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Abstract

Digital signatures are one of the most important consequences of the appear-
ance of public key cryptography, in 1976. These schemes provide authentication,
integrity and non-repudiation to digital communications. Some extensions or vari-
ations of the concept of digital signature have been introduced, and many specific
realizations of these new types of signature schemes have been proposed.

In this thesis, we deal with the basic definitions and required security prop-
erties of traditional signature schemes and two of its extensions: distributed sig-
nature schemes and ring signature schemes. We review the state of the art in
these two topics; then we propose and analyze new specific schemes for different
scenarios.

Namely, we first study distributed signature schemes for general access struc-
tures, based on RSA; then we show that such schemes can be used to construct
other cryptographic protocols: distributed key distribution schemes and metering
schemes. With respect to ring signatures, we propose schemes for both a scenario
where the keys are of the Discrete Logarithm type and a scenario where the public
keys of users are inferred from their personal identities. Finally, we also propose
some distributed ring signature schemes, a kind of schemes which combine the
concepts of distributed signatures and ring signatures.

We formally prove the security of all these proposals, assuming that some
mathematical problems are hard to solve. Specifically, we base the security of our
schemes in the hardness of either the RSA problem, or the Discrete Logarithm
problem, or the Computational Diffie-Hellman problem.
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Introduction

Until 1976, cryptography was restricted to symmetric key encryption schemes:
two users had a common secret key, that they used in order to encrypt and
decrypt messages. In this way, confidentiality and authentication of the com-
munication were ensured, but not other properties such as non-repudiation.
Furthermore, to securely agree in a common secret key is not an easy task
in practical situations. Last but not least, a user must agree in a secret key
with any other user with whom he wants to communicate; this implies that
any user must store a large number of secret keys.

To solve these drawbacks inherent to symmetric cryptography, Diffie
and Hellman [40] introduced in 1976 the revolutionary concept of public key
cryptography. This concept can be applied to design public key encryption
schemes, which provide secure communication among users without having
to establish a common secret key: each user A publishes his public key, which
matches with a secret key that A only knows. To send a message to A, a
different user B encrypts it by using the public key of A. Decrypting this
ciphertext is only possible with the knowledge of the matching secret key, so
only the user A can obtain the original message by using his secret key.

Apart from this, the introduction of the paradigm of public key cryptog-
raphy involved a new method to provide authentication and non-repudiation
to digital communications: digital signature schemes. In some sense, the idea
is to have an equivalent of handwritten signatures for digital communication:
the author of a message adds another piece of information, the signature, to
prove that he, and only he, is the responsible of the contents of the message.

Obviously, the properties of authentication and non-repudiation are
guaranteed as long as the signature scheme satisfies some security require-
ments. Roughly speaking, an attacker who does not know the secret key
of some user, must not be able to compute a new valid signature for some
message, even if he has obtained from the legitimate user valid signatures for
messages that the attacker has chosen.

In Chapter 1 of this thesis, we explain in more detail the concept of
digital signature scheme and the required security properties that such a
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scheme must satisfy. We exemplify these explanations with the RSA signa-
ture scheme and the Schnorr’s signature scheme.

During the last years, the concept of signature scheme has been ex-
tended to different scenarios. The security model of traditional signature
schemes must also be properly extended to fit in with these new scenarios.
In this work we deal basically with two of these types of signature schemes:
distributed signature schemes and ring signature schemes.

Distributed Signature Schemes

In a distributed signature scheme, a set of players share the power to sign a
message. There is a family of authorized subsets, and a family of corruptible
subsets. If all players of some authorized subset agree, they can compute a
valid signature; on the other hand, even if an attacker knows all the informa-
tion of the players of some corruptible subset, it must not be able to obtain
valid signatures.

The fact that the secret information is distributed among a set of play-
ers, and not centralized in a single user, as it happens in traditional signature
schemes, makes distributed systems more secure and reliable. In effect, an
attacker should corrupt many participants (or machines) in order to forge
signatures. On the other hand, even if some machines are out of service,
valid signatures can be computed if enough machines remain active.

Usually, these distributed schemes are designed from a standard (indi-
vidual) scheme. The secret key of an individual user in the standard scheme
is distributed in shares by means of a secret sharing scheme. Each partici-
pant of the set receives a share of the secret key. Later, each one uses his
partial secret information to perform his part of the task (in our case, signing
a message).

Distributed cryptography is also known as threshold cryptography, be-
cause most of the works in this area consider only threshold families of autho-
rized and corruptible subsets, which contain all the subsets with a minimum
(or maximum, for the family of corruptible subsets) number of participants.

First works on distributed cryptography appeared in the late eighties
[15, 39]. In the area of distributed signature schemes, different proposals have
appeared throughout the last fifteen years. With respect to schemes whose
security is based on the difficulty of solving the Discrete Logarithm problem,
we can cite the proposals in [53, 93]. With respect to schemes based on the
RSA primitive (related to the difficulty of factoring large integers), the most
significative proposals can be found in [38, 52, 91, 31, 47].

One of our first goals was to extend some proposals of threshold signa-
ture schemes to a framework with general structures for both the authorized
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and the corruptible subsets.

In some cases, the generalization can be done without too many diffi-
culties, by using general linear secret sharing schemes instead of threshold
secret sharing schemes. This happens, for example, in the case of distributed
Schnorr’s signatures, where the delicate point is to extend verifiable secret
sharing schemes, already proposed for the threshold case, to a general frame-
work. We have done this and the proposal was published in [59]. In that
work, we also proposed a fully distributed proxy signature scheme, where a
distributed entity delegates its signing capabilities into a distributed proxy
entity; the proxy entity can sign messages on behalf of the original entity, and
the recipient verifies at the same time the delegation of the original entity
and the signature of the proxy entity. The initial proposal in [59] was revised
and extended with a formal security analysis [63].

In other cases, for example for RSA distributed signature schemes, the
generalization is more complicated. We have studied the RSA threshold
scheme proposed by Shoup in [91], because it is the most efficient and con-
ceptually simple one. In distributed RSA schemes, traditional secret sharing
schemes cannot be used, because the secret to be shared belongs to a set
which is unknown to the participants. We have found the algebraic and
combinatorial conditions that must be satisfied by the general families of au-
thorized and corruptible subsets and by the particular secret sharing scheme
in order to obtain a secure RSA distributed signature scheme. This work has
been published in [58] and is explained in detail in Chapter 2 of this thesis.

There are many other practical situations where distributed cryptogra-
phy can be useful. For example, metering schemes are designed to count the
number of interactions between a set of clients and a set of servers; to do it,
the usual strategy consists in sharing some secret information among these
sets.

Another typical problem involves a set of users who want to obtain a
secret common key, in order to securely communicate among them, or as an
access key to restricted resources, for example. There are different solutions
to this problem, depending on the situation, and we have proposed specific
schemes for some of them: key distribution for dynamic groups [35], group
key exchange [65], and distributed key distribution schemes [34]. In these last
schemes, a set of servers provide the users with the necessary information to
obtain the common secret key in a secure way.

In Chapter 3 of this thesis, we show that distributed signature schemes
can be used as a primitive to design, on the one hand, metering schemes, and
on the other hand, distributed key distribution schemes. If the distributed
signature scheme is non-interactive and secure, then we get a secure metering
scheme. If the distributed signature scheme is deterministic and secure, then
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we also get a secure distributed key distribution scheme. A first version
of this work, considering threshold access structures, was published in [36];
later, a version for general access structures that includes a more formal
security analysis has been published in [37].

Ring Signature Schemes

In a ring signature scheme, a user anonymously computes a signature on
behalf of a set of users that he chooses and which includes himself. The
recipient of the signature is convinced that some member of the set has signed
the message, but he has no information about who is the actual signer.

This fact is formally described with the concepts of anonymity and
unforgeability of ring signature schemes. Anonymity means that nobody,
even having unlimited computational and time resources, can distinguish
who has really computed a ring signature. Unforgeability means that an
attacker cannot compute a new valid ring signature for some message and
some set of users, if he does not know any of the secret keys of the members
of this set.

Ring signatures can be applied in situations where anonymity is re-
quired, but also as a primitive to construct other cryptographic schemes, like
signature schemes with designated verifier or concurrent signature schemes,
useful for situations where two parties must sign a contract in a (more or
less) simultaneous way.

It is also possible to combine the concepts of distributed signatures and
ring signatures. The resulting schemes, that we call distributed ring signa-
ture schemes, allow a group of users to jointly sign a message on behalf of
some family of subsets that contains themselves. The recipient of the signa-
ture is convinced that all members of some of the subsets of the family have
cooperated in the computation of the signature, but he cannot distinguish
which subset is the actual signer. The difference with respect to standard
distributed signature schemes is that the family of authorized subsets is cho-
sen ad-hoc by the signing users; furthermore, each user has its own secret
and public keys, generated individually, and not in a distributed process, as
it happens in distributed signature schemes, where the whole set of users has
a common public key and the secret key is shared among them.

The concept of ring signature schemes was formally introduced in [86].
Afterwards, some other proposals have been done in [16, 1, 41]. All these
proposals run in a standard scenario where each user privately creates its
secret and public keys, and therefore digital certificates must be provided
by some trusted authority to link identities with public keys. A different
scenario is that of identity-based cryptography, where public keys of the



Introduction )

users can be directly derived from their identities (for example, from their e-
mail addresses). The only ring signature scheme for identity-based scenarios
that had been published before our proposals is the one in [95].

With respect to distributed ring signature schemes, all previous pro-
posals [16, 94, 2, 25] are restricted to the case where the ad-hoc family of
possible signing subsets is necessarily threshold.

In Chapter 4 of this thesis, we introduce a generic family of ring signa-
ture schemes, and we state and prove a result concerning the security of this
family of schemes. Then, we design a particular scheme which falls within
this family. The scheme follows the ideas behind Schnorr’s signature scheme.
We prove the unconditional anonymity of the scheme and its unforgeability,
by using the generic security result, assuming the hardness of the Discrete
Logarithm problem. These results have been published in [60]. We extend
this particular scheme to a distributed ring signature scheme which works
with any ad-hoc family of signing subsets. The work where we propose this
distributed scheme, including the proof that it is secure if the Discrete Log-
arithm problem is hard to solve, has been published in [61].

Finally, Chapter 5 is devoted to ring signature schemes in identity-based
scenarios. We propose a new scheme, with better efficiency properties than
the only previously known ring signature scheme based on identities [95]. Our
scheme also falls within the family of generic ring signature schemes that we
introduce in Chapter 4. Therefore, we can use the generic security result to
prove that the scheme is secure, assuming in this case that the Computational
Diffie-Hellman problem is hard to solve. We extend the scheme, as we do in
Chapter 4, in order to obtain a distributed ring signature scheme for general
families of signing subsets. These two schemes have been published in [62].
Finally, we propose an alternative construction of distributed ring signature
schemes which use the concept of dual access structures to work also with
general families of possible signing subsets; this last scheme is analyzed for
the case of identity-based scenarios, but it can be extended to more general
cases where users have different types of keys. The results concerning this last
proposal can be found in [64]. The security of the two proposals of identity-
based distributed ring signature schemes is also based on the difficulty of
solving the Computational Diffie-Hellman problem.
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Chapter 1

Preliminaries

In this chapter, we first explain the basic concepts related to public key cryp-
tography. Then we concentrate on digital signatures. We give the intuition
behind this concept, and later we provide the necessary formal definitions
about the protocols that take part in a digital signature scheme and, per-
haps more importantly, about the security requirements that such schemes
must satisfy.

We illustrate these concepts with two examples of digital signature
schemes: RSA and Schnorr’s. We have chosen these schemes because they
are maybe the most studied ones, and specially because they will be the basis
of some of the constructions that we design in the rest of chapters of this
thesis.

We also provide a simple example to explain what a proof by reduction
means, in the context of cryptographic protocols, and why it is important to
study the exact security of digital signature schemes.

1.1 Public Key Cryptography

In the past, cryptographic schemes were restricted to symmetric or private
key cryptosystems: the two parties who wanted to securely communicate
each other had a common secret key, which was used in order to encrypt and
decrypt messages. Usually, cryptosystems consisted on transpositions and
substitutions applied to the letters, or bits, of the message. For example, the
Caesar cipher with secret key k = 3 consisted on applying a shift of 3 places
to each letter, forward to encrypt, and backward to decrypt. In this way, the
encryption of the word ‘peace’ would be ‘shdfh’, and so on.
Security for symmetric encryption schemes was defined in an information-

theoretic model. That is, the goal is to prevent an attacker from obtaining
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any information about a message, when it is given the ciphertext, even in
the case that it has unlimited computational resources. Shannon proved [90]
that this perfect level of security can be achieved if and only if the length of
the secret key is equal or bigger than the length of the encrypted message. In
this case, a secure symmetric encryption scheme can be constructed as fol-
lows: if the secret key is k& and the message to encrypt is m (both expressed
in bits), then the ciphertext is ¢ = m @ k, which gives no information about
the message m, provided the attacker does not know any bit of the secret
key. Furthermore, if the receiver of the ciphertext knows the full secret key,
he can easily decrypt the ciphertext and obtain the message m = ¢ ® k.

Similar ideas were used to provide authentication to communications,
with the concept of message authentication codes, where the sender and the
receiver must also share the same secret key.

Of course, this requirement is quite hard, because it is not always easy
to find a secure way to agree in a common secret key. Public key cryptography
provided a solution to this problem.

Diffie and Hellman introduced in 1976 this revolutionary concept, in
their paper [40]. The idea of a public key encryption scheme is the follow-
ing: a user has a secret key sk that he only knows; there exists a matching
public key pk which is known by everybody. If someone wants to send a
private information to this user, he can apply to the message a function that
depends on the public key pk. This function must be easy to compute, but
computationally infeasible to invert, when knowing only the description of
the function. However, with the knowledge of the secret key sk (a trapdoor),
the function can be easily inverted and the original message can be recovered.
For these reasons, such functions are known as trapdoor one-way functions.

In practice, public key encryption schemes are less efficient than private
key ones. For this reason, the usual process is the following: a public key
encryption scheme is used between two participants in order to agree on a
common secret key k. Then, a more efficient symmetric encryption scheme
is employed for future communication, by using the established common key
k.

This simple and elegant idea completely modified the field of cryptog-
raphy; mathematics started to play a more important role on it (whereas
physics or computer science had been the main basis of secret key cryptogra-
phy), because it was quite obvious that mathematics would be necessary to
find specific trapdoor one-way functions. The first one was the RSA function,
proposed by Rivest, Shamir and Adleman in [85].

Security of public key encryption schemes is not defined in an information-
theoretic model, but in a computational one. Roughly speaking, the goal is
that an attacker with limited computational resources cannot obtain any in-
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formation about a plaintext when it is given the ciphertext. This is usually
proved by reducing this problem to some well-known and difficult problem.
For example, a public key encryption scheme is considered secure if one can
prove a statement such as: “if an attacker can break the encryption scheme,
then it could factor an integer which is the product of two big prime num-
bers”.

The appearance of public key cryptography involved a new mechanism
to provide not only authentication, but also non-repudiation, to communi-
cations: digital signature schemes. The process in such a scheme is kind of
the opposite than in a public key encryption one: the user who wants to sign
a message applies a function on it that depends on the secret key that only
he knows. Later, everybody can use the public key of the user to verify that
the signature is valid.

If the signature scheme is secure, which informally means that valid
signatures cannot be forged without the knowledge of the secret key, this
method provides, in effect, authentication and non-repudiation: the signer
cannot deny that he is the author of the signature, because nobody else could
have computed it.

1.2 Digital Signature Schemes

As we have just said, the idea behind a digital signature scheme is quite
simple. A user has a secret key that he only knows, and a matching public
key, known by everybody. In order to sign a message, this user applies to
the message some function which depends on the secret key. The result of
this function is the signature of the message. Later, anybody can use the
public key to apply a verification algorithm to the signature and the message,
checking in this way the correctness of the signature.

Usually, the message must be hashed into a value belonging to the
domain of the signing function, before the computation of the signature.
A hash function H : {0,1}* — E takes as input a message m € {0,1}",
which is an arbitrarily long string of bits, and outputs an element in the
appropriate domain FE. To maintain the security of the signature scheme,
the hash function must usually satisfy at least these two properties:

(i) given an output b € E it is computationally infeasible to find a message
m € {0,1}* such that H(m) = b (one-wayness);

(i) it is computationally infeasible to find two different messages m, m’ €
{0,1}*, m # m/, such that H(m) = H(m') (collision resistance).
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Now we explain a bit more formally what algorithms take part in a
signature scheme.

Definition 1.1. A signature scheme consists of three probabilistic polynomaial
time algorithms:

o Key-Gen: it takes as input a security parameter k, and outputs a pair
(sk,pk), where sk is the secret key of the user, and pk is the matching
public key.

o Sig: this algorithm takes as input a message m and the secret key sk,
and produces a signature 6.

e Ver: finally, the verification algorithm takes as input a message m, a
signature 6 and the public key pk, and returns “true” if 6 is a valid
signature of m, and “false” otherwise.

A signature scheme enjoys the correctness property if it satisfies the
following condition: if Key-Gen(k) = (sk,pk) and Sig(m,sk) = 6, then
Ver(m,0,pk) = true. In this case, we say that (m,#) is a valid message-
signature pair.

Now we explain two of the most popular signature schemes in the lit-
erature.

1.2.1 RSA Signature Scheme

Rivest, Shamir and Adleman proposed the first digital signature scheme in
1978 [85]. Some years later, Bellare and Rogaway [6] modified the original
scheme with the inclusion of a hash function. The modified scheme, which
was called FDH-RSA (Full Domain Hash), consists of the following protocols:

e Key-Gen: given a security parameter k, one must compute two prime
k-bit numbers p and ¢q. Let n = pg, and note that then we have
o(n) = (p—1)(¢—1), where ¢ is the Euler’s function. A random element
e such that ged(e, ¢(n)) = 1 is chosen, and the value d = e~ mod ¢(n)
is computed. A secure hash function H : {0,1}* — Z is chosen and
made public.

The secret key is sk = (n,e,p, q,d), and the matching public key is
pk = (n,e).

e Sig: the signature of a message m € {0, 1}* is the value

0 = H(m)* modn .
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o Ver: to verify the correctness of a signature 6, one checks if 6¢ =
H(m)modn.

1.2.2 Schnorr’s Signature Scheme

Schnorr proposed later a different method to obtain digital signatures [87].
The scheme goes as follows:

o Key-Gen: given a security parameter k, two prime numbers p and ¢
are chosen, such that ¢|p — 1 and such that ¢ has k bits. An element
g with order ¢ in Z; must also be chosen. A random value x € Zj is
chosen, and the matching value y = ¢g* mod p is computed. A secure
hash function H : {0,1}* — Z, is chosen and made public.

The secret key of the user is sk = (p,q, g,y,x), and his public key is
pk=(p.¢.9,9).

e Sig: to sign a message m € {0, 1}*, the user chooses a random a € Zy
and computes R = g*modp. The signature is the pair § = (R, o),
where

o=a+x H(m,R) modgq .

e Ver: to verify the correctness of a signature § = (R, o), one checks if

¢° = R yT™) modyp .

1.3 Security of Digital Signature Schemes

The concepts of negligible and polynomial functions appear when the security
of cryptographic schemes is studied.

Definition 1.2. (Negligible function). A function f: N — R" is negli-
gible in k if, for every ¢ > 0 there ezists kg € N such that f(k) < %, for all
positive integer k > ko. Otherwise, the function f is non-negligible in k.

Definition 1.3. (Polynomial function). A function g : N — R" is poly-
nomial in k if, for every ko € N there exists a value ¢ > 0 such that f(k) < k€,
for all positive integer k > k.
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Roughly speaking, the cryptographic schemes will be defined according
to a security parameter k. We will consider such schemes secure if any
adversary trying to attack them in polynomial time (in k) has a success
probability which is a negligible function of .

On the other hand, we say that an event has overwhelming probability
with respect to k if the probability of its complementary is negligible in k.

To guarantee that a signature scheme provides authenticity and non-
repudiation to digital communications, one must prove in some way that the
scheme is secure. That is, only the owner of a secret key should be able
to compute valid signatures with respect to the matching public key. This
intuitive idea was formalized in [56], by considering an adversary which tries
to break a signature scheme. The security of the scheme is defined according
to the capabilities of this adversary, and its final goal.

With respect to its final goal, one can consider different levels of success
for an adversary: to compute the secret key of a user; to find an efficient
algorithm which emulates the signing algorithm of a user; to find a valid
signature for a fixed message; to find a valid signature for some message.

With respect to the capabilities of the adversary, we list here some
different situations: the adversary knows only the public key of the user; the
adversary has access to valid signatures of a list of messages that it has not
chosen; the adversary has access to valid signatures for messages that it can
adaptively choose.

Signature schemes can achieve different levels of security. For example,
a signature scheme can be proved to resist attacks whose goal is to compute
the secret key, but on the other hand there can exist an attack against this
scheme which finds a valid signature for some message.

Obviously, the maximum level of security for such a scheme consists
of resisting attacks from an adversary with the most powerful capabilities
(adaptive chosen message attack) but with the less ambitious goal (existential
forgery, for some message). Nowadays, a signature scheme is considered
secure (or unforgeable) only if it achieves this level of security.

Definition 1.4. (Unforgeability). A signature scheme, with security pa-
rameter k, is unforgeable if no adversary which is given the public key and
the signatures 61, ...,05 of s messages my, ..., mg adaptively chosen by itself,
can produce in polynomial time (in k) and with non-negligible probability (in
k) a valid signature 0 of some message m, such that (m,0) # (m;,0;), for all
1=1,...,s.

Figure 1.1 gives an idea of what a successful forgery against a signature
scheme is.
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pk —= Forger — . (m,9)s t.{
F

(m, @) isvalid

(m,g) # (m;,8;), for al i=1,....s

Figure 1.1: A successful forger against a signature scheme

The usual argument is to reduce the problem of forging a signature to
a related computational problem. In other words, assuming the existence of
a successful attack against the unforgeability of a scheme, one could solve
the related problem. If this problem is assumed to be hard to solve, the
reduction implies a contradiction, and one can conclude that the scheme is
therefore unforgeable. Proving the unforgeability of a signature scheme in an
absolute way, without such a reduction, seems to be a really hard problem.

However, constructing such a proof by reduction is not easy at all. The
idea is to use the hypothetical existence of a successful adversary to solve an
instance of the related computational problem. Roughly speaking, we receive
an instance of the problem, and we try to set up the public parameters of
the signature scheme in an ingenious way that allows:

1. to provide the adversary with valid signatures for messages that it
adaptively chooses, when we execute (without knowing the secret key!)
the hypothetical successful attack against the signature scheme; and
then

2. to extract the solution of the problem from the signature forged by the
adversary.

There exist very few proposals of signature schemes which can be
proved secure in this formal (but restrictive) way. However, either the re-
sulting schemes are not very efficient [56, 42, 27|, or the security is based on
stronger assumptions, like the Strong RSA Assumption, as it happens in the
schemes proposed in [30, 51], or the ¢-Strong Diffie-Hellman Assumption, in
the scheme of [11].
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1.3.1 The Random Oracle Model

Bellare and Rogaway introduced in [5] a new paradigm that makes easier the
issue of reducing the unforgeability of some signature schemes to the hardness
of well-known computational problems. This paradigm is the random oracle
model. In this model, hash functions are seen as oracles that produce a truly
random value for each new input. Obviously, if the same input is asked twice,
then the outputs must be identical.

The random oracle model is unreal, because any instantiation of a hash
function is in fact a deterministic function: once the instantiation is made
public, everybody can know which will be the output corresponding to any
input. However, it is widely believed that proofs in this model guarantee the
security of the overall signature scheme, provided the hash function has no
weakness.

Despite there are some theoretical works which criticize the paradigm
of the random oracle model [20, 78, 4], it has been adopted by the majority of
the cryptographic community, because it allows to prove the security of many
efficient schemes, like RSA or Schnorr’s signature schemes. Furthermore,
there are not known attacks against any practical or fully realistic scheme
which is proved secure in the random oracle model.

1.3.2 Exact Security of Signature Schemes

When we study the exact security of a signature scheme in the random oracle
model, we must consider the two following parameters:

e () is the number of queries that the adversary can make to the random
oracle which models the behaviour of the hash function H. If the hash
function is denoted Hy, then we will use the notation )y for the number
of queries to the random oracle H;, and so on.

e (), is the number of queries that the adversary can make to the signing
oracle: the adversary chooses a message in an adaptive way (possibly
depending on its previous choices and the received answers) and sends
it to the oracle; as an answer, the adversary receives a valid signature
for this message.

Definition 1.5. We say that an adversary is a (T, e, Q, Qs)-forger against a
signature scheme if:

1. it makes at most () queries to the random oracle;

2. it makes at most Q5 queries to the signing oracle;



1.3. Security of Digital Signature Schemes 15

3. it runs in time at most T';

4. with probability at least €, it obtains a new valid pair (message,signature),
different from the pairs obtained in the queries to the signing oracle.

Without loss of generality, we can assume that a successful (7', ¢, Q, Q;)-
forger against a signature scheme always satisfies the condition () > 1. Oth-
erwise, since we assume that the hash function behaves as a random function,
the forger should have guessed the value of the hash function corresponding
to the forged signature, which is very unlikely.

Definition 1.6. (Ezact unforgeability of a signature scheme). We say that
a signature scheme is (T, ¢e,Q, Qs)-unforgeable, in the random oracle model,
if there does not exist any (T, ¢e,Q, Qs)-forger against it.

The goal when one designs a signature scheme is to prove that it
is (T,¢e,Q, Qs)-unforgeable, for any polynomial value of T" and any non-
negligible value of € (with respect to the security parameter of the scheme).

As we have said before, it seems almost impossible to prove an absolute
result. Therefore, the usual strategy is to reduce the problem of forging a
signature to a difficult computational problem. For example, to prove that
if there exists a (T, ¢,Q, Qs)-forger against our signature scheme, then the
factorization of a large integer can be found in time at most 7" and with
probability at least ¢/, where T” and & are functions related to the parameters
T,e,Q,Qs. A constant that will appear repeatedly in these relations is T¢,p,
a bound on the time needed to compute a modular exponentiation.

According to the relation between 7", ¢" and T, ¢, @, Q,, the quality of
the reduction will be better or worse.

Let us see a simple example of a bad reduction.

A Simple Example

Suppose that we design a signature scheme with security parameter k and we
prove the following “theorem”: if there exists a (7T, ¢, @, Q;)-forger against
this scheme, then we construct an algorithm that factorizes a k-bit integer n,
product of two primes, within time 7" < Q,T" and with probability ¢’ > ¢/Q.
The resulting expected time T, to factorize with this method would be
obtained by repeating O(1/¢’) times the forger. In this case, the expected
time would be T, , < %

Currently, the most efficient algorithm to factor such an integer n is
the Number Field Sieve (NFS) method [71], which has a super-polynomial,

but sub-exponential, expected time complexity

O (exp((1.923 + o(1))(Inn)/3(Inlnn)*?)) .
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For example, this means that with this method we can factor an integer of
210 — 1024 bits within expected time less than 289

Table 1.1 compares the resulting times of the NFS method with the
factorization method that we would obtain by reduction of the forger against
the signature scheme, if we consider that the forger can make Q = 2% queries
to the random oracle, and @, = 23° queries to the signing oracle. We consider
two situations: in the first one the forger runs in polynomial time 77 = &3,
whereas in the second one, its running time is 75 = k°. In both situations,
we suppose that the success probability of the forger is e > 2710,

Security parameter = Number of bits of n | NFS Our method
Ty =k | T, =k

k= 210 = 1024 280 2125 2155

k= 211 = 2048 2111 2128 2161

k= 212 = 4096 2149 2131 2167

k = 213 = 8192 2201 2134 2173

Table 1.1: Comparing the times to factor n

The table shows that our security “theorem” for the signature scheme
would have no practical effects for security parameters k = 21 and 2! (i.e.
working with numbers of 1024 or 2048 bits). In effect, if we assume that the
signature scheme can be forged in time 7} = k3 or T, = kS, then we would
obtain a method for factoring a k-bit integer; but this method is slower than
some known methods, so this fact does not give us a contradiction.

If we want to protect the signature scheme against forgers running
in time less than 7, = k3, then the security parameter must be at least
k = 212 (working with integers of 4096 bits). For this case, an hypothetical
attack against the scheme would derive in a method for factoring, which is
faster (running time 2'3) than the best known algorithm (running time 2149).
Therefore, we obtain a contradiction and can conclude that the signature
scheme can not be attacked by adversaries running in time less than 7} = &3,
and with success probability greater than 2710,

Analogously, if we want to protect the scheme against adversaries run-
ning in time less than T, = kY we must consider at least & = 2'3 (which
means working with 8192-bit integers). And so on...

Summing up, the tighter the relation between 17", &’ and T, e, Q, Q) is,
the more practical the studied signature scheme will be, in the sense that
it will achieve a real level of security with smaller values of the security
parameter (and so, with smaller lengths for the integers that are used in the
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scheme). A reduction is said to be tight when T" /¢’ ~ T /e; in this case, it is
said to be very tight if it also satisfies &’ = ¢ and 7" = T + A(Q, Qs), where
A is linear in the variables ) and (),. An interesting work about signature
schemes with tight reductions is [70].

1.3.3 Computational Assumptions

We define here three computational assumptions related to the hardness of
some mathematical problems. The security of some of the schemes proposed
in this thesis is based on these assumptions.

Definition 1.7. (RSA Assumption). Let n = pq, where p and q are two
k-bit prime numbers. Let e be a random element such that ged(e, p(n)) = 1.
Let y be a random element in Z .

Then, for any probabilistic polynomial time algorithm F, the probability
that F(n,e,y) = x such that x¢ = ymodn (that is, x is a solution of the
RSA problem) is a negligible function in k. (The probability is taken over the
randomness in the choice of p, q, e and y, and the random choices that F
makes.)

Definition 1.8. (Discrete Logarithm Assumption). Let p and q be two
prime numbers such that q has k bits and such that q|p—1. Let g be a random
element with order q in Zy. Let y be a random element in (g).

Then, for any probabilistic polynomial time algorithm F, the probability
that F(p,q,q,y) = x such that g° = ymod p (that is, x is a solution of the
Discrete Logarithm problem) is a negligible function in k. (The probability is
taken over the randomness in the choice of p, q, g and y, and the random
choices that F makes.)

Definition 1.9. (Computational Diffie-Hellman Assumption in an
additive group). Let q be a prime number such that q has k bits. Let G
be an additive group of order q, generated by some element P. Let a,b be
random elements in Z.

Then, for any probabilistic polynomial time algorithm F, the probability
that F(q,G, P,aP,bP) = abP (that is, abP is a solution of the Computational
Diffie-Hellman problem) is a negligible function in k. (The probability is
taken over the randomness in the choice of q, G, P, a and b, and the random
choices that F makes.)

Note that the Computational Diffie-Hellman problem can be defined,
as well, in multiplicative groups such as (g) C Z, where g is an element with
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order ¢ in Z;. However, in this thesis we use the additive notation when we
design schemes whose security is based on the Computational Diffie-Hellman
Assumption.

1.3.4 Security of RSA Signature Scheme

First of all, we explain why the original RSA signature scheme proposed in
[85], without the use of a hash function, does not achieve the highest level of
security. Given a secret key (p, ¢, d) matching with a public key (n,e), the
signature of a message m € Z* is # = m?modn.

We explain how it is possible to forge a signature for m with a chosen
message attack. Such an attacker can choose m € Z; and ask for a valid
RSA signature of the message M = msm®modn. It obtains the value M? =
mémmodn, and it can obtain a valid signature m? = M%n ! modn for
message 1.

As an example of the proofs by reduction in the random oracle model,
we review the security proof of the FDH-RSA signature scheme explained
in Section 1.2.1, with the inclusion of a hash function. The proof uses some
techniques introduced by Coron in [26], which improve the original security
result provided by Bellare and Rogaway in [6]. The result is the following:

Theorem 1.1. If there exists a (T, e, Q, Qs)-forger against FDH-RSA signa-
ture scheme, then the RSA problem can be solved in time T' < T+T.,,Q+ Qs
and with probability ' > m (in the random oracle model, where e is the

FEuler’s value e = 2,718281828459... ).

Proof. We denote by A the (T ¢, Q, Q,)-forger against FDH-RSA signature
scheme. Let (n, e, y) be an input of the RSA problem (see Definition 1.7); the
solution of the problem is the only element x € Z; such that ® = y modn.

We use A to construct a machine F that solves this instance of the RSA
problem. This machine maintains a table T"AB that is constructed during
the interaction between F and A.

The machine F executes the forger A, providing him with the RSA
public key (n,e). We can suppose, without loss of generality, that 4 asks for
the hash value H(m) before querying a valid signature for m.

Every time A asks for a hash value H(m;), the machine F looks for
m; in the table TAB. If it is already there, F returns the existing relation.
Otherwise, F chooses a random value z; € Z* (different from the previously
chosen z,’s). Let p be a value such that 0 < ¢ < 1. Then, with probability
1, the machine F chooses ¢; = 0, whereas with probability 1 — pu, it chooses
¢; = 1. It returns to A the relation H(m;) = y“zf modn, and stores the
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values (m;, ¢;, z;, H(m;)) in a new entry of the table TAB. Since z; is random
and we are assuming that H behaves as a random function, this relation is
consistent.

When A asks for a valid signature of the message m;, the machine F
looks at the value ¢;. If ¢; = 1, the machine F halts; if ¢; = 0, it outputs z;
as the valid signature of m;. Note that the probability that F does not halt
in one of these steps is at least u?s, because A is assumed to ask for at most
Qs valid signatures.

By hypothesis, A obtains in time T and with non-negligible probability
¢ a valid RSA signature 6 of a message m different from the messages queried
to the signing oracle. Since we are in the random oracle model, A must have
queried the message m to the random oracle with overwhelming probability.
Therefore, we have that m = m; for some entry (mj,c;, z;, H(m;)) of the
table TAB.

With probability 1 — p1, we have that ¢; = 1. This means that H(m) =
H(m;) = yz§modn. But, since 0 is a valid signature for m, we have also
that 0 = H(m)modn. Putting the two equalities together, we obtain:

Yy = (9 . zj_l)e mod n.

Therefore, the machine F solves the given instance of the RSA problem,
in time 7" < T 4+ Q + @,. The success probability of the machine F is
g >¢e-u% - (1—p). Now we can choose the value of p that maximizes €',

which is p = Qerl. This gives us a success probability

/ Q. \* 1 €
g >e- . > ;
Qs+1 Qs+1 " e (Qs+1)
where e = 2, 718281828459...
n

Although the relation 77" < T + @ + Qs can seem very tight, we must
note the following: when considering methods to solve a problem, such as
factorization, the RSA problem, etc., one studies the expected time in solving
the problem. Our reduction method gives us an execution time 7" and a
success probability €. To compute the expected time needed to solve the
RSA problem, in this case, we should repeat the experiment O(1/¢") times.
The expected time T¢,, will be, then:

e (Qs+1)- (T+Q+Qs)

Tewp <T'/Je' < )
£

Therefore, the reduction is not so tight as it seemed, but it is quite
good.
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1.3.5 Security of Schnorr’s Signature Scheme

The unforgeability of Schnorr’s signature scheme was proven, in the random
oracle model, by Pointcheval and Stern in [83], by reduction to the Discrete
Logarithm problem. Recall that the security parameter k is such that the
prime ¢ has k bits. They prove the following result:

Theorem 1.2. If there exists a (T,¢e,Q,Qs)-forger against Schnorr’s sig-
nature scheme, with € > w (otherwise, the success probability e

would be negligible in k), then the Discrete Logarithm problem can be solved
in expected time T' < M (in the random oracle model).

We do not give the proof in detail here, only some ideas behind it. The
proof uses the technique of the oracle replay attack. The formalizations of this
technique are known as forking lemmas, and they can be applied to a family of
signature schemes that the authors call generic, and which includes Schnorr’s
scheme, and a modification of ElGamal’s signature scheme [43]. The idea is
to prove that if an adversary can forge a signature for such a scheme, then
one can obtain, by replaying this attack, another forged signature of the same
message and with the same randomness, but under a different instantiation
of the random oracle model.

Applying this result to Schnorr’s scheme, we obtain the following: let
us denote a valid Schnorr signature of a message m as (R, h,o), where
h = H(m, R) and ¢° = Ry" mod p. The forking lemma asserts that, if an ad-
versary can obtain, after an adaptive chosen message attack, a valid forgery
(R, h,o) for some message m, then we can replay this attack with the same
random tape but a different instantiation of the random oracle, and obtain
with non-negligible probability a new valid signature (R, k', ¢’) of the same
message m, with the same randomness R’ = R, but different random oracles
(or hash functions) H and H' such that h = H(m, R) # H'(m,R) = h’. The
most intricate point is to properly compute bounds on the necessary running
time and the success probability for obtaining such two forged signatures.

Once this result is proven, it is not difficult to reduce the unforgeability
of Schnorr’s scheme to the Discrete Logarithm problem, taking into account
as well that valid Schnorr’s signatures can be perfectly simulated in the
random oracle model, without knowing the secret key.

If (p,q, g,y) is an input of the Discrete Logarithm problem (recall Def-
inition 1.8), then we execute the hypothetical attack against Schnorr’s sig-
nature scheme with public key (p,q,g,y). We simulate consistent answers
to the queries of the adversary, asking for valid signatures and outputs of
the random oracle. By hypothesis, the adversary obtains a valid signature
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(R, h,o) on a message m. Applying the forking lemma, we will obtain a dif-
ferent valid signature (R, /', 0’) on the same message. These two signatures
satisfy ¢ = Ry"modp and ¢° = Ry" modp, respectively. Dividing these
two equations, we obtain ¢°~¢ = y" " mod p, and therefore the solution to
the Discrete Logarithm problem is Z: mod gq.

o—

h—

1.4 Secret Sharing Schemes

Secret sharing schemes are an essential tool to work with distributed cryp-
tographic systems, where the power to perform a secret task is distributed
among different players. These schemes were introduced independently by
Shamir [88] and Blakley [7] in 1979.

Let P ={P,..., P} beaset of £ players. In this set of players, a family
of authorized or qualified subsets I' C 27 must be defined. This family is
called the access structure of the scheme, and it must be monotone increasing;
that is, if Ay € I'and A; C Ay C P, then Ay € I'. Because of this property, an
access structure is fully determined by its basis 'y ={A el' | A—{PF;} ¢ T,
for all P, € A}.

For an arbitrary family of subsets & C 27 the closure of U is the
minimum monotone access structure that contains U, that is cl(U) = {A C
P : there exists B € U such that B C A}. Of course for a monotone access
structure I" we have I' = ¢l(I'y).

Given a monotone increasing access structure I' and a secret to be
shared, the idea behind a secret sharing scheme is that each player of the
set P receives from a trusted authority (the dealer, usually denoted by D)
a share of the secret. From the shares of any authorized subset, in I'; it is
possible to recover the secret. However, a non-authorized subset, not in T,
cannot obtain any information about the secret from their shares.

Shamir proposed in [88] a threshold scheme, where subsets that can
recover the secret are those with at least ¢ members (¢ is the threshold), or in
other words, the access structure is I' = {A C P : |A| > t} (such structures
are called (¢, ¢)-threshold access structures).

In order to share a secret s in a finite field K with |K| > ¢, the dealer
chooses a random polynomial f(z) = s+ a;z + -+ + a;_12""1 € K[2] of
degree t — 1 and sends to the participant P; his secret share s; = f(i), for
i=1,...,0

Let A={P,,...,P,} be a qualified subset of ¢ participants who want
to recover the secret s. They have ¢ different values of the polynomial f(z),
of degree t—1, so they can obtain the value s = f(0) = ", o4 A f (i), where
)\OAJ- are the Lagrange interpolation coefficients. It can also be proved that
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any subset of less than t participants cannot obtain any information about
the secret from the shares they hold.

Other works have proposed schemes realizing more general access struc-
tures, such as vector space secret sharing schemes [17]. An access structure
I' is realizable by such a scheme, defined in a finite field K, if there exist a
positive integer r and a map ¢ : PU{D} — K" such that A € T"if and only
if Y(D) € (Y(F;))pea. In this case, we say that I' is a vector space access
structure.

If a dealer wants to distribute a secret value s € K, he takes a random
vector v € K", such that v - (D) = s. The share of a participant P; € P
is s; = v-9(P;) € K. Let A be an authorized subset, A € I'; then, by
definition, ¢(D) = 3,4 Af0(P), for some values A\!' € K. In order to
recover the secret, the players of A compute

D oAMsi = Y AMV(R) = v Y AW(PR) = vu(D) = s

P,cA P,cA P,cA

Note that (¢, £)-threshold access structures are in particular vector space
ones, and Shamir’s threshold secret sharing scheme can be seen as a vector
space one, by taking r = t,¢(D) = (1,0,...,0) and ¥(P;) = (1,4,4%, ..., 1).

On the other hand, vector space secret sharing schemes can also be gen-
eralized. Simmons, Jackson and Martin [92] introduced linear secret sharing
schemes, that can be seen as vector space secret sharing schemes in which
each player is (possibly) associated with more than one vector. They proved
that any access structure can be realized by a linear secret sharing scheme.
In general, the construction that they proposed results in an inefficient secret
sharing scheme, in the sense that its information rate is very small.

Informally, the information rate of a secret sharing scheme is the quo-
tient between the length of the secret (in bits) and the maximum length of
the distributed shares. This quantity is at most 1, which is the ideal case.
This happens for example in Shamir’s secret sharing schemes or in vector
space ones, because all the shares and the secret belong to the same finite
field K, so they all have the same length.

1.4.1 Dual Access Structures

For an access structure I' C 27, the dual of T is defined as ['* = {P — A :
A ¢ T} and it is also a monotone access structure (see [69] for more details
on dual access structures). A basic property of the dual is that (I'*)* =T it
is also easy to see, by the definition of I'*, that A € I'y if and only if P — A
is a maximal subset verifying P — A & I'™.
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It is not difficult to prove that, if I' is a vector space access structure,
then I'* is also a vector space access structure (see [69], for example).

In fact, the construction that Simmons, Jackson and Martin presented
in [92] to realize any possible access structure I' is based on the use of the
dual access structure and it is as follows. Let us suppose that the structure
I is such that (I'*)g = {A,..., A4}, then 1 assigns vectors in GF(q)? in the
following way: (D) = (1,0,...,0) and »(U) = {(1,4,i%,...,i" 1) : U € A;}
for any user U € P. This assignment 1 realizes the access structure I'.
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Chapter 2

RSA Distributed Signature
Schemes

Distributed public key cryptography deals with scenarios where a crypto-
graphic secret task is performed by a collective of users instead of an indi-
vidual user. In this way, the systems win in security and reliability.

An important point in these schemes is to fix which subsets of users
are authorized to perform the secret task, and which subsets of users can be
corrupted by an attacker without compromising the security of the scheme.
These families are respectively known as the access and the adversary struc-
tures. Most of the proposed distributed schemes consider threshold access
(resp. adversary) structures, which contain all the subsets with a minimum
(resp. maximum) number of users.

A usual strategy to design distributed cryptographic schemes is to use
a secret sharing scheme (or a similar technique) to distribute shares of the
secret key of a known individual cryptographic scheme. However, this is not
always as easy or direct as it can seem. Furthermore, depending on the access
and adversary structures to be considered, one must use the appropriate
secret sharing scheme.

In this chapter we study distributed signature schemes, where an au-
thorized subset of users must cooperate in order to compute a valid signature
on a message. We give the basic definitions and the security requirements for
these schemes, and we cite some existing works (most of them considering
only threshold structures). We also recall the basic concepts related to secret
sharing schemes.

Later, we focus on RSA distributed signature schemes. We extend an
existing RSA threshold signature scheme to a scenario where the access and
the adversary structures can be more general families. We state the algebraic
and combinatorial conditions that these structures must satisfy; when this is

25
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the case, the proposed scheme is proved to be robust and secure.

2.1 Distributed Signature Schemes

In some situations, the power to generate valid signatures is shared among a
set of users or computers (we will refer to them also as players or participants).
For example, in a big company, it is not convenient that a single player has
the knowledge of the secret key and signs all the messages on behalf of the
company. This fact decreases security, because an adversary must attack
only a single point to obtain the full secret information. It also decreases
reliability, because the signature system remains inoperative if the player
has some technical problem.

A solution to solve these problems is to distribute the power of signing
among a set P = {P,..., P} of ¢ players, where a monotone increasing
family of authorized or qualified subsets I' C 27 must be defined. This
family will be called the access structure of the system.

Each player will have a share of the secret key of the set. To compute
a signature, each player of an authorized subset will use his secret share to
compute a partial signature. Finally, a combining algorithm will convert
the partial signatures from the subset into a valid standard signature of the
message, that can be verified by using the single public key which matches
with the shared secret key. In next section we define distributed signature
schemes a bit more formally.

2.1.1 Basic Definitions and Security Requirements

Definition 2.1. A (P, I')-distributed signature scheme consists of three poly-
nomial time and probabilistic protocols:

o Dist-Key-Gen: this protocol can be executed jointly by the { players
themselves, or by a trusted and external authority. The input is a
security parameter. The public outputs are pk (the public key of the
scheme) and some verification key vk, whereas the private output of
each player P; is a share sk; of the secret key sk related to pk.

e Dist-Sig: if m is the message to be signed, each player P; uses his pri-
vate information to compute and broadcast his partial signature 6;(m).
The correctness of the partial signatures can be verified using the verifi-
cation key vk. Finally, a combiner algorithm takes valid partial signa-
tures corresponding to an authorized subset A € I' and produces from
{0;(m)}p.ca a valid standard signature 6(m).
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o Ver: this protocol is executed by the recipient of the signature. The
inputs are the public key pk, the message m and the signature 6(m).
The output will be “true” or “false”.

Usually, distributed signature schemes are constructed by starting from
a standard (individual) signature scheme, such as RSA or Schnorr. In that
cases, it is desirable that a final distributed signature has the same form
as an individual signature (and therefore, the verification protocols must be
identical, as well). Thus, the recipient of the signature cannot distinguish
how the signature has been generated; this is an interesting property in some
scenarios requiring privacy and anonymity.

A distributed signature scheme must be secure even in the presence
of an adversary who corrupts and controls the behaviour of some subset of
dishonest players. The family of subsets of players that the system toler-
ates to be corrupted by an adversary is commonly known as the adversary
structure and denoted by A C 27. It must be monotone decreasing (if the
scheme remains secure when an attacker corrupts a subset By € A, then it
must also remain secure if an attacker corrupts players of By, for any subset
By C By). This implies that the adversary structure A is determined by its
basis Ag ={B € A | BU{P,} ¢ A, for all P, ¢ B}.

Informally, we say that a (P,I')-distributed signature scheme is A-
secure if it is robust and existentially unforgeable under adaptive chosen mes-
sage attacks, considering an adversary allowed to corrupt players of any sub-
set in the structure A. Now we explain with more detail these two security
properties.

By robustness we refer to the fact that the scheme provides mecha-
nisms to detect corrupted players who do not follow the protocol correctly.
Furthermore, the protocol must always produce a valid signature from the
partial signatures of the honest players.

On the other hand, existential unforgeability under adaptive chosen
message attacks is defined now in relation to the following game (or challenge)

Gi:

1. If a hash function is assumed to behave as a random function, the
adversary can make () queries to the random oracle which models this
function.

2. The adversary is given a set of players P, a monotone increasing access
structure I' C 27 and an adversary structure A C 27.

3. The adversary chooses a subset of players B € A to corrupt.
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4. The Dist-Key-Gen protocol is executed. The adversary obtains all the
information that is made public in the execution of this protocol, as well
as private information corresponding to the corrupted players P; € B
(in particular, their shares sk; of the secret key sk).

5. The adversary can adaptively choose (); messages to be signed. For
these messages, the Dist-Sig protocol is executed. The adversary sees
all the information that is made public in the required executions of this
protocol, as well as private information corresponding to the corrupted
players.

Definition 2.2. Such an adversary is a (P,I',A\,T,¢e,Q, Qs)-forger against
a distributed signature scheme if its total running time is at most T and it
obtains, with probability ¢, a valid (message,signature) pair, different from
the ones that it has recewed during the game G .

Definition 2.3. (Exact unforgeability of distributed signature schemes). A
distributed signature scheme is (P, T, A, T, e, Q, Q)-unforgeable if there does
not exist any (P,I, A\, T,e,Q, Qs)-forger against it.

Note that we consider only static adversaries: they must choose the
subset of players B € A they want to corrupt before the signature scheme
is initialized, and this corrupted set does not vary throughout the life of the
system. To achieve security against adaptive adversaries [19], one can use
known techniques such as proactive schemes [66, 48, 84].

Usually, unforgeability of a distributed signature scheme is proved by
reducing it to the unforgeability of the regular signature scheme from which
the distributed one has been constructed. The most delicate point is to sim-
ulate the secret information that the adversary obtains during the execution
of the Dist-Key-Gen protocol and the ()5 executions of the Dist-Sig protocol.

2.1.2 State of the Art

First works on distributed cryptography only considered threshold access
structures, where all the players have the same power inside the set, and the
same susceptibility of being corrupted by an adversary.

With respect to RSA threshold signatures, the first schemes [39, 38, 52]
used cyclotomic extensions of the integers to solve the main problem: to share
an RSA secret key d € Zg(y) in such a way that the ring Zg(,,) remains secret
to the players. Shoup proposed in [91] a more efficient and simple solution,
which has been studied and extended in [31, 47].
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In all these schemes, the key generation phase is executed by an external
and trusted dealer. There are some works which propose protocols where the
own players jointly execute the algorithm Dist-Key-Gen for the RSA case,
generating the public key (n,e) and secret shares of the secret key (p, q,d)
for each player. In these protocols (see [12, 49, 21]), players must compute
shares of the product of two shared secret values. This problem is known as
the problem of the multiplication, and is efficiently solved only in the case of
threshold structures and a few more particular families of access structures
(see [33], for example).

With respect to the distributed versions of other signature schemes, for
example those whose security is based on the Discrete Logarithm problem,
the solutions are not so complicated, because the secret keys that must be
shared belong to a field (in Schnorr’s scheme, Z,) which is public. A threshold
version of Schnorr’s signature scheme can be found in [93], and a threshold
version of Digital Standard Signature (DSS) scheme can be found in [53].
For this kind of schemes, the generation of the keys can be jointly executed
by the players, by following the protocol explained in [54] for the threshold
case.

Another example of threshold signature scheme can be found in [10].
Its security is based on the Computational Diffie-Hellman Assumption.

2.2 RSA Distributed Signature Schemes for
General Access Structures

Most of the proposals of distributed cryptographic schemes (in particular, dis-
tributed signature schemes) consider threshold structures: the access struc-
ture is I' = {A C P : |A| > t}, whereas the adversary structure is A = {B C
P : |B| < t}. However, this corresponds to a very particular situation. In the
real life, players of a distributed cryptographic scheme usually have different
levels of importance: they can have different privileges or computational re-
sources, and enjoy different levels of protection against possible attacks, for
example.

For this reason, it is important to design distributed schemes that work
properly in the case of general access and adversary structures, not only in
the threshold case. A logical strategy consists in trying to extend to the
general case some existing threshold scheme, whenever it is possible. This is
what we have done with the RSA threshold signature scheme proposed by
Shoup in [91]. In this section, we study the conditions that must be satisfied
in order to extend this protocol to the case of general structures, in such a
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way that the resulting scheme is secure.

We will consider a general access structure I' C 27, where P = {Py, ..., P},
for the collection of subsets of participants that will be able to generate a
valid signature. And we will consider a general adversary structure A C 27,
containing the subsets of players that an adversary could corrupt without
breaking the security of the scheme.

We introduce some notation: for any family © C 27 of subsets of P,
we define the family © = 27 — © (containing those sets which are not in ©)
and the family ©¢ = {P — B : B € ©} (containing the complementary sets
of the sets in ©).

An obvious necessary condition if we want a distributed signature scheme
to achieve (P,I', A)-unforgeability, is that any subset in A cannot be in T
that is ANT = (. This condition is the same as I' C A, or equivalently,
A C T, where T is the family of non-authorized subsets. Since I is monotone
decreasing, we can consider the family (T')y C T' of maximal non-authorized
subsets.

To achieve robustness, for any possible set of corrupted players B € A,
the subset formed by the rest of players of P must be able to sign; that is,
P — B e€T. In other words, A C T

In conclusion, to design a secure distributed signature scheme it is nec-
essary that the structures A and I satisfy I' ¢ A and A° C T, which can
be written as A° C I' C A. In particular, this implies that A must be a Q2
structure.

Definition 2.4. (Q° structures, [67]). A monotone decreasing structure
A C 27 is said to be Q% in P if A° C A (or equivalently, if there are not two
subsets in A that cover all the set P ).

For example, in the threshold case the Q2 condition is equivalent to
(> 2t +1.

2.2.1 Previous Considerations

Before describing the protocols of the resulting RSA distributed signature
scheme for general access structures, we must explain some useful tricks.
Namely, we will use a modification of standard secret sharing schemes to
work with secrets that belong to groups which are unknown to the players.
Furthermore, we must introduce an integer A that will be necessary to ensure
the proper and secure running of the scheme.

In RSA distributed signature schemes, if n = pq is the public modulus,
the secret d to be shared will belong to a group Zg,) (or Z, in our scheme,
where ¢(n) = 4n) that must remain secret to the participants. One possible
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approach to solve this problem is to use a black-box secret sharing scheme,
which allows to share secrets belonging to any (possibly unknown for the
participants) Abelian group. However, efficient constructions of such schemes
are only known for the threshold case (see [29]).

Our approach, following the idea introduced by Shoup in [91], consists
in modifying the framework of standard linear secret sharing schemes in order
to adapt them to our needs. For simplicity, we will consider the vector space
case, with a map v that assigns one vector to each player; but everything
can be easily extended to the (general) linear case where players can receive
more than one vector.

Definition 2.5. We say that a function ¢ : PU{D} — Z" realizes " over
the rationals when A € T if and only if there exists {c}ica, with ¢t € Q,
such that (D) =3 p 4 cMp(P;). Furthermore, we say that such a function
W is A-independent if for all subset of players B in the adversary structure
A, the vectors in {1(P;)} pjep which are different are linearly independent.

Note that using the technique presented by Simmons, Jackson and Mar-
tin in [92] we can find, for any access structure I', a A-independent function
realizing I', where A = I'. So the scheme that we will propose can be used
with any access structure. The construction of [92], however, can result in a
very inefficient scheme in some cases, in terms of the number of vectors (and
so the number of shares) assigned to each participant.

Let us return to RSA distributed signatures. If a dealer would use such
a function v, projected into the corresponding ring 7Z,, to distribute shares
of the secret key d € Z,, then the following problem would appear: if an
authorized subset would like to compute a valid RSA signature H(m)?mod n
of a message m (where H is a hash function), its members would have to
recover the secret key d in the exponent of an expression in Z,. If the
coefficients of the combination that allows to compute d from their shares
were rational, this step could not be efficiently done, because the participants
would not be able to compute roots modulo n. The solution is to find a factor
A that cancels all these denominators in the coefficients, for all the authorized
subsets of players. Each player will multiply his share by this public factor A.
Note that, then, an authorized subset will obtain in the exponent a multiple
of the secret key d. But this fact does not affect the computation of a valid
RSA signature, as we will see later.

For the security proofs of the resulting scheme, we also need that the
factor A cancels the denominators in the coefficients of the following linear
combinations: the vector of a player P; written as a combination of the vector
of the dealer and the vectors corresponding to a subset of players B € (I')g
which does not contain player P;. Note that this linear combination always
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exists: B U {P;} € I' by definition, which means that (D) = \y(FP;) +
>_pep AV(F;), and A; # 0 because B ¢ I', so we can write ¢(F;) as a linear
combination of the vectors in {1(D), {¢(P;)}p,en}

Here we explain a method to obtain such a public value A. This method
is in general inefficient. However, there can be access structures for which
an appropriate A can be found in a more efficient way (for example, in the
threshold case studied by Shoup, this factor is simply A = ¢!). The general
method is the following.

For each minimal authorized subset A € I'y, we will associate to it a
factor M4 such that E{‘ = MAciA is an integer, for all P, € A. This factor M4
is the determinant of some non-zero minor, with maximal order, of the matrix
G4 whose columns are the vectors {)(F;)}peca. We define Mins = {non-
zero minors of matrix G4 with maximal order}. Then we define the value
M 4 in the following way:

My= lem {|det gal}

gaEMiny

It is clear that this factor M4 cancels all the denominators in all the
possible solutions {c'}p.c4. But we are looking for a factor that cancels all
the denominators, for all the minimal authorized subsets A € I'y. Hence we
define

Al = lem {MA}

A€l

With respect to the second condition that the value A must satisfy, we
have to consider systems of equations with the following form: the columns
of the matrix of this system are the vectors ¢(D) and {)(P;)}p,cp, where
B € (T), is a maximal non-authorized subset. We note this matrix Gp . As
before, we define Minp p = {non-zero minors of matrix Gp g with maximal

order}, and then the values

Mpp= lem {|det gpp|} and Ay = lem {Mpp}.

9gp,BEMinp Be(M)o

Finally, the factor A is A = lem{A;, As}.

We provide a simple example to see how this method works. Consider
a set of five participants, P = {1,2,3,4,5}. Any subset formed by three
participants will be able to sign a message. Furthermore, the participants
1 and 2 have more power than the rest, and they can jointly compute valid
signatures if they agree. Therefore, the corresponding access structure I is
defined by its basis

I'o={{1,2},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5} }
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Let us define the adversary structure as the whole family of non-authorized
subsets. Therefore, it is determined by the basis

Ao = (F)O = { {17 3}7 {17 4}7 {17 5}7 {27 3}7 {27 4}7 {27 5}7 {37 4}7 {37 5}7 {47 5} }

These structures satisfy the necessary conditions A° C I' C A. The access
structure I' can be realized over the rationals by a vector space secret sharing
scheme defined by the following vectors: (D) = (1,1,0), (1) = (1,0,0),
¥(2) =(0,1,0),9(3) = (0,0,1), ¥(4) = (1,2,1),4(5) = (2,1, 1). The vectors
of the five participants are pairwise linearly independent, so the function v
is A-independent.

For the computation of the value A, we must first consider authorized
subsets in T'g. For example, if we consider the subset {1,2}, with related
vectors (1,0,0) and (0,1,0), then there is only one non-zero minor with
maximal order, which is
‘ 10 ‘ _

0 1 '
If we consider the authorized subset {3,4,5}, then there is only one non-zero
minor with maximal order, which is the whole matrix formed by the three
corresponding vectors:

N — O

01
2 1| =-3.
11

Once all the subsets in 'y have been considered, one finds the value A; = 6.

Then we must consider maximal non-authorized subsets (those in 4)
and study the matrix formed by the related vectors along with the vector of
the dealer. For example, for the subset {4, 5}, the resulting matrix is

10
2 1
11

R ——

and the only non-zero minor with maximal order is the whole matrix, which
has determinant equal to 2. Repeating this process with all the subsets in
Ap, one finds the value Ay = 2. Therefore, in this case we would obtain

A =6.

2.2.2 The Proposal

Let A and I' be adversary and access structures defined on a set of partic-
ipants P = {Py,..., P}, satisfying A C I' C A. Suppose, for simplicity,
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that we have an appropriate function ¢ : P U{D} — Z" that realizes the
access structure I' over the rationals, and that is A-independent.

If these conditions hold, we can construct a RSA distributed signature
scheme secure against the action of an adversary who corrupts players in
any subset of A, and in which participation of players of some subset of I' is
required in order to compute a valid RSA signature. The construction can
also be applied in the more general case where I is realized by a linear secret
sharing scheme; that is, when v can assign more than one vector to each
participant.

The RSA-Dist-Key-Gen protocol. We assume that a trusted dealer exe-
cutes this protocol. The structures I' and A, the function 1 and the value A
(that depends only on 1)) are made public. The dealer receives as input a se-
curity parameter k, and chooses two k-bit integers p = 2p'+1 and ¢ = 2¢'+1
in such a way that:

(i) p, ¢, p’ and ¢ are primes;

(ii) p’ and ¢ are larger than A and larger than the absolute values of all
the components of ¢ (D).

We denote n = p'q’. The value n = pq is made public. However, note
that 7, and so ¢(n) = 4n, remain secret to the participants. The dealer
chooses and makes public a hash function H : {0,1}* — Z*. He chooses the
public exponent e as a positive odd integer such that ged(e,nA) = 1. He
also computes d = e"!modn. Then he performs the following protocol to
compute and distribute shares of d among the players:

1. The dealer chooses a random vector w € (Z,)", such that w - (D) =
dmodn. (This vector exists because of the requirement (ii) above.)

2. He sends to each player P; his secret share s; = w - ¢(FP;) modn, for
1< </

3. The dealer also chooses a random v € ),,, where (),, is the subgroup of
squares in Z*, and computes v; = v**modn, for 1 <1 < ¢. He makes

n?

public the verification keys v and {v; }1<i<.

We note that v generates (J,, with overwhelming probability, and that
the order of @), is exactly 7.
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The RSA-Dist-Sig protocol. If the players want to sign a message m, they
first compute © = H(m) € Z!. Then they execute the following protocol:

1.

. The signature for the message x is y = o%2”.

Each player P;, for 1 < ¢ < ¢, computes and broadcasts his partial
signature z; = 4% modn.

. He also makes public a “proof of correctness” of this share, which is a

zero-knowledge and non-interactive proof of knowledge that the discrete
logarithm of 22 to the base & = 282 is the same as the discrete logarithm
of v; to the base v. To compute such a proof, player P, proceeds as
follows, if H' : {0,1}* — {0, 1} is a hash function (taking for example
L, =128), and L(n) is the bit-length of n:

2.1. He chooses at random r € {0,1,..., 25+l _ 1}

2.2. He computes the values v' = v", 2’ = 3", ¢ = H'(v, Z,v;, 4,0, 2")
and z = s;c+ 7.

2.3. The proof of correctness is (z, ¢).

This non-interactive protocol was also proposed by Shoup in [91], by

following some well-known techniques which combine some previous
works [23, 45].

. Each player P;, for 1 < j < ¢, verifies the proof of correctness (z,c) of

player P;, by checking if
c = H(v,&,v;,x;,v°0; ¢, 57w; ).

If the proof is not correct, P; complains against P;.

. Players who get complaints from a subset which is not in A are rejected.

Once the dishonest players have been rejected, and because of the re-
quirement A° C I, there is at least one authorized subset A € IT" in
which all the partial signatures are valid. We can consider, for simplic-
ity, that A is a minimal authorized subset, that is, A € I'y.

. Each player in A can obtain rational numbers {c'}pca such that

V(D) = pea cMp(P;); because of the definition of A, we have that

the values ¢! = Ac are integers, and so the users can compute

i
sA
_ & 4A%
o=]lpecar’ =2 mod n.

Since ged(e,nA) = 1, we have that ged(e,4A%) = 1 because e is odd.
Then each player in A can obtain integers a and b such that 4A%a+eb =
1, using the Euclidian algorithm.

b
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The RSA-Ver protocol. The recipient of a signature y on a message m un-
der public key (n, e) verifies its correctness by checking if y¢ = H(m) mod n.
If the signature has been generated by using the RSA-Dist-Sig protocol, then
it is correct, because

2
e _ _ea be — $4A a+eb — = H(m) mod n.

2.2.3 Security Analysis

First we explain why we require the function ¢ to be A-independent. Suppose
that there exists some subset B € A of corruptible players such that the
vectors in the set {¢)(P;)}p,ep are linearly dependent over the rationals. If
we use the scheme explained in the previous section, then each player P; of
B will receive the share s; = w - ¢(P;) modn. If there exists a non-trivial
linear combination of the vectors in {¢)(P;)}p,cp that is equal to zero, over
the rationals, then the same combination applied to the shares {s;}p,cp Will
be equal to zero, in Z,. That is, players in B could obtain a multiple of 7,
and so break the system.

Now we prove that the way in which the dealer distributes the shares
s; among the players, in the execution of RSA-Dist-Key-Gen, is perfectly
secure, provided the primes p’ and ¢’ are larger than the value A.

In effect, let B = {P},,..., P;,} € A be a corruptible subset of players,
and let {s;}1<;,<¢ be a sharing of some secret d € Z,,, obtained with a random
vector w € (Z,)". Because of the properties satisfied by the value A (in
particular, by As), we know that the system of equations

w(D) .. K1 A
() ] _ |0
¢(13J ) T Ky 0
has at least one integer solution k = (k1,...,K,) € Z". Since p’ and ¢ are

larger than A, we have ged(A,n) = 1, and so there exist integers o and [
such that A + gn = 1.

For every possible value of the secret d' € Z, and for every solution
Kk € Z" of the system above, consider the vector w' = w + (d' — d)ax with its
entries reduced modulo 7. We have then that the vector w’ € (Z,)" satisfies
the two following equations:

(i) w-o(D)=(w+ (d —d)ar ) - (D) =d+ (d — d)aA = d modn,
(i) w-Y(Pj) = (w4 (d —d)ar ) - Y(P;) = s; modn, for all P; € B.
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So each possible secret d € Z, is equally likely from the point of view of
an adversary who knows the shares {s;}p,cp. Therefore, an adversary who
corrupts players in B does not obtain any information about the secret from
the shares that it knows.

Robustness

To show that the RSA distributed signature scheme is robust, we must prove
that corrupted players who do not follow the protocol properly are detected
with overwhelming probability. This is due to the soundness property satis-
fied by the non-interactive protocol which is used for proving the correctness
of the signature shares (step 2 of the RSA-Dist-Sig protocol). The proof of
this property, which is valid in the random oracle model for the hash function
H', has been taken from [91].

Proposition 2.1. Except with negligible probability, it is impossible to con-
struct a wvalid proof of correctness for an incorrect partial signature, in the
random oracle model for the hash function H'.

Proof. Consider a given pair (x,x;), where = H(m) and z; is the partial
signature broadcast by some player P;. Let us suppose that the corresponding
proof of correctness broadcast by P; is (z, ¢).

If the proof is valid, then we have ¢ = H'(v, Z, v;, z;, v, '), where

i=a% v =0t o = (2.1)

Since we are assuming that the hash function H’ behaves as a random func-
tion, the value c is uniform and independent of the inputs of the hash func-
tion.

It is easy to see that Z,v;, 27,0, 2" all belong to Q,, the subgroup of
squares in Z;, which is assumed to be generated by v, of order 1. Therefore,
we have that

F=0Y v =0 22 =00 v =07, ' =0, (2.2)
for some integers o, 3,7, 9.
From equations 2.1 and 2.2, we conclude that z — c¢s; = v modn and
zao — ¢ = 9 modn. This implies:

clas; — ) =6 —ya modn . (2.3)

On the other hand, the partial signature x; is correct if and only if

7% = x? This condition is equivalent to v** = v”, which happens if and only
if

B = as; modn . (2.4)
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Summing up, if the proof of correctness is valid but the partial signature
is incorrect, then equation 2.4 must fail to hold modulo p’ or modulo ¢'. In
this case, equation 2.3 uniquely determines the value ¢ modulo one of these
primes.

Remember, however, that the distribution of ¢ was uniform and inde-
pendent of the rest of values. Therefore, the probability that the value ¢
determined by equation 2.3 coincides with the output of the hash value H’
is negligible. And this is exactly the probability that an incorrect partial
signature results in a valid proof of correctness.

O

Once this result is proven, then it is straightforward to see that the
scheme is robust. Corrupted players who broadcast incorrect partial signa-
tures are detected and expelled from the protocol. Because of the required
combinatorial conditions on the structures I' and A, the remaining honest
players always form an authorized subset, so they can finish the protocol and
compute a valid RSA signature.

Unforgeability

We reduce the security of the proposed RSA distributed scheme to the secu-
rity of standard FDH-RSA signature scheme, introduced in Section 1.2.1 and
analyzed in Section 1.3.4. The proof is again in the random oracle model,
for the hash functions H and H’. Therefore, an adversary will be allowed
to make () queries to the random oracle which models the hash function H,
and Q' queries to the random oracle which models H'.

Theorem 2.1. [f there exists a (P,I',\,T,e,Q,Q’, Qs)-forger against our
RSA distributed signature scheme, then there ezists a (T",€',Q, Qs)-forger
against standard FDH-RSA signature scheme, with T < T + (T,,,Qs + Q'
and &' > e— 46, where § is negligible in the security parameter k of the scheme
(the length of the employed RSA primes).

Proof. Let Fpis denote the (P,I',A,T,¢,Q,Q’, Qs)-forger against the pro-
posed RSA distributed signature scheme. This adversary plays game Gy,
described in Section 2.1.1. We will construct a (77,¢', Q, Qs)-forger against
the standard FDH-RSA signature scheme, that we will denote Frga, and
which will use the forger Fp;s as a subroutine.

By definition, the forger Frga receives a RSA public key (n,e). It can
query () answers to the random oracle model H (the hash function of FDH-
RSA signature scheme) and can ask for (s valid RSA standard signatures.
Its goal is to obtain a new valid RSA standard signature.
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Once Fgrga receives the input (n, e), it executes the forger Fp;s, simu-
lating the environment of Fp;s in game Gy. This idea is captured in Figure
2.1 below. The details are as follows:
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Figure 2.1: Fp;s simulates the environment of Frga

1. Since H and H’ are assumed to behave as random functions, the ad-
versary Fpis can make (Q queries to the random oracle for H and @’
queries to the random oracle for H'. When it asks to the random oracle
H, the forger Frsa can query its oracle for the same hash function H,
and sends to Fp;s the obtained output. To answer the queries to the
random oracle H', forger Frga manages the table TAB' as usual: if
an input is already stored in the table, it answers the corresponding
output; if not, he chooses an output uniformly at random, gives it as
answer and stores the new relation in TAB’.

2. The forger Fp;s is given a set of players P, a monotone increasing
access structure I' C 2% and an adversary structure A C 27. We can
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assume that Fp;q also receives here the function ¢ : PU{D} — Z"
realizing I' over the rationals, which must be A-independent, and the
value A.

. The adversary chooses a subset of players B € A to corrupt.

. The RSA-Dist-Key-Gen protocol is executed. The adversary obtains

all the information that is made public in the execution of this protocol,
as well as private information corresponding to the corrupted players
P; € B.

Let us see how Frga can provide Fp;i with this information. The
resulting RSA public key will be (n, e). Because of the necessary com-
binatorial condition 4 C T, there exists a maximal non-authorized

subset B’ € (I')y such that B C B’. The real share of a player P; in B
would be s; = w - ¢(P;) modn, where w is a random vector in (Z,)".
To simulate these shares, Frga chooses a random vector w in (Zz)",
where ) = [n/4] — 1. Then, it computes §; = W - ¢(P;) mod 7}, for all
P e B

Frsa must also simulate consistent values for the verification keys. It
chooses at random an element p € @,, and computes ¥ = p*** modn.

For players P; € B', it computes 9; = 0%.

It remains to compute the simulated values v;, for the rest of players

P, € P— B Since B" € (I')g, we have that B’ U {P;} € I, for
all P, € P — B’. This condition is equivalent, over the rationals, to
V(P) € (W(D),{¥(P;)}pep). That is, there exist rational numbers

fo /’ia {fJB/’i}pﬁB/ such that
G(P) = [70(D) + 3 1P (B
PjEB/

Due to the second condition that the value A must satisfy, the values
AfF" and {Af]B "} p,ep are all integers.

Note that, ideally, the shares must correspond to the secret d = e~ mod 7,
where ¢(n) = 4n. Therefore, the equality
Si = fégl’id + Z fJBl’iéj mod 7 (2.5)

PjeB’

should be satisfied. We cannot compute s;, however we are interested
in computing only 9%. Multiplying equality 2.5 with e, we obtain

es; = égl’i + e Z fJBI’iEj mod 7. (2.6)
PeB’
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Therefore, Frsa can produce the simulated verification keys v;, for all
players P, € P — B’, as follows:

! ! .
AT+ ae S AFPS,
P;eB’ 4Aes;

P =p =0

Forger Frsa provides forger Fp;s with all this information: n, e,
{3} pen, U and {0} pep.

Since the statistical distance between the uniform distribution on {0, ..., n}
and the uniform distribution on {0, ...,7} is O(n"*/2) (which is neg-
ligible in the security parameter), we can deduce that the distribution

of real values (in particular, {s;};cp) and the distribution of simulated
values (in particular, {3;};ep) are computationally indistinguishable,

as desired.

5. The adversary can adaptively choose (), messages m* to be signed. For
these messages, the RSA-Dist-Sig protocol is executed. The adversary
sees all the information that is made public in the required executions
of this protocol. Let us see how Frga can simulate this information.

First, Frsa is allowed to ask the random oracle model which models H
for the value H(m*), obtaining the output x*. Then, it can query its
signing oracle to obtain a valid standard FDH-RSA signature for the
message m*; it obtains as answer the value y* such that (y*)¢ = z* =
H(m").

The partial signatures corresponding to the players P; in the set B’
would be x} = (2*)45% , If the forger Fp;s, which manages corrupted
players in B, forces some of them to broadcast an incorrect partial
share, then Frg4 broadcasts complaints against this corrupted player
from all the non-corrupted ones.

To simulate consistent partial signatures z} for the rest of players P; €
P — B’, the forger Frsa can use the same strategy as before, when it
simulated the values v;. In effect, by using equality 2.6, it can compute

IONE R VN i i
(y*) 0 jen’ J J _ (y*>4eAsi _ (x*>4Asi _ xr modn .

Forger Frs4 must also simulate the proofs of correctness of the partial
signatures corresponding to non-corrupted players (remember that cor-
rupted players are managed by Fp;st, so it is not necessary to provide
it with this information). Forger Frga will construct and maintain a
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table TAB' to store the definition of the random oracle which models
the hash function H’. It will manage this table in the usual way: when
it needs an output of the hash function, it looks for the input in the
table. If it is already there, it returns the stored output; otherwise,
it chooses at random a value different from the rest of stored values,
returns it as the input, and stores the new relation in the table.

For non-corrupted players P; in B’ — B, forger Frg4 can compute valid
proofs of correctness for the partial signatures z7, by using knowledge

of the shares §;, applying the non-interactive protocol explained in step
2 of RSA-Dist-Sig (see Section 2.2.2).

For the rest of players P, € P — B’, forger Frsa simulates a consis-
tent proof of correctness for the pair (z*,z}) as follows: it chooses at
random ¢ € {0,1,...,2" —1} and 2z € {0,1,...,28™+25 _ 1} With
overwhelming probability, the input (17,:5*,171»,1:;‘,17217;8, (i*)z(x;‘)_%),
where z* = (2*)%*, has not been still asked to the random oracle H’;
therefore, Frsa can define the output of the random oracle for this
input to be exactly ¢, and store this new relation in the table TAB'.

This makes the proof (¢, z) consistent.

In this way, Frsa can provide the forger Fp;s with all the information
it would see in a real execution of the RSA-Dist-Sig protocol for message

*

m-.

In time at most T and with probability greater than e, forger Fp;s
obtains a valid RSA signature (m,y), satisfying y* = H(m) mod n, such that
(m,y) # (m*,y*) for all the pairs (m*,y*) obtained during game G;.

Therefore, forger Frsa has performed a valid chosen-message forgery
against standard FDH-RSA signature scheme, because it has obtained from
its signing oracle the same pairs (m*, y*) as the forger Fp;s, and so the final
valid RSA signature (m,y) is original. The success probability &' of Frga is
exactly the same as the one of Fp,s, except the negligible probability that
there is some collision in the simulation of the outputs of the random oracle
H'. We can thus write ¢/ > ¢ — 0, where § is a negligible function in the
security parameter k of the scheme.

With respect to the execution time 7”7 of Frga, it consists of the exe-
cution time of Fp;y plus the time to answer the queries to the signing oracle
plus the management of the table T"AB’ modeling the random oracle H'. We
can thus write 7" < T+ (T,,,Qs + Q'

Note that forger Frga makes exactly the same queries ()5 and @ to the
signing oracle and the random oracle H than forger Fp;s does.

]



2.3. Extensions of RSA Distributed Signatures 43

Putting together both Theorem 1.1 and Theorem 2.1, we immediately
obtain the following result, which relates the unforgeability of our RSA dis-
tributed signature scheme with the RSA Assumption (see Definition 1.7).

Theorem 2.2. If there exists a (P,I',A,T,e,Q,Q’,Qs)-forger against the
proposed RSA distributed signature scheme, with security parameter k, then
the RSA problem can be solved in time T < T + 20T,,,Qs + Te.p@ + Q'
and with probability ¢ > —=2— (in the random oracle model), where § is

e'(Qs+1)
negligible in k and e is the Fuler’s value e = 2,718281828459...

2.3 Other Extensions

In the last section of this chapter, we discuss some topics related to the
RSA distributed signature scheme that we have proposed for general access
structures.

2.3.1 Eliminating the Trusted Dealer

Our proposed RSA distributed signature scheme for general structures, as
well as the original threshold scheme by Shoup [91], require the use of safe
primes. That is, the public key must be n = pg, where p = 2p’ + 1 and
q = 2¢'+1, such that p, ¢, p’ and ¢’ are all prime numbers. For the generation
of these parameters, a trusted third party (dealer) is required, who computes
the prime numbers and distributes the shares of the secret key among the
players.

In [31, 47], some modifications of the threshold scheme of Shoup are
proposed, in such a way that the prime numbers p and ¢ must not be safe
primes. In this way, one can use some known protocols [12, 49, 21] which
enable the own players to jointly generate the public parameters of the scheme
and their shares of the secret key, without the help of any trusted dealer. The
resulting RSA threshold signature schemes are therefore fully distributed.

Later, a different protocol for the joint generation of RSA public keys
has been proposed in [3], which produces a public key n = pg and shares of
the secret key, and such that p and q are safe primes. Therefore, this protocol
can be directly combined with Shoup’s scheme to obtain a fully distributed
RSA threshold signature scheme, as well.

Using the techniques that we have employed in this chapter to extend
the scheme of Shoup, the schemes in [31, 47] can also be extended to work
with general access structures. But we are still unable to design a fully dis-
tribute RSA signature scheme for general structures, because all the protocols
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for the joint generation of RSA keys [12, 49, 21, 3] require the computation
of shares of the product of two shared secrets. This is known as the multipli-
cation problem, which is known to have an efficient solution, in the presence
of active adversaries, only for the threshold case and a few more particu-
lar access structures. Finding a protocol for the joint generation of RSA
keys which works efficiently for the case of general access structures remains
therefore as an interesting open problem.

2.3.2 Distributed Paillier’s Cryptosystem

In [82], Paillier proposed a new public key encryption scheme which enjoys
some interesting properties. One of them is that the scheme is homomor-
phic: roughly speaking, if ¢; is an encryption of a message m; and ¢y is an
encryption of a message ms, then ¢ = ¢; - ¢5 is an encryption of the message
m = mq + my. This property makes Paillier’s cryptosystem specially useful
for being applied in e-voting schemes, digital auctions, etc.

In such situations, it is desirable that the power to decrypt a ciphertext
is distributed, and not held by a single person or machine. In this sense, a
threshold version of the encryption scheme of Paillier was proposed in [46]:
the secret key of the cryptosystem is distributed in shares among a set of ¢
players. The messages can be encrypted by anyone by using the matching
public key, but in order to decrypt the resulting ciphertexts, the cooperation
of at least t of the ¢ players is necessary.

The threshold decryption scheme proposed in [46] basically follows the
ideas of the RSA threshold signature scheme by Shoup [91]. Therefore, we
could apply to their decryption scheme the same techniques that we have
introduced in this chapter. As a result, we would obtain a distributed de-
cryption scheme for more general access structures I' and A: in order to
decrypt a ciphertext, all the members of some authorized subset of players
in I' must collaborate; the scheme is secure if an adversary is restricted to
corrupt only the players of some subset in the family A. In this way, the
new scheme would fit in with more real situations, for example when the au-
thorities that decrypt the votes in an election or the bids in an auction have
different rights, different computational resources or different susceptibilities
of being corrupted.



Chapter 3

Some Applications of
Distributed Signatures

In the present chapter, we use distributed signature schemes as a primitive
to construct some distributed protocols, which have applications on the In-
ternet: metering schemes and distributed key distribution schemes.

The employed distributed signature schemes must be secure (robust and
unforgeable under chosen message attacks), and they must also satisfy some
extra property: for constructing metering schemes, the distributed signature
scheme must be non-interactive; for constructing distributed key distribution
schemes, the distributed signature scheme must be deterministic.

Definition 3.1. A distributed signature scheme is non-interactive if each
player P; can compute its partial signature 0;(m) of a message m without
interacting with the rest of players.

Definition 3.2. A distributed signature scheme is deterministic if every mes-
sage m has a unique valid signature 6(m).

Note that the notion of determinism can also be applied to standard
signature schemes. For example, RSA signature scheme (see Section 1.2.1) is
deterministic, whereas Schnorr’s signature scheme (see Section 1.2.2) is non-
deterministic: every message has ¢ — 1 valid signatures, one for each value of
the element a € Z; that the signer chooses at random.

With respect to existing distributed signature schemes in the literature,
some of the proposals based on RSA [91, 31, 47|, including the scheme that
we propose in Section 2.2.2 for the case of general structures, are both non-
interactive and deterministic. The threshold signature scheme proposed by
Boldyreva in [10] is also non-interactive and deterministic. Therefore, all

45
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these distributed signature schemes could be used to construct both new
metering schemes and distributed key distribution schemes, by applying the
general constructions that we propose in this chapter.

The threshold version of the Gennaro-Halevi-Rabin signature scheme
[51], which is proposed in [21], is deterministic but interactive. On the
other hand, distributed versions of some discrete logarithm based signature
schemes, like Schnorr’s one in [93] or DSS in [53], are neither non-interactive
nor deterministic, so they do not provide neither metering schemes nor dis-
tributed key distribution schemes.

Remember that the adversary structure A contains the subsets of play-
ers that an adversary is allowed to corrupt without breaking the distributed
signature scheme.

3.1 Constructing Metering Schemes

Metering schemes were introduced in [75] to measure the interactions be-
tween servers and clients. Each client visiting a server must give some secret
information to that server. When a server has been visited by some specific
subset of clients in a period of time, he can compute a valid proof of this fact
from the received secret information. These proofs can be taken into account
to decide on advertisement fees for web servers on the Internet, for example,
since the most usual application of metering schemes is as a counter of the
web accesses to servers on the Internet.

We will show how any secure and non-interactive distributed signature
scheme can be used to construct a computationally secure metering scheme.

3.1.1 Review of Metering Schemes

In this section we review the protocols that take part in a metering scheme,
and the current state of the art in this topic.

In the initialization phase of a metering scheme, an audit agency dis-
tributes some secret information ¢; to each client C; in C = {C},...,Cy}.
There are an access structure I'c C 2¢ and an adversary structure Ae C 2,
both defined on the set of clients.

In the regular operation, when a client C; visits some server S; in
S = {S1,...,5,} during a time frame X = 1,...,7, he gives some piece
of information cg\j to him.

Once a server S; has been visited by an authorized subset A € I'¢c of
clients, S; can compute the proof p;-\. This is the proof computation phase.



3.1. Constructing Metering Schemes 47

With this proof, the server can demonstrate to the audit agency that clients
of an authorized subset have visited him in time frame \.

Many proposals of metering schemes consider only the threshold case
for I'c; that is, a proof can be computed when a server receives the visit of
t clients, where t is the threshold. In this work we consider more general
structures, because we think that more general situations can make sense.
For example, in order to decide on advertisement fees for a web page dealing
with economic products, the visit of a manager of a bank is more important
than the visit of a lawyer. Therefore, considering access structures where
users play different roles is important.

Some unconditionally secure metering schemes have been proposed [75,
73, 8]. On the other hand, only a few schemes in a computational setting have
been proposed. In [75] Naor and Pinkas propose a computationally secure
scheme under the computational Diffie-Hellman assumption using bivariable
polynomials. Ogata and Kurosawa propose in [79] a computationally secure
scheme based on the same assumption, using polynomials in three variables,
which repairs some minor security fails in the proposal of [75]. All these
proposals consider only threshold access structures for the set of clients.

3.1.2 Security Requirements for Metering Schemes

Roughly speaking, to guarantee the security of a computational metering
scheme, we require a server not to be able to compute a valid proof for
a time frame if he has not been visited by an authorized subset of clients
during this period of time, even if he receives information from the other
servers. Our definition of security is more complete than the one in [79],
because we allow for a collusion of all the servers, whereas in [79] only a
certain number of servers can be corrupted at the same time.

To formalize this idea, we consider an adversary which plays the fol-
lowing game Gs:

1. The adversary is given the public parameters of the system: the set of
servers § = {51, ..., 5, }, the set of clients C = {C1, ..., C;}, the access
and adversary structures I'c C 2¢ and A¢ C 2¢, and the number of time
frames, 7.

2. The adversary chooses a subset of clients B € A¢ to be corrupted.

3. The initialization phase of the metering scheme is executed. The ad-
versary obtains all the public information and the secret information
of the corrupted clients C}, € B.
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4. The regular operation is executed for all clients C; € C, for all servers
S; € S and for all the time frames A < ¢, where t € {1,..., 7}, except
for the case (j, \) = (jo, t) (that is, some server S}, is not visited during
time frame t).

The adversary obtains from these executions all the information re-

ceived from all the servers, in particular the pieces of information c;\j

5. The goal of the adversary is to obtain a valid proof p§0 for the server
Sj, and the time frame ¢.

Definition 3.3. Such an adversary (S,C,Tc,A¢, T, e)-breaks the metering
scheme if its running time is at most T', and the probability that it obtains a
valid proof p', for server Sj, and time frame t, after evecuting game G, is
at least €.

3.1.3 The New Construction: >-Metering Schemes

Now we present a new method to construct a computationally secure me-
tering scheme from any non-interactive distributed signature scheme. The
resulting metering scheme, like other computationally secure ones, allows
servers to check the correctness of the information received from clients in a
regular operation, provided the distributed signature scheme is robust.

We consider a non-interactive distributed signature scheme X2, defined
on the set of clients C with access structure I'c. We will call such a scheme
a (C,¢)-distributed signature scheme. We will assume ¥ is secure (robust
and unforgeable) with respect to an adversary structure Ac. We denote as
Y-metering scheme the metering scheme constructed as follows.

Initialization phase. In this phase, the audit agency executes the
Dist-Key-Gen protocol of ¥ to generate public outputs pk and vk; (the public
and the verification keys of the signature scheme), and private outputs sk;.
Then the audit agency sends privately the information ¢; = sk; to each client

C;.

Regular operation. The idea behind this protocol is that clients
produce partial signatures on message h(S;, \) when they visit server S; in a
time frame A. Here A must be a public and collision-resistant hash function
whose outputs are valid messages for the signature scheme ..

Since Y is non-interactive, the client C; does not need the other clients
to compute the partial signature cf‘j = 0;(h(S;,\)) and send it privately to
server S;, together with some proof of correctness. Server S; checks if the
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partial signature is correct using the public verification key (recall that X is
assumed to be a robust distributed signature scheme); if not, he denies the
access to (.

Proof computation phase. Assume that server S; has been visited,
during a time frame A, by all clients of some authorized subset A € I'c. Server
S; uses the combiner algorithm of the Dist-Sign protocol of ¥ to produce
a valid standard signature p; = 6(h(S;,\)) from valid partial signatures
{0;(h(Sj, X)) }c,ea. The audit agency (or anyone) uses the public key pk to
verify the validity of the proof p? using the Ver protocol of 3.

One of the main advantages of the resulting metering scheme with
respect to previously known ones, is that the audit agency is necessary only in
the initialization phase. After this phase, it can disappear from the system.
In particular, due to the fact that the proofs are digital signatures, anyone
can verify their correctness; for example, the own companies which must pay
web servers for having their advertisements on the server’s web pages.

In some previous metering schemes (for example the one in [79]), the
audit agency uses a secret sharing scheme to distribute some secret infor-
mation among the set of servers, as well. This implies that an adversary
is allowed to corrupt only some specific subsets of servers without compro-
mising the security of the protocol. In ¥-metering schemes, this does not
happen, and so they are secure even if the adversary corrupts all the servers
of the system.

If the distributed signature schemes > works only for threshold access
structures, then the authorized subsets of clients of the resulting >-metering
scheme are those with at least t clients, where ¢ is the threshold. As we
have said before, this may be a limitation in some scenarios, for example if
an advertisement company thinks that the visit of some clients to the web
page is more interesting than other visits. For this reason it is important to
consider general access structures in the set of clients. In our construction,
this can be achieved by using a distributed signature scheme which works
for general access structures, for example the RSA-based scheme that we
propose in Chapter 2.

3.1.4 Security of >-Metering Schemes

The following result relates the security of Y-metering schemes with the
unforgeability of the employed distributed signature scheme . Therefore, if
we use a secure distributed signature scheme, we obtain a computationally
secure metering scheme.
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Theorem 3.1. If there exists an adversary which (S,C,T¢, Ac, T, e)-breaks
a Y-metering scheme with £ clients, r servers and T time frames, then there
exits a (C,T¢, Ae, T', €', Q, Qs)-forger against the distributed signature scheme
Y, withQ =0, Qs=r7, T <T+r7 and &’ > e — 0, where § is a negligible
function of the security parameter of .

Proof. Let Fye denote the adversary which (S,C, ¢, A¢, T, €)-breaks the X-
metering scheme. This adversary plays game G, described in Section 3.1.2.
We will construct a (C,T¢, Ae, T, €', 0, r7)-forger against the distributed sig-
nature scheme 2, that we will denote Fs, and which will use the forger Fy e
as a subroutine.

The goal of the forger Fx is to play game G; (see Section 2.1.1) and
obtain a new valid signature. In the first steep, Fx, receives the set of ¢
players P, the access structure I' and the adversary structure A.

At this moment, Fy, executes the forger Fyres, simulating the environ-
ment of Fye; in game Gy, by using the information it obtains from its game
Gi.

First of all, Fyx, gives to Fyse; the public parameters: it chooses a set of
r servers S = {S1,...,S,}, imposes the set of ¢ clients to be C = P, and the
access and adversary structures to be I'c = I and A¢ = A. It also sends to
Furer the total number of time frames, 7.

By definition, in step 2 of game G, the adversary Fj.; chooses a subset
of clients B € A¢ to be corrupted. For its game G, forger Fy, chooses the
same set B of corrupted players.

In step 3 of game G,, the initialization phase of the metering scheme
is executed, and the adversary obtains all the public information and the
secret information of the corrupted clients C, € B. To provide Fje; with
this information, forger Fy goes into step 4 of its game G;: Dist-Key-Gen
protocol of ¥ is executed, and the forger obtains all the public information
and the shares of the secret key which correspond to the corrupted players,
in B. Forger Fy, gives to the adversary Fj.; all this information.

In step 4 of game G,, the regular operation is executed for all clients
C; € C, for all servers S; € S and for all the time frames A < ¢, where
t € {l1,...,7}, except for the case (j,\) = (jo,t). To provide Fys.; with the
information that it obtains from these executions, the forger Fs executes
step 5 of its game G: it chooses the messages h(S;, A), for j = 1,...,7,
A=1,...,t and (j,\) # (jo,t), to be signed by its signing oracle. For
these messages, the Dist-Sig protocol of ¥ is executed. The adversary Fy
sees all the information that is made public in these executions of Dist-
Sig, as well as private information corresponding to the corrupted players.
In particular, it obtains all the partial signatures which are the pieces of
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information ¢}; = 6;(h(S;,A)), and the final signatures, which are the proofs
p} = 0(h(S;, \)), for all clients C; € C, for all servers S; € S and for all the
time frames A < ¢, where t € {1,...,7}, except for the case (j,\) = (Jo, ).
Forger Fy, gives to the adversary Fye; all this information.

Note that the number of times that Fs, queries the signing oracle is at
most Qs = 7.

By hypothesis, the adversary F.; obtains with probability ¢ a valid
proof for the server S;, and the time frame ¢. That is, it obtains a valid
signature pi = 6O(h(Sj,,t)). Since the hash function % is assumed to be
collision-resistant, the probability § that h(S;,,t) = h(S;, A), for some pair
(7, A) # (Jo, 1) is negligible in the security parameter of ¥, if the outputs of
h belong to a set whose size is exponential in this security parameter.

Therefore, with probability ¢’ > ¢ — ¢, the forger Fx, has obtained a
valid signature p’ for some message h(Sj,,t) which is different from the pairs
(message,signature) that Fx; has asked to its signing oracle in the execution of
game G;. That is, it has obtained a successful forgery against the distributed
signature scheme 3.

The forger Fx has made no queries to any random oracle (therefore,
Q) = 0), and its running time 7" consists of the running time of Fjse; plus
the time of making the r7 queries to its signing oracle. We can thus write
T <T++rr.

O

Obviously, if we use a distributed signature scheme ¥ whose security
is proved in the random oracle model, then the security of the resulting -
metering scheme is proved in the same model. But, on the positive side,
if the scheme ¥ is secure in the standard model, then Y-metering scheme
also achieves this property, because the construction does not add any ideal
assumption on the behaviour of the hash functions. Unfortunately, this will
not happen in the construction of X-DKDS that we present in Section 3.2.

3.1.5 Different Constructions of Metering Schemes

As suggested in [50], different metering schemes can be constructed by follow-
ing the idea that we have exploited in Section 3.1.3, but by using other kinds
of signature schemes different from distributed signatures: multisignatures
and aggregate signatures.

In a multisignature scheme [68, 74] (see also [10] for a recent and efficient
proposal), any user has his own secret and public keys. If many users agree in
signing the same message, they can compute a partial signature each one, and
then these partial signatures are combined to produce a multisignature. The
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goal is that the final multisignature must be shorter than the concatenation
of all the signatures. Taking the multisignature and the list of the involved
users, a receiver verifies that these users have actually cooperated to sign the
message.

The idea of aggregate signatures [14, 72] is very similar, but now the
messages signed by different users can be different. Again, it is possible to
combine the signatures of the different users on the different messages to
produce a unique aggregate signature. The receiver takes this signature,
along with the list of messages and users and verifies the correctness of all
the signatures at the same time.

The resulting metering schemes would be as follows: when a client C;
visits a server S; in a period of time A, he signs the message m = (S}, A) in
the case of multisignatures, or the message m; = (C;, S;,A) in the case of
aggregate signatures. The server verifies these signatures and provides access
to the honest clients. Once the server has received enough visits, he combines
the signatures to produce a multisignature or an aggregate-signature, which
will be the proof delivered to the audit agency who pays for advertisement,
for example.

The use of multisignatures or aggregate-signatures instead of distributed
signatures to construct metering schemes has two main advantages. On the
one hand, any client can use his own secret and public keys to compute the
signature that he sends to the servers; therefore, the key generation process
of a distributed signature scheme, where each client receives a share of the
secret key, must not be executed. On the other hand, with these two different
approaches the audit agency can establish different criteria for the required
visits, depending on the server; when using distributed signature schemes,
the family I'¢ of subsets of clients that must visit a server was the same for
all servers.

However, the use of multisignatures or aggregate signatures implies
some disadvantages. On the one hand, the verification of a multisignature or
an aggregate signature is usually costly (and depends on the specific signing
users), whereas the verification of a distributed signature is the same as the
verification of a standard signature. On the other hand, and perhaps more
importantly, the fact that the identities of the signing users must be included
in a multisignature or an aggregate signature would make the proofs of the
servers longer and the resulting metering schemes not anonymous: anyone
who would see the proof that a server sends to the audit agency (in particular,
the own agency) would know what clients have visited this server. This is
usually not desirable in a scenario such as the Internet.
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3.2 Constructing Distributed Key Distribu-
tion Schemes

Another important task in cryptographic protocols is the distribution and
management of secret keys for groups of users, when there are not secure
channels among these users. The resulting group (in these scenarios they are
usually known as conferences) key can have different purposes: it can allow
the access to some restricted resource (for example on the Internet), or it
can be used as the secret key of a symmetric encryption scheme to provide
secure communication among the members of the group.

In [77] a single server responsible for distributing keys was introduced.
This model has some drawbacks. First of all, the server must be trusted
because it knows all the group keys. Furthermore, if the single server crashes,
the system totally breaks down. And last, the server is a bottle-neck for the
efficiency of the system, because all the key requests are directed to the same
point.

To avoid the main problems of a single server, a new model was pre-
sented in [76], where the task of a single server is distributed among a set of
servers. These are the so-called distributed key distribution schemes. Both
information theoretic [9, 32] and computational [34] models have also been
studied in literature.

We construct distributed and computationally secure key distribution
schemes from any secure and deterministic distributed signature scheme. We
consider the same framework as in [76]. Our schemes achieve the highest
possible level of security, i.e. semantic security, in the random oracle model.

3.2.1 Review of Distributed Key Distribution Schemes

Let & = {S1,...,S¢} be a set of servers and U = {Uy,...,U,} be a group
of users. Subsets of users which want to share a common key are called
conferences, and the resulting common key is usually called conference key.
Let I's C 25 be an access structure defined on the set of servers, containing
those subsets of servers which are able to provide conference keys to users.
There will also be an adversary structure Ag C 2° containing the subsets of
servers that can be corrupted by an attacker. Secure channels between users
and servers are necessary.

Naor, Pinkas and Reingold [76] proposed the following model for dis-
tributed key distribution schemes: each server S; € S receives in the ini-
tialization phase a share of a secret value; this phase does not involve the
users.
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Later, the key request phase takes place when a user U in a conference
C C U needs the conference key ko. He requests it to some authorized
subset of servers. These servers use their secret shares to compute some
partial information that they privately send to the user.

Finally, in the key computation phase, the conference key k¢ is com-
puted by U from the partial information he has received from the contacted
servers.

This model have been considered in other works dealing with uncon-
ditionally secure distributed key distribution schemes (see [9], for example).
Nevertheless, for computationally secure schemes, a different model has been
proposed [34] in order to reduce the amount of computations the user must
perform to obtain the conference key. The usefulness of this model relies on
those situations where servers have the main computational power.

3.2.2 Security Requirements for Distributed Key Dis-
tribution Schemes

The security level required for distributed key distribution schemes depends
on the scenario where the conference members use the generated key, and
basically on the type of attacks the application must be protected against.
The highest possible level of security is the equivalent of semantic security
for encryption schemes [55]. Roughly speaking, an adversary should not be
able to distinguish a conference key k¢ from a value taken at random from
the set of possible keys, even if it corrupts some subset of servers (in the
adversary structure Ag) and the protocol is executed for other conferences.

To formalize this intuitive idea, we describe here a game Gs, played by
an adversary against a distributed key distribution scheme. Note that this
game is appropriate to study the security of schemes which follow the model
introduced in [76] and sketched in Section 3.2.1 (for example, in this model
servers send the partial information to users throughout secure point-to-point
channels). For distributed key distribution schemes following other models,
maybe the following game Gs should be modified.

1. The adversary is given the public parameters of the system: the set of
servers § = {S1,..., S}, the access and adversary structures I's and
As and the set of users U = {Uy,...,U,}.

2. The adversary chooses a subset of servers B € Ag to be corrupted.

3. The initialization phase of the distributed key distribution scheme,
which involves only servers, is executed. The adversary obtains all the
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public information and the secret information of the corrupted servers
Sb € B.

4. The adversary chooses Qs different conferences C’ C U. Request
phase and key computation phase of the scheme are executed for all
the users in these conferences. As a result, the adversary obtains all
the information produced in these executions (one can think that the
adversary has corrupted the members of this conference C”): the partial
information provided by all the servers, the resulting conference keys
Ko, ete.

5. The adversary chooses a conference C' different from the conferences it
has queried in the previous step. For this conference, request and key
computation phases are executed, and the adversary obtains the infor-
mation that the corrupted servers in B produce in these executions.

6. A random bit b* € {0, 1} is chosen. If b* = 1, the adversary is given
the real key ke. If b* = 0, the adversary is given an element taken
uniformly at random from the set of possible conference keys.

7. The adversary outputs a bit &’ € {0,1}. It wins the game if ¥’ = b*.

We define the advantage of such an adversary in breaking the semantic
security of the distributed key distribution scheme as

1
— Prtf = b] — =
€ r| ] 5

Definition 3.4. Such an adversary (U,S,T's, As, T, e, Qcons)-breaks the dis-
tributed key distribution scheme if its running time is at most T, and its
advantage in breaking the semantic security of the scheme is at least €.

3.2.3 The New Construction: >-DKDS’s

Next, we present a new method to construct computationally secure dis-
tributed key distribution schemes, from a distributed signature scheme. We
follow the model introduced of [76], explained in Section 3.2.1. This construc-
tion is possible provided the considered signature scheme is deterministic.
Let 3 be a deterministic (S, I's)-distributed signature scheme defined
on the set of servers S, with access structure I's, and secure with respect
to an adversary structure As. We will assume that these structures satisfy
the necessary condition for robustness, A C I's (see Section 2.2). We can
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define the family of subsets of servers Q = Q(I's,As) = {R C S such that
R—B € T'sfor all B € As}. Note that Q is not empty because, in particular,
S € . This monotone increasing family is known as the family of robust
subsets.

We refer to the distributed key distribution scheme constructed below
as X-DKDS.

Initialization phase. In this phase, the Dist-Key-Gen protocol of the
distributed signature scheme X is performed, taking as players the set of
servers §. At the end of this phase, each server S; has a share sk; of the
secret key. Furthermore, a hash function H: {0,1}* — K is publicly chosen,
where K is the set of possible conference keys (also known as key-space). In
the security analysis, we will assume that the hash function H behaves as a
totally random function.

Key request phase. The total set of users is denoted as U. A user
U in a conference C' C U contacts with all the servers of some robust subset
of servers R € (), requiring the key k¢ of the conference C. After checking
for membership of U in C, every server S; € R performs the first part of
the Dist-Sign protocol of the scheme . In this way, he uses his private
information to compute the partial signature 6;(h(C')) and sends it privately
to the user. Here h is a public and collision-resistant hash function whose
outputs are valid messages for the scheme Y. The server must also send to
the user a proof of correctness of his partial signature.

Key computation phase. Once having received the answers from
the servers, user U checks the proof of correctness of partial signatures he
has received in the previous phase. Note that here we are assuming that
the scheme ¥ is robust: the user detects incorrect partial signatures, but the
correct ones are enough to finish the protocol, because R € 2. Using the
combiner algorithm of the scheme >, user U takes valid partial signatures
from an authorized subset of servers and produces from them a standard
signature @(h(C)) on the message h(C). Finally, the conference key for C' is

Ko = ﬁ(9<h<0))) e K.

Note that all users in the conference C' obtain the same conference key
ke since the distributed signature scheme ¥ is deterministic.

Although the scheme > does not need to be non-interactive to en-
able the construction of 3¥-DKDS’s, it is very recommendable to use a non-
interactive distributed signature scheme 3. This means that servers must
not contact with the other servers before computing the partial signature
and sending this information to the users. In this way, the system is more
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reliable and efficient.

Again, if we use our RSA distributed signature scheme for general access
structures, explained in Chapter 2, we can consider general access structures
for the subsets of servers allowed to provide conference keys, and general
adversary structures for the sets of servers that can be corrupted by an
attacker.

3.2.4 Security of X-DKDS’s

We base the semantic security of the scheme ¥-DKDS on the unforgeability of
the yielding distributed signature scheme ¥ under adaptive chosen-message
attacks, assuming as well that the hash function H behaves as a random
oracle.

Theorem 3.2. If there exists an adversary which (U,S,T's,As, T, ¢, Qeonf)-
breaks a ¥>-DKDS, and the hash function H behaves as a random oracle, then
there exists a (S,T's,As, T", &', Q, Qs)-forger against the distributed signature
scheme X, with Q@ =0, Qs = Qcons, T" < T + Qcony and €' > € — &, where §
is a negligible function of the security parameter of 3.

Proof. We denote as Fpgps the adversary which (U,S,T's,As, T, €, Qcons)-
breaks the »-DKDS. This adversary plays game G3, described in Section
3.2.2. We are going to construct a (S,I's, As,T", €', Q, Qs)-forger Fx, against
the distributed signature scheme 3, which will use the forger Fpxps as a
subroutine.

The goal of the forger Fy is to play game G; (see Section 2.1.1) and
obtain a new valid signature. In the first steep, Fx receives the set of ¢
players P, the access structure I' and the adversary structure A.

Fs executes then the forger Fpgpg, simulating the environment of
Fprps in game Gs, by using the information it obtains from its game G;.

First of all, Fx, gives to Fprps the public parameters: it chooses a
set of users U, imposes the set of £ servers to be S = P and the access and
adversary structures to be I's =T" and Ag = A.

By definition, in step 2 of game Gs the adversary Fpgps chooses a
subset of servers B € As to be corrupted. For its game G, forger Fy, chooses
the same set B of corrupted players.

In step 3 of game G3, the initialization phase of the distributed key
distribution scheme, which involves only servers, is executed. The adversary
Fprps obtains all the public information and the secret information of the
corrupted servers 5, € B. To simulate this information, forger Fy, goes into
step 4 of its game G;: the Dist-Key-Gen protocol of ¥ is executed, and the
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forger obtains all the public information and the shares of the secret key
which correspond to the corrupted players, in B. Forger Fys gives to the
adversary Fpgps all this information.

In step 4 of game Gs, the adversary Fpxps chooses Qcony different
conferences C' C U. Request phase and key computation phase of the
scheme are executed for these conferences. As a result, the adversary ob-
tains all the information produced in these executions: the partial informa-
tion 6;(h(C")) provided by all the servers, and the resulting conference keys
Kor = f[(@(h(C’))). The forger Fx, executes step 5 of its game Gy: it chooses
the messages h(C’) to be signed by its signing oracle. For these messages,
the Dist-Sig protocol of ¥ is executed. The adversary Fy sees all the infor-
mation that is made public in these executions of Dist-Sig, as well as private
information corresponding to the corrupted players. In particular, it obtains
all the partial signatures ;(h(C")), and the final signatures 6(h(C")), from
which it can compute the conference keys ke = H <9(h(C’ ))) Forger Fs,
gives to the adversary Fpgps all this information.

Note that the number of times that Fs, queries the signing oracle is at
most Qs = Qcony-

In step 5 of game G3, the adversary chooses a conference C different
from the conferences it has queried in the previous step, and obtains the
partial information produced by the corrupted server in an execution of the
computational phase for this conference. The adversary Fs can execute step
5 of its game G; with input message h(C'). Then Fy, sends the values 0,(h(C))
to the adversary Fpipg, for all the corrupted servers S, € B.

In step 6 of game 3, the adversary Fpgps must receive either the

conference key ke = H ((h(C))) or a value * taken at random from the key-

space K. We are assuming, however, that H behaves as a random function;
therefore, the real conference key k¢ is also a uniform and random value in
KC. To simulate this step, forger Fy, chooses uniformly at random an element
k from the key-space K, and sends it to the adversary Fpxps.

Finally, in step 7 of game G3, Fpxps tries to guess if the received
clement & is equal to ke = H (6(h(0))) or not. By hypothesis, and taking
off the case where it guesses at random (with probability 1/2), the adversary
Fprps guesses which is the case with probability, or advantage, at least ¢.

Since the probability distribution of both ko = H (H(h(C’))) and k* are

the same, the only way Fpgps has to distinguish between these two random
values in K is by obtaining the pre-image 6(h(C)) of k¢ by the hash function
H.
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As long as the hash function h is assumed to be collision-resistant, the
probability ¢ that h(C) = h(C"), for some conference C’ # C' is negligible
in the security parameter k of X, provided the outputs of h belong to a set
whose size is exponential in k.

Summing up, with probability ¢’ > ¢ — ¢, the adversary Fprpg, and
therefore the forger Fy, they both have obtained a valid signature 8(h(C')) for
some message h(C') which is different from the messages that Fx has asked
to its signing oracle in the execution of game G,. That is, it has obtained a
successful forgery against the distributed signature scheme 3.

The running time 7" of forger Fx, consists of the running time of Fpxps
plus the time of making the Q).ons queries to its signing oracle. We can thus
write 7" <T + Qcons-

O

Note the importance of the hash function H in the description of our
>-DKDS. For example, if we do not use it in order to avoid the assumption of
the random oracle model, then the schemes do not achieve semantic security.
In effect, if we define the resulting key as ko = 0(h(C')), then any adversary
can use the publicly available verification protocol of the signature scheme
Y., to distinguish which between k¢ and a random value x* is actually a
valid signature of the message h(C'). In this case, the schemes would achieve
a weaker level of security, against an adversary whose goal is limited to
compute the key k¢.
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Chapter 4

New Ring Signature Schemes
for Disc-Log Scenarios

In this chapter, we study ring signature schemes. First of all, we introduce
a family of ring signature schemes that we call generic. For this family, we
prove a theoretic result, the Ring Forking Lemma, which will be useful later
to prove the security of generic ring signature schemes.

Then, we propose a specific generic ring signature scheme, which follows
the idea of Schnorr’s signature scheme. In this scheme, all the users must
generate their pair of secret and public keys by using the same parameters:
two large prime numbers p and ¢ such that ¢g|p — 1, and an element g €
Z,, with order q. The secret key of a user is a random element x € Z;,
whereas the matching public key is y = g*modp. This is usually known
as Discrete Logarithm scenario, or Disc-Log scenario for short, because the
Discrete Logarithm problem in (g) must be hard to solve in order to ensure
security.

Finally, we extend this particular ring signature scheme to distributed
situations, where a subset of users want to cooperate to compute a distributed
anonymous signature on a message. As we have said before, we prove the
security of the two specific proposals by using the Ring Forking Lemma for
generic schemes.

Since all users of the system must share the same Disc-Log security
parameters in our proposals, the resulting schemes can be specially useful in
situations such as companies, small organizations, forums on the Internet,
etc.

61
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4.1 Ring Signature Schemes

The idea of a ring signature is the following: a user wants to compute a
signature on a message, on behalf of a set (or ring) of users Y = {Uy,...,U,}
which includes himself. He wants the verifier of the signature to be convinced
that the signer of the message is in effect some of the members of this ring.
But he wants to remain completely anonymous. That is, nobody will know
which member of the ring is the actual author of the signature.

4.1.1 Definitions and Applications

A ring signature scheme consists of three protocols:

1. Key generation. This protocol is executed individually by each user
U; of the system. The input is a security parameter and (possibly)
some public parameters, common to all the users of the system. The
output consists of a public key PK;, that the users makes public, and
a secret key SK;, that U; keeps secret.

2. Ring signature generation. Suppose a user U; wants to compute a
ring signature on a message m on behalf of a ring U = {Uy,...,U,}
which contains himself. Then U, must execute this protocol, taking
as input the message m, the public keys PK,,..., PK, and his own
secret key SK,. The output is a signature 6.

3. Ring signature verification. The recipient of a ring signature checks
its validity by running this protocol. It takes as input the message m,
the signature # and all the public keys PKy, ..., PK, of the ring U.
The output is 1 if the signature is valid, and 0 if it is invalid.

In order to properly achieve their functionality, ring signature schemes must
satisfy three properties, that we informally describe below.

1. Correctness: if a ring signature is generated by following the protocol
correctly, then the result of the verification is always 1.

2. Anonymity: any verifier should not have probability greater than
1/n to guess the identity of the real signer who has computed a ring
signature on behalf of a ring of n members.

3. Unforgeability: among all the proposed definitions of unforgeability,
we consider the strongest one, which is existential unforgeability against
chosen message-ring attacks. This means that any attacker must have
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negligible probability of success in forging a valid ring signature for
some message on behalf of a ring that does not contain himself, even
if he knows valid ring signatures for messages and rings, different from
the pair message-ring of the forged signature, that he can adaptively
choose.

Note that the anonymity property could be extended to require that
even a collusion of ¢ members in a ring of n members have probability at most
1/n — t to guess which other member of the ring has computed a signature
on behalf of this ring. All the constructions that we present in this thesis
satisfy this strongest notion of anonymity, as well.

The anonymity property must hold unconditionally, whereas the un-
forgeability property usually holds computationally. This means that an
adversary with unlimited computational and time resources could forge a
signature, but could not extract any information about the author of a ring
signature.

The reason of this difference is the following: one can avoid compu-
tational attacks against the unforgeability of the scheme, by modifying the
keys of the users once a year, for example. However, identities do not change.
Therefore, if an unbounded adversary could break the anonymity in, for ex-
ample, 3 years, then the authority of a message would be unmasked, even if
the keys have been modified during these 3 years. To avoid this, we require
unconditional anonymity.

Ring signatures are a useful tool to provide anonymity in some sce-
narios. For example, if a member of a group wants to leak to the media a
secret information about the group, he can sign this information using a ring
scheme. Everybody will be convinced that the information comes from the
group itself, but anybody could accuse him of leaking the secret.

A different application is the following: if the signer A of a message
wants that the authorship of a message could be entirely verified only by
some specific user B, he can sign the message with respect to the ring { A, B}.
The rest of users could not know who between A and B is the author of the
signature, but B will be convinced that the author is A.

Recently, ring signature schemes have been also used as a primitive to
construct a different kind of signatures, concurrent signatures [24].

4.1.2 State of the Art

Although the first proposals of ring signature schemes can be found in the
scenario of group signatures (see [22, 28, 18]), the concept was formally in-
troduced by Rivest, Shamir and Tauman in [86]. They propose a scheme
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that they prove unforgeable, in the ideal cipher model (which is a differ-
ent paradigm for proving security of cryptographic protocols), assuming the
hardness of the RSA problem. This scheme also uses a symmetric encryption
scheme and the notion of combining functions.

Bresson, Stern and Szydlo show in [16] that the scheme of [86] can be
modified in such a way that the new scheme is proved to achieve the same
level of security, but under the strictly weaker assumption of the random
oracle model. They also introduce the concept of threshold ring signature
schemes, which has been the focus of some other works, for example [94].

In [1], Abe, Ohkubo and Suzuki design some general ring signature
schemes where the public keys of the users can be totally independent: differ-
ent sizes, and different types of keys (RSA keys, discrete logarithm keys,...).

Recently, Dodis, Kiayias, Nicolosi and Shoup [41] have proposed the
first ring signature scheme where the length of the final signature is not
linear with respect to the number of members of the ring (the result is valid
if the same ring is used by the same anonymous signer for many different
messages).

Finally, the only identity-based ring signature scheme proposed until
now is the one by Zhang and Kim [95]. A formal proof of the security of this
scheme has been given in [57]. We will review the concept of identity-based
cryptography in Chapter 5.

4.2 Generic Ring Signature Schemes

We define a family of ring signature schemes that we call generic (influenced
by the work of Pointcheval and Stern [83], where they give this name to a
family of signature schemes which includes Schnorr’s one), and for which
the results in this section are valid. Consider a security parameter k, a hash
function which outputs k-bit long elements, and a ringd = {Uy,...,U,} of n
members. Given the input message m, a generic ring signature scheme pro-
duces a tuple (U,m, Ry,..., Ry, h1,...,hy,0), where Ry, ..., R, take their
values randomly in a large set G in such a way that R; # R; for all ¢ # j,
h; is the hash value of (U, m, R;), for 1 < i < n, and the value o is fully
determined by Rq,..., R,, h1,...,h, and the message m.

Another required condition is that no R; can appear in a signature with
probability greater than 1/2¥~! where k is the security parameter. This
condition can be achieved by choosing the set GG as large as necessary, and is
required in order to reduce the probability of collisions in the security proofs,
when the behaviour of hash functions is modeled with random oracles [5].
In the framework that we consider, the outputs of the random oracle will be
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k-bit long elements.

The basic idea of the Forking Lemmas in [83] and the Ring Forking
Lemma that we are going to introduce is the following: assuming that an
adaptive chosen message attack can forge a generic ring signature, another
attacker could obtain, by replaying the first attacker with randomly chosen
hash functions (i.e. random oracles), two forged ring signatures of the same
message m, the same ring U and with the same randomness Ry, ..., R,, but
with different values of the other components of the signature. Then, these
two forged signatures could be used to solve some computational problem
which is assumed to be intractable. In this way, the corresponding ring
signature scheme is proved to be existentially unforgeable under adaptive
chosen message attacks.

4.2.1 A Security Result for Generic Ring Signature
Schemes

We first state a well-known lemma (known as Splitting Lemma in [83] and

known as Heavy-Row Lemma in [80], for example) that we will need in the

proof of our Ring Forking Lemma and in the security proof of a scheme

that we propose in Chapter 5. Figure 4.1 below gives an intuitive (although

simple) idea of this result (in particular, the sets X and Y in the figure are
not discrete!).

Lemma 4.1. (The Splitting Lemma). Let X andY two finite sets where two
probability distributions are considered. Let A C X XY be a set such that
Pr[A] > €, where the probability distribution in X XY is the joint probability
distribution induced by the distributions in X and Y. For any a < €, define

B:{(x,y)eXXY|yi1;/[( y)eA >e—ayand B=X xY — B,
then the following statements hold:

1. Pr[B] > a.

2. for any (x,y) € B, Prycy [(z,y) € A] > € — a.

3. Pr[B|A] > a/e.

Proof. The definition of the sets B and B implies that Pr [A|B] < ¢ —a. In
effect, if this would not be the case, then we would have

e—a < Pr[A|B] = ZPr [(a:o,) (e—a) ZPr | <e—qa,
z0€B z0€EB

a contradiction. We can prove now the three statements of the lemma:
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Figure 4.1: The idea behind the Splitting Lemma

1. For the sake of contradiction, we assume that Pr[B] < a. Then we
have

e <Pr[A] =Pr[B]-Pr[A|B]+Pr [B]-Pr[A|B] <a-1+1-(e—a) =«

2. Trivial, by definition of the set B.
3. We can use Bayes’ law to see that:

PelAlB] PrlB] | ema)t

Pr[A] - €

Pr(B|A] = 1-Pr [B|A] = 1—

O

Now we are ready to state and prove the Ring Forking Lemma, that
will be useful to prove the unforgeability of generic ring signature schemes.
For integers () and n such that Q > n > 1, we denote as Vg, the number of
different n-permutations of () elements (without repetitions); that is, Vi, =

QR—-1)-...-(Q—n+1).
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Theorem 4.1. (The Ring Forking Lemma). Consider a generic ring signa-
ture scheme with security parameter k > 6. Let A be a probabilistic polyno-
maal time Turing machine whose input only consists of public data and which
can ask Q) queries to the random oracle that models the hash function of the
scheme.

We assume that A produces, within time bound T and with probability
of success at least €, a valid ring signature (U, m, Ry,..., Ry, h1,..., hy,0)
for a ring U of n users.

Then, within time T' < 2T, and with probability & > %, by execut-
ing A with random instantiations of the hash function we can obtain two valid

ring signatures (U, m, Ry, ..., Ry, h1, ... hy,0) and (U, m, Ry,..., Ry, b, ... ko)

such that h; # I}, for some j € {1,...,n} and h; = hj for alli =1,...,n
such that i # j.

Proof. The Turing machine A, with random tape w, can ask () queries to
the random oracle H. We denote by Q;,..., Qg the () distinct queries and
by p = (p1,...,pq) the list of the () answers of the random oracle H. So we
can see a random choice of the random oracle H as a random choice of such
a vector p.

Now, for a random choice of (w, H) and with probability e, the machine
A outputs a valid ring signature (U, m, Ry,..., Ry, h1, ..., hy,0). Since H
is a random oracle and its outputs are k-bit long elements, the probability
that there exists some index ¢ such that A has not asked the query (U, m, R;)
to the random oracle is less than n/2%. Therefore, with probability at least
1 —n/2% A has asked all the queries (4, m, R;) to the oracle, for 1 <i < n,
and so we have that () > n is necessary (this will be the case when considering
any forger against any generic ring signature scheme).

With probability at least e (1 —n/ 2’“), the machine A is successful in
forging a ring signature (U, m, Ry,..., Ry, hy,..., hy,0) and besides it has
asked to the random oracle all the queries (U, m, R;), for i = 1,...,n. In this
case, for all index ¢ there exists an integer ¢; € {1,2,...,Q} such that the
query Qy, is precisely (U, m, R;). Then, we define L(w, H) = ({1,0a,...,4y)
and f(w, H) = max{(; | ((1,0s,...,0,) = L(w,H)}. Note that, since the
forged ring signature is a valid generic one, we have that all the R;’s are
different, and so the integers ¢; are also all different.

In the unlikely case where A has not asked for some of the queries
(U, m, R;) to the random oracle, then we say that ¢; = co, and so f(w, H) =
oo. Now we define the sets

S ={(w,H) | Alw, H) succeeds and §(w, H) # oo} ,
Sy={(w, H) | A(w, H) succeeds and L(w, H) = {} ,
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for all the vectors £ € L, = {(b,05,...,0,) | ; € {1,2,...,Q} and ¢; # {;
for all i@ # j}. Note that the cardinality of the set L, is the number of
n-permutations of () elements, that is, Vg, = Q(Q —1)-...- (Q —n+1).
Furthermore, the set {S; | (€ L,} is a partition of S. The pairs (w, H)
in the set § are called the successful pairs. We can find the lower bound
v = Pr[S] > ¢ (1 — n/2¥). With this probability v, the machine A gets one
pair (w, H) in S.

Let I be the set formed by the most likely vectors, I = {¢ € L, | Pr[S;| S] >
(w, H). The fol-
lowing lemma asserts that, in case of success, the corresponding vector of
indexes lies in [ with probability at least %

Lemma 4.2. Pr[L(w,H) eI | 8] >

Proof. Since the sets Sy are disjoint, we have that Pr[L(w,H) € I | §] =
e Pr[Sz | S]. This probability is equal to 1 — -z, Pr[S; [ S]. Since the
complement of I contains fewer than Vj, ,, vectors, this probability is at least
1 _VQ”’QOn:%' O

Let us return to the proof of Theorem 4.1. For each vector Fel ,
if we denote by (; the maximum of the coordinates of lz we can apply
the Splitting Lemma (Lemma 4.1). Following the notation of this lemma,
and if we see the oracle H as a random vector (pi,...,pq), then A =
Sy X = {(w,p1,--+,pp, —1)} and Y = {(ps;,...,pq)}. We also refer to
(p1,--- D5y 1)) as Hpg,, the restriction of H to queries of index strictly less
than (7 Since Pr[Sz = Pr[S] - Pr[S; | S| > 57—, we take € = = 55 and
, and the Splitting Lemma proves that there exists a subset Q of

_ v
& = AVon

executions (w, H) such that, for any (w, H) € Q

Prl(w, ') € S| Hy, = H}] > (4.1)

- 4VQn

and Pr[Q;| S >

N | —

Using again that the sets Sy are all disjoint, along with the result in
Lemma 4.2, we have that

Pr[there exists ¢ € I such that (w, H) € QNS S]=Pr [U( NSy | 81

lel

=) PrinSy| 8] =) Pr[Q;| S4-Pr[S;| S] > (ZPrS|S> i

lel lel lel
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For simplicity, we denote by 7 the vector L(w, H) corresponding to the
successful pair (w, H) obtained by the attack A with probability v, and by /3
the corresponding index ((w, H). As we have seen, with probability at least
1/4, we have that 7 eI and (w,H) € QyNS;. Therefore, with probability
greater than v/4, the attack A has provided a successful pair (w, H), with
(= L(w, H) €I and (v, H) € ;NS

If now we replay the attack, with fixed random tape w but randomly
chosen oracle H' such that Hj = Hp, we can use inequality (4.1) and thus
we obtain that

/ / r .
Pri(w, H') € Spand pg # ply | Hy = Hg| =

k
, , , v 28 —1
= Prf(w, H') € S¢ | Hj = Hy) (1= Prlpog = p}]) = W E
where pg = H(Qs) and pjy = H'(Qp).
Summing up, after executing twice the attack A, we obtain two valid
ring signatures (U, m, Ry, ..., Ry, h1,..., hp,0) and (U',m', Ry, ... Rl h},... .kl o),
with total probability

, vV v 2k — 1 g2 28— 28 —n 281
e Z — . . — . . . Z
4 4Von, 2k 16Vo.n 2k 2k 2k

g2 2F-1 e?

> . > .
- 64VQ,n 2k = 65VQ7n

We have used the fact that n must be polynomial in the security parameter
k, so n < 22 and the fact that 2’;;1 > if k> 6.

The two executions of A have the same random tape w and the answers
of the two random oracles H and H' are the same until the query Qg, where
3 is the index f(w, H) corresponding to the first successful forgery performed
by A. Since all the values of U, m, R; have been chosen before this query, we
have that U’ =U, m' = m and R, = R;, for all i = 1,...,n. The two oracles
H and H' verify, furthermore, that H(Qg) # H'(Qp).

Therefore, if we denote as j the index such that (U, m, R;) was the
query Qp, then we have that h; = H(Qp) # H'(Qs) = h. However, the
rest of queries (U, m, R;), for i =1,...,n, i # j, have been asked before the
query Qg, and so the values obtained from the oracles H and H' have been
the same. That is, h; = h}, for all i = 1,...,n with i # j.

]
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4.3 A Specific Generic Ring Signature Scheme

In this section we propose a ring signature scheme which runs in Discrete
Logarithm scenarios where all users have the same common parameters. The
scheme is inspired by Schnorr’s signature scheme. The point is that it is
actually a generic ring signature scheme, so we will be able to apply the Ring
Forking Lemma to prove its unforgeability. The different protocols of the
scheme are described below.

Key generation. Given a security parameter k, let p and ¢ be large
primes such that ¢[p — 1 and ¢ > 2% + A, where 7 is the maximum possible
number of users in a ring. Let g be an element of Z; with order ¢, and let H
be a collision resistant hash function which outputs elements in Z,.

Consider a set, or ring, of potential signers U = {Uy,...,U,}. Every
potential signer U; has a private key z; € Z; and the corresponding public
key y; = g™ mod p.

Ring signature generation. To sign a message m on behalf of the
ring U, a signer Uy, where s € {1,...,n}, acts as follows:

1. For every user U; € U, i € {1,...,n}, i # s, choose a; at random in
Zy, pairwise different. Compute R; = g* mod p, for all i # s.

2. Choose a random a € Z,.

—H(Z/{,m,Ri
%

3. Compute Ry =¢°[[ v ) modp. If R, =1 or R, = R; for some

iF£S
1 # s, then go to step 2.

4. Compute 0 =a+ Y a; + ,HU, m, R;) modgq.
i#£s
5. Define the signature of the message m made by the ringd = {Uy, ..., U,}
to be (U, m,Ry,..., Ry, h1,..., hy,0), where h; = H(U,m, R;), for all
1< <n.

Note that the values hq, ..., h, can be derived from the rest of values in
the signature, and so they do not need to be part of the final signature
in practice. We include them for clarity in the security proofs.

Ring signature verification. The validity of the signature is verified
by the recipient of the message by checking that h; = H(U,m, R;) and that

loa

g :Rl-...-Rn-yi“m..-yZ” mod p.
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4.3.1 Analysis of the Scheme

Note that the proposed scheme is in effect generic: by construction, we have
that R; # R; for every pair ¢ # j, and that no R; appears with probability
greater than q_Lﬁ < 2% Now we show that it satisfies the three required
conditions for ring signature schemes.

Correctness

If the ring signature has been correctly generated, following the steps of the
protocol above, then the verification result is always “True”. In effect:

Ry Ry oy = gty [ [ Ri= gt e = g7 modp.
i#£s

Anonymity

In order to prove that our ring signature scheme is unconditionally anony-
mous, we must show that any attacker outside a ring of n possible users has
probability 1/n to guess which member of the ring has actually computed a
given signature on behalf of this ring.

Let Sig = (U,m, Ry, ..., Ry, hq,. .., hy, o) be avalid ring signature of a
message m. That is, h; = H(U,m, R;) and ¢° = Ry-...- R, -y .. .-yl Let
Us be a member of the ring. We now find the probability that Us; computes
exactly the ring signature Sig, when he produces a ring signature of message
m on behalf of the ring U, by following the method explained in Section 4.3.

The probability that U computes all the values R; # 1 of Sig, pairwise
different for 1 <i¢ < n, i # s, is qul . q%Q Co q—71L+1' Then, the probability
that U, chooses exactly the only value a € Z, that leads to the value R, of
Stig, among all possible values for R, different from 1 and different from all
R; with i # s, is 4.

Summing up, the probability that Us generates exactly the ring signa-
ture Sig is

1 1 1 1 1

q—l'q—2.”"q—n—|—1'q—n N Vi-in

and this probability does not depend on who Uy is, so it is the same for all
the members of the ring. This fact proves the unconditional anonymity of
the scheme.



72 Chapter 4. Ring Signatures for Disc-Log Scenarios

Unforgeability

First of all, we formally define the exact unforgeability of a ring signature
scheme, by stating the capabilities and the goals of an adversary which tries
to break the scheme.

Such an adversary is given a list of i identities (or public keys), corre-
sponding to the total set of considered users. He is allowed to corrupt up to
Q. users, obtaining their secret keys. The adversary can also make () queries
to the random oracle. Finally, the adversary can require the execution of
the signing algorithm for (), pairs of messages and rings that he adaptively
chooses, obtaining a valid ring signature.

We say that this adversary is (7', ¢, Q, Q., @s, n)-successful if he obtains
in polynomial time 7" and with non-negligible probability at least ¢ a valid
ring signature for some message m and some ring of users U, such that:

(i) the pair formed by the message m and the ring U has not been asked
to the signing oracle during the attack; and

(ii) none of the users in the ring &/ has been corrupted by the adversary.

Finally, we say that a ring signature scheme is (7' ¢, Q, Qe, Qs,N)-
unforgeable if there does not exist any (7', ¢, @, Q., Qs, n)-successful adver-
sary against it.

Before stating and proving the theorem that ensures the unforgeability
of our scheme, we recall and prove a well-known result of elementary proba-
bility (the birthday problem is a particular case of it), which will be used in
many unforgeability proofs throughout the rest of this thesis.

Fact 4.1. The probability that at least two of K wvalues uniformly and inde-
pendently chosen from a set of q elements are equal, where K < q, is less

KZ
than %
Proof. We denote as A the fact that at least two of these K chosen values are
equal. Let us compute the probability of the complementary of A, denoted

as A, that is the probability that the K elements are all different:

Pr[fl]—1-q;1-q;2-...-q_(2{_1) - (1—5)-(1—2)-...-(1—%).

Note now that if we have K non-negative values aq, ..., ak, then

K

H(l—ai) > 1—2042-.

=1
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This inequality can be easily proved by induction, for example. Applying it

to Pr[A], we obtain

Pr[A]:Ihl(1—é)zl—§f:1—M.

i=1 i-1 4 2q
And finally we have Pr[A] = 1 — Pr[A4] < K(I;q_l) < 12{_;7 as desired. O

The following theorem states that the ring signature scheme in Section
4.3 is unforgeable in the random oracle model, assuming that the Discrete
Logarithm problem is hard to solve in groups of prime order.

Theorem 4.2. Let A be a (T,¢e,Q,Q., Qs,n)-successful attacker against the
ring signature scheme presented in Section 4.3, with security parameter k > 6
such that Qg < # and ) < %

Then the Discrete Logarithm problem in (g) can be2solved within time

T" < 2T +2Q + 4nT.,,Qs and with probability " > m.
Proof. Let (p,q,g,y) be an instance of the Discrete Logarithm problem in
the subgroup < g > of Z, of order ¢, where ¢ is a prime that divides p — 1.
We will use the attacker A against the ring signature scheme to solve this
instance of the Discrete Logarithm problem.

Now we are going to construct a probabilistic polynomial time Turing
machine F which will solve the given instance of the Discrete Logarithm
problem. We will apply to F the result of Theorem 4.1; therefore, F will be
allowed to make () queries to the random oracle which models the behaviour
of the hash function H. This machine F will use the attacker A as a sub-
routine; therefore, F must perfectly simulate the environment of the attacker
A. This idea is captured by Figure 4.2 below.

The machine F receives the public data (p,q,g,y). Then F runs the
attacker A against the ring signature scheme, answering to all the queries
that A makes.

Let us define p = (5/6)"9*. If we consider attacks where Q. = 0, then
we fix p = 0.

First F creates a table TAB, in the following way. For each possible
user U; of the ring signature scheme, F proceeds as follows: with probability
i, it chooses the bit ¢; = 0 and an element x; € ZZ at random, and defines
y; = g**mod p. The entry (U;, z;,y;, ¢;) is stored in the table TAB,. On the
other hand, with probability 1 — u, it chooses the bit ¢; = 1 and an element
a; € Z;; at random, and defines y; = y* mod p. A new entry is stored in the
table T'AB,, with the values (U;, oy, y;, ¢;).
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Oracle H
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Figure 4.2: F executes A and solves the Disc-Log problem

The attacker A is given the list with the publics keys of the n considered
users, computed as explained just above. Every time A asks for the secret
key of a user U;, the machine B looks for U; in the table TAB,. If ¢; = 0, then
F sends z; to A. If ¢; = 1, the machine F cannot answer and halts. Note
that the probability that F halts in this process is less than 1 — u@ < 1/6.

To answer the queries of A to the random oracle, we recall that F has
access to the random oracle which models the hash function H; therefore, F
must only send to A the answers that it obtains from its oracle.

The attacker A can ask @ times for a valid ring signature for mes-
sages m' and rings U’ of n < n members (for simplicity, we denote U’ =
{U{,...,U'}). We assume that A has not asked for any of the secret keys
of the ring U’ (otherwise, A could obtain a valid ring signature by itself,
by using the signing algorithm explained in Section 4.3). To answer such a
query, the machine F proceeds as follows:

1. Choose at random an index s € {1,...,n}.

2. For all 7 € {1,...,n}, i # s, choose a; at random in Z;, pairwise
different. Compute R, = g% modp, for all i # s.
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3. Choose at random h), € Z,. For i # s, compute h, = HU',m', R})
(asking to the random oracle for H).

4. Choose at random o’ € Z,.

hi

5. Compute R, = g7 iz iy’ TRL Ui R, =1 or R, = R] for some

it # s, then go to step 4.

6. Now F “falsifies” the random oracle H, by imposing the relation H(U',m/, R,) =
L. Later, if A asks to the random oracle H for this input, then F will
answer with A. Since b/ is a random value and we are in the random
oracle model for H, this relation seems consistent to A.

7. Return the tuple (U',m/, R},..., R, hY,... k., o).

In each simulation, F must perform 2n modular exponentiations. There
is some risk of “collisions” in the management of the random oracle, because
of the falsification performed by F in step 6 of the simulation above. Re-
member that no R; can appear with probability greater than 1/2¥~1 in a ring
signature.

Two kinds of collisions can occur:

e A tuple (U',m’, R.) that F outputs, as part of a simulated ring signa-
ture, has been asked before to the random oracle by A. In this case, it
is quite unlikely that the relation H(U',m’, R.) = h; corresponding to
the values output in the simulation of the signature coincides with the
relation previously stored in TABy. The probability of such a collision

is, however, less than Q - Q, - 71— < 3.

e Two tuples that F outputs inside two different simulated ring signa-
tures are exactly equal. Using Fact 4.1, we have that the probability
2
of this collision is less than % . 2'%1 < %.

Altogether, the probability of collisions is less than 1/3. Now we can
compute the success probability of the machine F; that is, the probability
that F obtains a valid ring signature:

e = Pr[F succeeds| =

Pr[F does not halt AND no-collisions in the simulations AND A succeeds| >

> Pr[A succeeds | F does not halt AND no-collisions in the simulations |-
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- (1 — Pr[F halts OR collisions in the simulations|) > ¢ (1 - % - %) = g.
On the other hand, the execution time of the machine F is Tr <
T+ Q + 2nT,;,Qs. Summing up, we have a Turing machine F that forges a
generic ring signature scheme in time 7 and with probability ez > /2. We
can apply Theorem 4.1 to the machine F.
This means that, by executing twice the machine F, we will obtain

2
in time 7" < 2Tr and with probability & > 6;}; - two valid ring sig-

natures (U, m, Ry, ..., Ry, h1,..., hy,0)and (U, m, Ry, ..., Ry, by, ... hl o)
such that h; # R}, for some j € {1,...,n} and h; = b} for alli =1,...,n
such that 7 # j.

Then we have that

o h; n
g :Rl-...-Rn'y{”-...-yj”~...~yZ
o h! h'. i
g :Rl-...-Rn~y11-...-yj7-...-yﬁn

/

Dividing these two equations, we obtain ¢°~% = y;-lj_hj . Now we look
again at the table T'TAB,. With probability 1 — p, we have that ¢; = 1, and
therefore y; = y®. In this case, we get g7 = yihi=hj)
that

, and so we have

o’
a:(h.—RY
y=¢“" ") modp.

Therefore, we have found the discrete logarithm of y in base g. The
total success probability is

3 2P 0= &

> (1— .
65VQ’TAL - ( 'u> 65VQ77} - QGOVQ,ﬁ — 1560 QeVQ,ﬁ

e =(1-pe = (1-p)

We have used that 1 —p=1— (5/6)1/Qe > 1/6Q). (applying Taylor’s series
methodology to the function f(x) = 1— (1 —x)"/% and then fixing x = 1/6).

Finally, the total time needed to solve the Discrete Logarithm problem
has been T" < 2T < 2T + 2Q + 40T o1y Q5.

O
Note that if we restrict (). = 0, meaning that the adversary is not
able to corrupt any user, then we obtain a success probability & > ﬁ of

solving the Discrete Logarithm problem.

This theorem gives the exact security of the ring signature scheme ex-
plained in Section 4.3, i.e. the exact relation between the successful proba-
bilities and the execution times of both attacks against the scheme and the
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discrete logarithm problem. A negative point is the presence of the factor
Vo.n in the reduction coefficients, because this factor is exponential in the
number n of members of the ring. Therefore, the security result is really
practical only for small rings; but this is what actually happens in some
of the applications of ring signatures, such as concurrent signatures [24] or
signatures with one designated verifier [86].

4.4 Distributed Ring Signature Schemes

Consider the following extension of the concept of ring signature. Suppose
that a set of users U, want to anonymously sign some message, in such a way
that the verifier of the signature will be convinced that at least the members
of some set have all agreed in signing this message, but he could not know
which set has actually computed the signature, among the sets of a certain
family of possible signing sets.

Members of U, can freely choose the rest of users and the family of
possible signing sets (in an ad-hoc way). We denote as U = {Uy, ..., Uy} the
family of possible signing sets, such that the actually signing set U; must be
in 4.

The resulting signature will be a ring signature, taking as ring the set
U. In this way, the verifier will be convinced that at least all the members of
some set in U have cooperated to compute the signature, but he will not have
any information about which set in U/ is the actual author of the signature.

This extension of ring signature schemes was first considered in [16].
Their specific RSA-based scheme, however, runs only when the ad-hoc fam-
ilies of possible signing sets are necessarily threshold (that is, they contain
all the sets with a fixed number of users). Recently more general proposals,
which allow the use of different types of keys, have appeared in [94, 2]; but
again these schemes are valid only for the threshold case.

In this section we propose a distributed ring signature scheme for gen-
eral families of possible signing sets. This scheme follows the ideas of the
ring signature scheme that has been presented in Section 4.3. In particular,
it can be defined as a generic distributed ring signature scheme, so we could
use similar security results than those introduced in Section 4.2.1 to prove
the unforgeability of this new scheme.

4.4.1 A Proposal for General Families

We will assume that any specific set of users can always have access to an au-
thenticated broadcast channel, while the information in this channel remains
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secret to the rest of users. This can be achieved using different cryptographic
techniques (for example, broadcast encryption schemes [44]).
The scheme that we propose consists of the following protocols.

Key generation. Let p and ¢ be large primes such that ¢|p — 1 and
qg > 2F + cZ, where k is the security parameter of the scheme and d is the
maximum possible number of subsets in a family U of signing subsets. Let
g be an element of Z; with order ¢, and let H be a collision resistant hash
function which outputs elements in Zj,.

Each user U; of the system has as secret key a random element z; € Z;
and the matching public key is y; = ¢* mod p.

Distributed ring signature generation. To sign a message m, some
users choose a family U = {U, ..., Uy} of possible signing sets, such that the
signing users form one of the sets in U, say U;. Note that a specific user can
be in more than one of the sets in U (maybe in all of them).

For each of the sets U; € U, we consider the public value

}/i = H y] g gZUjEMi ¥ modp
UjEZ/li

Members of the signing set Us € U jointly perform the following algo-
rithm:

1. Each user U; € U chooses at random ag; € Z; and computes Rg; =
g% mod p. He broadcasts the value R,;.

2. One of the users in Uy, for example Uy, chooses, for all 1 = 1,...,d,
i # s, random values a; € Z;, pairwise different, and computes R; =
g“ mod p. He broadcasts these values R;, and therefore all the members
of Us can compute h; = HU, m, R;), for all i = 1,...,d, i # s.

3. Members of U, compute the value

R, = H R; < H Yi_hi> mod p.

U, €Us 1<i<d,izs

If Ry=1o0r Ry, = R; for some ¢ =1,...,d, i # s, they return to step
1. Members of U can then compute hy = H(U, m, Ry).

4. User U; computes and broadcasts the value oy = ag+z1hs+ >, a; modg.
1<i<d,i#s

5. For j = 2,...,n,, player U; computes and broadcasts the value o; =
Qg + l’jhs + 0j-1 mod q.
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6. Define o = 0,,,. The resulting signature is (U, m, Ry, ..., Rg, h1, ..., hg,0).

Verification of a distributed ring signature. The recipient of the
signature checks that h; = H(U,m, R;), for all i = 1,...,d, and that the
following verification equation is satisfied:

¢ =Ry-...-Ry- Y- .Y modp.

Some Remarks

e This scheme allows to detect any possible misbehaviour of some of the
signers in U, because the correctness of the values o; can be verified
by the rest of the signers, by using known information. Namely, for
j =1 the equation

g7 = Ry yi H R; modp

1<i<d,is

must be satisfied. For the rest of values of j, the equation that must
be checked is
9% = Ry; yl*g”~" modp.

e We consider the case where the signing users form an ad-hoc family
of signing sets. But the scheme runs as well if the family is fixed. In
this case the resulting scheme would be in fact a distributed signature
scheme (or threshold signature scheme), taking as access structure the
closure of the fixed family.

e If we consider a family where all the possible signing sets are individual
users, then we recover the ring signature scheme proposed in Section
4.3. If we consider a family formed by a unique set with a unique user,
then we recover the individual Schnorr’s signature scheme [87].

e The efficiency of the scheme depends on the total number of users and
the number of sets in the family. Therefore, it is a good solution for
situations where the number of sets is small. If the family of possible
signing sets is a threshold one, then the number of sets is very large (it is

exactly , if n is the total number of users and ¢ is the threshold).

n
t
For these cases where the number of sets in the family is very large, we
strongly recommend other schemes like the ones presented in [16, 94,
for the threshold case, or the scheme that we propose in Section 5.4 for

more general cases.
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4.4.2 Analysis of the Scheme

Now we show that the proposed distributed ring signature scheme satisfies
the three required properties for this kind of schemes: correctness, anonymity
and unforgeability.

First of all, we define a generic distributed ring signature scheme as the
one whose resulting signatures, for a message m and a family U of d possible
signing subsets, have the form (U, m, Ry, ..., Rq, h1,..., hg,0), where:

1. the random values R; are taken from a set whose size is greater than
2% where k is the security parameter;

2. R, # R, for all @ # j;

3. hi = H(U, m, R;) for some hash function H : {0,1}* — {0,1,...,2% —
1};

4. the value o is fully determined from the rest of elements in the signa-
ture.

It is easy to verify that the scheme proposed in the previous section is
actually a generic distributed ring signature scheme. For this kind of schemes,
we can state a result very similar to that of Theorem 4.1. We skip the proof
because it is almost identical to that of Theorem 4.1.

Theorem 4.3. (The Distributed Ring Forking Lemma). Consider a generic
distributed ring signature scheme with security parameter k > 6. Let A be
a probabilistic polynomial time Turing machine whose input only consists of
public data and which can ask ) queries to the random oracle that models
the hash function of the scheme.

We assume that A produces, within time bound T and with probability
of success €, a valid distributed ring signature (U, m, Ry, ..., Rq,hi, ..., hq,0)
for a message m and a family U of d possible signing sets.

Then, within time T < 2T, and with probability & > 65‘5/; -, by execut-
ing A with random instantiations of the hash function we can obtain two valid
distributed ring signatures (U, m, Ry, ..., Ry, hy, ..., hg,0) and (U, m, Ry, ..., Ry,
Ry, ... hy,0') such that hj # I}, for some j € {1,...,d} and h; = h; for all
1=1,...,d such that i # j.

This result will be used in the proof of the unforgeability of our scheme,
as well as in Chapter 5.
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Correctness

A signature (U, m, Ry,..., Rg, h1,...,hq,0) computed by following the pro-
tocol of our scheme satisfies the verification equation g% = Ry -...- Rq-Y{" -
el Ydhd mod p. In effect:

(U%Z/I a5j+mjhs)+<1<i<zd i;ésai> h
g =g =g\ T S = Hstyjs H R =

U, €Uls 1<i<d,is

= R; < H )/Xh) Y;hs H Ri:Rl'...'Rd'}/lhl'...'Ydhd IIlOdp.

1<i<d,is 1<i<d,i#s

Anonymity

Since we are assuming that signing users have a private broadcast channel,
the only information obtained by an external verifier is the ring signature
itself. This signature can be seen as a ring signature produced by the (stan-
dard) ring scheme proposed in Section 4.3, where the members of the ring are
now the sets of users I4; in the family ¢/, with public keys ¥; = [][ y; modp.
Uil

Therefore, the unconditional anonymity of the new distributed ring
scheme directly infers from the anonymity property of the original ring scheme
(see Section 4.3.1 for the proof of this property). Roughly speaking, the ver-
ifier has no information about which set is the actual author of a given
signature, because all the sets have the same probability of having computed
it.

Unforgeability

In order to show that the new scheme is unforgeable, we must first define
what unforgeability means in this kind of schemes, namely which are the
capabilities and goals of an adversary who tries to successfully attack a dis-
tributed ring signature scheme.

The adversary is given a list of n identities (or public keys), corre-
sponding to the total set of considered users. He is allowed to corrupt a set
of up to Q. users, obtaining all the secret information owned by these users
during the life of the system. The adversary can also make @) queries to
the random oracle. Finally, the adversary can require the execution of the
signing algorithm for (), messages and families that he adaptively chooses;
the adversary obtains a valid ring signature, as well as all the information
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(secret and public) seen by the corrupted users during the computation of
this signature.

We will assume that the adversary only requires executions of the sign-
ing algorithm for families where all the sets contain at least one non-corrupted
user. Otherwise, if some of the sets was formed only by corrupted users, the
adversary would have enough information to compute by himself a valid ring
signature for this family.

Such an adversary is (7', ¢, Q, Q., @s, n)-successful if he obtains in poly-
nomial time 7" and with non-negligible probability greater than ¢ a valid ring
signature for some message m and some family U, such that:

(i) the pair formed by message m and family ¢ has not been asked to the
signing oracle during the attack; and

(ii) all the sets of the family I contain at least one non-corrupted user.

Finally, we say that a distributed ring signature scheme is (7', &, Q, Q., Qs, 11)-
unforgeable if there does not exist any (7, ¢,Q, Q., Qs, n)-successful adver-
sary against it.

Theorem 4.4. Let A be a (T,¢,Q, Qe, Qs,n)-successful adversary against
the distributed ring signature scheme proposed in Section 4.4.1, with security
parameter k > 6 such that Qs < % and @ < %

We denote by d the mazimum number of subsets that can form the
families for which A asks for a valid signature.

Then the Discrete Logarithm problem in (g) can be %olved in time T" <
2T 4 2Q + 4(d + 1) Ty Qs and with probability & > WJQ@'
Proof. Let (p,q,g,Y) be an instance of the Discrete Logarithm problem in
the subgroup < g > of Z,, of order ¢, where ¢ is a prime that divides p—1. The
goal is to find the only integer x € {0,1,...,q — 1} such that ¢ = Y mod p.

We will design a probabilistic polynomial time Turing machine F which
will use the adversary A as a sub-routine, in order to solve the given instance
of the Discrete Logarithm problem. Therefore, F must perfectly simulate
the environment of the machine A, answering all the queries that A makes.
Later, we will apply Theorem 4.3 to the machine F, so this machine will
be allowed to make () queries to the random oracle which models the hash
function H.

Let us define g = (5/6)Y9°. If we consider attacks where Q, = 0,
then we fix © = 0. Applying a reasoning using Taylor’s series, we can bound

1—,u26ée.
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We initialize the machine F, providing it with the public data (p, ¢, ¢,Y).
The machine F constructs a table T'AB,, with one entry for any possible user
U; of the scheme. The machine fills each entry of this table as follows: with
probability p, it chooses the bit ¢; = 0 and an element z; € Z; at random
and defines y; = ¢ modp. The entry (U, z;,y;,c¢;) is stored in the table
TAB,. On the other hand, with probability 1 — p, it chooses the bit ¢; =1
and an element c; € Z; at random and defines y; = Y* mod p. A new entry,
with the values (Uj, o, y;, ¢;), is stored in the table TAB,.

The list with the computed public keys of the n considered users is
provided to the attacker A. For any possible set of users Uf;, we consider the
value Y; = HU]» cu, Yi mod p. Because of the way in which the machine F has
computed the values y;, we have that

Y; = ¢” Y% modp

for some values v;, d; € Z, that the machine F knows.

Every time A asks for the secret key of a user U;, the machine F looks
for U; in the table TAB,. If ¢; = 0, then F sends ; to A. If ¢; = 1, the
machine F cannot answer and halts. Note that the probability that F halts
in this process is less than 1 — @ < %.

To answer the queries of A to the random oracle, since F has access to
the random oracle which models the hash function H, it must only send to
A the answers that it obtains from its oracle.

Now we show how F can simulate the information that A obtains from
an execution of the signing algorithm. Let B be the set of the users for whom
A has asked for their secret keys (we call them corrupted users). Suppose that
A asks for a valid signature for a message m’ and a family U’ = {U, ..., U}}
of possible signing sets. The machine F chooses at random one of the sets
of U'; for simplicity, we denote this set as U; = {U;,Us,...,U, }, which
will be the “real” author of the ring signature. The information that A
would obtain from such a real computation consists of all the information
broadcast in the private broadcast channel of U! (because we can assume that
some of the users in U! is corrupted, and so A has access to this channel), as
well as the secret information generated by the corrupted players in B NU..
The following algorithm must be executed by the machine F to obtain this
simulated information:

1. For each user U; € U, N B, choose at random ay € Z; and compute
R, = g**mod p.

2. Choose, for all i = 1,...,d, i # s, random values a; € Z;, pairwise
different, and compute R, = g*“modp and h, = H(U',m', R,) (by
asking to the random oracle for H).
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3. Choose at random h/, € Z,.

4. For user Uj:

e if U] € B (since F has not halted, this means that the machine
F knows the secret key z; of this corrupted user, as well as the

value ag1), compute 01 = ag + 1A+ > a; modg;
1<i<d,i#s

e if U] ¢ B, choose at random oy € Z, and compute

Ry=g7y"™ ] (B)'modp.

1<i<d,is
!/ N .
5. For user U}, for j =2,...,ng:

e if U; € B (since F has not halted, this means that the machine
F knows the secret key x; of this corrupted user, as well as the
value ag;), compute 0; = as; + x;h}, + 0;_1 mod ¢;

o if UJ’» ¢ B, choose at random o; € Z, and compute
R = gaj_aj’lyj_h; mod p.

6. Compute the value

R, = H R, < H Y;h§> mod p.

Uleu; 1<i<d,i#s

If R =1or R, =R, forsomei=1,...,d,i# s, then return to step
1.

7. Now F must “falsify” the random oracle H, by imposing the relation
HU',m' R,) = h’. Later, if A asks the random oracle H for this
input, then F will answer with h’. Since A is a random value, this
relation seems consistent to A, provided we assume that H behaves as
a random oracle.

8. Define 0’ = o,,, and return the tuple (U’',m', R|,..., R}, b\, ... hl, o).

This simulation produces values which are indistinguishable from those
A would obtain in a real execution of the signing protocol.

In each simulation, F must perform 2(d+ns) modular exponentiations.
There is some risk of “collisions” in the management of the random oracle,
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because of the falsification performed by F in step 7. Such a collision happens
if the query (U’,m/, R.) has been previously made to the random oracle, or
if the same tuple (U’,m’, R.) is produced two times in two different runs of
the signature simulation algorithm.

Since no R} can appear with probability greater than 1/2%~! in a sim-
ulated ring signature, we have that:

e The probability that a tuple (U',m/, R,) that F outputs, as part of a
simulated ring signature, has been asked before to the random oracle
by A is less than Q - Q, - i1 < 3.

e The probability that the same tuple (U’,m’, R.) is output two times

Q. _1 1
2 2T = ¢

by F in two different signature simulations is less than
(using again Fact 4.1).

Altogether, the probability of collisions is less than 1/3. Now we can
compute the success probability of the machine F; that is, the probability
that F obtains a valid ring signature:

er = Pr[F succeeds| =

Pr[F does not halt AND no-collisions in the simulations AND A succeeds| >

> Pr[A succeeds | F does not halt AND no-collisions in the simulations | -

1 1
- (1 — Pr[F halts OR collisions in the simulations]) > ¢ (1 —5~ 5) = g

The execution time of the machine F is Tr < T + Q + 2(CZ—|— 1)L erpQs.
Summing up, we have constructed a Turing machine F that forges a generic
distributed ring signature scheme in time T# and with probability ez > 3.
We now apply Theorem 4.3 to the machine F.

The theorem says that, by executing twice the machine F, we will

2
obtain in time 7" < 2Tx and with probability & > 65;7 - two valid ring sig-
Q.d

natures (U, m, Ry, ..., Ra,hi,... ha,0) and U, m, Ry, ... Ra, Ky, ... hly,0")
such that h; # h’, for some j € {1,...,d} and h; = hj for alli =1,...,d
such that 7 # j.

Furthermore, since the ring signatures have been correctly forged by A,
this means that there exists at least one non-corrupted user in each subset
U; € U; in particular there exists a non-corrupted user U, € U; — B in
the subset U;. Note that Y; = g% Y% modp. With probability 1 — s, we
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have ¢, = 1 and therefore y, = Y** modp. So the value «, is one of the
terms added in the exponent §;. If this is the case, then with overwhelming
probability we will have that §; # 0 mod gq.

Let us consider then the two corresponding verification equations, sat-
isfied by the two forged ring signatures:
h

P =Ry-...-Rg- Y. ... .Y,

jj-...-Ydhd mod p

¢ =Ry Ry Y[ Y Y modp.

. g . . . ’ hj—h'
Dividing these two equations, we obtain the equality ¢7~7 =Y T =

g7 P15y 95 =) ;mod p. Therefore, we have found the discrete logarithm x
of Y with respect to the base g, which is:
7 =o' = by = )
6;(hj — hj)

xr =

The inverse of §;(h; — h)) is taken modulo ¢, and it exists because
hj # k) and §; # 0mod g with overwhelming probability.

We have thus constructed a probabilistic algorithm that solves the Dis-
crete Logarithm problem. Its running time is 77 < 2T < 2T 4 2Q + 4(62 +
n)TeypQs. On the other hand, its success probability is

— 2 2 _ 2 2
A-pep o gyl 0wty &
65V, 4 65V, = 260V, — 1560 Q.V,

g >1—pé >

]

Again, if we do not allow the adversary to corrupt any user, which

means (). = 0, then the obtained success probability of solving the Discrete
52

Logarithm problem would be &' > v,



Chapter 5

New Ring Signature Schemes
for Identity-Based Scenarios

The cryptographic protocols that we have studied until now work in a stan-
dard public key scenario: each user U has a secret key S Ky, and usually the
matching public key PKy is computed from S K. This happens in RSA and
Schnorr’s signature schemes, and also in the ring signature schemes that we
have proposed in Chapter 4. In these scenarios, a serious problem appears:
how can one be sure that PKy is actually the public key of user U, or in
other words, that the only person who knows SKy is user U? For example,
a different user U’ can generate S Ky, compute the matching public key and
broadcast it as if it was the public key of user U.

To solve this problem, the public keys of the users are authenticated
via a Public Key Infrastructure (PKI) based on digital certificates: a user
who wants to use a public key cryptosystem turns to a certification authority,
who signs a message linking the public key PKy with the identity of user U.
Later, a user who must use public key PKy (to encrypt a message or to verify
a signature) must first verify that the certificate which links U and PKy is
still valid. Other problems appear when revocation of some certificate is
necessary, because a secret key SKy corresponding to a certified PKy has
been compromised, for example.

All these facts make the use of cryptographic protocols less efficient
in the real life. A dramatic example are ring signature schemes in PKI
scenarios, such as the ones proposed in Chapter 4: the anonymous signer
must verify that all the public keys that he includes in the ring signatures
are still certified, and the verifier of the signature must do the same. If the
number of involved users is very large, this can result in very slow protocols,
in practice.

Thus, any possible alternative which avoids the necessity of digital cer-

87
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tificates is welcome in order to design efficient ring signature schemes, and
in general more efficient public key cryptosystems.

One of these alternatives is identity-based cryptography. In this chap-
ter we propose a standard ring signature scheme and two distributed ring
signature schemes which work in identity-based scenarios.

5.1 Identity-Based Cryptography from Bilin-
ear Pairings

Shamir introduced in 1984 the concept of identity-based cryptography [89]
(from now on, ID-based cryptography). The idea is that the public key
of a user can be publicly computed from his identity (for example, from a
complete name, an e-mail or an IP address). Then, the secret key is derived
from the public key. In this way, digital certificates are not needed, because
anyone can easily verify that some public key PKy corresponds in fact to
user U.

The process that generates secret keys from public keys must be exe-
cuted by an external entity, known as the master entity. This entity knows
the secret keys of all the users of the system, so it must be completely trusted.
A way to relax this negative point could be to consider a set of master entities
which share the secret information.

Most of the proposed cryptographic protocols for ID-based scenarios,
specially since the proposal of [13], use as a tool a mathematical object
known as bilinear pairing. The protocols that we will propose throughout
this chapter also use this concept, so we explain it in this section.

Let G; be an additive group of prime order ¢, generated by some ele-
ment P. Let Gy be a multiplicative group with the same order q.

Definition 5.1. A bilinear pairing is a map e : Gy x Gy — Gy with the
following three properties:

1. It is bilinear, which means that given elements Ay, As, A3 € Gy, we
have that 6(141 + AQ,Ag) = e(Al, Ag) . €<A2, Ag) and 6(141, A2 + Ag) =
G(Al, Ag) . G(Al, Ag)

2. The map e can be efficiently computed for any possible input pair. We
use the notation Ty, for a bound on the necessary time to evaluate a
bilinear pairing.

3. The map e is non-degenerate: there exist elements Ay, Ay € Gy such
that 6(1417 AQ) # 1@2.
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In particular, property 1 implies that e(aP, bP) = e(P, P)* = ¢(P, abP) =
e(abP, P), for all a,b € Z, This implies e(A;, A2) = e(As, Ay), for all
Ay, As € Gy, and also implies e(0, A) = 1g,, for all A € G;.

Combining properties 1 and 3, it is easy to see that e(P, P) # 1g, and
that the equality e(A;, P) = e(As, P) implies that A; = A,.

The typical way of obtaining such pairings is by deriving them from the
WEeil or the Tate pairing on an elliptic curve over a finite field. The interested
reader is referred to [96] for a complete bibliography of cryptographic works
based on pairings.

Let Hy : {0,1}* — G7 be a public hash function, where G} = G; — {0}.
The most usual way to design an ID-based cryptosystem is the following. The
master has a secret key x € Z;, and he publishes the value Y = zP € G;.

Every user U of the ID-based system has an identifier Dy € {0,1}*,
that can be an IP address, a telephone number, an e-mail address, etc. The
public key of U is then defined to be PKy = Hi(IDy) € Gi. In this way,
everybody can verify the authenticity of a public key without the necessity
of certificates. The user U needs to contact the master entity to obtain his
secret key SKy = xPKy € Gy.

For simplicity, we consider throughout this chapter bilinear pairings as
defined above. But the constructions can be extended to the case where
the pairings are e : G; X Gy — Gg, for three different groups G; (additive),
G = (P,) (additive) and Gz (multiplicative), all with prime order g. Such
pairings are called asymmetric pairings in [?]. In this case, the security of the
protocols can be related to the following problem: given P,,aP, € Gy and
Q € Gy, compute a(), where a is chosen at random in Z, and ) is chosen
at random in G;. If we want to relate the difficulty of this problem to the
difficulty of standard problems in G (such as the Discrete Logarithm problem
or the Computational Diffie-Hellman problem), then we need a computable
isomorphism ¢ : G; — Gs.

5.2 A New ID-Based Ring Signature Scheme

The only ID-based ring signature scheme proposed until now (as far as we
know) is the one by Zhang and Kim [95]. A formal analysis of the un-
forgeability of this scheme can be found in [57], where it is reduced to the
Computational Diffie-Hellman problem. In this scheme, the generation and
verification of a ring signature must be performed in an iterative way: the
signer and the verifier must compute a pairing for each member U; of the
ring, and the value corresponding to U; is necessary to compute the value of

Uis1.
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We propose in this section a different ID-based ring signature scheme,
which is also based on bilinear pairings. In the new scheme the computations
in the generation and verification of a signature can be performed in parallel,
more efficiently than in the scheme of Zhang and Kim [95]. Furthermore,
the number of evaluations of the bilinear pairing that must be performed in
an execution (signature and verification) of our scheme is n + 3, if n is the
number of members of a ring, whereas each execution of the scheme in [95]
requires 4n — 1 pairing evaluations.

On the other hand, our ID-based ring signature scheme is a generic
one, as defined in Section 4.2. We could thus apply the Ring Forking Lemma
(Theorem 4.1) to analyze the unforgeability of the scheme.

Here we explain the different protocols that form the new scheme.

Setup. Let G; be an additive group of prime order ¢, generated by
some element P. Let G be a multiplicative group with the same order gq.
We need ¢ > 2F + 7, where k is the security parameter of the scheme and 7
is the maximum possible number of users in a ring. Let e : G; X G; — Gy
be a bilinear pairing as defined in Section 5.1. Let H; : {0,1}* — G} and
H, : {0,1}* — Z, be two hash functions (in the proof of security, we will
assume that they behave as random oracles). All this information is publicly
available.

The master entity chooses at random his secret key = € Z; and pub-
lishes the value Y = xP.

Secret key extraction. A user U, with identity /Dy, has public key
PKy = Hi(IDy). When he requests the master for his matching secret key,
he obtains the value SKy = v PKy;.

Ring signature generation. Consider a ring U = {Uy,...,U,} of
users; for simplicity we denote PK; = PKy, = Hi(IDy,). If some of these
users U, where s € {1,...,n}, wants to anonymously sign a message m on
behalf of the ring U, he acts as follows:

1. Foralli € {1,...,n}, i # s, choose A; uniformly at random in G7, pair-
wise different (for example, by choosing a; € Z; at random and consid-
ering A; = a;P). Compute R; = e(A;, P) € Gy and h; = Hy(U, m, R;),
for all 7 # s.

2. Choose at random A € G;.
3. Compute R; = e(A, P) - e(=Y,> h;PK;). If Ry = 1g, or Ry = R; for

i#£s
some i # s, then go to step 2.
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4. Compute hy = Hy(U, m, Ry).
5. Compute 0 = hySKs+ A+ ) A;.
i#£s

6. Define the signature of the message m made by the ringd = {Uy,...,U,}
to be (U,m,Rh...,Rn,hl,...,hn,a).

In fact, the values h; can be publicly computed from the ring U, the message
m and the values R;. We include them in the signature for clarity in the
treatment of the security of the scheme.

Verification of a ring signature. The validity of the signature is
verified by the recipient of the message by checking that h; = Hy(U, m, R;)
and that

e(o,P)=Ry-...-Ry-e(Y,Y hPK;) .

i=1

5.2.1 Analysis of the Scheme

In this section we prove that the proposed ID-based ring signature scheme
satisfies the properties of correctness, anonymity and unforgeability.

Correctness

The property of correctness is satisfied. In effect, if the ring signature has
been correctly generated, then:

Ry~ Rye(Y,Y hPK;)=e(A+> Ay, P)e(=Y,> hPK)-e(Y,Y hPK;) =
i=1 its its i=1
=e(A+ > A, P)-e(Y,h,PK,) =e(A+ Y A; P)-e(P haPK,) =
i#£s i#£s
=e(A+ ) A+ hSK,, P)=e(o,P) .
1F£S

Anonymity

The unconditional anonymity of the scheme is also easy to prove. Intuitively,
the scheme is completely symmetric. Given a valid ring signature on behalf
of a ring U, the probability that a specific user in U is the actual author of
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this signature is the same for all the members of . Specifically, if the ring
has n members, this probability is

1 1 1 1

¢g—1 ¢q—2 " g-n+1 qg—n

which does not depend on the considered member of U.

So we can conclude that any attacker outside a ring of n possible users
has probability 1/n to guess which member of the ring has actually computed
a given signature on behalf of this ring.

Unforgeability

Remember (see Section 4.3.1) that a (T, ¢e,Q1, Qa, Qe, Qs, n)-successful at-
tacker against a ring signature scheme is an algorithm which takes as input
a list of n identities, corresponding to the total set of considered users. This
attacker runs in time T, makes (), queries to the random oracle Hi, )
queries to the random oracle Hs,, corrupts (). users, obtaining their secret
keys and asks for ()5 valid ring signatures. With probability greater than ¢,
this algorithm obtains a valid signature for a new pair (ring,message), and
such that no secret key of any of the members of the forged ring has been
queried during the attack.

Note also that our ID-based scheme is a suitable generic ring signature
scheme, satisfying that R; # R; for all pair ¢ # j, that h; = Hy(U, m, R;)
and that any randomness value R; € G appears in a ring signature with
probability less than q%ﬁ < 2%, as required. Therefore, we could use the
Ring Forking Lemma (Theorem 4.1).

The following theorem states that our ID-based ring signature scheme
is secure in the random oracle model, assuming that the Computational
Diffie-Hellman problem is hard to solve.

Theorem 5.1. Let A be a (T, e,Q1,Q2, Q., Qs, n)-successful attacker against
the ring signature scheme presented in Section 5.2, with security parameter
k > 6 and such that Qg < # and Q) < %

Then the Computational Diffie-Hellman problem in Gy can be solved
within time T" < 2T + 2Q; + 2Q2 + 2nT,,Qs and with probability ¢ >

&2

1560 QcVyn
Proof. Let (P,aP,bP) be the input of an instance of the Computational
Diffie-Hellman problem in G;. Here P is a generator of Gy, with prime order
q, and the elements a, b are taken uniformly at random in Z;.

We are going to construct a probabilistic polynomial time Turing ma-
chine F to which we will apply the result of Theorem 4.1 with hash function
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Hs; therefore, F can make Q5 queries to the random oracle which models the
behaviour of Hy. The goal of this machine F is to solve the given instance
of the Computational Diffie-Hellman problem. It will use the attacker A as
a sub-routine; therefore, F must perfectly simulate the environment of the
attacker A. Figure 5.1 below tries to capture this idea.

Oracle H»
for ¥
Fa(etm'Ri) | f@aRp)

f H] (IDJ) 1] simulated

_’]—' O;acliI H, by ¥
or for 2

Hy(w m R} farm R}) ( j ID;

(P,aP,bP) | — — {ID;} 4.—| L _. forgery — —» forgery

A Ring—Sign(u ,m ) "
(u;,m;) J7 T p —l ID; Ring Folrking Lemma
applied to F
Ring—Sign l i
simulated simulated
by ¥ 4Ring—Sign(ﬂi,mi) SKj R by &

abP

Figure 5.1: F executes A and solves the CDH problem

The machine F receives the public data (P,aP,bP). Its goal is to
compute the value abP. The machine F runs the attacker A against the
ID-based ring signature scheme, answering to all the queries that A makes.
The public key of the master entity is defined to be Y = aP, and sent to the
attacker A, along with the list containing the 7n identities of the considered
users.

Without loss of generality, we can assume that A asks the random
oracle Hy for the value H(ID) before asking for the secret key of ID.

Let us define = (5/6)"9°, which satisfies that 1 — p > ﬁ. If we
consider attacks where ). = 0, then we define y = 0.

The machine F constructs a table T'A By, to simulate the random oracle
H;y. Every time an identity ID; is asked by A to the oracle Hy, the machine
F acts as follows: first F checks if this input is already in the table; if this
is the case, then F sends to A the corresponding relation H,(ID;) = PK;.
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Otherwise, with probability u, the machine F chooses the bit ¢; = 0 and
a different z; € Zy at random and defines PK; = z;P and SK; = x;Y.
The entry (ID;, PK;, x;, SK;, ¢;) is stored in the table TABp,. On the other
hand, with probability 1 — u, the machine F chooses the bit ¢; = 1 and a
different o; € Z; at random and defines PK; = (;)bP and SK; =1. The
values (ID;, PK;, a;,¢;) are stored in a new entry of TABy,. The relation
H,(ID;) = PK; is sent to A. The condition PK; # PK; must be satisfied
for all the different entries ¢ # j of the table; if this is not the case, the
process is repeated for one of these users.

Since we are assuming that H; behaves as a random function, and the
values PK; are all randomly chosen, the information that A receives in this
step is consistent.

Later, every time A asks for the secret key corresponding to an identity
ID;, the machine F looks for ID; in the table TABpy,. If ¢; = 0, then F
sends SK; = ;Y to A. If ¢; = 1, the machine F cannot answer and halts.
Note that the probability that F halts in this process is less than 1— @ < %.

On the other hand, when A makes a query to the random oracle Hs,
the machine F can ask its own oracle for this hash function, and then return
to A the obtained answer.

Finally, the attacker A can ask (), times for a valid ring signature
for messages m’ and rings U’ of n < n members (for simplicity, we denote
U ={U,...,U}}). We assume that A has not asked for any of the secret
keys of the ring U’ because, otherwise, A could obtain a valid ring signature
by itself. To answer such a query, the machine F proceeds as follows:

1. Choose at random an index s € {1,...,n}.

2. For all © € {1,...,n}, i # s, choose A; at random in Gj, pairwise
different. Compute R = e(A;, P), for all i # s.

3. For i # s, compute h, = Ho(U',m’, R}) (by asking to the random oracle
for Hy).

4. Choose at random h/, € Z,.

5. Choose at random ¢’ € G;.

6. Compute R, =e(o'—>_ A;, P)-e(—Y, > h,PK;). f R, =1or R, = R,
is i=1
for some 7 # s, then go to step 5.
7. At this point, the machine F must “falsify” the random oracle Hj,
by imposing the relation Ho(U',m’, R.) = hl. Later, if A asks to the
random oracle Hy for this input, then F will answer with h’.
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8. Return the tuple (U, m/, R,..., R, h},... hl o).

In such a simulation, the machine F must perform n+ 1 pairing evalua-
tions, which is the most costly operation (recall that each pairing evaluation
costs time Tpp).

Since h} is a random value and we are in the random oracle model for
Hs, the information provided to A is indistinguishable from what A would
see in a real execution of the signing protocol. However, there is some risk
of “collisions” because of the values falsified by F in step 7 of the simulation
above.

Since the considered scheme is a generic ring signature scheme, no R
can appear with probability greater than 1/2*~! in a ring signature. Two
kinds of collisions can occur:

e A tuple (U',m’, R.) that F outputs, inside a simulated ring signature,
has been asked before to the random oracle by A. In this case, it is
quite unlikely that the relation Ho(U',m', R,) = h. corresponding to
the values output in the simulation of the signature coincides with the
relation previously stored in T'ABp,. The probability of such a collision
is, however, less than )5 - Q) - 2,%1 < %.

e The same tuple (U',m’, R.) is output by F in two different simulated
ring signatures. Using the result in Fact 4.1 (Section 4.3.1), we have

)
that the probability of this collision is less than %? . 2,91,1 < %.

Altogether, the probability of collisions is less than 1/3. Now we can
compute the success probability of the machine JF; that is, the probability
that F obtains a valid ring signature:

ex = Pr|F succeeds| =

Pr[F does not halt AND no-collisions in the simulations AND A succeeds] >

> Pr[A succeeds | F does not halt AND no-collisions in the simulations |-

6 3 2

On the other hand, the execution time of the machine F is Tr <
T+ Q1+ Q2+ nT,Qs. Summing up, we have a Turing machine F that forges
a generic ring signature scheme in time 7= and with probability ez > 5. Now
we apply Theorem 4.1 to the machine F, with respect to the hash function
HQ.

1 1
- (1 — Pr[F halts OR collisions in the simulations]) > ¢ <1 ——+ —) _——
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This means that, by executing twice the machine F, we will obtain
in time 7" < 277 and with probability & > 65‘22 two valid ring sig-
natures (U, m, Ry,..., Ry, h1,..., hy,0)and (U, m, Ry, ..., Ry, by, ... hl o)
such that h; # R}, for some j € {1,...,n} and h; = hj foralli =1,...,n
such that ¢ # j. Then we have that

e(0,P)=Ry-...-R,-e(Y,hyPK})- ... e(Y,h,PK,)

e(c',P)=Ry-... - R, -e(Y,h|PK})- ... e(Y,h,PK,)

Dividing these two equations, we obtain e(c — o', P) = e(Y, (h; —
h,)PK;) = e(aP, (h; — h;)PK;). Now we look again to the table T ABpy,;
since the forgeries of A are valid, then user U; is not corrupted and so, with
probability 1 — p, we have that ¢; = 1 and so PK; = (a;)bP.

Then the relation becomes e(o — o', P) = e(aP, (h; — h})a;bP) =

(aba](h h%)P, P). Since the pairing is non-degenerate, this implies that
o — o = aba, (h h})P. Therefore, we can compute

1
WP = —— (o—d).
a;(hj — hf)

The inverse is computed modulo ¢, and it always exists because «; € Z; and
hj # h.

Summing up, the machine F solves the given instance of the Compu-
tational Diffie-Hellman problem with probability

g2 c/2)? g2
W E— > (1) 2 s :
65V, 1 65V0,5 — 1560 Q.Vo,

=(1-p)>(1-

And the total time needed to solve the problem has been T" < 277 < 2T +

2@1 + 2@2 + 2ﬁprQs.
]

As we mentioned in the schemes for Disc-Log scenarios presented in
Chapter 4, if we consider attackers who cannot corrupt any user, then we

have ). = 0 and the security result becomes &' > m

We must note here that the quality of the reduction is worse than
the reduction in the proof of the unforgeability of the scheme of Zhang and
Kim [95], provided in [57]. This is due to the presence of the value Vq, ; in
the relation between & and . Therefore, our new ID-based ring signature
scheme improves the efficiency of the scheme of Zhang and Kim, but the
security reduction that we have found is less tight.
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5.3 An ID-Based Distributed Ring Signature
Scheme for General Families

We now extend the ID-based ring signature scheme proposed and analyzed
above, to the distributed scenario explained in Section 4.4: a set of users
who want to jointly sign a message with a certain anonymity. They choose
other subsets of users to form a family of possible signing sets, which must
include the actually signing set. They use their secret keys and the public
keys of the rest of users to compute a ring signature. The recipient of the
signature is convinced that all the players of some set in the family of possible
signing subsets have cooperated to sign the message, but he does not have
any information about which is actually the signing subset.

The following proposal, contrary to the one in Section 4.4.1, works
in an identity-based scenario, where the public keys of the users can be
directly computed from their identities. Again, we will assume that any
specific set of users can always have access to an authenticated and secret
broadcast channel: users out of the subset do not obtain any information
about the broadcast messages. Our proposal supports general families of
possible signing subsets, contrary to other ID-based distributed ring signature
schemes (see [25], for example), which work only for threshold families.

The protocols of the scheme work as follows:

Setup. Let G; be an additive group of prime order ¢, generated by
some element P. Let Gz be a multiplicative group with the same order ¢.
We need g > 2F + d where k is the security parameter of the scheme and d
is the maximum possible number of sets in a family of possible signing sets.
Let e : Gy x G; — Gy be a bilinear pairing as defined in Section 5.1. Let

1:{0,1}* — G} and H, : {0,1}* — Z, be two hash functions. All this
information is public.

The master entity chooses at random his secret key x € Z; and pub-
lishes the value Y = xP.

Secret key extraction. Any user U; of the system, with identity
ID;, has public key PK; = Hy(ID;). When he requests the master for his
matching secret key, he obtains the value SK; = xPK;.

Distributed ring signature generation. Assume that a set U, of
users (we denote them as Us = {Uy, Us, ..., Uy, }) want to compute an anony-
mous signature. They choose ad-hoc the family U = {U,, ..., Uy} of possible
signing sets, such that U, € U.
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For each of the sets U; € U, we consider the public value

Y=Y PK;.

Ujeui

The algorithm for computing the ring signature is the following:

1. Each user U; € U, chooses at random a,; € Z; and computes Ry =
e(as; P, P). He broadcasts the value Rj;.

2. One of the users in U, for example U, chooses, for all 1 = 1,...,d,
i # s, random values a; € Z;, pairwise different, and computes R; =
e(a; P, P). He broadcasts these values R;, and therefore all the members
of U can compute h; = Hy(U, m, R;), for all i =1,...,d, i # s.

3. Members of Us; compute the value

R,=e(-Y,> hY;) ] Ry -

iF#S U;els

If R =1g, or Ry = R; forsome ¢ = 1,...,d, ¢ # s, they return to step
1. Members of U can then compute hy = Ho(U, m, Ry).

4. User U; computes and broadcasts the value o = agq P + h,SK, +

Z (ZZ'P S Gl-
1<i<d,i#s
5. For j = 2,...,n,, player U; computes and broadcasts the value o; =

asjP + hSSKj ‘o1 € G,.
6. Define 0 = o,,,. The resulting signature is (U, m, Ry, ..., Rg, h1, ..., hq,0).
Verification of a distributed ring signature. The validity of the

signature is verified by the recipient of the message by checking that h; =
Hy(U,m, R;), for i =1,...,d and that the following equation fulfills:

d
e(o, P)=e(YV,Y hY) [] R,
i=1 1<i<d

where Y; = ) PKj, for all the sets U; in the family U.
Ujeui
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5.3.1 Some Remarks

e As it happens in the distributed ring signature scheme proposed in
Section 4.4.1 for Disc-Log scenarios, the ID-based distributed ring sig-
nature scheme proposed above allows to detect whether some of the
signers in the subset U tries to boycott the process of signing. In ef-
fect, the correctness of the values o; can be verified by the rest of the
signers, by using public information. Namely, for j = 1 the equation

e(o1,P) = Ry -e(h,PKY)- || R
1<i<d,i#s
must be satisfied. For the rest of users U; € U, with j # 1, the
equation that must be checked is
6(0’j,P> = st . e(hSPKj,Y) . G(O'J',l,P).

e Again, if the subsets ; in the family U are all individual users U; =
{U;}, then the resulting signature is a standard ring signature according
to the ID-based ring signature scheme proposed in Section 5.2.

5.3.2 Analysis of the Scheme

The proposed distributed ring signature schemes for ID-based scenarios sat-
isfies the required properties of correctness, anonymity and unforgeability, as
we show below.

Correctness

A distributed ring signature (U, m, Ry, ..., Rq, h1, ..., hq, o) computed by fol-
lowing the method explained above satisfies the verification equation. In
effect:

e(o,P) =e(on,, P)=c| (Y ayP+hSK) + ( Y aP), P|=

U, €Us 1<i<d,is

I[ etayP.P)-e(haPK; P)| ] e(aP P)=

Uj€Us 1<i<d,is
= | [[ Ry enPK;zP)| ] Ri=
Uj€eUs 1<i<d,is#s

d d

=Rye( > WY, Y)-eh, Y PK;.Y) [[ Ri=ed_nY.Y)]]R

1<i<d,i#s Ujels 1<i<d,i#s i=1 i=1
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Anonymity

With respect to the anonymity of the scheme, we can again argue as fol-
lows: the resulting signatures can be seen as ring signatures produced by
the (individual) ring scheme proposed in Section 5.2, where the members
of the ring are now the sets of users U; in the family U, with public keys
Yi= EUjeui PK;.

The unconditional anonymity of the new ID-based distributed ring sig-
nature scheme directly infers from the anonymity property of the individual
ID-based ring scheme, proved in Section 5.2.1. Informally, any verifier has
no information about which set is the actual author of a given signature,
because all the sets have the same probability of having computed it.

Unforgeability

We first review the definition of an adversary against distributed ring signa-
ture schemes, introduced in Section 4.4.2: a (T, &, Q1, Qa, Q., Qs, N)-successful
attacker against a distributed ring signature scheme is an algorithm which
receives as input the identities of the n considered users. This attacker runs
in time T, makes ()1 queries to the random oracle H;, Q2 queries to the
random oracle Hs, adaptively corrupts (). users, obtaining their secret keys,
and asks for @, valid distributed ring signatures. With probability at least ¢,
this algorithm obtains a valid new signature for a pair (U, m), such that all
the sets of the family I/ contain at least one user who has not been corrupted
by the adversary.

In the following theorem, we relate the difficulty of forging our ID-
based distributed ring signature scheme with the difficulty of solving the
Computational Diffie-Hellman problem.

Theorem 5.2. Let A be a (T, e,Q1, Qa, Qc, Qs, n)-successful adversary against
the ID-based distributed ring signature scheme proposed in Section 5.3, with

2k2 2k2

security parameter k > 6, such that Q, < =~ and Q <

We denote by d the mazimum number of subsets that can form the
families for which A asks for a valid signature.

Then the Computational Diffie-Hellman problem in Gy can be solved mn
timeT" < 2T+2Q1+2Q2+4(d—|—n)prQs and with probability " > W
Proof. Let (P,aP,bP) be the input of an instance of the Computational
Diffie-Hellman problem in G;. Here P is a generator of Gy, with prime order
q, and the elements a, b are taken uniformly at random in Z;.

We construct a probabilistic polynomial time Turing machine F which
will solve the given instance of the Computational Diffie-Hellman problem:;
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that is, it will compute the value abP. It will use the attacker A as a sub-
routine, so it must perfectly simulate the environment of the attacker A.
Later, we will apply Theorem 4.3 to the machine F with respect to the hash
function H,, so this machine is allowed to make ()5 queries to the random
oracle which models H.

The public data (P, aP,bP) is given to the machine F. Then F runs the
attacker A against our ID-based distributed ring signature scheme, answering
to all the queries that A makes. First of all, F defines the public key of the
master entity to be Y = aP, and gives it to the attacker A, along with the
list of the n identities of the considered users.

Without loss of generality, we can assume that A asks the random
oracle H; for the value H;(ID) before asking for the secret key of ID.

We define 1 = (5/6)"9. If we consider attacks where Q, = 0, then
we set ;1 = 0. As we have done in the previous similar proofs, we can bound
1—p> 6?@.

The machine F constructs a table T'A By, to simulate the random oracle
H,. Every time an identity /D, is asked by A to the oracle H;, the machine
F first checks if this input is already in the table; if this is the case, then
F returns to A the corresponding relation H,(/D;) = PK;. Otherwise, F
acts as follows: with probability u, it chooses the random bit ¢; = 0; in
this case, F chooses a different z; € Z; at random and defines PK; = z;P
and SK; = z;Y; the entry (ID;, PK;,x;, SKj,c;) is stored in the table
TABp,. On the other hand, with probability 1 — u, the machine F chooses
¢j = 1; in this case, it chooses a different a; € Z; at random and defines
PK; = (oj)bP and SK; =1. The values (ID;, PK;,aj,c;) are stored in
a new entry of TABy,. The relation H,(ID;) = PK; is sent to A. The
condition PK; # PK, must be satisfied for all the different entries j # ¢ of
the table; if this is not the case, the process is repeated for one of these users.

Since we are assuming that H; behaves as a random function, and the
values PK; are all randomly chosen, the information that results from this
step is consistent for A.

For any possible set of users U;, we define the value Y; = ZUJ_ cu, PK;.
Because of the way in which we have computed the values PK, the equation

Y; = 7P+ 6;(bP)

is fulfilled for some values ;, d; € Z, that the machine F knows.

When A asks for the secret key corresponding to an identity ID;, the
machine F looks for ID; in the table TABy,. If ¢; = 0, then F sends
SK; = x;Y to A. If ¢; = 1, the machine F cannot answer and halts. Note
that the probability that F halts in this process is less than 1 — p® < %.
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To answer the queries that A makes to the random oracle for Hs, let us
recall that the machine F has access to its own oracle for this hash function.
Therefore, F obtains the answers from its oracle and sends them to A.

The adversary A is allowed to query for @), valid ring signatures for
messages and families of its choice. The machine F must simulate the infor-
mation that .4 would obtain from these executions of the signing algorithm.
Let B be the set of the users for whom A4 has asked for their secret keys (we
call them corrupted users). When A asks for a valid signature for a message
m’ and a family U’ = {U],...,U,}, the machine F chooses at random one
of the sets of U’ to be the “real” author of the ring signature; for simplic-
ity, we denote this set as U; = {Uj,Us,..., U}, }. The information that A
would obtain from such a real computation consists of the secret information
generated by the corrupted players in B NU., as well as all the information
broadcast in the private broadcast channel of ¢]. This is because we can
consider the worst case where some of the users in Y. is corrupted, and so
A has access to this channel. The machine F must execute the following
algorithm in order to simulate this information:

1. For each user U; € U; N B, choose at random ay € Z;, compute and
broadcast R, = e(as P, P).

2. Choose, for all i = 1,...,d, i # s, random values a; € Z;, pairwise
different, and compute R, = e(a;P, P) and h, = Hy(U',m', R;) (by
asking to the oracle that models Hy).

3. Choose at random h/, € Z,.

4. For user Uj:

e if Ul € B (since F has not halted, this means that the machine
F knows the secret key SK; of this corrupted user, as well as the

value ag), compute 01 = a1 P+ h.SKy + >,  a;P;
1<i<d,i#s

e if U] ¢ B, choose at random o; € G; and compute

Ry =e(o1, P)-e(h,PKy,=Y)- ] (B)™

1<i<d,is
5. For user Uy, for j =2,... ,ny:

e if Ul € B (since F has not halted, this means that the machine
F knows the secret key SK; of this corrupted user, as well as the
value ay;), compute 0; = ag; P + h,SK; + 0j_1;



5.3. An ID-Based Distributed Ring Signature Scheme 103

e if Ui ¢ B, choose at random o; € G; and compute
R,; =e(oj — 01, P)-e(h,PK;,=Y).

6. Compute the value

R, = e(-Y, Z h;Y;) H R;.

1<i<d,i#s U, eUs

If R =1or R, = R, for some i = 1,...,d, i # s, then return to step
1.

7. Now F “falsifies” the random oracle Hs, by setting the relation Hqo(U',m’, R.) =
h.. If A asks again for this input to the random oracle Hy, then F will
obviously answer with A’.

8. Define ¢’ = o,,, and return the tuple (U, m', R},..., R}, b, ... hl,0').

In each execution of this simulation process, F must perform less than
2(d 4 ns) evaluations of the bilinear pairing.

The resulting signature is valid and indistinguishable from one obtained
with the signing algorithm, because we are assuming that Hs behaves as a
random function and h, is taken at random from Z,. However, this assign-
ment Ho(U',m', R) = K, in step 7 of the simulation, can cause some collision
if the query (U’,m’, R.) has been previously made to the random oracle Ho,
or if the same tuple is produced twice in two different runs of the signature
simulation algorithm.

Since no R} appears with probability greater than 1/25~! in a simulated
ring signature, we can bound the probability that such collisions occur:

e The probability that a tuple (U’',m/, R,) that F outputs, as part of a
simulated ring signature, has been asked before to the random oracle
by A is less than Q5 - Q) - 2%1 < %.

e The probability that the same tuple is output two times by F in two

different signature simulations is less than @L< (using Fact

2 2T = §
4.1).

Altogether, the probability of collisions is less than 1/3. The probabil-
ity that the machine F succeeds in obtaining a valid ring signature is the
following;:

er = Pr[F succeeds| =
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Pr[F does not halt AND no-collisions in the simulations AND A succeeds| >

> Pr[A succeeds | F does not halt AND no-collisions in the simulations |-

1 1
- (1 — Pr[F halts OR collisions in the simulations]) > ¢ (1 5~ 5) =

N ™

The execution time of the machine F is Tr < T + Q + Q2 + 2(cZ +
n)TppQs. Summing up, we have a Turing machine F that forges a generic
distributed ring signature scheme in time 7'z and with probability ex > 5.
Therefore, we can apply the Distributed Ring Forking Lemma (Theorem 4.3)
to the machine F.

As a result, by executing twice the machine F, we will obtain in time

T' < 2T and with probability & > zF— two valid distributed ring sig:
natures (U, m, Ry,...,Rq,h1,...,hq,0) an2d (U,m,Ry,...,Rq, Y, ... K} 0")
such that h; # h’;, for some j € {1,...,d} and h; = hj for all i = 1,...,d
such that ¢ # j.

By definition of valid forgery against a distributed ring signature scheme,
there exists at least one non-corrupted user in each subset U; € U; in particu-
lar there exists a non-corrupted user U, € U;— B in the subset {/;. Remember
that Y; = v, P + 6,;(bP), where v; and ¢; are values known by the machine

F.

For this non-corrupted user U, € U;, we have ¢, = 1 with probability
1 — p, which means that PK, = «,(bP). So the value «, is one of the
terms added in the factor ¢; that appears in Y;. If this is the case, then with
overwhelming probability we will have that d; # Omod gq.

If now we come back to the two forged signatures, and we write the
corresponding verification equations, we have:

e(0,P)=Ry-... - Rg-e(Y,hY]) ... e(Y, hyYy)

e(c',P)=Ry-...-Rg-e(Y,h\Y1)-...-e(Y,h,Yy)

Dividing these two equations, we obtain e(c — o', P) = e(Y, (h; —
1)Y;) = e(aP, (hy — 1) (P + 6;(bP))) = e(aP, (h; — W;)y; P) - e(aP, (hy —
15)8;(bP)).

We can conclude from this relation the equality

e(abd;(h; — B)P, P) = e(0 — o' — (ay;(h; — b)) P, P).

Since the pairing is non-degenerate, this implies that abd;(h; — h})P = o —
o' — |av;(h; — I)]P. Therefore, one can compute the solution of the given
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instance of the Computational Diffie-Hellman problem:

1 avy;
abP = ————— (0 —o') — —p.
d;(h; — hj) 0;
The inverses are computed modulo ¢, and they always exist because h; # h;
and 0; # 0mod g with overwhelming probability.
Summing up, the machine F has solved the Computational Diffie-
Hellman problem with probability
&2 (e/2)? g2
e=(1—pe>0—p)—F—=>(1-p > :
65VQ2’dA 1560 QeVQQ,gZ

65VQ2@ -

And the total ti{ne needed to solve the problem has been T" < 277 < 2T +
201 +2Q2 + 4(d + 1) TppQs.
O

5.4 A Different Construction from Dual Ac-
cess Structures

As it happened in the proposal for the Disc-Log scenario (Section 4.4.1), the
efficiency of the distributed ID-based ring signature scheme proposed in the
previous section depends on the total number of users and the number of
sets in the family of possible signing sets.

For example, the construction is not very efficient in a threshold sce-
nario: t users want to anonymously sign a message on behalf of a set (or
ring) of n users which includes themselves, in such a way that the recipient
is convinced that ¢ of the n users of the set have cooperated to compute a
signature, but he does not have any information about who the ¢ signers are.

In this case, the number of possible signing subsets is , which can be

n
t
a quite large number. Other examples where the above construction can be
inefficient are weighted threshold families (introduced in [88]), multipartite
families [81], etc.

We next propose a different scheme for computing distributed ring sig-
natures in a more efficient way, in an ID-based scenario. As we mention
in Section 5.4.2, the new scheme can be modified to work in more general
scenarios, where users can have different kinds of keys (ID-based, or RSA
keys, or Disc-Log keys) and of different sizes. For simplicity, we formally
analyze the scheme only for the particular case where all the keys are based
on identities, with the same common parameters.



106 Chapter 5. Ring Signatures for Identity-Based Scenarios

The proposal follows the ideas introduced in [94], where threshold ring
signatures are designed for PKI scenarios (with users having either Disc-Log
or RSA keys, for example). Our scheme admits ID-based keys and, more
importantly, it runs with general families of possible signing sets, not only
with threshold ones. Independently, a different distributed ring signature
scheme for ID-based scenarios has been proposed in [25], but again it works
only in the threshold case.

The protocols of our proposed scheme are described below. We will
consider, as in the previous proposals of distributed ring schemes, that any
specific set of users can always have access to a private and authenticated
broadcast channel.

Key generation. Let G; be an additive group of prime order ¢, gen-
erated by some element P. Let Gy be a multiplicative group with the same
order q. We need g > 2%, where k is the security parameter of the scheme.
Let e : G; x G; — Gy be a bilinear pairing as defined in Section 5.1. Let
H, :{0,1}* - G} and Hy : {0,1}* — Z, be two hash functions.

The master entity chooses at random his secret key = € Z; and pub-
lishes the value Y = xP.

Secret key extraction. Any user U; of the system, with identity
ID; (which can be an IP or e-mail address, for example), has public key
PK; = H,(ID;). When he requests the master for his matching secret key,
he obtains the value SK; = zPK;.

Distributed ring signature generation. Assume that a subset of
users A want to compute an anonymous signature on behalf of a family
U C 27 of possible signing subsets, taken over a set P = {Uj,...,U,} of
n users. Users in A choose the family ¢/ in an ad-hoc way, with the only
condition that A € U.

We will assume that the family of subsets U is in some way normalized:
there do not exist two subsets A, B € U such that A C B. In this case, it is
easy to see that (cl(U))o = U; that is, U is the basis of its closure (recall the
definition of closure in Section 1.4).

For simplicity, we will assume that ¢l(Uf) is a vector space access struc-
ture. In this case, we consider the dual access structure (see Section 1.4.1)
[' = (cl(U))*, which is also a vector space access structure: there exist a pos-
itive integer r and a mapping ¢ : PU{D} — Zq such that B € T'if and only
if Y(D) € ({¢(U;)}u,es). Our construction can be easily extended to the
case of more general access structures, where the mapping ¢ assigns possibly
more than one vector to some users. For example, a generic solution would
be to use the construction of Simmons et al. [92]: if U = {Ay, ..., Aq}, then
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1 assigns vectors in GF(q)? in the following way: (D) = (1,0,...,0) and
Y(U) = {(1,i,4%,...,i471) : U € A;} for any user U € P. This assignment 1)
realizes the access structure I' = (cl(U))*.

Since U = (cl(U))o, we have that A € (cl(U))o. This means that
P —A ¢ T, and is maximal with respect to the inclusion, meaning that
(P—A)U{U;} €T for any user U; € A.

The signing users in A execute the following protocol to compute a
valid distributed signature on a message m € {0, 1}*:

1. They consider a basis of the subspace ()(P — A)). This basis corre-
sponds to some subset of users C' C P — A; that is, vectors in ¢(C) are
linearly independent and (¢(C)) = (¢ (P — A)).

2. For every user U; € C, the signing users choose uniformly at random
¢i € Zq and R; € Gy; they compute and broadcast the value

zi =e(R;, P)-e(Y,;PK;).

3. For users U; € (P — A) — C, we have that ¢(Us) = >, .o Mt (Us), for
some \;; € Zg, because ¢(C) is a basis of (¢(P—A)). The signing users
choose uniformly at random R; € G; and consider ¢; = ZUieC AitCi;
they compute and broadcast the value

Zt = G(Rt7 P) . 6(}/, CtPKt>.

4. Each signing user U; € A chooses uniformly at random 7; € Gy; he
computes and broadcasts the value

zj = e(T}, P).

5. The signing users compute then the value ¢ = Ho(U, m, 21, ..., 2,).

6. They choose uniformly at random one of the vectors v € Z; that veri-
fies:

(i) veo(D) = ¢, and
(i) vo(U;) = ¢, for all U; € C.

Note that this vector v exists because C' ¢ I' and so the vectors

{Y(D),{v(U;)}v,ec} are linearly independent.
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7. Every signing user U; € A computes ¢; = vi)(U;) individually; then he
computes and broadcasts the value

Rj = CTJ — CjSKj.

Note that the rest of users in A can verify that this value R; is consistent
with the value z; broadcast in step 4, by checking if z; = e(R;, P) -
e(Y, ¢; PK;). In this way, they detect dishonest users who try to boycott
the process.

8. The resulting signature is (U, m,v, Ry, ..., Ry, ).

Note that the length of the signature is linear with respect to the num-
ber n of users. Recall that in the other distributed ring signature schemes
proposed in this thesis, the length of the signature was linear with respect
to the number of possibly signing subsets in the family.

Verification of a distributed ring signature. The recipient of the
message first computes ¢; = vi)(U;), for every user U; € P and then computes
the values

Zi = 6<Rl‘, P) . G(Y, CZPKZ>
The signature is valid if vip(D) = Ho(U,m, 21, . .., 2p).

5.4.1 Analysis of the Scheme

In this section we prove that our new scheme satisfies the three required
properties for distributed ring signature schemes: correctness, anonymity
and unforgeability. The two last properties are proved to be achieved in the
random oracle model.

Correctness

We show that a signature that has been generated following the above method
is always valid. The vector v in the signature satisfies

(i) vip(D) = ¢, and
(11) VZ/J(UJ = Gy, for all UZ e C.

Therefore, for users U; in the set C, we have that ¢; = vy (U;) and
zi=e(R;, P)-e(Y,;PK;).
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For users U; € (P — A) — C, we have that ¢(U;) = > .o Mt (Us), by
definition of the set C'. This implies that

= Z AitCi = Z v (U;) = vip(Uy).

U;eC U;eC

And z; = e(Ry, P) - e(Y, ¢, PK}) for these users, as well.

Finally let us consider users U; € A. By construction, the equality
¢; = vip(Uj) is also satisfied. Note that these values are independent of the
choice of the vector v, as long as it satisfies the two required conditions.
In effect, as far as (¢(C)) = (Y(P — A)) and P — A is maximal verifying
P—A¢T, then CU{U,} €T, for any user U; € A. So there exist coefficients
A; and {\j;}u,ec satistying

YD) =" Nib(U) + Apb(U;)

U, eC

where \; # 0. From this equality we can derive

¢j = vo(U;) = A" (vw(D) = )\jivw(Ui)> =\t <c - Aﬁci) :

U»;EC UiEC

which does not depend on the specific vector v.
Furthermore, for users U; € A we have that

z; = e(1j, P) = e(Rj+c¢;SK;, P) = e(R;, P)-e(cjxPK;, P) = e(R;, P)-e(¢;PK;,Y),

as desired.

Therefore, for all users U; in P we have that ¢; = vip(U;) and z; =
e(R;, P) - e(Y,¢;PK;), and so the correctness of the signature is verified be-
cause vi)(D) = c = Ho(U, m, 21, .., 2,).

Anonymity

Given a valid distributed ring signature Sig = (U, m,v, Ry,..., R,,1) on
behalf of a family of subsets of users U, the probability that a particular
subset B € U is the author of this signature can be exactly computed. In
effect, if the full set of users is P, we know that ¢ : P U{D} — Zj is a
mapping which defines the access structure I' = (cl(U))*. Since B € U =
(cl(U))o, we have that P — B ¢ T'. Let C C P — B be a subset of users
such that (¢(C)) = (¢(P — B)) and such that the vectors in {¢(U;)}v,ec
are linearly independent. Since C' ¢ I', we have that the set of vectors
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{¥(D),{¥(Us)}v,ec} are linearly independent in Z;. Therefore, the number
of users in C'isw = |C| <r —1.

Consider the values ¢ = vi)(D) and ¢; = vip(U;), for all users U; € C.
The probability that users in B choose these values {¢;}y,ec in step 2 of
the signing protocol is exactly 1/¢*. Later, the value ¢ is the output of the
hash function H,. If we assume that this hash function behaves as a random
oracle, then the probability that users in B obtain this value ¢ in step 5 of
the protocol is exactly 1/q, independently of the inputs taken by the hash
function.

After that, users in B would choose at random one vector among the
solutions of the system of equations Mx = b, where

D) ‘
. o) e
¢(Uz) Ci,,

if we denote C' = {U;,,...,U; }.

The number of different vectors in Z; which are solution of this system
is ¢7, where v = dim(ker M) = r — dim(ImM) = r — (w + 1). Therefore, the
probability that users in B choose in step 6 of the protocol the vector v that
appears in Sig is exactly 1/¢7.

The probability that members of B choose, in steps 2 and 3 of the
signing protocol, the values {R;}y,¢p that appear in Sig and, in step 4, the
values {7} }v,ep that lead to the values {R;}y,cp in Sig is exactly equal to
1/q".

Summing up, the probability that users in B obtain the signature Sig
when they execute the signing protocol is exactly

1 1 1 1 1 1

® q ¢ q" - qw+1+'y+n - qr—i-n ’

which does not depend on B and so is the same for all the subsets in the
family Y. This proves that the scheme is unconditionally anonymous, in the
random oracle model for the hash function Hs.

Unforgeability

As in the previous proposals, we will analyze the exact unforgeability of our
scheme, that measures all the resources and performances of an adversary
against it. Recall that a (T, e, Q1, Q2, Qe, Qs, 1)-successful adversary against
a distributed ring signature scheme is given as input a list with the identities
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of the n considered users. This adversary is allowed to adaptively corrupt
up to ). users, obtaining their secret keys. The adversary can also make
()1 queries to the random oracle H; and ()5 queries to the random oracle
H,. Finally, the adversary can require the execution of the signing algorithm
for ), pairs of messages and families of subsets that it adaptively chooses,
obtaining a valid distributed ring signature for each query. As a result, it
obtains in time 7" and with probability at least ¢ a valid and new distributed
ring signature for some message m and some family of subsets U/, such that
all the subsets in the family ¢/ contain at least one non-corrupted user.

Remember that, without loss of generality, we can assume that ¢); > 1
and ()2 > 1, because otherwise the probability that a forger guesses the
values of the two (random) hash functions and produces a valid forgery is
negligible.

In the following theorem, we relate the unforgeability of our scheme to
the difficulty of solving the Computational Diffie-Hellman problem.

Theorem 5.3. Let A be a (T, e,Q1,Q2, Qc, Qs, )-successful adversary against
the ID-based distributed ring signature scheme proposed in Section 5.4, with
security parameter k > 9, and such that Q) < ¥ and Qs < %

Then the Computational Diffie-Hellman problem in G can be solved
with probability £ > ﬁ and in time T < 2T + 2Q1 + 2Q2 + 2(Ty +
2nTh,)Qs, where Ty, is the expected time to perform some specific compu-
tations related to the access structure defined by the assignment of vectors

b.

Proof. We are going to construct a probabilistic polynomial time Turing
machine F which will use the attacker A as a sub-routine in order to solve
the given instance of the Computational Diffie-Hellman problem. Therefore,
F must perfectly simulate the environment of the attacker A.

The machine F receives the public data (P,aP,bP), and its goal is to
compute the value abP. The public key of the master entity is defined to be
Y = aP. Then F runs the attacker A against the threshold ID-based ring
signature scheme, answering to all the queries that A makes. The public key
Y = aP is also sent to the attacker A. Finally, let P denote the set of n
considered users. The identities of these users are also provided to A.

Without loss of generality, we can assume that A asks the random
oracle H; for the value H;(ID) before asking for the secret key of ID.

Let us define 1 = (5/6)Y9° (we assume Q. > 1; otherwise, we would
take p = 0).

The machine F constructs a table T'ABy, to simulate the random oracle
H;. Every time an identity ID; is asked by A to the oracle Hy, the machine
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F acts as follows: first F checks if this input is already in the table; if this
is the case, then F sends to A the corresponding relation H;(ID;) = PK;.
Otherwise, with probability u, the machine F chooses the bit d; = 0 and a
different x; € Z, at random, and defines PK; = x;P and SK; = z,;Y; the
new entry (ID;, PK;, x;, SK;,d;) is stored in the table TABp,. On the other
hand, with probability 1 — x, the machine F chooses the bit d; = 1 and a
different o; € Z; at random, and defines PK; = (a;)bP (in this case F does
not know the secret key for this identity). The values (ID;, PK;, «;,d;) are
stored in a new entry of TABy,. The relation H,(ID;) = PK; is sent to A.
The condition PK; # PK; must be satisfied for all the different entries ¢ # j
of the table; if this is not the case, the process is repeated for one of these
users.

Since we are assuming that H; behaves as a random function, and the
values PK; are all randomly chosen, this simulation of the hash function H;
produces consistent values for A.

Later, every time A asks for the secret key corresponding to an identity
ID;, the machine F looks for ID; in the table TABy,. If d; = 0, then F
sends SK; = x;Y to A. If d; = 1, the machine F cannot answer and halts.
The probability that F halts in this process is less than 1 — % = 1/6.

F also constructs a table TABp, to simulate the random oracle H.
Every time A makes a query to this oracle, F looks for this value in the
table. If it is already there, then F sends the corresponding relation to A;
if not, F chooses at random an output of the random oracle for the queried
input, different from the outputs which are already in the table, sends the
relation to A and stores it in the table TABy,.

Finally, the attacker A can ask @), times for valid distributed ring sig-
natures for messages m’ and families of subsets U’ C 2. To answer such
queries, the machine F proceeds as follows:

1. Define I' = (cl(U))*; then find a mapping ¢’ : PU{D} — Zgl such that
B € T'if and only if ¥/(D) € (¢/(B)). Then choose a subset A € U;
consider a basis of the subspace (¢)'(P — A)). This basis corresponds
to some subset of users C C P — A.

2. For every user U; € C, choose uniformly at random ¢, € Z,. Choose
uniformly at random a value ¢ € Z,.

3. Choose at random a vector v/ among the set of vectors v satisfying
v)'(D) = ¢ and vy’ (U;) = ¢, for all users U; € C.

4. For users U; € P — C, compute the values ¢ = v'¢'(Uj).
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5. Choose at random 7 values R}, ..., R} € Gy, one for each user in P.
6. Compute, for i = 1,...,n, the values z; = e(R}, P) - e(Y, ¢,PK;).

7. Impose and store in the table T ABy, the relation Ho(U',m/, 21, ..., 25) =

c.

8. Define the signature to be (U',m', v/, R},..., R, V).

In each of these simulations, the machine F must find a suitable assign-
ment 1, choose at random some values, then choose a vector v, and so on.
We denote as Tj, a bound for the expected time necessary for performing all
these tasks. Furthermore, F must compute 2n values of the bilinear pairing.

The process results in a valid distributed ring signature, because we are
assuming that Hs behaves as a random function, and ¢ is taken uniformly at

random in Z,. However, the assignment Ho(U',m/, 2, ...,2,) = ¢’ can pro-

duce some collisions in the management of the table T'TABjy, that simulates
the random oracle Hs.

A first possible collision occurs if a tuple (U',m’, 2, ..., z}) produced in
the simulation of a signature has been already queried to the random oracle
H,. The probability of this event is less than % < 1/12.

A second possible collision occurs when the same tuple (U', m/, 21, ..., 2})
is produced in two different signature simulations. Using again the result
stated in Fact 4.1, we have that the probability of this event is less than
& <1/12

We denote by w the whole set of random tapes that take part in an
attack by A, with the environment simulated by F, but excluding the ran-
domness related to the oracle Hy. The success probability of A in forging a
valid ring signature scheme is then taken over the space (w, Hs).

In an execution of the attacker A, we use the notation 9y, Qs, ..., Qq,
for the different queries that A makes to the random oracle H,. If A produces
a valid forged signature (U, m,v,Ry,...,Rs,%), by the ideal randomness
of the oracle H,, the probability that A has not asked to this oracle for
the corresponding tuple (U, m, z1, ..., 25), and so A must have guessed the
corresponding output, is less than %. We define = oo in this case; otherwise,
[ denotes the index of the query where the tuple above was asked. That is,
Qs = U,m,z,...,25).

We denote by S the set of successful executions of A, with F simulating
its environment, and such that 3 # oo. We also define the following subsets
of §: for every 1 = 1,2,...,Q9, the set S; contains the successful executions
such that g = 1.

This gives us a partition {S;}i—1. ¢, of S in exactly )2 classes.
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The probability that an execution (w, Hs) of A with the environment
simulated by F results in a valid forgery with 3 # oo is

& = Prl(w, ) € 8] 25(1—1) (1_(1_,;2@)_

q

3 1 €
21—z =5
54( 3)2

Now we define the set of indexes which are more likely to appear as

QSQQ . Q_?) >
q 2q) —

Vv

I = {Z such that PI‘[(U),HQ) €S | ( Hz) S S] > —}
2Q)2

And the corresponding subset of successful executions as Sy = {(w, Hy) € S;
such that i € T}.
For a specific index 7 € I, the following inequality holds:

Pr[(w, HQ) € SZ] = Pr[(w, H2) € S] . Pr[(w, Hg) € Sl ‘ (w, HQ) S S] 2
> £ L
T20Qy
Lemma 5.1. [t holds that Pr[(w, Hs) € S; | (w, Hy) € §] > 1/2.

Proof. Since the sets S; are disjoint, we can write

Pr((w, H) € S; | (w, Hy) € S| = Prl(w, Hy) € S; | (w, H>) € 8] =

el
1= Prl(w Hy) €S; | (v, Hy) €8].
¢l
Since the complement of I contains at most () indexes, we have that this
probability is greater than 1 — @5 - ﬁ =1/2. O]

We come back to the execution of A with the environment simulated
by F. With probability at least &, such an execution (w, Hs) results in a
valid forgery with § # co. In this case, applying Lemma 5.1, we know that
this successful execution belongs to S; with probability at least 1/2.

Now we split Hs as (H), c¢), where H) corresponds to the answers of all
the queries to Hy except the query Qg, whose answer is denoted as c.

We apply the Splitting Lemma (Lemma 4.1), taking X = (w, H)),
Y =c¢ A=383,0 = 252 and o = 4@ The lemma says that there exists a
subset of executions (25 such that

1

Pl"[(w,Hg) € Qﬂ | (w,HQ) € 85] >

a
)
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and such that, for any (w, Hy) € Q5:

5
402
With probability at least £, the first execution (w, Hj, ¢) of A simulated
by F is successful and the index 3 belongs to the set I. Furthermore, in this
case we have that (w, H}, ¢) € Qg with probability at least 1/2. If we now

repeat this simulated execution of A with fixed (w, H)) and randomly chosen
¢ € Z,, we know that (w, Hj, ¢) € Sp and furthermore ¢ # ¢ with probability

Pr((w, H},¢) € S5l > 6 —a =

at least & <1 — % .

Now consider the two successful executions of the attack, (w, Hj, ¢) and
(w, Hy, ¢), that the algorithm F has obtained by executing the attack 4. We
denote by (U, m,v,Ry,..., Ra,1p) and (U, m, v, Ry, ..., R, 1/;), respectively,
the two forged distributed ring signatures. Since the random tapes and H;
are identical, and the answers of the random oracle Hs are the same until
the query Qs = (U, m, 21, ..., 2;), we have in particular that U=U,1 =1,
m=mand z; = z;, fori =1,... n.

Let us define the subset B = {U; € P : vio(U;) = vo(U;)}. Since
vi)(D) = ¢ # ¢ = vip(D) then B cannot be in I'. Otherwise, if B € T" then
there would exist coefficients \; € Z, for users U; € B satistying (D) =
> v,e Miv(U;). This would imply

c=vip(D) = Y Avo(Uy) = D ATY(U) =¥ Y Ab(Ui) = V(D) = ¢,

UieB UieB UieB
a contradiction. Therefore we must have B ¢ T', and so P — B € I'™* = cl(U);
in other words, A=P — B ={U; € P: vi(U;) # vp(U;)} € cl(UU).

By definition of successful forgery, there must exist some user U; € A,
satisfying ¢; = vy)(U;) # v(U;) = ¢;, whose secret key has not been asked
by the attacker .A. In this case, with probability 1 —  we have d; = 1 and
SO PKJ = Oéjbp.

The equality z; = Z; becomes e(R;, P) - e(Y,¢;PK;) = e(R;, P) -
e(Y,¢;PK;). This is equivalent to

e(R;—R;, P) = e(Y, (¢,—¢;)PK;) = e(aP, (¢;—c;)a;bP) = e(a(éj—c;)a;bP, P).

This implies that R; — R; = a(é; — ¢;)a;bP. Therefore, the machine
F obtains the solution of the given instance of the Computational Diffie-
Hellman problem as

abP = ———(R; — R;).

(¢ — ¢j)ay



116 Chapter 5. Ring Signatures for Identity-Based Scenarios

The inverse can be taken modulo g, since o; € Z; and ¢; # ¢;.
The total success probability ¢’ of the attack performed by F is

g1 & g-1 2 g-1
> (l—p)s = — L2 > (1 — BB
> ( u)2 5 10, 4 > ( u)16Q2 o

e2  qg-—1 g2 qg—1 g2

200G, e T3G04 © 350,05

We have used the fact that 1 — =1 — (5/6)1/(“2‘" > 1/6Q. (applying
Taylor’s series methodology to the function f(z) =1 — (1 —)"/9¢ and then
fixing x = 1/6). We have also assumed that ¢ > 385, which happens if the
security parameter k is k > 9.

The total execution time 7" of the machine F consists of running twice
the machine A, simulating its environment. Summing up, we have that

T <2(T+ Q1+ Q2+ (Ty + 20nT5,)Qs).

]

In the case Q. = 0, the obtained result would be &’ > 3§;2.

This last proposal, apart from being more efficient for some families of
possible signing subsets, enjoys a better security reduction than the proposal
in Section 5.3, since the factor V,,, ; does not appear in the relation between
the probabilities ¢’ and . Roughly speaking, this is due to the fact that in
the last proposal the hash function Hj is called only once for each signature
generation, whereas in the proposal in Section 5.3 we computed one hash

value for each subset in the signing family.

5.4.2 Different Types of Keys

The distributed ring signature scheme proposed in Section 5.4 for ID-based
scenarios can be extended to the case where users have different types of keys,
of different lengths, etc. This fits in with a more real situation where each user
generates his keys in an independent way. We consider three possibilities:
RSA keys, Disc-Log keys and ID-based keys. The construction follows some
ideas of the works [1, 94].

If a user U; has RSA keys, then there exist a public key (n;,e;) such
that user U; knows the matching public key: the primes p; and ¢; such that
n; = piqi, and the value d; such that d;e; = 1 mod ¢(n;). There exists a public
hash function H; : {0,1}* — 7y .

If a user U; has a Disc-Log pair of keys, then there exists a pair of prime
numbers p; and ¢;, and an element g; € Z,, such that ¢;|p; — 1 and g; has
order ¢; in Z,,. The secret key of user U; is a value z; € Ly, whereas the
matching public key is y; = ¢;* mod p;.
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Finally, if a user has ID-based keys, this means that there exist an
additive group Gy ;, generated by some element P;, and a multiplicative group
Gy, both with the same prime order ¢;. There exist a bilinear pairing e; :
G1,; x G1; — Gy; and a public hash function H; : {0,1}* — Gy, — {0}.
User U; is under the control of a master entity whose secret key is z; € Z,,
and whose public key is Y; = ;P € G1,;. The public key of a user U;, with
identity ID; is PK; = H;(ID;), whereas his secret key is SK; = x; PK;.

Distributed ring signature generation. Assume that a subset of
users A want to compute an anonymous signature on behalf of a family U of
possible signing subsets, taken over a set P = {Uy,...,U,} of n users.

Let k£ be twice the length of the largest ¢; or n;, among the n users in
P. Let H :{0,1}* — {0,1}* be a public hash function.

For simplicity, we will assume that both cl(U) and T = (cl(U))* are vec-
tor space access structures, and that there exist an integer r and a mapping
¢ :PU{D} — GF (2%)" such that B € T < ¢(D) € ({¢(U:)}v,en)-

Since U = (cl(U))o, we have that A € (cl(U))o. This means that
P — A ¢ T, and is maximal in the sense that (P — A) U {U;} € T for any
user U; € A.

The signing users in A execute the following protocol to compute a
valid distributed signature on a message m € {0, 1}*:

1. They consider a basis of the subspace (¢)(P — A)). This basis corre-
sponds to some subset of users C' C P — A; that is, vectors in ¢(C) are
linearly independent and (¢(C)) = ((P — A)).

2. For every user U; € C, the signing users choose uniformly at random
c¢; € {0,1}*, and then proceed as follows:

(a) If U; has RSA keys, they choose uniformly at random s; € Z,_;

~

then they compute and broadcast the value z; = H;(¢;)+s;* mod n;.

(b) If U; has Disc-Log keys, they choose uniformly at random s; € Z,;
then they compute and broadcast the value z; = g;*y;" mod p;.

(c¢) If U; has ID-based keys, they choose uniformly at random s; €
G 4; they compute and broadcast the value z; = e;(s;, P;)-e(Y;, ¢; PK;).

3. For users U; € (P — A) — C, we have that ¥(Us) = >, .o At (Us), for
some \y; € GF(2%), because 1(C) is a basis of ()(P — A)). The signing
users consider ¢; = ZUZ_ cc AitCi, then they proceed as follows:

(a) If U; has RSA keys, they choose uniformly at random s; € Zy,;
then they compute and broadcast the value z; = Hy(c;)+sy" mod ny.
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(b) If U; has Disc-Log keys, they choose uniformly at random s, € Z,,;

then they compute and broadcast the value z; = ¢;*y;" mod p;.

(c) If U; has ID-based keys, they choose uniformly at random s; €
G1.4; they compute and broadcast the value z; = e;(st, Pr)-e(Yy, c: PK;).
4. Each signing user U; € A acts as follows:
(a) If U; has RSA keys, he chooses uniformly at random z; € Z,, and
computes this value.

(b) If U; has Disc-Log keys, he chooses uniformly at random a; € Zj;
then he computes and broadcasts the value z; = g;j mod p;.

(c) If U; has ID-based keys, he chooses uniformly at random 7; € G j;
he computes and broadcasts the value z; = e(Tj, P;).

5. The signing users compute then the value ¢ = H(U,m, z1, ..., z,).

6. They choose uniformly at random one of the vectors v e GF (Qk)T that
verifies:
(i) vio(D) = ¢, and
(11) V’QD(UZ) = Gy, for all Uz eC.

Note that this vector v exists because C' ¢ I' and so the vectors

{Y(D),{¥(U;)}v,ec} are linearly independent.

7. Every signing user U; € A individually computes ¢; = vi/(U;); then he
proceeds as follows:

(a) If U; has RSA keys, he computes and broadcasts the value s; =
N d;
(Zj — Hj(Cj)) mod n;.
(b) If U; has Disc-Log keys, he computes and broadcasts the value
sj = a; — ¢;z; mod g;j.
(c) If U; has ID-based keys, he computes and broadcasts the value
Sj = T'] — CjSKj.

Note that the rest of users in A can verify if the broadcast value s; is
consistent with the value z; broadcast in step 4, by using the public key
of user U;. In this way, they detect dishonest users who try to boycott
the process.

8. The resulting signature is (U, m, v, S1, ..., Sy, V).
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Verification of a distributed ring signature. The recipient of the
message first computes ¢; = vi)(U;), for every user U; € P and then computes
the following values:

A

(a) If U; has RSA keys, compute z; = H;(¢;) + s;* mod n;.

(b) If U; has Disc-Log keys, compute z; = ¢;'y;* mod p;.

(c) If U; has ID-based keys, compute z; = e;(s;, B;) - e(Y;, ¢; PK;).
The signature is valid if vi)(D) = HU, m, 21, ..., z,).

The correctness of the scheme is easy to verify. With respect to anonymity
and unforgeability, it can be proved using a combination of the techniques
that appear in the proof of Theorem 5.3 and in the security proofs of the
papers [1, 94]. To show that the scheme is unforgeable, one proves that if
there would exist a successful adversary against it, then one could solve either
the RSA problem, or the Discrete Logarithm problem, or the Computational
Diffie-Hellman problem.
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Conclusions

In this thesis we have proposed different schemes for some extensions of
the concept of digital signature. These extensions have a characteristic in
common: the origin of the signature is a collective of users, and not a single
one. We analyze the security of all the schemes that we propose, considering
the most powerful attackers against such schemes. In this way, we conclude
that attacking our schemes is difficult, provided some problems from number
theory are hard to solve.

In this section we summarize the main results of the thesis, and we
state some related problems which remain unsolved and can therefore lead
to future research.

In Chapter 1 we give the basic notions on digital signature schemes: the
involved protocols, the requirements that must be satisfied and how to exactly
analyze the security of a signature scheme. We exemplify these concepts with
two well-known signature schemes: RSA and Schnorr. In particular, we show
a proof of the security of RSA, which can be useful in order to familiarize
the reader with the kind of security proofs that appear later in this thesis.

We also recall in that chapter the concept of secret sharing scheme,
which is an essential tool for the design of cryptographic schemes involving
many users who must jointly perform a task (e.g. signing a message), as it
happens in some of the schemes that we propose throughout the thesis.

Distributed Signature Schemes

In this kind of schemes, the power of signing a message is shared among a
fixed set of users, according to a fixed access structure, which is the family
of subsets authorized to compute a valid signature on behalf of the whole
set. For example, a threshold access structure contains all the subsets with
at least t users, if ¢ is the threshold.

Regarding the security of these schemes, an adversary structure must
be defined, containing those subsets of users that an attacker can corrupt
without compromising the security of the system. Most of the existing works

121



122 Conclusions

dealing with distributed signatures consider only the threshold case, although
this one is quite particular and does not fit in with many real situations, where
users have different computational resources or different probabilities to be
attacked.

We consider a more general framework, and we try to find the neces-
sary conditions to extend to this framework some proposals of distributed
signature schemes which were designed for the threshold case. The most
interesting case is that of RSA distributed signature schemes; we study the
threshold proposal of Shoup [91], which is currently considered as the most
complete one for this scenario. In Chapter 2, we give the algebraic and com-
binatorial conditions that must be satisfied in order to securely extend the
proposal of Shoup to more general frameworks, with more general access and
adversary structures. We believe that our analysis provides a better under-
standing of Shoup’s work. An interesting way of research would be to look for
new wide families of access and adversary structures satisfying the required
conditions so that our scheme could be securely implemented.

In our extended scheme, as it happens in Shoup’s scheme, the key
generation phase must be performed by an external and trusted dealer, who
generates the RSA keys and distributes shares of the secret key among the
users. This fact can be avoided in the threshold case, as pointed out in
[31, 47], by using some existing protocols which allow a set of users to jointly
generate a RSA public key along with shares of the matching secret key
(12, 49, 21]. But extending these protocols to general frameworks seems to
be a hard task; in particular, one must solve the problem of generating shares
of the product of secrets. This problem is securely solved, against active
attacks, only for the threshold case. Therefore, the problem of designing a
fully distributed signature scheme based on RSA, without a trusted dealer,
remains open for the case of general access and adversary structures.

In Chapter 3, we relate the concept of distributed signature scheme with
other two types of cryptographic schemes: metering schemes and distributed
key distribution schemes.

We show that any non-interactive distributed signature scheme can be
used to construct a metering scheme, which measures the number of interac-
tions between a set of clients and a set of servers. On the other hand, we show
how to construct from any deterministic distributed signature scheme a dis-
tributed key distribution scheme, where a set of servers provide information
to users in conferences to obtain common conference keys. The constructed
metering and key distribution schemes achieve the maximum level of security,
provided the considered distributed signature schemes are secure.

In particular, we can employ the RSA distributed signature scheme
that we design in Chapter 2 for general structures, extending the threshold
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proposal of Shoup [91], because this scheme is both non-interactive and de-
terministic. In this way, we can consider general structures defined in the
set of clients (in metering schemes) and in the set of servers (in distributed
key distribution schemes), which makes the constructed schemes suitable for
more realistic situations.

Ring Signature Schemes

The second block of contributions of this thesis is related to ring signature
schemes. In such a scheme, a user signs a message in an anonymous way, by
following this procedure: he chooses a set of users (or ring) which includes
himself, and then he uses his own secret key and the public keys of all the
members of the ring to compute a ring signature. The recipient of the sig-
nature is convinced that the signature has been computed by some of the
members of the ring, but he has no information about who is the real signer.

In Chapter 4, we define a new family of ring signature schemes, that we
call generic. For this family of schemes, we prove a security result, the Ring
Forking Lemma, which is an extension of some results proved by Pointcheval
and Stern in [83] for the case of standard signature schemes. Then we design
two specific generic ring signature schemes, one in Chapter 4 for Discrete
Logarithm scenarios, and another one in Chapter 5 for identity-based sce-
narios, where the public keys of users can be directly derived from their
identities. We prove that these two schemes provide perfectly anonymous
ring signatures. On the other hand, we can use the Ring Forking Lemma to
prove that both schemes are unforgeable under the most powerful attacks; in
the case of the first scheme, this is true assuming that the Discrete Logarithm
problem is hard to solve, whereas in the second scheme, this is true assuming
the difficulty of solving the Computational Diffie-Hellman problem. There
are two negative points in these proofs. First, they are valid in the random
oracle model, where some hash function is assumed to behave as a totally
random function (which is a very strong, although very usual, assumption).
And secondly, the reductions that we prove between forging a ring signature
for our schemes and solving some difficult problem are very far from being
tight. This means that the security result makes sense only when the length
of the keys employed in the scheme is very large.

The first problem seems really hard to solve, because all the ring sig-
nature schemes proposed in the literature are proved secure in the random
oracle model. With respect to the second one, it is inherent in generic ring
signature schemes, due to the high number of hash evaluations (one for each
member of the ring) that must be performed in each ring signature.

Finally, we combine the concepts of distributed signatures and ring
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signatures. This combination leads to the concept of distributed ring signa-
ture schemes: some users want to cooperate to jointly sign a message, in an
anonymous way. They choose a family of possible signing subsets, including
the subset that they form, and then compute the signature by using their
secret keys and the public keys of the rest of users. As a result, the recipient
of the signature must be convinced that all the members of some of the sub-
sets in the family have participated in the signature generation, but he must
have no information about which subset of the family is actually the signing
subset.

This kind of schemes had been already considered, but again only for
threshold scenarios: if the signing users are t, then the family of possible
signing subsets contains all the subsets with ¢ users among the whole set
of users. We propose schemes which run for any family of possibly signing
subsets. In Chapter 4 we design a scheme for Discrete Logarithm scenarios,
where all the users must have the same public parameters. In Chapter 5 we
propose a scheme for identity-based scenarios, where the users must share
the same public parameters, as well. These two schemes can be seen as
distributed generic ring signature schemes, so we can apply an extension
of the Ring Forking Lemma to prove the unforgeability of both schemes,
assuming that the Discrete Logarithm problem and the Computational Diffie-
Hellman problem, respectively, are hard to solve.

In the last section of Chapter 5 we propose a different distributed ring
signature scheme, which is in some way more elegant that the two previous
constructions, and is more efficient in some cases, where the considered family
contains a lot of possibly signing subsets. Although we explain and analyze,
for simplicity, the identity-based case where all the users have the same
parameters, this scheme can be extended to more general cases where users
have different types of keys, with different lengths, etc. For example, there
can be some users with RSA keys, other users with Disc-Log keys, and other
users with identity-based keys. The security result that we prove for this
scheme is more tight that in the two previous proposals of distributed ring
signature schemes.

Again, all the proofs of security of our distributed ring signature schemes
are valid in the random oracle model, so a very interesting, although hard,
future line of research could consist in finding (distributed) ring signature
schemes whose security can be proved in the standard model, without the
assumption that some hash functions behave as random oracles.
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