CHAPTER 7
LIDAR INVERSION METHODS
WITHOUT MEMORY

This chapter is aimed at inverting the sought-after parameters of extinction and
backscatter from the lidar equation using algorithms without memory. This is to say,
that every lidar return signal will be processed independently from past shots. Rather
than tackling the problem in its most general form, where both optical parameters can
have different values in different cells along the lidar beam-path, a bottom-up approach
is followed. At the outset, the chapter begins by reviewing the simplest straightforward
classic approaches based on linear regression (slope-method) and least-squares
algorithms. At this level, an homogeneous atmosphere with identical cell features will
be assumed. The main contributions here encompass the blend of all this background
into efficient hybrid algorithms as well as their evaluation in terms of mean-square error
in the optical parameters vs. key variables such as signal-to-noise ratio, visibility
margin, etc. In addition, the development of mathematical models for the slope-method
have enabled to identify inversion error sources, thus ending a long-lasting controversy
between the two methods that has arisen in the literature.

Taking a step further, the void of lidar inversion in inhomogeneous
atmospheres using non-memory algorithms is filled by Klett's method. Likewise, an
error assessment study has been conducted that focus on how calibration errors (in
addition to those mentioned above) translate into a final inversion error in the optical
parameters. Working on these grounds, the inverted profiles are within known error
bounds, as the inversion error can never be known exactly.

To sum up, and with a view to integrating all the worthy algorithms, a third
software package named link-detect has been built. All the inversion plots of this
investigation along with the live-data inverted profiles have been processed and
evaluated with it.

1. LIDAR INVERSION GROUNDS
As it has been presented in Chap. 3, the basic single-scattering LIDAR equation may
formally be expressed as [9]
R
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where:
P(R) is the range-received power [W],
B(R) is the range-dependent volume backscatter-coefficient [km"' sr! 8
« is the range-dependent extinction-coefficient {km"' A
R is the range [km] and,
A is the system constant [179],
which is defined as follows

Aw 10-”—%,4,5(1) ER) [Whmdsr] @)



72 LIDAR Sensing of the Atmosphere

where
E is the transmitted energy [mlJ],
c is the speed of light [ms‘l],
A, is the effective receiver area [mz],
£(A) is the receiver's spectral transmission factor [] and,
£(R) is the overlap factor or geometrical form factor [].

The goal of LIDAR inversion is to retrieve the optical atmospheric parameters o(R),
B(R) from the return signal P(R). ([175][176][188])

All the algorithms discussed here lie on the basis of single scattering situations. This
is always true except in instances of very low visibility, where multiple scattering methods
have to be considered [168].

Next, this section primarily describes an homogeneous method to solve the lidar
eq.(1) for o and B. In addition, it is of interest to know the feasibility and accuracy of
optical-to-physical conversions. Usually, the received signal P(R), is range-normalized and
corrected for instrumentation transfer anomalies. System constants (e.g. receiver area) and
pulse-to-pulse variations in lidar performance (e.g. output power) are eliminated by
dividing the profile by its range-normalized value at R, (reference range). This leads to

S®R) = 10log PRT'®)

: ©)
B(R)T(R)
where
R
T(R) = exp| - 1[ a(r)dr “4)

is the one-way path transmittance. Expressed in differential form, this equation becomes
& 2 s )
dR B dR
and from this, given:
a) an assumption on the relationship between o and B, and
b) a boundary value of an appropriate parameter,
one can derive the two optical parameters, or, given additional relationships, certain
physical parameters [183][163]. [9] provides a general form from which solutions for
various aerosol parameters such as particle number, or mass concentration may be derived.
Adopting the letter ¢ for the aerosol parameter in question, the solution is

BR) - exp[C,S(R)]
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Specific examples of ® with appropriate values for C; and C,, and the assumed
relationships for the aerosol quantities are listed in Tab.1. Except for the special
circumstances noted in the bottom rows of it, propagation errors are a major penalty. This
means that to guarantee reasonable error levels in the estimated physical quantities, one
would have to ensure even much smaller ones in the optical parameters first inverted,
which would be unattainable for Mie lidars under typical homogeneous atmospheres.

SOLUTION FOR BASIC RELATIONSHIP C, C
(®=) MEASURED OR ASSUMED
B B =k, 0.23 2/k,
(backscatter-coef) :
o dln B 0.23 2/ k2
(extinction-coef) g E kz
Np *) relative size distribution, 0.23 o
(number concentration) n(r) invariant with range R 2£ - r2 Qexr(r) n !( rdr
Po alp, and B/p 0.23 2alp,
(mass concentration) invariant with range R
(*) Refer to Chap.2, Sect.3.2.1. Note also that n(r) =an’(r).

Tab.1 Lidar equation solution possibilities for some physical parameters [9].

Ultimately, a major result would be to infer physical variables such as temperature,
pressure and humidity from optical measurements. As it has been discussed in Chap.2 such
physical magnitudes have repercussions on the refractive index and on the concentration
of scatterers, let alone humidity growing effects on them. These phenomena are
particularly difficult to pinpoint in the Mie's case because not only do the efficiencies
Q. 06,m), Qpacx(x,m) directly depend quite complicatedly on the optical parameters
(Chap.2, Sect.3.2) but also because there is no one-to-one relation between the efficiencies
and the couple (x,m). This is equivalent to say that scatterers of different sizes and
refractive indexes may yield the same efficiency.

The Rayleigh case, being the only one attainable in this way, has brought into the
market some LIRAs (lidar Rayleigh) that are capable of remotely sensing the high
atmosphere by monitoring the concentration of some permanent gas [113]. Note that in the
lower atmosphere, Mie scattering will outweigh Rayleigh's one, since the former is some
orders of magnitude higher. Compare, for instance, Rayleigh values in Fig.15 and Fig.16
(Chap.2) to the Mie's ones in Fig.30 (Chap.2) or to the haze M model in Fig.31 (Chap.2).

To shed more light on the issue, Collis and Russell [9] derived typical variations
in the interrelation of optical and physical parameters of atmospheric aerosol particles.
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There were considered characteristics such as particle number density, N, mass density,
M, type of distribution function, shape, refractive index, etc. Thus, for instance, a change
in the refractive index from m=1.5-j0 to m=1.33-j0 results in a x0.3 change in S/N.
Changes in shape are also very important. In this way, a change in shape from
homogeneous sphere to an onion shaped artifact leads to a x0. 7 change in the backscatter-
to-extinction ratio, B/c, or even up to a x0.I change, if irregular plates are considered.
This does not take into account errors due to misrepresentation of the distribution function
of the scatterers [193].

In spite of the complexity, large propagation errors and a number of unknowns, it
is possible to derive approximate or qualitative information from lidar measurements, and
since this information is obtained remotely, it is often of great value [204]. Thus,
estimation of coarse aerosol statistics of relevance to weather forecast and ceilometry
studies such as cloud and boundary layer height determination are often possible from
backscatter maps and synchronism information [179] from the hardware. Wind vector
determination is also possible as a result of template window correlation on two-
dimensional backscatter maps [170][171][191]. Extra processing of this information can
contribute to wind-shear early warning systems, which are precedent in aviation [133].

Inversion algorithms are classified in this PhD thesis into memory and non-memory
algorithms. The words non-memory algorithms refer to case where each return lidar signal
is processed separately from others belonging to different lidar shots. This chapter will
thoroughly concentrate on them.

They have both pros and cons. On the one hand, non-memory algorithms are fast
but if processing speed is not an end (e.g. off-line processing) they suffer from the basic
fault that they do not take advantage from the correlation amongst lidar shots. This results
in an additional error source and in a lack of adaptability. On the other hand, as it may
well be guessed, memory algorithms can counteract these penalties at the expense of large
CPU times. :

In addition, the different possibilities of the algorithms have also been classified
depending on whether the atmosphere is assumed homogeneous or not. If it considered to
be constant over the entire lidar range, which is clearly an unrealistic assumption, one talks
of an homogeneous atmosphere. To simplify, extinction and backscatter-coefficients will
be extrapolated from the visibility margin, V), and the tabulated margins in [9][25], as it
has been described in Chap.3, when talking about the Koshmieder's relation. Thus,

() =f(Vy) ;s aB®=a, PR)=P )

- Homogeneity is the case of slope-method and exponential-curve-fitting algorithms.
On the contrary, if at least one of the two optical parameters, « or B, is range-dependent,
one talks of inhomogeneous atmospheres. Klett's method tackles the inversion problem in
such instances.
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2. ALGORITHM RANKING POINTS. SOME CRITERIA

When testing and grading different algorithms it is important to assess what are
their sensitivity to noise by means of some SNR criterion, as each one performs a different
translation of noise into a- and f-rms error. This idea has prompted a plan to develop
testing software (link-detect), that accounts for the main noise sources described in Chap. 3.
All these sources have been modelled according to the parameters of the APD-based
receiver. The following points must be observed:

As far as SNR versus range is concerned, it is in agreement with the definitions
given in Sect.2.2 of Chap.3. This is to say that

LP(R R LP(R
SNR(R)=R" B e o I ®

o,VB \f oi,uB + oi,,,dB + o2B v

The text will be addressed in terms of linear units rather than in decibels (dB). This avoids
the conflict of using 207og(SNR) at the receiver output (SNR appears as a ratio of
voltages) or 1010g(SNR) at the optical input of the system (where it appears as the ratio
of two optical powers).

As it was done with the stochastic hardware simulator of Chap.3, noise modelling
lies in finding the equivalent gaussian noise variance -::req2 (R) that merges into a single body
singlan-induced shot, dark shot and thermal variances (Ush'f, 0,4 and a,%, respectively).
Noise has also been filtered and limited to simulate a 9.2-MHz bandwidth, +5-V receiver.
Tab.2 summarizes the system default values used in the simulations. Note that sometimes
the values shown do not perfectly match those of Chap.3. This is because Chap.3 tables
advanced measurements from subsequent chapters and Tab.2 is based on pessimistic link-
budget estimations, which were made before the construction of the lidar receiver. All
considered, the simulations fulfil their purporse if they are interpreted in terms of SNR.
A moderate background power figure, P,,, = 210-7 [Wem™? nm™ sr'], has been used.

PARAMETER VALUE REMARKS
Quantum efficiency ) 36 % Tab.2 Chap.3; Sect.2.2 Chap.5
Current responsivity R, 37.1 A/W Tab.2 Chap.3; Sect.4 Chap.5
Multiplication gain iM 120 Tab.2 Chap.3
Excess noise factor ‘ F 25.6 Tab.6 Chap.5
Dark surface current Lys 49 nA Tab.2 Chap.3; Tab.4 Chap.5
Dark bulk current Pl 8.4 pA Tab.2 Chap.3; Tab.4 Chap.5
Equivalent transimpedance gain i G 1 MQ Tab.3 Chap.3
Equivalent input noise density o5 | 0.6 pA-Hz"l‘r2 Tab.2 Chap.3
Equivalent noise bandwidth : B 50 MHz Tab.2 Chap.3
Optical system losses i L 50 % Tab.1 Chap.3

Tab.2 System default values used in link-detect
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SNA(A) an aB

10" 10° 10" 10" 10° 10 ; 1 15 2 25 3 35 4 45 5

SNA[Rmin) A (km) )
Fig.1 R,,, LIDAR range for different Fig.2 SNR(R) in dB for the extinctions
extinctions in [km™]. shown.

Whenever the term SNR is addressed in the text, SNR values should be understood
to be SNR at R, as it is a range-dependent function. If the atmosphere is assumed to be
homogeneous, SNR(R,,;,) unequivocally defines the signal-to-noise ratio at every point R.
Were the atmosphere to be inhomogeneous, the same holds true, provided the atmospheric
test profile is known (see comments in Sect.4.2).

Minimum and maximum system ranges also take into consideration the overlap
Jactor (ovf) assuming uniform ilumination. According to Fig.3 in Chap.3 and Ap.2 it can
be said that ranges between 200 m and 5 km are well within the full overlap interval and
that, therefore, overlap factor losses can be neglected in the test study.

These points settled, it is time to define some criteria regarding system ranges.
As for the minimum system range, the only limiting factor, provided the receiver is far
enough from saturation, is again the overlap factor. For this reason, according to Fig.3
(Chap.3), a value of 200 m has been chosen for R,,,.

On the other hand, the maximum system range has been defined as the minimum
between these two ranges:

- 5 km, which has been considered to be a sensible figure according to
overlap factor considerations (Fig.3 in Chap.3),
- and the range R, where SNR(R) = 1.

_ SNR(R_) =1

R { B ©

Fig.1 shows R,,,, criterion vs. SNR for different visibility margins, V,,

A further point to consider is the visibility margin, V,,. Its definition is based in the
Koschmieder's relation introduced in eq.(21) of Chap.3, Sect.1.3.
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Tab.3 lists interpolated figures for the pairs «, B, given a wide set of visibility
margins margins and according to different references. In Tab.3, the wavelength dependent
behaviour is indicated for the extinction and backscatter in the columns assyqgsy and
Bs:2064 Tespectively. Wavelength dependent behaviour has been computed for the
extinction according to eq.(21) of Chap.3 and [25]. Since no mathematical extrapolation
has been found for the backscatter-coefficient, it has been computed according to [9],
where empirical intervals are given for both the extinction- and backscater-coefficient. The
simulations have always used 1064-nm values in ref.[9], which are indicated in Tab.3 as
ay;, and B, Both extinction and visibility will indistinctly parameterize the simulations.

VISIBILITY| EXTINCTION BACKSCATTER | ATMOSPHERIC CONDITION based on

(V ) T | * L]
" Ogim Ea532(1064) Pt 23532(1064) ref.[9] i ref.[25]

#
102 1(0.87) 5 5(5)

*

1
3912 m Dense water cloud

1
|
391.2 m 10 1(0.75) 5-107! 5(5) Light water cloud 1« Moderate fog
I
3.912 km 1 1(0.54) 3102 3(3) Moderate/light haze 1 Haze
|
39.12 km 107 1(0.42) 3107 4(3) Clear air 1 Standard/very clear

[
3912 km | 102 : 10.42) |4-10* 10(4) Rayleigh gaseous 1 Exceptionally clear

(*) This column compares the optical parameter at A=532 nm to the one at A=1064 nm.
Values are times the order of magnitude given.

Tab.3 Estimated optical parameters vs. visibility margins.

Above all, rms relative error in an inverted optical parameter, let us say, «, is
computed in a root mean-square sense based on the following relation

- |2 N a2
- E@,
e = | L0 . L gy (@) | (10)
: N & Nid Q

I

where N is the vector dimension and E() means the inverted value of its argument.
Notice the vector notation in use: In instances where the algorithms work with
inhomogeneous atmospheres, each component of the vector represents the value of the
variable at every atmospheric cell (7.5 m).

3. SLOPE-METHOD vs. LEAST-SQUARES

In this section two important algorithms for homogeneous atmospheres are
presented along with a comparative study of their rms-errors. The error-simulations have
considered the same sets of visilibity margins, V,,, and signal-to-noise ratios, SNR,
as those given in Tab.3.
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3.1 Slope-method

Mathematically speaking, the basis of this algorithm, first introduced by Kunz and
Leeuw [187], lies in finding an operator that linearizes the lidar equation in such a way
that the optical parameters, « and S, can easily be inverted. If that operator is taken to be

S(R) = In[R*P(R)] (11)
where P(R) is the lidar eq.(1), it takes the form of a straight line whose slope and y-cut

provide direct information about the sought-after parameters. Next equation accounts for
the noisy term contribution in P(R):

— n(R2[P(R) + . —2&R + In[1+ 7B 12
S(R) = In(R}[P(R) +n(R)]) = In(AP) -2«R I.l:{l P(R)) (12)

Note that were it not for the noisy term containing n(R), the first two terms would
represent a line of such characteristics, wherefrom

I® = mR+b; a=-I, p - 20 (13)
2 A

The third term in eq.(12) is of special significance in view of the inversion error,
since it results in a biased term in the form of the natural logarithm. This means that if the
argument of the logarithm is in a zero-centred signal, n(R), the result will be a non-zero
mean signal whose offset will be able to change the parameters that should come out from
the ideal line during the inversion process. The slope-method algorithm has consisted in
obtaining the best fitting line, despite the offset problem, from a linear regression applied
to S(R). In the future, S(R) will be called the range-corrected function.

Clearly, each operator performs a different translation of noise into a final inversion
error in each parameter. As it might be guessed for the slope-method algorithm, the lower
the signal-to-noise ratio, the higher the offset added. Therefore, recalling from Fig.2 and
Chap.3 that the SNR is a range-dependent function, the offset added to each sample will
increase as long as we move towards R,,,,.

As S(R) fluctuates due to the noisy term, the inversion problem will have to
consider the slope and y-cut expectations of the regression line, rather than their
instantaneous values, which would be equivalent to consider a single realization. By
applying the expectancy operator to both sides of eq.(12), it can be written that [23]

LY 2
P(R

E[S(R)] = In(AB) -2aR +E |In = I(R) +bias(R)

To compute the expected bias, one can resort to the expectancy theorem [7][27].
Recalling the probability density function (in the future, pdf) of a gaussian noise
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1 n?
fyn) = exp[— ] 15)
V2w o 20
the bias can be found as
bias(R) = L m[1 § ;‘J((?)]/N(n)dn (16)

Surprisingly, the above integral diverges. The problem arises from the fact that n(R)
has some likelihood to span as far as -P(R), where the logarithm argument reaches its zero
value. This can be overcome including hardware constraints that limit the maximum noise
excursion (e.g. saturation limits).

What is more, the development will only exist if

B L, 1z]<1 a7
P(R)

This is equivalent to set SNR > 1. If one takes advantage of this condition, the McLaurin's
series expansion of eq.(14) exists and it yields

EHI n(R)] _ ElR] _ 1EpXR] 1 EWQRI, (18)
P(R) PR 2 PR 3 PI®

Now, notice that the odd order moments vanish as n(R) is an even function. To a

certain extent, it can be assumed to be true provided receiver saturation effects do not
represent a serious constraint to this affirmation. Obviously, noise can never exceed the
sampling card dynamic range, but even though this is to say that its pdf is a gaussian one
with truncated tails, it represents a minor effect (recall that within a 3o-interval, there is
a 99.7 % area enclosed). To make matters simpler, the analysis has been carried out using
an uniform pdf. (In fact, the study has been done for other sorts of pdf including a
Hamming's, without significant differences). The n-th order moments can be computed
using the concept of characteristic function of a pdf and its properties [27]. If the symbol
II(x/a) denotes an uniform pdf in variable x centred around zero with span a, its associated
characteristic function My(w), is given by

i]][i] - M (0) = sinwo 19)
20

m,=E[n‘]== (20)

j! d(oi
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02n
m,=12n+1
0 otherwise

k=2n (21)

Finally, substituting eq.(20) and eq.(21) into eq.(18), the following expression is
found for the bias term

bias(R) = - 1 L, S (22)

i 2n(2n+1) PR id " SNR(R)?

where the SNR definition has been used.

Summing up, as it had been advanced, the offset added to the ideal line /(R) given
in eq.(14) increases for low SNRs and viceversa. A second conclusion would be that this
algorithm has to deal with a range-dependent offset as SNR is also range-dependent.

The next algorithm presented is a classical one, but counteracts these problems.

3.2 The least-squares algorithm

This classical viewpoint of the inversion problem not only exhibits better
performance but also seems more familiar to work with.

The problem can be formulated as minimization of the mean-square error between
the range-corrected function (now, without the logarithm) and the lidar equation (eq.(1)).
Mathematically,

N
g R2P(R) - beRI? = mi Rf-P )-b _aﬂi;
min, , [R*P(R) I mma.bgi:[ (R) -be ]2 23)
_b
BHA

bl
2
where the optical parameters, « and 8 can be inverted as indicated.

The exponential fitting has been programmed in MATLAB [1][2][3], as have been
all the simulations presented here. Least-squares optimization begins with an initial search,
which has shown to be quite sensititve to the initial guesses. So as to offset this effect, the
final implementation of the algorithm uses initial guesses from slope-method to achieve the
best results. The hybrid algorithm outweighs stand-alone application of slope-method by
far.

The improvement can easily be understood if we keep an eye on the role noise
plays in the least-squares algorithm. Contrary to what happened to slope-method, noise
affecting P(R) in eq.(23) becomes multiplied by R?, which results in an unbiased operation

E[R?’n(R)] = R*E[n(R)] =0 (24)
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To exemplify the unbalance between these two algorithms let us consider Fig.3
where an atmospheric situation with V,, = 3.91 km and SNR = 1000 is considered. Slope-
method regression line, hybrid least-squares fitting line and solution line are shown. In the
figure, it can be seen how least-squares is in good agreement with the ideal line. This
backs the hypothesis that unbiased operators entail less inversion errors.

As is often the case, cooperative algorithms (least-squares plus slope-method
initialization) exhibit better performance that their stand-alone counterparts.

T T T T T T L ! T

=376k
BT | OO S .

138 i

ST T ANUUNE SN SUUURURUR: SO AU SUUUUNN VOOV SUTRPN: SURRI: O

T L : ; ; . ; ; ;
05 1 1§ 2 25 3 35 4 45 5
R (km)

Fig.3 True profile (1) along with least-squares (2) and
slope-method (3) inverted profiles.

3.3 Evaluation and sensitivity studies
3.3.1 Simulation procedure overview

This section is intended to assess homogeneous algorithms performance in terms
of their mean-square errors as described by eq.(10).

To do so, testing software has been developed which is capable of synthesizing lidar
return-signals based on the procedure of Fig.4: It starts by choosing an extinction-
coefficient within the [10'3, 10] km™ interval and a SNR within the [10, 106] interval. For
each pair of values, the program computes maximum lidar range (e.g. based on a unity
SNR criterion (see Chap.3)), system constant, A, and adds the computed range-dependent
filtered noise (B=10 MHz) to the lidar signal. Once multiple stochastic lidar signals,
P(R)+n(R), have been synthesized, they are fed into the inversion algorithms, from which
« and B are obtained. o and B rms errors have been calculated averaging results over 10
simulations. Each set of simulations yields a single point (SNR, RMS, RMS ).
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P(R)
Input | Find A to meet _| compute [
VM parameters SNR signal |
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Fig.4 Link-detect block-diagram showing error evaluation procedure
for homogeneous algorithms.

Range-dependent noise variance has been modelled very much like it was done with
the stochastic hardware simulator discussed in Chap. 3.

3.3.2 Noise-sensitivity study

During the evaluation, the extinction-coefficient has been allowed to logarithmically
vary within the interval [10%-10] km™. Based on Tab.3, very low values of o represent
unrealistically large V,, under the assumption of homogeneous atmosphere. This would
illustrate asymptotic situations where extinction becomes negligible. '

Fig.5 to Fig.8 illustrate rms errors for both « and S using both slope-method and
least-squares. The latter is an hybrid form of least-squares since it has always been
initialized with slope-method. In the figures, abscissae represent SNR whereas ordinates
indicate rms error in the sought-after optical parameters. The change in slope coincides
with those appearing in Fig.1, in agreement to the criterion about R, stated in Sect.2.
Note that for each atmospheric extinction, the interval wherein the maximum range is
below 5 km is ruled by the 5-km criterion (the limiting one) rather than by a SNR = 1.
Consequently, SNR is above unity outside this interval, which results in lower inversion
errors.
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Fig.5 Extinction relative error with Fig.6 Backscatter relative error with slope-

slope-method. method.
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Fig.7 Extinction relative error with Fig.8 Backscatter relative error with least-
least-squares. squares.

NOTE: The plots above are parameterized by the extinction-coefficient [km™].
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3.4 Hybrid methods: LANL live scene inversion

If one of the two optical parameters, o or B, is known under homogeneous
atmosphere assumptions by any of the algorithms presented, an inhomogeneous version of
the other can be inverted from the received power. Let the homogeneous extinction, «,,
be known, then eq.(1) reduces to
A
RZ

From it, it is possible to retrieve a range-dependent backscatter-coefficient,

P(R) = B(R)exp(-2a, R) (25)

ﬁ (R) = %R 2P(R) exp(2cx W) (26)

In conclusion, so as to obtain an inhomogeneous backscatter profile, it is necessary
to find an extinction estimate, «, by any of the homogeneous algorithms presented, slope-
method or least-squares.

Obviously, the end all these algorithms pursue is to invert live data scenes. In this
section, hybrid methods have been used to invert data from a portable lidar belonging to
Los Alamos National Laboratory (LANL) (New Mexico, USA). LANL along with ITEMA
carried out the Barcelona Air Quality Initiative (BAQI) campaign [166][170][171] during
the Olympic Games held in Barcelona in 1992. (The acronym ITEMA stands for Institut
de TEcnologia i Modelitzaci6 Ambiental. Branching from the Polytechnic University of
Catalonia, this institute is concerned with environmental modelling techniques). The aim
then was to remotely sense wind speed vector field around the city, since it is of prime
importance for the determination of pollution transport models.

LANL lidar, though emmitting less power than our Nd:YAG laser, has the
advantage of portability and thus it is capable of scanning the atmosphere at different
elevation and azimuth angles. The lidar is positioned by computer-controlled servo-engines.
The scan introduced here comprises elevation angles between -3 ° and 40° at 0.5 ° intervals
(the lidar was situated on top of a 284 m-height hill). This means a total of 87 laser-shots.
Under exceptional visibility conditions, the maximum system range is 7696.5 m. Fig.9
shows the lidar-return signal versus range in arbitrary units for an elevation angle of 37°.
The analog-to-digital converter is also a 20-Msps card, which means an spatial sampling
rate of 7.5 m. On the whole, there are 1200 power samples from which only 1027 are of
interest. The 173 first samples prior to the lidar shot provide a measurement of the
atmospheric background noise. Next, the whole inverting procedure would be described
as follows:

The pre-processing steps of this data involves two steps:
1) Estimation of the background noise. This has been done by computing the
mean of the 173 first samples and,
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2)

Obtaining the useful data interval. Once the background component has
been subtracted from the raw data vector, not all of it contains useful data
yet. Note in Fig.9 that the receiver saturation has clipped part of the peak
of the return-signal. These data discarded, there will only be 993 useful

samples left to be processed.
4500 T

: useful data interval

o I ; H : r ; i ; ;
-1000 0 1000 2000 3000 4000 5000 6000 7000
R (m)

Fig.9 LANL-lidar-return signal vs. range (elevation 37°)

The processing steps are:

3)

4)

5)

Inversion of the inhomogeneous backscatter profile as described. Fig.10
illustrates 4 -B(R)-profile (in [Wm?]) inverted with hybrid least-squares
processing. First, note that the inverted backscatter-profile is scaled by the
system constant, 4, since its value was not supplied from LANL.

Filtering of the inverted profile [28]. As it is noticed in Fig.10, range-
dependent noise variance (eq.(24)) distorts backscatter information from the
high atmosphere quite a lot. The filtering here has consisted in ideal low-
pass filtering. Though there is room for improvement using bidimensional
picture filtering techniques, unidimensional low-pass filtering of the
backscatter spectrum has released challenging results using an optimum
filter length of 460 samples (Fig.11).

Graphical representation. Rather than one by one filtering of the f-profile,
as it has been done, image processing techniques [1] should be considered
at this step. Fig.12 and Fig.13 show final results using hybrid slope-method
and hybrid least-squares, respectively.
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Fig. 10 A-B(R) [W km?] profile using Fig.11 Final A-B(R) [W km?] profile
non-filtered hybrid least-squares. using filtered least-squares.

If polar coordinates are considered to interpret these figures, the p-coordinate
represents the distance, R, to the laser emitter, while the 8-coordinate represents the
elevation angle.

The backscatter magnitude A -8(R) is shown in a colourmap fashion. Dark colours
like black o red indicate high backscatter areas, while bright ones, like white or yellow
denote low backscatter areas.

Least-squares inversion in Fig.13 retrieves basic characteristics of the atmosphere
more realistically than in Fig.12, where slope-method inversion has been used. Thus, for
instance, the boundary layer is shown by a red layer near 2300 m height in Fig.13.
Underneath this layer, aerosols virtually have constant concentrations with height. This is
shown by prevailing yellow tones above 2300 m. The red patch right below the layer may
well correspond to a cloud extending between 800 m and 1300 m in height and 4800 m
and 7500 m horizontally (recall that the red color indicates an increase in backscatter, as
it is the case). The fact that aerosol concentration decreases with height above the boundary
layer (Sect.4.3, Chap.2) is also clearly depicted in the figure. Note that above the
boundary layer, colors fade progressively up to 5000 m height, indicating lower and lower
concentrations.

On the other hand, the whole characteristics retrieved form Fig.13 are difficult to
be inferred from Fig.12, except for the identification of the cloud. This corroborates
Fig.13 for it cannot be attributed to picture saturation effects of the image. Note that in
Fig.12 it is of yellow colour, which is a mid-scale colour of the colourmap.

Summing up, least-squares inversion outweighs slope-method one.
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Fig.12 2-D atmospheric profile inverted with slope-method.

Fig.13 2-D atmospheric profile inverted with least-squares.
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4. KLETT'S METHOD
4.1 The algorithm

Klett's method most prominent feature is that of solving the lidar inversion problem
in inhomogeneous atmospheres, as is usually the case. Yet, some extra information is
needed for the algorithm to pay off. Firstly, it is necessary to give a correlating hypothesis
between the two optical parameters; these are no longer constants but vectors. Owing to
this, they will be denoted «(R) and B(R) or, equivalently, in vector form. The correlating
hypothesis can be expressed as [185]

B(R) = C-a(R) 0.67<k<1.0 27)

where & is a constant within the margins given [186] and C can be estimated form the
Koschmeider's relation and Tab.3.

Second, a calibrating measurement of the already defined range-corrected function
must be given. It must be done at the maximum system range, R rather than at R
otherwise numerical round-off errors would make the algorithm highly unstable:

S(R) & In[R*-P(R)] (28)
SRy =S, = €(Ry)=0,,

max? min*

Since it may be especially difficult to calibrate at R,,,. [184], unless atmospheric
probe balloons or other radar equipment worked in cooperation with the lidar [152] (see
also airborne and shipboard sounding in [177][178][192]), algorithm sensitivity studies
versus calibration errors are often needed.

Working on the basis of a differential equation formulation for the LIDAR relation,
it can be written as

dS(R)  k da(R)
dR o« dR

2a(R) (29)

Noting that it has the form of Bernouilli's or Ricatti's homogeneous differential
equation, its general solution takes the form

R R r

o '®) = expl- | 145, P2 Lexpl - [ L.95 gptlqr
| %ar | % k ar

(30)

Now, considering that k is constant over the entire range (this does not represent
a severe constraint regarding the small variation interval of the variable) and joining
egs.(25) and (26), it arises what is known as the backward solution

exp[(S-S,,)/k]

R
. (31)

-1 2

ot L { exp[(S-S, )/k]dr

a(R) =
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Contrary to what happens to its minus sign counterpart (wherein integration from
R, to R is performed), this solution is highly stable. Its stability stems from the fact that
as long as R decreases from R,,, the extinction is determined as the ratio of two numbers

that each become progressively larger. If no external calibration, «,, can be provided, «,,
can be estimated by either of these two methods

1 dS(R) 15,75,
[ = ———_— = = e

homog m
2 dR 2R, -R

o

(32)

where an homogeneous atmosphere approximation has been considered for eq.(29), or

S-S -1
o - exp[(S,-S,)/k] 33)

R

% J expl(S-S, )/Kldr
b

where homogeneity is assumed within the (R, R,,) range by imposing «(R,) =«,, ineq.(31).

In order to interpret the calibration condition, let us consider Fig.14, where a
synthesized atmospheric profile is depicted along with the inverted one. In the simulation
there was assumed a signal-to-noise ratio, SNR—>oo, V,, =10 km and true knowledge of the
correlating constant, k, (k=1). The inversion algorithm was miscalibrated with a wrong
extinction (o, = 0.2531 km) rather than with its true value (o, = 0.5061 km™).
Predictably, the inversion accommodates the calibration as a wrong boundary value. An
important conclusion is that in spite of the miscalibration, the atmospheric profile is
retrieved fairly well up to the approximate end of the inhomogeneity.

06
z
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%}
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:
% - - . . - . S 2
0.oL—i i F ] i : ; ; ; :
0.5 1 15 2 25 3 35 4 45 5
R (km)

Fig.14 True profile (1) and Klett's inversion (2) using erroneous calibration.
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4.2 Evaluation and sensitivity studies

This section is committed to doing sensitivity studies that quantify rms inversion
errors in Klett's algorithm. Since the studies are parameterized, all the study parameters
have taken their ideal default values, except for the one under evaluation. These are
a,=a(R,,.), k=1, SNR—>o.

Trapezium-shaped atmospheric profiles have been synthesized in order to model
inhomogeneous situations. They have been built in this way: bottom base with extinction
« and top base with 2ce. These profiles are very much like the ones used by Klett in [186].
a-values agree with V), chosen from the set: 100 m, 1 km, 10 km. The trapezium has been
built from samples 7.5 m apart (spatial sampling rate) up to a total of 64 samples, which
enable to reach the maximum range of 5 km (see criteria in Sect.2). The correlating
constant, k, is assumed unity. Fig.15 depicts the synthesized profile for V,, = 10 km along
with the inverted one under exact values of calibration and &, given SNR = 3000 (70 dB).

o (=] o
» o n o o o]
wn tn [ o ) ~

extinction-coefficient (km -1)

o
Y

: 1 . ; i
o= 1 15 2 25 3 35 4 45 5
R (km)

Fig.15 True extinction profile (1) and inverted one (2) (Vy,=10 km).

4.2.1 Calibration error study

The study is twofold as both over and underestimation errors of the true calibration,
@, are considered. Once given the percentage error, the estimated calibration, «,,,, is
computed as

o - {1 i e,(am)}_am (34)
* 100

where the plus sign corresponds to an overestimation and the minus sign to an
underestimation.
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Overestimation errors vary from 0 to 1000 % whereas underestimation errors range
from O to 99 %.

Considering SNR infinite, maximum system range becomes 5 km (Sect.2). Laser
energy has been set to 1 mJ (note that this is irrelevant, the SNR being unlimited).

Fig.16 and Fig.17 depict rms inversion errors (refer to Sect.5 for discussion).

4.2.2 Correlation error study

Correlation errors between the two optical parameters, extinction and backscatter,
arise from the value chosen for k in eq.(27). Simulation values for £ are within the interval
(0.2, 1.5) which range from an 80 %-overestimation to a 50 %-underestimation. See Fig.18
to Fig.21.

4.2.3 Noise-sensitivity study

This study is very much like the one performed for the homogeneous atmosphere
algorithms (Sect.3). To lessen the dependency on other parameters, exact calibrations (c,,,
S ) and correlation constant, k, have been input to Klett's algorithm according to the
trapezium-sized extinction profile. This has left noise as the only error source.

Once the procedure starts, an initial SNR (SNR = SNR(R,,;,)) and visibility margin,
Vy, are chosen. From this latter value, a trapezoidal atmospheric profile is created in the
way explained in the introduction of this section. Maximum system range, R, I8
computed according to the diagram of Fig.4 and the criteria of Sect.2. Range-received
power and range-dependent noise variance vectors are truncated to meet system ranges.
Next, lidar signals can be synthesized by addihg to the range-received power the computed
noise realizations. Then, after a set of ten lidar inversions have been processed, relative

i
ro?

Ims-errors, e in the inverted optical parameters are available for each realization.
Eventually, what is called average extinction inversion error (that takes into account the

whole set of ten realizations) is computed. It is defined as

1 10
=D

1035

e/ J-100 % @)

Average extinction error is displayed in Fig.22. From the equation above and the
correlation relation given in eq.(33), both average extinction and average backscatter errors
can be related noting that

el =1-[1-¢. ] (36)
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Fig.22 Extinction error vs. SNR and « in Klett's method.

4.2.4 Homogeneous atmosphere study

All the points settled for the time being, one may well wonder whether it is worth
applying Klett's method to homogeneous atmospheres.

The study has managed a perfect calibration and a k-constant set to unity. Following
the same procedure as for the homogeneous algorithms, the extinction has spanned the
interval (107,10) km™ and the SNR the interval (10,10°). C-constant in eq.(27) has been
computed as the ratio B/«c. These parameters can be known from extrapolation of Tab.3,
once given a visibility margin, V,,. If inversion errors are cross-examined, a similar
behaviour arises, though overall Klett's quantitative error performance is worse. This can
be explained if we realize that the correlation relation remains unexploited. This is because
the optical parameters are constants, and their relation, therefore, a constant. Except for
the plots undergoing higher errors, no qualitative differences appear with respect to the
inhomogeneous simulations.

4.3 LANL live scene inversion

As in Sect.3.4, LANL raw data has been inverted using Klett's algorithm. The most
important parameters here are the calibration, «,, and the correlation constant, k.

The first one was taken equal to the one yielded by a least-squares inversion. This
option seemed more reliable because the use of eq.(32) derives from slope-method, which
exhibits higher inversion errors than least-squares.

As for the second parameter, it was assumed k=1, as there was no prior knowledge
from the correlation between the optical parameters.
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The use of hybrid least-squares has also helped to find the C-constant of eq.(33)
(note that C and k are needed to relate extinction and backscatter). It has been estimated
using

C,f_ I:%(Rmin)f

- R)=AB(R 37
AR B(R)' =AB(R)

min)

Again, recall that the estimated backscatter 8(R)’, includes the system constant, A.

Fig.23 compares a 36.5°-elevation-profile inverted by Klett's method to the same
one using least-squares. As for the backscatter-coefficient, there are no significant
differences.

1000 2000 3000 4000 5000 6000 7000
R (m)

Fig.23 LANL inversions using Klett's and least-squares algorithms.

5. CONCLUSIONS
5.1 About slope-method and least-squares

The studies conducted to spotlight error dependency on SNR have shown two
important points:

First, a-inversion error increases as the visibility margin does. To illustrate this
with an example, consider a high Vi in an homogeneous atmosphere. Then, the noisy
range-received power can be approximated by

P(R)ziBe‘z"‘R+n(R) = iB(1—2aR)+n(R) (398)
- B>
Obviously, as V), increases, the extinction tends to be masked by the noisy term. Thus,

low noise spikes added to a power sample must be offset by large deviations in the
extinction value, during the inversion process. This results in large inversion errors.
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Secondly, and contrary to what might have been expected at first sight, B-inversion
error decreases as the visibility margin increases. This trend reversal in relation to « can
be accounted for by looking into lidar SNR: Given a V,,, SNR(R) becomes higher, at a
same range, for higher transmittance atmospheres (higher visibilities).

Lastly, a further remarkable effect of these algorithms is that S-errors vs. SNR plots
tend to coincide for small extinctions. Prevailing this condition, SNR(R) decreases as R,
no matter the atmospheric extinction.

About the question of which is the best algorithm amongst them, the plots shown
in Fig.5 to Fig.8 appear to point towards the least-squares algorithm though slope-method
is needed to provide sensible initialization guesses.

5.2 About Klett's method

To begin with, Klett's error inversion study vs. calibration proves that the larger
the visibility range, the higher the calibration error. A first explanation to this would be
that for high V,,, the extinction « becomes small and thus, its inverse in eq.(31) grows up
to a large figure. As a result, this equation becomes more sensitive to the V,,. A second
explanation is that as Va dwindles, so does the range-corrected function, the calibration
term being more and more important. To prove the latter affirmation one can resort to the
integral version of eq.(29)

Rm
S-S, = k% +2 l[ a(r)dr (9
am
As the quotient in the logarithm argument can be considered a relative value independent
of V), the extinction in the integral (equivalently its counterpart, V,,) is in direct proportion
to the range-corrected function S(R). _

To follow on, when Klett's error versus SNR is studied, it has been shown that
inversion error in both optical parameters increases as so does the visibility margin. In the
same way as for the homogeneous atmosphere algorithms, low power-to-extinction
sensitivity has to be blamed for (eq.(38)). Note that in Klett's method one can talk
indistinctly about «-inversion error or B-inversion error as they look alike because of the
correlating relation given in eq.(33).

Summing up evaluation results, it can be said that Klett's overall behaviour is quite
different from that of the slope-method and least-squares algorithms. With them, it has been
shown that the extinction error followed a similar trend, that is, o-inversion error
increased as the visibility margin did but B-inversion error decreased.



