CHAPTER 8
LIDAR INVERSION AND NONLINEAR
KALMAN FILTERING

The inversion of extinction and backscatter profiles from lidar return-signals
can be tackled by means of nonlinear Kalman filtering theory. It is proved that it is the
optimal estimator under any reasonable criterion.

The potential advantage of Kalman filtering over nonmemory algorithms is the
goal of retrieving both extinction and backscatter profiles at virtually every observation
cell. This is a result of making the most of correlation amongst past lidar return-signals.
Since the training capacity of the filter enables to give different weights to the actual
and past measurements, nonmemory algorithms (in paricular, least-squares) can be
understood as the simplest version of the Kalman filter, where the maximum confidence
measurement is the actual one.

Philosophically, the Kalman filter represents a challenging and ambitious goal
to the general problem of lidar inversion. Since the possibilities of the filter depend too
much on how well the theorical model represents the atmosphere, whose physical model
cannot exactly be known, the solution of the Kalman filter will be suboptimal. That is
why the natural flow of the chapter leads to different filters and stochatic models for the
atmosphere based on simulated data, leaving for Chap.9 its incipient application to real
data.

Finally, the last part of the chapter addresses the observability problem, where
prerequisites for the Kalman-lidar estimator are stated.

"... the Kalman filter represents the most widely applied and demonstrably useful result
to emerge from the state variable approach of modern control theory" (H.W. Sorenson
[203]).

1. INTRODUCING THE KALMAN FILTER
1.1 Linear discrete Kalman filter

Let us consider a stochastic discrete time vector process x; (dimensions are indicated
in brackets) modelled by

X =Py X+ Wy ey

where;: Xy is the time-state vector at time #, (nxI)
&, is the transition state matrix from time f, oty (nxn)
w, is the state noise vector (nxI).
The measurement or observation also takes place at discrete times 7,, according to
the following linear relationship:

Z=H,x,+v, 2)

where:
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7 is the measurement vector at time L (nxl)
H, is the measurement matrix (mxn)
Vi is the measurement error vector (mxI).

To illustrate somehow the physical meaning of the variables introduced, let us take
the case of xy-speed monitoring of an uniform bidimensional motion. As far as it concerns
to the system under study, x, would be the mobile's xy-speed components (v, vy), @, would
be the bidimensional matrix describing a simple uniform 2-D motion that relates vector
speed components from one sample time to the next one (as the motion is expected to be
truly uniform over the entire time, ®, = I can be assumed), finally, w, would be the noisy
process modelling the velocity drift in the mobile's motion. As for the observation system,
H, would be the linear equations relating the mobile's xy-coordinates to the vector speed
components. Were these equations not to be linear, it would be necessary to resort to the
extended Kalman filter that will be commented in Sect.1.2. Finally, v, would be the
measurement noise, for instance, electronic thermal noise.

The noisy vectors, w,, v, must be white sequences with known covariance matrices.
In addition, w, and v, must be uncorrelated. In instances where these conditions are not
fulfilled, one can augment the state vector [169] and estimate the correlated noisy samples
w;', v/, from others w,, v, that form an uncorrelated, orthogonal base. This enables the
Kalman filter to work with coloured noise, even if it is non-stationary. Noise covariance
matrices are given by:

Q, ik

E Tys 3)
Lo 0 iz#k

E[v.v7]= R =k @)
Ee 0 i*k

Elw,v/1= 0 V ki | &)

At this point, it is assumed that an initial estimate of the process at the same point

in time, 7,, is known. This estimation, called a priori estimate, will be denoted £, , where

the superscript minus is a reminder that it is the best estimate prior to assimilating the
measurement at 7,. The estimation error can be written as:

e =X~ %; ©)
and its associated error covariance matrix as:
o - ""T o A T
Py =Ele; e, 1 =E[(x,~£)(x,-%,)" ] )
Now, a linear combination of the measurement z, is sought to improve the prior

estimate x‘,; :
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£ =8 + K(z,-H. %) 8
where:
X, is the updated estimate and,
K, is the Kalman gain (yet to be determined).
The problem now is to find the particular blending factor K, that yields an optimal
updated estimated under some reasonable criterion. Just as in the Wiener solution, a

minimum mean-square error criterion is used. Toward this end, let us write the error
covariance matrix associated with the a posteriori (updated) estimate:

P,=Elee; 1= E[(x,~£)(x,~%)" ] ©

If eq.(2) is substituted into eq.(8), and then into eq.(9) a final result for eq.(9) is given by:
P,=(I-K,H)P(I-K,H)" + K, R, K| - (10)

The optimization problem is now equivalent fo finding the optimum gain at each

time t,, K;, that minimizes the error variances for the elements of the state vector being
estimated. As the individual terms along the major diagonal of P, do represent these error

variances, the optimization problem can be solved by minimizing the trace of P. If we
follow straightforward matrix differentiation analysis and the next two formulas are

considered:
M = BT  (AB must be square) (1)
dA
T
dirace(ACAT)] _ 5 4 (C must be symmetric) (12)
dA
it can be formulated that:
dltr(P)] _ -2(HP")+2K(HP HT+R) : (13)

dK

Now, the derivative can be set equal to zero and the optimal gain, the Kalman gain, found.
The result is:

K =P, H(H P; H +R)™ (14)

Once the Kalman gain is known, if it is substituted in eq.(10), the a priori and a
posteriori error covariance matrices can be related:

P,=(I-K,H,)P, (15)

Now, note that both eq.(8) and the Kalman gain given in eq.(14) provide a means
of assimilating the measurement at 7, in a recursive relation that makes use of the a priori

variables X, , P,". For that reason a similar need for £, can be anticipated at next step
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in order to assimilate the next measurement z,,,. This new a priori estimate can be

computed if we project ahead the old estimate X, via a transition matrix:

E A (16)

Finally, the new a priori error covariance matrix P, ,” is computed in this way:
P =Elep 1] =E[( @, e +w)(@, e,+w)T 1=, P, @+ Q, )

The needed quantities at time 7, given, the measurement z; , ; can be assimilated just
as in the previous step. Thus, it is a routine matter to cycle through the Kalman loop
comprising egs.(8), (14), (15), (16) and (17) (see Fig.1). The loop begins with the a priori

estimates of the state vector £, and the error covariance matrix P,

Enter prior estimate i". and
its error covariance P

Compute Kalman gain:
_p-yT T 3y
Ke = PLHL (H PLH, +R.)

=

Project ahead: Update estimate with
Xear = P Xy measurement 2, :
= T b R s
Pk+1 “°§Pk¢k +Q& X, = X, +Kk(zk Hkx{-)

Compute error covariance
for updated estimate:
P =01-K.H P,

Fig.1 Kalman filter loop.

1.2 Extended discrete Kalman filter

Some of the most successful applications of the Kalman filter arise in situations
where nonlinear dynamics and measurements have to be considered. This is the present
case. In these instances, the stochastic process to estimate and the measurement relation
can be written in its most general form as:

X =Sl + Wy (18)
Z=hy(x)+vy (19)

where f, and 4, are nonlinear functions. The same constraints given to w; and v, in Sect.1.1
also apply here.



LIDAR Inversion and Nonlinear Kalman Filtering 8.5

To begin with, let us approximate these functions by their Taylor's series expansion

around the a posteriori £, and a priori X, estimates, respectively, and let us retain first-

order terms only. It is found that:

/150 X
Fx) =R + ﬁ s, @) (20)
- () .
h(x) = (%) + —“gx_ Ix gy (x,—%) (21)
Note that these developments assume the following conditions:
|x,~%£,| << 1 | (22)
-t | << 1 @3)

as it is expected that there will not be large differences among the three variables. Yet,
careful attention should be drawn to the fact that the extended Kalman filter is a risky one
as the linearization process takes places about the filter's estimated trajectory of the state
vector rather than about a precomputed nominal trajectory (Fig.2). This is to say, that the
partial derivatives are evaluated along a trajectory that has been updated with the filter's
estimates; these, in turn, depend on the measurements, so the filter gain sequence will
depend on the sample measurement sequence realized on a particular run of the
experiment. Thus, the gain sequence is not predetermined by the process model
assumptions as in the linear Kalman filter.

A general analysis of the extended Kalman filter is difficult because of the feedback
of the measurement sequence into the process model. However, qualitatively it would seem
to make sense to update the trajectory that is used for the linearization (after all, one may
well wonder, why use the old trajectory when a better one is available ?). The flaw of this
argument is this: the better trajectory is only better in an statistical sense. There may be
a chance that the updated trajectory be poorer than the nominal one. In that event, the
estimates will be poorer and this, in turn, will lead to further error in the trajectory, which
causes further errors in the estimates, and so forth and so forth, leading to eventual
divergence of the filter. The net result is that it should be cautioned that the extended
Kalman filter is a risky one, especially in situation where the initial uncertainty and
measurement errors are large. Yet, it may be better on the average that the regular filter.

Following a similar mathematical analysis to Sect.1.1, one can bridge gulfs with
the classical linear filter if the equivalent matrices F; and H, are defined in the following
way:

P

24
k ax lx =£k ( )



8.6 LIDAR Sensing of the Atmosphere

)

50 25
k ax |x=ft ( )

If they are identified with the first-order terms of eqs.(20) and (21), they yield to:

Xy SFE) +F(x, - %) +w, (26)

z,=h(Ee) + H, (x, - £,) +V, (27)

These equations represent the linearized version of the filter and look very much
like eqs.(1) and (2), except for the fact that rather that presenting to the filter total
quantities, incremental ones are considered. In relation to egs.(26) and (27), these are:

Ax, = X XY 28)

Az, = z,-h (%)) (29)

For further insight into how the filters keeps track of the total estimates see [169].

Estimated trajectory

L

System state

Update points

1 1 | ] J

Time
Fig.2 Reference and actual trajectories
of an extended Kalman filter [169].

To sum up, extended Kalman filter's recursive equation set becomes:

%, = % + K, [5-hGD] (30)
P,=(I-K, H,)P; @1)
‘fk_d =f, k(fk) (32)

P, =F,P,F; +Q, (33)

K,=P; H; (H P, Hf +R)" (34)
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For completeness, let us give a similar example to that of Sect.1.1: Consider the
case of plane's position radar monitoring in a pulse position indicator (PPI). As far as it
concerns to the system under study, x, would be the plane's space coordinates (x,y,z), ®,
would be the tridimensional matrix describing the simple uniform 3-D movement that
relates aircraft's position form one sample time to the following and w;, would be the noisy
process modelling the drift in the plane's trajectory. As for the observation system, H,
would be the nonlinear equations that relate the tridimensional spatial coordinates to the
PPI ones. z;, would be the polar coordinates of the PPI (note how this involves a change
in dimension) and finally, v, would be the electronic thermal noise added (that is, the

measurement noise).

1.3 Relationship to deterministic least-squares

Both Kalman and Wiener filtering are sometimes referred to simply least-squares
filtering. Though the topic is widely developed in [169], this is an oversimplification. The
criterion for optimization is minimum mean-square error for the Kalman filter and not the
squared error as it is in a deterministic sense (least-squares of Chap.7).

It is possible, however, to recapitulate the conditions under which the Kalman filter
estimates coincides with the deterministic least-squares estimate [203]:

1.- The system state vector must be assumed a random constant (the dynamics
are thus trivial),

2.- the measurement sequence, z,, must yield an overdetermined set of linear
equations and,

3.-  no prior knowledge about the vector being estimated must be assumed
(Pj>00).

In instances were the covariance matrices are assumed diagonal and uniform
(Pe=0,"I, Qy=0,I, Re=0,"]), it has been possible for the author of this work to derive
asymptotic relations about the filter's performance (Tab.1), which have been corroborated
during the simulation process. They all stem from egs.(30) to (34).

GAIN P o COMMENTS
Ke | P 2,
ap > 0oro,— : 0 P fk_ no update possible as K, = 0

filter strongly confident on past data

gy ~> % or g, —* 0 : Hk'1 0 Hk'lzk estimate only depends on present data
i least-squares behaviour

Tab.1 Analysis of asymptotic error covariance matrices.
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This latter assumption is unusual because in many situations, as it is the lidar case,
there is at least some prior knowledge of the processes being estimated. One of the things
that distinguishes the Kalman filter from other estimators is the convenient way in which
it accounts for this prior knowledge via the initial conditions of the recursive process. Of
course, if there is no prior knowledge to use, the Kalman filter advantage is lost (in this
respect), and it degenerates to a least-squares fitting under the conditions just stated.

2. LIDAR INVERSION PHILOSOPHY USING THE KALMAN FILTER

The inversion of lidar signals using classical methods such as slope-method, least-
squares, Klett or any of the approaches given in Chap.7 suffers from the basic fault of
lacking memory. All the inverted profiles, does not matter whether the results were
homogeneous of inhomogeneous, were based on present-data realizations of the lidar
return-signal. For each data stream received, a new inversion, completely independent
from those previously done, was performed. As a result, no advantage was taken from
past-time correlation except for an increase in signal-to-noise ratio due to pulse integration,
if used.

Kalman filter major interest is to estimate for nearly every observation cell the
dynamic behaviour of the above mentioned optical parameters, as it is often the case in
real atmospheres. This comes as a result of making the most of correlation. As long as
different received realizations income, the filter updates itself weighted by the on-line
unbalance between the a priori estimates (based on past realizations) and the new ones.
Thus, the project ahead step in the filter or a posteriori estimate is performed based on a
minimum variance estimator.

Moreover, variables in atmospheric phenomena are in general nonlinearly related.
Unless microscale analysis is considered and plenty of boundary constraints from remote
meteorological stations given, the struggle to physically model these optical parameters
results awkward and cumbersome. Noticing that neither the visibility margin nor the signal-
to-noise ratio change swiftly, it has prompted an stochastic model of the atmosphere
(Sect.4) that models its macroscopic effects on the optical parameters using a time-space
correlation graph. It devises correlation links among the cells remotely sensed within the
lidar range, while keeping physic phenomena in the background.

As a result, it will be shown that not only does the filter its best at estimating the
optical parameters along the observation cells but also models the nonlinear dynamics of
a long-term slow-drift atmosphere.
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3. FIRST APPROACH TO THE INVERSION: THE WHITE NOISE ATMOSPHERE

It is wished now to derive the extinction- and backscatter-coefficient over the entire
lidar range. It is wished, then, to solve the functions «(R,f) and B(R,?) that, in a minimum
mean-square sense, best fit the observable power P(R,t) at every time 7,. (Recall that the
term mean, refers here to the ensemble average of lidar return observables).

To tackle the problem, a twofold study is presented: In the first place, a successful
undersampling filter is explained (Sect.3.1), leaving the sampling rate filter in second place
(Sect.4) as it will be shown to be not observable. As it can be guessed, they came across
in the opposite direction but they are presented in reverse order for clarity reasons.

3.1 The undersampling filter

From the outset, there have been considered spatial samples every AR and lidar
minimum range, R, .. Given the acquisition system sampling rate, f, it can be easily
related to the former parameters by the expression

¢
AR = — 35
2 (35)
If the spatial sampling points are
R, = R +(@-1)AR i=1.N (36)
the power samples will be
P,=P(iAR) i=1.N (37

Now, if the extinction- and backscatter-functions are decimated by a factor of 2
(that is, it is considered a sampling period 2AR, twice that of the power), N/2 extinction
samples and N/2 backscatter samples will be estimated. (For simplicity, assume that N is
an even number). This can be expressed as

«,=a(R , +[i-1]2AR) i=]..
(38)

B,=BR,,*[i-1]12AR)  i=1.

(NI S

These points settled, it emerges that these two halves of N/2 variables will form the
state vector to solve

x=la; @y o ayy By By o Bpp ]T 39)

As the discrete Kalman filter works with the estimates of each spatial cell at times
1., the following notation enables to combine both time-space concepts
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a k)=o) i=1.
(40)
B;’(k)a Bi(tk) i=1..

N[ N[

3.2 Modelization of the atmosphere
The atmosphere dynamics have been modelled by means of the noise state vector,
w, (eq.(18)). The extinction- and backscatter-noise-state vectors are defined as follows

« 1T

WE s W oWy, .. Wy (41)
FY
58 = [WB .,B p 17
wh = [wf wh o owh ] “2)
2
The noise-state vector is defined as follows where & is a reminder of time, f,.
bz @3)
wP(k)

At this first stage, a low-variance white-gaussian noise is used. Noting that this
noise has nothing to deal with the observation noise, it means that the optical parameters
of each observation cell undergo a gaussian drift in time. Because the noise-state vector is
zero bias, it is equivalent to a steady-state atmosphere (on average no significative
perturbations add to the optical parameter figures). As white noise involves wide-band
behaviour, which is not the case of the atmosphere, low constant variances are assumed.

As noise in each cell is independent from others, a further simplification is to
assume that extinction and backscatter figures are of the same magnitude. (It is known that
this two values are correlated by the Koshmieder's relation introduced in Chap.3). Yet, the
simplification above can be justified on account of the fact that the algorithm assumes no
correlation at all between the two parameters. Contrary to what happened to non-memory
algorithms, where tight correlation relations should be assumed (power-law dependency,
Ricatti's differential equation and the like), the above assumption paves the way to loose
correlation relations (e.g. variables having a same stochastic behaviour), if any.

Summing up, the set of transition equations for this atmospheric model become

ai(k"']-) = a,‘(k) +W:¥(k) i=1..
(44)
Bk+1)=B (k) +WwP(®) i=1..

SIS P

In the vectorial form next, it is equivalent to eq.(18).
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Ko =X+ Wy @5)

As regards to the state-noise covariance matrix, it is in agreement with the white
behaviour of the atmosphere

Q.= E[wkw:] = 02-1 (46)

where [ is the identity matrix and arq2 is the state noise variance. Note that Q, is diagonal
because noise is assumed to be uncorrelated among the observation cells.

3.3 The measurement equation
We reproduce the lidar equation (Chap.3), that relates the range-received power to

the sought-after optical parameters

R

-2- f a(r)dr @7
0

P(R) = % B(R)exp

where:
A is the system's constant,
« is the extinction-coefficient in km'l,
B is the backscatter-coefficient in km!,
R is the range.
If according to eq.(37), it is assumed that each power sample corresponds to a
spatial increment AR, and a rectangle approximation is used to compute the integral in

eq.(47), the observable power samples become

B = ffﬁlcm(—ZaIRm) (48)

P, - éﬂlexp[—zalmmmml )

P, = ﬁ—gBzexp{—2[a1(ijn+AR)+oc2-AR]] (50)
B = %Bzexp{—2[ocl(Rmin+AR)+a2-2AR]} 1)

4

The last power sample results
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N2
A
i = Ty B expi “2[e,(R,, *AR)+) ] a, 2AR]} ©2)
R

N i=2

The N power samples build the measurement vector. As this relation is clearly
nonlinear, it is necessary to resort to the extended Kalman filter (Sect.1.2). In relation to
eq.(19), the power samples are linked to the nonlinear function %(x,) in this way

P, (x)]

Py(x)

'_PN(xk)J

The observation model of eq.(19) also takes into account the observation noise. It
stands for both the electronic noise of the receiver and the modelling errors (e.g. numerical
approximations). Since the receiver noise is the same at every time, does not matter
whether the return-signal is received or not, it equally affects all the measurement cells.
For this reason, its noise covariance matrix can be written as

R =Elv, v:.] = of{ 54)
It is time, now, to compute the observation matrix H, (n x 2n) that linearizes

somehow the nonlinear behaviour of eq.(47). This matrix can be split between two
submatrices, H; and H, according to the two sets of parameters in eq.(39)

H=[H, H,] (55)
where
aP. oP.
Hf.i o H‘? o (56)
/ aaj d aﬁj .

Finally, this yields to

2R . P, 0 0 s 0
-2(R_, +AR) P, 0 0 0
2R, +AR)P, -2ARP, ' S 0
H =| -2(R,,+AR P, -4ARP, 0 .. 0 67
-2(R_ +AR)P, , -4ARP,, -4ARP,, .. ~2ARP,
| -2(R,;,*AR) Py, -4ARP, -4ARP, .. -4ARP,
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P
0 v 0
XNp+1
P
2 0 0 0
X241
P
0 2e 1) 0
XNp2
% 0 I, (. 0
Xnpa2
P
0 0 0 .. S
XN
P
0 B 0 = .
Xn

These two matrices, which represent the linearized observation dynamics, involve the

evaluation of egs.(48) to (52) at £, . That is how the Kalman filter estimates the observable

trajectory at every time, f,.

3.4 Initialization
Initialization is a twofold process: It comprises initial guesses of both the a priori

estimate X, and the covariance matrices, P, Q and R. In particular, the a priori error

covariance matrix P, indicates the degree of uncertainty the guesses are expected to have.
Terms along the main diagonal should be interpreted as error-terms whose square-root

would represent the +o-confidence interval of the a priori estimate X, . For this estimate

an uniform hypothesis has been assumed, since there is no prior knowledge about what the
atmospheric profile will be like. This is to say that both sets of optical parameters,
extinction and backscatter, are assumed constant based on a guessed visibility margin and
the Koshmieder's relation [9]. Though another and quite sensible possibility would be to
guess an a priori estimate by means of some non-memory algorithm, this has not been
considered as it is wished to explore the adaptive possibilities of the filter. In particular,
it is wished to investigate if the filter can keep track of the inhomogeneous atmospheric
profiles departing from a simple homogeneous one.

As to the covariance matrix, Py, it becomes
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Py=Eleg ey 1=02-1;  eg=x,~%, (59

where ¢, is the a priori initial estimation error. The larger o, the larger the initial search
interval of the filter. (Tab.2 lists values of other variables of interest).

3.5 Results

Owing to the fact that the two sets of optical parameters, extinction and backscatter
have been modelled independently in Sect.3.1, it has been considered that it could serve
a better purpose to evaluate the filter's performance if the atmospheric test profiles were
synthesized using the same orders of magnitude for both optical parameters rather than
others in better agreement to the reality (Tab.2).

As regards signal-to-noise ratio, medium to large values have been used to minimize
noise observation effects on the filter.

COMMENTS
102 I\Iel:n'krr'{I extinction-coefficient

(synthesized profiles comply with this order of
magnitude)

B 102 km'! backscatter-coefficient
(synthesized profiles comply with this order of
magnitude)

9 102 Initial error standard deviation

9 107 State-vector mobility (std. deviation)

o, 10 w Equivalent noise in received power

A 10* System's constant.

W km? sr
N 60 State-vector dimension
SNR(R) 90-40 dB Signal-to-noise ratio from R_; toR_ -

Tab.2 Simulation figures for the undersampling Kalman filter.

According to Tab.2, from top to bottom, Fig.5 depicts two tridimensional plots of
successive atmospheric states (first one at the top) along with Kalman estimates (second
one). In the first one, it can be seen how the atmosphere drifts away from its initial state
consisting in a soft two-hump-profile, to a final state, where the two humps have become
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sharper and ridged. Recall that the state vector should be split into extinction (/..N/2-th
components) and backscatter (N/2+1..N-th components) so that the tridimensional plots
must be read considering that there are two vector halves in progress. The second one
shows how the filter's estimates track the atmospheric states above, little by little.
Beginning at 7, from an uniform state (non represented), the results are fairly encouraging
five iterations later. The third and fourth plots illustrate time evolution of the inversion
relative error and a map of the gain matrix, K;.

Fig.3 and Fig.4 show a time-cut graph of the 7s-profiles for the SNR of Tab.2 (90-
40 dB in Fig.3) and for a very high one (110-60 dB in Fig.4). Close inspection of these
figures would reveal backscatter-errors of 8 % at R, in Fig.3 down to 3 % in Fig.4 as
well as extinction errors of 70 % down to 40 %, respectively. At this point, it has to be
stressed that errors increase in the high atmosphere, were the SNR is much lower. For
instance, if errors were read in the low atmosphere, say less than 2 km, extinction errors
would easily be under 10 %, while backscatter ones would become negligible. Another
point is that extinction rather than backscatter is more likely to be misestimated. Such
differences arise from substantial different behaviours of these parameters in egs.(57) and
(58). Since backscatter-variables directly appear in the denominator of the elements of H,,
it is possible for them to exert a higher control over the B-trajectories of the filter. On the
contrary, extinction-variables do not benefit from this situation because H,-elements depend
on the extinction quite indirectly via the model power, P;.

0.055— - - - T v T v T 0.055;
0.05- oo'i
—0.045 - '
H 5 0.045-
‘éo.on- I
= = i
o035} § 004
3 =
g 2
& 003F & 0.035
2 2
<0025 =
__E_ E0.0J’
S 0.02f g
- "3 0,025+
.goms g
L -
ootk 0.02 \
0005 I i i - i ' i A A 1 L ov'r i i A S L 4 1 L A A
s 1 15 20 25 30 35 40 45 S0 55 s 0 15 20 25 30 35 40 45 S0 55
slate vedlor state vector

Fig.3 State vector (1) and estimated one(2) Fig.4 State vector (1) and estimated one (2)
(SNR 90-40 dB). (SNR 110-60 dB).
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Fig.5 Atmospheric evolution and Kalman estimates.
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Summing up, it can be said that the features of the input distribution are perfectly
retrieved over the whole lidar range for the backscatter-coefficient and quite well for the
extinction. Thus, the undersampling Kalman filter fulfils lidar inversion needs fairly well,
provided SNR is high enough and sensible initial choices are given.

4. SECOND APPROACH TO THE INVERSION: GAUSS-MARKOV ATMOSPHERE

Kalman filter first approach to the lidar inversion has paved the way to a matched-
pair of cooperating filters that model the atmosphere in a more sensible way. Noticing that
there is room for improvement, the first enhancement has consisted in computing each
optical parameter as the sum of two processes, one of constant behaviour plus another of
stochastic nature. Thus, the first filter (Sect.4.3) will be devised to estimate the constant
part, that represents a rough estimate of the atmosphere, whereas the second (Sect.4.4),
taking a step further, will be aimed at estimating the stochastic increments of these
parameters based on a correlation graph. It will be shown that the accuracy of the latter
does only depend on having high SNRs, which even questions whether this second filter
is worthwhile or not.

Not only an stochastic atmospheric model has been devised, but also there has been
made room to include the intrinsic correlation between the two optical parameters, so often
addressed in the literature [185][186][187]. Working on that ground, the first filter uses
an adaptive linear relationship between extinction, «, and backscatter, B. As far as it
concerns the second filter, it is based on a markovian atmosphere (Sect.4.2).

4.1 The Gauss-Markov process

It comes as no surprise that the state vector does not undergo so swift changes in
time as the white noise does. What the Gauss-Markov process [169][190], often called
markovian noise, offers is a low-pass version of the white noise, equivalently, a time-
correlated noise. Its autocorrelation function can be written as

Ry(r) = ofn exp(-B|t]) (60)

where o,, and B are characteristic parameters of the process.
Its power can be computed by using that

P =Ey*(®]=R(0)=0,, (61)

where it arises that o,, represents the Gauss-Markov standard deviation.
The colouring filter (shaping filter), H(s), can be obtained by power spectral density
decomposition as
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) 2 ) 2 2
5,9~ TP y205B {20,P -89S, (62)

..32.._[52 s+ -s+PB

Thus, by identification

Hw)=S;(s)=—"$2+";B ©3)

Note that, here, it arises B as the 3 dB cut-off frequency. In addition, its discrete time
counterpart can be written in the form of an ARMA (AutoRegressive Moving Average)
process [27][28]

Ve =exp(—BAt)yk+nk (64)

where y, are the markovian samples, and n, the white samples.
By applying the expectancy operator to both sides of the above equation, it yields
an important property,

mmeap(-BADm, =~ a1 -exp(-HAQ]~0 ~ { "0 } &
pAt=0

Therefore, a Gauss-Markov process is a zero mean process (the mean is denoted
my).

The parameter B -Af can be interpreted as the inverse of the time correlation length
of the process. Recalling that the 3 dB cut-off frequency of a filter is equivalent to the
inverse of its impulsional length or correlation time, 7., in the time domain, it can be
written that

5 (6

.0 Yo
Ar %

1
il
BA: At

where L, is the correlation length.

4.2 Modelization of the atmosphere
4.2.1 Temporal correlation

Let us note by «, pB. the extinction- and backscatter-time-constant terms,
respectively, and by «,,, B,, the markovian terms associated. As their effects superimpose
on each cell, it can be written that

«(R)=a (R)+«, (R)
BR)=P(R)+P, B

(67)
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Many times in the literature, these two optical parameters have been correlated
using linear or power relationships. Klett [185][186] joined these two assumptions into a
single power-law expression

B(R) = Ca(R) 0.67<k<l1 (68)

[9] relates these two parameters to the visibility margin and the Koshmieder's relation. So
as to lessen the dependency, one can opt to only link their constant parts using a linear
relationship (k=1) and let the markovian components, which will be superimposed to the
constant vectors, model the departures from the ideal case of linear correlation. In this way
a gross direct dependency between them is ensured without imposing a tight linear
correlation on the total components « and .

In addition, the C-parameter has been given time adaptability as it will form part of the
state-vector. This can be expressed as

i (R) =CyBi(R) (69)
where the subscript k indicates that the estimates are given at time z,.
Taking a step further, the following expression combines the above reasoning and

the idea of an undersampling factor of value M together. The latter factor accounts for the
Jact that M cells share the same values of o and p.

1.

Rz =|=

a,=CPi+a] i
(70)
1.

B,‘=B:+B:ﬂ l

(The time subscript £ has been skipped).

The markovian components (let us assume for the time being the «,,-components,
though the same applies for B, ) are expected to represent only a few percentage of the
total extinction drift. As both o, and S, are correlated, it seems sensible to relate the white
noise standard deviation, o,,, to the markovian one, 0,, and it to the total extinction, o, at
any time. Using eq.(64) both deviations can be related like this [169]

o,=0, 1-exp(-2BA) (71)

Since the markovian components only represent small perturbations around the
mean extinction and backscatter in each cell, the standard deviation, 0,, will have to be
some small percentage of the constant components.

In addition, as any markovian component may take negative values it is necessary
to know which is the maximum amplitude of a markovian noise with standard deviation
0, A comprehensive collection of histograms about how markovian amplitudes distribute
statistically have solved this question. Thus, if a markovian processes of power amz is
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considered, it is within +40, dynamic range. A more conservative assumption
recommends a +50,, limit. Mathematically, the total extinction will always be positive if

o™ |<5- o™ i=1..% (72)

More realistically, the relationship between the markovian perturbations and their
associated extinctions can be expressed by means of a factor p

laf'|[<P-a, i=1..% (73)

If the upper bounds of eqs.(72) and (73) are equalled and 0" is substituted into
eq.(71), it yields

(74)

This important relation provides the white noise power needed to produce a p-per-
one markovian change in the extinction amplitude over a temporal correlation length of L,

samples.

4.2.2 Spatial correlation

In addition to the temporal correlation that exists among different samples of a same
cell, nearby cells may well undergo similar changes in their optical parameters. Believing
that temporal and spatial correlation are independent and recalling that markovian processes
are filtered versions of white gaussian processes, one can take advantage of this and
spatially correlate the white noise rather than the markovian. This is to say that two white
noises or two markovian realizations, ,j share a same correlation coefficient Pu Based on

eq.(71), the relationship between their covariance matrices is:
C
G : (75)
1-exp(-2BA¢)

where the subscripts w and m indicate white and markovian, as introduced before.

It is wished now to find the white correlated noise covariance matrix C,, that will
work as the state noise covariance matrix Q, of the filter. Towards this end, two different
spatial correlation coefficients have to be distinguished: p, between one cell and the next
one, which represents the correlation due to the physical continuity of the atmosphere, and
p', or correlation coefficient between extinction and backscatter of any single cell.
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et p' P p

Fig.6 Spatial correlation graph of the atmosphere.

Mathematically, this can be expressed as

P, =P ;=1..% =] (76)
o N

Ppp., =P I_I"A_l 1 77

Pog, =P iLy] 78)

where ¢, f; are the optical parameters of the i-th cell. The graph of Fig.6 sketches the
correlation links amongst the cells considered. If some properties from open graph theory
are assimilated, the correlation coefficient between two variables X,Z can be computed by
using a third variable Y.

Pxy=Pxz Pzy (79)

In a similar manner, the following correlation coefficients apply for estimates
located j cells apart

g N v 5. 4
Bpe ™0 | Blarh St - (80)
y oy Noi wge N
pﬂ':ﬂ:.} B pj l=1"ﬁ_1 ]=0"ﬂ_ﬁf—t (81)
" . oFend ¢ G WY g N
Pag,, = Pug,, Pu s, =P P x—l..ﬁ 1 ,f-o..H i (82)

So as to give a final expression for the covariance matrix C,,, the correlated noise
vector is defined as
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w=|" (83)

The use of this definition and the fact that C,, is a covariance matrix of zero mean
aleatory variables leads to

— o Xl ok upid
Wa wawa WGWB
C,=Etww"} = E{| ‘|0l #; |t=E &)
! W W, ! T
P pWe Wp¥p
or equivalently
C:m Caﬁ
C = _ (85)
CI'-"a CﬁB

where C,, has been split in four submatrices representing the co- and crosscorrelation
between o and S.
Using that C,; = C.{,GT and that for zero mean variables

cov(X,Y) =E(XY) =0,°0y P,y (86)
a final expression for C,, is reached
2 i / / / n-1 ]
ay PO, T, p" 0,0, PO0,05 PPO, Oy - P ar 0,0
2 ; o / 2
0¢2 pn 20¢20¢" p 0“2052 pfpn 20%0‘]"
ci - plo, Op
; S RCY)
/ ! /. .n-1 2 -1
p'Og O, PPORO, = P p" 04,0, g, POy Op p” 0g,0p
/ ) 2 -2
P oﬁgoaz . 4 pn apzoau Gﬂz p"’ 05205"
/ 2
plog o, g,

Before proceeding further, it is interesting to check if C, may represent a
covariance matrix. C,, does represent a covariance matrix if and only if |p| <1, |p'| <.
Then, all the angular minors of C,,, A, become positive and xC_x" is a quadratic form
positive defined.



LIDAR Inversion and Nonlinear Kalman Filtering 8.23

v N
I(C,);|(1-pHN2(1-p%)? N=even
» 88
Ay=) (88)
v L]
I(C,).[1-p»V2(1-p?) 2 N=odd
i=1

Once C,, settled, the next point to tackle is the problem of building such N white
correlated processes from N others, that are uncorrelated. The problem can be solved by
finding the linear transformation, A, and the N orthogonal white powers (in fact,
independent) at its input (Fig.7).

Spatial-correlator time-correlators array
w
n, —3| R, — m,
Wo
nzéf A “RQ _9 mo
: Wi ;
nwﬁ “me H mw
o2
e 0 _ Cw
Cn:i 0 "o"] Cu Con 1- exp(-2-B-At)
o _

Fig; Generation of spatially correlated markovian noise.

Let X be a vector of N gaussian variables X,, X,,..., X}, my the vector of means
and Cy its covariance matrix

Cy = E[(X-m)(X-mp)T] ' (89)

and let Y be a set of random variables Y}, Y,,..., Y, linearly related to the X, X,,..., X,
set via the linear equation

Y=AX+b (90)

where A must be a squared nonsingular matrix (i.e. invertible) and b a constant vector. The
following relationship can be proved [169]
my=Amy+b

o1
C,=AC, AT

The transformation, A, that produces a diagonal covariance matrix ACy4” yields a
new set of normal random variables that are uncorrelated, and consequently, statistically
independent. As we are interested in the correlating system which has independent samples
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at its input, the linear system is represented by A7, since A4 is unitary (the bias vector b is
zero since Y has zero mean). Hence, the solution takes the form of an eigenvalue problem:
the eigenvectors of C,, are the columns of A and the diagonal of Cy (the vector of
independent gaussian powers) is formed by the eigenvalues of C,,

So as to illustrate the physical meaning of eq.(87) and its synthesis from
independent white noise processes, Fig.8 simulates the time-space behaviour of two cells
(say, cell I and cell 2) far apart (p=0.05) with a high correlation in their in-cell optical
parameters (p'=0.95). The correlation length, L., is L, = 50 samples. Below the four
processes on display there are also shown their crosscorrelation functions

R (k) = E{&]'(n)d]'(n+R)}
' (92)
R mgnk) = E{a’;"’(n)-B’;"(mk)}

where the rows of R correspond to different realizations of the processes. If the four plots
are cross-examined, two couples of quite similar processes can be identified: beta 1 vs.
alpha_1 belonging to cell I and beta 2 vs. alpha_2 belonging to cell 2. They are precisely
the in-cell extinction- and backscatter-time-drifts. This is corroborated by the
crosscorrelation function that is practically a Dirac's delta (p=0.95). On the other hand,
two couples of virtually uncorrelated processes can be told out (beta_I vs beta 2 and
alpha 1 vs. alpha_2). The crosscorrelation function confirms the result (p'=0.05) in the
plot below.

4.3 First filter: the constant backscatter estimator

As discussed in the introduction of this section, the atmospheric model of eq.(70)
means estimating both the vector ., that represents the gross-part long-term standing
backscatter, and the correlation constant C. As before, B, is estimated every M cells (M
> 2) for observability reasons (Sect.5). If the state vector is built as follows

X, = (93)

the dynamics of the state vector can be expressed by

B (k+1) |1 o]
o1

C(k+1)
If this is identified with the general form of the state model (eq.(1)), ®, = I, w, = 0
results. Note here that the state noise being nil, Q, becomes nil, and this leads the filter
to an idle state.

-

Bk
C(k)

(94)
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Fig.8 Markovian noise processes modelling «,,, f,, of two cells (top)
and cross-correlation functions (bottom).
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So as to counteract the problem, convergence can be assured if non zero elements
are set along the main diagonal of Q,:

2
o T 0
Q,- ? (95)
2
0 O gk

where a, and O, are on the order of a 10 % of the constant components B. and C,
respectively (I denotes the identity matrix).

As for the correlation matrix of the observables, R,, a range dependent variance has
been assumed, as so is the signal-to-noise ratio in a lidar system.

ot B 250}

2
0 02 i 0 (96)

2
0 0 - oy

The a priori estimation £, (whose dimension is N/M+1) becomes

20=[Bg s - » Bo » Co]" )

where S, is the estimated backscatter value and C, the initial estimate of C.
Its associated a priori error covariance matrix is

2
i 98)

where opz is the variance of the constant backscatter components, o, is the initial error
variance of the constant C, and 7 is the identity matrix.
According to (67) and (93), the state model is given by

= x + m 0_1 N
ai—xMMHxi % = E

%9)

" i N
B‘.=xi+|3£ IZI..E

where, in theory, ;" and B/ should be entered to the algorithm as parameters since they
do not belong to the state vector. In practice, the first filter cannot know them as the
second filter is, in turn, fed by results of the first. On account of the fact that the
markovian components are much lower than the constant ones and that they are zero mean
processes, the following approximation applies
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o. =X X i=1 ﬁ
(100)
; N
c=x,  i=1..—
bi=x, M

This represents a sensible approximation for the first filter as it means to replace
the markovian components by their mean value, which is zero.

So as to evaluate the power derivatives with respect to the state variables, one must
consider a relation of the following form together with the lidar equation (eq.(37)) that
models the observables (the factor M represents the undersampling factor)

oP, 0P, da; P, 3, N

— i | — g=1.N j=1l.— (101)
ox; da; ox; op; dx; M
where the a; ﬁj derivatives are
da; ap.; N
Ntk ad=] j=1,— (102)
axj ML ox; 4 M

Lastly, if the lidar equation is developed as it was done with egs.(48) to (52), but
following the considerations above, the equivalent observation matrix H takes the form

H=[H, H,) (103)

where the H, is the observation matrix of the constant backscatter components and H, that
of the adaptive constant C. These are their closed expressions

1
-2CR_, +—|P 0 0 0
( xl] l (104)
[—2C(Rmh+AR)+i} P, 0 0 . 0
Xy
B {—ZC[Rmin+(M—l)bR]+xil} ¥ 0 0 0
-2CIR,, +(M-1DAR] Py, [-ZCA R+l] B 0 .. 0
*
-2C[R , +(M-1)AR] P 2CMARP, -2CMARP, .. [-2CMM+ : ]PN
xM'M
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2R % P,
-2(R ;. +AR)x, P,

H,- -2[R_, +(M-1)AR]x, P,, (105)
“2{[Ru +H(M-1)AR]x, +ARx, |} P

M+1

2[R, +(M-1)ARIx, +M AR X, +...+M AR Xy, \+M ARxy, } Py

This first filter has been tested using an atmospheric simulator according to the
time-space correlated atmosphere discussed in Sect.4.2 and following the computational
steps presented in this Sect.4.3. This is shown diagrammatically in Fig.9.

%105 85 i 1
i
E':nrkovga'l. Xr= @, B—m] >
1 TR J
3n delay |
[ 5]

p-

k+1

KalmaﬂpSH Zo=izlzl. z:}J

Fig.9 Block diagram of filter 1. Fig. 10 Block diagram of filter 2.

4.4 Second filter: the markovian estimator

The ultimate goal of this second filter is to estimate the markovian components
based on the constant backscatter components estimated by the first filter. Here, they will
work as parameters rather that variables of the model. Obviously, both filters must share
the same undersampling factor, M. The following system stems from this idea

AjC .« N
o, =Cp, +x; Fl"ﬂ_l
(106)
A .. N
[3‘=ﬂ§+xMM+i I=1"A_l

where the hat (*) denotes estimated. Working on that ground and making use of the model
developed in Sect.4.2. the state model is expressed by
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o, (k+1) o
. =exp(-BAn)T|
B,(k+1) p

where [ is the identity matrix.

k —
0| W (k) (107
(K

JREXC

The state covariance matrix, Q,, coincides with that of the correlated noise C,.
Note that the model of eq.(107) is necessary because the Kalman filter model of eq.(1) has
to deal with white sequences. In fact, what has been done is to augment the state vector
dimension to accommodate the markovian noise.

The a priori error covariance at £, P, is assumed to be

P;=C.(0) (108)

In the same way we did in the previous section, the observation matrix H can be
divided into two submatrices, H; and H,, one for the markovian extinctions and the other
for the markovian backscatterers.

2R P, 0 0 .. 0
2(R_. +AR) P, 0 R 0
H =| -2[R;,+*(M-DAR] P, 0 8 e 0 (109)
2[R +(M-1)AR] P,,,, -2ARP,,, 0o .. 0
2[R +(M-1)AR] P, -2MARP, -2M ARP,, .... 2M ARP,,
r
e 0 0 ... 0
B1+xN,-‘M+1
P
2 0 0 0
B X1
Py,
H-|l—*— 0 - 0 (110)
2 AL
ﬁl+xN,-'M+1
P
0 — 0 0
Bo*+Xnpria
P
0 0 s —
ﬂNfM+x2NfM_
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Each iteration must be evaluated at the a priori estimate £, .

This second filter has been tested using an atmospheric simulator according to the
time-space correlated atmosphere discussed in Sect.4.2 and following the computational
steps presented here. This is shown diagrammatically in Fig.10.

4.5 Results and discussion

Several simulations have been performed with the matched-pair of Kalman filters
presented. In many of them, especially in instances where large values of C (C = 10) have
been used, the error covariance matrix P has turned out to be bad-conditioned (rank
deficient) due to numerical round-off errors when running on a PC486DX platform. This
is equivalent to say that the eigenvalue span of P is far too large according to the Rayleigh
criterion [28]. To counteract the problem, UD matrix factorization [169][167] was first
tried, though unsuccessful results were obtained. Finally, the problem has been solved
using sequential processing techniques in the kernel of the first Kalman filter. This has
enabled C-values to span as large as (C = 100). Square-root processing [165] may also
bring enhanced numerical stability and possibly Cholesky factorization. In the present case,
sequential processing of the measurement data, along with matrix symmetrization [169]
whenever possible, has given the final thrust to the algorithms presented.

Among the comprehensive set of simulations, the four most illustrative are
summarized in Tab.4 (p.8.35). Tab.3 lists the default parameters used in the simulations.

KALMAN FILTER DEFAULTS
Artmospheric default parameters:
B, =2102%:5102 km'sr! € =3333sr
Ry = 1 km; R i, = 0.2 km; AR=42.1 m
Filter parameters:
a) Global sampling parameters: N=20, M=2
b) First filter:
Iterations I; = 20
Qy (state error covariance): 0q= 103 km™! -sr'l; aqk=1 sr
Py (a priori covariance): op= 102 km! -sr'l; 0 =3 sr
Initialization: Bo=102 km’sr'l; Cy=30 sr
¢) Second filter:
Iterations I, = 20
Correlation coeff: p (adjacent-cell) = 0.9 p'(inside cell) = 0.95
p (see eq.(74)) = 10 % L, (correlation length) = 1000

Tab.3 Defaults used in the simulations.
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In the first place, note that SNRs of Tab.4 are range-dependent as it is the case in
lidar systems. Values are in reasonable agreement to real cases. For this reason, high
values correspond to lower ranges (0.2 km) and vice versa.

In the first simulation of Tab.4, atmospheric simulated realizations vs. first filter
estimations are compared (Fig.11). XY-axis show the state vector vs. time. Extinction is
depicted at the top half of the figure and backscatter at the bottom one, with the exception
of the last vector state component that represents the correlation constant, C (eq.(93)).
There, atmospheric history illustrates successive atmospheric states the filter has had to
estimate departing from the initial guesses. For this reason, the simulated atmospheric
vector is named state vector while that of the filter is named estimated state vector. Recall
that, for the first filter, the atmospheric vector is constant with time. Also, note how after
eight iterations, the filter has identified the state vector quite accurately. Constant and
markovian atmospheric evolutions have been plotted in separate figures as their
superimposed contributions are difficult to tell apart graphically (the markovian part is
much more lower). As no adaptive capability has been given to the correlation variables
p, p', p, Le, both the second filter and the atmospheric simulator have shared the same
couple of values.

The normal running of the algorithm implies that once the first filter (the constant
estimator) has successfully estimated the atmospheric state vector, results should be passed
to the second filter (Fig.10) or markovian estimator. Of course, the quality of the
estimation of this filter will certainly depend on how accurate these results are. Thus,
simulations 3 and 4 in Tab.4, study the effect of passing to the second filter exact results
(of course, known from the simulator) or the estimated ones by the first filter.

About that, Fig.13 and Fig.14 illustrate the markovian behaviour of the simulated
atmosphere. Recall that markovians are understood as time-space variations that
superimpose to the time-constant atmospheric state vector (no time evolutive). From top
to bottom, the first plot represents the atmospheric state vector, the second one corresponds
to its estimated counterpart, the third one, evaluates inversion relative error and the fourth
one is the Kalman gain. The large differences in inversion error and Kalman gain of Fig.13
and Fig.14 show that while in the first simulation the filter cannot track the dynamics of
the atmosphere, it can in the second one.

Though belonging to different simulations, Fig.12 and Fig.15 compare the
atmospheric state vector in a colourplot. Abcissae plot the iteration number and ordinates
the vector component number. Note that in Fig.12, the markovian profiles are retrieved
in the low atmosphere (bottom half of the plot) but not in the high atmosphere. Simulations
1 and 2 are about cooperative filters, where results from the first filter are passed to the
second. Simulations 3 and 4 focus on the performance of the second filter. In all cases, as
long as the filter performs more and more estimations, it manages to keep track of the
estimates.
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8.32

Ist filter state vector

iteration

component number

1st filter estimated state vector

tleration

component number

Fig.11 Simulated atmosphere and first filter estimates (siml).

Fig.12 Time evolution of simulated atmosphere and second filter estimates (sim2).
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Fig.13 Atmospheric dynamic evolution and second filter behaviour (siml).
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Fig. 14 Atmospheric dynamic evolution and second filter behaviour (sim2).
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To conclude, as far as it concerns to the first set, it can be said that
notwithstanding lower SNRs, first filter performance (the constant estimator) is always
excellent, while tracking of the dynamic behaviour of the atmosphere by the second filter
(the markovian estimator) is virtually impossible, unless the lidar worked with extremely
high SNR that would lead to acceptable accuracies (see simulation 2).

Low «-observability together with a high in-cell correlation, p’, could possibly
justify that SNR figures in simulation 1 were not high enough to guarantee a good
performance of the second filter. A high p' could play a negative role as if «; is
misestimated, these errors will easily propagate to their partners, B, because p’ near unity
virtually relates B; to ¢; in a linear fashion. Nevertheless if SNR is high enough, Kalman
estimates and atmospheric history look exactly alike (Fig.14).

As for the second set, if simulation 4 is compared to simulation 1, it can be
concluded that first filter accuracy (the constant estimator) and SNR, as well, emerge as
the dominant factors. Thus, exact constant estimation has saved up to 30 dB of SNR. Error
and contour plots will help the reader to tell out the differences.

FILTER 1 FILTER 2
PARAMETERS  [""""" e S COMMENTS
«C) i By | o) :oe(By)
L e T R N T i S AR N T R Y S S SR N S O PO O SR S T I,
A Filt.1 converges in 8
1 4.71-10° 028 i 4.25 897 | 14383 | iterations (Fig.11)
SNR % % % % Filt.2 cannot track R=0.4 km
60:40 dB (Fig.13,Fig.12)
A Filt.1 exact
2 4.71-10° =0 0.5 60 76 Filt.2 good tracking
SNR % i % % % | (Fig.14)
120:100 dB I,=10; I,=15
A 4087 593 Filt.2 given exact values of g,
3 4.71-10° % i % o
SNR 200 % i 200 % | Filt.2 rough tracking
60:40 dB avg avg
A Filt.2 given exact
4 4.71 44 23 values of B, C.
SNR % % Extraordinary tracking
90:70 dB I,=10 (Fig.15,Fig.16)

Tab.4 Summary of the simulations done using cooperative filters.
(NOTE: avg means averaged value. Peak values are shown unless otherwise indicated).
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Fig.15 Atmospheric dynamic evolution and second filter estimates (sim4).
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Fig.16 Relative error of the total estimation (sim4).
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5. THE OBSERVABILITY PROBLEM

Summing up the results achieved by the filters presented, one may well wonder
himself which are the intrinsic hidden parameters of the model, responsible for the relative
errors yielded. Form the author's viewpoint, Kalman filter performance is directly tied to
the observability problem. Three main factors should be mentioned:

1. Rank observability and undersampling factor

This accounts for situations were there are less observables (measurements) than
variables to estimate. Based on these situations, the undersampling factor, M, is defined
as the ratio of power samples to the number of cells where both optical parameters are to
be estimated. Thus, M=1 would mean a complete coverage of the lidar range and M=2
would mean that only one out of every two cells is estimated.

The rank observability is a concept inherited from linear algebra. Thus, ir is
necessary for a set of linear equations to be compatible with single solution to have the
same number of equations as variables. Though this is not always true for a Kalman filter
as H, does not need to be square and each observation may convey some extra information,
it seems to apply in the lidar case. Reference [169] provides formal tests of observability
that may be applied to systems of low dimensionality. These test are not always practical
to apply, though, in higher-order systems as it happens to the lidar case.

To illustrate this new kind of observability problem, it is worth showing some
results obtained with a Kalman filter identical to that of Sect.3 except for M=1 (the
overdetermined cases, M =3 have proved fruitful and the M =2 case has been covered in
Sect.3). The M =1 case intends to estimate both optical parameters along each observation
cell, which results in 2N unknowns, given N power samples. Matrices HI and H2 are
shown in eqs.(111) and (112)

2ARP, O 0 R 0
2ARP, -2ARP, 0 0 ..

H,=| 2ARP, -2ARP, -2ARP, 0 ... 0 (111
(-2ARP, -2ARP, -2ARP, -2ARP, .. -2ARP,,|

Two simulation sets have been performed beginning from the atmospheric state
vector of Fig.17 and considering white noise perturbations in successive time steps (the
white noise atmosphere model of Sect.3). Thus, the first one consists of Fig.18 while the
second one Fig.19 (see the simulation parameters in Tab.4).

In Fig.18, neither the extinction nor the backscatter have correctly been estimated
by the filter. Letting alone complex mathematical reasonings, it can be explained noticing
that the filter has to tackle the estimation of two parameters in each observation cell.
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0 —= 0 0
XN
_ 112
H,- P, (112)
T TRRT s S 0
xN+3
P
0 0 0 ... i,
xZN

Looking back to eq.(48), let that cell be located at R=Rmin. It emerges that the filter is
confronted by an indetermination as any misestimation in one parameter (say «) can be
offset by the other one (say B). Fig.20 shows the time-space history of the filter, which
is very sluggish in the estimation for . This has led the author to devise an undersampling
filter.

Lastly, in second simulation (Fig.19), contrary to what may be thought at first
sight, the filter has been able to successfully estimate one of the two parameters, the
backscatter. This surprising result can be explained considering the second type of
observability.

PARA- | Ist. SIMULATION : 2nd. SIMULATION
METER Fig.18 Fig.19
_:
P 0.2-1 {10 Nep/km'!
B 0.2-1 102 km'!
.- 10! 102
xo :
% 101 102
o 10 103
o, 102 102 W
A 10* P 10% Wkmdsr
N 60 60
SNR(R) 140-40 120-50 dB

Tab.5 Parameters used in the observability simulations.
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Fig.18 Final atmospheric state vector (1) and estimated one (2).
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2. Parameter observability

This second type of observability emerges as a consequence of an apparent change
in the ratio, k, number of observables to parameters, due to a sensitivity change. Thus,
referring back to eq.(48), if the second simulation is considered, « has little effect on the
observable power as for o « I it becomes:

A
(iAR)

Therefore, the k-ratio changes from 2 to 1 and the system becomes completely

P, =~ B(AR)

observable (the vector B would act as the unknowns and the power samples as the
parameters). On top of that, the most important consequence stems from the sensitivity
effects on the observation matrices H,. Looking back to eq.(111), H, (it is, in fact, the
derivative of the observables with respect to the a-parameters, therefore, a sensitivity
relationship) remains unchanged. None of the a-project-ahead steps will be sensitive
enough to modify H, via de P; terms. As a consequence, if these trajectories are static, the
filter lacks adaptability and does not update this set of parameters. This is shown by a flat
portion in Fig.19 and Fig.21, which correspond to the extinction-subvector.

Besides, if eq.(111) is compared back to eq.(57) the undersampling factor (N/M=2)
shows up in an extra gain 2N/MAR = 4AR rather than 2AR, increasing H, sensitivity to
return-power, P,

3. Identification observability

This kind of observability problem often arises as a modelling error. The filter is
taught to estimate two different parameters when, in fact, they are not. Imagine it were
wished to estimate two variables x,y from an observable z, accomplishing z=x+y. Here,
x and y could not be sorted out and the filter would only be able to identify its joint effects,

say Z=x+y. Imagine a joint estimation of 8, «,, B, were tried by a single Kalman filter.
The state vector would be

B.c xf
- _ = y N
Xx=|0,l = xN’,M” ;:1__A_d (114)

Pr|  [Xonimei

and the model equations would take the form
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Bk+1)| [f 0 0 B[ [ o
@, (k+1)|=|0 exp(-BAD)T 0 &, (k)| +|W, (k) (115)
B’m(k_,_l) 0 0 exp(-BA?n)1 B’m(k) ﬁﬁ(k)

In terms of the state variables, this would yield to eq.(70)

: N
a£=C-xi+foM+i 1=1..ﬂ

(116)

3 N
Bi=xi+x2N,-'M+i =l —

M
that is not observable (e.g. assume x=x;, y=x,y,,; and z equal to the backscatter 3,).

Evidently, the choice of state variables is largely a matter of convenience.

Allin all, the Kalman filter, linear or nonlinear, is usually the preferred algorithm
under any reasonable error criterion, provided there is some knowledge of the stochastic
processes to deal with. The main difficulties to overcome lie in solving the start-up problem
and choosing good observable models.
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Fig.20 Rank deficiency leads to very sluggish behaviour.

Fig.21 Extinction is a very low observability parameter.



