some that are made up
exclusively of many small exons. The distribution
seems to be almost random. Except for the long final
intron in the last gene on the reverse strand (cact), the
region consists exclusively of short introns.
Predictions on the reverse strand indicate a pos-
sible gene from base 2,741,000 to base 2,745,000. Most
of the gene finders agree on this prediction, but neither
stdl nor std3 describes a gene at this location. This
could be a real gene that was missed by the expert
annotation pathway described in Ashburner et al

496 Genome Research
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(1999b). Neither BLOCKS+nor GeneWise found any
homologies in this region, but we can see from the
table in the previous section that many real genes do
not have any homology annotations. Interestingly,
this is the only area in the region where two gene find-
ers predicted a possible gene that likely consists of
shadow exons.

The fifth gene on the forward strand (DS02740.10,
bases 2,752,500-2,755,000) shows that long genes
with multiple exons are much harder to predict than
single exon genes or genes with only a few exons. In
this region splitting and joining genes does not seem
to be a problem. Repeats occur sparsely and mostly in
noncoding regions, predominantly in introns.

In contrast to the busy region in Figure 2A, Figure



82

Chapter 3. Comparative Gene Finding

Genome Annotation Assessment in Drosophila

2B highlights a region of almost equal size in which
only one gene (DS01759.1) is present in both std1 and
std3. There are very few FP predictions by any group,
but there is one case where the “false” predictions by
different programs are located at very similar positions
(on the reverse strand near base 620,000). This suggests
a real gene that is missing from both standard sets.

Figure 3, A-D, depicts selected genes that illustrate
some interesting challenges in gene finding. Figure 3A
shows the Adh and the Adhr genes that occur as gene
duplicates. The encoded proteins have a sequence
identity of 33%. The positions of the two introns in-
terrupting the coding regions are conserved and give
additional evidence to tandem duplication. Both genes
are under the control of the same regulatory promoter,
the Adhr gene does not have a TSS of its own, and its
transcript is always found as part of an Adh-Adhr dic-
istronic mRNA. Gene duplications occur very fre-
quently in the Drosophila genome—estimates show
that at least 20% of all genes occur in gene family du-
plications. In an additional twist, Adh and Adhr are
located within an intron of another gene, outspread
(osp), that is found on the opposite strand (for details,
see Fig. 3B). The Adh gene is correctly predicted by
most of the programs, although one erroneously pre-
dicts an additional first exon. Most of the programs
also predict the structure of Adhr correctly; one pro-
gram misses the initial exon and shortens the second
exon. Both Adh and Adhr show hits to the protein mo-
tifs in BLOCKS+as well as alignments to a PFAM pro-
tein domain family through GeneWise. Both genes hit
two different PFAM families, and the order of these two
domains is conserved in the gene structure.

Figure 3B highlights the osp gene region. This is an
example of a gene with exceptionally long (>20 kb)
introns, making it hard for any gene finder to predict
the entire structure correctly. In addition, there are a
number of smaller genes [including the Adh and Adhr
genes discussed above, DS09219.1 (x.) and DS07721.1
(f.)] within the introns of osp. No current gene finder
includes overlapping gene structures in its model; as a
consequence, none of the GASP gene finders were able
to predict the osp structure without disruption. This is
clearly a shortcoming of the programs because genes
containing other genes are often observed in Dro-
sophila (Ashburner et al. 1999b report 17 cases for the
Adh region). However, it should be noted that most of
the gene finders predict the 3’ end of osp correctly and
therefore get most of the coding region right. The re-
gion that includes the 5’ end of osp shows a lot of gene
prediction activity, but there is no consistency among
the predictions. One program (FGenesCCG3 does cor-
rectly predict the DS09219.1 gene.

Figure 3C shows the entire gene structure of the
Ca-a1D gene. This gene is the most complex gene in
the Adh region, with >30 exons. This is a very good

example for studying gene splitting. Several predictors
break the gene up into several genes, but some groups
make surprisingly close predictions. This shows the
complex structure that genes can exhibit and that ex-
tent to which this complexity has been captured in the
state-of-the-art prediction models. It is interesting to
note that most of the larger exons are predicted,
whereas the shorter exons are missed. Such a large
complex gene is a good candidate for alternative splic-
ing, which can ultimately be detected only by exten-
sive cDNA sequencing.

Figure 3D shows the triple duplication of the idgf
gene (idgf1, idgf2, and idgf3) on the forward strand.
Two programs mistakenly join the first two genes into
a single gene; all the others correctly predict all three
genes.

DISCUSSION

The goal of the GASP experiment was to review and
assess the state of the art in genome annotation tools.
We believe that the noncompetitive framework and
the community’s enthusiastic participation helped us
achieve that goal. By providing all of the participants
with an unprecedented set of D. melanogaster training
data and using unreleased information about the re-
gion as our gold standard, we were able to establish the
level playing field that made it possible to compare the
performance of the various techniques. The large size
of the Adh contig and the diversity of its gene struc-
tures provided us with an opportunity to compare the
capabilities of the annotation tools in a setting that
models the genome-wide annotations currently being
attempted. However, the lack of a completely correct
standard set means that our results should only be con-
sidered in the context of the std1 and std3 data sets.

Assessing the Results
The most difficult part of the assessment was develop-
ing a benchmark for the predicted annotations. By di-
viding the predictions into different classes and devel-
oping class-specific metrics that were based on the best
available standards, we feel that we were able to make
a meaningful evaluation of the submissions. Although
most of the information that was used to evaluate the
submissions was unreleased, some cDNA sequences
from the region were in the public databases. As se-
quencing projects move forward, it will become in-
creasingly difficult for future experiments to find simi-
larly unexplored regions. This makes it very different
from the CASP protein structure prediction contests,
which can use the three-dimensional structure of a
novel target protein that is unknown to the predictors.
As discussed in the introduction, the lack of an
absolutely correct standard against which to evaluate
the various predictions is a troubling issue. Although
we believe that the standard sets sufficiently represent
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1109500

Figure 3  (A) Annotations for the following known genes described in Ashburner et al. (1999b) are shown for the region from 1,109,500
to 1,112,500 (forward strand only) (left to right): Adh, Adhr. (B) Annotations for the following known genes described in Ashburner et al.
(1999b) are shown for the region from 1,090,000 to 1,180,000 (left to right): osp (r), Adh (f), Adhr (f), DS09219.1 (r), DS07721.1 (f). (C)
Annotations for the following known gene described in Ashburner et al. (1999b) are shown for the region from 2,617,500 to 2,640,000
(forward strand only) (left to right): Ca-a1D. (D) Annotations for the following known genes described in Ashburner et al. (1999b) are
shown for the region from 2,894,000 to 2,904,000 (forward strand only) (left to right): idgf1, idgf2, idgf3.
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the true nature of the region and that conclusions
based on them are interesting, it must be remembered
that the various results can only be evaluated in the
context of these incomplete data sets. This also makes
GASP more difficult and less clear cut than CASP, where
the three-dimensional protein structure is experimen-
tally solved at least to some degree of resolution.

It should also be noted that the gene-finding tools
with the highest Sp have a great deal in common with
GENSCANthe gene prediction tool used in the devel-
opment of the std3 data set. This suggests that std3’s
origins might have led to a bias favoring GENSCANtke
predictors. Because std1 was exclusively created using
full-length cDNA alignments, this set might be biased
towards highly expressed genes, because the cDNA li-
braries were not normalized.

Progress in Genome-Wide Annotation

The rapid release of completed genomes, including the
imminent release of the D. melanogaster and human
genomes, has driven significant developments in ge-
nome annotation and gene-finding tools. Problems
that have plagued gene-finding programs, such as pre-
dicting shadow exons, restricting predictions to a
single strand, recognizing repeats, and accurately iden-
tifying splice sites, have been overcome by the current
state of the art. In this section, we discuss some of the
remaining issues in genome annotation that the GASP
experiment highlighted.

Successful gene prediction programs use complex
models that integrate information from statistical fea-
tures that are driven by the three-dimensional protein—
DNA/RNA interactions. They make integrated predic-
tions on both strands and have been tuned to predict
all the genes in gene-rich regions and avoid overpre-
dicting genes in gene-poor regions (Fig. 2A,B). Al-
though most of the programs identify almost all the
existing genes (as evidenced by the Sn and MG statis-
tics), there is significant variation in their ability to
accurately predict precise gene structures (see the Sp
statistics, particularly at the exon level). If any global
performance conclusion can be drawn, it is that the
probabilistic gene finders (mostly HMM based) seem to
be more reliable. The integration of EST/cDNA se-
quence information into the ab initio gene finders [see
HMMGenge GenieEST, and GRAIL (Fig. 2A,B and Fig.
3A-D)] significantly improves gene predictions, par-
ticularly the recognition of intron-exon boundaries.
Some groups submitted multiple annotations of the
Adh region using programs that were tuned for differ-
ent tasks. The suite of Fgenes programs shows very
nicely the results of such a three-part submission. The
first Fgenes submission (Fgenesl) is a version ad-
justed to weight Sn and Sp equally. The second sub-
mission (Fgenes2 ) is very conservative and only an-
notates high-scoring genes. This results in a high Sp

but a low Sn. The third submission (Fgenes3) tries to
maximize Sn and to avoid missing any genes, at the
cost of a loss in Sp. These differently tuned variants
may be useful for different types of tasks.

A comparison (data not shown) to a gene-finding
system that was trained on human data showed that it
did not perform as well as the programs that were
trained on Drosophila data.

None of the gene predictors screened for transpos-
able elements, which have a protein-like structure. As
described in Ashburner et al. (1999b), the Adh region
has 17 transposable element sequences. Eliminating
transposons from the predictions or adding them to
the standard sets would have reduced the FP counts,
raising the Sp and lowering the WE and WG scores.
Although this accounts for a portion of the high FP
scores, we believe that there may also be additional
genes in this region not annotated in std3. Future bio-
logical experiments (Rubin 2000) to identify and se-
quence the predicted genes that were not included in
std3 should improve the completeness and accuracy of
the final annotations.

There were fewer submissions of homology-based
annotations than those by ab initio gene finders, and
their results were significantly affected by their FP
rates. A significant portion of those FPs were matches
to transposable elements, some appear to be matches
to pseudogenes, and others are likely to be real, but as
yet unannotated, genes. The homology-based ap-
proaches seem to be the most promising techniques for
inferring functions for newly predicted genes.

Even using EST/cDNA alignments to predict gene
structures is not as simple as expected. Paralogs, low
sequence quality of mRNAs, and the difficulty of clon-
ing infrequently expressed mRNAs make this method
of gene finding more complex than believed, and it is
difficult to guarantee completeness with this method.
Normalized cDNA libraries and other more sophisti-
cated technologies to purity genes with low expression
levels, along with improved alignment and annotation
technologies, should improve predictions based on
EST/cDNA alignments.

Lessons for the Future

To fully assess the submitted annotations, the correct
answer must be improved. Only extensive full-length
cDNA sequencing can accomplish this. A possible ap-
proach would be to design primers from predicted ex-
ons and/or genes in the genomic sequence and then
use hybridization technologies to fish out the corre-
sponding cDNA from cDNA libraries. For promoter
predictions, another way to improve the correct an-
swer is to make genome-to-genome alignments with
the DNA of related species (e.g., Caenorhabditis briggsae
vs. Caenorhabditis elegans; D. melanogaster vs. D. virilis).
More detailed guidelines, including how to handle am-
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biguous features such as pseudogenes and transposons,
will make the results of future experiments even more
useful.

A successful system to identify all genes in a ge-
nome should consist of a combination of ab initio gene
finding, EST/cDNA alignments, protein homology
methods, promoter recognition, and repeat finding.
All of the various technologies have advantages and
disadvantages, and an automated method for integrat-
ing their predictions seems ideal.

Beyond the identification of gene structure is the
determination of gene functions. Most of the existing
prototypes of such systems are based on sequence ho-
mologies. Although this is a good starting point, it is
definitely not sufficient. The state of the art for pre-
dicting function in protein sequences uses the pro-
tein’s three-dimensional structure, but the difficulty of
accurately predicting three-dimensional structure from
primary sequences makes applying these techniques
on complete genomes problematic. The new field of
structural genomics will hopefully give more answers
in these areas.

Another approach to function classification is the
analysis of gene expression data. Improvements in TSS
annotations, along with correlation in expression pro-
files, should be very helpful in identifying regulatory
regions.

Conclusions

The GASP experiment succeeded in providing an objec-
tive assessment of current approaches to gene prediction.
The main conclusions from this experiment are that cur-
rent methods of gene predictions are tremendously im-
proved and that they are very useful for genome scale
annotations but that high-quality annotations also de-
pend on a solid understanding of the organism in ques-
tion (e.g., recognizing and handling transposons).

Experiments like GASP are essential for the contin-
ued progress of automated annotation methods. They
provide benchmarks with which new technologies can
be evaluated and selected.

The predictions collected in GASP showed that for
most of the genes, overlapping predictions from differ-
ent programs existed. Whether or not a combination
of overlapping predictions would do better than the
best performing individual program was not explicitly
tested in this experiment. For such a test, additional
experiments such as cDNA library screening and sub-
sequent full-length cDNA sequencing in this selected
Adh test bed region would be necessary. These experi-
ments are currently under way, and it would be inter-
esting to perform a second GASP experiment when
more cDNAs have been sequenced.

We believe that existing automated annotation
methods are scalable and that the ultimate test will
occur when the complete sequence of the D. melano-
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gaster genome becomes available. This experiment will
set standards for the accuracy of genome-wide annota-
tion and improve the credibility of the annotations
done in other regions of the genome.

URLs

Gene Finding

HMMGeng http://www.cbs.dtu.dk/services/ HMMGene/;
GRAIL, http://compbio/ornl.gov/droso; Fgenes, http://
genomic/sanger.ac.uk/gf/gf.shtml; GenelD, http://www1/
imim.es/Crguigo/AnnotationExperiment/index.html; Genie ,
http://www.neomorphic. com/genie.

Promoter Prediction

MCPromoter , http://wwwS.informatik.uni-erlangen.de/HTML/
English/Research/Promoter; Corelnspector , http://
www.gsf.de/biodv.

Protein Homology

BLOCKS+ http://blocks.fhcrc.org and http:/blocks.fherc.org/
blocks-bin/getblock.sh?<block name>; GeneWise, http://
www.sanger.ac.uk/Software/Wise2/.

Repeat Finders
TRF, http://c3.biomath.mssm.edu/trf.test. html.
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A primary motivation for sequencing the mouse genome was to
accelerate the discovery of mammalian genes by using sequence
conservation between mouse and human to identify coding exons.
Achieving this goal proved challenging because of the large propor-
tion of the mouse and human genomes that is apparently conserved
but apparently does not code for protein. We developed a two-stage
procedure that exploits the mouse and human genome sequences to
produce a set of genes with a much higher rate of experimental
verification than previously reported prediction methods. RT-PCR
amplification and direct sequencing applied to an initial sample of
mouse predictions that do not overlap previously known genes
verified the regions flanking one intron in 139 predictions, with
verification rates reaching 76%. On average, the confirmed predic-
tions show more restricted expression patterns than the mouse
orthologs of known human genes, and two-thirds lack homologs in
fish genomes, demonstrating the sensitivity of this dual-genome
approach to hard-to-find genes. We verified 112 previously unknown
homologs of known proteins, including two homeobox proteins
relevant to developmental biology, an aquaporin, and a homolog of
dystrophin. We estimate that transcription and splicing can be veri-
fied for > 1,000 gene predictions identified by this method that do not
overlap known genes. This is likely to constitute a significant fraction
of the previously unknown, multiexon mammalian genes.

omplete and precise delineation of protein coding genes in
mammalian genomes remains a challenging task. To produce
a preliminary gene catalog for the draft sequence of the mouse (1),
the Mouse Genome Sequencing Consortium relied primarily on the
ENSEMBL gene build pipeline (2). ENSEMBL works by (i) aligning
known mouse cDNAs from REFSEQ (3), RIKEN (4, 5), and
SWISSPROT (6, 7) to the genome, (if) aligning known proteins from
related mammalian genes to the genome, and (i) using portions of
GENSCAN (8) predictions that are supported by experimental evi-
dence (such as ESTs). This conservative approach yielded ~23,600
genes. However, ENSEMBL cannot predict genes for which there is
no preexisting evidence of transcription (1). Furthermore, reliance
on known transcripts may lead to a bias against predicting genes that
are expressed in a restricted manner or at very low levels.
Before the production of a draft genome sequence for a
second mammal, the best available methods for predicting novel
mammalian genes were single-genome de novo gene-prediction
programs, of which GENSCAN (8) is one of the most accurate and
most widely used. These programs work by recognizing statistical
patterns characteristic of coding sequences, splice signals, and
other features in the genome to be annotated. However, they
tend to predict many apparently false exons caused by the
occurrence of such patterns by chance. With the availability of
draft sequences for both the mouse and human genomes, it is
now possible to incorporate genomic sequence conservation into
de novo gene prediction algorithms. However, DNA alignment
programs alone are not an effective means of gene prediction

1140-1145 | PNAS | February4,2003 | vol.100 | no.3

because a large fraction of the mouse and human genomes is
conserved but does not code for protein.

We developed a procedure that greatly reduces the false-positive
rate of de novo mammalian gene prediction by exploiting mouse—
human conservation in both an initial gene-prediction stage and an
enrichment stage. The first stage is to run gene-prediction programs
that use genome alignment in combination with statistical patterns
in the DNA sequence itself. A number of such programs have been
described (9-12). For these experiments, we used SGP2 (13) and
TWINSCAN (refs. 14 and 15 and http://genes.cs.wustl.edu), two such
programs that we designed for efficient analysis of whole mamma-
lian genomes. TWINSCAN is an independently developed extension
of the GENSCAN probability model, whereas SGP2 is an extension of
GENEID (16, 17). The probability scores these programs assign to
each potential exon are modified by the presence and quality of
genome alignments. TWINSCAN uses nucleotide alignment [BLASTN
(18), blast.wustl.edu] and has specific models for how alignments
modify the scores of coding regions, UTRs, splice sites, and
translation initiation and termination signals. SGP2, in contrast, uses
translated alignments [TBLASTX (18), blast.wustl.edu] to modify the
scores of potential coding regions only. These programs predict
many fewer exons than GENSCAN with no reduction in sensitivity to
the exons of known genes (13, 14).

The second stage of our procedure is based on the observation
that almost all mouse genes have a human counterpart with highly
conserved exonic structure (1). We therefore compare all mul-
tiexon genes predicted in mouse in the first stage to those predicted
in human. Predictions are retained only if the protein predicted in
mouse aligns to a human protein predicted by the same program,
with at least one predicted intron at the same location (aligned
intron, Fig. 1). Predicted single-exon genes are always discarded by
this procedure. Although there are many real single-exon genes, it
is not currently possible to predict them reliably nor to verify them
reliably in a cost-effective, high-throughput procedure.

In this article, we show that our two-stage process yields
>1,400 predictions outside the standard annotation of the
mouse genome. RT-PCR and direct sequencing of a single exon
pair in a sample of these predictions indicates that the majority
correspond to real spliced transcripts. Our results also show that
this procedure is sensitive to genes that are hard to find by other
methods. The combination of these computational and experi-
mental techniques forms a powerful, cost-effective system for
expanding experimentally supported genome annotation. This
approach is therefore expected to bring the annotation of the
mouse and human genomes nearer to closure.

Experimental Procedures

Genome Sequences. The MGSCv3 assembly of the mouse genome
described in ref. 1 and the December, 2001 Golden Path assembly

*R.G. and E.T.D. contributed equally to this work.

**To whom correspondence should be addressed. E-mail: brent@cse.wustl.edu.
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An example of predictions with aligned introns. RT-PCR positive predicted protein 3B1 (a novel homolog of Dystrophin) is aligned with its predicted human

ortholog (N-terminal regions shown; Upper of each row: mouse, Lower of each row: human). Each color indicates one coding exon. Three of four predicted splice
boundaries (color boundaries) align perfectly. Any one of these three is sufficient for surviving the enrichment step. Gaps in the alignment (shown as dashes) may

indicate mispredicted regions.

of the human genome (National Center for Biotechnology Infor-
mation Build 28) were downloaded from the University of Cali-
fornia (Santa Cruz) genome browser (http://genome.ucsc.edu).

Genome Alignments. TWINSCAN was run on the mouse genome by
using BLASTN alignments to the human genome (WU-BLAST,
http://blast.wustl.edu). Lowercase masking in the human se-
quence was first converted to N masking. The result was further
masked with NSEG by using default parameters, all Ns were
removed, and the sequence was cut into 150-kb database
segments. The mouse genome sequence was divided into
1-mb query segments. BLASTN parameters were: M=1
N=-1Q=5 R=1 Z=3000000000 Y=3000000000 B=10000
V=100 W=8 X=20 S=15 S2=15 gapS2=30 Icmask
wordmask=seg wordmask=dust topcomboN=3. TWINSCAN was
run on the human genome by using separate BLASTN alignments
to the mouse genome, which was prepared in the same way except
that Ns were not removed before creating the BLAST database.
SGP2 was run on the mouse and human genomes by using a single
set of alignments. The masked human genome was cut into 100-kb
query segments that were compared with a database of all 100-kb
segments of the mouse genome with TBLASTX (WU-BLAST,
parameters: B=9000 V=9000 hspmax=500 topcom-
boN=100 W=5 E=0.01 E2=0.01 Z=3000000000 nogap
filter=xnu+seg S2=80). The substitution matrix was BLOSUM62
modified to penalize alignments with stop codons heavily (—500).

Initial Gene Predictions. TWINSCAN was run on 1-mb segments of
the mouse and human genomes with target genome parameters
identical to the GENSCAN parameters and the 68-set-ortholog
conservation parameters (available on request). Note that the
TWINSCAN results described in ref. 14 are based on a subse-
quently developed set of target genome parameters that yields
better results than those described here. sGP2 was run on
unsegmented mouse and human chromosomes. The REFSEQ
genes (which were not tested in the experiments reported here)
were incorporated directly into the SGP2 predictions, which
improved the predictions outside the REFSEQS slightly by pre-
venting some gene fusion errors. Note that the REFSEQS were not
used in generating the SGP2 results described in ref. 13.

Novelty Criteria. Mouse predictions were considered known if
they overlapped ENSEMBL predictions or had 95% nucleotide
identity to a REFSEQ mRNA or an ENSEMBL-predicted mRNA
over at least 100 bp. We used the most inclusive set of ENSEMBL
predictions available, based on the complete RIKEN cDNA set
without further filtering (1).

Enrichment Procedure. The enrichment procedure was applied
separately to predictions of TWINSCAN and sGp2. The protein
sequences predicted by each program in human and mouse were
compared by using BLASTP (19). For each predicted mouse
protein, all predicted human proteins with expect values <1 X
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107° were called homologs. A global protein alignment was
produced for the best scoring homologs (up to five) by using
T-COFFEE (ref. 39; http://igs-server.cnrs-mrs.fr/~cnotred/
Projects-home_page/t_coffee_home_page.html) with default pa-
rameters. Exonic structure was added to the alignments by using
EXSTRAL.PL (wwwl.imim.es/~rcastelo/exstral.html). When
both members of an aligned pair contained an intron at the same
coordinate with at least 50% identity over 15 aa on both sides the
corresponding mouse prediction was assigned to the “enriched”
pool. Predictions with homologs but no aligned intron were
assigned to the “similar” pool.

RT-PCR. To test predictions, primers were designed in adjacent
exons as described in Results and used in RT-PCR of total RNA
from 12 normal mouse adult tissues. All procedures were as
described (20), except that JumpStart REDTaq ReadyMix
(Sigma) and primers from Sigma-Genosys were used.

Additional Details. See supplementary information at wwwl.
imim.es/datasets/mouse2002 for additional details of these
procedures.

Results

We applied the two-stage procedure described above to the
entire draft mouse and human genome sequences (see Experi-
mental Procedures). TWINSCAN predicted 17,271 genes with at
least one aligned intron, whereas SGP2 predicted a largely
overlapping set of 18,056 genes with at least one aligned intron.
These predicted gene sets contain 145,734 exons and 168,492
exons, respectively. Together the two sets overlapped 90% of
multiexon ENSEMBL gene predictions.

To estimate a lower bound on the proportion of novel predictions
that are transcribed and spliced, we performed a series of RT-PCR
amplifications from 12 adult mouse tissues (20). We did not test
genes that overlap ENSEMBL predictions nor those that are 95%
identical to ENSEMBL predictions or REFSEQ mRNAs over >100 bp
or more. Because ENSEMBL was the standard for annotation of the
draft mouse genome, we refer to the non-ENSEMBL genes as
“novel.” A random sample of novel genes predicted by each
program and containing at least one aligned intron was tested.
Primer pairs were designed in adjacent exons separated by an
aligned intron of at least 1,000 bp (Fig. 2). The exon pair to be tested
was chosen on the basis of intron length (minimum 1,000 bp),
primer design requirements, and de novo gene prediction score,
with no reference to protein, EST, or cDNA databases. Amplifi-
cation followed by direct sequencing of the PCR product (Fig. 3)
verified the exon pair in 133 unique predicted genes of 214 tested
(62%, enriched pool, see Table 1 and wwwl.imim.es/datasets/
mouse2002). Mouse genes predicted by both programs were veri-
fied at a much higher rate than those predicted by just one program
(76% vs. 27%). Extrapolating from the success rates in Table 1,
testing the entire pool of 1,428 enriched predictions in this way is

PNAS | February4,2003 | vol.100 | no.3 | 1141
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Fig.2. Two examples of predicted gene structures (blue) with introns verified by RT-PCR from primers located in exons flanking the introns indicated in red.

Mouse—human genomic alignments (orange) correlate with predicted exons but do not match them exactly. (A) Verified mouse prediction 6F5, a novel homolog
of Drosophila brain-specific homeobox protein (bsh), with matching human prediction. (B) Verified mouse prediction 11F6, a homolog of rat vanilloid receptor
type 1-like protein 1. No matching human gene was predicted. A cDNA (GenBank accession no. AF510316) that matches the predicted protein over four

protein-coding exons was deposited in GenBank subsequent to our analysis.

expected to yield a total of 788 (+48) predictions with confirmed
splices, none of which overlap ENSEMBL predictions.

Considered in isolation, genes predicted by TWINSCAN had a
higher verification rate than those predicted by sGpP2 (83% vs.
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TTGCTAGACTATGGCTACCCCCTTATGOCCACACCCACCCTCOTOACCEE 6F5
TOACGOTOATOATEOTETECATAAGGGAGATCACCACCATCCTTATTTCOD 6F5
TOACCACETCABEAATECEEETECCOAEAETETTECCECACEEECABEAC 6F5
GCGGAGTTGCCCEBBEAAGEACTGCCGCCGECGCAAABETEGEACGGTETT 6F5
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CAGCTGETGATGGAGAATGAGCAGACAGACATCACTTCCCAGGATTCCCE
GGGAAMACAACATCCTGCACGCGCTGGTGACAGTGGCTGAGGACTTCAAGA

BUCAACTGGGAGCTGRAGACCATGEGCAACAACGATGEGETCACACCACT
GCAGCTOUCTOCCAACATCCECAAGGCTGAGATCOTOAAGTACATEETOA
GOCGOGAGATCAAGGAGAAGCCTOTOCGGAGETTGTCCAGGAAGTTCAGCS
GACTGGGCETATGEGECTETGTOATECTCACTCTATGACCTCACCAATAT
AGAGACAACGACGGATAACTCTGTGOTGOAAATCATEETCTACAACACCA
ACATTGAT 11F6

Fig. 3. Verification of gene predictions by RT-PCR analysis. (A and B) Test of
prediction 6F5, a homolog of Drosophila brain-specific homeobox protein (bsh).
(Cand D) Test of prediction 11F6, a homolog of rat vanilloid receptor type 1-like
protein. Gel analysis of amplimers (*) with the source of the cDNA pool indicated
above is shown in A and C. Primers (blue) and the region to which the amplimer
sequence aligned (underlining) are shown in B and D. The indicated forward
primers were used to generate the amplimer sequences (brain amplimer, B; skin
amplimer, D). Br, brain; Ey, eye; He, heart; Ki, kidney; Li, liver; Lu, lung; Mu, muscle;
Qv, ovary; Sk, skin; St, stomach; Te, testis; Th, thymus.
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44%), but that difference is skewed by the fact that TWINSCAN
predicted fewer exons per gene, and hence its predictions were
less likely to overlap ENSEMBL predictions. We corrected for this
by clustering overlapping TWINSCAN and SGP2 predictions to
ensure that both were counted as positive if either was verified
experimentally. For each program, the predictions belonging to
a given cluster were counted only once, even if more than one
was RT-PCR positive. After this correction, the confirmation
rates were much closer (76% for TWINSCAN vs. 62% for SGP2).
The results shown in Table 1 include the correction. The
TWINSCAN verification rate is similar to the verification rate for
genes predicted by both programs because the exons predicted
by TWINSCAN are largely a subset of those predicted by SGp2.

Before the enrichment procedure, the combined predictions of
SGP2 and TWINSCAN overlap 98% of multiexon ENSEMBL genes, as
compared with 90% for the enriched pool. This finding suggests
that the enrichment procedure reduces sensitivity by a small but
noticeable degree. To investigate the potential loss of sensitivity
further, we applied the same RT-PCR procedure to two samples of
gene predictions that were excluded by the enrichment criterion and
did not overlap ENSEMBL predictions. One sample had one or more
regions of strong similarity to a predicted human gene but did not
satisty the aligned intron criterion (similar pool) whereas the other
lacked any strong similarity to a human prediction by the same
program (other pool). The verification rates for the similar and
other pools were 25% and 20%, respectively, for genes predicted by
both programs, and 0% and 2%, respectively, for genes predicted
by only one program (Table 1 and wwwl.imim.es/datasets/
mouse2002). This finding shows that the enrichment procedure
increases specificity greatly and, consistent with the ENSEMBL
overlap analysis, reduces sensitivity only slightly. If all predictions in
the similar and other pools were tested the expected numbers of
successes are 126 (+105) and 105 (*+83), respectively, with the large
standard errors resulting from the small number of successful
amplifications in these pools.

As a control, we also tested 113 predictions from the enriched
pool that did overlap ENSEMBL predictions. In 66 of the predic-
tions the splice boundary we tested was predicted identically in
ENSEMBL, and 64 of these tests (97%) were positive. In 47 of the
predictions the splice boundary we tested was not predicted
identically in ENSEMBL, and 21 of these tests (45%) were positive,

Guigo et al.
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Table 1. Predicted novel gene sets and RT-PCR verification rates

Pool Programs* No. of predictions No. tested No. positive Success rate, % Expected successes Standard error
Enriched® Both 827 154 117 75.97 628

One 601 60 16 26.67 160

Total 1,428 214 133 62.15 788 48
Similar* Both 505 16 4 25.00 126

One 1,620 22 0 0.00 0

Total 2,125 38 4 10.53 126 105
Others Both 234 5 1 20.00 46

One 3,425 58 1 1.72 59

Total 3,659 63 2 3.17 105 83
All Total 7.212 315 139 N/A 1,019

N/A, not applicable.

*Both, Genes predicted at least partially by both Twinscan and sGP2 programs. One, Genes predicted by one program that are not overlapped by predictions of

the other program. N/A, not applicable.

*Mouse gene predictions containing an intron whose flanking exonic regions align with flanking exonic regions predicted by the same program in human.
*Mouse gene predictions that fail the enrichment step but show regions of strong similarity to a gene predicted by the same program in human.
SMouse gene predictions without regions of strong similarity to any gene predicted by the same program in human.

despite the fact that ENSEMBL predictions are based on transcript
evidence. This verification rate may reflect alternative splices
identified by our method but not by ENSEMBL.

To determine whether tissue-restricted expression could explain
the absence of the predictions we verified from the transcript-based
annotation, we compared the expression patterns of our RT-PCR
positive predictions to those of the complete set of mouse orthologs
of genes mapping to human chromosome 21 (Hsa21). These genes
were chosen for comparison because they had been previously
subjected to the same protocol with the same cDNA pools in the
same laboratory (20). Our verified novel gene predictions showed
a significantly more restricted pattern of expression (Fig. 44). The
mean number of tissues for our positive predictions was 6.3, and
33% of the positive predictions showed expression in three or fewer
tissues; the corresponding numbers for the mouse orthologs of
human chromosome 21 genes are 8.2 tissues on average and 14%
showing expression in three or fewer tissues. This difference in
expression specificity was statistically significant (ANOVA, F =
23.22,df = 1, P < 0.001).

To determine whether prediction of pseudogenes by our method
could explain some of the RT-PCR negatives, we computed the
ratio of nonsynonymous to synonymous substitution rates (Ka/Ks)
(21) for the subset of tested mouse predictions with unique putative
human orthologs (Fig. 4B). The mean for PCR-positive predictions
was 0.29 whereas for PCR-negative predictions it was 0.72. The
difference was statistically significant (ANOVA, F = 34.86, df = 1,
P < 0.001), suggesting that (/) some of the negative predictions may
be pseudogenes, and (i) Ka/Ks can be efficiently incorporated in
the enrichment protocol to increase specificity (22).

Among the predictions with confirmed splices, 112 had signifi-
cant homology to known genes and/or domains. A few of these
genes, which were not represented in databases at the beginning of
our gene survey, were submitted to databases and/or published in
the literature in the intervening months. For example, we correctly
predicted the first four protein coding exons of TRPV3, a heat-
sensitive TRP channel in keratinocytes (23), and both exons of
RLN3 (preprorelaxin 3), an insulin-like prohormone (24). The
verified predictions with the most notable homologies are shown in
Table 2, including a novel homolog of dystrophin that is discussed
in the mouse genome paper (1). Table 2 includes two noncanonical
homeobox genes, one that is most similar to fruitfly brain-specific
homeobox protein (Figs. 2 and 3.4 and B) (25) and another that is
a Not-class homeobox, likely to be involved in notochord develop-
ment (26). Four predicted genes were found to be expressed in the
brain and are likely to have neuronal functions, including one
paralog each of: Nnal, which is expressed in regenerating motor
neurons (27); an N-acetylated-a-linked-acidic dipeptidase, which
hydrolyses the neuropeptide N-acetyl-aspartyl-glutamate to termi-
nate its neurotransmitter activity (28); a novel y-aminobutyric acid

Guigo et al.

type B receptor, which regulates neurotransmitter release (29); and
an Ent2-like nucleoside transporter, which modulates neurotrans-
mission by altering adenosine concentrations (30). Other verified
genes are likely to be important in muscle contraction (myosin light
chain kinase homolog), degradation of cell cycle proteins (fizzy/
CDC20 homolog), Wnt-dependent vertebrate development
(Dapper/frodo homolog), and solute and steroid transport in the
liver (solute transporter 8). Homologs of two further genes pre-
dicted in our studies are associated with disease. ATPI10C, an
aminophospholipid translocase, is absent from Angelman syn-
drome patients with imprinting mutations (31), and otoferlin, which
is mutated in a nonsyndromic form of deafness (32).
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Fig. 4. Characteristics of verified predictions. (A) Expression specificity.
Percentages of RT-PCR positive de novo predictions (red) and Hsa21 mouse
orthologs (blue) expressed in 1-12 tissues, tested in the same cDNA pools. (B)
Distributions of the ratio of nonsynonymous to synonymous substitution rate
(Ka/Ks) in 83 RT-PCR positive (red) vs. 98 RT-PCR negative (blue) mouse
predictions with reciprocal best BLAST matches among the human predictions.
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Table 2. Novel mouse genes, their tissue expression, and their homologs

Code B HKY V SMULTKE O %ld Ln Homology

3B1 + + 38 134 Dystrophin-like; with ZZ domain

3B3 + + + + + 25 184 Novel aquaporin; similar to Drosophila CG12251

3C3 + + + o+ + 25 260 TEP1 (telomerase associated); probable ATPase

3¢5 + + 47 198 Voltage-dependent calcium channel y subunit

4B3 + + + 34 74 |IFN-induced/fragilis transmembrane family

4C6 + + + 4+ o+ 30 134 IL-22-binding protein CRF2-10

4G4+ + 4+ + 64 109 Nnalp, nuclear ATP/GTP-binding protein

5B5 + + + 43 111 Likely aminophospholipid flippase (transporting ATPase)

1E3  + + + + + 40 106 N-acetylated-a-linked-acidic dipeptidase (NAALADase)

6C4 + + 42 117 Not-type homeobox; poss. involved in notochord development
6F5 + + + 66 102 Drosophila brain-specific homeobox protein (bsh)

11F2 + + + 4+ o+ 29 216 Human y-aminobutyric acid type B receptor 2, neurotransmitter release regulator
5A2 + + + + 41 36 Skate liver organic solute transporter

11B6 + + + 55 116 IFN-activatable protein 203; nuclear protein

12B3  + + 4+ + + 4+ + + 25 229 Fatty acid desaturase; maintains membrane integrity

11F6 + + + + 4+ + + 44 494 Rat vanilloid receptor type 1 like protein 1

12E3 + + 52 175 Fizzy/CDC20; modulates degradation of cell-cycle proteins
12F1 + + + + 4+ 43 355 Otoferlin (mutated in DFNB9, nonsyndromic deafness)

12H1 + + + 45 116 Fruitfly additional sex combs; a Polycomb group protein

12C4  + + + 43 133 Caenorhabditis elegans C15C8.2; single-minded-like; HLH and PAS domains
12D2 + 41 397 Cytosolic phospholipase A2, group IVB

12A5 + 38 415 Fruitfly GH15686p; Ent2-like nucleoside transporter

12E5 + + + + 32 111 Relaxin 3 preproprotein; prohormone of the insulin family
11A1 + + + + + 89 75 Mouse BET3, involved in ER to Golgi transport

11A2 + + + + + + 70 207 Vacuolar ATP synthase subunit S1

11B2 + + 4+ + 4+ + 54 271 Myosin light chain kinase, skeletal muscle

11G2 + + 4+ + o+ + 4+ + 4+ + 36 179 Dapper/frodo (transduces Wnt signals by interacting with Dsh)

Code, Coding name of tested gene model. B, brain; H, heart; K, kidney; Y, thymus; V, liver; S, stomach; M, muscle; L, lung; T, testis; K, skin; E, eye; O, ovary.
%Id, Percentage amino acid identity. Ln, Number of amino acids in the local alignment between the prediction and the homolog.

Discussion

We have demonstrated a remarkably efficient mammalian gene
discovery system. This system exploits the draft mouse and human
genome sequences in both an initial gene-prediction stage and an
enrichment stage. The first stage consists of SGP2 and TWINSCAN,
gene-prediction programs that use genome alignment in combina-
tion with statistical patterns in the DNA sequence. We have shown
elsewhere that both programs have greater sensitivity and speci-
ficity than single-genome de novo predictors, such as GENSCAN (13,
14). In this article, we have demonstrated the effectiveness of the
enrichment stage, in which predictions are retained only if the
protein predicted in mouse aligns to a human protein predicted by
the same program, with at least one predicted intron at the same
location (aligned intron, Fig. 1). In our pool of predictions, the
aligned intron filter is expected to eliminate 24 times more RT-PCR
negatives than RT-PCR positives. This enrichment procedure can
be applied to predictions from any program.

Our goal was to develop a low-cost, high-throughput system
for finding and verifying coding regions that are missed by
annotation systems that require existing transcript evidence.
ENSEMBL was chosen as the representative of such systems
because the Mouse Genome Sequencing Consortium judged it to
be the most suitable tool for timely, cost-effective, reliable
annotation of the mouse genome sequence. Thus, we evaluated
our system by investigating genes that do not overlap ENSEMBL
predictions. Our system is not designed to find genes that would
be missed by expert manual annotators, who can effectively
integrate information such as the predictions of GENSCAN (8) and
GENOMESCAN (33), percent-identity plots (34), comparison to
fish genomes (35, 36), alignment of weakly homologous proteins,
and alignment of EST sequences. As a result, we did not exclude
gene predictions from our evaluation based on these indicators.

Our two-stage system identified a highly reliable pool of 827
predicted genes not overlapping the standard annotation, of which
we tested 154 for expression by using RT-PCR and direct sequenc-
ing. Primers designed for a single pair of adjacent exons in each
predicted gene yielded a spliced PCR product whose sequence
closely matched that of the predicted exons in 76% of these tests.

1144 | www.pnas.org/cgi/doi/10.1073/pnas.0337561100

In the only other published report of high-throughput verification
of gene predictions of which we are aware, 14% of predictions not
overlapping the standard annotation yielded spliced products (37).
These numbers cannot be compared directly because of differences
in the sampling criteria, but the magnitude of the difference
suggests our method provides new levels of efficiency in experi-
mental confirmation of genes outside the standard annotation set.

The sensitivity of our method also appears to be high. Predictions
in our enriched pool overlap 90% of multiexon genes predicted by
ENSEMBL. However, it has been estimated that >4,000 ENSEMBL
predictions comprising 12,000 predicted exons are in fact pseudo-
genes (1). Although the precise number of multiexon pseudogenes
in the ENSEMBL annotation is unknown, this estimate suggests that
our enriched pool may overlap a much larger fraction of the
functional genes identified by ENSEMBL. Further, RT-PCR tests of
TWINSCAN and SGP2 predictions outside the enriched pool indicate
that a relatively small number of these predictions are transcribed
and spliced in the 12 tissues tested. Thus, the enrichment procedure
is sensitive to both ENSEMBL predictions and verifiable predictions
by TWINSCAN and SGP2.

Using our system, we confirmed one intron of 139 predicted
genes that do not overlap any gene in the standard mouse
genome annotation (1). Ninety-two of the RT-PCR positive
introns (66%) did not align to any mouse EST, and these might
have posed difficulties even for human annotators. Furthermore,
seven of the RT-PCR negative introns (4%) did align to mouse
ESTs and six of these were in the enriched pool, suggesting that
the true percentage of transcribed and spliced predictions in this
pool may be even higher than the RT-PCR positive percentage.

Among RT-PCR positive predictions, 24 had homologies to
known proteins that we found particularly interesting (Table 2). The
positive identification of these homologs is expected to impact
numerous research programs devoted to genes of developmental
and medical importance. In general, these genes were probably
missed in the ENSEMBL annotation because the length and percent
identity of the homologies were not sufficient to support a protein-
based gene prediction (Table 2). In many cases, such as the
predicted homolog of a brain-specific homeobox protein, the ex-

Guigo et al.
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pression patterns we found were consistent with what would be
expected from the function of the known homolog (Fig. 3.4 and B).

The confirmed 139 genes also showed a relatively restricted
expression pattern, on average. Because all mouse orthologs of
genes on human chromosome 21 had already been tested by using
the same experimental protocol and the same cDNA pools, we were
able to directly compare expression patterns. To the extent that the
known genes on chromosome 21 are no more tissue specific than
the complete set of known genes, the results (Fig. 4) suggest that our
system may be particularly sensitive to genes with tissue-restricted
expression. Qualitatively similar restricted expression patterns were
reported for novel GENSCAN predictions on chromosome 22 (37),
lending further support to the value of de novo prediction for
identifying genes with tissue-restricted expression.

Of the RT-PCR positive novel predictions, only 33% have
identifiable homologs in the sequenced fish (Fugu/Tetraodon/
zebrafish) genomes. Comparing this finding to the recent estimate
that three-quarters of all human genes can be recognized in the
Fugu genome (36) suggests that our system may be particularly
sensitive to genes that are not ubiquitous in the vertebrate lineage.
Genes with relatively restricted expression patterns and species
distribution can be difficult to find by using transcript-based meth-
ods like GENEWISE (38) and compact-genome methods like EXO-
FISH (35), but they appear to be tractable for our system.

Extrapolating from the success rates in all categories, the ex-
pected total number of gene predictions that could be successfully
RT-PCR amplified in the cDNA pools we tested is 1,019 (Table 1),
adding ~5% to the number of functional mouse genes identified by
ENSEMBL (1). The number of distinct genes verifiable in this way
may be slightly smaller, because the effect of fragmentation in
ENSEMBL and in our predictions is not readily testable. However, the
number of predictions that are transcribed and spliced is likely to
be >1,019, because (i) we tested only one exon pair from each
prediction and (if) we used only 12 adult mouse tissues (20).

The relatively low success rate in the pools failing the enrichment
step suggests that the number of real, multiexon genes whose
existence has been predicted but not yet confirmed is in the range
of 1,000-2,000 (including those predictions in the enriched pool that
have not been confirmed). Because we have used only two predic-
tion programs, TWINSCAN and SGP2, it is possible that other pro-
grams might yield a large additional set of predictions that pass the
enrichment step. However, GENSCAN yields only 49 additional
predictions that pass enrichment and novelty criteria and do not
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overlap the 1,428 “aligned intron” novel predictions from TWIN-
SCAN and SGP2 (3%). These 49 are worth testing, and adding more
prediction programs will yield at least a few more predictions with
aligned introns. Nonetheless, the data presented here suggest that
the 1,428 predictions in the enriched pool may overlap a significant
fraction of the previously unannotated, multiexon mouse genes.

Using the draft sequences of the mouse and human genomes,
we have developed a cost-effective, high-throughput system for
predicting genes and verifying the existence of corresponding
spliced transcripts. Applying this system to the entire mouse
genome, we showed that an automated system can produce a
large set of experimentally supported mammalian gene predic-
tions outside the standard annotation. Further, the average cost
per verified exon pair is less than two primer pairs and sequenc-
ing reactions. We expect that testing the remaining predictions
in the enriched pool will locate most multiexon mouse genes that
are currently unannotated, bringing us significantly closer to
identification of the complete mammalian gene set.

As more mammalian genomes are sequenced, the need for
experimentally validated high-throughput annotation will con-
tinue to grow, as will the data available for methods such as ours.
Using the sequences of more genomes, it may be possible to
extend this approach to single-exon and lineage-specific genes.
In combination with methods like ENSEMBL and refinement by
expert annotators, these developments may bring complete,
experimentally supported genome annotation within reach.
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Geneva Code GF5
Program SGPZ2

Gene Identifier SGP.chrg_759
Species Mmus

Genomic Location chro:41079823-41095663
Strand Forward
CDS Length 942
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Figure 3.10: A web server to display RT-PCR results over predicted genes. A small database
containing all the 476 genes that were submitted for the RT-PCR validation test was provided as
supplementary materials for Guigé et al. [2003, see also page 215 on web glossary]. That pool of
genes was filtered out from the gene predictions by SGP2and Twinscan on the mouse genome
by exploiting conservation in mouse-human exonic structure.






Chapter 4

Sequence features

of Eukaryotic Genes

The human mind has first to construct forms,
independently, before we can find them in things.
—Albert Einstein

Most genes in higher eukaryotes are interrupted by non-coding sequences (introns) that
must be precisely excised from pre-messenger RNA (pre-mRNA) molecules to yield ma-
ture, functional mRNAs. In those organisms, splicing introduces an additional level of
decoding on the sequence of the primary RNA transcript, prior to translation. The genetic
code is essentially deterministic. Within a given species, a given triplet in the mRNA se-
quence results always in the same amino acid. In contrast, the splicing code is inherently
stochastic. The probability of a splicing sequence in the primary transcript to participate
in the definition of an intron boundary ranges from zero to one, and is conditioned to very
many different factors.

The unexpected discovery in 1977 of split genes in the adenovirus 2 (Ad2) mRNAs
[Berget et al., 1977; Chow et al., 1977], started an amazing scientific endeavour. In this
chapter we start with an overview of the current knowledge about the splicing process
at molecular level. Then we report a comparative computational analysis of orthologous
splice sites of four vertebrate genomes.

4.1 The Molecular Basis of Splicing

A typical mammalian gene contains nine introns and spans about 30kb. An average intron
is over 3000bp long, while an average exon is only about 150bp [Lander et al., 2001]. It
has been known for a long time that intron removal and the ligation of flanking sequences
(exons) occurs through two sequential trans-esterification reactions that are carried out by
a multicomponent complex that is known as the spliceosome (see Figure 4.1).
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Figure 4.1: The splicing reaction at the biochemical level. The pre-mRNA splicing reaction
consists of two phosphoryl-transfer steps. In the first step, the 5’ phosphate of the intron (at the
5’ splice site) is attacked by a 2’ hydroxyl specified within the intron (from the adenosine in the
branch point). In a second step, the 3’ phosphate of the intron (at the 3’ splice site) is attacked
by the 3’ hydroxyl of the cleaved 5 exon. The final products are ligated exons and the excised
intron in a branched form also known as lariat. Adapted from Collins and Guthrie [2000].

Most introns have common consensus sequences near their 5 and 3’ ends that are re-
cognized by spliceosomal components and are required for spliccosome formation. The
assembly of a spliceosome on a pre-mRNA is an ordered process that involves five small
nuclear ribonucleoprotein particles (snRNPs: U1, U2, U4, U5 and U6), as well as an ar-
ray of protein factors. Catalysis of the splicing reaction proceeds by coordinated series of
RNA-RNA, RNA-protein and protein-protein interactions, which lead to exon ligation and
release of the intron lariat [Patel and Steitz, 2003].

4.1.1 U2 versus U12 splice sites

The first intron sequences ever characterized revealed highly conserved dinucleotides at
the 5’ and 3’ termini (GT and AG, respectively). They were later found to be parts of longer
consensus sequences at the 5 and 3’ splice sites (such as those represented in Figure 1.3 on
page 4 and those shown in Figure 4.12 on page 130 (Figure 1 on page 112 of Abril et al.
2005). The canonical splice site consensus sequence was first catalogued by Mount [1982]
an later refined with more data by Senapathy et al. [1990]. The presence of non-consensus
splice sites was first recognized in Jackson [1991], but it was not proposed that there was
a distinct minor class of introns until the works of Hall and Padgett [1994]. They noted
that four introns shared unusual consensus sequences, and predicted that their excision
was mediated by a distinct spliceosome that involved low-abundance snRNPs (less than
10* copies per cell), UT1 and U12 [Montzka and Steitz, 1988], for which no function had
been described at that time. Indeed, UT11 and U12 have base-pairing potential with the
5’ splice-site and branch-site sequences, whereas their secondary structures mimic those of
U1 and U2, respectively (Figure 4.2).

Because these new introns had AT and AC termini, which deviates from the nearly in-
variant GT-AG rule, they were initially named AT-AC introns. However, more extensive
genomic database surveys revealed that AT-AC termini are not a defining feature of the
minor class introns [Dietrich ef al., 1997; Sharp and Burge, 1997; Wu and Krainer, 1997].
In fact, most minor-class introns have canonical GT-AG termini and, very rarely, major-
class introns have AT-AC termini [Sharp and Burge, 1997]. An analysis of canonical and

non-canonical splice sites in mammalian genomes [Burset et al., 2000] estimated the occur-
rence of different splice site termini: GT-AG (99.20%), CG-AG (0.62%), AT-AC (0.08%),
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Figure 4.2: Sequences and predicted secondary structures of the human spliceosomal snR-
NAs. Similarities in secondary structure are apparent between the major- and the minor-class
snRNA counterparts (UT and UT1, U2 and U12, and U4-U6 and U4ATAC-Ub6ATAC), despite
substantial sequence divergence. The Sm-binding sites are shaded in yellow. Coloured boxes
indicate sequences that are predicted to be involved in intermolecular RNA-RNA base-pairing
interactions: 5 splice site (orange), branch site (green), and U2-U6 or U12-USATAC helix | inter-
actions (blue). Sequences in red represent stretches of four or more identical nucleotides between
U4-U6 and U4ATAC-USATAC. Adapted from Patel and Steitz [2003].
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other non-canonical (0.03%) and errors (0.06%). A more recent analysis of such frequen-
cies for human, mouse and rat splice sites can be found in Table 4.3 on page 132 (Table 2
on page 114 of Abril ef al. 2005). Biochemical studies showed that mutation of AT-AC to
GT-AG termini did not interfere with splicing by the U12-dependent pathway. Instead,
U12-dependent splicing is determined by the longer and more tightly constrained consen-
sus sequences at the 5 splice site and branch site of minor-class introns, as well as by the
lack of a polypyrimidine tract upstream of the 3’ splice site [Dietrich et al., 1997; Sharp and
Burge, 1997; Burge et al., 1998]. Therefore, the more suitable ‘U12-type” nomenclature was
adopted for this new class of introns.

4.1.2 The splicing process

For major-class introns, spliceosome assembly (see left pathway of Figure 4.3) is thought
to begin with the association of the U1 and U2 snRNPs by base-pairing interactions with
conserved sequences at the 5 splice site (5'ss) and intron branch site, respectively [Reed,
1996]. During the spliceosome assembly, the UT snRNP binds to the 5'ss via base base
pairing between the splice site and the U1 snRNA. The 3’ splice site (3'ss) elements are
bound by a special set of protein factors, SF1 (a branch-point binding protein, also called
BBP in yeast), SF3, and a dimeric U2 snRNP auxiliary factor (U2AF). The 65kDa subunit
of U2AF binds to the polypyrimidine track. In at least some cases, the 35kDa subunit of
U2AF binds to the AG at the intron/exon junction. In mammalian cells, selection of the
branch point is based primarily upon relative position, in the vast majority of cases the
RNA branch forms 18-38 nucleotides upstream of the 3'ss. It is probable that this distance
constraint reflects the requirement for the U2AF protein. The earliest defined complex in
spliceosome assembly, called the commitment complex or E-complex (early), contains U1
and U2AF bound at the two intron ends [Burge et al., 1999]. The E-complex is joined by
the U2 snRNP, whose snRNA base-pairs at the branch point, to form the A complex. The
U2 branch-site duplex protrudes outwards the adenosine residue, the 2’ hydroxyl group of
which participates in the first nucleophilic atack.

The tri-snRNP complex of U5 and the base-paired U4-U6 then stably joins the pre-
spliceosome [Konarska and Sharp, 1987] to form the B-complex, although there is evidence
to suggest that U5 interacts upstream of the 5’ss at a much earlier stage [Wyatt et al., 1992].
The B-complex undergoes a complicated rearrangement to form the activated spliceosome
(B*-complex). This rearrangement is promoted by ATP-hydrolyzing protein factors that
juxtapose the 5 and 3'ss and form the catalytic core. U4-U6 duplexes unwind [Lamond
et al., 1988], and the U4 and U1 snRNPs are displaced, which allows U6 to form base-
pairing interactions with the 5'ss [Wassarman and Steitz, 1992] and with a region of U2
that is near the U2 branch-site duplex [Datta and Weiner, 1991; Hausner et al., 1990; Mad-
hani and Guthrie, 1992; Wu and Manley, 1991]. The activated spliceosome catalyzes the
first trans-esterification step of splicing and the C-complex is formed. The U5 snRNP has
been shown to base-pair with sequences in both the 5" and 3’ exons (see Figure 4.4). U5 is
also believed to position the ends of the two exons for the second step of splicing [Wyatt
et al., 1992; Wassarman and Steitz, 1992; Newman and Norman, 1991, 1992; Sontheimer and
Steitz, 1993]. After the second step has been completed, the ligated exons and a lariat in-
tron are released, and the spliceosomal components dissociate and are recycled for further
rounds of splicing.

Two general properties of the spliceosome are remarkable. First, it is conserved from



4.1. The Molecular Basis of Splicing 101

U1 !! _\/_

/4
U1
»)
A 0 o
ATP o-;ﬂ—uﬂ—“*
Y U2

&L “2
WIS oS00

Xon

UbBatac
el -
U4atac

U4atac

A

[E0n T [CEORE] + — s [Bont [oBonzy] -

Figure 4.3: Pathways of assembly and catalysis of U2 and U12 spliceosomes. The major-
class (left) and the minor-class (right) splicing pathways are shown side by side, highlighting
their similarities and differences. The two pathways are mechanistically very similar. The
primary differences occur during the early steps of spliceosome formation. The two trans-
esterification reactions are indicated by red arrows. Each schematic snRNP is shown as a small
nuclear RNA (not drawn to scale, with the 5’ terminus denoted by a dot) with the surround-
ing shaded area representing proteins. The polypyrimidine track of the major-class intron is
shaded blue. Green bars represent interactions between the conserved loop of U5 and exon
termini. Adapted from Patel and Steitz [2003].
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Figure 4.4: Working model of RNA and Prp8 interactions in the catalytic core. Left panel)
Mutually exclusive interactions of U6 and U2 snRNAs in pre-assembled snRNPs are also shown.
Large letters denote RNA sequences that are absolutely conserved in major, minor and trans
spliceosomes from mammals, worms, plants, yeast and trypanosomes. Black lines denote
Watson-Crick base-pairing interactions (the thinner lines denote interactions that are not ab-
solutely conserved in all systems). Exons are drawn as rectangles, while the intron is depicted
as a black line. Right panel) Some of the interactions of the active spliceosome are drawn for the
second trans-esterification step of splicing: the 5 splice site helix formed between U6 and the
intron, and the interactions of the U5 conserved loop with exons. Purple dotted lines indicate
tertiary interactions a, b, and c in both panels. Adapted from Collins and Guthrie [2000].

yeast to humans, both in its protein make-up and in its small nuclear RNAs (snRNAs),
which have short, almost universally conserved sequences that are known to be juxtaposed
to the reaction center during catalysis. Second, it is extraordinarily flexible, as it can excise
introns of many different lengths and many different sequences. It is also subject to regu-
lation, giving rise to alternatively spliced products in different cells or at different stages of
development [Patel and Steitz, 2003].

The mechanism of U12-type splicing has been characterized in vitro [Tarn and Steitz,
1996]. Psoralen crosslinking studies provided evidence that U12 indeed forms a duplex
with the minor-class branch site, apparently bulging the branch-point adenosine [Tarn and
Steitz, 1996], which can reside at two different positions within the consensus site [Mc-
Connell et al., 2002]. The minor-class splicing reaction proceeds through the same two-step
pathway as the major reaction, which involves formation of a lariat intermediate [Tarn and
Steitz, 1996]. Native gel electrophoresis of spliceosomal complexes allowed the initial char-
acterization of the assembly pathway, which is shown in the right panel of Figure 4.3, and
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indicated that U11, U12 and U5 were components of the minor-class spliceosome [Tarn and
Steitz, 1996]. Interaction of U11 with the 5’ splice site was later confirmed by site-specific
crosslinking [Yu and Steitz, 1997].

U4ATAC and UGATAC are two low-abundance snRNPs with copy numbers similar to
those of UT1 and U12. Although their sequences diverge significantly from those of U4 and
U6 (see Figure 4.2), they predict analogous secondary structures and interactions with the
pre-mRNA and other snRNAs. Crosslinking studies confirmed the predicted interactions
between U4ATAC and UOATAC [Yu and Steitz, 1997], between UOATAC and the minor-class
5’ss [Tarn and Steitz, 1996], and between UGATAC and U12 [Yu and Steitz, 1997]. This
showed that the two spliceosomes undergo comparable dynamic rearrangements in which
the snRNAs assume equivalent architectures, as shown in Figure 4.3.

In vivo evidence of the requirement of U12 minor-class splicing came from genetic sup-
pression experiments, in which the deficient splicing of a minor-class intron containing
two point mutations at the branch site was rescued by co-expression of a UT2 snRNA
with compensatory mutations [Hall and Padgett, 1996]. Similar genetic suppression ex-
periments provided evidence for the in vivo interaction between the minor-class 5'ss with
UTT [Kolossova and Padgett, 1997], and U6ATAC [Incorvaia and Padgett, 1998]. Fruit-flies
that are homozygous for disruptions in U12 or U6ATAC genes do not survive early devel-
opment, which indicates that the minor-class spliceosome is essential for organisms that
harbour U12-type introns [Otake ef al., 2002]. Indeed, the presence of U12-type introns
within most metazoan genomes indicates that an active U12-type splicing system is indis-
pensable for the cells of most multicellular organisms [Patel and Steitz, 2003].

Of the snRNAs employed in splicing, only U5 snRNA is shared between the two
spliceosomes, whereas the vast majority of the spliceosomal proteins appear to be shared
[Will et al., 1999, 2001; Schneider et al., 2002; Luo et al., 1999]. The U5 snRNP is unique in
serving as a component of both spliceosomes, which indicates that it does not base-pair
with sequences that differ between the two intron types. Although its role in the major-
class spliceosome can involve base-pairing [Wyatt et al., 1992; Wassarman and Steitz, 1992;
Newman and Norman, 1991, 1992; Sontheimer and Steitz, 1993], proteins are known to
support the juxtaposition of exons for the second step of splicing. Recent evidence that
the protein components of U5 undergo marked remodeling during spliceosome activation
[Makarov et al., 2002] indicates that U5 has a pivotal role in recruiting common protein
factors to the two spliceosomes.

4.1.3 Integrating splicing in the protein synthesis pathway

Throughout their lifetimes mRNAs exists, in vivo, as mRNA-protein particles (mRNPs).
The associated proteins control every aspect of mRNA metabolism, from subcellular trans-
port to translational efficiency to their rate of decay. Exactly which proteins associate with
a particular mRNA depends on its sequence, its subcellular localization and its synthetic
history. Furthermore, the complement of mRNA proteins evolves as the mRNA moves
to different locations and is acted on by such processes as nuclear export and translation
[Reichert et al., 2002].

On the other hand, many pre-mRNA processing events—including 5 end capping,
splicing exons together, and 3’ end maturation by cleavage or polyadenylation—occur
while the nascent RNA chain is being synthesized by RNA polymerase Il. The  RNApolll
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Figure 4.5: The mRNA factory model. Schematic representation of co-transcriptional pro-
cessing. Processing factors interact with the RNApOIIl  machinery via the carboxyl-terminal
domain (CTD) of the largest subunit of RNApolll, Rpb1. The size of the symbols for process-
ing factors corresponds to their levels of in vivo formaldehyde cross-linking, measured by ChIP
experiments. Capping enzymes, RT, GT and MT, and 3’ end modifying factors (polyA related)
are recruited at the 5’ ends of genes. As RNApolll traverses the gene, splicing factors associate
with the transcription complex. Phosporylation of the Ser, and Sers residues in the CTD heptad
repeats decrease as the RNApolll advances. Exon numbers are marked in colored boxes, while
introns are shown in black boxes. The red star represents the cap structure. Adapted from Zorio
and Bentley [2004].

Capping Splicing

large subunit is equipped with a unique protein domain to tackle the job of directing co-
transcriptional processing. This C-terminal domain (CTD) is composed of tandem repeats
of the consensus heptad Y;5,P3T4S5PsS7, which is conserved from fungi to humans [Cor-
den and Ingles, 1992]. Deletion of the CTD in vertebrate cells reduces the overall level of
transcription without necessarily affecting the accuracy of initiation. Deletion of the CTD
inhibits all three major pre-mRNA processing steps in vertebrate cells: capping, splicing,
and polyA site cleavage [McCracken et al., 1997b,a]. The CTD functions as a landing pad
for reversible interactions with RNA processing factors [Greenleaf, 1993] that serve to lo-
calize those factors close to their substrate RNAs and to act as a conduits for two-way
communication with the polymerase.

As sketched in Figure 4.6, the cap binding complex (CBC) interacts with factors assem-
bled on the 5’'ss. Once the 3'ss has emerged from the elongating RNApOIll, cross-intron
interactions can be seen. U1 snRNP components, the U1-70K protein and Prp40/FBP11,
can interact with SF1 and U2AF on the branch point, polypyrimidine track and 3’ss. Those
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interactions can be facilitated by protein-protein interactions mediated by serine/arginine-
rich proteins (SR), which can act as exonic splicing enhancers. After that, two scenarios are
possible: a new downstream 5’ss defining an internal exon or a downstream polyadenyla-
tion signal defining a terminal exon Goldstrohm et al. [2001].

Several examples of intronic and exonic cis-acting elements that are important for cor-
rect splice-site identification and that are distinct from the classical splicing signals have
been described. These elements can act by stimulating (as do enhancers) or repressing (as
do silencers) splicing, and they seem to be especially relevant for regulating alternative
splicing [Cartegni et al., 2002]. Exonic splicing enhancers (ESEs), in particular, appear to
be very prevalent, and might be present in most, if not all, exons, including constitutive
ones [Liu et al., 1998; Schaal and Maniatis, 1999]. The analysis of the distribution of exonic
splicing silencers (ESSs) revealed that ESSs appear more frequently in skipped exons, as
well as in alternative 5" and 3’ exons, in comparison with constitutive exons [Zhang and
Chasin, 2004; Wang et al., 2004]. In addition to ESEs and ESSs, intronic splicing enhancers
(ISEs) and silencers (ISSs) are also an important part of the regulatory program in many
alternative splicing events [Black, 2003]. ISEs and ISSs may also contribute to the definition
of constitutive exons. In the human genome, RNA binding proteins are almost as abundant
as transcription factors and the majority of them are of unknown function. Assignment of
individual ESEs and ESSs to specific mediators will be essential for deciphering regulatory
networks. Together with the rules for potential co-variation of ESEs and ESSs in exons,
and by integrating the information with gene expression profiles, a true splicing regulatory
code might be possible [Fu, 2004].

The spliceosome is believed to undergo some level of assembly and disassembly each
time an intron is removed, but exactly how spliceosome recycling is achieved between suc-
cessive introns in a given transcript remains a major unanswered question. It is not known
whether a spliceosome is completely released from the transcription complex after two ex-
ons are ligated or whether some components remain associated with RNApOIlll  and reused
at downstream splice sites. Because the 5" and 3’ splice sites are often quite distant from one
another, splicing is the only processing event for which the RNA recognition sites are syn-
thesized at different times. RNApPOIIl elongates transcripts in a highly nonuniform way,
punctuated by frequent pauses but with an average rate of 1 ~ 2 kb/min [Conaway et al.,
2000]. This means that the 3’ss of a 30kb intron would therefore be synthesized 15 ~ 30
minutes after the 5'ss, time enough for this to bind the U1 snRNP and get ready for splic-
ing. A 5’ss may pair with the first 3'ss to appear as proposed by the “first come first served”
model [Aebi et al., 1987]. Slow transcription would favor a proximal 3’ss over a distal site
that only appears after a significant delay. Results, from tests on yeast and mammalian
cells using RNApolll  mutants and an inhibitor that slows down elongation [Howe ef al.,
2003; de la Mata et al., 2003], show that polymerases shifted the balance in favor of proximal
over distal alternative 3'ss thereby reducing exon skipping. These results strongly support
the idea that the effect of elongation rate on the lag time between the appearances of dif-
ferent splice sites can modulate alternative splicing. These experiments, therefore, argue
for kinetic coupling of transcription and splicing. The effect of elongation rate on alterna-
tive splicing may explain how different promoter sequences can alter alternative splice site
choices [Cramer et al., 1997] since transcription factors bound to a promoter can influence
the efficiency of elongation [Yankulov et al., 1994].

Finally, nonsense-mediated mRNA decay (NMD) is an mRNA surveillance mechanism
that has been described in organisms ranging from yeast to humans and ensures mRNA
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Figure 4.6: Exon definition model in vertebrates. Typically, exons are much shorter than in-
trons in vertebrates. According to the exon-definition model, before introns are recognized and
spliced-out, each exon is initially recognized by the protein factors that form a bridge across it. In
this way, each exon, together with its flanking sequences, forms a molecular recognition mod-
ule (arrows indicate molecular interactions). Adapted from Zhang [2002]. CBC, cap-binding
protein; CFI/Il, cleavage factor 1/Il; CPSF, cleavage and polyadenylation specificity factor;
CstF, cleavage stimulation factor; PAP, poly(A) polymerase.

quality by selectively targeting mRNAs that harbour premature termination codons (PTCs)
for rapid degradation [Hentze and Kulozik, 1999; Maquat, 1995, 2000]. PTCs that are intro-
duced as a consequence of DNA rearrangements, frame shifts or nonsense mutations, or are
caused by errors during transcription or splicing, can lead to non-functional or deleterious
proteins. PTCs in higher eukaryotes are only recognized as such when they occur upstream
of aboundary on the spliced mRNA that is situated approximately 55 nucleotides upstream
of the last exon-exon junction [Maquat, 2000]. The prevalent view of the NMD mechanism
is that the splicing process leaves a mark about 20 nucleotides upstream of each exon-exon
boundary, in the form of an exon-junction complex (EJC), which in turn provides an an-
chor for up-frameshift suppressor proteins [Maquat, 2000; Hir et al., 2000]. EJCs are formed
by splicing-specific mRNP proteins, which associate with spliced mRNAs in a sequence-
independent manner at a fixed distance upstream of exon-exon junctions [Hir et al., 2000].
During the first round of translation, also known as pioneer round, of a normal mRNA, the
stop codon is located downstream of the last mark, and all EJCs are displaced by elongating
ribosomes [Ishigaki et al., 2001]. During subsequent rounds of translation, the cap-binding
complex is replaced by the eukaryotic initiation factor 4E (elF4E) and the poly(A)-binding
protein Il (PABPII) is replaced by PABPI. New ribosomes no longer encounter EJCs and
the mRNA is immune to NMD. However, when a PTC is present, ribosomes stop and fail to
displace the downstream EJCs from the transcript. Then, interactions between the marking
factors and components of the post-termination complex trigger nRNA decay. Moreover,
intron containing genes are generally expressed at a significantly higher level in human
cells than the same genes lacking introns [Buchman and Berg, 1988; Ryu and Mertz, 1989;
Lu and Cullen, 2003; Nott et al., 2003]. There is evidence that EJCs may be also responsible
for the positive effect of splicing on gene expression [Wiegand et al., 2003].
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Figure 4.7: Conservation of gene structure between human and mouse. Human rod outer
segment membrane protein 1 (Rom1, GENBANK locus HUMROD1X) exonic structure is plotted on
top, the orthologous gene structure in mouse (GENBANK locus MUSROM1X) is shown below. Both
genes have three coding exons. Exon and intron lengths are quite similar. A position-specific
scoring matrix was used to calculate all potential splice sites along the sequence. Donors are
shown as blue spikes and acceptors as orange ones, where the height of each spike represents the
score for the corresponding site. A similar sites distribution is observed when comparing both
genes. Although real splice sites have good scores, they are often not better than the surrounding
predicted signals.

4.1.4 The conservation of exonic structure

Numerous regions that are conserved between human and mouse are found in introns
[Hardison et al., 1997]. Comparison of human chromosome 21 and the corresponding ge-
nomic sequences in mouse revealed that only one-third of the conserved blocks are ex-
ons, the other two-thirds being intronic and intergenic sequences [Dermitzakis ef al., 2002].
Hare and Palumbi [2003] describe that moderate rates of substitution rate heterogeneity,
expected to result in part from mutational processes, can explain much of the conserved se-
quence observed in pairwise and three taxon comparisons, under a strictly neutral model
of sequence evolution without indels. As a result, blocks of non-coding sequence con-
served over long divergence times do not necessarily indicate selective constraints, even
when observed across more than two taxa. However, they have found that half of the in-
tron conservation observed cannot be explained by the typical levels of substitution rate
heterogeneity in non-coding sequences. This strongly suggested that intronic sequences
can play a larger functional role than previously realized.
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After multiple complete sequences of eukaryotic genomes became available, compa-
rative analyses revealed numerous introns that occupy the same position in orthologous
genes from distant species [Fedorov et al., 2002; Rogozin and Pavlov, 2003]. The great ma-
jority (>90%) of intron positions that are shared by phylogenetically distant eukaryotes—
for example plants, fungi and metazoans—seem to reflect bona fide evolutionary conser-
vation [Sverdlov et al., 2005]. This is supported, for instance, by the observed dramatic
differences between intron distributions in animal genomes. Those differences depend
on non-local features of gene organization, such as the avoidance of short exons and the
non-uniform distribution of introns accross the length of genes, for example preferential
location of introns in the 5’ portions of genes in many species [Smith, 1988; Stoltzfus et al.,
1997; Mourier and Jeffares, 2003; Sverdlov et al., 2004]. Therefore, it seems unlikely that
those features had a substantial impact on the long-term evolution of introns [Sverdlov
et al., 2005].

Recent large scale comparative analyses have reported extraordinary conservation of
the exonic structure between human and mouse orthologous genes [Roy, 2003]. Almost all
of the protein-coding genes (99%) in human align with homologs in mouse, and over 80%
are clear 1:1 orthologs. In most cases, the intron-exon structures are highly conserved [Wa-
terston et al., 2002], as can be seen, for instance, in Figure 4.7. Estimates of the proportion
of 1:1 orthologs between mouse and rat lie between 86 and 94%. Surprisingly, a similar
proportion, 89 to 90% of rat genes possessed a single orthologue in the human genome
[Gibbs et al., 2004]. About 60% of the chicken protein-coding genes have a single human
orthologue [Hillier ef al., 2004]. Furthermore, the extent of conservation of alternative splic-
ing between human and mouse is high. It has been suggested that patterns of alternative
splicing are conserved at similar levels to genes and gene structures, with overall conserva-
tion estimates of 61% of alternative and 74% of constitutive splice junctions [Thanaraj et al.,
2003]. Sorek and Ast [2003] have reported that 77% of the conserved alternative spliced
exons between human and mouse were flanked on both sides by long conserved intronic
sequences. In comparison, only 17% of the conserved constitutively spliced exons were
flanked by such conserved sequences. These results suggest that the function of many of
the intronic sequence blocks that are conserved between human and mouse is the regula-
tion of alternative splicing [Arian Smith, pers. communic.].
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Figure 4.8: Human/mouse/rat scatterplots for orthologous GT-AG intron lengths. Upper
panels show pair-wise comparisons of orthologous intron lengths. Repeat lengths have been
removed from the corresponding total intron lengths in the pair-wise comparison in the lower
panels (N = 6,261 orthologous introns).

4.2 The Comparative Analysis of Mammalian Gene
Structures

Preliminary comparative analyses of the human and mouse gene structures for a set of
1,506 pais of orthologous genes are shown in the section entitled “Conservation of gene
structure” on page 43 (page 551 of Waterston et al. 2002). In what follows, we describe our
major contributions to the understanding of the exonic structures and the splice signals of
the orthologous genes of human, mouse and rat.

4.2.1 Intron length and repeats

Of a set of 6261 human/mouse/rat orthologous introns we have computed the average
intron length for each species. Results are shown in table 4.1. On average, introns are
longer in human than in rodent and rat introns appear to be longer than those of mouse.
Our numbers for human and mouse intron lengths are comparable to those reported in
Waterston et al. [2002]. There is strong correlation, however, between the length of orthol-
ogous introns in different species (the correlation coefficient is about 0.90 between human
and rodent, and 0.94 between mouse and rat. The correlation coefficient between length of
orthologous exons is in all cases larger than 0.99).
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Intron Length Percentage of Intron Length
Species | with repeats | without repeats | in all repeats in ancient repeats in other repeats
human 4,765 2,747 42.57 15.70 26.87
mouse 3,770 2,558 32.60 4.72 27.88
rat 4,102 2,872 30.38 4.63 26.69

Table 4.1: Intron length and proportion of repetitive DNA in mammalian introns.

Differences in length between human and mouse orthologous introns are attributable
to a larger fraction of repetitive DNA in human than in rodent introns: while DNA in
repeats accounts for 43% of the human intron sequences, it accounts for only around 30%
in rodent introns (see table 4.1). Therefore, when subtracting the number of bases masked
by the program RepeatMasker [see page 215, on Web Glossary; Smit et al., 1996-2004]
differences in length between human and rodents reduce notably (see table 4.1), with rat
introns having the highest proportion of non-repetitive DNA.

Since it may be argued that the orthologous intron dataset is a too small and biased
sample of all introns in these organisms, we have computed intron length for all genes
in the REFSEQ collection [Pruitt and Maglott, 2001; Pruitt et al., 2005], before applying the
filtering protocol; see the corresponding methods section on page 135 (page 117 of Abril
et al. 2005). Average intron lengths, including and excluding masked nucleotides are, re-
spectively, 5,632 and 3,247 in human (177,931 introns), 4,423 and 2,996 in mouse (104,591
introns), and 4,933 and 3,451 in rat (37,043 introns). Therefore, even though our data set of
orthologous introns appears to be biased towards shorter introns, the bias is similar in all
organisms and does not affect the fraction of intronic DNA in repeats.

Interestingly, longer human introns do not appear to be the result of repeat expansion
in the human lineage, but rather of the selective loss of ancient repeats in rodents. We have
computed the fraction of intron sequence in repetitive DNA separately for ancient and re-
cent repeats. As can be seen in table 4.1, the fraction of intronic DNA in recent repeats is
essentially identical in the three species, suggesting that the dynamics of new repeat gener-
ation have not changed after the divergence of the lineages leading to rodent and human.
However, ancient repeats are much more abundant in human introns (16% of the sequence)
than in rodent introns (5% of the sequence), indicating that repeated sequences are elim-
inated much faster in rodents than in human. Although repeats appear to be generated
slightly faster and to be lost slightly slower in the rat than in the mouse genome, repeat
abundance does not account for the notable difference in intron length observed between
these two rodent species. We have to take into account that due to a higher substitution
level in the rodent lineage, RepeatMasker results can be biased to find human ancient
repeats. At any rate, the youngest ancient repeats in mouse and rat have a 35-40% sub-
stitution level, which is on the border of what RepeatMasker can detect, while in the
human genome these repeats have about 15% substitution and are reocgnized very easily
[Waterston et al., 2002]. BLASTNresults from cross-matching the repeats found in all the
orthologous introns against the intronic sequences of each other species, were supporting
our hypothesis.

We did not continue the analyses reported in this section as a broader analysis of re-
peats, whole genome based, was presented for the mouse and the rat genomes [Waterston
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etal.,2002; Gibbs et al., 2004]. The large scale deletion level of non-essential DNA in rodents
was much larger than in the human lineage. This results further in a reduced number of
ancient repeats in the current rodent genomes; for instance, approximately 50% of the an-
cestral junk DNA, as it was at the human-mouse split, has been lost in mouse and only
about 25% in human.

4.2.2 Sequence conservation at orthologous splice sites

See section entitled “Conservation of intronic splice signals” on page 119 (page 505 of Gibbs
et al. 2004).
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Figure 4.9: Human/mouse/rat sequence conservation at orthologous GT-AG splice sites. Se-
quence conservation for donor sites [supplementary materials Figure 8 of Gibbs et al. 2004] and
acceptor sites [supplementary materials Figure 7 of Gibbs et al. 2004] are shown in upper and
lower panels respectively.
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4.2.3 RGSPC, Nature, 428(6982):493-521, 2004

PubMed Accession:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_
uids=15057822&dopt=Abstract

Journal Abstract:

http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v428/n6982/
abs/nature02426_fs.html

Supplementary Materials:

See Section 4.3.2 and the following URL:
http://www.nature.com/nature/journal/v428/n6982/suppinfo/nature02426.html

NOTE: Because of copyright restrictions, we cannot offer the article, please follow

links for fulltext.
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Figure 4.10: Human/mouse/rat/chicken relative conservation over GT-AG splice site con-
sensi. The x-axis shows idealized base position from intron through exon to intron. The gray
areas show the regions where expected conservation from the presence of splice site consensi
was removed. Unlike inter-mammal comparisons, the chicken-mammal comparison shows a
higher relative conservation rate at the splice sites than in the introns. Included as supplemen-
tary materials Figure 1 on Hillier et al. [2004].

4.3 The Comparative Analysis of Splice Sites in Verte-
brates

4.3.1 Conservation of mammals and chicken orthologous splice
sites

See section entitled “Evolutionary conservation of gene components” on page 142
(page 698 of Hillier et al. 2004).

Only the orthologous U12 introns of the four species were displayed in Figure 4.11.
Further orthologous sets, including pair-wise and triads, are available at the supplemen-
tary materials web page (see page 213 on Web Glossary). It is worth to note that in the
fourth example, the 16th intron of mouse gene NM_007459 does not seem to be conform-
ing to the U12 donor pattern. But it is not a case of conversion between U2 and U12 splice
sites, just displacing the splice sites two nucleotides upstream we recover the U12 donor
pattern and the overall alignment of the exonic regions improves.
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Figure 4.11: Human, mouse, rat and chicken orthologous U12 intron sets. Ungapped align-
ments of the donor (-10 to +16 around the 5’ splice sites) and the acceptor (-30 to +10 around the

! splice sites) sequences for all the orthologous U12 intron sets were drawn using TeXshade
[Beitz, 2000]. Splice sites core signals are highlighted in a black box, the conserved U12 donor
sequence (+3 to +8) is marked in green, sequence hits to the U12 branch point are colored in red,
while conserved nucleotides at a given position are shown with a blue background.
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Chicken Special/Letter

Comparison of splice sites in mammals and chicken
Josep F. Abril, Robert Castelo, and Roderic Guigd'

Grup de Recerca en Informatica Biomédica, Institut Municipal d’Investigacié Médica, Universitat Pompeu Fabra, and Programa de
Bioinformatica i Genomica, Centre de Regulacié Genomica, C/ Dr. Aiguader 80, E-08003 Barcelona, Catalonia, Spain

We have carried out an initial analysis of the dynamics of the recent evolution of the splice-sites sequences on a
large collection of human, rodent (mouse and rat), and chicken introns. Our results indicate that the sequences of
splice sites are largely homogeneous within tetrapoda. We have also found that orthologous splice signals between
human and rodents and within rodents are more conserved than unrelated splice sites, but the additional
conservation can be explained mostly by background intron conservation. In contrast, additional conservation over
background is detectable in orthologous mammalian and chicken splice sites. Our results also indicate that the U2
and UI2 intron classes seem to have evolved independently since the split of mammals and birds; we have not been
able to find a convincing case of interconversion between these two classes in our collections of orthologous introns.
Similarly, we have not found a single case of switching between AT-AC and GT-AG subtypes within Ul2 introns,
suggesting that this event has been a rare occurrence in recent evolutionary times. Switching between GT-AG and
the noncanonical GC-AG U2 subtypes, on the contrary, does not appear to be unusual; in particular, T to C
mutations appear to be relatively well tolerated in GT-AG introns with very strong donor sites.

[Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents,

samples, or unpublished information as indicated in the paper: P. Bork and . Letunic.]

Protein-coding genes are characteristically interrupted by introns
in the genome of higher eukaryotic organisms. While intron
function and origin has been debated at length (de Souza 2003;
Fedorova and Fedorov 2003; Roy et al. 2003), recent comparative
analyses show an abundance of conserved elements in intronic
sequences (for instance, see Dermitzakis et al. 2002; Hare and
Palumbi 2003). This strongly suggests that introns are rich in
elements playing functional, probably regulatory, roles (Mattick
2001). Splicing of introns is found in all main branches of eu-
karyotes, that is, animals, plants, fungi, and protozoa, indicating
an early origin of splicing within eukaryotes, or the existence, in
the pre-eukaryotic world, of a precursor of splicing. Indeed, the
two major molecular mechanisms by means of which splicing is
produced, U2- and U12-dependent, seem to have evolved inde-
pendently prior to the divergence of the animal and plant king-
doms (Burge et al. 1998; Zhu and Brendel 2003).

Within each of these two classes of splicing, sequence fea-
tures involved in intron specification are essentially conserved
across eukaryotes. In both classes, the sequence information
needed to specify the 5’ and 3’ splice sites—hereafter also de-
scribed as donor and acceptor sites respectively—is largely con-
fined to their surrounding region (see Fig. 1). Conserved se-
quences in these regions interact with the splicing machinery to
promote the assembly of the spliceosome and activate the bio-
chemical pathway that leads to the production of the spliced
mRNA (for review, see Burge et al. 1999). Despite the strong con-
servation, the sequence of splicing signals does not carry enough
information to unequivocally specify introns in the large se-
quence of the pre-mRNA transcripts, occasionally hundreds of
thousands of nucleotides long; and recent research suggests that
signals other than those in the region of the splice sites play a
role in the definition of the intron boundaries (for review, see
Caceres and Kornblihtt 2002; Cartegni et al. 2002; Black 2003).

'Corresponding author.

E-mail rguigo@imim.es; fax 34-93-221-32-37.

Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.3108805. Article published online before print in December 2004.

Thus, in eukaryotic organisms, splicing introduces an addi-
tional level of decoding—prior to translation—on the sequence
of the primary RNA transcript. There is a fundamental difference,
however, between the genetic code—the mapping of nucleotide
sequences (triplets) into 20 (or more) amino acids—and the splic-
ing code—the mapping of nucleotide sequences into 3’ and 5’
intron boundaries. The genetic code is essentially deterministic;
within a given species, a given triplet in the mRNA sequence
results always in the same amino acid—the dual role in seleno-
proteins of the TGA triplet as stop and selenocysteine codon
probably the most notable of all exceptions (for instance, see
Kryukov et al. 2003). The splicing code, in contrast, is inher-
ently stochastic; the probability of a splicing sequence in the
primary transcript to participate in the definition of an intron
boundary ranges from zero to one, and it is conditioned to very
many different factors (which could be other sequences—maybe
distant). The tissue-specific distribution of relative abundances of
alternative splicing products (Xu et al. 2002; Yeo et al. 2004), for
instance, reflects this nondeterministic nature of the splicing
code.

The stochasticity of the splicing code offers opportunities
for evolution that are absent in the highly deterministic genetic
code. The availability of an increasing number of eukaryotic ge-
nomes makes it possible to investigate such an evolutionary pro-
cess. Here, we report on findings obtained by comparing a large
collection of orthologous introns (introns occurring at equiva-
lent locations in orthologous genes) and their defining splice
sites in human, mouse, rat, and chicken. Our results provide
insights into the dynamics of the evolution of splice-site se-
quences during the most recent period of the history of life on
earth.

Results

In this section, we first report results concerning interconversion
between the two major classes of introns, U2 and U12, and sub-
type switching within each class. Then, we report on the com-

15:111-119 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org
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parison of splice-site sequences in human, rodents, and chicken.
We have compared the overall sequence patterns of splice sites
and investigated the level of sequence conservation between or-
thologous splice sites.

The analyses described here are very sensitive to the identi-
fication of true orthologous introns, as well as to the prediction
of correct splice boundaries, particularly in the case of the non-
canonical U12 introns. Because U12 introns constitute only a
tiny fraction of all eukaryotic introns, computational gene pre-
diction methods ignore them. Therefore, in absence of good
cDNA coverage, computational gene catalogs are likely to heavily
misrepresent them. Such is the case in the chicken genome. In an
effort to conciliate the amount of data with reliability, we have
resorted to different data sets to perform different types of analy-
ses. Gene predictions from the RefSeq collection (Pruitt et al.
2003)—a collection of genes with good ¢cDNA support—have
been used for interspecific analysis of splice-site sequence pat-
terns and for the identification and analysis of mammalian U12
introns. However, there are very few chicken genes in RefSeq.
The larger—but strongly biased toward GT-AG canonical U2 in-
trons—Ensembl collection (Birney et al. 2004; http://www.
ensembl.org) has been used for interspecific comparison of
splice-site patterns. A set of mammalian-avian curated ortholo-
gous introns—referred to as the HMRG set in this work (see Meth-
ods section)—has been used for the comparison of orthologous
splice-site sequences. Table 1 describes the sizes of the data sets
used in this study.

Intron classes

Two distinct types of pre-mRNA introns are found in most higher
eukaryotic organisms (Sharp and Burge 1997). They differ in the
spliceosome complex that excise them during RNA processing.
More than 99% of eukaryotic introns are spliced by the U2
spliceosome, while a minor class are spliced by the U12 splice-

osome. U2 and U12 introns differ in the conserved sequences
flanking their splice sites (see Fig. 1). Vertebrate U2 introns are
characterized by the highly variable consensus [CAJAG/
GT[AG]AGT at the donor (5’) site, (where [CA] means C or A, and
/ denotes the exon-intron boundary) and by a polypyrimidine-
rich stretch between the acceptor site and a poorly conserved
branch point. The branch point and the acceptor site are usually
separated by 11-40 nucleotides, although cases are known where
they can be over 100 nucleotides apart (Helfman and Ricci 1989;
Smith and Nadal-Ginard 1989). U2 introns almost always exhibit
the conserved GT and AG dinucleotides at the 5" and 3’ intron
boundaries, respectively. The only remarkable exception is the
existence of U2 GC-AG introns, which appears with a frequency
<1% (Burset et al. 2001).

U1l2 introns are characterized by a strong consensus/
[AG]TATCCTT at the donor site, and TCCTT[AG]AC at the
branch point. They also lack the polypyrimidine tract upstream
of the acceptor site, characteristic of U2 introns. Also, in contrast
to U2 introns, the distance between this acceptor site and the
branch point is consistently short, between 10 and 20 nucleo-
tides (Dietrich et al. 2001). Although initially discovered because
of the unusual AT and AC dinucleotides at the 3’ and 5’ splice
sites (Jackson 1991; Hall and Padgett 1994), it was later shown
that U12 introns can exhibit a variety of terminal dinucleotides,
the vast majority, however, are GT-AG or AT-AC (Dietrich et al.
1997; Sharp and Burge 1997; Levine and Durbin 2001; Zhu and
Brendel 2003). Subtype switching within U12 introns, as well as
conversion from U12 to U2 introns, has been documented (Burge
and Karlin 1998), although amazing stability has been reported
for Ul2 introns over very large evolutionary times (Zhu and
Brendel 2003).

We have used the U12 donor site and branch point patterns
above to identify U12 introns in the human and rodent RefSeq
collections (see Methods). Table 2 lists the resulting frequencies

of the different splice classes, and subtypes within
each class. Numbers are consistent with those pre-

Table 1. Summary of initial data and filtered orthologs sets. viously published (Burset et al. 2001; Levine and
(A) Initial data sets Durbin 2001). 'Iden‘nﬁcatwn of Ul2 introns Was
not attempted in chicken because of the small size
Ensembl® UCSC genome browser® RefSeq© of the RefSeq database for this organism. Figure 1
uses sequence pictograms to display the consensus
Species  Version Genes Introns Version Genes Introns  for GT-AG U2 splice signals in mammals and
hicken. It al isplays the mammalian consen-
human V9342 33,633 284125 HGVIG/NCBI34 21,744 206814 | GtCaASGO c[ljl;p Uy i an o
mouse®  v19.30 30,665 218,163 MGSCv4/NCBI32 17,988 139,258 SuS Ior Gt~ an Splice sites. n se-
ratf v19.3a 28,545 192,459 RGSCv3.1 43,393 quence pictograms (Schneider and Stephens 1990;
chickend  v22.1.1 28,491 252,226  CGSCv2 12,632 Burge et al. 1999) the frequencies of the four
nucleotides at each position along the signal are
(B) Filtered orthologs represented by the heights of their corresponding
letters. The information content (intuitively, the
Sets Genes Introns o R X
deviation from random composition) is computed
Total human 6043 48,939 (out of 51,876)  at each position, and summed up along the signal.
mouse 5680 45,543 (out of 47,193)  The larger the information content, the more con-
rat 1847 13,929 (out of 14,245)  served the signal.
Orthologs human/mouse 5550 44,119
human/rat 1737 13,259
mouse/rat 1416 9655 :
Triads human/mouse/rat 1283 8895 Intron class conversion

(A) Initial data sets: the initial pool of genes/introns from which we filtered all the data sets
for this work (“Birney et al. 2004; PKarolchik et al. 2003; “Pruitt et al. 2003; “Lander et al.
2001; “Waterston et al. 2002; ‘Rat Genome Sequencing Project Consortium 2004; %Inter-
national Chicken Genome Sequencing Consortium 2004).

(B) Filtered orthologs: the number of RefSeq orthologous genes and introns derived from

these data sets.

Orthologous mapping revealed that in all cases,
orthologous mouse-rat and human-rodent in-
trons—from the RefSeq data set—were either both
U12 or both U2. A few cases were initially classi-
fied as instances of intron conversion. After close
inspection, however, we realized that all of these

Genome Research 113
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Table 2. Intron class and subclass frequencies in mammals

Human Mouse Rat

u2 GT-AG 48,212 (98.9%) 44,817 (98.8%) 13,707 (98.7%)
GC-AG 355 (0.7%) 330 (0.7%) 96 (0.7%)
Other 184 (0.4%) 218 (0.5%) 80 (0.6%)
Total 48,751 45,365 13,883

U12 GT-AG 131 (69.7%) 128 (71.9%) 36 (78.3%)
AT-AC 51 (27.1%) 47 (26.4%) 9 (19.6%)
Other 6 (3.2%) 3(1.7%) 1(2.2%)
Total 188 178 46

cases could be explained either by misprediction of the intron
boundaries or by splice sequence patterns slightly off consensus.
(See Supplemental materials for the cross-species alignments at
the intron boundaries of all predicted U12 introns). Remarkably,
therefore, not one single convincing case of U12 to U2 conver-
sion or vice-versa has occurred since the divergence of the hu-
man and rodent lineages. To investigate whether conservation of
intron class extends beyond the mammalian lineage, we have
mapped the 412 human, mouse, and rat U12 introns from Table
2, which correspond to 202 unique orthologs, into the chicken
genome. The mapping was obtained by comparing, using exon-
erate (G. Slater, unpubl.), the two exons harboring the intron
against the chicken genome sequence (see Methods). A total of
38 mammalian U12 introns were unequivocally mapped into the
chicken genome. (See Supplemental material for cross-species
alignments at the intron boundaries of the mammalian U12 in-
trons mapped into the chicken genome). The 38 chicken introns
had the typical donor-site sequence of U12 introns, and 36 had
the typical U12 branch point. In the other two cases, sequences
reminiscent of the U12 branch point could still be found, al-
though departing clearly from the consensus. Since these two
cases are both of the GT-AG U12 subtype, it is tempting to specu-
late that they may correspond to intermediates in the intercon-
version pathway between U12 and U2 introns. Against this hy-
pothesis, however, is the fact that no strong polypyrimidine
tract, suggestive of U2 function, can be found upstream of the
acceptor site. With the exception of these two cases, the branch-
point sequence was extremely conserved between mammals and
chicken, showing no more than two mismatches, but often being
identical. The position of the branch point has also been con-
served; with only one exception, the larger displacement ob-
served was of 4 nucleotides. These results strongly argue that U2
and U12 introns have evolved independently, at least since the
split of mammals and birds.

Subtype switching

Although subtype switching between GT-AG and AT-AC U12 in-
trons has been documented (Burge et al. 1998), we have not
found any such case within rodents, between human and ro-
dents, or between mammals and chicken in our set of U12 or-
thologous introns. It appears that this phenomenon occurs at a
very slow rate over evolutionary time (see cross-species align-
ments of orthologous U12 introns in the Supplemental material).

Within U2 introns, on the contrary, switching between GC-
AG and GT-AG subclasses, and vice-versa, is not unusual. Table
3A lists the pairwise frequency of subtype switching within U2
introns, and subtype distribution within orthologous mamma-
lian triads. Because of the limited number of cases available in
the RefSeq collection, we have ignored chicken genes in this
analysis. A total of 190 of the 290 human (66%) and 289 mouse

(66%) GC-AG introns are conserved in both species. Similar pro-
portions are observed between human and rat. Within rodents,
60 of the 68 mouse (88%) and 67 rat (90%) GC-AG introns are
conserved in both species. The availability of orthologous introns
from three organisms allows the investigation of the dynamics of
subtype switching within U2 introns (see Table 3B). We have
divided GC-AG introns’ orthologous triads into (1) “ancient”; the
intron is GC-AG subtype in the three species, and thus it is likely
to predate the split of human and rodents; (2) “modern”; the
intron is GC-AG subtype in either human or rodents. Because of
the lack of a reference out-group, however, we cannot distinguish
here those ancient GC-AG introns that have reverted to GT-AG
in one of the two lineages from those modern GC-AG introns
that have arisen in one of the lineages; and (3) “recent”; the
intron is of GC-AG subtype only in one of the rodent species. The
most parsimonious hypothesis is that the switch to GC-AG has
occurred after the split of mice and rats.

According to this classification, 47% (45) of the GC-AG in-
trons are ancient, 36% (34) are modern, and 14% (13) are recent.
Because human introns act as a reference out-group, we can es-
tablish (under the most parsimonious hypothesis) the direction
of the GT/GC switch between mouse and rat orthologous in-
trons. Although the numbers are too small to draw definitive
conclusions, we observe more GT to GC than GC to GT substi-
tutions (13 vs. 3). This is obviously mostly due to the overwhelm-
ingly larger number of GT-AG than GC-AG introns, but indicates
that switching from GT to GC in the donor site of U2 introns is
not completely unfavorable. In this regard, it is interesting to
note that GC-AG introns’ exhibit a stronger and less variable do-

Table 3. Observed cases of U2 subtype switching
within mammals

(A) Orthologous pairs

GT, GT GC, GC GC, GT GT, GC
human/mouse 38,922 190 100 99
human/rat 11,693 61 33 23
mouse/rat 8441 60 8 7
(B) Orthologous triads
Human Mouse Rat Occurrences
“ancient” GT-AG
GT GT GT 7784
“ancient” GC-AG
GC GC GC 45
“moderate” GC-AG
GC GT GT 23
GT GC GC 11
“recent” GC-AG
GT GT GC 8
GT GC GT 5
“ancient” GC-AG, “recent” GC — GT
GC GC GT 2
GC GT GC 1
Total 95

(A) Orthologous pairs: occurrence of donor site dinucleotide pairs at
intron boundaries of orthologous intron pairs. For instance, we have
found 65 instances in which the orthologous donor site is GC in human
and GT in mouse.

(B) Orthologous triads: occurrence of donor site dinucleotides at intron
boundaries in orthologous intron triads. For instance, we have found 23
cases in which the donor site is GC in human, but GT in both mouse and
rat.
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nor-site sequence than GT-AG introns (Fig. 1). Indeed, the infor-
mation content of GC-AG donor sites is 12.4, while that of GT-
AG donor sites is only 8.2. Probably, the substitution GT—-GC,
less favorable energetically, needs to be compensated by stronger
complementarity in the rest of the site. Indeed, while GC-AG
introns make up only 0.7% of all U2 introns (see Table 2), when
considering only those U2 introns whose donor-site sequence
is the perfect complement to the Ul snRNA 5’ end sequence
([AGCJAG/G[CTJAAGT), then, the percentage of GC-AG introns
rises to 11.35% (317 of 2792).

Comparison of splice site sequence patterns

We have investigated here whether the splice-site sequence pat-
terns have changed appreciably since the mammalian and avian
split. One way to investigate the variation is to visually compare
pictograms or logos (Fig. 1) obtained from collections of sites
from different species, derived from the Ensembl database. To
facilitate this task, we have extended sequence pictograms into
comparative pictograms. In these, the nucleotide distributions of
the two species at each position are represented side by side, and
the ratio of the nucleotide proportions indexes a range of colors
from green to red, indicating nucleotide overrepresentation in
one of the two species (see Methods and Supplemental material).
Figure 2 shows the comparative pictograms for mouse and rat,
human and mouse, and human and chicken. For reference, we
have also computed them for human and zebrafish and human
and fly. As it is possible to see, comparative pictograms suggest
that splice sequence patterns are largely homogeneous within
tetrapoda (the pictograms are mostly yellowish), but noticeably
distinct from those of other vertebrate and invertebrate taxa.
Statistical analysis in which we have explicitly computed the
distances between splice-site sequence patterns, using a variety of
methods, supports this interpretation (see Supplemental material).

Sequence conservation of orthologous U2 splice sites

In this section, we investigate sequence conservation at ortholo-
gous splice sites. Here, we have used the HMRG set of curated
mammalian-avian orthologous introns (Methods). In two ways,
Figure 3 displays comparisons of orthologous splice sites, the
percentage of sequence identity at each nucleotide position in
the splice sites and at an intronic region 10 nucleotides long
adjacent to the sites. Identity has been computed after aligning
the orthologous splice-site sequences at the intron boundaries.
Because these alignments are ungapped, the characteristic geo-
metric decay of conservation within the intron observed for
mouse-rat and for human-rodent comparisons is suggestive of
significant sequence conservation between orthologous introns
at this phylogenetic distance. In contrast, for mammalian and
chicken comparisons, the ungapped alignment shows an almost
abrupt decay right after the splice site—very similar to that ob-
served when comparing unrelated sites.

To investigate what fraction of sequence conservation in
splice sites is due to splicing function, we computed background
sequence conservation between pairs of (randomly chosen) non-
orthologous sites. As expected, background identity is ~25% out-
side of the splice signals. Within the splice signals, background
conservation at each position roughly correlates with the infor-
mation content at that position. Interestingly, at the acceptor
site, it exhibits a bimodal shape—consistent with the polypyrimi-
dine tract appearing at two different preferential locations. There
is also a slow decay of background conservation upstream of the

acceptor site—suggesting that the boundaries of this site are not
precisely defined.

As shown in Figure 3, orthologous splice-site sequences are
more conserved than expected solely from their role in splicing.
Interestingly, this additional conservation is larger than that ob-
tained at adjacent intronic sites for mammalian-chicken com-
parisons, but not for human-rodent and mouse-rat comparisons
(Fig. 3, bottom). The abrupt decay of background conservation
right after the donor site allows us to quantify this observation at
these sites. This is less obvious in acceptor sites, because their
boundaries are not as sharply defined. Indeed, we have computed
the average sequence identity in the four rightmost intronic po-
sitions of the donor site (positions +3 to +6 in Fig. 1), and at four
adjacent positions outside of the site (+7 to +10). The values of
background conservation in these two regions are ~50% and
26%-27%, respectively, for all pairs of species. For mouse-rat
orthologous comparisons, the values are 89% and 76%, respec-
tively, for human-mouse, 78% and 53%, respectively, and for
human-chicken, 62% and 31%, respectively. That is, conserva-
tion due to nonsaturation is smaller at the donor site than at
adjacent positions (89 — 50 =39% vs. 74 — 26 = 48%) for com-
parisons within rodents, similar for human-rodent comparisons
(27% vs. 26%) and larger for human-chicken comparisons (12%
vs. 4%). While it cannot be ruled out that this additional con-
servation reflects the existence of a small class of donor sites
conserved beyond the generic consensus, a simpler explanation
is that the reaching of saturation (understood here as the level of
conservation at which orthologous sites are as conserved as un-
related sites, 27% identity at intronic sites, 50% at donor sites) is
slower at sites under functional constraints. In the case of splic-
ing, nucleotide substitutions at the splice sites may impair splice
function. Thus, while the substitution process since the diver-
gence of the mammalian and avian lineages has lead to almost
complete saturation in proximal intronic sites (31% identity),
donor sites (62% identity) are still far from saturation.

Discussion

Thanks to the availability of genome sequences for a number of
mammalian and one avian species, we have been able to inves

tigate the dynamics of the evolution of splice-site sequences in
recent evolutionary times. Our results confirm that the splicing
code is under evolution, albeit very slow. Indeed, while differ-
ences between overall splice-site sequence patterns correlate well
with phylogenetic distance, they have remained largely homo-
geneous within tetrapoda, showing noticeable differences only at
larger phylogenetic distances—such as those separating tetra-
poda from fish.

Even though the splicing code appears to have remained
quite constant within tetrapoda, our results also indicate that
specific splice-site sequences may suffer significant changes dur-
ing evolution and remain functional. Figure 3 displays the per-
centage of sequence identity at each nucleotide position across
orthologous splice sites within rodents, between human and ro-
dents, and within mammals and chicken. At all distances, or-
thologous splice-site sequences are more conserved than unre-
lated splice sites, but they have significantly diverged, showing
an intermediate level of conservation between that of exon and
intron sequences. The existence of additional sequences enhanc-
ing or repressing the recognition of the splice sites (for instance,
see Caceres and Kornblihtt 2002; Cartegni et al. 2002; Black
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Figure 2. Comparative pictograms for donor and acceptor splice sites. Comparative pictograms of donor and acceptor sites for pairwise comparisons
between species at different phylogenetic distances. At each position, the nucleotide distribution of the two species is displayed, the height of the letters
corresponding to their relative frequency at the position. The color in the background of the letters indicates the underrepresentation (green) or
overrepresentation (red) of a given nucleotide in the second species (right) with respect to the first (left).
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Sequence conservation level of orthologous GT-AG splice sites. Shaded gray areas correspond to the typical sequence span of splice-site

signals. The average identity between the orthologous sequences is plotted across the splice signals (see Discussion). Background identity has been
estimated from pairs of nonorthologous sites. (Bottom) The result of subtracting background conservation from total conservation.

2003) may partially explain the robustness of the exonic struc-
ture in front of changes in the splice-site sequences.

The greater conservation observed in mammalian chicken
orthologous splice sites than in unrelated sites indicates that
nucleotide substitution since the mammalian avian split has not
yet reached saturation at these sites (estimated at ~50% identity
at donor sites). At this phylogenetic distance, however, satura-
tion has been reached at intronic sites, showing a level of con-
servation similar to that of unrelated sequences. This is the most
likely explanation for the excess conservation over background
observed in splice sites for comparisons between mammals and
chicken, but absent in comparisons within mammals—where
saturation has not been reached either at intronic sites.

In any case, the characteristic conservation of orthologous
splice sites suggests that comparative prediction of splicing—
through the modeling of the conservation in orthologous sites—
could improve over methods based on the analysis of a single
genome. Comparative prediction of splice sites could be particu-
larly relevant to the prediction of alternative splicing—a problem
still poorly solved—since it appears that a large fraction of alter-
native splicing events are conserved between related species,
such as human and mouse (Thanaraj et al. 2003).

The availability of a large collection of orthologous intron
sequences has also allowed us to investigate the evolutionary
relationship between the minor U12 splicing class, and the major
U2 class. Our results seem to indicate that Ul12 and U2 in-
trons have evolved independently after the split of mammals
and birds, since we have not been able to document a single
convincing case of conversion between these two types of in-
trons in our data sets. Certainly, because we have used a rather
stringent criteria of U12 membership, it cannot be com-
pletely ruled out that such cases exist—maybe associated with

dramatic changes in exonic structure, which our analysis cannot
detect. On the other hand, although subtype switching between
GT-AG and AT-AC U12 introns has been documented (Burge et
al. 1998), we have not found any such case in our sets of U12
orthologous introns. In contrast, switching between the minor
GC-AG and the major GT-AG subtypes within U2 introns is not
unusual, and appears to be relatively well tolerated in introns
with very strong donor sites. Comparison of orthologous introns
has also allowed us to refine the sequences involved in the
specification of the U12 introns (see Methods and Fig. 1). These
sequences, while more conserved than signals involved in U2
intron specification, are more degenerate that previously
thought.

Splicing remains an intriguing phenomenon. The results
presented here, however, indicate that the increasing availability
of sequences from genomes at different evolutionary distances
will greatly contribute to the understanding of splicing, in par-
ticular, to understanding its history and its fundamental coding
characteristics.

Methods

All of the statistical analyses were performed with the R package
(Thaka and Gentleman 1996; http://www.r-project.org/) using ad
hoc scripts for the preparation of exploratory data analysis plots.

RefSeq genes and introns

Assembled chromosomal sequences and their associated annota-
tions were downloaded from the UCSC Genome Browser (Kent et
al. 2002; Karolchik et al. 2003; http://genome.cse.ucsc.edu/). The
results described in this work were obtained on the assemblies
listed in Table 1.
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RefSeq genes interrupted with stop codons, or for which the
amino acid sequence derived from the genomic coordinates had
a difference of more than three amino acids in length or more
than five gaps in the alignment when compared with the original
amino acid sequence, were discarded. After this filtering step,
16,803 genes from the 21,744 annotated genes of the human
HGv16 data set, 9734 genes from the 17,988 of the mouse
MGSCv4, and 2783 genes from the 4877 of the rat RGSCv3.1
were retained.

Orthologous mammalian RefSeq introns

Gene sets

The set of homologous gene pairs was downloaded from the
NCBI's HomoloGene database (Zhang et al. 2000; http://
www.ncbi.nlm.nih.gov/HomoloGene/). From 369,338 homolog
pairs, there were 46,522 pairs corresponding to human-mouse,
human-rat, or mouse-rat orthologous genes. Redundancy was
removed in order to keep only unique putative ortholog pairs.
Only those gene pairs in which the two members were in the
final gene set resulting after the filtering process above were
taken into account. Ternaries of human, mouse, and rat genes
were built when possible. Otherwise, the gene pairs were consid-
ered.

This process yielded 1283 human-mouse-rat triads. In ad-
dition, 4267 human-mouse ortholog pairs, 454 human-rat pairs,
and 133 mouse-rat pairs were obtained. These numbers corre-
spond to 6043, 5680, and 1847 unique RefSeq genes for human,
mouse, and rat, respectively. When performing pairwise com-
parisons, the corresponding genes in the triads were included in
the set of pairs. Thus, the resulting extended pair-wise sets con-
tained 5550 human-mouse, 1737 human-rat, and 1416 mouse—
rat pairs. All data sets, as well as graphical displays of sequence
comparisons of the orthologous sequences are available from
http://genome.imim.es/datasets/hmrg2004/.

Introns sets

We devised a protocol to extract orthologous intron pairs and
triads from the above set of orthologous genes. First, all of the
pairs of consecutive exons for each gene were aligned with t_coffee
(Notredame et al. 2000; http://igs-server.cnrs-mrs.fr/cnotred/
Projectshomepage/tcoffeehomepage.html) using default param-
eters against all of the exonic pairs from the corresponding or-
thologous genes. This step ensured that we were working with
the most accurate set of orthologous introns, despite changes in
the exonic structure of orthologous genes (such as missing exons
due to misannotations or gaps in the assemblies). Second, the
exonic structure of the gene was projected onto the alignments.
Third, from orthologous gene pairs or ternaries, only those exon
pairs in which all intron positions occurred at conserved posi-
tions in the alignment and the intron phases were conserved and
retained. Plots on which the exonic structures have been pro-
jected onto the alignments can be accessed at http://genome.
imim.es/datasets/hmrg2004/.

Orthologous HMRG introns

A set of human, mouse, rat, and chicken 1:1:1:1 confident or-
thologous introns was taken from International Chicken Ge-
nome Sequence Consortium (2004) (P. Bork and I. Letunic, pers.
comm.). The set consisted of 1041 orthologous genes, totalizing
9110 orthologous introns. After mapping those genes into the
annotations for the newer assemblies used in this analysis, 863
genes and 6524 introns remained in the four species orthologous
set. The sequences 75 bp upstream and downstream of the signal

core nucleotides (GT and AG for instance) were used in the or-
thologous splice-sites’ sequence conservation analysis.

Intron class

U12 introns were searched, relying on the conserved donor-site
sequence and the acceptor-site branch point. Mammalian in-
trons were initially considered to be U12 if (1) they matched the
motif [AG]TATCCTT (where [AG] means A or G) from position +1
at the donor splice site; and (2) they matched the motif TCCT
T[AG]JA[CT] at the region from —5 to —20 upstream the acceptor
splice site. When looking for the U12 branch point, up to two
mismatches were allowed, and the hit was accepted if at least one
adenine was found in position 6 or 7 of the motif—to avoid
branch point hits without biological sense. Visual inspection of
introns orthologous to U12 introns, but which initially failed to
meet this criteria, suggested that this initial definition is too
stringent. Therefore, we searched only for the presence of a
strong branch point signal at the appropriate location in ortholo-
gous introns. After inspection of all of those cases in which the
two orthologous introns contain such a signal, we found a few
additional cases in which the donor-site sequences strongly re-
semble the characteristic U12 donor site sequence, but failed to
match the consensus above. Indeed, we have found that only the
nucleotides at positions +2 (T), +3 (A), +4 (T), and +5 (C) within
the intron are absolutely conserved in U12 donor-site sequences
(TATC). Position +6, thought to be an invariable C (Burge et al.
1999), may also be a T, and positions +7 and +8 can actually be
occupied by any nucleotide. This more degenerate pattern was
the one used to identify chicken U12 introns, where, at most, a
gap (in addition to one mismatch) was also allowed to match the
branch-point consensus. These results, which help to character-
ize the sequences that define U12 introns, illustrate the power of
comparative genomics to refine our knowledge of the functional
sequences encoded in eukaryotic genomes.

Mapping of mammalian UI2 introns into the chicken genome

DNA sequences of the exon-pairs delimiting each U12 intron
were mapped into chicken genomic sequences using exonerate
(http://www.ebi.ac.uk/guy/exonerate/). Only those alignments
that preserved the mammalian splice site were taken into ac-
count. Introns obtained in that way were classified into U2/U12
classes following the same criteria as in the above section.

Comparison of splice site sequence patterns

We have quantified the different use of nucleotides in splice sites
by different species and represent it by comparative pictograms.
A comparative pictogram is a graphical representation of the
nucleotide proportions observed in two different sets of aligned
sequences. In this article, these sets are splice sites of different
species and the proportions are calculated for every position
along the splice site. As in sequence pictograms, the sizes of
nucleotides scale with their observed proportions, but here the
nucleotides of the two sets are put side by side to ease their
comparison. Moreover, the background occupied by each
nucleotide is colored with the ratio of the proportions (the rela-
tive risk). Further details are given in the Supplemental material.

We have further analyzed the different nucleotide usage in
splice sites of different species by two kinds of comparisons as
follows: (1) by building confidence intervals for the relative risks
and counting how many of them include a ratio value of 1 (i.e.,
no difference of nucleotide usage), and (2) by assessing the site
species dependence, that is, the extent to what the occurrences of
the observed splice sites depend, statistically speaking, on the
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species to which they belong to. Further details are given in the
Supplemental material also.
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Chapter 5

Visualization Tools

If a picture is not worth a 1000 words,
to hell with it !
—Ad Reinhardt (note this is from the original Chinese quote
that “a picture is worth 10,000 words™)

In this chapter the focus will shift towards the annotation and visualization process,
describing those tools that permit to integrate data from different sources, including gene-
prediction results, to present them to biologists in a comprehensive and comprehendible
manner. These programs are intended to provide an overall view of our knowledge of a
genomic region in a user-friendly interface, either static or interactive.

Before reporting our contribution to this field, we will place it in context with respect
to other software. Therefore, a review of visualization tools provides the best frame to
present our developments later. In the case of gff2ps, we have also participated in the
cartography of the human, the fruit-fly and the mosquito genomes, and a special mention
is deserved in the corresponding section.

5.1 A Review of Visualization Tools for Genomic Data

This section is not an in depth review, but an attempt to enumerate a broad spectrum
of such software —ranging from the fully automated genome pipelines to the simple
command-line programs—, and to highlight their application to comparative genome anal-
yses. Programs are classified into three types: a) the database browsers, b) the annotation
workbenches, that can be also used as browsers; and c) specific tools to visualize results
from different sequence analysis, pointing the attention on those developed on top of align-
ment algorithms. We will not deal here with the libraries of code that contain programs or
functions to plot data in any of the aforementioned classes, because they are of interest
mostly to advanced users and computer specialists —for instance, bioTk [Searls, 1995],
biowWidgets [Fischer et al., 1999], the Bioperl  Toolkit [Stajich et al., 2002] or the Generic
Model Organism Project (GMOD, see pag214, on Web Glossary).

149



150 Chapter 5. Visualization Tools

5.1.1 Database browsers

A first entry point to the visualization of genomic analyses can be any of the web front-ends
developed to publish genome annotations. For example, the ones offered by databases of
species- specific genome projects, such as the Saccharomyces cerevisine SGD [Christie et al.,
2004], the Caenorhabditis elegans WORMBASE [Harris et al., 2004], the Drosophila melanogaster
FLYBASE [The FlyBase Consortium, 2003], the mouse MGD [Bult et al., 2004], the Arabidop-
sis thaliana TAIR [Rhee et al., 2003], and so on. The expected evolution of these of interfaces
was to summarize all the information under a unified graphical schema as the number of
species being sequenced increased —as done in the euGenes [Gilbert, 2002], the Generic
Genome Browser (Gbrowse, Stein et al. 2002) and the GeneDB[Hertz-Fowler et al., 2004]
systems.

The best example of such evolution is ACEDB [see page 213, on Web Glossary; Durbin
and Thierry-Mieg, 1993; Eeckman and Durbin, 1995], a seminal genome database system
developed since 1989 and originally tailored for the C. elegans genome project. The tools in
it have been generalized and are now used in a variety of organism-specific databases as
diverse as bacteria and eukaryotes [Walsh et al., 1998]. Specialized displays for managing
and publishing genomic data are available through its well-set-up graphical user interface.
Two remarkable implementations are the AceBrowser [Stein and Thierry-Mieg, 1998] and
Jade [Stein et al., 1998] programs.

There has already been a worldwide effort to centralize all the information about
sequenced genomes. The best examples are the three fully established whole-genome
browsers: the NCBI MAP VIEWER [see page 215, on Web Glossary; Wheeler et al., 2005],
the UCSC GENOME BROWSER [see page 216, on Web Glossary; Karolchik et al., 2004] and
the ENSEMBL system at the Sanger Institute and the EBI [see page 213, on Web Glossary;
Birney et al., 2004a]. All three browsers present by default a set of "in-house" and/or con-
tributed gene- finding predictions from different programs. This is an on-going effort and
predictions are recomputed for each newly released assembly. However, only the UCSC
and ENSEMBL systems distribute predictions fully-based on the comparative genomics ap-
proaches. In what follows, we briefly review these three main genome gates.

The NCBI MAP VIEWER shows ab initio gene models generated by Gnomon [NCBI,
2003], a heuristic tool able to find the maximal self-consistent set of transcript and protein
alignments to genomic data. Other programs like, for instance, GenomeScan [Yeh et al.,
2001], use this information to parameterize the constraints for an underlying HMM-based
gene prediction model. The browser is focused to display genome assemblies using sets
of synchronized chromosomal maps, but also features tables of genetic loci in homologous
segments of DNA between human and mouse —the so called Human-Mouse Homology
Maps—, and has links to HOMOLOGENE, a database of curated and calculated gene homo-
logues.

The ENSEMBL system can display simultaneously different sets of annotated features
and predictions from several gene-prediction tools embedded in the ENSEMBL annotation
pipeline (see for instance, Figures 1.4 and 5.1). An interesting feature of the ENSEMBL sys-
tem is the inclusion of external data through a Distributed Annotation System (DAS,Dowell
et al. 2001) server, which, on user demand, dynamically links third-party annotations to the
genomic sequence under study. The SGP2[Parra et al., 2003], Twinscan [Korf et al., 2001],
and SLAMJ[Alexandersson et al., 2003] gene annotation tracks, for instance, can be easily
included in the current view by switching on the corresponding check box in the ‘DAS
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Figure 5.1: Human GBFT loci genomic region and its counterpart in mouse. Detailed view
of the human/mouse homology block at the GBFI loci (human chromosome 10, between
103963970bp and 104163968 bp) as shown by the MultiContig View page on ENSEMBL. Ortholo-
gous genes are connected by a blue line. Pink boxes represent the homologous regions between
both species projected into each sequence. Those homology hits are connected by green shaded
regions. Differences at sequence level, such as insertions/deletions and inversions, are easily
spotted with that green shading.

sources’ drop-down menu. A syntenic regions navigation tool is available at ENSEMBL (see
upper right panel from Figure 1.4 and Clamp et al. 2003). It was initially developed for
human-mouse comparisons but it has been extended to include further species compar-
isons, i.e. rat, chicken, fruit-fly and so on. An example of the MultiContig viewer is shown
in Figure 5.1.

Finally, gene-predictions can also be retrieved from the UCSC browser by switching on
the appropriate options in the drop-down menus from the navigation form. In addition,
the UCSC GENOME BROWSER features a novel database named ZOO, on which analyses
made over a set of homologous targeted genomic sequences from 12 species [Thomas et al.,
2003] are published. Furthermore, depending on which genome is being browsed, the
annotated gene features can be combined with the results of a mixture of whole-genome
precomputed alignments from BLAT [Kent, 2002], BLASTZ [Schwartz et al., 2003b], WABA
[Kent and Zahler, 2000], and/or Exofish  ecores [Jaillon et al., 2003].

Current genome browsers, however, lack the ability to clearly represent information
across genomes. A multiple species genome browser system should be able to represent
many-to-many genomic alignments as an alignment among genomes. Moreover, it is dif-
ficult for most systems to develop a representation that natively compares whole-genomes
and not only targeted regions. In this regard, the K-Browser [Chakrabarti and Pachter,
2004] has been designed around two principles: genome symmetry —every genome con-



162 Chapter 5. Visualization Tools

tains useful information, thus a browsing solution should not limit the ability to navigate
within or across genomes—; and genome homology —related genomes have evolved from
a common ancestor and these evolutionary relationships should be accurately reflected in
both the representation and the visualization of information. The K-Browser takes as
input a specific region in a specific genome and produces a set of images that succinctly
represents the requested region and all orthologous regions. It can also provide the under-
lying multiple alignments.

5.1.2 Annotation workbenches

A myriad of sequence annotation workbenches have been developed during the last
decade, but only a few have taken into account the comparative genomics perspective
into their design. In this regard, it is worthwhile to cite Alfresco  [Jareborg and Durbin,
2000], genomeSCOUTSuter-Crazzolara and Kurapkat, 2000], ERGQOverbeek et al., 2003],
Theatre [Edwards et al., 2003], and FamilyJewels  [Brown et al., 2002]. Developed since
the mid-nineties, these workbenches established the basis of modern annotation tools such
as Artemis  [Rutherford et al., 2000] and Apollo  [Lewis ef al., 2002]. The latter provides
a human-mouse synteny panel that allows the user to compare and edit annotations for
these two species. The Artemis Comparison Tool (ACT), based on theArtemis imple-
mentation, displays the results of a BLASTN/TBLASTXearch along the sequence with the
corresponding annotations. These tools are mainly employed by human curators for the re-
annotation labour necessary to improve the raw annotations from automated pipelines. In
this regard, the Otter annotation system [Searle et al., 2004] extends the ENSEMBL database
schema to integrate manual annotations by exchanging data in XML format between ma-
chines and allowing multiuser annotation. Two annotation tools have Otter client sup-
port, Apollo and Otter/Lace.  Otter/Lace  isa perl wrapper round the AceDB anno-
tation editor, and it is currently used by the Human and Vertebrate Annotation (HAVANA)
group curators at the Sanger Center. A review of several annotation browsers from the
end-user viewpoint can be found in Fortna and Gardiner [2001].

5.1.3 Tools for visualizing alignments

Despite the trend to move from the pair-wise sequence comparison tools (two species) to
the comparison of multiple sequences (many species) [Miller, 2001], there is still a niche for
pair-wise comparison tools. The main reason is that such one-to-one alignments provide
an informative comparison, but with the lowest complexity of interpretation.

Pair-wise comparisons can be done in several ways. A dot-plot  or comparison matrix
simultaneously displays all the structures in common between two sequences [Fitch, 1966;
Gibbs and McIntyre, 1970]. In this, the conserved, repeated or inverted repeated segments
are clearly visualized. Accordingly, dot-plot  like diagrams have been extensively used to
define the conserved segments of large genomic sequences, and also to explore the repeat-
rich regions [Waterston ef al., 2002]. These conserved segments can be further analyzed
with, for instance, the PiP-like tools described below. Among the pair-wise tools, one
can cite DIAGON[Staden, 1982], LFASTA[Pearson and Lipman, 1988], Lav [Schwartz et al.,
1991], Blixem [Sonnhammer and Durbin, 1994], Dotter [Sonnhammer and Durbin, 1995],
Laj [Wilson et al., 2001], GenoPix2D [Cannon et al., 2003], or NOPTALIGN[Smoot et al.,
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Figure 5.2: A comparison of PiP-plots versus Smooth-plots. Sequence between 95992kb and
96028 kb from chromosome 8 was compared against its homologous mouse genomic sequence
using the zPicture  web server [Ovcharenko et al., 2004a]. The same underlying alignment,
computed with BLASTZ [Schwartz et al., 2003b], is visualized as a pip-plot in the upper panel
and as a smooth-plot in the bottom one, emulating the output from PipMaker [Schwartz ef al.,
2000] and VISTA [Mayor et al., 2000] respectively. Pip-plots display all the short ungapped align-
ments as black horizontal lines, while smooth-plots are constructed using, for each nucleotide,
a 100bp sliding window in which sequence identity is averaged. Boxes along the 100% identity
baseline represent evolutionary conserved regions (ECRs), while those on the 50% baseline pin-
point the masked regions in which repetitive elements were found. NM152416 gene structure
(human hypothetical protein MGC40214) is depicted above the identity plots in both panels.

2004]. The EMBOSSuite [Olson, 2002; Rice et al., 2000] provides several programs of this
kind (dottup, dotmatcher, dotpath and polydot). The gff2aplot  [Abril et al., 2003]
program falls within this software family. See Figure 5.8 on page 175 (Figure 1 on page 2478
of Abril et al. 2003), for examples of its output. Its major strength is to be independent of
any alignment algorithm, as far as the input can be translated into the General Feature
Format (GFF, see page214, on Web Glossary). TriCross [Ray et al., 2001], which extends
the dot-plot  concept to the simultaneous analysis of three sequences, renders the results
in a three-dimensional Virtual Reality Modeling Language (VRML) representation.

Then again, those sequence comparisons can be represented in a more compact lin-
ear fashion. Several tools can be grouped here: LAPS (Local Alignment to POSTSCRIPT,
Schwartz ef al. 1991), LalInView [Duret et al., 1996], and GenomePixelizer [Kozik et al.,
2002]. The latter has been applied to visualize inter- and intra-chromosomal segmental
duplications in genomic sequences [Cheung et al., 2003; Estivill ef al., 2002].

Another class of programs, so called PiP-like because they produce Percentage Identity
Plots, were designed to represent data from underlying sequence alignment algorithms.
Basically, they consist in a compact display of the results of aligning one sequence to one
or more sequences, where the positions (in the first sequence) and the score of the align-
ment segments are plotted, along with icons for features in the first sequence. MUMmer
[Delcher et al., 1999; Kurtz et al., 2004], PipMaker [Schwartz et al., 2000], Multi-PipMaker
[Schwartz et al., 2003a], VISTA [Mayor et al., 2000], CGAT[Lund et al., 2000], and SynPlot
[Gottgens et al., 2001], are among these tools. They do not fit into the gene-prediction
paradigm sensu strictu; in any case, they have proven their potential in finding and/or re-
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fining protein-coding regions [Jang et al., 1999; Pennacchio et al., 2001; Reisman ef al., 2001;
Tompa, 2001; Toyoda ef al., 2002; Wilson et al., 2001], as well as the conserved non-coding
sequences around them which may play a role in gene expression [Dubchak et al., 2000;
Gilligan et al., 2002; Gottgens et al., 2000, 2001; Hardison, 2000; Hardison et al., 1997; Loots
et al., 2000; Oeltjen et al., 1997; Ovcharenko and Loots, 2003b]. They even have been found
useful in the analysis of the distribution of repetitive sequences [Chiaromonte et al., 2001;
Yuhki et al., 2003]. See Figure 5.2 for an example of what can be done with these tools.

These programs have been reviewed in a number of occasions [Frazer et al., 2003; Pen-
nacchio and Rubin, 2001; Pennacchio, 2003; Pennacchio and Rubin, 2003; Thomas and
Touchman, 2002; Ureta-Vidal et al., 2003]. In Frazer et al. [2003], there is a good example
of what can be achieved using those tools; it can be taken as a complete protocol describ-
ing how to retrieve the data sets, to prepare the sequences and complementary files, to
compare them through the corresponding web browsers, and finally how to interpret their
graphical outcomes. Two web servers have been deployed in an attempt to make those
tools more interactive for the average user: the ECR-Browser (a navigation tool for Evo-
lutionary Conserved Regions: Ovcharenko and Loots 2003a; Ovcharenko ef al. 2004b) and
zPicture  (Ovcharenko et al. 2004a, and Figure 5.2). On the other hand, a comparison of
the different alignment algorithm approaches behind some of those programs can be found
in Ureta-Vidal et al. [2003]. EnteriX [Florea et al., 2003] takes advantage of those princi-
ples to compare complete genomes of enteric bacteria. Nevertheless, the application of this
algorithm to larger eukaryotic sequences, for instance to apply them in a whole-genome
analysis, requires a large amount of computational resources. One drawback of these tools
is that their input often needs to be defined within conserved genomic segments, for in-
stance, regions of synteny between chromosomes, because sequence rearrangements can
dramatically distort the corresponding alignments.

Some tools have been specifically devised for the analysis of regulatory regions, al-
though they can use a similar approach that the one described above for programs such
as PipMaker or VISTA. ReguloGram visualizes the density of co-occurring cis-element
transcription factor binding sites measured within a 200bp moving window through phy-
logenetically conserved regions. Within a high-scoring region, the relative arrangement of
shared cis-elements within compositionally similar binding site clusters can be depicted
then with TraFacGram [both, ReguloGram and TraFacGram, were described in Jegga
et al. 2002]. ConSite [Lenhard et al., 2003; Sandelin et al., 2004] is a graphical web applica-
tion that takes advantage of the phylogenetic footprinting to report putative transcription
factor binding sites situated in conserved regions and located as pairs of sites in equivalent
positions in alignments between two orthologous sequences.

Apart from raw sequence genomic comparisons, one might be interested in examining
the gene distribution among two or more species. One of the first approaches to this was the
Oxford Grid [Edwards, 1991]. Coordinates for successive chromosomes of two species
were drawn along two axes as in a dot-plot, homologous loci were then depicted as dots.
Pair-wise similarity scores have also been used to estimate closer neighbour relationships
when analyzing many genomes as a whole. Those results have been commonly represented
as pie charts or Venn diagrams [Blaxter et al., 2002; Wood et al., 2002], but this leads to
an static view of the sequence relationships. A more dynamic view is the one offered by
the SimiTri  tool [Parkinson and Blaxter, 2003], in which the simultaneous display and
analysis of the similarity relationships of the dataset of interest, in example the complete
proteome of an organism, relative to three other databases can be achieved.



5.1. A Review of Visualization Tools for Genomic Data 155

5.1.4 Tools for visualizing annotations

One of the first graphic programs devoted to determine the function of nucleic acid se-
quences was ANALYSE(QStaden, 1984b], and its focus on finding coding-exons. In this
context it is also worth mentioning, the RSVPpackage [Searls, 1993]—in which sequence
analysis algorithms were encoded using the POSTSCRIPT language, and thus, could in prin-
ciple be performed by the printer.

Although not necessarily comparative based, several gene-prediction tools display
graphical output either through a web server or as a standalone software. This graphi-
cal output generally consists in colored shapes corresponding to coding exons or other
functional elements along the genomic axis. This approach was notably pioneered in X-
windows systems by GeneModeler [Fields and Soderlund, 1990] as an standalone plat-
form, and by XGRAIL [Uberbacher and Mural, 1991] as a network-based client-server archi-
tecture. In all these cases, the visualization capabilities are strongly tied to a particular gene
finding algorithm. More general and algorithm independent visualization tools have been
also developed. This task has been facilitated by the general acceptance of GFFformat, and
its derivatives (see page 214 from Web Glossary), as a standard for genomic features an-
notations. gff2ps  [Abril and Guig6, 2000], for instance, displays GFFfiles assuming that
the file itself carries enough formatting information. Additional flexibility comes from the
customization files defined by the user, and also because of the POSTSCRIPT output and the
ability to handle multiple page formats. Examples of its output can be seen on Figure 5.4
on page 160 (Figure 1 on page 744 of Abril and Guigé 2000). Those people looking for
an interactive and extensible visualization program, should take a look to the GUPPYsys-
tem [Ueno et al., 2003], implemented over the Lua scripting language [lerusalimschy et al.,
1996]. Finally, it is worth to cite Sockeye [Montgomery et al., 2004], a three-dimensional
Java-based application that has been developed recently to compactly display compara-
tive analyses.

Initial developments of circular maps were devoted to draw restriction maps over plas-
mid sequences, then were applied to represent bacterial circular chromosomes. How-
ever, linear maps are more appropriate for visualizing genomic features, and for compa-
rative studies in particular —as Tufte [2001] claims, any distortion when plotting data that
will lead to misinterpretation should be avoided. Among the tools developed to visual-
ize genetic maps one can cite gRanch [Wada et al., 1997], mapmerge [Nadkarni, 1998],
mapplet [Jungfer and Rodriguez-Tome, 1998], FitMaps+ShowMap [Graziano and Arus,
2002], NCBI's MapViewer [Wheeler et al., 2002], or cMap [Fang et al., 2003]. Applications
to produce circular or linear representations of genomic features were provided by several
software packages; such as GCEDevereux et al., 1984], Staden [Staden et al., 2000], SRS
[Etzold and Argos, 1993], SEALS[Walker and Koonin, 1997], or EMBOS$Olson, 2002; Rice
et al., 2000]. Further examples of this kind of tools are GenomePlot [Gibson and Smith,
2003], GenoMap([Sato and Ehira, 2003], and ZoomMap+MappetShow [Barillot et al., 1999].

Finally, it is worth to mention a set of visualization tools that are useful in a more specific
analysis context. For instance, graph-based display using exons as nodes produces more
compact pictures of alternative splicing exonic structures. This approach has been imple-
mented in SpliceNest  [Coward et al., 2002; Krause et al., 2002], and SplicingGraphs
[Heber et al., 2002]. Software that analyses the repeats distribution and composition on
genomic sequences often includes a graphical interface, in which repetitive regions are
linked by using straight lines or arcs. In this category one can find MiroPEATS [Parsons,
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Figure 5.3: Flow chart of internal main processes for gff2ps and gff2aplot. Both tools

were devised as standard Unix programs, they work as filters that process an input stream, in
GFF, to produce an output stream, in POSTSCRIPT. Customization is provided by user-defined
files or through command-line switches. Those settings are integrated with the input data to set
a variables defining block and to bring forth the corresponding feature function calls in the page
section of a POSTSCRIPT document. Such file is able to render the annotation plots thanks to spe-
cific POSTSCRIPT functions defined in its code section. The output document is self-contained,
it has the data to plot and the commands to draw it.

1995], REPUS[Babenko et al., 1999], REPuter [Kurtz and Schleiermacher, 1999], Genome
cryptographer [Cleaver et al., 2003], Exact Match Annotator [Healy et al., 2003],
FORRepeats [Lefebvre et al., 2003], GenomeComyYang et al., 2003], or ADplot [Taneda,
2004].

5.2 (ff2ps: Visualizing Genomic Features

There are two major systems for representing graphic information on computers: raster
and vector graphics. In raster graphics, an image is represented as a rectangular array of
picture elements or pixels. Each pixel is represented either by its RGB color values or as
an index into a list of colors. This series of pixels, also called a bitmap, is often stored
in a compressed format. Since most display devices are also raster devices, displaying
such a bitmap requires a viewer program to do little more than uncompress and transfer
that bitmap to the screen. In a vector graphic system, an image is described as a series of
geometric shapes. Rather than receiving a finished set of pixels, a vector viewing program,
often also known as the interpreter, receives commands to draw shapes at specified sets of
coordinates. In other words, it translates graphical objects into a virtual grid that is then
projected in the corresponding raster device at a given fixed resolution. Although they
are not as popular as raster graphics, vector graphics have one feature that makes them
invaluable in many applications, they can be scaled without loss of image quality in the
final rendering. This also means that once you generated an image you can zoom into
any region of it to observe further details, which is done by the interpreter. To achieve
the same with bitmaps requires to generate each zoom separately. This may not involve
as much CPU time as needed by the vector graphics interpreter, but it is not efficient in
storage space. Most of those arguments lead us to opt for a vector graphics programming
language when developing most of our visualization tools, despite such systems do not
have the same acceptance or support than a bitmap one. In any case, a vector graphic can
be converted into a bitmap without loosing information while the other way around is not
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always true.

Introduced in 1985, POSTSCRIPT is the name of a computer programming language
developed originally by Adobe Systems Incorporated to communicate high-level graphic in-
formation to digital laser printers [Adobe S.1., 1999]. It is a flexible, compact, and powerful
language both for expressing graphic images in a device-independent manner and for per-
forming general programming tasks. The three most important aspects of the POSTSCRIPT
programming language are that it is interpreted, that it is stack-based, and that it uses a
unique data structure called a dictionary. The dictionary mechanism gives the POSTSCRIPT
language a flexible, extensible base, and the fact that the language is interpreted and uses
a stack model means that programs can be of arbitrary length and complexity. Since very
little overhead is necessary to execute the programs, they can be interpreted directly from
the input stream, which means that no memory restriction is placed on a POSTSCRIPT pro-
gram other than memory allocated by the program itself [Reid, 1996]. Those programming
features make the POSTSCRIPT language suitable for developing visualization tools in the
genomic annotation field.

The combination of specific purpose POSTSCRIPT-generating scripts previously imple-
mented by me, along with the establishment of annotation interchange formats by the ge-
nome annotation community, such as GFF, led to the definition of the initialgff2ps draft.
gff2ps  was initially conceived in 1999 as a general drawing tool to represent gene-finding
annotations from different sources. The program assumes that the GFFinput itself carries
enough formatting information. Genomic annotations have a hierarchical structure inher-
ent to the biological features represented by them. For instance, a sequence may contain
several genes, which are made of one or more exons, which are delimited by different sig-
nals, such splice sites and initiation or stop codons. Such structure is encoded in the GFF
records by settling a fixed feature attribute on each field, i.e. the initial and terminal coordi-
nates, a score, the group belonging to, and so on (see an example of the GFFrecord structure
on page 214 from Web Glossary). gff2ps  internal flow chart is depicted in Figure 5.3. Two
main code blocks define this program: the gawk input filter and the POSTSCRIPT drawing
functions. The gawk code block is in charge of processing the GFFinput records and the as-
sociated customization parameters, to produce specific POSTSCRIPT-function calls for that
data. Then, it embeds that piece of code in the POSTSCRIPT document, which is by itself
another code block.

Notable applications of gff2ps  include the whole-genome annotation maps for several
species —Drosophila melanogaster (Adams et al. 2000; see section 5.2.2 on page 161 and Fig-
ure 5.5), human (Venter et al. 2001; see section 5.2.3 on page 165 and Figure 5.6), the mouse
chromosome 16 [Mural et al., 2002], Anopheles gambiae (Holt et al. 2002; see section 5.2.4 on
page 169 and Figure 5.7), and Blochmannia floridanus [Gil et al., 2003]. Figure 3.8 on page 91
(Figure 2 on page 1142 of Guigé et al. [2003]) and bottom panel of Figure 5.10 are examples
of using gff2ps  in the comparative genomics context.
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5.3.1 ¢ff2aplot: visualizing pairwise homology

gff2aplot was designed following the same principles as for gff2ps. Figure 5.3 illus-
trates the main internal processes flow chart for both tools. The problem to solve here
was to integrate annotation information of two sequences being compared along with the
pair-wise alignments obtained by other programs.

Due to the fact that each alignment software outputs alignments in their own format,
it was decided to provide different filters to convert those alignment formats into a single
interchange format. Such format was initially derived from GFF version 1, the so called
aplot format. However, GFF version 2 provides enough flexibility to encode the align-
ment records into a more standardized way. Both alignment input formats, the aplot and
the GFFv2, have been kept for backward compatibility in newer releases of gff2aplot.
Use of an standardized input format permits to combine data from different alignment
tools, or from different analyses made with the same tool—see for instance, right panel
from Figure 5.8 on page 175 (Figure 1 on page 2478 of Abril et al. 2003)—, in order to
compare them. An additional advantage of working with such filters to produce GFF-
like records was the capability of visualizing that kind of data using gff2ps  (as shown in
Figure 5.10 lower panel).

Having that in mind, four programs have been implemented to date to complement
gff2aplot, three  perl scripts and another written in the Clanguage. parseblast is
a parser for the standard output from four of the BLAST program flavours available, say
here NCBI-Blast  [Altschul et al., 1990, 1997], WU-Blast [Gish, 1996-2004], WebBlast
[Ferlanti et al., 1999] and MegaBlast [Zhang et al., 2000]. blat2gff ~ converts BLAT [Kent,
2002] output into GFF, whilesim2gff does the same for SIM [Huang and Miller, 1991]
output. The Cprogram, ali2gff, processes ~ SIM or MummerDelcher et al., 1999] output to
produce the GFFrecords for the alignment.

5.3.2 Abiril et al, Bioinformatics, 19(18):2477-2479, 2003

PubMed Accession:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_
uids=14668236&dopt=Abstract

Journal Abstract:

http://bioinformatics.oupjournals.org/cgi/content/abstract/19/18/2477

Program Home Page:

http://genome.imim.es/software/gfftools/GFF2APLOT.html

NOTE: Because of copyright restrictions, we cannot offer the article,

please follow links for fulltext.
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Figure 5.9: Comparative pictograms. We have initially developed compi to help in compa-
rative analyses of splice sites. It can produce two kind of pictograms: the “standard” views,
visualizing a pictogram for single species (left panels) and “comparative” views, currently set
for pair-wise species matrices comparison (right panels). Depending on the input matrix, three
different plots can be obtained, from top to bottom: the basic pictograms (with extra customiz-
able layout), the Position-specific Scoring Matrices (PSMs) and the First-order Markov Models
(FMMs) representations.

5.3.3 compi: Comparative pictograms

In sequence pictograms [Burge et al., 1999]—which are analogous to sequence logos
[Schneider and Stephens, 1990], the frequencies of the four nucleotides at each position
along the signal—, the so called Position Weight Matrices [PWMSs; Staden, 1984a, 1988;
though the nowadays preferred term is Position-specific Scoring Matrices or PSMs] are
represented by the heights of their corresponding letters. The information content (intu-
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itively, the deviation from random composition) is computed at each position. It ranges
from zero to two, with zero indicating random composition, and two indicating fixation of
one nucleotide. The information content of the signal is the sum of the information content
at each position. The larger the information content, the more conserved the signal (and,
thus, more “informative”: the smaller is the probability of finding it by chance). The rela-
tive entropy formula (also known as the Kullback-Leiber distance; Burge et al. 1999) is used
to calculate the information content of the signal, as follows:

szgnal = ZZ logz Q

J=1ij

Where N = length(signal), and i € {A,C,G,T}. P;; is the probability of finding nu-
cleotide i € {A,C,G, T} in the jth nucleotide of the signal, and Q; is the probability of
that nucleotide under the background distribution. By default, compi assumes the ran-
dom distribution as background (so that, each Q; = %), although other distributions can be
provided by the user.

By inspecting the pictograms for two or more species, one tries to spot the different
use, made by each of the species, of the nucleotides along the signal. This inspection,
however, can become a difficult task for the following reasons. First, the differences in
the size of each nucleotide can be difficult to observe as the two nucleotides are located in
different pictures. Second, these differences are not quantified and thus we cannot assess
with precision when a nucleotide is used more frequently in one of the species. Third,
the assumption of marginal independence among the positions of the signal—implicit in
PWMs—can hide relevant differences between species with regard to the dependencies
between nearest neighbour positions along the splice signal.

We have tackled all three problems. First we have placed the nucleotides that occur in
the same position, in the two species being compared, next to each other. Second we have
calculated the ratio of the two relative frequencies (the odds) of each nucleotide in each
position and represent the log, of this ratio with a color code from green (log, % =-1)to
red (log, 2 = 1), where yellow is a ratio of 1 (0 in log-scale). The log-odds values of -1 and
1 work as saturation values and therefore, odds smaller than 0.5 or larger than 2 take green
and red color, respectively. This color fills the rectangle defined by the nucleotide character
and allows easy spotting of which nucleotides show a different occurrence between species.
Third, we have extended the pictogram idea to represent first order dependencies between
adjacent positions of the splice site—the so called First-order Markov Model (FMM). We
have computed and represented the ratios of occurrence of each nucleotide with respect to
the occurrence of every nucleotide in the previous positions. The representation has been
implemented by splitting the rectangle defined by a nucleotide character in four equal rect-
angles, and filling out each of them with the color that corresponds to each of the ratios
following a fixed order of A,C,G, and T. We shall refer to this representation as a compa-
rative pictogram (compi). When rendering FMMs, the relative entropy at each position for
each nucleotide is also weighted with respect to the occurrence of every nucleotide in the
previous positions.

We split the task of producing the comparative pictograms in two, using separate perl
scripts for each part. The first one computes nucleotide frequencies, ratios and First-order
Markov dependencies from a set of sequences of fixed length. Then the matrices obtained
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Figure 5.10: Merging exonic structure with coding sequence alignments. Comparing the
exonic structure of a set of orthologous genes (REFSEQ codes NMOOOO18, NMO17366, and
NMO12891 in human, mouse, and rat respectively). At the protein level (top), splice sites were
mapped over the amino acid alignment, and consecutive underlying exons were represented by
alternating light and dark grey boxes. At the genomic level (bottom), the exonic structures are
depicted along with the filtered best hits calculated from pair-wise WU-TBLASTX[Gish, 1996—
2004] of comparisons of each sequence against the other two. The height of the boxes under the
sequence axes correlates with the alignment score. The lower panel was obtained by gff2ps
[Abril and Guigo, 2000].

are processed by a second script which generates POSTSCRIPT code specifically developed
for the corresponding graphical representation of the matrices. This script can produce six
different outputs, three “standard” (visualizing a pictogram for single species) and three
“comparative” views (currently set for pair-wise species matrices comparison), which are
shown in Figure 5.9. Computing the matrices outside the graphical program gives more
flexibility to the user, who can preprocess matrices from other software to fit the input
format of our tool (see page 213, on Web Glossary). This tool has been used to produce the
pairwise pictograms shown in Figure 4.13 on page 134 (Figure 2 on page 116 of Abril et al.
2005).

5.3.4 Other developments

Several graphical procedures have been developed other than those shown until now, al-
though many of them either are not finished enough to release to the community, or are
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quite specific for a given analysis to be really useful in another context. We are going to
point out few of them in this section.

The need to combine the exonic structures along with sequence alignments at nu-
cleotide or amino acid level, led to the development of the boxed alignments script for
which an example is shown in Figure 5.10 upper panel. A more elaborated program devel-
oped in our group, named exstral  (EXon STRucture over an ALignment, Castelo ef al.
2004), produces a more quantitative output. However, its current text-based output lacks
the integration achieved with the boxed alignments—for instance, to highlight subtle frame
shifts in the exonic structure. The boxed alignments script generates a POSTSCRIPT plot. It
will be interesting in the future to implement such kind of output into exstral.

As much important as writing procedures to analyze genomic data sets, is to choose an
appropriate way to visualize the final results. The customization flexibility characteristic
of gff2ps  makes this tool useful to draw annotation features from different kind of anal-
yses. Given a properly formatted input set of GFF records and taking the time to define an
associated customization file or files, a researcher can obtain simple or complex represen-
tations of his annotations. It is then easy to apply those settings to a set of annotations for
different sequences. Lower panel from Figure 5.10 shows an example of using gff2ps in
a comparative genomics approach.
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Discussion

So easy it seamed once found, which yet unfound
most would have thought impossible
—John Milton

A central goal of genome analysis is the identification of all human genes. This task
remains challenging, but is greatly aided by the near-complete sequence of the human ge-
nome [International Human Genome Sequencing Consortium, IHGSC, 2004], together with
other improved resources (such as expanded cDNA collections, genome sequence from
other organisms and better computational methods). The inventory of the best-defined
functional components in the human genome—the protein coding sequences—is still in-
complete for a number of reasons, including the fragmented nature of eukaryotic genes.
The human gene number estimates, though, are coming closer to the real number of genes,
as can be seen in Figure 6.1. To this end, there are several ongoing projects focusing on the
definition of the precise catalog of human genes. One of those projects is the Vertebrate
Genome Annotation (VEGA) database, a central repository for high quality, frequently up-
dated, manual annotations of vertebrate finished genome sequences [Ashurst ef al., 2005].
The comparative sequencing program at the NIH Intramural Sequencing Center (NISC)
aims to sequence and to analyze targeted genomic regions in multiple vertebrates [Thomas
et al., 2003]. The initial target of this project was a genomic segment of about 1.8Mb on
human chromosome 7g31.3 containing the gene encoding the cystic fibrosis transmem-
brane conductance regulator (CFTR) and nine other genes. Sequence clones for the orthol-
ogous genomic segments in multiple other vertebrates were obtained in order to perform
an exhaustive comparative analysis of that region. The American National Human Ge-
nome Research Institute (NHGRI) launched a public research consortium, the ENCyclope-
dia Of DNA Elements (ENCODE) project [ENCODE Project Consortium, 2004], in Septem-
ber 2003, to carry out a project to identify all functional elements in the human genome
sequence. The project is currently in its pilot phase, the evaluation of the procedures that
can be applied cost-effectively and at high-throughput to accurately and comprehensively
characterize large sequences. A set of 44 discrete regions—ranging in size from 0.5 to 2Mb,
that together constitute ~1% of the human genome (30 Mb)—was chosen to represent a
range of genomic features.

The unexpectedly low number of genes identified in the human genome raises again the
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Antequera and Bird 1993 ~80,000: estimated from CpG islands density
Fields et al. 1994 ~60,000 to ~100,000: ESTs evidences
Dunham et al. 1999 >45,000: based on annotation of chromosome 22
Hattori et al. 2000 ~30.500 to ~35,500: extrapolation of gene densities for chromosomes 21 and 22
Ewing and Green 2000 33,600: mapping ESTs onto chromosome 23 genes
ibidem 34700: mapping ESTS onto chr 22 GenBarik mRNAs ~120,000: filtering and clustering of EST
Liang et al. 2000
Roest Crollius et al. 2000 ~28,000 o ~34,000: stimation provided by genome-wide analysis using Tetraodon nigroviridis
Venter et al. 2001 23,000: “three lines of evidence’
ibidem 26,383: "o lines of evidence”
ibidem 39,318: “one line of evidence’
THGSC 2001 ~31,000: extrapolation from pool of known and predicted genes
Yeh et al. 2001 ~30,000 to ~40,000: Genomes can annotations
Hogenesch et al. 2001 ~50,000: merging THGSC and Celera gene sets
Wright et al. 2001 ~65,000 to ~75,000: non-redundant mapping of cDNAs, ESTS and proteins
IMGSC 2002 ~22,000 to ~30,000: ENSEMBL vs comparative gene-finders, lower and upper limit estimates respectively
Nekrutenko et al. 2003 >19,000: derived from an evolutionary approach forecast of coding exons
Guigo et al. 2003 ~25,000: hol parative analysi
Xuan et al. 2003 ~40.000: from the comparison of mouse
RGSPC 2004 ~23,299: ENSEMBL genes on HG15 (NCBI 33)
THGSC 2004 ~20,000 to ~25,000: estimates from the near-complete assembled genome sequence

Figure 6.1: Human gene number estimates in the genome era. The figure depicts the num-
ber of human genes (blue bar) from various estimates, along with the references in which they
were reported. It is worth to note that genes may produce more than one transcription unit or
transcripts, which is not taken into account in this picture. Adapted from Harrison et al. [2002].

question of the source of an organism’s complexity. One possible source is the greater struc-
tural complexity of the human genes, along with a higher level of regulation of those genes
and the pathways in which they are involved. Another source are post-transcriptional
modifications, more than 200 types are known and is predicted that three different modified
proteins are produced for each human gene on average [Banks ef al., 2000]. Furthermore,
alternative splicing of human genes might provide many more proteins per gene than in
other organisms. Nevertheless, in Brett ef al. [2002] they found similar levels of alternative
splicing across species which argues against an overall increase in splicing as a source of
increase in genome and organism complexity. Their data also suggested that a wide variety
of gene products are further diversified by post-translational modifications. More recently,
though, Pan et al. [2005] have provided evidence that at least 11% of human and mouse
cassette alternative splicing events represent conserved exons that undergo species-specific
alternative splicing. Such events have the potential to modulate frequently the structural
and functional properties of proteins that are attributed to conserved domains. Therefore,
they conclude that they could have an important role in the evolutionary differences be-
tween mammalian species. On the other hand, the recent identification of several types of
ncRNAs, such as small nucleolar RNAs, microRNAs, guide RNAs and anti-sense RNAs,
would significantly expand the complexity of the human genome [Storz, 2002]. Given the
absence of a diagnostic open reading frame, a major question arises on how these genes
can be identified. Novel evidences obtained by using high-density oligonucleotide arrays
on different cell lines provide support for transcription outside well-characterized human
exons [Kampa et al., 2004]. Those transcribed regions, also known as transfrags, will pro-
vide a new view of the human transcriptome by mapping transcription to the genomic
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sequences.

One of the major obstacles towards the completion of the catalog of human genes is
our inability to assess the reliability of the large number of computational gene predic-
tions that have yet to be verified experimentally. Results described in Parra et al. [2003]
demonstrate that through the comparison of related genomes, human and mouse in that
example, and using the available comparative gene-finding tools, the false-positive rate
can be reduced significantly, resulting in an improved catalog of vertebrate genes. Indeed,
the experimental verification of a subset of those predictions provided evidence for at least
1000 previously non-confirmed genes [Guigo et al., 2003]. The availability of another ver-
tebrate species whose evolutionary position lies between mammals and fish would be of
great utility to complete the vertebrates gene catalog. The success of these studies, suggests
a new paradigm in high throughput genome annotation, in which gene predictions serve
as the hypothesis that drives experimental determination of intron-exon structures. There-
fore, it is clear that with the accumulation of genomic data from other species and a better
understanding of the mechanisms and the signals involved in the transfer of information
from sequence to function, more accurate computational models will be available. Those
models have to face not only the complexity inherent to the biological processes and their
regulatory pathways, but also the complexity of the inter- and intra-specific variability due
to evolutionary events that led to the actual genomes of individuals and populations.

Existing gene finding programs, although significantly advanced over those that were
available a few years ago, still have several important limitations. Almost without excep-
tion, computational gene finders predict only the coding fraction of a single spliced form of
non-overlapping, canonical protein-coding genes. Annotation pipelines are currently able
to extend those annotations by incorporating other biological features of clear interest for
the research community, including non-coding mRNAs, pseudogenes, regulatory elements
and transcription start sites, anti-sense transcripts, but also other genome-scale data collec-
tions such as gene expression profiles, protein interaction and genetic variation. However,
a better understanding of the molecular mechanisms involved in gene expression and the
integration of this knowledge into the theoretical models underlying the gene prediction
software, may lead to systems that will be accurate enough to render both experimental
verification and manual curation largely unnecessary [Brent and Guigé, 2004]. As more
animal genomes are sequenced, deeper sequence alignments will contribute further to the
definition of signals such as regulatory elements. The application of comparative genomics
to study gene regulation has focused largely on the identification of shared regulatory se-
quences to explain similar patterns of gene expression between species. By contrast, the
differences in gene regulation between organisms, and the role of these differences in spe-
ciation, have only just begun to be examined [Pennacchio and Rubin, 2001].

As more evidence of the conservation of exonic structures between orthologous genes
and the sequence features that define such exons are accumulated [Waterston et al., 2002;
Gibbs et al., 2004; Hillier et al., 2004; Abril et al., 2005], the analysis of the extent of that
conservation becomes relevant to the prediction of alternative splicing events. Further ev-
idence suggests that a large fraction of alternative splicing events is conserved between
related species, such as human and mouse [Thanaraj ef al., 2003]. The analysis of the con-
served sequence features involved in splice site definition, as well as in the regulation of
splicing, will shed light on the code that determines the final pool of eukaryotic genes
products. Alternative splicing remains, however, as a poorly solved problem. On the other
hand, a comparison of the structural and mechanistic features of the major-class and minor-
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class, U2- and U12-types respectively, spliceosomes has provided many valuable insights
into the essential catalytic elements of the splicing reaction. The rate-limiting excision of
U12-type introns and their use in alternative expression of proteins in vivo indicates that
they might be potential targets of gene regulation. Assessing gene expression patterns in
transgenic organisms with U12 to U2 intron mutations should provide vital evidence and
help to rationalize the continued presence of these rare introns in metazoan genomes [Pa-
tel and Steitz, 2003]. The existence of a second spliceosome raises the possibility that a
third or fourth might be awaiting discovery. The degeneracy of the consensus sequences
defining those signals would make yet another class of introns difficult to detect. Indeed,
the GT-AG U12-type introns might well have been ignored for the initial focus on AT-AC
introns.

Another promising research area involves the analysis of the polymorphisms that fall
within the sequences defining splice sites or in the splicing regulatory sequences. Muta-
tions in exonic or intronic regulatory elements that cause severe splicing defects might just
be the tip of the iceberg. There might be also many genomic variants, including small in-
dels and single nucleotide polymorphisms (SNPs), that cause partial splicing defects that
are only pathogenic in specific tissues under the influence of a set of specific regulatory
splicing factors. Similar to splicing, all those processes are rarely considered when assess-
ing the clinical significance of genomic variants [Pagani and Baralle, 2004]. In this regard,
we have gathered a database, to be explored in future analyses, which integrates gene struc-
tures for reference human genes [REFSEQ; Pruitt ef al. 2005], the conservation scores from
phylo-HMM based multiple alignments (for human, chimpanzee, mouse, rat, and chicken,
and downloaded from the UCSC GENOME BROWSER; Karolchik et al. 2003) and a large
collection of human SNPs from NCBI DBSNP [Sherry et al., 2001].

Visualization tools will continue to play a key role in the integration of the genomic
annotation data sets, in order to extract biological meaning from that flood of information.
Due to the intrinsic dynamic nature of the annotation data sets, database browsers have
become standard tools at the laboratory to retrieve the latest updates on genomic annota-
tions and to navigate through the many different databases available. All public genome
browsers have their particular strengths: the UCSC GENOME BROWSER exemplifies speed;
NCBI MAP VIEWER is integrated into a larger site and is linked to the impressive range
of databases that NCBI curates; GBrowse is a sophisticated toolkit designed to simplify
building data browsers to display custom data; ENSEMBL provides flexibility and a broad
range of data displays [Stalker ef al., 2004]. Notwithstanding, command-line flexible vi-
sualization tools still have their niche, as it is the case for gff2ps, gff2aplot, compi
and similar tools. Although raster graphics are more popular and are currently best sup-
ported by web browsers, we still advocate the use of vector graphics to visualize genomic
annotations. Vector graphics have one feature that makes them invaluable for many appli-
cations: they can be scaled without loss of image quality. For a long time, POSTSCRIPT has
been the de facto standard of the graphics industry, and it has been well supported on *nix
systems which provided not only interpreters, such as ghostscript, but also graphical
interfaces for those interpreters, such as ghostview. With the advent of XML technolo-
gies, an emerging new graphics standard, the Scalable Vector Graphics format (SVG) will
become the successor of POSTSCRIPT, at least for distributing vector graphics on the In-
ternet. However, POSTSCRIPT is by itself a programming language. When self-contained
documents are created, the data and the code to visualize such data share a single file, as
happens for instance with gff2ps  output.
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In conclusion, finding all functional elements of genome sequences and using this in-
formation to improve the health of individuals and society, are the focus of the next phase
of the Human Genome Project [Collins ef al., 2003]. Comparative analyses from multiple
species at varying evolutionary distances are a powerful approach for identifying coding
and functional non-coding sequences, as well as sequences that are unique for a given or-
ganism. Those techniques will continue to play a major role in the accurate annotation
procedures required to understand the puzzling patchworks that are our genomes.






Chapter 7

Conclusions

Errors, like straws, upon surface flow;
he who would search for pearls must dive below...
—John Dryden, “All for love”

In short, the research presented here has contributed to:

1. The development of a semi-automatic computational pipeline to perform whole ge-
nome analyses when comparing the human and mouse genomes. The main results
are described hereunder:

(a) The analyses included the production of gene predictions by geneid, an “ab
initio” gene-finding software, and SGP2, initially a wrapper forTBLASTXand
geneid to perform pair-wise comparative gene-finding.

(b) Moreover, the evaluation of the predictions using a reference set of annotations
and the visualization of the results, were among the steps of this pipeline.

(c) The results from this pipeline, together with those provided by the people from
the Twinscan project, were filtered by Genis Parra. Using an enrichment pro-
tocol based on the conservation of exonic structure between orthologous pre-
dictions between human and mouse, he supplied gene candidates for RT-PCR
amplification to validate such predictions.

(d) Several programs from this analysis pipeline have been adapted by Francisco
Camara. Currently, they are routinely used to predict genes on each new as-
sembly version of several eukaryotic genomes. These species include human,
mouse, rat, chicken, fruitfly, and the list keeps growing.

2. Describing the signals delimiting the boundaries between exons and introns. Taking
advantage of the conservation of the exonic structures of orthologous genes in ver-
tebrates, we have been able to tackle the comparative analysis of splice sites from
orthologous introns. This research yielded the following results:

(a) Human introns are on average larger than their respective orthologs in rodents.
This can be explained by an increase in the repetitive sequences within those
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introns in the human lineage or by a loss of such repeats in the rodents lineage.
The analysis of the distribution of ancient repeats, predating the split between
human and rodents, supports the latter.

(b) We provide insights into the dynamics of the evolution of splice site sequences
within four vertebrate genomes: human, mouse, rat and chicken. Our results
confirm that the splicing code is under evolution, albeit very slow, remaining
largely homogeneous within tetrapoda and showing noticeable differences only
at larger phylogenetic distances.

(c) The greater conservation observed in mammalian/chicken orthologous splice
sites compared to unrelated sites indicates that nucleotide substitution since the
mammalian/avian split has not yet reached saturation at these sites. Saturation
has been reached at intronic sites, which show a conservation level similar to
that of unrelated sequences.

(d) The characteristic conservation of orthologous splice sites suggests that compa-
rative prediction of splicing could improve methods based on the analysis of a
single genome. Comparative prediction of splice sites could be particularly rel-
evant to the prediction of alternative splicing features, a problem far from being
solved.

(e) Our results seem to indicate that U2 and U12 introns have evolved indepen-
dently after the split of mammals and birds, since we have not been able to
document a single convincing case of conversion between these two types of
introns.

(f) Furthermore, comparison of orthologous introns has also allowed us to define
better the sequences involved in the specification of U12 introns. These se-
quences, while more conserved than signals involved in U2 intron specification,
are more degenerate than previously thought.

3. The implementation of visualization tools for annotations obtained by gene-finding
tools on genomic sequences, such as gff2ps, and to summarize the outcomes of
comparative analyses, such as gff2aplot ~ and compi. The main results are listed
below:

(a) off2ps was devised to provide scalability and a flexible customization of the
annotation feature attributes.

(b) We have applied gff2ps to the “cartography” of sequence features for whole
genomes of human, the fruitfly and the malaria mosquito. In those cases we had
to implement specific software to integrate the large annotation data sets from
these genomes and to provide specific customization parameters.

(c) off2aplot  produces pair-wise alignment plots along with the annotation fea-
tures of the sequences.

(d) compi extends pictograms to compare the nucleotide frequencies of sequence
patterns side-by-side. We used this tool in our orthologous splice sites signal
comparison.

(e) Several of the tools we have developed, including gff2ps and gff2aplot,

have been made publicly available at our web site. They have been used with
success by other groups to visualize the results of their own research.
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Miscellanea

This thesis layout is largely derived from the IATEX template created by Robert Castelo in
2002!. His templates were extended by Sergi Castellano and Genis Parra for their theses
(see the corresponding references in page 254). The templates on which this document
was built were derived from them. Here, some comments on it and the source code for
download are provided.

Technical comments

This book was typeset with GNU emacs 21.3.1 in I£TEX mode and converted to PDF with
pdflatex  3.14159-1.10b (Web2C 7.4.5). All running on a linux box with Red Hat Fedora
Core 2 and kernel 2.6.9-1.6. IATEX is a document preparation system, powerful, robust and
able to achieve professional results [Lamport, 1994]. However, the learning curve may be
stiff. Therefore, a link to an initial template is given at the end of this chapter for your
convenience.

The main document, thesis.tex, depends on several L  AIEX files—including each
chapter, the tables and few POSTSCRIPT figures—, but it also depends on other files—such
as style files, hacked IAIEX packages, several bitmaps and the PDF files for the attached
papers—. Furthermore, pdflatex  had to be run several times, together with BIBIEX (to
produce the bibliography chapter), makeindex (to build the index, the glossaries and the
acronyms list), thumbpdf (to generate the main PDF document thumbnails), and few perl
scripts. A Makefile was written to automatize the compilation process of the whole doc-
ument. In fact, the Makefile = was extended to produce four versions of the main docu-
ment. The “draft” version does not include figures and the PDF files for the papers, and
it displays crop marks and boxes around several elements (such as the area reserved for
the pictures). The “proofs”, where everything is included but crop marks and boxes are
kept, and different hyperlink types use different colors. The “pdf” version is the electronic
version in which all the hyperlinks are marked in blue color, crop marks are disabled. Fi-
nally, the “press” version is very similar to the “pdf” one, currently the only difference
is that all the hyperlinks are black (to save some money when printing the hardcopy, of
course). The Makefile  also includes a rule to build the final book “cover”, which recycles

IR. Castelo, April 2002.
"The Discrete Acyclic Digraph Markov Model in Data Mining”
Faculteit Wiskunde en Informatica, Universiteit Utrecht

199



200 APPENDIX D. MISCELLANEA

the abstract.tex file and takes some customization from the same style file as the main
thesis.tex  file.

The compilation of a complete version of this document takes about 600 seconds—of
course, the “draft” version takes much less—with an AMD Athlon 64 processor 3200+,
with 512KB of RAM. This is mainly due to the several steps required to ensure that ev-
ery reference, index and so on, is in place. The basic build series of commands is the
following: an initial pdflatex, a B IBIEX run to produce the bibliography, a second run
of pdflatex  to include it, three calls to makeindex (one for the Acronyms Glossary, an-
other for the Web Glossary and the last for the standard Glossary of terms), a third run
of pdflatex  to include the glossaries, another call to makeindex (to generate the final
index) and to pdflatex, then =~ makeindex and pdflatex are run again, an extra run of
pdflatex  is followed by thumbpdf, and a final pdflatex to obtain the finished docu-
ment. If any problem was found, like missing references, an extra round of pdflatex,
BIBIEX and pdflatex  is performed by the Makefile.

Here you can find the version of some of the programs refereed above: BIBTEX version
0.99¢ (Web2C 7.4.5), thumbpdf version 3.2 (2002/05/26), and makeindex version 2.14
(2002/10/02).

EIEX Packages

As there are four versions of the document, the ifthen  package was used to define version
specific parameters, as well as to include different files. The package geometry facilitates
the definition of the page layout. The current document original dimensions for both, the
electronic and printed versions, are 170 mm width by 240 mm height. The “cover” requires
calc to calculate automatically the total width for the page layout, which includes the
front and the back covers and the spine width. The main document basic font size is the
default value for the “book” document class, 10pt.

The crop package is usefull to define the trimming marks for the “draft” and “proofs”
versions of this document. It distinguishes between the logical page, the page sizes defined
by the user, and the physical page, the page size for the hardcopy. The layout package is
used in the “draft” version to show on the first page the IXTEX variable settings controlling
the page layout. Another useful package has been nextpage, which provides additional
“clear...page” commands that ensure to get empty even pages at the end of chapters—
and of course, to ensure that all chapters begin at odd pages—, even with automatically
generated sections like the Bibliography and the Index.

The babel package provides a set of options that allow the user to choose the lan-
guage(s) in which the document will be typeset, for instance language-specific hyphenation
patterns. The default language was set to “english”, while “catalan” and “spanish”
were also loaded for using them for the corresponding translations of the ABSTRACT (see
pages xxv and xxvii respectively).

When working with pdflatex  there are three unvaluable packages: pdfpages, which
makes it easy to embed external PDF documents, such as the attached publications (see
for instance page 158); thumbpdf, it must be included in files for which a user wants to
generate thumbnails (which are created by the thumbpdf program); and hyperref, which
extends the functionality of all the I&TEX cross-referencing commands to produce special
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commands which a driver can turn into hypertext links. To protect URL characters we must
load the url package, unless we have already provided hyperref. This package has its
own version of the url macro, enhanced to provide clickable URLs.

To include POSTSCRIPT figures one needs graphics and/or graphicx, those pack-
ages are modified by pdflatex so that they are able to include bitmaps (PNGs, JPEGs,
and so on) and PDF files into the document. color facilitates the specification of user-
defined colors (such as the cover green shades). Figures generated with IATEX can use any
of the following packages: pstricks,  pstcol, multido.

The bibliography was produced with BIBTEX. The package natbib (NATural sciences
BIBliography) provides both author-year and numerical citations; and it makes possible
to define different citation styles. We have set the following options: “square”, to put
citations within square brackets; “colon”, to separate multiple citations with colons; and
“authoryear” to show author and year citations (instead of numerical citations). The
style “plainnat” was then applied to format the bibliography.

makeidx provides the macros required to make a subject index. To show the capital
letter section headings, few variables were redefined on an auxiliary file (header.ist).
Three glossaries were generated for this document: the acronyms (see page 203), the web
references (see page 213) and the glossary of terms (see page 207). The package glossary
allowed us to customize the format of these three sections.

We also defined a style file named mythesis.sty. It loads the following font packages:
fontenc (with “T1” option), to set extended font encoding (accents and so on); textcomp,
to include some extra symbols, such as the Euro symbol for instance; pifont, for S YMBOL
and ZAPF DINGBATS fonts; mathpazo, with which roman family and formulas are set to
PALATINO; avant, with which sans-serif family is set to A VANT GARDE; and courier, to
set typewriter family to COURIER. Accessory documents, such as IATEX-generated figures,
can use the following font packages: times, tlenc,and helvet.

Other packages that were loaded are: fancyhdr, to produce nice headings; fancyvrb,
to extend the verbatim environment; comment, to hide parts of the original IATEX files;
rotating, to rotate boxes of text; and multirow, to get multirow cells within the
tabular environment.

Getting the template files

You are free to copy, modify and distribute the template files of this thesis, under the terms
of the GNU Free Documentation License as published by the Free Software Foundation.
Any script bundled in this distribution, including the Makefile, is under the terms of the
GNU General Public License. The template for this document and all related files will be
available from:

http://genome.imim.es/~jabril/thesis/


http://genome.imim.es/~jabril/thesis/




Abbreviations

3'ss 3/ Splice Site (intronic, acceptor site)

5'ss 5’ Splice Site (intronic, donor site)

aa Amino Acids (protein sequence length unit)
ACT Artemis Comparison Tool
ASD Alternative Splicing Database

BLAST Basic Local Alignment Search Tool
BLAT BLAST-Like Alignment Tool

bp Base Pairs (nucleotide sequence length unit)

CDS CoDing Sequence (protein-coding)
CTD Carboxy-Terminal Domain (of RNApolll)

DAS Distributed Annotation System
DNA DeoxyriboNucleic Acid

EBI European Bioinformatics Institute
ECR Evolutionary Conserved Regions
EHMM Evolutionary Hidden Markov Model
EJC Exon-Junction Complex
ENCODE ENCyclopedia Of DNA Elements
ESE Exonic Splicing Enhancer
ESS Exonic Splicing Silencer

FMM First-order Markov Model
FTP File Transfer Protocol
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GASP
GFF
GHMM
GNU-GPL
GPHMM

HAVANA
HMM

ICGSC
IHGSC
IMGSC
ISE
ISS

mRNA
mRNP

NCBI
ncRNA
NIH
NISC
NMD

ORF

PHMM
phylo-HMM
PiPs

PSM

PTC

PWM

RGSPC
RNA
rRNA

Genome Annotation Assessment Project
General Feature Format

Generalized Hidden Markov Model
GNU General Public License
Generalized Pair HMM

Human And Vertebrate Analysis aNd Annotation
Hidden Markov Model

International Chicken Genome Sequencing Consortium
International Human Genome Sequencing Consortium
International Mouse Genome Sequencing Consortium
Intronic Splicing Enhancer

Intronic Splicing Silencer

Messenger RNA
mRNA-protein Particle

National Center for Biotechnology Information
Non-Coding RNA

National Institutes of Health

NIH Intramural Sequencing Center

Nonsense-Mediated mRNA Decay
Open Reading Frame

Pair Hidden Markov Model
Phylogenetic Hidden Markov Model
Percentage Identity Plots
Position-specific Scoring Matrix
Premature Termination Codon

Position Weight Matrix

Rat Genome Sequencing Project Consortium
RiboNucleic Acid
Ribosomal RNA
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Symbol Meaning Origin of designation
A A Adenine
C C Cytosine
G G Guanine
T T Thymine
U U Uracil
R AorG puRine
Y CorT pYrimidine
M AorC aMino
K GorT Ketone
W AorT Weak interaction (2 H bonds)
S CorG Strong interaction (2 H bonds)
B CorGorT not-A, B follows A in the alphabet
D AorGorT not-C, D follows C
H AorCorT not-G, H follows G
A\ AorCorG not-T (not-U), V follows U
N GorAorTorC | aNy (unspecified)
X GorAorTorC | aNy (often meaning unknown)

Table E.1: Extended DNA / RNA alphabet. It includes symbols coding for nucleotide ambigu-
ity. Adapted from IUPAC-IUB for nucleotide nomenclature [Cornish-Bowden, 1985].

SNP Single Nucleotide Polymorphism
sNRNP Small Nuclear RiboNucleoprotein Particle
SVG Scalable Vector Graphics

tRNA Transfer RNA

U2AF U2 Auxiliary Factor
UCSC University of California, Santa Cruz
URL Uniform Resource Locator

UTR UnTRanslated sequence

VEGA VErtebrate Genome Annotation
VRML Virtual Reality Modeling Language

WABA Wobble Aware Bulk Aligner
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Symbols | Amino Acid Codons
A Ala | Alanine GCA GCC GCG GCU
C Cys | Cysteine UGCUGU
DIB | Asp | Aspartic acid GACGAU
ElZ | Glu | Glutamic acid GAA GAG
F Phe | Phenylalanine uucCc uuu
G Gly | Glycine GGA GGC GGG GGU
H His | Histidine CACCAU
I Ile | Isoleucine AUA AUC AUU
K Lys | Lysine AAA AAG
L Leu | Leucine UUA UUG CUA CUC CUG CUU
M Met | Metionine AUG
NIB | Asn | Asparagine AAC AAU
P Pro | Proline CCA CCCCCG CCU
Ql1Z | GIn | Glutamine CAA CAG
R Arg | Arginine AGA AGG CGA CGC CGG CGU
S Ser | Serine AGC AGU UCA UCC UCG ucCUu
T Thr | Threonine ACA ACC ACG ACU
\Y% Val | Valine GUA GUC GUG GUU
W | Trp | Tryptophan UGG
Y Tyr | Tyrosine UACUAU
X | Any | Unknown aa NNN
* (") | Stop codon: ocre UAA
* (#) | Stop codon: amber | UAG
* (@) | Stop codon: opal UGA
U Sec | Selenocysteine UGA

Table E.2: The standard genetic code. Synonymous codons are alternatively boldfaced to ease
their distinction. Single letter notation follows IUPAC-IUB for amino acid symbols [[UPAC-IUB
JCBN, 1984, 1993]. Termination codons are listed separately and their extended symbol codes
are shown in brackets. This extended notation was devised in our laboratory to distinguish each
stop codon on translated sequences; i.e., when analyzing those sequences to look for selenocys-
teine amino acid codon corresponding to UGA termination codon [Hatfield and Gladyshev,
2002].



Glossary

Acceptor Splice Site

The binding site of the spliceosome on the 3’ side of an intron and the 5’ side of an
exon. This term is preferred over 3’ site because there can be multiple acceptor sites,
in which case 3’ site is ambiguous. Also, one would have to refer to the 3’ site on the
5’ side of an exon, which is confusing. Mechanistically, an acceptor site defines the
beginning of the exon, not the other way around.

Algorithm

A systematic procedure for solving a problem in a finite number of steps, typically
involving a repetition of operations. Once specified, an algorithm can be written in
a computer language and run as a program. Named after an Iranian mathematician,
Al-Khawarizmi.

Alignment

The procedure of comparing two or more sequences by looking for a series of individ-
ual characters or character patterns that are in the same order in the sequences. There
are two type of alignments: local, which attempts to align regions of sequences with
the highest density of matches (one or more islands of subalignments are created in
doing so); and global, which attempts to match as many characters as possible, from
end to end, in the set of sequences.

Annotation

The elucidation and description of biologically relevant features in the sequence is
essential in order for genome data to be useful. The quality with which annotation
is done will have direct impact on the value of the sequence. At a minimum, the
data must be annotated to indicate the existence of gene coding regions and control
regions. Further annotation activities that add value to a genome include finding
simple and complex repeats, characterizing the organization of promoters and gene
families, the distribution of G+C content, tying together evidence for functional mo-
tifs and homologs and so forth.

Capping
The process by which eukaryotic mRNA is modified by the addition at the 5 terminus
of an m7G(5")ppp(5")N structure. Capping is essential for several important steps of
gene expression, for instance, mRNA stabilization, splicing, mRNA export from the
nucleus and initiation of translation.
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Consensus Sequence (consensus)

The simplest form of a consensus sequence is created by picking the most frequent
base at some position in a set of aligned DNA, RNA or protein sequences. The process
of creating a consensus destroys the frequency information and leads to many errors
in interpreting sequences. It is one of the worst pitfalls in molecular biology. Suppose
a position in a binding site had 75% A. The consensus would be A. Later, after having
forgotten the origin of the consensus while trying to make a prediction, one would be
wrong 25% of the time.

Conserved

Derived from a common ancestor and retained in contemporary related species. Con-
served features may or may not be under selection.

Conserved Segments

Also known as Conserved Linkages, is a special case of the conserved synteny in
which the order of multiple orthologous genes is the same in the compared species.

Distributed Annotation System

The distributed annotation system [DAS, Dowell et al. 2001] is a client-server sys-
tem in which a single client integrates information from multiple servers. It allows
a single machine to gather up genome annotation information from multiple distant
web sites, collate the information, and display it to the user in a single view. Little
coordination is needed among the various information providers.

Donor Splice Site

The binding site of the spliceosome on the 5’ side of an intron and the 3’ side of an
exon. This term is preferred over 5 site because there can be multiple donor sites, in
which case 5’ site is ambiguous. Also, one would have to refer to the 5’ site on the 3
side of an exon, which is confusing. Mechanistically, a donor site defines the end of
the exon, not the other way around.

Dot-Plot

A graphical representation of the regions of similarity between two sequences. The
two sequences are placed on the axes of a rectangular matrix and (in the simplest
forms of dotplot) wherever there is a similarity between the sequences a dot is placed
on that matrix. A dot-plot gives an overview of all possible alignments between two
sequences, where each diagonal corresponds to a possible (ungapped) alignment.

Enhancer

Control element that elevates the levels of transcription from a promoter, indepen-
dent of orientation or distance. Those intronic and exonic cis-acting elements stimu-
lating splicing and that are important for correct splice-site identification.

Eukaryote

Organisms with intracellular membranous organelles such as the nucleus and mito-
chondria.
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Exon

The segment of a pre-mRNA that contains protein-coding sequence and/or the 5’
or 3/ untranslated sequences, which must be spliced together with other exons to
produce a mature mRNA.

Exon-definition model

A model in which exon units, rather than intron units, are initially defined by pairings
of spliceosomal components across exons.

Gene

A functional unit of the genome. When not specifically stated, “gene” is usually
considered a “protein-coding” gene, but many genes do not contain the instructions
for proteins (see non-coding RNA).

Genome

The complete genetic material for an organism. All the DNA contained in an organ-
ism or a cell, which includes both the chromosomes within the nucleus and the DNA
in mitochondria.

Genome Browser

A web-based or standalone software that serves as a front-end to navigate through a
database of genomic annotations for one or more species. A genome browser stacks
annotation tracks beneath genome coordinate positions, allowing rapid visual corre-
lation of different types of information. The genome browser itself does not draw
conclusions; rather, it collates all relevant information in one location, leaving the
exploration and interpretation to the researcher.

Hidden Markov models

Probability models that were first developed in the speech-recognition field and later
applied to protein- and DNA-sequence pattern recognition. Hidden Markov mod-
els (HMMs) represent a system as a set of discrete states and as transitions between
those states. Each transition has an associated probability. Markov models are hid-
den when one or more of the states cannot be observed directly. HMMs are valuable
in bioinformatics because they allow a search or alignment algorithm to be built on
firm probability bases, and it is straightforward to train the parameters (transition
probabilities) with known data.

Homologs
Features in species being compared that are similar because they are ancestrally re-
lated.

Homology Blocks

Also defined as Conserved Synteny, occurs when the orthologs of genes that are
on the same chromosome in one species are also on the same chromosome in the
comparison species.
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Intron
An intervening non-coding sequence that interrupts two exons and that must be ex-
cised from pre-mRNA transcripts before translation.
Intron Branch Point
The adenosine residue near the 3’ end of an intron the 2’ hydroxyl group of which
becomes linked to the 5’ end of the intron during the first step of splicing.
Intron-definition model

protect A model that proposes the initial pairwise interaction of spliceosomal com-
ponents across introns, defining introns units that subsequently interact to promote
spliceosome assembly and catalysis.

Lariat

An RNA, the 5" end of which is joined by a phospodiester linkage to the 2’ hydroxyl
of an internal nucleotide, thereby creating a lasso-shaped molecule.

Neural Networks

A collection of mathematical models that emulate some of the observed properties of
biological nervous systems and draw on the analogies of adaptative biological learn-
ing. Many highly interconnected processing elements that are analogous to neurons,
are tied together with weighted connections that are analogous to synapses. Once it
is trained on known exon or intron sample sequences, it will be able to predict exons
or introns in a query sequence automatically.

Non-Coding RNA

Some RNAs, like tRNAs or rRNAs, do not contain information for protein sequences.
The RNA molecule for those genes defines a function by itself and does not need to
get translated into protein.

Open Reading Frame
Each strand of DNA has three frames. Any subsequence that does not contain stop
codons in a particular frame is an open reading frame.

Orthologs

Homologous features that separated because of a speciation event, they derive from
the same gene in the last common ancestor. See Jensen [2001] for more information
on this item.

Paralogs
Homologous features that separated because of duplication events.

Phylogenetic Distances

Measures of the degree of separation between two organisms or their genomes, ex-
pressed in various terms such as the number of accumulated sequence changes, num-
ber of years or number of generations. The distances are often placed on phylogenetic
trees, which show the deduced relationships among the organisms.
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Pip-Plot

Pip-plots display all the ungapped alignments between two sequences as black hori-
zontal lines. The length of the line corresponds to the length of the alignment, while
its height corresponds to the percent identity of the alignment. An example of a tool
producing this output is PipMaker [Schwartz et al., 2000].

Prokaryote

Organisms that do not contain intracellular membranous organelles. All bacteria are
prokaryotes.

Promoter Element

A region of DNA extending 150-300bp upstream from the transcription start site that
contains binding sites for RNA polymerase and a number of proteins that regulate
the rate of transcription of the adjacent gene. In RNA synthesis, promoters are a
means to demarcate which genes should be used for messenger RNA creation—and,
by extension, control which proteins the cell manufactures.

Proteome

The complete set of all proteins produced by a particular organism. Many proteins
undergo post-translational modifications that add or subtract features from a protein.
Therefore, a particular mRNA might have many different protein isoforms.

Pseudogene

A DNA sequence that was derived originally from a functional protein-coding gene
that has lost its function, owing to the presence of one or more inactivating mutations.

Regulatory Element

A cis-acting DNA sequence that is required for a gene to be transcribed, or to be tran-
scribed in the proper cell type(s) and developmental stage(s). These sequences are
recognized by different transcription factors which modulate the binding or the ac-
tivity of the RNA polimerase. These sequences comprise promoter regions, enhancers
and

Sequence Pattern

A sequence pattern is defined by a set of aligned nucleotide or amino acid sequences
(i.e. binding sites, splicing signals, and so on), or by a common protein structure. In
contrast, consensus sequences, regular expressions, sequence logos and pictograms
are only models of the patterns found experimentally or in nature. Models do not
capture everything in nature. For example, there might be correlations between two
different positions in a binding site. A more sophisticated model might capture these
but still not capture three-way correlations. It is impossible to make the more detailed
model if there is not enough data.

Silencer

Control element that supresses gene expression independent of orientation or dis-
tance. Those intronic and exonic cis-acting elements repressing splicing and that are
important for correct splice-site identification.
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Small Nuclear Ribonucleoprotein Particle

A particle that is found in the cell nucleus and consist of a tight complex between a
short RNA molecule (up to 300 nucleotides) and one or more proteins. SnRNPs are
involved in pre-mRNA processing and transfer RNA biogenesis.

Smooth-Plot

Smooth-plots are constructed using, for each nucleotide, a 100bp sliding window in
which sequence identity between two sequences is averaged. Such a window cen-
tered at every nucleotide in the base sequence is used to calculate the number of
matches inside of this window. Percent identity counts in a sliding window are uti-
lized to calculate the height of the smooth conservation graph at each point. Basically,
smooth-graph is a smooth average of the Pip-plot. Smooth-graphs present a simpli-
fied and clearer view in the conservation profile but loses information regarding gap
distribution in the alignment. An example of a tool producing this output is VISTA
[Mayor et al., 2000].

Spliceosome

A large complex that consist of five splicing small nuclear ribonucleoprotein particles
as well as numerous protein factors. It mediates the excision of introns from pre-
mRNA transcripts and ligates exon ends to produce mature mRNA.

Synteny

The property of being on the same chromosome sensu strictu [Passarge et al., 1999].
Nowadays is often used as synonymous of Homology Blocks, specially within the
gene-finding terminology.

Training Data Set

The known examples of an object (for example, an exon) that are used to train pre-
diction algorithms, so that they learn the rules for predicting an object. They can be
positive training sets (consisting of true objects, such as exons) or negative training
sets (consisting of false objects, such as pseudogenes).

Transcriptome

The complete set of transcripts for a particular genome. This term is often used to
mean the mRNAs of protein coding genes and their alternatively spliced variants.



WebSite References

AcCeDB genome database

ACEDB is a genome database designed specifically for handling bioinformatic data
flexibly. It includes tools designed to manipulate genomic data, but is increasingly
also used for non-biological data.

http://www.acedb.org/

Analysis of mammalian and chicken splice sites

This web page summarizes the supplementary materials for Abril et al. [2005].

http://genome.imim.es/datasets/hmrg2004/

Assessment of gene prediction accuracy in large DNA sequences

Given the absence of experimentally verified large genomic data sets, a semi-artificial
test set comprising a number of short single-gene genomic sequences with randomly
generated intergenic regions was built in order to analyze gene-prediction programs
accuracy [Guigé et al., 2000].

http://genome.imim.es/datasets/gpeval2000/

compi home page

compi is a perl script to produce comparative pictograms, a graphical representation
of nucleotide frequencies at each position of a sequence motif or a pair-wise com-
parison between two sequence patterns. Latest version, as well as examples, of this
program will be available from the URL below:

http://genome.imim.es/software/compi/

ENSEMBL Genome Browser

ENSEMBL is a joint project between EMBL - EBI and the Sanger Institute to develop a
software system which produces and maintains automatic annotation on metazoan
genomes. The following URL corresponds to the project main page:

http://www.ensembl.org/
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Gene Predictions on Genomes

A repository of gene predictions on eukaryotic genomes. It contains the results from
geneid and SGP2when applied on each novel genome assembly. Annotations for
several species, including human, chimp, mouse, rat, chicken and the fruitfly, can be
retrieved from:

http://genome.imim.es/genepredictions/

geneid predictions submitted to GASP1

A set of training sequences (exons/introns) and the resulting parameters required to
run geneid on Drosophila melanogaster genome.

http://genome.imim.es/datasets/Dro_me/

General Feature Format (GFF)

Initially proposed at Sanger Center by Richard Durbin and David Haussler in 1997,
it was proposed as a protocol for the transfer of annotation features information.
It has undergone two major reviews, each one defining a new version (GFFv1, v2
and v3). It also inspired a derivated format known as Gene Transfer Format (GTF,
http://genes.cs.wustl.edu/GTF2.html), which has additional structure that

warrants a separate definition and format name. Main fields of the GFFformat are:
segname source feature start end score strand frame [attributes] [# comments]

Further information is available at:
http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml

Generic Model Organism Project

The home page of a joint effort by the model organism system databases WORMBASE,
FLYBASE, MGI, SGD, GRAMENE, RAT GENOME DATABASE, ECOCYC, and TAIR to
develop reusable components suitable for creating new community databases of
biology.

http://www.gmod.org/

Genome Annotation Assessment Project (GASP1)

Community wide experiment to assess gene prediction on long eukaryotic genomic
sequences: The Adh region (2.9Mb) in Drosophila melanogaster.

http://www.fruitfly.org/GASP1/

gff2aplot home page

gff2aplot  is a tool for generating pair-wise alignment-plots for genomic sequences
in POSTSCRIPT [Abril et al., 2003]. Latest version of this program can be retrieved
from this URL, as well as examples and tutorials on how to use it.

http://genome.imim.es/software/gfftools/GFF2APLOT.html
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gff2zps home page

This is the home page for gff2ps, a program for visualizing annotations of genomic
sequences [Abril and Guigé, 2000]. The program takes as input the annotated
features on a genomic sequence in GFF format, and produces a visual output in
POSTSCRIPT. It has been successfully used to generate the whole genome maps of
different eukaryotic organisms, including human. Latest version of this program can
be retrieved from this URL, as well as examples and tutorials on how to use it.

http://genome.imim.es/software/gfftools/GFF2PS.html

Making the three panels poster for the ISMB99 GASP1 tutorial

The posters made for the GASP1 tutorial and shown at ISMB’99 meeting are an
example of what can be done with the gff2ps  visualization tool. There you will find
three examples of what can be generated from the same data-set, applying a slightly
modified customization file and few command-line options.

http://genome.imim.es/software/gfftools/GFF2PS-ADHposter.html

Mouse genome supplementary materials

Description of the software and data presented in Guigé et al. [2003] and Waterston
et al. [2002]. In that paper it was estimated that near a thousand novel human genes
that do not overlap known proteins can be verified experimentally. The method is
based in the comparison of human and mouse genomes to enhance the resulting
gene-predictions, plus a filtering step from which a sample of mouse predictions
were tested by RT-PCR amplification and direct sequencing.

http://genome.imim.es/datasets/mouse2002/

NCBI MAP VIEWER

The NCBI MAP VIEWER provides special browsing capabilities for a subset of
organisms in ENTREZ Genomes (http://www.ncbi.nim.nih.gov/entrez/
query.fcgi?db=Genome ). Available organism genomes are listed on the NCBI
MAP VIEWER Home Page. This browser allows the visitor to view and search an or-
ganism’s complete genome, display chromosome maps, and zoom into progressively
greater levels of detail, down to the sequence data for a region of interest.

http://www.ncbi.nlm.nih.gov/mapview/

RepeatMasker

RepeatMasker is a program that screens DNA sequences for interspersed repeats
and low complexity DNA sequences. The output of the program is a detailed
annotation of the repeats that are present in the query sequence as well as a modified
version of the query sequence in which all the annotated repeats have been masked
(by default replaced by Ns).

http://www.repeatmasker.org/
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SGP2home page

SGP2 is a program to predict genes by comparing anonymous genomic se-
quences from two different species. It combines TBLASTX, a sequence sim-
ilarity search program, with geneid, an “ab initioc” gene prediction pro-
gram. The latest version of SGP2 is downloadable from this site. A web
server has been developed recently by Genis Parra, and it is available at
http://genome.imim.es/software/sgp2/sgp2.html

http://genome.imim.es/software/sgp2/

SGP2supplementary materials

Supplementary materials for the SGP2paper [Parra et al., 2003] are available from
this section. SGP2is a gene prediction program that combines “ab initio” gene
prediction with TBLASTXsearches between two genome sequences to provide both
sensitive and specific gene predictions.

http://genome.imim.es/datasets/sgp2002/

UCSC GENOME BROWSER

This site contains the reference sequence and working draft assemblies for a large
collection of genomes. It also shows the CFTR (cystic fibrosis) region in 13 species
and provides a portal to the ENCODE project. The UCSC GENOME BROWSER zooms
and scrolls over chromosomes, showing the work of annotators worldwide.

http://genome.ucsc.edu/
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metazoan, 108, 184

genome, 213
missing

exon, 52

gene, 52
missprediction, 3
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deletion, 151
direct sequencing, 215
DNA, see DNA sequence
draft, vii
genome, see genome sequence
identity, 153
insertion, 151
inversions, 151
low complexity, 215
masked, 110, 215
motif, 5, 207, 213
non-coding region, 1, 16, 97, 107, 154
nucleotide, 203
pattern, viii, 211
protein, 1, 203
rearrangement, 154
shotgun reads, 16
shotgun sequencing, vii
signal, 1, 178, 187
similarity, 216
sequencing consortium,
see genome, sequencing consor-
tium
SGP2,14, 15, 18, 53, 95, 150, 187, 214, 216
signal, 11
silencers, 211
similarity, 12
single nucleotide polymorphisms, 184
sliding window, 212
Sm-binding site, 99
small nuclear ribonucleoprotein particle,
see splicing, snRNP
smooth plot, 153, 212
software, 10
ab initio gene finding,
see gene finding
Augustus, 13
fgenes, 13

geneid, see geneid
genemark, 13
genemodeler, 12
genie, 13
GenomeScan, 182
genscan, 13,19
grail, 12
hmmgene,13
mzef, 13
sorfind, 12
testcode, 12
xpound, 12
alignment tool
Exofish, 151
exstral, 180
glass, 15
WABA]51
annotation browser,
see annotation browser

see also genome browser

ACT,152
Alfresco, 152
Apollo, 152
Artemis, 152
ERGO]152
FamilyJewels, 152
genomeSCOUT]52
Otter/Lace, 152
Theatre, 152
annotation workbench,
see annotation browser

see also genome browser

code library, 149
Bioperl, 149
bioTk, 149
bioWidgets, 149
GMOD149

comparative genomics,

see gene finding
SLAM,150
cem, 15
doublescan, 15
rosetta, 15
SGP1,15
SGP2,see SGP2
SLAM,15

Twinscan, 15,95, 150, 187



246

INDEX

database browser,

see database browser
see also genome browser
AceBrowser, 150
AceDB, 150
euGenes, 150
Gbrowse, 150, 184
GeneDB,150
Jade, 150

dot-plot

Blixem, 152
DIAGON,152

Dotter, 152
GenoPix2D, 152
gff2aplot, see gff2aplot
Laj, 152

Lav, 152

LFASTA,152
NOPTALIGN,153
TriCross, 153

genetic maps

cMap, 155
FitMaps, 155
GenoMap, 155
GenomePlot, 155
gRanch, 155
mapmerge, 155
MappetShow, 155
mapplet, 155
NCBI's MapViewer, 155
ShowMap,155
ZoomMap,155

genome browser,

see genome browser
ENSEMBL, see ENSEMBL
K-Browser, 151
NCBI MAP VIEWER, 150, 184, 215
UCSC GENOME BROWSER, 150,
184, 216

homology-based gene finding,

see gene finding
Gnomon,150

homology search

BLAST,13,17
BLASTN,15, 152
BLASTZ,151, 153
BLAT, 151
MegaBlast, 173

Mummer,173
NCBI-Blast, 173
sim96, 15,173
TBLASTX,15, 18, 152, 187, 216
WebBlast, 173
WU-Blast, 173,179
linear dot-plot
GenomePixelizer, 153
LalnView, 153
LAPS,153
parser
ali2gff, 173
parseblast, 18,173
sim2gff, 173
pictogram, 177, 188
compi, 177-179,184, 188, 213
pictogram, 177-178
pip-plot
CGAT,153
ECR-Browser, 154
Multi-PipMaker, 153
MUMmer]153
PipMaker, 153
PipMaker, 211
SynPlot, 153
VISTA, 153
VISTA, 212
zPicture, 153,154
promoter analysis
ConSite, 154
GenomeCompl56
ReguloGram, 154
TraFacGram, 154
repeat analysis
ADplot, 156

Exact Match Annotator, 156

FORRepeats, 156

MiroPEATS, 156

REPUS156

REPuter, 156
sequence analysis,

see sequence analysis

ANALYSEQ3, 155

EMBOSS]53, 155

GCG3, 155

Oxford Grid, 154

RepeatMasker, 110, 215

RSVP,155



INDEX

247

SEALS,155
SimiTri, 154
SpliceNest, 155
SplicingGraphs, 155
SRS,155
Staden, 3,155
sequence logo, 177
typesetting
BIBTEX, 199
IATEX, 199-201
pdflatex, 199
thumbpdf, 199
visualization tool, 5, 9, 149, 188
GeneModeler, 155
gff2aplot, see gff2aplot
gff2ps, see gff2ps
GUPPY55
Sockeye, 155
XGRAIL, 155
specificity, 51
splice
isoform, 10
signal, 12, 15, 178
variant, see splice, isoform, 212
spliceosome, 97, 105, 184, 207, 208, 212
activated, 100
assembly, 100
commitment complex, 100
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