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Abstract

In the last decade, cooperation among multiple terminals has been seen
as one of the more promising strategies to improve transmission speed in
wireless communications networks. Basically, the idea is to mimic an an-
tenna array and apply distributed versions of well-known space-diversity
techniques. In this context, the simplest cooperative scheme is the relay
channel: all the terminals (relays) that overhear a point-to-point communi-
cation between a source and a destination may decide to aid the source by
forwarding (relaying) its message.

In a mobile system, it is common to assume that the relays do not have
any information about the channel between them and the destination. Un-
der this hypothesis, the best solution to exploit the diversity offered by
multiple transmitting antennas is to use space-time coding (STC). However,
classical STC’s are designed for systems with a fixed and usually low num-
ber of antennas. Thus, they are not suitable for relaying in most mobile
communications systems where the number of terminals is potentially large
and may vary as users join or leave the network. For each new configuration,
a new code has to be chosen and notified to the relays, introducing a set-up
overhead of signaling traffic.

In this dissertation we will propose and analyze a randomized distributed
linear-dispersion space-time block code (LD-STBC): each relay is assigned a
specific matrix which linearly transforms (left-multiplies) the column vector
of source symbols. Each matrix is independently generated and does not
depend on the total number of transmitters, which can thus change without
interrupting data transmission for a new code–relay assignment.

The more intuitive way to build independent linear-dispersion matrices
is to fill them with independent and identically distributed (i.i.d.) random
variables. Therefore, we will first consider these i.i.d. codes and character-
ize the resulting spectral efficiency. In order to analyze the performance
achieved by the system, we consider a large-system analysis based on ran-
dom matrix theory. We will show that the random spectral efficiency (func-
tion of the random linear-dispersion matrices) converges almost surely to
a deterministic quantity when the dimensions of the code grow indefinitely
while keeping constant the coding rate. Since convergence is very fast, the
random spectral efficiency will be approximated by the deterministic limit
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in the subsequent analysis. By comparison with the direct link, sufficient
conditions are derived for the superiority of relaying.

Next, we will analyze the outage probability of the system, that is the
probability that the spectral efficiency falls below a given target rate due
to channel fading. The main purpose of diversity techniques is to introduce
alternative paths from the source to the destination, so that data transmis-
sion does not fail when the direct link undergoes deep fading. We will show
that the diversity behavior of LD-STBC relaying mainly depends on both
the coding rate and the relaying strategy (amplify and forward or decode
and forward). It is then important to choose the coding rate that maximizes
the diversity order without wasting too many resources.

To conclude the dissertation, we will consider a different code based on
independent isometric Haar-distributed random linear-dispersion matrices.
The new code maintains the flexibility of the previous one with respect to
variations in the number of relays. However, the more complex structure
of the codes allows a noticeable reduction of the interference generated by
the relays. Unfortunately, isometric codes also require more sophisticated
mathematical tools for their asymptotic analysis. For this reason, we simply
introduce the problem by showing that it is possible to have some spectral-
efficiency gain with respect to i.i.d. codes. The outage-probability analysis
requires a more thorough understanding and will be the subject of future
work.



Resumen

En la última década, la cooperación entre usuarios ha generado un gran
interés por la posibilidad de mejorar la velocidad de transmisión en las re-
des de comunicaciones inalámbricas. El objetivo es formar un array con las
antenas de todos los dispositivos y, de esta forma, aplicar técnicas de proce-
sado espacio-temporal. El esquema de cooperación más sencillo es el canal
con relays: todos los terminales que escuchen una comunicación entre dos
puntos pueden ayudar a la fuente retransmitiendo lo que hayan recibido.

En un sistema realista, los relays no disponen de información sobre el
canal en trasmisión. En este escenario, los códigos espacio-temporales (STC,
del inglés space-time coding) son la alternativa más eficiente para aprove-
char la diversidad introducida por los relays. Sin embargo, los STC clásicos
están diseñados para un número limitado y fijo de antenas transmisoras y
no se adaptan bien a sistemas cooperativos donde el número de relays pue-
de ser elevado y, sobretodo, puede variar en el tiempo, según los usuarios
entren o salgan de la red. El problema principal es la necesidad de usar un
código nuevo cada vez que cambie la configuración de la red, generando un
importante tráfico de señalización.

Esta tesis analiza un código espacio-temporal a bloques de dispersión
lineal (LD-STBC, del inglés linear-dispersion space-time block coding), alea-
torio y distribuido: a cada relay se le asigna una matriz aleatoria que aplica
una transformación lineal al vector que contiene los śımbolos de la fuente.
Cada matriz se genera de forma independiente y sin ninguna relación con
el número de usuarios involucrados. De esta manera, el número de nodos
puede variar sin necesidad de modificar los códigos existentes.

La forma más intuitiva de construir matrices de dispersión lineal in-
dependientes es que sus elementos sean variables aleatorias independientes
e idénticamente distribuidas (i.i.d.). Por esta razón, se estudia primero la
eficiencia espectral obtenida por este tipo de LD-STBC. Es importante re-
marcar que la eficiencia espectral es una cantidad aleatoria, ya que es una
función de los códigos aleatorios anteriormente descritos. Sin embargo, cuan-
do las dimensiones de las matrices crecen infinitamente pero manteniendo
constante la tasa del código (relación entre número de śımbolos de la fuente
sobre el número de śımbolos de los relays), la eficiencia espectral converge
rápidamente hacia una cantidad determinista. Este resultado se demues-
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tra usando la teoŕıa de las matrices aleatorias. Por esta razón, el sistema
se analiza aproximando la eficiencia espectral con su limite. Por ejemplo,
la comparación con el canal directo entre fuente y destino permite definir
unas condiciones suficientes en donde el sistema con relays es superior a la
comunicación punto a punto.

Posteriormente se debe analizar la probabilidad de outage, es decir la
probabilidad de que, debido a la baja calidad del canal, la eficiencia espectral
sea menor que la velocidad de transmisión solicitada por el sistema. Como
ya se ha mencionado anteriormente, los relays se introducen para aumentar
la diversidad del canal y, con ella, el número de caminos independientes
entre la fuente y el receptor, reduciendo la probabilidad de outage. Para los
LD-STBC i.i.d. las prestaciones en términos de outage dependen del tipo de
relay (amplify and forward o decode and forward) y son función de la tasa
del código, que debe ser cuidadosamente elegida para maximizar el orden de
diversidad sin desperdiciar demasiados recursos.

Finalmente, en el último caṕıtulo de la tesis se considera otro tipo de LD-
STBC, distinto del i.i.d. analizado hasta ahora. En este caso, las matrices
de dispersión lineal siguen siendo independientes la una de la otra pero se
añade la restricción de que cada una tenga columnas (o filas, según la tasa
del código) ortogonales. Aśı, se consigue que el código siga siendo flexible
con respecto a las variaciones en el número de usuarios, pero su estructura
permite reducir la interferencia generada por cada relay, como se puede
notar comparando su eficiencia espectral con la eficiencia espectral obtenida
por el código i.i.d. Cabe destacar que el análisis asintótico de estos códigos
(llamados isométricos) se basa en herramientas matemáticas más sofisticadas
que las anteriores y, por lo tanto, es necesario un estudio más profundo para
poder entender cómo se comporta en términos de outage.



Struc

L’interès par lis comunicazions cooperativis al è une vore cressût intai ultins
d̂ıs agns. La idee e je chê di meti in comun lis risorsis dai utents par miorâ la
cualitât dai leams e, duncje, la velocitât di trasmission. Par esempli, cu lis
antenis dai terminâi si puedin formâ des schiriis e doprâ cuss̀ı lis tecnichis di
tratament spazi-temporâl dal segnâl. Il scheme plui sempliç di cooperazion
al è il canâl cun ripetidôrs (relay in inglês), ven a stâi un sisteme li che ducj
i utents che a ricevin un messaç che nol è par lôr lu tornin a trasmeti viers
la sô destinazion, judant il passaç de informazion.

Cheste tesi e studie un pussibil esempli des operazions che si àn di fâ
intai ripetidôrs par imped̂ı che si fasedin interference tra di lôr. La soluzion
proponude e je particolarmentri interessante cuant che il numar di utents
al cambie intal timp, stant che si doprin dai codiçs spazi-temporâi che no
dipindin dal numar di trasmetidôrs. Ancje se il sisteme al è une vore sempliç,
parcè che si base su des trasformazions lineârs, il ricevidôr al pues ricognossi
il contribût di ogni ripetidôr cence confusion. In cheste maniere, al baste che
un ripetidôr (e no ducj) al formedi un leam di buine cualitât tra la sorzint
e la destinazion par che la informazion e sedi ricevude coretementri.
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fundó conmigo la colonia italiana del CTTC: desafortunadamente ;) se nos
ha descontrolado. ¡Un abrazo a todos!

Para los que me han pillado por los pasillos cantando temas de Lola
Flores o de Los Romeos, que sepan que la culpa es de mis compañeras de
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Chapter 1

Introduction and

Background

Mobile communications systems are widespread in day-to-day life: probably
the most impressive example is the number of mobile cellular phones, which
has increased by an order of magnitude in the last decade (from 490 million
subscribers in 1999 to 4,100 million subscribers in 20081). Another exam-
ple is the wireless “Wi-Fi” access to the Internet, offered by an increasing
number of private enterprises and public administrations. For both users
and operators, it is hence of great interest to implement communications
services typical of wired systems like, for instance, TV on demand, voice
over IP or file sharing. Thus, the resulting demand for transmission speed
and reliability still motivates lots of interest in the research community.

In all wireless communication systems, the main issues concern the fluc-
tuations of the channel. Indeed, different physical agents influence the qual-
ity of the wireless link. In the next few pages, these problems are briefly
presented together with some possible solutions, with particular interest in
mobile systems. Then, we will see how this dissertation fits into this subject.

1.1 Multipath fading and diversity

Typical mobile communications users are not aware of the position of the
receiver (base stations and access points in the mentioned examples). Hence,
terminals are usually equipped with non-directive antennas and radio waves
are scattered over the surrounding space. As a result, signals may be re-
ceived from multiple paths, due to reflecting objects in the environment.
In a mobile system, phases and delays of the different replicas vary con-
tinuously, due to changes in the relative position of transmitters, receivers
and reflecting objects. Therefore, the quality of the equivalent channel is

1Source: International Telecommunication Union
<http://www.itu.int/ITU-D/ict/statistics/at glance/KeyTelecom99.html>.
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2 Chapter 1. Introduction and Background

a function of both time and frequency. This phenomenon is referred to as
small-scale fading or simply fading2.

Diversity is a simple solution to this issue [1–3]. Multiple copies of the
same message are sent at different time instants (time diversity) or on differ-
ent frequency bands (frequency diversity). According to the previous com-
ments, each replica undergoes a different equivalent channel. If the replicas
are sufficiently spaced (in time or frequency, respectively), the respective
channels can be modeled as independent random variables. Intuitively, as
the number of replicas increases, we reduce the probability that no channel
is good enough to convey information from the source to the receiver. The
price to pay is an increment in the total transmission delay or bandwidth.

More recently, space diversity has offered a different approach to the
problem. Indeed, multipath fading is now seen as a resource to exploit
as opposed to a penalizing characteristic of wireless channels. Briefly, by
considering the signal paths separately, it may happen that some of them can
support the transmission rate required by the system. In this perspective,
whenever there are no multiple paths (or, better, when they cannot be
resolved), they can be artificially generated by placing multiples antennas
at the transmitter and/or at the receiver. The resulting channel is commonly
called the multiple-input-multiple-output (MIMO) channel.

1.1.1 From space diversity to cooperative diversity

The idea of transmitting information over multiple channels to improve the
total link quality has been known for quite a long time: the first works
by A. Kaye and D. George [4] and W. van Etten [5, 6] date back to the
seventies. It is in the last twenty years, however, that MIMO channels have
become very popular and found applications in a variety of communications
systems. Landmark contributions by S. M. Alamouti [7], V. Tarokh et al. [8,
9] and İ. E. Telatar [10] showed that space-diversity techniques are diversity
achieving and, at the same time, offer interesting multiplexing properties.

Note that space diversity introduces less delay and spectrum dilation
than time- and frequency-diversity techniques. Furthermore, it can be used
in conjunction with them, if needed. To generate independent uncorrelated
resolvable paths, however, antennas should be placed sufficiently far to one
another. More specifically, the minimum relative distance is in the order
of half the wavelength (e.g. around ten centimeters for systems with a car-
rier frequency of 2 GHz such as UMTS). This fact limits the applicability
of multiple antennas when dealing with reduced-dimension portable devices.
Nevertheless, continuous requests for higher data rates (as mentioned before)

2Other phenomena influence the quality of the wireless channel, such as the path loss

and the large-scale fading (or shadowing). However, they are usually considered in power-
allocation problems and are not important for the topic of this thesis. The interested
reader can refer, e.g., to [1, Chapter 2].
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push for the introduction of space-diversity techniques in mobile communi-
cations systems.

The underlying idea behind cooperative diversity is that (possibly idle)
terminals in the system overhear other users’ communication and may hence
relay this information to the receiver. In other words, these terminals mimic
a virtual antenna array and distributed versions of space-diversity transmis-
sion techniques may be applied. A brief overview of cooperative communi-
cations and the relay channel is given in the next section. A more detailed
introduction can be found in, e.g., [11].

1.2 Cooperative communications and the relay

channel

The design of a cooperative communications system involves problems at
different communications levels. For instance, one should define (i) the
signal processing at the relays in order to achieve diversity and maximize
the spectral efficiency (physical layer), (ii) how to share resources between
source terminals and relaying ones (MAC layer) or even (iii) how to route
messages when multiple relaying hops are allowed (a routing problem).

The following overview reports some important results regarding the
physical layer. Even though the other aspects mentioned above offer inter-
esting research lines, they fall outside the topic of this dissertation and are
not treated here.

1.2.1 Some history

The first publications on the relay channel are probably those due to E. C. van
der Meulen. In his Ph.D. dissertation [12] (1968) and the following article
[13] (1971), van der Meulen describes a three-terminal model (a source, a
destination and a relay) which is later deeply analyzed by T. M. Cover and
A. El Gamal in 1979. In their landmark article [14], they derive upper- and
lower-bounds for the capacity for the general single-relay channel and give
an exact expression for the Gaussian degraded case. Unfortunately, there
are no straightforward applications for this latter result: roughly speaking,
it implies that the destination has some knowledge about the relay input.

At this point, the topic showed to be complex and lacked of practi-
cal applications. Consequently, there were no striking contributions in the
following twenty years. Then, between the years 2002 and 2003, the sub-
ject gained new interest after some new works [15–18] suggested that relay
networks might have benefited from the powerful results on MIMO chan-
nels mentioned in Section 1.1.1. Since then, countless contributions have
been published on the topic, proposing different relaying strategies and ap-
proaches to the problem.
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1.2.2 Half-duplex vs. full-duplex

In most practical applications, relays are half-duplex terminals, i.e. they re-
ceive and transmit signals at different times or on different frequency bands.
Full-duplex relays, capable of transmitting and receiving on the same time–
frequency channel, also exist. Lots of theoretical works (e.g. [14, 17–23])
introduce full-duplex relays to characterize capacity bounds. Furthermore,
intuition suggests that they better exploit the system degrees of freedom.
However, the interference-cancellation techniques they imply are computa-
tionally expensive, extremely sensitive to errors and, thus, less suitable for
practical systems.

1.2.3 Forwarding techniques

In the previous sections we have seen that relays overhear the information
broadcasted by the source and, then, forward it to the destination. Ac-
cording to how the information is processed at the relay before being re-
transmitted, we can identify different forwarding strategies. The three most
significant ones probably are:

Amplify and Forward (AF). In its original meaning, an AF relay simply
applies a power gain to the received noisy message. More generally,
many authors extend the definition to any relay that linearly trans-
forms the incoming signal (e.g., [24–26]). AF relays are very simple
devices but the total noise at the destination may increase consider-
ably;

Decode and Forward (DF). DF relays try to decode the source informa-
tion and forward it only if they are successful. In this way, the noise at
the receiver is much lower than in the AF case. However the terminals
are more complex and power consuming;

Compress and Forward (CF). This is the more general strategy, since it
includes any non-linear relaying function. Sometimes, to identify more
exactly this function, names like “estimate and forward”, “quantize
and forward” or “observe and forward” are used. Note that we can
even think to systems where the compression level varies according
to the channel qualities: it is intuitive that the receiver needs less
information from the relays when the direct link from the source is
good enough [27,28].

1.2.4 Channel model, channel state information and channel

access

Source–destination, source–relay and relay–destination channels may be mod-
eled in many different ways, according to the underlying application. Let
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us point out here that the technical chapters of this dissertation assume
frequency flat, slow (quasi-static) fading. This is a common assumption in
the literature (see, e.g., [18–20,24,26,29–33], just to cite a few). Mentioning
briefly other possible models, the additive-white-Gaussian-noise (AWGN)
channel is sometimes assumed to simplify the analysis [25, 34] or to model
situations where two terminals are very close to one another [23]. Cover and
El Gamal’s results on the degraded channel [14] have already been cited in
Section 1.2.1. A generalization to the multiple-relay case can be found in
[35].

Hypothesis on the channel state information (CSI) available at each ter-
minal are other important differences among relaying schemes. In order to
minimize complexity and power consumption, we can think about very sim-
ple AF relays without any CSI [24,30,34]. This assumption usually implies
that all the channels are known at the receiver.

When some more complexity is allowed, relays are assumed to have infor-
mation about the channel from the source. For example, DF relays usually
need this information to decode source messages.

CSI about the relay–destination channel, instead, is important when de-
signing the relay transmission strategy, especially when considering multiple-
relay schemes. Based on MIMO experience, when CSI is available at the
transmitter side, the optimal solution is beamforming [2, Chapters 5 and 7].
Indeed, by performing a singular value decomposition of the channel matrix,
the transmitted power can be concentrated into the main channel mode(s).
Distributed versions of beamforming are proposed, e.g., in [25,30].

Note that transmitter-side CSI requires some feedback from the receiver.
Furthermore, beamforming techniques require a distributed knowledge of
the channels. In other words, relays should have information not only about
their own channels, but also about the channels seen by the other relays.
Consequently, a lot of works assume no transmitter-side CSI at the relays
and employ space-time coding (STC) [29,32,36,37]. More details about this
solution are given in Section 1.3.

To conclude, we simply mention here that other channel-access solu-
tions, not explicitly designed for MIMO channels, appear in the literature.
Some examples are time division multiple access (TDMA) [32], code division
multiple access (CDMA) [17,18,38] and time-variant relay-specific phase ro-
tations [39].

1.2.5 Capacity and outage probability

In spite of the great amount of publications on the subject, the general
expression for the relay channel capacity has not been found yet. There exist,
however, capacity expressions for some special cases as, e.g., the Gaussian
degraded relay channel (both single-relay [14] and multiple-relay [35]) and
the single-relay case with orthogonal components [40].
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For more general cases, numerous bounds are available. Relay capacity
with AWGN channels and relay ergodic capacity under the Rayleigh-fading
assumption are considered and bounded in [41], for single-antenna terminals,
and [20], for multiple-antenna ones.

Other papers (see, e.g., [21, 30, 42–45]) consider the global capacity of
systems where the number of relays tends to infinity. For instance, M. Gast-
par and M. Vetterli show in [21, 42] that the capacity of a Gaussian relay
network increases as the logarithm of the number of terminals when the
latter grows large.

Instead of dealing with ergodic capacity, other publications [29, 32, 45]
focus on outage probability, which is the probability that a target rate can-
not be supported by the system because of fading. This performance metric
is simpler to analyze (at least in principle). More specifically, when as-
suming high transmitted power, the study of the outage probability allows
us to identify the diversity order of the system and how it is obtained at
the expense of multiplexing capabilities. This is the so called diversity–
multiplexing tradeoff introduced by L. Zheng and D. N. C. Tse in [46] and
applied to the relay channel in, e.g., [26, 32]. More precise definitions of
outage probability, diversity order and diversity–multiplexing tradeoff are
given in the introduction to Chapter 4.

1.3 Motivation

Being interested in a reasonably feasible communications system, this disser-
tation deals with a basic multiple-relay channel. A point-to-point communi-
cation between a source and a destination is aided by a set of L relays. All
terminals are half-duplex and are equipped with a single antenna. The chan-
nel state information is assumed to be concentrated at the destination. On
the contrary, relays are intended to be low-complexity devices and, hence,
do not have any knowledge about their channel to the destination. (When
considering the DF relaying strategy, Chapters 4 and 5, some information
about the source–relay channels is needed at the relays. This is not the case
with the AF relaying strategy, Chapters 3 and 4.)

As mentioned in Section 1.2.4, space-time coding is the best solution
when trying to exploit the degrees of freedom offered by a multiple-input
channel with no CSI at the transmitter side. In general terms, each antenna
transmits a different message containing all the information. By properly de-
signing the messages, the antennas can transmit on the same time–frequency
channel without interfering with each other [7–9, 47, 48]. This approach is
much more efficient than repeating the same message by one antenna at a
time in a TDMA fashion.

In the attempt to obtain similar benefits from a set of relays mimicking an
antenna array, an important number of works propose distributed versions
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of space-time codes (see, e.g., [49–54]). Classical space-time codes, however,
are not suitable for the multiple-relay channel because of different reasons.

First, to achieve diversity, the code must be jointly designed for all trans-
mitting antennas. This means that the assignment of each code section to
the corresponding relay must be done by a central entity, introducing a
set-up overhead of signaling traffic.

Second, codes are generally designed for a specific number of transmit-
ters. In dynamic networks, this fact implies that a new code–relay assign-
ment must be carried out whenever one or more terminals drop in and out
of the system, thus generating more overhead.

Finally, the design complexity of classical space-time codes increases with
the number of transmitters, as opposed to their efficiency (for example,
space-time codes from orthogonal designs [8] have rate 1 with two transmit-
ters, rate 3/4 with three or four transmitters and rate 1/2 with five or more
transmitters). Once again, this is a limitation for typical mobile communi-
cations systems (just think to the number of mobile phones or devices with
a wireless-LAN interface that we can count in most public places).

Summarizing, an ideal space-time code for relay networks should work
with any number of transmitters. Moreover, it should be distributed and
dynamic, in the sense that each relay should be assigned a section of the
code which is independent of the other relays and does not change with the
number of terminals in the system.

1.3.1 Previous work

The STC flexibility problem presented above has long been known. In [32],
J. N. Laneman and G. W. Wornell suggest employing space-time codes from
orthogonal designs as a possible solution. These space-time block codes, pro-
posed by V. Tarokh et al. [8], are designed for a given number L of trans-
mitters but maintain their orthogonal properties when some of the antennas
are shut down. This implies that the maximum number of relays in the
system must be known a priori. Moreover, for more than four transmitters,
the coding rate is only 1/2, thus limiting the spectral efficiency.

The solution proposed in [37] is based on linear-dispersion space-time
block coding (LD-STBC): each relay is assigned a specific unitary matrix
which produces a linear transformation of the vector of source symbols.
The system is quite flexible, since no particular relation is assumed among
the different coding matrices: when a new terminal joins the network, a
new matrix is generated without modifying the existent ones. In this work,
however, no direct link between the transmission source and its destination
is considered. Furthermore, the choice of unitary matrices constrains the
coding rate (equal to the number of columns divided by the number of
rows) to one. As shown in [55, 56], this is not always the best choice for
half-duplex relays: it may be enough for the relays to send a compressed
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version of the message (i.e. coding rate larger than one), thus reducing the
time where the source remains silent.

A completely different approach appears in [36]. From the source mes-
sage, each relay generates a new vector of symbols by doing a random linear
combination of the columns of a matrix codeword, which is obtained from
a common deterministic space-time mapping. It turns out that the system
performance is limited by the minimum between the number of relays and
the number of transmitters of the underlying deterministic STC.

1.3.2 The proposed scheme

The solution proposed in this dissertation employs distributed randomized
LD-STBC to exploit the intrinsic diversity of the multiple-relay channel.
More specifically, each relay is assigned an independent random matrix
which linearly transforms (left-multiplies) the column vector of source sym-
bols. These linear-dispersion matrices are either filled with independent and
identically distributed (i.i.d.) entries (see Chapters 3 and 4) or generated
according to an isometric bi-unitarily invariant distribution (see Chapter 5).
Note neither distribution depends on the number of generated matrices (that
is the number of relays): in this way we guarantee a flexible coding scheme
according to which the active terminals are not affected by those that enter
or leave the network. Furthermore, at least in the i.i.d. case, direct analogies
with direct-sequence CDMA (DS/CDMA) systems [57] suggest that the cod-
ing scheme is robust to little relative delays between any two relay messages
(see Chapter 5).

All the channels are assumed to undergo frequency-flat quasi-static fad-
ing (i.e. the channel gains do not vary during the transmission of a message).
The CSI is concentrated at the destination: the receiver knows the gains of
all source–destination, source–relay and relay–destination channels, together
with the coding matrices assigned to the relays. Conversely, each relay knows
its specific matrix only. Under these hypothesis, the system performances
are analyzed in terms of spectral efficiency and outage probability for two
different receivers, namely the optimum maximum-likelihood receiver and
the linear minimum-mean-square-error (LMMSE) receiver.

Note that no assumptions have been made on the dimensions of the
linear-dispersion matrices. By varying their ratio (i.e. the coding rate, ratio
between the number of source symbols and the number of relay symbols),
different weights can be assigned to source and relay contributions to the
message estimation at the destination. In many situations, a coding rate
larger than one (relays compress the information) is sufficient to transfer
information properly and, meanwhile, exploits system resources in a more
efficient manner.

To conclude, let as mention that the analysis of this coding scheme is also
very appealing from a mathematical point of view. Indeed, observe that the
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spectral efficiency we derive is a function of the random linear-dispersion ma-
trices and, thus, is itself a random quantity. However, by means of random
matrix theory and free-probability theory, we will prove that the random
spectral efficiency tends to a deterministic quantity when the dimensions of
the matrices grow indefinitely but at the same rate, meaning that the coding
rate is kept constant. Furthermore, the resulting limit is an excellent ap-
proximation of systems with finite-dimensional codes, even for not-so-large
linear-dispersion matrices.

1.4 Thesis outline

This section gives a brief overview of the contents of the following chapters.

Chapter 2 In this chapter we review some basic results about the conver-
gence of sequences of random variables, about random matrix theory and
about free-probability theory. The proofs are omitted whenever they are
too long or complicated for the introductory level of this summary. All the
details can be found in the referenced literature.

Most of these mathematical tools are employed to derive the technical
results of this dissertation. Others, though, are reported with the mere
intention of giving a self-contained aspect to the chapter.

Chapter 3 Here we define the details of the reference system. More specif-
ically, we focus on the AF relaying strategy, which is more general, and on
i.i.d. LD-STBC, since this is probably the first solution one can think of when
looking for independent linear-dispersion matrices. The resulting spectral
efficiency is shown to converge to a deterministic quantity when both matrix
dimensions grow large while keeping constant the coding rate. This limit is
used to derive conditions for the superiority of relaying over the direct link.

The work of this chapter has been published in the following papers:

• D. Gregoratti and X. Mestre, “Random DS/CDMA for the amplify
and forward relay channel,” IEEE Trans. Wireless Commun., vol. 8,
no. 2, pp. 1017–1027, Feb. 2009;

• D. Gregoratti and X. Mestre, “Asymptotic spectral efficiency analysis
of the DS/CDMA amplify and forward relay channel,” in Proc. Asilo-
mar Conference on Signals, Systems, and Computers 2007, Pacific
Grove, CA, USA, Nov. 4–7 2007 (invited paper);

• D. Gregoratti and X. Mestre, “About asymptotic spectral efficiency
in the DS/CDMA amplify and forward relay channel,” in Proc. IEEE
ISWPC 2008, Santorini, Greece, May 7–9 2008 (invited paper);
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• D. Gregoratti and X. Mestre, “The DS/CDMA amplify and forward re-
lay channel: Asymptotic spectral efficiency,” in Proc. ICT-MobileSum-
mit 2008, Stockholm, Sweden, Jun. 10–12 2008.

Other work related to the topic appears in

• D. Gregoratti and X. Mestre, “On the low source power regime of
the DS/CDMA relay channel,” in Proc. IEEE SPAWC 2008, Recife,
Brazil, Jul. 6–9 2008.

Chapter 4 The analysis of i.i.d. LD-STBC is extended to the characteri-
zation of the outage probability in the high-SNR regime. As a first approach
to the problem, we introduce the DF relaying strategy, which is simpler since
relays do not forward any noise. Based on the asymptotic spectral efficiency,
the diversity order, the outage gain and the diversity–multiplexing tradeoff
are computed and compared to existing relaying strategies. Similar results
are then derived for the AF relaying scheme.

The following articles deal with the contents of this chapter:

• D. Gregoratti and X. Mestre, “Large-SNR Outage Analysis for the DF
Relay Channel with Randomized Space-Time Block Coding,” submit-
ted to IEEE Trans. Wireless Commun.;

• D. Gregoratti and X. Mestre, “The single relay channel: Does random-
ized coding increase diversity?” in Proc. ICT-MobileSummit 2009,
Santander, Spain, Jun. 10–12 2009;

• D. Gregoratti and X. Mestre, “Diversity analysis of a randomized dis-
tributed space-time coding in an amplify and forward relay channel,”
in Proc. IEEE ICC 2009, Dresden, Germany, Jun. 14–18 2009;

• D. Gregoratti and X. Mestre, “Decode and forward relays: Full diver-
sity with randomized distributed space-time coding,” in Proc. IEEE
ISIT 2009, Seoul, Korea, Jun. 28–Jul. 3 2009;

• D. Gregoratti and X. Mestre, “Diversity order for the amplify-and-
forward multiple-relay channel with randomized distributed space-
time coding,” in Proc. EUSIPCO 2009, Glasgow, Scotland, Aug. 24–
28 2009.

Chapter 5 In this chapter we investigate whether some gain could be in-
troduced by adding some structure to the LD-STBC. More specifically, the
i.i.d. linear-dispersion matrices are replaced by isometric linear-dispersion
matrices, that is each random matrix has orthogonal columns (or rows,
according to the coding rate). Intuitively, by analogy with DS/CDMA sys-
tems, this choice reduces interference. Since the asymptotic analysis is quite
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more complex than before, we limit our interest to the spectral efficiency of
the DF relaying strategy.

These results have been published in:

• D. Gregoratti, W. Hachem, and X. Mestre, “Randomized isometric
linear-dispersion space-time block coding for the DF relay channel,”
submitted to IEEE Trans. Signal Process.

• D. Gregoratti, W. Hachem, and X. Mestre, “Orthogonal matrix pre-
coding for relay networks,” in in Proc. IEEE ISWPC 2010, Modena,
Italy, May 5–7 2010 (invited paper);

Chapter 6 This chapter offers a brief summary of the results of this disser-
tation and outlines some of the research lines that arise as a direct extension
of this work.





Chapter 2

Mathematical Background

This chapter is a brief review of the main mathematical tools that are em-
ployed to prove technical results later in this thesis. First, for a sequence
of random variables, the different types of convergence are defined and dis-
cussed. Second, we introduce random matrix theory, a branch of multi-
variate statistics that deals with the characterization of the eigenvalues of
random matrices whose dimensions grow without bound but at the same
rate. The main concepts are clarified with some basic and simple examples
before dealing with the Stieltjes transform, which allows to address more
complex problems. Finally, the last section is devoted to free probability:
under some assumptions, indeed, large random matrices can be treated as
free non-commutative random variables.

2.1 Convergence of sequences of random variables

Sequences of random variables {xn} = {x1, x2, . . . } appear quite often in
statistical models: the index can refer, for instance, to the sample size or to
the number of experiments. In this contest, the concept of convergence for
deterministic sequences can be extended to random variables, as thoroughly
described in the literature. The interested reader should refer to any book
on probability theory, e.g. [58, 59], for a detailed exposition of the subject.
Here, as an introduction to the following sections, we will only recall the def-
initions and properties of the four main modes of convergence for sequences
of random variables.

Let x and the sequence {xn} = {x1, x2, . . . } be real- or complex-valued
random variables defined on a common probability space. Furthermore, we
denote with Pr[A] the probability of the event A and with E[·] the expected
value of any random quantity. Then, one can define the convergence of the
sequence {xn} towards the random variable x according to one of the four
following modes:

Almost sure convergence (also convergence almost everywhere or con-

13
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vergence with probability 1). The sequence {xn} is said to converge
almost surely to x, and we write xn

a.s.−→ x, if

Pr
[

lim
n→+∞xn = x

]
= 1.

Convergence in the r-th mean. The sequence {xn} is said to converge
in the r-th mean to x if

lim
n→+∞E

[
|xn − x|r

]
= 0.

We just mention here that convergence in the r-th mean implies con-
vergence in the s-th mean, for any s < r. The notation xn

m.s.−→ x is
common in the literature and denotes convergence in mean square, i.e.
for r = 2.

Convergence in probability. The sequence {xn} is said to converge in

probability to x, and we write xn
P−→ x, if

lim
n→+∞Pr[|xn − x| < ε] = 1, ∀ε > 0.

Convergence in distribution (also convergence in law). Let F (t) and
{Fn(t)} denote the probability distribution functions of the random
variables x and {xn}1, respectively. The sequence {xn} is said to

converge in distribution to x, and we write xn
D−→ x, if

lim
n→+∞Fn(t) = F (t)

for any continuity point t of F (t).

There exist some important relations among the convergence modes. In
particular, both almost sure and r-th mean convergence imply convergence
in probability which, in turn, implies convergence in distribution. Con-
versely, there are no general implications in the opposite sense or between
almost sure and r-th mean convergence. Figure 2.1 depicts these relations,
which also define somehow the strength of the convergence modes. Usually,
stronger modes are also harder to prove. However, weak types of conver-
gence can offer important insights, as in the following example.

Example 2.1. Assume that we are given the sequence of random variables
{xn}, and the relative distributions {Fn}, and we want to check whether it
converges in probability. The first thing to do is certainly to compute the
pointwise limit F (t) = limn→+∞ Fn(t). Indeed, if it exist a random variable

x such that xn
P−→ x, its probability distribution function must be F .

1For real-valued random variables, the probability distribution function coincides with
the cumulative distribution function, i.e. F (t) = Pr[x ≤ t], for any real t.
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Figure 2.1: Relations among the main four convergence modes.

The previous concepts can be readily extended to the multivariate case.
Specifically, we say that the sequence of random vectors {xn} converges al-
most surely to the random vector x if the same property holds true between
corresponding entries of the vectors. The same can be said for convergence
in the r-th mean and in probability (in these cases, however, we can equiv-
alently adapt the original definition by replacing the distance in R, or C,
by the distance in RN , or CN ) and for convergence in distribution (where,
equivalently, the single-variate probability distribution function can be re-
placed by the multivariate one).

To conclude this overview, we recall a property that will be largely em-
ployed in the following chapters and which is about convergence preservation
after continuous mapping. Specifically, assume that {xn} and x are random
vectors with values in RN (CN ) and that xn

a.s.−→ x. Then, for any con-
tinuous mapping g(·) : RN → RM (CN → CM ), the sequence of random
vectors {g(xn)} converges to g(x) almost surely2. The same thing can be
stated also for convergence in probability and in distribution, but not for
convergence in the r-th mean.

2.2 Random matrix theory

As mentioned in the introduction, random matrix theory (RMT) is a set of
powerful tools that allows to characterize the spectrum (i.e. the eigenvalues)
of large matrices with random entries, when both dimensions grow at the
same rate. In the following overview, which is not intended to be exhaustive,
the very basic concepts are recalled, focusing on the tools that will be applied

2More generally, the random variables {xn} and x can take values on any metric space
S and g(·) : S → S′, with S′ another, possibly different, metric space.
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in the analysis of our transmission problem. We start with an example which
shows the importance of being able to deal with matrices whose dimensions
are both large.

Example 2.2. Consider the uplink of a direct-sequence code division mul-
tiple access (DS/CDMA) system and assume that K users are received with
the same power P . The received signal can be modeled as

y =

√
P

N

K∑
k=1

xksk + n

where xk (E[xk] = 0 and E[xkx
∗
i ] = δi,k)

3 is the symbol of user k and 1√
N

sk

(E[sk] = 0 and E[sks
H
i ] = δi,kIN ) its randomly generated spreading sequence

with spreading factor N . The vector n ∼ CN (0, IN ) is the normalized white
Gaussian noise. The random model for the spreading sequences is quite com-
mon in the literature, either to represent practical pseudo-noise signatures
(as, e.g., in IS-95 [60]) or to take into account the loss of orthogonality due
to asynchronous transmissions.

Since the spreading sequences are neither orthogonal nor deterministic,
the performance analysis of the system is not an easy task. To simplify
the problem, it can be tempting to let either one of the two parameters K
and N grow very large and apply the law of large numbers. The resulting
white problem, however, loses a lot of insight. Indeed, besides disregard-
ing the interference structure, we are either over-loading the system (case
K → +∞) or wasting most of the degrees of freedom (case N → +∞).
Furthermore, considering number of users and spreading factor of the same
order of magnitude makes much more sense in a practical perspective. In
the following sections, we will see how to get an excellent approximation of
the finite reality by letting both K and N tend to infinity at the same rate,
i.e. keeping constant their ratio K/N .

This example in the CDMA framework is just one of the numerous appli-
cations of RMT in communications problems. Basically, these mathematical
tools can be employed each time the behavior of the system is intrinsically
dependent on the ratio between two quantities that are allowed to grow
indefinitely. Two other classical examples are (i) capacity computation for
MIMO channels with a large, but similar, number of transmitter and receiver
antennas and (ii) evaluation of parameter estimators, where the sample size
is of the same order of magnitude of the number of estimated parameters.

A detailed overview of these communications problems (at least, the
CDMA and MIMO ones) and their RMT solutions can be found in the
monograph [61]. For a more mathematical approach, the interested reader
can refer to the tutorials in [62,63] or to the book by V. L. Girko [64]. As for

3δi,k is the Kronecker delta, i.e. δi,k = 1 if and only if i = k and zero otherwise.
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this dissertation, the following sections first report the asymptotic eigenvalue
distribution of some simple matrix ensembles. Then, the Stieltjes transform
will be introduced to deal with more complex matrix models. These basic
concepts, together with some useful results in Section 2.2.3 and the theory
in Section 2.3, should be sufficient to understand the following technical
chapters.

2.2.1 The eigenvalue distribution: basic results

Before delving into asymptotic properties of large matrices, let us define the
empirical eigenvalue distribution of a generic matrix.

Definition 2.1. Let AN be a square matrix with N real eigenvalues denoted
by λ1, . . . , λN . Then, the empirical eigenvalue distribution of AN , evaluated
at x ∈ R, is

FN (x) =
1

N
|{λn, n = 1 . . . N : λn ≤ x}|, (2.1)

where | · | is the cardinality of the set. In other words, FN (x) is the fraction
of eigenvalues which are lower than or equal to x.

Note that when AN is a random matrix, its eigenvalues are random quan-
tities and, hence, the empirical eigenvalue distribution FN (x) is a random
function.

The basic concept behind random matrix theory can be outlined as fol-
lows: for some models, or ensembles, of random matrices, the empirical
eigenvalue distribution tends to a deterministic distribution F (x) when the
dimensions of the matrix tend to infinity.

Example 2.3 (Wigner-type matrices). Consider a N ×N Hermitian (self-
adjoint) Gaussian random matrix WN , with 1

2N(N +1) independent Gaus-
sian entries with zero mean and variance 1

N . Note that the elements on the
diagonal will be real, while all the others are complex with variance 1

2N per
dimension. It can be proven that, as the dimension N tends to infinity, the
empirical eigenvalue distribution FN (x) of WN converges to the absolutely
continuous deterministic function F (x) corresponding to the density

dF (x)

dx
=

⎧⎨⎩
1

2π

√
4− x2 for x ∈ [−2, 2],

0 elsewhere,

known as the Wigner’s semicircular law and depicted in Figure 2.2.
This result was first proven by E. P. Wigner in 1958 [65] (thus the

name of this ensemble) for convergence in expectation and then, in 1967,
T. W. Arnold [66] extended it to almost sure convergence, i.e.

Pr
[

lim
N→+∞

FN (x) = F (x)
]

= 1, ∀x ∈ R.
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Figure 2.2: Wigner’s semicircular law.

Similarly, also the Gaussian constraint has been dropped: the empirical
eigenvalue distribution FN (x) will always converge to the Wigner’s semi-
circular law as long as the entries of NWN have zero mean and bounded
moments.

Example 2.4 (Wishart matrices). Consider a matrix N ∈ CN×M with
independent circularly symmetric Gaussian distributed random entries with
zero mean and variance 1

N . Then, the matrix MN = NNH is referred to as
a Wishart matrix. (To be precise, this is a special case of Wishart matrix.
The general one admits outer correlation and is treated in Example 2.6.)
Matrices with this structure are very common models in communications
theory, e.g. sample correlation matrices or CDMA interference covariance
matrices (cf. Example 2.2).

For the Wishart matrices, it has been proven [67] that the empirical
eigenvalue distribution GN (x) tends almost surely to the so-called Marčenko-
Pastur law G(x) when both M and N grow without bound while their ratio
converges to a constant value c, i.e. M

N → c. The density associated with
G(x) is

dG(x)

dx
= [1− c]+δ0(x) +

+

√
4c− (x− (1− c))2

2πx
1

{
x ∈

[
(
√

c− 1)
2
, (
√

c− 1)
2
]}

, (2.2)

where [x]+ = max{0, x}, δ0(x) is the Dirac delta centered in zero and the
indicator function for the event ω, 1{ω}, is equal to one if ω is true and
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Figure 2.3: The absolutely continuous part of the Marčenko-Pastur law.

to zero otherwise. With some abuse of notation, the Dirac delta has been
introduced to account for a possible point mass in zero. Indeed, when M <
N and c < 1, the matrix MN is rank deficient with a fraction (N−M)/N =
1−c of null eigenvalues. In this case, the asymptotic eigenvalue distribution
is not derivable in x = 0.

It also makes sense to ask ourselves about the behavior when only one
dimension of N tends to infinity. By means of the central limit theorem, it is
simple to show that, when M tends to infinity with N constant (c → +∞),
the normalized Wishart matrix N

M MN tends in law to a Hermitian Gaussian

random matrix plus an identity, i.e.
√

M(1
cMN − IN)

D−→ WN , with WN

a Wigner matrix as in the previous example. A similar result can be found
when N → +∞ and M constant (c → 0), by noting that the non-zero
eigenvalues of NNH are equal to those of NHN. Figure 2.3 depicts the
absolutely continuous second term of (2.2), where it can be noticed that the
Marčenko-Pastur law tends to be shaped as a shifted version of the Wigner’s
semicircular law both for c→ 0 and c → +∞.

To conclude the example, let us mention that some constraints on the
distribution of N can be relaxed: it is enough that the independent entries of√

NN have zero mean and bounded moments of all orders for the eigenvalue
distribution of MN to converge to the Marčenko-Pastur law.

2.2.2 Further results: the Stieltjes transform

The last example gives an explicit analytic expression of the asymptotic
eigenvalue distribution of a Wishart matrix. The model MN = NNH with
independent entries for N, however, is not very practical. In real cases,
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it is much more common to identify some correlation along the rows or
the columns (or both) of the matrix N. For the resulting matrices, it is
usually still possible to show the convergence of their eigenvalue distributions
as M,N → +∞ and M/N → c. Unfortunately, the limiting distribution
cannot generally be expressed in an explicit analytic form. Before giving
more details and some examples, let us introduce the following operation on
distributions.

Definition 2.2. For a given distribution F (x), its Stieltjes transform is
defined as4

m(z) =

∫
1

z − x
dF (x). (2.3)

When F (x) corresponds to a probability measure, m(z) is an analytic func-
tion in C+ = {z ∈ C : 	(z) > 0}. If, in addition, the distribution has
compact support, the Stieltjes transform can be seen as a formal power
series in z, i.e. m(z) ∈ C[[z−1]]:

m(z) = z−1 +

+∞∑
k=1

μkz
−k−1,

where μk =
∫

xk dF (x) is the k-th order moment of F (x).

Next, some examples are given of how the asymptotic eigenvalue distri-
bution of some matrix models can be expressed as the solution to a func-
tional equation in terms of the Stieltjes transform. It can happen that these
functional equations admit more than one solution: the correct one can be
usually identified by observing that a proper Stieltjes transform tends to
zero when the module of z grows without bound.

Example 2.5. Let us consider matrices of the form RN = A+NTNH , with
A ∈ CN×N a Hermitian deterministic matrix and T ∈ CM×M a positive-
definite diagonal matrix. Name FA(x) and T (x), respectively, their limiting
eigenvalue distribution for N and M , respectively, tending to infinity. Let
N ∈ CN×M be filled with complex random entries with zero mean, variance
1
N and independent of both one another and A. Then, in the limit for M and
N tending to infinity with M/N → c, the eigenvalues of RN are distributed
according to a deterministic distribution whose Stieltjes transform m(z) is
a solution to the functional equation

m(z) = mA

(
z − c

∫
x

1− xm(z)
dT (x)

)
,

where mA(z) is the Stieltjes transform of FA(x).

4A definition with a changed sign also exists.
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This matrix model is quite common in practice since it can represent
covariance matrices with a two-component structure: the first component,
A, is associated to noise and interference, while the second one, NTNH , is
due to the desired signal. For instance, for the signal model in Example 2.2,
the matrix E[yyH ] has the structure of RN , with A = IN , T = P IK and
N =

[
s1 · · · sK

]
.

Example 2.6. Assume now that we are interested in a sample covariance
matrix with outer correlations given by a deterministic matrix T. A possible
model is given by CN = T1/2NNHT1/2, where N has the same statistical
model as above and T1/2 denotes the Hermitian non-negative square root
of the matrix T. This is the general model for Wishart matrices (c.f. 2.4).
Let T (x) be the asymptotic eigenvalue distribution of T, if it exists. Then,
the empirical eigenvalue distribution of CN tends almost surely to a deter-
ministic distribution whose Stieltjes transform m(z) is the unique solution
to the equation

m(z) =

∫
1

z − (c− 1 + zm(z))x
dT (x).

The proofs to these results where given by J. W. Silverstein, respectively
in [68] and [69]. The interested reader should be careful when comparing
equations, since some slight modifications were necessary to match with the
given definition of the Stieltjes transform.

Once the Stieltjes transform is known, the corresponding probability
function can be recovered by means of the Stieltjes inversion formula, namely∫ b

a
dF (x) = − 1

π
lim
y→0

∫ b

a
	[m(x + jy)] dx, (2.4)

where a and b are two continuity points of F . This step, however, is seldom
necessary since most of the quantities of interest in the communications field
can be expressed directly in terms of the Stieltjes transform, evaluated at
some particular value of z. An intuition for this property can be easily
deduced: it is enough to observe that, if FN (x) is the empirical eigenvalue
distribution of the N × N matrix AN , then the Stieltjes transform mN (z)
is nothing else than the normalized trace of the resolvent of the matrix, i.e.

mN (z) =
1

N
tr
{
(zIN −AN )−1

}
.

Thus, if we denote as m(z) the Stieltjes transform of the distribution F (x),
the following limits are equivalent:

F (x) = lim
N→+∞

FN (x), (2.5a)

m(z) = lim
N→+∞

mN (z), (2.5b)

m(z) = lim
N→+∞

1

N
tr
{

(zIN −AN )−1
}
, (2.5c)



22 Chapter 2. Mathematical Background

where the convergence mode is the same in the three cases. The proof is
a straightforward application of the Portmanteau theorem5 (see, e.g., [70,
Chapter 1]). Some examples are given in the following section.

2.2.3 Additional results

According to the results of the previous section, the distribution of the
eigenvalues of some large-enough random matrices can be approximated by
a deterministic distribution. The knowledge of this distribution, or of its
Stieltjes transform, is sufficient to solve many practical problems like those
reported hereafter. First, let us recall this useful lemma which is a direct
consequence of [71, Lemma 1].

Lemma 2.1. Let A be an N × N complex random matrix and x,y two
N × 1 complex random vectors, all independent of one another. Assume
that the elements of x and y are centered i.i.d. random variables with unit
variance and finite eighth-order moment. Also assume that the spectral norm
(denoted by ‖·‖) of A is uniformly bounded, i.e. supN∈N ‖A‖ is finite. Then

1

N
(xHAx− tr{A}) → 0

1

N
xHAy → 0

almost surely as N tends to infinity.

Example 2.7. For the signal model in Example 2.2, assume that the spread-
ing sequences are known at the receiver and that we are interested in esti-
mating the symbol sent by user 1 (without loss of generality), considering
all other users as interference. The signal-to-interference-plus-noise ratio
(SINR) at the output of a linear minimum-mean-square-error receiver can
be expressed as

SINR =
P

N
sH
1

(
IN +

P

N
S1S

H
1

)−1

s1,

where S1 =
[
s2 · · · sK

]
. Assuming that the elements of the spreading

sequences have finite eighth-order moment, Lemma 2.1 implies that

limSINR = P lim
1

N
tr

{(
IN +

P

N
S1S

H
1

)−1
}

,

where the limits are intended for K,N → +∞ and K/N → c < +∞ (all
spreading sequences are independent of one another and, thus, so are s1 and
S1). According to (2.5), the left-hand side is −m(−1/P ), being m(z) the
Stieltjes transform of the asymptotic eigenvalue distribution of 1

N S1S
H
1 .

5To be rigorous, the function F (x), defined as the pointwise limit of FN (x) for N →
+∞, does not need to be a proper distribution, that is it can be limx→+∞ F (x) �= 1.
Tightness of the sequence {FN} should be verified.
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Lemma 2.1 shows how to deal with quadratic forms. Another form that
often appears in communications problems is the “log det” one, which is
typical when computing capacities of, e.g., MIMO channels.

Proposition 2.1. Let F (x) be a probability distribution with real non-
negative support and define the function

V(γ) =

∫
ln(1 + γx) dF (x), (2.6)

where ln is the natural logarithm and γ a real non-negative number. More-
over, let m(z) be the Stieltjes transform associated to F (x). Then, the fol-
lowing relation holds true:

γ
dV(γ)

dγ
= 1 +

1

γ
m

(
−1

γ

)
.

V(γ) is sometimes referred to as the Shannon transform of the distribu-
tion F (x). The proof follows directly from deriving both sides of (2.6) and
comparing with (2.3).

Observe that, for a diagonalizable positive semi-definite N×N (random)
matrix AN with empirical eigenvalue distribution FN (x), it holds that

1

N
ln det(IN + γAN ) =

∫
ln(1 + γx) dFN (x).

Hence, Proposition 2.1 gives us a tool to compute limN→+∞ 1
N ln det(IN +

γAN ).

Example 2.8. The maximum spectral efficiency for the system in Exam-
ple 2.2 can be written as

I =
1

N
ln det

(
IN +

P

N
SSH

)
,

in nats per degree of freedom and where S =
[
s1 · · · sK

]
. According to

the theory presented so far, when the number of users K and the spreading
factor N grow indefinitely at the same rate, the spectral efficiency tends to
the deterministic quantity

I∗ =

∫ P

0

1

γ
+

1

γ2
m

(
−1

γ

)
dγ,

where m(z) is the Stieltjes transform associated to the asymptotic distribu-
tion of the eigenvalues of 1

N SSH .

The last two examples are treated with plenty of details in [72], where
explicit expressions are given for asymptotic SINR and spectral efficiency.
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A more complex case, where each user is received with a different power, is
analyzed in [73]. Basically, a diagonal matrix P containing the user powers
is introduced, modifying the signal covariance matrix from IN + P

N SSH to
IN+ 1

N SPSH . The last structure is still covered by the model in Example 2.5.

Summarizing in few words the theory introduced in this section, the
Stieltjes transform and, more generally, random matrix theory supply an
important tool to deal with matrices of random variables. Indeed, for some
random matrix models covering an important set of practical cases, it has
been shown that their eigenvalues tend to be distributed according to a de-
terministic function when the matrix dimensions grow indefinitely at the
same rate. In other words, if the random linear system is large enough (but
with dimensions that still make practical sense, as supported by simula-
tion results), its performances can be accurately estimated by analyzing a
deterministic problem.

Working with large matrices also presents another important advantage.
Suppose that we are given two matrices A,B and that we are interested in
the eigenvalues of A+B and AB. For finite dimensions, this is an involved
problem, since the spectrum of the sum (product) of matrices depends not
only on the eigenvalues but also on the detailed structure (the eigenvectors)
of A and B —see, e.g., [74] for the sum of Hermitian matrices. However,
for infinite-dimension matrices like those discussed above, simple tools exist
to express the eigenvalue distributions of A + B and AB in terms of the
spectra of A and B. This is an application of free-probability theory for
non-commutative random variables.

2.3 Free-probability for non-commutative random

variables

The set of all possible N × N square matrices with complex entries forms
an algebra over the field C: roughly speaking, the sum or the product of
any two matrices still belongs to the set. Therefore, the theory developed
for these more abstract mathematical entities can be useful to solve matrix
problems. In such a context, we are now going to introduce non-commutative
probability theory and the concept of “freeness” or “free independence”,
which can be considered in analogy with the notion of independence in classic
probability theory. This exposition will cover only basic ideas, especially
those related to random matrices. The interested reader can also refer to
the tutorials [75,76] or to the more thorough monographs [77] and [78]. The
latter, in particular, is co-authored by D. Voiculescu, who first introduced
free probability (in early 1980’s) in order to study some problems related to
operator algebras.

To start with, the following definitions are needed.
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Definition 2.3. Let A be a unital algebra6 over C (denote with 1 its unity)
and ϕ(·) a linear functional ϕ : A → C such that ϕ(1) = 1. Then, (A, ϕ)
is called a non-commutative probability space and each element a of A is
a non-commutative random variable. The functional ϕ, sometimes called
“expectation”, is said to be a trace if ϕ(ab) = ϕ(ba), for any a, b ∈ A. The
number ϕ(ak) is the k-th moment of a.

If, moreover, A is a ∗-algebra7, then ϕ is assumed to be a state on A, i.e.:
(i) ϕ(1) = 1, (ii) ϕ(a∗) = ϕ∗(a) and (iii) ϕ(a∗a) ≥ 0, for every a ∈ A. (With
some abuse of notation, we denote by ∗ both the algebra involution and the
complex conjugation in C. The context should be sufficient to discriminate
between the two operations.)

In a few words, non-commutative probability is an approach to under-
standing of some problems in non-commutative algebras that is based on
typical notations and ideas from classical probability theory. Furthermore,
classical bounded random variables may be considered as non-commutative
ones, even though of a degenerate kind (classical random variables do com-
mute). [77, Example 1.2.2] and comments thereafter show a possible, non-
unique, representation.

Returning to the original problem, it is straightforward to identify a ∗-
algebra in the set of all N×N matrices with complex random entries having
bounded moments of all orders. The sum and the product operations are
the usual matrix ones, the identity matrix IN is the product unity and the
Hermitian transposition is the endowed involution ∗. Thus, we only need
a functional ϕN (·) to define a non-commutative probability space. The
choice ϕN (·) = 1

N Etr[·] (the expected value, in the classical sense, of the
normalized trace of the matrix) satisfies the requirements in Definition 2.3:
every matrix A is then associated to a set of moments ϕN (Ak) = 1

N Etr[Ak],
for k = 1, 2, . . .

Now, we focus our attention on the subalgebra of Hermitian matrices.
Let λ1, . . . , λN be the N eigenvalues, with multiplicities, of matrix A. Since
A is Hermitian, all the eigenvalues are real-valued and their empirical dis-
tribution FA(x) introduced in (2.1) exists and is well-defined. Considering
A as a non-commutative random variable, its k-th order moment is given

6An algebra over a field F is a vector space V over F with a product operation · :
V × V → V such that, for any v, w, z ∈ V and a, b ∈ F, (i) (v + w) · z = v · z + w · z,
(ii) v · (w + z) = v · w + v · z and (iii) (av) · (bw) = (ab)(v · w). Observe that the first
two properties are not redundant since, in general, the product is not a commutative
operation.

To be unital, an algebra should present a neutral element 1 with respect to the product:
1 · v = v · 1 = v.

7A ∗-algebra (pronounced star-algebra) is a unital algebra endowed with an involution ∗
such that, for any two elements v, w of the algebra, (i) v → v∗ is linear, (ii) (v ·w)∗ = w∗ ·v∗

and (iii) (v∗)∗ = v.
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by

ϕN (Ak) =
1

N
Etr[Ak] =

1

N
E

[
N∑

n=1

λk
n

]
= E

[∫
xk dFA(x)

]
.

Observe that the right-hand side of the previous equation coincides with
the k-th order moment of the distribution FA(x). We can conclude that
the empirical distribution of the eigenvalues of A not only characterizes the
spectrum of the matrix, but is also the distribution of the non-commutative
random variable A belonging to the ∗-algebra of N ×N random Hermitian
matrices. This last interpretation will be at the basis of the techniques
presented in the following sections.

It should be kept in mind, however, that the distribution function does
not need to exist. For instance, a generic non-Hermitian square complex
matrix may have non-real eigenvalues and, hence, a distribution function like
the one in (2.1) cannot be defined. In a more abstract sense, the distribution
of a non-commutative random variable simply is the collection of all its
moments8. Equivalently, in a non-commutative probability space (A, ϕ), two
random variables a, b ∈ A are equally distributed whenever ϕ(ak) = ϕ(bk)
for all k. As we have seen for the Hermitian matrices, in some occasions it is
possible to express explicitly the distribution function: it can be shown that
only normal variables (i.e., such that a∗a = aa∗) have this property. The
support of the correspondent probability measure will be included in C.

Following the same approach, the joint distribution of multiple non-
commutative random variables is also defined in terms of all joint moments.
For example, given two random variables a, b in the non-commutative prob-
ability space (A, ϕ), their joint distribution is the collection of moments

ϕ(a), ϕ(b), ϕ(a2), ϕ(b2), ϕ(ab), ϕ(a2b),

ϕ(ab2), ϕ(a2b2), ϕ(abab), ϕ(a2bab), ϕ(a3b2), . . .

Observe that, due to the non-commutative structure of A, moments like,
e.g., ϕ(a2b2) and ϕ(abab) are different and they all have to be considered
when characterizing the distribution. Conversely, forms like, e.g., ϕ(ab)
and ϕ(ba) coincide since the functional ϕ is assumed to be tracial unless
otherwise specified.

When A is a ∗-algebra, the joint distribution of a and a∗ is called ∗-
distribution of the random variable a. The joint ∗-distribution of multiple
non-commutative random variables {a1, a2, . . . , an} is, thus, the collection
of moments of {a1, a

∗
1, a2, a

∗
2, . . . , an, a∗n}.

8This is not the case in a classical probability space: a classical distribution function
is univocally determined by its moments only if it is supported by a finite interval; for
infinite supports, supplementary conditions like the Carleman’s one are needed (see, e.g.,
[79, Section 4.5]).
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For classic probability spaces, it is well known that joint distribution
functions of independent random variables factorize into the product of the
individual distributions. Similarly, one can wonder whether complicated
joint moments like ϕ(a2bab) may be expressed in terms of the simple mo-
ments of a and b. In the next section, the answer is shown to be positive
for free non-commutative random variables. In non-commutative probabil-
ity, freeness, or free independence, plays a role analogous to independence
in classic probability: both of them refer to special but very fundamen-
tal situations where particular relations hold among joint moments of some
variables. We will see, however, that the factorization rules are somehow
different in the two contexts.

2.3.1 Free random variables

In this section, a first formal definition of freeness will be presented, together
with some insights into this aspect of fundamental importance for the theory
we are developing. First, to highlight analogies and differences, we formalize
the idea of independent random variables in the new algebraic definition of
probability space.

Definition 2.4. Let (A, ϕ) be a probability space. The m subalgebras
A1, . . . ,Am ⊆ A are said independent if:

1. they commute, i.e. ab = ba for any a ∈ Ai and b ∈ Aj, with i, j =
1, . . . ,m and i �= j;

2. the expectation ϕ factorizes as follows:

ϕ(a1 · · · am) = ϕ(a1) · · ·ϕ(am),

for all a1 ∈ A1, . . . , am ∈ Am.

By extension, two random variables a, b ∈ A are independent when the
subalgebras they generate are independent, meaning that ab = ba and
ϕ(asbt) = ϕ(as)ϕ(bt), for all s, t ∈ N.

Note that the definition of independence does not apply to general al-
gebras, but only to commutative ones. This is the case for the algebra
generated by classical random variables, as mentioned in the previous sec-
tion: classic independence fits with this new definition when choosing the
expected value E[·] as the functional ϕ(·). Conversely, two N × N square
random matrices with independent entries are not necessarily independent
since, in general, they do not commute. Strictly speaking, only diagonal
random matrices are (with an opportune choice of ϕ).

The great advantage of dealing with independent (commutative) ran-
dom variables is the possibility to express joint distributions and moments
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in terms of the respective individual distributions and moments. For exam-
ple, the moments of the sum and the product of two independent random
variables a, b are given by

ϕ
(
(a + b)k

)
=

k∑
i=0

(
k

i

)
ϕ(ai)ϕ(bk−i),

ϕ
(
(ab)k

)
= ϕ(ak)ϕ(bk).

Freeness identifies another class of random variables for which similar prop-
erties hold. Then, if a, b ∈ (A, ϕ) are two non-commutative free random
variables, the collection of moments of a+ b and ab can be written explicitly
from the single distributions of a and b. In particular, the distribution of the
eigenvalues of sums and products of free matrices may be computed from
the spectra of the individual matrices. The resulting equations, however,
are different from those obtained for independent variables.

Definition 2.5. Let (A, φ) be a non-commutative probability space. The
unital subalgebras A1, . . . ,Am ⊆ A are said to be free if ϕ(a1 · · · an) = 0 for
any n ∈ N and any choice of the random variables a1, . . . , an such that:

1. ai ∈ Aj(i), with j(i) ∈ {1, . . . ,m};
2. j(i) �= j(i + 1), for i = 1, . . . , n− 1 and

3. ϕ(ai) = 0, for i = 1, . . . , n.

The n random variables a1, . . . , an ∈ A (or, more generally, the n subsets
χ1, . . . , χn ⊂ A) are said to be free if the unital subalgebras they generate
are free.

Sometimes, the name ∗-freeness is used when dealing with ∗-algebras.

Let us consider some examples to clarify this definition and its implica-
tions. Take three free random variables a, b, c ∈ (A, ϕ) with zero mean, i.e.
ϕ(a) = ϕ(b) = ϕ(c) = 0. The freeness definition ensures that, e.g.,

ϕ(abcbacbababc) = 0,

since no two consecutive variables are the same (i.e. belong to the same
subalgebra). Conversely, at first sight nothing can be said about, e.g.,
ϕ(ababc2ba): c2 = c · c belongs to the same subalgebra as c but its mo-
ment does not need to be zero (ϕ(c) = 0 � ϕ(c2) = 0). Nevertheless, the
definition of freeness offers more insight, as shown by the following example.

Let A1 and A2 be two free subalgebras in the non-commutative proba-
bility space (A, ϕ) and let a ∈ A1 and b ∈ A2 be two free random variables
without any constraint on their first-order moment. Now, build the two
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centered random variables ā = a − ϕ(a)1 ∈ A1 and b̄ = b − ϕ(b)1 ∈ A2.
Then, ā and b̄ belong to two free subalgebras and have zero mean, yielding

ϕ
(
āb̄
)

= ϕ((a − ϕ(a)1)(b − ϕ(b)1)) = 0.

The linearity of ϕ implies ϕ(ab) = ϕ(a)ϕ(b). More generally

ϕ
((

am − ϕ
(
am
)
1
)(

bn − ϕ
(
bn
)
1
))

= 0 ⇒ ϕ
(
ambn

)
= ϕ

(
am
)
ϕ
(
bn
)
.

Even though this factorization is exactly the same as the one obtained
for independent random variables, differences appear when considering more
complicated moments. For instance, by developing as before the equation

ϕ
(
āb̄āb̄

)
= 0

one obtains

ϕ(abab) = ϕ(a2)ϕ2(b) + ϕ2(a)ϕ(b2)− ϕ2(a)ϕ2(b).

With a similar approach, all the joint moments of a and b can be computed
in terms of individual moments of lower order. Thus, the joint distribution
of the couple of random variables {a, b} can be characterized in terms of
the distributions of a and b. In Section 2.3.3 we will see a more schematic
approach to compute joint moments which will also yield to a simpler and
more intuitive definition of freeness.

To conclude the comparison between independent and free random vari-
ables, let us show that two independent random variables cannot be free,
except in the trivial case where one of the two is deterministic. Indeed, if a
and b are independent then they commute and we get:

ϕ(a2)ϕ(b2) = ϕ(a2b2) = ϕ(abab) = ϕ(a2)ϕ2(b) + ϕ2(a)ϕ(b2)− ϕ2(a)ϕ2(b),

which is equivalent to[
ϕ(a2)− ϕ2(a)

][
ϕ(b2)− ϕ2(b)

]
= 0.

This is true only if at least one of the two terms is zero or, equivalently, if
the variance of one of the two random variables is zero.

Before going a little further into the understanding of freeness, the next
section brings some practicality to the topic, showing how abstract free
random variables may represent special classes of random matrices.

2.3.2 Asymptotic freeness of random matrices

The notions described in the previous sections should be enough to sense
that free probability may result very helpful in studying the spectra of sums
and products of some random matrices. At that purpose, it has already
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been mentioned that the ∗-algebra of N ×N random matrices with complex
entries forms a non-commutative probability space together with the natural
functional ϕN (·) = 1

N Etr[·], where the expected value is computed with
respect to the distributions of the matrix entries and is assumed to be finite.
We still need to show which matrices can be assimilated to free random
variables.

Definition 2.6. Let {A1, . . . ,Am} be a collection of N×N complex random
matrices and let μN

A1,...,Am
be their joint ∗-distribution as non-commutative

random variables, i.e. the collection of all their joint moments. Formally, the
set of random matrices {A1, . . . ,Am} is said to be asymptotically free as
N → +∞ when μN

A1,...,Am
tends to the joint ∗-distribution of m free random

variables or, equivalently, when the joint moments tend to the joint moments
of m free random variables. More generally, given the disjoint sets of indeces
I1, . . . ,Im, the sets of random matrices {Ai, i ∈ I1}, . . . , {Ai, i ∈ Im} form
an asymptotically free family if any collection of random matrices, each one
chosen from a different set, is asymptotically free.

Asymptotic freeness of some particular classes of random matrices aroused
the interest in Voiculescu’s research on free probability and free operators.
It was the same Voiculescu who first showed that any collection of Hermitian
Gaussian random matrices together with the set of deterministic diagonal
matrices form an asymptotically free family as the dimension grow indefi-
nitely [80]. The following theorem appears, together with its proof, in [81]
and expresses that first result in a more general form.

Theorem 2.1. Let A(N, s) be a collection of N ×N random matrices with
complex entries denoted by a(i, j;N, s), 1 ≤ i, j ≤ N , indexed by s ∈ N.
Assume a(i, j;N, s) = a∗(j, i;N, s) (the matrices are Hermitian) and that

{a(i, j;N, s) : 1 ≤ i ≤ j ≤ N, s ∈ N}
is a set of independent random variables such that

E[a(i, j;N, s)] = 0 1 ≤ i ≤ j ≤ N, s ∈ N

E
[|a(i, j;N, s)|2] =

1

N
1 ≤ i ≤ j ≤ N, s ∈ N

sup
1≤i≤j≤N

E
[|a(i, j;N, s)|m] = O

(
N−m/2

)
m ≥ 1, s ∈ N.

Consider also the collection (D(N, t))t∈N
⊆ ΔN , where ΔN is the algebra of

N × N deterministic matrices with uniformly bounded spectral radius9 and
a limit eigenvalue distribution as N → +∞. Then, the family of sets({D(N, t) : t ∈ N}, {A(N, 1)}, {A(N, 2)}, . . . )

9The spectral radius of a square matrix is maximum among the moduli of its eigenval-
ues. If the matrix has infinite dimensions, the spectral radius is taken as the supremum
over all possible eigenvalues.
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is asymptotically free as N → +∞ and, moreover, the limit distribution of
each A(N, s) is a semicircle law.

This theorem implies that any Hermitian random matrix A(N, s1) sat-
isfying the conditions above is asymptotically free from any other similar
matrix A(N, s2) with independent entries. Furthermore, A(N, s1) is also
asymptotically free from any deterministic matrix in {D(N, t) : t ∈ N}. Ob-
serve that this does not mean in any way that two deterministic matrices
D(N, t1) and D(N, t2) are asymptotically free.

Example 2.9. Let A and B be two N × N Hermitian random matrices
such that the entries of

√
NA and

√
NB are independent, zero mean and

have bounded moments of all orders. Let D be a deterministic N × N
matrix satisfying the properties listed in the theorem. Then, as N → +∞,
the three matrices A,B and D become models for free non-commutative
random variables with respect to the usual functional ϕN (·) = 1

N Etr[·] and,
for instance,

1

N
Etr
[
AkDl

]→ 1

N
Etr
[
Ak
] 1

N
Etr
[
Dl
]
, (2.7)

1

N
Etr
[
AkDlBm

]→ 1

N
Etr
[
Ak
] 1

N
Etr
[
Bm
] 1

N
Etr
[
Dl
]
, (2.8)

for any k, l,m ∈ N and N → +∞. These joint moments, and more compli-
cated ones, can be derived by applying the freeness rules presented in the
previous section.

Reference [77] defines the so-called asymptotic freeness almost every-
where, by replacing convergence in expectation of the moments by almost
sure convergence. For example, if A and B are two matrices asymptotically
free almost everywhere, then

lim
N→+∞

1

N
tr
[
AkBl

]
=

1

N
Etr
[
Ak
] 1

N
Etr
[
Bl
]
,

almost surely and for all k, l ∈ N. Similarly to Theorem 2.1, there exist
classes of random matrices that can be shown to be asymptotically free
almost everywhere. However, to the best of the author’s knowledge, all
published results require more stringent conditions: typically, the distribu-
tion of the matrices should be multi-variate Gaussian or, more generally,
(bi-)unitarily invariant10. We include here the statement of [77, Theorems
4.3.5 and 4.3.11], which will be useful in Chapter 5:

10A N ×N random matrix U is unitarily invariant if its distribution is equal to that of
V1UV1, while is bi-unitarily invariant if its distribution is equal to that of V1UV2, for
any N × N unitary matrices V1,V2.
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Theorem 2.2. Let A(N, s) be an independent family of N × N unitarily
invariant Hermitian random matrices with complex entries, indexed by s ∈
N. Consider also the collection (D(N, t))t∈N

of N×N deterministic complex
matrices such that supN ‖D(N, t)‖ < +∞ for each t ∈ N (‖ · ‖ denotes
the operator norm) and (D(N, t)DH (N, t))t∈N

has a limit distribution as
N → +∞. If, for all s, A(N, s) converges in distribution (with respect to
1
N tr{·}) almost surely to a measure μs with real compact support, then the
family of sets({D(N, t),DH (N, t) : t ∈ N}, {A(N, 1)}, {A(N, 2)}, . . . )
is asymptotically free almost everywhere as N → +∞.

Theorem 2.3. Let A(N, s) be an independent family of N ×N bi-unitarily
invariant random matrices with complex entries, indexed by s ∈ N. Con-
sider also the collection (D(N, t))t∈N

defined in Theorem 2.2. If, for all s,
A(N, s)HA(N, s) converges in distribution almost surely to a measure μs

with positive real compact support, then the family of sets({D(N, t),DH (N, t) : t ∈ N},
{A(N, 1),AH (N, 1)}, {A(N, 2),AH (N, 2)}, . . . )

is asymptotically free almost everywhere as N → +∞.

2.3.3 Combinatorics and free probability: non-crossing par-

titions and free cumulants

The original definition of freeness given in Section 2.3.1 brought us some
interesting insights on free random variables. However, its requirements are
not easy to verify. What follows is a different but equivalent approach based
on combinatorics, due to R. Speicher [75,82]. Free cumulants are introduced:
they are polynomial expressions of the moments of random variables, much
more suitable to characterize freeness than the original moments.

Free cumulants are based on non-crossing partitions. Since the formal
definition of non-crossing partitions is not very self-explanatory, we will now
describe how they are built. For clarity’s sake, we will focus on the set of
the first n positive integers I = {1, . . . , n}: it is straightforward to extend
the definition to any finite ordered set. Recall that a partition π of I is
a collection of disjoint subsets, called “blocks”, I1, . . . ,Ir ⊆ I such that
I1 ∪ · · · ∪ Ir = I. To verify whether π is a non-crossing partition, we may
proceed as follows. First, write the elements of I in increasing order and
trace a vertical line under each one of them. Then, connect with a horizontal
line all the elements of the same block. If these arcs can be drawn without
crossing one another, then π is a non-crossing partition. Figure 2.4 depicts
an example of non-crossing partition as opposed to a generic one. Let NC (n)
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1 2 3 4 5 6

(a) {(1, 5, 6), (2, 3), (4)}

1 2 3 4 5 6

(b) {(1, 4, 6), (2, 3, 5)}.

Figure 2.4: Two examples of allowed (a) and forbidden (b) partitions in
NC (6).

1 2 3 4 5 6 71 2 3 4 5 6 7 1 2 3 4 5 6 71 2 3 4 5 6 7

Figure 2.5: Example of non-crossing partition and its complementa-
tion map: π = {(1, 2, 7), (3), (4, 6), (5)} (solid line) and K(π) =
{(1), (2, 3, 6), (4, 5), (7)} (dashed line), respectively.

denote the set of all non-crossing partitions of n elements. It can be shown
that its cardinality is given by the n-th Catalan number

Cn =
1

n

(
2n

n− 1

)
.

Another concept that will be useful in the following is the complemen-
tation map K(π) associated to the non-crossing partition π, which can be
derived from the graphical representation just introduced, see Figure 2.5.
Duplicate the elements of I, alternating the old and the new sets (the new
i-th element appears between the i-th and the (i + 1)-th elements of the old
set, while the new n-th element closes the sequence). Connect the new ele-
ments as described above, without intersecting lines of neither the new graph
nor the old one. The resulting partition is the complementation map of π.
The example of Figure 2.6 reports all the C4 = 14 non-crossing partitions,
together with their complementation maps, of NC (4).

Finally, to simplify equations below, let us introduce a notation for
the factorization of a moment according to a non-crossing partition. Let
a1, . . . , an be non-commutative random variables in the probability space
(A, ϕ). Given a particular non-crossing partition π = {I1, . . . ,Ir}, we will
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Figure 2.6: Non-crossing partitions (solid lines) and relative complementa-
tion maps (dashed line) of a four-element set.

write:

ϕπ[a1, . . . , an]
def
= ϕ

(∏
i∈I1

ai

)
· · ·ϕ

(∏
i∈Ir

ai

)
, (2.9)

where the multiplications on the right-hand side are made respecting the
increasing order of the indeces.

Free cumulants

As mentioned before, free cumulants (as classical cumulants) consist of poly-
nomial expressions of moments of random variables. More specifically, they
are built according to the following recursive definition.

Definition 2.7. Let a1, . . . , an be non-commutative random variables in the
probability space (A, φ). The joint free cumulant of a1, . . . , an, denoted by
kn(a1, . . . , an), is the solution to the system of equations

ϕ(a1 · · · an) =
∑

π∈NC (n)

kπ[a1, . . . , an]. (2.10)

In the last equation, we introduced the quantity kπ[a1, . . . , an] which
is a short notation for the multiplication of all the joint free cumulants
corresponding to the blocks of the non-crossing partition π. Specifically, if
π = {I1, . . . ,Ir} is the given partition and Ii = {ai,1, . . . , ai,|Ii|} its i-th
block, then

kπ[a1, . . . , an]
def
=

r∏
i=1

k|Ii|(ai,1, . . . , ai,|Ii|), (2.11)
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where, as before, k|Ii|(ai,1, . . . , ai,|Ii|) is the joint free cumulant of the vari-
ables ai,1, . . . , ai,|Ii|. This factorization is analogous to what was done in
(2.9) for the joint moments.

Note that (2.10) can be applied recursively to compute the cumulants
kn(·) for all possible n ∈ N, as shown below for n = 1, 2 and 3:

n = 1. In this case one simply has ϕ(a1) = k{(1)}(a1), implying

k1(a1) = ϕ(a1);

n = 2. The C2 = 2 possible non-crossing partitions with two elements are
{(1, 2)} and {(1), (2)}. Then, from (2.10) and (2.11),

ϕ(a1, a2) = k{(1,2)}[a1, a2]+k{(1),(2)}[a1, a2] = k2(a1, a2)+k1(a1)k1(a2).

Comparing to the previous result, k2(·) is given by

k2(a1, a2) = ϕ(a1, a2)− ϕ(a1)ϕ(a2);

n = 3. The set I = {1, 2, 3} presents C3 = 5 possible non-crossing parti-
tions, namely {(1, 2, 3)}, {(1, 2), (3)}, {(1), (2, 3)}, {(1, 3), (2)} and {(1),
(2), (3)}. Hence, the recurrence relation (2.10) is written

ϕ(a1a2a3) = k{(1,2,3)}[a1, a2, a3] + k{(1,2),(3)}[a1, a2, a3] +

+ k{(1),(2,3)}[a1, a2, a3] + k{(1,3),(2)}[a1, a2, a3] +

+ k{(1),(2),(3)}[a1, a2, a3]

= k3(a1, a2, a3) + k2(a1, a2)k1(a3) + k1(a1)k2(a2, a3) +

+ k2(a1, a3)k1(a2) + k1(a1)k1(a2)k1(a3).

After some algebra and recalling the two previous results, we have

k3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1a2)ϕ(a3)− ϕ(a1)ϕ(a2a3)−
− ϕ(a1a3)ϕ(a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).

As mentioned above, the introduction of free cumulants is motivated by
strong interconnection with freeness. Indeed, as classic independence results
in a straightforward factorization of joint moments, free independence may
be re-defined very simply in terms of free cumulants.

Theorem 2.4 ([82, Theorem 4.2.1]). Let (A, ϕ) be a non-commutative prob-
ability space and consider the unital subalgebras A1, . . . ,Am ⊂ A. Then, the
two following statements are equivalent:

1. A1, . . . ,Am are free and
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2. the mixed joint free cumulants vanish, i.e.

kn(a1, . . . , an) = 0

for any n ≥ 2 and any collection of random variables a1 ∈ Aj(1), . . . ,
an ∈ Aj(n) chosen from at least two different subalgebras (i.e. j(1) =
j(2) = · · · = j(n) is the only forbidden case).

The proof of this theorem is out of the scope of this dissertation, but
it practically consists in showing, thanks to (2.10), that the conditions on
the moments in Definition 2.5 translate into the vanishing condition on the
cumulants given in the theorem. Observe that here we do not require the
random variables to be zero mean, nor consecutive random variables to
belong to two different subalgebras. These “weaker” assumptions make
the characterization of freeness in terms of cumulants much more useful
in practice.

The relation between free cumulants and free independence goes much
further than Theorem 2.4. However, the purpose here was just to offer
some better understanding of free probability. Once again, the interested
reader is referred to [75,82]. For completeness, we just report a result were
the complementation map K(π) of a non-crossing partition π comes into
play. Let {a1, . . . , an} and {b1, . . . , bn} be two sets of free non-commutative
random variables. The, we have

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC (n)

kπ[a1, a2, . . . , an]ϕK(π)[b1, b2, . . . , bn],

where ϕπ[·] and kπ[·] are defined in (2.9) and (2.11), respectively.

2.3.4 Additive and multiplicative free convolutions of mea-

sures

In classical probability theory, independent random variables are interesting
objects. Indeed, their joint distribution and moments can be factorized in
terms of the individual ones. Furthermore, simple formulas exist to compute
the distribution of their sums and products. Similarly, in a non-commutative
probability space, the previous sections showed that the joint moments of
free random variables can derived from the individual moments. To con-
clude the analogy, it still remains to give practical ways to compute the
distributions of sums and products of free random variables. These tools
represent the solution to our problem of characterizing the spectra of sums
and products of large random matrices, whose asymptotic interpretation as
free non-commutative random variables as been given in Section 2.3.2.
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Additive free convolution

Take two free random variables a and b in the non-commutative space (A, ϕ)
and denote their distribution with μa and μb. Recall that, in this context, a
distribution does not need to be a function but just a collection of moments.
The new random variable a + b also belongs to (A, ϕ) and has a proper
distribution. Indeed, since ϕ is linear and {a, b} are free, previous results

imply that the moments of a+b, i.e. ϕ
(
(a + b)n

)
, can be expressed in terms

of the singular moments ϕ(as) and ϕ(bt), for n, s, t ∈ N. In short, we say
that the distribution μa+b of a + b results from the additive free convolution
of μa and μb and we write

μa+b = μa � μb. (2.12)

The name “convolution” is imported from classic probability theory, where
the density of the sum of two independent random variables can be expressed
as the convolution of their individual densities. In free probability, however,
this operation is highly non-linear, as it will be evident later on.

Observe that (2.12) is only the definition of the operator � and lacks op-
erative value. In practice, additive free convolution is carried out by means
of the so-called “R-transform”, which translates the additive convolution of
two distribution into the sum of their transformations. In classic probabil-
ity theory, a similar result is obtained by considering the logarithm of the
Fourier transform of the probability density function.

R-transform. Consider the random variable a with distribution μa and
k-th order moment mk = ϕ(ak). The Stieltjes transform of μa is the formal
power series

mμa(z) = z−1 +

+∞∑
k=1

mkz
−1−k ∈ C[[z−1]]. (2.13)

Observe that this definition of the Stieltjes transform coincides with Defi-
nition 2.2 when the distribution μa can be expressed as a real function and
has compact support. The R-transform of the distribution μa is defined as

Rμa(z) = Kμa(z)− z−1, (2.14)

where Kμa(z) is the formal inverse of mμa(z), i.e.

mμa(Kμa(z)) = Kμa(mμa(z)) = z. (2.15)

It certainly exists since the constant term of mμa(z) is zero.

As mentioned above, we introduce the R-transform as a tool to character-
ize the distribution of the sum of free random variables. More specifically, if a
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and b are two free non-commutative random variables, then the R-transform
of μa+b is the sum of the R-transforms of μa and μb or, equivalently,

Rμa+b
(z) = Rμa�μb

(z) = Rμa(z) + Rμb
(z). (2.16)

This result shows, on the one hand, that the additive convolution � is a
commutative operator. More importantly, it also represents an operative
approach for computing the distribution of the sum of random variables.
Indeed, knowing the R-transform of a distribution, its Stieltjes transform
can be computed thanks to (2.15) and (2.14); then, the Stieltjes inversion
formula can be applied.

The equivalence between additive convolution and sum of R-transforms
can be easily proven after realizing that the R-transform can be written as
the formal power series

Rμa(z) =

+∞∑
n=0

ka
n+1z

n,

where ka
n = kn(a, . . . , a) is the n-th free cumulant of a as defined in the

previous section. Now, if a and b are two different free random variables,
Theorem 2.4 implies

ka+b
n = kn(a + b, . . . , a + b) = kn(a, . . . , a) + kn(b, . . . , b) = ka

n + kb
n.

The result in (2.16) follows straightforwardly.

Example 2.10. Let ν be a distribution with density fν(x) = 1
2 [δ−1(x) +

δ1(x)], where δt(x) is the Dirac delta centered in x = t. Then, it can be
shown that its R-transform is Rν(z) = (

√
1 + 4z2 − 1)/(2z). Furthermore,

by inverting 2Rν(z), we can compute the density of the distribution s = ν�ν,
namely

fs(x) =
1

π
√

4− x2
, for |x| ≤ 2 and 0 otherwise.

This is called the arcsin law.

This example is very representative of the non linearity of the additive
free convolution: “summing” to itself a discrete distribution we end up with
an absolutely continuous density with measurable support.

To conclude, it is worth introducing the following results, even though
they are not strictly related to the contents of this thesis. Briefly, in free
probability, the semicircular law (see Example 2.3) takes the role assumed
by the Gaussian distribution in classic probability theory.

Example 2.11. Let denote with γa,r the semicircle distribution of mean a
and variance r2/4, whose density is

fγa,r(x) =
2

πr2

√
r2 − (x− a)2, for |x− a| ≤ r and 0 otherwise.
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Since its R-transform is

Rγa,r(z) = a +
r2

4
z,

it is straightforward that

γa,r � γb,s = γa+b,
√

r2+s2,

for any two free random variables with distribution γa,r and γb,s, respectively.

This example shows that the sum of semicircular-distributed free random
variables is also semicircular-distributed, similarly to what happens when
adding Gaussian independent random variables. The following results brings
this analogy further.

Theorem 2.5 (Free central limit theorem). Let (A, ϕ) be a non-commutative
probability space and a1, a2, · · · ∈ A a sequence of free and identically dis-
tributed random variables with zero mean and variance σ2, i.e. ϕ(ai) = 0
and ϕ(a2

i ) = σ2 for all i. Then, the random variable SN , defined as

SN =
a1 + · · ·+ aN√

N
,

tends as N → +∞ to a random variable with distribution a semicircle law
with zero mean and variance σ2.

Proof. A very simple proof can be given in terms of the R-transform. Recall
that, in non-commutative probability, convergence in distribution is equiva-
lent to convergence of the moments and, hence, of the free cumulants. Also
recall that the free cumulants kn are the coefficients of the R-transform
expressed as a formal power series. Then, since Rλa(z) = λRa(λz), one
obtains

RSN
(z) = R(a1+···+aN )/

√
N (z) =

=
1√
N

Ra1+···+aN

( z√
N

)
=

1√
N

N∑
i=1

Rai

( z√
N

)
=

=
√

NRai

( z√
N

)
=
√

N
(
k1 +

z√
N

k2 +
z2

N
k3 + . . .

)
,

where the third equality follows from freeness and the fourth one from the
fact that the ai’s are identically distributed. Now, since k1 = ϕ(ai) = 0 and
k2 = ϕ(a2

1)− ϕ2(ai) = σ2, one has

RSN
(z)

N→+∞−→ zσ2,

which is the R-transform of a centered semicircle law with variance σ2.
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This theorem is the equivalent in free probability of the classic central
limit theorem (see, e.g., [59, Section 27]), which states the convergence to
a Gaussian random variable of a sum of an infinite number of independent
and identically distributed random variables. We can hence conclude that
the semicircle law is the true analog of the Gaussian distribution in non-
commutative probability theory.

Multiplicative free convolution

Similarly to what has just been done for the additive convolution, the mul-
tiplicative free convolution is defined as the binary operator that produces
the distribution of the product of two free random variables a and b from
their individual distributions μa and μb, respectively. Denoting by � such
an operator, we write

μab = μa � μb.

This definition is justified by the fact that the moments of ab are polynomial
functions of the moments of a and b alone.

Next, the S-transform is introduced. This is the main tool to compute
the result of a multiplicative convolution in practice: as with the Mellin
transform in classic probability theory, the S-transform of μab is simply the
product between the S-transforms of μa and μb. Observe that this result
implies the commutativity of the operator �.

S-transform Let a be a non-commutative random variable with distribu-
tion μa and moments mk, k = 1, 2, . . . Consider the formal power series

ψμa(z) =

+∞∑
k=1

mkz
k = z−1mμa(z−1)− 1 ∈ C[[z−1]],

where mμa(z) is the Stieltjes transform of μa as defined in (2.13). Since
ψμa(z) has no constant term, its formal inverse χμa(z) exists and is well-
defined:

χμa(ψμa(z)) = ψμa(χμa(z)) = z.

The S-transform of the distribution μa is then defined as

Sμa(z) =
1 + z

z
χμa(z).

As mentioned before, the main property of the S-transform is to translate
the multiplicative free convolution into a trivial multiplication, that is

Sμab
(z) = Sμa�μb

(z) = Sμa(z)Sμb
(z).
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2.4 Conclusions

This chapter tried to give a reasonable introduction to three important
mathematical topics, namely the convergence of sequences of random vari-
ables, random matrix theory and free probability. Particular attention was
given to the last two subjects, whose results are not widely known. The
main idea was to show that some classes of large random matrices are “nice”
mathematical objects since (i) their spectra present a deterministic charac-
terization and (ii) eigenvalues of sums and products of matrices can be easily
computed.

Most of the results will be useful to solve technical problems in the
following chapters. Few others, as the free central limit theorem, will not
find direct application. However, they have been mentioned to give a more
general and complete overview of the fascinating theories of random matrices
and free probability.





Chapter 3

Randomized i.i.d. LD-STBC

for the Relay Channel: the

Proposed AF Scheme and its

Spectral Efficiency

The ultimate aim of every communications system is to transfer information
from one point (or multiple points) of the space to another location (or other
locations), where that information is demanded. Consider a simple point-
to-point system as the one depicted in Figure 3.1. It is desirable that a user
having access to the output signal Y be able to reconstruct the information
described by the input signal X. Then, efforts should be made to maximize
the mutual information I(X;Y ), that is to minimize the uncertainty about
X knowing Y . Obviously, communications costs like, for instance, power
consumption and allocated resources must be taken into account. From a
thorough analysis of communications systems, it can be shown that I(X;Y )
depends both on some system-related quantities (e.g., the channel quality
or the amount of noise) and on the model used to generate the signal X.
The channel capacity is hence defined as

C = max
pX(x)

I(X;Y ),

where pX(x) is the distribution of the random process that models the input
signal X.

The channel capacity is hence the theoretical maximum transmission
rate that can be achieved on the channel. According to this definition, the
capacity of the general relay channel is still unknown. As mentioned in
Chapter 1, there exist results for some special cases (e.g. [14, 35, 40]), but
we still do not fully understand which rates may be achieved by introducing
relays to aid point-to-point communications.

43
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Communications
System

X Y

Figure 3.1: Block diagram of a basic point-to-point communications system.

This chapter does not pretend to solve that issue. Instead, we will in-
troduce a specific relaying architecture and compute its spectral efficiency.
Similarly to the channel capacity, the spectral efficiency is also defined as
the maximum achievable mutual information (normalized with respect to
the occupied resources) between input and output system signals. However,
it takes into account implementation details. More specifically, we will con-
sider different coding rates at the relays and different receiver schemes at
the destination.

3.1 System description

The system analyzed in this dissertation is the classical relay channel as
presented, for instance, in [24,29,39,55,83]: a source (or transmitter) com-
municates with a destination supported by a set of half-duplex relays. In
particular, this chapter focuses on the amplify-and-forward (AF) relaying
strategy, which is more general. Indeed, the decode-and-forward (DF) re-
sults presented in the following chapter can be easily derived from the AF
ones by, for instance, considering unitary unnoisy source–relay channels.

As a result of the half-duplex assumption, communications occur in two
phases or time-slots, depicted in Figure 3.2:

1. the source broadcasts a message to the relays and the destination;

2. the relays linearly transform the received noisy samples and forward
them to the destination, while the source remains silent1.

The destination will combine the signals received in both time-slots and esti-
mate the original information. Two different receivers will be presented and
compared in terms of spectral efficiency: the optimal maximum-likelihood
(ML) receiver and the linear minimum-mean-square-error (LMMSE) filter.
The system is also compared to the direct link in order to identify under
which conditions relaying is superior to conventional transmission.

The main difference with respect to previous results is the signal process-
ing at the relays. As explained in Section 1.3, the main idea is to introduce a
distributed randomized linear-dispersion space-time block code (LD-STBC)

1This two-phase protocol without source transmitting in phase two is often referred to
as orthogonal relaying.
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Time slot 1
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Figure 3.2: The two-phase transmission scheme.

which allows exploiting diversity while being flexible and suitable for a dy-
namic system where the number of active relays continuously varies in time.
More specifically, the l-th relay (l = 1, . . . , L, with L the total number of
relays) is assigned its particular N × K linear-dispersion matrix Cl which
linearly transforms the K-symbol source vector s into N new symbols to be
forwarded to the destination. We will denote by α = K/N the coding rate,
which also coincides with the ratio between the lengths of the two phases
(the bandwidth of all links is kept constant). Intuitively, the system spectral
efficiency depends on α, since this parameter tunes the weight of source and
relay contributions at the destination.

Observe that each column of Cl spreads the relative element of s over the
following N relay channel accesses, opening to a DS/CDMA2 interpretation
of the coding scheme. For this reason, we will often refer to the coding
matrices as spreading matrices and to their columns as spreading sequences
or signatures.

3.1.1 Signal model

In time-slot 1, the source transmits the vector of K complex i.i.d. symbols
s = [s1, s2, . . . , sK ]T , each one with zero mean and variance E[|sk|2] = Ps.
The l-th relay gets a noisy copy through the uplink channel hul: rl = huls+
nul, with nul the additive noise. Similarly, being hs the direct source–
destination channel and n1 the relative noise, the destination receives d1 =
hss + n1. In time-slot 2, each relay multiplies the received samples by the
complex amplification factor gl and by the N ×K signature matrix Cl; the
N resulting symbols are then sent to the destination through the downlink
channel hdl. Thus, the signal received in the second phase can be expressed
as: d2 =

∑L
l=1 glhdlClrl + nd, where nd denotes the additive noise at the

destination. Replacing rl by its expression, the global signal model is

d =

[
d1

d2

]
=

[
hsIK

C̃Ψ̃H̃u

]
s +

[
n1

C̃Ψ̃nu + nd

]
; (3.1)

2Direct-sequence code division multiple access.
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where:

• C̃ = [C1 C2 · · · CL] collects all the signature matrices;

• Ψ̃ = Ψ⊗ IK . Ψ = diag{g1hd1, g2hd2, . . . , gLhdL} is a diagonal matrix
where the l-th entry glhdl is the equivalent downlink channel coefficient
for relay l;

• H̃u = hu ⊗ IK , with hu = [hu1 hu2 · · · huL]T ;

• nu = [nT
u1 nT

u2 · · · nT
uL]

T
.

All the channels are assumed to be independent and affected by frequency-
flat, quasi-static fading, i.e. channel coefficients remain constant over all
the message transmission. All the noises are modeled as additive white
Gaussian noise (AWGN), with n1 ∼ CN (0, σ2

dIK), nu ∼ CN (0, σ2
uIKL) and

nd ∼ CN (0, σ2
dIN), independent of one another. We will work under the

hypothesis of global perfect channel state information at the receiver: the
destination knows (in magnitude and phase) the channel coefficients of all
the source–relay, relay–destination and source–destination links, besides the
noise variances. On the contrary, relays and source do not have any channel
state information (one can assume the existence of an error-free feedback
channel to inform the source about the maximum supported rate).

The coding matrices

The N -chip-long sequences cl,k, columns of the matrices Cl, and hence of

the matrix C̃, are composed by i.i.d. random elements with zero mean, vari-
ance 1/N and bounded moments (the exact distribution is not important).
Recall that randomness only models the sequence generation: after system
initialization, the matrices Cl remain fixed and are known at the receiver.
Moreover, observe that each matrix Cl is a block of an LD-STBC [84].

To justify further this choice for the spreading sequences, let us briefly
analyze two special cases: (i), Cl = IK ,∀l, i.e. relays do not apply any code
and, (ii), C̃ is a KL×KL orthogonal matrix. For the signal model in (3.1),
it is straightforward to show that the spectral efficiency (in nat/s/Hz) in the
two cases will be, respectively:

I(i) =
1

2
ln

(
1 +

Ps

σ2
d

|hs|2 +
Ps|
∑L

l=1 glhdlhul|2

σ2
u

∑L
l=1 |glhdl|2 + σ2

d

)
, (3.2)

I(ii) =
1

1 + L
ln

(
1 +

Ps

σ2
d

|hs|2 +

L∑
l=1

Ps|glhdlhul|2
σ2

u|glhdl|2 + σ2
d

)
. (3.3)

In the first case, the channel is not properly accessed: the numerator in-
side the logarithm of equation (3.2) shows how cooperation can be poten-
tially useless. Indeed, contributions can generally combine destructively,
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unless the relays have perfect knowledge of both uplink and downlink chan-
nel phases. In the literature [24, 29, 39, 83], it is common to assume that
relays simply fix the power gain |gl|2 to meet some power constraint.

On the contrary, with orthogonal codes (3.3), relay contributions always
sum up constructively. However, as the number of relays increases, the
orthogonality constraint drastically reduces the spectral efficiency due to the
presence of the factor 1/(1 + L), fraction of degrees of freedom effectively
employed. We will see that our randomly generated LD-STBC results in a
coherent sum of relay contributions while allowing us to limit the waste of
resources.

The noise

For the sake of clarity, let us summarize the characteristics of the final noise
affecting the signal at the receiver, which can be expressed as

n =

[
n1

C̃Ψ̃nu + nd

]
.

This noise, even if it is still a Gaussian process with zero mean, is not white
anymore due to a colored component introduced by the correlation among
relay signatures. Indeed, the covariance matrix can be expressed as

E[nnH ] =

[
σ2

dIK 0
0 R

]
;

with R = σ2
uC̃Ψ̃Ψ̃HC̃H + σ2

dIN .

3.2 The maximum-likelihood receiver

This section deals with the assumption of maximum-likelihood reception at
the destination, which maximizes the spectral efficiency. Generally, the ML
receiver needs to be implemented as an exhaustive search among all the
possible source messages. However, the linear-dispersion structure of the
considered codes allows for more efficient decoding techniques (e.g. sphere
decoding [85]) as explained in [84].

For the MIMO-like signal model in (3.1), it is well known that the maxi-
mum spectral efficiency is theoretically achieved by random Gaussian source
coding and may be expressed in nat/s/Hz by the formula

IAF,ML =
1

N + K
ln det

(
IK + Ps

[
hsIK

C̃Ψ̃H̃u

]H[
σ2

dIK 0
0 R

]−1 [
hsIK

C̃Ψ̃H̃u

])
,

(3.4)
(see, e.g., [10]). A direct analysis of this expression is not straightforward,
due to its matrix formulation and to the dependence on the particular re-
alization of the linear-dispersion matrices. Simplifications can be sought in
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the asymptotic domain: letting the number of source symbols K and the
spreading-sequence length N grow without bound but with constant coding
rate α = K/N (0 < α < +∞), one can show that |IML−I iid

AF,ML| → 0 almost
surely (with probability 1), where

I iid
AF,ML =

1

1 + α

[
α ln

(
1 +

Ps

σ2
d

|hs|2
)

+

+ α
L∑

l=1

ln
1 + λlφ1

1 + |glhdl|2φ2

+ ln
φ2

φ1
+

σ2
d

σ2
u

(φ1 − φ2)

]
(3.5)

is the deterministic asymptotic equivalent of the spectral efficiency (the proof
is given in the appendix). The following quantities have been defined:

• {λl}Ll=1 are the eigenvalues of ΨΨH + Ps/σ2
u

1+Ps|hs|2/σ2
d

Ψhuh
H
u ΨH ;

• φ1 is the unique positive solution to

φ1 =

(
σ2

d

σ2
u

+ α
L∑

l=1

λl

1 + λlφ1

)−1

; (3.6)

• φ2 is the unique positive solution to

φ2 =

(
σ2

d

σ2
u

+ α

L∑
l=1

|glhdl|2
1 + |glhdl|2φ2

)−1

. (3.7)

Asymptotic equivalents are very useful in practice, since they turn out
to be good approximations of the finite reality. Observe that there is no
direct reference to K, N or to the codes in the expression of the asymptotic
spectral efficiency, which depends only on the coding rate α and on the
channel coefficients.

The coefficients φ1 and φ2 do not have an evident physical meaning.
However, they are related to the interference generated by the relays when
they receive useful signal plus noise (φ1, see also the comments on equation
(3.12) in Section 3.3) or only noise (φ2): indeed, φ1 converges to φ2 when
Ps → 0.

Unfortunately, equation (3.5) does not clarify whether relay and inter-
ference contributions sum up constructively or destructively with the direct
one. Indeed, nothing can be said about the aggregate sign of the last three
terms. On the one hand, it can be easily shown that φ1 ≤ φ2: it is enough
to notice that the unique positive solution to

φ =

(
z + α

L∑
l=1

al

1 + alφ

)−1

(3.8)
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is decreasing in any of the parameters al (if, without loss of generality, we
let |g1hd1|2 ≤ |g2hd2|2 ≤ · · · ≤ |gLhdL|2 and λ1 ≤ λ2 ≤ · · · ≤ λL, one has
|glhdl|2 ≤ λl, see Appendix 3.A.3). On the other hand, nothing can be said
when comparing λlφ1 and |glhdl|2φ2. The problem of whether relays are
effectively helpful in increasing the link reliability is addressed in the next
section.

3.2.1 Comparison with the direct link

The introduction of relays may potentially lead to some drawbacks. Indeed,
the available degrees of freedom are not properly exploited since only K
symbols are transmitted during K + N channel accesses. For this reason,
one should evaluate whether the diversity benefits introduced by the relays
compensate for the losses just discussed. For this purpose, we will now
compare the spectral efficiency (3.5) with the one of the direct link, namely
Is = ln(1 + Ps|hs|2/σ2

d).

Intuition suggests that the direct link channel gain |hs|2 would be the
determining parameter: whenever this channel is good, the receiver can
detect the information correctly and there is no need for relaying. The
following results confirm this idea.

The horizontal asymptote

For an exhaustive study of the problem, one should identify which conditions
must be satisfied for Î = I iid

AF,ML− Is to be positive. Unfortunately, a math-

ematical analysis of Î is not a simple task, mainly because of the involved
expressions of φ1 and φ2 and their dependence on all the other parameters.
Simpler expressions can be found for α → ∞. In this regime, indeed, it is
straightforward to show that I iid

AF,ML tends to Is: the larger α, the longer
time-slot 1 will be with respect to time-slot 2, i.e. relays will transmit for a
very short time compared to the source. Studying how I iid

AF,ML approaches
the horizontal asymptote Is (independent of α) leads to a sufficient condi-
tion for the superiority of relaying: if Î tends to zero from above, continuity
implies that there exists a finite α for which I iid

AF,ML > Is and, thus, for
which relaying is convenient.

From (3.8), one can show that φ = (α
∑L

l=1 al)
−1

+ o
(
α−1

)
for α → ∞

and hence

φ1 =
1

α
∑L

l=1 λl

+ o
(
α−1

)
, φ2 =

1

α
∑L

l=1 |glhdl|2
+ o
(
α−1

)
,

which implies

lim
α→∞αÎ1 = − ln

(
1 +

Ps

σ2
d

|hs|2
)

+ ln

∑L
l=1 λl∑L

l=1 |glhdl|2
.
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This means that relaying is convenient if∑L
l=1 λl∑L

l=1 |glhdl|2
> 1 +

Ps

σ2
d

|hs|2

or, equivalently, if

Ps

σ2
u

L∑
l=1

|hul|2

1 +
(∑

m�=l |gmhdm|2
)

/|glhdl|2
>

(
1 +

Ps

σ2
d

|hs|2
)

Ps

σ2
d

|hs|2. (3.9)

The last expression has been derived using the fact that (see Appendix
3.A.3)

L∑
l=1

λl =

L∑
l=1

|glhdl|2
⎛⎝1 +

Ps

σ2
u
|hul|2

1 + Ps

σ2
d

|hs|2

⎞⎠ . (3.10)

Observe that the left-hand side of (3.9) is a weighted sum of the relay uplink
signal-to-noise ratios (SNR’s), namely Ps|hul|2/σ2

u; the weight associated
with the l-th relay increases as its downlink equivalent gain |glhdl|2 becomes
larger with respect to the other relays. The right-hand side, instead, is a
quadratic function of the direct-link SNR. As expected, whenever the direct
channel is bad with respect to those of the relays, the proposed scheme
performs better than a point-to-point transmission. Note that condition
(3.9) is only sufficient and nothing can be said about its necessity (I iid

AF,ML

can theoretically approach the asymptote from below even if there exist a
finite α for which I iid

AF,ML > Is).

For the cases where relaying is convenient, it would be interesting to
establish which is the best time-sharing strategy, i.e. the value of the coding
rate α that maximizes the spectral efficiency. Once again, the complexity of
(3.5) makes this issue particularly involved. In the next section we will look
for some more insights in the one-relay case.

The one-relay case

When considering a single relay, the asymptotic expressions simplify consid-
erably. First of all, neglecting all trivial subscripts, one can write

λ =

(
Ps|hu|2/σ2

u

1 + Ps|hs|2/σ2
d

+ 1

)
|ghd|2,

and φ1, φ2 are the positive solutions to second order equations, i.e. they
take the form

φ =
1

2az

[
a− αa− z +

√
(a− αa− z)2 + 4az

]
,
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cf. (3.8).
Hereafter we will show that, in this case, condition (3.9) is also necessary,

besides sufficient, and we will be able to compute the optimum α, even
though just numerically.

If only one relay is present, the sufficient condition for relaying superi-
ority is λ/|ghd|2 > 1 + Ps|hs|2/σ2

d or, equivalently

Ps

σ2
u

|hu|2 >

(
1 +

Ps

σ2
d

|hs|2
)

Ps

σ2
d

|hs|2. (3.11)

It is interesting, and somehow surprising, to note that this condition does not
depend on the relay downlink gain |ghd|2, meaning that the relay should be
used each time its uplink SNR is higher than the threshold given by (3.11),
whatever the quality of the relay–destination channel.

Lemma 3.1. Consider a system with one single AF relay implementing
the i.i.d. LD-STBC. Then, condition (3.11) is the necessary and sufficient
condition for the superiority of relaying over the direct link.

Proof. Sufficiency is already proven since (3.11) is simply the particulariza-
tion of (3.9) to the one-relay case.

To show that condition (3.11) is also necessary, let us consider the deriva-
tive of I iid

AF,ML with respect to α, namely

∂I iid
AF,ML

∂α
=

1

(1 + α)2

[
ln

(
1 +

Ps

σ2
d

|hs|2
)

+ ln
1 + λφ1

1 + |ghd|2φ2

− ln
φ2

φ1
−

− σ2
d

σ2
u

(φ1 − φ2)

]
+

1

1 + α

[(
α

λ

1 + φ1λ
− 1

φ1
+

σ2
d

σ2
u

)
︸ ︷︷ ︸

(a)

∂φ1

∂α
−

−
(

α
|ghd|2

1 + φ2|ghd|2
− 1

φ2
+

σ2
d

σ2
u

)
︸ ︷︷ ︸

(b)

∂φ2

∂α

]

=
1

(1 + α)2

[
ln

(
1 +

Ps

σ2
d

|hs|2
)

+ ln
1 + λφ1

1 + |ghd|2φ2

−

− ln
φ2

φ1
− σ2

d

σ2
u

(φ1 − φ2)

]
The second step follows since the terms (a) and (b) are null due to (3.6) and
(3.7), respectively.

The sign of the derivative is obviously given by the sign of

Γ(α) = ln

(
1 +

Ps

σ2
d

|hs|2
)

+ ln
1 + λφ1

1 + |ghd|2φ2

− ln
φ2

φ1
− σ2

d

σ2
u

(φ1 − φ2).
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This is still difficult to study, but one can reason as follows. First of all,
note that both φ1 and φ2 tend to σ2

u/σ2
d for α → 0, hence Γ(α) tends to

ln
(
1 + Ps

σ2
d

|hs|2
)

+ ln
σ2

d
/σ2

u+λ

σ2
d
/σ2

u+|ghd|2 , which is always greater than zero since

λ > |ghd|2. The derivative of Γ(α) can be shown to be

Γ′(α) = −(1 + α)

⎡⎢⎣ 1(
1+λφ1

λφ1

)2
− α

− 1(
1+|ghd|2φ2

|ghd|2φ2

)2
− α

⎤⎥⎦ ,

which is always negative since λ > |ghd|2 implies λφ1 > |ghd|2φ2. Then,
Γ(α) is monotonically decreasing in α.

Summarizing, Γ(α) is positive in α = 0 and monotonically decreasing.

Besides, for α → +∞, Γ(α) tends to ln
(
1 + Ps

σ2
d

|hs|2
)
− ln(λ/|ghd|2), which

is positive if and only if λ < |ghd|2
(
1 + Ps

σ2
d

|hs|2
)
. Then, if (3.11) does not

hold, Γ(α) is always positive and I iid
AF,ML monotonically increases from 0 to

Is. Conversely, if (3.11) holds true, Γ(α) changes its sign only once from
positive to negative and I iid

AF,ML presents a maximum larger than Is. Note

that the zero of Γ(α) and, hence, the coding rate that maximizes I iid
AF,ML

can be found by binary search or other more efficient methods (e.g. Newton-
Raphson). These considerations imply (3.11) is the necessary and sufficient
condition for the superiority of relaying.

3.3 The LMMSE receiver

The ML receiver analyzed so far is optimal, meaning that it maximizes the
spectral efficiency at its output. However, it is non-linear and, thus, com-
putationally expensive. This section studies a sub-optimal solution, namely
the linear minimum-mean-square-error filter, which is known to be the lin-
ear receiver with the largest output signal-to-interference-plus-noise ratio
(SINR). Roughly speaking, the LMMSE receiver detects the information on
a symbol-by-symbol basis, instead of considering the entire message as a
whole, and no information is extracted from inter-symbol interference (the
interference generated by symbols other than the considered one because of
the non-zero cross-correlation of the signatures).

As mentioned in Section 3.1, it is not difficult to find analogies between
the presented coding scheme and DS/CDMA. Then, according to [86, 87],
the inter-symbol interference can be considered as Gaussian when K and
N are large enough. This fact implies that the output SINR of a LMMSE
filter is a sufficient statistic to characterize the performance of the system;
the spectral efficiency can be computed by means of the Shannon’s “ln(1 +
SINR)” formula and achieved by Gaussian source coding.
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3.3.1 Spectral efficiency

We compute now the SINR for a generic symbol, e.g. s1, without loss of
generality. For the transmission scheme d = as1 + nE, the LMMSE filter
and its output SINR are well known to be, respectively:

w =
Ps

1 + PsaHR−1
E a

R−1
E a, SINR = Psa

HR−1
E a;

where RE = E[nEnH
E ] is the covariance matrix of the equivalent noise. To

apply this result to our scheme, let us rewrite (3.1) as:

d =

⎡⎣ hs

0

C̃1Ψhu

⎤⎦ s1 +

⎡⎣ [n1]1
hss1 + [n1]2:K

C̄1Ψ̄H̄us1 + C̃Ψ̃nu + nd

⎤⎦ ,

where:

• s1 = [s2 s3 · · · sK ]T

• the columns of the N × L matrix C̃1 are the first columns of all the
relay signature matrices Cl;

• the matrix C̄1 is made up by the columns of C̃ that remain after
extracting C̃1;

• Ψ̄ = Ψ⊗ IK−1 and H̄u = hu ⊗ IK−1;

• n1 =
[
[n1]1 [n1]

T
2:K

]T
.

The resulting SINR is, thus,

SINRAF =
Ps

σ2
d

|hs|2 +
Ps

σ2
u

hH
u hu − Ps

σ2
u

hH
u

(
IL + ΨHC̃H

1 Q−1C̃1Ψ
)−1

hu,

with

Q = C̄1Ψ̄

⎛⎝ Ps

σ2
u

1 + Ps

σ2
d

|hs|2
H̄uH̄

H
u + IL(K−1)

⎞⎠ Ψ̄HC̄H
1 +

σ2
d

σ2
u

IN .

Once again, the SINR is a random quantity because function of the random
linear-dispersion matrices. However, its limit for K = αN tending to infinity
results in a deterministic quantity. Recalling that the number L of relays
is finite, [71, Theorem 7]3 can be applied to the L2 entries of C̃H

1 Q−1C̃1

to show that this matrix converges to φ1IL with probability 1, where φ1

3See also Lemma 2.1 and Example 2.5 with A = 0.
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and {λl}Ll=1 are exactly the same as in (3.6). The almost sure asymptotic
equivalent of the SINR is hence:

SINRiid
AF =

Ps

σ2
d

|hs|2 +
Ps

σ2
u

L∑
l=1

|glhdlhul|2
|glhdl|2 + 1

φ1

, (3.12)

where the dependence on the codes is concentrated in the coding rate α.
The contributions of the source and of each one of the L relays can be
clearly identified. Comparing the latter with the SNR of a single AF relay,

i.e. Ps|ghdhu|2
σ2

u|ghd|2+σ2
d

, we can state that the effect of the random signatures in the

LMMSE receiver is that each relay behaves as if it were the only AF relay in
the system, except for the downlink noise which increases from σ2

d to σ2
u/φ1

(from (3.6), φ1 < σ2
u/σ2

d).

Observe that all the source symbols will be received with the same
asymptotic SINR (3.12), which does not depend on the considered sym-
bol s1. Thanks to logarithm continuity, the asymptotic equivalent of the
spectral efficiency can be simply expressed as:

I iid
AF,LMMSE =

α

1 + α
ln(1 + SINRiid

AF) (3.13)

in nats per degree of freedom. A comparison with the two special cases in
(3.2) and (3.3) reinforces the considerations exposed in Section 3.1.1: ran-
dom codes, as orthogonal ones, obtain a coherent combination of relay con-
tributions and, at the same time, allow controlling the fraction of exploited
degrees of freedom. As it happened for the optimal receiver, however, the
coding rate α should be tuned to get the best tradeoff between α/(1 + α)
and SINRiid

AF, respectively an increasing and a decreasing function of α.

3.3.2 A sufficient condition for relaying superiority

Similarly to the ML receiver, a sufficient condition for the superiority of
relaying when employing the LMMSE receiver can be derived analyzing how
I iid
LMMSE converges to Is. Following the same steps as above, the following

system of conditions can be written:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ps

σ2
u

L∑
l=1

|hul|2

1 +
(∑

m�=l |gmhdm|2
)

/|glhdl|2
>

>

(
1 +

Ps

σ2
d

|hs|2
) ln

(
1 + Ps

σ2
d

|hs|2
)

1− ln
(
1 + Ps

σ2
d

|hs|2
) ,

Ps

σ2
d

|hs|2 < e− 1.

(3.14)
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Figure 3.3: Relaying is certainly convenient whenever the weighted sum of
the relay uplink SNR’s falls in the shadowed regions above the curves.

The first inequality simplifies to

Ps

σ2
u

|hu|2 >

(
1 +

Ps

σ2
d

|hs|2
) ln

(
1 + Ps

σ2
d

|hs|2
)

1− ln
(
1 + Ps

σ2
d

|hs|2
)

when only one relay is present.
In the LMMSE-receiver case, as in the ML one considered before, the

sufficient condition (3.14) compares the same weighted sum of the relay
uplink SNR’s with an increasing function of Ps|hs|2/σ2

d, the direct link SNR.
Here, however, the condition is weaker, in the sense that it leaves out a large
number of cases where relaying is convenient: simulation results show that
the condition is not necessary, not even in the single relay case. Intuitions
for this behavior can be found in Figure 3.3, which compares the regions
where conditions (3.9) and (3.14) are satisfied.

3.4 Numerical results

This section gives a numerical assessment of the theoretical results presented
in this chapter.

First of all, let us stress again the fact that the asymptotic equivalents
derived in the paper are excellent approximations of the finite reality. To il-
lustrate this fact, Figure 3.4 compares the asymptotic and the finite spectral
efficiencies (averaged out over 1000 instances of the spreading matrices), for
the two considered receivers and for α = 2.5. In both cases, it can be no-
ticed that there is no significant difference between the two curves, in spite
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Figure 3.4: Spectral efficiency as a function of Ps/σ
2
d for σ2

d/σ
2
u = 1, |hs|2 =

0.4, L = 1, |hu|2 = |ghd|2 = 1 and α = 2.5. The two curves marked
as “sims.” represent, for K = 5 and N = 2, the mean value over 1000
realization of the spreading matrices.

of having fixed K and N to very low values (5 and 2, respectively). The
following comments are hence based on the asymptotic results encountered
in the paper.

Figure 3.5 shows the asymptotic spectral efficiencies (3.5) and (3.13)
as functions of α, for different values of |hs|2. These curves confirm intu-
ition and the sufficient condition derived in Section 3.2.1: relays are useful
only when the direct link is weak and the receiver cannot reconstruct the
information only from the source contribution. Moreover, when relaying is
superior to the direct link, one can maximize the spectral efficiency by prop-
erly choosing α. In Section 3.2.1, for systems with one relay, it has been
shown that αmax can be found by binary search. Particular cases exist where
αmax can be expressed in closed form, as the low-power regime discussed in
[88].

In Section 3.3, the spectral efficiency is computed for the best possible
linear receiver, i.e. the LMMSE filter. The sub-optimality of this filter is
evident when looking at Figures 3.4 and 3.5. The performance loss with
respect to the optimal ML receiver is due to the fact that, in time-slot 2, the
LMMSE filter does not exploit the correlation among the symbols introduced
by the relay signatures. From Figure 3.4, however, it can be noted that the
two receivers behave very similarly for low transmitted power: indeed, it is
straightforward to show that

lim
Ps→0

1

Ps
I iid
AF,ML = lim

Ps→0

1

Ps
I iid
AF,LMMSE = İ(0)
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u = 1 and |hu|2 = |ghd|2 = 1. With these assumptions, the

threshold value of |hs|2 for relaying to be convenient is approximately 0.62.

with 0 < İ(0) < +∞. This result implies that the two receivers sustain
reliable communications while the normalized energy per bit takes values
as low as (Eb/N0)min = (ln 2)/İ(0), where N0 is the noise power spectral
density [88,89].

3.5 Concluding comments

This chapter has evaluated the instantaneous spectral efficiency of the pro-
posed coding scheme, for both the ML and the LMMSE receiver. We have
assumed AF relaying and full channel state information at the destination.
Furthermore, it has been shown that the system behaves as a deterministic
one when the dimensions K and N of the coding matrices grow indefinitely
but keeping constant the coding rate α = K/N .

Based on the asymptotic spectral efficiency, the relaying protocol has
been compared to the simple point-to-point transmission over the direct
link. A sufficient condition (which is also necessary in the single-relay case)
has been found for the superiority of relaying. As suggested by intuition,
relays should be employed only if the direct link is too weak to sustain a
reliable communication.

The main drawback of orthogonal relaying protocols as the one consid-
ered here is probably the fact the source remains silent in the second phase of
transmission, thus limiting the spectral efficiency. In [55], the same random-
ized LD-STBC is implemented also in non-orthogonal relaying , i.e. when the
source transmits N new symbols during phase two. Even though the paper
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shows that the non-orthogonal protocol is always superior to the orthogo-
nal one, this dissertation only considers orthogonal relaying. Indeed, the
resulting expressions of the spectral efficiency are simpler and it is easier to
follow with the analysis of the proposed distributed random linear-dispersion
coding scheme.

In spite of the encouraging results, time-invariant channels are not the
best assumption when dealing with relays. Indeed, typical wireless commu-
nications systems are usually affected by some kind of fading: as we will
see in the next chapter, it is in this situation that diversity plays a funda-
mental role, since it increases the probability to find a good path to convey
information from the source to the destination.

Appendix 3.A Proof of asymptotic results

In this appendix we will prove that (3.5) is the almost sure asymptotic
equivalent of the finite spectral efficiency (3.4).

To start with, equation (3.4) can be rewritten as:

IML =
α

1 + α
ln

(
1 +

Ps

σ2
d

|hs|2
)

+
1

N + K
ln det

⎡⎣IN +

+
σ2

u

σ2
d

C̃

⎛⎝Ψ̃Ψ̃H +

Ps

σ2
u

1 + Ps

σ2
d

|hs|2
Ψ̃H̃uH̃

H
u Ψ̃H

⎞⎠ C̃H

⎤⎦−
− 1

N + K
ln det

[
IN +

σ2
u

σ2
d

C̃Ψ̃Ψ̃HC̃H

]
(3.15)

after some algebra. Our problem reduces to studying the asymptotic be-
havior of the last two terms, which have the common structure ln det(IN +
zC̃T̃C̃H). The proof is based on the concepts introduced in Proposition 2.1
and Example 2.8.

3.A.1 General preliminaries

We will now study the function

θ(z) =
1

N
ln det

(
IN + zC̃T̃C̃H

)
, (3.16)

where C̃ is the coding matrix introduced in Section 3.1.1 and T̃ = T⊗ IK ,
being T a L×L deterministic, nonnegative-definite matrix with eigenvalues
{τl}L

l=1. In particular, the limit for K,N → ∞ with K/N → α (0 < α <
+∞) will be computed.

Since

θ(z) =
1

N
ln det

(
IN + zC̃T̃C̃H

)
=

1

N
ln det

(
IKL + zT̃1/2C̃C̃HT̃1/2

)
,
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it was shown in Example 2.8 that we can write

θ(z) =
KL

N

∫ z

0

(1

t
+

1

t2
m
(
−1

t

))
dt, (3.17)

where m(x) is the Stieltjes transform associated to the KL eigenvalues of
T̃1/2C̃HC̃T̃1/2, namely

m(x) =
1

KL
tr

([
xIKL − T̃1/2C̃HC̃T̃1/2

]−1
)

.

Let us define

f(x) =
x

1− Lα + Lαxm(x)
.

Then, with the change of variable x = −1
t , (3.17) can be further rewritten

as

θ(x) =

∫ −1/z

−∞

(
1

f(x)
− 1

x

)
dx. (3.18)

Asymptotically, i.e. for K = αN → ∞, and almost surely, m(x) is the
unique positive solution to

m(x) =
1

L

L∑
l=1

1

x− τl(1− Lα + Lαxm(x))

(see Example 2.6 and, for instance, [69]). Thus, f(x) satisfies:

x = f(x)

(
1− α

L∑
l=1

τl

τl − f(x)

)
. (3.19)

The derivative of f(x) is given by

f ′(x) =

(
1− α

L∑
l=1

(
τl

τl − f(x)

)2
)−1

.

Injecting (3.19) into (3.18) and writing the unity as 1 = f ′(x)/f ′(x), we
obtain

θ(z) =−
∫ −1/z

−∞

1

f(x)

α
∑L

l=1
τl

τl−f(x)

1− α
∑L

l=1
τl

τl−f(x)

(
1− α

L∑
l=1

(
τl

τl − f(x)

)2
)

f ′(x) dx

=−
∫ f(−1/z)

−∞

1

y

α
∑L

l=1
τl

τl−y

1− α
∑L

l=1
τl

τl−y

(
1− α

L∑
l=1

(
τl

τl − y

)2
)

dy, (3.20)

where we made the change of variable y = f(x).
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With the new change of variable s = −1/y, we have

θ(z) =

∫ φ(z)

0

α
∑L

l=1
τl

1+sτl

1− α
∑L

l=1
sτl

1+sτl

(
1− α

L∑
l=1

(
sτl

1 + sτl

)2
)

ds,

where φ(z) = −1/f(−1
z ) is the unique positive solution to

1 =
φ(z)

z
+ α

L∑
l=1

φ(z)τl

1 + φ(z)τl
. (3.21)

Writing

1− α

L∑
l=1

(
sτl

1 + sτl

)2

=1− α

L∑
l=1

sτl

1 + sτl
+ α

L∑
l=1

sτl

1 + sτl
− α

L∑
l=1

(
sτl

1 + sτl

)2

=1− α

L∑
l=1

sτl

1 + sτl
+ sα

L∑
l=1

τl

(1 + sτl)
2 ,

θ(z) can be reformulated as:

θ(z) =α

L∑
l=1

∫ φ(z)

0

τl

1 + sτl
ds +

∫ φ(z)

0

sα
∑L

l=1
τl

1+sτl
α
∑L

l=1
τl

(1+sτl)
2

1− α
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ds

=α
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ln[1 + φ(z)τl]− α

L∑
l=1
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0
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(1 + sτl)
2 ds−

−
∫ φ(z)

0

−α
∑L

l=1
τl

(1+sτl)
2

1− α
∑L

l=1
sτl

1+sτl

ds

=α
L∑

l=1

ln[1 + φ(z)τl] + α
L∑
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(
1

1 + φ(z)τl
− 1

)
−

− ln

[
1− α

L∑
l=1

φ(z)τl

1 + φ(z)τl

]
.

Comparing the last two terms of the last equation with (3.21), one ob-
tains the asymptotic almost sure expression of θ(z), namely

θ(z) = α

L∑
l=1

ln [1 + φ(z)τl] + ln

[
z

φ(z)

]
+

φ(z)

z
− 1.
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3.A.2 Asymptotic spectral efficiency

The previous result can be used to show that∣∣∣∣∣ 1

N
ln det

⎡⎣IN +
σ2

u

σ2
d

C̃

⎛⎝Ψ̃Ψ̃H +

Ps

σ2
u

1 + Ps

σ2
d

|hs|2
Ψ̃H̃uH̃

H
u Ψ̃H

⎞⎠ C̃H

⎤⎦−
−
[
α

L∑
l=1

ln(1 + φ1λl) + ln

(
σ2

u

σ2
dφ1

)
+

σ2
d

σ2
u

φ1 − 1

] ∣∣∣∣∣ a.s.−→ 0,

and∣∣∣∣∣ 1

N
ln det

[
IN +

σ2
u

σ2
d

C̃Ψ̃Ψ̃HC̃H

]
−

−
[
α

L∑
l=1

ln(1 + φ2|glhdl|2) + ln

(
σ2

u

σ2
dφ2

)
+

σ2
d

σ2
u

φ2 − 1

] ∣∣∣∣∣ a.s.−→ 0.

Both results hold almost surely for K = αN → ∞. The quantities φ1 and
φ2 are defined as in (3.6) and (3.7), respectively. It is now straightforward to
express the almost sure, deterministic asymptotic equivalent of the spectral
efficiency as in (3.5).

3.A.3 The eigenvalues of ΨΨH + χΨhuh
H
u ΨH

The coefficients {λl}L
l=1, which appear in the definition of (3.6), are the

eigenvalues of a matrix of the form ΨΨH + χΨhuh
H
u ΨH , with Ψ and hu

as in the system model. We will show now how to solve the characteristic
equation

f(λ) = det
(
ΨΨH + χΨhuh

H
u ΨH − λIL

)
= 0.

First of all, note that if the diagonal matrix ΨΨH has n entries equal
to ψ̂, with 2 ≤ n ≤ L, then λ = ψ̂ is a zero of order n − 1 of f(λ). It is
enough to write all the entries of the matrix ΨΨH + χΨhuh

H
u ΨH and note

that the n rows corresponding to ψ̂ only differ for a constant factor.
Knowing this, we can now focus on the case where ΨΨH − λIL is full

rank to seek for the other eigenvalues. One has:

det
(
ΨΨH + χΨhuh

H
u ΨH − λIL

)
= det

(
ΨΨH − λIL

) ·
· det

[
IL + χ(ΨΨH − λIL)

−1
Ψhuh

H
u ΨH

]
= det

(
ΨΨH − λIL

) ·
·
[
1 + χhH

u ΨH(ΨΨH − λIL)
−1

Ψhu

]
.
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Figure 3.6: Graphical solution of the equation χ
∑L

l=1
|glhdlhul|2
λ−|glhdl|2 = 1.

The only possible zeros are those of the second term, namely the solutions
to

0 = 1 + χhH
u ΨH(ΨΨH − λIL)

−1
Ψhu

= 1 + χ

L∑
l=1

|glhdlhul|2
|glhdl|2 − λ

. (3.22)

These solutions can be encountered graphically as in Figure 3.6, which also
shows that, taking |g1hd1|2 ≤ |g2hd2|2 ≤ · · · ≤ |gLhdL|2 and λ1 ≤ λ2 ≤ · · · ≤
λL, one has

|glhdl|2 ≤ λl < |gl+1hd(l+1)|2 for l = 1, . . . , L− 1

and

λL ≥ |gLhdL|2

Rewriting (3.22) in polynomial form, one can further show that

L∑
l=1

λl =

L∑
l=1

|glhdl|2
(
1 + χ|hul|2

)
,

where all possible λ’s (including those derived in the first step) have been
considered.



Chapter 4

Large-SNR Outage Analysis

of Relay Channels Employing

i.i.d. Randomized LD-STBC

In the previous chapter, we computed the spectral efficiency achieved by
two different receivers in an AF relay channel implementing the randomized
i.i.d. LD-STBC. For specific values of the channel coefficients, the spectral
efficiency represents the maximum information rate that can be sustained
free of decoding errors with indefinitely long source codes. Nevertheless, re-
lay networks and, more generally, most of wireless communications systems
are characterized by time-varying fading channels (we will only consider
frequency-flat fading, as opposed to frequency-selective one). Under this
assumption, the idea of maximum sustainable rate loses part of its meaning.
Indeed, for most of the statistical channel models, there exists a non-zero
probability of deep fading where no communications can be established at
any rate.

One possible way to evaluate the system performance under the fading
assumption is to consider the ergodic spectral efficiency, i.e. the expected
value of the spectral efficiency with respect to the channel distribution. This
quantity represents the mean transmission rate that results from transmit-
ting at a rate equal to the instantaneous spectral efficiency at every channel
realization (the channel coefficients are modeled as stationary ergodic ran-
dom variables1).

Observe that the ergodic spectral efficiency hides the real channel fluc-
tuations. For most applications, it is more interesting to know how often a
given rate cannot be achieved2.

1A stationary process is a stochastic process whose joint distribution does not change
when shifted in time. A stochastic process is said to be ergodic if its statistical properties
can be deduced from a single, sufficiently long sample.

2For more information about ergodic and outage capacity, please refer to, e.g., [1].
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Outage probability

In what follows, we are hence going to consider the spectral efficiency I
as a random quantity, since function of the random channel coefficients.
As mentioned in Section 3.1.1, all channels are assumed to undergo inde-
pendent, frequency-flat, quasi-static fading. This means that they can be
modeled by random variables that take on independent values at any new
source message. We will not make any special assumption on the proba-
bility distribution of the channel gains, except that they should be right-
continuous at zero3. The exponential distribution, which characterizes the
typical Rayleigh fading model, satisfies this hypothesis.

Now, the outage probability Pout(R) is defined as the probability that
the system cannot support a given target rate R, namely

Pout(R) = Pr[I < R].

Unfortunately, except for some very specific cases, it is difficult to derive
the distribution of the spectral efficiency and, thus, the outage probability.
For this reason, we will focus on a high SNR approximation and derive the
diversity order d (0 < d < +∞) and the outage gain κ (0 < κ < +∞) that
satisfy the following equation:

κ = lim
SNR→+∞

SNRdPout(R). (4.1)

The diversity order gives an idea of how fast the outage probability decays
when increasing the transmitted power.

On the other hand, when more power is available, one can also decide
to increase the information rate R (equivalently, to work at a higher κ).
Assuming that the target rate grows with the SNR as R = r ln SNR (r
being the multiplexing gain), the diversity–multiplexing tradeoff (DMT, see
[46]) is defined as

d(r) = − lim
SNR→+∞

ln Pout(r ln SNR)

ln SNR

and provides an intuitive idea about how the system shares its degrees of
freedom between diversity and multiplexing capabilities.

In what follows, we will study the large-SNR outage probability of the
asymptotic spectral efficiency I iid defined in Chapter 3. Note that this
is not necessarily the same as considering the asymptotic (in K and N)
behavior of the outage probability. Formally, interchanging the two limits
for K = αN → +∞ and for SNR → +∞ does not need to yield the
same result. However, based on simulation results, we conjecture that this
equality holds true.

3In other words, their density does not escape to infinity at zero
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As discussed in Section 3.1.1, one of the main issues of the AF relaying
strategy is the colored structure of the forwarded noise. For this reason, we
start the outage analysis from the decode-and-forward (DF) version of the
LD-STBC relaying protocol, where relays forward a perfect non-noisy copy
of the source message.

4.1 LD-STBC in DF relaying

The communications system considered here is totally analogous to the one
presented in Section 3.1.1, except that we replace AF relays by DF ones.
Then, at the end of the first transmission phase, relays will attempt to decode
the source message s: only the relays that successfully decode s participate
in the second transmission phase4. Let L = {1, . . . , L} be the set of all relays
and L′ ⊆ L the decoding subset, that is the set of relays that are allowed to
join phase two. The signal model for DF relaying (c.f. (3.1)) is given by

d =

[
d1

d2

]
=

[
hsIk

1√
α

∑
l∈L′ hdlCl

]
s +

[
n1

n2

]
, (4.2)

where we fixed |gl|2 = 1
α , l = 1, . . . , L, to force the mean relay symbol power

to be equal to Ps.

4.1.1 The ML receiver

With very similar reasoning as in Section 3.2, the spectral efficiency obtained
by the ML receiver from the signal model in (4.2) may be expressed as

I
(L′)
DF,ML =

1

K + N
ln det

(
IK+N +

+
Ps

σ2
d

[
hsIK

1√
α

∑
l∈L′ hdlCl

] [
h∗sIK

1√
α

∑
l∈L′ h∗dlC

H
l

])
,

and is obviously dependent on the decoding set L′. Using the results in
Appendix 3.A.1, it is not difficult to show that the asymptotic spectral

4For DF relaying, the analysis of the spectral efficiency and its comparison to the direct
link is not as meaningful as in the AF case (see Chapter 3), since we do not know how
many relays decode source information and participate in the second transmission phase.
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efficiency5 conditioned to the decoding set L′ is given by

I
(L′),iid
DF,ML =

1

1 + α

[
α ln

(
1 + ρ|hs|2

)
+

+ α ln

(
1 +

ρ
∑

l∈L′ |hdl|2
αβL′(1 + ρ|hs|2)

)
+ ln βL′ +

1

βL′
− 1

]
, (4.3)

where ρ = Ps/σ
2
d is the reference SNR and βL′ is the unique positive solution

to

βL′ = 1 + αβL′

ρ

1+ρ|hs|2
∑

l∈L′ |hdl|2

αβL′ + ρ

1+ρ|hs|2
∑

l∈L′ |hdl|2
, (4.4)

namely

βL′ =
α + αχ− χ +

√
(α + αχ− χ)2 + 4αχ

2α
.

To avoid cumbersome notation, we denoted by χ the term ρ

1+ρ|hs|2
∑

l∈L′ |hdl|2.

Outage analysis

Since the spectral efficiency depends on the decoding set, the outage prob-
ability has to be computed by means of the total probability theorem as
follows:

Pout(R) =
∑
L′⊆L

Pr[L′ is the decoding set] Pr
[
I

(L′),iid
DF,ML < R

]
,

where the sum is over all possible subsets of L. Without going into im-
plementation details, we will simply assume that the relay rl is part of the
decoding set whenever the source–relay link is not in outage, i.e. when

Iul =
α

1 + α
ln
(
1 + zρ|hul|2

) ≥ R,

which implies

Pr[L′ is the decoding set] =
∏
l∈L′

Pr[Iul ≥ R]
∏
l∈L′

Pr[Iul < R],

where L′ = L\L′ is the complement of the decoding set (see also [26,29,32]).

5By this, we mean that I
(L′)
DF,ML → I

(L′),iid
DF,ML almost surely when K, N → +∞, K/N → α

with 0 < α < +∞.
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Theorem 4.1. Consider the system described in Section 4.1 with L DF
relays employing the randomized LD-STBC. Assume maximum-likelihood
reception with full channel state information, resulting in the asymptotic
spectral efficiency (4.3). Then, the diversity order is independent of the
coding rate α and equal to the total number of transmitters (relays plus
source) L + 1. The outage gain is given by the integral

κ = lim
ρ→+∞ ρL+1Pout(R) = ζs

L∑
l=0

(
L

l

)(
ζuQ

z

)L−l

ζ l
d ·

·
∫

R
l+1
+

1
{
f(a, cl

1) < (1 + α)R
}

dadcl
1, (4.5)

where we have introduced the function

f(a, cl
1) = α ln(1 + a) + α ln

(
1 +

∑L
l=1 cl

αβL′(1 + a)

)
+ ln βL′ +

1

βL′
− 1

and the quantity

Q = exp
(1 + α

α
R
)
− 1.

Proof. See Appendix 4.A.1.

As mentioned in the introduction, the results of this chapter are de-
rived without considering any special probability distribution for the chan-
nel gains. The only required assumption is right-continuity in zero of the
density functions. Even though not necessary, but in order to simplify the
exposition, we assume all the uplink channels to be identically distributed.
Same thing for the downlink channels. In Theorem 4.1, and the following
ones, we refer to the quantities:

ζs = lim
x→0+

f|hs|2(x), ζu = lim
x→0+

f|hu|2(x), ζd = lim
x→0+

f|hd|2(x), (4.6)

where f|h|2(x) is the probability density function (pdf) of the channel gain

|h|2. This general model includes, for instance, the classical Rayleigh fading
case, where |h|2 is exponentially distributed with variance 1/ζ2. We also
employ the following notations for i ≤ j:

dxj
i = dxi dxi+1 . . . dxj;

f|h|2(x
j
i ) = f|h|2(xi)f|h|2(xi+1) . . . f|h|2(xj),

and, similarly, for any subset L′

dxL′ =
∏
l∈L′

dxl;

f|h|2(xL′) =
∏
l∈L′

f|h|2(xl).
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Figure 4.1: Outage gain as a function of α for DF relays, ML receiver,
unitary channel variances, z = 1 and R = 0.1 nat/s/Hz. This scheme
achieves full diversity order L + 1.

The interpretation of Theorem 4.1 is very simple: the necessary condi-
tion for the system to suffer an outage event is that each one of the relays
cannot communicate with either the source or the destination. Note that
full diversity is achieved even for large values of the coding rate (α � 1 or,
equivalently, K � N), which correspond to short source silences. However,
fixing α equal to a large value is not, in general, a good relaying strategy
since it does not minimize the outage gain. Unfortunately, this parameter
can be computed only by solving numerically the integral in (4.5) and the
task of minimizing such expression as a function of α is not an easy one.
However, numerical results as the three examples depicted in Figure 4.1 sug-
gest that the outage gain is a convex function of α with a minimum located
at a relative low value of α (around 2 in the reported examples).

4.1.2 The LMMSE receiver

Following the same guidelines as in Section 3.3, the LMMSE SINR for the
signal model in (4.2) can be expressed as:

SINR
(L′)
DF =

Ps

σ2
d

|hs|2 +
Ps

ασ2
d

(∑
l∈L′

h∗dlc
H
1,l

)
·

·
(

Ps/σ
2
d

α(1 + Ps|hs|2/σ2
d)

(∑
l∈L′

h∗dlc
H
1,l

)(∑
l∈L′

hdlc1,l

)
+ IN

)−1(∑
l∈L′

hdlc1,l

)
,

where the focus is on the first source symbol s1, without loss of generality.
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When we let K,N → +∞, K/N → α with 0 < α < +∞, the SINR
converges almost surely to a deterministic quantity. Given the decoding set
L′, the asymptotic LMMSE SINR is

SINR
(L′),iid
DF = ρ|hs|2 +

ρ

αβL′

∑
l∈L′

|hdl|2, (4.7)

with βL′ as in (4.4). As in the AF case, the proof is a direct application of
[71, Theorem 7].

Prior to considering the outage probability, let us recall the parameter

Q = exp
(1 + α

α
R
)
− 1, (4.8)

which is a function of α. Note that

I
(L′),iid
DF,LMMSE =

α

1 + α
ln(1 + SINR

(L′),iid
DF ) < R

if and only if

SINR
(L′),iid
DF < Q.

Now, let αth denote the unique positive solution to

αth = 1 +
1

Q(αth)
. (4.9)

The large-SNR analysis of the outage probability leads to the following re-
sult:

Theorem 4.2. Consider the system described in Section 4.1 with L DF re-
lays employing the randomized LD-STBC. Assume LMMSE reception with
full channel state information, resulting in the asymptotic SINR (4.7). Then,
the diversity order is a function of the coding rate α, namely

d =

{
L + 1 for α ≤ αth;

1 for α > αth.

With the definitions in (4.6), the closed-form expressions of the relative out-
age gains are given by

κ = lim
ρ→+∞ ρL+1Pout(R) = ζs

L∑
l=0

(
L

l

)(
ζuQ

z

)L−l (αζd)
l

l!
Pl, (4.10)

when α ≤ αth (coefficients {Pl : l = 1, . . . , L} are defined by (4.32) in
Appendix 4.A.2) and

κ = lim
ρ→+∞ ρPout(R) = ζs

(
Q− Q + 1

α

)
, (4.11)

when α > αth.
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Figure 4.2: Outage gain as a function of α for DF relays, LMMSE receiver,
unitary channel variances, z = 1 and R = 0.1 nat/s/Hz. The diversity order
is L + 1 on the left of the threshold and 1 on its right.

Proof. See Appendix 4.A.2.

As opposed to the ML receiver, the LMMSE filter may exploit diversity
only for low values of α. Nevertheless, since αth > 1, we can achieve full
diversity even if the source transmission phase is longer than the relaying
one. In other words, it is theoretically possible to transmit over more than
half of the total degrees of freedom and still achieve full diversity order L+1
with a linear receiver.

As before, the best relaying strategy could be identified by minimizing
the outage gain as a function of α. Unfortunately, even if (4.10) gives a
closed-form expression to compute κ, the analytical study of this function is
not an easy task and one should locate the optimal α numerically, by means
of curves as those in Figure 4.2.

On the other hand, the sub-optimality of linear receivers is evident for
α > αth. In this case, the source signal is excessively compressed at the
relays and the information recovered by the LMMSE filter is not enough to
improve diversity with respect to the direct link.

4.1.3 Diversity–Multiplexing Tradeoff

This section is devoted to the derivation of the DMT for the presented
scheme, for both ML and LMMSE receivers. For this purpose, it results
simpler to start from the LMMSE case. For the ML receiver, indeed, we are
only able to give bounds on the real DMT, due to the lack of a closed-form
expression for the outage gain.
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DMT for the LMMSE receiver

According to Theorem 4.2, the diversity behavior of the LMMSE receiver
depends on whether α is lower or higher than the threshold value αth. Obvi-
ously, this fact also has influence on the DMT. When computing the DMT,
we might as well consider αth = 1, since Q tends to infinity when R = r ln ρ
and ρ→ +∞.

Now, noting that6

Q
.
= ρ

1+α
α

r

and applying some algebra to the right-hand sides of (4.10) and (4.11), the
DMT for DF relays with LMMSE reception can be written as

dLMMSE(r) =

⎧⎪⎪⎨⎪⎪⎩
(L + 1)

(
1− 1 + α

α
r

)
for α ≤ 1,

1− 1 + α

α
r for α > 1.

It is straightforward to notice that the first line is maximized by α = 1
(i.e. K = N , the two transmission phases have the same duration), while
the second one is only maximized by letting α → +∞ (i.e. N = 0, the relays
never transmit and communications are supported by the direct link alone).
Equivalently, the best DMT is

d∗LMMSE(r) =

⎧⎨⎩ (L + 1)(1− 2r) for r ≤ L

2L + 1
,

1− r otherwise,
(4.12)

which is represented by the line connecting the three points (0, L + 1), A =
( L
2L+1 , L+1

2L+1) and (1, 0) in Figure 4.3. In practice, according to the DMT,
the best transmission strategy is to relay with a coding rate α = 1 when the
multiplexing gain is lower that L/(2L + 1). Conversely, it is preferable to
skip the relaying phase for higher values of r.

6We recall the definition of exponential equality from [46]: we write f(z)
.
= zd if

limz→+∞
ln f(z)

ln z
= d.
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Figure 4.3: DMT for DF relays, different relaying protocols. The best DMT
for random STBC’s with ML receiver is included in the shadowed region.

DMT for the ML receiver

As mentioned before, the exact DMT for DF relays with ML reception can-
not be easily derived in closed form because the outage gain is only known
as the solution to the integral in (4.5). For this reason, we will confine it
between two bounds.

Proposition 4.1. The DMT for DF relays with ML reception is upper-
bounded as follows:

dML(r) ≤ (L + 1)

(
1− 1 + α

α
r

)
.

Proof. By studying the first derivative of (4.3) as a function of βL′ (consid-
ered this time as a stand-alone variable, independent of α and the channels),
we readily see that

I
(L′),iid
DF,ML < I

(L′)
UP =

α

1 + α
ln

(
1 + ρ|hs|2 +

ρ

α

|L′|∑
l=1

|hdl|2
)

.

Observe that the right-hand side is the spectral efficiency that we would
obtain if it were always possible to build N orthogonal sequences of length
K, whatever values of K and N . Using similar arguments as in Appen-
dices 4.A.1 and 4.A.2, it is easy to prove that

lim
ρ→+∞ ρ|L

′|+1 Pr
[
I

(L′)
UP < R

]
= ζsζ

|L′|
d

α|L′|Q|L′|+1

(|L′|+ 1)!
.
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Using the exponential relation Q
.
= ρ

1+α
α

r, one can show

dML(r) = − lim
ρ→+∞

ln Pout(r ln ρ)

ln ρ

≤ − lim
ρ→+∞

ln
∑
L′ Pr[L′is the decoding set] Pr

[
I

(L′)
UP < R

]
ln ρ

= (L + 1)

(
1− 1 + α

α
r

)
,

which is the desired upper-bound.

The simplest lower-bound (and the best one among those we could figure
out) is the DMT of the LMMSE receiver, namely dML(r) ≥ dLMMSE(r). Note
that the two bounds coincide for α ≤ 1. Hence, in that situation,

dML(r) = (L + 1)

(
1− 1 + α

α
r

)
when α ≤ 1.

With a similar reasoning as above, the best DMT for the ML receiver can
be shown to satisfy

d∗LMMSE(r) ≤ d∗ML(r) ≤ (L + 1)(1− r),

and falls within the shadowed area of Figure 4.3.

4.1.4 Numerical results

In this section, the analytical derivations made above are complemented
with some numerical results. First, let us justify the choice of using the
asymptotic deterministic spectral efficiency as an approximation of the finite
reality. We have already seen with Figure 3.4 that the asymptotic spectral
efficiency is an excellent approximation of the mean behavior of the system.
As a further step, the points in Figure 4.4 represent the average spectral
efficiency (normalized with respect to the limit for K = αN → +∞), and
its standard deviation, obtained over one thousand different realization of
the coding matrices. The coding rate α = 4/3 is kept constant over the whole
experiment while the matrix dimensions grow proportionally to M , namely
K = 4M and N = 3M . Observe that, for codes of realistic dimensions, the
error is already acceptably small. For instance, at M = 10, the standard
deviation is already lower than 2%. Furthermore, a channel coherence time
of K+N = 70 channel accesses is not unrealistic: for example, a normal data
burst in the TDMA mode of GSM is 148 bits long7, which corresponds to 74

7The data burst is made of 3 tail bits, 57 data bits, 1 toggle bit, 26 training bits,
1 toggle bit, 57 data bits and 3 tail bits, which sums a total of 148 bits. Between two
consecutive bursts there is a guard time of 8.25 bits, leading to a total slot length of 156.25
bits or, equivalently, a slot time of 0.577 ms. The resulting raw bit rate is around 270
kilobits per second.



74 Chapter 4. Large-SNR Outage Analysis

0 5 10 15 20 25 30
M

0.9

1.0

1.1

Sp
ec

tra
l E

ff
ic

ie
nc

y

LMMSE
ML

Figure 4.4: Average spectral efficiency and standard deviation (normalized
with respect to the asymptotic value) over 1000 realizations of the coding
matrices. The coding rate α = 4/3 is kept constant while K = 4M and
N = 3M .

Gaussian-minimum-shift-keying symbols (see, e.g., [90, Chapter 3]). Quick
convergence to the limit motivates our decision to carry out the large-SNR
outage analysis based on the asymptotic spectral efficiencies (4.3) and (4.7).
Figure 4.5 compares simulation-based outage probability curves with the
respective high-SNR approximations.

Comparison to previous results

It is also interesting to compare the performance of the presented randomized
LD-STBC with those of two existing protocols, namely those presented by
J. N. Laneman et al. in [32]:

1. a TDMA-based repetition protocol where the relays in the decoding set
simply retransmit the K-symbol source vector s. Since relays trans-
mit one at a time (TDMA, time division multiple access), the total
duration of the relaying phase is LK channel accesses. According to
our notation and power constraint, the spectral efficiency is shown to
be

I(L′)
rep =

1

L + 1
ln
(
1 + ρ|hs|2 + ρ

∑
l∈L′

|hdl|2
)
,

for a given decoding set L′;
2. an orthogonal-STC-based protocol where relays re-encode the source

message according to a rate-1 (K information symbols over K channel
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Figure 4.5: Comparison between simulation outage and large-SNR approx-
imation for unitary channel variances, z = 1 and R = 0.1 nat/s/Hz.

accesses), full diversity-exploiting STC. Relays can then transmit at
the same time and, hence, the relaying phase lasts K channel accesses
as the source one. For the decoding set L′, the resulting spectral
efficiency is

I
(L′)
stc =

1

2
ln
(
1 + ρ|hs|2

)
+

1

2
ln
(
1 + ρ

∑
l∈L′

|hdl|2
)
.

Both protocols achieve full diversity and the outage gains are, respectively:

κrep =
(
e(L+1)R − 1

)L+1
ζs

L∑
l=0

(
L

l

)
ζ l
d(ζuz−1)

L−l

(l + 1)!

and

κstc =
(
e2R − 1

)L+1
ζs

L∑
l=0

(
L

l

)
ζ l
d(ζuz−1)

L−l
Al

(
e2R − 1

)
,

where

Al(t) =
1

(l − 1)!

∫ 1

0

wl−1(1− w)

1 + tw
dw (4.13)

and A0(t) = 1. The coefficients ζs, ζu and ζd are defined by (4.6). The
outage gains for one, two and three relays are reported in Figure 4.1 (all the
system assumptions are the same as those of the curves presented above).
Note that Laneman’s deterministic scheme offers some benefit at its specific
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Figure 4.6: Outage-probability comparison (large-SNR approximations) be-
tween Laneman’s protocols and random STBC’s, for 1 (a) and 2 (b) relays.
The system parameters are set as in Figures 4.1 and 4.2.
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coding rate α = 1. However, randomized LD-STBC can achieve lower out-
age gains at higher values of α, due to a better exploitation of the degrees of
freedom. Figure 4.6 compares the high-SNR approximations of the outage
probability obtained by Laneman with those derived above for the random-
ized LD-STBC (the coding rate α is chosen to minimize the outage gain).
Classic space-time codes lose something more than 0.5 dB with respect to
the proposed randomized coding scheme.

Reference [32] also gives the DMT for both schemes, namely:

drep(r) = (L + 1)[1− (L + 1)r]

and

dstc(r) = (L + 1)(1 − 2r), (4.14)

which are depicted in Figure 4.3 for comparison with the DMT’s of the
LD-STBC schemes computed above.

The main disadvantage of the repetition scheme is, thus, that the maxi-
mum achievable multiplexing gain, i.e. r = 1/(L+1) is inversely proportional
to the total number of relays. TDMA-based relaying protocols achieve full
diversity at the cost of a huge waste of degrees of freedom. The subopti-
mality is evident in Figure 4.3, where the the DMT of the TDMA-based
relaying protocol is shown to be always lower than the DMT of all the other
relaying schemes.

Note that result in (4.14) is given by Laneman as a lower-bound, i.e.
dstc(r) ≥ (L + 1)(1 − 2r). However, the equality can be shown straightfor-
wardly after solving the integral in (4.13):

∫ 1

0

wl−1(1− w)

1 + tw
dw =

= −1

t

∫ 1

0
wl−1 dw + (t + 1)

l∑
j=2

(
−1

t

)j ∫ 1

0
wl−j dw −

− (t + 1)

(
−1

t

)l ∫ 1

0

1

1 + tw
dw

= − 1

tl
+ (t + 1)

l∑
j=2

(
−1

t

)j 1

l − j + 1
+ (t + 1)

(
−1

t

)(l+1)

ln(t + 1).

The DMT of Laneman’s STC-based protocol is hence equal to the best DMT
obtained with LD-STBC and LMMSE receiver (see (4.12) and Figure 4.3).

As a last comment, let us remark that Laneman’s results about STC re-
lays are optimistic: indeed, they are obtained by assuming an ideal code with
rate 1. To the best of the author’s knowledge, when considering complex
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constellations, the only orthogonal STBC with unitary rate is the Alamouti
code for two transmit antennas. For instance, STC’s from orthogonal de-
signs [8], cited by Laneman in his paper, provide codes with rate 3/4 for
either 3 or 4 transmitters and codes with rate 1/2 for higher numbers of
transmitters. This means that, for a high number of relays (L ≥ 5), a more
realistic DMT for Laneman’s orthogonal-STC protocol would be

dstc(r) = (L + 1)(1 − 3r).

This DMT is also reported in Figure 4.3 (the “Realistic stc.” line) which
clearly shows that, in terms of DMT, the relaying schemes based on random-
ized LD-STBC performs better than those employing deterministic space-
time codes based on orthogonal designs.

4.2 LD-STBC in AF relaying

The techniques introduced in the previous section to analyze the outage
probability of DF relaying are now applied to the AF case. Recall that
all AF relays participate in the second phase and, hence, there is no need
to condition the outage probability on the decoding set. However, things
become quite more complicated.

For DF relaying, indeed, the presented results mainly agree with the intu-
ition that reliable communications can be established whenever at least one
relay has good channels both from the source (the relay belongs to the de-
coding set) and to the destination. The only exception arises when LMMSE
detection is combined to high coding rates (Theorem 4.2). Conversely, in
AF relaying, the intuition is lost due to the correlation introduced by the
randomized LD-STBC and by the forwarded colored noise. As expressed by
the following results, the coding rate α plays a fundamental role.

4.2.1 The ML receiver

As usual, we first consider the ML receiver, which was thoroughly described
in Section 3.2. We report here the resulting expression for the asymptotic
spectral efficiency, namely

I iid
AF,ML =

1

1 + α

[
α ln

(
1 + ρ|hs|2

)
+

+ α

L∑
l=1

ln
1 + λlφ1

1 + zρ|hdl|2
α(1+zρ|hul|2)φ2

+ ln
φ2

φ1
+ z(φ1 − φ2)

]
. (4.15)

Recall that the coefficients {λl}Ll=1 are the L eigenvalues of the matrix
ΨΨH + zρ

1+ρ|hs|2 Ψhuh
H
u ΨH , while φ1 and φ2 are the unique positive so-
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lutions to

φ1 =

(
z + α

L∑
l=1

λl

1 + λlφ1

)−1

(4.16)

and

φ2 =

(
z + α

L∑
l=1

zρ|hdl|2
α(1 + zρ|hul|2) + zρ|hdl|2φ2

)−1

, (4.17)

respectively. To simplify notation, we introduced z = σ2
d/σ

2
u. Furthermore,

as in the DF case, the relay gains
{|gl|2 : l = 1, . . . , L

}
, have been set to fix

the mean relay symbol power to Ps, namely

|gl|2 =
zρ

α(1 + zρ|hul|2)
. (4.18)

The large-SNR outage analysis of the asymptotic spectral efficiency above
leads to the following result:

Theorem 4.3. Consider the system described in Section 3.1.1, with L AF
relays employing the randomized LD-STBC. Assume maximum-likelihood
reception with full channel state information, resulting in the asymptotic
spectral efficiency (4.15). Then, the diversity order depends on the coding
rate α as

d =

⎧⎪⎨⎪⎩
L + 1 for α <

1

L− 1
,

M + 1 for
1

M
≤ α <

1

M − 1
,

with M = 1, . . . , L−1. The outage gain κ can be hence computed numerically
according to its definition (4.1).

Proof. Unfortunately, the formal proof is not completed yet. More specifi-
cally, some convergence results are proven pointwise only and not uniformly.
See Appendix 4.B for more details.

Even if the mathematical derivations are very tedious, the idea behind
the proof is very simple. Following the example of [33], a state is assigned
to each relay according to the quality of both its channels. Then, for all the
possible resulting partitions, the spectral efficiency is bounded to justify the
applicability of the Lebesgue’s dominated convergence theorem (LDCT), as
in Appendix 4.A.1, and the probability of the outage event is computed
for each possible partition. According to the value assumed by α, it turns
out that only some of the partitions bring meaningful contributions to the
outage probability, while the others can be neglected. These observations
yield some interesting insights on the results of Theorem 4.3:
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• When α = K/N < 1/(L−1), the contributions to the outage probabil-
ity only come from the partitions where each relay has either one of the
channels (uplink or downlink, but not both) in outage. The interpre-
tation is the following. When using orthogonal spreading sequences,
whose length would be at least N = LK, the system is equivalent to a
transmission over L + 1 parallel channels (same as time-division, see,
e.g., [32]), also counting the direct link. With random, non-orthogonal
signatures with N > K(L−1), the ML receiver still sees L+1 parallel
channels. Thus, the system undergoes an outage event only when all
the relays cannot support the required rate, because either of their
links cannot. The probability that deep fading affects both links for
some relays and only one link for all the others is negligible. The result-
ing outage gain can be computed according to its definition. Indeed,
applying the LDCT to (4.1), we can write

κ = lim
ρ→+∞ ρL+1Pout(R) =

L∑
k=0

(
L

k

)
ζsζ

k
uζL−k

d z−L ·

·
∫

R
L+1
+

1

{
fk

(
a,bk

1 , cL
k+1

)
< (1 + α)R

}
dadbk

1 dcL
k+1, (4.19)

where we used the definition

fk

(
a,bk

1 , c
L
k+1

)
=

= α ln

[
1 + a +

k∑
l=1

bl +
φ̄1

α

L∑
l=k+1

cl

]
+

− (1− αk) [1− ln(1− αk)]− (1− αk) ln
(
zφ̄1

)
+ zφ̄1.

Furthermore, writing

λ̄ =
1

α

∑L
l=k+1 cl

1 + a +
∑k

l=1 bl

,

φ̄1 is the unique positive solution to

φ̄1 =

⎧⎪⎪⎨⎪⎪⎩
[z−(1−α(k+1))λ̄]

2zλ̄

[
−1±

√
1 + 4zλ̄(1−αk)

[z−(1−α(k+1))λ̄]
2

]
k < L

1− αL

z
k = L.

(4.20)

Generally, the integral in (4.19) has to be computed numerically;

• If 1/M ≤ α < 1/(M − 1), with 1 ≤ M < L, the contributions to
the outage probability are brought about by the cases with exactly
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M relays with deep fading in the uplink. Their downlinks should not
experience outage. Same thing must hold for both channels of the
other L − M relays. This means that the source–relay link is the
dominant one in terms of outage:

1. If the source symbols are received by all relays with a high SNR,
then it is always possible to convey information to the destination
(except, of course, the case where all the downlinks and the direct
link are corrupted. This case, however, has very low probability
and should be accounted for only when α < 1/(L−1), see above);

2. Conversely, as α increases, there is a reduction in the minimum
number of badly faded uplink channels which is sufficient to gen-
erate the outage event. For instance, when the direct link is
corrupted and α ≥ 1, it is enough that one single relay, out of L,
receives a low-SNR signal for data transmission to fail.

The intuition for the second point is that the non-orthogonal random
coding employed in the presented scheme correlates the contributions
of the relays, as can be noticed in (4.15): the quantities φ1, φ2 and all
λl’s depend on the channels of the totality of the links (direct, source–
relay, relay–destination) of the system. Analogously to the previous
case, the outage gain is given by the computation of the following
integral (which needs to be computed numerically):

κ = lim
ρ→+∞ ρM+1Pout(R) =

(
L

M

)
ζsζ

M
u z−M ·

·
∫

R
L+M+1
+

1
{
g(a,bM

1 ,yL
1 ) < (1 + α)R

}
dadbM

1 f|hd|2(y
L
1 ) dyL

1 ,

where we defined

g(a,bM
1 ,yL

1 ) = α ln(1 + a) + ln
θ2

θ1
+ α

L∑
l=L−M

ln(1 + νlθ1)

− α
M∑

k=1

ln

[
1 + z

yk

α(1 + bk)
θ2

]
.

The quantities θ1 and θ2 are the positive solutions to the equations

α(M + 1)− 1 = α
L∑

l=L−M

1

1 + νlθ1
, (4.21)

αM − 1 = α

M∑
k=1

1

1 + zyk

α(1+bk)θ2
,
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with {νl}Ll=L−M being the M + 1 solutions to the following equation
in ν

M∑
k=1

bkyk

(1 + bk)ν − zyk

α

+
1

ν

L∑
k=M+1

yk =
α(1 + a)

z
.

4.2.2 The LMMSE receiver

According to the power constraint considered in this chapter, which implies
the relay gain in (4.18), the asymptotic LMMSE output SINR is given by

SINRiid
AF = ρ|hs|2 + z2ρ2

L∑
l=1

|hdlhul|2
zρ|hdl|2 + α

(
1 + zρ|hul|2

)
1
φ1

, (4.22)

with φ1 as defined in (4.16). Recalling the definition of Q as in (4.8),
the large-SNR analysis of the outage probability Pr

[
I iid
AF,LMMSE < R

]
=

Pr
[
SINRiid

AF < Q
]

leads to the following result:

Theorem 4.4. Consider the system described in Section 3.1.1, with L AF
relays employing the randomized LD-STBC. Assume LMMSE reception with
full channel state information, resulting in the asymptotic SINR (4.22).
Then, the diversity order depends on the coding rate α as

d =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L + 1 for α ≤ 1

L
,

M + 1 for
1

M + 1
< α ≤ 1

M
,

2 for 1 < α ≤ αth,

1 for α > αth,

with M = 1, . . . , L − 1 and where αth is the unique positive solution to
(4.9). The outage gain κ can be hence computed numerically according to
its definition (4.1).

Proof. As for the ML case, some convergence results are proven pointwise
only and not uniformly. See Appendix 4.C for more details.

This result is very similar to the one obtained in the previous section for
the ML receiver. Nevertheless, some aspects are worth remarking:

• As before, the diversity order decreases as the coding rate α becomes
larger. Since the LMMSE filter is suboptimal with respect to the ML
receiver, this fact is intuitive enough. Note, however, that the condi-
tions are stricter in this case. For instance, full diversity is achieved
only if α < 1

L , as opposed to α < 1
L−1 . In other words, the sub-

optimality of the linear receiver does not affect only the outage gain,
but also the capacity of exploiting spatial diversity. This is true at any
value of the coding rate;
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• For α ≤ 1
L the transmission is in outage if and only if all relays suffer

a deep fade in either of its channels. The cases where neither channels
of a same relay are good are negligible. The diversity order is given
by the following integral:

κ = lim
ρ→+∞ ρL+1Pout(R) =

L∑
k=0

(
L

k

)
ζsζ

k
uζL−k

d z−L ·

·
∫

R
L+1
+

1

{
a +

k∑
l=1

bl +
φ̄1

α

L∑
l=k+1

cl < Q

}
dadbk

1 dcL
k+1,

with φ̄1 as defined in (4.20);

• For 1
M+1 < α ≤ 1

M , with M = 1, . . . , L − 1, the only meaningful
contributions are those associated to the cases where exactly M uplink
channels experience a deep fade, while all the others have good quality.
As for the ML receiver, then, the critical link is the source–relay one.
Due to the signature correlation, a small number of relays receiving a
low-quality signal can slow down the transmission, even when all the
relay–destinations links are good. By means of the LDCT, the outage
gain is given by the solution to the integral:

κ = lim
ρ→+∞ ρM+1Pout(R) =

(
L

M

)
ζsζ

M
u z−M ·

·
∫

R
L+M+1
+

1
{
g(a,bM

1 ,yL
1 ) < Q

}
dadbM

1 f|hd|2(y
L
1 ) dyL

1 ,

where we have defined

g(a,bM
1 ,yL

1 ) = a + zθ1

M∑
l=1

blyl

zθ1yl + α(1 + bl)
+ z

θ1

α

L∑
l=M+1

yl

and θ1 is defined in (4.21);

• For 1 < α ≤ αth, the diversity order is two, meaning that it is enough
that one single link is corrupted to interrupt the communication, be-
sides the direct one. Discarding the situations whose probability de-
cays too fast as ρ → +∞, the outage gain is given by the cases where
one single relay has a bad uplink channel and L − 1 relays have bad
downlink channels, namely

κ = lim
ρ→+∞ ρ2Pout(R)

= Lζsζuz−1

∫
R2

+

1

{
a +

(1 + a)b

α(1 + a) + (α− 1)b
< Q

}
dadb

= L
ζsζu

z

{
Q2

2
− α− 1

α
(Q + 1)

[
Q +

Q + 1

α
ln

(
1− α

Q

Q + 1

)]}
.
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Only in the case where L = 1, another term has to be added, namely

ζsζd

z

∫
R2

+

1{a < Q}1
{

c <
αz(Q + 1)(Q − a)

1 + a− (α− 1)(Q− a)

}
dadc =

= ζsζd(Q + 1)

[
−Q− Q + 1

α
ln

(
1− α

Q

Q + 1

)]
,

which corresponds to the situation where the relay sees a good channel
from the source but undergoes a deep fade on the downlink channel;

• For α > αth, the information is carried only by the direct source–
destination link. Relays reduce the outage gain, though. Indeed, one
has

κ = lim
ρ→+∞ ρPout(R)

= ζs

∫
R+

1

{
a < Q− Q + 1

α

}
da

= ζs

(
Q− Q + 1

α

)
,

which vanishes as α → αth. Moreover, comparing the last outage-gain
expression with (4.11), it is evident that there is no difference between
AF and DF relays in this situation.

Figure 4.7 compares the diversity order d achieved by the two receivers
as a function of the coding rate α when L = 5.

4.2.3 The single-relay case

To give a general idea of the structure of the proofs to the previous results
(given in the Appendices 4.B and 4.C), we sketch here the case with one
single relay. This case is much simpler than the general one, mainly because
φ1 and φ2 can be computed explicitly as the positive root of a second-order
polynomial and the close-form expression for λ is (suppressing indices)

λ =

(
zρ|hu|2

1 + ρ|hs|2
+ 1

)
zρ|hd|2

α(1 + zρ|hu|2)
.

In what follows, we prove (without being completely rigorous) that

lim
ρ→+∞ ρdPout(R) = κ,

where the outage gain κ is finite and strictly positive and the diversity order
d is equal to either one or two, according to the results for the general case,
given in Theorems 4.3 and 4.4.

First, we define the four events
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Figure 4.7: Diversity order as a function of the coding rate α for L = 5 AF
relays.

E1 the system is in outage (i.e. I iid
AF,ML < R or SINRiid

AF < Q, according to

the receiver) and |hu|2 = O(ρ−1), |hd|2 > O(ρ−1) for ρ→ +∞;

E2 the system is in outage and |hu|2 > O(ρ−1), |hd|2 = O(ρ−1) for ρ → +∞;

E3 the system is in outage and |hu|2 > O(ρ−1), |hd|2 > O(ρ−1) for ρ → +∞;

E4 the system is in outage and |hu|2 = O(ρ−1), |hd|2 = O(ρ−1) for ρ → +∞.

Note that the four events are disjoint and, thus, Pout(R) =
∑4

i=1 Pr[Ei].
Then, we study the probability of each event, namely

lim
ρ→+∞ ρd Pr[Ei] =

= lim
ρ→+∞ ρd

∫
R3

+

1{Ei}f|hs|2(x)f|hu|2(w)f|hd|2(y) dxdw dy. (4.23)

Event E1

With the change of variables a = ρx and b = zρw, one has

λ =

(
b

1 + a
+ 1

)
zρy

α(1 + b)
→ +∞

when ρ → +∞. As a result, it is straightforward to show that

φ1, φ2 →
⎧⎨⎩

0 for α > 1;

1− α

z
for α ≤ 1
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and that, for α > 1,

λφ1,
zρy

α(1 + b)
φ2 → 1

α− 1
.

Knowing these facts, the outage event E1 can be shown to be equivalent to

E ′1,ML : α ln(1 + a) + min{1, α} ln

(
b

1 + a
+ 1

)
< (1 + α)R,

E ′1,LMMSE : a +
b(1 + a)

1 + a + max{0, α − 1}(1 + a + b)
< Q,

in the limit for ρ → +∞, for the ML receiver and the LMMSE receiver,
respectively. It is evident that 1{E ′1,ML} represents a finite volume and
(4.23) can be computed by means of the LDCT:

lim
ρ→+∞ ρ2 Pr[E1,ML] =

=
1

z
lim

ρ→+∞

∫
R3

+

1{E1,ML}f|hs|2
(

a

ρ

)
f|hu|2

(
b

zρ

)
f|hd|2(y) dadbdy =

=
ζsζu

z

∫
R2

+

1{E ′1,ML}dadb.

On the other hand, after some algebra, E ′1,LMMSE can be rewritten in
three different ways according to the value of the coding rate α:

• when α ≤ 1, one has E ′1,LMMSE : a + b < Q and

lim
ρ→+∞ ρ2 Pr[E1,LMMSE] =

ζsζu

z

∫
R2

+

1{E ′1,LMMSE}dadb

=
ζsζu

z

Q2

2
;

• when 1 < α ≤ αth, the outage event is

E ′1,LMMSE : a < Q and b <
α(Q− a)(1 + a)

1 + Q− α(Q− a)
.

Thus, the contribution to the outage gain is given by

lim
ρ→+∞ ρ2 Pr[E1,LMMSE] =

ζsζu

z

∫
R2

+

1{E ′1,LMMSE}dadb =

=
ζsζu

z

{
Q2

2
+

α− 1

α
(Q + 1)

[
−Q− Q + 1

α
ln

(
1− α

Q

Q + 1

)]}
;
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• if α > αth, the outage event does not depend on b, namely

E ′1,LMMSE : a < Q− Q + 1

α
.

Hence,

lim
ρ→+∞ ρPr[E1,ML] =

=
1

z
lim

ρ→+∞

{∫
R+

1{E1,ML}f|hs|2
(

a

ρ

)
da ·

·
∫

R+

f|hu|2(w) dw

∫
R+

f|hd|2(y) dy

}
= 0.

The underlined term vanishes because of the definition of E1.

Event E2

With the change of variables a = ρx and c = zρy one has, for ρ→ +∞:

λ → c

α(1 + a)
, φ1 → φ̄1 < +∞,

φ2 → 1

z
, λφ̄1 =

1− zφ̄1

α− 1 + zφ̄1
.

Note that the last equation implies zφ̄1 > 1 − α. The limit of the spectral
efficiency is hence

lim
ρ→+∞(1 + α)I iid

AF,ML = α ln(1 + a) + α ln α +

+ zφ̄1 − ln(zφ̄1)− 1− α ln(zφ̄1 + α− 1).

From the definition of φ1, one obtains

1

zφ̄1
= 1 +

αc

αz(1 + a) + zφ̄1c
.

Solving the last equation with respect to c, the outage event E2,ML is equiv-
alent to

E ′2,ML : c <
αz(1 + a)

γ
(

α
1−γ − 1

) .

The quantity γ, with max{0, 1 − α} < γ < 1, can be computed as

γ = f−1
0 ((1 + α)R − α ln(1 + a)),

where f−1
0 (·) is the inverse of

f0(t) = t− ln t− α ln(t + α− 1) + α ln α− 1,
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monotonically decreasing in t for max{0, 1 − α} < t < 1.
Again, 1{E ′2,ML} represents a finite volume and the limit in (4.23) is

finite and can be computed with the LDCT:

lim
ρ→+∞ ρ2 Pr[E2,ML] =

ζsζd

z

∫
R2

+

1{E ′2,ML}dadc.

When considering the LMMSE receiver, the results depend on the coding
rate as in the previous event:

• if α ≤ αth, the outage event is equivalent to

E ′2,LMMSE : a < Q and c <
z(Q + 1)(Q − a)

1 + Q− α(Q− a)
.

Thus, the contribution to the outage gain is given by

lim
ρ→+∞ ρ2 Pr[E2,LMMSE] =

ζsζd

z

∫
R2

+

1{E ′2,LMMSE}dadc =

= ζsζd(Q + 1)

[
−Q− Q + 1

α
ln

(
1− α

Q

Q + 1

)]
;

• when α > αth the outage event depends on a only and, analogously to
E1,LMMSE, one has

lim
ρ→+∞ ρPr[E2,LMMSE] = 0

Event E3

This case does not bring any contribution when employing the ML receiver
since, with both the relay channels “not small”, the spectral efficiency grows
without bound, i.e. 1{E3,ML} = 0, for ρ large enough.

On the contrary, the LMMSE receiver must be analyzed with more at-
tention:

• for α ≤ αth, the SINR is always larger than Q for ρ large enough and
1{E3,LMMSE} = 0, which implies no contribution to the outage gain;

• if α > αth, then the outage event is equivalent to

E ′3,LMMSE : a < Q− Q + 1

α
,

which implies

lim
ρ→+∞ ρPr[E3,LMMSE] =

= lim
ρ→+∞

∫
R3

+

1{E3,LMMSE}f|hs|2
(

a

ρ

)
f|hu|2(w)f|hd|2(y) dadw dy =

= ζs

(
Q− 1 + Q

α

)
.
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Figure 4.8: Single relay: outage gain as a function of the coding rate α for
unitary channel variances, σ2

d/σ
2
u = 1 and target rate R = 0.1 nat/s/Hz.

Event E4

The contribution of this event is negligible. Indeed, with the change of
variables a = ρx, b = zρw and c = zρy, the event E4 has a finite volume and

lim
ρ→+∞ ρ2 Pr[E4] =

ζsζuζd

z2
lim

ρ→+∞
1

ρ

∫
R3

+

1{E4}dadbdc = 0

for both the receivers.

Figure 4.8 depicts the outage gain obtained by adding the contributions
of the four cases (only the region with diversity order two is represented for
the LMMSE receiver).

Comparison with the DF strategy

In Figure 4.8, the outage gain obtained by one DF relay according to the
results of the previous section is reported as a term of comparison. We can
notice that, for both receivers, the AF strategy works better than the DF one
only for low values of the coding rate, namely for α lower than two, approx-
imately. Intuition suggests the following explanation. When the signatures
are long enough (i.e. α is small), the interference generated by the forwarded
noise is not so heavy and the receiver may always extract information from
the relay message. Conversely, when α is large, the interference is so strong
that the message from an AF relay barely contributes at the receiver. In
this case, it is hence better to use the DF strategy: relays transmit only
when they could decode the source message but do not forward any noise.

Figure 4.8 also reports the outage gain given by repetition coding, i.e.
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C = IK and α = 1, namely

κAF =
1

2
ζs

(
ζd +

ζu

z

)(
e2R − 1

)2
, κDF = ζs

(
ζd

2
+

ζu

z

)(
e2R − 1

)2
,

for AF and DF strategy, respectively. We can observe that the LD-STBC
performs slightly worse at α = 1. Indeed, when there is only one relay in the
system, space-time coding is not necessary since there is no multiple-channel
access. Furthermore, randomized LD-STBC introduces some inter-symbol
interference due to its lack of orthogonality. However, for the DF strategy,
the Figure 4.8 shows that the outage gain can be improved by adopting
randomized LD-STBC at the relay. Indeed, since the relay contribution
is complementary to the direct-link one, the relay may send a compressed
version of the message (i.e. α > 1) and still achieve diversity. In this way, we
can better exploit the system degrees of freedom and minimize the outage
gain.

4.3 Conclusions

In this chapter, we have followed the study of distributed randomized LD-
STBC. More specifically, for the asymptotic (large linear-dispersion matri-
ces) deterministic spectral efficiencies derived in the previous chapter, we
have characterized the outage probability in the large-SNR regime by com-
puting the diversity order and the outage gain.

According to these results, L DF relays always achieve full diversity
order L + 1, except when the suboptimal LMMSE receiver is used together
with a large coding rate. Furthermore, a comparison with previous works
has shown interesting benefits. Indeed, even though the randomness of the
codes introduces some interference with respect to orthogonal STC, the LD-
STBC can achieve lower outage gains. This is due to its flexibility, that is the
possibility of choosing coding rates higher than one, which better exploits
the available degrees of freedom.

The AF relaying strategy, instead, cannot get all the benefits from ran-
domized LD-STBC. Indeed, full diversity order is obtained only for very long
signatures and decays as the coding rate increases (see Figure 4.7). This is
mainly due to the colored noise forwarded by the relays.

Once again, we believe that these results are very representative of prac-
tical systems with not-so-large coding matrices. For instance, Figure 4.5
shows how the approximations derived in this chapter match the simulated
outage probability of a system with signature length N = 30.
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Appendix 4.A Proofs for the DF relaying strategy

4.A.1 Proof for the ML receiver

As explained in Section 4.1.1, we will resort to the total probability theorem
to study the outage probability:

Pout(R) =
∑
L′⊆L

Pr[L′ is the decoding set] Pr
[
I

(L′),iid
DF,ML < R

]
. (4.24)

Using the second definition in (4.6), it is straightforward to show that

Pr[Iul < R] = Pr

[
|hul|2 <

Q

zρ

]
= ζu

Q

zρ
+ o

(
1

ρ

)
and Pr[Iul ≥ R] = 1 + o(1), for ρ → +∞. Then, for very large ρ, the
probability of the decoding subset L′ can be approximated as

Pr[L′ is the decoding subset] =

(
ζu

Q

zρ

)L−|L′|
+ o

(
1

ρL−|L′|

)
, (4.25)

where | · | is the set cardinality.

The second factor can be written as follows:

Pr
[
I

(L′),iid
DF,ML < R

]
=

= E
[
1
{
I

(L′),iid
DF,ML < R

}]
=

∫
R
|L′|+1
+

1
{
I ′(x,yL′ ; ρ) < (1 + α)R

}
f|hs|2(x)f|hd|2(y

′
L) dxdyL′

= ρ−|L
′|−1

∫
R
|L′|+1
+

1
{
I ′(a, cL′) < (1 + α)R

}
f|hs|2

(
a

ρ

)
f|hd|2

(
c′L
ρ

)
dadcL′,

where 1{·} is the indicator function. We have also defined

I ′(x,yL′ ; ρ) = α ln(1 + ρx) + α ln

(
1 +

ρ
∑

l∈L′ yl

αβL′(1 + ρx)

)
+ ln βL′ +

1

βL′
− 1

and we made the change of variables a = ρx and cl = ρyl, ∀l ∈ L′.
Now, let us introduce the quantities

I ′1 = α ln(1 + a) ≥ 0;

I ′2 = α ln

(
1 +

∑
l∈L′ cl

αβL′(1 + a)

)
≥ 0;

I ′3 = ln βL′ +
1

βL′
− 1 > 0,



92 Chapter 4. Large-SNR Outage Analysis

such that I ′(a, cL′) = I ′1 + I ′2 + I ′3. The fact that 1{∑3
i=1 I ′i < (1 + α)R} ≤∏3

i=1 1{I ′i < (1 + α)R} will be used now to find an upper-bound on the
outage probability.

The first term just needs to be rewritten as 1{α ln(1+a) < (1+α)R} =
1{a < Q}, where Q is as defined in (4.8).

As for I ′2, one can note that

1{I ′2 < (1 + α)R} = 1

{
α ln

(
1 +

∑
l∈L′ cl

αβL′(1 + a)

)
< (1 + α)R

}
= 1

{
β′L >

∑
l∈L′ cl

αQ(1 + a)

}
(i)
= 1

{ ∑
l∈L′ cl

αQ(1 + a)

(
1− α

Q
∑

l∈L′ cl∑
l∈L′ cl + Q

∑
l∈L′ cl

)
< 1

}
= 1

{∑
l∈L′ cl(1 + Q− αQ)

αQ(1 + a)(1 + Q)
< 1

}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

{∑
l∈L′

cl <
αQ(1 + a)(1 + Q)

1 + Q− αQ

}
if α < 1 +

1

Q

1 if α ≥ 1 +
1

Q
.

Equality (i) can be easily obtained by comparing the two sides of (4.4), see
also Figure 4.9.

Similarly, the last term can be upper-bounded as follows:

1{I ′3 < (1 + α)R} = 1

{
ln βL′ +

1

βL′
− 1 < (1 + α)R

}
≤ 1{ln βL′ < (1 + α)R + 1} = 1{βL′ < Q′}
(i)
= 1

{ ∑
l∈L′ cl

αQ′(1 + a) +
∑

l∈L′ cl
<

Q′ − 1

αQ′

}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if α ≤ 1− 1

Q′
,

1

{∑
l∈L′

cl <
αQ′(Q′ − 1)(1 + a)

Q′(α− 1) + 1

}
if α > 1− 1

Q′
,

where we introduced Q′ = exp[(1 + α)R + 1] > 1. Once again, equality (i)
comes directly from (4.4) and Figure 4.9.

Summarizing:

1{I ′(a, cL′) < (1 + α)R} ≤
3∏

i=1

1{I ′i < (1 + α)R}
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Figure 4.9: Graphical solution of equation (4.4). Note that for β̄ < βL′ it is

f(β̄) = 1 + αβ̄
χ

P
l∈L′ |hdl|2

αβ̄+χ
P

l∈L′ |hdl|2 > β̄.

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1{a < Q}1
{∑

l∈L′

cl <
αQ(1 + a)(1 + Q)

1 + Q− αQ

}
if α < 1 +

1

Q
,

1{a < Q}1
{∑

l∈L′

cl <
αQ′(Q′ − 1)(1 + a)

Q′(α− 1) + 1

}
if α ≥ 1 +

1

Q
.

(4.26)

Now, it is straightforward to compute

lim
ρ→+∞ ρ|L

′|+1 Pr
[
I

(L′),iid
DF,ML < R

]
=

= lim
ρ→+∞

∫
R
|L′|+1
+

1
{
I ′(a, cL′) < (1 + α)R

}
f|hs|2

(
a

ρ

)
f|hd|2

(
cL′

ρ

)
dadcL′

= ζsζ
|L′|
d

∫
R
|L′|+1
+

1
{
I ′(a, cL′) < (1 + α)R

}
dadcL′ . (4.27)

Indeed, the limit and integral operations can be exchanged according to
the Lebesgue’s dominated convergence theorem (LDCT): from (4.26), the

term 1
{
I ′(a, cL′)

}
represents a compact subset of R

|L′|+1
+ and, from (4.6),

f|hs|2
(

a
ρ

)
f|hd|2

(
cL′

ρ

)
tends to the constant ζsζ

|L′|
d .
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Finally, results (4.25) and (4.27) yield the following expression for the
outage probability:

lim
ρ→+∞ ρL+1Pout(R) = ζs

L∑
l=0

(
L

l

)(
ζuQ

z

)L−l

ζ l
d ·

·
∫

R
l+1
+

1
{
I ′(a, cl

1) < (1 + α)R
}

dadcl
1,

meaning that the diversity order is always maximum and equal to L + 1.
Generally, the last integral has to be computed numerically.

4.A.2 Proof for the LMMSE receiver

As before, the outage probability with the LMMSE receiver can be expressed
as:

Pout(R) =
∑
L′⊆L

Pr[L′ is the decoding subset] Pr[SINR
(L′),iid
DF < Q]. (4.28)

The first term was already studied in Appendix 4.A.1. Here, we focus
on the second one. First, note that

Pr[SINR
(L′),iid
DF < Q] =

= E[1{SINR
(L′),iid
DF < Q}]

=

∫
R
|L′|+1
+

1

{
ρx +

ρ

αβL′

∑
l∈L′

yl < Q

}
f|hs|2(x)f|hd|2(y

′
L) dxdyL′

= ρ−|L
′|−1

∫
R
|L′|+1
+

1

{
a +

1

αβL′

∑
l∈L′

cl < Q

}
f|hs|2

(
a

ρ

)
f|hd|2

(
cL′

ρ

)
dadcL′

(4.29)

with the change of variables a = ρx and cl = ρyl, ∀l ∈ L′. The first term of
the integrand can be rewritten as follows:

1

{
a +

1

αβL′

∑
l∈L′

cl < Q

}
=

= 1{a < Q}1
{

1

αβL′

∑
l∈L′

cl < Q− a

}

= 1{a < Q}1
{

βL′ >

∑
l∈L′ cl

α(Q− a)

}
(i)
= 1{a < Q}1

{ ∑
l∈L′ cl

α(Q− a)

(
1− α

Q− a

Q + 1

)
< 1

}
= 1

{
a ≤ Q− Q + 1

α

}
+ 1

{
Q− Q + 1

α
< a < Q

}
·
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· 1
{∑

l∈L′

cl <
α(Q− a)(Q + 1)

Q + 1− α(Q− a)

}
.

The equality (i) can be easily obtained by comparing the two sides of (4.4),
see also Figure 4.9. Substituting into (4.29), it gives:

Pr[SINR
(L′),iid
DF < Q] = ρ−1

∫
R+

1

{
a ≤ Q− Q + 1

α

}
f|hs|2

(
a

ρ

)
da +

+ ρ−|L
′|−1

∫
R
L′+1
+

1

{
Q− Q + 1

α
< a < Q

}
1

{∑
l∈L′

cl <
α(Q− a)(Q + 1)

Q + 1− α(Q− a)

}
·

· f|hs|2
(

a

ρ

)
f|hd|2

(
cL′

ρ

)
dadcL′ . (4.30)

The limit for ρ→ +∞ of the first integral can be easily computed by means
of the LDCT. Indeed, the indicator function represents a compact subset of
R+ and f|hs|2

(
a
ρ

)
tends to the constant ζs. Similar reasoning holds for the

second integral.
Recalling the definition of αth in (4.9), we can distinguish two cases:

• if α ≤ αth, the first term in (4.30) never exists and

lim
ρ→+∞ ρ|L

′|+1 Pr[SINR
(L′),iid
DF < Q] = ζs

(αζd)
|L′|

|L′|! P|L′|, (4.31)

where

Pl =

∫ Q

0

[
(Q + 1)(Q − a)

Q + 1− α(Q− a)

]l

da

=

(
−Q + 1

α

)l
{

Q− l · Q + 1

α
ln

(
Q + 1

Q + 1− αQ

)
+

− Q + 1

α

l∑
j=2

(
l

j

)
(−1)j−1

j − 1

[(
Q + 1

Q + 1− αQ

)j−1

− 1

]}
. (4.32)

Inserting (4.25) and (4.31) into (4.28), one obtains

lim
ρ→+∞ ρL+1Pout(R) = ζs

L∑
l=0

(
L

l

)(
ζuQ

z

)L−l (αζd)
l

l!
Pl.

By definition, this is the outage gain for a diversity order d = L + 1;

• for α > αth, the first term in (4.30) is well-defined and

lim
ρ→+∞ ρPout(R) = ζs

(
Q− Q + 1

α

)
,
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meaning that the diversity order is d = 1. For α → +∞, the right-hand
side tends to the outage gain of the direct link, namely κs = ζse

R. Note
that the only meaningful contribution comes from the case L′ ≡ L,
while the others tend to zero faster than 1/ρ.

Appendix 4.B Proof for the AF relaying strategy

with ML receiver

This appendix deals with the proof of Theorem 4.3. Briefly, we need to
study the outage probability of the spectral efficiency

I(x,w,y; ρ) =
1

1 + α

[
α ln(1 + ρx) + (zφ1 − ln φ1)−

− (zφ2 − ln φ2) + α ln

( L∏
l=1

1 + λlφ1

1 + γlφ2

)]
, (4.33)

where we have written x = |hs|2, yl = |hdl|2, wl = |hul|2 and defined

γl =
zρyl

α(1 + zρwl)
=

cl

α(1 + bl)
.

In the last expression, the notation a = ρx, bl = zρwl and cl = zρyl has been
introduced. Recall from (4.16) and (4.17) that

1

φ1
= z + α

L∑
l=1

λl

1 + λlφ1

1

φ2
= z + α

L∑
l=1

γl

1 + γlφ2
.

The coefficients {λl}L
l=1 are the solutions to the equation

L∑
l=1

bl
γl

λ− γl
= 1 + a,

c.f. Appendix 3.A.3 (for clarity’s sake, we neglect the unlikely case where
two or more relays have both channel coefficients equal to one another).

It is now possible to eliminate the direct dependence on the values {λl}L
l=1

from (4.33). Indeed, it is enough to notice that

L∏
l=1

(1 + λlφ1) = (−φ1)
LP
(
− 1

φ1

)
,

where P (λ) is the monic polynomial with roots {λl}, namely

P (λ) =

L∏
l=1

(λ− λl) =

L∏
l=1

(λ− γl)−
L∑

l=1

bl

1 + a
γl

∏
k �=l

(λ− γk). (4.34)
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The last result implies

L∏
l=1

(1 + λlφ1) =

L∏
l=1

(1 + γlφ1) +

L∑
l=1

bl

1 + a
φ1γl

∏
k �=l

(1 + φ1γk)

and, consequently,

(1 + α)I(x,w,y; ρ) = α ln(1 + ρx) + f(φ1)− f(φ2) +

+ α ln

(
1 +

L∑
l=1

bl

1 + a

φ1γl

1 + φ1γl

)

= f(φ1)− f(φ2) + α ln

(
1 + a +

L∑
l=1

bl
φ1γl

1 + φ1γl

)
,

(4.35)

with

f(φ) = zφ− ln φ + α

L∑
l=1

ln(1 + γlφ), φ ∈ (0, z−1
)
.

Since f(φ) takes on its minimum value at φ = φ2 (it is enough to compute
the derivative and set it equal to zero), then

f(φ1)− f(φ2) > 0.

Hence, we can ensure

(1 + α)I(x,w,y; ρ) > α ln

(
1 + a +

L∑
l=1

bl
φ1γl

1 + φ1γl

)
and also

(1 + α)I(x,w,y; ρ) > f(φ1)− f(φ2),

two results that will be extensively used in what follows.

4.B.1 Preliminary considerations

We are now ready to investigate the large-SNR outage probability of the
spectral efficiency (4.35), namely the asymptotic behavior of

Pr[I(x,w,y; ρ) < R] = E[1{I(x,w,y; ρ) < R}]

as ρ → +∞. Recall that 1{·} is the indicator function and E[·] the ex-
pected value with respect to the channel distributions. As mentioned in
Section 4.2.1 and following the approach described in [33], one of four pos-
sible states is assigned to each relay according to the quality of its channels.
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Consider the two quantities δ, ε ∈ (0, 1/(L + 1)), such that δ > ε. We
define the following functions for l = 1, . . . , L:

Il,1 = 1
{
wl ≤ ρε−1

}
1
{
yl > ρδ−1

}
Il,2 = 1

{
wl > ρε−1

}
1
{
yl ≤ ρδ−1

}
Il,3 = 1

{
wl > ρε−1

}
1
{
yl > ρδ−1

}
Il,4 = 1

{
wl ≤ ρε−1

}
1
{
yl ≤ ρδ−1

}
which in turn define the sets

l ∈ I1 ⇔ Il,1 = 1

l ∈ I2 ⇔ Il,2 = 1

l ∈ I3 ⇔ Il,3 = 1

l ∈ I4 ⇔ Il,4 = 1.

Observing that

Il,1 + Il,2 + Il,3 + Il,4 = 1,

we can write

E[1{I(x,w,y; ρ) < R}] = E

[
1{I(x,w,y; ρ) < R} ·

·
L∏

l=1

(Il,1 + Il,2 + Il,3 + Il,4)

]

=
∑

ν∈{1,2,3,4}L

E

[
1{I(x,w,y; ρ) < R}

L∏
l=1

Il,ν(l)

]
,

where the last sum is over all the possible L-tuples ν with values in {1, 2, 3, 4}.
The following property will also be very useful in the rest of the proof:

Lemma 4.1. The equality

E[1{I(x,w,y; ρ) < R}] = E
[
1{I(x,w,y; ρ) < R}1{x ≤ ρε−1

}]
,

holds true for sufficiently high ρ.

Proof. Since

I(x,w,y; ρ) >
α

1 + α
ln(1 + ρx),

we see that

E
[
1{I(x,w,y; ρ) < R}1{x > ρε−1

}] ≤ E
[
1{x < Q/ρ}1{x > ρε−1

}]
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(Q = exp
(

1+α
α R

) − 1 was defined in (4.8)). Denote by Z the supremum of
the channel pdf, which is right-continuous at zero, in a region of zero. Then,
we have

E
[
1{I(x,w,y; ρ) < R}1{x > ρε−1

}] ≤ Z

ρ

[
Q− ρε

]+
,

where [·]+ = max{0, ·}. The right-hand side is identically zero for sufficiently
high ρ (the argument of [·]+ becomes negative). Since

E[1{I(x,w,y; ρ) < R}] = E
[
1{I(x,w,y; ρ) < R}1{x ≤ ρε−1

}]
+

+ E
[
1{I(x,w,y; ρ) < R}1{x > ρε−1

}]
,

the lemma is proven.

According to this result, we can always assume x ≤ ρε−1 (or, equivalently,
a = ρx ≤ ρε) when investigating the large-SNR outage probability.

4.B.2 Main results

As mentioned before, we consider now each term in

Pr[I(x,w,y; ρ) < R] = E[1{I(x,w,y; ρ) < R}] =
∑

ν∈{1,2,3,4}L

pν, (4.36)

where we introduced

pν = E

[
1{I(x,w,y; ρ) < R}

L∏
l=1

Il,ν(l)

]
,

the contribution of the L-tuple ν. Besides, we denote by Γ(ν) = |I1|+ |I2|+
2|I4| the total number of channels in a deep fading situation.

Observe that each term pν converges to zero as ρ → +∞, although the
convergence speed depends on the L-tuple ν. Fortunately, the L4 different
L-tuples can be grouped according to their characteristics, as summarized by
Table 4.1. The situations marked with “—” are not possible: in particular,
the first row does not make sense since it must be |I1|+ |I2|+ |I3|+ |I4| = L.

The four lemmas describing the asymptotic behavior of the different L-
tuples can be stated as follows:

Lemma 4.2. Assume that ν ∈ {1, 2}L and 1−α|I1| > 0. In this situation,
the limit

lim
ρ→+∞ ρ1+Γ(ν)pν

exists and is positive. Observe that Γ(ν) = L and we achieve full diversity
order L + 1.
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Table 4.1: Association between relay partitions and relative lemma (ML
receiver).

# |I3| |I4| |I2| |I1| Case α < 1
|I1| Case α > 1

|I1|

0 0 0 0 0 — —

1 0 0 0 > 0 Lemma 4.3
2 0 0 > 0 0 —
3 0 0 > 0 > 0

Lemma 4.2
Lemma 4.3

4 0 > 0 0 0 —
5 0 > 0 0 > 0
6 0 > 0 > 0 0 —
7 0 > 0 > 0 > 0

Lemma 4.4

8 > 0 0 0 > 0
9 > 0 0 > 0 > 0
10 > 0 > 0 0 > 0
11 > 0 > 0 > 0 > 0

Lemma 4.3

12 > 0 0 0 0 —
13 > 0 0 > 0 0 —
14 > 0 > 0 0 0 —
15 > 0 > 0 > 0 0

Lemma 4.5

—

Lemma 4.3. If α|I1| − 1 > 0 (which implies |I1| > 0), then

ρ|I1|+1pν =

{
O(1) if |I2|+ |I4| = 0,

o(1) if |I2|+ |I4| > 0.

Lemma 4.4. When |I4| > 0 and |I3| = 0, then

ρL+1pν → 0,

i.e. the corresponding contribution in (4.36) decays to zero faster than ρ−(L+1).

Note that L+1 is the maximum diversity order that can be provided by
the system.

Lemma 4.5. If |I3| > 0 and α|I1| − 1 < 0, then

pν = 0

for a sufficiently high ρ. These terms will never contribute to the large-SNR
outage probability.

Table 4.2 summarizes the results above and shows the convergence speed
of all the situations identified in Table 4.1.
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Table 4.2: Convergence speed associated to each relay partition (ML re-
ceiver).

# Γ(pν) Case α < 1
|I1| Case α > 1

|I1|

0 — — —

1 |I1| = L pν = O
(
ρ−(L+1)

)
2 |I2| = L —

3 |I1|+ |I2| = L

pν = O
(
ρ−(L+1)

)
pν = o

(
ρ−(|I1|+1)

)
4 2|I4| > L —

5 |I1|+ 2|I4| > L

6 |I2|+ 2|I4| > L —

7 |I1|+ |I2|+ 2|I4| > L

pν = o
(
ρ−(L+1)

)

8 |I1| < L pν = O
(
ρ−(|I1|+1)

)
9 |I1|+ |I2| < L

10 |I1|+ 2|I4| pν = o
(
ρ−(|I1|+1)

)
11 |I1|+ |I2|+ 2|I4|
12 0 —

13 |I2| < L —

14 2|I4| —

15 |I2|+ 2|I4|

pν = 0 for ρ > ρ0

—
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Proof of Theorem 4.3

In this section, we split the results of Theorem 4.3 according to the value of
the coding rate α.

Proposition 4.2. If α < L−1, then

lim
ρ→+∞ ρL+1

E[1{I(x,w,y; ρ) < R}]

is finite and non-zero.

Proof. Consider the contribution of a generic L-tuple ν in (4.36), that is pν.
If α < L−1 we will always have α|I1| < 1 (the first column in Table 4.2).
Now, observe that pν = O

(
ρ−(L+1)

)
if ν belongs to Situations 1–3 and

pν = o
(
ρ−(L+1)

)
otherwise. Hence, when computing

lim
ρ→+∞ ρL+1

∑
pν∈{1,2,3,4}L

pν,

the contributions from the L-tuples belonging to the Situations 4–15 vanish
in the limit, while those related to the Situations 1–3 provide a finite non-
zero limit, due to Lemma 4.2.

Proposition 4.3. If M−1 ≤ α < (M − 1)−1, with M = 2, . . . , L, then

lim
ρ→+∞ ρM+1

E[1{I(x,w,y; ρ) < R}]

is finite and non-zero.

Proof. Once again, we consider each contribution pν.
Let ν be a L-tuple such that |I1| = 0. In this case, it is always α|I1| < 1

(the first column of Table 4.2). Then, the contribution always decays faster
than L+1 ≥ M +1 except when |I2| = L, i.e. when ν belongs to Situation 2.
In this last case pν decays exactly as ρ−(L+1). In other words, we have

|I1| = 0 ⇒ ρM+1pν =

{
O
(
ρ−(L−M)

)
ν in Situation 2,

o
(
ρ−(L−M)

)
otherwise.

This means that, when considering

lim
ρ→+∞ ρM+1

∑
pν∈{2,3,4}L

pν,

all contributions will vanish if M < L. On the contrary, if M = L, the limit
is finite and non-zero due to Situation 2 and Lemma 4.2.

Consider now the case where the L-tuple contains at least one element in
I1, i.e. |I1| > 0. In this case, we may have either |I1| ≤ M − 1 or |I1| ≥ M .
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• |I1| ≤ M − 1. In this situation, we can write α|I1| ≤ (M − 1)α < 1,
which implies that 1 − α|I1| > 0 (the first column of Table 4.2). As
before, the corresponding contribution decays to zero faster than (or
as) ρ−(L+1). Since L + 1 ≥ M + 1, the term pν vanishes as ρ → +∞
in all cases except when M = L and the L-tuple is in Situation 1 or 3.
In other words, we have

0 < |I1| ≤ M − 1 ⇒ ρM+1pν =

{
O
(
ρ−(L−M)

)
ν in Sit. 1 and 3,

o
(
ρ−(L−M)

)
otherwise.

• |I1| ≥ M . In this situation, we can write α|I1| ≥ Mα > 1, which
implies that α|I1| − 1 > 0 (the second column of Table 4.2). Hence,
any term pν arising from these situations decays to zero as (or faster
than) ρ−(|I1|+1), which means

M ≤ |I1| ≤ L⇒ ρM+1pν =

{
O
(
ρ−(|I1|−M)

)
ν in Situations 1 and 8,

o
(
ρ−(|I1|−M)

)
otherwise.

In other words, the only finite contributions are those obtained from
the L-tuples with |I1| = M (due to Lemma 4.3), while the contribu-
tions vanish as ρ → +∞ if |I1| > M .

This concludes the proof of the proposition.

Proposition 4.4. If α > 1, then the following limit

lim
ρ→+∞ ρ2

E[1{I(x,w,y; ρ) < R}]

is finite and non-zero.

Proof. Observe that α > 1 implies that α|I1| > 1 if |I1| > 0 and α|I1| < 1
if |I1| = 0. Hence, we have contributions from both columns of Table 4.2.
Consider first the L-tuples such that |I1| = 0 (which correspond to situations
with even number in the first column of the table). When ρ → +∞, their
contribution can be summarized as follows:

|I1| = 0 ⇒ ρ2pν =

{
O
(
ρ−(L−1)

)
ν in Situation 2,

o
(
ρ−(L−1)

)
otherwise,

which implies that all the L-tuples give rise to terms that converge to zero
(except, perhaps, the case L = 1).

Next, consider the contributions from L-tuples such that |I1| > 0 (in
Table 4.2, the situations with odd number in the second column). In these
cases, all the terms converge to zero faster than or as ρ2, namely

|I1| > 0⇒ ρ2pν =

{
O
(
ρ−(|I1|−1)

)
ν in Situations 1 and 9,

o
(
ρ−(|I1|−1)

)
otherwise.
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Hence, the L-tuples ν that have |I1| = 1 provide a non-zero contribution,
whereas the rest of the L-tuples have a negligible contribution in asymptotic
terms.

4.B.3 Proofs of Lemmas 4.2 to 4.5

All the results presented so far are based on Lemmas 4.2 to 4.5. To provide
a valid proof for each one of them, it is of utmost importance to establish
the asymptotic behavior of φ1 in the large-SNR domain.

Behavior of φ1

First, we derive an expression for φ1 which does not depend on the variables
{λl}L

l=1. For this purpose, rewrite (4.16) as

1− αL = zφ1 − α
L∑

l=1

1

1 + λlφ1

and observe that
L∑

l=1

1

1 + λlφ1
= − 1

φ1

P ′
(
− 1

φ1

)
P
(
− 1

φ1

) ,

where P (λ) is the monic polynomial defined in (4.34) and P ′(λ) its first
derivative, namely

P ′(λ) =

L∑
l=1

L∏
k=1
k �=l

(λ− γk)−
L∑

l=1

bl

1 + a
γl

L∑
k=1
k �=l

∏
r �=l
r �=k

(λ− γr).

Therefore, we can express

L∑
l=1

1

1 + λlφ1
=

1

1 +
∑L

l=1
bl

1+a
φ1γl

1+φ1γl

[ L∑
l=1

1

1 + φ1γl
+

+

L∑
l=1

bl

1 + a

φ1γl

1 + φ1γl

∑
k=1
k �=l

1

1 + φ1γk

]

=

L∑
l=1

1

1 + φ1γl
− 1

1 +
∑L

l=1
bl

1+a
φ1γl

1+φ1γl

L∑
l=1

bl

1 + a

φ1γl

(1 + φ1γl)
2 .

The last result implies that φ1 is the positive solution to the equation

1 = zφ1 + α

L∑
l=1

φ1γl

1 + φ1γl
+ α

∑L
l=1 bl

φ1γl

(1+φ1γl)
2

1 + a +
∑L

l=1 bl
φ1γl

1+φ1γl
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Remark 4.1. The quantity φ1 is always decreasing in the variables {cl}L
l=1.

Proof. Consider λk as a function of a = ρx and {(bl = zρwl, cl = zρyl); l =
1, . . . , L}, defined as the solution to

L∑
l=1

bl
γl

λ− γl
= 1 + a,

where, according to the previous definition, γl = cl

α(1+bl)
. Taking derivatives

of the above expression, one can readily see that (now, we denote by λ =
λ(a,b, c) a particular solution)

∂λ

∂γk

L∑
l=1

bl
γl

(λ− γl)
2 = bk

λ

(λ− γk)
2 ⇒

∂λ

∂ck
> 0

∂λ

∂a
= −

( L∑
l=1

bl
γl

(λ− γl)
2

)−1

< 0⇒ ∂λ

∂a
< 0

∂λ

∂bk
α

L∑
l=1

clbl(1 + bl)

(α(1 + bl)λ− cl)
2 =

(αλ− ck)ck

(α(1 + bl)λ− cl)
2 ⇒

∂λ

∂bk
< 0 if λ <

ck

α
.

This means that λ = λ(a,b, c) is monotonically decreasing with a and mono-
tonically increasing with each ck. Since φ1 is a decreasing function of each
λk, then φ1 is a decreasing function of each ck.

Now, assuming that 1 − α|I1| > 0, the last remark implies that φ1 is
lower-bounded by the positive solution to the equation

1− α|I1| = zφ1 + α
∑

l∈I2∪I3I4

φ1γl

1 + φ1γl
+

+ α

∑
l∈I2∪I3I4 bl

φ1γl

(1+φ1γl)
2

1 + a +
∑

l∈I1 bl +
∑

l∈I2∪I3I4 bl
φ1γl

1+φ1γl

,

obtained by letting ck → +∞, for k ∈ I1.
Another lower-bound may be obtained by noticing that, for any non-

empty set I of relays,∑
l∈I bl

φ1γl

(1+φ1γl)
2

1 + a +
∑

l∈I bl
φ1γl

1+φ1γl

<

∑
l∈I bl

φ1γl

(1+φ1γl)
2∑

l∈I bl
φ1γl

1+φ1γl

≤ 1.

Hence, when 1−α(|I1|+ 1) > 0 (which implies α < 1), φ1 is lower-bounded
by the solution to the following equation

1− α(|I1|+ 1) = zφ1 + α
∑

l∈I2∪I3I4

φ1γl

1 + φ1γl
.
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Similarly, when α|I1| − 1 > 0, φ1 can be upper-bounded by the solution
to the equation

1 = zφ1 + α
∑

l∈I1∪I3

φ1γl

1 + φ1γl
+ α

∑
l∈I1∪I3 bl

φ1γl

(1+φ1γl)
2

1 + a +
∑

l∈I1∪I3 bl
φ1γl

1+φ1γl

,

obtained by letting ck → 0, for k ∈ I2 ∪ I4. The last equation can also be
rewritten as

α|I1| − 1 = α
∑
l∈I1

1

1 + φ1γl
−
(

zφ1 + α
∑
l∈I3

φ1γl

1 + φ1γl
+

+ α

∑
l∈I1∪I3 bl

φ1γl

(1+φ1γl)
2

1 + a +
∑

l∈I1∪I3 bl
φ1γl

1+φ1γl

)
.

The term between parenthesis is positive and, hence, we can write

α|I1| − 1 < α
∑
l∈I1

1

1 + φ1γl
< α|I1| α(1 + zρε)

α(1 + zρε) + φ1zρδ
,

where we used the fact that

γl =
cl

α(1 + bl)
>

zρδ

α(1 + zρε)
for l ∈ I1.

After some algebra, we get the upper-bound

φ1 <
1

α|I1| − 1

α(1 + zρε)

zρδ
.

Proof of Lemma 4.4

Let us consider an L-tuple ν such that |I4| > 0 and |I3| = 0. We want to
show that

ρL+1pν = ρL+1
E

[
1{I(x,w,y; ρ) < R}

L∏
l=1

Il,ν(l)

]
→ 0

as ρ → +∞, i.e. the corresponding contribution in (4.36) decays to zero
faster than ρ−(L+1). Indeed, observe that we can write

(1 + α)I ≥ α ln(1 + a)

from where we will have

ρL+1pν = ρL+1
E

[
1{I(x,w,y; ρ) < R}

L∏
l=1

Il,ν(l)

]
≤

≤ ρL+1
E

[
1{a < Z0}

L∏
l=1

Il,ν(l)

]
= ρL+1

E[1{a < Q}]E
[ L∏

l=1

Il,ν(l)

]
,
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with Q as defined in (4.8).

On the other hand, we also have

E[1{a < Q}] ≤ Z

ρ

(Z denotes a generic positive non-zero constant that may vary at any ap-
pearance) and

E[Il,1] = Pr
{
wl ≤ ρε−1

}
Pr
{
yl > ρδ−1

} ≤ Pr
{
wl ≤ ρε−1

} ≤ Zρε−1

E[Il,2] = Pr
{
wl > ρε−1

}
Pr
{
yl ≤ ρδ−1

} ≤ Pr
{
yl ≤ ρδ−1

} ≤ Zρδ−1

E[Il,3] = Pr
{
wl > ρε−1

}
Pr
{
yl > ρδ−1

} ≤ 1

E[Il,4] = Pr
{
wl ≤ ρε−1

}
Pr
{
yl ≤ ρδ−1

} ≤ Zρδ+ε−2.

Hence, we can write

ρL+1pν ≤ ZρLρ(ε−1)|I1|ρ(δ−1)|I2|ρ(δ+ε−2)|I4|

and, since |I3| = 0 and |I1|+ |I2|+ |I4| = L, we can write

ρL+1pν ≤ Zρε|I1|+δ|I2|+(δ+ε−1)|I4|.

Now, ε < δ implies

ε|I1|+ δ|I2|+ (δ + ε− 1)|I4| < δ|I1|+ δ|I2|+ (2δ +−1)|I4| =
= δ(L + |I4|)− |I4|.

Now, since |I4| ≥ 1 and δ < (L + 1)−1, we know that

δ(L + |I4|)− |I4| ≤ δ(L + 1)− 1 < 0

and, consequently,

ρL+1pν → 0

as ρ→ +∞.

Considerations on Lemmas 4.2, 4.3 and 4.5

As mentioned in Section 4.2.1, Theorem 4.3 is not proven in full formality
here. In particular, at the time of the writing of this dissertation we are still
polishing a completely rigorous proof for Lemmas 4.2, 4.3 and 4.5. In what
follows, we try to motivate our intuition behind the three results. More
specifically, we compute the limit

lim
ρ→+∞ ρ1+Γ(ν)pν (4.37)
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by means of the LDCT, even though we only conjecture that its hypotheses
are verified.

Recall that

pν =

∫
R2L+1

+

1{I(x,w,y; ρ) < R}
L∏

l=1

Il,ν(l) ·

· f|hs|2(x)f|hu|2(w)f|hd|2(y) dxdw dy,

where I(x,w,y; ρ) is as defined in (4.33). Now, with the change of variables
a = ρx, {bl = zρwl, l ∈ I1 ∪ I4} and {cl = zρyl, l ∈ I2 ∪ I4}, the previous
expression can be rewritten as

pν =
1

zΓ(ν)ρ1+Γ(ν)

∫
R2L+1

+

1{I(a,b,w, c,y; ρ) < R}1{a ≤ ρε} ·

· 1{bl ≤ zρε, l ∈ I1 ∪ I4}1{wl > ρε−1, l ∈ I2 ∪ I3} ·
· 1{cl ≤ zρδ, l ∈ I2 ∪ I4}1{yl > ρδ−1, l ∈ I1 ∪ I3} ·

· f|hs|2
(a

ρ

)
f|hu|2

( b

zρ

)
f|hu|2(w)f|hd|2

( c

zρ

)
f|hd|2(y) dadbdw dcdy.

In the likely case where 1{I(a,b,w, c,y; ρ) < R} implies that a, {bl} and
{cl} are all upper-bounded, the limit in (4.37) can be computed by means
of the LDCT giving the outage gains in Section 4.2.1. Indeed, since a, {bl}
and {cl} live on a compact set, the product f|hs|2

(
a
ρ

)
f|hu|2

(
b

zρ

)
f|hd|2

(
c

zρ

)
is

upper-bounded due to (4.6), while the variables {wl} and {yl} do not rise
any issues since the probability density functions f|hu|2(·) and f|hd|2(·) do
not depend on ρ and are integrable on all R+.

To uphold the above assumption we need to compute the limit of the
spectral efficiency I(a,b,w, c,y; ρ) for ρ → +∞. The result is different
according to how the relays are distributed over the sets I1, I2, I3 and I4.
From Appendix 3.A.3, the coefficients {λl} are the L positive solutions to

zρ

[∑
l∈I1

blyl

α(1 + bl)λ− zρyl
+
∑
l∈I2

clwl

α(1 + zρwl)λ− cl
+

+
∑
l∈I3

zρwlyl

α(1 + zρwl)λ− zρyl
+

1

zρ

∑
l∈I4

blcl

α(1 + bl)λ− cl

]
= 1 + a. (4.38)

Case I3 �= ∅. When I3 is not empty, that is there exists at least a relay
experiencing a good channel quality both from the source and towards the
destination, (4.38) has the following set of solutions when ρ→ +∞:

• λ1, . . . , λ|I2| → 0 and λlρ → rl, with rl one of the |I2| positive solutions
to ∑

l∈I2

cl

r − cl

αzwl

= αz
∑
l∈I3

wl;
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• λ|I2|+1, . . . , λL−|I1|−1 → λ̄|I2|+1, . . . , λ̄L−|I1|−1, where λ̄l is either one
of the |I3| − 1 positive solutions to∑

l∈I3

yl

λ̄− yl

αwl

= 0

or one of the |I4| values

{
cl

α(1+bl)
, l ∈ I4

}
;

• λL−|I1|, . . . , λL → +∞ and λl

ρ → μl, with μl one of the |I1|+1 positive
solutions to ∑

l∈I1

bl

1 + bl

yl

μ− zyl

α(1+bl)

+
1

μ

∑
l∈I3

yl =
α

z
(1 + a).

Then, from (4.16) and (4.17), the following results can be derived after
some algebra.

• When α < (|I1|+ 1)−1,

– φ1 tends to φA
1 , the unique positive solution to

1− α(|I1|+ 1)

φA
1

= z + α

L−|I1|−1∑
l=|I2|+1

λ̄l

1 + λ̄lφ
A
1

;

– φ2 tends to φA
2 , the unique positive solution to

1− α|I1|
φA

2

= z + α
∑
l∈I3

yl

αwl + ylφ
A
2

+ α
∑
l∈I4

cl

α(1 + bl) + clφ
A
2

;

– the spectral efficiency can be written as

(1 + α)I = α(|I1|+ 1) ln ρ− α|I1| ln ρ + o(ln ρ), (4.39)

which tends to infinity as ρ→ +∞.

• When8 (|I1|+ 1)−1 < α < |I1|−1,

– ρφ1 → φB
1 , where φB

1 is the unique positive solution to

φB
1 =

⎛⎝α

L∑
l=L−|I1|

μl

1 + μlφ
B
1

⎞⎠−1

;

8For simplicity, we do not treat here the boundaries between the different regions (e.g.
α = (|I1| + 1)−1), which need particular attention.
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– φ2 tends to φA
2 as before;

– the spectral efficiency can be written as

(1 + α)I = ln ρ− α|I1| ln ρ + o(ln ρ), (4.40)

which tends to infinity as ρ→ +∞.

• When I1 is not empty and α > |I1|−1,

– ρφ1 → φB
1 as before,

– ρφ2 → φB
2 , where φB

2 is the unique positive solution to

φB
2 =

⎛⎝α
∑
l∈I1

zyl

α(1 + bl) + zylφ
B
2

⎞⎠−1

,

– the spectral efficiency can be written as

(1 + α)I = α ln(1 + a) + ln
φB

2

φB
1

+ α

L∑
l=L−|I1|

ln(1 + μlφ
B
1 )

− α
∑
l∈I1

ln

[
1 +

zyl

α(1 + bl)
φB

2

]
+ o(1). (4.41)

Case I3 = ∅, I2 �= ∅. Note that the results derived so far hold for all I1,
I2 and I4, as long as I3 is not empty. We analyze now the cases when all
relays undergo a deep fade in at least one of their channels (I3 = ∅). When
I2 �= ∅, and in the high-SNR regime, (4.38) implies that the coefficients {λl}
behave as follows:

• λ1, . . . , λ|I2|−1 → 0 and λlρ → rl, with rl one of the |I2| − 1 positive
solutions to ∑

l∈I2

cl

r − cl

αzwl

= 0;

• λ|I2|, . . . , λL−|I1| → λ̄|I2|, . . . , λ̄L−|I1|, with λ̄l one of the |I4|+1 positive
solutions to

1

λ̄

∑
l∈I2

cl +
∑
l∈I4

bl

1 + bl

cl

λ̄− cl

α(1+bl)

= α(1 + a +
∑
l∈I1

bl);

• λL−|I1|+1, . . . , λL → +∞ and λl

ρ → μl, with μl one of the |I1| positive
solutions to ∑

l∈I1

bl

1 + bl

yl

μ− zyl

α(1+bl)

=
α

z
(1 + a).
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Then, similarly to the previous case, the limit of the spectral efficiency
depends on the value of the coding rate α.

• When α < |I1|−1,

– φ1 tends to φA
1 , where φA

1 is now the unique positive solution to

1− α|I1|
φA

1

= z + α

L−|I1|∑
l=|I2|

λ̄l

1 + λ̄lφ
A
1

,

– φ2 tends to φA
2 , where φA

2 is the unique positive solution to

1− α|I1|
φA

2

= z + α
∑
l∈I4

cl

α(1 + bl) + clφ
A
2

,

– the spectral efficiency can be written as

(1 + α)I = α ln(1 + a) + (1− α|I1|) ln
φA

2

φA
1

+ z(φA
1 − φA

2 ) +

+ α

L−|I1|∑
l=|I2|

ln(1 + λ̄lφ
A
1 ) + α

L∑
l=L−|I1|+1

ln μl +

− α
∑
l∈I1

ln
zyl

α(1 + bl)
− α

∑
l∈I4

ln
[
1 +

cl

α(1 + bl)
φA

2

]
+ o(1). (4.42)

• When I1 is not empty and α > |I1|−1,

– ρφ1 → φB
1 , where φB

1 is the unique positive solution to

φB
1 =

⎛⎝α

L∑
l=L−|I1|+1

μl

1 + μlφ
B
1

⎞⎠−1

,

– ρφ2 → φB
2 , where φB

2 is the unique positive solution to

φB
2 =

⎛⎝α
∑
l∈I1

zyl

α(1 + bl) + zylφ
B
2

⎞⎠−1

,

– the spectral efficiency can be written as

(1 + α)I = α ln(1 + a) + ln
φB

2

φB
1

+ α

L∑
l=L−|I1|+1

ln(1 + μlφ
B
1 )

− α
∑
l∈I1

ln
[
1 +

zylφ
B
2

α(1 + bl)

]
+o(1). (4.43)
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Case I3 = ∅, I2 = ∅. When I2 is also empty, the coefficients {λl} take on
the following values in the limit for ρ→ +∞:

• λ1, . . . , λ|I4| → λ̄1 . . . λ̄|I4|, with λ̄l one of the |I4| positive solutions to

∑
l∈I4

bl

1 + bl

cl

λ̄− cl

α(1+bl)

= α(1 + a +
∑
l∈I1

bl);

• λ|I4|+1, . . . , λL → +∞ and λl

ρ → μl, with μl one of the |I1| positive
solutions to ∑

l∈I1

bl

1 + bl

yl

μ− zyl

α(1+bl)

=
α

z
(1 + a).

The effect on the spectral efficiency is as listed hereafter.

• When α < |I1|−1,

– φ1 tends to φA
1 , where φA

1 is now the unique positive solution to

1− α|I1|
φA

1

= z + α

|I4|∑
l=1

λ̄l

1 + λ̄lφ
A
1

,

– φ2 tends to φA
2 , where φA

2 is now the unique positive solution to

1− α|I1|
φA

2

= z + α
∑
l∈I4

cl

α(1 + bl) + clφ
A
2

,

– the spectral efficiency can be written as

(1 + α)I = α ln(1 + a) + (1− α|I1|) ln
φA

2

φA
1

+ z(φA
1 − φA

2 ) +

+ α

|I4|∑
l=1

ln(1 + λ̄lφ
A
1 ) + α

L∑
l=|I4|+1

lnμl +

− α
∑
l∈I1

ln
zyl

α(1 + bl)
− α

∑
l∈I4

ln
[
1 +

cl

α(1 + bl)
φA

2

]
+ o(1). (4.44)

• When I1 is not empty α > |I1|−1,

– ρφ1 → φB
1 , where φB

1 is the unique positive solution to

φB
1 =

⎛⎝α
L∑

l=|I4|+1

μl

1 + μlφ
B
1

⎞⎠−1

,



4.C. Proof for the AF relaying strategy with LMMSE receiver 113

– ρφ2 → φB
2 , where φB

2 is the unique positive solution to

φB
2 =

⎛⎝α
∑
l∈I1

zyl

α(1 + bl) + zylφ
B
2

⎞⎠−1

,

– the spectral efficiency can be written as

(1 + α)I = α ln(1 + a) + ln
φB

2

φB
1

+ α
L∑

l=|I4|+1

ln(1 + μlφ
B
1 )

− α
∑
l∈I1

ln
[
1 +

zylφ
B
2

α(1 + bl)

]
+o(1). (4.45)

Comments. The intuition behind Lemmas 4.2, 4.3 and 4.5 comes from
a thorough analysis of the limiting behavior of the spectral efficiency. For
example, equations (4.39) and (4.40) readily suggest Lemma 4.5.

Next, let I4 = ∅ in (4.42) and (4.44). Then, under the assumptions
of Lemma 4.2, the large-SNR spectral efficiency is a finite quantity that
diverges as any bl, l ∈ I1, or any cl, l ∈ I2, grows large. This fact brings the
intuition behind Lemma 4.2.

With a similar analysis of (4.41), (4.43) and (4.45), we can reasonably
conjecture that Lemma 4.3 holds true.

Appendix 4.C Proof for the AF relaying strategy

with LMMSE receiver

In this appendix we prove Theorem 4.4. More specifically, we give a large-
SNR approximation of the outage probability of

SINR(x,w,y; ρ) = x + z2ρ2
L∑

l=1

wlyl

zρyl + α(1 + zρwl)
1
φ1

.

The proof follows the same guidelines as the previous one, that is each
contribution

pν = E

[
1{SINR(x,w,y; ρ) < Q}

L∏
l=1

Il,ν(l)

]
of

Pr[SINR(x,w,y; ρ) < Q] = E[1{SINR(x,w,y; ρ) < Q}]
=

∑
ν∈{1,2,3,4}L

pν
(4.46)
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Table 4.3: Association between relay partitions and relative lemma (LMMSE
receiver).

# |I3| |I4| |I2| |I1| Case α < 1
|I1| Case α > 1

|I1|

0 0 0 0 0 — —

1 0 0 0 > 0 Lemma 4.7
2 0 0 > 0 0 —
3 0 0 > 0 > 0

Lemma 4.6
Lemma 4.7

4 0 > 0 0 0 —
5 0 > 0 0 > 0
6 0 > 0 > 0 0 —
7 0 > 0 > 0 > 0

Lemma 4.8

Case α < 1
|I1|+1 Case α > 1

|I1|+1

8 > 0 0 0 > 0
9 > 0 0 > 0 > 0
10 > 0 > 0 0 > 0
11 > 0 > 0 > 0 > 0

Lemma 4.9 Lemma 4.10

12 > 0 0 0 0
13 > 0 0 > 0 0
14 > 0 > 0 0 0
15 > 0 > 0 > 0 0

Lemma 4.11

is considered and its vanishing speed is analyzed. The functions {Il,i : i =
1, 2, 3, 4} and the sets {Ii} are the same as above. Moreover, Lemma 4.1
holds true in this case also and, hence, we can always assume a = ρx ≤ ρε.

4.C.1 Main results

The asymptotic contribution of the L-tuple ν can be described by one of
the six lemmas below. Table 4.3 shows which partitions of the relay set each
lemma applies to.

Lemma 4.6. Assume that ν ∈ {1, 2}L and 1−α|I1| > 0. In this situation,
the limit

lim
ρ→+∞ ρ1+Γ(ν)pν

exists and is positive. Observe that Γ(ν) = L and we achieve full diversity
order L + 1.

Lemma 4.7. If |I3| = |I4| = 0 and α|I1| − 1 > 0 (which implies |I1| > 0),
then

ρ|I1|+1pν =

{
O(1) if |I2| = 0,

o(1) if |I2| > 0.
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Lemma 4.8. When |I4| > 0 and |I3| = 0, then

ρL+1pν → 0,

i.e. the corresponding contribution in (4.46) decays to zero faster than ρ−(L+1).

Lemma 4.9. If |I3| > 0 and 1− α(|I1|+ 1) > 0, then

pν = 0

for a sufficiently high ρ. These terms will never contribute to the large-SNR
outage probability.

Lemma 4.10. If |I3| > 0, |I1| > 0 and α(|I1|+ 1)− 1 > 0, then

ρ|I1|+1pν =

{
O(1) if |I2|+ |I4| = 0,

o(1) if |I2|+ |I4| > 0.

Lemma 4.11. If |I3| > 0 and |I1| = 0, then

ρpν =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if α < 1 +
1

Q
,

o(1) if α > 1 +
1

Q
and |I2|+ |I4| > 0,

O(1) if α > 1 +
1

Q
and |I2|+ |I4| = 0.

According to these lemmas, the speed of convergence to zero is reported
in Table 4.4 for all the possible situations.

Proof of Theorem 4.4

As for the ML case, the results of Theorem 4.4 are proven separately ac-
cording to the value taken by the coding rate α.

Proposition 4.5. If α < L−1 then

lim
ρ→+∞ ρL+1

E[1{SINR(x,w,y; ρ) < Q}]

is finite and non-zero.

Proof. To start, note that Situations 12–15 in Table 4.4 can be readily dis-
carded since α < 1. Now, consider a L-tuple ν such that |I3| = 0 (Situa-
tions 1–7 in Table 4.4). Since |I1| ≤ L, it is α < 1

L ≤ 1
|I1| always. On the

other hand, when |I3| > 0, |I1| < L implies α < 1
L ≤ 1

|I1|+1 . Thus, we only
have to look at the first column of Table 4.4. Due to the different speeds of
convergence to zero, the only L-tuples contributing to the limit

lim
ρ→+∞ ρL+1

∑
pν∈{1,2,3,4}L

pν,

are those belonging to Situations 1–3. According to Lemma 4.6, the limit is
finite and non-zero.
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Table 4.4: Convergence speed associated to each relay partition (LMMSE
receiver).

# Γ(pν) Case α < 1
|I1| Case α > 1

|I1|

0 — — —

1 |I1| = L pν = O
(
ρ−(L+1)

)
2 |I2| = L pν = O

(
ρ−(L+1)

)
—

3 |I1|+ |I2| = L pν = o
(
ρ−(|I1|+1)

)
4 2|I4| > L —

5 |I1|+ 2|I4| > L

6 |I2|+ 2|I4| > L —

7 |I1|+ |I2|+ 2|I4| > L

pν = o
(
ρ−(L+1)

)

Case α < 1
|I1|+1 Case α > 1

|I1|+1

8 |I1| < L pν = O
(
ρ−(|I1|+1)

)
9 |I1|+ |I2| < L

10 |I1|+ 2|I4| pν = o
(
ρ−(|I1|+1)

)
11 |I1|+ |I2|+ 2|I4|

pν = 0 for ρ > ρ0

12 0

13 |I2| < L

14 2|I4|
15 |I2|+ 2|I4|

pν = O(ρ)1
{
α > 1 + 1

Q

}

Proposition 4.6. If (M + 1)−1 < α ≤ M−1, with M = 1, . . . , L− 1, then

lim
ρ→+∞ ρM+1

E[1{SINR(x,w,y; ρ) < Q}]

is finite and non-zero.

Proof. As for the previous case, we can discard Situations 12–15. First,
consider the L-tuples ν such that |I1| ≤ M−1. Then α ≤ 1

M ≤ 1
|I1|+1 < 1

|I1|
and, according to the first column of Table 4.4, the contribution pν tends to
zero faster than or as fast as ρ−(L+1). This means

lim
ρ→+∞ ρM+1pν = 0.

Consider now the cases where |I1| ≥ M + 1, meaning α > 1
M+1 ≥ 1

|I1| >
1

|I1|+1 . The results summarized in the second column of Table 4.4 imply
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that the contributions of these cases converge to zero faster than or as fast
as ρ−(|I1|+1). As a consequence, since ρ|I1|+1 > ρM+1

lim
ρ→+∞ ρM+1pν = 0.

Finally, when |I1| = M and 1
|I1|+1 < α ≤ 1

|I1| , we observe that Situa-

tions 1–7 (i.e. |I3| = 0) can be discarded since they converge to zero faster
than or as fast as ρ−(L+1) (first column of Table 4.4) and, hence,

lim
ρ→+∞ ρM+1pν = 0.

To conclude, we only need to apply Lemma 4.10 to the cases with |I1| = M
and |I3| > 0. As a result,

lim
ρ→+∞ ρM+1pν

is finite and non-zero for all relay partitions belonging to Situation 8 and
vanishes otherwise.

Proposition 4.7. If 1 < α ≤ αth, then

lim
ρ→+∞ ρ2

E[1{SINR(x,w,y; ρ) < Q}]

is finite and non-zero.

Proof. Recall that Q = Q(α) = exp
(

1+α
α R

) − 1 and αth = 1 + 1/Q(αth).
Then, Situations 12–15 can be neglected in this case also.

When |I1| > 0, we have α > 1
|I1| > 1

|I1|+1 . Thus, we are interested in
the second column of Table 4.4 only. Observe that, in all situations, the
contribution pν converges to zero faster than or as fast as ρ−(|I1|+1). Then,
we always have

lim
ρ→+∞ ρ2pν = 0

except when |I1| = 1 and |I3| = L − 1. In this last case, indeed, ρ2pν

converges to a finite non-zero quantity due to Lemma 4.10.
On the other hand, when |I1| = 0, it is α|I1| < 1 and the contribution

to the outage probability vanishes faster than or as fast as ρ−(L+1). This
implies that

lim
ρ→+∞ ρ2pν = 0.

Note that the previous limit is finite and non-zero in the special case where
|I2| = L = 1.

Proposition 4.8. If α > αth, then

lim
ρ→+∞ ρ2

E[1{SINR(x,w,y; ρ) < Q}]

is finite and non-zero.
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Proof. Since for α > αth it holds α > 1 + 1
Q , Lemma 4.11 implies that

lim
ρ→+∞ ρ

∑
pν

is finite and non-zero when the sum is done over all the possible L-tuples
such that |I1| = 0 and |I3| > 0 (Situations 12–15 in Table 4.4). According to
the proofs of the previous results, the contribution of all the other L-tuples
converges to zero faster than ρ−1 and, hence, they are negligible in terms of
outage probability.

Proofs of Lemmas 4.6 to 4.11

To conclude the proof, we still need to demonstrate all the lemmas appearing
in Table 4.3. Unfortunately, as for the ML case in Appendix 4.B, at this
point only Lemma 4.8 has a rigorous proof (which is basically the same
as that of Lemma 4.4). The results stated by the other lemmas may be
reasonably assumed to be true after computing the limit for ρ → +∞ of
the SINR in all the possible relay partitions over the sets I1,. . . ,I4. The
analysis is not reported here since very similar to what has been explained
in Section 4.B.3 for the ML receiver.



Chapter 5

Reducing Interference:

Isometric LD-STBC

The results of the two previous chapters have shown that distributed space-
time block coding based on linear-dispersion matrices with random i.i.d.
entries is an interesting solution for relay networks. More specifically, relays
implementing the i.i.d. LD-STBC are capable of improving the spectral
efficiency of the direct link and, more important, they introduce spatial
diversity.

In this chapter, we try to improve the performance of the randomized
LD-STBC. For this purpose, we present a new code whose linear-dispersion
matrices are still independently generated. The entries of each relay matrix,
however, are not independent of one another anymore. To understand how
we can obtain some benefit by introducing some structure in the coding
matrices, let us recall that the symbol vector transmitted by relay l is

Cls =
K∑

k=1

cl,ksk,

where cl,k is the k-th column of the N×K linear-dispersion matrix Cl and sk

the k-th symbol of the source vector s. Thus, a straightforward analogy with
DS/CDMA systems [57] suggests that each relay can spread and multiplex
the source symbols free of interference if the columns of the linear-dispersion
matrix are mutually orthogonal.

Thus, when N ≥ K or, equivalently, when the coding rate α = K/N is
lower than or equal to one, we constrain the columns of the coding matrices
to be orthogonal to one another. More specifically, for the l-th relay, the
signatures {cl,k}Kk=1 are K columns of an N × N random unitary matrix.
Then, the analysis is extended to the case α > 1 by building the matrices
Cl with N rows of a K ×K random unitary matrix.

In what follows, the performance of the new code is evaluated in terms of
spectral efficiency and compared to the performance of the i.i.d. code. For

119
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simplicity’s sake, only the DF relaying strategy is considered, thus avoiding
the issues with the forwarded noise. As usual in this dissertation, the com-
parison is carried out in the asymptotic regime for K,N → +∞, K/N → α,
where the spectral efficiency depends on the code through its coding rate α
only and not on the specific linear-dispersion matrices. Note, however, that
the random-matrix-theory tools employed in the previous chapters for i.i.d.
codes do not apply here. Section 5.3 introduces the rectangular free additive
convolution, a tool of free-probability theory which allows to compute the
distribution of the singular values of a sum of rectangular matrices.

Synchronicity issues

Before starting the analysis, it is worth to mention a drawback of replacing
i.i.d. codes for more structured ones.

Even though the issue was not addressed in the previous chapters, i.i.d.
LD-STBC’s are robust to little misalignment in relay transmissions. In other
words, as long as code chips stay synchronized, small relative transmission
delays are tolerated. Indeed, as depicted in Figure 5.1, it is enough to apply
a detection window to obtain truncated versions of the linear-dispersion
matrices with the same statistical properties. Moreover, if the signature
length N is much larger than the maximum delay Δ, the previous results
hold directly since K

N−Δ ≈ K
N = α. Conversely, if Δ and N have the same

order of magnitude, the results in Chapters 3 and 4 give a straightforward
lower-bound on spectral efficiency and outage probability. It suffices to fix
α = K

N−Δ and remember that K information symbols are sent over K+N+Δ
channel accesses. In this situation, however, further investigation is needed
to understand how to extract information from the 2Δ samples removed by
the detection window, since that information would not be negligible.

It can be readily seen that this property is lost when adding the new
orthogonality constraint to the linear-dispersion matrices. Indeed, the se-
quences obtained by truncating orthogonal signatures do not need to be
orthogonal anymore.

5.1 Signal model

The new choice for the coding matrices does not modify the signal model,
which is exactly the same as the one presented in Section 4.1 for the DF relay
channel. Observe that we will limit our analysis to the spectral efficiency,
so that it is not interesting to consider all the possible decoding sets. For
this reason, we assume in what follows that L relays are able to decode the
source message and, thus, are allowed to join the second transmission phase.
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C 1

C 2

C L

N

K

detection
window

Δ

Figure 5.1: Misalignment of linear-dispersion matrices with asynchronous
relay transmissions.

The resulting signal model can hence be written as

d =

[
hsIK∑L

l=1 glhdlCl

]
s + n =

[
hsIK

Ψ̃C̃

]
s + n, (5.1)

where, as before, s = [s1 · · · sK ]T denotes the vector containing the mes-
sage from the source and n ∼ CN (0, σ2

dIN ) represents the additive white
Gaussian noise. The symbols sk, k = 1, . . . ,K, are assumed i.i.d., with zero
mean (E[sk] = 0) and variance Ps (E[|sk|2] = Ps). Observe that, to sim-
plify the subsequent notation, we prefer to gather the channel gains and the
linear-dispersion matrices in a different way with respect to Section 3.1.1,
namely

Ψ̃ =
[
g1hd1IN · · · gLhdLIN

]
C̃ =

[
CT

1 · · · CT
L

]T
. (5.2)

5.1.1 The coding matrices

As mentioned in the introduction, the intention here is to reduce the total
interference by eliminating the interference generated within each relay. For
this purpose, DS/CDMA experience suggests to use linear-dispersion ma-
trices with orthogonal columns. Note that interference will not completely
vanish since orthogonality is required only within each individual relay. Ex-
tending the constraint across all the relays would imply a very significant
loss of flexibility, since all matrices would have to be jointly designed to
be mutually orthogonal. Here, we are more interested in a dynamic sys-
tem where the number of active terminals can vary without significantly
jeopardizing the global coding scheme. Furthermore, global orthogonality
is equivalent to TDMA, which is shown to be outperformed by STC in [32]
(see also Section 4.1.4).
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As a result, we model the N×K matrices {Cl : l = 1, . . . , L} as mutually
independent random matrices with orthogonal columns. More specifically,
each coding matrix is constructed by selecting K different columns of a
N×N Haar-distributed unitary matrix, i.e. a random unitary matrix whose
distribution is invariant by left- or right-multiplication by a constant unitary
matrix (we say that it is bi-unitarily invariant). We will refer to this model
as Haar-distributed codes or, equivalently, as random isometric codes.

A matrix with orthogonal columns must be such that K ≤ N , i.e. α =
K/N ≤ 1. For completeness, the analysis is extended to the case α > 1 by
considering coding matrices with orthogonal rows (N rows of a K×K Haar-
distributed unitary matrix). A scaling factor

√
α, such that ClC

H
l = αIN ,

must be included to guarantee that the same power constraint as in the i.i.d.
case is satisfied, which leads to a fair comparison of the results for the two
different choices of the dispersion matrices.

To conclude this introduction, let us mention that Haar-distributed ran-
dom unitary matrices are quite simple to generate (see Appendix 5.C) and
that isometric codes have been extensively studied in the literature (see, for
instance, [91–93]).

5.2 Spectral efficiency

As we did for the i.i.d. codes, we assume that the receiver has perfect channel
state information of all the links and that it knows the relay linear-dispersion
matrices. Under these hypotheses, we analyze again the spectral efficiency
of the LMMSE and the ML receivers.

5.2.1 The LMMSE receiver

Following the same reasoning as in Section 3.3, the SINR at the output of
an LMMSE receiver can be expressed by

SINR =
Ps

σ2
d

|hs|2 +

+
Ps

σ2
d

cH
1 Ψ̃H

(
Ps/σ

2
d

1 + Ps|hs|2/σ2
d

Ψ̃DDHΨ̃H + IN

)−1

Ψ̃c1, (5.3)

where we focus on symbol s1 without loss of generality and where we intro-
duce the column vector c1 and the matrix D such that C̃ =

[
c1 D

]
.

As for the i.i.d. case, the above SINR is a random quantity, since it
intrinsically depends on the randomly generated coding matrices {Cl}. In
other words, for each realization of the code, the system performs differently.
However, it will be shown in Section 5.3 that, if we increase the dimensions
of the linear-dispersion matrices and keep constant the coding rate α, the
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SINR in (5.3) converges to the deterministic value SINRHaar, namely

lim
K,N→+∞

K
N
→α

SINR = SINRHaar

in probability. The convergence is fast also in this case and SINRHaar can
be used as an accurate approximation of the SINR of finite systems, even
for not-so-large linear dispersion matrices (see Section 5.2.4 for details).

The formal proof of the convergence result is given in Section 5.3. Here,
we only sketch its main points to give the expression of SINRHaar. Let
λ1 ≤ λ2 ≤ · · · ≤ λK be the K real non-negative eigenvalues of the K ×K
interference matrix C̃HΨ̃HΨ̃C̃. Then, the empirical distribution of the
eigenvalues defined in (2.1) can be written as follows1:

ν2
N =

1

K

K∑
k=1

δλk
(5.4)

where δλ is the Dirac distribution (mass point) at λ. Since the eigenvalues
are generally random, their empirical distribution is also random. However,
in Section 5.3 we show that ν2

N converges weakly in probability to a new
deterministic distribution ν2 when K = αN → +∞, i.e. when K and N
grow indefinitely while their ratio tends to α. More specifically, ν2

N converges

weakly in probability to ν2 (and we write ν2
N

P→ ν2) if

lim
K,N→+∞

K
N
→α

∫
f(t)ν2

N ( dt) =

∫
f(t)ν2( dt) (5.5)

in probability for any measurable function f(·).
In order to prove the convergence of the SINR, we will use the moment

generating function2 of ν2, defined as

Mν2(z) =

∫
zt

1− zt
ν2( dt), z ∈ C \ R+. (5.6)

As proven in Section 5.3, the asymptotic SINR can be written as

SINRHaar =
Ps

σ2
d

|hs|2 +
Ps

σ2
d

ηHaar

1− χηHaar
, (5.7)

where

χ =
Ps/σ

2
d

1 + Ps|hs|2/σ2
d

.

1We use the square in ν2
N in order to emphasize that it is a law on the eigenvalues, and

not on the singular values.
2Note that this is not the classical moment generating function EX [ezX ].
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and

ηHaar = − 1

χ
Mν2(−χ).

Since the expression of the SINR given in (5.7) is independent of the
actual intended symbol sk, we conclude that all symbols experiment the
same asymptotic SINR. Hence, by applying Shannon’s formula and due to
the continuity of the logarithm, we can state that the spectral efficiency
(measured in nat/s/Hz) of the LMMSE receiver tends to

IHaar
LMMSE =

α

1 + α
ln
(
1 + SINRHaar

)
(5.8)

in probability when K = αN → +∞. The factor α
1+α = K

K+N takes into
account the fact that a total of (K + N) channel accesses are employed to
transmit only K information symbols.

5.2.2 The ML receiver

From the signal model in (5.1) it is straightforward to realize that the
system is characterized by colored interference also when employing Haar-
distributed codes, and then linear filters are sub-optimal receivers. To ex-
tract all the information contained in the received signal d, the ML receiver
is needed. Assuming independent Gaussian coding at the source, the spec-
tral efficiency of the ML receiver in our scenario is known to be [10]

IML =
1

K + N
ln det

(
IK+N +

Ps

σ2
d

[
hsIK

Ψ̃C̃

] [
h∗sIK C̃HΨ̃H

])

=
α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)

+
1

K + N
ln det

(
IK + χC̃HΨ̃HΨ̃C̃

)
,

in nats per degree of freedom. As before, this is a random quantity depend-
ing on the random coding matrix C̃. However, it can be shown that it tends
in probability to the deterministic spectral efficiency

IHaar
ML =

α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)

+
α

1 + α

∫ 0

−χ

Mν2(z)

z
dz (5.9)

when the dimensions K and N of the matrices Cl tend to infinity at the
same rate, i.e. with constant ratio α = K/N .

The previous expression can be easily derived by recalling that

d

dx
ln det(I+xA) =

K

x
− 1

x2
tr

{(
A +

1

x
I

)−1}
=

K

x

[
1− 1

K
tr
{

(I + xA)−1
}]
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for any square matrix A. Then, the spectral efficiency can be written as

IML =
α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)

+

+
α

1 + α

∫ 0

−χ

1

z

[ 1

K
tr
{(

IK − zC̃HΨ̃HΨ̃C̃
)−1}

− 1
]
dz,

since ln det I = 0. The asymptotic spectral efficiency (5.9) can be obtained3

by noting that

1

K
tr
{(

IK − zC̃HΨ̃HΨ̃C̃
)−1}− 1

=
1

K
tr
{

zC̃HΨ̃HΨ̃C̃
(
IK − zC̃HΨ̃HΨ̃C̃

)−1}
=

1

K

K∑
k=1

zλk

1− zλk

=

∫
zt

1− zt
ν2

N ( dt),

and that the last expression tends in probability to the moment generating
function (5.6) when K = αN → +∞, as proven in the next section.

5.2.3 The i.i.d. coding scheme

As explained above, the main motivation behind Haar-distributed random
coding is the interference reduction with respect to i.i.d. coding analyzed in
the previous chapters. When L relays participate to the second transmission
phase, the DF spectral efficiencies derived in Section 4.1 can be written as
follows:

ILMMSE
a.s.→ I iid

LMMSE =
α

1 + α
ln

(
1 +

Ps

σ2
d

|hs|2 +
Ps
∑L

l=1 |glhdl|2
βσ2

d

)
, (5.10a)

IML
a.s.→ I iid

ML =
α

1 + α
ln

(
1 +

Ps

σ2
d

|hs|2 +
Ps
∑L

l=1 |glhdl|2
βσ2

d

)
+

1

1 + α

(
ln β +

1

β
− 1

)
,

(5.10b)

3Formally, one should show that the argument of the integral is upper-bounded by a
positive integrable function before taking the limit. However, this step is a straightforward
consequence of, e.g., Montel’s theorem [94] and is therefore omitted.



126 Chapter 5. Reducing Interference: Isometric LD-STBC

where β is the positive solution to β = 1 + αβ
χ

PL
l=1 |glhdl|2

β+χ
PL

l=1 |glhdl|2
, namely

β =
1

2

⎡⎢⎣1− (1− α)χ

L∑
l=1

|glhdl|2 +

+

√√√√(1− (1− α)χ

L∑
l=1

|glhdl|2
)2

+ 4χ

L∑
l=1

|glhdl|2
⎤⎥⎦ .

Observe that the limits in (5.10) hold almost surely and not only in
probability as those derived above for the isometric coding scheme. It seems
only natural to conjecture that these convergence results also hold in the
almost-sure sense. However, the mathematical background used here has
only been able to establish convergence in probability; besides, the difference
between the two convergence modes has no real importance in practical
aspects.

5.2.4 Finite-dimensional systems vs. large systems

Summarizing the results above, and similarly to what happened with i.i.d.
linear dispersion matrices, the Haar-distributed coding scheme behaves (con-
verges in probability to) a deterministic system when the size of the randomly-
generated coding matrices grows large keeping constant the coding rate α.
The asymptotic spectral efficiency is given by (5.8) or (5.9), according to the
chosen receiver. Observe that both expressions depend on α only and not on
K or N directly. Once again, these limiting values are excellent approxima-
tions of the finite-dimensional codes, even for not-so-large linear-dispersion
matrices. For example, in Figure 5.2, we represent the average spectral ef-
ficiency over one thousand different realizations of the codes, together with
the corresponding standard deviation. All the values are normalized with
respect to the asymptotic spectral efficiency. The coding rate α is fixed to
4/5, but the dimensions of the code increase with M , namely K = 4M and
N = 5M . Note that for M = 10, which corresponds to K = 40 and N = 50,
the error is lower than 2%.

5.3 General case and asymptotic results

In the previous section, the spectral efficiency of the considered system was
said to converge in probability to a deterministic constant when the di-
mensions K and N of the coding matrices grow indefinitely but with con-
stant ratio α = K/N . Furthermore, the limit was expressed in terms of
the asymptotic distribution ν2 of the eigenvalues of the interference ma-
trix C̃HΨ̃HΨ̃C̃. In what follows, we will first discuss the convergence of
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Figure 5.2: Simulation results: average spectral efficiency and relative
standard deviations. System assumptions: Ps/σ

2
d = 1, hs = 0, L = 2,

{|glhdl|2} = {1, 1}, α = 4/5 and K = 4M , N = 5M . The ordinates are
normalized with respect to the asymptotic spectral efficiency at α = 4/5,
see Figure 5.4 and Figure 5.5.

the empirical eigenvalue distribution ν2
N to ν2 and show how to compute

the asymptotic distribution ν2. Then, we will prove the results stated in
Section 5.2.

The results below are based on free-probability theory [75, 78]. As in-
troduced in Section 2.3, free-probability theory describes the behavior of
random variables defined on non-commutative algebras. In this context,
free random variables are the equivalent of independent random variables
in classical commutative probability, meaning that the distribution of sums
and products of free non-commutative random variables can be expressed
in terms of the singular distributions of the original variables.

It is a well-known result of random-matrix theory and free probability
that large N×N independent Hermitian unitarily invariant random matrices
can be seen as almost sure models for free non-commutative random vari-
ables (see Theorem 2.2 and, for more details, [77]). Now, assume that M1

and M2 are two such matrices and that the distributions of their eigenvalues
(which are real, due to Hermiticity) tend to the measures μ1 and μ2, respec-
tively, as N → +∞. Then, the eigenvalue distribution of M1 +M2 tends to
μ1 � μ2, the free additive convolution of μ1 and μ2 defined in Section 2.3.4
(see also [77, 78]). As a consequence of Theorem 2.3 and [95, Proposition
3.5], a similar result can be stated for bi-unitarily invariant matrices and the
distributions of their singular values (singular law or singular distribution).
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Let μ̃1 and μ̃2 be the asymptotic singular laws4 of two N × N indepen-
dent bi-unitarily invariant random matrices M1 and M2. Denote by μ1 and
μ2 their symmetrization, i.e. μi = 1

2(μ̃i(−B) + μ̃i(B)) for any Borel set B.
Then, the symmetrization of the singular law of M1 +M2 tends5 to μ1 �μ2.

Now, consider the interference matrix C̃HΨ̃HΨ̃C̃. Denote by ν the
asymptotic distribution of its singular values (or, equivalently, of the singular
values of Ψ̃C̃), which is related to the asymptotic eigenvalue distribution by
the identity ∫

f(t)ν2( dt) =

∫
f(t2)ν( dt),

for any measurable function f(·). Since Ψ̃C̃ =
∑L

l=1 glhdlCl, intuition sug-
gests that the distribution ν may be computed from the singular value dis-
tributions of the bi-unitarily invariant matrices {glhdlCl}.

Unfortunately, the traditional free additive convolution is not helpful in
the general case where K �= N , since the matrices Cl are not square and,
thus, not covered by the result above. An analogous theory for rectangular
matrices has been developed by F. Benaych-Georges in [96] (see also [97]).
Since these concepts are very recent and probably not widespread through
the technical community, we summarize here the main points and refer the
interested readers to the cited papers for a more detailed analysis of the
topic. Due to the fact that the matrices Cl and CH

l have the same non-zero
singular values, we will only consider the case α ≤ 1, the extension to the
case α > 1 being straightforward.

5.3.1 Preliminaries

Let us focus on a symmetric distribution μ (recall that a generic distribution
μ̃ can be symmetrized by taking μ = 1

2 (μ̃(−B) + μ̃(B)) for any Borel set
B) and define the probability measure μ2 on R+ to satisfy

∫
f(t2)μ( dt) =∫

f(t)μ2( dt) for any positive measurable function f(·). The moment gener-
ating series of μ2 is defined as

Mμ2(z) =

+∞∑
n=1

mnzn (5.11)

where mn =
∫

tnμ2( dt) is the n-th moment of μ2.
For a given α ∈ (0, 1], we denote by Hμ(z) the rectangular Cauchy

transform with ratio α of the distribution μ, defined as

Hμ(z) = zT ◦Mμ2(z) = z(αMμ2(z) + 1)(Mμ2(z) + 1), (5.12)

4The empirical distribution of the singular values of a N × N matrix is defined as in
(5.4), replacing eigenvalues with singular values. Analogously, its limit for N → +∞ is
intended as in (5.5).

5In these cases, convergence is proven almost surely and not only in probability. See
also the discussion in Section 5.2.3.
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where ◦ denotes composition in the ring of the formal power series, and
where we introduced the function

T (z) = (αz + 1)(z + 1).

Let us denote by H−1
μ (z) the formal inverse of the power series Hμ(z), that is

Hμ(H−1
μ (z)) = H−1

μ (Hμ(z)) = z, which exists since Hμ(0) = 0 and H ′
μ(0) =

1.
Similarly we define U(z) as the formal inverse of T (z)− 1 (observe that

T (0) = 1 and T ′(0) = α + 1) and write the rectangular R-transform with
ratio α of μ as

Cμ(z) = U

(
z

H−1
μ (z)

− 1

)
, (5.13)

which is well-defined since z−1H−1
μ (z) is invertible with respect to multipli-

cation (1
z H−1

μ (z) = 1
H′

μ(0) + . . . ). The formal power series Cμ(z) identifies

unambiguously the underlying probability measure μ.
To recover μ from Cμ(z), we may proceed as follows. Noting that U(z)

is the formal inverse of T (z)− 1, from (5.13) one can write:

z

H−1
μ (z)

= T (Cμ(z)).

Since Hμ(H−1
μ (z)) = H−1

μ (Hμ(z)) = z, the last equation implies

Hμ(z) = zT [Cμ(Hμ(z))].

By comparing this with (5.12), we readily see that we can compute Mμ2(z)
as the formal power series satisfying the fixed point equation

Mμ2(z) = Cμ[zT (Mμ2(z))]. (5.14)

Recall that Mμ2(z) univocally identifies the underlying distribution μ2 by
means of its moments, which can always be computed from (5.14). Further
details are given in Section 5.5.

From the moment power series Mμ2(z) we can analytically recover the
actual density μ2 as follows. Note that the moment generating series (5.11)
can be written as

Mμ2(z) = −1 +
1

z
Gμ2

(1

z

)
,

where

Gμ2(z) = z−1 +

+∞∑
n=1

mnz−n−1

is the Stieltjes transform (written as formal power series) of the distribution
μ2 according to Definition 2.2. Hence, μ2 (and μ) can be recovered by means
of the Stieltjes inversion formula (2.4), that is∫ b

a
μ2( dt) = − 1

π
lim
y→0

∫ b

a
	[Gμ2(x + jy)] dx.
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However, this is not necessary for our purposes since the expressions of
the asymptotic spectral efficiency in this chapter are given in terms of the
moment generating function.

5.3.2 Main results

We are now ready to restate [96, Theorems 3.12 and 3.13], which are at the
basis of the technical results below.

First, let us recall that the singular law of a K ×N (K ≤ N) matrix X
is 1

K

∑K
k=1 δςk , where {ςk}K

k=1 are the singular values of X. Also, a random
matrix is called bi-unitarily invariant if its probability measure is invariant
by left- and right-multiplication by constant unitary matrices.

Theorem 5.1. Let K(N) be a sequence of integers such that K(N)/N →
α ∈ (0, 1]. Let XN and YN be two sequences of K × N independent ran-
dom matrices, one of them being bi-unitarily invariant. Assume that the
symmetrizations of their singular laws converge in probability towards the
probability measures μX and μY , respectively. Then, the symmetrization of
the singular law of XN + YN converges in probability to a new distribution
that we denote by μX �α μY , the rectangular-free additive convolution with
ratio α of the measures μX and μY .

Using the rectangular R-transform introduced in Section 5.3.1, the re-
sulting distribution can be computed by means of the following theorem.

Theorem 5.2. Given α ∈ (0, 1] and the two symmetric probability measures
μX and μY on the real line, the function CμX

(z)+CμY
(z) is the rectangular

R-transform with ratio α of the symmetric probability measure μX �α μY .
Equivalently

CμX�αμY
= CμX

(z) + CμY
(z),

which also means that the binary operator �α is commutative and associa-
tive.

By associativity, Theorem 5.1 can be readily extended to L (sequences

of) bi-unitarily invariant matrices X
(1)
N , . . . ,X

(L)
N with asymptotic singular

laws μ1, . . . , μL: the symmetrization of the singular law of X
(1)
N + · · ·+X

(L)
N

is

ν = μ1 �α · · ·�α μL

and can be evaluated following the algorithm summarized in Figure 5.3.

5.3.3 Asymptotic spectral efficiencies

The proof of the results in Section 5.2 follow from a direct application of the
rectangular-free convolution. Let γN denote the relay contribution to the
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{μ1, . . . , μL} � {Mμ2

1

(z), . . . , Mμ2

2

(z)} � {Hμ1
(z), . . . , Hμ2

(z)}

{Cμ1
(z), . . . , Cμ2

(z)}
�

Cν = Cμ1
(z) + · · ·+ Cμ2

(z)
�

ν = μ1 �α · · ·�α μL
� ν2 �

Gν2 (z)
Mν2 (z)

�

Figure 5.3: Algorithm for computing ν = μ1 �α · · · �α μL.

SINR (5.3), namely

γN = cH
1 Ψ̃H

(
χΨ̃DDHΨ̃H + IN

)−1
Ψ̃c1.

Recalling that C̃ = [c1 D], the matrix inversion lemma implies that

γN =
ηN

1− χηN
,

where

ηN = cH
1 Ψ̃H

(
χΨ̃C̃C̃HΨ̃H + IN

)−1
Ψ̃c1.

Let AN =
(
χC̃HΨ̃HΨ̃C̃ + IK

)−1
C̃HΨ̃HΨ̃C̃. Then, the following result

holds true:

Proposition 5.1. Consider ηN and AN as defined above. Assume that
K/N converges to α as N tends to infinity. Then

lim
N→+∞

(
ηN − 1

K
tr{AN}

)
= 0

almost surely.

Proof. This result is a direct consequence of the symmetric distribution of
the columns of C̃. The formal proof below follows the same guidelines as
that of [91, Proposition 3]. More specifically, it shows that the fourth-order
moment of τN = ηN − 1

K tr{AN} vanishes at least as fast as N−2, namely

E

[∣∣∣∣ηN − 1

K
tr{AN}

∣∣∣∣4
]

= O
(
N−2

)
.
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Indeed, when this condition is verified, Markov’s inequality implies that

Pr
[
|τN | < ε

]
≤

E

[
|τN |4

]
ε4

= O
(
N−2

)
,

for any ε > 0. Then, the series
∑+∞

N=1 Pr
[
|τN | < ε

]
converges and, from

the first Borel-Cantelli lemma (see, e.g., [59, Theorem 4.3]), τN → 0 almost
surely as K,N → +∞ and K/N → α.

Let BN = C̃HΨ̃H
(
χΨ̃C̃C̃HΨ̃H + IN

)−1
Ψ̃C̃. Then tr{AN} = tr{BN}.

Given a K ×K Haar-distributed random unitary matrix ΩK independent
of C̃ and Ψ̃, the distributions of BN and ΩH

KBNΩK are the same. This is

a consequence of {Cl} (and hence C̃) being unitarily invariant. Similarly,

denoting e1 =
[
1 0 · · · 0

]T
and by ω1 = ΩKe1 the first column of ΩK,

ηN = eH
1 BNe1 and ω

H
1 BNω1 have the same distribution and, in particular,

E

[∣∣∣∣ηN − 1

K
tr{AN}

∣∣∣∣4
]

= E

[∣∣∣∣ωH
1 BNω1 − 1

K
tr{BN}

∣∣∣∣4
]
. (5.15)

Now, the vector ω1 is uniformly distributed on the unit sphere of CK [77]
and, thus, may be written as ω1 = x

‖x‖ , where x ∼ CN (0, IK) is a vector
with K i.i.d. normal Gaussian entries. Let us write

f1,N =
xHBNx

‖x‖2 − xHBNx

K

f2,N =
1

K

(
xHBNx− tr{BN}

)
and

fN = f1,N + f2,N = ω
H
1 BNω1 − 1

K
tr{BN}.

The term f2,N can be easily shown to vanish as K,N → +∞ and K/N → α.

First, note that x is independent of Ψ̃ and C̃ and, thus, of BN . Also, BN

is uniformly bounded since∥∥∥(χΨ̃C̃C̃HΨ̃H + IN

)−1∥∥∥ < 1

and

‖BN‖ ≤
∥∥∥(χΨ̃C̃C̃HΨ̃H + IN

)−1∥∥∥∥∥∥Ψ̃C̃C̃HΨ̃H
∥∥∥

≤
∥∥∥Ψ̃HΨ̃

∥∥∥∥∥∥C̃HC̃
∥∥∥,
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where we have repeatedly used the inequality ‖MN‖ ≤ ‖M‖‖N‖, which
holds true for the spectral norm and any two square matrices M and N.
Finally, recalling the definition of Ψ̃ and C̃ in (5.2), one has∥∥∥Ψ̃HΨ̃

∥∥∥ =

L∑
l=1

|glhdl|2,

which we can consider bounded, and∥∥∥C̃HC̃
∥∥∥ ≤ L∑

l=1

∥∥∥CH
l Cl

∥∥∥ = Lmax{1, α},

due to the triangular inequality. Then, the assumptions of Lemma 2.1 are
satisfied and f2,N → 0 almost surely in the large-code domain. Note that

the proof of the Lemma 2.1 is based on the fact that E
[|f2,N |N

]
= O

(
N−2

)
,

which implies convergence due to the first Borel-Cantelli lemma, as seen
above.

On the other hand, the term f1,N can be written as

f1,N =
xHBNx

K

(
K

‖x‖2 − 1

)
.

The above convergence result on f2,N implies that

xHBNx

K
< 2

tr{BN}
K

≤ 2‖BN‖,

almost surely when the dimensions of BN are large enough. The last in-
equality is a consequence of the fact that tr{BN} ≤ K‖BN‖ (recall that the
spectral norm of the K ×K Hermitian positive semi-definite matrix BN is
its maximum eigenvalue). Since BN is uniformly bounded, xHBNx/K is
bounded almost everywhere.

For the second term of f1,N we have

E

[(
K

‖x‖2 − 1

)4]
= O

(
K−2

)
= O

(
N−2

)
when K,N → +∞ and K/N → α. This follows from the fact that ‖x‖2
is χ2 distributed with 2K degrees of freedom and its probability density
function is tK

K!e
−t. Summarizing,

E

[
|f1,N |4

]
= E

[(
xHBNx

K

)4(
K

‖x‖2 − 1

)4]
= O

(
N−2

)
.

Finally, by applying the Cauchy-Schwarz inequality to the convex func-
tion f(x) = x4, one has E

[|fN |4
] ≤ 8

(
E
[|f1,N |4

]
+ E

[|f2,N |4
])

and, hence,

E
[|fN |4

]
= O

(
N−2

)
. From (5.15), this proves the lemma.
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Now, recall that ν2
N denotes the empirical eigenvalue distribution of

C̃HΨ̃HΨ̃C̃, namely

ν2
N =

1

K

K∑
k=1

δλk
,

where {λk : k = 1, . . . ,K} are the K positive eigenvalues of the matrix.
Then, we can write

1

K
tr{AN} =

∫
t

1 + χt
ν2

N ( dt).

Note that {√λk : k = 1, . . . ,K} is the set of singular values of Ψ̃C̃ =∑L
l=1 glhdlCl. According to the isometric coding scheme described in Sec-

tion 5.1.1, each matrix Cl is built by extracting K columns of a N × N
(K < N) Haar-distributed unitary random matrix. Then, each matrix
glhdlCl is bi-unitarily invariant (see Appendix 5.C) and the symmetrization
of its singular law is μl = 1

2(δ−|glhdl| + δ|glhdl|), independently of N . The-

orem 5.1 implies that the singular law of Ψ̃C̃ converges in probability to

ν = μ1 �α · · ·�α μL and, equivalently, that ν2
N

P→ ν2 when K = αN → +∞.
Since t

1+χt is a bounded function of t > 0, we can state that

1

K
tr{AN} →

∫
t

1 + χt
ν2( dt) in probability.

By noting that the moment generating series Mν2(z) =
∑+∞

n=1 mnzn can be
equivalently written as the analytic function

Mν2(z) =

∫
zt

1− zt
ν2( dt)

for z ∈ C \ R+, Proposition 5.1 implies

lim
K=αN→+∞

ηN = ηHaar = − 1

χ
M2

ν (−χ).

The asymptotic expressions of the SINR (5.7) and of the spectral efficiency
(5.8) follow from continuity of γN = γN (ηN ) and of the logarithm function.

We still need to compute the moment power series of the probability
measure ν2, according to Theorem 5.2. Since the analytic form of the mo-
ment generating function associated to μl = 1

2 (δ−|glhdl| + δ|glhdl|) is very
simple, namely

Mμ2
l
(z) =

z|glhdl|2
1− z|glhdl|2

,

and since we are interested in the point z = −χ, one can be tempted to
derive Mν2(z) as a real function by simply considering Mμ2

l
(z) as a function
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of z on the real negative axis. Unfortunately, this approach may not lead to
the desired result. Indeed, by following the algorithm in Figure 5.3 in the
real analytic domain, the rectangular R-transform with ratio α of μl can be
analytically expressed as (see Appendix 5.A)

Cμl
(z) =

√
1 + 4α|glhdl|2z − 1

2α
,

which is defined only for z ≥ −(4α|glhdl|2
)−1

. This implies that the rectan-
gular R-transform of ν = μ1 �α · · ·�α μL, namely

Cν(z) =

L∑
l=1

Cμl
(z) =

1

2α

L∑
l=1

[√
1 + 4α|glhdl|2z − 1

]
, (5.16)

only exists for z ≥ −(4α max
{|glhdl|2

})−1
. When introducing this con-

straint, identity (5.14) may not be satisfied at z = −χ.
Here, we show a possible approach for finding an algebraic solution to

(5.14). In the following section, this method is proven to give a closed form
expression of Mν2(z), z ∈ R−, when L = 2.

By definition, we know that the rectangular R-transform of ν is the sum
of the rectangular R-transforms of the original distributions {μl}, namely
Cν =

∑L
l=1 Cμl

. We assume now that there exist L functions Ml(z) such

that Mν2(z) =
∑L

l=1 Ml(z) =
∑L

l=1 Cμl

[
zT
(∑L

l=1 Ml(z)
)]

, where the sec-

ond equality yields from (5.14). Furthermore, they are the solutions to the
following system of equations:⎡⎢⎣M1(z)

...
ML(z)

⎤⎥⎦ =

⎡⎢⎢⎢⎣
Cμ1

[
z
(
1 + α

∑L
l=1 Ml(z)

)(
1 +

∑L
l=1 Ml(z)

)]
...

CμL

[
z
(
1 + α

∑L
l=1 Ml(z)

)(
1 +

∑L
l=1 Ml(z)

)]
⎤⎥⎥⎥⎦ ,

which is equivalent to⎡⎢⎣M1(z)(1 + αM1(z))
...

ML(z)(1 + αML(z))

⎤⎥⎦ =

= z
(
1 + α

L∑
l=1

Ml(z)
)(

1 +

L∑
l=1

Ml(z)
)⎡⎢⎣ |g1hd1|2

...

|gLhdL|2

⎤⎥⎦ . (5.17)

The transformation x → x(1 + αx) has been applied to both sides of the
identity and the right-hand side has been simplified knowing that αC2

μl
(z)+

Cμl
(z) = |glhdl|2z (see (5.31) in Appendix 5.A).
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Now, consider Mν2(z) as a function of z on the negative real axis R−.
From its analytic form (5.6), it is straightforward to prove that Mν2(z) is
monotonically increasing and bounded between the values −1 and zero. This
fact implies that each function Ml(z) is negative and lower-bounded by −1.
Indeed, for each individual equation of the system (5.17), i.e.

Ml(z)(1 + αMl(z)) = z(1 + αMν2(z))(1 + Mν2(z))|glhdl|2,

one realizes that the right-hand side is always negative (recall that we con-
sider α ≤ 1). Then, it must be Ml(z) ∈ (−1/α, 0]. Now, since Ml(z) ≤ 0, the
equality Mν2(z) =

∑L
l=1 Ml(z) implies that −1 < Ml(z) ≤ 0. Thus, if there

exists a set of functions {Ml(z) : l = 1, . . . , L} such that −1 < Ml(z) ≤ 0
and −1 <

∑L
l=1 Ml(z) ≤ 0, the resulting Mν2(z) =

∑L
l=1 Ml(z) is the desired

moment generating function. This is certainly the case when L = 2.

Alternatively, Section 5.5 explains a low-complexity approximation method
for the general case.

5.4 Special cases and examples

In this section, we will derive the exact closed-form solution of two spe-
cial cases, namely (i) when there are only L = 2 relays in the system and
(ii) when all the relay–destination channels are equal. In particular, the sec-
ond case is especially simple and offers some more insight into the problem.

Note. As explained above, the asymptotic spectral efficiency of the con-
sidered relay channel depends on the limit distribution ν2 of the eigenvalues
of C̃HΨ̃HΨ̃C̃ as K = αN → +∞. This matrix is full rank only if K ≤ N
(α ≤ 1). Conversely, when K > N the matrix has K − N null eigenvalues
and N positive eigenvalues that are equal to those of Ψ̃C̃C̃HΨ̃H . Then,
when α > 1, let μ2 be the eigenvalue distribution of the full rank matrix
Ψ̃WWHΨ̃H , where we have defined W = 1√

α
C̃ (recall that ClC

H
l = αIN

when α > 1). Denoting by δ0 the Dirac delta distribution, the distribution
ν2 is related to μ2 by the following identity:

ν2( dt) =
α− 1

α
δ0( dt) +

1

α
μ2

(
dt

α

)
or, equivalently,

Mν2(z) =
1

α
Mμ2(αz).

Since it is totally equivalent to characterize the distribution ν2 when α ≤ 1
or the distribution μ2 when α > 1, all the results below apply only to the
case α ≤ 1.
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5.4.1 The two-relay case

For L = 2 relays, the system in (5.17) can be solved as follows. To sim-
plify the notation, we make the dependence on z implicit and write Ml =
Ml(z), l ∈ {1, 2}, and M = Mν2(z). Furthermore, we denote γ(+) =
|g1hd1|2 + |g2hd2|2 and γ(−) = |g1hd1|2 − |g2hd2|2. Then, the system of
equations can be written as{

M1(1 + αM1) = z(1 + αM)(1 + M)|g1hd1|2
M2(1 + αM2) = z(1 + αM)(1 + M)|g2hd2|2.

(5.18)

By subtracting the two equations and recalling that we must have 1+αM �=
0, we get

M1 −M2 = z(1 + M)γ(−). (5.19)

On the other hand, adding the two equations of (5.18) leads to the new
identity

M − 1

2

(
M2 + (M1 −M2)

2
)

= z(1 + αM)(1 + M)γ(+).

By inserting (5.19), we get the following second order equation in M :

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
]
M2 +

+ 2
[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]
M +

+ α
(
zγ(−)

)2 − 2zγ(+) = 0,

which has the two solutions

M ∈ {M (+),M (−)
}

= −
[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] ·

·

⎡⎢⎢⎣1±

√√√√√√1− α

[
α
(
zγ(−)

)2 − 2zγ(+)
][

1 +
(
zγ(−)

)2 − 2zγ(+)
]

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]2

⎤⎥⎥⎦ . (5.20)

Basic algebra shows that the discriminant is positive, meaning that the two
solutions exist and are different to one another. However, since[

1 + α
(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] > 1

for z < 0, one has M (+) < −1 (the second factor of the right-hand side
of (5.20) is also larger than one when the plus sign is chosen) and has to



138 Chapter 5. Reducing Interference: Isometric LD-STBC

be discarded. On the contrary, it is trivial to show that M (−) ∈ (−1, 0],
meaning that the moment generating function is

Mν2(z) = −
[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]

α
[
1 +

(
zγ(−)

)2 − 2zγ(+)
] ·

·

⎡⎢⎢⎣1−

√√√√√√1− α

[
α
(
zγ(−)

)2 − 2zγ(+)
][

1 +
(
zγ(−)

)2 − 2zγ(+)
]

[
1 + α

(
zγ(−)

)2 − z(1 + α)γ(+)
]2

⎤⎥⎥⎦ . (5.21)

This is the function that has to be used to compute the asymptotic
LMMSE SINR (5.7) (recall that ηHaar = −Mν2(−χ)/χ) and the asymptotic
ML spectral efficiency (5.9). Unfortunately, when increasing the number
L of relays and, hence, the number of functions Ml(z), the solution of the
system in (5.17) is not as straightforward as the present one.

5.4.2 Equal channels

In this second example, we assume that all the equivalent downlink channels
are equal, i.e. |glhdl|2 = 1, l = 1, . . . , L.

Under this hypothesis, we can work directly in the analytic domain.
Indeed, the rectangular R-transform of ν, given by (5.16), now takes the
form

Cν(z) =
L

2α

[√
1 + 4αz − 1

]
.

Then, after some algebra, the function Mν2(z) that satisfies Mν2(z) =
Cν(z)[z(αMν2(z) + 1)(Mν2(z) + 1)] is equal to

Mν2(z) =
L

2α

L(α + 1)z − 1 +
√

(L(1− α)z + 1)2 − 4(L− α)z

1− L2z
, (5.22)

implying

ηHaar =
L

2αχ

1 + L(α + 1)χ−
√

(1− L(1− α)χ)2 + 4(L− α)χ

1 + L2χ
.

As a remark, it is straightforward to verify that (5.22) and (5.21) represent
the same function when setting L = 2 and |g1hd1|2 = |g2hd2|2 = 1 (i.e.
γ(−) = 0 and γ(+) = 2).

Figure 5.4 depicts the asymptotic spectral efficiency of the LMMSE filter,
namely

IHaar
LMMSE =

α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2 +
Ps

σ2
d

ηHaar

1− χηHaar

)
,
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Figure 5.4: Equal-channel case: spectral efficiency as a function of α for
isometric (solid line) and i.i.d. (dashed line) codes, LMMSE receiver, |hs|2 =
0, Ps/σ

2
d = 1 and different numbers of relays.
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Figure 5.5: Equal-channel case: spectral efficiency as a function of α for
isometric (solid line) and i.i.d. (dashed line) codes, ML receiver, |hs|2 = 0,
Ps/σ

2
d = 1 and different numbers of relays.

as a function of α for different values of the number L of relays. To calculate
the asymptotic spectral efficiency IHaar

ML of the ML receiver (5.9), depicted
in Figure 5.5, Appendix 5.B shows how to compute the antiderivative of
Mν2(z)/z. To focus on the effect of the codes, all the curves refer to the
case hs = 0.

For both receivers, the figures also show the asymptotic spectral effi-
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ciencies corresponding to the use of i.i.d. codes as obtained from (5.10).
By direct comparison of the two coding schemes, one notices that isometric
codes introduce some benefits, as we had anticipated. However, the gain
over the i.i.d. scheme — which is around 17% in spectral efficiency (compar-
ing maxima) when considering two relays and the LMMSE filter — decays
fast as the number of relays increases. Indeed, Haar codes only cancel the
interference generated within each relay; interference among different relays,
which becomes predominant when the number of relays increases, is not at-
tenuated by the use of Haar coding matrices. Besides, note that the benefits
are less important with the ML receiver (only around 6% with two relays),
which is less sensible to colored interference.

The curves in the two graphs also highlight the fact that the coding
rate α should be tuned to maximize the spectral efficiency. Unfortunately,
analytically locating the maximum is unfeasible, due to the complexity of
the expressions involved. The considered situations offer, nevertheless, a
clear counterexample that the trivial choice α = 1 is not always the best
one: maxima can be located both at α lower than 1 (LMMSE example) and
at α larger than 1 (ML example).

5.5 A moment-based approximation

In Section 5.3, the spectral efficiency obtained with isometric random codes
has been shown to converge to a deterministic quantity. However, conversely
to the i.i.d. case, the limit can be computed only in some particular cases as
those presented in the previous section. For this reason, we propose here a
low-complexity approximation of the general asymptotic spectral efficiency.

So far, no particular attention has been paid to the support of the
eigenvalue distribution ν2. However, it can also be characterized from
the supports of the singular laws of the matrices Cl. Take two symmet-
ric compactly-supported probability measures μ1 and μ2. Then, another
result of [96] states that the support of μ1 �α μ2 is contained in the union
of the convex hulls of the supports of μ1 and μ2. This fact implies that
the distribution ν2 of the eigenvalues of C̃HΨ̃HΨ̃C̃ has a compact support
contained in [0,maxl{|glhdl|2}]. Then, ν2 is totally defined by its moments
{mi : i = 1, 2, . . . }. The basic idea behind the approximation below is to
replace the measure ν2 by a new measure ν̄2

n, such that their first 2n − 1
moments are respectively equal, where n ∈ N+ will depend on the allowed
complexity. Before presenting the algorithm with more detail, we show how
to compute the moments of ν2.

5.5.1 The moments of ν2

The moments mi, i = 1, 2, . . . , of the distribution ν2 can be easily com-
puted from (5.14). Indeed, from (5.16), the coefficients of the rectangular
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R-transform of ν, that is of the power series

Cν(z) =
+∞∑
i=1

ciz
i,

can be written as

ci =
(2α)i−1

i!

(i−1∏
k=0

(1− 2k)

) L∑
l=1

|glhdl|2i.

Then, (5.14) is equivalent to

Mν2(z) =
+∞∑
i=1

ciz
i(αM2

ν2(z) + (α + 1)Mν2(z) + 1)
i
.

Now, it suffices to recall that Mν2(z) =
∑+∞

i=1 miz
i and compare correspond-

ing coefficients of equal powers of z. The first two moments are

m1 = c1 =
L∑

l=1

|glhdl|2 and (5.23a)

m2 = (α + 1)c2
1 + c2 = (α + 1)

( L∑
l=1

|glhdl|2
)2

− α
L∑

l=1

|glhdl|4. (5.23b)

Any symbolic computation software can help in writing the expressions of
higher order moments.

5.5.2 Approximation of the Stieltjes transform

As mentioned before, the approximation algorithm consists in replacing the
real eigenvalue distribution ν2 by a new discrete one of the form ν̄2

n =∑n
k=1 γk,nδλk,n

, such that the first 2n − 1 moments of ν2 and ν̄2
n coincide.

For every n ∈ N+, the points {λk,n}nk=1 should fall in the support of ν2

and, obviously, γk,n > 0,∀k ∈ {1, . . . , n}, with
∑n

k=1 γk,n = 1. The motiva-
tion behind this choice is that well-known results on the moment problem
[98–100] tell us that the point-wise convergence

Ḡn(z) → Gν2(z)

is exponential in n, where we denote by

Ḡn(z) =

n∑
k=1

γk,n

z − λk,n

and

Gν2(z) =

∫
1

z − t
ν2( dt)
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the Stieltjes transforms of ν̄2
n and ν2, respectively (see Definition 2.2). Since

Mν2(z) = 1− z−1Gν2(z−1), we propose the following approximations:

ηHaar ≈ − 1

χ

(
1−

n∑
k=1

γk,n

1 + χλk,n

)
=

n∑
k=1

γk,nλk,n

1 + χλk,n
,

IHaar
ML ≈ α

1 + α
ln
(
1 +

Ps

σ2
d

|hs|2
)

+
α

1 + α

n∑
k=1

γk,n ln(1 + χλk,n).

Observe that, according to the last equation, the proposed approximation
is equivalent to splitting the transmission over n parallel channels, the k-
th one having channel gain λk,n and carrying a fraction γk,n of the total
information.

The Gauss-Jacobi mechanical quadrature

It remains to explain how to compute the coefficients γk,n and λk,n. The
problem of approximating Gν2(z) by Ḡn(z) is known in the literature as
the Gauss-Jacobi mechanical quadrature and makes use of the theory of
orthogonal polynomials [98,99]. We summarize hereafter its main points.

For the probability measure ν2 with moments mi =
∫

tiν2( dt), we define
the scalar product

〈f, g〉 =

∫
f(λ)g(λ)ν2( dλ)

on the space6 L2(ν2). Then, the Gram-Schmidt orthogonalization procedure
can be applied to the sequence {λn : n = 1, 2, . . . } of non-negative powers
of λ. As a result, we get a sequence {pn(λ)}n≥0 such as

• the polynomial pn(λ) has degree n and positive leading coefficient;

• the polynomials are orthonormal, i.e. 〈pn, pq〉 = 1 if and only if n = q
and zero otherwise.

Equivalently, the polynomials pn(λ) can be computed recursively, thanks to
the following result.

Proposition 5.2 (The three terms recursion relation). The family of poly-
nomials {pk} satisfies the relation

λpk(λ) = bk−1pk−1(λ) + akpk(λ) + bkpk+1(λ),

where the coefficients ak and bk, defined by ak = 〈λpk(λ), pk(λ)〉 and bk =
〈λpk(λ), pk+1(λ)〉, are positive. The recurrence formula is initiated by b−1 =
0 and p0(λ) = 1.

6Recall that, given a measure space (S,Σ, μ), the space L2(μ) is, roughly speaking, the
vector space of all functions f(·) such that

R
S
|f(t)|2μ( dt) < +∞.
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The coefficient {ak} and {bk} will be functions of the moments of ν2 as,
for example:

a0 = m1 b0 =
√

m2 −m2
1 a1 =

m3 − 2m1m2 + m3
1

m2 −m2
1

b1 = . . .

Furthermore, the Stieltjes transform Ḡn(z) can be expressed directly in their
terms, namely as the following continuous fraction:

Ḡn(z) =
1

z − a0 −
b2
0

z − a1 −
b2
1

· · · − b2
n−2

z − an−1

.

Finally, for a given n, the points {λk,n}nk=1 simply are the n zeros of
pn(λ). The Christoffel-Darboux formula permits to compute the coefficients
{γk,n}nk=1:

γk,n =
1∑n−1

i=0 |pi(λk,n)|2 .

Figure 5.6 shows a comparison between simulation results and asymptotic
approximations, for different values of n. Observe that matching three mo-
ments (i.e. n = 2) of the asymptotic eigenvalue distribution of the interfer-
ence matrix C̃HΨ̃HΨ̃C̃ suffices to obtain a good deterministic approxima-
tion of a randomly generated code of length N = 100, which is realistic in
practical applications.

5.6 The low-power regime

As mentioned in the introduction, probably the main motivation behind the
introduction of relays is the desire of achieving high data rates by means
of distributed space-diversity techniques. However, relays may also be help-
ful in systems where the received Signal-to-Noise Ratio (SNR) is very low,
because of strict energy requirements (e.g. sensor networks) or large source–
destination distances (e.g. satellite communications). By improving the
quality of the link, relays may reduce power consumption at the source
or increase the communications range.

For this reason, in this section we describe the low-power (or wide-
band) regime of the considered relay channel. More specifically, we compute
the minimum normalized energy per bit that allows reliable transmission,
namely [89] (

Eb

N0

)
min

=
ln 2

İ(0)
, (5.24)
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Figure 5.6: Comparison between simulation curve and approximations for
n = 1, . . . , 4. Systems assumptions: Ps/σ

2
d = 1, |hs|2 = 0, L = 2,

{|glhdl|2} = {0.5, 0.8} and N = 100.

where İ(0) is the first derivative of the spectral efficiency in the limit for
the SNR tending to zero, expressed in nats per degree of freedom. N0

denotes the noise power spectral density. Besides, as the energy increases
from (Eb/N0)min, the spectral efficiency presents a slope given by [89]

S0 = −2[İ(0)]
2

Ï(0)
(in bits per degree of freedom per 3 dB), (5.25)

being Ï(0) the limit for the SNR tending to zero of the second derivative of
the spectral efficiency.

In other words, for the reference SNR ρ = Ps/σ
2
d tending to zero, we

need to compute the limit of the first- and second-order derivatives of the
spectral efficiency. Let m1 and m2 be the first two moments of the eigen-
value distribution ν2 of the interference matrix C̃HΨ̃HΨ̃C̃, which are given
by (5.23) in Section 5.5.1. Then, the first two derivatives of the spectral
efficiency in ρ = 0 are

∂IHaar
LMMSE

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(|hs|2 + m1

)
, (5.26a)

∂2IHaar
LMMSE

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

(|hs|4 + 2|hs|2m1 + 2m2 −m2
1

)
, (5.26b)
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for the LMMSE filter and

∂IHaar
ML

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(|hs|2 + m1

)
(5.27a)

∂2IHaar
ML

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

(|hs|4 + 2|hs|2m1 + m2

)
. (5.27b)

for the ML receiver.
These results can be proven as follows. Recall that the moment gener-

ating series of ν2 is

Mν2(z) =
+∞∑
i=1

miz
i.

Now, since ρ→ 0 implies χ = ρ− |hs|2ρ2 + o(ρ2), one has

ηHaar = − 1

χ
Mν2(−χ) = m1 −m2ρ + o(ρ)

and, after some algebra,

IHaar
LMMSE =

α

1 + α

[
(|hs|2 + m1)ρ + (m2

1 −m2)ρ
2 − 1

2
(|hs|2 + m1)

2
ρ2
]

+ o(ρ2),

∂IHaar
ML

∂ρ
=

α

1 + α

|hs|2
1 + ρ|hs|2

− α

1 + α

Mν2(−χ)

χ

∂χ

∂ρ

=
α

1 + α

[
|hs|2 + m1 − (|hs|4 + 2|hs|2m1 −m2)ρ

]
+ o(ρ),

all for ρ small enough. The results in (5.26) and (5.27) follow from in-
spection once recalling the general Maclaurin expansion I(ρ) = I(0) +∑+∞

i=1
1
i!

(
∂iI
∂ρi

∣∣∣
ρ=0

)
ρi.

As before, it is worth comparing isometric and i.i.d. codes. The same
technique can be applied to the i.i.d. spectral efficiencies in (5.10), leading
to similar results. The first and second derivatives at ρ = 0 are given by:

∂I iid

∂ρ

∣∣∣∣
ρ=0

=
α

1 + α

(
|hs|2 +

L∑
l=1

|glhdl|2
)

, in both cases,

∂2I iid
LMMSE

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

[
|hs|4 + 2|hs|2

L∑
l=1

|glhdl|2 +

+ (2α + 1)

(
L∑

l=1

|glhdl|2
)2]

,

∂2I iid
ML

∂ρ2

∣∣∣∣
ρ=0

= − α

1 + α

[
|hs|4 + 2|hs|2

L∑
l=1

|glhdl|2 +
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+ (α + 1)

(
L∑

l=1

|glhdl|2
)2]

.

Inserting these results into (5.24) and (5.25), one readily obtains (Eb/N0)min

and the slopes SLMMSE,iid
0 , SML,iid

0 .

5.6.1 Slope comparison

Since the four schemes (two possible receivers and two possible codes) present
the same minimum energy-per-bit, it is interesting to compare the slopes of
the spectral efficiency as Eb/N0 approaches (Eb/N0)min from above. From
the expressions of the second-order derivatives, it is straightforward to verify
that Haar codes outperform i.i.d. ones for both the receivers. Indeed:

SLMMSE,Haar
0

SLMMSE,iid
0

= 1 +
2α
∑L

l=1 |glhdl|4
|hs|4 + 2|hs|2m1 + 2m2 −m2

1

, (5.28)

SML,Haar
0

SML,iid
0

= 1 +
α
∑L

l=1 |glhdl|4
|hs|4 + 2|hs|2m1 + m2

. (5.29)

More meaningful is the comparison between the two receivers when em-
ploying isometric codes. By replacing the expressions of the second deriva-
tives, one obtains:

SML,Haar
0

SLMMSE,Haar
0

= 1 +
m2 −m2

1

|hs|4 + 2|hs|2m1 + m2

. (5.30)

It is straightforward to show that

1 ≤ SML,Haar
0

SLMMSE,Haar
0

< 2.

Observe that the case SML,Haar
0 /SLMMSE,Haar

0 = 1 arises only when the vari-
ance of the distribution ν2 vanishes, i.e. when m2 −m2

1 = 0. This condition

implies that the matrix C̃HΨ̃HΨ̃C̃ is, up to a constant factor, an identity
matrix. This is another evidence of the optimality of the LMMSE receiver
in the white-interference signal model. Nevertheless, since

m2 −m2
1 = α

[(
L∑

l=1

|glhdl|2
)2

−
L∑

l=1

|glhdl|4
]
,

the interference can never be whitened, except for the trivial case α = 0.

Note that the three ratios (5.28), (5.29) and (5.30) tend to one as |hs|2 in-
creases, meaning that all the coding/receiver schemes are equivalent in that
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Figure 5.7: Spectral efficiency vs. Eb/N0: comparison between real curves
and low-power (LP) approximations for the LMMSE (a) and the ML (b)
receivers.

situation. The reason is that the relay contribution becomes less important
when the quality of the direct link is high.

Figure 5.7 compares simulation curves with the approximations just de-
rived, both for the LMMSE receiver (see Figure 5.7(a)) and for the ML
receiver (see Figure 5.7(b)). The gain of Haar coding over i.i.d. coding is
evident. Besides, as commented in Section 5.4.2, we can notice once again
that Haar signatures are especially useful with the LMMSE receiver, due to
higher sensitivity of the linear receiver to colored interference.

5.7 Conclusions

This chapter has presented a randomized distributed linear-dispersion space-
time block code for the relay channel which is based on isometric matrices.
These codes show some gain with respect to the i.i.d.-based ones presented
in Chapters 3 and 4. This advantage is due to the orthogonal structure
of the coding matrices, which removes intra-relay interference. Intuition
and simulation results suggest that isometric codes are more suitable in
system with a low number of relays. Indeed, as we add more terminals, the
interference generated within each relay becomes negligible with respect to
the one due to the superposition of all relay transmissions. Furthermore,
the difference between the two coding schemes is more significant when
employing a LMMSE receiver, which is more sensible to colored interference
than the ML receiver.

The analysis has been carried out in the asymptotic domain, i.e. when
both dimensions of the coding matrices grow indefinitely but keeping con-
stant the coding rate α. Indeed, as in the i.i.d. case, large enough random
isometric codes show a deterministic behavior, independent of the specific
realization of the matrices. Results have been derived by resorting to the
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rectangular R-transform, a recent result of probability theory that allows
to estimate the distribution of the singular values of a sum of rectangular
matrices.

Appendix 5.A The rectangular R-transform of δa

According to the algorithm depicted in Figure 5.3, we compute here the
rectangular R-transform with ratio α corresponding to the symmetrized dis-
tribution μ = 1

2δ−√a + δ√a, that is μ2 is the distribution of the deterministic
constant a > 0.

First, the moment generating function is given by

Mμ2(z) =
az

1− az
,

which implies

Hμ(z) =
z

(1− az)2
[1− (1− α)az],

according to (5.12). Recalling that T (z) = (αz + 1)(z + 1) and that z =
T (U(z)) − 1, from (5.13) we know that Cμ(z) is a solution to

H−1
μ (z) =

z

(1 + Cμ)(1 + αCμ)
,

or, equivalently, to

z = H
( z

(1 + Cμ)(1 + αCμ)

)
=

z

(1 + Cμ)(1 + αCμ)− az

(1 + Cμ)(1 + αCμ)− (1− α)az

(1 + Cμ)(1 + αCμ)− az
.

The last identity can be rewritten as

[(1 + Cμ)(1 + αCμ)− az]2 = (1 + Cμ)(1 + αCμ)− (1− α)az

and, after some algebra, as[
(2αCμ + 1 + 2α)2 − (1 + 4αaz)

][
(2αCμ + 1)2 − (1 + 4αaz)

]
= 0.

Since it must be Cμ(0) = 0, the first term can be discarded and Cμ(z) is a
solution to

(2αCμ + 1)2 = 1 + 4αaz,

and, thus, to
αC2

μ + Cμ − az = 0. (5.31)

When z ∈ R and z ≥ −a, Cμ(z) is given by

Cμ(z) =

√
1 + 4αaz − 1

2α
.
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Appendix 5.B The antiderivative of Mν2(z)/z

In this appendix we briefly explain how to compute a primitive of the func-
tion

Mν2(x)

x
=

L

2α

L(α + 1)x− 1 +
√

(L(1− α)x− 1)2 − 4(L− α)x

(1− L2x)x
,

defined for x ≤ 0 (for continuity extension, we fix f(0) = L). The result-
ing function can be used to compute the asymptotic spectral efficiency in
the case of ML receiver, equal channels and α ≤ 1 (see Section 5.4.2 and
Figure 5.5).

Let us define

R =

√
(L(1− α)x− 1)2 − 4(L− α)x;

A = L(1− α);

B = L + αL− 2α;

E =
2B

L2
− A2

L4
=

(1 + α)(2L− 1− α)

L2
;

b =
B

L2
− A2

L4
;

c2 =
A2

L4
− 2B

L2
+ 1 =

(1 + α− L

L

)2

= 1− E.

Then,
M

ν2 (x)
x can be decomposed in terms of the form p(x)

q(x)R , where the coef-

ficients of the polynomials p(x) and q(x) are functions of A,B,E, b, c2, α and
L. By applying [101, Formulas 2.261, 2.264-2 and 2.266], the antiderivative
can be written as∫

f(x) dx =
L

2α
ln(R−Bx + 1)− 1− α

2α
ln(AR −A2x + B)

− L− 1− α

2α
ln(cR + b(1− L2x) + c2) + C,

where C is a generic constant and c = |c| = L−α−1
L , since we consider α ≤ 1

and we can assume L ≥ 2 without loss of generality (the case with one single
relay is trivial).

Appendix 5.C Haar-distributed unitary matrices

It is well known that a unitary matrix U is a square matrix with complex
entries such that UUH = UHU = I. In other words, the inverse and the
Hermitian transpose of the matrix U coincide.
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It is straightforward to prove that the set U(N) of N×N unitary matrices
forms a multiplicative compact group. The unitary matrix U ∈ U(N) is said
to be Haar distributed7 if the probability distribution of U is invariant by
left- or right-multiplication by constant unitary matrices. In other words,
the probability distribution of U coincides with the Haar measure on U(N)
(see, e.g., [102]).

Haar-distributed unitary matrices have a lot of nice properties about, for
instance, the distribution of their eigenvalues or the asymptotic behavior of
their trace [77,103]. Here, however, we limit our interest to the fact that all
subsets of K ≤ N columns (or rows) of a Haar-distributed random unitary
matrix have the same distribution. Indeed, it is enough to recall that a
permutation matrix P is also unitary and, thus, a permutation UP of the
columns (or PU of the rows) of U does not change its distribution. As a
consequence, the random isometric linear-dispersion matrices employed in
this chapter are also bi-unitarily invariant.

To conclude, we explain how Haar-distributed random unitary matrices
can be generated from Gaussian random matrices (see also [77,91,103]).

First method. Take an N ×N random matrix X filled with i.i.d. Gaus-
sian entries with zero mean and unitary variance. Then the unitary matrix

X(XHX)
−1/2

is Haar distributed. Indeed, for any constant unitary matrix
U, one has

UX(XHX)
−1/2

= UX((UX)HUX)
−1/2

.

Since the Gaussian multi-variate distribution is completely defined by its
mean and variance, X and UX are equally distributed. So are the unitary

matrices X(XHX)
−1/2

and UX(XHX)
−1/2

. Invariance by right-multiplica-
tion follows from the compactness of U(N).

Second method. Once again, consider the N ×N Gaussian random ma-
trix X defined above. The unitary matrix resulting from a QR decomposi-
tion of X is Haar distributed. Indeed, let

X = Q(X)R(X),

where Q(X) is unitary, R(X) is upper triangular and we force the diagonal
elements of R(X) to be positive (note that this decomposition can be easily
obtained by means of the Gram-Schmidt orthogonalization). Since XHX =
R(X)HR(X), it is obvious that R(X) = R(UX) for any constant unitary
matrix U. This fact implies

UX = Q(UX)R(UX) = Q(UX)R(X)

and, hence,

7The expression standard unitary random matrix is also used in the literature.



5.C. Haar-distributed unitary matrices 151

1. Q(X) and Q(UX) have the same probability distribution, since the
Gaussian matrices X and UX are identically distributed;

2. UQ(X) = Q(UX), since we can also write UX = UQ(X)R(X).

The two results together prove that Q(X) and UQ(X) have the same proba-
bility distribution or, equivalently, that Q(X) is a Haar-distributed random
unitary matrix.

Third method. Consider a N × K matrix X with Gaussian zero-mean
unitary-variance i.i.d. entries. The unitary matrices resulting from the
singular value decomposition (SVD) of X are Haar distributed. Indeed,
let U and V be two unitary matrices of dimensions N × N and K × K,
respectively, and let S be a N × K diagonal matrix with positive entries
such that

X = USV,

that is U, V and S are the SVD factors of X. Note that the three matrices
can be made independent of one another. Moreover, let Q be a N × N
Haar-distributed random unitary matrix independent of U and S. Then,
QU is Haar distributed. Since XXH = USSHUH and QXXHQH are
identically distributed, we can assume U to be Haar distributed without
loss of generality. Similar reasoning can be followed for V.





Chapter 6

Conclusions

This dissertation has proposed the use of randomized distributed LD-STBC
for the relay channel. The underlying motivation was the need for a diversity-
achieving distributed space-time coding scheme which is suitable for a dy-
namic network with a (possibly) large and variable number of transmitters.
Randomized distributed LD-STBC turned out to be a good candidate, since
it simply requires assigning each relay a specific linear-dispersion matrix.
The matrices are independently generated and do not depend on the total
number of transmitters. The technical chapters of this thesis have hence
been focused on the analysis of the code, investigating whether it introduces
diversity. When possible, its performance have been compared to those of
existing schemes.

6.1 Summary of the presented results

Probably the most intuitive way to generate random matrices is to fill them
with i.i.d. random entries. In Chapter 3 the randomized i.i.d. LD-STBC
has been employed in an AF multiple-relay channel. The resulting spectral
efficiency has been shown to converge almost surely to a deterministic quan-
tity when the dimensions of the code grow large while keeping constant the
coding rate. The limiting spectral efficiency turns out to be an excellent
estimate of the spectral efficiency obtained by practical large-enough codes
(the approximation is already accurate for code lengths around 30 or 40
symbols). As a consequence, all the analysis carried out in Chapters 3 and 4
has been based on the deterministic asymptotic spectral efficiency to avoid
dealing with code randomness.

In terms of spectral efficiency, a direct comparison of the AF multiple-
relay channel with the direct source–destination link has raised an intuitive
result: relaying is superior to point-to-point transmission only when the
source–destination channel is too weak to support the communication alone.
Sufficient conditions for the superiority of relaying have been derived for both
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the ML receiver and the LMMSE receiver. In the ML-receiver case, the
condition turns out to be also necessary when one single relay is considered.

Note that these results on spectral efficiency are not enough to investigate
the diversity offered by the system. For this purpose, Chapter 4 deals with
outage probability, i.e. the probability that the spectral efficiency is lower
than a target rate due to channel fading. The diversity order is then given
by the speed at which the outage probability vanishes as we increase the
transmitted power.

To start with a simple case, in Chapter 4 we have first replaced AF
relays by DF ones. In this way, no noise is forwarded by the relays to the
destination and the outage analysis is less involved. The results are quite
intuitive: the system undergoes an outage only when the direct link and all
the source–relay–destination paths are deeply faded. In other words, one
single good link is enough to sustain communications. The only exception
arises when the LMMSE receiver is employed together with high coding
rates. In this case, the relays excessively compress the information and the
linear receiver is not capable of exploiting their contribution. Note, however,
that a good choice of the coding rate is important also in the ML-receiver
case, since it has a strong influence on the outage gain. Figures 4.1 and 4.2
(the latter refers to the LMMSE receiver) show that the minimum outage
gain may not be achieved by setting the coding rate to the trivial value one.
Working with the best coding rate results in significant improvements in
terms of outage probability, as depicted in Figure 4.5.

Conversely, AF relays offer full diversity only when the coding rate is low
enough. Then, by increasing the coding rate, the diversity order decays as
depicted in Figure 4.7. The fact that AF relays employing randomized LD-
STBC do not achieve full diversity is a consequence of the non-orthogonality
of the codes. At the receiver, the colored structure of the equivalent interfer-
ence is an effect of the correlation among relay contributions and reduces the
number of equivalent parallel channels. Obviously, the correlation increases
as we reduce the length of the code.

Summarizing, randomized LD-STBC is more suitable for DF relaying
than for AF relaying, since full diversity order can be achieved while work-
ing with higher coding rates, which better exploits the system degrees of
freedom. Nevertheless, by comparing systems with one single relay (see Sec-
tion 4.2.3), intuition suggests that AF relays outperform DF ones when the
coding rate is low enough. In this case, indeed, the equivalent noise is al-
most white and the receiver can always extract some information from all
the noisy relay messages. Conversely, when the coding rate increases, the
AF equivalent noise becomes more colored, making the relay contribution
useless. It is then preferable to use DF relays: each message is relayed by a
lower number of terminals (only those which were able to decode the source
message), but no noise is forwarded.

The results of Chapter 3 and, especially, Chapter 4 have revealed the
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potentialities of randomized LD-STBC by analyzing linear-dispersion ma-
trices filled with i.i.d. random entries. These matrices are very simple to
build, but they do not allow designing any smart transformation of the in-
formation vector. In Chapter 5, we have hence proposed to use isometric
linear-dispersion matrices with orthogonal columns (or rows, according to
the coding rate), which intuitively reduce interference. Note that this choice
does not spoil the flexibility of the code: matrices assigned to different relays
are still independent of each other and the resulting code can be employed
in dynamic networks as the previous one. Unfortunately, matrix indepen-
dence is also the weak point of isometric codes: the orthogonal structure
of the linear-dispersion matrices reduces interference inside each relay but
does not affect the one among different relays. As a consequence, the gain
of isometric codes over i.i.d. ones decreases as we add relays to the system.

6.2 Future work

A number of research lines are left open by this dissertation. First, to sim-
plify the analysis, all the results refer to orthogonal relaying, i.e. the source
remains silent during the relaying phase. Nevertheless, non-orthogonal re-
laying protocols are probably more interesting in practice, since the source
continuously transmits new symbols without being aware of the relays and
their functioning. As mentioned in Section 3.5, some preliminary work has
been done in [55], where non-orthogonal AF relaying has been shown to out-
perform orthogonal AF relaying in terms of spectral efficiency. The outage
characterization of both AF and DF non-orthogonal relaying is still missing.

The results about isometric codes presented in Chapter 5 also leave some
interesting questions unsolved. Indeed, very recent mathematical tools have
been used to give an asymptotic characterization of the codes. The resulting
expressions are more involved than those for the i.i.d. codes. For this reason,
Chapter 5 has only dealt with the spectral efficiency of DF relays (recall that
DF relays do not forward noise from the source–relay channel). Furthermore,
exact expressions have been derived only for some special cases. On the one
hand, it would hence be interesting to extend those results to the generic
DF relay channel and, from there, study the outage behavior of the system.

On the other hand, isometric codes are probably more suitable for AF
relays (as compared to DF relays). This intuition comes from the fact that,
apparently, the main problem with AF relays is the colored noise they gen-
erate. Let us consider the covariance matrix of the equivalent received noise
(see Section 3.1.1), namely

E[nnH ] =

[
σ2

dIK 0
0 R

]
;

with R = σ2
uC̃Ψ̃Ψ̃HC̃H + σ2

dIN .
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Now, observe that the matrix R can be rewritten as follows:

R = σ2
u

L∑
l=1

|glhdl|2ClC
H
l + σ2

dIN .

Then, with a coding rate α ≥ 1, isometric linear-dispersion matrices imply
that ClC

H
l = αIN and the resulting noise is white:

R =

(
ασ2

u

L∑
l=1

|glhdl|2 + σ2
d

)
IN .

When α < 1, the matrices {Cl : l = 1, . . . , L} are tall with orthogonal
columns and the equivalent noise is not white anymore. Still, we can rea-
sonably believe that the noise structure is less colored as compared to the
one generated by i.i.d. codes.

To conclude, let us mention that the main limitation of the presented
scheme is probably the information assumed at the receiver. Aiming at a
completely dynamic and distributed system, indeed, it would be interesting
for each relay to generate its specific linear-dispersion matrix without ex-
changing any set-up information with the destination. A possible solution
to this problem could be the estimation, at the receiver side, of an equivalent
channel that absorbs the linear dispersion into it.



Appendix A

Notation

In general, uppercase boldface letters (A) denote matrices, lowercase bold-
face letters (a) denote (column) vectors and italics (a) denote scalars.

AT ,A∗,AH Transpose, complex conjugate and transpose conju-
gate (Hermitian transpose) of a matrix A, respect-
ively.

A−1 Inverse of A.

A1/2 Positive definite Hermitian square root of A, i.e.

A1/2A1/2 = A.
det(A) The determinant of the matrix A.
tr{A} The trace of the matrix A.
‖A‖ The spectral norm of the matrix A, i.e. the largest

singular value of A.
A⊗B Kronecker product between A and B.

If A = [am,n : m = 1, . . . ,M ;n = 1, . . . , N ],

A⊗B =

⎡⎢⎣ a1,1B · · · a1,NB
...

. . .
...

aM,1B · · · aM,NB

⎤⎥⎦.

IN The N ×N identity matrix.
0 A vector or matrix with all-zero entries.
diag{a1, . . . , aN} A diagonal N ×N matrix with entries ai.
RN , CN The set of vectors with N real or complex valued

elements, respectively.
RM×N , CM×N The set of M ×N matrices with real or complex

valued elements, respectively.
R[x], C[x] The set of polynomials in x with real and complex

valued coefficients, respectively.
R[[x]], C[[x]] The set of formal power series in x with real and

complex valued coefficients, respectively.
j The immaginary unit, i.e. j =

√−1.
�(z) The real part of the complex number z.
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	(z) The immaginary part of the complex number z.

[a]+ Maximum between the real quantity a and zero.
Pr[A] Probability of the event A.
E[·] Expected value.
CN (·, ·) The (multivariate) complex Gaussian distribution.
Pout Outage probability.
I(X,Y ) Mutual information between signals X and Y .
|L| The cardinality of the set L.
L̄ Complement of the set L.
1{A} The indicator function of the event A, i.e.

1{A} =

{
1 if A is true,

0 if A is false.

1 Algebra unity.
δa(·), δa Dirac delta centered in a.
δi,k Kronecker delta.

dxj
i For any i ≤ j, dxj

i = dxi . . . dxj.
dxL For a given set of indexes L, dxL =

∏
l∈L dxl.

f(z)=̇zd Exponential equality, i.e.

limz→+∞
ln f(z)

lnz = d.
ln The natural logarithm.
f � g Additive free convolution of the distributions f

and g.
f �α g Rectangular additive free convolution with ratio α

of the distributions f and g.
f � g Multiplicative free convolution of the distributions f

and g.
a.s.−→ Almost sure convergence.
D−→ Convergence in distribution.

m.s.−→ Convergence in mean square.
P−→ Convergence in probability.

O(·), o(·) Landau symbols for order of convergence.
max,min Maximum and minimum, respectively.
sup Supremum (lowest upper-bound).



Appendix B

Acronyms

AF Amplify and Forward.
AWGN Additive White Gaussian Noise.
CDMA Code Division Multiple Access.
CF Compress and Forward.
CSI Channel State Information.
DF Decode and Forward.
DMT Diversity–Multiplexing Tradeoff.
DS/CDMA Direct Sequence Code Division Multiple Access.
GHz Giga Hertz.
GSM Global System for Mobile Communications

(originally Groupe Spécial Mobile).
Hz Hertz.
i.i.d. independent and identically distributed.
IP Internet Protocol.
IS-95 Interim Standard 95.
LAN Local Area Network.
LD-STBC Linear-Dispersion Space-Time Block Code

(or Coding).
LDCT Lebesgue’s Dominated Convergence Theorem.
LMMSE Linear Minimum Mean Square Error.
MAC Media Access Control.
MIMO Multiple Input Multiple Output.
ML Maximum Likelihood.
pdf probability density function.
RMT Random Matrix Theory.
s second.
SINR Signal-to-Interference-plus-Noise Ratio.
SNR Signal-to-Noise Ratio.
STC Space-Time Code (or Coding).
STBC Space-Time Block Code (or Coding).
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SVD Singular Value Decomposition.
TDMA Time Division Multiple Access.
UMTS Universal Mobile Telecommunications System.
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[43] H. Bölcskei, R. U. Nabar, Ö. Oyman, and A. Paulraj, “Capacity scal-
ing laws in MIMO relay networks,” IEEE Trans. Wireless Commun.,
vol. 5, no. 6, pp. 1433–1444, Jun. 2006.

[44] R. U. Nabar and H. Bölcskei, “Capacity scaling laws in asynchronous
relay networks,” in Proc. Allerton Conference on Communication,
Control, and Computing, Monticello, IL, USA, Oct. 2004.

[45] B. Rankov and A. Wittneben, “On the capacity of relay-assisted wire-
less MIMO channels,” in Proc. IEEE SPAWC, Lisbon, Portugal, Jul.
11–14, 2004.

[46] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamen-
tal tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory,
vol. 49, no. 5, pp. 1073–1096, May 2003.

[47] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless
Communications. Cambridge, UK: Cambridge University Press, 2003.

[48] H. Jafarkhani, Space-Time Coding: Theory and Practice. New York,
NY, USA: Cambridge University Press, 2005.



Bibliography 165

[49] Y. Chang and Y. Hua, “Application of space-time linear block codes to
parallel wireless relays in mobile ad hoc networks,” in Proc. Asilomar
Conference on Signals, Systems, and Computers 2003, Pacific Grove,
CA, USA, Nov. 2003.

[50] P. A. Anghel, G. Leus, and M. Kaveh, “Distributed space-time co-
operative systems with regenerative relays,” IEEE Trans. Wireless
Commun., vol. 5, no. 11, pp. 3130–3141, Nov. 2006.

[51] S. Barbarossa and G. Scutari, “Distributed space-time coding for mul-
tihop networks,” in Proc. IEEE ICC 2004, Paris, France, Jun.20–24
2004.

[52] ——, “Distributed space-time coding strategies for wideband multihop
networks: Regenerative vs. nonregenerative relays,” in Proc. IEEE
ICASSP 2004, Montreal, Quebec, Canada, May17–21 2004.

[53] J. Mietzner, R. Thobaben, and P. A. Hoeher, “Analysis of the ex-
pected error performance of cooperative wireless networks employing
distributed space-time codes,” in Proc. IEEE Globecom 2004, Dallas,
Texas, USA, Nov. 29–Dec. 3 2004.

[54] T. Wang, Y. Yao, and G. B. Giannakis, “Non-coherent distributed
space-time processing for multiuser cooperative transmissions,” IEEE
Trans. Wireless Commun., vol. 5, no. 12, pp. 3339–3343, Dec. 2006.

[55] D. Gregoratti and X. Mestre, “Random DS/CDMA for the amplify
and forward relay channel,” IEEE Trans. Wireless Commun., vol. 8,
no. 2, pp. 1017–1027, Feb. 2009.

[56] ——, “Large-SNR outage analysis for the df relay channel with ran-
domized space-time block coding,” IEEE Trans. Wireless Commun.,
submitted.
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